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Foreword

We are deluged by data—scientific data, medical data, demographic data, financial data,
and marketing data. People have no time to look at this data. Human attention has
become the precious resource. So, we must find ways to automatically analyze the data,
to automatically classify it, to automatically summarize it, to automatically discover and
characterize trends in it, and to automatically flag anomalies. This is one of the most
active and exciting areas of the database research community. Researchers in areas includ-
ing statistics, visualization, artificial intelligence, and machine learning are contributing
to this field. The breadth of the field makes it difficult to grasp the extraordinary progress
over the last few decades.

Six years ago, Jiawei Han’s and Micheline Kamber’s seminal textbook organized and
presented Data Mining. It heralded a golden age of innovation in the field. This revision
of their book reflects that progress; more than half of the references and historical notes
are to recent work. The field has matured with many new and improved algorithms, and
has broadened to include many more datatypes: streams, sequences, graphs, time-series,
geospatial, audio, images, and video. We are certainly not at the end of the golden age—
indeed research and commercial interest in data mining continues to grow—but we are
all fortunate to have this modern compendium.

The book gives quick introductions to database and data mining concepts with
particular emphasis on data analysis. It then covers in a chapter-by-chapter tour the con-
cepts and techniques that underlie classification, prediction, association, and clustering.
These topics are presented with examples, a tour of the best algorithms for each prob-
lem class, and with pragmatic rules of thumb about when to apply each technique. The
Socratic presentation style is both very readable and very informative. I certainly learned
a lot from reading the first edition and got re-educated and updated in reading the second
edition.

Jiawei Han and Micheline Kamber have been leading contributors to data mining
research. This is the text they use with their students to bring them up to speed on the
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xx Foreword

field. The field is evolving very rapidly, but this book is a quick way to learn the basic ideas,
and to understand where the field is today. I found it very informative and stimulating,
and believe you will too.

Jim Gray
Microsoft Research

San Francisco, CA, USA



Preface

Our capabilities of both generating and collecting data have been increasing rapidly.
Contributing factors include the computerization of business, scientific, and government
transactions; the widespread use of digital cameras, publication tools, and bar codes for
most commercial products; and advances in data collection tools ranging from scanned
text and image platforms to satellite remote sensing systems. In addition, popular use
of the World Wide Web as a global information system has flooded us with a tremen-
dous amount of data and information. This explosive growth in stored or transient data
has generated an urgent need for new techniques and automated tools that can intelli-
gently assist us in transforming the vast amounts of data into useful information and
knowledge.

This book explores the concepts and techniques of data mining, a promising and
flourishing frontier in data and information systems and their applications. Data mining,
also popularly referred to as knowledge discovery from data (KDD), is the automated or
convenient extraction of patterns representing knowledge implicitly stored or captured
in large databases, data warehouses, the Web, other massive information repositories, or
data streams.

Data mining is a multidisciplinary field, drawing work from areas including database
technology, machine learning, statistics, pattern recognition, information retrieval,
neural networks, knowledge-based systems, artificial intelligence, high-performance
computing, and data visualization. We present techniques for the discovery of patterns
hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effec-
tiveness, and scalability. As a result, this book is not intended as an introduction to
database systems, machine learning, statistics, or other such areas, although we do pro-
vide the background necessary in these areas in order to facilitate the reader’s compre-
hension of their respective roles in data mining. Rather, the book is a comprehensive
introduction to data mining, presented with effectiveness and scalability issues in focus.
It should be useful for computing science students, application developers, and business
professionals, as well as researchers involved in any of the disciplines listed above.

Data mining emerged during the late 1980s, made great strides during the 1990s, and
continues to flourish into the new millennium. This book presents an overall picture
of the field, introducing interesting data mining techniques and systems and discussing

xxi



xxii Preface

applications and research directions. An important motivation for writing this book was
the need to build an organized framework for the study of data mining—a challenging
task, owing to the extensive multidisciplinary nature of this fast-developing field. We
hope that this book will encourage people with different backgrounds and experiences
to exchange their views regarding data mining so as to contribute toward the further
promotion and shaping of this exciting and dynamic field.

Organization of the Book

Since the publication of the first edition of this book, great progress has been made in
the field of data mining. Many new data mining methods, systems, and applications have
been developed. This new edition substantially revises the first edition of the book, with
numerous enhancements and a reorganization of the technical contents of the entire
book. In addition, several new chapters are included to address recent developments on
mining complex types of data, including stream data, sequence data, graph structured
data, social network data, and multirelational data.

The chapters are described briefly as follows, with emphasis on the new material.
Chapter 1 provides an introduction to the multidisciplinary field of data mining.

It discusses the evolutionary path of database technology, which has led to the need
for data mining, and the importance of its applications. It examines the types of data
to be mined, including relational, transactional, and data warehouse data, as well as
complex types of data such as data streams, time-series, sequences, graphs, social net-
works, multirelational data, spatiotemporal data, multimedia data, text data, and Web
data. The chapter presents a general classification of data mining tasks, based on the
different kinds of knowledge to be mined. In comparison with the first edition, two
new sections are introduced: Section 1.7 is on data mining primitives, which allow
users to interactively communicate with data mining systems in order to direct the
mining process, and Section 1.8 discusses the issues regarding how to integrate a data
mining system with a database or data warehouse system. These two sections repre-
sent the condensed materials of Chapter 4, “Data Mining Primitives, Languages and
Architectures,” in the first edition. Finally, major challenges in the field are discussed.

Chapter 2 introduces techniques for preprocessing the data before mining. This
corresponds to Chapter 3 of the first edition. Because data preprocessing precedes the
construction of data warehouses, we address this topic here, and then follow with an
introduction to data warehouses in the subsequent chapter. This chapter describes var-
ious statistical methods for descriptive data summarization, including measuring both
central tendency and dispersion of data. The description of data cleaning methods has
been enhanced. Methods for data integration and transformation and data reduction are
discussed, including the use of concept hierarchies for dynamic and static discretization.
The automatic generation of concept hierarchies is also described.

Chapters 3 and 4 provide a solid introduction to data warehouse, OLAP (On-Line
Analytical Processing), and data generalization. These two chapters correspond to
Chapters 2 and 5 of the first edition, but with substantial enhancement regarding data



Preface xxiii

warehouse implementation methods. Chapter 3 introduces the basic concepts, archi-
tectures and general implementations of data warehouse and on-line analytical process-
ing, as well as the relationship between data warehousing and data mining. Chapter 4
takes a more in-depth look at data warehouse and OLAP technology, presenting a
detailed study of methods of data cube computation, including the recently developed
star-cubing and high-dimensional OLAP methods. Further explorations of data ware-
house and OLAP are discussed, such as discovery-driven cube exploration, multifeature
cubes for complex data mining queries, and cube gradient analysis. Attribute-oriented
induction, an alternative method for data generalization and concept description, is
also discussed.

Chapter 5 presents methods for mining frequent patterns, associations, and corre-
lations in transactional and relational databases and data warehouses. In addition to
introducing the basic concepts, such as market basket analysis, many techniques for fre-
quent itemset mining are presented in an organized way. These range from the basic
Apriori algorithm and its variations to more advanced methods that improve on effi-
ciency, including the frequent-pattern growth approach, frequent-pattern mining with
vertical data format, and mining closed frequent itemsets. The chapter also presents tech-
niques for mining multilevel association rules, multidimensional association rules, and
quantitative association rules. In comparison with the previous edition, this chapter has
placed greater emphasis on the generation of meaningful association and correlation
rules. Strategies for constraint-based mining and the use of interestingness measures to
focus the rule search are also described.

Chapter 6 describes methods for data classification and prediction, including decision
tree induction, Bayesian classification, rule-based classification, the neural network tech-
nique of backpropagation, support vector machines, associative classification, k-nearest
neighbor classifiers, case-based reasoning, genetic algorithms, rough set theory, and fuzzy
set approaches. Methods of regression are introduced. Issues regarding accuracy and how
to choose the best classifier or predictor are discussed. In comparison with the corre-
sponding chapter in the first edition, the sections on rule-based classification and support
vector machines are new, and the discussion of measuring and enhancing classification
and prediction accuracy has been greatly expanded.

Cluster analysis forms the topic of Chapter 7. Several major data clustering approaches
are presented, including partitioning methods, hierarchical methods, density-based
methods, grid-based methods, and model-based methods. New sections in this edition
introduce techniques for clustering high-dimensional data, as well as for constraint-
based cluster analysis. Outlier analysis is also discussed.

Chapters 8 to 10 treat advanced topics in data mining and cover a large body of
materials on recent progress in this frontier. These three chapters now replace our pre-
vious single chapter on advanced topics. Chapter 8 focuses on the mining of stream
data, time-series data, and sequence data (covering both transactional sequences and
biological sequences). The basic data mining techniques (such as frequent-pattern min-
ing, classification, clustering, and constraint-based mining) are extended for these types
of data. Chapter 9 discusses methods for graph and structural pattern mining, social
network analysis and multirelational data mining. Chapter 10 presents methods for
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mining object, spatial, multimedia, text, and Web data, which cover a great deal of new
progress in these areas.

Finally, in Chapter 11, we summarize the concepts presented in this book and discuss
applications and trends in data mining. New material has been added on data mining for
biological and biomedical data analysis, other scientific applications, intrusion detection,
and collaborative filtering. Social impacts of data mining, such as privacy and data secu-
rity issues, are discussed, in addition to challenging research issues. Further discussion
of ubiquitous data mining has also been added.

The Appendix provides an introduction to Microsoft’s OLE DB for Data Mining
(OLEDB for DM).

Throughout the text, italic font is used to emphasize terms that are defined, while bold
font is used to highlight or summarize main ideas. Sans serif font is used for reserved
words. Bold italic font is used to represent multidimensional quantities.

This book has several strong features that set it apart from other texts on data min-
ing. It presents a very broad yet in-depth coverage from the spectrum of data mining,
especially regarding several recent research topics on data stream mining, graph min-
ing, social network analysis, and multirelational data mining. The chapters preceding
the advanced topics are written to be as self-contained as possible, so they may be read
in order of interest by the reader. All of the major methods of data mining are pre-
sented. Because we take a database point of view to data mining, the book also presents
many important topics in data mining, such as scalable algorithms and multidimensional
OLAP analysis, that are often overlooked or minimally treated in other books.

To the Instructor

This book is designed to give a broad, yet detailed overview of the field of data mining. It
can be used to teach an introductory course on data mining at an advanced undergraduate
level or at the first-year graduate level. In addition, it can also be used to teach an advanced
course on data mining.

If you plan to use the book to teach an introductory course, you may find that the
materials in Chapters 1 to 7 are essential, among which Chapter 4 may be omitted if you
do not plan to cover the implementation methods for data cubing and on-line analytical
processing in depth. Alternatively, you may omit some sections in Chapters 1 to 7 and
use Chapter 11 as the final coverage of applications and trends on data mining.

If you plan to use the book to teach an advanced course on data mining, you may use
Chapters 8 through 11. Moreover, additional materials and some recent research papers
may supplement selected themes from among the advanced topics of these chapters.

Individual chapters in this book can also be used for tutorials or for special topics
in related courses, such as database systems, machine learning, pattern recognition, and
intelligent data analysis.

Each chapter ends with a set of exercises, suitable as assigned homework. The exercises
are either short questions that test basic mastery of the material covered, longer questions
that require analytical thinking, or implementation projects. Some exercises can also be
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used as research discussion topics. The bibliographic notes at the end of each chapter can
be used to find the research literature that contains the origin of the concepts and meth-
ods presented, in-depth treatment of related topics, and possible extensions. Extensive
teaching aids are available from the book’s websites, such as lecture slides, reading lists,
and course syllabi.

To the Student

We hope that this textbook will spark your interest in the young yet fast-evolving field of
data mining. We have attempted to present the material in a clear manner, with careful
explanation of the topics covered. Each chapter ends with a summary describing the main
points. We have included many figures and illustrations throughout the text in order to
make the book more enjoyable and reader-friendly. Although this book was designed as
a textbook, we have tried to organize it so that it will also be useful to you as a reference
book or handbook, should you later decide to perform in-depth research in the related
fields or pursue a career in data mining.

What do you need to know in order to read this book?

You should have some knowledge of the concepts and terminology associated with
database systems, statistics, and machine learning. However, we do try to provide
enough background of the basics in these fields, so that if you are not so familiar with
these fields or your memory is a bit rusty, you will not have trouble following the
discussions in the book.

You should have some programming experience. In particular, you should be able to
read pseudo-code and understand simple data structures such as multidimensional
arrays.

To the Professional

This book was designed to cover a wide range of topics in the field of data mining. As a
result, it is an excellent handbook on the subject. Because each chapter is designed to be
as stand-alone as possible, you can focus on the topics that most interest you. The book
can be used by application programmers and information service managers who wish to
learn about the key ideas of data mining on their own. The book would also be useful for
technical data analysis staff in banking, insurance, medicine, and retailing industries who
are interested in applying data mining solutions to their businesses. Moreover, the book
may serve as a comprehensive survey of the data mining field, which may also benefit
researchers who would like to advance the state-of-the-art in data mining and extend
the scope of data mining applications.

The techniques and algorithms presented are of practical utility. Rather than select-
ing algorithms that perform well on small “toy” data sets, the algorithms described
in the book are geared for the discovery of patterns and knowledge hidden in large,
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real data sets. In Chapter 11, we briefly discuss data mining systems in commercial
use, as well as promising research prototypes. Algorithms presented in the book are
illustrated in pseudo-code. The pseudo-code is similar to the C programming lan-
guage, yet is designed so that it should be easy to follow by programmers unfamiliar
with C or C++. If you wish to implement any of the algorithms, you should find the
translation of our pseudo-code into the programming language of your choice to be
a fairly straightforward task.

Book Websites with Resources

The book has a website at www.cs.uiuc.edu/∼hanj/bk2 and another with Morgan Kauf-
mann Publishers at www.mkp.com/datamining2e. These websites contain many sup-
plemental materials for readers of this book or anyone else with an interest in data
mining. The resources include:

Slide presentations per chapter. Lecture notes in Microsoft PowerPoint slides are
available for each chapter.

Artwork of the book. This may help you to make your own slides for your class-
room teaching.

Instructors’ manual. This complete set of answers to the exercises in the book is
available only to instructors from the publisher’s website.

Course syllabi and lecture plan. These are given for undergraduate and graduate
versions of introductory and advanced courses on data mining, which use the text
and slides.

Supplemental reading lists with hyperlinks. Seminal papers for supplemental read-
ing are organized per chapter.

Links to data mining data sets and software. We will provide a set of links to data
mining data sets and sites containing interesting data mining software pack-
ages, such as IlliMine from the University of Illinois at Urbana-Champaign
(http://illimine.cs.uiuc.edu).

Sample assignments, exams, course projects. A set of sample assignments, exams,
and course projects will be made available to instructors from the publisher’s
website.

Table of contents of the book in PDF.

Errata on the different printings of the book. We welcome you to point out any
errors in the book. Once the error is confirmed, we will update this errata list and
include acknowledgment of your contribution.

Comments or suggestions can be sent to hanj@cs.uiuc.edu. We would be happy to
hear from you.
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1Introduction

This book is an introduction to a young and promising field called data mining and knowledge
discovery from data. The material in this book is presented from a database perspective,
where emphasis is placed on basic data mining concepts and techniques for uncovering
interesting data patterns hidden in large data sets. The implementation methods dis-
cussed are particularly oriented toward the development of scalable and efficient data
mining tools. In this chapter, you will learn how data mining is part of the natural
evolution of database technology, why data mining is important, and how it is defined.
You will learn about the general architecture of data mining systems, as well as gain
insight into the kinds of data on which mining can be performed, the types of patterns
that can be found, and how to tell which patterns represent useful knowledge. You
will study data mining primitives, from which data mining query languages can be
designed. Issues regarding how to integrate a data mining system with a database or
data warehouse are also discussed. In addition to studying a classification of data min-
ing systems, you will read about challenging research issues for building data mining
tools of the future.

1.1 What Motivated Data Mining? Why Is It Important?

Necessity is the mother of invention. —Plato

Data mining has attracted a great deal of attention in the information industry and in
society as a whole in recent years, due to the wide availability of huge amounts of data
and the imminent need for turning such data into useful information and knowledge.
The information and knowledge gained can be used for applications ranging from mar-
ket analysis, fraud detection, and customer retention, to production control and science
exploration.

Data mining can be viewed as a result of the natural evolution of information
technology. The database system industry has witnessed an evolutionary path in the
development of the following functionalities (Figure 1.1): data collection and database
creation, data management (including data storage and retrieval, and database

1
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Figure 1.1 The evolution of database system technology.
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transaction processing), and advanced data analysis (involving data warehousing and
data mining). For instance, the early development of data collection and database
creation mechanisms served as a prerequisite for later development of effective mech-
anisms for data storage and retrieval, and query and transaction processing. With
numerous database systems offering query and transaction processing as common
practice, advanced data analysis has naturally become the next target.

Since the 1960s, database and information technology has been evolving system-
atically from primitive file processing systems to sophisticated and powerful database
systems. The research and development in database systems since the 1970s has pro-
gressed from early hierarchical and network database systems to the development of
relational database systems (where data are stored in relational table structures; see
Section 1.3.1), data modeling tools, and indexing and accessing methods. In addition,
users gained convenient and flexible data access through query languages, user inter-
faces, optimized query processing, and transaction management. Efficient methods
for on-line transaction processing (OLTP), where a query is viewed as a read-only
transaction, have contributed substantially to the evolution and wide acceptance of
relational technology as a major tool for efficient storage, retrieval, and management
of large amounts of data.

Database technology since the mid-1980s has been characterized by the popular
adoption of relational technology and an upsurge of research and development
activities on new and powerful database systems. These promote the development of
advanced data models such as extended-relational, object-oriented, object-relational,
and deductive models. Application-oriented database systems, including spatial, tem-
poral, multimedia, active, stream, and sensor, and scientific and engineering databases,
knowledge bases, and office information bases, have flourished. Issues related to the
distribution, diversification, and sharing of data have been studied extensively. Hetero-
geneous database systems and Internet-based global information systems such as the
World Wide Web (WWW) have also emerged and play a vital role in the information
industry.

The steady and amazing progress of computer hardware technology in the past
three decades has led to large supplies of powerful and affordable computers, data
collection equipment, and storage media. This technology provides a great boost to
the database and information industry, and makes a huge number of databases and
information repositories available for transaction management, information retrieval,
and data analysis.

Data can now be stored in many different kinds of databases and information
repositories. One data repository architecture that has emerged is the data warehouse
(Section 1.3.2), a repository of multiple heterogeneous data sources organized under a
unified schema at a single site in order to facilitate management decision making. Data
warehouse technology includes data cleaning, data integration, and on-line analytical
processing (OLAP), that is, analysis techniques with functionalities such as summa-
rization, consolidation, and aggregation as well as the ability to view information from
different angles. Although OLAP tools support multidimensional analysis and deci-
sion making, additional data analysis tools are required for in-depth analysis, such as
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Figure 1.2 We are data rich, but information poor.

data classification, clustering, and the characterization of data changes over time. In
addition, huge volumes of data can be accumulated beyond databases and data ware-
houses. Typical examples include the World Wide Web and data streams, where data
flow in and out like streams, as in applications like video surveillance, telecommunica-
tion, and sensor networks. The effective and efficient analysis of data in such different
forms becomes a challenging task.

The abundance of data, coupled with the need for powerful data analysis tools, has
been described as a data rich but information poor situation. The fast-growing, tremen-
dous amount of data, collected and stored in large and numerous data repositories, has
far exceeded our human ability for comprehension without powerful tools (Figure 1.2).
As a result, data collected in large data repositories become “data tombs”—data archives
that are seldom visited. Consequently, important decisions are often made based not on
the information-rich data stored in data repositories, but rather on a decision maker’s
intuition, simply because the decision maker does not have the tools to extract the valu-
able knowledge embedded in the vast amounts of data. In addition, consider expert
system technologies, which typically rely on users or domain experts to manually input
knowledge into knowledge bases. Unfortunately, this procedure is prone to biases and
errors, and is extremely time-consuming and costly. Data mining tools perform data
analysis and may uncover important data patterns, contributing greatly to business
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strategies, knowledge bases, and scientific and medical research. The widening gap
between data and information calls for a systematic development of data mining tools
that will turn data tombs into “golden nuggets” of knowledge.

1.2 So, What Is Data Mining?

Simply stated, data mining refers to extracting or “mining” knowledge from large amounts
of data. The term is actually a misnomer. Remember that the mining of gold from rocks
or sand is referred to as gold mining rather than rock or sand mining. Thus, data mining
should have been more appropriately named “knowledge mining from data,” which is
unfortunately somewhat long. “Knowledge mining,” a shorter term, may not reflect the
emphasis on mining from large amounts of data. Nevertheless, mining is a vivid term
characterizing the process that finds a small set of precious nuggets from a great deal of
raw material (Figure 1.3). Thus, such a misnomer that carries both “data” and “min-
ing” became a popular choice. Many other terms carry a similar or slightly different
meaning to data mining, such as knowledge mining from data, knowledge extraction,
data/pattern analysis, data archaeology, and data dredging.

Many people treat data mining as a synonym for another popularly used term, Knowl-
edge Discovery from Data, or KDD. Alternatively, others view data mining as simply an

Knowledge

Figure 1.3 Data mining—searching for knowledge (interesting patterns) in your data.
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Figure 1.4 Data mining as a step in the process of knowledge discovery.
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essential step in the process of knowledge discovery. Knowledge discovery as a process
is depicted in Figure 1.4 and consists of an iterative sequence of the following steps:

1. Data cleaning (to remove noise and inconsistent data)

2. Data integration (where multiple data sources may be combined)1

3. Data selection (where data relevant to the analysis task are retrieved from the database)

4. Data transformation (where data are transformed or consolidated into forms appro-
priate for mining by performing summary or aggregation operations, for instance)2

5. Data mining (an essential process where intelligent methods are applied in order to
extract data patterns)

6. Pattern evaluation (to identify the truly interesting patterns representing knowledge
based on some interestingness measures; Section 1.5)

7. Knowledge presentation (where visualization and knowledge representation tech-
niques are used to present the mined knowledge to the user)

Steps 1 to 4 are different forms of data preprocessing, where the data are prepared
for mining. The data mining step may interact with the user or a knowledge base. The
interesting patterns are presented to the user and may be stored as new knowledge in
the knowledge base. Note that according to this view, data mining is only one step in the
entire process, albeit an essential one because it uncovers hidden patterns for evaluation.

We agree that data mining is a step in the knowledge discovery process. However, in
industry, in media, and in the database research milieu, the term data mining is becoming
more popular than the longer term of knowledge discovery from data. Therefore, in this
book, we choose to use the term data mining. We adopt a broad view of data mining
functionality: data mining is the process of discovering interesting knowledge from large
amounts of data stored in databases, data warehouses, or other information repositories.

Based on this view, the architecture of a typical data mining system may have the
following major components (Figure 1.5):

Database, data warehouse, World Wide Web, or other information repository: This
is one or a set of databases, data warehouses, spreadsheets, or other kinds of informa-
tion repositories. Data cleaning and data integration techniques may be performed
on the data.

Database or data warehouse server: The database or data warehouse server is respon-
sible for fetching the relevant data, based on the user’s data mining request.

1A popular trend in the information industry is to perform data cleaning and data integration as a
preprocessing step, where the resulting data are stored in a data warehouse.
2Sometimes data transformation and consolidation are performed before the data selection process,
particularly in the case of data warehousing. Data reduction may also be performed to obtain a smaller
representation of the original data without sacrificing its integrity.
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Figure 1.5 Architecture of a typical data mining system.

Knowledge base: This is the domain knowledge that is used to guide the search or
evaluate the interestingness of resulting patterns. Such knowledge can include con-
cept hierarchies, used to organize attributes or attribute values into different levels of
abstraction. Knowledge such as user beliefs, which can be used to assess a pattern’s
interestingness based on its unexpectedness, may also be included. Other examples
of domain knowledge are additional interestingness constraints or thresholds, and
metadata (e.g., describing data from multiple heterogeneous sources).

Data mining engine: This is essential to the data mining system and ideally consists of
a set of functional modules for tasks such as characterization, association and correla-
tion analysis, classification, prediction, cluster analysis, outlier analysis, and evolution
analysis.

Pattern evaluation module: This component typically employs interestingness mea-
sures (Section 1.5) and interacts with the data mining modules so as to focus the
search toward interesting patterns. It may use interestingness thresholds to filter
out discovered patterns. Alternatively, the pattern evaluation module may be inte-
grated with the mining module, depending on the implementation of the data
mining method used. For efficient data mining, it is highly recommended to push
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the evaluation of pattern interestingness as deep as possible into the mining process
so as to confine the search to only the interesting patterns.

User interface: This module communicates between users and the data mining system,
allowing the user to interact with the system by specifying a data mining query or
task, providing information to help focus the search, and performing exploratory data
mining based on the intermediate data mining results. In addition, this component
allows the user to browse database and data warehouse schemas or data structures,
evaluate mined patterns, and visualize the patterns in different forms.

From a data warehouse perspective, data mining can be viewed as an advanced stage
of on-line analytical processing (OLAP). However, data mining goes far beyond the nar-
row scope of summarization-style analytical processing of data warehouse systems by
incorporating more advanced techniques for data analysis.

Although there are many “data mining systems” on the market, not all of them can
perform true data mining. A data analysis system that does not handle large amounts of
data should be more appropriately categorized as a machine learning system, a statistical
data analysis tool, or an experimental system prototype. A system that can only per-
form data or information retrieval, including finding aggregate values, or that performs
deductive query answering in large databases should be more appropriately categorized
as a database system, an information retrieval system, or a deductive database system.

Data mining involves an integration of techniques from multiple disciplines such as
database and data warehouse technology, statistics, machine learning, high-performance
computing, pattern recognition, neural networks, data visualization, information
retrieval, image and signal processing, and spatial or temporal data analysis. We adopt
a database perspective in our presentation of data mining in this book. That is, empha-
sis is placed on efficient and scalable data mining techniques. For an algorithm to be
scalable, its running time should grow approximately linearly in proportion to the size
of the data, given the available system resources such as main memory and disk space.
By performing data mining, interesting knowledge, regularities, or high-level informa-
tion can be extracted from databases and viewed or browsed from different angles. The
discovered knowledge can be applied to decision making, process control, information
management, and query processing. Therefore, data mining is considered one of the most
important frontiers in database and information systems and one of the most promising
interdisciplinary developments in the information technology.

1.3 Data Mining—On What Kind of Data?

In this section, we examine a number of different data repositories on which mining
can be performed. In principle, data mining should be applicable to any kind of data
repository, as well as to transient data, such as data streams. Thus the scope of our
examination of data repositories will include relational databases, data warehouses,
transactional databases, advanced database systems, flat files, data streams, and the
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World Wide Web. Advanced database systems include object-relational databases and
specific application-oriented databases, such as spatial databases, time-series databases,
text databases, and multimedia databases. The challenges and techniques of mining may
differ for each of the repository systems.

Although this book assumes that readers have basic knowledge of information
systems, we provide a brief introduction to each of the major data repository systems
listed above. In this section, we also introduce the fictitious AllElectronics store, which
will be used to illustrate concepts throughout the text.

1.3.1 Relational Databases

A database system, also called a database management system (DBMS), consists of a
collection of interrelated data, known as a database, and a set of software programs to
manage and access the data. The software programs involve mechanisms for the defini-
tion of database structures; for data storage; for concurrent, shared, or distributed data
access; and for ensuring the consistency and security of the information stored, despite
system crashes or attempts at unauthorized access.

A relational database is a collection of tables, each of which is assigned a unique name.
Each table consists of a set of attributes (columns or fields) and usually stores a large set
of tuples (records or rows). Each tuple in a relational table represents an object identified
by a unique key and described by a set of attribute values. A semantic data model, such
as an entity-relationship (ER) data model, is often constructed for relational databases.
An ER data model represents the database as a set of entities and their relationships.

Consider the following example.

Example 1.1 A relational database for AllElectronics. The AllElectronics company is described by the
following relation tables: customer, item, employee, and branch. Fragments of the tables
described here are shown in Figure 1.6.

The relation customer consists of a set of attributes, including a unique customer
identity number (cust ID), customer name, address, age, occupation, annual income,
credit information, category, and so on.

Similarly, each of the relations item, employee, and branch consists of a set of attributes
describing their properties.

Tables can also be used to represent the relationships between or among multiple
relation tables. For our example, these include purchases (customer purchases items,
creating a sales transaction that is handled by an employee), items sold (lists the
items sold in a given transaction), and works at (employee works at a branch of
AllElectronics).

Relational data can be accessed by database queries written in a relational query
language, such as SQL, or with the assistance of graphical user interfaces. In the latter,
the user may employ a menu, for example, to specify attributes to be included in the
query, and the constraints on these attributes. A given query is transformed into a set of
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Figure 1.6 Fragments of relations from a relational database for AllElectronics.

relational operations, such as join, selection, and projection, and is then optimized for
efficient processing. A query allows retrieval of specified subsets of the data. Suppose that
your job is to analyze the AllElectronics data. Through the use of relational queries, you
can ask things like “Show me a list of all items that were sold in the last quarter.” Rela-
tional languages also include aggregate functions such as sum, avg (average), count, max
(maximum), and min (minimum). These allow you to ask things like “Show me the total
sales of the last month, grouped by branch,” or “How many sales transactions occurred
in the month of December?” or “Which sales person had the highest amount of sales?”
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When data mining is applied to relational databases, we can go further by searching for
trends or data patterns. For example, data mining systems can analyze customer data to
predict the credit risk of new customers based on their income, age, and previous credit
information. Data mining systems may also detect deviations, such as items whose sales
are far from those expected in comparison with the previous year. Such deviations can
then be further investigated (e.g., has there been a change in packaging of such items, or
a significant increase in price?).

Relational databases are one of the most commonly available and rich information
repositories, and thus they are a major data form in our study of data mining.

1.3.2 Data Warehouses

Suppose that AllElectronics is a successful international company, with branches around
the world. Each branch has its own set of databases. The president of AllElectronics has
asked you to provide an analysis of the company’s sales per item type per branch for the
third quarter. This is a difficult task, particularly since the relevant data are spread out
over several databases, physically located at numerous sites.

If AllElectronics had a data warehouse, this task would be easy. A data ware-
house is a repository of information collected from multiple sources, stored under
a unified schema, and that usually resides at a single site. Data warehouses are con-
structed via a process of data cleaning, data integration, data transformation, data
loading, and periodic data refreshing. This process is discussed in Chapters 2 and 3.
Figure 1.7 shows the typical framework for construction and use of a data warehouse
for AllElectronics.

Data source in Chicago


Data source in Toronto


Data source in Vancouver


Data source in New York
 Data

Warehouse


Clean

Integrate

Transform

Load

Refresh


Query and

Analysis Tools


Client


Client


Figure 1.7 Typical framework of a data warehouse for AllElectronics.
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To facilitate decision making, the data in a data warehouse are organized around
major subjects, such as customer, item, supplier, and activity. The data are stored to
provide information from a historical perspective (such as from the past 5–10 years)
and are typically summarized. For example, rather than storing the details of each
sales transaction, the data warehouse may store a summary of the transactions per
item type for each store or, summarized to a higher level, for each sales region.

A data warehouse is usually modeled by a multidimensional database structure,
where each dimension corresponds to an attribute or a set of attributes in the schema,
and each cell stores the value of some aggregate measure, such as count or sales amount.
The actual physical structure of a data warehouse may be a relational data store or a
multidimensional data cube. A data cube provides a multidimensional view of data
and allows the precomputation and fast accessing of summarized data.

Example 1.2 A data cube for AllElectronics. A data cube for summarized sales data of AllElectronics
is presented in Figure 1.8(a). The cube has three dimensions: address (with city values
Chicago, New York, Toronto, Vancouver), time (with quarter values Q1, Q2, Q3, Q4), and
item (with item type values home entertainment, computer, phone, security). The aggregate
value stored in each cell of the cube is sales amount (in thousands). For example, the total
sales forthefirstquarter,Q1, for itemsrelatingtosecuritysystemsinVancouveris$400,000,
as stored in cell 〈Vancouver, Q1, security〉. Additional cubes may be used to store aggregate
sums over each dimension, corresponding to the aggregate values obtained using different
SQL group-bys (e.g., the total sales amount per city and quarter, or per city and item, or
per quarter and item, or per each individual dimension).

“I have also heard about data marts. What is the difference between a data warehouse and
a data mart?” you may ask. A data warehouse collects information about subjects that
span an entire organization, and thus its scope is enterprise-wide. A data mart, on the
other hand, is a department subset of a data warehouse. It focuses on selected subjects,
and thus its scope is department-wide.

By providing multidimensional data views and the precomputation of summarized
data, data warehouse systems are well suited for on-line analytical processing, or
OLAP. OLAP operations use background knowledge regarding the domain of the
data being studied in order to allow the presentation of data at different levels of
abstraction. Such operations accommodate different user viewpoints. Examples of
OLAP operations include drill-down and roll-up, which allow the user to view the
data at differing degrees of summarization, as illustrated in Figure 1.8(b). For instance,
we can drill down on sales data summarized by quarter to see the data summarized
by month. Similarly, we can roll up on sales data summarized by city to view the data
summarized by country.

Although data warehouse tools help support data analysis, additional tools for data
mining are required to allow more in-depth and automated analysis. An overview of
data warehouse and OLAP technology is provided in Chapter 3. Advanced issues regard-
ing data warehouse and OLAP implementation and data generalization are discussed in
Chapter 4.
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Figure 1.8 A multidimensional data cube, commonly used for data warehousing, (a) showing summa-
rized data for AllElectronics and (b) showing summarized data resulting from drill-down and
roll-up operations on the cube in (a). For improved readability, only some of the cube cell
values are shown.

1.3.3 Transactional Databases

In general, a transactional database consists of a file where each record represents a trans-
action. A transaction typically includes a unique transaction identity number (trans ID)
and a list of the items making up the transaction (such as items purchased in a store).
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trans ID list of item IDs

T100 I1, I3, I8, I16

T200 I2, I8

. . . . . .

Figure 1.9 Fragment of a transactional database for sales at AllElectronics.

The transactional database may have additional tables associated with it, which contain
other information regarding the sale, such as the date of the transaction, the customer ID
number, the ID number of the salesperson and of the branch at which the sale occurred,
and so on.

Example 1.3 A transactional database for AllElectronics. Transactions can be stored in a table, with
one record per transaction. A fragment of a transactional database for AllElectronics
is shown in Figure 1.9. From the relational database point of view, the sales table in
Figure 1.9 is a nested relation because the attribute list of item IDs contains a set of items.
Because most relational database systems do not support nested relational structures, the
transactional database is usually either stored in a flat file in a format similar to that of
the table in Figure 1.9 or unfolded into a standard relation in a format similar to that of
the items sold table in Figure 1.6.

As an analyst of the AllElectronics database, you may ask, “Show me all the items
purchased by Sandy Smith” or “How many transactions include item number I3?”
Answering such queries may require a scan of the entire transactional database.

Suppose you would like to dig deeper into the data by asking, “Which items sold well
together?” This kind of market basket data analysis would enable you to bundle groups of
items together as a strategy for maximizing sales. For example, given the knowledge that
printers are commonly purchased together with computers, you could offer an expensive
model of printers at a discount to customers buying selected computers, in the hopes of
selling more of the expensive printers. A regular data retrieval system is not able to answer
queries like the one above. However, data mining systems for transactional data can do
so by identifying frequent itemsets, that is, sets of items that are frequently sold together.
The mining of such frequent patterns for transactional data is discussed in Chapter 5.

1.3.4 Advanced Data and Information Systems and
Advanced Applications

Relational database systems have been widely used in business applications. With the
progress of database technology, various kinds of advanced data and information sys-
tems have emerged and are undergoing development to address the requirements of new
applications.
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The new database applications include handling spatial data (such as maps),
engineering design data (such as the design of buildings, system components, or inte-
grated circuits), hypertext and multimedia data (including text, image, video, and audio
data), time-related data (such as historical records or stock exchange data), stream data
(such as video surveillance and sensor data, where data flow in and out like streams), and
the World Wide Web (a huge, widely distributed information repository made available
by the Internet). These applications require efficient data structures and scalable meth-
ods for handling complex object structures; variable-length records; semistructured or
unstructured data; text, spatiotemporal, and multimedia data; and database schemas
with complex structures and dynamic changes.

Inresponsetotheseneeds,advanceddatabasesystemsandspecificapplication-oriented
database systems have been developed. These include object-relational database systems,
temporal and time-series database systems, spatial and spatiotemporal database systems,
text and multimedia database systems, heterogeneous and legacy database systems, data
stream management systems, and Web-based global information systems.

While such databases or information repositories require sophisticated facilities to
efficiently store, retrieve, and update large amounts of complex data, they also provide
fertile grounds and raise many challenging research and implementation issues for data
mining. In this section, we describe each of the advanced database systems listed above.

Object-Relational Databases
Object-relational databases are constructed based on an object-relational data model.
This model extends the relational model by providing a rich data type for handling com-
plex objects and object orientation. Because most sophisticated database applications
need to handle complex objects and structures, object-relational databases are becom-
ing increasingly popular in industry and applications.

Conceptually, the object-relational data model inherits the essential concepts of
object-oriented databases, where, in general terms, each entity is considered as an
object. Following the AllElectronics example, objects can be individual employees, cus-
tomers, or items. Data and code relating to an object are encapsulated into a single
unit. Each object has associated with it the following:

A set of variables that describe the objects. These correspond to attributes in the
entity-relationship and relational models.

A set of messages that the object can use to communicate with other objects, or with
the rest of the database system.

A set of methods, where each method holds the code to implement a message. Upon
receiving a message, the method returns a value in response. For instance, the method
for the message get photo(employee) will retrieve and return a photo of the given
employee object.

Objects that share a common set of properties can be grouped into an object class.
Each object is an instance of its class. Object classes can be organized into class/subclass



1.3 Data Mining—On What Kind of Data? 17

hierarchies so that each class represents properties that are common to objects in that
class. For instance, an employee class can contain variables like name, address, and birth-
date. Suppose that the class, sales person, is a subclass of the class, employee. A sales person
object would inherit all of the variables pertaining to its superclass of employee. In addi-
tion, it has all of the variables that pertain specifically to being a salesperson (e.g., com-
mission). Such a class inheritance feature benefits information sharing.

For data mining in object-relational systems, techniques need to be developed for
handling complex object structures, complex data types, class and subclass hierarchies,
property inheritance, and methods and procedures.

Temporal Databases, Sequence Databases, and
Time-Series Databases
A temporal database typically stores relational data that include time-related attributes.
These attributes may involve several timestamps, each having different semantics.
A sequence database stores sequences of ordered events, with or without a concrete
notion of time. Examples include customer shopping sequences, Web click streams, and
biological sequences. A time-series database stores sequences of values or events obtained
over repeated measurements of time (e.g., hourly, daily, weekly). Examples include data
collected from the stock exchange, inventory control, and the observation of natural
phenomena (like temperature and wind).

Data mining techniques can be used to find the characteristics of object evolution, or
the trend of changes for objects in the database. Such information can be useful in deci-
sion making and strategy planning. For instance, the mining of banking data may aid in
the scheduling of bank tellers according to the volume of customer traffic. Stock exchange
data can be mined to uncover trends that could help you plan investment strategies (e.g.,
when is the best time to purchase AllElectronics stock?). Such analyses typically require
defining multiple granularity of time. For example, time may be decomposed according
to fiscal years, academic years, or calendar years. Years may be further decomposed into
quarters or months.

Spatial Databases and Spatiotemporal Databases
Spatial databases contain spatial-related information. Examples include geographic
(map) databases, very large-scale integration (VLSI) or computed-aided design databases,
and medical and satellite image databases. Spatial data may be represented in raster for-
mat, consisting of n-dimensional bit maps or pixel maps. For example, a 2-D satellite
image may be represented as raster data, where each pixel registers the rainfall in a given
area. Maps can be represented in vector format, where roads, bridges, buildings, and
lakes are represented as unions or overlays of basic geometric constructs, such as points,
lines, polygons, and the partitions and networks formed by these components.

Geographic databases have numerous applications, ranging from forestry and ecol-
ogy planning to providing public service information regarding the location of telephone
and electric cables, pipes, and sewage systems. In addition, geographic databases are
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commonly used in vehicle navigation and dispatching systems. An example of such a
system for taxis would store a city map with information regarding one-way streets, sug-
gested routes for moving from region A to region B during rush hour, and the location
of restaurants and hospitals, as well as the current location of each driver.

“What kind of data mining can be performed on spatial databases?” you may ask. Data
mining may uncover patterns describing the characteristics of houses located near a spec-
ified kind of location, such as a park, for instance. Other patterns may describe the cli-
mate of mountainous areas located at various altitudes, or describe the change in trend
of metropolitan poverty rates based on city distances from major highways. The relation-
ships among a set of spatial objects can be examined in order to discover which subsets of
objects are spatially auto-correlated or associated. Clusters and outliers can be identified
by spatial cluster analysis. Moreover, spatial classification can be performed to construct
models for prediction based on the relevant set of features of the spatial objects. Further-
more, “spatial data cubes” may be constructed to organize data into multidimensional
structures and hierarchies, on which OLAP operations (such as drill-down and roll-up)
can be performed.

A spatial database that stores spatial objects that change with time is called a
spatiotemporal database, from which interesting information can be mined. For exam-
ple, we may be able to group the trends of moving objects and identify some strangely
moving vehicles, or distinguish a bioterrorist attack from a normal outbreak of the flu
based on the geographic spread of a disease with time.

Text Databases and Multimedia Databases
Text databases are databases that contain word descriptions for objects. These word
descriptions are usually not simple keywords but rather long sentences or paragraphs,
such as product specifications, error or bug reports, warning messages, summary reports,
notes, or other documents. Text databases may be highly unstructured (such as some
Web pages on the World Wide Web). Some text databases may be somewhat structured,
that is, semistructured (such as e-mail messages and many HTML/XML Web pages),
whereas others are relatively well structured (such as library catalogue databases). Text
databases with highly regular structures typically can be implemented using relational
database systems.

“What can data mining on text databases uncover?” By mining text data, one may
uncover general and concise descriptions of the text documents, keyword or content
associations, as well as the clustering behavior of text objects. To do this, standard data
mining methods need to be integrated with information retrieval techniques and the
construction or use of hierarchies specifically for text data (such as dictionaries and the-
sauruses), as well as discipline-oriented term classification systems (such as in biochemi-
stry, medicine, law, or economics).

Multimedia databases store image, audio, and video data. They are used in appli-
cations such as picture content-based retrieval, voice-mail systems, video-on-demand
systems, the World Wide Web, and speech-based user interfaces that recognize spoken
commands. Multimedia databases must support large objects, because data objects such
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as video can require gigabytes of storage. Specialized storage and search techniques are
also required. Because video and audio data require real-time retrieval at a steady and
predetermined rate in order to avoid picture or sound gaps and system buffer overflows,
such data are referred to as continuous-media data.

For multimedia data mining, storage and search techniques need to be integrated
with standard data mining methods. Promising approaches include the construction of
multimedia data cubes, the extraction of multiple features from multimedia data, and
similarity-based pattern matching.

Heterogeneous Databases and Legacy Databases
A heterogeneous database consists of a set of interconnected, autonomous component
databases. The components communicate in order to exchange information and answer
queries. Objects in one component database may differ greatly from objects in other
component databases, making it difficult to assimilate their semantics into the overall
heterogeneous database.

Many enterprises acquire legacy databases as a result of the long history of infor-
mation technology development (including the application of different hardware and
operating systems). A legacy database is a group of heterogeneous databases that com-
bines different kinds of data systems, such as relational or object-oriented databases,
hierarchical databases, network databases, spreadsheets, multimedia databases, or file
systems. The heterogeneous databases in a legacy database may be connected by intra-
or inter-computer networks.

Information exchange across such databases is difficult because it would require
precise transformation rules from one representation to another, considering diverse
semantics. Consider, for example, the problem in exchanging information regarding
student academic performance among different schools. Each school may have its own
computer system and use its own curriculum and grading system. One university may
adopt a quarter system, offer three courses on database systems, and assign grades from
A+ to F, whereas another may adopt a semester system, offer two courses on databases,
and assign grades from 1 to 10. It is very difficult to work out precise course-to-grade
transformation rules between the two universities, making information exchange dif-
ficult. Data mining techniques may provide an interesting solution to the information
exchange problem by performing statistical data distribution and correlation analysis,
and transforming the given data into higher, more generalized, conceptual levels (such
as fair, good, or excellent for student grades), from which information exchange can then
more easily be performed.

Data Streams
Many applications involve the generation and analysis of a new kind of data, called stream
data, where data flow in and out of an observation platform (or window) dynamically.
Such data streams have the following unique features: huge or possibly infinite volume,
dynamically changing, flowing in and out in a fixed order, allowing only one or a small
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number of scans, and demanding fast (often real-time) response time. Typical examples of
data streams include various kinds of scientific and engineering data, time-series data,
and data produced in other dynamic environments, such as power supply, network traf-
fic, stock exchange, telecommunications, Web click streams, video surveillance, and
weather or environment monitoring.

Because data streams are normally not stored in any kind of data repository, effec-
tive and efficient management and analysis of stream data poses great challenges to
researchers. Currently, many researchers are investigating various issues relating to the
development of data stream management systems. A typical query model in such a system
is the continuous query model, where predefined queries constantly evaluate incoming
streams, collect aggregate data, report the current status of data streams, and respond to
their changes.

Mining data streams involves the efficient discovery of general patterns and dynamic
changes within stream data. For example, we may like to detect intrusions of a computer
network based on the anomaly of message flow, which may be discovered by clustering
data streams, dynamic construction of stream models, or comparing the current frequent
patterns with that at a certain previous time. Most stream data reside at a rather low level
of abstraction, whereas analysts are often more interested in higher and multiple levels
of abstraction. Thus, multilevel, multidimensional on-line analysis and mining should
be performed on stream data as well.

The World Wide Web
The World Wide Web and its associated distributed information services, such as
Yahoo!, Google, America Online, and AltaVista, provide rich, worldwide, on-line infor-
mation services, where data objects are linked together to facilitate interactive access.
Users seeking information of interest traverse from one object via links to another.
Such systems provide ample opportunities and challenges for data mining. For exam-
ple, understanding user access patterns will not only help improve system design (by
providing efficient access between highly correlated objects), but also leads to better
marketing decisions (e.g., by placing advertisements in frequently visited documents,
or by providing better customer/user classification and behavior analysis). Capturing
user access patterns in such distributed information environments is called Web usage
mining (or Weblog mining).

Although Web pages may appear fancy and informative to human readers, they can be
highly unstructured and lack a predefined schema, type, or pattern. Thus it is difficult for
computers to understand the semantic meaning of diverse Web pages and structure them
in an organized way for systematic information retrieval and data mining. Web services
that provide keyword-based searches without understanding the context behind the Web
pages can only offer limited help to users. For example, a Web search based on a single
keyword may return hundreds of Web page pointers containing the keyword, but most
of the pointers will be very weakly related to what the user wants to find. Data mining
can often provide additional help here than Web search services. For example, authori-
tative Web page analysis based on linkages among Web pages can help rank Web pages
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based on their importance, influence, and topics. Automated Web page clustering and
classification help group and arrange Web pages in a multidimensional manner based
on their contents. Web community analysis helps identify hidden Web social networks
and communities and observe their evolution. Web mining is the development of scal-
able and effective Web data analysis and mining methods. It may help us learn about the
distribution of information on the Web in general, characterize and classify Web pages,
and uncover Web dynamics and the association and other relationships among different
Web pages, users, communities, and Web-based activities.

Data mining in advanced database and information systems is discussed in Chapters 8
to 10.

1.4 Data Mining Functionalities—What Kinds of Patterns
Can Be Mined?

We have observed various types of databases and information repositories on which data
mining can be performed. Let us now examine the kinds of data patterns that can be
mined.

Data mining functionalities are used to specify the kind of patterns to be found in
data mining tasks. In general, data mining tasks can be classified into two categories:
descriptive and predictive. Descriptive mining tasks characterize the general properties
of the data in the database. Predictive mining tasks perform inference on the current data
in order to make predictions.

In some cases, users may have no idea regarding what kinds of patterns in their data
may be interesting, and hence may like to search for several different kinds of patterns in
parallel. Thus it is important to have a data mining system that can mine multiple kinds of
patterns to accommodate different user expectations or applications. Furthermore, data
mining systems should be able to discover patterns at various granularity (i.e., different
levels of abstraction). Data mining systems should also allow users to specify hints to
guide or focus the search for interesting patterns. Because some patterns may not hold
for all of the data in the database, a measure of certainty or “trustworthiness” is usually
associated with each discovered pattern.

Data mining functionalities, and the kinds of patterns they can discover, are described
below.

1.4.1 Concept/Class Description: Characterization and
Discrimination

Data can be associated with classes or concepts. For example, in the AllElectronics store,
classes of items for sale include computers and printers, and concepts of customers include
bigSpenders and budgetSpenders. It can be useful to describe individual classes and con-
cepts in summarized, concise, and yet precise terms. Such descriptions of a class or
a concept are called class/concept descriptions. These descriptions can be derived via
(1) data characterization, by summarizing the data of the class under study (often called
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the target class) in general terms, or (2) data discrimination, by comparison of the target
class with one or a set of comparative classes (often called the contrasting classes), or
(3) both data characterization and discrimination.

Data characterization is a summarization of the general characteristics or features of
a target class of data. The data corresponding to the user-specified class are typically col-
lected by a database query. For example, to study the characteristics of software products
whose sales increased by 10% in the last year, the data related to such products can be
collected by executing an SQL query.

There are several methods for effective data summarization and characterization.
Simple data summaries based on statistical measures and plots are described in
Chapter 2. The data cube–based OLAP roll-up operation (Section 1.3.2) can be used
to perform user-controlled data summarization along a specified dimension. This
process is further detailed in Chapters 3 and 4, which discuss data warehousing. An
attribute-oriented induction technique can be used to perform data generalization and
characterization without step-by-step user interaction. This technique is described in
Chapter 4.

The output of data characterization can be presented in various forms. Examples
include pie charts, bar charts, curves, multidimensional data cubes, and multidimen-
sional tables, including crosstabs. The resulting descriptions can also be presented as
generalized relations or in rule form (called characteristic rules). These different output
forms and their transformations are discussed in Chapter 4.

Example 1.4 Data characterization. A data mining system should be able to produce a description
summarizing the characteristics of customers who spend more than $1,000 a year at
AllElectronics. The result could be a general profile of the customers, such as they are
40–50 years old, employed, and have excellent credit ratings. The system should allow
users to drill down on any dimension, such as on occupation in order to view these
customers according to their type of employment.

Data discrimination is a comparison of the general features of target class data objects
with the general features of objects from one or a set of contrasting classes. The target
and contrasting classes can be specified by the user, and the corresponding data objects
retrieved through database queries. For example, the user may like to compare the gen-
eral features of software products whose sales increased by 10% in the last year with those
whose sales decreased by at least 30% during the same period. The methods used for data
discrimination are similar to those used for data characterization.

“How are discrimination descriptions output?” The forms of output presentation are
similar to those for characteristic descriptions, although discrimination descriptions
should include comparative measures that help distinguish between the target and con-
trasting classes. Discrimination descriptions expressed in rule form are referred to as
discriminant rules.

Example 1.5 Data discrimination. A data mining system should be able to compare two groups of
AllElectronics customers, such as those who shop for computer products regularly (more
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than two times a month) versus those who rarely shop for such products (i.e., less than
three times a year). The resulting description provides a general comparative profile of
the customers, such as 80% of the customers who frequently purchase computer prod-
ucts are between 20 and 40 years old and have a university education, whereas 60% of
the customers who infrequently buy such products are either seniors or youths, and have
no university degree. Drilling down on a dimension, such as occupation, or adding new
dimensions, such as income level, may help in finding even more discriminative features
between the two classes.

Concept description, including characterization and discrimination, is described in
Chapter 4.

1.4.2 Mining Frequent Patterns, Associations, and Correlations

Frequent patterns, as the name suggests, are patterns that occur frequently in data. There
are many kinds of frequent patterns, including itemsets, subsequences, and substruc-
tures. A frequent itemset typically refers to a set of items that frequently appear together
in a transactional data set, such as milk and bread. A frequently occurring subsequence,
such as the pattern that customers tend to purchase first a PC, followed by a digital cam-
era, and then a memory card, is a (frequent) sequential pattern. A substructure can refer
to different structural forms, such as graphs, trees, or lattices, which may be combined
with itemsets or subsequences. If a substructure occurs frequently, it is called a (frequent)
structured pattern. Mining frequent patterns leads to the discovery of interesting associ-
ations and correlations within data.

Example 1.6 Association analysis. Suppose, as a marketing manager of AllElectronics, you would like to
determine which items are frequently purchased together within the same transactions.
An example of such a rule, mined from the AllElectronics transactional database, is

buys(X ,“computer”)⇒ buys(X ,“software”) [support = 1%, confidence = 50%]

where X is a variable representing a customer. A confidence, or certainty, of 50% means
that if a customer buys a computer, there is a 50% chance that she will buy software
as well. A 1% support means that 1% of all of the transactions under analysis showed
that computer and software were purchased together. This association rule involves a
single attribute or predicate (i.e., buys) that repeats. Association rules that contain a single
predicate are referred to as single-dimensional association rules. Dropping the predicate
notation, the above rule can be written simply as “computer⇒ software [1%, 50%]”.

Suppose, instead, that we are given the AllElectronics relational database relating to
purchases. A data mining system may find association rules like

age(X , “20...29”)∧ income(X , “20K...29K”)⇒ buys(X , “CD player”)
[support = 2%, confidence = 60%]

The rule indicates that of the AllElectronics customers under study, 2% are 20 to
29 years of age with an income of 20,000 to 29,000 and have purchased a CD player
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at AllElectronics. There is a 60% probability that a customer in this age and income
group will purchase a CD player. Note that this is an association between more than
one attribute, or predicate (i.e., age, income, and buys). Adopting the terminology used
in multidimensional databases, where each attribute is referred to as a dimension, the
above rule can be referred to as a multidimensional association rule.

Typically, association rules are discarded as uninteresting if they do not satisfy both
a minimum support threshold and a minimum confidence threshold. Additional anal-
ysis can be performed to uncover interesting statistical correlations between associated
attribute-value pairs.

Frequent itemset mining is the simplest form of frequent pattern mining. The mining
of frequent patterns, associations, and correlations is discussed in Chapter 5, where par-
ticular emphasis is placed on efficient algorithms for frequent itemset mining. Sequential
pattern mining and structured pattern mining are considered advanced topics. They are
discussed in Chapters 8 and 9, respectively.

1.4.3 Classification and Prediction

Classification is the process of finding a model (or function) that describes and distin-
guishes data classes or concepts, for the purpose of being able to use the model to predict
the class of objects whose class label is unknown. The derived model is based on the anal-
ysis of a set of training data (i.e., data objects whose class label is known).

“How is the derived model presented?” The derived model may be represented in vari-
ous forms, such as classification (IF-THEN) rules, decision trees, mathematical formulae,
or neural networks (Figure 1.10). A decision tree is a flow-chart-like tree structure, where
each node denotes a test on an attribute value, each branch represents an outcome of the
test, and tree leaves represent classes or class distributions. Decision trees can easily be
converted to classification rules. A neural network, when used for classification, is typi-
cally a collection of neuron-like processing units with weighted connections between the
units. There are many other methods for constructing classification models, such as naïve
Bayesian classification, support vector machines, and k-nearest neighbor classification.

Whereas classification predicts categorical (discrete, unordered) labels, prediction
models continuous-valued functions. That is, it is used to predict missing or unavail-
able numerical data values rather than class labels. Although the term prediction may
refer to both numeric prediction and class label prediction, in this book we use it to refer
primarily to numeric prediction. Regression analysis is a statistical methodology that is
most often used for numeric prediction, although other methods exist as well. Prediction
also encompasses the identification of distribution trends based on the available data.

Classification and prediction may need to be preceded by relevance analysis, which
attempts to identify attributes that do not contribute to the classification or prediction
process. These attributes can then be excluded.

Example 1.7 Classification and prediction. Suppose, as sales manager of AllElectronics, you would
like to classify a large set of items in the store, based on three kinds of responses to a
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Figure 1.10 A classification model can be represented in various forms, such as (a) IF-THEN rules,
(b) a decision tree, or a (c) neural network.

sales campaign: good response, mild response, and no response. You would like to derive
a model for each of these three classes based on the descriptive features of the items,
such as price, brand, place made, type, and category. The resulting classification should
maximally distinguish each class from the others, presenting an organized picture of the
data set. Suppose that the resulting classification is expressed in the form of a decision
tree. The decision tree, for instance, may identify price as being the single factor that best
distinguishes the three classes. The tree may reveal that, after price, other features that
help further distinguish objects of each class from another include brand and place made.
Such a decision tree may help you understand the impact of the given sales campaign and
design a more effective campaign for the future.

Suppose instead, that rather than predicting categorical response labels for each store
item, you would like to predict the amount of revenue that each item will generate during
an upcoming sale at AllElectronics, based on previous sales data. This is an example of
(numeric) prediction because the model constructed will predict a continuous-valued
function, or ordered value.

Chapter 6 discusses classification and prediction in further detail.

1.4.4 Cluster Analysis

“What is cluster analysis?” Unlike classification and prediction, which analyze class-labeled
data objects, clustering analyzes data objects without consulting a known class label.
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Figure 1.11 A 2-D plot of customer data with respect to customer locations in a city, showing three data
clusters. Each cluster “center” is marked with a “+”.

In general, the class labels are not present in the training data simply because they are
not known to begin with. Clustering can be used to generate such labels. The objects are
clustered or grouped based on the principle of maximizing the intraclass similarity and
minimizing the interclass similarity. That is, clusters of objects are formed so that objects
within a cluster have high similarity in comparison to one another, but are very dissimilar
to objects in other clusters. Each cluster that is formed can be viewed as a class of objects,
from which rules can be derived. Clustering can also facilitate taxonomy formation, that
is, the organization of observations into a hierarchy of classes that group similar events
together.

Example 1.8 Cluster analysis. Cluster analysis can be performed on AllElectronics customer data in
order to identify homogeneous subpopulations of customers. These clusters may repre-
sent individual target groups for marketing. Figure 1.11 shows a 2-D plot of customers
with respect to customer locations in a city. Three clusters of data points are evident.

Cluster analysis forms the topic of Chapter 7.

1.4.5 Outlier Analysis

A database may contain data objects that do not comply with the general behavior or
model of the data. These data objects are outliers. Most data mining methods discard
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outliers as noise or exceptions. However, in some applications such as fraud detection, the
rare events can be more interesting than the more regularly occurring ones. The analysis
of outlier data is referred to as outlier mining.

Outliers may be detected using statistical tests that assume a distribution or proba-
bility model for the data, or using distance measures where objects that are a substantial
distance from any other cluster are considered outliers. Rather than using statistical or
distance measures, deviation-based methods identify outliers by examining differences
in the main characteristics of objects in a group.

Example 1.9 Outlier analysis. Outlier analysis may uncover fraudulent usage of credit cards by detect-
ing purchases of extremely large amounts for a given account number in comparison to
regular charges incurred by the same account. Outlier values may also be detected with
respect to the location and type of purchase, or the purchase frequency.

Outlier analysis is also discussed in Chapter 7.

1.4.6 Evolution Analysis

Data evolution analysis describes and models regularities or trends for objects whose
behavior changes over time. Although this may include characterization, discrimina-
tion, association and correlation analysis, classification, prediction, or clustering of time-
related data, distinct features of such an analysis include time-series data analysis,
sequence or periodicity pattern matching, and similarity-based data analysis.

Example 1.10 Evolution analysis. Suppose that you have the major stock market (time-series) data
of the last several years available from the New York Stock Exchange and you would
like to invest in shares of high-tech industrial companies. A data mining study of stock
exchange data may identify stock evolution regularities for overall stocks and for the
stocks of particular companies. Such regularities may help predict future trends in stock
market prices, contributing to your decision making regarding stock investments.

Data evolution analysis is discussed in Chapter 8.

1.5 Are All of the Patterns Interesting?

A data mining system has the potential to generate thousands or even millions of pat-
terns, or rules.

“So,” you may ask, “are all of the patterns interesting?” Typically not—only a small frac-
tion of the patterns potentially generated would actually be of interest to any given user.

This raises some serious questions for data mining. You may wonder, “What makes a
pattern interesting? Can a data mining system generate all of the interesting patterns? Can
a data mining system generate only interesting patterns?”

To answer the first question, a pattern is interesting if it is (1) easily understood by
humans, (2) valid on new or test data with some degree of certainty, (3) potentially useful,
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and (4) novel. A pattern is also interesting if it validates a hypothesis that the user sought
to confirm. An interesting pattern represents knowledge.

Several objective measures of pattern interestingness exist. These are based on the
structure of discovered patterns and the statistics underlying them. An objective measure
for association rules of the form X ⇒ Y is rule support, representing the percentage of
transactions from a transaction database that the given rule satisfies. This is taken to be
the probability P(X∪Y ), where X∪Y indicates that a transaction contains both X and Y ,
that is, the union of itemsets X and Y . Another objective measure for association rules
is confidence, which assesses the degree of certainty of the detected association. This is
taken to be the conditional probability P(Y |X), that is, the probability that a transaction
containing X also contains Y . More formally, support and confidence are defined as

support(X ⇒ Y ) = P(X ∪Y ).

confidence(X ⇒ Y ) = P(Y |X).

In general, each interestingness measure is associated with a threshold, which may be
controlled by the user. For example, rules that do not satisfy a confidence threshold of,
say, 50% can be considered uninteresting. Rules below the threshold likely reflect noise,
exceptions, or minority cases and are probably of less value.

Although objective measures help identify interesting patterns, they are insufficient
unless combined with subjective measures that reflect the needs and interests of a par-
ticular user. For example, patterns describing the characteristics of customers who shop
frequently at AllElectronics should interest the marketing manager, but may be of little
interest to analysts studying the same database for patterns on employee performance.
Furthermore, many patterns that are interesting by objective standards may represent
common knowledge and, therefore, are actually uninteresting. Subjective interesting-
ness measures are based on user beliefs in the data. These measures find patterns inter-
esting if they are unexpected (contradicting a user’s belief) or offer strategic information
on which the user can act. In the latter case, such patterns are referred to as actionable.
Patterns that are expected can be interesting if they confirm a hypothesis that the user
wished to validate, or resemble a user’s hunch.

The second question—“Can a data mining system generate all of the interesting
patterns?”—refers to the completeness of a data mining algorithm. It is often unre-
alistic and inefficient for data mining systems to generate all of the possible patterns.
Instead, user-provided constraints and interestingness measures should be used to focus
the search. For some mining tasks, such as association, this is often sufficient to ensure
the completeness of the algorithm. Association rule mining is an example where the use
of constraints and interestingness measures can ensure the completeness of mining. The
methods involved are examined in detail in Chapter 5.

Finally, the third question—“Can a data mining system generate only interesting pat-
terns?”—is an optimization problem in data mining. It is highly desirable for data min-
ing systems to generate only interesting patterns. This would be much more efficient for
users and data mining systems, because neither would have to search through the pat-
terns generated in order to identify the truly interesting ones. Progress has been made in
this direction; however, such optimization remains a challenging issue in data mining.



1.6 Classification of Data Mining Systems 29

Measures of pattern interestingness are essential for the efficient discovery of patterns
of value to the given user. Such measures can be used after the data mining step in order
to rank the discovered patterns according to their interestingness, filtering out the unin-
teresting ones. More importantly, such measures can be used to guide and constrain the
discovery process, improving the search efficiency by pruning away subsets of the pattern
space that do not satisfy prespecified interestingness constraints. Such constraint-based
mining is described in Chapter 5 (with respect to association mining) and Chapter 7
(with respect to clustering).

Methods to assess pattern interestingness, and their use to improve data mining effi-
ciency, are discussed throughout the book, with respect to each kind of pattern that can
be mined.

1.6 Classification of Data Mining Systems

Data mining is an interdisciplinary field, the confluence of a set of disciplines, includ-
ing database systems, statistics, machine learning, visualization, and information science
(Figure 1.12). Moreover, depending on the data mining approach used, techniques from
other disciplines may be applied, such as neural networks, fuzzy and/or rough set theory,
knowledge representation, inductive logic programming, or high-performance comput-
ing. Depending on the kinds of data to be mined or on the given data mining application,
the data mining system may also integrate techniques from spatial data analysis, informa-
tion retrieval, pattern recognition, image analysis, signal processing, computer graphics,
Web technology, economics, business, bioinformatics, or psychology.

Becauseof thediversityofdisciplinescontributingtodatamining,dataminingresearch
is expected to generate a large variety of data mining systems. Therefore, it is necessary to
provide a clear classification of data mining systems, which may help potential users dis-
tinguish between such systems and identify those that best match their needs. Data mining
systems can be categorized according to various criteria, as follows:

Database

technology

Machine

learning

Data

Mining

Information

science

Statistics

Visualization Other disciplines

Figure 1.12 Data mining as a confluence of multiple disciplines.
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Classification according to the kinds of databases mined: A data mining system can be
classified according to the kinds of databases mined. Database systems can be classi-
fied according to different criteria (such as data models, or the types of data or appli-
cations involved), each of which may require its own data mining technique. Data
mining systems can therefore be classified accordingly.

For instance, if classifying according to data models, we may have a relational,
transactional, object-relational, or data warehouse mining system. If classifying
according to the special types of data handled, we may have a spatial, time-series, text,
stream data, multimedia data mining system, or a World Wide Web mining system.

Classification according to the kinds of knowledge mined: Data mining systems can be
categorized according to the kinds of knowledge they mine, that is, based on data
mining functionalities, such as characterization, discrimination, association and cor-
relation analysis, classification, prediction, clustering, outlier analysis, and evolution
analysis. A comprehensive data mining system usually provides multiple and/or inte-
grated data mining functionalities.

Moreover, data mining systems can be distinguished based on the granularity or
levels of abstraction of the knowledge mined, including generalized knowledge (at a
high level of abstraction), primitive-level knowledge (at a raw data level), or knowledge
at multiple levels (considering several levels of abstraction). An advanced data mining
system should facilitate the discovery of knowledge at multiple levels of abstraction.

Data mining systems can also be categorized as those that mine data regularities
(commonly occurring patterns) versus those that mine data irregularities (such as
exceptions, or outliers). In general, concept description, association and correlation
analysis, classification, prediction, and clustering mine data regularities, rejecting out-
liers as noise. These methods may also help detect outliers.

Classification according to the kinds of techniques utilized: Data mining systems can
be categorized according to the underlying data mining techniques employed. These
techniques can be described according to the degree of user interaction involved (e.g.,
autonomous systems, interactive exploratory systems, query-driven systems) or the
methods of data analysis employed (e.g., database-oriented or data warehouse–
oriented techniques, machine learning, statistics, visualization, pattern recognition,
neural networks, and so on). A sophisticated data mining system will often adopt
multiple data mining techniques or work out an effective, integrated technique that
combines the merits of a few individual approaches.

Classification according to the applications adapted: Data mining systems can also be
categorized according to the applications they adapt. For example, data mining
systems may be tailored specifically for finance, telecommunications, DNA, stock
markets, e-mail, and so on. Different applications often require the integration of
application-specific methods. Therefore, a generic, all-purpose data mining system
may not fit domain-specific mining tasks.

In general, Chapters 4 to 7 of this book are organized according to the various kinds
of knowledge mined. In Chapters 8 to 10, we discuss the mining of complex types of
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data on a variety of advanced database systems. Chapter 11 describes major data mining
applications as well as typical commercial data mining systems. Criteria for choosing a
data mining system are also provided.

1.7 Data Mining Task Primitives

Each user will have a data mining task in mind, that is, some form of data analysis that
he or she would like to have performed. A data mining task can be specified in the form
of a data mining query, which is input to the data mining system. A data mining query is
defined in terms of data mining task primitives. These primitives allow the user to inter-
actively communicate with the data mining system during discovery in order to direct
the mining process, or examine the findings from different angles or depths. The data
mining primitives specify the following, as illustrated in Figure 1.13.

The set of task-relevant data to be mined: This specifies the portions of the database
or the set of data in which the user is interested. This includes the database attributes
or data warehouse dimensions of interest (referred to as the relevant attributes or
dimensions).

The kind of knowledge to be mined: This specifies the data mining functions to be per-
formed, such as characterization, discrimination, association or correlation analysis,
classification, prediction, clustering, outlier analysis, or evolution analysis.

The background knowledge to be used in the discovery process: This knowledge about
the domain to be mined is useful for guiding the knowledge discovery process and
for evaluating the patterns found. Concept hierarchies are a popular form of back-
ground knowledge, which allow data to be mined at multiple levels of abstraction.
An example of a concept hierarchy for the attribute (or dimension) age is shown in
Figure 1.14. User beliefs regarding relationships in the data are another form of back-
ground knowledge.

The interestingness measures and thresholds for pattern evaluation: They may be used
to guide the mining process or, after discovery, to evaluate the discovered patterns.
Different kinds of knowledge may have different interestingness measures. For exam-
ple, interestingness measures for association rules include support and confidence.
Rules whose support and confidence values are below user-specified thresholds are
considered uninteresting.

The expected representation for visualizing the discovered patterns: This refers to the
form in which discovered patterns are to be displayed, which may include rules, tables,
charts, graphs, decision trees, and cubes.

A data mining query language can be designed to incorporate these primitives,
allowing users to flexibly interact with data mining systems. Having a data mining query
language provides a foundation on which user-friendly graphical interfaces can be built.
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Task-relevant data

Database or data warehouse name

Database tables or data warehouse cubes

Conditions for data selection

Relevant attributes or dimensions

Data grouping criteria

Knowledge type to be mined
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Pattern interestingness measures

Simplicity

Certainty (e.g., confidence)

Utility (e.g., support)

Novelty

Visualization of discovered patterns
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Drill-down and roll-up

Figure 1.13 Primitives for specifying a data mining task.

This facilitates a data mining system’s communication with other information systems
and its integration with the overall information processing environment.

Designing a comprehensive data mining language is challenging because data mining
covers a wide spectrum of tasks, from data characterization to evolution analysis. Each
task has different requirements. The design of an effective data mining query language
requires a deep understanding of the power, limitation, and underlying mechanisms of
the various kinds of data mining tasks.
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Figure 1.14 A concept hierarchy for the attribute (or dimension) age. The root node represents the most
general abstraction level, denoted as all.

There are several proposals on data mining languages and standards. In this book,
we use a data mining query language known as DMQL (Data Mining Query Language),
which was designed as a teaching tool, based on the above primitives. Examples of its
use to specify data mining queries appear throughout this book. The language adopts
an SQL-like syntax, so that it can easily be integrated with the relational query language,
SQL. Let’s look at how it can be used to specify a data mining task.

Example 1.11 Mining classification rules. Suppose, as a marketing manager of AllElectronics, you
would like to classify customers based on their buying patterns. You are especially
interested in those customers whose salary is no less than $40,000, and who have
bought more than $1,000 worth of items, each of which is priced at no less than
$100. In particular, you are interested in the customer’s age, income, the types of items
purchased, the purchase location, and where the items were made. You would like
to view the resulting classification in the form of rules. This data mining query is
expressed in DMQL3 as follows, where each line of the query has been enumerated to
aid in our discussion.

(1) use database AllElectronics db
(2) use hierarchy location hierarchy for T.branch, age hierarchy for C.age
(3) mine classification as promising customers
(4) in relevance to C.age, C.income, I.type, I.place made, T.branch
(5) from customer C, item I, transaction T
(6) where I.item ID = T.item ID and C.cust ID = T.cust ID

and C.income≥ 40,000 and I.price≥ 100
(7) group by T.cust ID

3Note that in this book, query language keywords are displayed in sans serif font.
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(8) having sum(I.price)≥ 1,000
(9) display as rules

The data mining query is parsed to form an SQL query that retrieves the set of
task-relevant data specified by lines 1 and 4 to 8. That is, line 1 specifies the All-
Electronics database, line 4 lists the relevant attributes (i.e., on which mining is to be
performed) from the relations specified in line 5 for the conditions given in lines 6
and 7. Line 2 specifies that the concept hierarchies location hierarchy and age hierarchy
be used as background knowledge to generalize branch locations and customer age
values, respectively. Line 3 specifies that the kind of knowledge to be mined for this
task is classification. Note that we want to generate a classification model for “promis-
ing customers” versus “non promising customers.” In classification, often, an attribute
may be specified as the class label attribute, whose values explicitly represent the classes.
However, in this example, the two classes are implicit. That is, the specified data are
retrieved and considered examples of “promising customers,” whereas the remaining
customers in the customer table are considered as “non-promising customers.” Clas-
sification is performed based on this training set. Line 9 specifies that the mining
results are to be displayed as a set of rules. Several detailed classification methods are
introduced in Chapter 6.

There is no standard data mining query language as of yet; however, researchers and
industry have been making good progress in this direction. Microsoft’s OLE DB for
Data Mining (described in the appendix of this book) includes DMX, an XML-styled
data mining language. Other standardization efforts include PMML (Programming data
Model Markup Language) and CRISP-DM (CRoss-Industry Standard Process for Data
Mining).

1.8 Integration of a Data Mining System with
a Database or Data Warehouse System

Section 1.2 outlined the major components of the architecture for a typical data mining
system (Figure 1.5). A good system architecture will facilitate the data mining system to
make best use of the software environment, accomplish data mining tasks in an efficient
and timely manner, interoperate and exchange information with other information sys-
tems, be adaptable to users’ diverse requirements, and evolve with time.

A critical question in the design of a data mining (DM) system is how to integrate
or couple the DM system with a database (DB) system and/or a data warehouse (DW)
system. If a DM system works as a stand-alone system or is embedded in an application
program, there are no DB or DW systems with which it has to communicate. This simple
scheme is called no coupling, where the main focus of the DM design rests on developing
effective and efficient algorithms for mining the available data sets. However, when a DM
system works in an environment that requires it to communicate with other information
system components, such as DB and DW systems, possible integration schemes include
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no coupling, loose coupling, semitight coupling, and tight coupling. We examine each of
these schemes, as follows:

No coupling: No coupling means that a DM system will not utilize any function of a
DB or DW system. It may fetch data from a particular source (such as a file system),
process data using some data mining algorithms, and then store the mining results in
another file.

Such a system, though simple, suffers from several drawbacks. First, a DB system
provides a great deal of flexibility and efficiency at storing, organizing, accessing, and
processing data. Without using a DB/DW system, a DM system may spend a substan-
tial amount of time finding, collecting, cleaning, and transforming data. In DB and/or
DW systems, data tend to be well organized, indexed, cleaned, integrated, or consoli-
dated, so that finding the task-relevant, high-quality data becomes an easy task. Sec-
ond, there are many tested, scalable algorithms and data structures implemented in
DB and DW systems. It is feasible to realize efficient, scalable implementations using
such systems. Moreover, most data have been or will be stored in DB/DW systems.
Without any coupling of such systems, a DM system will need to use other tools to
extract data, making it difficult to integrate such a system into an information pro-
cessing environment. Thus, no coupling represents a poor design.

Loose coupling: Loose coupling means that a DM system will use some facilities of a
DB or DW system, fetching data from a data repository managed by these systems,
performing data mining, and then storing the mining results either in a file or in a
designated place in a database or data warehouse.

Loose coupling is better than no coupling because it can fetch any portion of data
stored in databases or data warehouses by using query processing, indexing, and other
system facilities. It incurs some advantages of the flexibility, efficiency, and other fea-
tures provided by such systems. However, many loosely coupled mining systems are
main memory-based. Because mining does not explore data structures and query
optimization methods provided by DB or DW systems, it is difficult for loose cou-
pling to achieve high scalability and good performance with large data sets.

Semitight coupling: Semitight coupling means that besides linking a DM system to
a DB/DW system, efficient implementations of a few essential data mining prim-
itives (identified by the analysis of frequently encountered data mining functions)
can be provided in the DB/DW system. These primitives can include sorting, index-
ing, aggregation, histogram analysis, multiway join, and precomputation of some
essential statistical measures, such as sum, count, max, min, standard deviation, and
so on. Moreover, some frequently used intermediate mining results can be precom-
puted and stored in the DB/DW system. Because these intermediate mining results
are either precomputed or can be computed efficiently, this design will enhance the
performance of a DM system.

Tight coupling: Tight coupling means that a DM system is smoothly integrated
into the DB/DW system. The data mining subsystem is treated as one functional
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component of an information system. Data mining queries and functions are
optimized based on mining query analysis, data structures, indexing schemes,
and query processing methods of a DB or DW system. With further technology
advances, DM, DB, and DW systems will evolve and integrate together as one
information system with multiple functionalities. This will provide a uniform
information processing environment.

This approach is highly desirable because it facilitates efficient implementations
of data mining functions, high system performance, and an integrated information
processing environment.

With this analysis, it is easy to see that a data mining system should be coupled with a
DB/DW system. Loose coupling, though not efficient, is better than no coupling because
it uses both data and system facilities of a DB/DW system. Tight coupling is highly
desirable, but its implementation is nontrivial and more research is needed in this area.
Semitight coupling is a compromise between loose and tight coupling. It is important to
identify commonly used data mining primitives and provide efficient implementations
of such primitives in DB or DW systems.

1.9 Major Issues in Data Mining

The scope of this book addresses major issues in data mining regarding mining methodo-
logy, user interaction, performance, and diverse data types. These issues are introduced
below:

Mining methodology and user interaction issues: These reflect the kinds of knowledge
mined, the ability to mine knowledge at multiple granularities, the use of domain
knowledge, ad hoc mining, and knowledge visualization.

Mining different kinds of knowledge in databases: Because different users can
be interested in different kinds of knowledge, data mining should cover a wide
spectrum of data analysis and knowledge discovery tasks, including data char-
acterization, discrimination, association and correlation analysis, classification,
prediction, clustering, outlier analysis, and evolution analysis (which includes
trend and similarity analysis). These tasks may use the same database in differ-
ent ways and require the development of numerous data mining techniques.

Interactive mining of knowledge at multiple levels of abstraction: Because it is
difficult to know exactly what can be discovered within a database, the data
mining process should be interactive. For databases containing a huge amount
of data, appropriate sampling techniques can first be applied to facilitate inter-
active data exploration. Interactive mining allows users to focus the search
for patterns, providing and refining data mining requests based on returned
results. Specifically, knowledge should be mined by drilling down, rolling up,
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and pivoting through the data space and knowledge space interactively, similar
to what OLAP can do on data cubes. In this way, the user can interact with
the data mining system to view data and discovered patterns at multiple gran-
ularities and from different angles.

Incorporation of background knowledge: Background knowledge, or information
regarding the domain under study, may be used to guide the discovery process and
allow discovered patterns to be expressed in concise terms and at different levels of
abstraction. Domain knowledge related to databases, such as integrity constraints
and deduction rules, can help focus and speed up a data mining process, or judge
the interestingness of discovered patterns.

Data mining query languages and ad hoc data mining: Relational query languages
(such as SQL) allow users to pose ad hoc queries for data retrieval. In a similar
vein, high-level data mining query languages need to be developed to allow users
to describe ad hoc data mining tasks by facilitating the specification of the rele-
vant sets of data for analysis, the domain knowledge, the kinds of knowledge to
be mined, and the conditions and constraints to be enforced on the discovered
patterns. Such a language should be integrated with a database or data warehouse
query language and optimized for efficient and flexible data mining.

Presentation and visualization of data mining results: Discovered knowledge should
be expressed in high-level languages, visual representations, or other expressive
forms so that the knowledge can be easily understood and directly usable by
humans. This is especially crucial if the data mining system is to be interactive.
This requires the system to adopt expressive knowledge representation techniques,
such as trees, tables, rules, graphs, charts, crosstabs, matrices, or curves.

Handling noisy or incomplete data: The data stored in a database may reflect noise,
exceptional cases, or incomplete data objects. When mining data regularities, these
objects may confuse the process, causing the knowledge model constructed to
overfit the data. As a result, the accuracy of the discovered patterns can be poor.
Data cleaning methods and data analysis methods that can handle noise are
required, as well as outlier mining methods for the discovery and analysis of
exceptional cases.

Pattern evaluation—the interestingness problem: A data mining system can uncover
thousands of patterns. Many of the patterns discovered may be uninteresting to
the given user, either because they represent common knowledge or lack nov-
elty. Several challenges remain regarding the development of techniques to assess
the interestingness of discovered patterns, particularly with regard to subjective
measures that estimate the value of patterns with respect to a given user class,
based on user beliefs or expectations. The use of interestingness measures or
user-specified constraints to guide the discovery process and reduce the search
space is another active area of research.
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Performance issues: These include efficiency, scalability, and parallelization of data
mining algorithms.

Efficiency and scalability of data mining algorithms: To effectively extract informa-
tion from a huge amount of data in databases, data mining algorithms must be
efficient and scalable. In other words, the running time of a data mining algorithm
must be predictable and acceptable in large databases. From a database perspective
on knowledge discovery, efficiency and scalability are key issues in the implemen-
tation of data mining systems. Many of the issues discussed above under mining
methodology and user interaction must also consider efficiency and scalability.

Parallel, distributed, and incremental mining algorithms: The huge size of many
databases, the wide distribution of data, and the computational complexity of
some data mining methods are factors motivating the development of parallel and
distributed data mining algorithms. Such algorithms divide the data into par-
titions, which are processed in parallel. The results from the partitions are then
merged. Moreover, the high cost of some data mining processes promotes the need
for incremental data mining algorithms that incorporate database updates with-
out having to mine the entire data again “from scratch.” Such algorithms perform
knowledge modification incrementally to amend and strengthen what was previ-
ously discovered.

Issues relating to the diversity of database types:

Handling of relational and complex types of data: Because relational databases and
data warehouses are widely used, the development of efficient and effective data
mining systems for such data is important. However, other databases may contain
complex data objects, hypertext and multimedia data, spatial data, temporal data,
or transaction data. It is unrealistic to expect one system to mine all kinds of
data, given the diversity of data types and different goals of data mining. Specific
data mining systems should be constructed for mining specific kinds of data.
Therefore, one may expect to have different data mining systems for different
kinds of data.

Mining information from heterogeneous databases and global information systems:
Local- and wide-area computer networks (such as the Internet) connect many
sources of data, forming huge, distributed, and heterogeneous databases. The dis-
covery of knowledge from different sources of structured, semistructured, or
unstructured data with diverse data semantics poses great challenges to data
mining. Data mining may help disclose high-level data regularities in multiple
heterogeneous databases that are unlikely to be discovered by simple query sys-
tems and may improve information exchange and interoperability in heteroge-
neous databases. Web mining, which uncovers interesting knowledge about Web
contents, Web structures, Web usage, and Web dynamics, becomes a very chal-
lenging and fast-evolving field in data mining.
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The above issues are considered major requirements and challenges for the further
evolution of data mining technology. Some of the challenges have been addressed in
recent data mining research and development, to a certain extent, and are now consid-
ered requirements, while others are still at the research stage. The issues, however, con-
tinue to stimulate further investigation and improvement. Additional issues relating to
applications, privacy, and the social impacts of data mining are discussed in Chapter 11,
the final chapter of this book.

1.10 Summary

Database technology has evolved from primitive file processing to the development of
database management systems with query and transaction processing. Further
progress has led to the increasing demand for efficient and effective advanced data
analysis tools. This need is a result of the explosive growth in data collected from appli-
cations, including business and management, government administration, science
and engineering, and environmental control.

Data mining is the task of discovering interesting patterns from large amounts of data,
where the data can be stored in databases, data warehouses, or other information repos-
itories. It is a young interdisciplinary field, drawing from areas such as database sys-
tems, data warehousing, statistics, machine learning, data visualization, information
retrieval, and high-performance computing. Other contributing areas include neural
networks,patternrecognition, spatial dataanalysis, imagedatabases, signalprocessing,
and many application fields, such as business, economics, and bioinformatics.

A knowledge discovery process includes data cleaning, data integration, data selec-
tion, data transformation, data mining, pattern evaluation, and knowledge
presentation.

The architecture of a typical data mining system includes a database and/or data
warehouse and their appropriate servers, a data mining engine and pattern evalua-
tion module (both of which interact with a knowledge base), and a graphical user
interface. Integration of the data mining components, as a whole, with a database
or data warehouse system can involve either no coupling, loose coupling, semitight
coupling, or tight coupling. A well-designed data mining system should offer tight or
semitight coupling with a database and/or data warehouse system.

Data patterns can be mined from many different kinds of databases, such as relational
databases, data warehouses, and transactional, and object-relational databases. Inter-
esting data patterns can also be extracted from other kinds of information reposito-
ries, including spatial, time-series, sequence, text, multimedia, and legacy databases,
data streams, and the World Wide Web.

A data warehouse is a repository for long-term storage of data from multiple sources,
organized so as to facilitate management decision making. The data are stored under
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a unified schema and are typically summarized. Data warehouse systems provide
some data analysis capabilities, collectively referred to as OLAP (on-line analytical
processing).

Data mining functionalities include the discovery of concept/class descriptions,
associations and correlations, classification, prediction, clustering, trend analysis, out-
lier and deviation analysis, and similarity analysis. Characterization and discrimina-
tion are forms of data summarization.

A pattern represents knowledge if it is easily understood by humans; valid on test
data with some degree of certainty; and potentially useful, novel, or validates a hunch
about which the user was curious. Measures of pattern interestingness, either objec-
tive or subjective, can be used to guide the discovery process.

Data mining systems can be classified according to the kinds of databases mined, the
kinds of knowledge mined, the techniques used, or the applications adapted.

We have studied five primitives for specifying a data mining task in the form of a data
mining query. These primitives are the specification of task-relevant data (i.e., the
data set to be mined), the kind of knowledge to be mined, background knowledge
(typically in the form of concept hierarchies), interestingness measures, and knowl-
edge presentation and visualization techniques to be used for displaying the discov-
ered patterns.

Data mining query languages can be designed to support ad hoc and interactive data
mining. A data mining query language, such as DMQL, should provide commands
for specifying each of the data mining primitives. Such query languages are SQL-
based and may eventually form a standard on which graphical user interfaces for data
mining can be based.

Efficient and effective data mining in large databases poses numerous requirements
and great challenges to researchers and developers. The issues involved include data
mining methodology, user interaction, performance and scalability, and the process-
ing of a large variety of data types. Other issues include the exploration of data mining
applications and their social impacts.

Exercises

1.1 What is data mining? In your answer, address the following:

(a) Is it another hype?

(b) Is it a simple transformation of technology developed from databases, statistics, and
machine learning?

(c) Explain how the evolution of database technology led to data mining.

(d) Describe the steps involved in data mining when viewed as a process of knowledge
discovery.
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1.2 Present an example where data mining is crucial to the success of a business. What data
mining functions does this business need? Can they be performed alternatively by data
query processing or simple statistical analysis?

1.3 Suppose your task as a software engineer at Big University is to design a data mining
system to examine the university course database, which contains the following infor-
mation: the name, address, and status (e.g., undergraduate or graduate) of each student,
the courses taken, and the cumulative grade point average (GPA). Describe the architec-
ture you would choose. What is the purpose of each component of this architecture?

1.4 How is a data warehouse different from a database? How are they similar?

1.5 Briefly describe the following advanced database systems and applications: object-
relational databases, spatial databases, text databases, multimedia databases, stream data,
the World Wide Web.

1.6 Define each of the following data mining functionalities: characterization, discrimina-
tion, association and correlation analysis, classification, prediction, clustering, and evo-
lution analysis. Give examples of each data mining functionality, using a real-life database
with which you are familiar.

1.7 What is the difference between discrimination and classification? Between characteri-
zation and clustering? Between classification and prediction? For each of these pairs of
tasks, how are they similar?

1.8 Based on your observation, describe another possible kind of knowledge that needs to be
discovered by data mining methods but has not been listed in this chapter. Does it require
a mining methodology that is quite different from those outlined in this chapter?

1.9 List and describe the five primitives for specifying a data mining task.

1.10 Describe why concept hierarchies are useful in data mining.

1.11 Outliers are often discarded as noise. However, one person’s garbage could be another’s
treasure. For example, exceptions in credit card transactions can help us detect the fraud-
ulent use of credit cards. Taking fraudulence detection as an example, propose two meth-
ods that can be used to detect outliers and discuss which one is more reliable.

1.12 Recent applications pay special attention to spatiotemporal data streams. A spatiotem-
poral data stream contains spatial information that changes over time, and is in the form
of stream data (i.e., the data flow in and out like possibly infinite streams).

(a) Present three application examples of spatiotemporal data streams.

(b) Discuss what kind of interesting knowledge can be mined from such data streams,
with limited time and resources.

(c) Identify and discuss the major challenges in spatiotemporal data mining.

(d) Using one application example, sketch a method to mine one kind of knowledge
from such stream data efficiently.

1.13 Describe the differences between the following approaches for the integration of a data
mining system with a database or data warehouse system: no coupling, loose coupling,
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semitight coupling, and tight coupling. State which approach you think is the most
popular, and why.

1.14 Describe three challenges to data mining regarding data mining methodology and user
interaction issues.

1.15 What are the major challenges of mining a huge amount of data (such as billions of
tuples) in comparison with mining a small amount of data (such as a few hundred tuple
data set)?

1.16 Outline the major research challenges of data mining in one specific application domain,
such as stream/sensor data analysis, spatiotemporal data analysis, or bioinformatics.
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2Data Preprocessing

Today’s real-world databases are highly susceptible to noisy, missing, and inconsistent data due
to their typically huge size (often several gigabytes or more) and their likely origin from
multiple, heterogenous sources. Low-quality data will lead to low-quality mining results.
“How can the data be preprocessed in order to help improve the quality of the data and,
consequently, of the mining results? How can the data be preprocessed so as to improve the
efficiency and ease of the mining process?”

There are a number of data preprocessing techniques. Data cleaning can be applied to
remove noise and correct inconsistencies in the data. Data integration merges data from
multiple sources into a coherent data store, such as a data warehouse. Data transforma-
tions, such as normalization, may be applied. For example, normalization may improve
the accuracy and efficiency of mining algorithms involving distance measurements. Data
reduction can reduce the data size by aggregating, eliminating redundant features, or clus-
tering, for instance. These techniques are not mutually exclusive; they may work together.
For example, data cleaning can involve transformations to correct wrong data, such as
by transforming all entries for a date field to a common format. Data processing tech-
niques, when applied before mining, can substantially improve the overall quality of the
patterns mined and/or the time required for the actual mining.

In this chapter, we introduce the basic concepts of data preprocessing in Section 2.1.
Section 2.2 presents descriptive data summarization, which serves as a foundation for
data preprocessing. Descriptive data summarization helps us study the general charac-
teristics of the data and identify the presence of noise or outliers, which is useful for
successful data cleaning and data integration. The methods for data preprocessing are
organized into the following categories: data cleaning (Section 2.3), data integration and
transformation (Section 2.4), and data reduction (Section 2.5). Concept hierarchies can
be used in an alternative form of data reduction where we replace low-level data (such
as raw values for age) with higher-level concepts (such as youth, middle-aged, or senior).
This form of data reduction is the topic of Section 2.6, wherein we discuss the automatic
eneration of concept hierarchies from numerical data using data discretization
techniques. The automatic generation of concept hierarchies from categorical data is also
described.

47
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2.1 Why Preprocess the Data?

Imagine that you are a manager at AllElectronics and have been charged with analyzing
the company’s data with respect to the sales at your branch. You immediately set out
to perform this task. You carefully inspect the company’s database and data warehouse,
identifying and selecting the attributes or dimensions to be included in your analysis,
such as item, price, and units sold. Alas! You notice that several of the attributes for var-
ious tuples have no recorded value. For your analysis, you would like to include infor-
mation as to whether each item purchased was advertised as on sale, yet you discover
that this information has not been recorded. Furthermore, users of your database sys-
tem have reported errors, unusual values, and inconsistencies in the data recorded for
some transactions. In other words, the data you wish to analyze by data mining tech-
niques are incomplete (lacking attribute values or certain attributes of interest, or con-
taining only aggregate data), noisy (containing errors, or outlier values that deviate from
the expected), and inconsistent (e.g., containing discrepancies in the department codes
used to categorize items). Welcome to the real world!

Incomplete, noisy, and inconsistent data are commonplace properties of large real-
world databases and data warehouses. Incomplete data can occur for a number of rea-
sons. Attributes of interest may not always be available, such as customer information
for sales transaction data. Other data may not be included simply because it was not
considered important at the time of entry. Relevant data may not be recorded due to a
misunderstanding, or because of equipment malfunctions. Data that were inconsistent
with other recorded data may have been deleted. Furthermore, the recording of the his-
tory or modifications to the data may have been overlooked. Missing data, particularly
for tuples with missing values for some attributes, may need to be inferred.

There are many possible reasons for noisy data (having incorrect attribute values). The
data collection instruments used may be faulty. There may have been human or computer
errors occurring at data entry. Errors in data transmission can also occur. There may be
technology limitations, such as limited buffer size for coordinating synchronized data
transfer and consumption. Incorrect data may also result from inconsistencies in naming
conventions or data codes used, or inconsistent formats for input fields, such as date.
Duplicate tuples also require data cleaning.

Data cleaning routines work to “clean” the data by filling in missing values, smooth-
ing noisy data, identifying or removing outliers, and resolving inconsistencies. If users
believe the data are dirty, they are unlikely to trust the results of any data mining that
has been applied to it. Furthermore, dirty data can cause confusion for the mining pro-
cedure, resulting in unreliable output. Although most mining routines have some pro-
cedures for dealing with incomplete or noisy data, they are not always robust. Instead,
they may concentrate on avoiding overfitting the data to the function being modeled.
Therefore, a useful preprocessing step is to run your data through some data cleaning
routines. Section 2.3 discusses methods for cleaning up your data.

Getting back to your task at AllElectronics, suppose that you would like to include
data from multiple sources in your analysis. This would involve integrating multiple
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databases, data cubes, or files, that is, data integration. Yet some attributes representing
a given concept may have different names in different databases, causing inconsistencies
and redundancies. For example, the attribute for customer identification may be referred
to as customer id in one data store and cust id in another. Naming inconsistencies may
also occur for attribute values. For example, the same first name could be registered as
“Bill” in one database, but “William” in another, and “B.” in the third. Furthermore, you
suspect that some attributes may be inferred from others (e.g., annual revenue). Having
a large amount of redundant data may slow down or confuse the knowledge discovery
process. Clearly, in addition to data cleaning, steps must be taken to help avoid redundan-
cies during data integration. Typically, data cleaning and data integration are performed
as a preprocessing step when preparing the data for a data warehouse. Additional data
cleaning can be performed to detect and remove redundancies that may have resulted
from data integration.

Getting back to your data, you have decided, say, that you would like to use a distance-
based mining algorithm for your analysis, such as neural networks, nearest-neighbor
classifiers, or clustering.1 Such methods provide better results if the data to be ana-
lyzed have been normalized, that is, scaled to a specific range such as [0.0, 1.0]. Your
customer data, for example, contain the attributes age and annual salary. The annual
salary attribute usually takes much larger values than age. Therefore, if the attributes are
left unnormalized, the distance measurements taken on annual salary will generally out-
weigh distance measurements taken on age. Furthermore, it would be useful for your
analysis to obtain aggregate information as to the sales per customer region—something
that is not part of any precomputed data cube in your data warehouse. You soon realize
that data transformation operations, such as normalization and aggregation, are addi-
tional data preprocessing procedures that would contribute toward the success of the
mining process. Data integration and data transformation are discussed in Section 2.4.

“Hmmm,” you wonder, as you consider your data even further. “The data set I have
selected for analysis is HUGE, which is sure to slow down the mining process. Is there any
way I can reduce the size of my data set, without jeopardizing the data mining results?”
Data reduction obtains a reduced representation of the data set that is much smaller
in volume, yet produces the same (or almost the same) analytical results. There are a
number of strategies for data reduction. These include data aggregation (e.g., building a
data cube), attribute subset selection (e.g., removing irrelevant attributes through correla-
tion analysis), dimensionality reduction (e.g., using encoding schemes such as minimum
length encoding or wavelets), and numerosity reduction (e.g., “replacing” the data by
alternative, smaller representations such as clusters or parametric models). Data reduc-
tion is the topic of Section 2.5. Data can also be “reduced” by generalization with the
use of concept hierarchies, where low-level concepts, such as city for customer location,
are replaced with higher-level concepts, such as region or province or state. A concept
hierarchy organizes the concepts into varying levels of abstraction. Data discretization is

1Neural networks and nearest-neighbor classifiers are described in Chapter 6, and clustering is discussed
in Chapter 7.
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Figure 2.1 Forms of data preprocessing.

a form of data reduction that is very useful for the automatic generation of concept hier-
archies from numerical data. This is described in Section 2.6, along with the automatic
generation of concept hierarchies for categorical data.

Figure 2.1 summarizes the data preprocessing steps described here. Note that the
above categorization is not mutually exclusive. For example, the removal of redundant
data may be seen as a form of data cleaning, as well as data reduction.

In summary, real-world data tend to be dirty, incomplete, and inconsistent. Data
preprocessing techniques can improve the quality of the data, thereby helping to improve
the accuracy and efficiency of the subsequent mining process. Data preprocessing is an
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important step in the knowledge discovery process, because quality decisions must be
based on quality data. Detecting data anomalies, rectifying them early, and reducing the
data to be analyzed can lead to huge payoffs for decision making.

2.2 Descriptive Data Summarization

For data preprocessing to be successful, it is essential to have an overall picture of your
data. Descriptive data summarization techniques can be used to identify the typical prop-
erties of your data and highlight which data values should be treated as noise or outliers.
Thus, we first introduce the basic concepts of descriptive data summarization before get-
ting into the concrete workings of data preprocessing techniques.

For many data preprocessing tasks, users would like to learn about data character-
istics regarding both central tendency and dispersion of the data. Measures of central
tendency include mean, median, mode, and midrange, while measures of data dispersion
include quartiles, interquartile range (IQR), and variance. These descriptive statistics are
of great help in understanding the distribution of the data. Such measures have been
studied extensively in the statistical literature. From the data mining point of view, we
need to examine how they can be computed efficiently in large databases. In particular,
it is necessary to introduce the notions of distributive measure, algebraic measure, and
holistic measure. Knowing what kind of measure we are dealing with can help us choose
an efficient implementation for it.

2.2.1 Measuring the Central Tendency

In this section, we look at various ways to measure the central tendency of data. The
most common and most effective numerical measure of the “center” of a set of data is
the (arithmetic) mean. Let x1,x2, . . . ,xN be a set of N values or observations, such as for
some attribute, like salary. The mean of this set of values is

x =

N

∑
i=1

xi

N
=

x1 + x2 + · · ·+ xN

N
. (2.1)

This corresponds to the built-in aggregate function, average (avg() in SQL), provided in
relational database systems.

A distributive measure is a measure (i.e., function) that can be computed for a
given data set by partitioning the data into smaller subsets, computing the measure
for each subset, and then merging the results in order to arrive at the measure’s value
for the original (entire) data set. Both sum() and count() are distributive measures
because they can be computed in this manner. Other examples include max() and
min(). An algebraic measure is a measure that can be computed by applying an alge-
braic function to one or more distributive measures. Hence, average (or mean()) is
an algebraic measure because it can be computed by sum()/count(). When computing
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data cubes2, sum() and count() are typically saved in precomputation. Thus, the
derivation of average for data cubes is straightforward.

Sometimes, each value xi in a set may be associated with a weight wi, for i = 1, . . . ,N.
The weights reflect the significance, importance, or occurrence frequency attached to
their respective values. In this case, we can compute

x =

N

∑
i=1

wixi

N

∑
i=1

wi

=
w1x1 + w2x2 + · · ·+ wNxN

w1 + w2 + · · ·+ wN
. (2.2)

This is called the weighted arithmetic mean or the weighted average. Note that the
weighted average is another example of an algebraic measure.

Although the mean is the single most useful quantity for describing a data set, it is not
always the best way of measuring the center of the data. A major problem with the mean
is its sensitivity to extreme (e.g., outlier) values. Even a small number of extreme values
can corrupt the mean. For example, the mean salary at a company may be substantially
pushed up by that of a few highly paid managers. Similarly, the average score of a class
in an exam could be pulled down quite a bit by a few very low scores. To offset the effect
caused by a small number of extreme values, we can instead use the trimmed mean,
which is the mean obtained after chopping off values at the high and low extremes. For
example, we can sort the values observed for salary and remove the top and bottom 2%
before computing the mean. We should avoid trimming too large a portion (such as
20%) at both ends as this can result in the loss of valuable information.

For skewed (asymmetric) data, a better measure of the center of data is the median.
Suppose that a given data set of N distinct values is sorted in numerical order. If N is odd,
then the median is the middle value of the ordered set; otherwise (i.e., if N is even), the
median is the average of the middle two values.

A holistic measure is a measure that must be computed on the entire data set as a
whole. It cannot be computed by partitioning the given data into subsets and merging
the values obtained for the measure in each subset. The median is an example of a holis-
tic measure. Holistic measures are much more expensive to compute than distributive
measures such as those listed above.

We can, however, easily approximate the median value of a data set. Assume that data are
grouped in intervals according to their xi data values and that the frequency (i.e., number
of data values) of each interval is known. For example, people may be grouped according
to their annual salary in intervals such as 10–20K, 20–30K, and so on. Let the interval that
contains the median frequency be the median interval. We can approximate the median
of the entire data set (e.g., the median salary) by interpolation using the formula:

median = L1 +
(

N/2− (∑ freq)l

freqmedian

)

width, (2.3)

2Data cube computation is described in detail in Chapters 3 and 4.
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Figure 2.2 Mean, median, and mode of symmetric versus positively and negatively skewed data.

where L1 is the lower boundary of the median interval, N is the number of values in the
entire data set, (∑ f req)l is the sum of the frequencies of all of the intervals that are lower
than the median interval, f reqmedian is the frequency of the median interval, and width
is the width of the median interval.

Another measure of central tendency is the mode. The mode for a set of data is the
value that occurs most frequently in the set. It is possible for the greatest frequency to
correspond to several different values, which results in more than one mode. Data sets
with one, two, or three modes are respectively called unimodal, bimodal, and trimodal.
In general, a data set with two or more modes is multimodal. At the other extreme, if
each data value occurs only once, then there is no mode.

For unimodal frequency curves that are moderately skewed (asymmetrical), we have
the following empirical relation:

mean−mode = 3× (mean−median). (2.4)

This implies that the mode for unimodal frequency curves that are moderately skewed
can easily be computed if the mean and median values are known.

In a unimodal frequency curve with perfect symmetric data distribution, the mean,
median, and mode are all at the same center value, as shown in Figure 2.2(a). However,
data in most real applications are not symmetric. They may instead be either positively
skewed, where the mode occurs at a value that is smaller than the median (Figure 2.2(b)),
or negatively skewed, where the mode occurs at a value greater than the median
(Figure 2.2(c)).

The midrange can also be used to assess the central tendency of a data set. It is the
average of the largest and smallest values in the set. This algebraic measure is easy to
compute using the SQL aggregate functions, max() and min().

2.2.2 Measuring the Dispersion of Data

The degree to which numerical data tend to spread is called the dispersion, or variance of
the data. The most common measures of data dispersion are range, the five-number sum-
mary (based on quartiles), the interquartile range, and the standard deviation. Boxplots
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can be plotted based on the five-number summary and are a useful tool for identifying
outliers.

Range, Quartiles, Outliers, and Boxplots
Let x1,x2, . . . ,xN be a set of observations for some attribute. The range of the set is the
difference between the largest (max()) and smallest (min()) values. For the remainder of
this section, let’s assume that the data are sorted in increasing numerical order.

The kth percentile of a set of data in numerical order is the value xi having the property
that k percent of the data entries lie at or below xi. The median (discussed in the previous
subsection) is the 50th percentile.

The most commonly used percentiles other than the median are quartiles. The first
quartile, denoted by Q1, is the 25th percentile; the third quartile, denoted by Q3, is the
75th percentile. The quartiles, including the median, give some indication of the center,
spread, and shape of a distribution. The distance between the first and third quartiles is
a simple measure of spread that gives the range covered by the middle half of the data.
This distance is called the interquartile range (IQR) and is defined as

IQR = Q3−Q1. (2.5)

Based on reasoning similar to that in our analysis of the median in Section 2.2.1, we can
conclude that Q1 and Q3 are holistic measures, as is IQR.

No single numerical measure of spread, such as IQR, is very useful for describing
skewed distributions. The spreads of two sides of a skewed distribution are unequal
(Figure 2.2). Therefore, it is more informative to also provide the two quartiles Q1 and
Q3, along with the median. A common rule of thumb for identifying suspected outliers
is to single out values falling at least 1.5× IQR above the third quartile or below the first
quartile.

Because Q1, the median, and Q3 together contain no information about the endpoints
(e.g., tails) of the data, a fuller summary of the shape of a distribution can be obtained
by providing the lowest and highest data values as well. This is known as the five-number
summary. The five-number summary of a distribution consists of the median, the quar-
tiles Q1 and Q3, and the smallest and largest individual observations, written in the order
Minimum, Q1, Median, Q3, Maximum.

Boxplots are a popular way of visualizing a distribution. A boxplot incorporates the
five-number summary as follows:

Typically, the ends of the box are at the quartiles, so that the box length is the interquar-
tile range, IQR.

The median is marked by a line within the box.

Two lines (called whiskers) outside the box extend to the smallest (Minimum) and
largest (Maximum) observations.

When dealing with a moderate number of observations, it is worthwhile to plot
potential outliers individually. To do this in a boxplot, the whiskers are extended to



2.2 Descriptive Data Summarization 55

20

40

60

80

100

120

140

160

180

200

U
ni

t p
ric

e 
($

)

Branch 1 Branch 4Branch 3Branch 2

Figure 2.3 Boxplot for the unit price data for items sold at four branches of AllElectronics during a given
time period.

the extreme low and high observations only if these values are less than 1.5× IQR
beyond the quartiles. Otherwise, the whiskers terminate at the most extreme obser-
vations occurring within 1.5× IQR of the quartiles. The remaining cases are plotted
individually. Boxplots can be used in the comparisons of several sets of compatible
data. Figure 2.3 shows boxplots for unit price data for items sold at four branches of
AllElectronics during a given time period. For branch 1, we see that the median price
of items sold is $80, Q1 is $60, Q3 is $100. Notice that two outlying observations for
this branch were plotted individually, as their values of 175 and 202 are more than
1.5 times the IQR here of 40. The efficient computation of boxplots, or even approximate
boxplots (based on approximates of the five-number summary), remains a
challenging issue for the mining of large data sets.

Variance and Standard Deviation
The variance of N observations, x1,x2, . . . ,xN , is

σ2 =
1
N

N

∑
i=1

(xi− x)2 =
1
N

[

∑x2
i −

1
N

(∑xi)2
]

, (2.6)

where x is the mean value of the observations, as defined in Equation (2.1). The standard
deviation, σ, of the observations is the square root of the variance, σ2.
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The basic properties of the standard deviation, σ, as a measure of spread are

σ measures spread about the mean and should be used only when the mean is chosen
as the measure of center.

σ = 0 only when there is no spread, that is, when all observations have the same value.
Otherwise σ> 0.

The variance and standard deviation are algebraic measures because they can be com-
puted from distributive measures. That is, N (which is count() in SQL), ∑xi (which is
the sum() of xi), and ∑x2

i (which is the sum() of x2
i ) can be computed in any partition

and then merged to feed into the algebraic Equation (2.6). Thus the computation of the
variance and standard deviation is scalable in large databases.

2.2.3 Graphic Displays of Basic Descriptive Data Summaries

Aside from the bar charts, pie charts, and line graphs used in most statistical or graph-
ical data presentation software packages, there are other popular types of graphs for
the display of data summaries and distributions. These include histograms, quantile
plots, q-q plots, scatter plots, and loess curves. Such graphs are very helpful for the visual
inspection of your data.

Plotting histograms, or frequency histograms, is a graphical method for summariz-
ing the distribution of a given attribute. A histogram for an attribute A partitions the data
distribution of A into disjoint subsets, or buckets. Typically, the width of each bucket is
uniform. Each bucket is represented by a rectangle whose height is equal to the count or
relative frequency of the values at the bucket. If A is categoric, such as automobile model
or item type, then one rectangle is drawn for each known value of A, and the resulting
graph is more commonly referred to as a bar chart. If A is numeric, the term histogram
is preferred. Partitioning rules for constructing histograms for numerical attributes are
discussed in Section 2.5.4. In an equal-width histogram, for example, each bucket rep-
resents an equal-width range of numerical attribute A.

Figure 2.4 shows a histogram for the data set of Table 2.1, where buckets are defined by
equal-width ranges representing $20 increments and the frequency is the count of items
sold. Histograms are at least a century old and are a widely used univariate graphical
method. However, they may not be as effective as the quantile plot, q-q plot, and boxplot
methods for comparing groups of univariate observations.

A quantile plot is a simple and effective way to have a first look at a univariate
data distribution. First, it displays all of the data for the given attribute (allowing the
user to assess both the overall behavior and unusual occurrences). Second, it plots
quantile information. The mechanism used in this step is slightly different from the
percentile computation discussed in Section 2.2.2. Let xi, for i = 1 to N, be the data
sorted in increasing order so that x1 is the smallest observation and xN is the largest.
Each observation, xi, is paired with a percentage, fi, which indicates that approximately
100 fi% of the data are below or equal to the value, xi. We say “approximately” because
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Figure 2.4 A histogram for the data set of Table 2.1.

Table 2.1 A set of unit price data for items sold at a branch of AllElectronics.

Unit price ($) Count of items sold

40 275

43 300

47 250

.. ..

74 360

75 515

78 540

.. ..

115 320

117 270

120 350

there may not be a value with exactly a fraction, fi, of the data below or equal to xi.
Note that the 0.25 quantile corresponds to quartile Q1, the 0.50 quantile is the median,
and the 0.75 quantile is Q3.

Let

fi =
i−0.5

N
. (2.7)

These numbers increase in equal steps of 1/N, ranging from 1/2N (which is slightly
above zero) to 1−1/2N (which is slightly below one). On a quantile plot, xi is graphed
against fi. This allows us to compare different distributions based on their quantiles.
For example, given the quantile plots of sales data for two different time periods, we can
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Figure 2.5 A quantile plot for the unit price data of Table 2.1.

compare their Q1, median, Q3, and other fi values at a glance. Figure 2.5 shows a quantile
plot for the unit price data of Table 2.1.

A quantile-quantile plot, or q-q plot, graphs the quantiles of one univariate
distribution against the corresponding quantiles of another. It is a powerful visualization
tool in that it allows the user to view whether there is a shift in going from one distribution
to another.

Suppose that we have two sets of observations for the variable unit price, taken from
two different branch locations. Let x1, . . . ,xN be the data from the first branch, and
y1, . . . ,yM be the data from the second, where each data set is sorted in increasing order.
If M = N (i.e., the number of points in each set is the same), then we simply plot yi
against xi, where yi and xi are both (i−0.5)/N quantiles of their respective data sets.
If M < N (i.e., the second branch has fewer observations than the first), there can be
only M points on the q-q plot. Here, yi is the (i−0.5)/M quantile of the y data, which
is plotted against the (i− 0.5)/M quantile of the x data. This computation typically
involves interpolation.

Figure 2.6 shows a quantile-quantile plot for unit price data of items sold at two dif-
ferent branches of AllElectronics during a given time period. Each point corresponds to
the same quantile for each data set and shows the unit price of items sold at branch 1
versus branch 2 for that quantile. For example, here the lowest point in the left corner
corresponds to the 0.03 quantile. (To aid in comparison, we also show a straight line that
represents the case of when, for each given quantile, the unit price at each branch is the
same. In addition, the darker points correspond to the data for Q1, the median, and Q3,
respectively.) We see that at this quantile, the unit price of items sold at branch 1 was
slightly less than that at branch 2. In other words, 3% of items sold at branch 1 were less
than or equal to $40, while 3% of items at branch 2 were less than or equal to $42. At the
highest quantile, we see that the unit price of items at branch 2 was slightly less than that
at branch 1. In general, we note that there is a shift in the distribution of branch 1 with
respect to branch 2 in that the unit prices of items sold at branch 1 tend to be lower than
those at branch 2.
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Figure 2.6 A quantile-quantile plot for unit price data from two different branches.
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Figure 2.7 A scatter plot for the data set of Table 2.1.

A scatter plot is one of the most effective graphical methods for determining if there
appears to be a relationship, pattern, or trend between two numerical attributes. To
construct a scatter plot, each pair of values is treated as a pair of coordinates in an alge-
braic sense and plotted as points in the plane. Figure 2.7 shows a scatter plot for the set of
data in Table 2.1. The scatter plot is a useful method for providing a first look at bivariate
data to see clusters of points and outliers, or to explore the possibility of correlation rela-
tionships.3 In Figure 2.8, we see examples of positive and negative correlations between

3A statistical test for correlation is given in Section 2.4.1 on data integration (Equation (2.8)).
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Figure 2.8 Scatter plots can be used to find (a) positive or (b) negative correlations between attributes.

Figure 2.9 Three cases where there is no observed correlation between the two plotted attributes in each
of the data sets.

two attributes in two different data sets. Figure 2.9 shows three cases for which there is
no correlation relationship between the two attributes in each of the given data sets.

When dealing with several attributes, the scatter-plot matrix is a useful extension to
the scatter plot. Given n attributes, a scatter-plot matrix is an n×n grid of scatter plots
that provides a visualization of each attribute (or dimension) with every other attribute.
The scatter-plot matrix becomes less effective as the number of attributes under study
grows. In this case, user interactions such as zooming and panning become necessary to
help interpret the individual scatter plots effectively.

A loess curve is another important exploratory graphic aid that adds a smooth curve
to a scatter plot in order to provide better perception of the pattern of dependence. The
word loess is short for “local regression.” Figure 2.10 shows a loess curve for the set of
data in Table 2.1.

To fit a loess curve, values need to be set for two parameters—α, a smoothing param-
eter, and λ, the degree of the polynomials that are fitted by the regression. While α can be
any positive number (typical values are between 1/4 and 1), λ can be 1 or 2. The goal in
choosing α is to produce a fit that is as smooth as possible without unduly distorting the
underlying pattern in the data. The curve becomes smoother as α increases. There may be
some lack of fit, however, indicating possible “missing” data patterns. If α is very small, the
underlying pattern is tracked, yet overfitting of the data may occur where local “wiggles”
in the curve may not be supported by the data. If the underlying pattern of the data has a
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Figure 2.10 A loess curve for the data set of Table 2.1.

“gentle” curvature with no local maxima and minima, then local linear fitting is usually
sufficient (λ = 1). However, if there are local maxima or minima, then local quadratic
fitting (λ = 2) typically does a better job of following the pattern of the data and main-
taining local smoothness.

In conclusion, descriptive data summaries provide valuable insight into the overall
behavior of your data. By helping to identify noise and outliers, they are especially useful
for data cleaning.

2.3 Data Cleaning

Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning (or data
cleansing) routines attempt to fill in missing values, smooth out noise while identify-
ing outliers, and correct inconsistencies in the data. In this section, you will study basic
methods for data cleaning. Section 2.3.1 looks at ways of handling missing values.
Section 2.3.2 explains data smoothing techniques. Section 2.3.3 discusses approaches to
data cleaning as a process.

2.3.1 Missing Values

Imagine that you need to analyze AllElectronics sales and customer data. You note that
many tuples have no recorded value for several attributes, such as customer income. How
can you go about filling in the missing values for this attribute? Let’s look at the following
methods:

1. Ignore the tuple: This is usually done when the class label is missing (assuming the
mining task involves classification). This method is not very effective, unless the tuple
contains several attributes with missing values. It is especially poor when the percent-
age of missing values per attribute varies considerably.
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2. Fill in the missing value manually: In general, this approach is time-consuming and
may not be feasible given a large data set with many missing values.

3. Use a global constant to fill in the missing value: Replace all missing attribute values
by the same constant, such as a label like “Unknown” or −∞. If missing values are
replaced by, say, “Unknown,” then the mining program may mistakenly think that
they form an interesting concept, since they all have a value in common—that of
“Unknown.” Hence, although this method is simple, it is not foolproof.

4. Use the attribute mean to fill in the missing value: For example, suppose that the
average income of AllElectronics customers is $56,000. Use this value to replace the
missing value for income.

5. Use the attribute mean for all samples belonging to the same class as the given tuple:
For example, if classifying customers according to credit risk, replace the missing value
with the average income value for customers in the same credit risk category as that
of the given tuple.

6. Use the most probable value to fill in the missing value: This may be determined
with regression, inference-based tools using a Bayesian formalism, or decision tree
induction. For example, using the other customer attributes in your data set, you
may construct a decision tree to predict the missing values for income. Decision
trees, regression, and Bayesian inference are described in detail in Chapter 6.

Methods 3 to 6 bias the data. The filled-in value may not be correct. Method 6,
however, is a popular strategy. In comparison to the other methods, it uses the most
information from the present data to predict missing values. By considering the values
of the other attributes in its estimation of the missing value for income, there is a greater
chance that the relationships between income and the other attributes are preserved.

It is important to note that, in some cases, a missing value may not imply an error
in the data! For example, when applying for a credit card, candidates may be asked to
supply their driver’s license number. Candidates who do not have a driver’s license may
naturally leave this field blank. Forms should allow respondents to specify values such as
“not applicable”. Software routines may also be used to uncover other null values, such
as “don’t know”, “?”, or “none”. Ideally, each attribute should have one or more rules
regarding the null condition. The rules may specify whether or not nulls are allowed,
and/or how such values should be handled or transformed. Fields may also be inten-
tionally left blank if they are to be provided in a later step of the business process. Hence,
although we can try our best to clean the data after it is seized, good design of databases
and of data entry procedures should help minimize the number of missing values or
errors in the first place.

2.3.2 Noisy Data

“What is noise?” Noise is a random error or variance in a measured variable. Given a
numerical attribute such as, say, price, how can we “smooth” out the data to remove the
noise? Let’s look at the following data smoothing techniques:
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Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15
Bin 2: 21, 21, 24
Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9
Bin 2: 22, 22, 22
Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15
Bin 2: 21, 21, 24
Bin 3: 25, 25, 34

Figure 2.11 Binning methods for data smoothing.

1. Binning: Binning methods smooth a sorted data value by consulting its “neighbor-
hood,” that is, the values around it. The sorted values are distributed into a number
of “buckets,” or bins. Because binning methods consult the neighborhood of values,
they perform local smoothing. Figure 2.11 illustrates some binning techniques. In this
example, the data for price are first sorted and then partitioned into equal-frequency
bins of size 3 (i.e., each bin contains three values). In smoothing by bin means, each
value in a bin is replaced by the mean value of the bin. For example, the mean of the
values 4, 8, and 15 in Bin 1 is 9. Therefore, each original value in this bin is replaced
by the value 9. Similarly, smoothing by bin medians can be employed, in which each
bin value is replaced by the bin median. In smoothing by bin boundaries, the mini-
mum and maximum values in a given bin are identified as the bin boundaries. Each
bin value is then replaced by the closest boundary value. In general, the larger the
width, the greater the effect of the smoothing. Alternatively, bins may be equal-width,
where the interval range of values in each bin is constant. Binning is also used as a
discretization technique and is further discussed in Section 2.6.

2. Regression: Data can be smoothed by fitting the data to a function, such as with
regression. Linear regression involves finding the “best” line to fit two attributes (or
variables), so that one attribute can be used to predict the other. Multiple linear
regression is an extension of linear regression, where more than two attributes are
involved and the data are fit to a multidimensional surface. Regression is further
described in Section 2.5.4, as well as in Chapter 6.
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Figure 2.12 A 2-D plot of customer data with respect to customer locations in a city, showing three
data clusters. Each cluster centroid is marked with a “+”, representing the average point
in space for that cluster. Outliers may be detected as values that fall outside of the sets
of clusters.

3. Clustering: Outliers may be detected by clustering, where similar values are organized
into groups, or “clusters.” Intuitively, values that fall outside of the set of clusters may
be considered outliers (Figure 2.12). Chapter 7 is dedicated to the topic of clustering
and outlier analysis.

Many methods for data smoothing are also methods for data reduction involv-
ing discretization. For example, the binning techniques described above reduce the
number of distinct values per attribute. This acts as a form of data reduction for
logic-based data mining methods, such as decision tree induction, which repeatedly
make value comparisons on sorted data. Concept hierarchies are a form of data dis-
cretization that can also be used for data smoothing. A concept hierarchy for price, for
example, may map real price values into inexpensive, moderately priced, and expensive,
thereby reducing the number of data values to be handled by the mining process.
Data discretization is discussed in Section 2.6. Some methods of classification, such
as neural networks, have built-in data smoothing mechanisms. Classification is the
topic of Chapter 6.
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2.3.3 Data Cleaning as a Process

Missing values, noise, and inconsistencies contribute to inaccurate data. So far, we have
looked at techniques for handling missing data and for smoothing data. “But data clean-
ing is a big job. What about data cleaning as a process? How exactly does one proceed in
tackling this task? Are there any tools out there to help?”

The first step in data cleaning as a process is discrepancy detection. Discrepancies can
be caused by several factors, including poorly designed data entry forms that have many
optional fields, human error in data entry, deliberate errors (e.g., respondents not wanting
to divulge information about themselves), and data decay (e.g., outdated addresses). Dis-
crepancies may also arise from inconsistent data representations and the inconsistent use
ofcodes.Errors in instrumentationdevices that recorddata,andsystemerrors, areanother
source of discrepancies. Errors can also occur when the data are (inadequately) used for
purposes other than originally intended. There may also be inconsistencies due to data
integration (e.g., where a given attribute can have different names in different databases).4

“So, how can we proceed with discrepancy detection?” As a starting point, use any knowl-
edge you may already have regarding properties of the data. Such knowledge or “data
about data” is referred to as metadata. For example, what are the domain and data type of
each attribute? What are the acceptable values for each attribute? What is the range of the
length of values? Do all values fall within the expected range? Are there any known depen-
dencies between attributes? The descriptive data summaries presented in Section 2.2 are
useful here for grasping data trends and identifying anomalies. For example, values that
are more than two standard deviations away from the mean for a given attribute may
be flagged as potential outliers. In this step, you may write your own scripts and/or use
some of the tools that we discuss further below. From this, you may find noise, outliers,
and unusual values that need investigation.

As a data analyst, you should be on the lookout for the inconsistent use of codes and any
inconsistent data representations (such as “2004/12/25” and “25/12/2004” for date). Field
overloading is another source of errors that typically results when developers squeeze new
attribute definitions into unused (bit) portions of already defined attributes (e.g., using
an unused bit of an attribute whose value range uses only, say, 31 out of 32 bits).

The data should also be examined regarding unique rules, consecutive rules, and null
rules. A unique rule says that each value of the given attribute must be different from
all other values for that attribute. A consecutive rule says that there can be no miss-
ing values between the lowest and highest values for the attribute, and that all values
must also be unique (e.g., as in check numbers). A null rule specifies the use of blanks,
question marks, special characters, or other strings that may indicate the null condi-
tion (e.g., where a value for a given attribute is not available), and how such values
should be handled. As mentioned in Section 2.3.1, reasons for missing values may include
(1) the person originally asked to provide a value for the attribute refuses and/or finds

4Data integration and the removal of redundant data that can result from such integration are further
described in Section 2.4.1.
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that the information requested is not applicable (e.g., a license-number attribute left blank
by nondrivers); (2) the data entry person does not know the correct value; or (3) the value
is to be provided by a later step of the process. The null rule should specify how to record
the null condition, for example, such as to store zero for numerical attributes, a blank
for character attributes, or any other conventions that may be in use (such as that entries
like “don’t know” or “?” should be transformed to blank).

There are a number of different commercial tools that can aid in the step of discrepancy
detection. Data scrubbing tools use simple domain knowledge (e.g., knowledge of postal
addresses, and spell-checking) to detect errors and make corrections in the data. These
tools rely on parsing and fuzzy matching techniques when cleaning data from multiple
sources. Data auditing tools find discrepancies by analyzing the data to discover rules
and relationships, and detecting data that violate such conditions. They are variants of
data mining tools. For example, they may employ statistical analysis to find correlations,
or clustering to identify outliers. They may also use the descriptive data summaries that
were described in Section 2.2.

Some data inconsistencies may be corrected manually using external references. For
example, errors made at data entry may be corrected by performing a paper trace. Most
errors, however, will require data transformations. This is the second step in data cleaning
as a process. That is, once we find discrepancies, we typically need to define and apply
(a series of) transformations to correct them.

Commercial tools can assist in the data transformation step. Data migration tools
allow simple transformations to be specified, such as to replace the string “gender” by
“sex”. ETL (extraction/transformation/loading) tools allow users to specify transforms
through a graphical user interface (GUI). These tools typically support only a restricted
set of transforms so that, often, we may also choose to write custom scripts for this step
of the data cleaning process.

The two-step process of discrepancy detection and data transformation (to correct dis-
crepancies) iterates. This process, however, is error-prone and time-consuming. Some
transformations may introduce more discrepancies. Some nested discrepancies may only
be detected after others have been fixed. For example, a typo such as “20004” in a year field
may only surface once all date values have been converted to a uniform format. Transfor-
mations are often done as a batch process while the user waits without feedback. Only
after the transformation is complete can the user go back and check that no new anoma-
lies have been created by mistake. Typically, numerous iterations are required before the
user is satisfied.Anytuples thatcannotbeautomaticallyhandledbyagiventransformation
are typically written to a file without any explanation regarding the reasoning behind their
failure. As a result, the entire data cleaning process also suffers from a lack of interactivity.

New approaches to data cleaning emphasize increased interactivity. Potter’s Wheel, for
example, is a publicly available data cleaning tool (see http://control.cs.berkeley.edu/abc)
that integrates discrepancy detection and transformation. Users gradually build a series of
transformations by composing and debugging individual transformations, one step at a
time, on a spreadsheet-like interface. The transformations can be specified graphically or
by providing examples. Results are shown immediately on the records that are visible on
the screen. The user can choose to undo the transformations, so that transformations
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that introduced additional errors can be “erased.” The tool performs discrepancy
checking automatically in the background on the latest transformed view of the data.
Users can gradually develop and refine transformations as discrepancies are found,
leading to more effective and efficient data cleaning.

Another approach to increased interactivity in data cleaning is the development of
declarative languages for the specification of data transformation operators. Such work
focuses on defining powerful extensions to SQL and algorithms that enable users to
express data cleaning specifications efficiently.

As we discover more about the data, it is important to keep updating the metadata
to reflect this knowledge. This will help speed up data cleaning on future versions of the
same data store.

2.4 Data Integration and Transformation

Data mining often requires data integration—the merging of data from multiple data
stores. The data may also need to be transformed into forms appropriate for mining.
This section describes both data integration and data transformation.

2.4.1 Data Integration

It is likely that your data analysis task will involve data integration, which combines data
from multiple sources into a coherent data store, as in data warehousing. These sources
may include multiple databases, data cubes, or flat files.

There are a number of issues to consider during data integration. Schema integration
and object matching can be tricky. How can equivalent real-world entities from multiple
data sources be matched up? This is referred to as the entity identification problem.
For example, how can the data analyst or the computer be sure that customer id in one
database and cust number in another refer to the same attribute? Examples of metadata
for each attribute include the name, meaning, data type, and range of values permitted
for the attribute, and null rules for handling blank, zero, or null values (Section 2.3).
Such metadata can be used to help avoid errors in schema integration. The metadata
may also be used to help transform the data (e.g., where data codes for pay type in one
database may be “H” and “S”, and 1 and 2 in another). Hence, this step also relates to
data cleaning, as described earlier.

Redundancy is another important issue. An attribute (such as annual revenue, for
instance) may be redundant if it can be “derived” from another attribute or set of
attributes. Inconsistencies in attribute or dimension naming can also cause redundan-
cies in the resulting data set.

Some redundancies can be detected by correlation analysis. Given two attributes, such
analysis can measure how strongly one attribute implies the other, based on the available
data. For numerical attributes, we can evaluate the correlation between two attributes, A
and B, by computing the correlation coefficient (also known as Pearson’s product moment
coefficient, named after its inventer, Karl Pearson). This is
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rA,B =

N

∑
i=1

(ai−A)(bi−B)

NσAσB
=

N

∑
i=1

(aibi)−NAB

NσAσB
, (2.8)

where N is the number of tuples, ai and bi are the respective values of A and B in tuple i,
A and B are the respective mean values of A and B, σA and σB are the respective standard
deviations of A and B (as defined in Section 2.2.2), and Σ(aibi) is the sum of the AB
cross-product (that is, for each tuple, the value for A is multiplied by the value for B in
that tuple). Note that−1≤ rA,B≤+1. If rA,B is greater than 0, then A and B are positively
correlated, meaning that the values of A increase as the values of B increase. The higher
the value, the stronger the correlation (i.e., the more each attribute implies the other).
Hence, a higher value may indicate that A (or B) may be removed as a redundancy. If the
resulting value is equal to 0, then A and B are independent and there is no correlation
between them. If the resulting value is less than 0, then A and B are negatively correlated,
where the values of one attribute increase as the values of the other attribute decrease.
This means that each attribute discourages the other. Scatter plots can also be used to
view correlations between attributes (Section 2.2.3).

Note that correlation does not imply causality. That is, if A and B are correlated, this
does not necessarily imply that A causes B or that B causes A. For example, in analyzing a
demographic database, we may find that attributes representing the number of hospitals
and the number of car thefts in a region are correlated. This does not mean that one
causes the other. Both are actually causally linked to a third attribute, namely, population.

For categorical (discrete) data, a correlation relationship between two attributes, A
and B, can be discovered by a χ2 (chi-square) test. Suppose A has c distinct values, namely
a1,a2, . . .ac. B has r distinct values, namely b1,b2, . . .br. The data tuples described by A
and B can be shown as a contingency table, with the c values of A making up the columns
and the r values of B making up the rows. Let (Ai,B j) denote the event that attribute A
takes on value ai and attribute B takes on value b j, that is, where (A = ai,B = b j). Each
and every possible (Ai,B j) joint event has its own cell (or slot) in the table. The χ2 value
(also known as the Pearson χ2 statistic) is computed as:

χ2 =
c

∑
i=1

r

∑
j=1

(oi j− ei j)2

ei j
, (2.9)

where oi j is the observed frequency (i.e., actual count) of the joint event (Ai,B j) and ei j
is the expected frequency of (Ai,B j), which can be computed as

ei j =
count(A = ai)× count(B = b j)

N
, (2.10)

where N is the number of data tuples, count(A = ai) is the number of tuples having value
ai for A, and count(B = b j) is the number of tuples having value b j for B. The sum in
Equation (2.9) is computed over all of the r× c cells. Note that the cells that contribute
the most to the χ2 value are those whose actual count is very different from that expected.
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Table 2.2 A 2× 2 contingency table for the data of Example 2.1.
Are gender and preferred Reading correlated?

male female Total

fiction 250 (90) 200 (360) 450

non fiction 50 (210) 1000 (840) 1050

Total 300 1200 1500

The χ2 statistic tests the hypothesis that A and B are independent. The test is based on
a significance level, with (r−1)× (c−1) degrees of freedom. We will illustrate the use
of this statistic in an example below. If the hypothesis can be rejected, then we say that A
and B are statistically related or associated.

Let’s look at a concrete example.

Example 2.1 Correlation analysis of categorical attributes using χ2. Suppose that a group of 1,500
people was surveyed. The gender of each person was noted. Each person was polled as to
whether their preferred type of reading material was fiction or nonfiction. Thus, we have
two attributes, gender and preferred reading. The observed frequency (or count) of each
possible joint event is summarized in the contingency table shown in Table 2.2, where
the numbers in parentheses are the expected frequencies (calculated based on the data
distribution for both attributes using Equation (2.10)).

Using Equation (2.10), we can verify the expected frequencies for each cell. For exam-
ple, the expected frequency for the cell (male, fiction) is

e11 =
count(male)× count(fiction)

N
=

300×450
1500

= 90,

and so on. Notice that in any row, the sum of the expected frequencies must equal the
total observed frequency for that row, and the sum of the expected frequencies in any col-
umn must also equal the total observed frequency for that column. Using Equation (2.9)
for χ2 computation, we get

χ2 =
(250−90)2

90
+

(50−210)2

210
+

(200−360)2

360
+

(1000−840)2

840
= 284.44 + 121.90 + 71.11 + 30.48 = 507.93.

For this 2 × 2 table, the degrees of freedom are (2− 1)(2− 1) = 1. For 1 degree of
freedom, the χ2 value needed to reject the hypothesis at the 0.001 significance level is
10.828 (taken from the table of upper percentage points of the χ2 distribution, typically
available from any textbook on statistics). Since our computed value is above this, we can
reject the hypothesis that gender and preferred reading are independent and conclude that
the two attributes are (strongly) correlated for the given group of people.

In addition to detecting redundancies between attributes, duplication should also
be detected at the tuple level (e.g., where there are two or more identical tuples for a
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given unique data entry case). The use of denormalized tables (often done to improve
performance by avoiding joins) is another source of data redundancy. Inconsistencies
often arise between various duplicates, due to inaccurate data entry or updating some
but not all of the occurrences of the data. For example, if a purchase order database con-
tains attributes for the purchaser’s name and address instead of a key to this information
in a purchaser database, discrepancies can occur, such as the same purchaser’s name
appearing with different addresses within the purchase order database.

A third important issue in data integration is the detection and resolution of data
value conflicts. For example, for the same real-world entity, attribute values from
different sources may differ. This may be due to differences in representation, scaling,
or encoding. For instance, a weight attribute may be stored in metric units in one
system and British imperial units in another. For a hotel chain, the price of rooms
in different cities may involve not only different currencies but also different services
(such as free breakfast) and taxes. An attribute in one system may be recorded at
a lower level of abstraction than the “same” attribute in another. For example, the
total sales in one database may refer to one branch of All Electronics, while an attribute
of the same name in another database may refer to the total sales for All Electronics
stores in a given region.

When matching attributes from one database to another during integration, special
attention must be paid to the structure of the data. This is to ensure that any attribute
functional dependencies and referential constraints in the source system match those in
the target system. For example, in one system, a discount may be applied to the order,
whereas in another system it is applied to each individual line item within the order.
If this is not caught before integration, items in the target system may be improperly
discounted.

The semantic heterogeneity and structure of data pose great challenges in data inte-
gration. Careful integration of the data from multiple sources can help reduce and avoid
redundancies and inconsistencies in the resulting data set. This can help improve the
accuracy and speed of the subsequent mining process.

2.4.2 Data Transformation

In data transformation, the data are transformed or consolidated into forms appropriate
for mining. Data transformation can involve the following:

Smoothing, which works to remove noise from the data. Such techniques include
binning, regression, and clustering.

Aggregation, where summary or aggregation operations are applied to the data. For
example, the daily sales data may be aggregated so as to compute monthly and annual
total amounts. This step is typically used in constructing a data cube for analysis of
the data at multiple granularities.

Generalization of the data, where low-level or “primitive” (raw) data are replaced by
higher-level concepts through the use of concept hierarchies. For example, categorical
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attributes, like street, can be generalized to higher-level concepts, like city or country.
Similarly, values for numerical attributes, like age, may be mapped to higher-level
concepts, like youth, middle-aged, and senior.

Normalization, where the attribute data are scaled so as to fall within a small specified
range, such as−1.0 to 1.0, or 0.0 to 1.0.

Attribute construction (or feature construction), where new attributes are constructed
and added from the given set of attributes to help the mining process.

Smoothing is a form of data cleaning and was addressed in Section 2.3.2. Section 2.3.3
on the data cleaning process also discussed ETL tools, where users specify transforma-
tions to correct data inconsistencies. Aggregation and generalization serve as forms of
data reduction and are discussed in Sections 2.5 and 2.6, respectively. In this section, we
therefore discuss normalization and attribute construction.

An attribute is normalized by scaling its values so that they fall within a small specified
range, such as 0.0 to 1.0. Normalization is particularly useful for classification algorithms
involving neural networks, or distance measurements such as nearest-neighbor classifi-
cation and clustering. If using the neural network backpropagation algorithm for clas-
sification mining (Chapter 6), normalizing the input values for each attribute measured
in the training tuples will help speed up the learning phase. For distance-based methods,
normalization helps prevent attributes with initially large ranges (e.g., income) from out-
weighing attributes with initially smaller ranges (e.g., binary attributes). There are many
methods for data normalization. We study three: min-max normalization, z-score nor-
malization, and normalization by decimal scaling.

Min-max normalization performs a linear transformation on the original data. Sup-
pose that minA and maxA are the minimum and maximum values of an attribute, A.
Min-max normalization maps a value, v, of A to v′ in the range [new minA,new maxA]
by computing

v′ =
v−minA

maxA−minA
(new maxA−new minA)+ new minA. (2.11)

Min-max normalization preserves the relationships among the original data values.
It will encounter an “out-of-bounds” error if a future input case for normalization falls
outside of the original data range for A.

Example 2.2 Min-max normalization. Suppose that the minimum and maximum values for the
attribute income are $12,000 and $98,000, respectively. We would like to map income to
the range [0.0,1.0]. By min-max normalization, a value of $73,600 for income is trans-
formed to 73,600−12,000

98,000−12,000 (1.0−0)+ 0 = 0.716.

In z-score normalization (or zero-mean normalization), the values for an attribute,
A, are normalized based on the mean and standard deviation of A. A value, v, of A is
normalized to v′ by computing
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v′ =
v−A

σA
, (2.12)

where A and σA are the mean and standard deviation, respectively, of attribute A. This
method of normalization is useful when the actual minimum and maximum of attribute
A are unknown, or when there are outliers that dominate the min-max normalization.

Example 2.3 z-score normalization Suppose that the mean and standard deviation of the values for
the attribute income are $54,000 and $16,000, respectively. With z-score normalization,
a value of $73,600 for income is transformed to 73,600−54,000

16,000 = 1.225.

Normalization by decimal scaling normalizes by moving the decimal point of values
of attribute A. The number of decimal points moved depends on the maximum absolute
value of A. A value, v, of A is normalized to v′ by computing

v′ =
v

10 j , (2.13)

where j is the smallest integer such that Max(|v′|)< 1.

Example 2.4 Decimal scaling. Suppose that the recorded values of A range from −986 to 917. The
maximum absolute value of A is 986. To normalize by decimal scaling, we therefore divide
each value by 1,000 (i.e., j = 3) so that−986 normalizes to−0.986 and 917 normalizes
to 0.917.

Note that normalization can change the original data quite a bit, especially the lat-
ter two methods shown above. It is also necessary to save the normalization parameters
(such as the mean and standard deviation if using z-score normalization) so that future
data can be normalized in a uniform manner.

In attribute construction,5 new attributes are constructed from the given attributes
and added in order to help improve the accuracy and understanding of structure in
high-dimensional data. For example, we may wish to add the attribute area based on
the attributes height and width. By combining attributes, attribute construction can dis-
cover missing information about the relationships between data attributes that can be
useful for knowledge discovery.

2.5 Data Reduction

Imagine that you have selected data from the AllElectronics data warehouse for analysis.
The data set will likely be huge! Complex data analysis and mining on huge amounts of
data can take a long time, making such analysis impractical or infeasible.

5In the machine learning literature, attribute construction is known as feature construction.
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Data reduction techniques can be applied to obtain a reduced representation of the
data set that is much smaller in volume, yet closely maintains the integrity of the original
data. That is, mining on the reduced data set should be more efficient yet produce the
same (or almost the same) analytical results.

Strategies for data reduction include the following:

1. Data cube aggregation, where aggregation operations are applied to the data in the
construction of a data cube.

2. Attribute subset selection, where irrelevant, weakly relevant, or redundant attributes
or dimensions may be detected and removed.

3. Dimensionality reduction, where encoding mechanisms are used to reduce the data
set size.

4. Numerosity reduction, where the data are replaced or estimated by alternative, smaller
data representations such as parametric models (which need store only the model
parameters instead of the actual data) or nonparametric methods such as clustering,
sampling, and the use of histograms.

5. Discretization and concept hierarchy generation, where raw data values for attributes
are replaced by ranges or higher conceptual levels. Data discretization is a form of
numerosity reduction that is very useful for the automatic generation of concept hier-
archies. Discretization and concept hierarchy generation are powerful tools for data
mining, in that they allow the mining of data at multiple levels of abstraction. We
therefore defer the discussion of discretization and concept hierarchy generation to
Section 2.6, which is devoted entirely to this topic.

Strategies 1 to 4 above are discussed in the remainder of this section. The computational
time spent on data reduction should not outweigh or “erase” the time saved by mining
on a reduced data set size.

2.5.1 Data Cube Aggregation

Imagine that you have collected the data for your analysis. These data consist of the
AllElectronics sales per quarter, for the years 2002 to 2004. You are, however, interested
in the annual sales (total per year), rather than the total per quarter. Thus the data
can be aggregated so that the resulting data summarize the total sales per year instead
of per quarter. This aggregation is illustrated in Figure 2.13. The resulting data set is
smaller in volume, without loss of information necessary for the analysis task.

Data cubes are discussed in detail in Chapter 3 on data warehousing. We briefly
introduce some concepts here. Data cubes store multidimensional aggregated infor-
mation. For example, Figure 2.14 shows a data cube for multidimensional analysis of
sales data with respect to annual sales per item type for each AllElectronics branch.
Each cell holds an aggregate data value, corresponding to the data point in mul-
tidimensional space. (For readability, only some cell values are shown.) Concept
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Figure 2.13 Sales data for a given branch of AllElectronics for the years 2002 to 2004. On the left, the sales
are shown per quarter. On the right, the data are aggregated to provide the annual sales.
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Figure 2.14 A data cube for sales at AllElectronics.

hierarchies may exist for each attribute, allowing the analysis of data at multiple
levels of abstraction. For example, a hierarchy for branch could allow branches to
be grouped into regions, based on their address. Data cubes provide fast access to
precomputed, summarized data, thereby benefiting on-line analytical processing as
well as data mining.

The cube created at the lowest level of abstraction is referred to as the base
cuboid. The base cuboid should correspond to an individual entity of interest, such
as sales or customer. In other words, the lowest level should be usable, or useful
for the analysis. A cube at the highest level of abstraction is the apex cuboid. For
the sales data of Figure 2.14, the apex cuboid would give one total—the total sales
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for all three years, for all item types, and for all branches. Data cubes created for
varying levels of abstraction are often referred to as cuboids, so that a data cube may
instead refer to a lattice of cuboids. Each higher level of abstraction further reduces
the resulting data size. When replying to data mining requests, the smallest available
cuboid relevant to the given task should be used. This issue is also addressed in
Chapter 3.

2.5.2 Attribute Subset Selection

Data sets for analysis may contain hundreds of attributes, many of which may be
irrelevant to the mining task or redundant. For example, if the task is to classify
customers as to whether or not they are likely to purchase a popular new CD at
AllElectronics when notified of a sale, attributes such as the customer’s telephone num-
ber are likely to be irrelevant, unlike attributes such as age or music taste. Although
it may be possible for a domain expert to pick out some of the useful attributes,
this can be a difficult and time-consuming task, especially when the behavior of the
data is not well known (hence, a reason behind its analysis!). Leaving out relevant
attributes or keeping irrelevant attributes may be detrimental, causing confusion for
the mining algorithm employed. This can result in discovered patterns of poor qual-
ity. In addition, the added volume of irrelevant or redundant attributes can slow
down the mining process.

Attribute subset selection6 reduces the data set size by removing irrelevant or
redundant attributes (or dimensions). The goal of attribute subset selection is to
find a minimum set of attributes such that the resulting probability distribution of
the data classes is as close as possible to the original distribution obtained using all
attributes. Mining on a reduced set of attributes has an additional benefit. It reduces
the number of attributes appearing in the discovered patterns, helping to make the
patterns easier to understand.

“How can we find a ‘good’ subset of the original attributes?” For n attributes, there are
2n possible subsets. An exhaustive search for the optimal subset of attributes can be pro-
hibitively expensive, especially as n and the number of data classes increase. Therefore,
heuristic methods that explore a reduced search space are commonly used for attribute
subset selection. These methods are typically greedy in that, while searching through
attribute space, they always make what looks to be the best choice at the time. Their
strategy is to make a locally optimal choice in the hope that this will lead to a globally
optimal solution. Such greedy methods are effective in practice and may come close to
estimating an optimal solution.

The “best” (and “worst”) attributes are typically determined using tests of statistical
significance, which assume that the attributes are independent of one another. Many

6In machine learning, attribute subset selection is known as feature subset selection.
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Figure 2.15 Greedy (heuristic) methods for attribute subset selection.

other attribute evaluation measures can be used, such as the information gain measure
used in building decision trees for classification.7

Basic heuristic methods of attribute subset selection include the following techniques,
some of which are illustrated in Figure 2.15.

1. Stepwise forward selection: The procedure starts with an empty set of attributes as
the reduced set. The best of the original attributes is determined and added to the
reduced set. At each subsequent iteration or step, the best of the remaining original
attributes is added to the set.

2. Stepwise backward elimination: The procedure starts with the full set of attributes.
At each step, it removes the worst attribute remaining in the set.

3. Combination of forward selection and backward elimination: The stepwise forward
selection and backward elimination methods can be combined so that, at each step,
the procedure selects the best attribute and removes the worst from among the remain-
ing attributes.

4. Decision tree induction: Decision tree algorithms, such as ID3, C4.5, and CART, were
originally intended for classification. Decision tree induction constructs a flowchart-
like structure where each internal (nonleaf) node denotes a test on an attribute, each
branch corresponds to an outcome of the test, and each external (leaf) node denotes a

7The information gain measure is described in detail in Chapter 6. It is briefly described in Section 2.6.1
with respect to attribute discretization.
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class prediction. At each node, the algorithm chooses the “best” attribute to partition
the data into individual classes.

When decision tree induction is used for attribute subset selection, a tree is
constructedfromthegivendata.Allattributes thatdonotappear inthetreeareassumed
to be irrelevant. The set of attributes appearing in the tree form the reduced subset of
attributes.

The stopping criteria for the methods may vary. The procedure may employ a thresh-
old on the measure used to determine when to stop the attribute selection process.

2.5.3 Dimensionality Reduction

In dimensionality reduction, data encoding or transformations are applied so as to obtain
a reduced or “compressed” representation of the original data. If the original data can
be reconstructed from the compressed data without any loss of information, the data
reduction is called lossless. If, instead, we can reconstruct only an approximation of
the original data, then the data reduction is called lossy. There are several well-tuned
algorithms for string compression. Although they are typically lossless, they allow only
limited manipulation of the data. In this section, we instead focus on two popular and
effective methods of lossy dimensionality reduction: wavelet transforms and principal
components analysis.

Wavelet Transforms
The discrete wavelet transform (DWT) is a linear signal processing technique that, when
applied to a data vector X, transforms it to a numerically different vector, X′, of wavelet
coefficients. The two vectors are of the same length. When applying this technique to
data reduction, we consider each tuple as an n-dimensional data vector, that is, X =
(x1,x2, . . . ,xn), depicting n measurements made on the tuple from n database attributes.8

“How can this technique be useful for data reduction if the wavelet transformed data are
of the same length as the original data?” The usefulness lies in the fact that the wavelet
transformed data can be truncated. A compressed approximation of the data can be
retained by storing only a small fraction of the strongest of the wavelet coefficients.
For example, all wavelet coefficients larger than some user-specified threshold can be
retained. All other coefficients are set to 0. The resulting data representation is there-
fore very sparse, so that operations that can take advantage of data sparsity are compu-
tationally very fast if performed in wavelet space. The technique also works to remove
noise without smoothing out the main features of the data, making it effective for data
cleaning as well. Given a set of coefficients, an approximation of the original data can be
constructed by applying the inverse of the DWT used.

8In our notation, any variable representing a vector is shown in bold italic font; measurements depicting
the vector are shown in italic font.
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Figure 2.16 Examples of wavelet families. The number next to a wavelet name is the number of vanishing
moments of the wavelet. This is a set of mathematical relationships that the coefficients must
satisfy and is related to the number of coefficients.

The DWT is closely related to the discrete Fourier transform (DFT), a signal processing
technique involving sines and cosines. In general, however, the DWT achieves better lossy
compression. That is, if the same number of coefficients is retained for a DWT and a DFT
of a given data vector, the DWT version will provide a more accurate approximation of
the original data. Hence, for an equivalent approximation, the DWT requires less space
than the DFT. Unlike the DFT, wavelets are quite localized in space, contributing to the
conservation of local detail.

There is only one DFT, yet there are several families of DWTs. Figure 2.16 shows
some wavelet families. Popular wavelet transforms include the Haar-2, Daubechies-4,
and Daubechies-6 transforms. The general procedure for applying a discrete wavelet
transform uses a hierarchical pyramid algorithm that halves the data at each iteration,
resulting in fast computational speed. The method is as follows:

1. The length, L, of the input data vector must be an integer power of 2. This condition
can be met by padding the data vector with zeros as necessary (L≥ n).

2. Each transform involves applying two functions. The first applies some data smooth-
ing, such as a sum or weighted average. The second performs a weighted difference,
which acts to bring out the detailed features of the data.

3. The two functions are applied to pairs of data points in X, that is, to all pairs of
measurements (x2i,x2i+1). This results in two sets of data of length L/2. In general,
these represent a smoothed or low-frequency version of the input data and the high-
frequency content of it, respectively.

4. The two functions are recursively applied to the sets of data obtained in the previous
loop, until the resulting data sets obtained are of length 2.

5. Selected values from the data sets obtained in the above iterations are designated the
wavelet coefficients of the transformed data.
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Equivalently, a matrix multiplication can be applied to the input data in order to
obtain the wavelet coefficients, where the matrix used depends on the given DWT. The
matrix must be orthonormal, meaning that the columns are unit vectors and are
mutually orthogonal, so that the matrix inverse is just its transpose. Although we do
not have room to discuss it here, this property allows the reconstruction of the data from
the smooth and smooth-difference data sets. By factoring the matrix used into a product
of a few sparse matrices, the resulting “fast DWT” algorithm has a complexity of O(n)
for an input vector of length n.

Wavelet transforms can be applied to multidimensional data, such as a data cube.
This is done by first applying the transform to the first dimension, then to the second,
and so on. The computational complexity involved is linear with respect to the number
of cells in the cube. Wavelet transforms give good results on sparse or skewed data and
on data with ordered attributes. Lossy compression by wavelets is reportedly better than
JPEG compression, the current commercial standard. Wavelet transforms have many
real-world applications, including the compression of fingerprint images, computer
vision, analysis of time-series data, and data cleaning.

Principal Components Analysis
In this subsection we provide an intuitive introduction to principal components analysis
as a method of dimesionality reduction. A detailed theoretical explanation is beyond the
scope of this book.

Suppose that the data to be reduced consist of tuples or data vectors described by
n attributes or dimensions. Principal components analysis, or PCA (also called the
Karhunen-Loeve, or K-L, method), searches for k n-dimensional orthogonal vectors
that can best be used to represent the data, where k ≤ n. The original data are thus
projected onto a much smaller space, resulting in dimensionality reduction. Unlike
attribute subset selection, which reduces the attribute set size by retaining a subset
of the initial set of attributes, PCA “combines” the essence of attributes by creating
an alternative, smaller set of variables. The initial data can then be projected onto
this smaller set. PCA often reveals relationships that were not previously suspected
and thereby allows interpretations that would not ordinarily result.

The basic procedure is as follows:

1. The input data are normalized, so that each attribute falls within the same range. This
step helps ensure that attributes with large domains will not dominate attributes with
smaller domains.

2. PCA computes k orthonormal vectors that provide a basis for the normalized input
data. These are unit vectors that each point in a direction perpendicular to the others.
These vectors are referred to as the principal components. The input data are a linear
combination of the principal components.

3. The principal components are sorted in order of decreasing “significance” or
strength. The principal components essentially serve as a new set of axes for the
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Figure 2.17 Principal components analysis. Y1 and Y2 are the first two principal components for the
given data.

data, providing important information about variance. That is, the sorted axes are
such that the first axis shows the most variance among the data, the second axis
shows the next highest variance, and so on. For example, Figure 2.17 shows the
first two principal components, Y1 and Y2, for the given set of data originally
mapped to the axes X1 and X2. This information helps identify groups or patterns
within the data.

4. Because the components are sorted according to decreasing order of “significance,”
the size of the data can be reduced by eliminating the weaker components, that
is, those with low variance. Using the strongest principal components, it should
be possible to reconstruct a good approximation of the original data.

PCA is computationally inexpensive, can be applied to ordered and unordered
attributes, and can handle sparse data and skewed data. Multidimensional data
of more than two dimensions can be handled by reducing the problem to two
dimensions. Principal components may be used as inputs to multiple regression
and cluster analysis. In comparison with wavelet transforms, PCA tends to be better
at handling sparse data, whereas wavelet transforms are more suitable for data of
high dimensionality.

2.5.4 Numerosity Reduction

“Can we reduce the data volume by choosing alternative, ‘smaller’ forms of data represen-
tation?” Techniques of numerosity reduction can indeed be applied for this purpose.
These techniques may be parametric or nonparametric. For parametric methods, a
model is used to estimate the data, so that typically only the data parameters need to
be stored, instead of the actual data. (Outliers may also be stored.) Log-linear models,
which estimate discrete multidimensional probability distributions, are an example.
Nonparametric methods for storing reduced representations of the data include his-
tograms, clustering, and sampling.

Let’s look at each of the numerosity reduction techniques mentioned above.
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Regression and Log-Linear Models
Regression and log-linear models can be used to approximate the given data. In (simple)
linear regression, the data are modeled to fit a straight line. For example, a random vari-
able, y (called a response variable), can be modeled as a linear function of another random
variable, x (called a predictor variable), with the equation

y = wx + b, (2.14)

where the variance of y is assumed to be constant. In the context of data mining, x and y
are numerical database attributes. The coefficients, w and b (called regression coefficients),
specify the slope of the line and the Y -intercept, respectively. These coefficients can be
solved for by the method of least squares, which minimizes the error between the actual
line separating the data and the estimate of the line. Multiple linear regression is an
extension of (simple) linear regression, which allows a response variable, y, to be modeled
as a linear function of two or more predictor variables.

Log-linear models approximate discrete multidimensional probability distribu-
tions. Given a set of tuples in n dimensions (e.g., described by n attributes), we
can consider each tuple as a point in an n-dimensional space. Log-linear models
can be used to estimate the probability of each point in a multidimensional space
for a set of discretized attributes, based on a smaller subset of dimensional combi-
nations. This allows a higher-dimensional data space to be constructed from lower-
dimensional spaces. Log-linear models are therefore also useful for dimensionality
reduction (since the lower-dimensional points together typically occupy less space
than the original data points) and data smoothing (since aggregate estimates in the
lower-dimensional space are less subject to sampling variations than the estimates in
the higher-dimensional space).

Regression and log-linear models can both be used on sparse data, although their
application may be limited. While both methods can handle skewed data, regression does
exceptionally well. Regression can be computationally intensive when applied to high-
dimensional data, whereas log-linear models show good scalability for up to 10 or so
dimensions. Regression and log-linear models are further discussed in Section 6.11.

Histograms
Histograms use binning to approximate data distributions and are a popular form
of data reduction. Histograms were introduced in Section 2.2.3. A histogram for an
attribute, A, partitions the data distribution of A into disjoint subsets, or buckets. If
each bucket represents only a single attribute-value/frequency pair, the buckets are
called singleton buckets. Often, buckets instead represent continuous ranges for the
given attribute.

Example 2.5 Histograms. The following data are a list of prices of commonly sold items at AllElec-
tronics (rounded to the nearest dollar). The numbers have been sorted: 1, 1, 5, 5, 5, 5, 5,
8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 20,
20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30, 30, 30.
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Figure 2.18 A histogram for price using singleton buckets—each bucket represents one price-value/
frequency pair.

Figure 2.18 shows a histogram for the data using singleton buckets. To further reduce
the data, it is common to have each bucket denote a continuous range of values for the
given attribute. In Figure 2.19, each bucket represents a different $10 range for price.

“How are the buckets determined and the attribute values partitioned?” There are several
partitioning rules, including the following:

Equal-width: In an equal-width histogram, the width of each bucket range is uniform
(such as the width of $10 for the buckets in Figure 2.19).

Equal-frequency (or equidepth): In an equal-frequency histogram, the buckets are
created so that, roughly, the frequency of each bucket is constant (that is, each bucket
contains roughly the same number of contiguous data samples).

V-Optimal: If we consider all of the possible histograms for a given number of buckets,
the V-Optimal histogram is the one with the least variance. Histogram variance is a
weighted sum of the original values that each bucket represents, where bucket weight
is equal to the number of values in the bucket.

MaxDiff: In a MaxDiff histogram, we consider the difference between each pair of
adjacent values. A bucket boundary is established between each pair for pairs having
the β−1 largest differences, where β is the user-specified number of buckets.
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Figure 2.19 An equal-width histogram for price, where values are aggregated so that each bucket has a
uniform width of $10.

V-Optimal and MaxDiff histograms tend to be the most accurate and practical. His-
tograms are highly effective at approximating both sparse and dense data, as well as highly
skewed and uniform data. The histograms described above for single attributes can be
extended for multiple attributes. Multidimensional histograms can capture dependencies
between attributes. Such histograms have been found effective in approximating data
with up to five attributes. More studies are needed regarding the effectiveness of multidi-
mensional histograms for very high dimensions. Singleton buckets are useful for storing
outliers with high frequency.

Clustering
Clustering techniques consider data tuples as objects. They partition the objects into
groups or clusters, so that objects within a cluster are “similar” to one another and
“dissimilar” to objects in other clusters. Similarity is commonly defined in terms of how
“close” the objects are in space, based on a distance function. The “quality” of a cluster
may be represented by its diameter, the maximum distance between any two objects in
the cluster. Centroid distance is an alternative measure of cluster quality and is defined as
the average distance of each cluster object from the cluster centroid (denoting the “aver-
age object,” or average point in space for the cluster). Figure 2.12 of Section 2.3.2 shows a
2-D plot of customer data with respect to customer locations in a city, where the centroid
of each cluster is shown with a “+”. Three data clusters are visible.

In data reduction, the cluster representations of the data are used to replace the
actual data. The effectiveness of this technique depends on the nature of the data. It
is much more effective for data that can be organized into distinct clusters than for
smeared data.
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Figure 2.20 The root of a B+-tree for a given set of data.

In database systems, multidimensional index trees are primarily used for provid-
ing fast data access. They can also be used for hierarchical data reduction, providing a
multiresolution clustering of the data. This can be used to provide approximate answers
to queries. An index tree recursively partitions the multidimensional space for a given
set of data objects, with the root node representing the entire space. Such trees are typi-
cally balanced, consisting of internal and leaf nodes. Each parent node contains keys and
pointers to child nodes that, collectively, represent the space represented by the parent
node. Each leaf node contains pointers to the data tuples they represent (or to the actual
tuples).

An index tree can therefore store aggregate and detail data at varying levels of reso-
lution or abstraction. It provides a hierarchy of clusterings of the data set, where each
cluster has a label that holds for the data contained in the cluster. If we consider each
child of a parent node as a bucket, then an index tree can be considered as a hierarchi-
cal histogram. For example, consider the root of a B+-tree as shown in Figure 2.20, with
pointers to the data keys 986, 3396, 5411, 8392, and 9544. Suppose that the tree contains
10,000 tuples with keys ranging from 1 to 9999. The data in the tree can be approxi-
mated by an equal-frequency histogram of six buckets for the key ranges 1 to 985, 986 to
3395, 3396 to 5410, 5411 to 8391, 8392 to 9543, and 9544 to 9999. Each bucket contains
roughly 10,000/6 items. Similarly, each bucket is subdivided into smaller buckets, allow-
ing for aggregate data at a finer-detailed level. The use of multidimensional index trees as
a form of data reduction relies on an ordering of the attribute values in each dimension.
Two-dimensional or multidimensional index trees include R-trees, quad-trees, and their
variations. They are well suited for handling both sparse and skewed data.

There are many measures for defining clusters and cluster quality. Clustering methods
are further described in Chapter 7.

Sampling
Sampling can be used as a data reduction technique because it allows a large data set to
be represented by a much smaller random sample (or subset) of the data. Suppose that
a large data set, D, contains N tuples. Let’s look at the most common ways that we could
sample D for data reduction, as illustrated in Figure 2.21.
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Figure 2.21 Sampling can be used for data reduction.
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Simple random sample without replacement (SRSWOR) of size s: This is created by
drawing s of the N tuples from D (s< N), where the probability of drawing any tuple
in D is 1/N, that is, all tuples are equally likely to be sampled.

Simple random sample with replacement (SRSWR) of size s: This is similar to
SRSWOR, except that each time a tuple is drawn from D, it is recorded and then
replaced. That is, after a tuple is drawn, it is placed back in D so that it may be drawn
again.

Cluster sample: If the tuples in D are grouped into M mutually disjoint “clusters,”
then an SRS of s clusters can be obtained, where s < M. For example, tuples in a
database are usually retrieved a page at a time, so that each page can be considered
a cluster. A reduced data representation can be obtained by applying, say, SRSWOR
to the pages, resulting in a cluster sample of the tuples. Other clustering criteria con-
veying rich semantics can also be explored. For example, in a spatial database, we
may choose to define clusters geographically based on how closely different areas are
located.

Stratified sample: If D is divided into mutually disjoint parts called strata, a stratified
sample of D is generated by obtaining an SRS at each stratum. This helps ensure a
representative sample, especially when the data are skewed. For example, a stratified
sample may be obtained from customer data, where a stratum is created for each cus-
tomer age group. In this way, the age group having the smallest number of customers
will be sure to be represented.

An advantage of sampling for data reduction is that the cost of obtaining a sample
is proportional to the size of the sample, s, as opposed to N, the data set size. Hence,
sampling complexity is potentially sublinear to the size of the data. Other data reduc-
tion techniques can require at least one complete pass through D. For a fixed sample
size, sampling complexity increases only linearly as the number of data dimensions, n,
increases, whereas techniques using histograms, for example, increase exponentially in n.

When applied to data reduction, sampling is most commonly used to estimate the
answer to an aggregate query. It is possible (using the central limit theorem) to determine
a sufficient sample size for estimating a given function within a specified degree of error.
This sample size, s, may be extremely small in comparison to N. Sampling is a natural
choice for the progressive refinement of a reduced data set. Such a set can be further
refined by simply increasing the sample size.

2.6 Data Discretization and Concept Hierarchy Generation

Data discretization techniques can be used to reduce the number of values for a given
continuous attribute by dividing the range of the attribute into intervals. Interval labels
can then be used to replace actual data values. Replacing numerous values of a continuous
attribute by a small number of interval labels thereby reduces and simplifies the original
data.This leadstoaconcise,easy-to-use,knowledge-levelrepresentationofminingresults.
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Discretization techniques can be categorized based on how the discretization is
performed, such as whether it uses class information or which direction it proceeds
(i.e., top-down vs. bottom-up). If the discretization process uses class information,
then we say it is supervised discretization. Otherwise, it is unsupervised. If the process
starts by first finding one or a few points (called split points or cut points) to split the
entire attribute range, and then repeats this recursively on the resulting intervals, it is
called top-down discretization or splitting. This contrasts with bottom-up discretization
or merging, which starts by considering all of the continuous values as potential
split-points, removes some by merging neighborhood values to form intervals, and
then recursively applies this process to the resulting intervals. Discretization can be
performed recursively on an attribute to provide a hierarchical or multiresolution
partitioning of the attribute values, known as a concept hierarchy. Concept hierarchies
are useful for mining at multiple levels of abstraction.

A concept hierarchy for a given numerical attribute defines a discretization of the
attribute. Concept hierarchies can be used to reduce the data by collecting and replac-
ing low-level concepts (such as numerical values for the attribute age) with higher-level
concepts (such as youth, middle-aged, or senior). Although detail is lost by such data gen-
eralization, the generalized data may be more meaningful and easier to interpret. This
contributes to a consistent representation of data mining results among multiple mining
tasks, which is a common requirement. In addition, mining on a reduced data set requires
fewer input/output operations and is more efficient than mining on a larger, ungeneral-
ized data set. Because of these benefits, discretization techniques and concept hierarchies
are typically applied before data mining as a preprocessing step, rather than during min-
ing. An example of a concept hierarchy for the attribute price is given in Figure 2.22. More
than one concept hierarchy can be defined for the same attribute in order to accommo-
date the needs of various users.

Manual definition of concept hierarchies can be a tedious and time-consuming
task for a user or a domain expert. Fortunately, several discretization methods can
be used to automatically generate or dynamically refine concept hierarchies for
numerical attributes. Furthermore, many hierarchies for categorical attributes are
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Figure 2.22 A concept hierarchy for the attribute price, where an interval ($X . . .$Y ] denotes the range
from $X (exclusive) to $Y (inclusive).
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implicit within the database schema and can be automatically defined at the schema
definition level.

Let’s look at the generation of concept hierarchies for numerical and categorical data.

2.6.1 Discretization and Concept Hierarchy Generation for
Numerical Data

It is difficult and laborious to specify concept hierarchies for numerical attributes because
of the wide diversity of possible data ranges and the frequent updates of data values. Such
manual specification can also be quite arbitrary.

Concept hierarchies for numerical attributes can be constructed automatically based
on data discretization. We examine the following methods: binning, histogram analysis,
entropy-based discretization, χ2-merging, cluster analysis, and discretization by intuitive
partitioning. In general, each method assumes that the values to be discretized are sorted
in ascending order.

Binning
Binning is a top-down splitting technique based on a specified number of bins.
Section 2.3.2 discussed binning methods for data smoothing. These methods are
also used as discretization methods for numerosity reduction and concept hierarchy
generation. For example, attribute values can be discretized by applying equal-width
or equal-frequency binning, and then replacing each bin value by the bin mean or
median, as in smoothing by bin means or smoothing by bin medians, respectively. These
techniques can be applied recursively to the resulting partitions in order to gener-
ate concept hierarchies. Binning does not use class information and is therefore an
unsupervised discretization technique. It is sensitive to the user-specified number of
bins, as well as the presence of outliers.

Histogram Analysis
Like binning, histogram analysis is an unsupervised discretization technique because
it does not use class information. Histograms partition the values for an attribute, A,
into disjoint ranges called buckets. Histograms were introduced in Section 2.2.3. Parti-
tioning rules for defining histograms were described in Section 2.5.4. In an equal-width
histogram, for example, the values are partitioned into equal-sized partitions or ranges
(such as in Figure 2.19 for price, where each bucket has a width of $10). With an equal-
frequency histogram, the values are partitioned so that, ideally, each partition contains
the same number of data tuples. The histogram analysis algorithm can be applied recur-
sively to each partition in order to automatically generate a multilevel concept hierarchy,
with the procedure terminating once a prespecified number of concept levels has been
reached. A minimum interval size can also be used per level to control the recursive pro-
cedure. This specifies the minimum width of a partition, or the minimum number of
values for each partition at each level. Histograms can also be partitioned based on clus-
ter analysis of the data distribution, as described below.
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Entropy-Based Discretization
Entropy is one of the most commonly used discretization measures. It was first intro-
duced by Claude Shannon in pioneering work on information theory and the concept
of information gain. Entropy-based discretization is a supervised, top-down splitting
technique. It explores class distribution information in its calculation and determination
of split-points (data values for partitioning an attribute range). To discretize a numer-
ical attribute, A, the method selects the value of A that has the minimum entropy as a
split-point, and recursively partitions the resulting intervals to arrive at a hierarchical
discretization. Such discretization forms a concept hierarchy for A.

Let D consist of data tuples defined by a set of attributes and a class-label attribute.
The class-label attribute provides the class information per tuple. The basic method for
entropy-based discretization of an attribute A within the set is as follows:

1. Each value of A can be considered as a potential interval boundary or split-point
(denoted split point) to partition the range of A. That is, a split-point for A can par-
tition the tuples in D into two subsets satisfying the conditions A ≤ split point and
A> split point, respectively, thereby creating a binary discretization.

2. Entropy-based discretization, as mentioned above, uses information regarding the
class label of tuples. To explain the intuition behind entropy-based discretization,
we must take a glimpse at classification. Suppose we want to classify the tuples in
D by partitioning on attribute A and some split-point. Ideally, we would like this
partitioning to result in an exact classification of the tuples. For example, if we had
two classes, we would hope that all of the tuples of, say, class C1 will fall into one
partition, and all of the tuples of class C2 will fall into the other partition. However,
this is unlikely. For example, the first partition may contain many tuples of C1, but
also some of C2. How much more information would we still need for a perfect
classification, after this partitioning? This amount is called the expected information
requirement for classifying a tuple in D based on partitioning by A. It is given by

InfoA(D) =
|D1|
|D|

Entropy(D1)+
|D2|
|D|

Entropy(D2), (2.15)

where D1 and D2 correspond to the tuples in D satisfying the conditions A ≤
split point and A> split point, respectively; |D| is the number of tuples in D, and so
on. The entropy function for a given set is calculated based on the class distribution
of the tuples in the set. For example, given m classes, C1,C2, . . . ,Cm, the entropy of
D1 is

Entropy(D1) =−
m

∑
i=1

pi log2(pi), (2.16)

where pi is the probability of class Ci in D1, determined by dividing the number of
tuples of class Ci in D1 by |D1|, the total number of tuples in D1. Therefore, when
selecting a split-point for attribute A, we want to pick the attribute value that gives the
minimum expected information requirement (i.e., min(InfoA(D))). This would result
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in the minimum amount of expected information (still) required to perfectly classify
the tuples after partitioning by A≤ split point and A> split point. This is equivalent
to the attribute-value pair with the maximum information gain (the further details
of which are given in Chapter 6 on classification.) Note that the value of Entropy(D2)
can be computed similarly as in Equation (2.16).

“But our task is discretization, not classification!”, you may exclaim. This is true. We
use the split-point to partition the range of A into two intervals, corresponding to
A≤ split point and A> split point.

3. The process of determining a split-point is recursively applied to each partition
obtained, until some stopping criterion is met, such as when the minimum infor-
mation requirement on all candidate split-points is less than a small threshold, ε, or
when the number of intervals is greater than a threshold, max interval.

Entropy-based discretization can reduce data size. Unlike the other methods mentioned
here so far, entropy-based discretization uses class information. This makes it more likely
that the interval boundaries (split-points) are defined to occur in places that may help
improve classification accuracy. The entropy and information gain measures described
here are also used for decision tree induction. These measures are revisited in greater
detail in Section 6.3.2.

Interval Merging by χ2 Analysis
ChiMerge is a χ2-based discretization method. The discretization methods that we have
studied up to this point have all employed a top-down, splitting strategy. This contrasts
with ChiMerge, which employs a bottom-up approach by finding the best neighbor-
ing intervals and then merging these to form larger intervals, recursively. The method is
supervised in that it uses class information. The basic notion is that for accurate
discretization, the relative class frequencies should be fairly consistent within an interval.
Therefore, if two adjacent intervals have a very similar distribution of classes, then the
intervals can be merged. Otherwise, they should remain separate.

ChiMerge proceeds as follows. Initially, each distinct value of a numerical attribute A
is considered to be one interval. χ2 tests are performed for every pair of adjacent intervals.
Adjacent intervals with the least χ2 values are merged together, because low χ2 values for
a pair indicate similar class distributions. This merging process proceeds recursively until
a predefined stopping criterion is met.

The χ2 statistic was introduced in Section 2.4.1 on data integration, where we
explained its use to detect a correlation relationship between two categorical attributes
(Equation (2.9)). Because ChiMerge treats intervals as discrete categories, Equation (2.9)
can be applied. The χ2 statistic tests the hypothesis that two adjacent intervals for a given
attribute are independent of the class. Following the method in Example 2.1, we can con-
struct a contingency table for our data. The contingency table has two columns (repre-
senting the two adjacent intervals) and m rows, where m is the number of distinct classes.
Applying Equation (2.9) here, the cell value oi j is the count of tuples in the ith interval
and jth class. Similarly, the expected frequency of oi j is ei j = (number of tuples in interval
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i)× (number of tuples in class j)/N, where N is the total number of data tuples. Low χ2

values for an interval pair indicate that the intervals are independent of the class and can,
therefore, be merged.

The stopping criterion is typically determined by three conditions. First, merging
stops when χ2 values of all pairs of adjacent intervals exceed some threshold, which is
determined by a specified significance level. A too (or very) high value of significance
level for the χ2 test may cause overdiscretization, whereas a too (or very) low value may
lead to underdiscretization. Typically, the significance level is set between 0.10 and 0.01.
Second, the number of intervals cannot be over a prespecified max-interval, such as 10 to
15. Finally, recall that the premise behind ChiMerge is that the relative class frequencies
should be fairly consistent within an interval. In practice, some inconsistency is allowed,
although this should be no more than a prespecified threshold, such as 3%, which may
be estimated from the training data. This last condition can be used to remove irrelevant
attributes from the data set.

Cluster Analysis
Cluster analysis is a popular data discretization method. A clustering algorithm can be
applied to discretize a numerical attribute, A, by partitioning the values of A into clusters
or groups. Clustering takes the distribution of A into consideration, as well as the close-
ness of data points, and therefore is able to produce high-quality discretization results.
Clustering can be used to generate a concept hierarchy for A by following either a top-
down splitting strategy or a bottom-up merging strategy, where each cluster forms a
node of the concept hierarchy. In the former, each initial cluster or partition may be fur-
ther decomposed into several subclusters, forming a lower level of the hierarchy. In the
latter, clusters are formed by repeatedly grouping neighboring clusters in order to form
higher-level concepts. Clustering methods for data mining are studied in Chapter 7.

Discretization by Intuitive Partitioning
Although the above discretization methods are useful in the generation of numerical
hierarchies, many users would like to see numerical ranges partitioned into relatively
uniform, easy-to-read intervals that appear intuitive or “natural.” For example, annual
salaries broken into ranges like ($50,000, $60,000] are often more desirable than ranges
like ($51,263.98, $60,872.34], obtained by, say, some sophisticated clustering analysis.

The 3-4-5 rule can be used to segment numerical data into relatively uniform, natural-
seeming intervals. In general, the rule partitions a given range of data into 3, 4, or 5
relatively equal-width intervals, recursively and level by level, based on the value range
at the most significant digit. We will illustrate the use of the rule with an example further
below. The rule is as follows:

If an interval covers 3, 6, 7, or 9 distinct values at the most significant digit, then
partition the range into 3 intervals (3 equal-width intervals for 3, 6, and 9; and 3
intervals in the grouping of 2-3-2 for 7).
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If it covers 2, 4, or 8 distinct values at the most significant digit, then partition the
range into 4 equal-width intervals.

If it covers 1, 5, or 10 distinct values at the most significant digit, then partition the
range into 5 equal-width intervals.

The rule can be recursively applied to each interval, creating a concept hierarchy for
the given numerical attribute. Real-world data often contain extremely large posi-
tive and/or negative outlier values, which could distort any top-down discretization
method based on minimum and maximum data values. For example, the assets of
a few people could be several orders of magnitude higher than those of others in
the same data set. Discretization based on the maximal asset values may lead to a
highly biased hierarchy. Thus the top-level discretization can be performed based
on the range of data values representing the majority (e.g., 5th percentile to 95th
percentile) of the given data. The extremely high or low values beyond the top-level
discretization will form distinct interval(s) that can be handled separately, but in a
similar manner.

The following example illustrates the use of the 3-4-5 rule for the automatic construc-
tion of a numerical hierarchy.

Example 2.6 Numeric concept hierarchy generation by intuitive partitioning. Suppose that prof-
its at different branches of AllElectronics for the year 2004 cover a wide range, from
−$351,976.00 to $4,700,896.50. A user desires the automatic generation of a concept
hierarchy for profit. For improved readability, we use the notation (l...r] to represent
the interval (l,r]. For example, (−$1,000,000...$0] denotes the range from −$1,000,000
(exclusive) to $0 (inclusive).

Suppose that the data within the 5th percentile and 95th percentile are between
−$159,876 and $1,838,761. The results of applying the 3-4-5 rule are shown in
Figure 2.23.

1. Based on the above information, the minimum and maximum values are MIN =
−$351,976.00, and MAX = $4,700,896.50. The low (5th percentile) and high (95th
percentile) values to be considered for the top or first level of discretization are LOW =
−$159,876, and HIGH = $1,838,761.

2. Given LOW and HIGH, the most significant digit (msd) is at the million dollar digit
position (i.e., msd = 1,000,000). Rounding LOW down to the million dollar digit,
we get LOW ′ =−$1,000,000; rounding HIGH up to the million dollar digit, we get
HIGH ′ = +$2,000,000.

3. Since this interval ranges over three distinct values at the most significant digit, that
is, (2,000,000−(−1,000,000))/1,000,000 = 3, the segment is partitioned into three
equal-width subsegments according to the 3-4-5 rule: (−$1,000,000 . . .$0],
($0 . . .$1,000,000], and ($1,000,000 . . .$2,000,000]. This represents the top tier of
the hierarchy.
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Figure 2.23 Automatic generation of a concept hierarchy for profit based on the 3-4-5 rule.

4. We now examine the MIN and MAX values to see how they “fit” into the first-level
partitions. Since the first interval (−$1,000,000 . . .$0] covers the MIN value, that is,
LOW ′ < MIN, we can adjust the left boundary of this interval to make the interval
smaller. The most significant digit of MIN is the hundred thousand digit position.
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Rounding MIN down to this position, we get MIN′ = −$400,000. Therefore, the
first interval is redefined as (−$400,000 . . .0].
Since the last interval, ($1,000,000 . . .$2,000,000], does not cover the MAX value,
that is, MAX > HIGH ′, we need to create a new interval to cover it. Rounding
up MAX at its most significant digit position, the new interval is ($2,000,000
. . .$5,000,000]. Hence, the topmost level of the hierarchy contains four par-
titions, (−$400,000 . . .$0], ($0 . . .$1,000,000], ($1,000,000 . . .$2,000,000], and
($2,000,000 . . .$5,000,000].

5. Recursively, each interval can be further partitioned according to the 3-4-5 rule to
form the next lower level of the hierarchy:

The first interval, (−$400,000. . . $0], is partitioned into 4 subintervals:
(−$400,000. . .−$300,000], (−$300,000. . .−$200,000],(−$200,000. . .−$100,000],
and (−$100,000. . . $0].

The second interval, ($0. . . $1,000,000], is partitioned into 5 subintervals: ($0 . . .
$200,000],($200,000. . . $400,000],($400,000. . . $600,000],($600,000. . . $800,000],
and ($800,000. . . $1,000,000].

The third interval, ($1,000,000. . . $2,000,000], is partitioned into 5 subintervals:
($1,000,000. . . $1,200,000],($1,200,000. . . $1,400,000],($1,400,000. . . $1,600,000],
($1,600,000 . . . $1,800,000], and ($1,800,000 . . . $2,000,000].

The last interval, ($2,000,000. . . $5,000,000], is partitioned into 3 subintervals:
($2,000,000. . . $3,000,000], ($3,000,000. . . $4,000,000], and ($4,000,000
. . . $5,000,000].

Similarly, the 3-4-5 rule can be carried on iteratively at deeper levels, as necessary.

2.6.2 Concept Hierarchy Generation for Categorical Data

Categorical data are discrete data. Categorical attributes have a finite (but possibly large)
number of distinct values, with no ordering among the values. Examples include geo-
graphic location, job category, and item type. There are several methods for the generation
of concept hierarchies for categorical data.

Specification of a partial ordering of attributes explicitly at the schema level by users or
experts: Concept hierarchies for categorical attributes or dimensions typically involve
a group of attributes. A user or expert can easily define a concept hierarchy by spec-
ifying a partial or total ordering of the attributes at the schema level. For example,
a relational database or a dimension location of a data warehouse may contain the
following group of attributes: street, city, province or state, and country. A hierarchy
can be defined by specifying the total ordering among these attributes at the schema
level, such as street < city < province or state < country.

Specification of a portion of a hierarchy by explicit data grouping: This is essentially
the manual definition of a portion of a concept hierarchy. In a large database, it
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is unrealistic to define an entire concept hierarchy by explicit value enumeration.
On the contrary, we can easily specify explicit groupings for a small portion of
intermediate-level data. For example, after specifying that province and country
form a hierarchy at the schema level, a user could define some intermediate levels
manually, such as “{Alberta, Saskatchewan, Manitoba} ⊂ prairies Canada” and
“{British Columbia, prairies Canada} ⊂ Western Canada”.

Specification of a set of attributes, but not of their partial ordering: A user may spec-
ify a set of attributes forming a concept hierarchy, but omit to explicitly state their
partial ordering. The system can then try to automatically generate the attribute
ordering so as to construct a meaningful concept hierarchy. “Without knowledge
of data semantics, how can a hierarchical ordering for an arbitrary set of categorical
attributes be found?” Consider the following observation that since higher-level con-
cepts generally cover several subordinate lower-level concepts, an attribute defining
a high concept level (e.g., country) will usually contain a smaller number of dis-
tinct values than an attribute defining a lower concept level (e.g., street). Based on
this observation, a concept hierarchy can be automatically generated based on the
number of distinct values per attribute in the given attribute set. The attribute with
the most distinct values is placed at the lowest level of the hierarchy. The lower
the number of distinct values an attribute has, the higher it is in the generated
concept hierarchy. This heuristic rule works well in many cases. Some local-level
swapping or adjustments may be applied by users or experts, when necessary, after
examination of the generated hierarchy.

Let’s examine an example of this method.

Example 2.7 Concept hierarchy generation based on the number of distinct values per attribute. Sup-
pose a user selects a set of location-oriented attributes, street, country, province or state,
and city, from the AllElectronics database, but does not specify the hierarchical ordering
among the attributes.

A concept hierarchy for location can be generated automatically, as illustrated in
Figure 2.24. First, sort the attributes in ascending order based on the number of
distinct values in each attribute. This results in the following (where the number of
distinct values per attribute is shown in parentheses): country (15), province or state
(365), city (3567), and street (674,339). Second, generate the hierarchy from the top
down according to the sorted order, with the first attribute at the top level and
the last attribute at the bottom level. Finally, the user can examine the generated
hierarchy, and when necessary, modify it to reflect desired semantic relationships
among the attributes. In this example, it is obvious that there is no need to modify
the generated hierarchy.

Note that this heuristic rule is not foolproof. For example, a time dimension in a
database may contain 20 distinct years, 12 distinct months, and 7 distinct days of the
week. However, this does not suggest that the time hierarchy should be “year < month
< days of the week”, with days of the week at the top of the hierarchy.
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country 15 distinct values

province_or_state

city

street

365 distinct values

3,567 distinct values

674,339 distinct values

Figure 2.24 Automatic generation of a schema concept hierarchy based on the number of distinct
attribute values.

Specification of only a partial set of attributes: Sometimes a user can be sloppy when
defining a hierarchy, or have only a vague idea about what should be included in a
hierarchy. Consequently, the user may have included only a small subset of the rel-
evant attributes in the hierarchy specification. For example, instead of including all
of the hierarchically relevant attributes for location, the user may have specified only
street and city. To handle such partially specified hierarchies, it is important to embed
data semantics in the database schema so that attributes with tight semantic connec-
tions can be pinned together. In this way, the specification of one attribute may trigger
a whole group of semantically tightly linked attributes to be “dragged in” to form a
complete hierarchy. Users, however, should have the option to override this feature,
as necessary.

Example 2.8 Concept hierarchy generation using prespecified semantic connections. Suppose that
a data mining expert (serving as an administrator) has pinned together the five attri-
butes number, street, city, province or state, and country, because they are closely linked
semantically regarding the notion of location. If a user were to specify only the attribute
city for a hierarchy defining location, the system can automatically drag in all of the above
five semantically related attributes to form a hierarchy. The user may choose to drop any
of these attributes, such as number and street, from the hierarchy, keeping city as the
lowest conceptual level in the hierarchy.
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2.7 Summary

Data preprocessing is an important issue for both data warehousing and data mining,
as real-world data tend to be incomplete, noisy, and inconsistent. Data preprocessing
includes data cleaning, data integration, data transformation, and data reduction.

Descriptive data summarization provides the analytical foundation for data pre-
processing. The basic statistical measures for data summarization include mean,
weighted mean, median, and mode for measuring the central tendency of data, and
range, quartiles, interquartile range, variance, and standard deviation for measur-
ing the dispersion of data. Graphical representations, such as histograms, boxplots,
quantile plots, quantile-quantile plots, scatter plots, and scatter-plot matrices, facili-
tate visual inspection of the data and are thus useful for data preprocessing and
mining.

Data cleaning routines attempt to fill in missing values, smooth out noise while
identifying outliers, and correct inconsistencies in the data. Data cleaning is usually
performed as an iterative two-step process consisting of discrepancy detection and
data transformation.

Data integration combines data from multiple sources to form a coherent data store.
Metadata, correlation analysis, data conflict detection, and the resolution of semantic
heterogeneity contribute toward smooth data integration.

Data transformation routines convert the data into appropriate forms for mining.
For example, attribute data may be normalized so as to fall between a small range,
such as 0.0 to 1.0.

Data reduction techniques such as data cube aggregation, attribute subset selection,
dimensionality reduction, numerosity reduction, and discretization can be used to
obtain a reduced representation of the data while minimizing the loss of information
content.

Data discretization and automatic generation of concept hierarchies for numerical
data can involve techniques such as binning, histogram analysis, entropy-based dis-
cretization, χ2 analysis, cluster analysis, and discretization by intuitive partitioning.
For categorical data, concept hierarchies may be generated based on the number of
distinct values of the attributes defining the hierarchy.

Although numerous methods of data preprocessing have been developed, data pre-
processing remains an active area of research, due to the huge amount of inconsistent
or dirty data and the complexity of the problem.

Exercises

2.1 Data quality can be assessed in terms of accuracy, completeness, and consistency. Propose
two other dimensions of data quality.
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2.2 Suppose that the values for a given set of data are grouped into intervals. The intervals
and corresponding frequencies are as follows.

age frequency

1–5 200

5–15 450

15–20 300

20–50 1500

50–80 700

80–110 44

Compute an approximate median value for the data.

2.3 Give three additional commonly used statistical measures (i.e., not illustrated in this
chapter) for the characterization of data dispersion, and discuss how they can be com-
puted efficiently in large databases.

2.4 Suppose that the data for analysis includes the attribute age. The age values for the data
tuples are (in increasing order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33,
33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

(a) What is the mean of the data? What is the median?

(b) What is the mode of the data? Comment on the data’s modality (i.e., bimodal,
trimodal, etc.).

(c) What is the midrange of the data?

(d) Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?

(e) Give the five-number summary of the data.

(f) Show a boxplot of the data.

(g) How is a quantile-quantile plot different from a quantile plot?

2.5 In many applications, new data sets are incrementally added to the existing large data sets.
Thus an important consideration for computing descriptive data summary is whether a
measure can be computed efficiently in incremental manner. Use count, standard devia-
tion, and median as examples to show that a distributive or algebraic measure facilitates
efficient incremental computation, whereas a holistic measure does not.

2.6 In real-world data, tuples with missing values for some attributes are a common occur-
rence. Describe various methods for handling this problem.

2.7 Using the data for age given in Exercise 2.4, answer the following.

(a) Use smoothing by bin means to smooth the data, using a bin depth of 3. Illustrate
your steps. Comment on the effect of this technique for the given data.

(b) How might you determine outliers in the data?

(c) What other methods are there for data smoothing?
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2.8 Discuss issues to consider during data integration.

2.9 Suppose a hospital tested the age and body fat data for 18 randomly selected adults with
the following result:

age 23 23 27 27 39 41 47 49 50

%fat 9.5 26.5 7.8 17.8 31.4 25.9 27.4 27.2 31.2

age 52 54 54 56 57 58 58 60 61

%fat 34.6 42.5 28.8 33.4 30.2 34.1 32.9 41.2 35.7

(a) Calculate the mean, median, and standard deviation of age and %fat.

(b) Draw the boxplots for age and %fat.

(c) Draw a scatter plot and a q-q plot based on these two variables.

(d) Normalize the two variables based on z-score normalization.

(e) Calculate the correlation coefficient (Pearson’s product moment coefficient). Are these
two variables positively or negatively correlated?

2.10 What are the value ranges of the following normalization methods?

(a) min-max normalization

(b) z-score normalization

(c) normalization by decimal scaling

2.11 Use the two methods below to normalize the following group of data:
200, 300, 400, 600, 1000

(a) min-max normalization by setting min = 0 and max = 1
(b) z-score normalization

2.12 Using the data for age given in Exercise 2.4, answer the following:

(a) Usemin-maxnormalization to transformthevalue35 for ageontotherange [0.0,1.0].
(b) Use z-score normalization to transform the value 35 for age, where the standard

deviation of age is 12.94 years.

(c) Use normalization by decimal scaling to transform the value 35 for age.

(d) Comment on which method you would prefer to use for the given data, giving
reasons as to why.

2.13 Use a flowchart to summarize the following procedures for attribute subset selection:

(a) stepwise forward selection

(b) stepwise backward elimination

(c) a combination of forward selection and backward elimination
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2.14 Suppose a group of 12 sales price records has been sorted as follows:
5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215
Partition them into three bins by each of the following methods:

(a) equal-frequency (equidepth) partitioning

(b) equal-width partitioning

(c) clustering

2.15 Using the data for age given in Exercise 2.4,

(a) Plot an equal-width histogram of width 10.

(b) Sketch examples of each of the following sampling techniques: SRSWOR, SRSWR,
cluster sampling, stratified sampling. Use samples of size 5 and the strata “youth,”
“middle-aged,” and “senior.”

2.16 [Contributed by Chen Chen] The median is one of the most important holistic mea-
sures in data analysis. Propose several methods for median approximation. Analyze their
respective complexity under different parameter settings and decide to what extent the
real value can be approximated. Moreover, suggest a heuristic strategy to balance between
accuracy and complexity and then apply it to all methods you have given.

2.17 [Contributed by Deng Cai] It is important to define or select similarity measures in data
analysis. However, there is no commonly accepted subjective similarity measure. Using
different similarity measures may deduce different results. Nonetheless, some apparently
different similarity measures may be equivalent after some transformation.

Suppose we have the following two-dimensional data set:

A1 A2

x1 1.5 1.7

x2 2 1.9

x3 1.6 1.8

x4 1.2 1.5

x5 1.5 1.0

(a) Consider the data as two-dimensional data points. Given a new data point, x =
(1.4,1.6) as a query, rank the database points based on similarity with the query using
(1) Euclidean distance (Equation 7.5), and (2) cosine similarity (Equation 7.16).

(b) Normalize the data set to make the norm of each data point equal to 1. Use Euclidean
distance on the transformed data to rank the data points.

2.18 ChiMerge [Ker92] is a supervised, bottom-up (i.e., merge-based) data discretization
method. It relies on χ2 analysis: adjacent intervals with the least χ2 values are merged
together until the stopping criterion is satisfied.
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(a) Briefly describe how ChiMerge works.

(b) Take the IRIS data set, obtained from http://www.ics.uci.edu/∼mlearn/MLRepository.
html (UC-Irvine Machine Learning Data Repository), as a data set to be discretized.
Perform data discretization for each of the four numerical attributes using the
ChiMerge method. (Let the stopping criteria be: max-interval = 6.) You need to
write a small program to do this to avoid clumsy numerical computation. Submit
your simple analysis and your test results: split points, final intervals, and your doc-
umented source program.

2.19 Propose an algorithm, in pseudo-code or in your favorite programming language, for
the following:

(a) The automatic generation of a concept hierarchy for categorical data based on the
number of distinct values of attributes in the given schema

(b) The automatic generation of a concept hierarchy for numerical data based on the
equal-width partitioning rule

(c) The automatic generation of a concept hierarchy for numerical data based on the
equal-frequency partitioning rule

2.20 Robust data loading poses a challenge in database systems because the input data are
often dirty. In many cases, an input record may have several missing values and some
records could be contaminated (i.e., with some data values out of range or of a different
data type than expected). Work out an automated data cleaning and loading algorithm
so that the erroneous data will be marked and contaminated data will not be mistakenly
inserted into the database during data loading.
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There are many methods for assessing attribute relevance. Each has its own bias. The
information gain measure is biased toward attributes with many values. Many alterna-
tives have been proposed, such as gain ratio (Quinlan [Qui93]), which considers the
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3Data Warehouse and OLAP
Technology: An Overview

Data warehouses generalize and consolidate data in multidimensional space. The construction of
data warehouses involves data cleaning, data integration, and data transformation and
can be viewed as an important preprocessing step for data mining. Moreover, data ware-
houses provide on-line analytical processing (OLAP) tools for the interactive analysis of
multidimensional data of varied granularities, which facilitates effective data generaliza-
tion and data mining. Many other data mining functions, such as association, classifi-
cation, prediction, and clustering, can be integrated with OLAP operations to enhance
interactive mining of knowledge at multiple levels of abstraction. Hence, the data ware-
house has become an increasingly important platform for data analysis and on-line ana-
lytical processing and will provide an effective platform for data mining. Therefore, data
warehousing and OLAP form an essential step in the knowledge discovery process. This
chapter presents an overview of data warehouse and OLAP technology. Such an overview
is essential for understanding the overall data mining and knowledge discovery process.

In this chapter, we study a well-accepted definition of the data warehouse and see
why more and more organizations are building data warehouses for the analysis of their
data. In particular, we study the data cube, a multidimensional data model for data ware-
houses and OLAP, as well as OLAP operations such as roll-up, drill-down, slicing, and
dicing. We also look at data warehouse architecture, including steps on data warehouse
design and construction. An overview of data warehouse implementation examines gen-
eral strategies for efficient data cube computation, OLAP data indexing, and OLAP query
processing. Finally, we look at on-line-analytical mining, a powerful paradigm that inte-
grates data warehouse and OLAP technology with that of data mining.

3.1 What Is a Data Warehouse?

Data warehousing provides architectures and tools for business executives to systemat-
ically organize, understand, and use their data to make strategic decisions. Data ware-
house systems are valuable tools in today’s competitive, fast-evolving world. In the last
several years, many firms have spent millions of dollars in building enterprise-wide data

105



106 Chapter 3 Data Warehouse and OLAP Technology: An Overview

warehouses. Many people feel that with competition mounting in every industry, data
warehousing is the latest must-have marketing weapon—a way to retain customers by
learning more about their needs.

“Then, what exactly is a data warehouse?” Data warehouses have been defined in many
ways, making it difficult to formulate a rigorous definition. Loosely speaking, a data
warehouse refers to a database that is maintained separately from an organization’s oper-
ational databases. Data warehouse systems allow for the integration of a variety of appli-
cation systems. They support information processing by providing a solid platform of
consolidated historical data for analysis.

According to William H. Inmon, a leading architect in the construction of data ware-
house systems, “A data warehouse is a subject-oriented, integrated, time-variant, and
nonvolatile collection of data in support of management’s decision making process”
[Inm96]. This short, but comprehensive definition presents the major features of a data
warehouse. The four keywords, subject-oriented, integrated, time-variant, and nonvolatile,
distinguish data warehouses from other data repository systems, such as relational
database systems, transaction processing systems, and file systems. Let’s take a closer
look at each of these key features.

Subject-oriented: A data warehouse is organized around major subjects, such as cus-
tomer, supplier, product, and sales. Rather than concentrating on the day-to-day oper-
ations and transaction processing of an organization, a data warehouse focuses on the
modeling and analysis of data for decision makers. Hence, data warehouses typically
provide a simple and concise view around particular subject issues by excluding data
that are not useful in the decision support process.

Integrated: A data warehouse is usually constructed by integrating multiple heteroge-
neous sources, such as relational databases, flat files, and on-line transaction records.
Data cleaning and data integration techniques are applied to ensure consistency in
naming conventions, encoding structures, attribute measures, and so on.

Time-variant: Data are stored to provide information from a historical perspective
(e.g., the past 5–10 years). Every key structure in the data warehouse contains, either
implicitly or explicitly, an element of time.

Nonvolatile: A data warehouse is always a physically separate store of data trans-
formed from the application data found in the operational environment. Due to
this separation, a data warehouse does not require transaction processing, recovery,
and concurrency control mechanisms. It usually requires only two operations in data
accessing: initial loading of data and access of data.

In sum, a data warehouse is a semantically consistent data store that serves as a phys-
ical implementation of a decision support data model and stores the information on
which an enterprise needs to make strategic decisions. A data warehouse is also often
viewed as an architecture, constructed by integrating data from multiple heterogeneous
sources to support structured and/or ad hoc queries, analytical reporting, and decision
making.
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Based on this information, we view data warehousing as the process of constructing
and using data warehouses. The construction of a data warehouse requires data cleaning,
data integration, and data consolidation. The utilization of a data warehouse often neces-
sitates a collection of decision support technologies. This allows “knowledge workers”
(e.g., managers, analysts, and executives) to use the warehouse to quickly and conve-
niently obtain an overview of the data, and to make sound decisions based on informa-
tion in the warehouse. Some authors use the term “data warehousing” to refer only to
the process of data warehouse construction, while the term “warehouse DBMS” is used
to refer to the management and utilization of data warehouses. We will not make this
distinction here.

“How are organizations using the information from data warehouses?” Many organi-
zations use this information to support business decision-making activities, including
(1) increasing customer focus, which includes the analysis of customer buying pat-
terns (such as buying preference, buying time, budget cycles, and appetites for spend-
ing); (2) repositioning products and managing product portfolios by comparing the
performance of sales by quarter, by year, and by geographic regions in order to fine-
tune production strategies; (3) analyzing operations and looking for sources of profit;
and (4) managing the customer relationships, making environmental corrections, and
managing the cost of corporate assets.

Data warehousing is also very useful from the point of view of heterogeneous database
integration. Many organizations typically collect diverse kinds of data and maintain large
databases from multiple, heterogeneous, autonomous, and distributed information
sources. To integrate such data, and provide easy and efficient access to it, is highly desir-
able, yet challenging. Much effort has been spent in the database industry and research
community toward achieving this goal.

The traditional database approach to heterogeneous database integration is to build
wrappers and integrators (or mediators), on top of multiple, heterogeneous databases.
When a query is posed to a client site, a metadata dictionary is used to translate the query
into queries appropriate for the individual heterogeneous sites involved. These queries
are then mapped and sent to local query processors. The results returned from the dif-
ferent sites are integrated into a global answer set. This query-driven approach requires
complex information filtering and integration processes, and competes for resources
with processing at local sources. It is inefficient and potentially expensive for frequent
queries, especially for queries requiring aggregations.

Data warehousing provides an interesting alternative to the traditional approach of
heterogeneous database integration described above. Rather than using a query-driven
approach, data warehousing employs an update-driven approach in which information
from multiple, heterogeneous sources is integrated in advance and stored in a warehouse
for direct querying and analysis. Unlike on-line transaction processing databases, data
warehouses do not contain the most current information. However, a data warehouse
brings high performance to the integrated heterogeneous database system because data
are copied, preprocessed, integrated, annotated, summarized, and restructured into one
semantic data store. Furthermore, query processing in data warehouses does not interfere
with the processing at local sources. Moreover, data warehouses can store and integrate
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historical information and support complex multidimensional queries. As a result, data
warehousing has become popular in industry.

3.1.1 Differences between Operational Database Systems
and Data Warehouses

Because most people are familiar with commercial relational database systems, it is easy
to understand what a data warehouse is by comparing these two kinds of systems.

The major task of on-line operational database systems is to perform on-line trans-
action and query processing. These systems are called on-line transaction processing
(OLTP) systems. They cover most of the day-to-day operations of an organization, such
as purchasing, inventory, manufacturing, banking, payroll, registration, and accounting.
Data warehouse systems, on the other hand, serve users or knowledge workers in the role
of data analysis and decision making. Such systems can organize and present data in var-
ious formats in order to accommodate the diverse needs of the different users. These
systems are known as on-line analytical processing (OLAP) systems.

The major distinguishing features between OLTP and OLAP are summarized as
follows:

Users and system orientation: An OLTP system is customer-oriented and is used for
transaction and query processing by clerks, clients, and information technology pro-
fessionals. An OLAP system is market-oriented and is used for data analysis by knowl-
edge workers, including managers, executives, and analysts.

Data contents: An OLTP system manages current data that, typically, are too detailed
to be easily used for decision making. An OLAP system manages large amounts of
historical data, provides facilities for summarization and aggregation, and stores and
manages information at different levels of granularity. These features make the data
easier to use in informed decision making.

Database design: An OLTP system usually adopts an entity-relationship (ER) data
model and an application-oriented database design. An OLAP system typically adopts
either a star or snowflake model (to be discussed in Section 3.2.2) and a subject-
oriented database design.

View: An OLTP system focuses mainly on the current data within an enterprise or
department, without referring to historical data or data in different organizations.
In contrast, an OLAP system often spans multiple versions of a database schema,
due to the evolutionary process of an organization. OLAP systems also deal with
information that originates from different organizations, integrating information
from many data stores. Because of their huge volume, OLAP data are stored on
multiple storage media.

Access patterns: The access patterns of an OLTP system consist mainly of short, atomic
transactions. Such a system requires concurrency control and recovery mechanisms.
However, accesses to OLAP systems are mostly read-only operations (because most
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Table 3.1 Comparison between OLTP and OLAP systems.

Feature OLTP OLAP

Characteristic operational processing informational processing

Orientation transaction analysis

User clerk, DBA, database professional knowledge worker (e.g., manager,
executive, analyst)

Function day-to-day operations long-term informational requirements,
decision support

DB design ER based, application-oriented star/snowflake, subject-oriented

Data current; guaranteed up-to-date historical; accuracy maintained
over time

Summarization primitive, highly detailed summarized, consolidated

View detailed, flat relational summarized, multidimensional

Unit of work short, simple transaction complex query

Access read/write mostly read

Focus data in information out

Operations index/hash on primary key lots of scans

Number of records
accessed tens millions

Number of users thousands hundreds

DB size 100 MB to GB 100 GB to TB

Priority high performance, high availability high flexibility, end-user autonomy

Metric transaction throughput query throughput, response time

NOTE: Table is partially based on [CD97].

data warehouses store historical rather than up-to-date information), although many
could be complex queries.

Other features that distinguish between OLTP and OLAP systems include database size,
frequency of operations, and performance metrics. These are summarized in Table 3.1.

3.1.2 But, Why Have a Separate Data Warehouse?

Because operational databases store huge amounts of data, you may wonder, “why not
perform on-line analytical processing directly on such databases instead of spending addi-
tional time and resources to construct a separate data warehouse?” A major reason for such
a separation is to help promote the high performance of both systems. An operational
database is designed and tuned from known tasks and workloads, such as indexing and
hashing using primary keys, searching for particular records, and optimizing “canned”
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queries. On the other hand, data warehouse queries are often complex. They involve the
computation of large groups of data at summarized levels, and may require the use of spe-
cial data organization, access, and implementation methods based on multidimensional
views. Processing OLAP queries in operational databases would substantially degrade
the performance of operational tasks.

Moreover, an operational database supports the concurrent processing of multiple
transactions. Concurrency control and recovery mechanisms, such as locking and log-
ging, are required to ensure the consistency and robustness of transactions. An OLAP
query often needs read-only access of data records for summarization and aggregation.
Concurrency control and recovery mechanisms, if applied for such OLAP operations,
may jeopardize the execution of concurrent transactions and thus substantially reduce
the throughput of an OLTP system.

Finally, the separation of operational databases from data warehouses is based on the
different structures, contents, and uses of the data in these two systems. Decision sup-
port requires historical data, whereas operational databases do not typically maintain
historical data. In this context, the data in operational databases, though abundant, is
usually far from complete for decision making. Decision support requires consolidation
(such as aggregation and summarization) of data from heterogeneous sources, result-
ing in high-quality, clean, and integrated data. In contrast, operational databases con-
tain only detailed raw data, such as transactions, which need to be consolidated before
analysis. Because the two systems provide quite different functionalities and require dif-
ferent kinds of data, it is presently necessary to maintain separate databases. However,
many vendors of operational relational database management systems are beginning to
optimize such systems to support OLAP queries. As this trend continues, the separation
between OLTP and OLAP systems is expected to decrease.

3.2 A Multidimensional Data Model

Data warehouses and OLAP tools are based on a multidimensional data model. This
model views data in the form of a data cube. In this section, you will learn how data
cubes model n-dimensional data. You will also learn about concept hierarchies and how
they can be used in basic OLAP operations to allow interactive mining at multiple levels
of abstraction.

3.2.1 From Tables and Spreadsheets to Data Cubes

“What is a data cube?” A data cube allows data to be modeled and viewed in multiple
dimensions. It is defined by dimensions and facts.

In general terms, dimensions are the perspectives or entities with respect to which
an organization wants to keep records. For example, AllElectronics may create a sales
data warehouse in order to keep records of the store’s sales with respect to the
dimensions time, item, branch, and location. These dimensions allow the store to
keep track of things like monthly sales of items and the branches and locations
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Table 3.2 A 2-D view of sales data for AllElectronics according to the dimensions time and item,
where the sales are from branches located in the city of Vancouver. The measure dis-
played is dollars sold (in thousands).

location = “Vancouver”

item (type)

home
time (quarter) entertainment computer phone security

Q1 605 825 14 400

Q2 680 952 31 512

Q3 812 1023 30 501

Q4 927 1038 38 580

at which the items were sold. Each dimension may have a table associated with
it, called a dimension table, which further describes the dimension. For example,
a dimension table for item may contain the attributes item name, brand, and type.
Dimension tables can be specified by users or experts, or automatically generated
and adjusted based on data distributions.

A multidimensional data model is typically organized around a central theme, like
sales, for instance. This theme is represented by a fact table. Facts are numerical mea-
sures. Think of them as the quantities by which we want to analyze relationships between
dimensions. Examples of facts for a sales data warehouse include dollars sold
(sales amount in dollars), units sold (number of units sold), and amount budgeted. The
fact table contains the names of the facts, or measures, as well as keys to each of the related
dimension tables. You will soon get a clearer picture of how this works when we look at
multidimensional schemas.

Although we usually think of cubes as 3-D geometric structures, in data warehousing
the data cube is n-dimensional. To gain a better understanding of data cubes and the
multidimensional data model, let’s start by looking at a simple 2-D data cube that is, in
fact, a table or spreadsheet for sales data from AllElectronics. In particular, we will look at
the AllElectronics sales data for items sold per quarter in the city of Vancouver. These data
are shown in Table 3.2. In this 2-D representation, the sales for Vancouver are shown with
respect to the time dimension (organized in quarters) and the item dimension (organized
according to the types of items sold). The fact or measure displayed is dollars sold (in
thousands).

Now, suppose that we would like to view the sales data with a third dimension. For
instance, suppose we would like to view the data according to time and item, as well as
location for the cities Chicago, New York, Toronto, and Vancouver. These 3-D data are
shown in Table 3.3. The 3-D data of Table 3.3 are represented as a series of 2-D tables.
Conceptually, we may also represent the same data in the form of a 3-D data cube, as in
Figure 3.1.
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Table 3.3 A 3-D view of sales data for AllElectronics, according to the dimensions time, item, and
location. The measure displayed is dollars sold (in thousands).

location = “Chicago” location = “New York” location = “Toronto” location = “Vancouver”

item item item item

home home home home

time ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec.

Q1 854 882 89 623 1087 968 38 872 818 746 43 591 605 825 14 400

Q2 943 890 64 698 1130 1024 41 925 894 769 52 682 680 952 31 512

Q3 1032 924 59 789 1034 1048 45 1002 940 795 58 728 812 1023 30 501

Q4 1129 992 63 870 1142 1091 54 984 978 864 59 784 927 1038 38 580
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Figure 3.1 A 3-D data cube representation of the data in Table 3.3, according to the dimensions time,
item, and location. The measure displayed is dollars sold (in thousands).

Suppose that we would now like to view our sales data with an additional fourth
dimension, such as supplier. Viewing things in 4-D becomes tricky. However, we can
think of a 4-D cube as being a series of 3-D cubes, as shown in Figure 3.2. If we continue
in this way, we may display any n-D data as a series of (n−1)-D “cubes.” The data cube is
a metaphor for multidimensional data storage. The actual physical storage of such data
may differ from its logical representation. The important thing to remember is that data
cubes are n-dimensional and do not confine data to 3-D.

The above tables show the data at different degrees of summarization. In the data
warehousing research literature, a data cube such as each of the above is often referred to
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Figure 3.2 A 4-D data cube representation of sales data, according to the dimensions time, item, location,
and supplier. The measure displayed is dollars sold (in thousands). For improved readability,
only some of the cube values are shown.

supplier

time, item, location, supplier

item, locationtime, location
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time, location, supplier
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location,
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time
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time, item
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0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid

Figure 3.3 Lattice of cuboids, making up a 4-D data cube for the dimensions time, item, location, and
supplier. Each cuboid represents a different degree of summarization.

as a cuboid. Given a set of dimensions, we can generate a cuboid for each of the possible
subsets of the given dimensions. The result would form a lattice of cuboids, each showing
the data at a different level of summarization, or group by. The lattice of cuboids is then
referred to as a data cube. Figure 3.3 shows a lattice of cuboids forming a data cube for
the dimensions time, item, location, and supplier.
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The cuboid that holds the lowest level of summarization is called the base cuboid. For
example, the 4-D cuboid in Figure 3.2 is the base cuboid for the given time, item, location,
and supplier dimensions. Figure 3.1 is a 3-D (nonbase) cuboid for time, item, and location,
summarized for all suppliers. The 0-D cuboid, which holds the highest level of summa-
rization, is called the apex cuboid. In our example, this is the total sales, or dollars sold,
summarized over all four dimensions. The apex cuboid is typically denoted by all.

3.2.2 Stars, Snowflakes, and Fact Constellations:
Schemas for Multidimensional Databases

The entity-relationship data model is commonly used in the design of relational
databases, where a database schema consists of a set of entities and the relationships
between them. Such a data model is appropriate for on-line transaction processing.
A data warehouse, however, requires a concise, subject-oriented schema that facilitates
on-line data analysis.

The most popular data model for a data warehouse is a multidimensional model.
Such a model can exist in the form of a star schema, a snowflake schema, or a fact con-
stellation schema. Let’s look at each of these schema types.

Star schema: The most common modeling paradigm is the star schema, in which the
data warehouse contains (1) a large central table (fact table) containing the bulk of
the data, with no redundancy, and (2) a set of smaller attendant tables (dimension
tables), one for each dimension. The schema graph resembles a starburst, with the
dimension tables displayed in a radial pattern around the central fact table.

Example 3.1 Star schema. A star schema for AllElectronics sales is shown in Figure 3.4. Sales are consid-
ered along four dimensions, namely, time, item, branch, and location. The schema contains
a central fact table for sales that contains keys to each of the four dimensions, along with
two measures: dollars sold and units sold. To minimize the size of the fact table, dimension
identifiers (such as time key and item key) are system-generated identifiers.

Notice that in the star schema, each dimension is represented by only one table, and
each table contains a set of attributes. For example, the location dimension table contains
the attribute set {location key, street, city, province or state, country}. This constraint may
introduce some redundancy. For example, “Vancouver” and “Victoria” are both cities in
the Canadian province of British Columbia. Entries for such cities in the location dimen-
sion table will create redundancy among the attributes province or state and country,
that is, (..., Vancouver, British Columbia, Canada) and (..., Victoria, British Columbia,
Canada). Moreover, the attributes within a dimension table may form either a hierarchy
(total order) or a lattice (partial order).

Snowflake schema: The snowflake schema is a variant of the star schema model, where
some dimension tables are normalized, thereby further splitting the data into addi-
tional tables. The resulting schema graph forms a shape similar to a snowflake.
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Figure 3.4 Star schema of a data warehouse for sales.

The major difference between the snowflake and star schema models is that the
dimension tables of the snowflake model may be kept in normalized form to reduce
redundancies. Such a table is easy to maintain and saves storage space. However,
this saving of space is negligible in comparison to the typical magnitude of the fact
table. Furthermore, the snowflake structure can reduce the effectiveness of browsing,
since more joins will be needed to execute a query. Consequently, the system per-
formance may be adversely impacted. Hence, although the snowflake schema reduces
redundancy, it is not as popular as the star schema in data warehouse design.

Example 3.2 Snowflake schema. A snowflake schema for AllElectronics sales is given in Figure 3.5.
Here, the sales fact table is identical to that of the star schema in Figure 3.4. The
main difference between the two schemas is in the definition of dimension tables.
The single dimension table for item in the star schema is normalized in the snowflake
schema, resulting in new item and supplier tables. For example, the item dimension
table now contains the attributes item key, item name, brand, type, and supplier key,
where supplier key is linked to the supplier dimension table, containing supplier key
and supplier type information. Similarly, the single dimension table for location in the
star schema can be normalized into two new tables: location and city. The city key in
the new location table links to the city dimension. Notice that further normalization
can be performed on province or state and country in the snowflake schema shown
in Figure 3.5, when desirable.
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Figure 3.5 Snowflake schema of a data warehouse for sales.

Fact constellation: Sophisticated applications may require multiple fact tables to share
dimension tables. This kind of schema can be viewed as a collection of stars, and hence
is called a galaxy schema or a fact constellation.

Example 3.3 Fact constellation. A fact constellation schema is shown in Figure 3.6. This schema spec-
ifies two fact tables, sales and shipping. The sales table definition is identical to that of
the star schema (Figure 3.4). The shipping table has five dimensions, or keys: item key,
time key, shipper key, from location, and to location, and two measures: dollars cost and
units shipped. A fact constellation schema allows dimension tables to be shared between
fact tables. For example, the dimensions tables for time, item, and location are shared
between both the sales and shipping fact tables.

In data warehousing, there is a distinction between a data warehouse and a data mart.
A data warehouse collects information about subjects that span the entire organization,
such as customers, items, sales, assets, and personnel, and thus its scope is enterprise-wide.
For data warehouses, the fact constellation schema is commonly used, since it can model
multiple, interrelated subjects. A data mart, on the other hand, is a department subset
of the data warehouse that focuses on selected subjects, and thus its scope is department-
wide. For data marts, the star or snowflake schema are commonly used, since both are
geared toward modeling single subjects, although the star schema is more popular and
efficient.
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Figure 3.6 Fact constellation schema of a data warehouse for sales and shipping.

3.2.3 Examples for Defining Star, Snowflake,
and Fact Constellation Schemas

“How can I define a multidimensional schema for my data?” Just as relational query
languages like SQL can be used to specify relational queries, a data mining query lan-
guage can be used to specify data mining tasks. In particular, we examine how to define
data warehouses and data marts in our SQL-based data mining query language, DMQL.

Data warehouses and data marts can be defined using two language primitives, one
for cube definition and one for dimension definition. The cube definition statement has the
following syntax:

define cube 〈cube name〉 [〈dimension list〉]: 〈measure list〉

The dimension definition statement has the following syntax:

define dimension 〈dimension name〉 as (〈attribute or dimension list〉)

Let’s look at examples of how to define the star, snowflake, and fact constellation
schemas of Examples 3.1 to 3.3 using DMQL. DMQL keywords are displayed in sans
serif font.

Example 3.4 Star schema definition. The star schema of Example 3.1 and Figure 3.4 is defined in
DMQL as follows:

define cube sales star [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)
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define dimension time as (time key, day, day of week, month, quarter, year)
define dimension item as (item key, item name, brand, type, supplier type)
define dimension branch as (branch key, branch name, branch type)
define dimension location as (location key, street, city, province or state,

country)

The define cube statement defines a data cube called sales star, which corresponds
to the central sales fact table of Example 3.1. This command specifies the dimensions
and the two measures, dollars sold and units sold. The data cube has four dimensions,
namely, time, item, branch, and location. A define dimension statement is used to define
each of the dimensions.

Example 3.5 Snowflake schema definition. The snowflake schema of Example 3.2 and Figure 3.5 is
defined in DMQL as follows:

define cube sales snowflake [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)

define dimension time as (time key, day, day of week, month, quarter, year)
define dimension item as (item key, item name, brand, type, supplier

(supplier key, supplier type))
define dimension branch as (branch key, branch name, branch type)
define dimension location as (location key, street, city

(city key, city, province or state, country))

This definition is similar to that of sales star (Example 3.4), except that, here, the item
and location dimension tables are normalized. For instance, the item dimension of the
sales star data cube has been normalized in the sales snowflake cube into two dimension
tables, item and supplier. Note that the dimension definition for supplier is specified within
the definition for item. Defining supplier in this way implicitly creates a supplier key in the
item dimension table definition. Similarly, the location dimension of the sales star data
cube has been normalized in the sales snowflake cube into two dimension tables, location
and city. The dimension definition for city is specified within the definition for location.
In this way, a city key is implicitly created in the location dimension table definition.

Finally, a fact constellation schema can be defined as a set of interconnected cubes.
Below is an example.

Example 3.6 Fact constellation schema definition. The fact constellation schema of Example 3.3 and
Figure 3.6 is defined in DMQL as follows:

define cube sales [time, item, branch, location]:
dollars sold = sum(sales in dollars), units sold = count(*)

define dimension time as (time key, day, day of week, month, quarter, year)
define dimension item as (item key, item name, brand, type, supplier type)
define dimension branch as (branch key, branch name, branch type)
define dimension location as (location key, street, city, province or state,

country)
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define cube shipping [time, item, shipper, from location, to location]:
dollars cost = sum(cost in dollars), units shipped = count(*)

define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper key, shipper name, location as

location in cube sales, shipper type)
define dimension from location as location in cube sales
define dimension to location as location in cube sales

A define cube statement is used to define data cubes for sales and shipping, cor-
responding to the two fact tables of the schema of Example 3.3. Note that the time,
item, and location dimensions of the sales cube are shared with the shipping cube.
This is indicated for the time dimension, for example, as follows. Under the define
cube statement for shipping, the statement “define dimension time as time in cube
sales” is specified.

3.2.4 Measures: Their Categorization and Computation

“How are measures computed?” To answer this question, we first study how measures can
be categorized.1 Note that a multidimensional point in the data cube space can be defined
by a set of dimension-value pairs, for example, 〈time = “Q1”, location = “Vancouver”,
item = “computer”〉. A data cube measure is a numerical function that can be evaluated
at each point in the data cube space. A measure value is computed for a given point by
aggregating the data corresponding to the respective dimension-value pairs defining the
given point. We will look at concrete examples of this shortly.

Measures can be organized into three categories (i.e., distributive, algebraic, holistic),
based on the kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in a distributed
manner as follows. Suppose the data are partitioned into n sets. We apply the function
to each partition, resulting in n aggregate values. If the result derived by applying the
function to the n aggregate values is the same as that derived by applying the func-
tion to the entire data set (without partitioning), the function can be computed in
a distributed manner. For example, count() can be computed for a data cube by first
partitioning the cube into a set of subcubes, computing count() for each subcube, and
then summing up the counts obtained for each subcube. Hence, count() is a distribu-
tive aggregate function. For the same reason, sum(), min(), and max() are distributive
aggregate functions. A measure is distributive if it is obtained by applying a distribu-
tive aggregate function. Distributive measures can be computed efficiently because
they can be computed in a distributive manner.

1This categorization was briefly introduced in Chapter 2 with regards to the computation of measures
for descriptive data summaries. We reexamine it here in the context of data cube measures.
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Algebraic: An aggregate function is algebraic if it can be computed by an algebraic
function with M arguments (where M is a bounded positive integer), each of which
is obtained by applying a distributive aggregate function. For example, avg() (aver-
age) can be computed by sum()/count(), where both sum() and count() are dis-
tributive aggregate functions. Similarly, it can be shown that min N() and max N()
(which find the N minimum and N maximum values, respectively, in a given set)
and standard deviation() are algebraic aggregate functions. A measure is algebraic
if it is obtained by applying an algebraic aggregate function.

Holistic: An aggregate function is holistic if there is no constant bound on the stor-
age size needed to describe a subaggregate. That is, there does not exist an algebraic
function with M arguments (where M is a constant) that characterizes the computa-
tion. Common examples of holistic functions include median(), mode(), and rank().
A measure is holistic if it is obtained by applying a holistic aggregate function.

Most large data cube applications require efficient computation of distributive and
algebraic measures. Many efficient techniques for this exist. In contrast, it is difficult to
compute holistic measures efficiently. Efficient techniques to approximate the computa-
tion of some holistic measures, however, do exist. For example, rather than computing
the exact median(), Equation (2.3) of Chapter 2 can be used to estimate the approxi-
mate median value for a large data set. In many cases, such techniques are sufficient to
overcome the difficulties of efficient computation of holistic measures.

Example 3.7 Interpreting measures for data cubes. Many measures of a data cube can be computed by
relational aggregation operations. In Figure 3.4, we saw a star schema for AllElectronics
sales that contains two measures, namely, dollars sold and units sold. In Example 3.4, the
sales star data cube corresponding to the schema was defined using DMQL commands.
“But how are these commands interpreted in order to generate the specified data cube?”

Suppose that the relational database schema of AllElectronics is the following:

time(time key, day, day of week, month, quarter, year)
item(item key, item name, brand, type, supplier type)
branch(branch key, branch name, branch type)
location(location key, street, city, province or state, country)
sales(time key, item key, branch key, location key, number of units sold, price)

The DMQL specification of Example 3.4 is translated into the following SQL query,
which generates the required sales star cube. Here, the sum aggregate function, is used
to compute both dollars sold and units sold:

select s.time key, s.item key, s.branch key, s.location key,
sum(s.number of units sold ∗ s.price), sum(s.number of units sold)

from time t, item i, branch b, location l, sales s,
where s.time key = t.time key and s.item key = i.item key

and s.branch key = b.branch key and s.location key = l.location key
group by s.time key, s.item key, s.branch key, s.location key
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The cube created in the above query is the base cuboid of the sales star data cube. It
contains all of the dimensions specified in the data cube definition, where the granularity
of each dimension is at the join key level. A join key is a key that links a fact table and
a dimension table. The fact table associated with a base cuboid is sometimes referred to
as the base fact table.

By changing the group by clauses, we can generate other cuboids for the sales star data
cube. For example, instead of grouping by s.time key, we can group by t.month, which will
sum up the measures of each group by month. Also, removing “group by s.branch key”
will generate a higher-level cuboid (where sales are summed for all branches, rather than
broken down per branch). Suppose we modify the above SQL query by removing all of
the group by clauses. This will result in obtaining the total sum of dollars sold and the
total count of units sold for the given data. This zero-dimensional cuboid is the apex
cuboid of the sales star data cube. In addition, other cuboids can be generated by apply-
ing selection and/or projection operations on the base cuboid, resulting in a lattice of
cuboids as described in Section 3.2.1. Each cuboid corresponds to a different degree of
summarization of the given data.

Most of the current data cube technology confines the measures of multidimensional
databases to numerical data. However, measures can also be applied to other kinds of
data, such as spatial, multimedia, or text data. This will be discussed in future chapters.

3.2.5 Concept Hierarchies

A concept hierarchy defines a sequence of mappings from a set of low-level concepts
to higher-level, more general concepts. Consider a concept hierarchy for the dimension
location. City values for location include Vancouver, Toronto, New York, and Chicago. Each
city, however, can be mapped to the province or state to which it belongs. For example,
Vancouver can be mapped to British Columbia, and Chicago to Illinois. The provinces and
states can in turn be mapped to the country to which they belong, such as Canada or the
USA. These mappings form a concept hierarchy for the dimension location, mapping a set
of low-level concepts (i.e., cities) to higher-level, more general concepts (i.e., countries).
The concept hierarchy described above is illustrated in Figure 3.7.

Many concept hierarchies are implicit within the database schema. For example, sup-
pose that the dimension location is described by the attributes number, street, city,
province or state,zipcode, andcountry.Theseattributesarerelatedbyatotalorder, forming
a concept hierarchy such as “street < city < province or state < country”. This hierarchy
is shown in Figure 3.8(a). Alternatively, the attributes of a dimension may be organized
in a partial order, forming a lattice. An example of a partial order for the time dimension
based on the attributes day, week, month, quarter, and year is “day < {month <quarter;
week} < year”.2 This lattice structure is shown in Figure 3.8(b). A concept hierarchy

2Since a week often crosses the boundary of two consecutive months, it is usually not treated as a lower
abstraction of month. Instead, it is often treated as a lower abstraction of year, since a year contains
approximately 52 weeks.
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Figure 3.7 A concept hierarchy for the dimension location. Due to space limitations, not all of the nodes
of the hierarchy are shown (as indicated by the use of “ellipsis” between nodes).
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Figure 3.8 Hierarchical and lattice structures of attributes in warehouse dimensions: (a) a hierarchy for
location; (b) a lattice for time.

that is a total or partial order among attributes in a database schema is called a schema
hierarchy. Concept hierarchies that are common to many applications may be prede-
fined in the data mining system, such as the concept hierarchy for time. Data mining
systems should provide users with the flexibility to tailor predefined hierarchies accord-
ing to their particular needs. For example, users may like to define a fiscal year starting
on April 1 or an academic year starting on September 1.
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Figure 3.9 A concept hierarchy for the attribute price.

Concept hierarchies may also be defined by discretizing or grouping values for a given
dimension or attribute, resulting in a set-grouping hierarchy. A total or partial order can
be defined among groups of values. An example of a set-grouping hierarchy is shown in
Figure 3.9 for the dimension price, where an interval ($X . . .$Y ] denotes the range from
$X (exclusive) to $Y (inclusive).

There may be more than one concept hierarchy for a given attribute or dimension,
based on different user viewpoints. For instance, a user may prefer to organize price by
defining ranges for inexpensive, moderately priced, and expensive.

Concept hierarchies may be provided manually by system users, domain experts, or
knowledge engineers, or may be automatically generated based on statistical analysis of
the data distribution. The automatic generation of concept hierarchies is discussed in
Chapter 2 as a preprocessing step in preparation for data mining.

Concept hierarchies allow data to be handled at varying levels of abstraction, as we
shall see in the following subsection.

3.2.6 OLAP Operations in the Multidimensional Data Model

“How are concept hierarchies useful in OLAP?” In the multidimensional model, data are
organized into multiple dimensions, and each dimension contains multiple levels of
abstraction defined by concept hierarchies. This organization provides users with the
flexibility to view data from different perspectives. A number of OLAP data cube opera-
tions exist to materialize these different views, allowing interactive querying and analysis
of the data at hand. Hence, OLAP provides a user-friendly environment for interactive
data analysis.

Example 3.8 OLAP operations. Let’s look at some typical OLAP operations for multidimensional
data. Each of the operations described below is illustrated in Figure 3.10. At the center
of the figure is a data cube for AllElectronics sales. The cube contains the dimensions
location, time, and item, where location is aggregated with respect to city values, time is
aggregated with respect to quarters, and item is aggregated with respect to item types. To
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Figure 3.10 Examples of typical OLAP operations on multidimensional data.
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aid in our explanation, we refer to this cube as the central cube. The measure displayed
is dollars sold (in thousands). (For improved readability, only some of the cubes’ cell
values are shown.) The data examined are for the cities Chicago, New York, Toronto, and
Vancouver.

Roll-up: The roll-up operation (also called the drill-up operation by some vendors)
performs aggregation on a data cube, either by climbing up a concept hierarchy for
a dimension or by dimension reduction. Figure 3.10 shows the result of a roll-up
operation performed on the central cube by climbing up the concept hierarchy for
location given in Figure 3.7. This hierarchy was defined as the total order “street
< city < province or state < country.” The roll-up operation shown aggregates
the data by ascending the location hierarchy from the level of city to the level of
country. In other words, rather than grouping the data by city, the resulting cube
groups the data by country.

When roll-up is performed by dimension reduction, one or more dimensions are
removed from the given cube. For example, consider a sales data cube containing only
the two dimensions location and time. Roll-up may be performed by removing, say,
the time dimension, resulting in an aggregation of the total sales by location, rather
than by location and by time.

Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to
more detailed data. Drill-down can be realized by either stepping down a concept hier-
archy for a dimension or introducing additional dimensions. Figure 3.10 shows the
result of a drill-down operation performed on the central cube by stepping down a
concept hierarchy for time defined as “day < month < quarter < year.” Drill-down
occurs by descending the time hierarchy from the level of quarter to the more detailed
level of month. The resulting data cube details the total sales per month rather than
summarizing them by quarter.

Because a drill-down adds more detail to the given data, it can also be performed
by adding new dimensions to a cube. For example, a drill-down on the central cube of
Figure 3.10 can occur by introducing an additional dimension, such as customer group.

Slice and dice: The slice operation performs a selection on one dimension of the
given cube, resulting in a subcube. Figure 3.10 shows a slice operation where
the sales data are selected from the central cube for the dimension time using
the criterion time = “Q1”. The dice operation defines a subcube by performing a
selection on two or more dimensions. Figure 3.10 shows a dice operation on the
central cube based on the following selection criteria that involve three dimensions:
(location = “Toronto” or “Vancouver”) and (time = “Q1” or “Q2”) and (item =
“home entertainment” or “computer”).

Pivot (rotate): Pivot (also called rotate) is a visualization operation that rotates the data
axes in view in order to provide an alternative presentation of the data. Figure 3.10
shows a pivot operation where the item and location axes in a 2-D slice are rotated.
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Other examples include rotating the axes in a 3-D cube, or transforming a 3-D cube
into a series of 2-D planes.

Other OLAP operations: Some OLAP systems offer additional drilling operations. For
example, drill-across executes queries involving (i.e., across) more than one fact table.
The drill-through operation uses relational SQL facilities to drill through the bottom
level of a data cube down to its back-end relational tables.

Other OLAP operations may include ranking the top N or bottom N items in lists,
as well as computing moving averages, growth rates, interests, internal rates of return,
depreciation, currency conversions, and statistical functions.

OLAP offers analytical modeling capabilities, including a calculation engine for deriv-
ing ratios, variance, and so on, and for computing measures across multiple dimensions.
It can generate summarizations, aggregations, and hierarchies at each granularity level
and at every dimension intersection. OLAP also supports functional models for forecast-
ing, trend analysis, and statistical analysis. In this context, an OLAP engine is a powerful
data analysis tool.

OLAP Systems versus Statistical Databases
Many of the characteristics of OLAP systems, such as the use of a multidimensional
data model and concept hierarchies, the association of measures with dimensions, and
the notions of roll-up and drill-down, also exist in earlier work on statistical databases
(SDBs). A statistical database is a database system that is designed to support statistical
applications. Similarities between the two types of systems are rarely discussed, mainly
due to differences in terminology and application domains.

OLAP and SDB systems, however, have distinguishing differences. While SDBs tend to
focus on socioeconomic applications, OLAP has been targeted for business applications.
Privacy issues regarding concept hierarchies are a major concern for SDBs. For example,
given summarized socioeconomic data, it is controversial to allow users to view the cor-
responding low-level data. Finally, unlike SDBs, OLAP systems are designed for handling
huge amounts of data efficiently.

3.2.7 A Starnet Query Model for Querying
Multidimensional Databases

The querying of multidimensional databases can be based on a starnet model. A starnet
model consists of radial lines emanating from a central point, where each line represents
a concept hierarchy for a dimension. Each abstraction level in the hierarchy is called a
footprint. These represent the granularities available for use by OLAP operations such
as drill-down and roll-up.

Example 3.9 Starnet. A starnet query model for the AllElectronics data warehouse is shown in
Figure 3.11. This starnet consists of four radial lines, representing concept hierarchies



3.3 Data Warehouse Architecture 127

continent


country


province_or_state


city


street

name brand category type

name

category

group

year

quarter

month

day

time

item

location
customer

Figure 3.11 Modeling business queries: a starnet model.

for the dimensions location, customer, item, and time, respectively. Each line consists of
footprints representing abstraction levels of the dimension. For example, the time line
has four footprints: “day,” “month,” “quarter,” and “year.” A concept hierarchy may
involve a single attribute (like date for the time hierarchy) or several attributes (e.g.,
the concept hierarchy for location involves the attributes street, city, province or state,
and country). In order to examine the item sales at AllElectronics, users can roll up
along the time dimension from month to quarter, or, say, drill down along the location
dimension from country to city. Concept hierarchies can be used to generalize data
by replacing low-level values (such as “day” for the time dimension) by higher-level
abstractions (such as “year”), or to specialize data by replacing higher-level abstractions
with lower-level values.

3.3 Data Warehouse Architecture

In this section, we discuss issues regarding data warehouse architecture. Section 3.3.1
gives a general account of how to design and construct a data warehouse. Section 3.3.2
describes a three-tier data warehouse architecture. Section 3.3.3 describes back-end
tools and utilities for data warehouses. Section 3.3.4 describes the metadata repository.
Section 3.3.5 presents various types of warehouse servers for OLAP processing.
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3.3.1 Steps for the Design and Construction of Data Warehouses

This subsection presents a business analysis framework for data warehouse design. The
basic steps involved in the design process are also described.

The Design of a Data Warehouse: A Business
Analysis Framework

“What can business analysts gain from having a data warehouse?” First, having a data
warehouse may provide a competitive advantage by presenting relevant information from
which to measure performance and make critical adjustments in order to help win over
competitors. Second, a data warehouse can enhance business productivity because it is
able to quickly and efficiently gather information that accurately describes the organi-
zation. Third, a data warehouse facilitates customer relationship management because it
provides a consistent view of customers and items across all lines of business, all depart-
ments, and all markets. Finally, a data warehouse may bring about cost reduction by track-
ing trends, patterns, and exceptions over long periods in a consistent and reliable manner.

To design an effective data warehouse we need to understand and analyze business
needs and construct a business analysis framework. The construction of a large and com-
plex information system can be viewed as the construction of a large and complex build-
ing, for which the owner, architect, and builder have different views. These views are
combined to form a complex framework that represents the top-down, business-driven,
or owner’s perspective, as well as the bottom-up, builder-driven, or implementor’s view
of the information system.

Four different views regarding the design of a data warehouse must be considered: the
top-down view, the data source view, the data warehouse view, and the business
query view.

The top-down view allows the selection of the relevant information necessary for
the data warehouse. This information matches the current and future business
needs.

The data source view exposes the information being captured, stored, and man-
aged by operational systems. This information may be documented at various
levels of detail and accuracy, from individual data source tables to integrated
data source tables. Data sources are often modeled by traditional data model-
ing techniques, such as the entity-relationship model or CASE (computer-aided
software engineering) tools.

The data warehouse view includes fact tables and dimension tables. It represents the
information that is stored inside the data warehouse, including precalculated totals
and counts, as well as information regarding the source, date, and time of origin,
added to provide historical context.

Finally, the business query view is the perspective of data in the data warehouse from
the viewpoint of the end user.
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Building and using a data warehouse is a complex task because it requires business
skills, technology skills, and program management skills. Regarding business skills, building
a data warehouse involves understanding how such systems store and manage their data,
how to build extractors that transfer data from the operational system to the data ware-
house, and how to build warehouse refresh software that keeps the data warehouse rea-
sonably up-to-date with the operational system’s data. Using a data warehouse involves
understanding the significance of the data it contains, as well as understanding and trans-
lating the business requirements into queries that can be satisfied by the data warehouse.
Regarding technology skills, data analysts are required to understand how to make assess-
ments from quantitative information and derive facts based on conclusions from his-
torical information in the data warehouse. These skills include the ability to discover
patterns and trends, to extrapolate trends based on history and look for anomalies or
paradigm shifts, and to present coherent managerial recommendations based on such
analysis. Finally, program management skills involve the need to interface with many tech-
nologies, vendors, and end users in order to deliver results in a timely and cost-effective
manner.

The Process of Data Warehouse Design
A data warehouse can be built using a top-down approach, a bottom-up approach, or a
combination of both. The top-down approach starts with the overall design and plan-
ning. It is useful in cases where the technology is mature and well known, and where the
business problems that must be solved are clear and well understood. The bottom-up
approach starts with experiments and prototypes. This is useful in the early stage of busi-
ness modeling and technology development. It allows an organization to move forward
at considerably less expense and to evaluate the benefits of the technology before mak-
ing significant commitments. In the combined approach, an organization can exploit
the planned and strategic nature of the top-down approach while retaining the rapid
implementation and opportunistic application of the bottom-up approach.

From the software engineering point of view, the design and construction of a data
warehouse may consist of the following steps: planning, requirements study, problem anal-
ysis, warehouse design, data integration and testing, and finally deployment of the data ware-
house. Large software systems can be developed using two methodologies: the waterfall
method or the spiral method. The waterfall method performs a structured and systematic
analysis at each step before proceeding to the next, which is like a waterfall, falling from
one step to the next. The spiral method involves the rapid generation of increasingly
functional systems, with short intervals between successive releases. This is considered
a good choice for data warehouse development, especially for data marts, because the
turnaround time is short, modifications can be done quickly, and new designs and tech-
nologies can be adapted in a timely manner.

In general, the warehouse design process consists of the following steps:

1. Choose a business process to model, for example, orders, invoices, shipments,
inventory, account administration, sales, or the general ledger. If the business
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process is organizational and involves multiple complex object collections, a data
warehouse model should be followed. However, if the process is departmental
and focuses on the analysis of one kind of business process, a data mart model
should be chosen.

2. Choose the grain of the business process. The grain is the fundamental, atomic level
of data to be represented in the fact table for this process, for example, individual
transactions, individual daily snapshots, and so on.

3. Choose the dimensions that will apply to each fact table record. Typical dimensions
are time, item, customer, supplier, warehouse, transaction type, and status.

4. Choose the measures that will populate each fact table record. Typical measures are
numeric additive quantities like dollars sold and units sold.

Because data warehouse construction is a difficult and long-term task, its imple-
mentation scope should be clearly defined. The goals of an initial data warehouse
implementation should be specific, achievable, and measurable. This involves deter-
mining the time and budget allocations, the subset of the organization that is to be
modeled, the number of data sources selected, and the number and types of depart-
ments to be served.

Once a data warehouse is designed and constructed, the initial deployment of
the warehouse includes initial installation, roll-out planning, training, and orienta-
tion. Platform upgrades and maintenance must also be considered. Data warehouse
administration includes data refreshment, data source synchronization, planning for
disaster recovery, managing access control and security, managing data growth, man-
aging database performance, and data warehouse enhancement and extension. Scope
management includes controlling the number and range of queries, dimensions, and
reports; limiting the size of the data warehouse; or limiting the schedule, budget, or
resources.

Various kinds of data warehouse design tools are available. Data warehouse devel-
opment tools provide functions to define and edit metadata repository contents (such
as schemas, scripts, or rules), answer queries, output reports, and ship metadata to
and from relational database system catalogues. Planning and analysis tools study the
impact of schema changes and of refresh performance when changing refresh rates or
time windows.

3.3.2 A Three-Tier Data Warehouse Architecture

Data warehouses often adopt a three-tier architecture, as presented in Figure 3.12.

1. The bottom tier is a warehouse database server that is almost always a relational
database system. Back-end tools and utilities are used to feed data into the bottom
tier from operational databases or other external sources (such as customer profile
information provided by external consultants). These tools and utilities perform data
extraction, cleaning, and transformation (e.g., to merge similar data from different
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Figure 3.12 A three-tier data warehousing architecture.

sources into a unified format), as well as load and refresh functions to update the
data warehouse (Section 3.3.3). The data are extracted using application program
interfaces known as gateways. A gateway is supported by the underlying DBMS and
allows client programs to generate SQL code to be executed at a server. Examples
of gateways include ODBC (Open Database Connection) and OLEDB (Open Link-
ing and Embedding for Databases) by Microsoft and JDBC (Java Database Connec-
tion). This tier also contains a metadata repository, which stores information about
the data warehouse and its contents. The metadata repository is further described in
Section 3.3.4.

2. The middle tier is an OLAP server that is typically implemented using either
(1) a relational OLAP (ROLAP) model, that is, an extended relational DBMS that
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maps operations on multidimensional data to standard relational operations; or
(2) a multidimensional OLAP (MOLAP) model, that is, a special-purpose server
that directly implements multidimensional data and operations. OLAP servers are
discussed in Section 3.3.5.

3. The top tier is a front-end client layer, which contains query and reporting tools,
analysis tools, and/or data mining tools (e.g., trend analysis, prediction, and so on).

From the architecture point of view, there are three data warehouse models: the enter-
prise warehouse, the data mart, and the virtual warehouse.

Enterprise warehouse: An enterprise warehouse collects all of the information about
subjects spanning the entire organization. It provides corporate-wide data inte-
gration, usually from one or more operational systems or external information
providers, and is cross-functional in scope. It typically contains detailed data as
well as summarized data, and can range in size from a few gigabytes to hundreds
of gigabytes, terabytes, or beyond. An enterprise data warehouse may be imple-
mented on traditional mainframes, computer superservers, or parallel architecture
platforms. It requires extensive business modeling and may take years to design
and build.

Data mart: A data mart contains a subset of corporate-wide data that is of value to a
specific group of users. The scope is confined to specific selected subjects. For exam-
ple, a marketing data mart may confine its subjects to customer, item, and sales. The
data contained in data marts tend to be summarized.
Data marts are usually implemented on low-cost departmental servers that are
UNIX/LINUX- or Windows-based. The implementation cycle of a data mart is
more likely to be measured in weeks rather than months or years. However, it
may involve complex integration in the long run if its design and planning were
not enterprise-wide.
Depending on the source of data, data marts can be categorized as independent or
dependent. Independent data marts are sourced from data captured from one or more
operational systems or external information providers, or from data generated locally
within a particular department or geographic area. Dependent data marts are sourced
directly from enterprise data warehouses.

Virtual warehouse: A virtual warehouse is a set of views over operational databases. For
efficient query processing, only some of the possible summary views may be materi-
alized. A virtual warehouse is easy to build but requires excess capacity on operational
database servers.

“What are the pros and cons of the top-down and bottom-up approaches to data ware-
house development?” The top-down development of an enterprise warehouse serves as
a systematic solution and minimizes integration problems. However, it is expensive,
takes a long time to develop, and lacks flexibility due to the difficulty in achieving
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consistency and consensus for a common data model for the entire organization. The
bottom-up approach to the design, development, and deployment of independent
data marts provides flexibility, low cost, and rapid return of investment. It, however,
can lead to problems when integrating various disparate data marts into a consistent
enterprise data warehouse.

A recommended method for the development of data warehouse systems is to
implement the warehouse in an incremental and evolutionary manner, as shown in
Figure 3.13. First, a high-level corporate data model is defined within a reasonably
short period (such as one or two months) that provides a corporate-wide, consistent,
integrated view of data among different subjects and potential usages. This high-level
model, although it will need to be refined in the further development of enterprise
data warehouses and departmental data marts, will greatly reduce future integration
problems. Second, independent data marts can be implemented in parallel with
the enterprise warehouse based on the same corporate data model set as above.
Third, distributed data marts can be constructed to integrate different data marts via
hub servers. Finally, a multitier data warehouse is constructed where the enterprise
warehouse is the sole custodian of all warehouse data, which is then distributed to
the various dependent data marts.

Enterprise

data


warehouse

Multitier

data


warehouse

Distributed

data marts

Data 

mart

Define a high-level corporate data model

Data 

mart

Model  refinement Model  refinement

Figure 3.13 A recommended approach for data warehouse development.
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3.3.3 Data Warehouse Back-End Tools and Utilities

Data warehouse systems use back-end tools and utilities to populate and refresh their
data (Figure 3.12). These tools and utilities include the following functions:

Data extraction, which typically gathers data from multiple, heterogeneous, and exter-
nal sources

Data cleaning, which detects errors in the data and rectifies them when possible

Data transformation, which converts data from legacy or host format to warehouse
format

Load, which sorts, summarizes, consolidates, computes views, checks integrity, and
builds indices and partitions

Refresh, which propagates the updates from the data sources to the warehouse

Besides cleaning, loading, refreshing, and metadata definition tools, data warehouse sys-
tems usually provide a good set of data warehouse management tools.

Data cleaning and data transformation are important steps in improving the quality
of the data and, subsequently, of the data mining results. They are described in Chapter 2
on Data Preprocessing. Because we are mostly interested in the aspects of data warehous-
ing technology related to data mining, we will not get into the details of the remaining
tools and recommend interested readers to consult books dedicated to data warehousing
technology.

3.3.4 Metadata Repository

Metadata are data about data. When used in a data warehouse, metadata are the data that
define warehouse objects. Figure 3.12 showed a metadata repository within the bottom
tier of the data warehousing architecture. Metadata are created for the data names and
definitions of the given warehouse. Additional metadata are created and captured for
timestamping any extracted data, the source of the extracted data, and missing fields
that have been added by data cleaning or integration processes.

A metadata repository should contain the following:

A description of the structure of the data warehouse, which includes the warehouse
schema, view, dimensions, hierarchies, and derived data definitions, as well as data
mart locations and contents

Operational metadata, which include data lineage (history of migrated data and the
sequence of transformations applied to it), currency of data (active, archived, or
purged), and monitoring information (warehouse usage statistics, error reports, and
audit trails)

The algorithms used for summarization, which include measure and dimension defi-
nition algorithms, data on granularity, partitions, subject areas, aggregation, summa-
rization, and predefined queries and reports
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The mapping from the operational environment to the data warehouse, which includes
source databases and their contents, gateway descriptions, data partitions, data extrac-
tion, cleaning, transformation rules and defaults, data refresh and purging rules, and
security (user authorization and access control)

Data related to system performance, which include indices and profiles that improve
data access and retrieval performance, in addition to rules for the timing and schedul-
ing of refresh, update, and replication cycles

Business metadata, which include business terms and definitions, data ownership
information, and charging policies

A data warehouse contains different levels of summarization, of which metadata is
one type. Other types include current detailed data (which are almost always on disk),
older detailed data (which are usually on tertiary storage), lightly summarized data and
highly summarized data (which may or may not be physically housed).

Metadata play a very different role than other data warehouse data and are important
for many reasons. For example, metadata are used as a directory to help the decision
support system analyst locate the contents of the data warehouse, as a guide to the map-
ping of data when the data are transformed from the operational environment to the
data warehouse environment, and as a guide to the algorithms used for summarization
between the current detailed data and the lightly summarized data, and between the
lightly summarized data and the highly summarized data. Metadata should be stored
and managed persistently (i.e., on disk).

3.3.5 Types of OLAP Servers: ROLAP versus MOLAP
versus HOLAP

Logically, OLAP servers present business users with multidimensional data from data
warehouses or data marts, without concerns regarding how or where the data are stored.
However, the physical architecture and implementation of OLAP servers must consider
data storage issues. Implementations of a warehouse server for OLAP processing include
the following:

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in
between a relational back-end server and client front-end tools. They use a relational
or extended-relational DBMS to store and manage warehouse data, and OLAP middle-
ware to support missing pieces. ROLAP servers include optimization for each DBMS
back end, implementation of aggregation navigation logic, and additional tools and
services. ROLAP technology tends to have greater scalability than MOLAP technol-
ogy. The DSS server of Microstrategy, for example, adopts the ROLAP approach.

Multidimensional OLAP (MOLAP) servers: These servers support multidimensional
views of data through array-based multidimensional storage engines. They map multi-
dimensional views directly to data cube array structures. The advantage of using a data
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cube is that it allows fast indexing to precomputed summarized data. Notice that with
multidimensional data stores, the storage utilization may be low if the data set is sparse.
In such cases, sparse matrix compression techniques should be explored (Chapter 4).
Many MOLAP servers adopt a two-level storage representation to handle dense and
sparse data sets: denser subcubes are identified and stored as array structures, whereas
sparse subcubes employ compression technology for efficient storage utilization.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and
MOLAP technology, benefiting from the greater scalability of ROLAP and the faster
computation of MOLAP. For example, a HOLAP server may allow large volumes
of detail data to be stored in a relational database, while aggregations are kept in a
separate MOLAP store. The Microsoft SQL Server 2000 supports a hybrid OLAP
server.

Specialized SQL servers: To meet the growing demand of OLAP processing in relational
databases, some database system vendors implement specialized SQL servers that pro-
vide advanced query language and query processing support for SQL queries over star
and snowflake schemas in a read-only environment.

“How are data actually stored in ROLAP and MOLAP architectures?” Let’s first look
at ROLAP. As its name implies, ROLAP uses relational tables to store data for on-line
analytical processing. Recall that the fact table associated with a base cuboid is referred
to as a base fact table. The base fact table stores data at the abstraction level indicated by
the join keys in the schema for the given data cube. Aggregated data can also be stored
in fact tables, referred to as summary fact tables. Some summary fact tables store both
base fact table data and aggregated data, as in Example 3.10. Alternatively, separate sum-
mary fact tables can be used for each level of abstraction, to store only aggregated data.

Example 3.10 A ROLAP data store. Table 3.4 shows a summary fact table that contains both base fact
data and aggregated data. The schema of the table is “〈record identifier (RID), item, . . . ,
day, month, quarter, year, dollars sold〉”, where day, month, quarter, and year define the
date of sales, and dollars sold is the sales amount. Consider the tuples with an RID of 1001
and 1002, respectively. The data of these tuples are at the base fact level, where the date
of sales is October 15, 2003, and October 23, 2003, respectively. Consider the tuple with
an RID of 5001. This tuple is at a more general level of abstraction than the tuples 1001

Table 3.4 Single table for base and summary facts.

RID item . . . day month quarter year dollars sold

1001 TV . . . 15 10 Q4 2003 250.60

1002 TV . . . 23 10 Q4 2003 175.00

. . . . . . . . . . . . . . . . . . . . . . . .

5001 TV . . . all 10 Q4 2003 45,786.08

. . . . . . . . . . . . . . . . . . . . . . . .
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and 1002. The day value has been generalized to all, so that the corresponding time value
is October 2003. That is, the dollars sold amount shown is an aggregation representing
the entire month of October 2003, rather than just October 15 or 23, 2003. The special
value all is used to represent subtotals in summarized data.

MOLAP uses multidimensional array structures to store data for on-line analytical
processing. This structure is discussed in the following section on data warehouse imple-
mentation and, in greater detail, in Chapter 4.

Most data warehouse systems adopt a client-server architecture. A relational data store
always resides at the data warehouse/data mart server site. A multidimensional data store
can reside at either the database server site or the client site.

3.4 Data Warehouse Implementation

Data warehouses contain huge volumes of data. OLAP servers demand that decision
support queries be answered in the order of seconds. Therefore, it is crucial for data ware-
house systems to support highly efficient cube computation techniques, access methods,
and query processing techniques. In this section, we present an overview of methods for
the efficient implementation of data warehouse systems.

3.4.1 Efficient Computation of Data Cubes

At the core of multidimensional data analysis is the efficient computation of aggregations
across many sets of dimensions. In SQL terms, these aggregations are referred to as
group-by’s. Each group-by can be represented by a cuboid, where the set of group-by’s
forms a lattice of cuboids defining a data cube. In this section, we explore issues relating
to the efficient computation of data cubes.

The compute cube Operator and the
Curse of Dimensionality

One approach to cube computation extends SQL so as to include a compute cube oper-
ator. The compute cube operator computes aggregates over all subsets of the dimensions
specified in the operation. This can require excessive storage space, especially for large
numbers of dimensions. We start with an intuitive look at what is involved in the efficient
computation of data cubes.

Example 3.11 A data cube is a lattice of cuboids. Suppose that you would like to create a data cube for
AllElectronics sales that contains the following: city, item, year, and sales in dollars. You
would like to be able to analyze the data, with queries such as the following:

“Compute the sum of sales, grouping by city and item.”

“Compute the sum of sales, grouping by city.”

“Compute the sum of sales, grouping by item.”
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What is the total number of cuboids, or group-by’s, that can be computed for this
data cube? Taking the three attributes, city, item, and year, as the dimensions for the
data cube, and sales in dollars as the measure, the total number of cuboids, or group-
by’s, that can be computed for this data cube is 23 = 8. The possible group-by’s are
the following: {(city, item, year), (city, item), (city, year), (item, year), (city), (item),
(year), ()}, where () means that the group-by is empty (i.e., the dimensions are not
grouped). These group-by’s form a lattice of cuboids for the data cube, as shown
in Figure 3.14. The base cuboid contains all three dimensions, city, item, and year.
It can return the total sales for any combination of the three dimensions. The apex
cuboid, or 0-D cuboid, refers to the case where the group-by is empty. It contains
the total sum of all sales. The base cuboid is the least generalized (most specific) of
the cuboids. The apex cuboid is the most generalized (least specific) of the cuboids,
and is often denoted as all. If we start at the apex cuboid and explore downward in
the lattice, this is equivalent to drilling down within the data cube. If we start at the
base cuboid and explore upward, this is akin to rolling up.

An SQL query containing no group-by, such as “compute the sum of total sales,” is a
zero-dimensional operation. An SQL query containing one group-by, such as “compute
the sum of sales, group by city,” is a one-dimensional operation. A cube operator on
n dimensions is equivalent to a collection of group by statements, one for each subset

(item) (year)(city)

()

(item, year)

(city, item, year)

(city, item) (city, year)

O-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D  (base) cuboid

Figure 3.14 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains the three dimensions city, item, and year.
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of the n dimensions. Therefore, the cube operator is the n-dimensional generalization of
the group by operator.

Based on the syntax of DMQL introduced in Section 3.2.3, the data cube in
Example 3.11 could be defined as

define cube sales cube [city, item, year]: sum(sales in dollars)

For a cube with n dimensions, there are a total of 2n cuboids, including the base
cuboid. A statement such as

compute cube sales cube

would explicitly instruct the system to compute the sales aggregate cuboids for all of the
eight subsets of the set {city, item, year}, including the empty subset. A cube computation
operator was first proposed and studied by Gray et al. [GCB+97].

On-line analytical processing may need to access different cuboids for different queries.
Therefore, it may seem like a good idea to compute all or at least some of the cuboids
in a data cube in advance. Precomputation leads to fast response time and avoids some
redundant computation. Most, if not all, OLAP products resort to some degree of pre-
computation of multidimensional aggregates.

A major challenge related to this precomputation, however, is that the required storage
space may explode if all of the cuboids in a data cube are precomputed, especially when
the cube has many dimensions. The storage requirements are even more excessive when
many of the dimensions have associated concept hierarchies, each with multiple levels.
This problem is referred to as the curse of dimensionality. The extent of the curse of
dimensionality is illustrated below.

“How many cuboids are there in an n-dimensional data cube?” If there were no
hierarchies associated with each dimension, then the total number of cuboids for
an n-dimensional data cube, as we have seen above, is 2n. However, in practice,
many dimensions do have hierarchies. For example, the dimension time is usually not
explored at only one conceptual level, such as year, but rather at multiple conceptual
levels, such as in the hierarchy “day < month < quarter < year”. For an n-dimensional
data cube, the total number of cuboids that can be generated (including the cuboids
generated by climbing up the hierarchies along each dimension) is

Total number o f cuboids =
n

∏
i=1

(Li + 1), (3.1)

where Li is the number of levels associated with dimension i. One is added to Li in
Equation (3.1) to include the virtual top level, all. (Note that generalizing to all is equiv-
alent to the removal of the dimension.) This formula is based on the fact that, at most,
one abstraction level in each dimension will appear in a cuboid. For example, the time
dimension as specified above has 4 conceptual levels, or 5 if we include the virtual level all.
If the cube has 10 dimensions and each dimension has 5 levels (including all), the total
number of cuboids that can be generated is 510 ≈ 9.8× 106. The size of each cuboid
also depends on the cardinality (i.e., number of distinct values) of each dimension. For
example, if the AllElectronics branch in each city sold every item, there would be
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|city| × |item| tuples in the city-item group-by alone. As the number of dimensions,
number of conceptual hierarchies, or cardinality increases, the storage space required
for many of the group-by’s will grossly exceed the (fixed) size of the input relation.

By now, you probably realize that it is unrealistic to precompute and materialize all
of the cuboids that can possibly be generated for a data cube (or from a base cuboid). If
there are many cuboids, and these cuboids are large in size, a more reasonable option is
partial materialization, that is, to materialize only some of the possible cuboids that can
be generated.

Partial Materialization: Selected
Computation of Cuboids

There are three choices for data cube materialization given a base cuboid:

1. No materialization: Do not precompute any of the “nonbase” cuboids. This leads to
computing expensive multidimensional aggregates on the fly, which can be extremely
slow.

2. Full materialization: Precompute all of the cuboids. The resulting lattice of computed
cuboids is referred to as the full cube. This choice typically requires huge amounts of
memory space in order to store all of the precomputed cuboids.

3. Partial materialization: Selectively compute a proper subset of the whole set of possi-
ble cuboids. Alternatively, we may compute a subset of the cube, which contains only
those cells that satisfy some user-specified criterion, such as where the tuple count of
each cell is above some threshold. We will use the term subcube to refer to the latter case,
where only some of the cells may be precomputed for various cuboids. Partial materi-
alization represents an interesting trade-off between storage space and response time.

The partial materialization of cuboids or subcubes should consider three factors:
(1) identify the subset of cuboids or subcubes to materialize; (2) exploit the mate-
rialized cuboids or subcubes during query processing; and (3) efficiently update the
materialized cuboids or subcubes during load and refresh.

The selection of the subset of cuboids or subcubes to materialize should take into
account the queries in the workload, their frequencies, and their accessing costs. In addi-
tion, it should consider workload characteristics, the cost for incremental updates, and the
total storage requirements. The selection must also consider the broad context of physical
database design, such as the generation and selection of indices. Several OLAP products
have adopted heuristic approaches for cuboid and subcube selection. A popular approach
is to materialize the set of cuboids on which other frequently referenced cuboids are based.
Alternatively, we can compute an iceberg cube, which is a data cube that stores only those
cube cells whose aggregate value (e.g., count) is above some minimum support threshold.
Another common strategy is to materialize a shell cube. This involves precomputing the
cuboids for only a small number of dimensions (such as 3 to 5) of a data cube. Queries
on additional combinations of the dimensions can be computed on-the-fly. Because our
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aim in this chapter is to provide a solid introduction and overview of data warehousing
for data mining, we defer our detailed discussion of cuboid selection and computation
to Chapter 4, which studies data warehouse and OLAP implementation in greater depth.

Once the selected cuboids have been materialized, it is important to take advantage of
them during query processing. This involves several issues, such as how to determine the
relevant cuboid(s) from among the candidate materialized cuboids, how to use available
index structures on the materialized cuboids, and how to transform the OLAP opera-
tions onto the selected cuboid(s). These issues are discussed in Section 3.4.3 as well as in
Chapter 4.

Finally, during load and refresh, the materialized cuboids should be updated effi-
ciently. Parallelism and incremental update techniques for this operation should be
explored.

3.4.2 Indexing OLAP Data

To facilitate efficient data accessing, most data warehouse systems support index struc-
tures and materialized views (using cuboids). General methods to select cuboids for
materialization were discussed in the previous section. In this section, we examine how
to index OLAP data by bitmap indexing and join indexing.

The bitmap indexing method is popular in OLAP products because it allows quick
searching in data cubes. The bitmap index is an alternative representation of the
record ID (RID) list. In the bitmap index for a given attribute, there is a distinct bit
vector, Bv, for each value v in the domain of the attribute. If the domain of a given
attribute consists of n values, then n bits are needed for each entry in the bitmap index
(i.e., there are n bit vectors). If the attribute has the value v for a given row in the data
table, then the bit representing that value is set to 1 in the corresponding row of the
bitmap index. All other bits for that row are set to 0.

Example 3.12 Bitmap indexing. In the AllElectronics data warehouse, suppose the dimension item at the
top level has four values (representing item types): “home entertainment,” “computer,”
“phone,” and “security.” Each value (e.g., “computer”) is represented by a bit vector in
the bitmap index table for item. Suppose that the cube is stored as a relation table with
100,000 rows. Because the domain of item consists of four values, the bitmap index table
requires four bit vectors (or lists), each with 100,000 bits. Figure 3.15 shows a base (data)
table containing the dimensions item and city, and its mapping to bitmap index tables
for each of the dimensions.

Bitmap indexing is advantageous compared to hash and tree indices. It is especially
useful for low-cardinality domains because comparison, join, and aggregation opera-
tions are then reduced to bit arithmetic, which substantially reduces the processing time.
Bitmap indexing leads to significant reductions in space and I/O since a string of charac-
ters can be represented by a single bit. For higher-cardinality domains, the method can
be adapted using compression techniques.

The join indexing method gained popularity from its use in relational database query
processing. Traditional indexing maps the value in a given column to a list of rows having
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Figure 3.15 Indexing OLAP data using bitmap indices.

that value. In contrast, join indexing registers the joinable rows of two relations from a
relational database. For example, if two relations R(RID, A) and S(B, SID) join on the
attributes A and B, then the join index record contains the pair (RID, SID), where RID
and SID are record identifiers from the R and S relations, respectively. Hence, the join
index records can identify joinable tuples without performing costly join operations. Join
indexing is especially useful for maintaining the relationship between a foreign key3 and
its matching primary keys, from the joinable relation.

The star schema model of data warehouses makes join indexing attractive for cross-
table search, because the linkage between a fact table and its corresponding dimension
tables comprises the foreign key of the fact table and the primary key of the dimen-
sion table. Join indexing maintains relationships between attribute values of a dimension
(e.g., within a dimension table) and the corresponding rows in the fact table. Join indices
may span multiple dimensions to form composite join indices. We can use join indices
to identify subcubes that are of interest.

Example 3.13 Join indexing. In Example 3.4, we defined a star schema for AllElectronics of the form
“sales star [time, item, branch, location]: dollars sold = sum (sales in dollars)”. An exam-
ple of a join index relationship between the sales fact table and the dimension tables for
location and item is shown in Figure 3.16. For example, the “Main Street” value in the
location dimension table joins with tuples T57, T238, and T884 of the sales fact table.
Similarly, the “Sony-TV” value in the item dimension table joins with tuples T57 and
T459 of the sales fact table. The corresponding join index tables are shown in Figure 3.17.

3A set of attributes in a relation schema that forms a primary key for another relation schema is called
a foreign key.
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Figure 3.16 Linkages between a sales fact table and dimension tables for location and item.

Figure 3.17 Join index tables based on the linkages between the sales fact table and dimension tables for
location and item shown in Figure 3.16.

Suppose that there are 360 time values, 100 items, 50 branches, 30 locations, and
10 million sales tuples in the sales star data cube. If the sales fact table has recorded
sales for only 30 items, the remaining 70 items will obviously not participate in joins.
If join indices are not used, additional I/Os have to be performed to bring the joining
portions of the fact table and dimension tables together.
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To further speed up query processing, the join indexing and bitmap indexing methods
can be integrated to form bitmapped join indices.

3.4.3 Efficient Processing of OLAP Queries

The purpose of materializing cuboids and constructing OLAP index structures is to
speed up query processing in data cubes. Given materialized views, query processing
should proceed as follows:

1. Determine which operations should be performed on the available cuboids: This
involves transforming any selection, projection, roll-up (group-by), and drill-down
operations specified in the query into corresponding SQL and/or OLAP operations.
For example, slicing and dicing a data cube may correspond to selection and/or pro-
jection operations on a materialized cuboid.

2. Determinetowhichmaterializedcuboid(s) therelevantoperationsshouldbeapplied:
This involves identifying all of the materialized cuboids that may potentially be used
to answer the query, pruning the above set using knowledge of “dominance” relation-
ships among the cuboids, estimating the costs of using the remaining materialized
cuboids, and selecting the cuboid with the least cost.

Example 3.14 OLAP query processing. Suppose that we define a data cube for AllElectronics of the form
“sales cube [time, item, location]: sum(sales in dollars)”. The dimension hierarchies used
are “day<month< quarter< year” for time, “item name< brand< type” for item, and
“street < city < province or state < country” for location.

Suppose that the query to be processed is on {brand, province or state}, with the
selection constant “year = 2004”. Also, suppose that there are four materialized cuboids
available, as follows:

cuboid 1: {year, item name, city}
cuboid 2: {year, brand, country}
cuboid 3: {year, brand, province or state}
cuboid 4: {item name, province or state} where year = 2004

“Which of the above four cuboids should be selected to process the query?” Finer-
granularity data cannot be generated from coarser-granularity data. Therefore, cuboid 2
cannot be used because country is a more general concept than province or state.
Cuboids 1, 3, and 4 can be used to process the query because (1) they have the same set
or a superset of the dimensions in the query, (2) the selection clause in the query can
imply the selection in the cuboid, and (3) the abstraction levels for the item and loca-
tion dimensions in these cuboids are at a finer level than brand and province or state,
respectively.

“How would the costs of each cuboid compare if used to process the query?” It is
likely that using cuboid 1 would cost the most because both item name and city are
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at a lower level than the brand and province or state concepts specified in the query.
If there are not many year values associated with items in the cube, but there are
several item names for each brand, then cuboid 3 will be smaller than cuboid 4, and
thus cuboid 3 should be chosen to process the query. However, if efficient indices
are available for cuboid 4, then cuboid 4 may be a better choice. Therefore, some
cost-based estimation is required in order to decide which set of cuboids should be
selected for query processing.

Because the storage model of a MOLAP server is an n-dimensional array, the front-
end multidimensional queries are mapped directly to server storage structures, which
provide direct addressing capabilities. The straightforward array representation of the
data cube has good indexing properties, but has poor storage utilization when the data
are sparse. For efficient storage and processing, sparse matrix and data compression tech-
niques should therefore be applied. The details of several such methods of cube compu-
tation are presented in Chapter 4.

The storage structures used by dense and sparse arrays may differ, making it advan-
tageous to adopt a two-level approach to MOLAP query processing: use array structures
for dense arrays, and sparse matrix structures for sparse arrays. The two-dimensional
dense arrays can be indexed by B-trees.

To process a query in MOLAP, the dense one- and two-dimensional arrays must first
be identified. Indices are then built to these arrays using traditional indexing structures.
The two-level approach increases storage utilization without sacrificing direct addressing
capabilities.

“Are there any other strategies for answering queries quickly?” Some strategies for answer-
ing queries quickly concentrate on providing intermediate feedback to the users. For exam-
ple, in on-line aggregation, a data mining system can display “what it knows so far” instead
of waiting until the query is fully processed. Such an approximate answer to the given data
mining query is periodically refreshed and refined as the computation process continues.
Confidence intervals are associated with each estimate, providing the user with additional
feedback regarding the reliability of the answer so far. This promotes interactivity with
the system—the user gains insight as to whether or not he or she is probing in the “right”
direction without having to wait until the end of the query. While on-line aggregation
does not improve the total time to answer a query, the overall data mining process should
be quicker due to the increased interactivity with the system.

Another approach is to employ top N queries. Suppose that you are interested in find-
ing only the best-selling items among the millions of items sold at AllElectronics. Rather
than waiting to obtain a list of all store items, sorted in decreasing order of sales, you
would like to see only the top N. Using statistics, query processing can be optimized to
return the top N items, rather than the whole sorted list. This results in faster response
time while helping to promote user interactivity and reduce wasted resources.

The goal of this section was to provide an overview of data warehouse implementa-
tion. Chapter 4 presents a more advanced treatment of this topic. It examines the efficient
computation of data cubes and processing of OLAP queries in greater depth, providing
detailed algorithms.
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3.5 From Data Warehousing to Data Mining

“How do data warehousing and OLAP relate to data mining?” In this section, we study the
usage of data warehousing for information processing, analytical processing, and data
mining. We also introduce on-line analytical mining (OLAM), a powerful paradigm that
integrates OLAP with data mining technology.

3.5.1 Data Warehouse Usage

Data warehouses and data marts are used in a wide range of applications. Business
executives use the data in data warehouses and data marts to perform data analysis and
make strategic decisions. In many firms, data warehouses are used as an integral part
of a plan-execute-assess “closed-loop” feedback system for enterprise management.
Data warehouses are used extensively in banking and financial services, consumer
goods and retail distribution sectors, and controlled manufacturing, such as demand-
based production.

Typically, the longer a data warehouse has been in use, the more it will have evolved.
This evolution takes place throughout a number of phases. Initially, the data warehouse
is mainly used for generating reports and answering predefined queries. Progressively, it
is used to analyze summarized and detailed data, where the results are presented in the
form of reports and charts. Later, the data warehouse is used for strategic purposes, per-
forming multidimensional analysis and sophisticated slice-and-dice operations. Finally,
the data warehouse may be employed for knowledge discovery and strategic decision
making using data mining tools. In this context, the tools for data warehousing can be
categorized into access and retrieval tools, database reporting tools, data analysis tools, and
data mining tools.

Business users need to have the means to know what exists in the data warehouse
(through metadata), how to access the contents of the data warehouse, how to examine
the contents using analysis tools, and how to present the results of such analysis.

There are three kinds of data warehouse applications: information processing, analyt-
ical processing, and data mining:

Information processing supports querying, basic statistical analysis, and reporting
using crosstabs, tables, charts, or graphs. A current trend in data warehouse infor-
mation processing is to construct low-cost Web-based accessing tools that are then
integrated with Web browsers.

Analytical processing supports basic OLAP operations, including slice-and-dice,
drill-down, roll-up, and pivoting. It generally operates on historical data in both sum-
marized and detailed forms. The major strength of on-line analytical processing over
information processing is the multidimensional data analysis of data warehouse data.

Data mining supports knowledge discovery by finding hidden patterns and associa-
tions, constructing analytical models, performing classification and prediction, and
presenting the mining results using visualization tools.
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“How does data mining relate to information processing and on-line analytical
processing?” Information processing, based on queries, can find useful information. How-
ever, answers to such queries reflect the information directly stored in databases or com-
putable by aggregate functions. They do not reflect sophisticated patterns or regularities
buried in the database. Therefore, information processing is not data mining.

On-line analytical processing comes a step closer to data mining because it can
derive information summarized at multiple granularities from user-specified subsets
of a data warehouse. Such descriptions are equivalent to the class/concept descrip-
tions discussed in Chapter 1. Because data mining systems can also mine generalized
class/concept descriptions, this raises some interesting questions: “Do OLAP systems
perform data mining? Are OLAP systems actually data mining systems?”

The functionalities of OLAP and data mining can be viewed as disjoint: OLAP is
a data summarization/aggregation tool that helps simplify data analysis, while data
mining allows the automated discovery of implicit patterns and interesting knowledge
hidden in large amounts of data. OLAP tools are targeted toward simplifying and
supporting interactive data analysis, whereas the goal of data mining tools is to
automate as much of the process as possible, while still allowing users to guide the
process. In this sense, data mining goes one step beyond traditional on-line analytical
processing.

An alternative and broader view of data mining may be adopted in which data
mining covers both data description and data modeling. Because OLAP systems can
present general descriptions of data from data warehouses, OLAP functions are essen-
tially for user-directed data summary and comparison (by drilling, pivoting, slicing,
dicing, and other operations). These are, though limited, data mining functionalities.
Yet according to this view, data mining covers a much broader spectrum than simple
OLAP operations because it performs not only data summary and comparison but
also association, classification, prediction, clustering, time-series analysis, and other
data analysis tasks.

Data mining is not confined to the analysis of data stored in data warehouses. It may
analyze data existing at more detailed granularities than the summarized data provided
in a data warehouse. It may also analyze transactional, spatial, textual, and multimedia
data that are difficult to model with current multidimensional database technology. In
this context, data mining covers a broader spectrum than OLAP with respect to data
mining functionality and the complexity of the data handled.

Because data mining involves more automated and deeper analysis than OLAP,
data mining is expected to have broader applications. Data mining can help busi-
ness managers find and reach more suitable customers, as well as gain critical
business insights that may help drive market share and raise profits. In addi-
tion, data mining can help managers understand customer group characteristics
and develop optimal pricing strategies accordingly, correct item bundling based
not on intuition but on actual item groups derived from customer purchase pat-
terns, reduce promotional spending, and at the same time increase the overall net
effectiveness of promotions.
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3.5.2 From On-Line Analytical Processing to
On-Line Analytical Mining

In the field of data mining, substantial research has been performed for data mining on
various platforms, including transaction databases, relational databases, spatial databases,
text databases, time-series databases, flat files, data warehouses, and so on.

On-line analytical mining (OLAM) (also called OLAP mining) integrates on-line
analytical processing (OLAP) with data mining and mining knowledge in multidi-
mensional databases. Among the many different paradigms and architectures of data
mining systems, OLAM is particularly important for the following reasons:

High quality of data in data warehouses: Most data mining tools need to work
on integrated, consistent, and cleaned data, which requires costly data clean-
ing, data integration, and data transformation as preprocessing steps. A data
warehouse constructed by such preprocessing serves as a valuable source of high-
quality data for OLAP as well as for data mining. Notice that data mining may
also serve as a valuable tool for data cleaning and data integration as well.

Available information processing infrastructure surrounding data warehouses:
Comprehensive information processing and data analysis infrastructures have been
or will be systematically constructed surrounding data warehouses, which include
accessing, integration, consolidation, and transformation of multiple heterogeneous
databases, ODBC/OLE DB connections, Web-accessing and service facilities, and
reporting and OLAP analysis tools. It is prudent to make the best use of the
available infrastructures rather than constructing everything from scratch.

OLAP-based exploratory data analysis: Effective data mining needs exploratory
data analysis. A user will often want to traverse through a database, select por-
tions of relevant data, analyze them at different granularities, and present knowl-
edge/results in different forms. On-line analytical mining provides facilities for
data mining on different subsets of data and at different levels of abstraction,
by drilling, pivoting, filtering, dicing, and slicing on a data cube and on some
intermediate data mining results. This, together with data/knowledge visualization
tools, will greatly enhance the power and flexibility of exploratory data mining.

On-line selection of data mining functions: Often a user may not know what
kinds of knowledge she would like to mine. By integrating OLAP with multiple
data mining functions, on-line analytical mining provides users with the flexibility
to select desired data mining functions and swap data mining tasks dynamically.

Architecture for On-Line Analytical Mining
An OLAM server performs analytical mining in data cubes in a similar manner as an
OLAP server performs on-line analytical processing. An integrated OLAM and OLAP
architecture is shown in Figure 3.18, where the OLAM and OLAP servers both accept
user on-line queries (or commands) via a graphical user interface API and work with
the data cube in the data analysis via a cube API. A metadata directory is used to
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Figure 3.18 An integrated OLAM and OLAP architecture.

guide the access of the data cube. The data cube can be constructed by accessing
and/or integrating multiple databases via an MDDB API and/or by filtering a data
warehouse via a database API that may support OLE DB or ODBC connections.
Since an OLAM server may perform multiple data mining tasks, such as concept
description, association, classification, prediction, clustering, time-series analysis, and
so on, it usually consists of multiple integrated data mining modules and is more
sophisticated than an OLAP server.
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Chapter 4 describes data warehouses on a finer level by exploring implementation
issues such as data cube computation, OLAP query answering strategies, and methods
of generalization. The chapters following it are devoted to the study of data min-
ing techniques. As we have seen, the introduction to data warehousing and OLAP
technology presented in this chapter is essential to our study of data mining. This
is because data warehousing provides users with large amounts of clean, organized,
and summarized data, which greatly facilitates data mining. For example, rather than
storing the details of each sales transaction, a data warehouse may store a summary
of the transactions per item type for each branch or, summarized to a higher level,
for each country. The capability of OLAP to provide multiple and dynamic views
of summarized data in a data warehouse sets a solid foundation for successful data
mining.

Moreover, we also believe that data mining should be a human-centered process.
Rather than asking a data mining system to generate patterns and knowledge automat-
ically, a user will often need to interact with the system to perform exploratory data
analysis. OLAP sets a good example for interactive data analysis and provides the necessary
preparations for exploratory data mining. Consider the discovery of association patterns,
for example. Instead of mining associations at a primitive (i.e., low) data level among
transactions, users should be allowed to specify roll-up operations along any dimension.
For example, a user may like to roll up on the item dimension to go from viewing the data
for particular TV sets that were purchased to viewing the brands of these TVs, such as
SONY or Panasonic. Users may also navigate from the transaction level to the customer
level or customer-type level in the search for interesting associations. Such an OLAP-
style of data mining is characteristic of OLAP mining. In our study of the principles of
data mining in this book, we place particular emphasis on OLAP mining, that is, on the
integration of data mining and OLAP technology.

3.6 Summary

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile
collection of data organized in support of management decision making. Several
factors distinguish data warehouses from operational databases. Because the two
systems provide quite different functionalities and require different kinds of data,
it is necessary to maintain data warehouses separately from operational databases.

A multidimensional data model is typically used for the design of corporate data
warehouses and departmental data marts. Such a model can adopt a star schema,
snowflake schema, or fact constellation schema. The core of the multidimensional
model is the data cube, which consists of a large set of facts (or measures) and a
number of dimensions. Dimensions are the entities or perspectives with respect to
which an organization wants to keep records and are hierarchical in nature.

A data cube consists of a lattice of cuboids, each corresponding to a different
degree of summarization of the given multidimensional data.
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Concept hierarchies organize the values of attributes or dimensions into gradual
levels of abstraction. They are useful in mining at multiple levels of abstraction.

On-line analytical processing (OLAP) can be performed in data warehouses/marts
using the multidimensional data model. Typical OLAP operations include roll-
up, drill-(down, across, through), slice-and-dice, pivot (rotate), as well as statistical
operations such as ranking and computing moving averages and growth rates.
OLAP operations can be implemented efficiently using the data cube structure.

Data warehouses often adopt a three-tier architecture. The bottom tier is a warehouse
database server, which is typically a relational database system. The middle tier is an
OLAP server, and the top tier is a client, containing query and reporting tools.

A data warehouse contains back-end tools and utilities for populating and refresh-
ing the warehouse. These cover data extraction, data cleaning, data transformation,
loading, refreshing, and warehouse management.

Data warehouse metadata are data defining the warehouse objects. A metadata
repository provides details regarding the warehouse structure, data history, the
algorithms used for summarization, mappings from the source data to warehouse
form, system performance, and business terms and issues.

OLAP servers may use relational OLAP (ROLAP), or multidimensional OLAP
(MOLAP), or hybrid OLAP (HOLAP). A ROLAP server uses an extended rela-
tional DBMS that maps OLAP operations on multidimensional data to standard
relational operations. A MOLAP server maps multidimensional data views directly
to array structures. A HOLAP server combines ROLAP and MOLAP. For example,
it may use ROLAP for historical data while maintaining frequently accessed data
in a separate MOLAP store.

Full materialization refers to the computation of all of the cuboids in the lattice defin-
ing a data cube. It typically requires an excessive amount of storage space, particularly
as the number of dimensions and size of associated concept hierarchies grow. This
problem is known as the curse of dimensionality. Alternatively, partial materializa-
tion is the selective computation of a subset of the cuboids or subcubes in the lattice.
For example, an iceberg cube is a data cube that stores only those cube cells whose
aggregate value (e.g., count) is above some minimum support threshold.

OLAP query processing can be made more efficient with the use of indexing tech-
niques. In bitmap indexing, each attribute has its own bitmap index table. Bitmap
indexing reduces join, aggregation, and comparison operations to bit arithmetic.
Join indexing registers the joinable rows of two or more relations from a rela-
tional database, reducing the overall cost of OLAP join operations. Bitmapped
join indexing, which combines the bitmap and join index methods, can be used
to further speed up OLAP query processing.

Data warehouses are used for information processing (querying and reporting), ana-
lytical processing (which allows users to navigate through summarized and detailed
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data by OLAP operations), and data mining (which supports knowledge discovery).
OLAP-based data mining is referred to as OLAP mining, or on-line analytical mining
(OLAM), which emphasizes the interactive and exploratory nature of OLAP
mining.

Exercises

3.1 State why, for the integration of multiple heterogeneous information sources, many
companies in industry prefer the update-driven approach (which constructs and uses
data warehouses), rather than the query-driven approach (which applies wrappers and
integrators). Describe situations where the query-driven approach is preferable over
the update-driven approach.

3.2 Briefly compare the following concepts. You may use an example to explain your
point(s).

(a) Snowflake schema, fact constellation, starnet query model

(b) Data cleaning, data transformation, refresh

(c) Enterprise warehouse, data mart, virtual warehouse

3.3 Suppose that a data warehouse consists of the three dimensions time, doctor, and
patient, and the two measures count and charge, where charge is the fee that a doctor
charges a patient for a visit.

(a) Enumerate three classes of schemas that are popularly used for modeling data
warehouses.

(b) Draw a schema diagram for the above data warehouse using one of the schema
classes listed in (a).

(c) Starting with the base cuboid [day, doctor, patient], what specific OLAP operations
should be performed in order to list the total fee collected by each doctor in 2004?

(d) To obtain the same list, write an SQL query assuming the data are stored in a
relational database with the schema fee (day, month, year, doctor, hospital, patient,
count, charge).

3.4 Suppose that a data warehouse for Big University consists of the following four dimen-
sions: student, course, semester, and instructor, and two measures count and avg grade.
When at the lowest conceptual level (e.g., for a given student, course, semester, and
instructor combination), the avg grade measure stores the actual course grade of the
student. At higher conceptual levels, avg grade stores the average grade for the given
combination.

(a) Draw a snowflake schema diagram for the data warehouse.

(b) Starting with the base cuboid [student, course, semester, instructor], what specific
OLAP operations (e.g., roll-up from semester to year) should one perform in order
to list the average grade of CS courses for each Big University student.
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(c) If each dimension has five levels (including all), such as “student < major <
status < university < all”, how many cuboids will this cube contain (including
the base and apex cuboids)?

3.5 Suppose that a data warehouse consists of the four dimensions, date, spectator, loca-
tion, and game, and the two measures, count and charge, where charge is the fare that
a spectator pays when watching a game on a given date. Spectators may be students,
adults, or seniors, with each category having its own charge rate.

(a) Draw a star schema diagram for the data warehouse.

(b) Starting with the base cuboid [date, spectator, location, game], what specific OLAP
operations should one perform in order to list the total charge paid by student
spectators at GM Place in 2004?

(c) Bitmap indexing is useful in data warehousing. Taking this cube as an example,
briefly discuss advantages and problems of using a bitmap index structure.

3.6 A data warehouse can be modeled by either a star schema or a snowflake schema.
Briefly describe the similarities and the differences of the two models, and then
analyze their advantages and disadvantages with regard to one another. Give your
opinion of which might be more empirically useful and state the reasons behind
your answer.

3.7 Design a data warehouse for a regional weather bureau. The weather bureau has about
1,000 probes, which are scattered throughout various land and ocean locations in the
region to collect basic weather data, including air pressure, temperature, and precipita-
tion at each hour. All data are sent to the central station, which has collected such data
for over 10 years. Your design should facilitate efficient querying and on-line analytical
processing, and derive general weather patterns in multidimensional space.

3.8 A popular data warehouse implementation is to construct a multidimensional database,
known as a data cube. Unfortunately, this may often generate a huge, yet very sparse
multidimensional matrix. Present an example illustrating such a huge and sparse data
cube.

3.9 Regarding the computation of measures in a data cube:

(a) Enumerate three categories of measures, based on the kind of aggregate functions
used in computing a data cube.

(b) For a data cube with the three dimensions time, location, and item, which category
does the function variance belong to? Describe how to compute it if the cube is
partitioned into many chunks.
Hint: The formula for computing variance is 1

N ∑N
i=1(xi− xi)2, where xi is the

average of N xis.

(c) Suppose the function is “top 10 sales”. Discuss how to efficiently compute this
measure in a data cube.

3.10 Suppose that we need to record three measures in a data cube: min, average, and
median. Design an efficient computation and storage method for each measure given
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that the cube allows data to be deleted incrementally (i.e., in small portions at a time)
from the cube.

3.11 In data warehouse technology, a multiple dimensional view can be implemented by a
relational database technique (ROLAP), or by a multidimensional database technique
(MOLAP), or by a hybrid database technique (HOLAP).

(a) Briefly describe each implementation technique.

(b) For each technique, explain how each of the following functions may be
implemented:

i. The generation of a data warehouse (including aggregation)

ii. Roll-up

iii. Drill-down

iv. Incremental updating

Which implementation techniques do you prefer, and why?

3.12 Suppose that a data warehouse contains 20 dimensions, each with about five levels
of granularity.

(a) Users are mainly interested in four particular dimensions, each having three
frequently accessed levels for rolling up and drilling down. How would you design
a data cube structure to efficiently support this preference?

(b) At times, a user may want to drill through the cube, down to the raw data for
one or two particular dimensions. How would you support this feature?

3.13 A data cube, C, has n dimensions, and each dimension has exactly p distinct values
in the base cuboid. Assume that there are no concept hierarchies associated with the
dimensions.

(a) What is the maximum number of cells possible in the base cuboid?

(b) What is the minimum number of cells possible in the base cuboid?

(c) What is the maximum number of cells possible (including both base cells and
aggregate cells) in the data cube, C?

(d) What is the minimum number of cells possible in the data cube, C?

3.14 What are the differences between the three main types of data warehouse usage:
information processing, analytical processing, and data mining? Discuss the motivation
behind OLAP mining (OLAM).
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4Data Cube Computation and
Data Generalization

Data generalization is a process that abstracts a large set of task-relevant data in a database from
a relatively low conceptual level to higher conceptual levels. Users like the ease and flex-
ibility of having large data sets summarized in concise and succinct terms, at different
levels of granularity, and from different angles. Such data descriptions help provide an
overall picture of the data at hand.

Data warehousing and OLAP perform data generalization by summarizing data at
varying levels of abstraction. An overview of such technology was presented in
Chapter 3. From a data analysis point of view, data generalization is a form of descriptive
data mining, which describes data in a concise and summarative manner and presents
interesting general properties of the data. In this chapter, we look at descriptive data min-
ing in greater detail. Descriptive data mining differs from predictive data mining, which
analyzes data in order to construct one or a set of models and attempts to predict the
behavior of new data sets. Predictive data mining, such as classification, regression anal-
ysis, and trend analysis, is covered in later chapters.

This chapter is organized into three main sections. The first two sections expand
on notions of data warehouse and OLAP implementation presented in the previous
chapter, while the third presents an alternative method for data generalization. In
particular, Section 4.1 shows how to efficiently compute data cubes at varying levels
of abstraction. It presents an in-depth look at specific methods for data cube com-
putation. Section 4.2 presents methods for further exploration of OLAP and data
cubes. This includes discovery-driven exploration of data cubes, analysis of cubes
with sophisticated features, and cube gradient analysis. Finally, Section 4.3 presents
another method of data generalization, known as attribute-oriented induction.

4.1 Efficient Methods for Data Cube Computation

Data cube computation is an essential task in data warehouse implementation. The
precomputation of all or part of a data cube can greatly reduce the response time and
enhance the performance of on-line analytical processing. However, such computation
is challenging because it may require substantial computational time and storage
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space. This section explores efficient methods for data cube computation. Section 4.1.1
introduces general concepts and computation strategies relating to cube materializa-
tion. Sections 4.1.2 to 4.1.5 detail specific computation algorithms, namely, MultiWay
array aggregation, BUC, Star-Cubing, the computation of shell fragments, and the
computation of cubes involving complex measures.

4.1.1 A Road Map for the Materialization of Different Kinds
of Cubes

Data cubes facilitate the on-line analytical processing of multidimensional data. “But
how can we compute data cubes in advance, so that they are handy and readily available for
query processing?” This section contrasts full cube materialization (i.e., precomputation)
versus various strategies for partial cube materialization. For completeness, we begin
with a review of the basic terminology involving data cubes. We also introduce a cube
cell notation that is useful for describing data cube computation methods.

Cube Materialization: Full Cube, Iceberg Cube, Closed
Cube, and Shell Cube
Figure 4.1 shows a 3-D data cube for the dimensions A, B, and C, and an aggregate
measure, M. A data cube is a lattice of cuboids. Each cuboid represents a group-by.
ABC is the base cuboid, containing all three of the dimensions. Here, the aggregate
measure, M, is computed for each possible combination of the three dimensions. The
base cuboid is the least generalized of all of the cuboids in the data cube. The most
generalized cuboid is the apex cuboid, commonly represented as all. It contains one
value—it aggregates measure M for all of the tuples stored in the base cuboid. To drill
down in the data cube, we move from the apex cuboid, downward in the lattice. To

Figure 4.1 Lattice of cuboids, making up a 3-D data cube with the dimensions A, B, and C for some
aggregate measure, M.
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roll up, we move from the base cuboid, upward. For the purposes of our discussion
in this chapter, we will always use the term data cube to refer to a lattice of cuboids
rather than an individual cuboid.

A cell in the base cuboid is a base cell. A cell from a nonbase cuboid is an aggregate
cell. An aggregate cell aggregates over one or more dimensions, where each aggregated
dimension is indicated by a “∗” in the cell notation. Suppose we have an n-dimensional
data cube. Let a = (a1, a2, . . . , an, measures) be a cell from one of the cuboids making
up the data cube. We say that a is an m-dimensional cell (that is, from an m-dimensional
cuboid) if exactly m (m≤ n) values among {a1, a2, . . . , an} are not “∗”. If m = n, then a
is a base cell; otherwise, it is an aggregate cell (i.e., where m< n).

Example 4.1 Base and aggregate cells. Consider a data cube with the dimensions month, city, and
customer group, and the measure price. (Jan, ∗ , ∗ , 2800) and (∗, Toronto, ∗ , 1200)
are 1-D cells, (Jan, ∗ , Business, 150) is a 2-D cell, and (Jan, Toronto, Business, 45) is a
3-D cell. Here, all base cells are 3-D, whereas 1-D and 2-D cells are aggregate cells.

An ancestor-descendant relationship may exist between cells. In an n-dimensional
data cube, an i-D cell a = (a1, a2, . . . , an, measuresa) is an ancestor of a j-D cell
b = (b1, b2, . . . , bn, measuresb), and b is a descendant of a, if and only if (1) i < j, and
(2) for 1≤ m≤ n, am = bm whenever am 6= “∗”. In particular, cell a is called a parent of
cell b, and b is a child of a, if and only if j = i + 1 and b is a descendant of a.

Example 4.2 Ancestor and descendant cells. Referring to our previous example, 1-D cell a = (Jan,
∗ , ∗ , 2800), and 2-D cell b = (Jan, ∗ , Business, 150), are ancestors of 3-D cell
c = (Jan, Toronto, Business, 45); c is a descendant of both a and b; b is a parent
of c, and c is a child of b.

In order to ensure fast on-line analytical processing, it is sometimes desirable to pre-
compute the full cube (i.e., all the cells of all of the cuboids for a given data cube). This,
however, is exponential to the number of dimensions. That is, a data cube of n dimen-
sions contains 2n cuboids. There are even more cuboids if we consider concept hierar-
chies for each dimension.1 In addition, the size of each cuboid depends on the cardinality
of its dimensions. Thus, precomputation of the full cube can require huge and often
excessive amounts of memory.

Nonetheless, full cube computation algorithms are important. Individual cuboids
may be stored on secondary storage and accessed when necessary. Alternatively, we can
use such algorithms to compute smaller cubes, consisting of a subset of the given set
of dimensions, or a smaller range of possible values for some of the dimensions. In
such cases, the smaller cube is a full cube for the given subset of dimensions and/or
dimension values. A thorough understanding of full cube computation methods will

1Equation (3.1) gives the total number of cuboids in a data cube where each dimension has an associated
concept hierarchy.
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help us develop efficient methods for computing partial cubes. Hence, it is important to
explore scalable methods for computing all of the cuboids making up a data cube, that is,
for full materialization. These methods must take into consideration the limited amount
of main memory available for cuboid computation, the total size of the computed data
cube, as well as the time required for such computation.

Partial materialization of data cubes offers an interesting trade-off between storage
space and response time for OLAP. Instead of computing the full cube, we can compute
only a subset of the data cube’s cuboids, or subcubes consisting of subsets of cells from
the various cuboids.

Many cells in a cuboid may actually be of little or no interest to the data analyst.
Recall that each cell in a full cube records an aggregate value. Measures such as count,
sum, or sales in dollars are commonly used. For many cells in a cuboid, the measure
value will be zero. When the product of the cardinalities for the dimensions in a
cuboid is large relative to the number of nonzero-valued tuples that are stored in the
cuboid, then we say that the cuboid is sparse. If a cube contains many sparse cuboids,
we say that the cube is sparse.

In many cases, a substantial amount of the cube’s space could be taken up by a large
number of cells with very low measure values. This is because the cube cells are often quite
sparsely distributed within a multiple dimensional space. For example, a customer may
only buy a few items in a store at a time. Such an event will generate only a few nonempty
cells, leaving most other cube cells empty. In such situations, it is useful to materialize
only those cells in a cuboid (group-by) whose measure value is above some minimum
threshold. In a data cube for sales, say, we may wish to materialize only those cells for
which count ≥ 10 (i.e., where at least 10 tuples exist for the cell’s given combination of
dimensions), or only those cells representing sales≥ $100. This not only saves processing
time and disk space, but also leads to a more focused analysis. The cells that cannot
pass the threshold are likely to be too trivial to warrant further analysis. Such partially
materialized cubes are known as iceberg cubes. The minimum threshold is called the
minimum support threshold, or minimum support(min sup), for short. By materializing
only a fraction of the cells in a data cube, the result is seen as the “tip of the iceberg,”
where the “iceberg” is the potential full cube including all cells. An iceberg cube can be
specified with an SQL query, as shown in the following example.

Example 4.3 Iceberg cube.

compute cube sales iceberg as
select month, city, customer group, count(*)
from salesInfo
cube by month, city, customer group
having count(*)>= min sup

The compute cube statement specifies the precomputation of the iceberg cube,
sales iceberg, with the dimensions month, city, and customer group, and the aggregate mea-
sure count(). The input tuples are in the salesInfo relation. The cube by clause specifies
that aggregates (group-by’s) are to be formed for each of the possible subsets of the given
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dimensions. If we were computing the full cube, each group-by would correspond to a
cuboid in the data cube lattice. The constraint specified in the having clause is known as
the iceberg condition. Here, the iceberg measure is count. Note that the iceberg cube com-
puted for Example 4.3 could be used to answer group-by queries on any combination of
the specified dimensions of the form having count(*)>= v, where v≥min sup. Instead
of count, the iceberg condition could specify more complex measures, such as average.

If we were to omit the having clause of our example, we would end up with the full
cube. Let’s call this cube sales cube. The iceberg cube, sales iceberg, excludes all the cells
of sales cube whose count is less than min sup. Obviously, if we were to set the minimum
support to 1 in sales iceberg, the resulting cube would be the full cube, sales cube.

A naïve approach to computing an iceberg cube would be to first compute the full
cube and then prune the cells that do not satisfy the iceberg condition. However, this is
still prohibitively expensive. An efficient approach is to compute only the iceberg cube
directly without computing the full cube. Sections 4.1.3 and 4.1.4 discuss methods for
efficient iceberg cube computation.

Introducing iceberg cubes will lessen the burden of computing trivial aggregate cells
in a data cube. However, we could still end up with a large number of uninteresting cells
to compute. For example, suppose that there are 2 base cells for a database of 100 dimen-
sions, denoted as {(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10}, where each has
a cell count of 10. If the minimum support is set to 10, there will still be an impermis-
sible number of cells to compute and store, although most of them are not interesting.
For example, there are 2101−6 distinct aggregate cells,2 like {(a1, a2, a3, a4, . . . , a99, ∗) :
10, . . . , (a1, a2, ∗ , a4, . . . , a99, a100) : 10, . . . , (a1, a2, a3, ∗ , . . . , ∗ , ∗) : 10}, but most of
them do not contain much new information. If we ignore all of the aggregate cells that can
be obtained by replacing some constants by ∗’s while keeping the same measure value,
there are only three distinct cells left: {(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) :
10, (a1, a2, ∗ , . . . , ∗) : 20}. That is, out of 2101−6 distinct aggregate cells, only 3 really
offer new information.

To systematically compress a data cube, we need to introduce the concept of closed
coverage. A cell, c, is a closed cell if there exists no cell, d, such that d is a specialization
(descendant) of cell c (that is, where d is obtained by replacing a∗ in c with a non-∗ value),
and d has the same measure value as c. A closed cube is a data cube consisting of only
closed cells. For example, the three cells derived above are the three closed cells of the data
cube for the data set:{(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10}. They form the
lattice of a closed cube as shown in Figure 4.2. Other nonclosed cells can be derived from
their corresponding closed cells in this lattice. For example, “(a1, ∗ , ∗ , . . . , ∗) : 20” can
be derived from “(a1, a2, ∗ , . . . , ∗) : 20” because the former is a generalized nonclosed
cell of the latter. Similarly, we have “(a1, a2, b3, ∗ , . . . , ∗) : 10”.

Another strategy for partial materialization is to precompute only the cuboids
involving a small number of dimensions, such as 3 to 5. These cuboids form a cube

2The proof is left as an exercise for the reader.
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(a1, a2, a3, ..., a100 ) : 10

(a1, a2, *, ..., *) : 20

(a1, a2, b3, ..., b100 ) : 10

Figure 4.2 Three closed cells forming the lattice of a closed cube.

shell for the corresponding data cube. Queries on additional combinations of the
dimensions will have to be computed on the fly. For example, we could compute all
cuboids with 3 dimensions or less in an n-dimensional data cube, resulting in a cube
shell of size 3. This, however, can still result in a large number of cuboids to compute,
particularly when n is large. Alternatively, we can choose to precompute only portions
or fragments of the cube shell, based on cuboids of interest. Section 4.1.5 discusses a
method for computing such shell fragments and explores how they can be used for
efficient OLAP query processing.

General Strategies for Cube Computation
With different kinds of cubes as described above, we can expect that there are a good
number of methods for efficient computation. In general, there are two basic data struc-
tures used for storing cuboids. Relational tables are used as the basic data structure for the
implementation of relational OLAP (ROLAP), while multidimensional arrays are used
as the basic data structure in multidimensional OLAP (MOLAP). Although ROLAP and
MOLAP may each explore different cube computation techniques, some optimization
“tricks” can be shared among the different data representations. The following are gen-
eral optimization techniques for the efficient computation of data cubes.

Optimization Technique 1: Sorting, hashing, and grouping. Sorting, hashing, and
grouping operations should be applied to the dimension attributes in order to reorder
and cluster related tuples.

In cube computation, aggregation is performed on the tuples (or cells) that share
the same set of dimension values. Thus it is important to explore sorting, hashing, and
grouping operations to access and group such data together to facilitate computation of
such aggregates.

For example, to compute total sales by branch, day, and item, it is more efficient to
sort tuples or cells by branch, and then by day, and then group them according to the
item name. Efficient implementations of such operations in large data sets have been
extensively studied in the database research community. Such implementations can be
extended to data cube computation.
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This technique can also be further extended to perform shared-sorts (i.e., sharing
sorting costs across multiple cuboids when sort-based methods are used), or to perform
shared-partitions (i.e., sharing the partitioning cost across multiple cuboids when hash-
based algorithms are used).

Optimization Technique 2: Simultaneous aggregation and caching intermediate results.
In cube computation, it is efficient to compute higher-level aggregates from previously
computed lower-level aggregates, rather than from the base fact table. Moreover, simulta-
neous aggregation from cached intermediate computation results may lead to the reduc-
tion of expensive disk I/O operations.

For example, to compute sales by branch, we can use the intermediate results derived
from the computation of a lower-level cuboid, such as sales by branch and day. This
technique can be further extended to perform amortized scans (i.e., computing as many
cuboids as possible at the same time to amortize disk reads).

Optimization Technique 3: Aggregation from the smallest child, when there exist
multiple child cuboids. When there exist multiple child cuboids, it is usually more effi-
cient to compute the desired parent (i.e., more generalized) cuboid from the smallest,
previously computed child cuboid.

For example, to compute a sales cuboid, Cbranch, when there exist two previously com-
puted cuboids, C{branch,year} and C{branch,item}, it is obviously more efficient to compute
Cbranch from the former than from the latter if there are many more distinct items than
distinct years.

Many other optimization tricks may further improve the computational efficiency.
For example, string dimension attributes can be mapped to integers with values ranging
from zero to the cardinality of the attribute. However, the following optimization tech-
nique plays a particularly important role in iceberg cube computation.

Optimization Technique 4: The Apriori pruning method can be explored to compute
iceberg cubes efficiently. The Apriori property,3 in the context of data cubes, states as
follows: If a given cell does not satisfy minimum support, then no descendant (i.e., more
specialized or detailed version) of the cell will satisfy minimum support either. This property
can be used to substantially reduce the computation of iceberg cubes.

Recall that the specification of iceberg cubes contains an iceberg condition, which is
a constraint on the cells to be materialized. A common iceberg condition is that the cells
must satisfy a minimum support threshold, such as a minimum count or sum.
In this situation, the Apriori property can be used to prune away the exploration of the
descendants of the cell. For example, if the count of a cell, c, in a cuboid is less than
a minimum support threshold, v, then the count of any of c’s descendant cells in the
lower-level cuboids can never be greater than or equal to v, and thus can be pruned.
In other words, if a condition (e.g., the iceberg condition specified in a having clause)

3The Apriori property was proposed in the Apriori algorithm for association rule mining by R. Agrawal
and R. Srikant [AS94]. Many algorithms in association rule mining have adopted this property. Associ-
ation rule mining is the topic of Chapter 5.
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is violated for some cell c, then every descendant of c will also violate that condition.
Measures that obey this property are known as antimonotonic.4 This form of pruning
was made popular in association rule mining, yet also aids in data cube computation
by cutting processing time and disk space requirements. It can lead to a more focused
analysis because cells that cannot pass the threshold are unlikely to be of interest.

In the following subsections, we introduce several popular methods for efficient cube
computation that explore some or all of the above optimization strategies. Section 4.1.2
describes the multiway array aggregation (MultiWay) method for computing full cubes.
The remaining sections describe methods for computing iceberg cubes. Section 4.1.3 des-
cribes a method known as BUC, which computes iceberg cubes from the apex cuboid,
downward. Section 4.1.4 describes the Star-Cubing method, which integrates top-down
and bottom-up computation. Section 4.1.5 describes a minimal cubing approach that
computes shell fragments for efficient high-dimensional OLAP. Finally, Section 4.1.6
describes a method for computing iceberg cubes with complex measures, such as average.
To simplify our discussion, we exclude the cuboids that would be generated by climbing
up any existing hierarchies for the dimensions. Such kinds of cubes can be computed
by extension of the discussed methods. Methods for the efficient computation of closed
cubes are left as an exercise for interested readers.

4.1.2 Multiway Array Aggregation for Full Cube Computation

The Multiway Array Aggregation (or simply MultiWay) method computes a full data
cube by using a multidimensional array as its basic data structure. It is a typical MOLAP
approach that uses direct array addressing, where dimension values are accessed via the
position or index of their corresponding array locations. Hence, MultiWay cannot per-
form any value-based reordering as an optimization technique. A different approach is
developed for the array-based cube construction, as follows:

1. Partition the array into chunks. A chunk is a subcube that is small enough to fit into
the memory available for cube computation. Chunking is a method for dividing an
n-dimensional array into small n-dimensional chunks, where each chunk is stored as
an object on disk. The chunks are compressed so as to remove wasted space resulting
from empty array cells (i.e., cells that do not contain any valid data, whose cell count
is zero). For instance, “chunkID + offset” can be used as a cell addressing mechanism
to compress a sparse array structure and when searching for cells within a chunk.
Such a compression technique is powerful enough to handle sparse cubes, both on
disk and in memory.

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells. The order in
which cells are visited can be optimized so as to minimize the number of times that each
cell must be revisited, thereby reducing memory access and storage costs. The trick is

4Antimonotone is based on condition violation. This differs from monotone, which is based on condition
satisfaction.
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to exploit this ordering so that partial aggregates can be computed simultaneously,
and any unnecessary revisiting of cells is avoided.

Because this chunking technique involves “overlapping” some of the aggrega-
tion computations, it is referred to as multiway array aggregation. It performs
simultaneous aggregation—that is, it computes aggregations simultaneously on
multiple dimensions.

We explain this approach to array-based cube construction by looking at a concrete
example.

Example 4.4 Multiway array cube computation. Consider a 3-D data array containing the three dimen-
sions A, B, and C. The 3-D array is partitioned into small, memory-based chunks. In this
example, the array is partitioned into 64 chunks as shown in Figure 4.3. Dimension A
is organized into four equal-sized partitions, a0, a1, a2, and a3. Dimensions B and C
are similarly organized into four partitions each. Chunks 1, 2, . . . , 64 correspond to the
subcubes a0b0c0, a1b0c0, . . . , a3b3c3, respectively. Suppose that the cardinality of the
dimensions A, B, and C is 40, 400, and 4000, respectively. Thus, the size of the array for
each dimension, A, B, and C, is also 40, 400, and 4000, respectively. The size of each par-
tition in A, B, and C is therefore 10, 100, and 1000, respectively. Full materialization of
the corresponding data cube involves the computation of all of the cuboids defining this
cube. The resulting full cube consists of the following cuboids:

The base cuboid, denoted by ABC (from which all of the other cuboids are directly
or indirectly computed). This cube is already computed and corresponds to the given
3-D array.

The 2-D cuboids, AB, AC, and BC, which respectively correspond to the group-by’s
AB, AC, and BC. These cuboids must be computed.

The 1-D cuboids, A, B, and C, which respectively correspond to the group-by’s A, B,
and C. These cuboids must be computed.

The 0-D (apex) cuboid, denoted by all, which corresponds to the group-by (); that is,
there is no group-by here. This cuboid must be computed. It consists of one value. If,
say, the data cube measure is count, then the value to be computed is simply the total
count of all of the tuples in ABC.

Let’s look at how the multiway array aggregation technique is used in this computa-
tion. There are many possible orderings with which chunks can be read into memory
for use in cube computation. Consider the ordering labeled from 1 to 64, shown in
Figure 4.3. Suppose we would like to compute the b0c0 chunk of the BC cuboid. We
allocate space for this chunk in chunk memory. By scanning chunks 1 to 4 of ABC,
the b0c0 chunk is computed. That is, the cells for b0c0 are aggregated over a0 to a3.
The chunk memory can then be assigned to the next chunk, b1c0, which completes
its aggregation after the scanning of the next four chunks of ABC: 5 to 8. Continuing
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Figure 4.3 A 3-D array for the dimensions A, B, and C, organized into 64 chunks. Each chunk is small
enough to fit into the memory available for cube computation.

in this way, the entire BC cuboid can be computed. Therefore, only one chunk of BC
needs to be in memory, at a time, for the computation of all of the chunks of BC.

In computing the BC cuboid, we will have scanned each of the 64 chunks. “Is there
a way to avoid having to rescan all of these chunks for the computation of other cuboids,
such as AC and AB?” The answer is, most definitely—yes. This is where the “multiway
computation” or “simultaneous aggregation” idea comes in. For example, when chunk 1
(i.e., a0b0c0) is being scanned (say, for the computation of the 2-D chunk b0c0 of BC, as
described above), all of the other 2-D chunks relating to a0b0c0 can be simultaneously
computed. That is, when a0b0c0 is being scanned, each of the three chunks, b0c0, a0c0,
and a0b0, on the three 2-D aggregation planes, BC, AC, and AB, should be computed
then as well. In other words, multiway computation simultaneously aggregates to each
of the 2-D planes while a 3-D chunk is in memory.
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Now let’s look at how different orderings of chunk scanning and of cuboid compu-
tation can affect the overall data cube computation efficiency. Recall that the size of the
dimensions A, B, and C is 40, 400, and 4000, respectively. Therefore, the largest 2-D plane
is BC (of size 400× 4000 = 1, 600, 000). The second largest 2-D plane is AC (of size
40×4000 = 160, 000). AB is the smallest 2-D plane (with a size of 40×400 = 16, 000).

Suppose that the chunks are scanned in the order shown, from chunk 1 to 64. By
scanning in this order, one chunk of the largest 2-D plane, BC, is fully computed for
each row scanned. That is, b0c0 is fully aggregated after scanning the row containing
chunks 1 to 4; b1c0 is fully aggregated after scanning chunks 5 to 8, and so on.
In comparison, the complete computation of one chunk of the second largest 2-D
plane, AC, requires scanning 13 chunks, given the ordering from 1 to 64. That is,
a0c0 is fully aggregated only after the scanning of chunks 1, 5, 9, and 13. Finally,
the complete computation of one chunk of the smallest 2-D plane, AB, requires
scanning 49 chunks. For example, a0b0 is fully aggregated after scanning chunks 1,
17, 33, and 49. Hence, AB requires the longest scan of chunks in order to complete
its computation. To avoid bringing a 3-D chunk into memory more than once, the
minimum memory requirement for holding all relevant 2-D planes in chunk memory,
according to the chunk ordering of 1 to 64, is as follows: 40× 400 (for the whole
AB plane) + 40×1000 (for one row of the AC plane) + 100×1000 (for one chunk
of the BC plane) = 16,000 + 40,000 + 100,000 = 156,000 memory units.

Suppose, instead, that the chunks are scanned in the order 1, 17, 33, 49, 5, 21, 37,
53, and so on. That is, suppose the scan is in the order of first aggregating toward the
AB plane, and then toward the AC plane, and lastly toward the BC plane. The minimum
memory requirement for holding 2-D planes in chunk memory would be as follows:
400×4000 (for the whole BC plane) + 40×1000 (for one row of the AC plane) + 10×
100 (for one chunk of the AB plane) = 1,600,000 + 40,000 + 1000 = 1,641,000 memory
units. Notice that this is more than 10 times the memory requirement of the scan ordering
of 1 to 64.

Similarly, we can work out the minimum memory requirements for the multiway
computation of the 1-D and 0-D cuboids. Figure 4.4 shows the most efficient ordering
and the least efficient ordering, based on the minimum memory requirements for the
data cube computation. The most efficient ordering is the chunk ordering of 1 to 64.

Example 4.4 assumes that there is enough memory space for one-pass cube compu-
tation (i.e., to compute all of the cuboids from one scan of all of the chunks). If there
is insufficient memory space, the computation will require more than one pass through
the 3-D array. In such cases, however, the basic principle of ordered chunk computa-
tion remains the same. MultiWay is most effective when the product of the cardinalities
of dimensions is moderate and the data are not too sparse. When the dimensionality is
high or the data are very sparse, the in-memory arrays become too large to fit in memory,
and this method becomes infeasible.

With the use of appropriate sparse array compression techniques and careful ordering
of the computation of cuboids, it has been shown by experiments that MultiWay array
cube computation is significantly faster than traditional ROLAP (relationa record-based)
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Figure 4.4 Two orderings of multiway array aggregation for computation of the 3-D cube of Example 4.4:
(a) most efficient ordering of array aggregation (minimum memory requirements = 156,000
memory units); (b) least efficient ordering of array aggregation (minimum memory require-
ments = 1,641,000 memory units).

computation. Unlike ROLAP, the array structure of MultiWay does not require saving
space to store search keys. Furthermore, MultiWay uses direct array addressing, which is
faster than the key-based addressing search strategy of ROLAP. For ROLAP cube compu-
tation, instead of cubing a table directly, it can be faster to convert the table to an array, cube
the array, and then convert the result back to a table. However, this observation works only
for cubes with a relatively small number of dimensions because the number of cuboids to
be computed is exponential to the number of dimensions.

“What would happen if we tried to use MultiWay to compute iceberg cubes?” Remember
that the Apriori property states that if a given cell does not satisfy minimum support, then
neither will any of its descendants. Unfortunately, MultiWay’s computation starts from
the base cuboid and progresses upward toward more generalized, ancestor cuboids. It
cannot take advantage of Apriori pruning, which requires a parent node to be computed
before its child (i.e., more specific) nodes. For example, if the count of a cell c in, say,
AB, does not satisfy the minimum support specified in the iceberg condition, then we
cannot prune away computation of c’s ancestors in the A or B cuboids, because the count
of these cells may be greater than that of c.

4.1.3 BUC: Computing Iceberg Cubes from the Apex Cuboid
Downward

BUC is an algorithm for the computation of sparse and iceberg cubes. Unlike MultiWay,
BUC constructs the cube from the apex cuboid toward the base cuboid. This allows BUC
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to share data partitioning costs. This order of processing also allows BUC to prune during
construction, using the Apriori property.

Figure 4.1 shows a lattice of cuboids, making up a 3-D data cube with the dimensions
A, B, and C. The apex (0-D) cuboid, representing the concept all (that is, (∗, ∗ , ∗)), is
at the top of the lattice. This is the most aggregated or generalized level. The 3-D base
cuboid, ABC, is at the bottom of the lattice. It is the least aggregated (most detailed or
specialized) level. This representation of a lattice of cuboids, with the apex at the top and
the base at the bottom, is commonly accepted in data warehousing. It consolidates the
notions of drill-down (where we can move from a highly aggregated cell to lower, more
detailed cells) and roll-up (where we can move from detailed, low-level cells to higher-
level, more aggregated cells).

BUC stands for “Bottom-Up Construction.” However, according to the lattice con-
vention described above and used throughout this book, the order of processing of BUC
is actually top-down! The authors of BUC view a lattice of cuboids in the reverse order,
with the apex cuboid at the bottom and the base cuboid at the top. In that view, BUC
does bottom-up construction. However, because we adopt the application worldview
where drill-down refers to drilling from the apex cuboid down toward the base cuboid,
the exploration process of BUC is regarded as top-down. BUC’s exploration for the
computation of a 3-D data cube is shown in Figure 4.5.

The BUC algorithm is shown in Figure 4.6. We first give an explanation of the
algorithm and then follow up with an example. Initially, the algorithm is called with
the input relation (set of tuples). BUC aggregates the entire input (line 1) and writes

all

AB

ABC

AC BC

BA C

Figure 4.5 BUC’s exploration for the computation of a 3-D data cube. Note that the computation starts
from the apex cuboid.
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Algorithm: BUC. Algorithm for the computation of sparse and iceberg cubes.

Input:

input: the relation to aggregate;

dim: the starting dimension for this iteration.

Globals:

constant numDims: the total number of dimensions;

constant cardinality[numDims]: the cardinality of each dimension;

constant min sup: the minimum number of tuples in a partition in order for it to be output;

outputRec: the current output record;

dataCount[numDims]: stores the size of each partition. dataCount[i] is a list of integers of size
cardinality[i].

Output: Recursively output the iceberg cube cells satisfying the minimum support.

Method:

(1) Aggregate(input); // Scan input to compute measure, e.g., count. Place result in outputRec.
(2) if input.count() == 1 then // Optimization

WriteAncestors(input[0], dim); return;
endif

(3) write outputRec;
(4) for (d = dim; d < numDims; d ++) do //Partition each dimension
(5) C = cardinality[d];
(6) Partition(input, d, C, dataCount[d]); //create C partitions of data for dimension d
(7) k = 0;
(8) for (i = 0; i<C; i ++) do // for each partition (each value of dimension d)
(9) c = dataCount[d][i];
(10) if c>= min sup then // test the iceberg condition
(11) outputRec.dim[d] = input[k].dim[d];
(12) BUC(input[k . . .k + c], d + 1); // aggregate on next dimension
(13) endif
(14) k +=c;
(15) endfor
(16) outputRec.dim[d] = all;
(17) endfor

Figure 4.6 BUC algorithm for the computation of sparse or iceberg cubes [BR99].

the resulting total (line 3). (Line 2 is an optimization feature that is discussed later in our
example.) For each dimension d (line 4), the input is partitioned on d (line 6). On return
from Partition(), dataCount contains the total number of tuples for each distinct value
of dimension d. Each distinct value of d forms its own partition. Line 8 iterates through
each partition. Line 10 tests the partition for minimum support. That is, if the number
of tuples in the partition satisfies (i.e., is ≥) the minimum support, then the partition
becomes the input relation for a recursive call made to BUC, which computes the ice-
berg cube on the partitions for dimensions d + 1 to numDims (line 12). Note that for a
full cube (i.e., where minimum support in the having clause is 1), the minimum support
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condition is always satisfied. Thus, the recursive call descends one level deeper into the
lattice. Upon return from the recursive call, we continue with the next partition for d.
After all the partitions have been processed, the entire process is repeated for each of the
remaining dimensions.

We explain how BUC works with the following example.

Example 4.5 BUC construction of an iceberg cube. Consider the iceberg cube expressed in SQL as
follows:

compute cube iceberg cube as
select A, B, C, D, count(*)
from R

cube by A, B, C, D

having count(*)>= 3

Let’s see how BUC constructs the iceberg cube for the dimensions A, B, C, and D,
where the minimum support count is 3. Suppose that dimension A has four distinct
values, a1, a2, a3, a4; B has four distinct values, b1, b2, b3, b4; C has two distinct values,
c1, c2; and D has two distinct values, d1, d2. If we consider each group-by to be a par-
tition, then we must compute every combination of the grouping attributes that satisfy
minimum support (i.e., that have 3 tuples).

Figure 4.7 illustrates how the input is partitioned first according to the different attri-
bute values of dimension A, and then B, C, and D. To do so, BUC scans the input,
aggregating the tuples to obtain a count for all, corresponding to the cell (∗, ∗ , ∗ , ∗).
Dimension A is used to split the input into four partitions, one for each distinct value of
A. The number of tuples (counts) for each distinct value of A is recorded in dataCount.

BUC uses the Apriori property to save time while searching for tuples that satisfy
the iceberg condition. Starting with A dimension value, a1, the a1 partition is aggre-
gated, creating one tuple for the A group-by, corresponding to the cell (a1, ∗ , ∗ , ∗).
Suppose (a1, ∗ , ∗ , ∗) satisfies the minimum support, in which case a recursive call is
made on the partition for a1. BUC partitions a1 on the dimension B. It checks the count
of (a1, b1, ∗ , ∗) to see if it satisfies the minimum support. If it does, it outputs the aggre-
gated tuple to the AB group-by and recurses on (a1, b1, ∗ , ∗) to partition on C, starting
with c1. Suppose the cell count for (a1, b1, c1, ∗) is 2, which does not satisfy the min-
imum support. According to the Apriori property, if a cell does not satisfy minimum
support, then neither can any of its descendants. Therefore, BUC prunes any further
exploration of (a1, b1, c1, ∗). That is, it avoids partitioning this cell on dimension D. It
backtracks to the a1, b1 partition and recurses on (a1, b1, c2, ∗), and so on. By checking
the iceberg condition each time before performing a recursive call, BUC saves a great
deal of processing time whenever a cell’s count does not satisfy the minimum support.

The partition process is facilitated by a linear sorting method, CountingSort. Count-
ingSort is fast because it does not perform any key comparisons to find partition bound-
aries. In addition, the counts computed during the sort can be reused to compute the
group-by’s in BUC. Line 2 is an optimization for partitions having a count of 1, such as
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a4

a3

a2

a1

b4

b3

b2

b1

d2d1

c1

Figure 4.7 Snapshot of BUC partitioning given an example 4-D data set.

(a1, b2, ∗ , ∗) in our example. To save on partitioning costs, the count is written to each
of the tuple’s ancestor group-by’s. This is particularly useful since, in practice, many
partitions have a single tuple.

The performance of BUC is sensitive to the order of the dimensions and to skew in the
data. Ideally, the most discriminating dimensions should be processed first. Dimensions
should be processed in order of decreasing cardinality. The higher the cardinality is, the
smaller the partitions are, and thus, the more partitions there will be, thereby providing
BUC with greater opportunity for pruning. Similarly, the more uniform a dimension is
(i.e., having less skew), the better it is for pruning.

BUC’s major contribution is the idea of sharing partitioning costs. However, unlike
MultiWay, it does not share the computation of aggregates between parent and child
group-by’s. For example, the computation of cuboid AB does not help that of ABC. The
latter needs to be computed essentially from scratch.
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4.1.4 Star-Cubing: Computing Iceberg Cubes Using
a Dynamic Star-tree Structure

In this section, we describe the Star-Cubing algorithm for computing iceberg cubes.
Star-Cubing combines the strengths of the other methods we have studied up to this
point. It integrates top-down and bottom-up cube computation and explores both mul-
tidimensional aggregation (similar to MultiWay) and Apriori-like pruning (similar to
BUC). It operates from a data structure called a star-tree, which performs lossless data
compression, thereby reducing the computation time and memory requirements.

The Star-Cubing algorithm explores both the bottom-up and top-down computa-
tion models as follows: On the global computation order, it uses the bottom-up model.
However, it has a sublayer underneath based on the top-down model, which explores
the notion of shared dimensions, as we shall see below. This integration allows the algo-
rithm to aggregate on multiple dimensions while still partitioning parent group-by’s and
pruning child group-by’s that do not satisfy the iceberg condition.

Star-Cubing’s approach is illustrated in Figure 4.8 for the computation of a 4-D
data cube. If we were to follow only the bottom-up model (similar to Multiway), then
the cuboids marked as pruned by Star-Cubing would still be explored. Star-Cubing is
able to prune the indicated cuboids because it considers shared dimensions. ACD/A
means cuboid ACD has shared dimension A, ABD/AB means cuboid ABD has shared
dimension AB, ABC/ABC means cuboid ABC has shared dimension ABC, and so
on. This comes from the generalization that all the cuboids in the subtree rooted
at ACD include dimension A, all those rooted at ABD include dimensions AB, and
all those rooted at ABC include dimensions ABC (even though there is only one
such cuboid). We call these common dimensions the shared dimensions of those
particular subtrees.

Figure 4.8 Star-Cubing: Bottom-up computation with top-down expansion of shared dimensions.
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The introduction of shared dimensions facilitates shared computation. Because
the shared dimensions are identified early on in the tree expansion, we can avoid
recomputing them later. For example, cuboid AB extending from ABD in Figure 4.8
would actually be pruned because AB was already computed in ABD/AB. Similarly,
cuboid A extending from AD would also be pruned because it was already computed
in ACD/A.

Shared dimensions allow us to do Apriori-like pruning if the measure of an ice-
berg cube, such as count, is antimonotonic; that is, if the aggregate value on a shared
dimension does not satisfy the iceberg condition, then all of the cells descending from
this shared dimension cannot satisfy the iceberg condition either. Such cells and all of
their descendants can be pruned, because these descendant cells are, by definition,
more specialized (i.e., contain more dimensions) than those in the shared dimen-
sion(s). The number of tuples covered by the descendant cells will be less than or
equal to the number of tuples covered by the shared dimensions. Therefore, if the
aggregate value on a shared dimension fails the iceberg condition, the descendant
cells cannot satisfy it either.

Example 4.6 Pruning shared dimensions. If the value in the shared dimension A is a1 and it fails
to satisfy the iceberg condition, then the whole subtree rooted at a1CD/a1 (including
a1C/a1C, a1D/a1, a1/a1) can be pruned because they are all more specialized versions
of a1.

To explain how the Star-Cubing algorithm works, we need to explain a few more
concepts, namely, cuboid trees, star-nodes, and star-trees.

We use trees to represent individual cuboids. Figure 4.9 shows a fragment of the
cuboid tree of the base cuboid, ABCD. Each level in the tree represents a dimension, and
each node represents an attribute value. Each node has four fields: the attribute value,
aggregate value, pointer(s) to possible descendant(s), and pointer to possible sibling.
Tuples in the cuboid are inserted one by one into the tree. A path from the root to a leaf

a1: 30 a2: 20 a3: 20 a4: 20

b1: 10 b2: 10 b3: 10

c1: 5 c2: 5 

d2: 3d1: 2 

Figure 4.9 A fragment of the base cuboid tree.
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node represents a tuple. For example, node c2 in the tree has an aggregate (count) value
of 5, which indicates that there are five cells of value (a1, b1, c2, ∗). This representation
collapses the common prefixes to save memory usage and allows us to aggregate the val-
ues at internal nodes. With aggregate values at internal nodes, we can prune based on
shared dimensions. For example, the cuboid tree of AB can be used to prune possible
cells in ABD.

If the single dimensional aggregate on an attribute value p does not satisfy the iceberg
condition, it is useless to distinguish such nodes in the iceberg cube computation. Thus
the node p can be replaced by ∗ so that the cuboid tree can be further compressed. We
say that the node p in an attribute A is a star-node if the single dimensional aggregate on
p does not satisfy the iceberg condition; otherwise, p is a non-star-node. A cuboid tree
that is compressed using star-nodes is called a star-tree.

The following is an example of star-tree construction.

Example 4.7 Star-tree construction. A base cuboid table is shown in Table 4.1. There are 5 tuples
and 4 dimensions. The cardinalities for dimensions A, B, C, D are 2, 4, 4, 4,
respectively. The one-dimensional aggregates for all attributes are shown in Table 4.2.
Suppose min sup = 2 in the iceberg condition. Clearly, only attribute values a1, a2,
b1, c3, d4 satisfy the condition. All the other values are below the threshold and thus
become star-nodes. By collapsing star-nodes, the reduced base table is Table 4.3.
Notice that the table contains two fewer rows and also fewer distinct values than
Table 4.1.

We use the reduced base table to construct the cuboid tree because it is smaller. The
resultant star-tree is shown in Figure 4.10. To help identify which nodes are star-nodes, a

Table 4.1 Base (Cuboid) Table: Before star reduction.

A B C D count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1

Table 4.2 One-Dimensional Aggregates.

Dimension count = 1 count ≥ 2

A — a1(3), a2(2)

B b2, b3, b4 b1(2)

C c1, c2, c4 c3(2)

D d1, d2, d3 d4(2)
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Table 4.3 Compressed Base Table: After star reduction.

A B C D count

a1 b1 ∗ ∗ 2

a1 ∗ ∗ ∗ 1

a2 ∗ c3 d4 2

a1:3

root:5

a2:2

b*:2

c3:2

d4:2

b*:1 b1:2

c*:1

d*:1

c*:2

d*:2

Star Table

b3        

b2        

b4        

c1        

c2        

d1        

...

*

*

*

*

*

c4        *

*

Figure 4.10 Star-tree and star-table.

star-table is constructed for each star-tree. Figure 4.10 also shows the corresponding star-
table for the star-tree (where only the star-nodes are shown in the star-table). In actual
implementation, a bit-vector or hash table could be used to represent the star-table for
fast lookup.

By collapsing star-nodes, the star-tree provides a lossless compression of the original
data. It provides a good improvement in memory usage, yet the time required to search
for nodes or tuples in the tree is costly. To reduce this cost, the nodes in the star-tree
are sorted in alphabetic order for each dimension, with the star-nodes appearing first. In
general, nodes are sorted in the order ∗, p1, p2, . . . , pn at each level.

Now, let’s see how the Star-Cubing algorithm uses star-trees to compute an iceberg
cube. The algorithm is given in Figure 4.13.

Example 4.8 Star-Cubing. Using the star-tree generated in Example 4.7 (Figure 4.10), we start the
process of aggregation by traversing in a bottom-up fashion. Traversal is depth-first. The
first stage (i.e., the processing of the first branch of the tree) is shown in Figure 4.11.
The leftmost tree in the figure is the base star-tree. Each attribute value is shown with its
corresponding aggregate value. In addition, subscripts by the nodes in the tree show the
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a1:32

b*:13 b1:2

c*:14

d*:15

c*:2

d*:2

b*:13

c*:14

BCD:11root:51

a2:2

b*:2

c3:2

d4:2

d*:15

a1CD/a1:1 a1b*D/a1b*:13

d*:15

a1b*c*/a1b*c*:14

Base–Tree BCD–Tree ACD/A–Tree ADB/AB–Tree ABC/ABC–Tree

c*:14

d*:15

Figure 4.11 Aggregation Stage One: Processing of the left-most branch of BaseTree.

order of traversal. The remaining four trees are BCD, ACD/A, ABD/AB, ABC/ABC. They
are the child trees of the base star-tree, and correspond to the level of three-dimensional
cuboids above the base cuboid in Figure 4.8. The subscripts in them correspond to the
same subscripts in the base tree—they denote the step or order in which they are created
during the tree traversal. For example, when the algorithm is at step 1, the BCD child tree
root is created. At step 2, the ACD/A child tree root is created. At step 3, the ABD/AB
tree root and the b∗ node in BCD are created.

When the algorithm has reached step 5, the trees in memory are exactly as shown in
Figure 4.11. Because the depth-first traversal has reached a leaf at this point, it starts back-
tracking. Before traversing back, the algorithm notices that all possible nodes in the base
dimension (ABC) have been visited. This means the ABC/ABC tree is complete, so the
count is output and the tree is destroyed. Similarly, upon moving back from d∗ to c∗ and
seeing that c∗has no siblings, the count in ABD/AB is also output and the tree is destroyed.

When the algorithm is at b∗ during the back-traversal, it notices that there exists a
sibling in b1. Therefore, it will keep ACD/A in memory and perform a depth-first search
on b1 just as it did on b∗. This traversal and the resultant trees are shown in Figure 4.12.
The child trees ACD/A and ABD/AB are created again but now with the new values from
the b1 subtree. For example, notice that the aggregate count of c∗ in the ACD/A tree has
increased from 1 to 3. The trees that remained intact during the last traversal are reused
and the new aggregate values are added on. For instance, another branch is added to the
BCD tree.

Just like before, the algorithm will reach a leaf node at d∗ and traverse back. This
time, it will reach a1 and notice that there exists a sibling in a2. In this case, all child
trees except BCD in Figure 4.12 are destroyed. Afterward, the algorithm will perform the
same traversal on a2. BCD continues to grow while the other subtrees start fresh with a2
instead of a1.

A node must satisfy two conditions in order to generate child trees: (1) the measure
of the node must satisfy the iceberg condition; and (2) the tree to be generated must
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Figure 4.12 Aggregation Stage Two: Processing of the second branch of BaseTree.

include at least one non-star (i.e., nontrivial) node. This is because if all the nodes were
star-nodes, then none of them would satisfy min sup. Therefore, it would be a complete
waste to compute them. This pruning is observed in Figures 4.11 and 4.12. For example,
the left subtree extending from node a1 in the base-tree in Figure 4.11 does not include
any non-star-nodes. Therefore, the a1CD/a1 subtree should not have been generated. It
is shown, however, for illustration of the child tree generation process.

Star-Cubing is sensitive to the ordering of dimensions, as with other iceberg cube
construction algorithms. For best performance, the dimensions are processed in order of
decreasing cardinality. This leads to a better chance of early pruning, because the higher
the cardinality, the smaller the partitions, and therefore the higher possibility that the
partition will be pruned.

Star-Cubing can also be used for full cube computation. When computing the full
cube for a dense data set, Star-Cubing’s performance is comparable with MultiWay and
is much faster than BUC. If the data set is sparse, Star-Cubing is significantly faster
than MultiWay and faster than BUC, in most cases. For iceberg cube computation, Star-
Cubing is faster than BUC, where the data are skewed and the speedup factor increases
as min sup decreases.

4.1.5 Precomputing Shell Fragments for Fast High-Dimensional
OLAP

Recall the reason that we are interested in precomputing data cubes: Data cubes facili-
tate fast on-line analytical processing (OLAP) in a multidimensional data space. How-
ever, a full data cube of high dimensionality needs massive storage space and unrealistic
computation time. Iceberg cubes provide a more feasible alternative, as we have seen,
wherein the iceberg condition is used to specify the computation of only a subset of the
full cube’s cells. However, although an iceberg cube is smaller and requires less com-
putation time than its corresponding full cube, it is not an ultimate solution. For one,
the computation and storage of the iceberg cube can still be costly. For example, if the
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Algorithm: Star-Cubing. Compute iceberg cubes by Star-Cubing.

Input:

R: a relational table

min support: minimum support threshold for the iceberg condition (taking count as the measure).

Output: The computed iceberg cube.

Method: Each star-tree corresponds to one cuboid tree node, and vice versa.

BEGIN
scan R twice, create star-table S and star-tree T ;
output count of T.root;
call starcubing(T, T.root);

END

procedure starcubing(T, cnode)// cnode: current node
{
(1) for each non-null child C of T ’s cuboid tree
(2) insert or aggregate cnode to the corresponding

position or node in C’s star-tree;
(3) if (cnode.count≥min support) then {
(4) if (cnode 6= root) then
(5) output cnode.count;
(6) if (cnode is a leaf) then
(7) output cnode.count;
(8) else { // initiate a new cuboid tree
(9) create CC as a child of T ’s cuboid tree;
(10) let TC be CC ’s star-tree;
(11) TC.root ′s count = cnode.count;
(12) }
(13) }
(14) if (cnode is not a leaf) then
(15) starcubing(T, cnode.first child);
(16) if (CC is not null) then {
(17) starcubing(TC,TC.root);
(18) remove CC from T ’s cuboid tree; }
(19) if (cnode has sibling) then
(20) starcubing(T, cnode.sibling);
(21) remove T ;
}

Figure 4.13 The Star-Cubing algorithm.

base cuboid cell, (a1, a2, . . . , a60), passes minimum support (or the iceberg threshold),
it will generate 260 iceberg cube cells. Second, it is difficult to determine an appropriate
iceberg threshold. Setting the threshold too low will result in a huge cube, whereas set-
ting the threshold too high may invalidate many useful applications. Third, an iceberg
cube cannot be incrementally updated. Once an aggregate cell falls below the iceberg
threshold and is pruned, its measure value is lost. Any incremental update would require
recomputing the cells from scratch. This is extremely undesirable for large real-life appli-
cations where incremental appending of new data is the norm.
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One possible solution, which has been implemented in some commercial data
warehouse systems, is to compute a thin cube shell. For example, we could compute
all cuboids with three dimensions or less in a 60-dimensional data cube, resulting in
cube shell of size 3. The resulting set of cuboids would require much less computation
and storage than the full 60-dimensional data cube. However, there are two disadvan-
tages of this approach. First, we would still need to compute

(60
3

)

+
(60

2

)

+60 = 36,050
cuboids, each with many cells. Second, such a cube shell does not support high-
dimensional OLAP because (1) it does not support OLAP on four or more dimen-
sions, and (2) it cannot even support drilling along three dimensions, such as, say,
(A4, A5, A6), on a subset of data selected based on the constants provided in three
other dimensions, such as (A1, A2, A3). This requires the computation of the corre-
sponding six-dimensional cuboid.

Instead of computing a cube shell, we can compute only portions or fragments of it.
This section discusses the shell fragment approach for OLAP query processing. It is based
on the following key observation about OLAP in high-dimensional space. Although a
data cube may contain many dimensions, most OLAP operations are performed on only
a small number of dimensions at a time. In other words, an OLAP query is likely to
ignore many dimensions (i.e., treating them as irrelevant), fix some dimensions (e.g.,
using query constants as instantiations), and leave only a few to be manipulated (for
drilling, pivoting, etc.). This is because it is neither realistic nor fruitful for anyone to
comprehend the changes of thousands of cells involving tens of dimensions simultane-
ously in a high-dimensional space at the same time. Instead, it is more natural to first
locate some cuboids of interest and then drill along one or two dimensions to examine
the changes of a few related dimensions. Most analysts will only need to examine, at any
one moment, the combinations of a small number of dimensions. This implies that if
multidimensional aggregates can be computed quickly on a small number of dimensions
inside a high-dimensional space, we may still achieve fast OLAP without materializing the
original high-dimensional data cube. Computing the full cube (or, often, even an iceberg
cube or shell cube) can be excessive. Instead, a semi-on-line computation model with cer-
tain preprocessing may offer a more feasible solution. Given a base cuboid, some quick
preparation computation can be done first (i.e., off-line). After that, a query can then be
computed on-line using the preprocessed data.

The shell fragment approach follows such a semi-on-line computation strategy. It
involves two algorithms: one for computing shell fragment cubes and one for query pro-
cessing with the fragment cubes. The shell fragment approach can handle databases of
extremely high dimensionality and can quickly compute small local cubes on-line. It
explores the inverted index data structure, which is popular in information retrieval and
Web-based information systems. The basic idea is as follows. Given a high-dimensional
data set, we partition the dimensions into a set of disjoint dimension fragments, convert
each fragment into its corresponding inverted index representation, and then construct
shell fragment cubes while keeping the inverted indices associated with the cube cells.
Using the precomputed shell fragment cubes, we can dynamically assemble and compute
cuboid cells of the required data cube on-line. This is made efficient by set intersection
operations on the inverted indices.
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To illustrate the shell fragment approach, we use the tiny database of Table 4.4
as a running example. Let the cube measure be count(). Other measures will be
discussed later. We first look at how to construct the inverted index for the given
database.

Example 4.9 Construct the inverted index. For each attribute value in each dimension, list the tuple
identifiers (TIDs) of all the tuples that have that value. For example, attribute value a2
appears in tuples 4 and 5. The TIDlist for a2 then contains exactly two items, namely
4 and 5. The resulting inverted index table is shown in Table 4.5. It retains all of the
information of the original database. It uses exactly the same amount of memory as the
original database.

“How do we compute shell fragments of a data cube?” The shell fragment compu-
tation algorithm, Frag-Shells, is summarized in Figure 4.14. We first partition all the
dimensions of the given data set into independent groups of dimensions, called frag-
ments (line 1). We scan the base cuboid and construct an inverted index for each attribute
(lines 2 to 6). Line 3 is for when the measure is other than the tuple count(), which will

Table 4.4 The original database.

TID A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

Table 4.5 The inverted index.

Attribute Value Tuple ID List List Size

a1 {1, 2, 3} 3

a2 {4, 5} 2

b1 {1, 4, 5} 3

b2 {2, 3} 2

c1 {1, 2, 3, 4, 5} 5

d1 {1, 3, 4, 5} 4

d2 {2} 1

e1 {1, 2} 2

e2 {3, 4} 2

e3 {5} 1
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Algorithm: Frag-Shells. Compute shell fragments on a given high-dimensional base table (i.e., base cuboid).

Input: A base cuboid, B, of n dimensions, namely, (A1, . . . ,An).

Output:

a set of fragment partitions, {P1, . . .Pk}, and their corresponding (local) fragment cubes, {S1, . . . , Sk},
where Pi represents some set of dimension(s) and P1 ∪ . . .∪Pk make up all the n dimensions

an ID measure array if the measure is not the tuple count, count()

Method:

(1) partition the set of dimensions (A1, . . . , An) into
a set of k fragments P1, . . . , Pk (based on data & query distribution)

(2) scan base cuboid, B, once and do the following {
(3) insert each 〈TID, measure〉 into ID measure array
(4) for each attribute value a j of each dimension Ai
(5) build an inverted index entry: 〈a j , TIDlist〉
(6) }
(7) for each fragment partition Pi
(8) build a local fragment cube, Si, by intersecting their

corresponding TIDlists and computing their measures

Figure 4.14 Algorithm for shell fragment computation.

be described later. For each fragment, we compute the full local (i.e., fragment-based)
data cube while retaining the inverted indices (lines 7 to 8). Consider a database of
60 dimensions, namely, A1, A2, . . . , A60. We can first partition the 60 dimensions into 20
fragments of size 3: (A1, A2, A3), (A4, A5, A6), . . ., (A58, A59, A60). For each fragment, we
compute its full data cube while recording the inverted indices. For example, in fragment
(A1, A2, A3), we would compute seven cuboids: A1, A2, A3, A1A2, A2A3, A1A3, A1A2A3.
Furthermore, an inverted index is retained for each cell in the cuboids. That is, for each
cell, its associated TIDlist is recorded.

The benefit of computing local cubes of each shell fragment instead of computing
the complete cube shell can be seen by a simple calculation. For a base cuboid of 60
dimensions, there are only 7×20 = 140 cuboids to be computed according to the above
shell fragment partitioning. This is in contrast to the 36,050 cuboids computed for the
cube shell of size 3 described earlier! Notice that the above fragment partitioning is based
simply on the grouping of consecutive dimensions. A more desirable approach would be
to partition based on popular dimension groupings. Such information can be obtained
from domain experts or the past history of OLAP queries.

Let’s return to our running example to see how shell fragments are computed.

Example 4.10 Compute shell fragments. Suppose we are to compute the shell fragments of size 3. We
first divide the five dimensions into two fragments, namely (A, B, C) and (D, E). For each
fragment, we compute the full local data cube by intersecting the TIDlists in Table 4.5
in a top-down depth-first order in the cuboid lattice. For example, to compute the cell
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Table 4.6 Cuboid AB.

Cell Intersection Tuple ID List List Size

(a1, b1) {1, 2, 3} ∩ {1, 4, 5} {1} 1

(a1, b2) {1, 2, 3} ∩ {2, 3} {2, 3} 2

(a2, b1) {4, 5} ∩ {1, 4, 5} {4, 5} 2

(a2, b2) {4, 5} ∩ {2, 3} {} 0

Table 4.7 Cuboid DE .

Cell Intersection Tuple ID List List Size

(d1, e1) {1, 3, 4, 5} ∩ {1, 2} {1} 1

(d1, e2) {1, 3, 4, 5} ∩ {3, 4} {3, 4} 2

(d1, e3) {1, 3, 4, 5} ∩ {5} {5} 1

(d2, e1) {2} ∩ {1, 2} {2} 1

(a1, b2, *), we intersect the tuple ID lists of a1 and b2 to obtain a new list of {2, 3}. Cuboid
AB is shown in Table 4.6.

After computing cuboid AB, we can then compute cuboid ABC by intersecting all
pairwise combinations between Table 4.6 and the row c1 in Table 4.5. Notice that because
cell (a2, b2) is empty, it can be effectively discarded in subsequent computations, based
on the Apriori property. The same process can be applied to compute fragment (D, E),
which is completely independent from computing (A, B, C). Cuboid DE is shown in
Table 4.7.

If the measure in the iceberg condition is count() (as in tuple counting), there is
no need to reference the original database for this because the length of the TIDlist
is equivalent to the tuple count. “Do we need to reference the original database if
computing other measures, such as average()?” Actually, we can build and reference an
ID measure array instead, which stores what we need to compute other measures.
For example, to compute average(), we let the ID measure array hold three elements,
namely, (TID, item count, sum), for each cell (line 3 of the shell computation algo-
rithm). The average() measure for each aggregate cell can then be computed by access-
ing only this ID measure array, using sum()/item count(). Considering a database with
106 tuples, each taking 4 bytes each for TID, item count, and sum, the ID measure
array requires 12 MB, whereas the corresponding database of 60 dimensions will
require (60 + 3)× 4× 106 = 252 MB (assuming each attribute value takes 4 bytes).
Obviously, ID measure array is a more compact data structure and is more likely to
fit in memory than the corresponding high-dimensional database.

To illustrate the design of the ID measure array, let’s look at the following example.
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Example 4.11 Computing cubes with the average() measure. Suppose that Table 4.8 shows an example
sales database where each tuple has two associated values, such as item count and sum,
where item count is the count of items sold.

To compute a data cube for this database with the measure average(), we need to
have a TIDlist for each cell: {T ID1, . . . , T IDn}. Because each TID is uniquely asso-
ciated with a particular set of measure values, all future computations just need to
fetch the measure values associated with the tuples in the list. In other words, by
keeping an ID measure array in memory for on-line processing, we can handle com-
plex algebraic measures, such as average, variance, and standard deviation. Table 4.9
shows what exactly should be kept for our example, which is substantially smaller
than the database itself.

The shell fragments are negligible in both storage space and computation time in
comparison with the full data cube. Note that we can also use the Frag-Shells algo-
rithm to compute the full data cube by including all of the dimensions as a single frag-
ment. Because the order of computation with respect to the cuboid lattice is top-down
and depth-first (similar to that of BUC), the algorithm can perform Apriori pruning if
applied to the construction of iceberg cubes.

“Once we have computed the shell fragments, how can they be used to answer OLAP
queries?” Given the precomputed shell fragments, we can view the cube space as a virtual
cube and perform OLAP queries related to the cube on-line. In general, there are two
types of queries: (1) point query and (2) subcube query.

Table 4.8 A database with two measure values.

TID A B C D E item count sum

1 a1 b1 c1 d1 e1 5 70

2 a1 b2 c1 d2 e1 3 10

3 a1 b2 c1 d1 e2 8 20

4 a2 b1 c1 d1 e2 5 40

5 a2 b1 c1 d1 e3 2 30

Table 4.9 ID measure array of Table 4.8.

TID item count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30
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In a point query, all of the relevant dimensions in the cube have been instantiated
(that is, there are no inquired dimensions in the relevant set of dimensions). For
example, in an n-dimensional data cube, A1A2 . . .An, a point query could be in the
form of 〈A1, A5, A9 : M?〉, where A1 = {a11, a18}, A5 = {a52, a55, a59}, A9 = a94, and
M is the inquired measure for each corresponding cube cell. For a cube with a small
number of dimensions, we can use “*” to represent a “don’t care” position where the
corresponding dimension is irrelevant, that is, neither inquired nor instantiated. For
example, in the query 〈a2, b1, c1, d1, ∗ : count()?〉 for the database in Table 4.4, the
first four dimension values are instantiated to a2, b1, c1, and d1, respectively, while
the last dimension is irrelevant, and count() (which is the tuple count by context) is
the inquired measure.

In a subcube query, at least one of the relevant dimensions in the cube is inquired.
For example, in an n-dimensional data cube A1A2 . . .An, a subcube query could be in the
form 〈A1, A5?, A9, A21? : M?〉, where A1 = {a11, a18} and A9 = a94, A5 and A21 are the
inquired dimensions, and M is the inquired measure. For a cube with a small number
of dimensions, we can use “∗” for an irrelevant dimension and “?” for an inquired one.
For example, in the query 〈a2, ?, c1, ∗ , ? : count()?〉 we see that the first and third
dimension values are instantiated to a2 and c1, respectively, while the fourth is irrelevant,
and the second and the fifth are inquired. A subcube query computes all possible value
combinations of the inquired dimensions. It essentially returns a local data cube consisting
of the inquired dimensions.

“How can we use shell fragments to answer a point query?” Because a point query explic-
itly provides the set of instantiated variables on the set of relevant dimensions, we can
make maximal use of the precomputed shell fragments by finding the best fitting (that
is, dimension-wise completely matching) fragments to fetch and intersect the associated
TIDlists.

Let the point query be of the form 〈αi, α j, αk, αp : M?〉, where αi represents a set of
instantiated values of dimension Ai, and so on for α j, αk, and αp. First, we check the
shell fragment schema to determine which dimensions among Ai, A j, Ak, and Ap are in
the same fragment(s). Suppose Ai and A j are in the same fragment, while Ak and Ap
are in two other fragments. We fetch the corresponding TIDlists on the precomputed
2-D fragment for dimensions Ai and A j using the instantiations αi and α j, and fetch
the TIDlists on the 1-D fragments for dimensions Ak and Ap using the instantiations αk
and αp, respectively. The obtained TIDlists are intersected to derive the TIDlist table.
This table is then used to derive the specified measure (e.g., by taking the length of the
TIDlists for tuple count(), or by fetching item count() and sum() from the ID measure
array to compute average()) for the final set of cells.

Example 4.12 Point query. Suppose a user wants to compute the point query, 〈a2, b1, c1, d1, ∗:
count()?〉, for our database in Table 4.4 and that the shell fragments for the partitions
(A, B, C) and (D, E) are precomputed as described in Example 4.10. The query is broken
down into two subqueries based on the precomputed fragments: 〈a2, b1, c1, ∗ , ∗〉 and
〈∗, ∗ , ∗ , d1, ∗〉. The best fit precomputed shell fragments for the two subqueries are
ABC and D. The fetch of the TIDlists for the two subqueries returns two lists: {4, 5} and
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{1, 3, 4, 5}. Their intersection is the list {4, 5}, which is of size 2. Thus the final answer
is count() = 2.

A subcube query returns a local data cube based on the instantiated and inquired
dimensions. Such a data cube needs to be aggregated in a multidimensional way
so that on-line analytical processing (such as drilling, dicing, pivoting, etc.) can be
made available to users for flexible manipulation and analysis. Because instantiated
dimensions usually provide highly selective constants that dramatically reduce the
size of the valid TIDlists, we should make maximal use of the precomputed shell
fragments by finding the fragments that best fit the set of instantiated dimensions,
and fetching and intersecting the associated TIDlists to derive the reduced TIDlist.
This list can then be used to intersect the best-fitting shell fragments consisting of
the inquired dimensions. This will generate the relevant and inquired base cuboid,
which can then be used to compute the relevant subcube on the fly using an efficient
on-line cubing algorithm.

Let the subcube query be of the form 〈αi, α j, Ak?, αp, Aq? : M?〉, where αi, α j, and
αp represent a set of instantiated values of dimension Ai, A j, and Ap, respectively, and Ak
and Aq represent two inquired dimensions. First, we check the shell fragment schema to
determine which dimensions among (1) Ai, A j, and Ap, and (2) among Ak and Aq are in
the same fragment partition. Suppose Ai and A j belong to the same fragment, as do Ak
and Aq, but that Ap is in a different fragment. We fetch the corresponding TIDlists in the
precomputed 2-D fragment for Ai and A j using the instantiations αi and α j, then fetch
the TIDlist on the precomputed 1-D fragment for Ap using instantiation αp, and then
fetch the TIDlists on the precomputed 1-D fragments for Ak and Aq, respectively, using no
instantiations (i.e., all possible values). The obtained TIDlists are intersected to derive the
final TIDlists, which are used to fetch the corresponding measures from the ID measure
array to derive the “base cuboid” of a 2-D subcube for two dimensions (Ak, Aq). A fast cube
computation algorithm can be applied to compute this 2-D cube based on the derived base
cuboid. The computed 2-D cube is then ready for OLAP operations.

Example 4.13 Subcube query. Suppose a user wants to compute the subcube query, 〈a2, b1, ?, ∗ , ? :
count()?〉, for our database in Table 4.4, and that the shell fragments have been pre-
computed as described in Example 4.10. The query can be broken into three best-fit
fragments according to the instantiated and inquired dimensions: AB, C, and E , where
AB has the instantiation (a2, b1). The fetch of the TIDlists for these partitions returns:
(a2, b1):{4, 5}, (c1):{1, 2, 3, 4, 5}, and {(e1:{1, 2}), (e2:{3, 4}), (e3:{5})}, respectively.
The intersection of these corresponding TIDlists contains a cuboid with two tuples: {(c1,
e2):{4}5, (c1, e3):{5}}. This base cuboid can be used to compute the 2-D data cube,
which is trivial.

5That is, the intersection of the TIDlists for (a2, b1), (c1), and (e2) is {4}.
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For large data sets, a fragment size of 2 or 3 typically results in reasonable storage
requirements for the shell fragments and for fast query response time. Querying with
shell fragments is substantially faster than answering queries using precomputed data
cubes that are stored on disk. In comparison to full cube computation, Frag-Shells is
recommended if there are less than four inquired dimensions. Otherwise, more efficient
algorithms, such as Star-Cubing, can be used for fast on-line cube computation. Frag-
Shells can easily be extended to allow incremental updates, the details of which are left
as an exercise.

4.1.6 Computing Cubes with Complex Iceberg Conditions

The iceberg cubes we have discussed so far contain only simple iceberg conditions,
such as count ≥ 50 or price sum ≥ 1000 (specified in the having clause). Such con-
ditions have a nice property: if the condition is violated for some cell c, then every
descendant of c will also violate that condition. For example, if the quantity of an item
I sold in a region R1 is less than 50, then the same item I sold in a subregion of R1
can never satisfy the condition count ≥ 50. Conditions that obey this property are
known as antimonotonic.

Not all iceberg conditions are antimonotonic. For example, the condition avg(price)
≥ 800 is not antimonotonic. This is because if the average price of an item, such as,
say, “TV”, in region R1, is less than $800, then a descendant of the cell representing
“TV” and R1, such as “TV” in a subregion of R1, can still have an average price of
over $800.

“Can we still push such an iceberg condition deep into the cube computation process for
improved efficiency?” To answer this question, we first look at an example.

Example 4.14 Iceberg cube with the average measure. Consider the salesInfo table given in Table 4.10,
which registers sales related to month, day, city, customer group, item, and price.

Suppose, as data analysts, we have the following query: Find groups of sales that contain
at least 50 items and whose average item price is at least $800, grouped by month, city, and/or
customer group. We can specify an iceberg cube, sales avg iceberg, to answer the query, as
follows:

Table 4.10 A salesInfo table.

month day city cust group item price

Jan 10 Chicago Education HP Printer 485

Jan 15 Chicago Household Sony TV 1,200

Jan 20 New York Education Canon Camera 1,280

Feb 20 New York Business IBM Laptop 2,500

Mar 4 Vancouver Education Seagate HD 520

· · · · · · · · · · · · · · · · · ·
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compute cube sales avg iceberg as

select month, city, customer group, avg(price), count(∗)
from salesInfo

cube by month, city, customer group

having avg(price) >= 800 and count(∗)>= 50

Here, the iceberg condition involves the measure average, which is not antimonotonic.
This implies that if a cell, c, cannot satisfy the iceberg condition, “average(c) ≥ v”, we
cannot prune away the descendants of c because it is possible that the average value for
some of them may satisfy the condition.

“How can we compute sales avg iceberg?” It would be highly inefficient to first
materialize the full data cube and then select the cells satisfying the having clause
of the iceberg condition. We have seen that a cube with an antimonotonic iceberg
condition can be computed efficiently by exploring the Apriori property. However,
because this iceberg cube involves a non-antimonotonic iceberg condition, Apri-
ori pruning cannot be applied. “Can we transform the non-antimonotonic condition
to a somewhat weaker but antimonotonic one so that we can still take advantage of
pruning?”

The answer is “yes.” Here we examine one interesting such method. A cell c is said to
have n base cells if it covers n nonempty descendant base cells. The top-k average of c,
denoted as avgk(c), is the average value (i.e., price) of the top-k base cells of c (i.e., the first
k cells when all the base cells in c are sorted in value-descending order) if k ≤ n; or −∞
if k > n. With this notion of top-k average, we can transform the original iceberg con-
dition “avg(price)≥ v and count(∗)≥ k” into the weaker but antimonotonic condition
“avgk(c) ≥ v”. The reasoning is that if the average of the top-k nonempty descendant
base cells of a cell c is less than v, there exists no subset from this set of base cells that
can contain k or more base cells and have a bigger average value than v. Thus, it is safe
to prune away the cell c.

It is costly to sort and keep the top-k base cell values for each aggregated cell. For effi-
cient implementation, we can use only a few records to register some aggregated values
to facilitate similar pruning. For example, we could use one record, r0, to keep the sum
and count of the cells whose value is no less than v, and a few records, such as r1, r2, and
r3, to keep the sum and count of the cells whose price falls into the range of [0.8−1.0),
[0.6−0.8), [0.4−0.6) of v, respectively. If the counts of r0 and r1 are no less than k but
the average of the two is less than v, there is no hope of finding any descendants of c that
can satisfy the iceberg condition. Thus c and its descendants can be pruned off in iceberg
cube computation.

Similar transformation methods can be applied to many other iceberg conditions,
such as those involving average on a set of positive and negative values, range, variance,
and standard deviation. Details of the transformation methods are left as an exercise for
interested readers.
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4.2 Further Development of Data Cube and OLAP
Technology

In this section, we study further developments of data cube and OLAP technology.
Section 4.2.1 describes data mining by discovery-driven exploration of data cubes,
where anomalies in the data are automatically detected and marked for the user
with visual cues. Section 4.2.2 describes multifeature cubes for complex data mining
queries involving multiple dependent aggregates at multiple granularity. Section 4.2.3
presents methods for constrained gradient analysis in data cubes, which identifies cube
cells that have dramatic changes in value in comparison with their siblings, ancestors,
or descendants.

4.2.1 Discovery-Driven Exploration of Data Cubes

As studied in previous sections, a data cube may have a large number of cuboids, and each
cuboid may contain a large number of (aggregate) cells. With such an overwhelmingly
large space, it becomes a burden for users to even just browse a cube, let alone think of
exploring it thoroughly. Tools need to be developed to assist users in intelligently explor-
ing the huge aggregated space of a data cube.

Discovery-driven exploration is such a cube exploration approach. In discovery-
driven exploration, precomputed measures indicating data exceptions are used to guide
the user in the data analysis process, at all levels of aggregation. We hereafter refer to
these measures as exception indicators. Intuitively, an exception is a data cube cell value
that is significantly different from the value anticipated, based on a statistical model. The
model considers variations and patterns in the measure value across all of the dimensions
to which a cell belongs. For example, if the analysis of item-sales data reveals an increase
in sales in December in comparison to all other months, this may seem like an exception
in the time dimension. However, it is not an exception if the item dimension is consid-
ered, since there is a similar increase in sales for other items during December. The model
considers exceptions hidden at all aggregated group-by’s of a data cube. Visual cues such
as background color are used to reflect the degree of exception of each cell, based on
the precomputed exception indicators. Efficient algorithms have been proposed for cube
construction, as discussed in Section 4.1. The computation of exception indicators can
be overlapped with cube construction, so that the overall construction of data cubes for
discovery-driven exploration is efficient.

Three measures are used as exception indicators to help identify data anomalies. These
measures indicate the degree of surprise that the quantity in a cell holds, with respect to
its expected value. The measures are computed and associated with every cell, for all
levels of aggregation. They are as follows:

SelfExp: This indicates the degree of surprise of the cell value, relative to other cells
at the same level of aggregation.



190 Chapter 4 Data Cube Computation and Data Generalization

InExp: This indicates the degree of surprise somewhere beneath the cell, if we were to
drill down from it.

PathExp: This indicates the degree of surprise for each drill-down path from the cell.

The use of these measures for discovery-driven exploration of data cubes is illustrated in
the following example.

Example 4.15 Discovery-driven exploration of a data cube. Suppose that you would like to analyze the
monthly sales at AllElectronics as a percentage difference from the previous month. The
dimensions involved are item, time, and region. You begin by studying the data aggregated
over all items and sales regions for each month, as shown in Figure 4.15.

To view the exception indicators, you would click on a button marked highlight excep-
tions on the screen. This translates the SelfExp and InExp values into visual cues, dis-
played with each cell. The background color of each cell is based on its SelfExp value. In
addition, a box is drawn around each cell, where the thickness and color of the box are
a function of its InExp value. Thick boxes indicate high InExp values. In both cases, the
darker the color, the greater the degree of exception. For example, the dark, thick boxes
for sales during July, August, and September signal the user to explore the lower-level
aggregations of these cells by drilling down.

Drill-downs can be executed along the aggregated item or region dimensions. “Which
path has more exceptions?” you wonder. To find this out, you select a cell of interest and
trigger a path exception module that colors each dimension based on the PathExp value
of the cell. This value reflects the degree of surprise of that path. Suppose that the path
along item contains more exceptions.

A drill-down along item results in the cube slice of Figure 4.16, showing the sales over
time for each item. At this point, you are presented with many different sales values to
analyze. By clicking on the highlight exceptions button, the visual cues are displayed,
bringing focus toward the exceptions. Consider the sales difference of 41% for “Sony
b/w printers” in September. This cell has a dark background, indicating a high SelfExp
value, meaning that the cell is an exception. Consider now the sales difference of −15%
for “Sony b/w printers” in November, and of −11% in December. The −11% value for
December is marked as an exception, while the−15% value is not, even though−15% is
a bigger deviation than−11%. This is because the exception indicators consider all of the
dimensions that a cell is in. Notice that the December sales of most of the other items have
a large positive value, while the November sales do not. Therefore, by considering the

Sum of sales Month

Total

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1% −1% 0% 1% 3% −1% −9% −1% 2% −4% 3%

Figure 4.15 Change in sales over time.
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Figure 4.16 Change in sales for each item-time combination.
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Figure 4.17 Change in sales for the item IBM desktop computer per region.

position of the cell in the cube, the sales difference for “Sony b/w printers” in December
is exceptional, while the November sales difference of this item is not.

The InExp values can be used to indicate exceptions at lower levels that are not visible
at the current level. Consider the cells for “IBM desktop computers” in July and September.
These both have a dark, thick box around them, indicating high InExp values. You may
decide to further explore the sales of “IBM desktop computers” by drilling down along
region. The resulting sales difference by region is shown in Figure 4.17, where the highlight
exceptions option has been invoked. The visual cues displayed make it easy to instantly
notice an exception for the sales of “IBM desktop computers” in the southern region,
where such sales have decreased by−39% and−34% in July and September, respectively.
These detailed exceptions were far from obvious when we were viewing the data as an
item-time group-by, aggregated over region in Figure 4.16. Thus, the InExp value is useful
for searching for exceptions at lower-level cells of the cube. Because no other cells in
Figure 4.17 have a high InExp value, you may roll up back to the data of Figure 4.16 and
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choose another cell from which to drill down. In this way, the exception indicators can
be used to guide the discovery of interesting anomalies in the data.

“How are the exception values computed?” The SelfExp, InExp, and PathExp measures
are based on a statistical method for table analysis. They take into account all of the
group-by’s (aggregations) in which a given cell value participates. A cell value is con-
sidered an exception based on how much it differs from its expected value, where its
expected value is determined with a statistical model described below. The difference
between a given cell value and its expected value is called a residual. Intuitively, the larger
the residual, the more the given cell value is an exception. The comparison of residual
values requires us to scale the values based on the expected standard deviation associated
with the residuals. A cell value is therefore considered an exception if its scaled residual
value exceeds a prespecified threshold. The SelfExp, InExp, and PathExp measures are
based on this scaled residual.

The expected value of a given cell is a function of the higher-level group-by’s of the
given cell. For example, given a cube with the three dimensions A, B, and C, the expected
value for a cell at the ith position in A, the jth position in B, and the kth position in C
is a function of γ, γ A

i , γ B
j , γ C

k , γ AB
i j , γ AC

ik , and γ BC
jk , which are coefficients of the statistical

model used. The coefficients reflect how different the values at more detailed levels are,
based on generalized impressions formed by looking at higher-level aggregations. In this
way, the exception quality of a cell value is based on the exceptions of the values below it.
Thus, when seeing an exception, it is natural for the user to further explore the exception
by drilling down.

“How can the data cube be efficiently constructed for discovery-driven exploration?”
This computation consists of three phases. The first step involves the computation of
the aggregate values defining the cube, such as sum or count, over which exceptions
will be found. The second phase consists of model fitting, in which the coefficients
mentioned above are determined and used to compute the standardized residuals.
This phase can be overlapped with the first phase because the computations involved
are similar. The third phase computes the SelfExp, InExp, and PathExp values, based
on the standardized residuals. This phase is computationally similar to phase 1. There-
fore, the computation of data cubes for discovery-driven exploration can be done
efficiently.

4.2.2 Complex Aggregation at Multiple Granularity:
Multifeature Cubes

Data cubes facilitate the answering of data mining queries as they allow the computa-
tion of aggregate data at multiple levels of granularity. In this section, you will learn
about multifeature cubes, which compute complex queries involving multiple dependent
aggregates at multiple granularity. These cubes are very useful in practice. Many com-
plex data mining queries can be answered by multifeature cubes without any significant
increase in computational cost, in comparison to cube computation for simple queries
with standard data cubes.
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All of the examples in this section are from the Purchases data of AllElectronics, where
an item is purchased in a sales region on a business day (year, month, day). The shelf life
in months of a given item is stored in shelf. The item price and sales (in dollars) at a given
region are stored in price and sales, respectively. To aid in our study of multifeature cubes,
let’s first look at an example of a simple data cube.

Example 4.16 Query 1: A simple data cube query. Find the total sales in 2004, broken down by item,
region, and month, with subtotals for each dimension.

To answer Query 1, a data cube is constructed that aggregates the total sales at the
following eight different levels of granularity: {(item, region, month), (item, region),
(item, month), (month, region), (item), (month), (region), ()}, where () represents all.
Query 1 uses a typical data cube like that introduced in the previous chapter. We
call such a data cube a simple data cube because it does not involve any dependent aggre-
gates.

“What is meant by ‘dependent aggregates’?” We answer this by studying the following
example of a complex query.

Example 4.17 Query 2: A complex query. Grouping by all subsets of {item, region, month}, find the
maximum price in 2004 for each group and the total sales among all maximum price
tuples.

The specification of such a query using standard SQL can be long, repetitive, and
difficult to optimize and maintain. Alternatively, Query 2 can be specified concisely using
an extended SQL syntax as follows:

select item, region, month, max(price), sum(R.sales)
from Purchases
where year = 2004
cube by item, region, month: R
such that R.price = max(price)

The tuples representing purchases in 2004 are first selected. The cube by clause
computes aggregates (or group-by’s) for all possible combinations of the attributes item,
region, and month. It is an n-dimensional generalization of the group by clause. The
attributes specified in the cube by clause are the grouping attributes. Tuples with the
same value on all grouping attributes form one group. Let the groups be g1, . . . , gr. For
each group of tuples gi, the maximum price maxgi among the tuples forming the group
is computed. The variable R is a grouping variable, ranging over all tuples in group gi
whose price is equal to maxgi (as specified in the such that clause). The sum of sales of the
tuples in gi that R ranges over is computed and returned with the values of the grouping
attributes of gi. The resulting cube is a multifeature cube in that it supports complex
data mining queries for which multiple dependent aggregates are computed at a variety
of granularities. For example, the sum of sales returned in Query 2 is dependent on the
set of maximum price tuples for each group.
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Figure 4.18 A multifeature cube graph for Query 3.

Let’s look at another example.

Example 4.18 Query 3: An even more complex query. Grouping by all subsets of {item, region, month},
find the maximum price in 2004 for each group. Among the maximum price tuples, find
the minimum and maximum item shelf lives. Also find the fraction of the total sales due
to tuples that have minimum shelf life within the set of all maximum price tuples, and
the fraction of the total sales due to tuples that have maximum shelf life within the set of
all maximum price tuples.

The multifeature cube graph of Figure 4.18 helps illustrate the aggregate dependen-
cies in the query. There is one node for each grouping variable, plus an additional initial
node, R0. Starting from node R0, the set of maximum price tuples in 2004 is first com-
puted (node R1). The graph indicates that grouping variables R2 and R3 are “dependent”
on R1, since a directed line is drawn from R1 to each of R2 and R3. In a multifeature cube
graph, a directed line from grouping variable Ri to R j means that R j always ranges over a
subset of the tuples that Ri ranges over. When expressing the query in extended SQL, we
write “R j in Ri” as shorthand to refer to this case. For example, the minimum shelf life
tuples at R2 range over the maximum price tuples at R1, that is, “R2 in R1.” Similarly,
the maximum shelf life tuples at R3 range over the maximum price tuples at R1, that is,
“R3 in R1.”

From the graph, we can express Query 3 in extended SQL as follows:

select item, region, month, max(price), min(R1.shelf), max(R1.shelf),
sum(R1.sales), sum(R2.sales), sum(R3.sales)

from Purchases
where year = 2004
cube by item, region, month: R1, R2, R3
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such that R1.price = max(price) and
R2 in R1 and R2.shelf = min(R1.shelf) and
R3 in R1 and R3.shelf = max(R1.shelf)

“How can multifeature cubes be computed efficiently?” The computation of a multifea-
ture cube depends on the types of aggregate functions used in the cube. In Chapter 3,
we saw that aggregate functions can be categorized as either distributive, algebraic, or
holistic. Multifeature cubes can be organized into the same categories and computed
efficiently by minor extension of the previously studied cube computation methods.

4.2.3 Constrained Gradient Analysis in Data Cubes

Many data cube applications need to analyze the changes of complex measures in multidi-
mensional space. For example, in real estate, we may want to ask what are the changes of
the average house price in the Vancouver area in the year 2004 compared against 2003,
and the answer could be “the average price for those sold to professionals in the West End
went down by 20%, while those sold to business people in Metrotown went up by 10%,
etc.” Expressions such as “professionals in the West End” correspond to cuboid cells and
describe sectors of the business modeled by the data cube.

The problem of mining changes of complex measures in a multidimensional space was
first proposed by Imielinski, Khachiyan, and Abdulghani [IKA02] as the cubegrade prob-
lem, which can be viewed as a generalization of association rules6 and data cubes. It stud-
ies how changes in a set of measures (aggregates) of interest are associated with changes
in the underlying characteristics of sectors, where changes in sector characteristics are
expressed in terms of dimensions of the cube and are limited to specialization (drill-
down), generalization (roll-up), and mutation (a change in one of the cube’s dimensions).
For example, we may want to ask “what kind of sector characteristics are associated with
major changes in average house price in the Vancouver area in 2004?” The answer will
be pairs of sectors, associated with major changes in average house price, including, for
example, “the sector of professional buyers in the West End area of Vancouver” versus
“the sector of all buyers in the entire area of Vancouver” as a specialization (or general-
ization). The cubegrade problem is significantly more expressive than association rules,
because it captures data trends and handles complex measures, not just count, as asso-
ciation rules do. The problem has broad applications, from trend analysis to answering
“what-if ” questions and discovering exceptions or outliers.

The curse of dimensionality and the need for understandable results pose serious chal-
lenges for finding an efficient and scalable solution to the cubegrade problem. Here we
examine a confined but interesting version of the cubegrade problem, called

6Association rules were introduced in Chapter 1. They are often used in market basket analysis to
find associations between items purchased in transactional sales databases. Association rule mining is
described in detail in Chapter 5.
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constrained multidimensional gradient analysis, which reduces the search space and
derives interesting results. It incorporates the following types of constraints:

1. Significance constraint: This ensures that we examine only the cells that have certain
“statistical significance” in the data, such as containing at least a specified number
of base cells or at least a certain total sales. In the data cube context, this constraint
acts as the iceberg condition, which prunes a huge number of trivial cells from the
answer set.

2. Probe constraint: This selects a subset of cells (called probe cells) from all of the pos-
sible cells as starting points for examination. Because the cubegrade problem needs
to compare each cell in the cube with other cells that are either specializations, gener-
alizations, or mutations of the given cell, it extracts pairs of similar cell characteristics
associated with big changes in measure in a data cube. Given three cells, a, b, and c, if
a is a specialization of b, then we say it is a descendant of b, in which case, b is a gen-
eralization or ancestor of a. Cell c is a mutation of a if the two have identical values in
all but one dimension, where the dimension for which they vary cannot have a value of
“∗”. Cells a and c are considered siblings. Even when considering only iceberg cubes,
a large number of pairs may still be generated. Probe constraints allow the user to
specify a subset of cells that are of interest for the analysis task. In this way, the study
is focused only on these cells and their relationships with corresponding ancestors,
descendants, and siblings.

3. Gradient constraint: This specifies the user’s range of interest on the gradient
(measure change). A user is typically interested in only certain types of changes
between the cells (sectors) under comparison. For example, we may be interested
in only those cells whose average profit increases by more than 40% compared to
that of the probe cells. Such changes can be specified as a threshold in the form
of either a ratio or a difference between certain measure values of the cells under
comparison. A cell that captures the change from the probe cell is referred to as
a gradient cell.

The following example illustrates each of the above types of constraints.

Example 4.19 Constrained average gradient analysis. The base table, D, for AllElectronics sales has the
schema

sales(year, city, customer group, item group, count, avg price).

Attributes year, city, customer group, and item group are the dimensional attributes;
count and avg price are the measure attributes. Table 4.11 shows a set of base and aggre-
gate cells. Tuple c1 is a base cell, while tuples c2, c3, and c4 are aggregate cells. Tuple c3 is
a sibling of c2, c4 is an ancestor of c2, and c1 is a descendant of c2.

Suppose that the significance constraint, Csig, is (count ≥ 100), meaning that a cell
with count no less than 100 is regarded as significant. Suppose that the probe constraint,
Cprb, is (city = “Vancouver,” customer group = “Business,” item group = *). This means



4.2 Further Development of Data Cube and OLAP Technology 197

Table 4.11 A set of base and aggregate cells.

c1 (2000, Vancouver, Business, PC, 300, $2100)

c2 (∗, Vancouver, Business, PC, 2800, $1900)

c3 (∗, Toronto, Business, PC, 7900, $2350)

c4 (∗, ∗, Business, PC, 58600, $2250)

that the set of probe cells, P, is the set of aggregate tuples regarding the sales of the
Business customer group in Vancouver, for every product group, provided the count in
the tuple is greater than or equal to 100. It is easy to see that c2 ∈ P.

Let the gradient constraint, Cgrad(cg, cp), be (avg price(cg)/avg price(cp) ≥ 1.4).
The constrained gradient analysis problem is thus to find all pairs, (cg, cp), where cp is
a probe cell in P; cg is a sibling, ancestor, or descendant of cp; cg is a significant cell, and
cg’s average price is at least 40% more than cp’s.

If a data cube is fully materialized, the query posed in Example 4.19 becomes a rela-
tively simple retrieval of the pairs of computed cells that satisfy the constraints. Unfor-
tunately, the number of aggregate cells is often too huge to be precomputed and stored.
Typically, only the base table or cuboid is available, so that the task then becomes how to
efficiently compute the gradient-probe pairs from it.

One rudimentary approach to computing such gradients is to conduct a search for the
gradient cells, once per probe cell. This approach is inefficient because it would involve
a large amount of repeated work for different probe cells. A suggested method is a set-
oriented approach that starts with a set of probe cells, utilizes constraints early on during
search, and explores pruning, when possible, during progressive computation of pairs of
cells. With each gradient cell, the set of all possible probe cells that might co-occur in
interesting gradient-probe pairs are associated with some descendants of the gradient
cell. These probe cells are considered “live probe cells.” This set is used to search for
future gradient cells, while considering significance constraints and gradient constraints
to reduce the search space as follows:

1. The significance constraints can be used directly for pruning: If a cell, c, cannot satisfy
the significance constraint, then c and its descendants can be pruned because none of
them can be significant, and

2. Because the gradient constraint may specify a complex measure (such as avg ≥ v),
the incorporation of both the significance constraint and the gradient constraint can
be used for pruning in a manner similar to that discussed in Section 4.1.6 on com-
puting cubes with complex iceberg conditions. That is, we can explore a weaker but
antimonotonic form of the constraint, such as the top-k average, avgk(c)≥ v, where k
is the significance constraint (such as 100 in Example 4.19), and v is derived from the
gradient constraint based on v = cg×vp, where cg is the gradient contraint threshold,
and vp is the value of the corresponding probe cell. That is, if the current cell, c, cannot
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satisfy this constraint, further exploration of its descendants will be useless and thus
can be pruned.

The constrained cube gradient analysis has been shown to be effective at exploring the
significant changes among related cube cells in multidimensional space.

4.3 Attribute-Oriented Induction—An Alternative Method
for Data Generalization and Concept Description

Data generalization summarizes data by replacing relatively low-level values (such as
numeric values for an attribute age) with higher-level concepts (such as young, middle-
aged, and senior). Given the large amount of data stored in databases, it is useful to be
able to describe concepts in concise and succinct terms at generalized (rather than low)
levels of abstraction. Allowing data sets to be generalized at multiple levels of abstraction
facilitates users in examining the general behavior of the data. Given the AllElectron-
ics database, for example, instead of examining individual customer transactions, sales
managers may prefer to view the data generalized to higher levels, such as summarized
by customer groups according to geographic regions, frequency of purchases per group,
and customer income.

This leads us to the notion of concept description, which is a form of data generaliza-
tion. A concept typically refers to a collection of data such as frequent buyers,
graduate students, and so on. As a data mining task, concept description is not a sim-
ple enumeration of the data. Instead, concept description generates descriptions for the
characterization and comparison of the data. It is sometimes called class description,
when the concept to be described refers to a class of objects. Characterization provides
a concise and succinct summarization of the given collection of data, while concept or
class comparison (also known as discrimination) provides descriptions comparing two
or more collections of data.

Up to this point, we have studied data cube (or OLAP) approaches to concept descrip-
tion using multidimensional, multilevel data generalization in data warehouses. “Is data
cube technology sufficient to accomplish all kinds of concept description tasks for large data
sets?” Consider the following cases.

Complex data types and aggregation: Data warehouses and OLAP tools are based on a
multidimensional data model that views data in the form of a data cube, consisting of
dimensions (or attributes) and measures (aggregate functions). However, many cur-
rent OLAP systems confine dimensions to nonnumeric data and measures to numeric
data. In reality, the database can include attributes of various data types, including
numeric, nonnumeric, spatial, text, or image, which ideally should be included in
the concept description. Furthermore, the aggregation of attributes in a database
may include sophisticated data types, such as the collection of nonnumeric data,
the merging of spatial regions, the composition of images, the integration of texts,
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and the grouping of object pointers. Therefore, OLAP, with its restrictions on the
possible dimension and measure types, represents a simplified model for data analy-
sis. Concept description should handle complex data types of the attributes and their
aggregations, as necessary.

User-control versus automation: On-line analytical processing in data warehouses is
a user-controlled process. The selection of dimensions and the application of OLAP
operations, such as drill-down, roll-up, slicing, and dicing, are primarily directed
and controlled by the users. Although the control in most OLAP systems is quite
user-friendly, users do require a good understanding of the role of each dimension.
Furthermore, in order to find a satisfactory description of the data, users may need to
specify a long sequence of OLAP operations. It is often desirable to have a more auto-
mated process that helps users determine which dimensions (or attributes) should
be included in the analysis, and the degree to which the given data set should be
generalized in order to produce an interesting summarization of the data.

This section presents an alternative method for concept description, called attribute-
oriented induction, which works for complex types of data and relies on a data-driven
generalization process.

4.3.1 Attribute-Oriented Induction for Data Characterization

The attribute-oriented induction (AOI) approach to concept description was first
proposed in 1989, a few years before the introduction of the data cube approach. The
data cube approach is essentially based on materialized views of the data, which typ-
ically have been precomputed in a data warehouse. In general, it performs off-line
aggregation before an OLAP or data mining query is submitted for processing. On
the other hand, the attribute-oriented induction approach is basically a query-oriented,
generalization-based, on-line data analysis technique. Note that there is no inherent
barrier distinguishing the two approaches based on on-line aggregation versus off-line
precomputation. Some aggregations in the data cube can be computed on-line, while
off-line precomputation of multidimensional space can speed up attribute-oriented
induction as well.

The general idea of attribute-oriented induction is to first collect the task-relevant
data using a database query and then perform generalization based on the exami-
nation of the number of distinct values of each attribute in the relevant set of data.
The generalization is performed by either attribute removal or attribute generalization.
Aggregation is performed by merging identical generalized tuples and accumulating
their respective counts. This reduces the size of the generalized data set. The resulting
generalized relation can be mapped into different forms for presentation to the user,
such as charts or rules.

The following examples illustrate the process of attribute-oriented induction. We first
discuss its use for characterization. The method is extended for the mining of class
comparisons in Section 4.3.4.
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Example 4.20 A data mining query for characterization. Suppose that a user would like to describe
the general characteristics of graduate students in the Big University database, given the
attributes name, gender, major, birth place, birth date, residence, phone# (telephone
number), and gpa (grade point average). A data mining query for this characterization
can be expressed in the data mining query language, DMQL, as follows:

use Big University DB
mine characteristics as “Science Students”
in relevance to name, gender, major, birth place, birth date, residence,

phone#, gpa
from student
where status in “graduate”

We will see how this example of a typical data mining query can apply attribute-
oriented induction for mining characteristic descriptions.

First, data focusing should be performed before attribute-oriented induction. This
step corresponds to the specification of the task-relevant data (i.e., data for analysis). The
data are collected based on the information provided in the data mining query. Because a
data mining query is usually relevant to only a portion of the database, selecting the rele-
vant set of data not only makes mining more efficient, but also derives more meaningful
results than mining the entire database.

Specifying the set of relevant attributes (i.e., attributes for mining, as indicated in
DMQL with the in relevance to clause) may be difficult for the user. A user may select
only a few attributes that he or she feels may be important, while missing others that
could also play a role in the description. For example, suppose that the dimension
birth place is defined by the attributes city, province or state, and country. Of these
attributes, let’s say that the user has only thought to specify city. In order to allow
generalization on the birth place dimension, the other attributes defining this dimen-
sion should also be included. In other words, having the system automatically include
province or state and country as relevant attributes allows city to be generalized to these
higher conceptual levels during the induction process.

At the other extreme, suppose that the user may have introduced too many attributes
by specifying all of the possible attributes with the clause “in relevance to ∗”. In this case,
all of the attributes in the relation specified by the from clause would be included in the
analysis. Many of these attributes are unlikely to contribute to an interesting description.
A correlation-based (Section 2.4.1) or entropy-based (Section 2.6.1) analysis method can
be used to perform attribute relevance analysis and filter out statistically irrelevant or
weakly relevant attributes from the descriptive mining process. Other approaches, such
as attribute subset selection, are also described in Chapter 2.

“What does the ‘where status in “graduate”’ clause mean?” This where clause implies
that a concept hierarchy exists for the attribute status. Such a concept hierarchy organizes
primitive-level data values for status, such as “M.Sc.”, “M.A.”, “M.B.A.”, “Ph.D.”, “B.Sc.”,
“B.A.”, into higher conceptual levels, such as “graduate” and “undergraduate.” This use
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Table 4.12 Initial working relation: a collection of task-relevant data.

name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 8-12-76 3511 Main St., Richmond 687-4598 3.67

Scott Lachance M CS Montreal, Que, Canada 28-7-75 345 1st Ave., Richmond 253-9106 3.70

Laura Lee F physics Seattle, WA, USA 25-8-70 125 Austin Ave., Burnaby 420-5232 3.83

· · · · · · · · · · · · · · · · · · · · · · · ·

of concept hierarchies does not appear in traditional relational query languages, yet is
likely to become a common feature in data mining query languages.

The data mining query presented above is transformed into the following relational
query for the collection of the task-relevant set of data:

use Big University DB
select name, gender, major, birth place, birth date, residence, phone#, gpa
from student
where status in {“M.Sc.”, “M.A.”, “M.B.A.”, “Ph.D.”}

The transformed query is executed against the relational database, Big University DB,
and returns the data shown in Table 4.12. This table is called the (task-relevant) initial
working relation. It is the data on which induction will be performed. Note that each
tuple is, in fact, a conjunction of attribute-value pairs. Hence, we can think of a tuple
within a relation as a rule of conjuncts, and of induction on the relation as the general-
ization of these rules.

“Now that the data are ready for attribute-oriented induction, how is attribute-oriented
induction performed?” The essential operation of attribute-oriented induction is data
generalization, which can be performed in either of two ways on the initial working rela-
tion: attribute removal and attribute generalization.

Attribute removal is based on the following rule: If there is a large set of distinct
values for an attribute of the initial working relation, but either (1) there is no generalization
operator on the attribute (e.g., there is no concept hierarchy defined for the attribute), or (2)
its higher-level concepts are expressed in terms of other attributes, then the attribute should
be removed from the working relation.

Let’s examine the reasoning behind this rule. An attribute-value pair represents a con-
junct in a generalized tuple, or rule. The removal of a conjunct eliminates a constraint
and thus generalizes the rule. If, as in case 1, there is a large set of distinct values for an
attribute but there is no generalization operator for it, the attribute should be removed
because it cannot be generalized, and preserving it would imply keeping a large number
of disjuncts, which contradicts the goal of generating concise rules. On the other hand,
consider case 2, where the higher-level concepts of the attribute are expressed in terms
of other attributes. For example, suppose that the attribute in question is street, whose
higher-level concepts are represented by the attributes 〈city, province or state, country〉.
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The removal of street is equivalent to the application of a generalization operator. This
rule corresponds to the generalization rule known as dropping conditions in the machine
learning literature on learning from examples.

Attribute generalization is based on the following rule: If there is a large set of distinct
values for an attribute in the initial working relation, and there exists a set of generalization
operators on the attribute, then a generalization operator should be selected and applied
to the attribute. This rule is based on the following reasoning. Use of a generalization
operator to generalize an attribute value within a tuple, or rule, in the working relation
will make the rule cover more of the original data tuples, thus generalizing the concept it
represents. This corresponds to the generalization rule known as climbing generalization
trees in learning from examples, or concept tree ascension.

Both rules, attribute removal and attribute generalization, claim that if there is a large
set of distinct values for an attribute, further generalization should be applied. This raises
the question: how large is “a large set of distinct values for an attribute” considered to be?

Depending on the attributes or application involved, a user may prefer some attributes
to remain at a rather low abstraction level while others are generalized to higher levels.
The control of how high an attribute should be generalized is typically quite subjective.
The control of this process is called attribute generalization control. If the attribute is
generalized “too high,” it may lead to overgeneralization, and the resulting rules may
not be very informative. On the other hand, if the attribute is not generalized to a
“sufficiently high level,” then undergeneralization may result, where the rules obtained
may not be informative either. Thus, a balance should be attained in attribute-oriented
generalization.

There are many possible ways to control a generalization process. We will describe
two common approaches and then illustrate how they work with an example.

The first technique, called attribute generalization threshold control, either sets one
generalization threshold for all of the attributes, or sets one threshold for each attribute.
If the number of distinct values in an attribute is greater than the attribute threshold,
further attribute removal or attribute generalization should be performed. Data mining
systems typically have a default attribute threshold value generally ranging from 2 to 8
and should allow experts and users to modify the threshold values as well. If a user feels
that the generalization reaches too high a level for a particular attribute, the threshold
can be increased. This corresponds to drilling down along the attribute. Also, to further
generalize a relation, the user can reduce the threshold of a particular attribute, which
corresponds to rolling up along the attribute.

The second technique, called generalized relation threshold control, sets a threshold
for the generalized relation. If the number of (distinct) tuples in the generalized
relation is greater than the threshold, further generalization should be performed.
Otherwise, no further generalization should be performed. Such a threshold may
also be preset in the data mining system (usually within a range of 10 to 30), or
set by an expert or user, and should be adjustable. For example, if a user feels that
the generalized relation is too small, he or she can increase the threshold, which
implies drilling down. Otherwise, to further generalize a relation, the threshold can
be reduced, which implies rolling up.
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These two techniques can be applied in sequence: first apply the attribute threshold
control technique to generalize each attribute, and then apply relation threshold con-
trol to further reduce the size of the generalized relation. No matter which generaliza-
tion control technique is applied, the user should be allowed to adjust the generalization
thresholds in order to obtain interesting concept descriptions.

In many database-oriented induction processes, users are interested in obtaining
quantitative or statistical information about the data at different levels of abstraction.
Thus, it is important to accumulate count and other aggregate values in the induction
process. Conceptually, this is performed as follows. The aggregate function, count, is
associated with each database tuple. Its value for each tuple in the initial working relation
is initialized to 1. Through attribute removal and attribute generalization, tuples within
the initial working relation may be generalized, resulting in groups of identical tuples. In
this case, all of the identical tuples forming a group should be merged into one tuple.
The count of this new, generalized tuple is set to the total number of tuples from the ini-
tial working relation that are represented by (i.e., were merged into) the new generalized
tuple. For example, suppose that by attribute-oriented induction, 52 data tuples from the
initial working relation are all generalized to the same tuple, T . That is, the generalization
of these 52 tuples resulted in 52 identical instances of tuple T . These 52 identical tuples
are merged to form one instance of T , whose count is set to 52. Other popular aggregate
functions that could also be associated with each tuple include sum and avg. For a given
generalized tuple, sum contains the sum of the values of a given numeric attribute for
the initial working relation tuples making up the generalized tuple. Suppose that tuple
T contained sum(units sold) as an aggregate function. The sum value for tuple T would
then be set to the total number of units sold for each of the 52 tuples. The aggregate avg
(average) is computed according to the formula, avg = sum/count.

Example 4.21 Attribute-oriented induction. Here we show how attribute-oriented induction is per-
formed on the initial working relation of Table 4.12. For each attribute of the relation,
the generalization proceeds as follows:

1. name: Since there are a large number of distinct values for name and there is no
generalization operation defined on it, this attribute is removed.

2. gender: Since there are only two distinct values for gender, this attribute is retained
and no generalization is performed on it.

3. major: Suppose that a concept hierarchy has been defined that allows the attribute
major to be generalized to the values {arts&science, engineering, business}. Suppose
also that the attribute generalization threshold is set to 5, and that there are more than
20 distinct values for major in the initial working relation. By attribute generalization
and attribute generalization control, major is therefore generalized by climbing the
given concept hierarchy.

4. birth place: This attribute has a large number of distinct values; therefore, we would
like to generalize it. Suppose that a concept hierarchy exists for birth place, defined
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as “city < province or state < country”. If the number of distinct values for country
in the initial working relation is greater than the attribute generalization threshold,
then birth place should be removed, because even though a generalization operator
exists for it, the generalization threshold would not be satisfied. If instead, the number
of distinct values for country is less than the attribute generalization threshold, then
birth place should be generalized to birth country.

5. birth date: Suppose that a hierarchy exists that can generalize birth date to age, and age
to age range, and that the number of age ranges (or intervals) is small with respect to
the attribute generalization threshold. Generalization of birth date should therefore
take place.

6. residence:Supposethatresidence isdefinedbytheattributesnumber,street,residence city,
residence province or state, and residence country. The number of distinct values for
number and street will likely be very high, since these concepts are quite low level. The
attributes number and street should therefore be removed, so that residence is then
generalized to residence city, which contains fewer distinct values.

7. phone#: As with the attribute name above, this attribute contains too many distinct
values and should therefore be removed in generalization.

8. gpa: Suppose that a concept hierarchy exists for gpa that groups values for grade
point average into numerical intervals like {3.75–4.0, 3.5–3.75,. . .}, which in turn
are grouped into descriptive values, such as {excellent, very good,. . .}. The attribute
can therefore be generalized.

The generalization process will result in groups of identical tuples. For example, the
first two tuples of Table 4.12 both generalize to the same identical tuple (namely, the first
tuple shown in Table 4.13). Such identical tuples are then merged into one, with their
counts accumulated. This process leads to the generalized relation shown in Table 4.13.

Based on the vocabulary used in OLAP, we may view count as a measure, and the
remaining attributes as dimensions. Note that aggregate functions, such as sum, may be
applied to numerical attributes, like salary and sales. These attributes are referred to as
measure attributes.

Implementation techniques and methods of presenting the derived generalization are
discussed in the following subsections.

Table 4.13 A generalized relation obtained by attribute-oriented induction on the data of
Table 4.12.

gender major birth country age range residence city gpa count

M Science Canada 20 – 25 Richmond very good 16

F Science Foreign 25 – 30 Burnaby excellent 22

· · · · · · · · · · · · · · · · · · · · ·
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4.3.2 Efficient Implementation of Attribute-Oriented Induction

“How is attribute-oriented induction actually implemented?” The previous subsection
provided an introduction to attribute-oriented induction. The general procedure is sum-
marized in Figure 4.19. The efficiency of this algorithm is analyzed as follows:

Step 1 of the algorithm is essentially a relational query to collect the task-relevant data
into the working relation, W . Its processing efficiency depends on the query process-
ing methods used. Given the successful implementation and commercialization of
database systems, this step is expected to have good performance.

Algorithm: Attribute oriented induction. Mining generalized characteristics in a relational database given a
user’s data mining request.

Input:

DB, a relational database;

DMQuery, a data mining query;

a list, a list of attributes (containing attributes, ai);

Gen(ai), a set of concept hierarchies or generalization operators on attributes, ai;

a gen thresh(ai), attribute generalization thresholds for each ai.

Output: P, a Prime generalized relation.

Method:

1. W ← get task relevant data (DMQuery, DB); // Let W , the working relation, hold the task-relevant
data.

2. prepare for generalization (W ); // This is implemented as follows.

(a) Scan W and collect the distinct values for each attribute, ai. (Note: If W is very large, this may be
done by examining a sample of W .)

(b) For each attribute ai, determine whether ai should be removed, and if not, compute its minimum
desired level Li based on its given or default attribute threshold, and determine the mapping-
pairs (v, v′), where v is a distinct value of ai in W , and v′ is its corresponding generalized value at
level Li.

3. P← generalization (W ),

The Prime generalized relation, P, is derived by replacing each value v in W by its corresponding v′ in
the mapping while accumulating count and computing any other aggregate values.

This step can be implemented efficiently using either of the two following variations:

(a) For each generalized tuple, insert the tuple into a sorted prime relation P by a binary search: if the
tuple is already in P, simply increase its count and other aggregate values accordingly; otherwise,
insert it into P.

(b) Since in most cases the number of distinct values at the prime relation level is small, the prime
relation can be coded as an m-dimensional array where m is the number of attributes in P,
and each dimension contains the corresponding generalized attribute values. Each array element
holds the corresponding count and other aggregation values, if any. The insertion of a generalized
tuple is performed by measure aggregation in the corresponding array element.

Figure 4.19 Basic algorithm for attribute-oriented induction.
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Step 2 collects statistics on the working relation. This requires scanning the relation
at most once. The cost for computing the minimum desired level and determining
the mapping pairs, (v, v′), for each attribute is dependent on the number of distinct
values for each attribute and is smaller than N, the number of tuples in the initial
relation.

Step 3 derives the prime relation, P. This is performed by inserting generalized tuples
into P. There are a total of N tuples in W and p tuples in P. For each tuple, t, in
W , we substitute its attribute values based on the derived mapping-pairs. This results
in a generalized tuple, t′. If variation (a) is adopted, each t′ takes O(log p) to find
the location for count increment or tuple insertion. Thus the total time complexity
is O(N × log p) for all of the generalized tuples. If variation (b) is adopted, each t′

takes O(1) to find the tuple for count increment. Thus the overall time complexity is
O(N) for all of the generalized tuples.

Many data analysis tasks need to examine a good number of dimensions or attributes.
This may involve dynamically introducing and testing additional attributes rather than
just those specified in the mining query. Moreover, a user with little knowledge of the
truly relevant set of data may simply specify “in relevance to ∗” in the mining query,
which includes all of the attributes into the analysis. Therefore, an advanced concept
description mining process needs to perform attribute relevance analysis on large sets
of attributes to select the most relevant ones. Such analysis may employ correlation or
entropy measures, as described in Chapter 2 on data preprocessing.

4.3.3 Presentation of the Derived Generalization

“Attribute-oriented induction generates one or a set of generalized descriptions. How can
these descriptions be visualized?” The descriptions can be presented to the user in a num-
ber of different ways. Generalized descriptions resulting from attribute-oriented induc-
tion are most commonly displayed in the form of a generalized relation (or table).

Example 4.22 Generalized relation (table). Suppose that attribute-oriented induction was performed
on a sales relation of the AllElectronics database, resulting in the generalized description
of Table 4.14 for sales in 2004. The description is shown in the form of a generalized
relation. Table 4.13 of Example 4.21 is another example of a generalized relation.

Descriptions can also be visualized in the form of cross-tabulations, or crosstabs. In
a two-dimensional crosstab, each row represents a value from an attribute, and each col-
umn represents a value from another attribute. In an n-dimensional crosstab (for n> 2),
the columns may represent the values of more than one attribute, with subtotals shown
for attribute-value groupings. This representation is similar to spreadsheets. It is easy to
map directly from a data cube structure to a crosstab.

Example 4.23 Cross-tabulation. The generalized relation shown in Table 4.14 can be transformed into
the 3-D cross-tabulation shown in Table 4.15.
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Table 4.14 A generalized relation for the sales in 2004.

location item sales (in million dollars) count (in thousands)

Asia TV 15 300

Europe TV 12 250

North America TV 28 450

Asia computer 120 1000

Europe computer 150 1200

North America computer 200 1800

Table 4.15 A crosstab for the sales in 2004.

item

TV computer both items

location sales count sales count sales count

Asia 15 300 120 1000 135 1300

Europe 12 250 150 1200 162 1450

North America 28 450 200 1800 228 2250

all regions 45 1000 470 4000 525 5000

Generalized data can be presented graphically, using bar charts, pie charts, and curves.
Visualization with graphs is popular in data analysis. Such graphs and curves can
represent 2-D or 3-D data.

Example 4.24 Bar chart and pie chart. The sales data of the crosstab shown in Table 4.15 can be trans-
formed into the bar chart representation of Figure 4.20 and the pie chart representation
of Figure 4.21.

Finally, a 3-D generalized relation or crosstab can be represented by a 3-D data cube,
which is useful for browsing the data at different levels of generalization.

Example 4.25 Cube view. Consider the data cube shown in Figure 4.22 for the dimensions item, location,
and cost. This is the same kind of data cube that we have seen so far, although it is presented
in a slightly different way. Here, the size of a cell (displayed as a tiny cube) represents the
count of the corresponding cell, while the brightness of the cell can be used to represent
another measure of the cell, such as sum (sales). Pivoting, drilling, and slicing-and-dicing
operations can be performed on the data cube browser by mouse clicking.

A generalized relation may also be represented in the form of logic rules. Typically,
each generalized tuple represents a rule disjunct. Because data in a large database usually
span a diverse range of distributions, a single generalized tuple is unlikely to cover, or
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Figure 4.20 Bar chart representation of the sales in 2004.
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Figure 4.21 Pie chart representation of the sales in 2004.

represent, 100% of the initial working relation tuples, or cases. Thus, quantitative infor-
mation, such as the percentage of data tuples that satisfy the left- and right-hand side of
the rule, should be associated with each rule. A logic rule that is associated with quanti-
tative information is called a quantitative rule.

To define a quantitative characteristic rule, we introduce the t-weight as an interest-
ingness measure that describes the typicality of each disjunct in the rule, or of each tuple
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Figure 4.22 A 3-D cube view representation of the sales in 2004.

in the corresponding generalized relation. The measure is defined as follows. Let the class
of objects that is to be characterized (or described by the rule) be called the target class.
Let qa be a generalized tuple describing the target class. The t-weight for qa is the per-
centage of tuples of the target class from the initial working relation that are covered by
qn. Formally, we have

t weight = count(qa)/Σn
i=1count(qa), (4.1)

where n is the number of tuples for the target class in the generalized relation; q1, . . ., qn
are tuples for the target class in the generalized relation; and qa is in q1, . . ., qn. Obviously,
the range for the t-weight is [0.0, 1.0] or [0%, 100%].

A quantitative characteristic rule can then be represented either (1) in logic form by
associating the corresponding t-weight value with each disjunct covering the target class,
or (2) in the relational table or crosstab form by changing the count values in these tables
for tuples of the target class to the corresponding t-weight values.

Each disjunct of a quantitative characteristic rule represents a condition. In general,
the disjunction of these conditions forms a necessary condition of the target class, since
the condition is derived based on all of the cases of the target class; that is, all tuples
of the target class must satisfy this condition. However, the rule may not be a sufficient
condition of the target class, since a tuple satisfying the same condition could belong to
another class. Therefore, the rule should be expressed in the form

∀X, target class(X)⇒ condition1(X)[t : w1]∨·· ·∨ conditionm(X)[t : wm]. (4.2)
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The rule indicates that if X is in the target class, there is a probability of wi that X
satisfies conditioni, where wi is the t-weight value for condition or disjunct i, and i is
in {1, . . . , m}.

Example 4.26 Quantitative characteristic rule. The crosstab shown in Table 4.15 can be transformed
into logic rule form. Let the target class be the set of computer items. The corresponding
characteristic rule, in logic form, is

∀X, item(X) = “computer”⇒
(location(X) = “Asia”) [t : 25.00%]∨ (location(X) = “Europe”) [t : 30.00%]∨
(location(X) = “North America”) [t : 45, 00%]

Notice that the first t-weight value of 25.00% is obtained by 1000, the value corres-
ponding to the count slot for “(Asia,computer)”, divided by 4000, the value correspond-
ing to the count slot for “(all regions, computer)”. (That is, 4000 represents the total
number of computer items sold.) The t-weights of the other two disjuncts were simi-
larly derived. Quantitative characteristic rules for other target classes can be computed
in a similar fashion.

“How can the t-weight and interestingness measures in general be used by the data
mining system to display only the concept descriptions that it objectively evaluates as
interesting?” A threshold can be set for this purpose. For example, if the t-weight
of a generalized tuple is lower than the threshold, then the tuple is considered to
represent only a negligible portion of the database and can therefore be ignored
as uninteresting. Ignoring such negligible tuples does not mean that they should be
removed from the intermediate results (i.e., the prime generalized relation, or the data
cube, depending on the implementation) because they may contribute to subsequent
further exploration of the data by the user via interactive rolling up or drilling down
of other dimensions and levels of abstraction. Such a threshold may be referred to
as a significance threshold or support threshold, where the latter term is commonly
used in association rule mining.

4.3.4 Mining Class Comparisons: Discriminating between
Different Classes

In many applications, users may not be interested in having a single class (or concept)
described or characterized, but rather would prefer to mine a description that compares
or distinguishes one class (or concept) from other comparable classes (or concepts). Class
discrimination or comparison (hereafter referred to as class comparison) mines descrip-
tions that distinguish a target class from its contrasting classes. Notice that the target and
contrasting classes must be comparable in the sense that they share similar dimensions
and attributes. For example, the three classes, person, address, and item, are not compara-
ble. However, the sales in the last three years are comparable classes, and so are computer
science students versus physics students.
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Our discussions on class characterization in the previous sections handle multilevel
data summarization and characterization in a single class. The techniques developed
can be extended to handle class comparison across several comparable classes. For
example, the attribute generalization process described for class characterization can
be modified so that the generalization is performed synchronously among all the
classes compared. This allows the attributes in all of the classes to be generalized
to the same levels of abstraction. Suppose, for instance, that we are given the AllElec-
tronics data for sales in 2003 and sales in 2004 and would like to compare these two
classes. Consider the dimension location with abstractions at the city, province or state,
and country levels. Each class of data should be generalized to the same location
level. That is, they are synchronously all generalized to either the city level, or the
province or state level, or the country level. Ideally, this is more useful than comparing,
say, the sales in Vancouver in 2003 with the sales in the United States in 2004 (i.e.,
where each set of sales data is generalized to a different level). The users, however,
should have the option to overwrite such an automated, synchronous comparison
with their own choices, when preferred.

“How is class comparison performed?” In general, the procedure is as follows:

1. Data collection: The set of relevant data in the database is collected by query process-
ing and is partitioned respectively into a target class and one or a set of contrasting
class(es).

2. Dimension relevance analysis: If there are many dimensions, then dimension rele-
vance analysis should be performed on these classes to select only the highly relevant
dimensions for further analysis. Correlation or entropy-based measures can be used
for this step (Chapter 2).

3. Synchronous generalization: Generalization is performed on the target class to the
level controlled by a user- or expert-specified dimension threshold, which results in
a prime target class relation. The concepts in the contrasting class(es) are general-
ized to the same level as those in the prime target class relation, forming the prime
contrasting class(es) relation.

4. Presentation of the derived comparison: The resulting class comparison description
can be visualized in the form of tables, graphs, and rules. This presentation usually
includes a “contrasting” measure such as count% (percentage count) that reflects the
comparison between the target and contrasting classes. The user can adjust the com-
parison description by applying drill-down, roll-up, and other OLAP operations to
the target and contrasting classes, as desired.

The above discussion outlines a general algorithm for mining comparisons in data-
bases. In comparison with characterization, the above algorithm involves synchronous
generalization of the target class with the contrasting classes, so that classes are simulta-
neously compared at the same levels of abstraction.

The following example mines a class comparison describing the graduate students
and the undergraduate students at Big University.



212 Chapter 4 Data Cube Computation and Data Generalization

Example 4.27 Mining a class comparison. Suppose that you would like to compare the general
properties between the graduate students and the undergraduate students at Big Univer-
sity, given the attributes name, gender, major, birth place, birth date, residence, phone#,
and gpa.

This data mining task can be expressed in DMQL as follows:

use Big University DB
mine comparison as “grad vs undergrad students”
in relevance to name, gender, major, birth place, birth date, residence,

phone#, gpa
for “graduate students”
where status in “graduate”
versus “undergraduate students”
where status in “undergraduate”
analyze count%
from student

Let’s see how this typical example of a data mining query for mining comparison
descriptions can be processed.

First, the query is transformed into two relational queries that collect two sets of
task-relevant data: one for the initial target class working relation, and the other for
the initial contrasting class working relation, as shown in Tables 4.16 and 4.17. This
can also be viewed as the construction of a data cube, where the status {graduate,
undergraduate} serves as one dimension, and the other attributes form the remaining
dimensions.

Table 4.16 Initial working relations: the target class (graduate students)

name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 8-12-76 3511 Main St., Richmond 687-4598 3.67

Scott Lachance M CS Montreal, Que, Canada 28-7-75 345 1st Ave., Vancouver 253-9106 3.70

Laura Lee F Physics Seattle, WA, USA 25-8-70 125 Austin Ave., Burnaby 420-5232 3.83

· · · · · · · · · · · · · · · · · · · · · · · ·

Table 4.17 Initial working relations: the contrasting class (undergraduate students)

name gender major birth place birth date residence phone# gpa

Bob Schumann M Chemistry Calgary, Alt, Canada 10-1-78 2642 Halifax St., Burnaby 294-4291 2.96

Amy Eau F Biology Golden, BC, Canada 30-3-76 463 Sunset Cres., Vancouver 681-5417 3.52

· · · · · · · · · · · · · · · · · · · · · · · ·
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Second, dimension relevance analysis can be performed, when necessary, on the two
classes of data. After this analysis, irrelevant or weakly relevant dimensions, such as name,
gender, birth place, residence, and phone#, are removed from the resulting classes. Only
the highly relevant attributes are included in the subsequent analysis.

Third, synchronous generalization is performed: Generalization is performed on the
target class to the levels controlled by user- or expert-specified dimension thresholds,
forming the prime target class relation. The contrasting class is generalized to the same
levels as those in the prime target class relation, forming the prime contrasting class(es)
relation, as presented in Tables 4.18 and 4.19. In comparison with undergraduate
students, graduate students tend to be older and have a higher GPA, in general.

Finally, the resulting class comparison is presented in the form of tables, graphs,
and/or rules. This visualization includes a contrasting measure (such as count%) that
compares between the target class and the contrasting class. For example, 5.02% of the
graduate students majoring in Science are between 26 and 30 years of age and have
a “good” GPA, while only 2.32% of undergraduates have these same characteristics.
Drilling and other OLAP operations may be performed on the target and contrasting
classes as deemed necessary by the user in order to adjust the abstraction levels of
the final description.

“How can class comparison descriptions be presented?” As with class characteriza-
tions, class comparisons can be presented to the user in various forms, including

Table 4.18 Prime generalized relation for the target class (graduate
students)

major age range gpa count%

Science 21...25 good 5.53%

Science 26...30 good 5.02%

Science over 30 very good 5.86%

· · · · · · · · · · · ·
Business over 30 excellent 4.68%

Table 4.19 Prime generalized relation for the contrasting
class (undergraduate students)

major age range gpa count%

Science 16...20 fair 5.53%

Science 16...20 good 4.53%

· · · · · · · · · · · ·
Science 26...30 good 2.32%

· · · · · · · · · · · ·
Business over 30 excellent 0.68%



214 Chapter 4 Data Cube Computation and Data Generalization

generalized relations, crosstabs, bar charts, pie charts, curves, cubes, and rules. With
the exception of logic rules, these forms are used in the same way for characterization
as for comparison. In this section, we discuss the visualization of class comparisons
in the form of discriminant rules.

As is similar with characterization descriptions, the discriminative features of the tar-
get and contrasting classes of a comparison description can be described quantitatively
by a quantitative discriminant rule, which associates a statistical interestingness measure,
d-weight, with each generalized tuple in the description.

Let qa be a generalized tuple, and C j be the target class, where qa covers some tuples of
the target class. Note that it is possible that qa also covers some tuples of the contrasting
classes, particularly since we are dealing with a comparison description. The d-weight
for qa is the ratio of the number of tuples from the initial target class working relation
that are covered by qa to the total number of tuples in both the initial target class and
contrasting class working relations that are covered by qa. Formally, the d-weight of qa
for the class C j is defined as

d weight = count(qa ∈C j)/Σm
i=1count(qa ∈Ci), (4.3)

where m is the total number of the target and contrasting classes, C j is in {C1, . . . , Cm},
and count (qa ∈Ci) is the number of tuples of class Ci that are covered by qa. The range
for the d-weight is [0.0, 1.0] (or [0%, 100%]).

A high d-weight in the target class indicates that the concept represented by the gen-
eralized tuple is primarily derived from the target class, whereas a low d-weight implies
that the concept is primarily derived from the contrasting classes. A threshold can be set
to control the display of interesting tuples based on the d-weight or other measures used,
as described in Section 4.3.3.

Example 4.28 Computing the d-weight measure. In Example 4.27, suppose that the count distribution
for the generalized tuple, major = “Science” AND age range = “21. . . 25” AND
gpa = “good”, from Tables 4.18 and 4.19 is as shown in Table 20.

The d-weight for the given generalized tuple is 90/(90 + 210) = 30% with respect to
the target class, and 210/(90 + 210) = 70% with respect to the contrasting class. That is,
if a student majoring in Science is 21 to 25 years old and has a “good” gpa, then based on the
data, there is a 30% probability that she is a graduate student, versus a 70% probability that

Table 4.20 Count distribution between graduate and undergraduate
students for a generalized tuple.

status major age range gpa count

graduate Science 21...25 good 90

undergraduate Science 21...25 good 210
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she is an undergraduate student. Similarly, the d-weights for the other generalized tuples
in Tables 4.18 and 4.19 can be derived.

A quantitative discriminant rule for the target class of a given comparison description
is written in the form

∀X, target class(X)⇐condition(X) [d:d weight], (4.4)

where the condition is formed by a generalized tuple of the description. This is different
from rules obtained in class characterization, where the arrow of implication is from left
to right.

Example 4.29 Quantitative discriminant rule. Based on the generalized tuple and count distribution in
Example 4.28, a quantitative discriminant rule for the target class graduate student can
be written as follows:

∀X, Status(X) = “graduate student”⇐
major(X) = “Science”∧age range(X) = “21...25” (4.5)

∧ gpa(X) = “good”[d : 30%].

Notice that a discriminant rule provides a sufficient condition, but not a necessary one,
for an object (or tuple) to be in the target class. For example, Rule (4.6) implies that if X
satisfies the condition, then the probability that X is a graduate student is 30%. However,
it does not imply the probability that X meets the condition, given that X is a graduate
student. This is because although the tuples that meet the condition are in the target
class, other tuples that do not necessarily satisfy this condition may also be in the target
class, because the rule may not cover all of the examples of the target class in the database.
Therefore, the condition is sufficient, but not necessary.

4.3.5 Class Description: Presentation of Both Characterization
and Comparison

“Because class characterization and class comparison are two aspects forming a class descrip-
tion, can we present both in the same table or in the same rule?” Actually, as long as we
have a clear understanding of the meaning of the t-weight and d-weight measures and
can interpret them correctly, there is no additional difficulty in presenting both aspects
in the same table. Let’s examine an example of expressing both class characterization and
class comparison in the same crosstab.

Example 4.30 Crosstab for class characterization and class comparison. Let Table 4.21 be a crosstab
showing the total number (in thousands) of TVs and computers sold at AllElectronics
in 2004.
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Table 4.21 A crosstab for the total number (count) of TVs and
computers sold in thousands in 2004.

item

location TV computer both items

Europe 80 240 320

North America 120 560 680

both regions 200 800 1000

Table 4.22 The same crosstab as in Table 4.21, but here the t-weight and d-weight values associated
with each class are shown.

item

TV computer both items

location count t-weight d-weight count t-weight d-weight count t-weight d-weight

Europe 80 25% 40% 240 75% 30% 320 100% 32%

North America 120 17.65% 60% 560 82.35% 70% 680 100% 68%

both regions 200 20% 100% 800 80% 100% 1000 100% 100%

Let Europe be the target class and North America be the contrasting class. The t-weights
and d-weights of the sales distribution between the two classes are presented in Table 4.22.
According to the table, the t-weight of a generalized tuple or object (e.g., item = “TV”)
for a given class (e.g., the target class Europe) shows how typical the tuple is of the given
class (e.g., what proportion of these sales in Europe are for TVs?). The d-weight of a tuple
shows how distinctive the tuple is in the given (target or contrasting) class in comparison
with its rival class (e.g., how do the TV sales in Europe compare with those in North
America?).

For example, the t-weight for “(Europe, TV)” is 25% because the number of TVs sold
in Europe (80,000) represents only 25% of the European sales for both items (320,000).
The d-weight for “(Europe, TV)” is 40% because the number of TVs sold in Europe
(80,000) represents 40% of the number of TVs sold in both the target and the contrasting
classes of Europe and North America, respectively (which is 200,000).

Notice that the count measure in the crosstab of Table 4.22 obeys the general prop-
erty of a crosstab (i.e., the count values per row and per column, when totaled, match
the corresponding totals in the both items and both regions slots, respectively). How-
ever, this property is not observed by the t-weight and d-weight measures, because
the semantic meaning of each of these measures is different from that of count, as
we explained in Example 4.30.
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“Can a quantitative characteristic rule and a quantitative discriminant rule be expressed
together in the form of one rule?” The answer is yes—a quantitative characteristic rule
and a quantitative discriminant rule for the same class can be combined to form a
quantitative description rule for the class, which displays the t-weights and d-weights
associated with the corresponding characteristic and discriminant rules. To see how
this is done, let’s quickly review how quantitative characteristic and discriminant rules
are expressed.

As discussed in Section 4.3.3, a quantitative characteristic rule provides a necessary
condition for the given target class since it presents a probability measurement for each
property that can occur in the target class. Such a rule is of the form

∀X, target class(X)⇒condition1(X)[t : w1]∨·· ·∨ conditionm(X)[t : wm], (4.6)

where each condition represents a property of the target class. The rule indicates that
if X is in the target class, the probability that X satisfies conditioni is the value of the
t-weight, wi, where i is in {1, . . . , m}.

As previously discussed in Section 4.3.4, a quantitative discriminant rule provides a
sufficient condition for the target class since it presents a quantitative measurement of
the properties that occur in the target class versus those that occur in the contrasting
classes. Such a rule is of the form

∀X, target class(X)⇐condition1(X)[d : w1]∧·· ·∧ conditionm(X)[d : wm]. (4.7)

The rule indicates that if X satisfies conditioni, there is a probability of wi (the
d-weight value) that X is in the target class, where i is in {1, . . . , m}.

A quantitative characteristic rule and a quantitative discriminant rule for a given class
can be combined as follows to form a quantitative description rule: (1) For each con-
dition, show both the associated t-weight and d-weight, and (2) a bidirectional arrow
should be used between the given class and the conditions. That is, a quantitative descrip-
tion rule is of the form

∀X, target class(X)⇔ condition1(X)[t : w1, d : w′1] (4.8)

θ · · ·θ conditionm(X)[t : wm, d : w′m],

where θ represents a logical disjunction/conjuction. (That is, if we consider the rule as a
characteristic rule, the conditions are ORed to from a disjunct. Otherwise, if we consider
the rule as a discriminant rule, the conditions are ANDed to form a conjunct). The rule
indicates that for i from 1 to m, if X is in the target class, there is a probability of wi that
X satisfies conditioni; and if X satisfies conditioni, there is a probability of w′i that X is in
the target class.

Example 4.31 Quantitative description rule. It is straightforward to transform the crosstab of Table 4.22
in Example 4.30 into a class description in the form of quantitative description rules. For
example, the quantitative description rule for the target class, Europe, is
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∀X , location(X) = “Europe” ⇔
(item(X) = “TV”) [t : 25%,d : 40%] θ (item(X) = “computer”) (4.9)

[t : 75%,d : 30%].

For the sales of TVs and computers at AllElectronics in 2004, the rule states that if
the sale of one of these items occurred in Europe, then the probability of the item
being a TV is 25%, while that of being a computer is 75%. On the other hand, if
we compare the sales of these items in Europe and North America, then 40% of the
TVs were sold in Europe (and therefore we can deduce that 60% of the TVs were
sold in North America). Furthermore, regarding computer sales, 30% of these sales
took place in Europe.

4.4 Summary

Data generalization is a process that abstracts a large set of task-relevant data in
a database from a relatively low conceptual level to higher conceptual levels. Data
generalization approaches include data cube–based data aggregation and attribute-
oriented induction.

From a data analysis point of view, data generalization is a form of descriptive data
mining. Descriptive data mining describes data in a concise and summarative manner
and presents interesting general properties of the data. This is different from predic-
tive data mining, which analyzes data in order to construct one or a set of models, and
attempts to predict the behavior of new data sets. This chapter focused on methods
for descriptive data mining.

A data cube consists of a lattice of cuboids. Each cuboid corresponds to a different
degree of summarization of the given multidimensional data.

Full materialization refers to the computation of all of the cuboids in a data cube
lattice. Partial materialization refers to the selective computation of a subset of the
cuboid cells in the lattice. Iceberg cubes and shell fragments are examples of partial
materialization. An iceberg cube is a data cube that stores only those cube cells whose
aggregate value (e.g., count) is above some minimum support threshold. For shell
fragments of a data cube, only some cuboids involving a small number of dimen-
sions are computed. Queries on additional combinations of the dimensions can be
computed on the fly.

There are several efficient data cube computation methods. In this chapter, we dis-
cussed in depth four cube computation methods: (1) MultiWay array aggregation
for materializing full data cubes in sparse-array-based, bottom-up, shared compu-
tation; (2) BUC for computing iceberg cubes by exploring ordering and sorting
for efficient top-down computation; (3) Star-Cubing for integration of top-down
and bottom-up computation using a star-tree structure; and (4) high-dimensional
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OLAP by precomputing only the partitioned shell fragments (thus called minimal
cubing).

There are several methods for effective and efficient exploration of data cubes, includ-
ing discovery-driven cube exploration, multifeature data cubes, and constrained cube
gradient analysis. Discovery-driven exploration of data cubes uses precomputed mea-
sures and visual cues to indicate data exceptions at all levels of aggregation, guiding the
user in the data analysis process. Multifeature cubes compute complex queries involv-
ing multiple dependent aggregates at multiple granularity. Constrained cube gradient
analysis explores significant changes in measures in a multidimensional space, based
on a given set of probe cells, where changes in sector characteristics are expressed in
terms of dimensions of the cube and are limited to specialization (drill-down), gener-
alization (roll-up), and mutation (a change in one of the cube’s dimensions).

Concept description is the most basic form of descriptive data mining. It describes
a given set of task-relevant data in a concise and summarative manner, presenting
interesting general properties of the data. Concept (or class) description consists of
characterization and comparison (or discrimination). The former summarizes and
describes a collection of data, called the target class, whereas the latter summarizes
and distinguishes one collection of data, called the target class, from other collec-
tion(s) of data, collectively called the contrasting class(es).

Concept characterization can be implemented using data cube (OLAP-based)
approaches and the attribute-oriented induction approach. These are attribute- or
dimension-based generalization approaches. The attribute-oriented induction
approach consists of the following techniques: data focusing, data generalization by
attribute removal or attribute generalization, count and aggregate value accumulation,
attribute generalization control, and generalization data visualization.

Concept comparison can be performed using the attribute-oriented induction or
data cube approaches in a manner similar to concept characterization. Generalized
tuples from the target and contrasting classes can be quantitatively compared and
contrasted.

Characterization and comparison descriptions (which form a concept description)
can both be presented in the same generalized relation, crosstab, or quantitative
rule form, although they are displayed with different interestingness measures. These
measures include the t-weight (for tuple typicality) and d-weight (for tuple
discriminability).

Exercises

4.1 Assume a base cuboid of 10 dimensions contains only three base cells: (1) (a1, d2, d3, d4,
. . . , d9, d10), (2) (d1,b2, d3, d4, . . . , d9, d10), and (3) (d1, d2, c3, d4, . . . , d9, d10), where
a1 6= d1, b2 6= d2, and c3 6= d3. The measure of the cube is count.
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(a) How many nonempty cuboids will a full data cube contain?

(b) How many nonempty aggregate (i.e., nonbase) cells will a full cube contain?

(c) How many nonempty aggregate cells will an iceberg cube contain if the condition of
the iceberg cube is “count ≥ 2”?

(d) A cell, c, is a closed cell if there exists no cell, d, such that d is a specialization of
cell c (i.e., d is obtained by replacing a ∗ in c by a non-∗ value) and d has the same
measure value as c. A closed cube is a data cube consisting of only closed cells. How
many closed cells are in the full cube?

4.2 There are several typical cube computation methods, such as Multiway array computation
(MultiWay)[ZDN97],BUC(bottom-upcomputation)[BR99],andStar-Cubing[XHLW03].

Briefly describe these three methods (i.e., use one or two lines to outline the key points),
and compare their feasibility and performance under the following conditions:

(a) Computing a dense full cube of low dimensionality (e.g., less than 8 dimensions)

(b) Computing an iceberg cube of around 10 dimensions with a highly skewed data
distribution

(c) Computing a sparse iceberg cube of high dimensionality (e.g., over 100 dimensions)

4.3 [Contributed by Chen Chen] Suppose a data cube, C, has D dimensions, and the base
cuboid contains k distinct tuples.

(a) Present a formula to calculate the minimum number of cells that the cube, C, may
contain.

(b) Present a formula to calculate the maximum number of cells that C may contain.

(c) Answer parts (a) and (b) above as if the count in each cube cell must be no less than
a threshold, v.

(d) Answer parts (a) and (b) above as if only closed cells are considered (with the mini-
mum count threshold, v).

4.4 Suppose that a base cuboid has three dimensions, A, B, C, with the following number
of cells: |A| = 1, 000, 000, |B| = 100, and |C| = 1000. Suppose that each dimension is
evenly partitioned into 10 portions for chunking.

(a) Assuming each dimension has only one level, draw the complete lattice of the cube.

(b) If each cube cell stores one measure with 4 bytes, what is the total size of the
computed cube if the cube is dense?

(c) State the order for computing the chunks in the cube that requires the least amount
of space, and compute the total amount of main memory space required for com-
puting the 2-D planes.

4.5 Often, the aggregate measure value of many cells in a large data cuboid is zero, resulting
in a huge, yet sparse, multidimensional matrix.
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(a) Design an implementation method that can elegantly overcome this sparse matrix
problem. Note that you need to explain your data structures in detail and discuss the
space needed, as well as how to retrieve data from your structures.

(b) Modify your design in (a) to handle incremental data updates. Give the reasoning
behind your new design.

4.6 When computing a cube of high dimensionality, we encounter the inherent curse of
dimensionality problem: there exists a huge number of subsets of combinations of
dimensions.

(a) Suppose that there are only two base cells, {(a1, a2, a3, . . . , a100), (a1, a2, b3, . . . ,
b100)}, in a 100-dimensional base cuboid. Compute the number of nonempty aggre-
gate cells. Comment on the storage space and time required to compute these cells.

(b) Suppose we are to compute an iceberg cube from the above. If the minimum support
count in the iceberg condition is two, how many aggregate cells will there be in the
iceberg cube? Show the cells.

(c) Introducing iceberg cubes will lessen the burden of computing trivial aggregate cells
in a data cube. However, even with iceberg cubes, we could still end up having to
compute a large number of trivial uninteresting cells (i.e., with small counts). Sup-
pose that a database has 20 tuples that map to (or cover) the two following base cells
in a 100-dimensional base cuboid, each with a cell count of 10: {(a1, a2, a3, . . . , a100) :
10, (a1, a2, b3, . . . , b100) : 10}.

i. Let the minimum support be 10. How many distinct aggregate cells will there
be like the following: {(a1, a2, a3, a4, . . . , a99, ∗) : 10, . . . , (a1, a2, ∗ , a4, . . . , a99,
a100) : 10, . . . , (a1, a2, a3, ∗ , . . . , ∗ , ∗) : 10}?

ii. If we ignore all the aggregate cells that can be obtained by replacing some con-
stants with ∗’s while keeping the same measure value, how many distinct cells
are left? What are the cells?

4.7 Propose an algorithm that computes closed iceberg cubes efficiently.

4.8 Suppose that we would like to compute an iceberg cube for the dimensions, A, B, C, D,
where we wish to materialize all cells that satisfy a minimum support count of at least
v, and where cardinality(A) <cardinality(B) <cardinality(C) <cardinality(D). Show the
BUC processing tree (which shows the order in which the BUC algorithm explores the
lattice of a data cube, starting from all) for the construction of the above iceberg cube.

4.9 Discuss how you might extend the Star-Cubing algorithm to compute iceberg cubes
where the iceberg condition tests for an avg that is no bigger than some value, v.

4.10 A flight data warehouse for a travel agent consists of six dimensions: traveler, depar-
ture (city), departure time, arrival, arrival time, and flight; and two measures: count, and
avg fare, where avg fare stores the concrete fare at the lowest level but average fare at
other levels.

(a) Suppose the cube is fully materialized. Starting with the base cuboid [traveller,
departure, departure time, arrival, arrival time, flight], what specific OLAP operations
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(e.g., roll-up flight to airline) should one perform in order to list the average fare per
month for each business traveler who flies American Airlines (AA) from L.A. in the
year 2004?

(b) Suppose we want to compute a data cube where the condition is that the minimum
number of records is 10 and the average fare is over $500. Outline an efficient cube
computation method (based on common sense about flight data distribution).

4.11 (Implementation project) There are four typical data cube computation methods:
MultiWay [ZDN97], BUC [BR99], H-cubing [HPDW01], and Star-Cubing [XHLW03].

(a) Implement any one of these cube computation algorithms and describe your
implementation, experimentation, and performance. Find another student who has
implemented a different algorithm on the same platform (e.g., C++ on Linux) and
compare your algorithm performance with his/hers.
Input:

i. An n-dimensional base cuboid table (for n< 20), which is essentially a relational
table with n attributes

ii. An iceberg condition: count (C)≥ k where k is a positive integer as a parameter

Output:

i. The set of computed cuboids that satisfy the iceberg condition, in the order of
your output generation

ii. Summary of the set of cuboids in the form of “cuboid ID: the number of
nonempty cells”, sorted in alphabetical order of cuboids, e.g., A:155, AB: 120,
ABC: 22, ABCD: 4, ABCE: 6, ABD: 36, where the number after “:” represents the
number of nonempty cells. (this is used to quickly check the correctness of your
results)

(b) Based on your implementation, discuss the following:

i. What challenging computation problems are encountered as the number of
dimensions grows large?

ii. How can iceberg cubing solve the problems of part (a) for some data sets (and
characterize such data sets)?

iii. Give one simple example to show that sometimes iceberg cubes cannot provide
a good solution.

(c) Instead of computing a data cube of high dimensionality, we may choose to mate-
rialize the cuboids that have only a small number of dimension combinations. For
example, for a 30-dimensional data cube, we may only compute the 5-dimensional
cuboids for every possible 5-dimensional combination. The resulting cuboids form
a shell cube. Discuss how easy or hard it is to modify your cube computation
algorithm to facilitate such computation.

4.12 Consider the following multifeature cube query: Grouping by all subsets of {item, region,
month}, find the minimum shelf life in 2004 for each group and the fraction of the total
sales due to tuples whose price is less than $100 and whose shelf life is between 1.25 and
1.5 of the minimum shelf life.
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(a) Draw the multifeature cube graph for the query.

(b) Express the query in extended SQL.

(c) Is this a distributive multifeature cube? Why or why not?

4.13 For class characterization, what are the major differences between a data cube–based
implementation and a relational implementation such as attribute-oriented induction?
Discuss which method is most efficient and under what conditions this is so.

4.14 Suppose that the following table is derived by attribute-oriented induction.

class birth place count

USA 180
Programmer

others 120

USA 20
DBA

others 80

(a) Transform the table into a crosstab showing the associated t-weights and d-weights.

(b) Map the class Programmer into a (bidirectional) quantitative descriptive rule, for
example,

∀X, Programmer(X)⇔ (birth place(X) = “USA”∧ . . .)
[t : x%,d : y%] . . .θ (. . .)[t : w%,d : z%].

4.15 Discuss why relevance analysis is beneficial and how it can be performed and integrated
into the characterization process. Compare the result of two induction methods: (1) with
relevance analysis and (2) without relevance analysis.

4.16 Given a generalized relation, R, derived from a database, DB, suppose that a set,4DB,
of tuples needs to be deleted from DB. Outline an incremental updating procedure for
applying the necessary deletions to R.

4.17 Outline a data cube–based incremental algorithm for mining class comparisons.
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5Mining Frequent Patterns,
Associations, and Correlations

Frequent patterns are patterns (such as itemsets, subsequences, or substructures) that appear in
a data set frequently. For example, a set of items, such as milk and bread, that appear
frequently together in a transaction data set is a frequent itemset. A subsequence, such as
buying first a PC, then a digital camera, and then a memory card, if it occurs frequently
in a shopping history database, is a (frequent) sequential pattern. A substructure can refer
to different structural forms, such as subgraphs, subtrees, or sublattices, which may be
combined with itemsets or subsequences. If a substructure occurs frequently, it is called
a (frequent) structured pattern. Finding such frequent patterns plays an essential role in
mining associations, correlations, and many other interesting relationships among data.
Moreover, it helps in data classification, clustering, and other data mining tasks as well.
Thus, frequent pattern mining has become an important data mining task and a focused
theme in data mining research.

In this chapter, we introduce the concepts of frequent patterns, associations, and cor-
relations, and study how they can be mined efficiently. The topic of frequent pattern
mining is indeed rich. This chapter is dedicated to methods of frequent itemset mining.
We delve into the following questions: How can we find frequent itemsets from large
amounts of data, where the data are either transactional or relational? How can we mine
association rules in multilevel and multidimensional space? Which association rules are
the most interesting? How can we help or guide the mining procedure to discover inter-
esting associations or correlations? How can we take advantage of user preferences or
constraints to speed up the mining process? The techniques learned in this chapter may
also be extended for more advanced forms of frequent pattern mining, such as from
sequential and structured data sets, as we will study in later chapters.

5.1 Basic Concepts and a Road Map

Frequent pattern mining searches for recurring relationships in a given data set. This
section introduces the basic concepts of frequent pattern mining for the discovery of
interesting associations and correlations between itemsets in transactional and relational
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databases. We begin in Section 5.1.1 by presenting an example of market basket analysis,
the earliest form of frequent pattern mining for association rules. The basic concepts
of mining frequent patterns and associations are given in Section 5.1.2. Section 5.1.3
presents a road map to the different kinds of frequent patterns, association rules, and
correlation rules that can be mined.

5.1.1 Market Basket Analysis: A Motivating Example

Frequent itemset mining leads to the discovery of associations and correlations among
items in large transactional or relational data sets. With massive amounts of data
continuously being collected and stored, many industries are becoming interested in
mining such patterns from their databases. The discovery of interesting correlation
relationships among huge amounts of business transaction records can help in many
business decision-making processes, such as catalog design, cross-marketing, and cus-
tomer shopping behavior analysis.

A typical example of frequent itemset mining is market basket analysis. This process
analyzes customer buying habits by finding associations between the different items that
customers place in their “shopping baskets” (Figure 5.1). The discovery of such associa-
tions can help retailers develop marketing strategies by gaining insight into which items
are frequently purchased together by customers. For instance, if customers are buying

Which items are frequently

purchased together by my customers?

milk
cereal

bread milk bread

butter

milk bread
sugar eggs

Customer 1

Market Analyst

Customer 2

sugar
eggs

Customer n

Customer 3

Shopping Baskets

Figure 5.1 Market basket analysis.
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milk, how likely are they to also buy bread (and what kind of bread) on the same trip
to the supermarket? Such information can lead to increased sales by helping retailers do
selective marketing and plan their shelf space.

Let’s look at an example of how market basket analysis can be useful.

Example 5.1 Market basket analysis. Suppose, as manager of an AllElectronics branch, you would
like to learn more about the buying habits of your customers. Specifically, you wonder,
“Which groups or sets of items are customers likely to purchase on a given trip to the store?”
To answer your question, market basket analysis may be performed on the retail data of
customer transactions at your store. You can then use the results to plan marketing or
advertising strategies, or in the design of a new catalog. For instance, market basket anal-
ysis may help you design different store layouts. In one strategy, items that are frequently
purchased together can be placed in proximity in order to further encourage the sale
of such items together. If customers who purchase computers also tend to buy antivirus
software at the same time, then placing the hardware display close to the software display
may help increase the sales of both items. In an alternative strategy, placing hardware and
software at opposite ends of the store may entice customers who purchase such items to
pick up other items along the way. For instance, after deciding on an expensive computer,
a customer may observe security systems for sale while heading toward the software dis-
play to purchase antivirus software and may decide to purchase a home security system
as well. Market basket analysis can also help retailers plan which items to put on sale
at reduced prices. If customers tend to purchase computers and printers together, then
having a sale on printers may encourage the sale of printers as well as computers.

If we think of the universe as the set of items available at the store, then each item
has a Boolean variable representing the presence or absence of that item. Each basket
can then be represented by a Boolean vector of values assigned to these variables.
The Boolean vectors can be analyzed for buying patterns that reflect items that are
frequently associated or purchased together. These patterns can be represented in the
form of association rules. For example, the information that customers who purchase
computers also tend to buy antivirus software at the same time is represented in
Association Rule (5.1) below:

computer⇒ antivirus software [support = 2%, confidence = 60%] (5.1)

Rule support and confidence are two measures of rule interestingness. They respec-
tively reflect the usefulness and certainty of discovered rules. A support of 2% for Associ-
ation Rule (5.1) means that 2% of all the transactions under analysis show that computer
and antivirus software are purchased together. A confidence of 60% means that 60% of
the customers who purchased a computer also bought the software. Typically, associa-
tion rules are considered interesting if they satisfy both a minimum support threshold
and a minimum confidence threshold. Such thresholds can be set by users or domain
experts. Additional analysis can be performed to uncover interesting statistical correla-
tions between associated items.
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5.1.2 Frequent Itemsets, Closed Itemsets, and Association Rules

Let I = {I1, I2, . . . , Im} be a set of items. Let D, the task-relevant data, be a set of database
transactions where each transaction T is a set of items such that T ⊆ I . Each transaction
is associated with an identifier, called TID. Let A be a set of items. A transaction T is
said to contain A if and only if A⊆ T . An association rule is an implication of the form
A⇒ B, where A⊂ I , B⊂ I , and A∩B = φ. The rule A⇒ B holds in the transaction set D
with support s, where s is the percentage of transactions in D that contain A∪B (i.e., the
union of sets A and B, or say, both A and B). This is taken to be the probability, P(A∪B).1

The rule A⇒ B has confidence c in the transaction set D, where c is the percentage of
transactions in D containing A that also contain B. This is taken to be the conditional
probability, P(B|A). That is,

support(A⇒B) = P(A∪B) (5.2)

confidence(A⇒B) = P(B|A). (5.3)

Rules that satisfy both a minimum support threshold (min sup) and a minimum confi-
dence threshold (min conf) are called strong. By convention, we write support and con-
fidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

A set of items is referred to as an itemset.2 An itemset that contains k items is a
k-itemset. The set {computer, antivirus software} is a 2-itemset. The occurrence
frequency of an itemset is the number of transactions that contain the itemset. This is
also known, simply, as the frequency, support count, or count of the itemset. Note that
the itemset support defined in Equation (5.2) is sometimes referred to as relative support,
whereas the occurrence frequency is called the absolute support. If the relative support
of an itemset I satisfies a prespecified minimum support threshold (i.e., the absolute
support of I satisfies the corresponding minimum support count threshold), then I is a
frequent itemset.3 The set of frequent k-itemsets is commonly denoted by Lk.4

From Equation (5.3), we have

confidence(A⇒B) = P(B|A) =
support(A∪B)

support(A)
=

support count(A∪B)
support count(A)

. (5.4)

Equation (5.4) shows that the confidence of rule A⇒B can be easily derived from the
support counts of A and A∪B. That is, once the support counts of A, B, and A∪B are

1Notice that the notation P(A∪B) indicates the probability that a transaction contains the union of set
A and set B (i.e., it contains every item in A and in B). This should not be confused with P(A or B),
which indicates the probability that a transaction contains either A or B.
2In the data mining research literature, “itemset” is more commonly used than “item set.”
3In early work, itemsets satisfying minimum support were referred to as large. This term, however, is
somewhat confusing as it has connotations to the number of items in an itemset rather than the fre-
quency of occurrence of the set. Hence, we use the more recent term frequent.
4Although the term frequent is preferred over large, for historical reasons frequent k-itemsets are still
denoted as Lk.
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found, it is straightforward to derive the corresponding association rules A⇒B and B⇒A
and check whether they are strong. Thus the problem of mining association rules can be
reduced to that of mining frequent itemsets.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as
frequently as a predetermined minimum support count, min sup.

2. Generate strong association rules from the frequent itemsets: By definition, these
rules must satisfy minimum support and minimum confidence.

Additional interestingness measures can be applied for the discovery of correlation
relationships between associated items, as will be discussed in Section 5.4. Because the
second step is much less costly than the first, the overall performance of mining associ-
ation rules is determined by the first step.

A major challenge in mining frequent itemsets from a large data set is the fact that
such mining often generates a huge number of itemsets satisfying the minimum support
(min sup) threshold, especially when min sup is set low. This is because if an itemset is
frequent, each of its subsets is frequent as well. A long itemset will contain a combinato-
rial number of shorter, frequent sub-itemsets. For example, a frequent itemset of length
100, such as {a1, a2, . . . , a100}, contains

(100
1

)

= 100 frequent 1-itemsets: a1, a2, . . . , a100,
(100

2

)

frequent 2-itemsets: (a1, a2), (a1, a3), . . . , (a99, a100), and so on. The total number
of frequent itemsets that it contains is thus,

(

100
1

)

+
(

100
2

)

+ · · ·+
(

100
100

)

= 2100−1≈ 1.27×1030. (5.5)

This is too huge a number of itemsets for any computer to compute or store. To overcome
this difficulty, we introduce the concepts of closed frequent itemset and maximal frequent
itemset.

An itemset X is closed in a data set S if there exists no proper super-itemset5 Y such
that Y has the same support count as X in S. An itemset X is a closed frequent itemset
in set S if X is both closed and frequent in S. An itemset X is a maximal frequent itemset
(or max-itemset) in set S if X is frequent, and there exists no super-itemset Y such that
X ⊂ Y and Y is frequent in S.

Let C be the set of closed frequent itemsets for a data set S satisfying a minimum sup-
port threshold, min sup. Let M be the set of maximal frequent itemsets for S satisfying
min sup. Suppose that we have the support count of each itemset in C and M . Notice
that C and its count information can be used to derive the whole set of frequent item-
sets. Thus we say that C contains complete information regarding its corresponding fre-
quent itemsets. On the other hand, M registers only the support of the maximal itemsets.

5Y is a proper super-itemset of X if X is a proper sub-itemset of Y , that is, if X ⊂Y . In other words, every
item of X is contained in Y but there is at least one item of Y that is not in X .
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It usually does not contain the complete support information regarding its correspond-
ing frequent itemsets. We illustrate these concepts with the following example.

Example 5.2 Closed and maximal frequent itemsets. Suppose that a transaction database has only
two transactions: {〈a1, a2, . . . , a100〉; 〈a1, a2, . . . , a50〉}. Let the minimum support count
threshold be min sup = 1. We find two closed frequent itemsets and their support counts,
that is, C = {{a1, a2, . . . , a100} : 1; {a1, a2, . . . , a50} : 2}. There is one maximal frequent
itemset: M = {{a1, a2, . . . , a100} : 1}. (We cannot include {a1, a2, . . . , a50} as a maximal
frequent itemset because it has a frequent super-set, {a1, a2, . . . , a100}.) Compare this to
the above, where we determined that there are 2100− 1 frequent itemsets, which is too
huge a set to be enumerated!

The set of closed frequent itemsets contains complete information regarding the
frequent itemsets. For example, from C , we can derive, say, (1){a2, a45 : 2} since{a2, a45}
is a sub-itemset of the itemset {a1, a2, . . . , a50 : 2}; and (2) {a8, a55 : 1} since {a8, a55}
is not a sub-itemset of the previous itemset but of the itemset {a1, a2, . . . , a100 : 1}.
However, from the maximal frequent itemset, we can only assert that both itemsets
({a2, a45} and {a8, a55}) are frequent, but we cannot assert their actual support counts.

5.1.3 Frequent Pattern Mining: A Road Map

Market basket analysis is just one form of frequent pattern mining. In fact, there are many
kinds of frequent patterns, association rules, and correlation relationships. Frequent pat-
tern mining can be classified in various ways, based on the following criteria:

Based on the completeness of patterns to be mined: As we discussed in the previous
subsection, we can mine the complete set of frequent itemsets, the closed frequent
itemsets, and the maximal frequent itemsets, given a minimum support threshold.
We can also mine constrained frequent itemsets (i.e., those that satisfy a set of
user-defined constraints), approximate frequent itemsets (i.e., those that derive only
approximate support counts for the mined frequent itemsets), near-match frequent
itemsets (i.e., those that tally the support count of the near or almost matching item-
sets), top-k frequent itemsets (i.e., the k most frequent itemsets for a user-specified
value, k), and so on.
Different applications may have different requirements regarding the completeness of
the patterns to be mined, which in turn can lead to different evaluation and
optimization methods. In this chapter, our study of mining methods focuses on
mining the complete set of frequent itemsets, closed frequent itemsets, and constrained
frequent itemsets. We leave the mining of frequent itemsets under other completeness
requirements as an exercise.

Based on the levels of abstraction involved in the rule set: Some methods for associa-
tion rule mining can find rules at differing levels of abstraction. For example, suppose
that a set of association rules mined includes the following rules where X is a variable
representing a customer:

buys(X , “computer”)⇒ buys(X , “HP printer”) (5.6)
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buys(X , “laptop computer”)⇒ buys(X , “HP printer”) (5.7)

In Rules (5.6) and (5.7), the items bought are referenced at different levels of
abstraction (e.g., “computer” is a higher-level abstraction of “laptop computer”). We
refer to the rule set mined as consisting of multilevel association rules. If, instead,
the rules within a given set do not reference items or attributes at different levels of
abstraction, then the set contains single-level association rules.

Based on the number of data dimensions involved in the rule: If the items or attributes
in an association rule reference only one dimension, then it is a single-dimensional
association rule. Note that Rule (5.1), for example, could be rewritten as Rule (5.8):

buys(X , “computer”)⇒ buys(X , “antivirus software”) (5.8)

Rules (5.6), (5.7), and (5.8) are single-dimensional association rules because they each
refer to only one dimension, buys.6

If a rule references two or more dimensions, such as the dimensions age, income, and
buys, then it is a multidimensional association rule. The following rule is an example
of a multidimensional rule:

age(X , “30 . . .39”)∧ income(X , “42K . . .48K”)⇒buys(X , “high resolution TV”).
(5.9)

Based on the types of values handled in the rule: If a rule involves associations between
the presence or absence of items, it is a Boolean association rule. For example,
Rules (5.1), (5.6), and (5.7) are Boolean association rules obtained from market bas-
ket analysis.

If a rule describes associations between quantitative items or attributes, then it is a
quantitative association rule. In these rules, quantitative values for items or attributes
are partitioned into intervals. Rule (5.9) is also considered a quantitative association
rule. Note that the quantitative attributes, age and income, have been discretized.

Based on the kinds of rules to be mined: Frequent pattern analysis can generate vari-
ous kinds of rules and other interesting relationships. Association rules are the most
popular kind of rules generated from frequent patterns. Typically, such mining can
generate a large number of rules, many of which are redundant or do not indicate
a correlation relationship among itemsets. Thus, the discovered associations can be
further analyzed to uncover statistical correlations, leading to correlation rules.

We can also mine strong gradient relationships among itemsets, where a gradient
is the ratio of the measure of an item when compared with that of its parent (a gen-
eralized itemset), its child (a specialized itemset), or its sibling (a comparable item-
set). One such example is: “The average sales from Sony Digital Camera increase over
16% when sold together with Sony Laptop Computer”: both Sony Digital Camera and
Sony Laptop Computer are siblings, where the parent itemset is Sony.

6Following the terminology used in multidimensional databases, we refer to each distinct predicate in a
rule as a dimension.
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Based on the kinds of patterns to be mined: Many kinds of frequent patterns can be
mined from different kinds of data sets. For this chapter, our focus is on frequent item-
set mining, that is, the mining of frequent itemsets (sets of items) from transactional
or relational data sets. However, other kinds of frequent patterns can be found from
other kinds of data sets. Sequential pattern mining searches for frequent subsequences
in a sequence data set, where a sequence records an ordering of events. For example,
with sequential pattern mining, we can study the order in which items are frequently
purchased. For instance, customers may tend to first buy a PC, followed by a digital
camera, and then a memory card. Structured pattern mining searches for frequent sub-
structures in a structured data set. Notice that structure is a general concept that covers
many different kinds of structural forms, such as graphs, lattices, trees, sequences, sets,
single items, or combinations of such structures. Single items are the simplest form of
structure. Each element of an itemset may contain a subsequence, a subtree, and so on,
and such containment relationships can be defined recursively. Therefore, structured
pattern mining can be considered as the most general form of frequent pattern mining.

In the next section, we will study efficient methods for mining the basic (i.e., single-
level, single-dimensional, Boolean) frequent itemsets from transactional databases, and
show how to generate association rules from such itemsets. The extension of this scope
of mining to multilevel, multidimensional, and quantitative rules is discussed in
Section 5.3. The mining of strong correlation relationships is studied in Section 5.4.
Constraint-based mining is studied in Section 5.5. We address the more advanced topic
of mining sequence and structured patterns in later chapters. Nevertheless, most of the
methods studied here can be easily extended for mining more complex kinds of patterns.

5.2 Efficient and Scalable Frequent Itemset Mining Methods

In this section, you will learn methods for mining the simplest form of frequent
patterns—single-dimensional, single-level, Boolean frequent itemsets, such as those dis-
cussed for market basket analysis in Section 5.1.1. We begin by presenting Apriori, the
basic algorithm for finding frequent itemsets (Section 5.2.1). In Section 5.2.2, we look at
how to generate strong association rules from frequent itemsets. Section 5.2.3 describes
several variations to the Apriori algorithm for improved efficiency and scalability.
Section 5.2.4 presents methods for mining frequent itemsets that, unlike Apriori, do not
involve the generation of “candidate” frequent itemsets. Section 5.2.5 presents methods
for mining frequent itemsets that take advantage of vertical data format. Methods for
mining closed frequent itemsets are discussed in Section 5.2.6.

5.2.1 The Apriori Algorithm: Finding Frequent Itemsets Using
Candidate Generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining
frequent itemsets for Boolean association rules. The name of the algorithm is based on
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the fact that the algorithm uses prior knowledge of frequent itemset properties, as we shall
see following. Apriori employs an iterative approach known as a level-wise search, where
k-itemsets are used to explore (k+1)-itemsets. First, the set of frequent 1-itemsets is found
by scanning the database to accumulate the count for each item, and collecting those items
that satisfy minimum support. The resulting set is denoted L1. Next, L1 is used to find L2,
the set of frequent 2-itemsets, which is used to find L3, and so on, until no more frequent
k-itemsets can be found. The finding of each Lk requires one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an impor-
tant property called the Apriori property, presented below, is used to reduce the search
space. We will first describe this property, and then show an example illustrating its use.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.

The Apriori property is based on the following observation. By definition, if an itemset
I does not satisfy the minimum support threshold, min sup, then I is not frequent; that
is, P(I)<min sup. If an item A is added to the itemset I, then the resulting itemset (i.e.,
I∪A) cannot occur more frequently than I. Therefore, I∪A is not frequent either; that
is, P(I∪A)< min sup.

This property belongs to a special category of properties called antimonotone in the
sense that if a set cannot pass a test, all of its supersets will fail the same test as well. It is
called antimonotone because the property is monotonic in the context of failing a test.7

“How is the Apriori property used in the algorithm?” To understand this, let us look at
how Lk−1 is used to find Lk for k ≥ 2. A two-step process is followed, consisting of join
and prune actions.

1. The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk−1
with itself. This set of candidates is denoted Ck. Let l1 and l2 be itemsets in Lk−1.
The notation li[ j] refers to the jth item in li (e.g., l1[k−2] refers to the second to the
last item in l1). By convention, Apriori assumes that items within a transaction or
itemset are sorted in lexicographic order. For the (k− 1)-itemset, li, this means that
the items are sorted such that li[1] < li[2] < .. . < li[k− 1]. The join, Lk−1 on Lk−1,
is performed, where members of Lk−1 are joinable if their first (k− 2) items are in
common. That is, members l1 and l2 of Lk−1 are joined if (l1[1] = l2[1])∧ (l1[2] =
l2[2]) ∧ . . .∧ (l1[k−2] = l2[k−2]) ∧(l1[k−1]< l2[k−1]). The condition l1[k−1]<
l2[k−1] simply ensures that no duplicates are generated. The resulting itemset formed
by joining l1 and l2 is l1[1], l1[2], . . . , l1[k−2], l1[k−1], l2[k−1].

2. The prune step:Ck is a superset of Lk, that is, its members may or may not be frequent,
but all of the frequent k-itemsets are included inCk. A scan of the database to determine
the count of each candidate in Ck would result in the determination of Lk (i.e., all
candidates having a count no less than the minimum support count are frequent by
definition, and therefore belong to Lk). Ck, however, can be huge, and so this could

7The Apriori property has many applications. It can also be used to prune search during data cube
computation (Chapter 4).



236 Chapter 5 Mining Frequent Patterns, Associations, and Correlations

Table 5.1 Transactional data for an AllElectron-
ics branch.

TID List of item IDs

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

involve heavy computation. To reduce the size of Ck, the Apriori property is used
as follows. Any (k− 1)-itemset that is not frequent cannot be a subset of a frequent
k-itemset. Hence, if any (k− 1)-subset of a candidate k-itemset is not in Lk−1, then
the candidate cannot be frequent either and so can be removed from Ck. This subset
testing can be done quickly by maintaining a hash tree of all frequent itemsets.

Example 5.3 Apriori. Let’s look at a concrete example, based on the AllElectronics transaction database,
D, of Table 5.1. There are nine transactions in this database, that is, |D| = 9. We use
Figure 5.2 to illustrate the Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of candidate
1-itemsets, C1. The algorithm simply scans all of the transactions in order to count
the number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min sup = 2. (Here,
we are referring to absolute support because we are using a support count. The corre-
sponding relative support is 2/9 = 22%). The set of frequent 1-itemsets, L1, can then
be determined. It consists of the candidate 1-itemsets satisfying minimum support.
In our example, all of the candidates in C1 satisfy minimum support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 on L1 to

generate a candidate set of 2-itemsets, C2.8 C2 consists of
(|L1|

2

)

2-itemsets. Note that
no candidates are removed from C2 during the prune step because each subset of the
candidates is also frequent.

8L1 on L1 is equivalent to L1×L1, since the definition of Lk on Lk requires the two joining itemsets to
share k−1 = 0 items.
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Figure 5.2 Generation of candidate itemsets and frequent itemsets, where the minimum support
count is 2.

4. Next, the transactions in D are scanned and the support count of each candidate item-
set in C2 is accumulated, as shown in the middle table of the second row in Figure 5.2.

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate
2-itemsets in C2 having minimum support.

6. The generation of the set of candidate 3-itemsets,C3, is detailed in Figure 5.3. From the
join step, we first get C3 = L2 on L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4},
{I2, I3, I5}, {I2, I4, I5}}. Based on the Apriori property that all subsets of a frequent
itemset must also be frequent, we can determine that the four latter candidates cannot
possibly be frequent. We therefore remove them from C3, thereby saving the effort of
unnecessarily obtaining their counts during the subsequent scan of D to determine L3.
Note that when given a candidate k-itemset, we only need to check if its (k−1)-subsets
are frequent since the Apriori algorithm uses a level-wise search strategy. The resulting
pruned version of C3 is shown in the first table of the bottom row of Figure 5.2.

7. The transactions in D are scanned in order to determine L3, consisting of those can-
didate 3-itemsets in C3 having minimum support (Figure 5.2).
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(a) Join: C3 = L2 on L2 = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}on
{{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}

= {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}.

(b) Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be frequent. Do
any of the candidates have a subset that is not frequent?

The 2-item subsets of {I1, I2, I3} are {I1, I2}, {I1, I3}, and {I2, I3}. All 2-item subsets of {I1, I2,
I3} are members of L2. Therefore, keep {I1, I2, I3} in C3.

The 2-item subsets of {I1, I2, I5} are {I1, I2}, {I1, I5}, and {I2, I5}. All 2-item subsets of {I1, I2,
I5} are members of L2. Therefore, keep {I1, I2, I5} in C3.

The 2-item subsets of {I1, I3, I5} are {I1, I3}, {I1, I5}, and {I3, I5}. {I3, I5} is not a member of L2,
and so it is not frequent. Therefore, remove {I1, I3, I5} from C3.

The 2-item subsets of {I2, I3, I4} are {I2, I3}, {I2, I4}, and {I3, I4}. {I3, I4} is not a member of L2,
and so it is not frequent. Therefore, remove {I2, I3, I4} from C3.

The 2-item subsets of {I2, I3, I5} are {I2, I3}, {I2, I5}, and {I3, I5}. {I3, I5} is not a member of L2,
and so it is not frequent. Therefore, remove {I2, I3, I5} from C3.

The 2-item subsets of {I2, I4, I5} are {I2, I4}, {I2, I5}, and {I4, I5}. {I4, I5} is not a member of
L2, and so it is not frequent. Therefore, remove {I2, I4, I5} from C3.

(c) Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after pruning.

Figure 5.3 Generation and pruning of candidate 3-itemsets, C3, from L2 using the Apriori property.

8. The algorithm uses L3 on L3 to generate a candidate set of 4-itemsets, C4. Although
the join results in {{I1, I2, I3, I5}}, this itemset is pruned because its subset {{I2, I3,
I5}} is not frequent. Thus, C4 = φ, and the algorithm terminates, having found all of
the frequent itemsets.

Figure 5.4 shows pseudo-code for the Apriori algorithm and its related procedures.
Step 1 of Apriori finds the frequent 1-itemsets, L1. In steps 2 to 10, Lk−1 is used
to generate candidates Ck in order to find Lk for k ≥ 2. The apriori gen procedure
generates the candidates and then uses the Apriori property to eliminate those having
a subset that is not frequent (step 3). This procedure is described below. Once all
of the candidates have been generated, the database is scanned (step 4). For each
transaction, a subset function is used to find all subsets of the transaction that
are candidates (step 5), and the count for each of these candidates is accumulated
(steps 6 and 7). Finally, all of those candidates satisfying minimum support (step 9)
form the set of frequent itemsets, L (step 11). A procedure can then be called to
generate association rules from the frequent itemsets. Such a procedure is described
in Section 5.2.2.

The apriori gen procedure performs two kinds of actions, namely, join and prune, as
described above. In the join component, Lk−1 is joined with Lk−1 to generate potential
candidates (steps 1 to 4). The prune component (steps 5 to 7) employs the Apriori prop-
erty to remove candidates that have a subset that is not frequent. The test for infrequent
subsets is shown in procedure has infrequent subset.
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Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate
generation.

Input:

D, a database of transactions;

min sup, the minimum support count threshold.

Output: L, frequent itemsets in D.

Method:

(1) L1 = find frequent 1-itemsets(D);
(2) for (k = 2;Lk−1 6= φ;k++) {
(3) Ck = apriori gen(Lk−1);
(4) for each transaction t ∈ D { // scan D for counts
(5) Ct = subset(Ck , t); // get the subsets of t that are candidates
(6) for each candidate c ∈Ct
(7) c.count++;
(8) }
(9) Lk = {c ∈Ck|c.count ≥min sup}
(10) }
(11) return L = ∪kLk ;

procedure apriori gen(Lk−1:frequent (k−1)-itemsets)
(1) for each itemset l1 ∈ Lk−1
(2) for each itemset l2 ∈ Lk−1
(3) if (l1[1] = l2[1])∧ (l1[2] = l2[2])∧ ...∧ (l1[k−2] = l2[k−2])∧ (l1[k−1]< l2[k−1]) then {
(4) c = l1 on l2; // join step: generate candidates
(5) if has infrequent subset(c, Lk−1) then
(6) delete c; // prune step: remove unfruitful candidate
(7) else add c to Ck ;
(8) }
(9) return Ck ;

procedure has infrequent subset(c: candidate k-itemset;
Lk−1: frequent (k−1)-itemsets); // use prior knowledge

(1) for each (k−1)-subset s of c
(2) if s 6∈ Lk−1 then
(3) return TRUE;
(4) return FALSE;

Figure 5.4 The Apriori algorithm for discovering frequent itemsets for mining Boolean association rules.

5.2.2 Generating Association Rules from Frequent Itemsets

Once the frequent itemsets from transactions in a database D have been found,
it is straightforward to generate strong association rules from them (where strong
association rules satisfy both minimum support and minimum confidence). This
can be done using Equation (5.4) for confidence, which we show again here for
completeness:

confidence(A⇒ B) = P(B|A) =
support count(A∪B)

support count(A)
.
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The conditional probability is expressed in terms of itemset support count, where
support count(A∪B) is the number of transactions containing the itemsets A∪B, and
support count(A) is the number of transactions containing the itemset A. Based on this
equation, association rules can be generated as follows:

For each frequent itemset l, generate all nonempty subsets of l.

For every nonempty subset s of l, output the rule “s⇒ (l− s)” if support count(l)
support count(s) ≥

min conf, where min conf is the minimum confidence threshold.

Because the rules are generated from frequent itemsets, each one automatically sat-
isfies minimum support. Frequent itemsets can be stored ahead of time in hash tables
along with their counts so that they can be accessed quickly.

Example 5.4 Generating association rules. Let’s try an example based on the transactional data
for AllElectronics shown in Table 5.1. Suppose the data contain the frequent itemset
l = {I1, I2, I5}. What are the association rules that can be generated from l? The
nonempty subsets of l are {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}. The
resulting association rules are as shown below, each listed with its confidence:

I1∧ I2⇒ I5, confidence = 2/4 = 50%
I1∧ I5⇒ I2, confidence = 2/2 = 100%
I2∧ I5⇒ I1, confidence = 2/2 = 100%
I1⇒ I2∧ I5, confidence = 2/6 = 33%
I2⇒ I1∧ I5, confidence = 2/7 = 29%
I5⇒ I1∧ I2, confidence = 2/2 = 100%

If the minimum confidence threshold is, say, 70%, then only the second, third, and
last rules above are output, because these are the only ones generated that are strong.
Note that, unlike conventional classification rules, association rules can contain more
than one conjunct in the right-hand side of the rule.

5.2.3 Improving the Efficiency of Apriori

“How can we further improve the efficiency of Apriori-based mining?” Many variations of
the Apriori algorithm have been proposed that focus on improving the efficiency of the
original algorithm. Several of these variations are summarized as follows:

Hash-based technique (hashing itemsets into corresponding buckets): A hash-based
technique can be used to reduce the size of the candidate k-itemsets, Ck, for k > 1.
For example, when scanning each transaction in the database to generate the fre-
quent 1-itemsets, L1, from the candidate 1-itemsets in C1, we can generate all of the
2-itemsets for each transaction, hash (i.e., map) them into the different buckets of
a hash table structure, and increase the corresponding bucket counts (Figure 5.5).
A 2-itemset whose corresponding bucket count in the hash table is below the support
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Figure 5.5 Hash table, H2, for candidate 2-itemsets: This hash table was generated by scanning the trans-
actions of Table 5.1 while determining L1 from C1. If the minimum support count is, say, 3,
then the itemsets in buckets 0, 1, 3, and 4 cannot be frequent and so they should not be
included in C2.

threshold cannot be frequent and thus should be removed from the candidate set.
Such a hash-based technique may substantially reduce the number of the candidate
k-itemsets examined (especially when k = 2).

Transaction reduction (reducing the number of transactions scanned in future itera-
tions): A transaction that does not contain any frequent k-itemsets cannot contain any
frequent (k + 1)-itemsets. Therefore, such a transaction can be marked or removed
from further consideration because subsequent scans of the database for j-itemsets,
where j > k, will not require it.

Partitioning (partitioning the data to find candidate itemsets): A partitioning tech-
nique can be used that requires just two database scans to mine the frequent itemsets
(Figure 5.6). It consists of two phases. In Phase I, the algorithm subdivides the trans-
actions of D into n nonoverlapping partitions. If the minimum support threshold
for transactions in D is min sup, then the minimum support count for a partition is
min sup× the number of transactions in that partition. For each partition, all frequent
itemsets within the partition are found. These are referred to as local frequent item-
sets. The procedure employs a special data structure that, for each itemset, records
the TIDs of the transactions containing the items in the itemset. This allows it to find
all of the local frequent k-itemsets, for k = 1, 2, . . . , in just one scan of the database.

A local frequent itemset may or may not be frequent with respect to the entire
database, D. Any itemset that is potentially frequent with respect to D must occur as a
frequent itemset in at least one of the partitions. Therefore, all local frequent itemsets
are candidate itemsets with respect to D. The collection of frequent itemsets from all
partitions forms the global candidate itemsets with respect to D. In Phase II, a second
scan of D is conducted in which the actual support of each candidate is assessed in
order to determine the global frequent itemsets. Partition size and the number of
partitions are set so that each partition can fit into main memory and therefore be
read only once in each phase.

Sampling (mining on a subset of the given data): The basic idea of the sampling
approach is to pick a random sample S of the given data D, and then search for fre-
quent itemsets in S instead of D. In this way, we trade off some degree of accuracy
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Figure 5.6 Mining by partitioning the data.

against efficiency. The sample size of S is such that the search for frequent itemsets
in S can be done in main memory, and so only one scan of the transactions in S is
required overall. Because we are searching for frequent itemsets in S rather than in D,
it is possible that we will miss some of the global frequent itemsets. To lessen this pos-
sibility, we use a lower support threshold than minimum support to find the frequent
itemsets local to S (denoted LS). The rest of the database is then used to compute the
actual frequencies of each itemset in LS. A mechanism is used to determine whether
all of the global frequent itemsets are included in LS. If LS actually contains all of the
frequent itemsets in D, then only one scan of D is required. Otherwise, a second pass
can be done in order to find the frequent itemsets that were missed in the first pass.
The sampling approach is especially beneficial when efficiency is of utmost impor-
tance, such as in computationally intensive applications that must be run frequently.

Dynamic itemset counting (adding candidate itemsets at different points during a scan):
A dynamic itemset counting technique was proposed in which the database is
partitioned into blocks marked by start points. In this variation, new candidate item-
sets can be added at any start point, unlike in Apriori, which determines new candi-
date itemsets only immediately before each complete database scan. The technique is
dynamic in that it estimates the support of all of the itemsets that have been counted
so far, adding new candidate itemsets if all of their subsets are estimated to be fre-
quent. The resulting algorithm requires fewer database scans than Apriori.

Other variations involving the mining of multilevel and multidimensional association
rules are discussed in the rest of this chapter. The mining of associations related to spatial
data and multimedia data are discussed in Chapter 10.

5.2.4 Mining Frequent Itemsets without Candidate Generation

As we have seen, in many cases the Apriori candidate generate-and-test method signifi-
cantly reduces the size of candidate sets, leading to good performance gain. However, it
can suffer from two nontrivial costs:
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It may need to generate a huge number of candidate sets. For example, if there are
104 frequent 1-itemsets, the Apriori algorithm will need to generate more than 107

candidate 2-itemsets. Moreover, to discover a frequent pattern of size 100, such as
{a1, . . . , a100}, it has to generate at least 2100−1≈ 1030 candidates in total.

It may need to repeatedly scan the database and check a large set of candidates by pattern
matching. It is costly to go over each transaction in the database to determine the
support of the candidate itemsets.

“Can we design a method that mines the complete set of frequent itemsets without candi-
date generation?” An interesting method in this attempt is called frequent-pattern growth,
or simply FP-growth, which adopts a divide-and-conquer strategy as follows. First, it
compresses the database representing frequent items into a frequent-pattern tree, or
FP-tree, which retains the itemset association information. It then divides the compressed
database into a set of conditional databases (a special kind of projected database), each
associated with one frequent item or “pattern fragment,” and mines each such database
separately. You’ll see how it works with the following example.

Example 5.5 FP-growth (finding frequent itemsets without candidate generation). We re-examine
the mining of transaction database, D, of Table 5.1 in Example 5.3 using the frequent-
pattern growth approach.

The first scan of the database is the same as Apriori, which derives the set of fre-
quent items (1-itemsets) and their support counts (frequencies). Let the minimum sup-
port count be 2. The set of frequent items is sorted in the order of descending support
count. This resulting set or list is denoted L. Thus, we have L ={{I2: 7}, {I1: 6}, {I3: 6},
{I4: 2}, {I5: 2}}.

An FP-tree is then constructed as follows. First, create the root of the tree, labeled with
“null.” Scan database D a second time. The items in each transaction are processed in
L order (i.e., sorted according to descending support count), and a branch is created for
each transaction. For example, the scan of the first transaction, “T100: I1, I2, I5,” which
contains three items (I2, I1, I5 in L order), leads to the construction of the first branch of
the tree with three nodes, 〈I2: 1〉, 〈I1:1〉, and 〈I5: 1〉, where I2 is linked as a child of the
root, I1 is linked to I2, and I5 is linked to I1. The second transaction, T200, contains the
items I2 and I4 in L order, which would result in a branch where I2 is linked to the root
and I4 is linked to I2. However, this branch would share a common prefix, I2, with the
existing path for T100. Therefore, we instead increment the count of the I2 node by 1, and
create a new node, 〈I4: 1〉, which is linked as a child of 〈I2: 2〉. In general, when considering
the branch to be added for a transaction, the count of each node along a common prefix
is incremented by 1, and nodes for the items following the prefix are created and linked
accordingly.

To facilitate tree traversal, an item header table is built so that each item points to its
occurrences in the tree via a chain of node-links. The tree obtained after scanning all of
the transactions is shown in Figure 5.7 with the associated node-links. In this way, the
problem of mining frequent patterns in databases is transformed to that of mining the
FP-tree.
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Figure 5.7 An FP-tree registers compressed, frequent pattern information.

Table 5.2 Mining the FP-tree by creating conditional (sub-)pattern bases.

Item Conditional Pattern Base Conditional FP-tree Frequent Patterns Generated

I5 {{I2, I1: 1}, {I2, I1, I3: 1}} 〈I2: 2, I1: 2〉 {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I4 {{I2, I1: 1}, {I2: 1}} 〈I2: 2〉 {I2, I4: 2}
I3 {{I2, I1: 2}, {I2: 2}, {I1: 2}} 〈I2: 4, I1: 2〉, 〈I1: 2〉 {I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1 {{I2: 4}} 〈I2: 4〉 {I2, I1: 4}

The FP-tree is mined as follows. Start from each frequent length-1 pattern (as an initial
suffix pattern), construct its conditional pattern base (a “subdatabase,” which consists of
the set of prefix paths in the FP-tree co-occurring with the suffix pattern), then construct
its (conditional) FP-tree, and perform mining recursively on such a tree. The pattern
growth is achieved by the concatenation of the suffix pattern with the frequent patterns
generated from a conditional FP-tree.

Mining of the FP-tree is summarized in Table 5.2 and detailed as follows. We first
consider I5, which is the last item in L, rather than the first. The reason for starting at the
end of the list will become apparent as we explain the FP-tree mining process. I5 occurs
in two branches of the FP-tree of Figure 5.7. (The occurrences of I5 can easily be found
by following its chain of node-links.) The paths formed by these branches are 〈I2, I1,
I5: 1〉 and 〈I2, I1, I3, I5: 1〉. Therefore, considering I5 as a suffix, its corresponding two
prefix paths are 〈I2, I1: 1〉 and 〈I2, I1, I3: 1〉, which form its conditional pattern base. Its
conditional FP-tree contains only a single path, 〈I2: 2, I1: 2〉; I3 is not included because
its support count of 1 is less than the minimum support count. The single path generates
all the combinations of frequent patterns: {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}.

For I4, its two prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}},
which generates a single-node conditional FP-tree, 〈I2: 2〉, and derives one frequent
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Figure 5.8 The conditional FP-tree associated with the conditional node I3.

pattern, {I2, I1: 2}. Notice that although I5 follows I4 in the first branch, there is no
need to include I5 in the analysis here because any frequent pattern involving I5 is ana-
lyzed in the examination of I5.

Similar to the above analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2},
{I1: 2}}. Its conditional FP-tree has two branches, 〈I2: 4, I1: 2〉 and 〈I1: 2〉, as shown in
Figure 5.8, which generates the set of patterns, {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}.
Finally, I1’s conditional pattern base is {{I2: 4}}, whose FP-tree contains only one
node, 〈I2: 4〉, which generates one frequent pattern, {I2, I1: 4}. This mining process
is summarized in Figure 5.9.

The FP-growth method transforms the problem of finding long frequent patterns to
searching for shorter ones recursively and then concatenating the suffix. It uses the least
frequent items as a suffix, offering good selectivity. The method substantially reduces the
search costs.

When the database is large, it is sometimes unrealistic to construct a main memory-
based FP-tree. An interesting alternative is to first partition the database into a set of pro-
jected databases, and then construct an FP-tree and mine it in each projected database.
Such a process can be recursively applied to any projected database if its FP-tree still
cannot fit in main memory.

A study on the performance of the FP-growth method shows that it is efficient and
scalable for mining both long and short frequent patterns, and is about an order of mag-
nitude faster than the Apriori algorithm. It is also faster than a Tree-Projection algorithm,
which recursively projects a database into a tree of projected databases.

5.2.5 Mining Frequent Itemsets Using Vertical Data Format

Both the Apriori and FP-growth methods mine frequent patterns from a set of transac-
tions in TID-itemset format (that is, {T ID : itemset}), where TID is a transaction-id and
itemset is the set of items bought in transaction TID. This data format is known as hori-
zontal data format. Alternatively, data can also be presented in item-TID set format (that
is, {item : T ID set}), where item is an item name, and TID set is the set of transaction
identifiers containing the item. This format is known as vertical data format.

In this section, we look at how frequent itemsets can also be mined efficiently using
vertical data format, which is the essence of the ECLAT (Equivalence CLASS Transfor-
mation) algorithm developed by Zaki [Zak00].
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Algorithm: FP growth. Mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:

D, a transaction database;

min sup, the minimum support count threshold.

Output: The complete set of frequent patterns.

Method:

1. The FP-tree is constructed in the following steps:

(a) Scan the transaction database D once. Collect F , the set of frequent items, and their support counts.
Sort F in support count descending order as L, the list of frequent items.

(b) Create the root of an FP-tree, and label it as “null.” For each transaction Trans in D do the following.

Select and sort the frequent items in Trans according to the order of L. Let the sorted frequent item
list in Trans be [p|P], where p is the first element and P is the remaining list. Call insert tree([p|P], T ),
which is performed as follows. If T has a child N such that N.item-name = p.item-name, then increment
N’s count by 1; else create a new node N, and let its count be 1, its parent link be linked to T , and its
node-link to the nodes with the same item-name via the node-link structure. If P is nonempty, call
insert tree(P, N) recursively.

2. The FP-tree is mined by calling FP growth(FP tree, null), which is implemented as follows.

procedure FP growth(Tree, α)
(1) if Tree contains a single path P then
(2) for each combination (denoted as β) of the nodes in the path P
(3) generate pattern β∪α with support count = minimum support count o f nodes in β;
(4) else for each ai in the header of Tree {
(5) generate pattern β = ai ∪α with support count = ai.support count;
(6) construct β’s conditional pattern base and then β’s conditional FP tree Treeβ;
(7) if Treeβ 6= /0 then
(8) call FP growth(Treeβ, β); }

Figure 5.9 The FP-growth algorithm for discovering frequent itemsets without candidate generation.

Table 5.3 The vertical data format of the transaction data set D of
Table 5.1.

itemset TID set

I1 {T100, T400, T500, T700, T800, T900}
I2 {T100, T200, T300, T400, T600, T800, T900}
I3 {T300, T500, T600, T700, T800, T900}
I4 {T200, T400}
I5 {T100, T800}

Example 5.6 Mining frequent itemsets using vertical data format. Consider the horizontal data for-
mat of the transaction database, D, of Table 5.1 in Example 5.3. This can be transformed
into the vertical data format shown in Table 5.3 by scanning the data set once.
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Mining can be performed on this data set by intersecting the TID sets of every pair of
frequent single items. The minimum support count is 2. Because every single item is fre-
quent in Table 5.3, there are 10 intersections performed in total, which lead to 8 nonempty
2-itemsets as shown in Table 5.4. Notice that because the itemsets{I1, I4}and{I3, I5} each
contain only one transaction, they do not belong to the set of frequent 2-itemsets.

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset only if every
one of its 2-itemset subsets is frequent. The candidate generation process here will gen-
erate only two 3-itemsets: {I1, I2, I3} and {I1, I2, I5}. By intersecting the TID sets of any
two corresponding 2-itemsets of these candidate 3-itemsets, it derives Table 5.5, where
there are only two frequent 3-itemsets: {I1, I2, I3: 2} and {I1, I2, I5: 2}.

Example 5.6 illustrates the process of mining frequent itemsets by exploring the verti-
cal data format. First, we transform the horizontally formatted data to the vertical format
by scanning the data set once. The support count of an itemset is simply the length of the
TID set of the itemset. Starting with k = 1, the frequent k-itemsets can be used to con-
struct the candidate (k +1)-itemsets based on the Apriori property. The computation is
done by intersection of the TID sets of the frequent k-itemsets to compute the TID sets
of the corresponding (k+1)-itemsets. This process repeats, with k incremented by 1 each
time, until no frequent itemsets or no candidate itemsets can be found.

Besides taking advantage of the Apriori property in the generation of candidate
(k + 1)-itemset from frequent k-itemsets, another merit of this method is that there is
no need to scan the database to find the support of (k + 1) itemsets (for k ≥ 1). This

Table 5.4 The 2-itemsets in vertical data format.

itemset TID set

{I1, I2} {T100, T400, T800, T900}
{I1, I3} {T500, T700, T800, T900}
{I1, I4} {T400}
{I1, I5} {T100, T800}
{I2, I3} {T300, T600, T800, T900}
{I2, I4} {T200, T400}
{I2, I5} {T100, T800}
{I3, I5} {T800}

Table 5.5 The 3-itemsets in vertical data
format.

itemset TID set

{I1, I2, I3} {T800, T900}
{I1, I2, I5} {T100, T800}
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is because the TID set of each k-itemset carries the complete information required for
counting such support. However, the TID sets can be quite long, taking substantial mem-
ory space as well as computation time for intersecting the long sets.

To further reduce the cost of registering long TID sets, as well as the subsequent costs
of intersections, we can use a technique called diffset, which keeps track of only the differ-
ences of the TID sets of a (k+1)-itemset and a corresponding k-itemset. For instance, in
Example 5.6 we have {I1}= {T100, T400, T500, T700, T800, T900} and {I1, I2}= {T100,
T400, T800, T900}. The diffset between the two is diffset({I1, I2}, {I1}) = {T500, T700}.
Thus, rather than recording the four TIDs that make up the intersection of {I1} and
{I2}, we can instead use diffset to record just two TIDs indicating the difference between
{I1} and {I1, I2}. Experiments show that in certain situations, such as when the data set
contains many dense and long patterns, this technique can substantially reduce the total
cost of vertical format mining of frequent itemsets.

5.2.6 Mining Closed Frequent Itemsets

In Section 5.1.2 we saw how frequent itemset mining may generate a huge number of
frequent itemsets, especially when the min sup threshold is set low or when there exist
long patterns in the data set. Example 5.2 showed that closed frequent itemsets9 can
substantially reduce the number of patterns generated in frequent itemset mining while
preserving the complete information regarding the set of frequent itemsets. That is, from
the set of closed frequent itemsets, we can easily derive the set of frequent itemsets and
their support. Thus in practice, it is more desirable to mine the set of closed frequent
itemsets rather than the set of all frequent itemsets in most cases.

“How can we mine closed frequent itemsets?” A naïve approach would be to first mine
the complete set of frequent itemsets and then remove every frequent itemset that is a
proper subset of, and carries the same support as, an existing frequent itemset. However,
this is quite costly. As shown in Example 5.2, this method would have to first derive
2100−1 frequent itemsets in order to obtain a length-100 frequent itemset, all before it
could begin to eliminate redundant itemsets. This is prohibitively expensive. In fact, there
exist only a very small number of closed frequent itemsets in the data set of Example 5.2.

A recommended methodology is to search for closed frequent itemsets directly during
the mining process. This requires us to prune the search space as soon as we can identify
the case of closed itemsets during mining. Pruning strategies include the following:

Item merging: If every transaction containing a frequent itemset X also contains an itemset
Y but not any proper superset of Y , then X ∪Y forms a frequent closed itemset and there
is no need to search for any itemset containing X but no Y .
For example, in Table 5.2 of Example 5.5, the projected conditional database for
prefix itemset {I5:2} is {{I2, I1},{I2, I1, I3}}, from which we can see that each of

9Remember that X is a closed frequent itemset in a data set S if there exists no proper super-itemset Y
such that Y has the same support count as X in S, and X satisfies minimum support.



5.2 Efficient and Scalable Frequent Itemset Mining Methods 249

its transactions contains itemset {I2, I1} but no proper superset of {I2, I1}. Itemset
{I2, I1} can be merged with {I5} to form the closed itemset, {I5, I2, I1: 2}, and
we do not need to mine for closed itemsets that contain I5 but not {I2, I1}.

Sub-itemset pruning: If a frequent itemset X is a proper subset of an already found frequent
closed itemset Y and support count(X) = support count(Y ), then X and all of X ’s
descendants in the set enumeration tree cannot be frequent closed itemsets and thus can
be pruned.
Similar to Example 5.2, suppose a transaction database has only two transactions:
{〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, and the minimum support count is min sup =
2. The projection on the first item, a1, derives the frequent itemset, {a1, a2, . . . , a50 :
2}, based on the itemset merging optimization. Because support({a2}) = support
({a1, a2, . . . , a50}) = 2, and {a2} is a proper subset of {a1, a2, . . . , a50}, there is
no need to examine a2 and its projected database. Similar pruning can be done
for a3, . . . , a50 as well. Thus the mining of closed frequent itemsets in this data set
terminates after mining a1’s projected database.

Item skipping: In the depth-first mining of closed itemsets, at each level, there will be a
prefix itemset X associated with a header table and a projected database. If a local fre-
quent item p has the same support in several header tables at different levels, we can
safely prune p from the header tables at higher levels.
Consider, for example, the transaction database above having only two transactions:
{〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, where min sup = 2. Because a2 in a1’s projected
database has the same support as a2 in the global header table, a2 can be pruned from
the global header table. Similar pruning can be done for a3, . . . , a50. There is no need
to mine anything more after mining a1’s projected database.

Besides pruning the search space in the closed itemset mining process, another impor-
tant optimization is to perform efficient checking of a newly derived frequent itemset to
see whether it is closed, because the mining process cannot ensure that every generated
frequent itemset is closed.

When a new frequent itemset is derived, it is necessary to perform two kinds of closure
checking: (1) superset checking, which checks if this new frequent itemset is a superset of
some already found closed itemsets with the same support, and (2) subset checking, which
checks whether the newly found itemset is a subset of an already found closed itemset
with the same support.

If we adopt the item merging pruning method under a divide-and-conquer frame-
work, then the superset checking is actually built-in and there is no need to explicitly
perform superset checking. This is because if a frequent itemset X ∪Y is found later than
itemset X , and carries the same support as X , it must be in X ’s projected database and
must have been generated during itemset merging.

To assist in subset checking, a compressed pattern-tree can be constructed to main-
tain the set of closed itemsets mined so far. The pattern-tree is similar in structure to the
FP-tree except that all of the closed itemsets found are stored explicitly in the correspond-
ing tree branches. For efficient subset checking, we can use the following property: If the
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current itemset Sc can be subsumed by another already found closed itemset Sa, then (1) Sc
and Sa have the same support, (2) the length of Sc is smaller than that of Sa, and (3) all of
the items in Sc are contained in Sa. Based on this property, a two-level hash index struc-
ture can be built for fast accessing of the pattern-tree: The first level uses the identifier
of the last item in Sc as a hash key (since this identifier must be within the branch of Sc),
and the second level uses the support of Sc as a hash key (since Sc and Sa have the same
support). This will substantially speed up the subset checking process.

The above discussion illustrates methods for efficient mining of closed frequent item-
sets. “Can we extend these methods for efficient mining of maximal frequent itemsets?”
Because maximal frequent itemsets share many similarities with closed frequent item-
sets, many of the optimization techniques developed here can be extended to mining
maximal frequent itemsets. However, we leave this method as an exercise for interested
readers.

5.3 Mining Various Kinds of Association Rules

We have studied efficient methods for mining frequent itemsets and association rules.
In this section, we consider additional application requirements by extending our scope
to include mining multilevel association rules, multidimensional association rules, and
quantitative association rules in transactional and/or relational databases and data
warehouses. Multilevel association rules involve concepts at different levels of abstrac-
tion. Multidimensional association rules involve more than one dimension or predicate
(e.g., rules relating what a customer buys as well as the customer’s age.) Quantitative
association rules involve numeric attributes that have an implicit ordering among values
(e.g., age).

5.3.1 Mining Multilevel Association Rules

For many applications, it is difficult to find strong associations among data items at low
or primitive levels of abstraction due to the sparsity of data at those levels. Strong associ-
ations discovered at high levels of abstraction may represent commonsense knowledge.
Moreover, what may represent common sense to one user may seem novel to another.
Therefore, data mining systems should provide capabilities for mining association rules
at multiple levels of abstraction, with sufficient flexibility for easy traversal among dif-
ferent abstraction spaces.

Let’s examine the following example.

Example 5.7 Mining multilevel association rules. Suppose we are given the task-relevant set of trans-
actional data in Table 5.6 for sales in an AllElectronics store, showing the items purchased
for each transaction. The concept hierarchy for the items is shown in Figure 5.10. A con-
cept hierarchy defines a sequence of mappings from a set of low-level concepts to higher-
level, more general concepts. Data can be generalized by replacing low-level concepts
within the data by their higher-level concepts, or ancestors, from a concept hierarchy.
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Table 5.6 Task-relevant data, D.

TID Items Purchased

T100 IBM-ThinkPad-T40/2373, HP-Photosmart-7660

T200 Microsoft-Office-Professional-2003, Microsoft-Plus!-Digital-Media

T300 Logitech-MX700-Cordless-Mouse, Fellowes-Wrist-Rest

T400 Dell-Dimension-XPS, Canon-PowerShot-S400

T500 IBM-ThinkPad-R40/P4M, Symantec-Norton-Antivirus-2003

. . . . . .

all

Figure 5.10 A concept hierarchy for AllElectronics computer items.

The concept hierarchy of Figure 5.10 has five levels, respectively referred to as levels 0
to 4, starting with level 0 at the root node for all (the most general abstraction level).
Here, level 1 includes computer, software, printer&camera, and computer accessory, level
2 includes laptop computer, desktop computer, office software, antivirus software, . . . , and
level 3 includes IBM desktop computer, . . . , Microsoft office software, and so on. Level 4 is
the most specific abstraction level of this hierarchy. It consists of the raw data values. Con-
cept hierarchies for categorical attributes are often implicit within the database schema,
in which case they may be automatically generated using methods such as those described
in Chapter 2. For our example, the concept hierarchy of Figure 5.10 was generated from
data on product specifications. Concept hierarchies for numerical attributes can be gen-
erated using discretization techniques, many of which were introduced in Chapter 2.
Alternatively, concept hierarchies may be specified by users familiar with the data, such
as store managers in the case of our example.

The items in Table 5.6 are at the lowest level of the concept hierarchy of Figure 5.10.
It is difficult to find interesting purchase patterns at such raw or primitive-level data.
For instance, if “IBM-ThinkPad-R40/P4M” or “Symantec-Norton-Antivirus-2003” each
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occurs in a very small fraction of the transactions, then it can be difficult to find strong
associations involving these specific items. Few people may buy these items together,
making it unlikely that the itemset will satisfy minimum support. However, we would
expect that it is easier to find strong associations between generalized abstractions of
these items, such as between “IBM laptop computer” and “antivirus software.”

Association rules generated from mining data at multiple levels of abstraction are
called multiple-level or multilevel association rules. Multilevel association rules can
be mined efficiently using concept hierarchies under a support-confidence framework.
In general, a top-down strategy is employed, where counts are accumulated for the
calculation of frequent itemsets at each concept level, starting at the concept level
1 and working downward in the hierarchy toward the more specific concept levels,
until no more frequent itemsets can be found. For each level, any algorithm for
discovering frequent itemsets may be used, such as Apriori or its variations. A number
of variations to this approach are described below, where each variation involves
“playing” with the support threshold in a slightly different way. The variations are
illustrated in Figures 5.11 and 5.12, where nodes indicate an item or itemset that
has been examined, and nodes with thick borders indicate that an examined item or
itemset is frequent.

Using uniform minimum support for all levels (referred to as uniform support):
The same minimum support threshold is used when mining at each level of
abstraction. For example, in Figure 5.11, a minimum support threshold of 5% is
used throughout (e.g., for mining from “computer” down to “laptop computer”).
Both “computer” and “laptop computer” are found to be frequent, while “desktop
computer” is not.

When a uniform minimum support threshold is used, the search procedure is
simplified. The method is also simple in that users are required to specify only one
minimum support threshold. An Apriori-like optimization technique can be adopted,
based on the knowledge that an ancestor is a superset of its descendants: The search
avoids examining itemsets containing any item whose ancestors do not have mini-
mum support.

computer [support 5 10%]

laptop computer [support 5 6%]

Level 1

min_sup 5 5%




Level 2

min_sup 55%




desktop computer [support 5 4%]

Figure 5.11 Multilevel mining with uniform support.
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computer [support 5 10%]

laptop computer [support 5 6%]

Level 1

min_sup 5 5%




Level 2

min_sup 5 3%




desktop computer [support 5 4%]

Figure 5.12 Multilevel mining with reduced support.

The uniform support approach, however, has some difficulties. It is unlikely that
items at lower levels of abstraction will occur as frequently as those at higher levels
of abstraction. If the minimum support threshold is set too high, it could miss some
meaningful associations occurring at low abstraction levels. If the threshold is set too
low, it may generate many uninteresting associations occurring at high abstraction
levels. This provides the motivation for the following approach.

Using reduced minimum support at lower levels (referred to as reduced support):
Each level of abstraction has its own minimum support threshold. The deeper
the level of abstraction, the smaller the corresponding threshold is. For example,
in Figure 5.12, the minimum support thresholds for levels 1 and 2 are 5% and 3%,
respectively. In this way, “computer,” “laptop computer,” and “desktop computer” are
all considered frequent.

Using item or group-based minimum support (referred to as group-based support):
Because users or experts often have insight as to which groups are more important
than others, it is sometimes more desirable to set up user-specific, item, or group-
based minimal support thresholds when mining multilevel rules. For example, a user
could set up the minimum support thresholds based on product price, or on items of
interest, such as by setting particularly low support thresholds for laptop computers
and flash drives in order to pay particular attention to the association patterns con-
taining items in these categories.

Notice that the Apriori property may not always hold uniformly across all of the items
when mining under reduced support and group-based support. However, efficient meth-
ods can be developed based on the extension of the property. The details are left as an
exercise for interested readers.

A serious side effect of mining multilevel association rules is its generation of many
redundant rules across multiple levels of abstraction due to the “ancestor” relationships
among items. For example, consider the following rules where “laptop computer” is
an ancestor of “IBM laptop computer” based on the concept hierarchy of Figure 5.10,
and where X is a variable representing customers who purchased items in AllElectronics
transactions.
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buys(X , “laptop computer”)⇒ buys(X , “HP printer”)
[support = 8%, confidence = 70%] (5.10)

buys(X , “IBM laptop computer”)⇒ buys(X , “HP printer”)
[support = 2%, confidence = 72%] (5.11)

“If Rules (5.10) and (5.11) are both mined, then how useful is the latter rule?” you
may wonder. “Does it really provide any novel information?” If the latter, less general
rule does not provide new information, then it should be removed. Let’s look at how
this may be determined. A rule R1 is an ancestor of a rule R2, if R1 can be obtained
by replacing the items in R2 by their ancestors in a concept hierarchy. For example,
Rule (5.10) is an ancestor of Rule (5.11) because “laptop computer” is an ancestor of
“IBM laptop computer.” Based on this definition, a rule can be considered redundant
if its support and confidence are close to their “expected” values, based on an ancestor
of the rule. As an illustration, suppose that Rule (5.10) has a 70% confidence and 8%
support, and that about one-quarter of all “laptop computer” sales are for “IBM laptop
computers.” We may expect Rule (5.11) to have a confidence of around 70% (since
all data samples of “IBM laptop computer” are also samples of “laptop computer”) and
a support of around 2% (i.e., 8%× 1

4 ). If this is indeed the case, then Rule (5.11) is
not interesting because it does not offer any additional information and is less general
than Rule (5.10).

5.3.2 Mining Multidimensional Association Rules
from Relational Databases and Data Warehouses

So far in this chapter, we have studied association rules that imply a single predicate,
that is, the predicate buys. For instance, in mining our AllElectronics database, we may
discover the Boolean association rule

buys(X , “digital camera”)⇒ buys(X , “HP printer”). (5.12)

Following the terminology used in multidimensional databases, we refer to each dis-
tinct predicate in a rule as a dimension. Hence, we can refer to Rule (5.12) as a single-
dimensional or intradimensional association rule because it contains a single distinct
predicate (e.g., buys) with multiple occurrences (i.e., the predicate occurs more than once
within the rule). As we have seen in the previous sections of this chapter, such rules are
commonly mined from transactional data.

Suppose, however, that rather than using a transactional database, sales and related
information are stored in a relational database or data warehouse. Such data stores are
multidimensional, by definition. For instance, in addition to keeping track of the items
purchased in sales transactions, a relational database may record other attributes associ-
ated with the items, such as the quantity purchased or the price, or the branch location of
the sale. Additional relational information regarding the customers who purchased the
items, such as customer age, occupation, credit rating, income, and address, may also be
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stored. Considering each database attribute or warehouse dimension as a predicate, we
can therefore mine association rules containing multiple predicates, such as

age(X , “20...29”)∧ occupation(X , “student”)⇒buys(X , “laptop”). (5.13)

Association rules that involve two or more dimensions or predicates can be referred to
as multidimensional association rules. Rule (5.13) contains three predicates (age, occu-
pation, and buys), each of which occurs only once in the rule. Hence, we say that it has no
repeated predicates. Multidimensional association rules with no repeated predicates are
called interdimensional association rules. We can also mine multidimensional associa-
tion rules with repeated predicates, which contain multiple occurrences of some predi-
cates. These rules are called hybrid-dimensional association rules. An example of such
a rule is the following, where the predicate buys is repeated:

age(X , “20...29”)∧buys(X , “laptop”)⇒buys(X , “HP printer”) (5.14)

Note that database attributes can be categorical or quantitative. Categorical attributes
have a finite number of possible values, with no ordering among the values (e.g., occu-
pation, brand, color). Categorical attributes are also called nominal attributes, because
their values are “names of things.” Quantitative attributes are numeric and have an
implicit ordering among values (e.g., age, income, price). Techniques for mining mul-
tidimensional association rules can be categorized into two basic approaches regarding
the treatment of quantitative attributes.

In the first approach, quantitative attributes are discretized using predefined concept
hierarchies. This discretization occurs before mining. For instance, a concept hierarchy
for income may be used to replace the original numeric values of this attribute by interval
labels, such as “0. . . 20K”, “21K . . . 30K”, “31K . . . 40K”, and so on. Here, discretization
is static and predetermined. Chapter 2 on data preprocessing gave several techniques for
discretizing numeric attributes. The discretized numeric attributes, with their interval
labels, can then be treated as categorical attributes (where each interval is considered
a category). We refer to this as mining multidimensional association rules using static
discretization of quantitative attributes.

In the second approach, quantitative attributes are discretized or clustered into “bins”
based on the distribution of the data. These bins may be further combined during the
mining process. The discretization process is dynamic and established so as to satisfy
some mining criteria, such as maximizing the confidence of the rules mined. Because
this strategy treats the numeric attribute values as quantities rather than as predefined
ranges or categories, association rules mined from this approach are also referred to as
(dynamic) quantitative association rules.

Let’s study each of these approaches for mining multidimensional association rules.
For simplicity, we confine our discussion to interdimensional association rules. Note that
rather than searching for frequent itemsets (as is done for single-dimensional association
rule mining), in multidimensional association rule mining we search for frequent pred-
icate sets. A k-predicate set is a set containing k conjunctive predicates. For instance, the
set of predicates {age, occupation, buys} from Rule (5.13) is a 3-predicate set. Similar
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to the notation used for itemsets, we use the notation Lk to refer to the set of frequent
k-predicate sets.

Mining Multidimensional Association Rules Using
Static Discretization of Quantitative Attributes
Quantitative attributes, in this case, are discretized before mining using predefined con-
cept hierarchies or data discretization techniques, where numeric values are replaced by
interval labels. Categorical attributes may also be generalized to higher conceptual levels
if desired. If the resulting task-relevant data are stored in a relational table, then any of
the frequent itemset mining algorithms we have discussed can be modified easily so as
to find all frequent predicate sets rather than frequent itemsets. In particular, instead of
searching on only one attribute like buys, we need to search through all of the relevant
attributes, treating each attribute-value pair as an itemset.

Alternatively, the transformed multidimensional data may be used to construct a
data cube. Data cubes are well suited for the mining of multidimensional association
rules: They store aggregates (such as counts), in multidimensional space, which is essen-
tial for computing the support and confidence of multidimensional association rules.
An overview of data cube technology was presented in Chapter 3. Detailed algorithms
for data cube computation were given in Chapter 4. Figure 5.13 shows the lattice of
cuboids defining a data cube for the dimensions age, income, and buys. The cells of
an n-dimensional cuboid can be used to store the support counts of the corresponding

(income) (buys)(age)

()

(income, buys)

(age, income, buys)

(age, income) (age, buys)

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D  (base) cuboid

Figure 5.13 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains the three predicates age, income, and buys.
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n-predicate sets. The base cuboid aggregates the task-relevant data by age, income, and
buys; the 2-D cuboid, (age, income), aggregates by age and income, and so on; the 0-D
(apex) cuboid contains the total number of transactions in the task-relevant data.

Due to the ever-increasing use of data warehouse and OLAP technology, it is
possible that a data cube containing the dimensions that are of interest to the user
may already exist, fully materialized. If this is the case, we can simply fetch the
corresponding aggregate values and return the rules needed using a rule generation
algorithm (Section 5.2.2). Notice that even in this case, the Apriori property can still
be used to prune the search space. If a given k-predicate set has support sup, which
does not satisfy minimum support, then further exploration of this set should be
terminated. This is because any more specialized version of the k-itemset will have
support no greater that sup and, therefore, will not satisfy minimum support either.
In cases where no relevant data cube exists for the mining task, we must create one
on the fly. This becomes an iceberg cube computation problem, where the minimum
support threshold is taken as the iceberg condition (Chapter 4).

Mining Quantitative Association Rules
Quantitative association rules are multidimensional association rules in which the
numeric attributes are dynamically discretized during the mining process so as to sat-
isfy some mining criteria, such as maximizing the confidence or compactness of the rules
mined. In this section, we focus specifically on how to mine quantitative association rules
having two quantitative attributes on the left-hand side of the rule and one categorical
attribute on the right-hand side of the rule. That is,

Aquan1∧Aquan2⇒ Acat

where Aquan1 and Aquan2 are tests on quantitative attribute intervals (where the intervals
are dynamically determined), and Acat tests a categorical attribute from the task-relevant
data. Such rules have been referred to as two-dimensional quantitative association rules,
because they contain two quantitative dimensions. For instance, suppose you are curious
about the association relationship between pairs of quantitative attributes, like customer
age and income, and the type of television (such as high-definition TV, i.e., HDTV) that
customers like to buy. An example of such a 2-D quantitative association rule is

age(X , “30...39”)∧ income(X , “42K...48K”)⇒buys(X , “HDTV”) (5.15)

“How can we find such rules?” Let’s look at an approach used in a system called ARCS
(Association Rule Clustering System), which borrows ideas from image processing.
Essentially, this approach maps pairs of quantitative attributes onto a 2-D grid for tuples
satisfying a given categorical attribute condition. The grid is then searched for clusters of
points from which the association rules are generated. The following steps are involved
in ARCS:

Binning: Quantitative attributes can have a very wide range of values defining their
domain. Just think about how big a 2-D grid would be if we plotted age and income as
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axes, where each possible value of age was assigned a unique position on one axis, and
similarly, each possible value of income was assigned a unique position on the other
axis! To keep grids down to a manageable size, we instead partition the ranges of quan-
titative attributes into intervals. These intervals are dynamic in that they may later be
further combined during the mining process. The partitioning process is referred to
as binning, that is, where the intervals are considered “bins.” Three common binning
strategies area as follows:

Equal-width binning, where the interval size of each bin is the same

Equal-frequency binning, where each bin has approximately the same number of
tuples assigned to it,

Clustering-based binning, where clustering is performed on the quantitative attri-
bute to group neighboring points (judged based on various distance measures) into
the same bin

ARCS uses equal-width binning, where the bin size for each quantitative attribute
is input by the user. A 2-D array for each possible bin combination involving both
quantitative attributes is created. Each array cell holds the corresponding count dis-
tribution for each possible class of the categorical attribute of the rule right-hand side.
By creating this data structure, the task-relevant data need only be scanned once. The
same 2-D array can be used to generate rules for any value of the categorical attribute,
based on the same two quantitative attributes. Binning is also discussed in Chapter 2.

Finding frequent predicate sets: Once the 2-D array containing the count distribution
for each category is set up, it can be scanned to find the frequent predicate sets (those
satisfying minimum support) that also satisfy minimum confidence. Strong associ-
ation rules can then be generated from these predicate sets, using a rule generation
algorithm like that described in Section 5.2.2.

Clustering the association rules: The strong association rules obtained in the previous
step are then mapped to a 2-D grid. Figure 5.14 shows a 2-D grid for 2-D quantitative
association rules predicting the condition buys(X, “HDTV”) on the rule right-hand
side, given the quantitative attributes age and income. The four Xs correspond to the
rules

age(X , 34)∧ income(X , “31K...40K”)⇒buys(X , “HDTV”) (5.16)

age(X , 35)∧ income(X , “31K...40K”)⇒buys(X , “HDTV”) (5.17)

age(X , 34)∧ income(X , “41K...50K”)⇒buys(X , “HDTV”) (5.18)

age(X , 35)∧ income(X , “41K...50K”)⇒buys(X , “HDTV”). (5.19)

“Can we find a simpler rule to replace the above four rules?” Notice that these rules are
quite “close” to one another, forming a rule cluster on the grid. Indeed, the four rules
can be combined or “clustered” together to form the following simpler rule, which
subsumes and replaces the above four rules:
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Figure 5.14 A 2-D grid for tuples representing customers who purchase high-definition TVs.

age(X , “34...35”)∧ income(X , “31K...50K”)⇒buys(X , “HDTV”) (5.20)

ARCS employs a clustering algorithm for this purpose. The algorithm scans the
grid, searching for rectangular clusters of rules. In this way, bins of the quantita-
tive attributes occurring within a rule cluster may be further combined, and hence
further dynamic discretization of the quantitative attributes occurs.

The grid-based technique described here assumes that the initial association rules
can be clustered into rectangular regions. Before performing the clustering, smoothing
techniques can be used to help remove noise and outliers from the data. Rectangular
clusters may oversimplify the data. Alternative approaches have been proposed, based on
other shapes of regions that tend to better fit the data, yet require greater computation
effort.

A non-grid-based technique has been proposed to find quantitative association rules
that are more general, where any number of quantitative and categorical attributes can
appear on either side of the rules. In this technique, quantitative attributes are dynami-
cally partitioned using equal-frequency binning, and the partitions are combined based
on a measure of partial completeness, which quantifies the information lost due to parti-
tioning. For references on these alternatives to ARCS, see the bibliographic notes.

5.4 From Association Mining to Correlation Analysis

Most association rule mining algorithms employ a support-confidence framework.
Often, many interesting rules can be found using low support thresholds. Although
minimum support and confidence thresholds help weed out or exclude the exploration
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of a good number of uninteresting rules, many rules so generated are still not interesting
to the users. Unfortunately, this is especially true when mining at low support thresholds
or mining for long patterns. This has been one of the major bottlenecks for successful
application of association rule mining.

In this section, we first look at how even strong association rules can be uninteresting
and misleading. We then discuss how the support-confidence framework can be sup-
plemented with additional interestingness measures based on statistical significance and
correlation analysis.

5.4.1 Strong Rules Are Not Necessarily Interesting: An Example

Whether or not a rule is interesting can be assessed either subjectively or objectively.
Ultimately, only the user can judge if a given rule is interesting, and this judgment, being
subjective, may differ from one user to another. However, objective interestingness mea-
sures, based on the statistics “behind” the data, can be used as one step toward the goal
of weeding out uninteresting rules from presentation to the user.

“How can we tell which strong association rules are really interesting?” Let’s examine the
following example.

Example 5.8 A misleading “strong” association rule. Suppose we are interested in analyzing transac-
tions at AllElectronics with respect to the purchase of computer games and videos. Let
game refer to the transactions containing computer games, and video refer to those con-
taining videos. Of the 10,000 transactions analyzed, the data show that 6,000 of the cus-
tomer transactions included computer games, while 7,500 included videos, and 4,000
included both computer games and videos. Suppose that a data mining program for dis-
covering association rules is run on the data, using a minimum support of, say, 30% and
a minimum confidence of 60%. The following association rule is discovered:

buys(X , “computer games”)⇒buys(X , “videos”) [support = 40%, confidence = 66%]
(5.21)

Rule (5.21) is a strong association rule and would therefore be reported, since its support
value of 4,000

10,000 = 40% and confidence value of 4,000
6,000 = 66% satisfy the minimum support

and minimum confidence thresholds, respectively. However, Rule (5.21) is misleading
because the probability of purchasing videos is 75%, which is even larger than 66%. In
fact, computer games and videos are negatively associated because the purchase of one
of these items actually decreases the likelihood of purchasing the other. Without fully
understanding this phenomenon, we could easily make unwise business decisions based
on Rule (5.21).

The above example also illustrates that the confidence of a rule A⇒B can be deceiving
in that it is only an estimate of the conditional probability of itemset B given itemset A.
It does not measure the real strength (or lack of strength) of the correlation and impli-
cation between A and B. Hence, alternatives to the support-confidence framework can
be useful in mining interesting data relationships.
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5.4.2 From Association Analysis to Correlation Analysis

As we have seen above, the support and confidence measures are insufficient at filtering
out uninteresting association rules. To tackle this weakness, a correlation measure can
be used to augment the support-confidence framework for association rules. This leads
to correlation rules of the form

A⇒ B [support, confidence. correlation]. (5.22)

That is, a correlation rule is measured not only by its support and confidence but also
by the correlation between itemsets A and B. There are many different correlation mea-
sures from which to choose. In this section, we study various correlation measures to
determine which would be good for mining large data sets.

Lift is a simple correlation measure that is given as follows. The occurrence of itemset
A is independent of the occurrence of itemset B if P(A∪ B) = P(A)P(B); otherwise,
itemsets A and B are dependent and correlated as events. This definition can easily be
extended to more than two itemsets. The lift between the occurrence of A and B can be
measured by computing

lift(A, B) =
P(A∪B)
P(A)P(B)

. (5.23)

If the resulting value of Equation (5.23) is less than 1, then the occurrence of A is neg-
atively correlated with the occurrence of B. If the resulting value is greater than 1, then
A and B are positively correlated, meaning that the occurrence of one implies the occur-
rence of the other. If the resulting value is equal to 1, then A and B are independent and
there is no correlation between them.

Equation (5.23) is equivalent to P(B|A)/P(B), or con f (A⇒ B)/sup(B), which is also
referred as the lift of the association (or correlation) rule A⇒B. In other words, it assesses
the degree to which the occurrence of one “lifts” the occurrence of the other. For example,
if A corresponds to the sale of computer games and B corresponds to the sale of videos,
then given the current market conditions, the sale of games is said to increase or “lift”
the likelihood of the sale of videos by a factor of the value returned by Equation (5.23).

Let’s go back to the computer game and video data of Example 5.8.

Example 5.9 Correlation analysis using lift. To help filter out misleading “strong” associations of the
form A⇒B from the data of Example 5.8, we need to study how the two itemsets, A and
B, are correlated. Let game refer to the transactions of Example 5.8 that do not contain
computer games, and video refer to those that do not contain videos. The transactions
can be summarized in a contingency table, as shown in Table 5.7. From the table, we
can see that the probability of purchasing a computer game is P({game}) = 0.60, the
probability of purchasing a video is P({video}) = 0.75, and the probability of pur-
chasing both is P({game,video}) = 0.40. By Equation (5.23), the lift of Rule (5.21)
is P({game, video})/(P({game})×P({video})) = 0.40/(0.60×0.75) = 0.89. Because
this value is less than 1, there is a negative correlation between the occurrence of {game}
and {video}. The numerator is the likelihood of a customer purchasing both, while the
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Table 5.7 A 2 × 2 contingency table summarizing the trans-
actions with respect to game and video purchases.

game game Σrow

video 4,000 3,500 7,500

video 2,000 500 2,500

Σcol 6,000 4,000 10,000

Table 5.8 The above contingency table, now shown with the expected values.

game game Σrow

video 4,000 (4,500) 3,500 (3,000) 7,500

video 2,000 (1,500) 500 (1,000) 2,500

Σcol 6,000 4,000 10,000

denominator is what the likelihood would have been if the two purchases were com-
pletely independent. Such a negative correlation cannot be identified by a support-
confidence framework.

The second correlation measure that we study is the χ2 measure, which was intro-
duced in Chapter 2 (Equation 2.9). To compute the χ2 value, we take the squared differ-
ence between the observed and expected value for a slot (A and B pair) in the contingency
table, divided by the expected value. This amount is summed for all slots of the contin-
gency table. Let’s perform a χ2 analysis of the above example.

Example 5.10 Correlation analysis using χ2. To compute the correlation using χ2 analysis, we need
the observed value and expected value (displayed in parenthesis) for each slot of the
contingency table, as shown in Table 5.8. From the table, we can compute the χ2 value
as follows:

χ2 = Σ
(observed - expected)2

expected
=

(4,000−4,500)2

4,500
+

(3,500−3,000)2

3,000
+

(2,000−1,500)2

1,500
+

(500−1,000)2

1,000
= 555.6.

Because the χ2 value is greater than one, and the observed value of the slot (game, video) =
4,000, which is less than the expected value 4,500, buying game and buying video are
negatively correlated. This is consistent with the conclusion derived from the analysis of
the lift measure in Example 5.9.

Let’s examine two other correlation measures, all confidence and cosine, as defined
below.
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Given an itemset X = {i1, i2, . . . , ik}, the all confidence of X is defined as

all conf(X) =
sup(X)

max item sup(X)
=

sup(X)
max{sup(i j)|∀i j ∈ X}

, (5.24)

where max{sup(i j)|∀i j ∈ X} is the maximum (single) item support of all the items in
X , and hence is called the max item sup of the itemset X . The all confidence of X is the
minimal confidence among the set of rules i j→ X− i j, where i j ∈ X .

Given two itemsets A and B, the cosine measure of A and B is defined as

cosine(A, B) =
P(A∪B)

√

P(A)×P(B)
=

sup(A∪B)
√

sup(A)× sup(B)
. (5.25)

The cosine measure can be viewed as a harmonized lift measure: the two formulae are
similar except that for cosine, the square root is taken on the product of the probabilities
of A and B. This is an important difference, however, because by taking the square root,
the cosine value is only influenced by the supports of A, B, and A∪B, and not by the
total number of transactions.

“Are these two measures better than lift and χ2 in assessing the correlation relationship?”
To answer this question, we first look at some other typical data sets before returning to
our running example.

Example 5.11 Comparison of four correlation measures on typical data sets. The correlation relation-
ships between the purchases of two items, milk and coffee, can be examined by summa-
rizing their purchase history in the form of Table 5.9, a 2×2 contingency table, where an
entry such as mc represents the number of transactions containing both milk and coffee.
For the derivation of all confidence, we let itemset X = {m, c} so that sup(X) = mc in
Equation (5.24).

Table 5.10 shows a set of transactional data sets with their corresponding contingency
tables and values for each of the four correlation measures. From the table, we see that
m and c are positively correlated in A1 through A4, independent in B1, and negatively
correlated in C1 through C3. All four measures are good indicators for the independent
case, B1. Lift and χ2 are poor indicators of the other relationships, whereas all confidence
and cosine are good indicators. Another interesting fact is that between all confidence and
cosine, cosine is the better indicator when mc and mc are not balanced. This is because
cosine considers the supports of both A and B, whereas all confidence considers only the

Table 5.9 A 2×2 contingency table for two items.

milk milk Σrow

coffee mc mc c

coffee mc mc c

Σcol m m Σ
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Table 5.10 Comparison of four correlation measures using contingency tables for different
data sets.

Data Set mc mc mc mc all conf. cosine lift χ2

A1 1,000 100 100 100,000 0.91 0.91 83.64 83,452.6

A2 1,000 100 100 10,000 0.91 0.91 9.26 9,055.7

A3 1,000 100 100 1,000 0.91 0.91 1.82 1,472.7

A4 1,000 100 100 0 0.91 0.91 0.99 9.9

B1 1,000 1,000 1,000 1,000 0.50 0.50 1.00 0.0

C1 100 1,000 1,000 100,000 0.09 0.09 8.44 670.0

C2 1,000 100 10,000 100,000 0.09 0.29 9.18 8,172.8

C3 1 1 100 10,000 0.01 0.07 50.0 48.5

maximal support. Such a difference can be seen by comparing C1 and C2. C1 should be
more negatively correlated for m and c than C2 because mc is the smallest among the
three counts, mc, mc, and mc, in C1. However, this can only be seen by checking the
cosine measure because the all confidence values are identical in C1 and C2.

“Why are lift and χ2 so poor at distinguishing correlation relationships in the above
transactional data sets?” To answer this, we have to consider the null-transactions.
A null-transaction is a transaction that does not contain any of the itemsets being
examined. In our example, mc represents the number of null-transactions. Lift and χ2

have difficulty distinguishing correlation relationships because they are both strongly
influenced by mc. Typically, the number of null-transactions can outweigh the number
of individual purchases, because many people may buy neither milk nor coffee. On
the other hand, all confidence and cosine values are good indicators of correlation
because their definitions remove the influence of mc (i.e., they are not influenced by
the number of null-transactions).

A measure is null-invariant if its value is free from the influence of null-transactions.
Null-invariance is an important property for measuring correlations in large transaction
databases. Among the four above measures, all confidence and cosine are null-invariant
measures.

“Are all confidence and cosine the best at assessing correlation in all cases?” Let’s examine
the game-and-video examples again.

Example 5.12 Comparison of four correlation meaures on game-and-video data. We revisit
Examples 5.4.1 to 5.4.2. Let D1 be the original game (g) and video (v) data set from
Table 5.7. We add two more data sets, D0 and D2, where D0 has zero null-transactions,
and D2 has 10,000 null-transactions (instead of only 500 as in D1). The values of all four
correlation measures are shown in Table 5.11.

In Table 5.11, gv, gv, and gv remain the same in D0, D1, and D2. However, lift and
χ2 change from rather negative to rather positive correlations, whereas all confidence
and cosine have the nice null-invariant property, and their values remain the same in
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Table 5.11 Comparison of the four correlation measures for game-and-video data sets.

Data Set gv gv gv gv all conf. cosine lift χ2

D0 4,000 3,500 2,000 0 0.53 0.60 0.84 1,477.8

D1 4,000 3,500 2,000 500 0.53 0.60 0.89 555.6

D2 4,000 3,500 2,000 10,000 0.53 0.60 1.73 2,913.0

all cases. Unfortunately, we cannot precisely assert that a set of items are positively or
negatively correlated when the value of all confidence or cosine is around 0.5. Strictly based
on whether the value is greater than 0.5, we will claim that g and v are positively corre-
lated in D1; however, it has been shown that they are negatively correlated by the lift and
χ2 analysis. Therefore, a good strategy is to perform the all confidence or cosine analysis
first, and when the result shows that they are weakly postively/negatively correlated, other
analyses can be performed to assist in obtaining a more complete picture.

Besides null-invariance, another nice feature of the all confidence measure is that it
has the Apriori-like downward closure property. That is, if a pattern is all-confident (i.e.,
passing a minimal all confidence threshold), so is every one of its subpatterns. In other
words, if a pattern is not all-confident, further growth (or specialization) of this pattern
will never satisfy the minimal all confidence threshold. This is obvious since according
to Equation (5.24), adding any item into an itemset X will never increase sup(X), never
decrease max item sup(X), and thus never increase all con f (X). This property makes
Apriori-like pruning possible: we can prune any patterns that cannot satisfy the minimal
all confidence threshold during the growth of all-confident patterns in mining.

In summary, the use of only support and confidence measures to mine associations
results in the generation of a large number of rules, most of which are uninteresting to
the user. Instead, we can augment the support-confidence framework with a correlation
measure, resulting in the mining of correlation rules. The added measure substantially
reduces the number of rules generated, and leads to the discovery of more meaningful
rules. However, there seems to be no single correlation measure that works well for all
cases. Besides those introduced in this section, many other interestingness measures have
been studied in the literature. Unfortunately, most such measures do not have the null-
invariance property. Because large data sets typically have many null-transactions, it is
important to consider the null-invariance property when selecting appropriate interest-
ingness measures in the correlation analysis. Our analysis shows that both all confidence
and cosine are good correlation measures for large applications, although it is wise to
augment them with additional tests, such as lift, when the test result is not conclusive.

5.5 Constraint-Based Association Mining

A data mining process may uncover thousands of rules from a given set of data, most of
which end up being unrelated or uninteresting to the users. Often, users have a good sense
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of which “direction” of mining may lead to interesting patterns and the “form” of the
patterns or rules they would like to find. Thus, a good heuristic is to have the users specify
such intuition or expectations as constraints to confine the search space. This strategy is
known as constraint-based mining. The constraints can include the following:

Knowledge type constraints: These specify the type of knowledge to be mined, such
as association or correlation.

Data constraints: These specify the set of task-relevant data.

Dimension/level constraints: These specify the desired dimensions (or attributes) of
the data, or levels of the concept hierarchies, to be used in mining.

Interestingness constraints: These specify thresholds on statistical measures of rule
interestingness, such as support, confidence, and correlation.

Rule constraints: These specify the form of rules to be mined. Such constraints may
be expressed as metarules (rule templates), as the maximum or minimum number
of predicates that can occur in the rule antecedent or consequent, or as relationships
among attributes, attribute values, and/or aggregates.

The above constraints can be specified using a high-level declarative data mining query
language and user interface.

The first four of the above types of constraints have already been addressed in ear-
lier parts of this book and chapter. In this section, we discuss the use of rule constraints
to focus the mining task. This form of constraint-based mining allows users to describe
the rules that they would like to uncover, thereby making the data mining process more
effective. In addition, a sophisticated mining query optimizer can be used to exploit
the constraints specified by the user, thereby making the mining process more efficient.
Constraint-based mining encourages interactive exploratory mining and analysis. In
Section 5.5.1, you will study metarule-guided mining, where syntactic rule constraints
are specified in the form of rule templates. Section 5.5.2 discusses the use of additional
rule constraints, specifying set/subset relationships, constant initiation of variables, and
aggregate functions. For ease of discussion, we assume that the user is searching for asso-
ciation rules. The procedures presented can easily be extended to the mining of correla-
tion rules by adding a correlation measure of interestingness to the support-confidence
framework, as described in the previous section.

5.5.1 Metarule-Guided Mining of Association Rules

“How are metarules useful?” Metarules allow users to specify the syntactic form of rules
that they are interested in mining. The rule forms can be used as constraints to help
improve the efficiency of the mining process. Metarules may be based on the analyst’s
experience, expectations, or intuition regarding the data or may be automatically gener-
ated based on the database schema.
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Example 5.13 Metarule-guided mining. Suppose that as a market analyst for AllElectronics, you have
access to the data describing customers (such as customer age, address, and credit rating)
as well as the list of customer transactions. You are interested in finding associations
between customer traits and the items that customers buy. However, rather than finding
all of the association rules reflecting these relationships, you are particularly interested
only in determining which pairs of customer traits promote the sale of office software.
A metarule can be used to specify this information describing the form of rules you are
interested in finding. An example of such a metarule is

P1(X , Y )∧P2(X , W )⇒buys(X , “office software”), (5.26)

where P1 and P2 are predicate variables that are instantiated to attributes from the given
database during the mining process, X is a variable representing a customer, and Y and
W take on values of the attributes assigned to P1 and P2, respectively. Typically, a user will
specify a list of attributes to be considered for instantiation with P1 and P2. Otherwise, a
default set may be used.

In general, a metarule forms a hypothesis regarding the relationships that the user
is interested in probing or confirming. The data mining system can then search for
rules that match the given metarule. For instance, Rule (5.27) matches or complies
with Metarule (5.26).

age(X , “30...39”)∧ income(X , “41K...60K”)⇒buys(X , “office software”) (5.27)

“How can metarules be used to guide the mining process?” Let’s examine this problem
closely. Suppose that we wish to mine interdimensional association rules, such as in the
example above. A metarule is a rule template of the form

P1∧P2∧·· ·∧Pl ⇒ Q1∧Q2∧·· ·∧Qr, (5.28)

where Pi (i = 1, . . . , l) and Q j ( j = 1, . . . , r) are either instantiated predicates or predicate
variables. Let the number of predicates in the metarule be p = l + r. In order to find
interdimensional association rules satisfying the template,

We need to find all frequent p-predicate sets, Lp.

We must also have the support or count of the l-predicate subsets of Lp in order to
compute the confidence of rules derived from Lp.

This is a typical case of mining multidimensional association rules, which was dis-
cussed in Section 5.3.2. By extending such methods using techniques described in the
following section, we can derive efficient methods for metarule-guided mining.

5.5.2 Constraint Pushing: Mining Guided by Rule Constraints

Rule constraints specify expected set/subset relationships of the variables in the mined
rules, constant initiation of variables, and aggregate functions. Users typically employ
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their knowledge of the application or data to specify rule constraints for the mining task.
These rule constraints may be used together with, or as an alternative to, metarule-guided
mining. In this section, we examine rule constraints as to how they can be used to make
the mining process more efficient. Let’s study an example where rule constraints are used
to mine hybrid-dimensional association rules.

Example 5.14 A closer look at mining guided by rule constraints. Suppose that AllElectronics has a sales
multidimensional database with the following interrelated relations:

sales(customer name, item name, TID)

lives in(customer name, region, city)

item(item name, group, price)

transaction(TID, day, month, year)

where lives in, item, and transaction are three dimension tables, linked to the fact table
sales via three keys, customer name, item name, and TID (transaction id), respectively.

Our association mining query is to “Find the sales of which cheap items (where the sum
of the prices is less than $100) may promote the sales of which expensive items (where the
minimum price is $500) of the same group for Chicago customers in 2004.” This can be
expressed in the DMQL data mining query language as follows, where each line of the
query has been enumerated to aid in our discussion:

(1) mine associations as
(2) lives in(C, , “Chicago”) ∧ sales+(C,?{I},{S})⇒ sales+(C, ?{J}, {T})
(3) from sales
(4) where S.year = 2004 and T.year = 2004 and I.group = J.group
(5) group by C, I.group
(6) having sum(I.price) < 100 and min(J.price)≥ 500
(7) with support threshold = 1%
(8) with confidence threshold = 50%

Before we discuss the rule constraints, let’s look at the above query. Line 1 is a
knowledge type constraint, where association patterns are to be discovered. Line 2
specifies a metarule. This is an abbreviated form for the following metarule for
hybrid-dimensional association rules (multidimensional association rules where the
repeated predicate here is sales):

lives in(C, , “Chicago”)
∧ sales(C, ?I1, S1) ∧ . . .∧ sales(C, ?Ik, Sk) ∧ I = {I1, . . . , Ik} ∧ S = {S1, . . . , Sk}
⇒ sales(C, ?J1, T1) ∧ . . .∧ sales(C, ?Jm, Tm) ∧ J = {J1, . . . , Jm} ∧ T = {T1, . . . , Tm}

which means that one or more sales records in the form of “sales(C, ?I1, S1)∧ . . .sales
(C, ?Ik, Sk)” will reside at the rule antecedent (left-hand side), and the question mark “?”
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means that only item name, I1,. . . , Ik need be printed out. “I = {I1, . . . , Ik}” means that
all the Is at the antecedent are taken from a set I, obtained from the SQL-like where
clause of line 4. Similar notational conventions are used at the consequent (right-hand
side).

The metarule may allow the generation of association rules like the following:

lives in(C, , “Chicago”)∧ sales(C, “Census CD”, )∧
sales(C, “MS/Office”, )⇒sales(C, “MS/SQLServer”, ) [1.5%, 68%], (5.29)

which means that if a customer in Chicago bought “Census CD” and “MS/Office,” it is
likely (with a probability of 68%) that the customer also bought “MS/SQLServer,” and
1.5% of all of the customers bought all three.

Data constraints are specified in the “lives in(C, , “Chicago”)” portion of the
metarule (i.e., all the customers who live in Chicago) and in line 3, which specifies
that only the fact table, sales, need be explicitly referenced. In such a multidimensional
database, variable reference is simplified. For example, “S.year = 2004” is equivalent to
the SQL statement “from sales S, transaction T where S.TID = T.TID and T.year =2004.”
All three dimensions (lives in, item, and transaction) are used. Level constraints are
as follows: for lives in, we consider just customer name since region is not referenced
and city = “Chicago” is only used in the selection; for item, we consider the levels
item name and group since they are used in the query; and for transaction, we are
only concerned with TID since day and month are not referenced and year is used
only in the selection.

Rule constraints include most portions of the where (line 4) and having (line 6)
clauses, such as “S.year = 2004,” “T.year = 2004,” “I.group = J.group,” “sum(I.price)
≤ 100,” and “min(J.price) ≥ 500.” Finally, lines 7 and 8 specify two interestingness
constraints (i.e., thresholds), namely, a minimum support of 1% and a minimum
confidence of 50%.

Dimension/level constraints and interestingness constraints can be applied after
mining to filter out discovered rules, although it is generally more efficient and less
expensive to use them during mining, to help prune the search space. Dimension/level
constraints were discussed in Section 5.3, and interestingness constraints have been
discussed throughout this chapter. Let’s focus now on rule constraints.

“How can we use rule constraints to prune the search space? More specifically, what kind
of rule constraints can be ‘pushed’ deep into the mining process and still ensure the com-
pleteness of the answer returned for a mining query?”

Rule constraints can be classified into the following five categories with respect to
frequent itemset mining: (1) antimonotonic, (2) monotonic, (3) succinct, (4) convertible,
and (5) inconvertible. For each category, we will use an example to show its characteristics
and explain how such kinds of constraints can be used in the mining process.

The first category of constraints is antimonotonic. Consider the rule constraint
“sum(I.price) ≤ 100” of Example 5.14. Suppose we are using the Apriori framework,
which at each iteration k explores itemsets of size k. If the price summation of the items
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in an itemset is no less than 100, this itemset can be pruned from the search space, since
adding more items into the set will only make it more expensive and thus will never
satisfy the constraint. In other words, if an itemset does not satisfy this rule constraint,
none of its supersets can satisfy the constraint. If a rule constraint obeys this property, it
is antimonotonic. Pruning by antimonotonic constraints can be applied at each iteration
of Apriori-style algorithms to help improve the efficiency of the overall mining process
while guaranteeing completeness of the data mining task.

The Apriori property, which states that all nonempty subsets of a frequent itemset
must also be frequent, is antimonotonic. If a given itemset does not satisfy minimum
support, none of its supersets can. This property is used at each iteration of the Apriori
algorithm to reduce the number of candidate itemsets examined, thereby reducing the
search space for association rules.

Other examples of antimonotonic constraints include “min(J.price) ≥ 500,”
“count(I) ≤ 10,” and so on. Any itemset that violates either of these constraints can be
discarded since adding more items to such itemsets can never satisfy the constraints. Note
that a constraint such as “avg(I.price) ≤ 100” is not antimonotonic. For a given item-
set that does not satisfy this constraint, a superset created by adding some (cheap) items
may result in satisfying the constraint. Hence, pushing this constraint inside the mining
process will not guarantee completeness of the data mining task. A list of SQL-primitives-
based constraints is given in the first column of Table 5.12. The antimonotonicity of the
constraints is indicated in the second column of the table. To simplify our discussion,
only existence operators (e.g., = , ∈, but not 6= , /∈) and comparison (or containment)
operators with equality (e.g.,≤ , ⊆) are given.

The second category of constraints is monotonic. If the rule constraint in Example 5.14
were “sum(I.price)≥ 100,” the constraint-based processing method would be quite dif-
ferent. If an itemset I satisfies the constraint, that is, the sum of the prices in the set is no
less than 100, further addition of more items to I will increase cost and will always satisfy
the constraint. Therefore, further testing of this constraint on itemset I becomes redun-
dant. In other words, if an itemset satisfies this rule constraint, so do all of its supersets. If
a rule constraint obeys this property, it is monotonic. Similar rule monotonic constraints
include “min(I.price) ≤ 10,” “count(I) ≥ 10,” and so on. The monotonicity of the list
of SQL-primitives-based constraints is indicated in the third column of Table 5.12.

The third category is succinct constraints. For this category of constraints, we can
enumerate all and only those sets that are guaranteed to satisfy the constraint. That is,
if a rule constraint is succinct, we can directly generate precisely the sets that satisfy
it, even before support counting begins. This avoids the substantial overhead of the
generate-and-test paradigm. In other words, such constraints are precounting prunable.
For example, the constraint “min(J.price)≥ 500” in Example 5.14 is succinct, because
we can explicitly and precisely generate all the sets of items satisfying the constraint.
Specifically, such a set must contain at least one item whose price is no less than
$500. It is of the form S1∪S2, where S1 6= /0 is a subset of the set of all those items
with prices no less than $500, and S2, possibly empty, is a subset of the set of all
those items with prices no greater than $500. Because there is a precise “formula”
for generating all of the sets satisfying a succinct constraint, there is no need to
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Table 5.12 Characterization of commonly used SQL-based constraints.

Constraint Antimonotonic Monotonic Succinct

v ∈ S no yes yes

S⊇V no yes yes

S⊆V yes no yes

min(S)≤ v no yes yes

min(S)≥ v yes no yes

max(S)≤ v yes no yes

max(S)≥ v no yes yes

count(S)≤ v yes no weakly

count(S)≥ v no yes weakly

sum(S)≤ v (∀a ∈ S, a≥ 0) yes no no

sum(S)≥ v (∀a ∈ S, a≥ 0) no yes no

range(S)≤ v yes no no

range(S)≥ v no yes no

avg(S) θ v, θ ∈ {≤ , ≥} convertible convertible no

support(S)≥ ξ yes no no

support(S)≤ ξ no yes no

all con f idence(S)≥ ξ yes no no

all con f idence(S)≤ ξ no yes no

iteratively check the rule constraint during the mining process. The succinctness of
the list of SQL-primitives-based constraints is indicated in the fourth column of
Table 5.12.10

The fourth category is convertible constraints. Some constraints belong to none of the
above three categories. However, if the items in the itemset are arranged in a particular
order, theconstraintmaybecomemonotonicorantimonotonicwithregardtothefrequent
itemset mining process. For example, the constraint “avg(I.price) ≤ 100” is neither
antimonotonic nor monotonic. However, if items in a transaction are added to an itemset
in price-ascending order, the constraint becomes antimonotonic, because if an itemset I
violates the constraint (i.e., with an average price greater than $100), then further addition
of more expensive items into the itemset will never make it satisfy the constraint. Similarly,
if items in a transaction are added to an itemset in price-descending order, it becomes
monotonic, because if the itemset satisfies the constraint (i.e., with an average price no

10For constraint count(S)≤ v (and similarly for count(S)≥ v), we can have a member generation
function based on a cardinality constraint (i.e., {X | X ⊆ Itemset ∧ |X | ≤ v}). Member generation
in this manner takes a different flavor and thus is called weakly succinct.
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greater than $100), then adding cheaper items into the current itemset will still make the
average price no greater than $100. Aside from “avg(S) ≤ v,” and “avg(S) ≥ v,” given
in Table 5.12, there are many other convertible constraints, such as “variance(S) ≥ v,”
“standard deviation(S)≥ v,” and so on.

Note that the above discussion does not imply that every constraint is convertible.
For example, “sum(S)θv,” where θ ∈ {≤ , ≥} and each element in S could be of any
real value, is not convertible. Therefore, there is yet a fifth category of constraints, called
inconvertible constraints. The good news is that although there still exist some tough
constraints that are not convertible, most simple SQL expressions with built-in SQL
aggregates belong to one of the first four categories to which efficient constraint mining
methods can be applied.

5.6 Summary

The discovery of frequent patterns, association, and correlation relationships among
huge amounts of data is useful in selective marketing, decision analysis, and business
management. A popular area of application is market basket analysis, which studies
the buying habits of customers by searching for sets of items that are frequently
purchased together (or in sequence). Association rule mining consists of first finding
frequent itemsets (set of items, such as A and B, satisfying a minimum support
threshold, or percentage of the task-relevant tuples), from which strong association
rules in the form of A⇒B are generated. These rules also satisfy a minimum confidence
threshold (a prespecified probability of satisfying B under the condition that A is
satisfied). Associations can be further analyzed to uncover correlation rules, which
convey statistical correlations between itemsets A and B.
Frequent pattern mining can be categorized in many different ways according to var-
ious criteria, such as the following:

1. Based on the completeness of patterns to be mined, categories of frequent pat-
tern mining include mining the complete set of frequent itemsets, the closed frequent
itemsets, the maximal frequent itemsets, and constrained frequent itemsets.

2. Based on the levels and dimensions of data involved in the rule, categories can
include the mining of single-level association rules, multilevel association rules, single-
dimensional association rules, and multidimensional association rules.

3. Based on the types of values handled in the rule, the categories can include mining
Boolean association rules and quantitative association rules.

4. Based on the kinds of rules to be mined, categories include mining association rules
and correlation rules.

5. Based on the kinds of patterns to be mined, frequent pattern mining can be clas-
sified into frequent itemset mining, sequential pattern mining, structured pattern
mining, and so on. This chapter has focused on frequent itemset mining.
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Many efficient and scalable algorithms have been developed for frequent itemset
mining, from which association and correlation rules can be derived. These algo-
rithms can be classified into three categories: (1) Apriori-like algorithms, (2) frequent-
pattern growth-based algorithms, such as FP-growth, and (3) algorithms that use the
vertical data format.

The Apriori algorithm is a seminal algorithm for mining frequent itemsets for Boolean
association rules. It explores the level-wise mining Apriori property that all nonempty
subsets of a frequent itemset must also be frequent. At the kth iteration (for k ≥ 2), it
forms frequent k-itemset candidates based on the frequent (k−1)-itemsets, and scans
the database once to find the complete set of frequent k-itemsets, Lk.
Variations involving hashing and transaction reduction can be used to make the pro-
cedure more efficient. Other variations include partitioning the data (mining on each
partition and then combining the results) and sampling the data (mining on a subset
of the data). These variations can reduce the number of data scans required to as little
as two or one.

Frequent pattern growth (FP-growth) is a method of mining frequent itemsets with-
out candidate generation. It constructs a highly compact data structure (an FP-tree)
to compress the original transaction database. Rather than employing the generate-
and-test strategy of Apriori-like methods, it focuses on frequent pattern (fragment)
growth, which avoids costly candidate generation, resulting in greater efficiency.

Mining frequent itemsets using vertical data format (ECLAT) is a method that trans-
forms a given data set of transactions in the horizontal data format of TID-itemset into
the vertical data format of item-TID set. It mines the transformed data set by TID set
intersections based on the Apriori property and additional optimization techniques,
such as diffset.

Methods for mining frequent itemsets can be extended for the mining of closed fre-
quent itemsets (from which the set of frequent itemsets can easily be derived). These
incorporate additional optimization techniques, such as item merging, sub-itemset
pruning, and item skipping, as well as efficient subset checking of generated itemsets
in a pattern-tree.

Mining frequent itemsets and associations has been extended in various ways
to include mining multilevel association rules and multidimensional association rules.

Multilevel association rules can be mined using several strategies, based on how
minimum support thresholds are defined at each level of abstraction, such as
uniform support, reduced support, and group-based support. Redundant multilevel
(descendant) association rules can be eliminated if their support and confidence
are close to their expected values, based on their corresponding ancestor rules.

Techniques for mining multidimensional association rules can be categorized accord-
ing to their treatment of quantitative attributes. First, quantitative attributes may be
discretized statically, based on predefined concept hierarchies. Data cubes are well
suited to this approach, because both the data cube and quantitative attributes can
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use concept hierarchies. Second, quantitative association rules can be mined where
quantitative attributes are discretized dynamically based on binning and/or cluster-
ing, where “adjacent” association rules may be further combined by clustering to gen-
erate concise and meaningful rules.

Not all strong association rules are interesting. It is more effective to mine items that
are statistically correlated. Therefore, association rules should be augmented with a
correlation measure to generate more meaningful correlation rules. There are several
correlation measures to choose from, including lift, χ2, all confidence, and cosine.
A measure is null-invariant if its value is free from the influence of null-transactions
(i.e., transactions that do not contain any of the itemsets being examined). Because
large databases typically have numerous null-transactions, a null-invariant correla-
tion measure should be used, such as all confidence or cosine. When interpreting cor-
relation measure values, it is important to understand their implications and
limitations.

Constraint-based rule mining allows users to focus the search for rules by providing
metarules (i.e., pattern templates) and additional mining constraints. Such mining is
facilitated with the use of a declarative data mining query language and user interface,
and poses great challenges for mining query optimization. Rule constraints can be
classified into five categories: antimonotonic, monotonic, succinct, convertible, and
inconvertible. Constraints belonging to the first four of these categories can be used
during frequent itemset mining to guide the process, leading to more efficient and
effective mining.
Association rules should not be used directly for prediction without further analysis
or domain knowledge. They do not necessarily indicate causality. They are, however, a
helpful starting point for further exploration, making them a popular tool for under-
standing data. The application of frequent patterns to classification, cluster analysis,
and other data mining tasks will be discussed in subsequent chapters.

Exercises

5.1 The Apriori algorithm uses prior knowledge of subset support properties.

(a) Prove that all nonempty subsets of a frequent itemset must also be frequent.

(b) Prove that the support of any nonempty subset s′ of itemset s must be at least as great
as the support of s.

(c) Given frequent itemset l and subset s of l, prove that the confidence of the rule “s′⇒
(l− s′)” cannot be more than the confidence of “s⇒ (l− s)”, where s′ is a subset
of s.

(d) A partitioning variation of Apriori subdivides the transactions of a database D into
n nonoverlapping partitions. Prove that any itemset that is frequent in D must be
frequent in at least one partition of D.
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5.2 Section 5.2.2 describes a method for generating association rules from frequent itemsets.
Propose a more efficient method. Explain why it is more efficient than the one pro-
posed in Section 5.2.2. (Hint: Consider incorporating the properties of Exercise 5.1(b)
and 5.1(c) into your design.)

5.3 A database has five transactions. Let min sup = 60% and min con f = 80%.

TID items bought

T100 {M, O, N, K, E, Y}
T200 {D, O, N, K, E, Y }
T300 {M, A, K, E}
T400 {M, U, C, K, Y}
T500 {C, O, O, K, I ,E}

(a) Find all frequent itemsets using Apriori and FP-growth, respectively. Compare the
efficiency of the two mining processes.

(b) List all of the strong association rules (with support s and confidence c) matching the
following metarule, where X is a variable representing customers, and itemi denotes
variables representing items (e.g., “A”, “B”, etc.):

∀x ∈ transaction, buys(X , item1)∧buys(X , item2)⇒ buys(X , item3) [s, c]

5.4 (Implementation project) Implement three frequent itemset mining algorithms intro-
duced in this chapter: (1) Apriori [AS94b], (2) FP-growth [HPY00], and (3) ECLAT
[Zak00] (mining using vertical data format), using a programming language that you are
familiar with, such as C++ or Java. Compare the performance of each algorithm with var-
ious kinds of large data sets. Write a report to analyze the situations (such as data size,
data distribution, minimal support threshold setting, and pattern density) where one
algorithm may perform better than the others, and state why.

5.5 A database has four transactions. Let min sup = 60% and min con f = 80%.

cust ID TID items bought (in the form of brand-item category)

01 T100 {King’s-Crab, Sunset-Milk, Dairyland-Cheese, Best-Bread}
02 T200 {Best-Cheese, Dairyland-Milk, Goldenfarm-Apple, Tasty-Pie,

Wonder-Bread}
01 T300 {Westcoast-Apple, Dairyland-Milk, Wonder-Bread, Tasty-Pie}
03 T400 {Wonder-Bread, Sunset-Milk, Dairyland-Cheese}

(a) At the granularity of item category (e.g., itemi could be “Milk”), for the following
rule template,

∀X ∈ transaction, buys(X , item1)∧buys(X , item2)⇒ buys(X , item3) [s, c]
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list the frequent k-itemset for the largest k, and all of the strong association rules (with
their support s and confidence c) containing the frequent k-itemset for the largest k.

(b) At the granularity of brand-item category (e.g., itemi could be “Sunset-Milk”), for
the following rule template

∀X ∈ customer, buys(X , item1)∧buys(X , item2)⇒ buys(X , item3),

list the frequent k-itemset for the largest k (but do not print any rules).

5.6 Suppose that a large store has a transaction database that is distributed among four
locations. Transactions in each component database have the same format, namely
Tj : {i1, . . . , im}, where Tj is a transaction identifier, and ik (1≤ k≤m) is the identifier
of an item purchased in the transaction. Propose an efficient algorithm to mine global
association rules (without considering multilevel associations). You may present your
algorithm in the form of an outline. Your algorithm should not require shipping
all of the data to one site and should not cause excessive network communication
overhead.

5.7 Suppose that frequent itemsets are saved for a large transaction database, DB. Dis-
cuss how to efficiently mine the (global) association rules under the same minimum
support threshold if a set of new transactions, denoted as ∆DB, is (incrementally)
added in?

5.8 [Contributed by Tao Cheng] Most frequent pattern mining algorithms consider only dis-
tinct items in a transaction. However, multiple occurrences of an item in the same shop-
ping basket, such as four cakes and three jugs of milk, can be important in transaction
data analysis. How can one mine frequent itemsets efficiently considering multiple occur-
rences of items? Propose modifications to the well-known algorithms, such as Apriori
and FP-growth, to adapt to such a situation.

5.9 (Implementation project) Implement three closed frequent itemset mining methods (1)
A-Close [PBTL99] (based on an extension of Apriori [AS94b]), (2) CLOSET+ [WHP03]
(based on an extension of FP-growth [HPY00]), and (3) CHARM [ZH02] (based on an
extension of ECLAT [Zak00]). Compare their performance with various kinds of large
data sets. Write a report to answer the following questions:

(a) Why is mining the set of closed frequent itemsets often more desirable than mining
the complete set of frequent itemsets (based on your experiments on the same data
set as Exercise 5.4)?

(b) Analyze in which situations (such as data size, data distribution, minimal support
threshold setting, and pattern density) and why one algorithm performs better than
the others.

5.10 Suppose that a data relation describing students at Big University has been generalized to
the generalized relation R in Table 5.13.

Let the concept hierarchies be as follows:
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status : {freshman, sophomore, junior, senior} ∈ undergraduate.
{M.Sc.,M.A., Ph.D.} ∈ graduate.

major : {physics, chemistry, math} ∈ science.
{cs, engineering} ∈ appl. sciences.
{French, philosophy} ∈ arts.

age : {16...20,21...25} ∈ young.
{26...30, over 30} ∈ old.

nationality : {Asia, Europe, Latin America} ∈ foreign.
{U.S.A., Canada} ∈ North America.

Table 5.13 Generalized relation for Exercise 5.9.

major status age nationality gpa count

French M.A over 30 Canada 2.8 3.2 3

cs junior 16...20 Europe 3.2 3.6 29

physics M.S 26...30 Latin America 3.2 3.6 18

engineering Ph.D 26...30 Asia 3.6 4.0 78

philosophy Ph.D 26...30 Europe 3.2 3.6 5

French senior 16...20 Canada 3.2 3.6 40

chemistry junior 21...25 USA 3.6 4.0 25

cs senior 16...20 Canada 3.2 3.6 70

philosophy M.S over 30 Canada 3.6 4.0 15

French junior 16...20 USA 2.8 3.2 8

philosophy junior 26...30 Canada 2.8 3.2 9

philosophy M.S 26...30 Asia 3.2 3.6 9

French junior 16...20 Canada 3.2 3.6 52

math senior 16...20 USA 3.6 4.0 32

cs junior 16...20 Canada 3.2 3.6 76

philosophy Ph.D 26...30 Canada 3.6 4.0 14

philosophy senior 26...30 Canada 2.8 3.2 19

French Ph.D over 30 Canada 2.8 3.2 1

engineering junior 21...25 Europe 3.2 3.6 71

math Ph.D 26...30 Latin America 3.2 3.6 7

chemistry junior 16...20 USA 3.6 4.0 46

engineering junior 21...25 Canada 3.2 3.6 96

French M.S over 30 Latin America 3.2 3.6 4

philosophy junior 21...25 USA 2.8 3.2 8

math junior 16...20 Canada 3.6 4.0 59
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Let the minimum support threshold be 20% and the minimum confidence threshold be
50% (at each of the levels).

(a) Draw the concept hierarchies for status, major, age, and nationality.

(b) Write a program to find the set of strong multilevel association rules in R using uni-
form support for all levels, for the following rule template,

∀S ∈ R, P(S, x)∧Q(S, y)⇒ gpa(S, z) [s, c]

where P, Q ∈ {status, major, age, nationality}.
(c) Use the program to find the set of strong multilevel association rules in R using level-

cross filtering by single items. In this strategy, an item at the ith level is examined if and
only if its parent node at the (i−1)th level in the concept hierarchy is frequent. That
is, if a node is frequent, its children will be examined; otherwise, its descendants are
pruned from the search. Use a reduced support of 10% for the lowest abstraction
level, for the preceding rule template.

5.11 Propose and outline a level-shared mining approach to mining multilevel association
rules in which each item is encoded by its level position, and an initial scan of the database
collects the count for each item at each concept level, identifying frequent and subfre-
quent items. Comment on the processing cost of mining multilevel associations with
this method in comparison to mining single-level associations.

5.12 (Implementation project) Many techniques have been proposed to further improve
the performance of frequent-itemset mining algorithms. Taking FP-tree-based fre-
quent pattern-growth algorithms, such as FP-growth, as an example, implement one
of the following optimization techniques, and compare the performance of your new
implementation with the one that does not incorporate such optimization.

(a) The previously proposed frequent pattern mining with FP-tree generates conditional
pattern bases using a bottom-up projection technique (i.e., project on the prefix path
of an item p). However, one can develop a top-down projection technique (i.e.,
project on the suffix path of an item p in the generation of a conditional pattern-
base). Design and implement such a top-down FP-tree mining method and compare
your performance with the bottom-up projection method.

(b) Nodes and pointers are used uniformly in FP-tree in the design of the FP-growth
algorithm. However, such a structure may consume a lot of space when the data
are sparse. One possible alternative design is to explore array- and pointer-based
hybrid implementation, where a node may store multiple items when it contains
no splitting point to multiple subbranches. Develop such an implementation and
compare it with the original one.

(c) It is time- and space-consuming to generate numerous conditional pattern bases
during pattern-growth mining. One interesting alternative is to push right the
branches that have been mined for a particular item p, that is, to push them to
the remaining branch(es) of the FP-tree. This is done so that fewer conditional
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pattern bases have to be generated and additional sharing can be explored when
mining the remaining branches of the FP-tree. Design and implement such a
method and conduct a performance study on it.

5.13 Give a short example to show that items in a strong association rule may actually be
negatively correlated.

5.14 The following contingency table summarizes supermarket transaction data, where hot
dogs refers to the transactions containing hot dogs, hot dogs refers to the transactions
that do not contain hot dogs, hamburgers refers to the transactions containing hamburg-
ers, and hamburgers refers to the transactions that do not contain hamburgers.

hot dogs hot dogs Σrow

hamburgers 2,000 500 2,500

hamburgers 1,000 1,500 2,500

Σcol 3,000 2,000 5,000

(a) Suppose that the association rule “hot dogs⇒ hamburgers” is mined. Given a min-
imum support threshold of 25% and a minimum confidence threshold of 50%, is
this association rule strong?

(b) Based on the given data, is the purchase of hot dogs independent of the purchase of
hamburgers? If not, what kind of correlation relationship exists between the two?

5.15 In multidimensional data analysis, it is interesting to extract pairs of similar cell
characteristics associated with substantial changes in measure in a data cube, where
cells are considered similar if they are related by roll-up (i.e., ancestors), drill-down
(i.e., descendants), or one-dimensional mutation (i.e., siblings) operations. Such an
analysis is called cube gradient analysis. Suppose the cube measure is average. A user
poses a set of probe cells and would like to find their corresponding sets of gradient
cells, each of which satisfies a certain gradient threshold. For example, find the set
of corresponding gradient cells whose average sale price is greater than 20% of that
of the given probe cells. Develop an algorithm than mines the set of constrained
gradient cells efficiently in a large data cube.

5.16 Association rule mining often generates a large number of rules. Discuss effective meth-
ods that can be used to reduce the number of rules generated while still preserving most
of the interesting rules.

5.17 Sequential patterns can be mined in methods similar to the mining of association rules.
Design an efficient algorithm to mine multilevel sequential patterns from a transaction
database. An example of such a pattern is the following: “A customer who buys a PC
will buy Microsoft software within three months,” on which one may drill down to find a
more refined version of the pattern, such as “A customer who buys a Pentium PC will buy
Microsoft Office within three months.”



280 Chapter 5 Mining Frequent Patterns, Associations, and Correlations

5.18 Prove that each entry in the following table correctly characterizes its corresponding rule
constraint for frequent itemset mining.

Rule constraint Antimonotonic Monotonic Succinct

a) v ∈ S no yes yes

b) S⊆V yes no yes

c) min(S)≤ v no yes yes

d) range(S)≤ v yes no no

5.19 The price of each item in a store is nonnegative. The store manager is only interested in
rules of the form: “one free item may trigger $200 total purchases in the same transaction.”
State how to mine such rules efficiently.

5.20 The price of each item in a store is nonnegative. For each of the following cases, identify
the kinds of constraint they represent and briefly discuss how to mine such association
rules efficiently.

(a) Containing at least one Nintendo game

(b) Containing items the sum of whose prices is less than $150

(c) Containing one free item and other items the sum of whose prices is at least $200

(d) Where the average price of all the items is between $100 and $500
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6Classification and Prediction

Databases are rich with hidden information that can be used for intelligent decision making.
Classification and prediction are two forms of data analysis that can be used to extract
models describing important data classes or to predict future data trends. Such analysis
can help provide us with a better understanding of the data at large. Whereas classifi-
cation predicts categorical (discrete, unordered) labels, prediction models continuous-
valued functions. For example, we can build a classification model to categorize bank
loan applications as either safe or risky, or a prediction model to predict the expenditures
in dollars of potential customers on computer equipment given their income and occu-
pation. Many classification and prediction methods have been proposed by researchers
in machine learning, pattern recognition, and statistics. Most algorithms are memory
resident, typically assuming a small data size. Recent data mining research has built on
such work, developing scalable classification and prediction techniques capable of han-
dling large disk-resident data.

In this chapter, you will learn basic techniques for data classification, such as how to
build decision tree classifiers, Bayesian classifiers, Bayesian belief networks, and rule-
based classifiers. Backpropagation (a neural network technique) is also discussed, in
addition to a more recent approach to classification known as support vector machines.
Classification based on association rule mining is explored. Other approaches to classifi-
cation, such as k-nearest-neighbor classifiers, case-based reasoning, genetic algorithms,
rough sets, and fuzzy logic techniques, are introduced. Methods for prediction, including
linear regression, nonlinear regression, and other regression-based models, are briefly
discussed. Where applicable, you will learn about extensions to these techniques for their
application to classification and prediction in large databases. Classification and predic-
tion have numerous applications, including fraud detection, target marketing, perfor-
mance prediction, manufacturing, and medical diagnosis.

6.1 What Is Classification? What Is Prediction?

A bank loans officer needs analysis of her data in order to learn which loan applicants are
“safe” and which are “risky” for the bank. A marketing manager at AllElectronics needs data
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analysis to help guess whether a customer with a given profile will buy a new computer.
A medical researcher wants to analyze breast cancer data in order to predict which one of
three specific treatments a patient should receive. In each of these examples, the data anal-
ysis task is classification, where a model or classifier is constructed to predict categorical
labels, such as “safe” or “risky” for the loan application data; “yes” or “no” for the market-
ing data; or “treatment A,” “treatment B,” or “treatment C” for the medical data. These
categories can be represented by discrete values, where the ordering among values has no
meaning. For example, the values 1, 2, and 3 may be used to represent treatments A, B,
and C, where there is no ordering implied among this group of treatment regimes.

Suppose that the marketing manager would like to predict how much a given cus-
tomer will spend during a sale at AllElectronics. This data analysis task is an example of
numeric prediction, where the model constructed predicts a continuous-valued function,
or ordered value, as opposed to a categorical label. This model is a predictor. Regression
analysis is a statistical methodology that is most often used for numeric prediction, hence
the two terms are often used synonymously. We do not treat the two terms as synonyms,
however, because several other methods can be used for numeric prediction, as we shall
see later in this chapter. Classification and numeric prediction are the two major types of
prediction problems. For simplicity, when there is no ambiguity, we will use the short-
ened term of prediction to refer to numeric prediction.

“How does classification work? Data classification is a two-step process, as shown for
the loan application data of Figure 6.1. (The data are simplified for illustrative pur-
poses. In reality, we may expect many more attributes to be considered.) In the first step,
a classifier is built describing a predetermined set of data classes or concepts. This is
the learning step (or training phase), where a classification algorithm builds the clas-
sifier by analyzing or “learning from” a training set made up of database tuples and their
associated class labels. A tuple, X, is represented by an n-dimensional attribute vector,
X = (x1, x2, . . . , xn), depicting n measurements made on the tuple from n database
attributes, respectively, A1, A2, . . . , An.1 Each tuple, X, is assumed to belong to a prede-
fined class as determined by another database attribute called the class label attribute.
The class label attribute is discrete-valued and unordered. It is categorical in that each
value serves as a category or class. The individual tuples making up the training set are
referred to as training tuples and are selected from the database under analysis. In the
context of classification, data tuples can be referred to as samples, examples, instances,
data points, or objects.2

Because the class label of each training tuple is provided, this step is also known as
supervised learning (i.e., the learning of the classifier is “supervised” in that it is told

1Each attribute represents a “feature” of X. Hence, the pattern recognition literature uses the term feature
vector rather than attribute vector. Since our discussion is from a database perspective, we propose the
term “attribute vector.” In our notation, any variable representing a vector is shown in bold italic font;
measurements depicting the vector are shown in italic font, e.g., X = (x1, x2, x3).
2In the machine learning literature, training tuples are commonly referred to as training samples.
Throughout this text, we prefer to use the term tuples instead of samples, since we discuss the theme
of classification from a database-oriented perspective.



6.1 What Is Classification? What Is Prediction? 287

loan_decisionname age income

Training data

Classification algorithm

Classification rules

...
(a)

name age income loan_decision

Classification rules

(John Henry, middle_aged, low)
Loan decision?

risky(b)

Test data New data

IF age = youth THEN loan_decision = risky
IF income = high THEN loan_decision = safe
IF age = middle_aged AND income = low

       THEN loan_decision = risky

Sandy Jones

Bill Lee

Caroline Fox

Rick Field

Susan Lake

Claire Phips

Joe Smith

...

young

young

middle_aged

middle_aged

senior

senior

middle_aged

...

low

low

high

low

low

medium

high

...

risky

risky

safe

risky

safe

safe

safe

...

Juan Bello

Sylvia Crest

Anne Yee

...

senior

middle_aged

middle_aged

...

low

low

high

...

safe

risky

safe

...

Figure 6.1 The data classification process: (a) Learning: Training data are analyzed by a classification
algorithm. Here, the class label attribute is loan decision, and the learned model or classifier is
represented in the form of classification rules. (b) Classification: Test data are used to estimate
the accuracy of the classification rules. If the accuracy is considered acceptable, the rules can
be applied to the classification of new data tuples.

to which class each training tuple belongs). It contrasts with unsupervised learning (or
clustering), in which the class label of each training tuple is not known, and the number
or set of classes to be learned may not be known in advance. For example, if we did not
have the loan decision data available for the training set, we could use clustering to try to
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determine “groups of like tuples,” which may correspond to risk groups within the loan
application data. Clustering is the topic of Chapter 7.

This first step of the classification process can also be viewed as the learning of a map-
ping or function, y = f (X), that can predict the associated class label y of a given tuple
X. In this view, we wish to learn a mapping or function that separates the data classes.
Typically, this mapping is represented in the form of classification rules, decision trees,
or mathematical formulae. In our example, the mapping is represented as classification
rules that identify loan applications as being either safe or risky (Figure 6.1(a)). The rules
can be used to categorize future data tuples, as well as provide deeper insight into the
database contents. They also provide a compressed representation of the data.

“What about classification accuracy?” In the second step (Figure 6.1(b)), the model is
used for classification. First, the predictive accuracy of the classifier is estimated. If we were
to use the training set to measure the accuracy of the classifier, this estimate would likely
be optimistic, because the classifier tends to overfit the data (i.e., during learning it may
incorporate some particular anomalies of the training data that are not present in the gen-
eral data set overall). Therefore, a test set is used, made up of test tuples and their asso-
ciated class labels. These tuples are randomly selected from the general data set. They are
independent of the training tuples, meaning that they are not used to construct the clas-
sifier.

The accuracy of a classifier on a given test set is the percentage of test set tuples that
are correctly classified by the classifier. The associated class label of each test tuple is com-
pared with the learned classifier’s class prediction for that tuple. Section 6.13 describes
several methods for estimating classifier accuracy. If the accuracy of the classifier is con-
sidered acceptable, the classifier can be used to classify future data tuples for which the
class label is not known. (Such data are also referred to in the machine learning literature
as “unknown” or “previously unseen” data.) For example, the classification rules learned
in Figure 6.1(a) from the analysis of data from previous loan applications can be used to
approve or reject new or future loan applicants.

“How is (numeric) prediction different from classification?” Data prediction is a two-
step process, similar to that of data classification as described in Figure 6.1. However,
for prediction, we lose the terminology of “class label attribute” because the attribute
for which values are being predicted is continuous-valued (ordered) rather than cate-
gorical (discrete-valued and unordered). The attribute can be referred to simply as the
predicted attribute.3 Suppose that, in our example, we instead wanted to predict the
amount (in dollars) that would be “safe” for the bank to loan an applicant. The data
mining task becomes prediction, rather than classification. We would replace the cate-
gorical attribute, loan decision, with the continuous-valued loan amount as the predicted
attribute, and build a predictor for our task.

Note that prediction can also be viewed as a mapping or function, y = f (X), where X
is the input (e.g., a tuple describing a loan applicant), and the output y is a continuous or

3We could also use this term for classification, although for that task the term “class label attribute” is
more descriptive.
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ordered value (such as the predicted amount that the bank can safely loan the applicant);
That is, we wish to learn a mapping or function that models the relationship between
X and y.

Prediction and classification also differ in the methods that are used to build their
respective models. As with classification, the training set used to build a predictor should
not be used to assess its accuracy. An independent test set should be used instead. The
accuracy of a predictor is estimated by computing an error based on the difference
between the predicted value and the actual known value of y for each of the test tuples, X.
There are various predictor error measures (Section 6.12.2). General methods for error
estimation are discussed in Section 6.13.

6.2 Issues Regarding Classification and Prediction

This section describes issues regarding preprocessing the data for classification and pre-
diction. Criteria for the comparison and evaluation of classification methods are also
described.

6.2.1 Preparing the Data for Classification and Prediction

The following preprocessing steps may be applied to the data to help improve the accu-
racy, efficiency, and scalability of the classification or prediction process.

Data cleaning: This refers to the preprocessing of data in order to remove or reduce
noise (by applying smoothing techniques, for example) and the treatment of missing
values (e.g., by replacing a missing value with the most commonly occurring value
for that attribute, or with the most probable value based on statistics). Although most
classification algorithms have some mechanisms for handling noisy or missing data,
this step can help reduce confusion during learning.

Relevance analysis: Many of the attributes in the data may be redundant. Correla-
tion analysis can be used to identify whether any two given attributes are statistically
related. For example, a strong correlation between attributes A1 and A2 would sug-
gest that one of the two could be removed from further analysis. A database may also
contain irrelevant attributes. Attribute subset selection4 can be used in these cases
to find a reduced set of attributes such that the resulting probability distribution of
the data classes is as close as possible to the original distribution obtained using all
attributes. Hence, relevance analysis, in the form of correlation analysis and attribute
subset selection, can be used to detect attributes that do not contribute to the classi-
fication or prediction task. Including such attributes may otherwise slow down, and
possibly mislead, the learning step.

4In machine learning, this is known as feature subset selection.
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Ideally, the time spent on relevance analysis, when added to the time spent on learning
from the resulting “reduced” attribute (or feature) subset, should be less than the time
that would have been spent on learning from the original set of attributes. Hence, such
analysis can help improve classification efficiency and scalability.

Data transformation and reduction: The data may be transformed by normalization,
particularly when neural networks or methods involving distance measurements are
used in the learning step. Normalization involves scaling all values for a given attribute
so that they fall within a small specified range, such as −1.0 to 1.0, or 0.0 to 1.0. In
methods that use distance measurements, for example, this would prevent attributes
with initially large ranges (like, say, income) from outweighing attributes with initially
smaller ranges (such as binary attributes).
The data can also be transformed by generalizing it to higher-level concepts. Concept
hierarchies may be used for this purpose. This is particularly useful for continuous-
valued attributes. For example, numeric values for the attribute income can be gener-
alized to discrete ranges, such as low, medium, and high. Similarly, categorical
attributes, like street, can be generalized to higher-level concepts, like city. Because
generalization compresses the original training data, fewer input/output operations
may be involved during learning.
Data can also be reduced by applying many other methods, ranging from wavelet
transformation and principle components analysis to discretization techniques, such
as binning, histogram analysis, and clustering.

Data cleaning, relevance analysis (in the form of correlation analysis and attribute
subset selection), and data transformation are described in greater detail in Chapter 2 of
this book.

6.2.2 Comparing Classification and Prediction Methods

Classification and prediction methods can be compared and evaluated according to the
following criteria:

Accuracy: The accuracy of a classifier refers to the ability of a given classifier to cor-
rectly predict the class label of new or previously unseen data (i.e., tuples without class
label information). Similarly, the accuracy of a predictor refers to how well a given
predictor can guess the value of the predicted attribute for new or previously unseen
data. Accuracy measures are given in Section 6.12. Accuracy can be estimated using
one or more test sets that are independent of the training set. Estimation techniques,
such as cross-validation and bootstrapping, are described in Section 6.13. Strategies
for improving the accuracy of a model are given in Section 6.14. Because the accuracy
computed is only an estimate of how well the classifier or predictor will do on new
data tuples, confidence limits can be computed to help gauge this estimate. This is
discussed in Section 6.15.
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Speed: This refers to the computational costs involved in generating and using the
given classifier or predictor.

Robustness: This is the ability of the classifier or predictor to make correct predictions
given noisy data or data with missing values.

Scalability: This refers to the ability to construct the classifier or predictor efficiently
given large amounts of data.

Interpretability: This refers to the level of understanding and insight that is provided
by the classifier or predictor. Interpretability is subjective and therefore more diffi-
cult to assess. We discuss some work in this area, such as the extraction of classi-
fication rules from a “black box” neural network classifier called backpropagation
(Section 6.6.4).

These issues are discussed throughout the chapter with respect to the various classifi-
cation and prediction methods presented. Recent data mining research has contributed
to the development of scalable algorithms for classification and prediction. Additional
contributions include the exploration of mined “associations” between attributes and
their use for effective classification. Model selection is discussed in Section 6.15.

6.3 Classification by Decision Tree Induction

Decision tree induction is the learning of decision trees from class-labeled training tuples.
A decision tree is a flowchart-like tree structure, where each internal node (nonleaf node)
denotes a test on an attribute, each branch represents an outcome of the test, and each leaf
node (or terminal node) holds a class label. The topmost node in a tree is the root node.

age?

youth senior

student? yes

yes

credit_rating?

no

yesno yesno

fair excellent

middle_aged

Figure 6.2 A decision tree for the concept buys computer, indicating whether a customer at AllElectronics
is likely to purchase a computer. Each internal (nonleaf) node represents a test on an attribute.
Each leaf node represents a class (either buys computer = yes or buys computer = no).
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A typical decision tree is shown in Figure 6.2. It represents the concept buys computer,
that is, it predicts whether a customer at AllElectronics is likely to purchase a computer.
Internal nodes are denoted by rectangles, and leaf nodes are denoted by ovals. Some
decision tree algorithms produce only binary trees (where each internal node branches
to exactly two other nodes), whereas others can produce nonbinary trees.

“How are decision trees used for classification?” Given a tuple, X, for which the associ-
ated class label is unknown, the attribute values of the tuple are tested against the decision
tree. A path is traced from the root to a leaf node, which holds the class prediction for
that tuple. Decision trees can easily be converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree
classifiers does not require any domain knowledge or parameter setting, and therefore is
appropriate for exploratory knowledge discovery. Decision trees can handle high dimen-
sional data. Their representation of acquired knowledge in tree form is intuitive and gen-
erally easy to assimilate by humans. The learning and classification steps of decision tree
induction are simple and fast. In general, decision tree classifiers have good accuracy.
However, successful use may depend on the data at hand. Decision tree induction algo-
rithms have been used for classification in many application areas, such as medicine,
manufacturing and production, financial analysis, astronomy, and molecular biology.
Decision trees are the basis of several commercial rule induction systems.

In Section 6.3.1, we describe a basic algorithm for learning decision trees. During
tree construction, attribute selection measures are used to select the attribute that best
partitions the tuples into distinct classes. Popular measures of attribute selection are
given in Section 6.3.2. When decision trees are built, many of the branches may reflect
noise or outliers in the training data. Tree pruning attempts to identify and remove such
branches, with the goal of improving classification accuracy on unseen data. Tree prun-
ing is described in Section 6.3.3. Scalability issues for the induction of decision trees
from large databases are discussed in Section 6.3.4.

6.3.1 Decision Tree Induction

During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning,
developed a decision tree algorithm known as ID3 (Iterative Dichotomiser). This work
expanded on earlier work on concept learning systems, described by E. B. Hunt, J. Marin,
and P. T. Stone. Quinlan later presented C4.5 (a successor of ID3), which became a
benchmark to which newer supervised learning algorithms are often compared. In 1984,
a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone) published
the book Classification and Regression Trees (CART), which described the generation of
binary decision trees. ID3 and CART were invented independently of one another at
around the same time, yet follow a similar approach for learning decision trees from
training tuples. These two cornerstone algorithms spawned a flurry of work on decision
tree induction.

ID3, C4.5, and CART adopt a greedy (i.e., nonbacktracking) approach in which deci-
sion trees are constructed in a top-down recursive divide-and-conquer manner. Most
algorithms for decision tree induction also follow such a top-down approach, which
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Algorithm: Generate decision tree. Generate a decision tree from the training tuples of data
partition D.

Input:

Data partition, D, which is a set of training tuples and their associated class labels;

attribute list, the set of candidate attributes;

Attribute selection method, a procedure to determine the splitting criterion that “best” par-
titions the data tuples into individual classes. This criterion consists of a splitting attribute
and, possibly, either a split point or splitting subset.

Output: A decision tree.

Method:

(1) create a node N;
(2) if tuples in D are all of the same class, C then
(3) return N as a leaf node labeled with the class C;
(4) if attribute list is empty then
(5) return N as a leaf node labeled with the majority class in D; // majority voting
(6) apply Attribute selection method(D, attribute list) to find the “best” splitting criterion;
(7) label node N with splitting criterion;
(8) if splitting attribute is discrete-valued and

multiway splits allowed then // not restricted to binary trees
(9) attribute list← attribute list− splitting attribute; // remove splitting attribute
(10) for each outcome j of splitting criterion

// partition the tuples and grow subtrees for each partition
(11) let D j be the set of data tuples in D satisfying outcome j; // a partition
(12) if D j is empty then
(13) attach a leaf labeled with the majority class in D to node N;
(14) else attach the node returned by Generate decision tree(D j , attribute list) to node N;

endfor
(15) return N;

Figure 6.3 Basic algorithm for inducing a decision tree from training tuples.

starts with a training set of tuples and their associated class labels. The training set is
recursively partitioned into smaller subsets as the tree is being built. A basic decision
tree algorithm is summarized in Figure 6.3. At first glance, the algorithm may appear
long, but fear not! It is quite straightforward. The strategy is as follows.

The algorithm is called with three parameters: D, attribute list, and Attribute selec-
tion method. We refer to D as a data partition. Initially, it is the complete set of train-
ing tuples and their associated class labels. The parameter attribute list is a list of
attributes describing the tuples. Attribute selection method specifies a heuristic pro-
cedure for selecting the attribute that “best” discriminates the given tuples according
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to class. This procedure employs an attribute selection measure, such as information
gain or the gini index. Whether the tree is strictly binary is generally driven by the
attribute selection measure. Some attribute selection measures, such as the gini index,
enforce the resulting tree to be binary. Others, like information gain, do not, therein
allowing multiway splits (i.e., two or more branches to be grown from a node).

The tree starts as a single node, N, representing the training tuples in D (step 1).5

If the tuples in D are all of the same class, then node N becomes a leaf and is labeled
with that class (steps 2 and 3). Note that steps 4 and 5 are terminating conditions. All
of the terminating conditions are explained at the end of the algorithm.

Otherwise, the algorithm calls Attribute selection method to determine the splitting
criterion. The splitting criterion tells us which attribute to test at node N by deter-
mining the “best” way to separate or partition the tuples in D into individual classes
(step 6). The splitting criterion also tells us which branches to grow from node N
with respect to the outcomes of the chosen test. More specifically, the splitting cri-
terion indicates the splitting attribute and may also indicate either a split-point or
a splitting subset. The splitting criterion is determined so that, ideally, the resulting
partitions at each branch are as “pure” as possible. A partition is pure if all of the
tuples in it belong to the same class. In other words, if we were to split up the tuples
in D according to the mutually exclusive outcomes of the splitting criterion, we hope
for the resulting partitions to be as pure as possible.

The node N is labeled with the splitting criterion, which serves as a test at the node
(step 7). A branch is grown from node N for each of the outcomes of the splitting
criterion. The tuples in D are partitioned accordingly (steps 10 to 11). There are three
possible scenarios, as illustrated in Figure 6.4. Let A be the splitting attribute. A has v
distinct values, {a1, a2, . . . , av}, based on the training data.

1. A is discrete-valued: In this case, the outcomes of the test at node N correspond
directly to the known values of A. A branch is created for each known value,
a j, of A and labeled with that value (Figure 6.4(a)). Partition D j is the subset
of class-labeled tuples in D having value a j of A. Because all of the tuples in
a given partition have the same value for A, then A need not be considered in
any future partitioning of the tuples. Therefore, it is removed from attribute list
(steps 8 to 9).

2. A is continuous-valued: In this case, the test at node N has two possible outcomes,
corresponding to the conditions A ≤ split point and A > split point, respectively,

5The partition of class-labeled training tuples at node N is the set of tuples that follow a path from the
root of the tree to node N when being processed by the tree. This set is sometimes referred to in the
literature as the family of tuples at node N. We have referred to this set as the “tuples represented at node
N,” “the tuples that reach node N,” or simply “the tuples at node N.” Rather than storing the actual
tuples at a node, most implementations store pointers to these tuples.
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Figure 6.4 Three possibilities for partitioning tuples based on the splitting criterion, shown with
examples. Let A be the splitting attribute. (a) If A is discrete-valued, then one branch is
grown for each known value of A. (b) If A is continuous-valued, then two branches are
grown, corresponding to A ≤ split point and A > split point. (c) If A is discrete-valued
and a binary tree must be produced, then the test is of the form A ∈ SA, where SA is the
splitting subset for A.

where split point is the split-point returned by Attribute selection method as part of
the splitting criterion. (In practice, the split-point, a, is often taken as the midpoint
of two known adjacent values of A and therefore may not actually be a pre-existing
value of A from the training data.) Two branches are grown from N and labeled
according to the above outcomes (Figure 6.4(b)). The tuples are partitioned such
that D1 holds the subset of class-labeled tuples in D for which A≤ split point, while
D2 holds the rest.

3. A is discrete-valued and a binary tree must be produced (as dictated by the attribute
selection measure or algorithm being used): The test at node N is of the form
“A ∈ SA?”. SA is the splitting subset for A, returned by Attribute selection method
as part of the splitting criterion. It is a subset of the known values of A. If a given
tuple has value a j of A and if a j ∈ SA, then the test at node N is satisfied. Two
branches are grown from N (Figure 6.4(c)). By convention, the left branch out of
N is labeled yes so that D1 corresponds to the subset of class-labeled tuples in D
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that satisfy the test. The right branch out of N is labeled no so that D2 corresponds
to the subset of class-labeled tuples from D that do not satisfy the test.

The algorithm uses the same process recursively to form a decision tree for the tuples
at each resulting partition, D j, of D (step 14).

The recursive partitioning stops only when any one of the following terminating con-
ditions is true:

1. All of the tuples in partition D (represented at node N) belong to the same class
(steps 2 and 3), or

2. There are no remaining attributes on which the tuples may be further partitioned
(step 4). In this case, majority voting is employed (step 5). This involves converting
node N into a leaf and labeling it with the most common class in D. Alternatively,
the class distribution of the node tuples may be stored.

3. There are no tuples for a given branch, that is, a partition D j is empty (step 12).
In this case, a leaf is created with the majority class in D (step 13).

The resulting decision tree is returned (step 15).

The computational complexity of the algorithm given training set D is O(n× |D| ×
log(|D|)), where n is the number of attributes describing the tuples in D and |D| is the
number of training tuples in D. This means that the computational cost of growing a
tree grows at most n×|D|× log(|D|) with |D| tuples. The proof is left as an exercise for
the reader.

Incremental versions of decision tree induction have also been proposed. When given
new training data, these restructure the decision tree acquired from learning on previous
training data, rather than relearning a new tree from scratch.

Differences in decision tree algorithms include how the attributes are selected in cre-
ating the tree (Section 6.3.2) and the mechanisms used for pruning (Section 6.3.3). The
basic algorithm described above requires one pass over the training tuples in D for each
level of the tree. This can lead to long training times and lack of available memory when
dealing with large databases. Improvements regarding the scalability of decision tree
induction are discussed in Section 6.3.4. A discussion of strategies for extracting rules
from decision trees is given in Section 6.5.2 regarding rule-based classification.

6.3.2 Attribute Selection Measures

An attribute selection measure is a heuristic for selecting the splitting criterion that
“best” separates a given data partition, D, of class-labeled training tuples into individ-
ual classes. If we were to split D into smaller partitions according to the outcomes of
the splitting criterion, ideally each partition would be pure (i.e., all of the tuples that fall
into a given partition would belong to the same class). Conceptually, the “best” splitting
criterion is the one that most closely results in such a scenario. Attribute selection
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measures are also known as splitting rules because they determine how the tuples at
a given node are to be split. The attribute selection measure provides a ranking for each
attribute describing the given training tuples. The attribute having the best score for the
measure6 is chosen as the splitting attribute for the given tuples. If the splitting attribute
is continuous-valued or if we are restricted to binary trees then, respectively, either a
split point or a splitting subset must also be determined as part of the splitting criterion.
The tree node created for partition D is labeled with the splitting criterion, branches
are grown for each outcome of the criterion, and the tuples are partitioned accord-
ingly. This section describes three popular attribute selection measures—information
gain, gain ratio, and gini index.

The notation used herein is as follows. Let D, the data partition, be a training set of
class-labeled tuples. Suppose the class label attribute has m distinct values defining m
distinct classes, Ci (for i = 1, . . . , m). Let Ci,D be the set of tuples of class Ci in D. Let |D|
and |Ci,D| denote the number of tuples in D and Ci,D, respectively.

Information gain
ID3 uses information gain as its attribute selection measure. This measure is based on
pioneering work by Claude Shannon on information theory, which studied the value or
“information content” of messages. Let node N represent or hold the tuples of partition
D. The attribute with the highest information gain is chosen as the splitting attribute for
node N. This attribute minimizes the information needed to classify the tuples in the
resulting partitions and reflects the least randomness or “impurity” in these partitions.
Such an approach minimizes the expected number of tests needed to classify a given tuple
and guarantees that a simple (but not necessarily the simplest) tree is found.

The expected information needed to classify a tuple in D is given by

Info(D) =−
m

∑
i=1

pi log2(pi), (6.1)

where pi is the probability that an arbitrary tuple in D belongs to class Ci and is estimated
by |Ci,D|/|D|. A log function to the base 2 is used, because the information is encoded in
bits. Info(D) is just the average amount of information needed to identify the class label
of a tuple in D. Note that, at this point, the information we have is based solely on the
proportions of tuples of each class. Info(D) is also known as the entropy of D.

Now, suppose we were to partition the tuples in D on some attribute A having v dis-
tinct values, {a1, a2, . . . , av}, as observed from the training data. If A is discrete-valued,
these values correspond directly to the v outcomes of a test on A. Attribute A can be used
to split D into v partitions or subsets, {D1, D2, . . . , Dv}, where D j contains those tuples in
D that have outcome a j of A. These partitions would correspond to the branches grown
from node N. Ideally, we would like this partitioning to produce an exact classification

6Depending on the measure, either the highest or lowest score is chosen as the best (i.e., some measures
strive to maximize while others strive to minimize).
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of the tuples. That is, we would like for each partition to be pure. However, it is quite
likely that the partitions will be impure (e.g., where a partition may contain a collec-
tion of tuples from different classes rather than from a single class). How much more
information would we still need (after the partitioning) in order to arrive at an exact
classification? This amount is measured by

InfoA(D) =
v

∑
j=1

|D j|
|D|
× Info(D j). (6.2)

The term
|D j |
|D| acts as the weight of the jth partition. InfoA(D) is the expected informa-

tion required to classify a tuple from D based on the partitioning by A. The smaller the
expected information (still) required, the greater the purity of the partitions.

Information gain is defined as the difference between the original information require-
ment (i.e., based on just the proportion of classes) and the new requirement (i.e., obtained
after partitioning on A). That is,

Gain(A) = Info(D)− InfoA(D). (6.3)

In other words, Gain(A) tells us how much would be gained by branching on A. It is the
expected reduction in the information requirement caused by knowing the value of A.
The attribute A with the highest information gain, (Gain(A)), is chosen as the splitting
attribute at node N. This is equivalent to saying that we want to partition on the attribute
A that would do the “best classification,” so that the amount of information still required
to finish classifying the tuples is minimal (i.e., minimum InfoA(D)).

Example 6.1 Induction of a decision tree using information gain. Table 6.1 presents a training set,
D, of class-labeled tuples randomly selected from the AllElectronics customer database.
(The data are adapted from [Qui86]. In this example, each attribute is discrete-valued.
Continuous-valued attributes have been generalized.) The class label attribute, buys
computer, has two distinct values (namely, {yes, no}); therefore, there are two distinct
classes (that is, m = 2). Let class C1 correspond to yes and class C2 correspond to no.
There are nine tuples of class yes and five tuples of class no. A (root) node N is created
for the tuples in D. To find the splitting criterion for these tuples, we must compute the
information gain of each attribute. We first use Equation (6.1) to compute the expected
information needed to classify a tuple in D:

Info(D) =− 9
14

log2

( 9
14

)

− 5
14

log2

( 5
14

)

= 0.940 bits.

Next, we need to compute the expected information requirement for each attribute.
Let’s start with the attribute age. We need to look at the distribution of yes and no tuples
for each category of age. For the age category youth, there are two yes tuples and three
no tuples. For the category middle aged, there are four yes tuples and zero no tuples. For
the category senior, there are three yes tuples and two no tuples. Using Equation (6.2),
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Table 6.1 Class-labeled training tuples from the AllElectronics customer database.

RID age income student credit rating Class: buys computer

1 youth high no fair no

2 youth high no excellent no

3 middle aged high no fair yes

4 senior medium no fair yes

5 senior low yes fair yes

6 senior low yes excellent no

7 middle aged low yes excellent yes

8 youth medium no fair no

9 youth low yes fair yes

10 senior medium yes fair yes

11 youth medium yes excellent yes

12 middle aged medium no excellent yes

13 middle aged high yes fair yes

14 senior medium no excellent no

the expected information needed to classify a tuple in D if the tuples are partitioned
according to age is

Infoage(D) =
5

14
× (−2

5
log2

2
5
− 3

5
log2

3
5

)

+
4
14
× (−4

4
log2

4
4
− 0

4
log2

0
4

)

+
5
14
× (−3

5
log2

3
5
− 2

5
log2

2
5

)

= 0.694 bits.

Hence, the gain in information from such a partitioning would be

Gain(age) = Info(D)− Infoage(D) = 0.940−0.694 = 0.246 bits.

Similarly, we can compute Gain(income) = 0.029 bits, Gain(student) = 0.151 bits, and
Gain(credit rating) = 0.048 bits. Because age has the highest information gain among
the attributes, it is selected as the splitting attribute. Node N is labeled with age, and
branches are grown for each of the attribute’s values. The tuples are then partitioned
accordingly, as shown in Figure 6.5. Notice that the tuples falling into the partition for
age = middle aged all belong to the same class. Because they all belong to class “yes,” a
leaf should therefore be created at the end of this branch and labeled with “yes.” The final
decision tree returned by the algorithm is shown in Figure 6.2.
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Figure 6.5 The attribute age has the highest information gain and therefore becomes the splitting
attribute at the root node of the decision tree. Branches are grown for each outcome of age.
The tuples are shown partitioned accordingly.

“But how can we compute the information gain of an attribute that is continuous-valued,
unlike above?” Suppose, instead, that we have an attribute A that is continuous-valued,
rather than discrete-valued. (For example, suppose that instead of the discretized version
of age above, we instead have the raw values for this attribute.) For such a scenario, we
must determine the “best” split-point for A, where the split-point is a threshold on A.
We first sort the values of A in increasing order. Typically, the midpoint between each
pair of adjacent values is considered as a possible split-point. Therefore, given v values of
A, then v−1 possible splits are evaluated. For example, the midpoint between the values
ai and ai+1 of A is

ai + ai+1

2
. (6.4)

If the values of A are sorted in advance, then determining the best split for A requires only
one pass through the values. For each possible split-point for A, we evaluate InfoA(D),
where the number of partitions is two, that is v = 2 (or j = 1,2) in Equation (6.2).
The point with the minimum expected information requirement for A is selected as the
split point for A. D1 is the set of tuples in D satisfying A ≤ split point, and D2 is the set
of tuples in D satisfying A> split point.
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Gain ratio
The information gain measure is biased toward tests with many outcomes. That is, it
prefers to select attributes having a large number of values. For example, consider an
attribute that acts as a unique identifier, such as product ID. A split on product ID would
result in a large number of partitions (as many as there are values), each one containing
just one tuple. Because each partition is pure, the information required to classify data set
D based on this partitioning would be Infoproduct ID(D) = 0. Therefore, the information
gained by partitioning on this attribute is maximal. Clearly, such a partitioning is useless
for classification.

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio,
which attempts to overcome this bias. It applies a kind of normalization to information
gain using a “split information” value defined analogously with Info(D) as

SplitInfoA(D) =−
v

∑
j=1

|D j|
|D|
× log2

( |D j|
|D|

)

. (6.5)

This value represents the potential information generated by splitting the training
data set, D, into v partitions, corresponding to the v outcomes of a test on attribute A.
Note that, for each outcome, it considers the number of tuples having that outcome with
respect to the total number of tuples in D. It differs from information gain, which mea-
sures the information with respect to classification that is acquired based on the same
partitioning. The gain ratio is defined as

GainRatio(A) =
Gain(A)

SplitInfo(A)
. (6.6)

The attribute with the maximum gain ratio is selected as the splitting attribute. Note,
however, that as the split information approaches 0, the ratio becomes unstable. A con-
straint is added to avoid this, whereby the information gain of the test selected must be
large—at least as great as the average gain over all tests examined.

Example 6.2 Computation of gain ratio for the attribute income. A test on income splits the data of
Table 6.1 into three partitions, namely low, medium, and high, containing four, six, and
four tuples, respectively. To compute the gain ratio of income, we first use Equation (6.5)
to obtain

SplitInfoA(D) = − 4
14
× log2

( 4
14

)

− 6
14
× log2

( 6
14

)

− 4
14
× log2

( 4
14

)

.

= 0.926.

From Example 6.1, we have Gain(income) = 0.029. Therefore, GainRatio(income) =
0.029/0.926 = 0.031.
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Gini index
The Gini index is used in CART. Using the notation described above, the Gini index
measures the impurity of D, a data partition or set of training tuples, as

Gini(D) = 1−
m

∑
i=1

p2
i , (6.7)

where pi is the probability that a tuple in D belongs to class Ci and is estimated by
|Ci,D|/|D|. The sum is computed over m classes.

The Gini index considers a binary split for each attribute. Let’s first consider the case
where A is a discrete-valued attribute having v distinct values, {a1, a2, . . . , av}, occurring
in D. To determine the best binary split on A, we examine all of the possible subsets that
can be formed using known values of A. Each subset, SA, can be considered as a binary
test for attribute A of the form “A ∈ SA?”. Given a tuple, this test is satisfied if the value
of A for the tuple is among the values listed in SA. If A has v possible values, then there
are 2v possible subsets. For example, if income has three possible values, namely {low,
medium, high}, then the possible subsets are {low, medium, high}, {low, medium}, {low,
high}, {medium, high}, {low}, {medium}, {high}, and {}. We exclude the power set,
{low, medium, high}, and the empty set from consideration since, conceptually, they do
not represent a split. Therefore, there are 2v−2 possible ways to form two partitions of
the data, D, based on a binary split on A.

When considering a binary split, we compute a weighted sum of the impurity of each
resulting partition. For example, if a binary split on A partitions D into D1 and D2, the
gini index of D given that partitioning is

GiniA(D) =
|D1|
|D|

Gini(D1)+
|D2|
|D|

Gini(D2). (6.8)

For each attribute, each of the possible binary splits is considered. For a discrete-valued
attribute, the subset that gives the minimum gini index for that attribute is selected as its
splitting subset.

For continuous-valued attributes, each possible split-point must be considered. The
strategy is similar to that described above for information gain, where the midpoint
between each pair of (sorted) adjacent values is taken as a possible split-point. The point
giving the minimum Gini index for a given (continuous-valued) attribute is taken as
the split-point of that attribute. Recall that for a possible split-point of A, D1 is the
set of tuples in D satisfying A ≤ split point, and D2 is the set of tuples in D satisfying
A> split point.

The reduction in impurity that would be incurred by a binary split on a discrete- or
continuous-valued attribute A is

∆Gini(A) = Gini(D)−GiniA(D). (6.9)

The attribute that maximizes the reduction in impurity (or, equivalently, has the mini-
mum Gini index) is selected as the splitting attribute. This attribute and either its



6.3 Classification by Decision Tree Induction 303

splitting subset (for a discrete-valued splitting attribute) or split-point (for a continuous-
valued splitting attribute) together form the splitting criterion.

Example 6.3 Induction of a decision tree using gini index. Let D be the training data of Table 6.1 where
there are nine tuples belonging to the class buys computer = yes and the remaining five
tuples belong to the class buys computer = no. A (root) node N is created for the tuples
in D. We first use Equation (6.7) for Gini index to compute the impurity of D:

Gini(D) = 1−
( 9

14

)2
−
( 5

14

)2
= 0.459.

To find the splitting criterion for the tuples in D, we need to compute the gini index
for each attribute. Let’s start with the attribute income and consider each of the possible
splitting subsets. Consider the subset {low, medium}. This would result in 10 tuples in
partition D1 satisfying the condition “income ∈ {low, medium}.” The remaining four
tuples of D would be assigned to partition D2. The Gini index value computed based on
this partitioning is

Giniincome ∈ {low,medium}(D)

=
10
14

Gini(D1)+
4
14

Gini(D2)

=
10
14

(

1−
(

6
10

)2

−
(

4
10

)2
)

+
4
14

(

1−
(

1
4

)2

−
(

3
4

)2
)

= 0.450

= Giniincome ∈ {high}(D).

Similarly, the Gini index values for splits on the remaining subsets are: 0.315 (for the sub-
sets {low, high} and {medium}) and 0.300 (for the subsets {medium, high} and {low}).
Therefore, the best binary split for attribute income is on {medium, high} (or {low})
because it minimizes the gini index. Evaluating the attribute, we obtain{youth, senior} (or
{middle aged}) as the best split for age with a Gini index of 0.375; the attributes {student}
and{credit rating}are both binary, with Gini index values of 0.367 and 0.429, respectively.

The attribute income and splitting subset {medium, high} therefore give the minimum
gini index overall, with a reduction in impurity of 0.459− 0.300 = 0.159. The binary split
“income ∈ {medium, high}” results in the maximum reduction in impurity of the tuples
in D and is returned as the splitting criterion. Node N is labeled with the criterion, two
branches are grown from it, and the tuples are partitioned accordingly. Hence, the Gini
index has selected income instead of age at the root node, unlike the (nonbinary) tree
created by information gain (Example 6.1).

This section on attribute selection measures was not intended to be exhaustive. We
have shown three measures that are commonly used for building decision trees. These
measures are not without their biases. Information gain, as we saw, is biased toward mul-
tivalued attributes. Although the gain ratio adjusts for this bias, it tends to prefer unbal-
anced splits in which one partition is much smaller than the others. The Gini index is
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biased toward multivalued attributes and has difficulty when the number of classes is
large. It also tends to favor tests that result in equal-sized partitions and purity in both
partitions. Although biased, these measures give reasonably good results in practice.

Many other attribute selection measures have been proposed. CHAID, a decision tree
algorithm that is popular in marketing, uses an attribute selection measure that is based
on the statistical χ2 test for independence. Other measures include C-SEP (which per-
forms better than information gain and Gini index in certain cases) and G-statistic (an
information theoretic measure that is a close approximation to χ2 distribution).

Attribute selection measures based on the Minimum Description Length (MDL) prin-
ciple have the least bias toward multivalued attributes. MDL-based measures use
encoding techniques to define the “best” decision tree as the one that requires the fewest
number of bits to both (1) encode the tree and (2) encode the exceptions to the tree (i.e.,
cases that are not correctly classified by the tree). Its main idea is that the simplest of
solutions is preferred.

Other attribute selection measures consider multivariate splits (i.e., where the parti-
tioning of tuples is based on a combination of attributes, rather than on a single attribute).
The CART system, for example, can find multivariate splits based on a linear combina-
tion of attributes. Multivariate splits are a form of attribute (or feature) construction,
where new attributes are created based on the existing ones. (Attribute construction is
also discussed in Chapter 2, as a form of data transformation.) These other measures
mentioned here are beyond the scope of this book. Additional references are given in the
Bibliographic Notes at the end of this chapter.

“Which attribute selection measure is the best?” All measures have some bias. It has been
shown that the time complexity of decision tree induction generally increases exponen-
tially with tree height. Hence, measures that tend to produce shallower trees (e.g., with
multiway rather than binary splits, and that favor more balanced splits) may be pre-
ferred. However, some studies have found that shallow trees tend to have a large number
of leaves and higher error rates. Despite several comparative studies, no one attribute
selection measure has been found to be significantly superior to others. Most measures
give quite good results.

6.3.3 Tree Pruning

When a decision tree is built, many of the branches will reflect anomalies in the training
data due to noise or outliers. Tree pruning methods address this problem of overfit-
ting the data. Such methods typically use statistical measures to remove the least reli-
able branches. An unpruned tree and a pruned version of it are shown in Figure 6.6.
Pruned trees tend to be smaller and less complex and, thus, easier to comprehend. They
are usually faster and better at correctly classifying independent test data (i.e., of previ-
ously unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree pruning:
prepruning and postpruning.

In the prepruning approach, a tree is “pruned” by halting its construction early (e.g.,
by deciding not to further split or partition the subset of training tuples at a given node).
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Figure 6.6 An unpruned decision tree and a pruned version of it.

Upon halting, the node becomes a leaf. The leaf may hold the most frequent class among
the subset tuples or the probability distribution of those tuples.

When constructing a tree, measures such as statistical significance, information gain,
Gini index, and so on can be used to assess the goodness of a split. If partitioning the
tuples at a node would result in a split that falls below a prespecified threshold, then fur-
ther partitioning of the given subset is halted. There are difficulties, however, in choosing
an appropriate threshold. High thresholds could result in oversimplified trees, whereas
low thresholds could result in very little simplification.

The second and more common approach is postpruning, which removes subtrees
from a “fully grown” tree. A subtree at a given node is pruned by removing its branches
and replacing it with a leaf. The leaf is labeled with the most frequent class among the
subtree being replaced. For example, notice the subtree at node “A3?” in the unpruned
tree of Figure 6.6. Suppose that the most common class within this subtree is “class B.”
In the pruned version of the tree, the subtree in question is pruned by replacing it with
the leaf “class B.”

The cost complexity pruning algorithm used in CART is an example of the postprun-
ing approach. This approach considers the cost complexity of a tree to be a function
of the number of leaves in the tree and the error rate of the tree (where the error rate
is the percentage of tuples misclassified by the tree). It starts from the bottom of the
tree. For each internal node, N, it computes the cost complexity of the subtree at N, and
the cost complexity of the subtree at N if it were to be pruned (i.e., replaced by a leaf
node). The two values are compared. If pruning the subtree at node N would result in a
smaller cost complexity, then the subtree is pruned. Otherwise, it is kept. A pruning set of
class-labeled tuples is used to estimate cost complexity. This set is independent of the
training set used to build the unpruned tree and of any test set used for accuracy estima-
tion. The algorithm generates a set of progressively pruned trees. In general, the smallest
decision tree that minimizes the cost complexity is preferred.
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C4.5 uses a method called pessimistic pruning, which is similar to the cost complex-
ity method in that it also uses error rate estimates to make decisions regarding subtree
pruning. Pessimistic pruning, however, does not require the use of a prune set. Instead,
it uses the training set to estimate error rates. Recall that an estimate of accuracy or error
based on the training set is overly optimistic and, therefore, strongly biased. The pes-
simistic pruning method therefore adjusts the error rates obtained from the training set
by adding a penalty, so as to counter the bias incurred.

Rather than pruning trees based on estimated error rates, we can prune trees based
on the number of bits required to encode them. The “best” pruned tree is the one that
minimizes the number of encoding bits. This method adopts the Minimum Description
Length (MDL) principle, which was briefly introduced in Section 6.3.2. The basic idea
is that the simplest solution is preferred. Unlike cost complexity pruning, it does not
require an independent set of tuples.

Alternatively, prepruning and postpruning may be interleaved for a combined
approach. Postpruning requires more computation than prepruning, yet generally leads
to a more reliable tree. No single pruning method has been found to be superior over
all others. Although some pruning methods do depend on the availability of additional
data for pruning, this is usually not a concern when dealing with large databases.

Although pruned trees tend to be more compact than their unpruned counterparts,
they may still be rather large and complex. Decision trees can suffer from repetition and
replication (Figure 6.7), making them overwhelming to interpret. Repetition occurs when
an attribute is repeatedly tested along a given branch of the tree (such as “age < 60?”,
followed by “age < 45”?, and so on). In replication, duplicate subtrees exist within the
tree. These situations can impede the accuracy and comprehensibility of a decision tree.
The use of multivariate splits (splits based on a combination of attributes) can prevent
these problems. Another approach is to use a different form of knowledge representation,
such as rules, instead of decision trees. This is described in Section 6.5.2, which shows how
a rule-based classifier can be constructed by extracting IF-THEN rules from a decision tree.

6.3.4 Scalability and Decision Tree Induction

“What if D, the disk-resident training set of class-labeled tuples, does not fit in memory?
In other words, how scalable is decision tree induction?” The efficiency of existing deci-
sion tree algorithms, such as ID3, C4.5, and CART, has been well established for rel-
atively small data sets. Efficiency becomes an issue of concern when these algorithms
are applied to the mining of very large real-world databases. The pioneering decision
tree algorithms that we have discussed so far have the restriction that the training tuples
should reside in memory. In data mining applications, very large training sets of millions
of tuples are common. Most often, the training data will not fit in memory! Decision tree
construction therefore becomes inefficient due to swapping of the training tuples in
and out of main and cache memories. More scalable approaches, capable of handling
training data that are too large to fit in memory, are required. Earlier strategies to “save
space” included discretizing continuous-valued attributes and sampling data at each
node. These techniques, however, still assume that the training set can fit in memory.
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Figure 6.7 An example of subtree (a) repetition (where an attribute is repeatedly tested along a given
branch of the tree, e.g., age) and (b) replication (where duplicate subtrees exist within a tree,
such as the subtree headed by the node “credit rating?”).

More recent decision tree algorithms that address the scalability issue have been
proposed. Algorithms for the induction of decision trees from very large training sets
include SLIQ and SPRINT, both of which can handle categorical and continuous-
valued attributes. Both algorithms propose presorting techniques on disk-resident data
sets that are too large to fit in memory. Both define the use of new data structures
to facilitate the tree construction. SLIQ employs disk-resident attribute lists and a
single memory-resident class list. The attribute lists and class list generated by SLIQ for
the tuple data of Table 6.2 are shown in Figure 6.8. Each attribute has an associated
attribute list, indexed by RID (a record identifier). Each tuple is represented by a
linkage of one entry from each attribute list to an entry in the class list (holding the
class label of the given tuple), which in turn is linked to its corresponding leaf node
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Table 6.2 Tuple data for the class buys computer.

RID credit rating age buys computer

1 excellent 38 yes

2 excellent 26 yes

3 fair 35 no

4 excellent 49 no

. . . . . . . . . . . .
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Figure 6.8 Attribute list and class list data structures used in SLIQ for the tuple data of Table 6.2.
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Figure 6.9 Attribute list data structure used in SPRINT for the tuple data of Table 6.2.

in the decision tree. The class list remains in memory because it is often accessed
and modified in the building and pruning phases. The size of the class list grows
proportionally with the number of tuples in the training set. When a class list cannot
fit into memory, the performance of SLIQ decreases.

SPRINT uses a different attribute list data structure that holds the class and RID
information, as shown in Figure 6.9. When a node is split, the attribute lists are par-
titioned and distributed among the resulting child nodes accordingly. When a list is
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Figure 6.10 The use of data structures to hold aggregate information regarding the training data (such as
these AVC-sets describing the data of Table 6.1) are one approach to improving the scalability
of decision tree induction.

partitioned, the order of the records in the list is maintained. Hence, partitioning
lists does not require resorting. SPRINT was designed to be easily parallelized, further
contributing to its scalability.

While both SLIQ and SPRINT handle disk-resident data sets that are too large to fit into
memory, the scalability of SLIQ is limited by the use of its memory-resident data structure.
SPRINT removes all memory restrictions, yet requires the use of a hash tree proportional
in size to the training set. This may become expensive as the training set size grows.

To further enhance the scalability of decision tree induction, a method called Rain-
Forest was proposed. It adapts to the amount of main memory available and applies to
any decision tree induction algorithm. The method maintains an AVC-set (where AVC
stands for “Attribute-Value, Classlabel”) for each attribute, at each tree node, describing
the training tuples at the node. The AVC-set of an attribute A at node N gives the class
label counts for each value of A for the tuples at N. Figure 6.10 shows AVC-sets for the
tuple data of Table 6.1. The set of all AVC-sets at a node N is the AVC-group of N. The
size of an AVC-set for attribute A at node N depends only on the number of distinct val-
ues of A and the number of classes in the set of tuples at N. Typically, this size should fit
in memory, even for real-world data. RainForest has techniques, however, for handling
the case where the AVC-group does not fit in memory. RainForest can use any attribute
selection measure and was shown to be more efficient than earlier approaches employing
aggregate data structures, such as SLIQ and SPRINT.

BOAT (Bootstrapped Optimistic Algorithm for Tree Construction) is a decision tree
algorithm that takes a completely different approach to scalability—it is not based on the
use of any special data structures. Instead, it uses a statistical technique known as “boot-
strapping” (Section 6.13.3) to create several smaller samples (or subsets) of the given
training data, each of which fits in memory. Each subset is used to construct a tree, result-
ing in several trees. The trees are examined and used to construct a new tree, T ′, that turns
out to be “very close” to the tree that would have been generated if all of the original train-
ing data had fit in memory. BOAT can use any attribute selection measure that selects
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binary splits and that is based on the notion of purity of partitions, such as the
gini index. BOAT uses a lower bound on the attribute selection measure in order to
detect if this “very good” tree, T ′, is different from the “real” tree, T , that would have
been generated using the entire data. It refines T ′ in order to arrive at T .

BOAT usually requires only two scans of D. This is quite an improvement, even in
comparison to traditional decision tree algorithms (such as the basic algorithm in
Figure 6.3), which require one scan per level of the tree! BOAT was found to be two
to three times faster than RainForest, while constructing exactly the same tree. An addi-
tional advantage of BOAT is that it can be used for incremental updates. That is, BOAT
can take new insertions and deletions for the training data and update the decision tree
to reflect these changes, without having to reconstruct the tree from scratch.

6.4 Bayesian Classification

“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can pre-
dict class membership probabilities, such as the probability that a given tuple belongs to
a particular class.

Bayesian classification is based on Bayes’ theorem, described below. Studies compar-
ing classification algorithms have found a simple Bayesian classifier known as the naive
Bayesian classifier to be comparable in performance with decision tree and selected neu-
ral network classifiers. Bayesian classifiers have also exhibited high accuracy and speed
when applied to large databases.

Naïve Bayesian classifiers assume that the effect of an attribute value on a given class
is independent of the values of the other attributes. This assumption is called class condi-
tional independence. It is made to simplify the computations involved and, in this sense,
is considered “naïve.” Bayesian belief networks are graphical models, which unlike naïve
Bayesian classifiers, allow the representation of dependencies among subsets of attributes.
Bayesian belief networks can also be used for classification.

Section 6.4.1 reviews basic probability notation and Bayes’ theorem. In Section 6.4.2
you will learn how to do naïve Bayesian classification. Bayesian belief networks are des-
cribed in Section 6.4.3.

6.4.1 Bayes’ Theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who
did early work in probability and decision theory during the 18th century. Let X be a
data tuple. In Bayesian terms, X is considered “evidence.” As usual, it is described by
measurements made on a set of n attributes. Let H be some hypothesis, such as that
the data tuple X belongs to a specified class C. For classification problems, we want to
determine P(H|X), the probability that the hypothesis H holds given the “evidence” or
observed data tuple X. In other words, we are looking for the probability that tuple X
belongs to class C, given that we know the attribute description of X.

P(H|X) is the posterior probability, or a posteriori probability, of H conditioned on
X. For example, suppose our world of data tuples is confined to customers described by
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the attributes age and income, respectively, and that X is a 35-year-old customer with
an income of $40,000. Suppose that H is the hypothesis that our customer will buy a
computer. Then P(H|X) reflects the probability that customer X will buy a computer
given that we know the customer’s age and income.

In contrast, P(H) is the prior probability, or a priori probability, of H. For our exam-
ple, this is the probability that any given customer will buy a computer, regardless of age,
income, or any other information, for that matter. The posterior probability, P(H|X),
is based on more information (e.g., customer information) than the prior probability,
P(H), which is independent of X.

Similarly, P(X|H) is the posterior probability of X conditioned on H. That is, it is the
probability that a customer, X, is 35 years old and earns $40,000, given that we know the
customer will buy a computer.

P(X) is the prior probability of X. Using our example, it is the probability that a person
from our set of customers is 35 years old and earns $40,000.

“How are these probabilities estimated?” P(H), P(X|H), and P(X) may be estimated
from the given data, as we shall see below. Bayes’ theorem is useful in that it provides
a way of calculating the posterior probability, P(H|X), from P(H), P(X|H), and P(X).
Bayes’ theorem is

P(H|X) =
P(X|H)P(H)

P(X)
. (6.10)

Now that we’ve got that out of the way, in the next section, we will look at how Bayes’
theorem is used in the naive Bayesian classifier.

6.4.2 Naïve Bayesian Classification

The naïve Bayesian classifier, or simple Bayesian classifier, works as follows:

1. Let D be a training set of tuples and their associated class labels. As usual, each tuple
is represented by an n-dimensional attribute vector, X = (x1, x2, . . . , xn), depicting n
measurements made on the tuple from n attributes, respectively, A1, A2, . . . , An.

2. Suppose that there are m classes, C1, C2, . . . , Cm. Given a tuple, X, the classifier will
predict that X belongs to the class having the highest posterior probability, condi-
tioned on X. That is, the naïve Bayesian classifier predicts that tuple X belongs to the
class Ci if and only if

P(Ci|X)> P(C j|X) for 1≤ j ≤ m, j 6= i.

Thus we maximize P(Ci|X). The class Ci for which P(Ci|X) is maximized is called the
maximum posteriori hypothesis. By Bayes’ theorem (Equation (6.10)),

P(Ci|X) =
P(X|Ci)P(Ci)

P(X)
. (6.11)

3. As P(X) is constant for all classes, only P(X|Ci)P(Ci) need be maximized. If the class
prior probabilities are not known, then it is commonly assumed that the classes are
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equally likely, that is, P(C1) = P(C2) = · · · = P(Cm), and we would therefore maxi-
mize P(X|Ci). Otherwise, we maximize P(X|Ci)P(Ci). Note that the class prior prob-
abilities may be estimated by P(Ci) = |Ci,D|/|D|, where |Ci,D| is the number of training
tuples of class Ci in D.

4. Given data sets with many attributes, it would be extremely computationally expen-
sive to compute P(X|Ci). In order to reduce computation in evaluating P(X|Ci), the
naive assumption of class conditional independence is made. This presumes that
the values of the attributes are conditionally independent of one another, given the
class label of the tuple (i.e., that there are no dependence relationships among the
attributes). Thus,

P(X|Ci) =
n

∏
k=1

P(xk|Ci) (6.12)

= P(x1|Ci)×P(x2|Ci)×·· ·×P(xn|Ci).

We can easily estimate the probabilities P(x1|Ci), P(x2|Ci), . . . , P(xn|Ci) from the train-
ing tuples. Recall that here xk refers to the value of attribute Ak for tuple X. For each
attribute, we look at whether the attribute is categorical or continuous-valued. For
instance, to compute P(X|Ci), we consider the following:

(a) If Ak is categorical, then P(xk|Ci) is the number of tuples of class Ci in D having
the value xk for Ak, divided by |Ci,D|, the number of tuples of class Ci in D.

(b) If Ak is continuous-valued, then we need to do a bit more work, but the calculation
is pretty straightforward. A continuous-valued attribute is typically assumed to
have a Gaussian distribution with a mean µ and standard deviation σ, defined by

g(x, µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 , (6.13)

so that
P(xk|Ci) = g(xk, µCi , σCi). (6.14)

These equations may appear daunting, but hold on! We need to compute µCi and
σCi , which are the mean (i.e., average) and standard deviation, respectively, of
the values of attribute Ak for training tuples of class Ci. We then plug these two
quantities into Equation (6.13), together with xk, in order to estimate P(xk|Ci).
For example, let X = (35, $40,000), where A1 and A2 are the attributes age and
income, respectively. Let the class label attribute be buys computer. The associated
class label for X is yes (i.e., buys computer = yes). Let’s suppose that age has not
been discretized and therefore exists as a continuous-valued attribute. Suppose
that from the training set, we find that customers in D who buy a computer are
38± 12 years of age. In other words, for attribute age and this class, we have µ =
38 years and σ = 12. We can plug these quantities, along with x1 = 35 for our tuple
X into Equation (6.13) in order to estimate P(age = 35|buys computer = yes). For a
quick review of mean and standard deviation calculations, please see Section 2.2.
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5. In order to predict the class label of X, P(X|Ci)P(Ci) is evaluated for each class Ci.
The classifier predicts that the class label of tuple X is the class Ci if and only if

P(X|Ci)P(Ci)> P(X|C j)P(C j) for 1≤ j ≤ m, j 6= i. (6.15)

In other words, the predicted class label is the class Ci for which P(X|Ci)P(Ci) is the
maximum.

“How effective are Bayesian classifiers?” Various empirical studies of this classifier in
comparison to decision tree and neural network classifiers have found it to be compa-
rable in some domains. In theory, Bayesian classifiers have the minimum error rate in
comparison to all other classifiers. However, in practice this is not always the case, owing
to inaccuracies in the assumptions made for its use, such as class conditional indepen-
dence, and the lack of available probability data.

Bayesian classifiers are also useful in that they provide a theoretical justification for
other classifiers that do not explicitly use Bayes’ theorem. For example, under certain
assumptions, it can be shown that many neural network and curve-fitting algorithms
output the maximum posteriori hypothesis, as does the naïve Bayesian classifier.

Example 6.4 Predicting a class label using naïve Bayesian classification. We wish to predict the class
label of a tuple using naïve Bayesian classification, given the same training data as in
Example 6.3 for decision tree induction. The training data are in Table 6.1. The data
tuples are described by the attributes age, income, student, and credit rating. The class
label attribute, buys computer, has two distinct values (namely, {yes, no}). Let C1 corre-
spond to the class buys computer = yes and C2 correspond to buys computer = no. The
tuple we wish to classify is

X = (age = youth, income = medium, student = yes, credit rating = fair)

We need to maximize P(X|Ci)P(Ci), for i = 1, 2. P(Ci), the prior probability of each
class, can be computed based on the training tuples:

P(buys computer = yes) = 9/14 = 0.643

P(buys computer = no) = 5/14 = 0.357

To compute PX|Ci), for i = 1, 2, we compute the following conditional probabilities:

P(age = youth | buys computer = yes) = 2/9 = 0.222

P(age = youth | buys computer = no) = 3/5 = 0.600

P(income = medium | buys computer = yes) = 4/9 = 0.444

P(income = medium | buys computer = no) = 2/5 = 0.400

P(student = yes | buys computer = yes) = 6/9 = 0.667

P(student = yes | buys computer = no) = 1/5 = 0.200

P(credit rating = fair | buys computer = yes) = 6/9 = 0.667

P(credit rating = fair | buys computer = no) = 2/5 = 0.400
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Using the above probabilities, we obtain

P(X|buys computer = yes) = P(age = youth | buys computer = yes)×
P(income = medium | buys computer = yes)×
P(student = yes | buys computer = yes)×
P(credit rating = fair | buys computer = yes)

= 0.222×0.444×0.667×0.667 = 0.044.

Similarly,

P(X|buys computer = no) = 0.600×0.400×0.200×0.400 = 0.019.

To find the class, Ci, that maximizes P(X|Ci)P(Ci), we compute

P(X|buys computer = yes)P(buys computer = yes) = 0.044×0.643 = 0.028

P(X|buys computer = no)P(buys computer = no) = 0.019×0.357 = 0.007
Therefore, the naïve Bayesian classifier predicts buys computer = yes for tuple X.

“What if I encounter probability values of zero?” Recall that in Equation (6.12), we
estimate P(X|Ci) as the product of the probabilities P(x1|Ci), P(x2|Ci), . . . , P(xn|Ci),
based on the assumption of class conditional independence. These probabilities can
be estimated from the training tuples (step 4). We need to compute P(X|Ci) for each
class (i = 1, 2, . . . , m) in order to find the class Ci for which P(X|Ci)P(Ci) is the maxi-
mum (step 5). Let’s consider this calculation. For each attribute-value pair (i.e., Ak = xk,
for k = 1, 2, . . . , n) in tuple X, we need to count the number of tuples having that
attribute-value pair, per class (i.e., per Ci, for i = 1, . . . , m). In Example 6.4, we have
two classes (m = 2), namely buys computer = yes and buys computer = no. Therefore,
for the attribute-value pair student = yes of X, say, we need two counts—the number
of customers who are students and for which buys computer = yes (which contributes
to P(X|buys computer = yes)) and the number of customers who are students and for
which buys computer = no (which contributes to P(X|buys computer = no)). But what if,
say, there are no training tuples representing students for the class buys computer = no,
resulting in P(student = yes|buys computer = no) = 0? In other words, what happens if we
should end up with a probability value of zero for some P(xk|Ci)? Plugging this zero value
into Equation (6.12) would return a zero probability for P(X|Ci), even though, without
the zero probability, we may have ended up with a high probability, suggesting that X
belonged to class Ci! A zero probability cancels the effects of all of the other (posteriori)
probabilities (on Ci) involved in the product.

There is a simple trick to avoid this problem. We can assume that our training data-
base, D, is so large that adding one to each count that we need would only make a negli-
gible difference in the estimated probability value, yet would conveniently avoid the case
of probability values of zero. This technique for probability estimation is known as the
Laplacian correction or Laplace estimator, named after Pierre Laplace, a French math-
ematician who lived from 1749 to 1827. If we have, say, q counts to which we each add
one, then we must remember to add q to the corresponding denominator used in the
probability calculation. We illustrate this technique in the following example.
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Example 6.5 Using the Laplacian correction to avoid computing probability values of zero. Suppose
that for the class buys computer = yes in some training database, D, containing 1,000
tuples, we have 0 tuples with income = low, 990 tuples with income = medium, and 10
tuples with income = high. The probabilities of these events, without the Laplacian cor-
rection, are 0, 0.990 (from 999/1000), and 0.010 (from 10/1,000), respectively. Using
the Laplacian correction for the three quantities, we pretend that we have 1 more tuple
for each income-value pair. In this way, we instead obtain the following probabilities
(rounded up to three decimal places):

1
1,003

= 0.001,
991

1,003
= 0.988, and

11
1,003

= 0.011,

respectively. The “corrected” probability estimates are close to their “uncorrected” coun-
terparts, yet the zero probability value is avoided.

6.4.3 Bayesian Belief Networks

The naïve Bayesian classifier makes the assumption of class conditional independence,
that is, given the class label of a tuple, the values of the attributes are assumed to be con-
ditionally independent of one another. This simplifies computation. When the assump-
tion holds true, then the naïve Bayesian classifier is the most accurate in comparison
with all other classifiers. In practice, however, dependencies can exist between variables.
Bayesian belief networks specify joint conditional probability distributions. They allow
class conditional independencies to be defined between subsets of variables. They pro-
vide a graphical model of causal relationships, on which learning can be performed.
Trained Bayesian belief networks can be used for classification. Bayesian belief networks
are also known as belief networks, Bayesian networks, and probabilistic networks. For
brevity, we will refer to them as belief networks.

A belief network is defined by two components—a directed acyclic graph and a set of
conditional probability tables (Figure 6.11). Each node in the directed acyclic graph repre-
sents a random variable. The variables may be discrete or continuous-valued. They may
correspond to actual attributes given in the data or to “hidden variables” believed to form
a relationship (e.g., in the case of medical data, a hidden variable may indicate a syndrome,
representing a number of symptoms that, together, characterize a specific disease). Each
arc represents a probabilistic dependence. If an arc is drawn from a node Y to a node Z,
thenY is a parent or immediate predecessor of Z, and Z is a descendant ofY . Each variable
is conditionally independent of its nondescendants in the graph, given its parents.

Figure 6.11 is a simple belief network, adapted from [RBKK95] for six Boolean vari-
ables. The arcs in Figure 6.11(a) allow a representation of causal knowledge. For example,
having lung cancer is influenced by a person’s family history of lung cancer, as well as
whether or not the person is a smoker. Note that the variable PositiveXRay is indepen-
dent of whether the patient has a family history of lung cancer or is a smoker, given
that we know the patient has lung cancer. In other words, once we know the outcome
of the variable LungCancer, then the variables FamilyHistory and Smoker do not provide
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FamilyHistory

LungCancer

PositiveXRay

Smoker FH, S FH, ~S ~FH, S ~FH, ~S
0.8 0.5 0.7 0.1
0.2

LC
~LC 0.5 0.3 0.9

Emphysema

Dyspnea

(a) (b)

Figure 6.11 A simple Bayesian belief network: (a) A proposed causal model, represented by a directed
acyclic graph. (b) The conditional probability table for the values of the variable LungCancer
(LC) showing each possible combination of the values of its parent nodes, FamilyHistory (FH)
and Smoker (S). Figure is adapted from [RBKK95].

any additional information regarding PositiveXRay. The arcs also show that the variable
LungCancer is conditionally independent of Emphysema, given its parents, FamilyHistory
and Smoker.

A belief network has one conditional probability table (CPT) for each variable. The
CPT for a variable Y specifies the conditional distribution P(Y |Parents(Y )), where
Parents(Y ) are the parents of Y . Figure 6.11(b) shows a CPT for the variable LungCancer.
The conditional probability for each known value of LungCancer is given for each pos-
sible combination of values of its parents. For instance, from the upper leftmost and
bottom rightmost entries, respectively, we see that

P(LungCancer = yes | FamilyHistory = yes, Smoker = yes) = 0.8

P(LungCancer = no | FamilyHistory = no, Smoker = no) = 0.9

Let X = (x1, . . . , xn) be a data tuple described by the variables or attributes Y1, . . . , Yn,
respectively. Recall that each variable is conditionally independent of its nondescen-
dants in the network graph, given its parents. This allows the network to provide a
complete representation of the existing joint probability distribution with the
following equation:

P(x1, . . . , xn) =
n

∏
i=1

P(xi|Parents(Yi)), (6.16)

where P(x1, . . . , xn) is the probability of a particular combination of values of X, and the
values for P(xi|Parents(Yi)) correspond to the entries in the CPT for Yi.
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A node within the network can be selected as an “output” node, representing a
class label attribute. There may be more than one output node. Various algorithms for
learning can be applied to the network. Rather than returning a single class label, the
classification process can return a probability distribution that gives the probability
of each class.

6.4.4 Training Bayesian Belief Networks

“How does a Bayesian belief network learn?” In the learning or training of a belief network,
a number of scenarios are possible. The network topology (or “layout” of nodes and
arcs) may be given in advance or inferred from the data. The network variables may be
observable or hidden in all or some of the training tuples. The case of hidden data is also
referred to as missing values or incomplete data.

Several algorithms exist for learning the network topology from the training data
given observable variables. The problem is one of discrete optimization. For solutions,
please see the bibliographic notes at the end of this chapter. Human experts usually have
a good grasp of the direct conditional dependencies that hold in the domain under anal-
ysis, which helps in network design. Experts must specify conditional probabilities for
the nodes that participate in direct dependencies. These probabilities can then be used
to compute the remaining probability values.

If the network topology is known and the variables are observable, then training the
network is straightforward. It consists of computing the CPT entries, as is similarly done
when computing the probabilities involved in naive Bayesian classification.

When the network topology is given and some of the variables are hidden, there
are various methods to choose from for training the belief network. We will describe
a promising method of gradient descent. For those without an advanced math back-
ground, the description may look rather intimidating with its calculus-packed formulae.
However, packaged software exists to solve these equations, and the general idea is easy
to follow.

Let D be a training set of data tuples, X1, X2, . . . , X|D|. Training the belief network
means that we must learn the values of the CPT entries. Let wi jk be a CPT entry for
the variable Yi = yi j having the parents Ui = uik, where wi jk ≡ P(Yi = yi j|Ui = uik). For
example, if wi jk is the upper leftmost CPT entry of Figure 6.11(b), then Yi is LungCancer;
yi j is its value, “yes”; Ui lists the parent nodes of Yi, namely, {FamilyHistory, Smoker};
and uik lists the values of the parent nodes, namely, {“yes”, “yes”}. The wi jk are viewed as
weights, analogous to the weights in hidden units of neural networks (Section 6.6). The
set of weights is collectively referred to as W. The weights are initialized to random proba-
bility values. A gradient descent strategy performs greedy hill-climbing. At each iteration,
the weights are updated and will eventually converge to a local optimum solution.

A gradient descent strategy is used to search for the wi jk values that best model the
data, based on the assumption that each possible setting of wi jk is equally likely. Such
a strategy is iterative. It searches for a solution along the negative of the gradient (i.e.,
steepest descent) of a criterion function. We want to find the set of weights, W, that maxi-
mize this function. To start with, the weights are initialized to random probability values.
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The gradient descent method performs greedy hill-climbing in that, at each iteration or
step along the way, the algorithm moves toward what appears to be the best solution at
the moment, without backtracking. The weights are updated at each iteration. Eventu-
ally, they converge to a local optimum solution.

For our problem, we maximize Pw(D) = ∏|D|d=1 Pw(Xd). This can be done by following
the gradient of lnPw(S), which makes the problem simpler. Given the network topology
and initialized wi jk, the algorithm proceeds as follows:

1. Compute the gradients: For each i, j, k, compute

∂lnPw(D)
∂wi jk

=
|D|

∑
d=1

P(Yi = yi j, Ui = uik|Xd)
wi jk

. (6.17)

The probability in the right-hand side of Equation (6.17) is to be calculated for each
training tuple, Xd, in D. For brevity, let’s refer to this probability simply as p. When
the variables represented by Yi and Ui are hidden for some Xd, then the corresponding
probability p can be computed from the observed variables of the tuple using standard
algorithms for Bayesian network inference such as those available in the commercial
software package HUGIN (http://www.hugin.dk).

2. Take a small step in the direction of the gradient: The weights are updated by

wi jk← wi jk +(l)
∂lnPw(D)

∂wi jk
, (6.18)

where l is the learning rate representing the step size and ∂lnPw(D)
∂wi jk

is computed

from Equation (6.17). The learning rate is set to a small constant and helps with
convergence.

3. Renormalize the weights: Because the weights wi jk are probability values, they must
be between 0.0 and 1.0, and ∑ j wi jk must equal 1 for all i, k. These criteria are achieved
by renormalizing the weights after they have been updated by Equation (6.18).

Algorithms that follow this form of learning are called Adaptive Probabilistic Networks.
Other methods for training belief networks are referenced in the bibliographic notes at
the end of this chapter. Belief networks are computationally intensive. Because belief net-
works provide explicit representations of causal structure, a human expert can provide
prior knowledge to the training process in the form of network topology and/or condi-
tional probability values. This can significantly improve the learning rate.

6.5 Rule-Based Classification

In this section, we look at rule-based classifiers, where the learned model is represented
as a set of IF-THEN rules. We first examine how such rules are used for classification.
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We then study ways in which they can be generated, either from a decision tree or directly
from the training data using a sequential covering algorithm.

6.5.1 Using IF-THEN Rules for Classification

Rules are a good way of representing information or bits of knowledge. A rule-based
classifier uses a set of IF-THEN rules for classification. An IF-THEN rule is an expres-
sion of the form

IF condition THEN conclusion.

An example is rule R1,

R1: IF age = youth AND student = yes THEN buys computer = yes.

The “IF”-part (or left-hand side) of a rule is known as the rule antecedent or precondition.
The “THEN”-part (or right-hand side) is the rule consequent. In the rule antecedent, the
condition consists of one or more attribute tests (such as age = youth, and student = yes)
that are logically ANDed. The rule’s consequent contains a class prediction (in this case,
we are predicting whether a customer will buy a computer). R1 can also be written as

R1: (age = youth) ∧ (student = yes)⇒ (buys computer = yes).

If the condition (that is, all of the attribute tests) in a rule antecedent holds true for a
given tuple, we say that the rule antecedent is satisfied (or simply, that the rule is satisfied)
and that the rule covers the tuple.

A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class-
labeled data set, D, let ncovers be the number of tuples covered by R; ncorrect be the number
of tuples correctly classified by R; and |D| be the number of tuples in D. We can define
the coverage and accuracy of R as

coverage(R) =
ncovers

|D|
(6.19)

accuracy(R) =
ncorrect

ncovers
. (6.20)

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e.,
whose attribute values hold true for the rule’s antecedent). For a rule’s accuracy, we look
at the tuples that it covers and see what percentage of them the rule can correctly classify.

Example 6.6 Rule accuracy and coverage. Let’s go back to our data of Table 6.1. These are class-labeled
tuples from the AllElectronics customer database. Our task is to predict whether a cus-
tomer will buy a computer. Consider rule R1 above, which covers 2 of the 14 tuples. It can
correctly classify both tuples. Therefore, coverage(R1) = 2/14 = 14.28% and accuracy
(R1) = 2/2 = 100%.
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Let’s see how we can use rule-based classification to predict the class label of a given
tuple, X. If a rule is satisfied by X, the rule is said to be triggered. For example, suppose
we have

X= (age = youth, income = medium, student = yes, credit rating = fair).

We would like to classify X according to buys computer. X satisfies R1, which triggers
the rule.

If R1 is the only rule satisfied, then the rule fires by returning the class prediction
for X. Note that triggering does not always mean firing because there may be more than
one rule that is satisfied! If more than one rule is triggered, we have a potential problem.
What if they each specify a different class? Or what if no rule is satisfied by X?

We tackle the first question. If more than one rule is triggered, we need a conflict
resolution strategy to figure out which rule gets to fire and assign its class prediction
to X. There are many possible strategies. We look at two, namely size ordering and rule
ordering.

The size ordering scheme assigns the highest priority to the triggering rule that has
the “toughest” requirements, where toughness is measured by the rule antecedent size.
That is, the triggering rule with the most attribute tests is fired.

The rule ordering scheme prioritizes the rules beforehand. The ordering may be class-
based or rule-based. With class-based ordering, the classes are sorted in order of decreas-
ing “importance,” such as by decreasing order of prevalence. That is, all of the rules for the
most prevalent (or most frequent) class come first, the rules for the next prevalent class
come next, and so on. Alternatively, they may be sorted based on the misclassification
cost per class. Within each class, the rules are not ordered—they don’t have to be because
they all predict the same class (and so there can be no class conflict!). With rule-based
ordering, the rules are organized into one long priority list, according to some measure
of rule quality such as accuracy, coverage, or size (number of attribute tests in the rule
antecedent), or based on advice from domain experts. When rule ordering is used, the
rule set is known as a decision list. With rule ordering, the triggering rule that appears
earliest in the list has highest priority, and so it gets to fire its class prediction. Any other
rule that satisfies X is ignored. Most rule-based classification systems use a class-based
rule-ordering strategy.

Note that in the first strategy, overall the rules are unordered. They can be applied in
any order when classifying a tuple. That is, a disjunction (logical OR) is implied between
each of the rules. Each rule represents a stand-alone nugget or piece of knowledge. This
is in contrast to the rule-ordering (decision list) scheme for which rules must be applied
in the prescribed order so as to avoid conflicts. Each rule in a decision list implies the
negation of the rules that come before it in the list. Hence, rules in a decision list are
more difficult to interpret.

Now that we have seen how we can handle conflicts, let’s go back to the scenario where
there is no rule satisfied by X. How, then, can we determine the class label of X? In this
case, a fallback or default rule can be set up to specify a default class, based on a training
set. This may be the class in majority or the majority class of the tuples that were not
covered by any rule. The default rule is evaluated at the end, if and only if no other rule
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covers X. The condition in the default rule is empty. In this way, the rule fires when no
other rule is satisfied.

In the following sections, we examine how to build a rule-based classifier.

6.5.2 Rule Extraction from a Decision Tree

In Section 6.3, we learned how to build a decision tree classifier from a set of training
data. Decision tree classifiers are a popular method of classification—it is easy to under-
stand how decision trees work and they are known for their accuracy. Decision trees can
become large and difficult to interpret. In this subsection, we look at how to build a rule-
based classifier by extracting IF-THEN rules from a decision tree. In comparison with a
decision tree, the IF-THEN rules may be easier for humans to understand, particularly
if the decision tree is very large.

To extract rules from a decision tree, one rule is created for each path from the root
to a leaf node. Each splitting criterion along a given path is logically ANDed to form the
rule antecedent (“IF” part). The leaf node holds the class prediction, forming the rule
consequent (“THEN” part).

Example 6.7 Extracting classification rules from a decision tree. The decision tree of Figure 6.2 can
be converted to classification IF-THEN rules by tracing the path from the root node to
each leaf node in the tree. The rules extracted from Figure 6.2 are

R1: IF age = youth AND student = no THEN buys computer = no
R2: IF age = youth AND student = yes THEN buys computer = yes
R3: IF age = middle aged THEN buys computer = yes
R4: IF age = senior AND credit rating = excellent THEN buys computer = yes
R5: IF age = senior AND credit rating = fair THEN buys computer = no

A disjunction (logical OR) is implied between each of the extracted rules. Because the
rules are extracted directly from the tree, they are mutually exclusive and exhaustive. By
mutually exclusive, this means that we cannot have rule conflicts here because no two
rules will be triggered for the same tuple. (We have one rule per leaf, and any tuple can
map to only one leaf.) By exhaustive, there is one rule for each possible attribute-value
combination, so that this set of rules does not require a default rule. Therefore, the order
of the rules does not matter—they are unordered.

Since we end up with one rule per leaf, the set of extracted rules is not much simpler
than the corresponding decision tree! The extracted rules may be even more difficult
to interpret than the original trees in some cases. As an example, Figure 6.7 showed
decision trees that suffer from subtree repetition and replication. The resulting set of
rules extracted can be large and difficult to follow, because some of the attribute tests
may be irrelevant or redundant. So, the plot thickens. Although it is easy to extract
rules from a decision tree, we may need to do some more work by pruning the resulting
rule set.
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“How can we prune the rule set?” For a given rule antecedent, any condition that does
not improve the estimated accuracy of the rule can be pruned (i.e., removed), thereby
generalizing the rule. C4.5 extracts rules from an unpruned tree, and then prunes the
rules using a pessimistic approach similar to its tree pruning method. The training tuples
and their associated class labels are used to estimate rule accuracy. However, because this
would result in an optimistic estimate, alternatively, the estimate is adjusted to compen-
sate for the bias, resulting in a pessimistic estimate. In addition, any rule that does not
contribute to the overall accuracy of the entire rule set can also be pruned.

Other problems arise during rule pruning, however, as the rules will no longer be
mutually exclusive and exhaustive. For conflict resolution, C4.5 adopts a class-based
ordering scheme. It groups all rules for a single class together, and then determines a
ranking of these class rule sets. Within a rule set, the rules are not ordered. C4.5 orders
the class rule sets so as to minimize the number of false-positive errors (i.e., where a rule
predicts a class, C, but the actual class is not C). The class rule set with the least number
of false positives is examined first. Once pruning is complete, a final check is done to
remove any duplicates. When choosing a default class, C4.5 does not choose the major-
ity class, because this class will likely have many rules for its tuples. Instead, it selects the
class that contains the most training tuples that were not covered by any rule.

6.5.3 Rule Induction Using a Sequential Covering Algorithm

IF-THEN rules can be extracted directly from the training data (i.e., without having to
generate a decision tree first) using a sequential covering algorithm. The name comes
from the notion that the rules are learned sequentially (one at a time), where each rule
for a given class will ideally cover many of the tuples of that class (and hopefully none
of the tuples of other classes). Sequential covering algorithms are the most widely used
approach to mining disjunctive sets of classification rules, and form the topic of this
subsection. Note that in a newer alternative approach, classification rules can be gener-
ated using associative classification algorithms, which search for attribute-value pairs that
occur frequently in the data. These pairs may form association rules, which can be ana-
lyzed and used in classification. Since this latter approach is based on association rule
mining (Chapter 5), we prefer to defer its treatment until later, in Section 6.8.

There are many sequential covering algorithms. Popular variations include AQ,
CN2, and the more recent, RIPPER. The general strategy is as follows. Rules are
learned one at a time. Each time a rule is learned, the tuples covered by the rule are
removed, and the process repeats on the remaining tuples. This sequential learning
of rules is in contrast to decision tree induction. Because the path to each leaf in
a decision tree corresponds to a rule, we can consider decision tree induction as
learning a set of rules simultaneously.

A basic sequential covering algorithm is shown in Figure 6.12. Here, rules are learned
for one class at a time. Ideally, when learning a rule for a class, Ci, we would like the rule
to cover all (or many) of the training tuples of class C and none (or few) of the tuples
from other classes. In this way, the rules learned should be of high accuracy. The rules
need not necessarily be of high coverage. This is because we can have more than one
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Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.

Input:

D, a data set class-labeled tuples;

Att vals, the set of all attributes and their possible values.

Output: A set of IF-THEN rules.

Method:

(1) Rule set = {}; // initial set of rules learned is empty
(2) for each class c do
(3) repeat
(4) Rule = Learn One Rule(D, Att vals, c);
(5) remove tuples covered by Rule from D;
(6) until terminating condition;
(7) Rule set = Rule set + Rule; // add new rule to rule set
(8) endfor
(9) return Rule Set;

Figure 6.12 Basic sequential covering algorithm.

rule for a class, so that different rules may cover different tuples within the same class.
The process continues until the terminating condition is met, such as when there are no
more training tuples or the quality of a rule returned is below a user-specified threshold.
The Learn One Rule procedure finds the “best” rule for the current class, given the cur-
rent set of training tuples.

“How are rules learned?” Typically, rules are grown in a general-to-specific manner
(Figure 6.13). We can think of this as a beam search, where we start off with an empty
rule and then gradually keep appending attribute tests to it. We append by adding the
attribute test as a logical conjunct to the existing condition of the rule antecedent. Sup-
pose our training set, D, consists of loan application data. Attributes regarding each
applicant include their age, income, education level, residence, credit rating, and the
term of the loan. The classifying attribute is loan decision, which indicates whether a
loan is accepted (considered safe) or rejected (considered risky). To learn a rule for the
class “accept,” we start off with the most general rule possible, that is, the condition of
the rule antecedent is empty. The rule is:

IF THEN loan decision = accept.

We then consider each possible attribute test that may be added to the rule. These
can be derived from the parameter Att vals, which contains a list of attributes with their
associated values. For example, for an attribute-value pair (att, val), we can consider
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Figure 6.13 A general-to-specific search through rule space.

attribute tests such as att = val, att ≤ val, att > val, and so on. Typically, the training
data will contain many attributes, each of which may have several possible values. Find-
ing an optimal rule set becomes computationally explosive. Instead, Learn One Rule
adopts a greedy depth-first strategy. Each time it is faced with adding a new attribute
test (conjunct) to the current rule, it picks the one that most improves the rule qual-
ity, based on the training samples. We will say more about rule quality measures in a
minute. For the moment, let’s say we use rule accuracy as our quality measure. Getting
back to our example with Figure 6.13, suppose Learn One Rule finds that the attribute
test income = high best improves the accuracy of our current (empty) rule. We append it
to the condition, so that the current rule becomes

IF income = high THEN loan decision = accept.

Each time we add an attribute test to a rule, the resulting rule should cover more
of the “accept” tuples. During the next iteration, we again consider the possible
attribute tests and end up selecting credit rating = excellent. Our current rule grows
to become

IF income = high AND credit rating = excellent THEN loan decision = accept.

The process repeats, where at each step, we continue to greedily grow rules until the
resulting rule meets an acceptable quality level.

Greedy search does not allow for backtracking. At each step, we heuristically add what
appears to be the best choice at the moment. What if we unknowingly made a poor
choice along the way? To lessen the chance of this happening, instead of selecting the
best attribute test to append to the current rule, we can select the best k attribute tests. In
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this way, we perform a beam search of width k wherein we maintain the k best candidates
overall at each step, rather than a single best candidate.

Rule Quality Measures
Learn One Rule needs a measure of rule quality. Every time it considers an attribute test,
it must check to see if appending such a test to the current rule’s condition will result in
an improved rule. Accuracy may seem like an obvious choice at first, but consider the
following example.

Example 6.8 Choosing between two rules based on accuracy. Consider the two rules as illustrated
in Figure 6.14. Both are for the class loan decision = accept. We use “a” to represent the
tuples of class “accept” and “r” for the tuples of class “reject.” Rule R1 correctly classifies
38 of the 40 tuples it covers. Rule R2 covers only two tuples, which it correctly classifies.
Their respective accuracies are 95% and 100%. Thus, R2 has greater accuracy than R1,
but it is not the better rule because of its small coverage.

From the above example, we see that accuracy on its own is not a reliable estimate of
rule quality. Coverage on its own is not useful either—for a given class we could have
a rule that covers many tuples, most of which belong to other classes! Thus, we seek
other measures for evaluating rule quality, which may integrate aspects of accuracy and
coverage. Here we will look at a few, namely entropy, another based on information gain,
and a statistical test that considers coverage. For our discussion, suppose we are learning
rules for the class c. Our current rule is R: IF condition THEN class = c. We want to
see if logically ANDing a given attribute test to condition would result in a better rule.
We call the new condition, condition′, where R′: IF condition′ THEN class = c is our
potential new rule. In other words, we want to see if R′ is any better than R.
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Figure 6.14 Rules for the class loan decision = accept, showing accept (a) and reject (r) tuples.
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We have already seen entropy in our discussion of the information gain measure used
for attribute selection in decision tree induction (Section 6.3.2, Equation 6.1). It is also
known as the expected information needed to classify a tuple in data set, D. Here, D is the
set of tuples covered by condition′ and pi is the probability of class Ci in D. The lower the
entropy, the better condition′ is. Entropy prefers conditions that cover a large number of
tuples of a single class and few tuples of other classes.

Another measure is based on information gain and was proposed in FOIL (First Order
Inductive Learner), a sequential covering algorithm that learns first-order logic rules.
Learning first-order rules is more complex because such rules contain variables, whereas
the rules we are concerned with in this section are propositional (i.e., variable-free).7

In machine learning, the tuples of the class for which we are learning rules are called pos-
itive tuples, while the remaining tuples are negative. Let pos (neg) be the number of pos-
itive (negative) tuples covered by R. Let pos′ (neg′) be the number of positive (negative)
tuples covered by R′. FOIL assesses the information gained by extending condition as

FOIL Gain = pos′×
(

log2
pos′

pos′+ neg′
− log2

pos

pos + neg

)

. (6.21)

It favors rules that have high accuracy and cover many positive tuples.
We can also use a statistical test of significance to determine if the apparent effect

of a rule is not attributed to chance but instead indicates a genuine correlation between
attribute values and classes. The test compares the observed distribution among classes of
tuples covered by a rule with the expected distribution that would result if the rule made
predictions at random. We want to assess whether any observed differences between these
two distributions may be attributed to chance. We can use the likelihood ratio statistic,

Likelihood Ratio = 2
m

∑
i=1

fi log
( fi

ei

)

, (6.22)

where m is the number of classes. For tuples satisfying the rule, fi is the observed fre-
quency of each class i among the tuples. ei is what we would expect the frequency of
each class i to be if the rule made random predictions. The statistic has a χ2 distribution
with m− 1 degrees of freedom. The higher the likelihood ratio is, the more likely that
there is a significant difference in the number of correct predictions made by our rule in
comparison with a “random guessor.” That is, the performance of our rule is not due to
chance. The ratio helps identify rules with insignificant coverage.

CN2 uses entropy together with the likelihood ratio test, while FOIL’s information
gain is used by RIPPER.

Rule Pruning
Learn One Rule does not employ a test set when evaluating rules. Assessments of
rule quality as described above are made with tuples from the original training data.

7Incidentally, FOIL was also proposed by Quinlan, the father of ID3.
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Such assessment is optimistic because the rules will likely overfit the data. That is,
the rules may perform well on the training data, but less well on subsequent data. To
compensate for this, we can prune the rules. A rule is pruned by removing a conjunct
(attribute test). We choose to prune a rule, R, if the pruned version of R has greater
quality, as assessed on an independent set of tuples. As in decision tree pruning, we
refer to this set as a pruning set. Various pruning strategies can be used, such as the
pessimistic pruning approach described in the previous section. FOIL uses a simple
yet effective method. Given a rule, R,

FOIL Prune(R) =
pos−neg

pos + neg
, (6.23)

where pos and neg are the number of positive and negative tuples covered by R, respec-
tively. This value will increase with the accuracy of R on a pruning set. Therefore, if the
FOIL Prune value is higher for the pruned version of R, then we prune R. By conven-
tion, RIPPER starts with the most recently added conjunct when considering pruning.
Conjuncts are pruned one at a time as long as this results in an improvement.

6.6 Classification by Backpropagation

“What is backpropagation?” Backpropagation is a neural network learning algorithm. The
field of neural networks was originally kindled by psychologists and neurobiologists who
sought to develop and test computational analogues of neurons. Roughly speaking, a neu-
ral network is a set of connected input/output units in which each connection has a weight
associated with it. During the learning phase, the network learns by adjusting the weights
so as to be able to predict the correct class label of the input tuples. Neural network learn-
ing is also referred to as connectionist learning due to the connections between units.

Neural networks involve long training times and are therefore more suitable for appli-
cations where this is feasible. They require a number of parameters that are typically best
determined empirically, such as the network topology or “structure.” Neural networks
have been criticized for their poor interpretability. For example, it is difficult for humans
to interpret the symbolic meaning behind the learned weights and of “hidden units” in
the network. These features initially made neural networks less desirable for data mining.

Advantages of neural networks, however, include their high tolerance of noisy data
as well as their ability to classify patterns on which they have not been trained. They
can be used when you may have little knowledge of the relationships between attributes
and classes. They are well-suited for continuous-valued inputs and outputs, unlike most
decision tree algorithms. They have been successful on a wide array of real-world data,
including handwritten character recognition, pathology and laboratory medicine, and
training a computer to pronounce English text. Neural network algorithms are inherently
parallel; parallelization techniques can be used to speed up the computation process.
In addition, several techniques have recently been developed for the extraction of rules
from trained neural networks. These factors contribute toward the usefulness of neural
networks for classification and prediction in data mining.
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There are many different kinds of neural networks and neural network algorithms.
The most popular neural network algorithm is backpropagation, which gained repute
in the 1980s. In Section 6.6.1 you will learn about multilayer feed-forward networks, the
type of neural network on which the backpropagation algorithm performs. Section 6.6.2
discusses defining a network topology. The backpropagation algorithm is described in
Section 6.6.3. Rule extraction from trained neural networks is discussed in Section 6.6.4.

6.6.1 A Multilayer Feed-Forward Neural Network

The backpropagation algorithm performs learning on a multilayer feed-forward neural
network. It iteratively learns a set of weights for prediction of the class label of tuples. A
multilayer feed-forward neural network consists of an input layer, one or more hidden
layers, and an output layer. An example of a multilayer feed-forward network is shown
in Figure 6.15.

Each layer is made up of units. The inputs to the network correspond to the attributes
measured for each training tuple. The inputs are fed simultaneously into the units mak-
ing up the input layer. These inputs pass through the input layer and are then weighted
and fed simultaneously to a second layer of “neuronlike” units, known as a hidden
layer. The outputs of the hidden layer units can be input to another hidden layer, and so
on. The number of hidden layers is arbitrary, although in practice, usually only one is used.
The weighted outputs of the last hidden layer are input to units making up the output
layer, which emits the network’s prediction for given tuples.

The units in the input layer are called input units. The units in the hidden layers and
output layer are sometimes referred to as neurodes, due to their symbolic biological basis,
or as output units. The multilayer neural network shown in Figure 6.15 has two layers

Figure 6.15 A multilayer feed-forward neural network.
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of output units. Therefore, we say that it is a two-layer neural network. (The input layer
is not counted because it serves only to pass the input values to the next layer.) Similarly,
a network containing two hidden layers is called a three-layer neural network, and so on.
The network is feed-forward in that none of the weights cycles back to an input unit or
to an output unit of a previous layer. It is fully connected in that each unit provides input
to each unit in the next forward layer.

Each output unit takes, as input, a weighted sum of the outputs from units in the pre-
vious layer (see Figure 6.17). It applies a nonlinear (activation) function to the weighted
input. Multilayer feed-forward neural networks are able to model the class prediction
as a nonlinear combination of the inputs. From a statistical point of view, they perform
nonlinear regression. Multilayer feed-forward networks, given enough hidden units and
enough training samples, can closely approximate any function.

6.6.2 Defining a Network Topology

“How can I design the topology of the neural network?” Before training can begin, the user
must decide on the network topology by specifying the number of units in the input layer,
the number of hidden layers (if more than one), the number of units in each hidden layer,
and the number of units in the output layer.

Normalizing the input values for each attribute measured in the training tuples will
help speed up the learning phase. Typically, input values are normalized so as to fall
between 0.0 and 1.0. Discrete-valued attributes may be encoded such that there is one
input unit per domain value. For example, if an attribute A has three possible or known
values, namely {a0, a1, a2}, then we may assign three input units to represent A. That is,
we may have, say, I0, I1, I2 as input units. Each unit is initialized to 0. If A = a0, then I0 is set
to 1. If A = a1, I1 is set to 1, and so on. Neural networks can be used for both classification
(to predict the class label of a given tuple) or prediction (to predict a continuous-valued
output). For classification, one output unit may be used to represent two classes (where
the value 1 represents one class, and the value 0 represents the other). If there are more
than two classes, then one output unit per class is used.

There are no clear rules as to the “best” number of hidden layer units. Network design
is a trial-and-error process and may affect the accuracy of the resulting trained network.
The initial values of the weights may also affect the resulting accuracy. Once a network
has been trained and its accuracy is not considered acceptable, it is common to repeat
the training process with a different network topology or a different set of initial weights.
Cross-validation techniques for accuracy estimation (described in Section 6.13) can be
used to help decide when an acceptable network has been found. A number of automated
techniques have been proposed that search for a “good” network structure. These typically
use a hill-climbing approach that starts with an initial structure that is selectively modified.

6.6.3 Backpropagation

“How does backpropagation work?” Backpropagation learns by iteratively processing a
data set of training tuples, comparing the network’s prediction for each tuple with the
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actual known target value. The target value may be the known class label of the
training tuple (for classification problems) or a continuous value (for prediction). For
each training tuple, the weights are modified so as to minimize the mean squared error
between the network’s prediction and the actual target value. These modifications are
made in the “backwards” direction, that is, from the output layer, through each hidden
layer down to the first hidden layer (hence the name backpropagation). Although it is
not guaranteed, in general the weights will eventually converge, and the learning process
stops. The algorithm is summarized in Figure 6.16. The steps involved are expressed in
terms of inputs, outputs, and errors, and may seem awkward if this is your first look at
neural network learning. However, once you become familiar with the process, you will
see that each step is inherently simple. The steps are described below.

Algorithm: Backpropagation. Neural network learning for classification or prediction, using
the backpropagation algorithm.

Input:

D, a data set consisting of the training tuples and their associated target values;

l, the learning rate;

network, a multilayer feed-forward network.

Output: A trained neural network.

Method:

(1) Initialize all weights and biases in network;
(2) while terminating condition is not satisfied {
(3) for each training tuple X in D {
(4) // Propagate the inputs forward:
(5) for each input layer unit j {
(6) O j = I j ; // output of an input unit is its actual input value
(7) for each hidden or output layer unit j {
(8) I j = ∑i wi jOi + θ j; //compute the net input of unit j with respect to the

previous layer, i
(9) O j = 1

1+e−I j
; } // compute the output of each unit j

(10) // Backpropagate the errors:
(11) for each unit j in the output layer
(12) Err j = O j(1−O j)(Tj−O j); // compute the error
(13) for each unit j in the hidden layers, from the last to the first hidden layer
(14) Err j = O j(1−O j)∑k Errkw jk; // compute the error with respect to the

next higher layer, k
(15) for each weight wi j in network {
(16) ∆wi j = (l)Err jOi; // weight increment
(17) wi j = wi j +∆wi j ; } // weight update
(18) for each bias θ j in network {
(19) ∆θ j = (l)Err j ; // bias increment
(20) θ j = θ j +∆θ j ; } // bias update
(21) } }

Figure 6.16 Backpropagation algorithm.
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Initialize the weights: The weights in the network are initialized to small random num-
bers (e.g., ranging from−1.0 to 1.0, or−0.5 to 0.5). Each unit has a bias associated with
it, as explained below. The biases are similarly initialized to small random numbers.

Each training tuple, X, is processed by the following steps.
Propagate the inputs forward: First, the training tuple is fed to the input layer of the
network. The inputs pass through the input units, unchanged. That is, for an input unit,
j, its output, O j, is equal to its input value, I j. Next, the net input and output of each
unit in the hidden and output layers are computed. The net input to a unit in the hidden
or output layers is computed as a linear combination of its inputs. To help illustrate this
point, a hidden layer or output layer unit is shown in Figure 6.17. Each such unit has a
number of inputs to it that are, in fact, the outputs of the units connected to it in the
previous layer. Each connection has a weight. To compute the net input to the unit, each
input connected to the unit is multiplied by its corresponding weight, and this is summed.
Given a unit j in a hidden or output layer, the net input, I j, to unit j is

I j = ∑
i

wi jOi + θ j, (6.24)

where wi j is the weight of the connection from unit i in the previous layer to unit j; Oi is
the output of unit i from the previous layer; and θ j is the bias of the unit. The bias acts
as a threshold in that it serves to vary the activity of the unit.

Each unit in the hidden and output layers takes its net input and then applies an acti-
vation function to it, as illustrated in Figure 6.17. The function symbolizes the activation
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Figure 6.17 A hidden or output layer unit j: The inputs to unit j are outputs from the previous layer.
These are multiplied by their corresponding weights in order to form a weighted sum, which
is added to the bias associated with unit j. A nonlinear activation function is applied to the net
input. (For ease of explanation, the inputs to unit j are labeled y1, y2, . . . , yn. If unit j were in
the first hidden layer, then these inputs would correspond to the input tuple (x1, x2, . . . , xn).)
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of the neuron represented by the unit. The logistic, or sigmoid, function is used. Given
the net input I j to unit j, then O j, the output of unit j, is computed as

O j =
1

1 + e−I j
. (6.25)

This function is also referred to as a squashing function, because it maps a large input
domain onto the smaller range of 0 to 1. The logistic function is nonlinear and differ-
entiable, allowing the backpropagation algorithm to model classification problems that
are linearly inseparable.

We compute the output values, O j, for each hidden layer, up to and including the
output layer, which gives the network’s prediction. In practice, it is a good idea to cache
(i.e., save) the intermediate output values at each unit as they are required again later,
when backpropagating the error. This trick can substantially reduce the amount of com-
putation required.
Backpropagate the error: The error is propagated backward by updating the weights and
biases to reflect the error of the network’s prediction. For a unit j in the output layer, the
error Err j is computed by

Err j = O j(1−O j)(Tj−O j), (6.26)

where O j is the actual output of unit j, and Tj is the known target value of the given
training tuple. Note that O j(1−O j) is the derivative of the logistic function.

To compute the error of a hidden layer unit j, the weighted sum of the errors of the
units connected to unit j in the next layer are considered. The error of a hidden layer
unit j is

Err j = O j(1−O j)∑
k

Errkw jk, (6.27)

where w jk is the weight of the connection from unit j to a unit k in the next higher layer,
and Errk is the error of unit k.

The weights and biases are updated to reflect the propagated errors. Weights are updated
by the following equations, where ∆wi j is the change in weight wi j:

∆wi j = (l)Err jOi (6.28)

wi j = wi j + ∆wi j (6.29)

“What is the ‘l’ in Equation (6.28)?” The variable l is the learning rate, a constant
typically having a value between 0.0 and 1.0. Backpropagation learns using a method of
gradient descent to search for a set of weights that fits the training data so as to minimize
the mean squared distance between the network’s class prediction and the known tar-
get value of the tuples.8 The learning rate helps avoid getting stuck at a local minimum

8A method of gradient descent was also used for training Bayesian belief networks, as described in
Section 6.4.4.



6.6 Classification by Backpropagation 333

in decision space (i.e., where the weights appear to converge, but are not the optimum
solution) and encourages finding the global minimum. If the learning rate is too small,
then learning will occur at a very slow pace. If the learning rate is too large, then oscilla-
tion between inadequate solutions may occur. A rule of thumb is to set the learning rate
to 1/t, where t is the number of iterations through the training set so far.

Biases are updated by the following equations below, where ∆θ j is the change in
bias θ j:

∆θ j = (l)Err j (6.30)

θ j = θ j + ∆θ j (6.31)

Note that here we are updating the weights and biases after the presentation of each
tuple. This is referred to as case updating. Alternatively, the weight and bias increments
could be accumulated in variables, so that the weights and biases are updated after all
of the tuples in the training set have been presented. This latter strategy is called epoch
updating, where one iteration through the training set is an epoch. In theory, the math-
ematical derivation of backpropagation employs epoch updating, yet in practice, case
updating is more common because it tends to yield more accurate results.
Terminating condition: Training stops when

All ∆wi j in the previous epoch were so small as to be below some specified threshold, or

The percentage of tuples misclassified in the previous epoch is below some threshold,
or

A prespecified number of epochs has expired.

In practice, several hundreds of thousands of epochs may be required before the
weights will converge.

“How efficient is backpropagation?” The computational efficiency depends on the time
spent training the network. Given |D| tuples and w weights, each epoch requires O(|D|×
w) time. However, in the worst-case scenario, the number of epochs can be exponential
in n, the number of inputs. In practice, the time required for the networks to converge
is highly variable. A number of techniques exist that help speed up the training time.
For example, a technique known as simulated annealing can be used, which also ensures
convergence to a global optimum.

Example 6.9 Sample calculations for learning by the backpropagation algorithm. Figure 6.18 shows
a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight
and bias values of the network are given in Table 6.3, along with the first training tuple,
X = (1, 0, 1), whose class label is 1.

This example shows the calculations for backpropagation, given the first training
tuple, X. The tuple is fed into the network, and the net input and output of each unit
are computed. These values are shown in Table 6.4. The error of each unit is computed
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Figure 6.18 An example of a multilayer feed-forward neural network.

Table 6.3 Initial input, weight, and bias values.

x1 x2 x3 w14 w15 w24 w25 w34 w35 w46 w56 θ4 θ5 θ6

1 0 1 0.2 −0.3 0.4 0.1 −0.5 0.2 −0.3 −0.2 −0.4 0.2 0.1

Table 6.4 The net input and output calculations.

Unit j Net input, I j Output, O j

4 0.2 + 0−0.5−0.4 =−0.7 1/(1 + e0.7) = 0.332

5 −0.3 + 0 + 0.2 + 0.2 = 0.1 1/(1 + e−0.1) = 0.525

6 (−0.3)(0.332)− (0.2)(0.525)+ 0.1 =−0.105 1/(1 + e0.105) = 0.474

and propagated backward. The error values are shown in Table 6.5. The weight and bias
updates are shown in Table 6.6.

Several variations and alternatives to the backpropagation algorithm have been pro-
posed for classification in neural networks. These may involve the dynamic adjustment of
the network topology and of the learning rate or other parameters, or the use of different
error functions.

6.6.4 Inside the Black Box: Backpropagation and Interpretability

“Neural networks are like a black box. How can I ‘understand’ what the backpropagation
network has learned?” A major disadvantage of neural networks lies in their knowledge
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Table 6.5 Calculation of the error at each node.

Unit j Err j

6 (0.474)(1−0.474)(1−0.474) = 0.1311

5 (0.525)(1−0.525)(0.1311)(−0.2) =−0.0065

4 (0.332)(1−0.332)(0.1311)(−0.3) =−0.0087

Table 6.6 Calculations for weight and bias updating.

Weight or bias New value

w46 −0.3 +(0.9)(0.1311)(0.332) =−0.261

w56 −0.2 +(0.9)(0.1311)(0.525) =−0.138

w14 0.2 +(0.9)(−0.0087)(1) = 0.192

w15 −0.3 +(0.9)(−0.0065)(1) =−0.306

w24 0.4 +(0.9)(−0.0087)(0) = 0.4

w25 0.1 +(0.9)(−0.0065)(0) = 0.1

w34 −0.5 +(0.9)(−0.0087)(1) =−0.508

w35 0.2 +(0.9)(−0.0065)(1) = 0.194

θ6 0.1 +(0.9)(0.1311) = 0.218

θ5 0.2 +(0.9)(−0.0065) = 0.194

θ4 −0.4 +(0.9)(−0.0087) =−0.408

representation. Acquired knowledge in the form of a network of units connected by
weighted links is difficult for humans to interpret. This factor has motivated research in
extracting the knowledge embedded in trained neural networks and in representing that
knowledge symbolically. Methods include extracting rules from networks and sensitivity
analysis.

Various algorithms for the extraction of rules have been proposed. The methods typi-
cally impose restrictions regarding procedures used in training the given neural network,
the network topology, and the discretization of input values.

Fully connected networks are difficult to articulate. Hence, often the first step toward
extracting rules from neural networks is network pruning. This consists of simplifying
the network structure by removing weighted links that have the least effect on the trained
network. For example, a weighted link may be deleted if such removal does not result in
a decrease in the classification accuracy of the network.

Once the trained network has been pruned, some approaches will then perform
link, unit, or activation value clustering. In one method, for example, clustering is
used to find the set of common activation values for each hidden unit in a given
trained two-layer neural network (Figure 6.19). The combinations of these activation
values for each hidden unit are analyzed. Rules are derived relating combinations of
activation values with corresponding output unit values. Similarly, the sets of input
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H1 H2 H3

O1 O2

I1 I2 I3 I4 I5 I6 I7

Identify sets of common activation values for

each hidden node, Hi:

    for H1: (–1,0,1)

    for H2: (0.1)

    for H3: (–1,0.24,1)

Derive rules relating common activation values

with output nodes, Oj:

    IF (H2 = 0 AND H3 = –1) OR

         (H1 = –1 AND H2 = 1 AND H3 = –1) OR

         (H1 = –1 AND H2 = 0 AND H3 = 0.24)

    THEN O1 = 1, O2 = 0

    ELSE O1 = 0, O2 = 1

Derive rules relating input nodes, Ij, to

output nodes, Oj:

    IF (I2 = 0 AND I7 = 0) THEN H2 = 0         

    IF (I4 = 1 AND I6 = 1) THEN H3 = –1

    IF (I5 = 0) THEN H3 = –1

Obtain rules relating inputs and output classes:

    IF (I2 = 0 AND I7 = 0 AND I4 = 1 AND

    I6 = 1) THEN class = 1         

    IF (I2 = 0 AND I7 = 0 AND I5 = 0) THEN

    class = 1

Figure 6.19 Rules can be extracted from training neural networks. Adapted from [LSL95].

values and activation values are studied to derive rules describing the relationship
between the input and hidden unit layers. Finally, the two sets of rules may be
combined to form IF-THEN rules. Other algorithms may derive rules of other forms,
including M-of-N rules (where M out of a given N conditions in the rule antecedent
must be true in order for the rule consequent to be applied), decision trees with
M-of-N tests, fuzzy rules, and finite automata.

Sensitivity analysis is used to assess the impact that a given input variable has on a
network output. The input to the variable is varied while the remaining input variables
are fixed at some value. Meanwhile, changes in the network output are monitored. The
knowledge gained from this form of analysis can be represented in rules such as “IF X
decreases 5% THEN Y increases 8%.”
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6.7 Support Vector Machines

In this section, we study Support Vector Machines, a promising new method for the
classification of both linear and nonlinear data. In a nutshell, a support vector machine
(or SVM) is an algorithm that works as follows. It uses a nonlinear mapping to trans-
form the original training data into a higher dimension. Within this new dimension,
it searches for the linear optimal separating hyperplane (that is, a “decision boundary”
separating the tuples of one class from another). With an appropriate nonlinear map-
ping to a sufficiently high dimension, data from two classes can always be separated by
a hyperplane. The SVM finds this hyperplane using support vectors (“essential” training
tuples) and margins (defined by the support vectors). We will delve more into these new
concepts further below.

“I’ve heard that SVMs have attracted a great deal of attention lately. Why?” The first
paper on support vector machines was presented in 1992 by Vladimir Vapnik and col-
leagues Bernhard Boser and Isabelle Guyon, although the groundwork for SVMs has
been around since the 1960s (including early work by Vapnik and Alexei Chervonenkis
on statistical learning theory). Although the training time of even the fastest SVMs can be
extremely slow, they are highly accurate, owing to their ability to model complex nonlin-
ear decision boundaries. They are much less prone to overfitting than other methods. The
support vectors found also provide a compact description of the learned model. SVMs
can be used for prediction as well as classification. They have been applied to a num-
ber of areas, including handwritten digit recognition, object recognition, and speaker
identification, as well as benchmark time-series prediction tests.

6.7.1 The Case When the Data Are Linearly Separable

To explain the mystery of SVMs, let’s first look at the simplest case—a two-class problem
where the classes are linearly separable. Let the data set D be given as (X1, y1),
(X2, y2), . . . , (X|D|, y|D|), where Xi is the set of training tuples with associated class labels, yi.
Each yi can take one of two values, either +1 or−1 (i.e., yi ∈ {+1, −1}), corresponding
to the classes buys computer = yes and buys computer = no, respectively. To aid in visual-
ization, let’s consider an example based on two input attributes, A1 and A2, as shown in
Figure 6.20. From the graph, we see that the 2-D data are linearly separable (or “linear,”
for short) because a straight line can be drawn to separate all of the tuples of class +1 from
all of the tuples of class−1. There are an infinite number of separating lines that could be
drawn. We want to find the “best” one, that is, one that (we hope) will have the minimum
classification error on previously unseen tuples. How can we find this best line? Note that
if our data were 3-D (i.e., with three attributes), we would want to find the best separating
plane. Generalizing to n dimensions, we want to find the best hyperplane. We will use the
term “hyperplane” to refer to the decision boundary that we are seeking, regardless of the
number of input attributes. So, in other words, how can we find the best hyperplane?

An SVM approaches this problem by searching for the maximum marginal hyper-
plane. Consider Figure 6.21, which shows two possible separating hyperplanes and
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A1

A2

class 1, y = +1 ( buys_computer = yes )

class 2, y = –1 ( buys_computer = no )

Figure 6.20 The 2-D training data are linearly separable. There are an infinite number of (possible)
separating hyperplanes or “decision boundaries.” Which one is best?

their associated margins. Before we get into the definition of margins, let’s take an
intuitive look at this figure. Both hyperplanes can correctly classify all of the given
data tuples. Intuitively, however, we expect the hyperplane with the larger margin
to be more accurate at classifying future data tuples than the hyperplane with the
smaller margin. This is why (during the learning or training phase), the SVM searches
for the hyperplane with the largest margin, that is, the maximum marginal hyperplane
(MMH). The associated margin gives the largest separation between classes. Getting
to an informal definition of margin, we can say that the shortest distance from a
hyperplane to one side of its margin is equal to the shortest distance from the hyper-
plane to the other side of its margin, where the “sides” of the margin are parallel to
the hyperplane. When dealing with the MMH, this distance is, in fact, the shortest
distance from the MMH to the closest training tuple of either class.

A separating hyperplane can be written as

W ·X + b = 0, (6.32)

where W is a weight vector, namely, W = {w1, w2, . . . , wn}; n is the number of attributes;
and b is a scalar, often referred to as a bias. To aid in visualization, let’s consider two input
attributes, A1 and A2, as in Figure 6.21(b). Training tuples are 2-D, e.g., X = (x1, x2),
where x1 and x2 are the values of attributes A1 and A2, respectively, for X. If we think of
b as an additional weight, w0, we can rewrite the above separating hyperplane as

w0 + w1x1 + w2x2 = 0. (6.33)
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class 2, y = –1 ( buys_computer = no )
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Figure 6.21 Here we see just two possible separating hyperplanes and their associated margins. Which
one is better? The one with the larger margin should have greater generalization accuracy.

Thus, any point that lies above the separating hyperplane satisfies

w0 + w1x1 + w2x2 > 0. (6.34)

Similarly, any point that lies below the separating hyperplane satisfies

w0 + w1x1 + w2x2 < 0. (6.35)
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Figure 6.22 Support vectors. The SVM finds the maximum separating hyperplane, that is, the one with
maximum distance between the nearest training tuples. The support vectors are shown with
a thicker border.

The weights can be adjusted so that the hyperplanes defining the “sides” of the margin
can be written as

H1 : w0 + w1x1 + w2x2 ≥ 1 for yi = +1, and (6.36)
H2 : w0 + w1x1 + w2x2 ≤−1 for yi =−1. (6.37)

That is, any tuple that falls on or above H1 belongs to class +1, and any tuple that falls
on or below H2 belongs to class−1. Combining the two inequalities of Equations (6.36)
and (6.37), we get

yi(w0 + w1x1 + w2x2)≥ 1, ∀i. (6.38)

Any training tuples that fall on hyperplanes H1 or H2 (i.e., the “sides” defining the
margin) satisfy Equation (6.38) and are called support vectors. That is, they are equally
close to the (separating) MMH. In Figure 6.22, the support vectors are shown encircled
with a thicker border. Essentially, the support vectors are the most difficult tuples to
classify and give the most information regarding classification.

From the above, we can obtain a formulae for the size of the maximal margin. The
distance from the separating hyperplane to any point on H1 is 1

||W|| , where ||W || is the

Euclidean norm of W, that is
√

W ·W.9 By definition, this is equal to the distance from
any point on H2 to the separating hyperplane. Therefore, the maximal margin is 2

||W|| .

“So, how does an SVM find the MMH and the support vectors?” Using some “fancy math
tricks,” we can rewrite Equation (6.38) so that it becomes what is known as a constrained

9If W = {w1, w2, . . . , wn} then
√

W ·W =
√

w2
1 + w2

2 + · · ·+ w2
n.
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(convex) quadratic optimization problem. Such fancy math tricks are beyond the scope
of this book. Advanced readers may be interested to note that the tricks involve rewriting
Equation (6.38) using a Lagrangian formulation and then solving for the solution using
Karush-Kuhn-Tucker (KKT) conditions. Details can be found in references at the end of
this chapter. If the data are small (say, less than 2,000 training tuples), any optimization
software package for solving constrained convex quadratic problems can then be used
to find the support vectors and MMH. For larger data, special and more efficient algo-
rithms for training SVMs can be used instead, the details of which exceed the scope of this
book. Once we’ve found the support vectors and MMH (note that the support vectors
define the MMH!), we have a trained support vector machine. The MMH is a linear class
boundary, and so the corresponding SVM can be used to classify linearly separable data.
We refer to such a trained SVM as a linear SVM.

“Once I’ve got a trained support vector machine, how do I use it to classify test (i.e.,
new) tuples?” Based on the Lagrangian formulation mentioned above, the MMH can be
rewritten as the decision boundary

d(XT ) =
l

∑
i=1

yiαiXiXT + b0, (6.39)

where yi is the class label of support vector Xi; XT is a test tuple; αi and b0 are numeric
parameters that were determined automatically by the optimization or SVM algorithm
above; and l is the number of support vectors.

Interested readers may note that the αi are Lagrangian multipliers. For linearly sepa-
rable data, the support vectors are a subset of the actual training tuples (although there
will be a slight twist regarding this when dealing with nonlinearly separable data, as we
shall see below).

Given a test tuple, XT , we plug it into Equation (6.39), and then check to see the sign of
the result. This tells us on which side of the hyperplane the test tuple falls. If the sign is pos-
itive, then XT falls on or above the MMH, and so the SVM predicts that XT belongs to class
+1 (representing buys computer = yes, in our case). If the sign is negative, then XT falls on
or below the MMH and the class prediction is−1 (representing buys computer = no).

Notice that the Lagrangian formulation of our problem (Equation (6.39)) contains a
dot product between support vector Xi and test tuple XT . This will prove very useful for
finding the MMH and support vectors for the case when the given data are nonlinearly
separable, as described further below.

Before we move on to the nonlinear case, there are two more important things to
note. The complexity of the learned classifier is characterized by the number of support
vectors rather than the dimensionality of the data. Hence, SVMs tend to be less prone
to overfitting than some other methods. The support vectors are the essential or critical
training tuples—they lie closest to the decision boundary (MMH). If all other training
tuples were removed and training were repeated, the same separating hyperplane would
be found. Furthermore, the number of support vectors found can be used to compute
an (upper) bound on the expected error rate of the SVM classifier, which is independent
of the data dimensionality. An SVM with a small number of support vectors can have
good generalization, even when the dimensionality of the data is high.
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class 1, y = +1 ( buys_computer = yes )

class 2, y = –1 ( buys_computer = no )

Figure 6.23 A simple 2-D case showing linearly inseparable data. Unlike the linear separable data of
Figure 6.20, here it is not possible to draw a straight line to separate the classes. Instead, the
decision boundary is nonlinear.

6.7.2 The Case When the Data Are Linearly Inseparable

In Section 6.7.1 we learned about linear SVMs for classifying linearly separable data, but
what if the data are not linearly separable, as in Figure 6.23? In such cases, no straight
line can be found that would separate the classes. The linear SVMs we studied would not
be able to find a feasible solution here. Now what?

The good news is that the approach described for linear SVMs can be extended to
create nonlinear SVMs for the classification of linearly inseparable data (also called non-
linearly separable data, or nonlinear data, for short). Such SVMs are capable of finding
nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear
SVM by extending the approach for linear SVMs as follows. There are two main steps.
In the first step, we transform the original input data into a higher dimensional space
using a nonlinear mapping. Several common nonlinear mappings can be used in this
step, as we will describe further below. Once the data have been transformed into the
new higher space, the second step searches for a linear separating hyperplane in the new
space. We again end up with a quadratic optimization problem that can be solved using
the linear SVM formulation. The maximal marginal hyperplane found in the new space
corresponds to a nonlinear separating hypersurface in the original space.

Example 6.10 Nonlinear transformation of original input data into a higher dimensional space. Con-
sider the following example. A 3D input vector X = (x1, x2, x3) is mapped into a 6D space,
Z, using the mappings φ1(X) = x1, φ2(X) = x2, φ3(X) = x3, φ4(X) = (x1)2, φ5(X) =
x1x2, and φ6(X) = x1x3. A decision hyperplane in the new space is d(Z) = WZ + b,
where W and Z are vectors. This is linear. We solve for W and b and then substitute back
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so that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear
second-order polynomial in the original 3-D input space,

d(Z) = w1x1 + w2x2 + w3x3 + w4(x1)2 + w5x1x2 + w6x1x3 + b

= w1z1 + w2z2 + w3z3 + w4z4 + w5z5 + w6z6 + b

But there are some problems. First, how do we choose the nonlinear mapping to a
higher dimensional space? Second, the computation involved will be costly. Refer back
to Equation (6.39) for the classification of a test tuple, XT . Given the test tuple, we have to
compute its dot product with every one of the support vectors.10 In training, we have to
compute a similar dot product several times in order to find the MMH. This is especially
expensive. Hence, the dot product computation required is very heavy and costly. We
need another trick!

Luckily, we can use another math trick. It so happens that in solving the quadratic
optimization problem of the linear SVM (i.e., when searching for a linear SVM in the new
higher dimensional space), the training tuples appear only in the form of dot products,
φ(Xi) ·φ(Xj), where φ(X) is simply the nonlinear mapping function applied to transform
the training tuples. Instead of computing the dot product on the transformed data tuples,
it turns out that it is mathematically equivalent to instead apply a kernel function, K(Xi,
Xj), to the original input data. That is,

K(Xi, Xj) = φ(Xi) ·φ(Xj). (6.40)

In other words, everywhere that φ(Xi) ·φ(Xj) appears in the training algorithm, we can
replace it with K(Xi,Xj). In this way, all calculations are made in the original input space,
which is of potentially much lower dimensionality! We can safely avoid the mapping—it
turns out that we don’t even have to know what the mapping is! We will talk more later
about what kinds of functions can be used as kernel functions for this problem.

After applying this trick, we can then proceed to find a maximal separating hyper-
plane. The procedure is similar to that described in Section 6.7.1, although it involves
placing a user-specified upper bound, C, on the Lagrange multipliers, αi. This upper
bound is best determined experimentally.

“What are some of the kernel functions that could be used?” Properties of the kinds of
kernel functions that could be used to replace the dot product scenario described above
have been studied. Three admissible kernel functions include:

Polynomial kernel of degree h : K(Xi, Xj) = (Xi ·Xj + 1)h (6.41)

Gaussian radial basis function kernel : K(Xi, Xj) = e−‖Xi−Xj‖2/2σ2
(6.42)

Sigmoid kernel : K(Xi, Xj) = tanh(κXi ·Xj−δ) (6.43)

10The dot product of two vectors, XT = (xT
1 , xT

2 , . . . , xT
n ) and Xi = (xi1, xi2, . . . , xin) is xT

1 xi1 +xT
2 xi2 + · · ·+

xT
n xin. Note that this involves one multiplication and one addition for each of the n dimensions.
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Each of these results in a different nonlinear classifier in (the original) input space.
Neural network aficionados will be interested to note that the resulting decision hyper-
planes found for nonlinear SVMs are the same type as those found by other well-known
neural network classifiers. For instance, an SVM with a Gaussian radial basis function
(RBF) gives the same decision hyperplane as a type of neural network known as a radial
basis function (RBF) network. An SVM with a sigmoid kernel is equivalent to a sim-
ple two-layer neural network known as a multilayer perceptron (with no hidden layers).
There are no golden rules for determining which admissible kernel will result in the most
accurate SVM. In practice, the kernel chosen does not generally make a large difference in
resulting accuracy. SVM training always finds a global solution, unlike neural networks
such as backpropagation, where many local minima usually exist (Section 6.6.3).

So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) classi-
fication. SVM classifiers can be combined for the multiclass case. A simple and effective
approach, given m classes, trains m classifiers, one for each class (where classifier j learns
to return a positive value for class j and a negative value for the rest). A test tuple is
assigned the class corresponding to the largest positive distance.

Aside from classification, SVMs can also be designed for linear and nonlinear regres-
sion. Here, instead of learning to predict discrete class labels (like the yi ∈ {+1, − 1}
above), SVMs for regression attempt to learn the input-output relationship between
input training tuples, Xi, and their corresponding continuous-valued outputs, yi ∈ R .
An approach similar to SVMs for classification is followed. Additional user-specified
parameters are required.

A major research goal regarding SVMs is to improve the speed in training and testing
so that SVMs may become a more feasible option for very large data sets (e.g., of millions
of support vectors). Other issues include determining the best kernel for a given data set
and finding more efficient methods for the multiclass case.

6.8 Associative Classification: Classification
by Association Rule Analysis

Frequent patterns and their corresponding association or correlation rules character-
ize interesting relationships between attribute conditions and class labels, and thus have
been recently used for effective classification. Association rules show strong associations
between attribute-value pairs (or items) that occur frequently in a given data set. Asso-
ciation rules are commonly used to analyze the purchasing patterns of customers in a
store. Such analysis is useful in many decision-making processes, such as product place-
ment, catalog design, and cross-marketing. The discovery of association rules is based on
frequent itemset mining. Many methods for frequent itemset mining and the generation
of association rules were described in Chapter 5. In this section, we look at associative
classification, where association rules are generated and analyzed for use in classifica-
tion. The general idea is that we can search for strong associations between frequent
patterns (conjunctions of attribute-value pairs) and class labels. Because association rules
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explore highly confident associations among multiple attributes, this approach may over-
come some constraints introduced by decision-tree induction, which considers only one
attribute at a time. In many studies, associative classification has been found to be more
accurate than some traditional classification methods, such as C4.5. In particular, we
study three main methods: CBA, CMAR, and CPAR.

Before we begin, let’s look at association rule mining, in general. Association rules are
mined in a two-step process consisting of frequent itemset mining, followed by rule gener-
ation. The first step searches for patterns of attribute-value pairs that occur repeatedly in
a data set, where each attribute-value pair is considered an item. The resulting attribute-
value pairs form frequent itemsets. The second step analyzes the frequent itemsets in order
to generate association rules. All association rules must satisfy certain criteria regarding
their “accuracy” (or confidence) and the proportion of the data set that they actually rep-
resent (referred to as support). For example, the following is an association rule mined
from a data set, D, shown with its confidence and support.

age = youth∧credit = OK⇒ buys computer = yes [support = 20%, confidence = 93%]
(6.44)

where “∧” represents a logical “AND.” We will say more about confidence and support
in a minute.

More formally, let D be a data set of tuples. Each tuple in D is described by n attributes,
A1, A2, . . . , An, and a class label attribute, Aclass. All continuous attributes are discretized
and treated as categorical attributes. An item, p, is an attribute-value pair of the form
(Ai, v), where Ai is an attribute taking a value, v. A data tuple X = (x1, x2, . . . , xn) satis-
fies an item, p = (Ai, v), if and only if xi = v, where xi is the value of the ith attribute
of X. Association rules can have any number of items in the rule antecedent (left-hand
side) and any number of items in the rule consequent (right-hand side). However, when
mining association rules for use in classification, we are only interested in association
rules of the form p1 ∧ p2 ∧ . . . pl ⇒ Aclass = C where the rule antecedent is a conjunc-
tion of items, p1, p2, . . . , pl (l ≤ n), associated with a class label, C. For a given rule, R,
the percentage of tuples in D satisfying the rule antecedent that also have the class label
C is called the confidence of R. From a classification point of view, this is akin to rule
accuracy. For example, a confidence of 93% for Association Rule (6.44) means that 93%
of the customers in D who are young and have an OK credit rating belong to the class
buys computer = yes. The percentage of tuples in D satisfying the rule antecedent and hav-
ing class label C is called the support of R. A support of 20% for Association Rule (6.44)
means that 20% of the customers in D are young, have an OK credit rating, and belong
to the class buys computer = yes.

Methods of associative classification differ primarily in the approach used for frequent
itemset mining and in how the derived rules are analyzed and used for classification. We
now look at some of the various methods for associative classification.

One of the earliest and simplest algorithms for associative classification is CBA
(Classification-Based Association). CBA uses an iterative approach to frequent itemset
mining, similar to that described for Apriori in Section 5.2.1, where multiple passes are
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made over the data and the derived frequent itemsets are used to generate and test longer
itemsets. In general, the number of passes made is equal to the length of the longest rule
found. The complete set of rules satisfying minimum confidence and minimum sup-
port thresholds are found and then analyzed for inclusion in the classifier. CBA uses a
heuristic method to construct the classifier, where the rules are organized according to
decreasing precedence based on their confidence and support. If a set of rules has the
same antecedent, then the rule with the highest confidence is selected to represent the
set. When classifying a new tuple, the first rule satisfying the tuple is used to classify it.
The classifier also contains a default rule, having lowest precedence, which specifies a
default class for any new tuple that is not satisfied by any other rule in the classifier. In
this way, the set of rules making up the classifier form a decision list. In general, CBA was
empirically found to be more accurate than C4.5 on a good number of data sets.

CMAR (Classification based on Multiple Association Rules) differs from CBA in its
strategy for frequent itemset mining and its construction of the classifier. It also employs
several rule pruning strategies with the help of a tree structure for efficient storage and
retrieval of rules. CMAR adopts a variant of the FP-growth algorithm to find the com-
plete set of rules satisfying the minimum confidence and minimum support thresholds.
FP-growth was described in Section 5.2.4. FP-growth uses a tree structure, called an
FP-tree, to register all of the frequent itemset information contained in the given data
set, D. This requires only two scans of D. The frequent itemsets are then mined from the
FP-tree. CMAR uses an enhanced FP-tree that maintains the distribution of class labels
among tuples satisfying each frequent itemset. In this way, it is able to combine rule gen-
eration together with frequent itemset mining in a single step.

CMAR employs another tree structure to store and retrieve rules efficiently and to
prune rules based on confidence, correlation, and database coverage. Rule pruning strate-
gies are triggered whenever a rule is inserted into the tree. For example, given two rules,
R1 and R2, if the antecedent of R1 is more general than that of R2 and conf(R1) ≥
conf(R2), then R2 is pruned. The rationale is that highly specialized rules with low confi-
dence can be pruned if a more generalized version with higher confidence exists. CMAR
also prunes rules for which the rule antecedent and class are not positively correlated,
based on a χ2 test of statistical significance.

As a classifier, CMAR operates differently than CBA. Suppose that we are given a tuple
X to classify and that only one rule satisfies or matches X.11 This case is trivial—we simply
assign the class label of the rule. Suppose, instead, that more than one rule satisfies X.
These rules form a set, S. Which rule would we use to determine the class label of X? CBA
would assign the class label of the most confident rule among the rule set, S. CMAR
instead considers multiple rules when making its class prediction. It divides the rules
into groups according to class labels. All rules within a group share the same class label
and each group has a distinct class label. CMAR uses a weighted χ2 measure to find the
“strongest” group of rules, based on the statistical correlation of rules within a group.
It then assigns X the class label of the strongest group. In this way it considers multiple

11If the antecedent of a rule satisfies or matches X, then we say that the rule satisfies X.
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rules, rather than a single rule with highest confidence, when predicting the class label of
a new tuple. On experiments, CMAR had slightly higher average accuracy in comparison
with CBA. Its runtime, scalability, and use of memory were found to be more efficient.

CBA and CMAR adopt methods of frequent itemset mining to generate candidate
association rules, which include all conjunctions of attribute-value pairs (items) satisfy-
ing minimum support. These rules are then examined, and a subset is chosen to represent
the classifier. However, such methods generate quite a large number of rules. CPAR takes
a different approach to rule generation, based on a rule generation algorithm for classi-
fication known as FOIL (Section 6.5.3). FOIL builds rules to distinguish positive tuples
(say, having class buys computer = yes) from negative tuples (such as buys computer =
no). For multiclass problems, FOIL is applied to each class. That is, for a class, C, all
tuples of class C are considered positive tuples, while the rest are considered negative
tuples. Rules are generated to distinguish C tuples from all others. Each time a rule is
generated, the positive samples it satisfies (or covers) are removed until all the positive
tuples in the data set are covered. CPAR relaxes this step by allowing the covered tuples to
remain under consideration, but reducing their weight. The process is repeated for each
class. The resulting rules are merged to form the classifier rule set.

During classification, CPAR employs a somewhat different multiple rule strategy than
CMAR. If more than one rule satisfies a new tuple, X, the rules are divided into groups
according to class, similar to CMAR. However, CPAR uses the best k rules of each group
to predict the class label of X, based on expected accuracy. By considering the best k rules
rather than all of the rules of a group, it avoids the influence of lower ranked rules. The
accuracy of CPAR on numerous data sets was shown to be close to that of CMAR. How-
ever, since CPAR generates far fewer rules than CMAR, it shows much better efficiency
with large sets of training data.

In summary, associative classification offers a new alternative to classification schemes
by building rules based on conjunctions of attribute-value pairs that occur frequently
in data.

6.9 Lazy Learners (or Learning from Your Neighbors)

The classification methods discussed so far in this chapter—decision tree induction,
Bayesian classification, rule-based classification, classification by backpropagation, sup-
port vector machines, and classification based on association rule mining—are all exam-
ples of eager learners. Eager learners, when given a set of training tuples, will construct a
generalization (i.e., classification) model before receiving new (e.g., test) tuples to clas-
sify. We can think of the learned model as being ready and eager to classify previously
unseen tuples.

Imagine a contrasting lazy approach, in which the learner instead waits until the last
minute before doing any model construction in order to classify a given test tuple. That
is, when given a training tuple, a lazy learner simply stores it (or does only a little minor
processing) and waits until it is given a test tuple. Only when it sees the test tuple does it
perform generalization in order to classify the tuple based on its similarity to the stored
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training tuples. Unlike eager learning methods, lazy learners do less work when a training
tuple is presented and more work when making a classification or prediction. Because
lazy learners store the training tuples or “instances,” they are also referred to as instance-
based learners, even though all learning is essentially based on instances.

When making a classification or prediction, lazy learners can be computationally
expensive. They require efficient storage techniques and are well-suited to implemen-
tation on parallel hardware. They offer little explanation or insight into the structure of
the data. Lazy learners, however, naturally support incremental learning. They are able
to model complex decision spaces having hyperpolygonal shapes that may not be as eas-
ily describable by other learning algorithms (such as hyper-rectangular shapes modeled
by decision trees). In this section, we look at two examples of lazy learners: k-nearest-
neighbor classifiers and case-based reasoning classifiers.

6.9.1 k-Nearest-Neighbor Classifiers

The k-nearest-neighbor method was first described in the early 1950s. The method is
labor intensive when given large training sets, and did not gain popularity until the 1960s
when increased computing power became available. It has since been widely used in the
area of pattern recognition.

Nearest-neighbor classifiers are based on learning by analogy, that is, by comparing a
given test tuple with training tuples that are similar to it. The training tuples are described
by n attributes. Each tuple represents a point in an n-dimensional space. In this way,
all of the training tuples are stored in an n-dimensional pattern space. When given an
unknown tuple, a k-nearest-neighbor classifier searches the pattern space for the k train-
ing tuples that are closest to the unknown tuple. These k training tuples are the k “nearest
neighbors” of the unknown tuple.

“Closeness” is defined in terms of a distance metric, such as Euclidean distance.
The Euclidean distance between two points or tuples, say, X1 = (x11, x12, . . . , x1n) and
X2 = (x21, x22, . . . , x2n), is

dist(X1, X2) =

√

n

∑
i=1

(x1i− x2i)2. (6.45)

In other words, for each numeric attribute, we take the difference between the corre-
sponding values of that attribute in tuple X1 and in tuple X2, square this difference,
and accumulate it. The square root is taken of the total accumulated distance count.
Typically, we normalize the values of each attribute before using Equation (6.45). This
helps prevent attributes with initially large ranges (such as income) from outweighing
attributes with initially smaller ranges (such as binary attributes). Min-max normaliza-
tion, for example, can be used to transform a value v of a numeric attribute A to v′ in the
range [0, 1] by computing

v′ =
v−minA

maxA−minA
, (6.46)
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where minA and maxA are the minimum and maximum values of attribute A. Chapter 2
describes other methods for data normalization as a form of data transformation.

For k-nearest-neighbor classification, the unknown tuple is assigned the most
common class among its k nearest neighbors. When k = 1, the unknown tuple is
assigned the class of the training tuple that is closest to it in pattern space. Nearest-
neighbor classifiers can also be used for prediction, that is, to return a real-valued
prediction for a given unknown tuple. In this case, the classifier returns the average
value of the real-valued labels associated with the k nearest neighbors of the unknown
tuple.

“But how can distance be computed for attributes that not numeric, but categorical, such
as color?” The above discussion assumes that the attributes used to describe the tuples are
all numeric. For categorical attributes, a simple method is to compare the corresponding
value of the attribute in tuple X1 with that in tuple X2. If the two are identical (e.g., tuples
X1 and X2 both have the color blue), then the difference between the two is taken as 0.
If the two are different (e.g., tuple X1 is blue but tuple X2 is red), then the difference
is considered to be 1. Other methods may incorporate more sophisticated schemes for
differential grading (e.g., where a larger difference score is assigned, say, for blue and
white than for blue and black).

“What about missing values?” In general, if the value of a given attribute A is missing in
tuple X1 and/or in tuple X2, we assume the maximum possible difference. Suppose that
each of the attributes have been mapped to the range [0, 1]. For categorical attributes, we
take the difference value to be 1 if either one or both of the corresponding values of A
are missing. If A is numeric and missing from both tuples X1 and X2, then the difference
is also taken to be 1. If only one value is missing and the other (which we’ll call v′) is
present and normalized, then we can take the difference to be either |1− v′| or |0− v′|
(i.e., 1− v′ or v′), whichever is greater.

“How can I determine a good value for k, the number of neighbors?” This can be deter-
mined experimentally. Starting with k = 1, we use a test set to estimate the error rate
of the classifier. This process can be repeated each time by incrementing k to allow for
one more neighbor. The k value that gives the minimum error rate may be selected. In
general, the larger the number of training tuples is, the larger the value of k will be (so
that classification and prediction decisions can be based on a larger portion of the stored
tuples). As the number of training tuples approaches infinity and k = 1, the error rate can
be no worse then twice the Bayes error rate (the latter being the theoretical minimum).
If k also approaches infinity, the error rate approaches the Bayes error rate.

Nearest-neighbor classifiers use distance-based comparisons that intrinsically assign
equal weight to each attribute. They therefore can suffer from poor accuracy when given
noisy or irrelevant attributes. The method, however, has been modified to incorporate
attribute weighting and the pruning of noisy data tuples. The choice of a distance metric
can be critical. The Manhattan (city block) distance (Section 7.2.1), or other distance
measurements, may also be used.

Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D
is a training database of |D| tuples and k = 1, then O(|D|) comparisons are required
in order to classify a given test tuple. By presorting and arranging the stored tuples
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into search trees, the number of comparisons can be reduced to O(log(|D|). Parallel
implementation can reduce the running time to a constant, that is O(1), which is inde-
pendent of |D|. Other techniques to speed up classification time include the use of par-
tial distance calculations and editing the stored tuples. In the partial distance method,
we compute the distance based on a subset of the n attributes. If this distance exceeds a
threshold, then further computation for the given stored tuple is halted, and the process
moves on to the next stored tuple. The editing method removes training tuples that prove
useless. This method is also referred to as pruning or condensing because it reduces the
total number of tuples stored.

6.9.2 Case-Based Reasoning

Case-based reasoning (CBR) classifiers use a database of problem solutions to solve
new problems. Unlike nearest-neighbor classifiers, which store training tuples as points
in Euclidean space, CBR stores the tuples or “cases” for problem solving as complex
symbolic descriptions. Business applications of CBR include problem resolution for
customer service help desks, where cases describe product-related diagnostic problems.
CBR has also been applied to areas such as engineering and law, where cases are either
technical designs or legal rulings, respectively. Medical education is another area for
CBR, where patient case histories and treatments are used to help diagnose and treat
new patients.

When given a new case to classify, a case-based reasoner will first check if an iden-
tical training case exists. If one is found, then the accompanying solution to that case
is returned. If no identical case is found, then the case-based reasoner will search for
training cases having components that are similar to those of the new case. Conceptu-
ally, these training cases may be considered as neighbors of the new case. If cases are
represented as graphs, this involves searching for subgraphs that are similar to sub-
graphs within the new case. The case-based reasoner tries to combine the solutions
of the neighboring training cases in order to propose a solution for the new case. If
incompatibilities arise with the individual solutions, then backtracking to search for
other solutions may be necessary. The case-based reasoner may employ background
knowledge and problem-solving strategies in order to propose a feasible combined
solution.

Challenges in case-based reasoning include finding a good similarity metric (e.g., for
matching subgraphs) and suitable methods for combining solutions. Other challenges
include the selection of salient features for indexing training cases and the development
of efficient indexing techniques. A trade-off between accuracy and efficiency evolves as
the number of stored cases becomes very large. As this number increases, the case-based
reasoner becomes more intelligent. After a certain point, however, the efficiency of the
system will suffer as the time required to search for and process relevant cases increases.
As with nearest-neighbor classifiers, one solution is to edit the training database. Cases
that are redundant or that have not proved useful may be discarded for the sake of
improved performance. These decisions, however, are not clear-cut and their automa-
tion remains an active area of research.
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6.10 Other Classification Methods

In this section, we give a brief description of several other classification methods,
including genetic algorithms, rough set approach, and fuzzy set approaches. In general,
these methods are less commonly used for classification in commercial data mining sys-
tems than the methods described earlier in this chapter. However, these methods do show
their strength in certain applications, and hence it is worthwhile to include them here.

6.10.1 Genetic Algorithms

Genetic algorithms attempt to incorporate ideas of natural evolution. In general, genetic
learning starts as follows. An initial population is created consisting of randomly gener-
ated rules. Each rule can be represented by a string of bits. As a simple example, suppose
that samples in a given training set are described by two Boolean attributes, A1 and A2,
and that there are two classes, C1 and C2. The rule “IF A1 AND NOT A2 THEN C2” can be
encoded as the bit string “100,” where the two leftmost bits represent attributes A1 and
A2, respectively, and the rightmost bit represents the class. Similarly, the rule “IF NOT
A1 AND NOT A2 THEN C1” can be encoded as “001.” If an attribute has k values, where
k > 2, then k bits may be used to encode the attribute’s values. Classes can be encoded
in a similar fashion.

Based on the notion of survival of the fittest, a new population is formed to consist of
the fittest rules in the current population, as well as offspring of these rules. Typically, the
fitness of a rule is assessed by its classification accuracy on a set of training samples.

Offspring are created by applying genetic operators such as crossover and mutation.
In crossover, substrings from pairs of rules are swapped to form new pairs of rules. In
mutation, randomly selected bits in a rule’s string are inverted.

The process of generating new populations based on prior populations of rules con-
tinues until a population, P, evolves where each rule in P satisfies a prespecified fitness
threshold.

Genetic algorithms are easily parallelizable and have been used for classification as
well as other optimization problems. In data mining, they may be used to evaluate the
fitness of other algorithms.

6.10.2 Rough Set Approach

Rough set theory can be used for classification to discover structural relationships within
imprecise or noisy data. It applies to discrete-valued attributes. Continuous-valued
attributes must therefore be discretized before its use.

Rough set theory is based on the establishment of equivalence classes within the given
training data. All of the data tuples forming an equivalence class are indiscernible, that
is, the samples are identical with respect to the attributes describing the data. Given real-
world data, it is common that some classes cannot be distinguished in terms of the avail-
able attributes. Rough sets can be used to approximately or “roughly” define such classes.
A rough set definition for a given class, C, is approximated by two sets—a lower
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C

Upper approximation of C
Lower approximation of C

Figure 6.24 A rough set approximation of the set of tuples of the class C using lower and upper approxi-
mation sets of C. The rectangular regions represent equivalence classes.

approximation of C and an upper approximation of C. The lower approximation of C
consists of all of the data tuples that, based on the knowledge of the attributes, are certain
to belong to C without ambiguity. The upper approximation of C consists of all of the
tuples that, based on the knowledge of the attributes, cannot be described as not belong-
ing to C. The lower and upper approximations for a class C are shown in Figure 6.24,
where each rectangular region represents an equivalence class. Decision rules can be
generated for each class. Typically, a decision table is used to represent the rules.

Rough sets can also be used for attribute subset selection (or feature reduction,
where attributes that do not contribute toward the classification of the given training
data can be identified and removed) and relevance analysis (where the contribution
or significance of each attribute is assessed with respect to the classification task). The
problem of finding the minimal subsets (reducts) of attributes that can describe all of
the concepts in the given data set is NP-hard. However, algorithms to reduce the com-
putation intensity have been proposed. In one method, for example, a discernibility
matrix is used that stores the differences between attribute values for each pair of data
tuples. Rather than searching on the entire training set, the matrix is instead searched
to detect redundant attributes.

6.10.3 Fuzzy Set Approaches

Rule-based systems for classification have the disadvantage that they involve sharp cutoffs
for continuous attributes. For example, consider the following rule for customer credit
application approval. The rule essentially says that applications for customers who have
had a job for two or more years and who have a high income (i.e., of at least $50,000) are
approved:

IF (years employed ≥ 2) AND (income≥ 50K) T HEN credit = approved. (6.47)

By Rule (6.47), a customer who has had a job for at least two years will receive credit if her
income is, say, $50,000, but not if it is $49,000. Such harsh thresholding may seem unfair.
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Instead, we can discretize income into categories such as {low income, medium income,
high income}, and then apply fuzzy logic to allow “fuzzy” thresholds or boundaries to
be defined for each category (Figure 6.25). Rather than having a precise cutoff between
categories, fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of
membership that a certain value has in a given category. Each category then represents a
fuzzy set. Hence, with fuzzy logic, we can capture the notion that an income of $49,000
is, more or less, high, although not as high as an income of $50,000. Fuzzy logic systems
typically provide graphical tools to assist users in converting attribute values to fuzzy truth
values.

Fuzzy set theory is also known as possibility theory. It was proposed by Lotfi Zadeh in
1965 as an alternative to traditional two-value logic and probability theory. It lets us work
at a high level of abstraction and offers a means for dealing with imprecise measurement
of data. Most important, fuzzy set theory allows us to deal with vague or inexact facts. For
example, being a member of a set of high incomes is inexact (e.g., if $50,000 is high, then
what about $49,000? Or $48,000?) Unlike the notion of traditional “crisp” sets where an
element either belongs to a set S or its complement, in fuzzy set theory, elements can
belong to more than one fuzzy set. For example, the income value $49,000 belongs to
both the medium and high fuzzy sets, but to differing degrees. Using fuzzy set notation
and following Figure 6.25, this can be shown as

mmedium income($49K) = 0.15 and mhigh income($49K) = 0.96,

where m denotes the membership function, operating on the fuzzy sets of medium
income and high income, respectively. In fuzzy set theory, membership values for a
given element, x, (e.g., such as for $49,000) do not have to sum to 1. This is unlike tradi-
tional probability theory, which is constrained by a summation axiom.

1.0

10K 20K 30K 40K 50K 60K 70K

income

0.5

0
0

highmediumlow

fu
zz

y 
m

em
be

rs
hi

p

Figure 6.25 Fuzzy truth values for income, representing the degree of membership of income values with
respect to the categories {low, medium, high}. Each category represents a fuzzy set. Note that
a given income value, x, can have membership in more than one fuzzy set. The membership
values of x in each fuzzy set do not have to total to 1.
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Fuzzy set theory is useful for data mining systems performing rule-based classifica-
tion. It provides operations for combining fuzzy measurements. Suppose that in addition
to the fuzzy sets for income, we defined the fuzzy sets junior employee and senior employee
for the attribute years employed. Suppose also that we have a rule that, say, tests high
income and senior employee in the rule antecedent (IF part) for a given employee, x. If
these two fuzzy measures are ANDed together, the minimum of their measure is taken
as the measure of the rule. In other words,

m(high income AND senior employee)(x) = min(mhigh income(x), msenior employee(x)).

This is akin to saying that a chain is as strong as its weakest link. If the two measures are
ORed, the maximum of their measure is taken as the measure of the rule. In other words,

m(high income OR senior employee)(x) = max(mhigh income(x), msenior employee(x)).

Intuitively, this is like saying that a rope is as strong as its strongest strand.
Given a tuple to classify, more than one fuzzy rule may apply. Each applicable rule con-

tributesavoteformembershipinthecategories.Typically,thetruthvaluesforeachpredicted
category are summed, and these sums are combined. Several procedures exist for translat-
ing the resulting fuzzy output into a defuzzified or crisp value that is returned by the system.

Fuzzy logic systems have been used in numerous areas for classification, including
market research, finance, health care, and environmental engineering.

6.11 Prediction

“What if we would like to predict a continuous value, rather than a categorical label?”
Numeric prediction is the task of predicting continuous (or ordered) values for given
input. For example, we may wish to predict the salary of college graduates with 10 years
of work experience, or the potential sales of a new product given its price. By far, the
most widely used approach for numeric prediction (hereafter referred to as prediction)
is regression, a statistical methodology that was developed by Sir Frances Galton (1822–
1911), a mathematician who was also a cousin of Charles Darwin. In fact, many texts use
the terms “regression” and “numeric prediction” synonymously. However, as we have
seen, some classification techniques (such as backpropagation, support vector machines,
and k-nearest-neighbor classifiers) can be adapted for prediction. In this section, we dis-
cuss the use of regression techniques for prediction.

Regression analysis can be used to model the relationship between one or more
independent or predictor variables and a dependent or response variable (which is
continuous-valued). In the context of data mining, the predictor variables are the
attributes of interest describing the tuple (i.e., making up the attribute vector). In gen-
eral, the values of the predictor variables are known. (Techniques exist for handling cases
where such values may be missing.) The response variable is what we want to predict—it
is what we referred to in Section 6.1 as the predicted attribute. Given a tuple described
by predictor variables, we want to predict the associated value of the response variable.
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Regression analysis is a good choice when all of the predictor variables are continuous-
valued as well. Many problems can be solved by linear regression, and even more can be
tackled by applying transformations to the variables so that a nonlinear problem can
be converted to a linear one. For reasons of space, we cannot give a fully detailed treat-
ment of regression. Instead, this section provides an intuitive introduction to the topic.
Section 6.11.1 discusses straight-line regression analysis (which involves a single pre-
dictor variable) and multiple linear regression analysis (which involves two or more
predictor variables). Section 6.11.2 provides some pointers on dealing with nonlinear
regression. Section 6.11.3 mentions other regression-based methods, such as generalized
linear models, Poisson regression, log-linear models, and regression trees.

Several software packages exist to solve regression problems. Examples include SAS
(www.sas.com), SPSS (www.spss.com), and S-Plus (www.insightful.com). Another useful
resource is the book Numerical Recipes in C, by Press, Flannery, Teukolsky, and Vetterling,
and its associated source code.

6.11.1 Linear Regression

Straight-line regression analysis involves a response variable, y, and a single predictor
variable, x. It is the simplest form of regression, and models y as a linear function of x.
That is,

y = b + wx, (6.48)

where the variance of y is assumed to be constant, and b and w are regression coefficients
specifying the Y-intercept and slope of the line, respectively. The regression coefficients,
w and b, can also be thought of as weights, so that we can equivalently write,

y = w0 + w1x. (6.49)

These coefficients can be solved for by the method of least squares, which estimates the
best-fitting straight line as the one that minimizes the error between the actual data and
the estimate of the line. Let D be a training set consisting of values of predictor variable,
x, for some population and their associated values for response variable, y. The training
set contains |D| data points of the form (x1, y1), (x2, y2), . . . , (x|D|, y|D|).12 The regression
coefficients can be estimated using this method with the following equations:

w1 =

|D|

∑
i=1

(xi− x)(yi− y)

|D|

∑
i=1

(xi− x)2

(6.50)

12Note that earlier, we had used the notation (Xi, yi) to refer to training tuple i having associated
class label yi, where Xi was an attribute (or feature) vector (that is, Xi was described by more than
one attribute). Here, however, we are dealing with just one predictor variable. Since the Xi here are
one-dimensional, we use the notation xi over Xi in this case.



356 Chapter 6 Classification and Prediction

w0 = y−w1x (6.51)

where x is the mean value of x1, x2, . . . , x|D|, and y is the mean value of y1, y2, . . . , y|D|.
The coefficients w0 and w1 often provide good approximations to otherwise complicated
regression equations.

Example 6.11 Straight-line regression using the method of least squares. Table 6.7 shows a set of paired
data where x is the number of years of work experience of a college graduate and y is the

Table 6.7 Salary data.

x years experience y salary (in $1000s)

3 30

8 57

9 64

13 72

3 36

6 43

11 59

21 90

1 20

16 83

Figure 6.26 Plot of the data in Table 6.7 for Example 6.11. Although the points do not fall on a straight line,
the overall pattern suggests a linear relationship between x (years experience) and y (salary).
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corresponding salary of the graduate. The 2-D data can be graphed on a scatter plot, as
in Figure 6.26. The plot suggests a linear relationship between the two variables, x and y.
We model the relationship that salary may be related to the number of years of work
experience with the equation y = w0 + w1x.

Given the above data, we compute x = 9.1 and y = 55.4. Substituting these values
into Equations (6.50) and (6.51), we get

w1 =
(3−9.1)(30−55.4)+(8−9.1)(57−55.4)+ · · ·+(16−9.1)(83−55.4)

(3−9.1)2 +(8−9.1)2 + · · ·+(16−9.1)2 = 3.5

w0 = 55.4− (3.5)(9.1) = 23.6

Thus, the equation of the least squares line is estimated by y = 23.6 + 3.5x. Using this
equation, we can predict that the salary of a college graduate with, say, 10 years of expe-
rience is $58,600.

Multiple linear regression is an extension of straight-line regression so as to involve
more than one predictor variable. It allows response variable y to be modeled as a linear
function of, say, n predictor variables or attributes, A1, A2, . . . , An, describing a tuple, X.
(That is, X = (x1, x2, . . . , xn).) Our training data set, D, contains data of the form
(X1, y1), (X2, y2), . . . , (X|D|, y|D|), where the Xi are the n-dimensional training tuples
with associated class labels, yi. An example of a multiple linear regression model based
on two predictor attributes or variables, A1 and A2, is

y = w0 + w1x1 + w2x2, (6.52)

where x1 and x2 are the values of attributes A1 and A2, respectively, in X. The method of
least squares shown above can be extended to solve for w0, w1, and w2. The equations,
however, become long and are tedious to solve by hand. Multiple regression problems
are instead commonly solved with the use of statistical software packages, such as SAS,
SPSS, and S-Plus (see references above.)

6.11.2 Nonlinear Regression

“How can we model data that does not show a linear dependence? For example, what if a
given response variable and predictor variable have a relationship that may be modeled by a
polynomial function?” Think back to the straight-line linear regression case above where
dependent response variable, y, is modeled as a linear function of a single independent
predictor variable, x. What if we can get a more accurate model using a nonlinear model,
such as a parabola or some other higher-order polynomial? Polynomial regression is
often of interest when there is just one predictor variable. It can be modeled by adding
polynomial terms to the basic linear model. By applying transformations to the variables,
we can convert the nonlinear model into a linear one that can then be solved by the
method of least squares.
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Example 6.12 Transformation of a polynomial regression model to a linear regression model.
Consider a cubic polynomial relationship given by

y = w0 + w1x + w2x2 + w3x3. (6.53)

To convert this equation to linear form, we define new variables:

x1 = x x2 = x2 x3 = x3 (6.54)

Equation (6.53) can then be converted to linear form by applying the above assignments,
resulting in the equation y = w0 + w1x1 + w2x2 + w3x3, which is easily solved by the
method of least squares using software for regression analysis. Note that polynomial
regression is a special case of multiple regression. That is, the addition of high-order
terms like x2, x3, and so on, which are simple functions of the single variable, x, can be
considered equivalent to adding new independent variables.

In Exercise 15, you are asked to find the transformations required to convert a non-
linear model involving a power function into a linear regression model.

Some models are intractably nonlinear (such as the sum of exponential terms, for
example) and cannot be converted to a linear model. For such cases, it may be possible to
obtain least square estimates through extensive calculations on more complex formulae.

Various statistical measures exist for determining how well the proposed model can
predict y. These are described in Section 6.12.2. Obviously, the greater the number of
predictor attributes is, the slower the performance is. Before applying regression analysis,
it is common to perform attribute subset selection (Section 2.5.2) to eliminate attributes
that are unlikely to be good predictors for y. In general, regression analysis is accurate
for prediction, except when the data contain outliers. Outliers are data points that are
highly inconsistent with the remaining data (e.g., they may be way out of the expected
value range). Outlier detection is discussed in Chapter 7. Such techniques must be used
with caution, however, so as not to remove data points that are valid, although they may
vary greatly from the mean.

6.11.3 Other Regression-Based Methods

Linear regression is used to model continuous-valued functions. It is widely used, owing
largely to its simplicity. “Can it also be used to predict categorical labels?” Generalized
linear models represent the theoretical foundation on which linear regression can be
applied to the modeling of categorical response variables. In generalized linear models,
the variance of the response variable, y, is a function of the mean value of y, unlike in
linear regression, where the variance of y is constant. Common types of generalized linear
models include logistic regression and Poisson regression. Logistic regression models
the probability of some event occurring as a linear function of a set of predictor variables.
Count data frequently exhibit a Poisson distribution and are commonly modeled using
Poisson regression.
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Log-linear models approximate discrete multidimensional probability distributions.
They may be used to estimate the probability value associated with data cube cells. For
example, suppose we are given data for the attributes city, item, year, and sales. In the
log-linear method, all attributes must be categorical; hence continuous-valued attributes
(like sales) must first be discretized. The method can then be used to estimate the proba-
bility of each cell in the 4-D base cuboid for the given attributes, based on the 2-D cuboids
for city and item, city and year, city and sales, and the 3-D cuboid for item, year, and sales.
In this way, an iterative technique can be used to build higher-order data cubes from
lower-order ones. The technique scales up well to allow for many dimensions. Aside from
prediction, the log-linear model is useful for data compression (since the smaller-order
cuboids together typically occupy less space than the base cuboid) and data smoothing
(since cell estimates in the smaller-order cuboids are less subject to sampling variations
than cell estimates in the base cuboid).

Decision tree induction can be adapted so as to predict continuous (ordered) values,
rather than class labels. There are two main types of trees for prediction—regression trees
and model trees. Regression trees were proposed as a component of the CART learning
system. (Recall that the acronym CART stands for Classification and Regression Trees.)
Each regression tree leaf stores a continuous-valued prediction, which is actually the
average value of the predicted attribute for the training tuples that reach the leaf. Since
the terms “regression” and “numeric prediction” are used synonymously in statistics, the
resulting trees were called “regression trees,” even though they did not use any regression
equations. By contrast, in model trees, each leaf holds a regression model—a multivari-
ate linear equation for the predicted attribute. Regression and model trees tend to be
more accurate than linear regression when the data are not represented well by a simple
linear model.

6.12 Accuracy and Error Measures

Now that you may have trained a classifier or predictor, there may be many questions
going through your mind. For example, suppose you used data from previous sales to
train a classifier to predict customer purchasing behavior. You would like an estimate of
how accurately the classifier can predict the purchasing behavior of future customers,
that is, future customer data on which the classifier has not been trained. You may even
have tried different methods to build more than one classifier (or predictor) and now
wish to compare their accuracy. But what is accuracy? How can we estimate it? Are there
strategies for increasing the accuracy of a learned model? These questions are addressed
in the next few sections. Section 6.12.1 describes measures for computing classifier accu-
racy. Predictor error measures are given in Section 6.12.2. We can use these measures
in techniques for accuracy estimation, such as the holdout, random subsampling, k-fold
cross-validation, and bootstrap methods (Section 6.13). In Section 6.14, we’ll learn some
tricks for increasing model accuracy, such as bagging and boosting. Finally, Section 6.15
discusses model selection (i.e., choosing one classifier or predictor over another).
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Classes buys computer = yes buys computer = no Total Recognition (%)

buys computer = yes 6,954 46 7,000 99.34

buys computer = no 412 2,588 3,000 86.27

Total 7,366 2,634 10,000 95.52

Figure 6.27 A confusion matrix for the classes buys computer = yes and buys computer = no, where an
entry is row i and column j shows the number of tuples of class i that were labeled by the
classifier as class j. Ideally, the nondiagonal entries should be zero or close to zero.

6.12.1 Classifier Accuracy Measures

Using training data to derive a classifier or predictor and then to estimate the accuracy
of the resulting learned model can result in misleading overoptimistic estimates due to
overspecialization of the learning algorithm to the data. (We’ll say more on this in a
moment!) Instead, accuracy is better measured on a test set consisting of class-labeled
tuples that were not used to train the model. The accuracy of a classifier on a given test
set is the percentage of test set tuples that are correctly classified by the classifier. In the
pattern recognition literature, this is also referred to as the overall recognition rate of the
classifier, that is, it reflects how well the classifier recognizes tuples of the various classes.

We can also speak of the error rate or misclassification rate of a classifier, M, which is
simply 1−Acc(M), where Acc(M) is the accuracy of M. If we were to use the training set
to estimate the error rate of a model, this quantity is known as the resubstitution error.
This error estimate is optimistic of the true error rate (and similarly, the corresponding
accuracy estimate is optimistic) because the model is not tested on any samples that it
has not already seen.

The confusion matrix is a useful tool for analyzing how well your classifier can recog-
nize tuples of different classes. A confusion matrix for two classes is shown in Figure 6.27.
Given m classes, a confusion matrix is a table of at least size m by m. An entry, CMi, j in
the first m rows and m columns indicates the number of tuples of class i that were labeled
by the classifier as class j. For a classifier to have good accuracy, ideally most of the tuples
would be represented along the diagonal of the confusion matrix, from entry CM1, 1 to
entry CMm, m, with the rest of the entries being close to zero. The table may have addi-
tional rows or columns to provide totals or recognition rates per class.

Given two classes, we can talk in terms of positive tuples (tuples of the main class of
interest, e.g., buys computer = yes) versus negative tuples (e.g., buys computer = no).13

True positives refer to the positive tuples that were correctly labeled by the classifier,
while true negatives are the negative tuples that were correctly labeled by the classifier.
False positives are the negative tuples that were incorrectly labeled (e.g., tuples of class
buys computer = no for which the classifier predicted buys computer = yes). Similarly,

13In the machine learning and pattern recognition literature, these are referred to as positive samples and
negatives samples, respectively.
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Predicted class

C1 C2

Actual class C1 true positives false negatives

C2 false positives true negatives

Figure 6.28 A confusion matrix for positive and negative tuples.

false negatives are the positive tuples that were incorrectly labeled (e.g., tuples of class
buys computer = yes for which the classifier predicted buys computer = no). These terms
are useful when analyzing a classifier’s ability and are summarized in Figure 6.28.

“Are there alternatives to the accuracy measure?” Suppose that you have trained a clas-
sifier to classify medical data tuples as either “cancer” or “not cancer.” An accuracy rate
of, say, 90% may make the classifier seem quite accurate, but what if only, say, 3–4% of
the training tuples are actually “cancer”? Clearly, an accuracy rate of 90% may not be
acceptable—the classifier could be correctly labelling only the “not cancer” tuples, for
instance. Instead, we would like to be able to access how well the classifier can recognize
“cancer” tuples (the positive tuples) and how well it can recognize “not cancer” tuples
(the negative tuples). The sensitivity and specificity measures can be used, respectively,
for this purpose. Sensitivity is also referred to as the true positive (recognition) rate (that
is, the proportion of positive tuples that are correctly identified), while specificity is the
true negative rate (that is, the proportion of negative tuples that are correctly identified).
In addition, we may use precision to access the percentage of tuples labeled as “cancer”
that actually are “cancer” tuples. These measures are defined as

sensitivity =
t pos
pos

(6.55)

specificity =
t neg
neg

(6.56)

precision =
t pos

(t pos + f pos)
(6.57)

where t pos is the number of true positives (“cancer” tuples that were correctly classi-
fied as such), pos is the number of positive (“cancer”) tuples, t neg is the number of true
negatives (“not cancer” tuples that were correctly classified as such), neg is the number of
negative (“not cancer”) tuples, and f pos is the number of false positives (“not cancer”
tuples that were incorrectly labeled as “cancer”). It can be shown that accuracy is a func-
tion of sensitivity and specificity:

accuracy = sensitivity
pos

(pos + neg)
+ specificity

neg
(pos + neg)

. (6.58)

The true positives, true negatives, false positives, and false negatives are also useful
in assessing the costs and benefits (or risks and gains) associated with a classification
model. The cost associated with a false negative (such as, incorrectly predicting that a
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cancerous patient is not cancerous) is far greater than that of a false positive (incorrectly
yet conservatively labeling a noncancerous patient as cancerous). In such cases, we can
outweigh one type of error over another by assigning a different cost to each. These
costs may consider the danger to the patient, financial costs of resulting therapies, and
other hospital costs. Similarly, the benefits associated with a true positive decision may
be different than that of a true negative. Up to now, to compute classifier accuracy, we
have assumed equal costs and essentially divided the sum of true positives and true
negatives by the total number of test tuples. Alternatively, we can incorporate costs
and benefits by instead computing the average cost (or benefit) per decision. Other
applications involving cost-benefit analysis include loan application decisions and tar-
get marketing mailouts. For example, the cost of loaning to a defaulter greatly exceeds
that of the lost business incurred by denying a loan to a nondefaulter. Similarly, in an
application that tries to identify households that are likely to respond to mailouts of
certain promotional material, the cost of mailouts to numerous households that do not
respond may outweigh the cost of lost business from not mailing to households that
would have responded. Other costs to consider in the overall analysis include the costs
to collect the data and to develop the classification tool.

“Are there other cases where accuracy may not be appropriate?” In classification prob-
lems, it is commonly assumed that all tuples are uniquely classifiable, that is, that each
training tuple can belong to only one class. Yet, owing to the wide diversity of data
in large databases, it is not always reasonable to assume that all tuples are uniquely
classifiable. Rather, it is more probable to assume that each tuple may belong to more
than one class. How then can the accuracy of classifiers on large databases be mea-
sured? The accuracy measure is not appropriate, because it does not take into account
the possibility of tuples belonging to more than one class.

Rather than returning a class label, it is useful to return a probability class distribu-
tion. Accuracy measures may then use a second guess heuristic, whereby a class pre-
diction is judged as correct if it agrees with the first or second most probable class.
Although this does take into consideration, to some degree, the nonunique classifica-
tion of tuples, it is not a complete solution.

6.12.2 Predictor Error Measures

“How can we measure predictor accuracy?” Let DT be a test set of the form (X1, y1),
(X2,y2), . . . , (Xd, yd), where the Xi are the n-dimensional test tuples with associated
known values, yi, for a response variable, y, and d is the number of tuples in DT . Since
predictors return a continuous value rather than a categorical label, it is difficult to say
exactly whether the predicted value, y′i, for Xi is correct. Instead of focusing on whether
y′i is an “exact” match with yi, we instead look at how far off the predicted value is from
the actual known value. Loss functions measure the error between yi and the predicted
value, y′i. The most common loss functions are:

Absolute error : |yi− y′i| (6.59)

Squared error : (yi− y′i)
2 (6.60)
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Based on the above, the test error (rate), or generalization error, is the average loss
over the test set. Thus, we get the following error rates.

Mean absolute error :

d

∑
i=1
|yi− y′i|

d (6.61)

Mean squared error :

d

∑
i=1

(yi− y′i)
2

d (6.62)

The mean squared error exaggerates the presence of outliers, while the mean absolute
error does not. If we were to take the square root of the mean squared error, the result-
ing error measure is called the root mean squared error. This is useful in that it allows
the error measured to be of the same magnitude as the quantity being predicted.

Sometimes, we may want the error to be relative to what it would have been if we
had just predicted y, the mean value for y from the training data, D. That is, we can
normalize the total loss by dividing by the total loss incurred from always predicting
the mean. Relative measures of error include:

Relative absolute error :

d

∑
i=1
|yi− y′i|

d

∑
i=1
|yi− y|

(6.63)

Relative squared error :

d

∑
i=1

(yi− y′i)
2

d

∑
i=1

(yi− y)2
(6.64)

where y is the mean value of the yi’s of the training data, that is y = ∑t
i=1 yi

d
. We can

take the root of the relative squared error to obtain the root relative squared error so
that the resulting error is of the same magnitude as the quantity predicted.

In practice, the choice of error measure does not greatly affect prediction model
selection.

6.13 Evaluating the Accuracy of a Classifier or Predictor

How can we use the above measures to obtain a reliable estimate of classifier accu-
racy (or predictor accuracy in terms of error)? Holdout, random subsampling, cross-
validation, and the bootstrap are common techniques for assessing accuracy based on
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Figure 6.29 Estimating accuracy with the holdout method.

randomly sampled partitions of the given data. The use of such techniques to estimate
accuracy increases the overall computation time, yet is useful for model selection.

6.13.1 Holdout Method and Random Subsampling

The holdout method is what we have alluded to so far in our discussions about accu-
racy. In this method, the given data are randomly partitioned into two independent
sets, a training set and a test set. Typically, two-thirds of the data are allocated to the
training set, and the remaining one-third is allocated to the test set. The training set is
used to derive the model, whose accuracy is estimated with the test set (Figure 6.29).
The estimate is pessimistic because only a portion of the initial data is used to derive
the model.

Random subsampling is a variation of the holdout method in which the holdout
method is repeated k times. The overall accuracy estimate is taken as the average of the
accuracies obtained from each iteration. (For prediction, we can take the average of the
predictor error rates.)

6.13.2 Cross-validation

In k-fold cross-validation, the initial data are randomly partitioned into k mutually
exclusive subsets or “folds,” D1, D2, . . . , Dk, each of approximately equal size. Train-
ing and testing is performed k times. In iteration i, partition Di is reserved as the test
set, and the remaining partitions are collectively used to train the model. That is, in
the first iteration, subsets D2, . . . , Dk collectively serve as the training set in order to
obtain a first model, which is tested on D1; the second iteration is trained on subsets
D1, D3, . . . , Dk and tested on D2; and so on. Unlike the holdout and random subsam-
pling methods above, here, each sample is used the same number of times for training
and once for testing. For classification, the accuracy estimate is the overall number of
correct classifications from the k iterations, divided by the total number of tuples in the
initial data. For prediction, the error estimate can be computed as the total loss from
the k iterations, divided by the total number of initial tuples.
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Leave-one-out is a special case of k-fold cross-validation where k is set to the number
of initial tuples. That is, only one sample is “left out” at a time for the test set. In
stratified cross-validation, the folds are stratified so that the class distribution of the
tuples in each fold is approximately the same as that in the initial data.

In general, stratified 10-fold cross-validation is recommended for estimating accu-
racy (even if computation power allows using more folds) due to its relatively low bias
and variance.

6.13.3 Bootstrap

Unlike the accuracy estimation methods mentioned above, the bootstrap method
samples the given training tuples uniformly with replacement. That is, each time a
tuple is selected, it is equally likely to be selected again and readded to the training set.
For instance, imagine a machine that randomly selects tuples for our training set. In
sampling with replacement, the machine is allowed to select the same tuple more than
once.

There are several bootstrap methods. A commonly used one is the .632 bootstrap,
which works as follows. Suppose we are given a data set of d tuples. The data set is
sampled d times, with replacement, resulting in a bootstrap sample or training set of d
samples. It is very likely that some of the original data tuples will occur more than once
in this sample. The data tuples that did not make it into the training set end up forming
the test set. Suppose we were to try this out several times. As it turns out, on average,
63.2% of the original data tuples will end up in the bootstrap, and the remaining 36.8%
will form the test set (hence, the name, .632 bootstrap.)

“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of
being selected, so the probability of not being chosen is (1−1/d). We have to select d
times, so the probability that a tuple will not be chosen during this whole time is (1−
1/d)d . If d is large, the probability approaches e−1 = 0.368.14 Thus, 36.8% of tuples
will not be selected for training and thereby end up in the test set, and the remaining
63.2% will form the training set.

We can repeat the sampling procedure k times, where in each iteration, we use the
current test set to obtain an accuracy estimate of the model obtained from the current
bootstrap sample. The overall accuracy of the model is then estimated as

Acc(M) =
k

∑
i=1

(0.632×Acc(Mi)test set + 0.368×Acc(Mi)train set), (6.65)

where Acc(Mi)test set is the accuracy of the model obtained with bootstrap sample i
when it is applied to test set i. Acc(Mi)train set is the accuracy of the model obtained with
bootstrap sample i when it is applied to the original set of data tuples. The bootstrap
method works well with small data sets.

14e is the base of natural logarithms, that is, e = 2.718.
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Figure 6.30 Increasing model accuracy: Bagging and boosting each generate a set of classification or
prediction models, M1, M2, . . . , Mk. Voting strategies are used to combine the predictions
for a given unknown tuple.

6.14 Ensemble Methods—Increasing the Accuracy

In Section 6.3.3, we saw how pruning can be applied to decision tree induction to help
improve the accuracy of the resulting decision trees. Are there general strategies for
improving classifier and predictor accuracy?

The answer is yes. Bagging and boosting are two such techniques (Figure 6.30). They
are examples of ensemble methods, or methods that use a combination of models. Each
combines a series of k learned models (classifiers or predictors), M1, M2, . . . , Mk, with
the aim of creating an improved composite model, M∗. Both bagging and boosting can
be used for classification as well as prediction.

6.14.1 Bagging

We first take an intuitive look at how bagging works as a method of increasing accuracy.
For ease of explanation, we will assume at first that our model is a classifier. Suppose
that you are a patient and would like to have a diagnosis made based on your symptoms.
Instead of asking one doctor, you may choose to ask several. If a certain diagnosis occurs
more than any of the others, you may choose this as the final or best diagnosis. That
is, the final diagnosis is made based on a majority vote, where each doctor gets an
equal vote. Now replace each doctor by a classifier, and you have the basic idea behind
bagging. Intuitively, a majority vote made by a large group of doctors may be more
reliable than a majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i (i = 1, 2, . . . , k), a
training set, Di, of d tuples is sampled with replacement from the original set of tuples, D.
Note that the term bagging stands for bootstrap aggregation. Each training set is a bootstrap
sample, as described in Section 6.13.3. Because sampling with replacement is used, some
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Algorithm: Bagging. The bagging algorithm—create an ensemble of models (classifiers or pre-
dictors) for a learning scheme where each model gives an equally-weighted prediction.

Input:

D, a set of d training tuples;

k, the number of models in the ensemble;

a learning scheme (e.g., decision tree algorithm, backpropagation, etc.)

Output: A composite model, M∗.
Method:

(1) for i = 1 to k do // create k models:
(2) create bootstrap sample, Di, by sampling D with replacement;
(3) use Di to derive a model, Mi;
(4) endfor

To use the composite model on a tuple, X:

(1) if classification then
(2) let each of the k models classify X and return the majority vote;
(3) if prediction then
(4) let each of the k models predict a value for X and return the average predicted value;

Figure 6.31 Bagging.

of the original tuples of D may not be included in Di, whereas others may occur more than
once. A classifier model, Mi, is learned for each training set, Di. To classify an unknown
tuple, X, each classifier, Mi, returns its class prediction, which counts as one vote. The
bagged classifier, M∗, counts the votes and assigns the class with the most votes to X.
Bagging can be applied to the prediction of continuous values by taking the average value
of each prediction for a given test tuple. The algorithm is summarized in Figure 6.31.

The bagged classifier often has significantly greater accuracy than a single classifier
derived from D, the original training data. It will not be considerably worse and is
more robust to the effects of noisy data. The increased accuracy occurs because the
composite model reduces the variance of the individual classifiers. For prediction, it
was theoretically proven that a bagged predictor will always have improved accuracy
over a single predictor derived from D.

6.14.2 Boosting

We now look at the ensemble method of boosting. As in the previous section, suppose
that as a patient, you have certain symptoms. Instead of consulting one doctor, you
choose to consult several. Suppose you assign weights to the value or worth of each
doctor’s diagnosis, based on the accuracies of previous diagnoses they have made. The
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final diagnosis is then a combination of the weighted diagnoses. This is the essence
behind boosting.

In boosting, weights are assigned to each training tuple. A series of k classifiers is
iteratively learned. After a classifier Mi is learned, the weights are updated to allow the
subsequent classifier, Mi+1, to “pay more attention” to the training tuples that were mis-
classified by Mi. The final boosted classifier, M∗, combines the votes of each individual
classifier, where the weight of each classifier’s vote is a function of its accuracy. The
boosting algorithm can be extended for the prediction of continuous values.

Adaboost is a popular boosting algorithm. Suppose we would like to boost the accuracy
of some learning method. We are given D, a data set of d class-labeled tuples, (X1, y1),
(X2, y2), . . ., (Xd, yd), where yi is the class label of tuple Xi. Initially, Adaboost assigns each
training tuple an equal weight of 1/d. Generating k classifiers for the ensemble requires
k rounds through the rest of the algorithm. In round i, the tuples from D are sampled to
form a training set, Di, of size d. Sampling with replacement is used—the same tuple may
be selected more than once. Each tuple’s chance of being selected is based on its weight.
A classifier model, Mi, is derived from the training tuples of Di. Its error is then calculated
using Di as a test set. The weights of the training tuples are then adjusted according to how
they were classified. If a tuple was incorrectly classified, its weight is increased. If a tuple
was correctly classified, its weight is decreased. A tuple’s weight reflects how hard it is to
classify—the higher the weight, the more often it has been misclassified. These weights
will be used to generate the training samples for the classifier of the next round. The basic
idea is that when we build a classifier, we want it to focus more on the misclassified tuples
of the previous round. Some classifiers may be better at classifying some “hard” tuples
than others. In this way, we build a series of classifiers that complement each other. The
algorithm is summarized in Figure 6.32.

Now, let’s look at some of the math that’s involved in the algorithm. To compute
the error rate of model Mi, we sum the weights of each of the tuples in Di that Mi
misclassified. That is,

error(Mi) =
d

∑
j

w j× err(Xj), (6.66)

where err(Xj) is the misclassification error of tuple Xj: If the tuple was misclassified,
then err(Xj) is 1. Otherwise, it is 0. If the performance of classifier Mi is so poor that
its error exceeds 0.5, then we abandon it. Instead, we try again by generating a new Di
training set, from which we derive a new Mi.

The error rate of Mi affects how the weights of the training tuples are updated. If a tuple
in round i was correctly classified, its weight is multiplied by error(Mi)/(1−error(Mi)).
Once the weights of all of the correctly classified tuples are updated, the weights for all
tuples (including the misclassified ones) are normalized so that their sum remains the
same as it was before. To normalize a weight, we multiply it by the sum of the old weights,
divided by the sum of the new weights. As a result, the weights of misclassified tuples are
increased and the weights of correctly classified tuples are decreased, as described above.

“Once boosting is complete, how is the ensemble of classifiers used to predict the class
label of a tuple, X?” Unlike bagging, where each classifier was assigned an equal vote,
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Algorithm: Adaboost. A boosting algorithm—create an ensemble of classifiers. Each one gives
a weighted vote.

Input:

D, a set of d class-labeled training tuples;

k, the number of rounds (one classifier is generated per round);

a classification learning scheme.

Output: A composite model.

Method:

(1) initialize the weight of each tuple in D to 1/d;

(2) for i = 1 to k do // for each round:

(3) sample D with replacement according to the tuple weights to obtain Di;

(4) use training set Di to derive a model, Mi;

(5) compute error(Mi), the error rate of Mi (Equation 6.66)

(6) if error(Mi)> 0.5 then
(7) reinitialize the weights to 1/d
(8) go back to step 3 and try again;

(9) endif
(10) for each tuple in Di that was correctly classified do
(11) multiply the weight of the tuple by error(Mi)/(1− error(Mi)); // update weights

(12) normalize the weight of each tuple;

(13) endfor

To use the composite model to classify tuple, X:

(1) initialize weight of each class to 0;

(2) for i = 1 to k do // for each classifier:

(3) wi = log 1−error(Mi)
error(Mi)

; // weight of the classifier’s vote

(4) c = Mi(X); // get class prediction for X from Mi

(5) add wi to weight for class c
(6) endfor
(7) return the class with the largest weight;

Figure 6.32 Adaboost, a boosting algorithm.

boosting assigns a weight to each classifier’s vote, based on how well the classifier per-
formed. The lower a classifier’s error rate, the more accurate it is, and therefore, the
higher its weight for voting should be. The weight of classifier Mi’s vote is

log
1− error(Mi)

error(Mi)
(6.67)
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For each class, c, we sum the weights of each classifier that assigned class c to X. The class
with the highest sum is the “winner” and is returned as the class prediction for tuple X.

“How does boosting compare with bagging?” Because of the way boosting focuses on
the misclassified tuples, it risks overfitting the resulting composite model to such data.
Therefore, sometimes the resulting “boosted” model may be less accurate than a sin-
gle model derived from the same data. Bagging is less susceptible to model overfitting.
While both can significantly improve accuracy in comparison to a single model, boost-
ing tends to achieve greater accuracy.

6.15 Model Selection

Suppose that we have generated two models, M1 and M2 (for either classification or
prediction), from our data. We have performed 10-fold cross-validation to obtain a
mean error rate for each. How can we determine which model is best? It may seem
intuitive to select the model with the lowest error rate, however, the mean error rates
are just estimates of error on the true population of future data cases. There can be con-
siderable variance between error rates within any given 10-fold cross-validation exper-
iment. Although the mean error rates obtained for M1 and M2 may appear different,
that difference may not be statistically significant. What if any difference between the
two may just be attributed to chance? This section addresses these questions.

6.15.1 Estimating Confidence Intervals

To determine if there is any “real” difference in the mean error rates of two models,
we need to employ a test of statistical significance. In addition, we would like to obtain
some confidence limits for our mean error rates so that we can make statements like
“any observed mean will not vary by +/− two standard errors 95% of the time for future
samples” or “one model is better than the other by a margin of error of +/− 4%.”

What do we need in order to perform the statistical test? Suppose that for each
model, we did 10-fold cross-validation, say, 10 times, each time using a different 10-fold
partitioning of the data. Each partitioning is independently drawn. We can average the
10 error rates obtained each for M1 and M2, respectively, to obtain the mean error
rate for each model. For a given model, the individual error rates calculated in the
cross-validations may be considered as different, independent samples from a proba-
bility distribution. In general, they follow a t distribution with k-1 degrees of freedom
where, here, k = 10. (This distribution looks very similar to a normal, or Gaussian,
distribution even though the functions defining the two are quite different. Both are
unimodal, symmetric, and bell-shaped.) This allows us to do hypothesis testing where
the significance test used is the t-test, or Student’s t-test. Our hypothesis is that the two
models are the same, or in other words, that the difference in mean error rate between
the two is zero. If we can reject this hypothesis (referred to as the null hypothesis), then
we can conclude that the difference between the two models is statistically significant,
in which case we can select the model with the lower error rate.
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In data mining practice, we may often employ a single test set, that is, the same test
set can be used for both M1 and M2. In such cases, we do a pairwise comparison of the
two models for each 10-fold cross-validation round. That is, for the ith round of 10-fold
cross-validation, the same cross-validation partitioning is used to obtain an error rate
for M1 and an error rate for M2. Let err(M1)i (or err(M2)i) be the error rate of model
M1 (or M2) on round i. The error rates for M1 are averaged to obtain a mean error
rate for M1, denoted err(M1). Similarly, we can obtain err(M2). The variance of the
difference between the two models is denoted var(M1−M2). The t-test computes the
t-statistic with k− 1 degrees of freedom for k samples. In our example we have k = 10
since, here, the k samples are our error rates obtained from ten 10-fold cross-validations
for each model. The t-statistic for pairwise comparison is computed as follows:

t =
err(M1)− err(M2)
√

var(M1−M2)/k
, (6.68)

where

var(M1−M2) =
1
k

k

∑
i=1

[

err(M1)i− err(M2)i− (err(M1)− err(M2))
]2
. (6.69)

To determine whether M1 and M2 are significantly different, we compute t and select
a significance level, sig. In practice, a significance level of 5% or 1% is typically used. We
then consult a table for the t distribution, available in standard textbooks on statistics.
This table is usually shown arranged by degrees of freedom as rows and significance
levels as columns. Suppose we want to ascertain whether the difference between M1 and
M2 is significantly different for 95% of the population, that is, sig = 5% or 0.05. We
need to find the t distribution value corresponding to k−1 degrees of freedom (or 9
degrees of freedom for our example) from the table. However, because the t distribution
is symmetric, typically only the upper percentage points of the distribution are shown.
Therefore, we look up the table value for z = sig/2, which in this case is 0.025, where
z is also referred to as a confidence limit. If t > z or t <−z, then our value of t lies in
the rejection region, within the tails of the distribution. This means that we can reject
the null hypothesis that the means of M1 and M2 are the same and conclude that there
is a statistically significant difference between the two models. Otherwise, if we cannot
reject the null hypothesis, we then conclude that any difference between M1 and M2
can be attributed to chance.

If two test sets are available instead of a single test set, then a nonpaired version of
the t-test is used, where the variance between the means of the two models is estimated
as

var(M1−M2) =

√

var(M1)
k1

+
var(M2)

k2
, (6.70)

and k1 and k2 are the number of cross-validation samples (in our case, 10-fold cross-
validation rounds) used for M1 and M2, respectively. When consulting the table of t
distribution, the number of degrees of freedom used is taken as the minimum number
of degrees of the two models.
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6.15.2 ROC Curves

ROC curves are a useful visual tool for comparing two classification models. The name
ROC stands for Receiver Operating Characteristic. ROC curves come from signal detec-
tion theory that was developed during World War II for the analysis of radar images. An
ROC curve shows the trade-off between the true positive rate or sensitivity (proportion
of positive tuples that are correctly identified) and the false-positive rate (proportion
of negative tuples that are incorrectly identified as positive) for a given model. That
is, given a two-class problem, it allows us to visualize the trade-off between the rate at
which the model can accurately recognize ‘yes’ cases versus the rate at which it mis-
takenly identifies ‘no’ cases as ‘yes’ for different “portions” of the test set. Any increase
in the true positive rate occurs at the cost of an increase in the false-positive rate. The
area under the ROC curve is a measure of the accuracy of the model.

In order to plot an ROC curve for a given classification model, M, the model must
be able to return a probability or ranking for the predicted class of each test tuple.
That is, we need to rank the test tuples in decreasing order, where the one the classifier
thinks is most likely to belong to the positive or ‘yes’ class appears at the top of the list.
Naive Bayesian and backpropagation classifiers are appropriate, whereas others, such
as decision tree classifiers, can easily be modified so as to return a class probability
distribution for each prediction. The vertical axis of an ROC curve represents the true
positive rate. The horizontal axis represents the false-positive rate. An ROC curve for
M is plotted as follows. Starting at the bottom left-hand corner (where the true positive
rate and false-positive rate are both 0), we check the actual class label of the tuple at
the top of the list. If we have a true positive (that is, a positive tuple that was correctly
classified), then on the ROC curve, we move up and plot a point. If, instead, the tuple
really belongs to the ‘no’ class, we have a false positive. On the ROC curve, we move
right and plot a point. This process is repeated for each of the test tuples, each time
moving up on the curve for a true positive or toward the right for a false positive.

Figure 6.33 shows the ROC curves of two classification models. The plot also shows
a diagonal line where for every true positive of such a model, we are just as likely to
encounter a false positive. Thus, the closer the ROC curve of a model is to the diago-
nal line, the less accurate the model. If the model is really good, initially we are more
likely to encounter true positives as we move down the ranked list. Thus, the curve
would move steeply up from zero. Later, as we start to encounter fewer and fewer true
positives, and more and more false positives, the curve cases off and becomes more
horizontal.

To assess the accuracy of a model, we can measure the area under the curve. Several
software packages are able to perform such calculation. The closer the area is to 0.5,
the less accurate the corresponding model is. A model with perfect accuracy will have
an area of 1.0.
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Figure 6.33 The ROC curves of two classification models.

6.16 Summary

Classification and prediction are two forms of data analysis that can be used to extract
models describing important data classes or to predict future data trends. While clas-
sification predicts categorical labels (classes), prediction models continuous-valued
functions.

Preprocessing of the data in preparation for classification and prediction can involve
data cleaning to reduce noise or handle missing values, relevance analysis to remove
irrelevant or redundant attributes, and data transformation, such as generalizing the
data to higher-level concepts or normalizing the data.

Predictive accuracy, computational speed, robustness, scalability, and interpretability
are five criteria for the evaluation of classification and prediction methods.

ID3, C4.5, and CART are greedy algorithms for the induction of decision trees. Each
algorithm uses an attribute selection measure to select the attribute tested for each
nonleaf node in the tree. Pruning algorithms attempt to improve accuracy by remov-
ing tree branches reflecting noise in the data. Early decision tree algorithms typi-
cally assume that the data are memory resident—a limitation to data mining on large
databases. Several scalable algorithms, such as SLIQ, SPRINT, and RainForest, have
been proposed to address this issue.

Naïve Bayesian classification and Bayesian belief networks are based on Bayes, theo-
rem of posterior probability. Unlike naïve Bayesian classification (which assumes class
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conditional independence), Bayesian belief networks allow class conditional inde-
pendencies to be defined between subsets of variables.

A rule-based classifier uses a set of IF-THEN rules for classification. Rules can be
extracted from a decision tree. Rules may also be generated directly from training
data using sequential covering algorithms and associative classification algorithms.

Backpropagation is a neural network algorithm for classification that employs a
method of gradient descent. It searches for a set of weights that can model the data
so as to minimize the mean squared distance between the network’s class prediction
and the actual class label of data tuples. Rules may be extracted from trained neural
networks in order to help improve the interpretability of the learned network.

A Support Vector Machine (SVM) is an algorithm for the classification of both linear
and nonlinear data. It transforms the original data in a higher dimension, from where
it can find a hyperplane for separation of the data using essential training tuples called
support vectors.

Associative classification uses association mining techniques that search for frequently
occurring patterns in large databases. The patterns may generate rules, which can be
analyzed for use in classification.

Decision tree classifiers, Bayesian classifiers, classification by backpropagation, sup-
port vector machines, and classification based on association are all examples of eager
learners in that they use training tuples to construct a generalization model and in this
way are ready for classifying new tuples. This contrasts with lazy learners or instance-
based methods of classification, such as nearest-neighbor classifiers and case-based
reasoning classifiers, which store all of the training tuples in pattern space and wait
until presented with a test tuple before performing generalization. Hence, lazy learners
require efficient indexing techniques.

In genetic algorithms, populations of rules “evolve” via operations of crossover and
mutation until all rules within a population satisfy a specified threshold. Rough set
theory can be used to approximately define classes that are not distinguishable based
on the available attributes. Fuzzy set approaches replace “brittle” threshold cutoffs for
continuous-valued attributes with degree of membership functions.

Linear, nonlinear, and generalized linear models of regression can be used for predic-
tion. Many nonlinear problems can be converted to linear problems by performing
transformations on the predictor variables. Unlike decision trees, regression trees and
model trees are used for prediction. In regression trees, each leaf stores a continuous-
valued prediction. In model trees, each leaf holds a regression model.

Stratified k-fold cross-validation is a recommended method for accuracy estimation.
Bagging and boosting methods can be used to increase overall accuracy by learning
and combining a series of individual models. For classifiers, sensitivity, specificity, and
precision are useful alternatives to the accuracy measure, particularly when the main
class of interest is in the minority. There are many measures of predictor error, such as
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the mean squared error, the mean absolute error, the relative squared error, and the
relative absolute error. Significance tests and ROC curves are useful for model
selection.

There have been numerous comparisons of the different classification and prediction
methods, and the matter remains a research topic. No single method has been found
to be superior over all others for all data sets. Issues such as accuracy, training time,
robustness, interpretability, and scalability must be considered and can involve trade-
offs, further complicating the quest for an overall superior method. Empirical studies
show that the accuracies of many algorithms are sufficiently similar that their differ-
ences are statistically insignificant, while training times may differ substantially. For
classification, most neural network and statistical methods involving splines tend to
be more computationally intensive than most decision tree methods.

Exercises

6.1 Briefly outline the major steps of decision tree classification.

6.2 Why is tree pruning useful in decision tree induction? What is a drawback of using a
separate set of tuples to evaluate pruning?

6.3 Given a decision tree, you have the option of (a) converting the decision tree to rules
and then pruning the resulting rules, or (b) pruning the decision tree and then con-
verting the pruned tree to rules. What advantage does (a) have over (b)?

6.4 It is important to calculate the worst-case computational complexity of the decision
tree algorithm. Given data set D, the number of attributes n, and the number of
training tuples |D|, show that the computational cost of growing a tree is at most
n×|D|× log(|D|).

6.5 Why is naïve Bayesian classification called “naïve”? Briefly outline the major ideas of
naïve Bayesian classification.

6.6 Given a 5 GB data set with 50 attributes (each containing 100 distinct values) and
512 MB of main memory in your laptop, outline an efficient method that constructs
decision trees in such large data sets. Justify your answer by rough calculation of your
main memory usage.

6.7 RainForest is an interesting scalable algorithm for decision tree induction. Develop a
scalable naive Bayesian classification algorithm that requires just a single scan of the
entire data set for most databases. Discuss whether such an algorithm can be refined
to incorporate boosting to further enhance its classification accuracy.

6.8 Compare the advantages and disadvantages of eager classification (e.g., decision tree,
Bayesian, neural network) versus lazy classification (e.g., k-nearest neighbor, case-
based reasoning).

6.9 Design an efficient method that performs effective naïve Bayesian classification over
an infinite data stream (i.e., you can scan the data stream only once). If we wanted to
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discover the evolution of such classification schemes (e.g., comparing the classification
scheme at this moment with earlier schemes, such as one from a week ago), what
modified design would you suggest?

6.10 What is associative classification? Why is associative classification able to achieve higher
classification accuracy than a classical decision tree method? Explain how associative
classification can be used for text document classification.

6.11 The following table consists of training data from an employee database. The data
have been generalized. For example, “31 . . . 35” for age represents the age range of 31
to 35. For a given row entry, count represents the number of data tuples having the
values for department, status, age, and salary given in that row.

department status age salary count

sales senior 31. . . 35 46K. . . 50K 30

sales junior 26. . . 30 26K. . . 30K 40

sales junior 31. . . 35 31K. . . 35K 40

systems junior 21. . . 25 46K. . . 50K 20

systems senior 31. . . 35 66K. . . 70K 5

systems junior 26. . . 30 46K. . . 50K 3

systems senior 41. . . 45 66K. . . 70K 3

marketing senior 36. . . 40 46K. . . 50K 10

marketing junior 31. . . 35 41K. . . 45K 4

secretary senior 46. . . 50 36K. . . 40K 4

secretary junior 26. . . 30 26K. . . 30K 6

Let status be the class label attribute.

(a) How would you modify the basic decision tree algorithm to take into considera-
tion the count of each generalized data tuple (i.e., of each row entry)?

(b) Use your algorithm to construct a decision tree from the given data.

(c) Given a data tuple having the values “systems,” “26. . . 30,” and “46–50K” for the
attributes department, age, and salary, respectively, what would a naive Bayesian
classification of the status for the tuple be?

(d) Design a multilayer feed-forward neural network for the given data. Label the
nodes in the input and output layers.

(e) Using the multilayer feed-forward neural network obtained above, show the weight
values after one iteration of the backpropagation algorithm, given the training
instance “(sales, senior, 31. . . 35, 46K. . . 50K).” Indicate your initial weight values and
biases, and the learning rate used.

6.12 The support vector machine (SVM) is a highly accurate classification method. However,
SVM classifiers suffer from slow processing when training with a large set of data
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tuples. Discuss how to overcome this difficulty and develop a scalable SVM algorithm
for efficient SVM classification in large datasets.

6.13 Write an algorithm for k-nearest-neighbor classification given k and n, the number of
attributes describing each tuple.

6.14 The following table shows the midterm and final exam grades obtained for students
in a database course.

x y

Midterm exam Final exam

72 84

50 63

81 77

74 78

94 90

86 75

59 49

83 79

65 77

33 52

88 74

81 90

(a) Plot the data. Do x and y seem to have a linear relationship?

(b) Use the method of least squares to find an equation for the prediction of a student’s
final exam grade based on the student’s midterm grade in the course.

(c) Predict the final exam grade of a student who received an 86 on the midterm
exam.

6.15 Some nonlinear regression models can be converted to linear models by applying trans-
formations to the predictor variables. Show how the nonlinear regression equation
y = αXβ can be converted to a linear regression equation solvable by the method of
least squares.

6.16 What is boosting? State why it may improve the accuracy of decision tree induction.

6.17 Showthataccuracyisafunctionof sensitivityand specificity, that is,proveEquation(6.58).

6.18 Suppose that we would like to select between two prediction models, M1 and M2. We
have performed 10 rounds of 10-fold cross-validation on each model, where the same
data partitioning in round i is used for both M1 and M2. The error rates obtained for
M1 are 30.5, 32.2, 20.7, 20.6, 31.0, 41.0, 27.7, 26.0, 21.5, 26.0. The error rates for M2
are 22.4, 14.5, 22.4, 19.6, 20.7, 20.4, 22.1, 19.4, 16.2, 35.0. Comment on whether one
model is significantly better than the other considering a significance level of 1%.
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6.19 It is difficult to assess classification accuracy when individual data objects may belong
to more than one class at a time. In such cases, comment on what criteria you would
use to compare different classifiers modeled after the same data.
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weighting and the pruning of noisy instances is described in Aha [Aha92]. The use of
search trees to improve nearest-neighbor classification time is detailed in Friedman,
Bentley, and Finkel [FBF77]. The partial distance method was proposed by researchers
in vector quantization and compression. It is outlined in Gersho and Gray [GG92].
The editing method for removing “useless” training tuples was first proposed by Hart
[Har68]. The computational complexity of nearest-neighbor classifiers is described in
Preparata and Shamos [PS85]. References on case-based reasoning (CBR) include the
texts Riesbeck and Schank [RS89] and Kolodner [Kol93], as well as Leake [Lea96] and
Aamodt and Plazas [AP94]. For a list of business applications, see Allen [All94]. Exam-
ples in medicine include CASEY by Koton [Kot88] and PROTOS by Bareiss, Porter, and
Weir [BPW88], while Rissland and Ashley [RA87] is an example of CBR for law. CBR
is available in several commercial software products. For texts on genetic algorithms, see
Goldberg [Gol89], Michalewicz [Mic92], and Mitchell [Mit96]. Rough sets were
introduced in Pawlak [Paw91]. Concise summaries of rough set theory in data
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mining include Ziarko [Zia91], and Cios, Pedrycz, and Swiniarski [CPS98]. Rough
sets have been used for feature reduction and expert system design in many applica-
tions, including Ziarko [Zia91], Lenarcik and Piasta [LP97], and Swiniarski [Swi98].
Algorithms to reduce the computation intensity in finding reducts have been proposed
in Skowron and Rauszer [SR92]. Fuzzy set theory was proposed by Zadeh in [Zad65,
Zad83]. Additional descriptions can be found in [YZ94, Kec01].

Many good textbooks cover the techniques of regression. Examples include James
[Jam85], Dobson [Dob01], Johnson and Wichern [JW02], Devore [Dev95], Hogg and
Craig [HC95], Neter, Kutner, Nachtsheim, and Wasserman [NKNW96], and Agresti
[Agr96]. The book by Press, Teukolsky, Vetterling, and Flannery [PTVF96] and accom-
panying source code contain many statistical procedures, such as the method of least
squares for both linear and multiple regression. Recent nonlinear regression models
include projection pursuit and MARS (Friedman [Fri91]). Log-linear models are also
known in the computer science literature as multiplicative models. For log-linear mod-
els from a computer science perspective, see Pearl [Pea88]. Regression trees (Breiman,
Friedman, Olshen, and Stone [BFOS84]) are often comparable in performance with
other regression methods, particularly when there exist many higher-order dependen-
cies among the predictor variables. For model trees, see Quinlan [Qui92].

Methods for data cleaning and data transformation are discussed in Kennedy, Lee,
Van Roy, et al. [KLV+98], Weiss and Indurkhya [WI98], Pyle [Pyl99], and Chapter 2
of this book. Issues involved in estimating classifier accuracy are described in Weiss
and Kulikowski [WK91] and Witten and Frank [WF05]. The use of stratified 10-fold
cross-validation for estimating classifier accuracy is recommended over the holdout,
cross-validation, leave-one-out (Stone [Sto74]) and bootstrapping (Efron and Tibshi-
rani [ET93]) methods, based on a theoretical and empirical study by Kohavi [Koh95].
Bagging is proposed in Breiman [Bre96]. The boosting technique of Freund and
Schapire [FS97] has been applied to several different classifiers, including decision tree
induction (Quinlan [Qui96]) and naive Bayesian classification (Elkan [Elk97]). Sensi-
tivity, specificity, and precision are discussed in Frakes and Baeza-Yates [FBY92]. For
ROC analysis, see Egan [Ega75] and Swets [Swe88].

The University of California at Irvine (UCI) maintains a Machine Learning Repos-
itory of data sets for the development and testing of classification algorithms. It also
maintains a Knowledge Discovery in Databases (KDD) Archive, an online repository of
large data sets that encompasses a wide variety of data types, analysis tasks, and appli-
cation areas. For information on these two repositories, see www.ics.uci.edu/~mlearn/
MLRepository.html and http://kdd.ics.uci.edu.

No classification method is superior over all others for all data types and domains.
Empirical comparisons of classification methods include [Qui88, SMT91, BCP93,
CM94, MST94, BU95], and [LLS00].
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Imagine that you are given a set of data objects for analysis where, unlike in classification, the class
label of each object is not known. This is quite common in large databases, because
assigning class labels to a large number of objects can be a very costly process. Clustering
is the process of grouping the data into classes or clusters, so that objects within a clus-
ter have high similarity in comparison to one another but are very dissimilar to objects
in other clusters. Dissimilarities are assessed based on the attribute values describing the
objects. Often, distance measures are used. Clustering has its roots in many areas, includ-
ing data mining, statistics, biology, and machine learning.

In this chapter, we study the requirements of clustering methods for large amounts of
data. We explain how to compute dissimilarities between objects represented by various
attribute or variable types. We examine several clustering techniques, organized into the
following categories: partitioning methods, hierarchical methods, density-based methods,
grid-based methods, model-based methods, methods for high-dimensional data (such as
frequent pattern–based methods), and constraint-based clustering. Clustering can also be
used for outlier detection, which forms the final topic of this chapter.

7.1 What Is Cluster Analysis?

The process of grouping a set of physical or abstract objects into classes of similar objects
is called clustering. A cluster is a collection of data objects that are similar to one another
within the same cluster and are dissimilar to the objects in other clusters. A cluster of data
objects can be treated collectively as one group and so may be considered as a form of data
compression. Although classification is an effective means for distinguishing groups or
classes of objects, it requires the often costly collection and labeling of a large set of training
tuples or patterns, which the classifier uses to model each group. It is often more desirable
to proceed in the reverse direction: First partition the set of data into groups based on data
similarity (e.g., using clustering), and then assign labels to the relatively small number of
groups. Additional advantages of such a clustering-based process are that it is adaptable
to changes and helps single out useful features that distinguish different groups.

383
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Cluster analysis is an important human activity. Early in childhood, we learn how
to distinguish between cats and dogs, or between animals and plants, by continuously
improving subconscious clustering schemes. By automated clustering, we can identify
dense and sparse regions in object space and, therefore, discover overall distribution pat-
terns and interesting correlations among data attributes. Cluster analysis has been widely
used in numerous applications, including market research, pattern recognition, data
analysis, and image processing. In business, clustering can help marketers discover dis-
tinct groups in their customer bases and characterize customer groups based on
purchasing patterns. In biology, it can be used to derive plant and animal taxonomies,
categorize genes with similar functionality, and gain insight into structures inherent in
populations. Clustering may also help in the identification of areas of similar land use
in an earth observation database and in the identification of groups of houses in a city
according to house type, value, and geographic location, as well as the identification of
groups of automobile insurance policy holders with a high average claim cost. It can also
be used to help classify documents on the Web for information discovery.

Clustering is also called data segmentation in some applications because clustering
partitions large data sets into groups according to their similarity. Clustering can also be
used for outlier detection, where outliers (values that are “far away” from any cluster)
may be more interesting than common cases. Applications of outlier detection include
the detection of credit card fraud and the monitoring of criminal activities in electronic
commerce. For example, exceptional cases in credit card transactions, such as very expen-
sive and frequent purchases, may be of interest as possible fraudulent activity. As a data
mining function, cluster analysis can be used as a stand-alone tool to gain insight into
the distribution of data, to observe the characteristics of each cluster, and to focus on a
particular set of clusters for further analysis. Alternatively, it may serve as a preprocessing
step for other algorithms, such as characterization, attribute subset selection, and clas-
sification, which would then operate on the detected clusters and the selected attributes
or features.

Data clustering is under vigorous development. Contributing areas of research include
data mining, statistics, machine learning, spatial database technology, biology, and mar-
keting. Owing to the huge amounts of data collected in databases, cluster analysis has
recently become a highly active topic in data mining research.

As a branch of statistics, cluster analysis has been extensively studied for many years,
focusing mainly on distance-based cluster analysis. Cluster analysis tools based on
k-means, k-medoids, and several other methods have also been built into many statistical
analysis software packages or systems, such as S-Plus, SPSS, and SAS. In machine learn-
ing, clustering is an example of unsupervised learning. Unlike classification, clustering
and unsupervised learning do not rely on predefined classes and class-labeled training
examples. For this reason, clustering is a form of learning by observation, rather than
learning by examples. In data mining, efforts have focused on finding methods for effi-
cient and effective cluster analysis in large databases. Active themes of research focus on
the scalability of clustering methods, the effectiveness of methods for clustering complex
shapes and types of data, high-dimensional clustering techniques, and methods for clus-
tering mixed numerical and categorical data in large databases.
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Clustering is a challenging field of research in which its potential applications pose
their own special requirements. The following are typical requirements of clustering in
data mining:

Scalability: Many clustering algorithms work well on small data sets containing fewer
than several hundred data objects; however, a large database may contain millions of
objects. Clustering on a sample of a given large data set may lead to biased results.
Highly scalable clustering algorithms are needed.

Ability to deal with different types of attributes: Many algorithms are designed to
cluster interval-based (numerical) data. However, applications may require cluster-
ing other types of data, such as binary, categorical (nominal), and ordinal data, or
mixtures of these data types.

Discovery of clusters with arbitrary shape: Many clustering algorithms determine
clusters based on Euclidean or Manhattan distance measures. Algorithms based on
such distance measures tend to find spherical clusters with similar size and density.
However, a cluster could be of any shape. It is important to develop algorithms that
can detect clusters of arbitrary shape.

Minimal requirements for domain knowledge to determine input parameters: Many
clustering algorithms require users to input certain parameters in cluster analysis
(such as the number of desired clusters). The clustering results can be quite sensi-
tive to input parameters. Parameters are often difficult to determine, especially for
data sets containing high-dimensional objects. This not only burdens users, but it
also makes the quality of clustering difficult to control.

Ability to deal with noisy data: Most real-world databases contain outliers or missing,
unknown, or erroneous data. Some clustering algorithms are sensitive to such data
and may lead to clusters of poor quality.

Incremental clustering and insensitivity to the order of input records: Some clus-
tering algorithms cannot incorporate newly inserted data (i.e., database updates)
into existing clustering structures and, instead, must determine a new clustering
from scratch. Some clustering algorithms are sensitive to the order of input data.
That is, given a set of data objects, such an algorithm may return dramatically
different clusterings depending on the order of presentation of the input objects.
It is important to develop incremental clustering algorithms and algorithms that
are insensitive to the order of input.

High dimensionality: A database or a data warehouse can contain several dimensions
or attributes. Many clustering algorithms are good at handling low-dimensional data,
involving only two to three dimensions. Human eyes are good at judging the quality
of clustering for up to three dimensions. Finding clusters of data objects in high-
dimensional space is challenging, especially considering that such data can be sparse
and highly skewed.
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Constraint-based clustering: Real-world applications may need to perform clustering
under various kinds of constraints. Suppose that your job is to choose the locations
for a given number of new automatic banking machines (ATMs) in a city. To decide
upon this, you may cluster households while considering constraints such as the city’s
rivers and highway networks, and the type and number of customers per cluster. A
challenging task is to find groups of data with good clustering behavior that satisfy
specified constraints.

Interpretability and usability: Users expect clustering results to be interpretable, com-
prehensible, and usable. That is, clustering may need to be tied to specific semantic
interpretations and applications. It is important to study how an application goal may
influence the selection of clustering features and methods.

With these requirements in mind, our study of cluster analysis proceeds as follows. First,
we study different types of data and how they can influence clustering methods. Second,
we present a general categorization of clustering methods. We then study each clustering
method in detail, including partitioning methods, hierarchical methods, density-based
methods, grid-based methods, and model-based methods. We also examine clustering in
high-dimensional space, constraint-based clustering, and outlier analysis.

7.2 Types of Data in Cluster Analysis

In this section, we study the types of data that often occur in cluster analysis and how
to preprocess them for such an analysis. Suppose that a data set to be clustered contains
n objects, which may represent persons, houses, documents, countries, and so on. Main
memory-based clustering algorithms typically operate on either of the following two data
structures.

Data matrix (or object-by-variable structure): This represents n objects, such as per-
sons, with p variables (also called measurements or attributes), such as age, height,
weight, gender, and so on. The structure is in the form of a relational table, or n-by-p
matrix (n objects×p variables):

















x11 · · · x1 f · · · x1p

· · · · · · · · · · · · · · ·
xi1 · · · xi f · · · xip

· · · · · · · · · · · · · · ·
xn1 · · · xn f · · · xnp

















(7.1)

Dissimilarity matrix (or object-by-object structure): This stores a collection of prox-
imities that are available for all pairs of n objects. It is often represented by an n-by-n
table:
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

















0

d(2, 1) 0

d(3, 1) d(3, 2) 0
...

...
...

d(n, 1) d(n, 2) · · · · · · 0



















(7.2)

where d(i, j) is the measured difference or dissimilarity between objects i and j. In
general, d(i, j) is a nonnegative number that is close to 0 when objects i and j are
highly similar or “near” each other, and becomes larger the more they differ. Since
d(i, j) = d( j, i), and d(i, i) = 0, we have the matrix in (7.2). Measures of dissimilarity
are discussed throughout this section.

The rows and columns of the data matrix represent different entities, while those of the
dissimilarity matrix represent the same entity. Thus, the data matrix is often called a
two-mode matrix, whereas the dissimilarity matrix is called a one-mode matrix. Many
clustering algorithms operate on a dissimilarity matrix. If the data are presented in the
form of a data matrix, it can first be transformed into a dissimilarity matrix before apply-
ing such clustering algorithms.

In this section, we discuss how object dissimilarity can be computed for objects
described by interval-scaled variables; by binary variables; by categorical, ordinal, and
ratio-scaled variables; or combinations of these variable types. Nonmetric similarity
between complex objects (such as documents) is also described. The dissimilarity data
can later be used to compute clusters of objects.

7.2.1 Interval-Scaled Variables

This section discusses interval-scaled variables and their standardization. It then describes
distance measures that are commonly used for computing the dissimilarity of objects
described by such variables. These measures include the Euclidean, Manhattan,
and Minkowski distances.

“What are interval-scaled variables?” Interval-scaled variables are continuous mea-
surements of a roughly linear scale. Typical examples include weight and height, latitude
and longitude coordinates (e.g., when clustering houses), and weather temperature.

The measurement unit used can affect the clustering analysis. For example, changing
measurement units from meters to inches for height, or from kilograms to pounds for
weight, may lead to a very different clustering structure. In general, expressing a variable
in smaller units will lead to a larger range for that variable, and thus a larger effect on the
resulting clustering structure. To help avoid dependence on the choice of measurement
units, the data should be standardized. Standardizing measurements attempts to give
all variables an equal weight. This is particularly useful when given no prior knowledge
of the data. However, in some applications, users may intentionally want to give more
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weight to a certain set of variables than to others. For example, when clustering basketball
player candidates, we may prefer to give more weight to the variable height.

“How can the data for a variable be standardized?” To standardize measurements, one
choice is to convert the original measurements to unitless variables. Given measurements
for a variable f , this can be performed as follows.

1. Calculate the mean absolute deviation, s f :

s f =
1
n

(|x1 f −m f |+ |x2 f −m f |+ · · ·+ |xn f −m f |), (7.3)

where x1 f , . . . , xn f are n measurements of f , and m f is the mean value of f , that is,
m f = 1

n (x1 f + x2 f + · · ·+ xn f ).

2. Calculate the standardized measurement, or z-score:

zi f =
xi f −m f

s f
. (7.4)

The mean absolute deviation, s f , is more robust to outliers than the standard devia-
tion, σ f . When computing the mean absolute deviation, the deviations from the mean
(i.e., |xi f −m f |) are not squared; hence, the effect of outliers is somewhat reduced.
There are more robust measures of dispersion, such as the median absolute deviation.
However, the advantage of using the mean absolute deviation is that the z-scores of
outliers do not become too small; hence, the outliers remain detectable.

Standardization may or may not be useful in a particular application. Thus the choice
of whether and how to perform standardization should be left to the user. Methods of
standardization are also discussed in Chapter 2 under normalization techniques for data
preprocessing.

After standardization, or without standardization in certain applications, the dissimi-
larity (or similarity) between the objects described by interval-scaled variables is typically
computed based on the distance between each pair of objects. The most popular distance
measure is Euclidean distance, which is defined as

d(i, j) =
√

(xi1− x j1)2 +(xi2− x j2)2 + · · ·+(xin− x jn)2, (7.5)

where i = (xi1, xi2, . . . , xin) and j = (x j1, x j2, . . . , x jn) are two n-dimensional data objects.
Another well-known metric is Manhattan (or city block) distance, defined as

d(i, j) = |xi1− x j1|+ |xi2− x j2|+ · · ·+ |xin− x jn|. (7.6)

Both the Euclidean distance and Manhattan distance satisfy the following mathematic
requirements of a distance function:
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1. d(i, j)≥ 0: Distance is a nonnegative number.

2. d(i, i) = 0: The distance of an object to itself is 0.

3. d(i, j) = d( j, i): Distance is a symmetric function.

4. d(i, j)≤ d(i, h)+d(h, j): Going directly from object i to object j in space is no more
than making a detour over any other object h (triangular inequality).

Example 7.1 Euclidean distance and Manhattan distance. Let x1 = (1, 2) and x2 = (3, 5) represent two
objects as in Figure 7.1. The Euclidean distance between the two is

√

(22 + 32) = 3.61.
The Manhattan distance between the two is 2 + 3 = 5.

Minkowski distance is a generalization of both Euclidean distance and Manhattan
distance. It is defined as

d(i, j) = (|xi1− x j1|p + |xi2− x j2|p + · · ·+ |xin− x jn|p)1/p, (7.7)

where p is a positive integer. Such a distance is also called Lp norm, in some literature.
It represents the Manhattan distance when p = 1 (i.e., L1 norm) and Euclidean distance
when p = 2 (i.e., L2 norm).

If each variable is assigned a weight according to its perceived importance, the weighted
Euclidean distance can be computed as

d(i, j) =
√

w1|xi1− x j1|2 + w2|xi2− x j2|2 + · · ·+ wm|xin− x jn|2. (7.8)

Weighting can also be applied to the Manhattan and Minkowski distances.

7.2.2 Binary Variables

Let us see how to compute the dissimilarity between objects described by either symmet-
ric or asymmetric binary variables.

1 2

2

3

5

4

3
3

2

1

x2 = (3,5)

x1 = (1,2)

Euclidean distance

= (22 + 32)1/2 = 3.61

Manhattan distance

= 2 + 3 = 5

Figure 7.1 Euclidean and Manhattan distances between two objects.
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A binary variable has only two states: 0 or 1, where 0 means that the variable
is absent, and 1 means that it is present. Given the variable smoker describing a
patient, for instance, 1 indicates that the patient smokes, while 0 indicates that the
patient does not. Treating binary variables as if they are interval-scaled can lead to
misleading clustering results. Therefore, methods specific to binary data are necessary
for computing dissimilarities.

“So, how can we compute the dissimilarity between two binary variables?” One approach
involves computing a dissimilarity matrix from the given binary data. If all binary vari-
ables are thought of as having the same weight, we have the 2-by-2 contingency table of
Table 7.1, where q is the number of variables that equal 1 for both objects i and j, r is
the number of variables that equal 1 for object i but that are 0 for object j, s is the num-
ber of variables that equal 0 for object i but equal 1 for object j, and t is the number of
variables that equal 0 for both objects i and j. The total number of variables is p, where
p = q + r + s + t.

“What is the difference between symmetric and asymmetric binary variables?” A binary
variable is symmetric if both of its states are equally valuable and carry the same weight;
that is, there is no preference on which outcome should be coded as 0 or 1. One such
example could be the attribute gender having the states male and female. Dissimilarity
that is based on symmetric binary variables is called symmetric binary dissimilarity. Its
dissimilarity (or distance) measure, defined in Equation (7.9), can be used to assess the
dissimilarity between objects i and j.

d(i, j) =
r + s

q + r + s + t
. (7.9)

A binary variable is asymmetric if the outcomes of the states are not equally
important, such as the positive and negative outcomes of a disease test. By convention,
we shall code the most important outcome, which is usually the rarest one, by 1
(e.g., HIV positive) and the other by 0 (e.g., HIV negative). Given two asymmetric
binary variables, the agreement of two 1s (a positive match) is then considered more
significant than that of two 0s (a negative match). Therefore, such binary variables are
often considered “monary” (as if having one state). The dissimilarity based on such
variables is called asymmetric binary dissimilarity, where the number of negative

Table 7.1 A contingency table for binary variables.

object j

1 0 sum

1 q r q + r

object i 0 s t s + t

sum q + s r + t p
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matches, t, is considered unimportant and thus is ignored in the computation, as
shown in Equation (7.10).

d(i, j) =
r + s

q + r + s
. (7.10)

Complementarily, we can measure the distance between two binary variables based
on the notion of similarity instead of dissimilarity. For example, the asymmetric binary
similarity between the objects i and j, or sim(i, j), can be computed as,

sim(i, j) =
q

q + r + s
= 1−d(i, j). (7.11)

The coefficient sim(i, j) is called the Jaccard coefficient, which is popularly referenced
in the literature.

When both symmetric and asymmetric binary variables occur in the same data set,
the mixed variables approach described in Section 7.2.4 can be applied.

Example 7.2 Dissimilarity between binary variables. Suppose that a patient record table (Table 7.2)
contains the attributes name, gender, fever, cough, test-1, test-2, test-3, and test-4, where
name is an object identifier, gender is a symmetric attribute, and the remaining attributes
are asymmetric binary.

For asymmetric attribute values, let the valuesY (yes) andP (positive) be set to 1, and the
value N (no or negative) be set to 0. Suppose that the distance between objects (patients)
is computed based only on the asymmetric variables. According to Equation (7.10), the
distance between each pair of the three patients, Jack, Mary, and Jim, is

d(Jack, Mary) = 0+1
2+0+1 = 0.33

d(Jack, Jim) = 1+1
1+1+1 = 0.67

d(Mary, Jim) = 1+2
1+1+2 = 0.75

Table 7.2 A relational table where patients are described by binary attributes.

name gender fever cough test-1 test-2 test-3 test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y Y N N N N
...

...
...

...
...

...
...

...
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These measurements suggest that Mary and Jim are unlikely to have a similar disease
because they have the highest dissimilarity value among the three pairs. Of the three
patients, Jack and Mary are the most likely to have a similar disease.

7.2.3 Categorical, Ordinal, and Ratio-Scaled Variables

“How can we compute the dissimilarity between objects described by categorical, ordinal,
and ratio-scaled variables?”

Categorical Variables
A categorical variable is a generalization of the binary variable in that it can take on more
than two states. For example, map color is a categorical variable that may have, say, five
states: red, yellow, green, pink, and blue.

Let the number of states of a categorical variable be M. The states can be denoted by
letters, symbols, or a set of integers, such as 1, 2, . . . , M. Notice that such integers are used
just for data handling and do not represent any specific ordering.

“How is dissimilarity computed between objects described by categorical variables?”
The dissimilarity between two objects i and j can be computed based on the ratio of
mismatches:

d(i, j) =
p−m

p
, (7.12)

where m is the number of matches (i.e., the number of variables for which i and j are
in the same state), and p is the total number of variables. Weights can be assigned to
increase the effect of m or to assign greater weight to the matches in variables having a
larger number of states.

Example 7.3 Dissimilarity between categorical variables. Suppose that we have the sample data of
Table 7.3, except that only the object-identifier and the variable (or attribute) test-1 are
available, where test-1 is categorical. (We will use test-2 and test-3 in later examples.) Let’s
compute the dissimilarity matrix (7.2), that is,

Table 7.3 A sample data table containing variables of mixed type.

object test-1 test-2 test-3

identifier (categorical) (ordinal) (ratio-scaled)

1 code-A excellent 445

2 code-B fair 22

3 code-C good 164

4 code-A excellent 1,210
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











0

d(2, 1) 0

d(3, 1) d(3, 2) 0

d(4, 1) d(4, 2) d(4, 3) 0













Since here we have one categorical variable, test-1, we set p = 1 in Equation (7.12) so
that d(i, j) evaluates to 0 if objects i and j match, and 1 if the objects differ. Thus,
we get













0

1 0

1 1 0

0 1 1 0













Categorical variables can be encoded by asymmetric binary variables by creating a
new binary variable for each of the M states. For an object with a given state value, the
binary variable representing that state is set to 1, while the remaining binary variables
are set to 0. For example, to encode the categorical variable map color, a binary variable
can be created for each of the five colors listed above. For an object having the color
yellow, the yellow variable is set to 1, while the remaining four variables are set to 0. The
dissimilarity coefficient for this form of encoding can be calculated using the methods
discussed in Section 7.2.2.

Ordinal Variables
A discrete ordinal variable resembles a categorical variable, except that the M states of
the ordinal value are ordered in a meaningful sequence. Ordinal variables are very
useful for registering subjective assessments of qualities that cannot be measured
objectively. For example, professional ranks are often enumerated in a sequential
order, such as assistant, associate, and full for professors. A continuous ordinal vari-
able looks like a set of continuous data of an unknown scale; that is, the relative
ordering of the values is essential but their actual magnitude is not. For example,
the relative ranking in a particular sport (e.g., gold, silver, bronze) is often more
essential than the actual values of a particular measure. Ordinal variables may also be
obtained from the discretization of interval-scaled quantities by splitting the value
range into a finite number of classes. The values of an ordinal variable can be
mapped to ranks. For example, suppose that an ordinal variable f has M f states.
These ordered states define the ranking 1, . . . , M f .

“How are ordinal variables handled?” The treatment of ordinal variables is quite
similar to that of interval-scaled variables when computing the dissimilarity between
objects. Suppose that f is a variable from a set of ordinal variables describing
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n objects. The dissimilarity computation with respect to f involves the following
steps:

1. The value of f for the ith object is xi f , and f has M f ordered states, representing the
ranking 1, . . . , M f . Replace each xi f by its corresponding rank, ri f ∈ {1, . . . , M f }.

2. Since each ordinal variable can have a different number of states, it is often nec-
essary to map the range of each variable onto [0.0,1.0] so that each variable has
equal weight. This can be achieved by replacing the rank ri f of the ith object in
the f th variable by

zi f =
ri f −1
M f −1

. (7.13)

3. Dissimilarity can then be computed using any of the distance measures described in
Section 7.2.1 for interval-scaled variables, using zi f to represent the f value for the ith
object.

Example 7.4 Dissimilarity between ordinal variables. Suppose that we have the sample data of
Table 7.3, except that this time only the object-identifier and the continuous ordinal vari-
able, test-2, are available. There are three states for test-2, namely fair, good, and excellent,
that is M f = 3. For step 1, if we replace each value for test-2 by its rank, the four objects are
assigned the ranks 3, 1, 2, and 3, respectively. Step 2 normalizes the ranking by mapping
rank 1 to 0.0, rank 2 to 0.5, and rank 3 to 1.0. For step 3, we can use, say, the Euclidean
distance (Equation (7.5)), which results in the following dissimilarity matrix:













0

1 0

0.5 0.5 0

0 1.0 0.5 0













Ratio-Scaled Variables
A ratio-scaled variable makes a positive measurement on a nonlinear scale, such as an
exponential scale, approximately following the formula

AeBt or Ae−Bt (7.14)

where A and B are positive constants, and t typically represents time. Common examples
include the growth of a bacteria population or the decay of a radioactive element.

“How can I compute the dissimilarity between objects described by ratio-scaled vari-
ables?” There are three methods to handle ratio-scaled variables for computing the dis-
similarity between objects.
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Treat ratio-scaled variables like interval-scaled variables. This, however, is not usually
a good choice since it is likely that the scale may be distorted.

Apply logarithmic transformation to a ratio-scaled variable f having value xi f for
object i by using the formula yi f = log(xi f ). The yi f values can be treated as interval-
valued, as described in Section 7.2.1. Notice that for some ratio-scaled variables, log-
log or other transformations may be applied, depending on the variable’s definition
and the application.

Treat xi f as continuous ordinal data and treat their ranks as interval-valued.

The latter two methods are the most effective, although the choice of method used may
depend on the given application.

Example 7.5 Dissimilarity between ratio-scaled variables. This time, we have the sample data of
Table 7.3, except that only the object-identifier and the ratio-scaled variable, test-3, are
available. Let’s try a logarithmic transformation. Taking the log of test-3 results in the
values 2.65, 1.34, 2.21, and 3.08 for the objects 1 to 4, respectively. Using the Euclidean
distance (Equation (7.5)) on the transformed values, we obtain the following dissimilar-
ity matrix:


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0
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0.44 0.87 0
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

7.2.4 Variables of Mixed Types

Sections 7.2.1 to 7.2.3 discussed how to compute the dissimilarity between objects
described by variables of the same type, where these types may be either interval-scaled,
symmetric binary, asymmetric binary, categorical, ordinal, or ratio-scaled. However, in
many real databases, objects are described by a mixture of variable types. In general, a
database can contain all of the six variable types listed above.

“So, how can we compute the dissimilarity between objects of mixed variable types?”
One approach is to group each kind of variable together, performing a separate cluster
analysis for each variable type. This is feasible if these analyses derive compatible results.
However, in real applications, it is unlikely that a separate cluster analysis per variable
type will generate compatible results.

A more preferable approach is to process all variable types together, performing a
single cluster analysis. One such technique combines the different variables into a single
dissimilarity matrix, bringing all of the meaningful variables onto a common scale of the
interval [0.0,1.0].
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Suppose that the data set contains p variables of mixed type. The dissimilarity d(i, j)
between objects i and j is defined as

d(i, j) =
∑p

f =1 δ( f )
i j d( f )

i j

∑p
f =1 δ( f )

i j

, (7.15)

where the indicator δ( f )
i j = 0 if either (1) xi f or x j f is missing (i.e., there is no measure-

ment of variable f for object i or object j), or (2) xi f = x j f = 0 and variable f is asym-

metric binary; otherwise, δ( f )
i j = 1. The contribution of variable f to the dissimilarity

between i and j, that is, d( f )
i j , is computed dependent on its type:

If f is interval-based: d( f )
i j = |xi f−x j f |

maxhxh f−minhxh f
, where h runs over all nonmissing objects

for variable f .

If f is binary or categorical: d( f )
i j = 0 if xi f = x j f ; otherwise d( f )

i j = 1.

If f is ordinal: compute the ranks ri f and zi f = ri f−1
M f−1 , and treat zi f as interval-

scaled.

If f is ratio-scaled: either perform logarithmic transformation and treat the trans-
formed data as interval-scaled; or treat f as continuous ordinal data, compute ri f
and zi f , and then treat zi f as interval-scaled.

The above steps are identical to what we have already seen for each of the individual
variable types. The only difference is for interval-based variables, where here we
normalize so that the values map to the interval [0.0,1.0]. Thus, the dissimilarity
between objects can be computed even when the variables describing the objects are
of different types.

Example 7.6 Dissimilarity between variables of mixed type. Let’s compute a dissimilarity matrix
for the objects of Table 7.3. Now we will consider all of the variables, which are
of different types. In Examples 7.3 to 7.5, we worked out the dissimilarity matrices
for each of the individual variables. The procedures we followed for test-1 (which is
categorical) and test-2 (which is ordinal) are the same as outlined above for processing
variables of mixed types. Therefore, we can use the dissimilarity matrices obtained
for test-1 and test-2 later when we compute Equation (7.15). First, however, we need
to complete some work for test-3 (which is ratio-scaled). We have already applied a
logarithmic transformation to its values. Based on the transformed values of 2.65,
1.34, 2.21, and 3.08 obtained for the objects 1 to 4, respectively, we let maxhxh = 3.08
and minhxh = 1.34. We then normalize the values in the dissimilarity matrix obtained
in Example 7.5 by dividing each one by (3.08− 1.34) = 1.74. This results in the
following dissimilarity matrix for test-3:
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
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



We can now use the dissimilarity matrices for the three variables in our computation of

Equation (7.15). For example, we get d(2, 1) = 1(1)+1(1)+1(0.75)
3 = 0.92. The resulting

dissimilarity matrix obtained for the data described by the three variables of mixed
types is:
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0.58 0.67 0
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

If we go back and look at Table 7.3, we can intuitively guess that objects 1 and 4 are
the most similar, based on their values for test-1 and test-2. This is confirmed by the
dissimilarity matrix, where d(4, 1) is the lowest value for any pair of different objects.
Similarly, the matrix indicates that objects 2 and 4 are the least similar.

7.2.5 Vector Objects

In some applications, such as information retrieval, text document clustering, and bio-
logical taxonomy, we need to compare and cluster complex objects (such as documents)
containing a large number of symbolic entities (such as keywords and phrases). To mea-
sure the distance between complex objects, it is often desirable to abandon traditional
metric distance computation and introduce a nonmetric similarity function.

There are several ways to define such a similarity function, s(x, y), to compare two
vectors x and y. One popular way is to define the similarity function as a cosine measure
as follows:

s(x, y) =
xt · y
||x||||y||

, (7.16)

where xt is a transposition of vector x, ||x|| is the Euclidean norm of vector x,1 ||y|| is the
Euclidean norm of vector y, and s is essentially the cosine of the angle between vectors x
and y. This value is invariant to rotation and dilation, but it is not invariant to translation
and general linear transformation.

1The Euclidean normal of vector x = (x1, x2, . . . , xp) is defined as
√

x2
1 + x2

2 + . . .+ x2
p. Conceptually, it

is the length of the vector.
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When variables are binary-valued (0 or 1), the above similarity function can be
interpreted in terms of shared features and attributes. Suppose an object x possesses
the ith attribute if xi = 1. Then xt · y is the number of attributes possessed by both x
and y, and |x||y| is the geometric mean of the number of attributes possessed by x and
the number possessed by y. Thus s(x, y) is a measure of relative possession of common
attributes.

Example 7.7 Nonmetric similarity between two objects using cosine. Suppose we are given two vec-
tors, x = (1, 1, 0, 0) and y = (0, 1, 1, 0). By Equation (7.16), the similarity between x and

y is s(x, y) = (0+1+0+0)√
2
√

2
= 0.5.

A simple variation of the above measure is

s(x, y) =
xt · y

xt ·x + yt · y−xt · y
(7.17)

which is the ratio of the number of attributes shared by x and y to the number of attributes
possessed by x or y. This function, known as the Tanimoto coefficient or Tanimoto dis-
tance, is frequently used in information retrieval and biology taxonomy.

Notice that there are many ways to select a particular similarity (or distance) func-
tion or normalize the data for cluster analysis. There is no universal standard to
guide such selection. The appropriate selection of such measures will heavily depend
on the given application. One should bear this in mind and refine the selection of
such measures to ensure that the clusters generated are meaningful and useful for the
application at hand.

7.3 A Categorization of Major Clustering Methods

Many clustering algorithms exist in the literature. It is difficult to provide a crisp cate-
gorization of clustering methods because these categories may overlap, so that a method
may have features from several categories. Nevertheless, it is useful to present a relatively
organized picture of the different clustering methods.

In general, the major clustering methods can be classified into the following
categories.

Partitioning methods: Given a database of n objects or data tuples, a partitioning
method constructs k partitions of the data, where each partition represents a clus-
ter and k ≤ n. That is, it classifies the data into k groups, which together satisfy the
following requirements: (1) each group must contain at least one object, and (2) each
object must belong to exactly one group. Notice that the second requirement can be
relaxed in some fuzzy partitioning techniques. References to such techniques are given
in the bibliographic notes.

Given k, the number of partitions to construct, a partitioning method creates an
initial partitioning. It then uses an iterative relocation technique that attempts to
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improve the partitioning by moving objects from one group to another. The general
criterion of a good partitioning is that objects in the same cluster are “close” or related
to each other, whereas objects of different clusters are “far apart” or very different.
There are various kinds of other criteria for judging the quality of partitions.

To achieve global optimality in partitioning-based clustering would require the
exhaustive enumeration of all of the possible partitions. Instead, most applications
adopt one of a few popular heuristic methods, such as (1) the k-means algorithm,
where each cluster is represented by the mean value of the objects in the cluster, and
(2) the k-medoids algorithm, where each cluster is represented by one of the objects
located near the center of the cluster. These heuristic clustering methods work well for
finding spherical-shaped clusters in small to medium-sized databases. To find clus-
ters with complex shapes and for clustering very large data sets, partitioning-based
methods need to be extended. Partitioning-based clustering methods are studied in
depth in Section 7.4.

Hierarchical methods: A hierarchical method creates a hierarchical decomposition of
the given set of data objects. A hierarchical method can be classified as being either
agglomerative or divisive, based on how the hierarchical decomposition is formed. The
agglomerative approach, also called the bottom-up approach, starts with each object
forming a separate group. It successively merges the objects or groups that are close
to one another, until all of the groups are merged into one (the topmost level of the
hierarchy), or until a termination condition holds. The divisive approach, also called
the top-down approach, starts with all of the objects in the same cluster. In each suc-
cessive iteration, a cluster is split up into smaller clusters, until eventually each object
is in one cluster, or until a termination condition holds.

Hierarchical methods suffer from the fact that once a step (merge or split) is done,
it can never be undone. This rigidity is useful in that it leads to smaller computation
costs by not having to worry about a combinatorial number of different choices. How-
ever, such techniques cannot correct erroneous decisions. There are two approaches
to improving the quality of hierarchical clustering: (1) perform careful analysis of
object “linkages” at each hierarchical partitioning, such as in Chameleon, or (2) inte-
grate hierarchical agglomeration and other approaches by first using a hierarchical
agglomerative algorithm to group objects into microclusters, and then performing
macroclustering on the microclusters using another clustering method such as itera-
tive relocation, as in BIRCH. Hierarchical clustering methods are studied in
Section 7.5.

Density-based methods: Most partitioning methods cluster objects based on the dis-
tance between objects. Such methods can find only spherical-shaped clusters and
encounter difficulty at discovering clusters of arbitrary shapes. Other clustering meth-
ods have been developed based on the notion of density. Their general idea is to con-
tinue growing the given cluster as long as the density (number of objects or data
points) in the “neighborhood” exceeds some threshold; that is, for each data point
within a given cluster, the neighborhood of a given radius has to contain at least a
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minimum number of points. Such a method can be used to filter out noise (outliers)
and discover clusters of arbitrary shape.

DBSCAN and its extension, OPTICS, are typical density-based methods that grow
clusters according to a density-based connectivity analysis. DENCLUE is a method
that clusters objects based on the analysis of the value distributions of density func-
tions. Density-based clustering methods are studied in Section 7.6.

Grid-based methods: Grid-based methods quantize the object space into a finite num-
ber of cells that form a grid structure. All of the clustering operations are performed
on the grid structure (i.e., on the quantized space). The main advantage of this
approach is its fast processing time, which is typically independent of the number
of data objects and dependent only on the number of cells in each dimension in the
quantized space.

STING is a typical example of a grid-based method. WaveCluster applies wavelet
transformation for clustering analysis and is both grid-based and density-based. Grid-
based clustering methods are studied in Section 7.7.

Model-based methods: Model-based methods hypothesize a model for each of the clus-
ters and find the best fit of the data to the given model. A model-based algorithm may
locate clusters by constructing a density function that reflects the spatial distribution
of the data points. It also leads to a way of automatically determining the number of
clusters based on standard statistics, taking “noise” or outliers into account and thus
yielding robust clustering methods.

EM is an algorithm that performs expectation-maximization analysis based on sta-
tistical modeling. COBWEB is a conceptual learning algorithm that performs prob-
ability analysis and takes concepts as a model for clusters. SOM (or self-organizing
feature map) is a neural network-based algorithm that clusters by mapping high-
dimensional data into a 2-D or 3-D feature map, which is also useful for data visual-
ization. Model-based clustering methods are studied in Section 7.8.

The choice of clustering algorithm depends both on the type of data available and on
the particular purpose of the application. If cluster analysis is used as a descriptive or
exploratory tool, it is possible to try several algorithms on the same data to see what the
data may disclose.

Some clustering algorithms integrate the ideas of several clustering methods, so that
it is sometimes difficult to classify a given algorithm as uniquely belonging to only one
clustering method category. Furthermore, some applications may have clustering criteria
that require the integration of several clustering techniques.

Aside from the above categories of clustering methods, there are two classes of clus-
tering tasks that require special attention. One is clustering high-dimensional data, and
the other is constraint-based clustering.

Clustering high-dimensional data is a particularly important task in cluster analysis
because many applications require the analysis of objects containing a large
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number of features or dimensions. For example, text documents may contain thou-
sands of terms or keywords as features, and DNA microarray data may provide infor-
mation on the expression levels of thousands of genes under hundreds of conditions.
Clustering high-dimensional data is challenging due to the curse of dimensionality.
Many dimensions may not be relevant. As the number of dimensions increases, the
data become increasingly sparse so that the distance measurement between pairs of
points become meaningless and the average density of points anywhere in the data is
likely to be low. Therefore, a different clustering methodology needs to be developed
for high-dimensional data. CLIQUE and PROCLUS are two influential subspace clus-
tering methods, which search for clusters in subspaces (or subsets of dimensions) of
the data, rather than over the entire data space. Frequent pattern–based clustering,
another clustering methodology, extracts distinct frequent patterns among subsets of
dimensions that occur frequently. It uses such patterns to group objects and generate
meaningful clusters. pCluster is an example of frequent pattern–based clustering that
groups objects based on their pattern similarity. High-dimensional data clustering
methods are studied in Section 7.9.

Constraint-based clustering is a clustering approach that performs clustering by incor-
poration of user-specified or application-oriented constraints. A constraint expresses
a user’s expectation or describes “properties” of the desired clustering results, and
provides an effective means for communicating with the clustering process. Various
kinds of constraints can be specified, either by a user or as per application require-
ments. Our focus of discussion will be on spatial clustering with the existence of
obstacles and clustering under user-specified constraints. In addition, semi-supervised
clustering is described, which employs, for example, pairwise constraints (such as pairs
of instances labeled as belonging to the same or different clusters) in order to improve
the quality of the resulting clustering. Constraint-based clustering methods are stud-
ied in Section 7.10.

In the following sections, we examine each of the above clustering methods in
detail. We also introduce algorithms that integrate the ideas of several clustering meth-
ods. Outlier analysis, which typically involves clustering, is described in Section 7.11.
In general, the notation used in these sections is as follows. Let D be a data set of n
objects to be clustered. An object is described by d variables (attributes or dimen-
sions) and therefore may also be referred to as a point in d-dimensional object space.
Objects are represented in bold italic font (e.g., p).

7.4 Partitioning Methods

Given D, a data set of n objects, and k, the number of clusters to form, a partitioning
algorithm organizes the objects into k partitions (k≤ n), where each partition repre-
sents a cluster. The clusters are formed to optimize an objective partitioning criterion,
such as a dissimilarity function based on distance, so that the objects within a cluster
are “similar,” whereas the objects of different clusters are “dissimilar” in terms of the
data set attributes.
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7.4.1 Classical Partitioning Methods: k-Means and k-Medoids

The most well-known and commonly used partitioning methods are k-means, k-medoids,
and their variations.

Centroid-Based Technique: The k-Means Method
The k-means algorithm takes the input parameter, k, and partitions a set of n objects into
k clusters so that the resulting intracluster similarity is high but the intercluster similarity
is low. Cluster similarity is measured in regard to the mean value of the objects in a cluster,
which can be viewed as the cluster’s centroid or center of gravity.

“How does the k-means algorithm work?” The k-means algorithm proceeds as follows.
First, it randomly selects k of the objects, each of which initially represents a cluster mean
or center. For each of the remaining objects, an object is assigned to the cluster to which
it is the most similar, based on the distance between the object and the cluster mean. It
then computes the new mean for each cluster. This process iterates until the criterion
function converges. Typically, the square-error criterion is used, defined as

E =
k

∑
i=1

∑
p∈Ci

|p−mi|2, (7.18)

where E is the sum of the square error for all objects in the data set; p is the point in
space representing a given object; and mi is the mean of cluster Ci (both p and mi are
multidimensional). In other words, for each object in each cluster, the distance from the
object to its cluster center is squared, and the distances are summed. This criterion tries
to make the resulting k clusters as compact and as separate as possible. The k-means
procedure is summarized in Figure 7.2.

Example 7.8 Clustering by k-means partitioning. Suppose that there is a set of objects located in space
as depicted in the rectangle shown in Figure 7.3(a). Let k = 3; that is, the user would like
the objects to be partitioned into three clusters.

According to the algorithm in Figure 7.2, we arbitrarily choose three objects as the
three initial cluster centers, where cluster centers are marked by a “+”. Each object is
distributed to a cluster based on the cluster center to which it is the nearest. Such a dis-
tribution forms silhouettes encircled by dotted curves, as shown in Figure 7.3(a).

Next, the cluster centers are updated. That is, the mean value of each cluster is recalcu-
lated based on the current objects in the cluster. Using the new cluster centers, the objects
are redistributed to the clusters based on which cluster center is the nearest. Such a redis-
tribution forms new silhouettes encircled by dashed curves, as shown in Figure 7.3(b).

This process iterates, leading to Figure 7.3(c). The process of iteratively reassigning
objects to clusters to improve the partitioning is referred to as iterative relocation.
Eventually, no redistribution of the objects in any cluster occurs, and so the process ter-
minates. The resulting clusters are returned by the clustering process.

The algorithm attempts to determine k partitions that minimize the square-error
function. It works well when the clusters are compact clouds that are rather well
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Algorithm: k-means. The k-means algorithm for partitioning, where each cluster’s
center is represented by the mean value of the objects in the cluster.

Input:

k: the number of clusters,

D: a data set containing n objects.

Output: A set of k clusters.

Method:

(1) arbitrarily choose k objects from D as the initial cluster centers;
(2) repeat
(3) (re)assign each object to the cluster to which the object is the most similar,

based on the mean value of the objects in the cluster;
(4) update the cluster means, i.e., calculate the mean value of the objects for

each cluster;
(5) until no change;

Figure 7.2 The k-means partitioning algorithm.
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1

1

1

1
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1

1
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Figure 7.3 Clustering of a set of objects based on the k-means method. (The mean of each cluster is
marked by a “+”.)

separated from one another. The method is relatively scalable and efficient in processing
large data sets because the computational complexity of the algorithm is O(nkt), where
n is the total number of objects, k is the number of clusters, and t is the number of iter-
ations. Normally, k� n and t� n. The method often terminates at a local optimum.

The k-means method, however, can be applied only when the mean of a cluster is
defined. This may not be the case in some applications, such as when data with categor-
ical attributes are involved. The necessity for users to specify k, the number of clusters,
in advance can be seen as a disadvantage. The k-means method is not suitable for dis-
covering clusters with nonconvex shapes or clusters of very different size. Moreover, it
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is sensitive to noise and outlier data points because a small number of such data can
substantially influence the mean value.

There are quite a few variants of the k-means method. These can differ in the selection
of the initial k means, the calculation of dissimilarity, and the strategies for calculating
cluster means. An interesting strategy that often yields good results is to first apply a hier-
archical agglomeration algorithm, which determines the number of clusters and finds an
initial clustering, and then use iterative relocation to improve the clustering.

Another variant to k-means is the k-modes method, which extends the k-means
paradigm to cluster categorical data by replacing the means of clusters with modes, using
new dissimilarity measures to deal with categorical objects and a frequency-based method
to update modes of clusters. The k-means and the k-modes methods can be integrated
to cluster data with mixed numeric and categorical values.

The EM (Expectation-Maximization) algorithm (which will be further discussed in
Section 7.8.1) extends the k-means paradigm in a different way. Whereas the k-means
algorithm assigns each object to a cluster, in EM each object is assigned to each cluster
according to a weight representing its probability of membership. In other words, there
are no strict boundaries between clusters. Therefore, new means are computed based on
weighted measures.

“How can we make the k-means algorithm more scalable?” A recent approach to scal-
ing the k-means algorithm is based on the idea of identifying three kinds of regions in
data: regions that are compressible, regions that must be maintained in main memory,
and regions that are discardable. An object is discardable if its membership in a cluster is
ascertained. An object is compressible if it is not discardable but belongs to a tight sub-
cluster. A data structure known as a clustering feature is used to summarize objects that
have been discarded or compressed. If an object is neither discardable nor compressible,
then it should be retained in main memory. To achieve scalability, the iterative cluster-
ing algorithm only includes the clustering features of the compressible objects and the
objects that must be retained in main memory, thereby turning a secondary-memory-
based algorithm into a main-memory-based algorithm. An alternative approach to scal-
ing the k-means algorithm explores the microclustering idea, which first groups nearby
objects into “microclusters” and then performs k-means clustering on the microclusters.
Microclustering is further discussed in Section 7.5.

Representative Object-Based Technique:
The k-Medoids Method
The k-means algorithm is sensitive to outliers because an object with an extremely large
value may substantially distort the distribution of data. This effect is particularly exacer-
bated due to the use of the square-error function (Equation (7.18)).

“How might the algorithm be modified to diminish such sensitivity?” Instead of tak-
ing the mean value of the objects in a cluster as a reference point, we can pick actual
objects to represent the clusters, using one representative object per cluster. Each remain-
ing object is clustered with the representative object to which it is the most similar. The
partitioning method is then performed based on the principle of minimizing the sum of
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the dissimilarities between each object and its corresponding reference point. That is, an
absolute-error criterion is used, defined as

E =
k

∑
j=1

∑
p∈C j

|p−oj|, (7.19)

where E is the sum of the absolute error for all objects in the data set; p is the point in
space representing a given object in cluster C j; and oj is the representative object of C j. In
general, the algorithm iterates until, eventually, each representative object is actually the
medoid, or most centrally located object, of its cluster. This is the basis of the k-medoids
method for grouping n objects into k clusters.

Let’s look closer at k-medoids clustering. The initial representative objects (or seeds)
are chosen arbitrarily. The iterative process of replacing representative objects by nonrep-
resentative objects continues as long as the quality of the resulting clustering is improved.
This quality is estimated using a cost function that measures the average dissimilarity
between an object and the representative object of its cluster. To determine whether
a nonrepresentative object, orandom, is a good replacement for a current representative
object, oj, the following four cases are examined for each of the nonrepresentative objects,
p, as illustrated in Figure 7.4.

Case 1: p currently belongs to representative object, oj. If oj is replaced by orandom as
a representative object and p is closest to one of the other representative objects, oi,
i 6= j, then p is reassigned to oi.

Case 2: p currently belongs to representative object, oj. If oj is replaced by orandom as
a representative object and p is closest to orandom, then p is reassigned to orandom.

Case 3: p currently belongs to representative object, oi, i 6= j. If oj is replaced by orandom
as a representative object and p is still closest to oi, then the assignment does not
change.

Oi
Oj

Orandom

p

1. Reassigned to Oi 

      data object

      cluster center

      before swapping

      after swapping

Oi
Oj

Orandom
p

2. Reassigned to

    Orandom

Oi
Oj

Orandom

p

3. No change

Oi
Oj

Orandomp

4. Reassigned to

    Orandom

Figure 7.4 Four cases of the cost function for k-medoids clustering.
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Case 4: p currently belongs to representative object, oi, i 6= j. If oj is replaced by
orandom as a representative object and p is closest to orandom, then p is reassigned
to orandom.

Each time a reassignment occurs, a difference in absolute error, E , is contributed to
the cost function. Therefore, the cost function calculates the difference in absolute-error
value if a current representative object is replaced by a nonrepresentative object. The
total cost of swapping is the sum of costs incurred by all nonrepresentative objects. If the
total cost is negative, then oj is replaced or swapped with orandom since the actual absolute
error E would be reduced. If the total cost is positive, the current representative object,
oj, is considered acceptable, and nothing is changed in the iteration.

PAM (Partitioning Around Medoids) was one of the first k-medoids algorithms intro-
duced (Figure 7.5). It attempts to determine k partitions for n objects. After an initial ran-
dom selection of k representative objects, the algorithm repeatedly tries to make a better
choice of cluster representatives. All of the possible pairs of objects are analyzed, where
one object in each pair is considered a representative object and the other is not. The
quality of the resulting clustering is calculated for each such combination. An object, oj,
is replaced with the object causing the greatest reduction in error. The set of best objects
for each cluster in one iteration forms the representative objects for the next iteration.
The final set of representative objects are the respective medoids of the clusters. The com-
plexity of each iteration is O(k(n− k)2). For large values of n and k, such computation
becomes very costly.

Algorithm: k-medoids. PAM, a k-medoids algorithm for partitioning based on medoid
or central objects.

Input:

k: the number of clusters,

D: a data set containing n objects.

Output: A set of k clusters.

Method:

(1) arbitrarily choose k objects in D as the initial representative objects or seeds;
(2) repeat
(3) assign each remaining object to the cluster with the nearest representative object;
(4) randomly select a nonrepresentative object, orandom;
(5) compute the total cost, S, of swapping representative object, oj, with orandom;
(6) if S < 0 then swap oj with orandom to form the new set of k representative objects;
(7) until no change;

Figure 7.5 PAM, a k-medoids partitioning algorithm.



7.4 Partitioning Methods 407

“Which method is more robust—k-means or k-medoids?” The k-medoids method is
more robust than k-means in the presence of noise and outliers, because a medoid is less
influenced by outliers or other extreme values than a mean. However, its processing is
more costly than the k-means method. Both methods require the user to specify k, the
number of clusters.

Aside from using the mean or the medoid as a measure of cluster center, other alter-
native measures are also commonly used in partitioning clustering methods. The median
can be used, resulting in the k-median method, where the median or “middle value” is
taken for each ordered attribute. Alternatively, in the k-modes method, the most frequent
value for each attribute is used.

7.4.2 Partitioning Methods in Large Databases:
From k-Medoids to CLARANS

“How efficient is the k-medoids algorithm on large data sets?” A typical k-medoids parti-
tioning algorithm like PAM works effectively for small data sets, but does not scale well
for large data sets. To deal with larger data sets, a sampling-based method, called CLARA
(Clustering LARge Applications), can be used.

The idea behind CLARA is as follows: Instead of taking the whole set of data into
consideration, a small portion of the actual data is chosen as a representative of the data.
Medoids are then chosen from this sample using PAM. If the sample is selected in a
fairly random manner, it should closely represent the original data set. The representative
objects (medoids) chosen will likely be similar to those that would have been chosen
from the whole data set. CLARA draws multiple samples of the data set, applies PAM
on each sample, and returns its best clustering as the output. As expected, CLARA can
deal with larger data sets than PAM. The complexity of each iteration now becomes
O(ks2 + k(n− k)), where s is the size of the sample, k is the number of clusters, and n is
the total number of objects.

The effectiveness of CLARA depends on the sample size. Notice that PAM searches
for the best k medoids among a given data set, whereas CLARA searches for the best k
medoids among the selected sample of the data set. CLARA cannot find the best clustering
if any of the best sampled medoids is not among the best k medoids. That is, if an object
oi is one of the best k medoids but is not selected during sampling, CLARA will never
find the best clustering. This is, therefore, a trade-off for efficiency. A good clustering
based on sampling will not necessarily represent a good clustering of the whole data set
if the sample is biased.

“How might we improve the quality and scalability of CLARA?” A k-medoids type
algorithm called CLARANS (Clustering Large Applications based upon RANdomized
Search) was proposed, which combines the sampling technique with PAM. However,
unlike CLARA, CLARANS does not confine itself to any sample at any given time.
While CLARA has a fixed sample at each stage of the search, CLARANS draws a
sample with some randomness in each step of the search. Conceptually, the clustering
process can be viewed as a search through a graph, where each node is a potential
solution (a set of k medoids). Two nodes are neighbors (that is, connected by an arc in
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the graph) if their sets differ by only one object. Each node can be assigned a cost that
is defined by the total dissimilarity between every object and the medoid of its cluster.
At each step, PAM examines all of the neighbors of the current node in its search for
a minimum cost solution. The current node is then replaced by the neighbor with
the largest descent in costs. Because CLARA works on a sample of the entire data
set, it examines fewer neighbors and restricts the search to subgraphs that are smaller
than the original graph. While CLARA draws a sample of nodes at the beginning of a
search, CLARANS dynamically draws a random sample of neighbors in each step of
a search. The number of neighbors to be randomly sampled is restricted by a user-
specified parameter. In this way, CLARANS does not confine the search to a localized
area. If a better neighbor is found (i.e., having a lower error), CLARANS moves to
the neighbor’s node and the process starts again; otherwise, the current clustering
produces a local minimum. If a local minimum is found, CLARANS starts with new
randomly selected nodes in search for a new local minimum. Once a user-specified
number of local minima has been found, the algorithm outputs, as a solution, the
best local minimum, that is, the local minimum having the lowest cost.

CLARANS has been experimentally shown to be more effective than both PAM
and CLARA. It can be used to find the most “natural” number of clusters using a
silhouette coefficient—a property of an object that specifies how much the object truly
belongs to the cluster. CLARANS also enables the detection of outliers. However, the
computational complexity of CLARANS is about O(n2), where n is the number of
objects. Furthermore, its clustering quality is dependent on the sampling method
used. The ability of CLARANS to deal with data objects that reside on disk can be
further improved by focusing techniques that explore spatial data structures, such as
R*-trees.

7.5 Hierarchical Methods

A hierarchical clustering method works by grouping data objects into a tree of clusters.
Hierarchical clustering methods can be further classified as either agglomerative or divi-
sive, depending on whether the hierarchical decomposition is formed in a bottom-up
(merging) or top-down (splitting) fashion. The quality of a pure hierarchical clustering
method suffers from its inability to perform adjustment once a merge or split decision has
been executed. That is, if a particular merge or split decision later turns out to have been a
poor choice, the method cannot backtrack and correct it. Recent studies have emphasized
the integration of hierarchical agglomeration with iterative relocation methods.

7.5.1 Agglomerative and Divisive Hierarchical Clustering

In general, there are two types of hierarchical clustering methods:

Agglomerative hierarchical clustering: This bottom-up strategy starts by placing each
object in its own cluster and then merges these atomic clusters into larger and larger
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clusters, until all of the objects are in a single cluster or until certain termination
conditions are satisfied. Most hierarchical clustering methods belong to this category.
They differ only in their definition of intercluster similarity.

Divisive hierarchical clustering: This top-down strategy does the reverse of agglom-
erative hierarchical clustering by starting with all objects in one cluster. It subdivides
the cluster into smaller and smaller pieces, until each object forms a cluster on its
own or until it satisfies certain termination conditions, such as a desired number of
clusters is obtained or the diameter of each cluster is within a certain threshold.

Example 7.9 Agglomerative versus divisive hierarchical clustering. Figure 7.6 shows the application
of AGNES (AGglomerative NESting), an agglomerative hierarchical clustering method,
and DIANA (DIvisive ANAlysis), a divisive hierarchical clustering method, to a data set
of five objects, {a, b, c, d, e}. Initially, AGNES places each object into a cluster of its
own. The clusters are then merged step-by-step according to some criterion. For exam-
ple, clusters C1 and C2 may be merged if an object in C1 and an object in C2 form the
minimum Euclidean distance between any two objects from different clusters. This is
a single-linkage approach in that each cluster is represented by all of the objects in the
cluster, and the similarity between two clusters is measured by the similarity of the closest
pair of data points belonging to different clusters. The cluster merging process repeats
until all of the objects are eventually merged to form one cluster.

In DIANA, all of the objects are used to form one initial cluster. The cluster is split
according to some principle, such as the maximum Euclidean distance between the clos-
est neighboring objects in the cluster. The cluster splitting process repeats until, eventu-
ally, each new cluster contains only a single object.

a
ab

b

c

d

e
de

cde

abcde

step 0 step 1 step 2 step 3 step 4

step 4 step 3 step 2 step 1 step 0

Divisive

(DIANA)

Agglomerative

(AGNES)

Figure 7.6 Agglomerative and divisive hierarchical clustering on data objects {a, b, c, d, e}.
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In either agglomerative or divisive hierarchical clustering, the user can specify the
desired number of clusters as a termination condition.

A tree structure called a dendrogram is commonly used to represent the process of
hierarchical clustering. It shows how objects are grouped together step by step. Figure 7.7
shows a dendrogram for the five objects presented in Figure 7.6, where l = 0 shows the
five objects as singleton clusters at level 0. At l = 1, objects a and b are grouped together
to form the first cluster, and they stay together at all subsequent levels. We can also use
a vertical axis to show the similarity scale between clusters. For example, when the sim-
ilarity of two groups of objects, {a, b} and {c, d, e}, is roughly 0.16, they are merged
together to form a single cluster.

Four widely used measures for distance between clusters are as follows, where |p−p′|
is the distance between two objects or points, p and p′; mi is the mean for cluster, Ci; and
ni is the number of objects in Ci.

Minimum distance : dmin(Ci, C j) = minp∈Ci, p′∈C j |p−p′| (7.20)

Maximum distance : dmax(Ci, C j) = maxp∈Ci, p′∈C j |p−p′| (7.21)

Mean distance : dmean(Ci, C j) = |mi−mj| (7.22)

Average distance : davg(Ci, C j) =
1

nin j
∑

p∈Ci

∑
p′∈C j

|p−p′| (7.23)

When an algorithm uses the minimum distance, dmin(Ci, C j), to measure the distance
between clusters, it is sometimes called a nearest-neighbor clustering algorithm. More-
over, if the clustering process is terminated when the distance between nearest clusters
exceeds an arbitrary threshold, it is called a single-linkage algorithm. If we view the data
points as nodes of a graph, with edges forming a path between the nodes in a cluster,
then the merging of two clusters, Ci and C j, corresponds to adding an edge between
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Figure 7.7 Dendrogram representation for hierarchical clustering of data objects {a, b, c, d, e}.
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the nearest pair of nodes in Ci and C j. Because edges linking clusters always go between
distinct clusters, the resulting graph will generate a tree. Thus, an agglomerative hier-
archical clustering algorithm that uses the minimum distance measure is also called a
minimal spanning tree algorithm.

When an algorithm uses the maximum distance, dmax(Ci, C j), to measure the distance
between clusters, it is sometimes called a farthest-neighbor clustering algorithm. If the
clustering process is terminated when the maximum distance between nearest clusters
exceeds an arbitrary threshold, it is called a complete-linkage algorithm. By viewing
data points as nodes of a graph, with edges linking nodes, we can think of each clus-
ter as a complete subgraph, that is, with edges connecting all of the nodes in the clusters.
The distance between two clusters is determined by the most distant nodes in the two
clusters. Farthest-neighbor algorithms tend to minimize the increase in diameter of the
clusters at each iteration as little as possible. If the true clusters are rather compact and
approximately equal in size, the method will produce high-quality clusters. Otherwise,
the clusters produced can be meaningless.

The above minimum and maximum measures represent two extremes in measur-
ing the distance between clusters. They tend to be overly sensitive to outliers or noisy
data. The use of mean or average distance is a compromise between the minimum and
maximum distances and overcomes the outlier sensitivity problem. Whereas the mean
distance is the simplest to compute, the average distance is advantageous in that it can
handle categoric as well as numeric data.2 The computation of the mean vector for cat-
egoric data can be difficult or impossible to define.

“What are some of the difficulties with hierarchical clustering?” The hierarchical cluster-
ing method, though simple, often encounters difficulties regarding the selection of merge
or split points. Such a decision is critical because once a group of objects is merged or
split, the process at the next step will operate on the newly generated clusters. It will
neither undo what was done previously nor perform object swapping between clusters.
Thus merge or split decisions, if not well chosen at some step, may lead to low-quality
clusters. Moreover, the method does not scale well, because each decision to merge or
split requires the examination and evaluatation of a good number of objects or clusters.

One promising direction for improving the clustering quality of hierarchical meth-
ods is to integrate hierarchical clustering with other clustering techniques, resulting in
multiple-phase clustering. Three such methods are introduced in the following subsec-
tions. The first, called BIRCH, begins by partitioning objects hierarchically using tree
structures, where the leaf or low-level nonleaf nodes can be viewed as “microclusters”
depending on the scale of resolution. It then applies other clustering algorithms to per-
form macroclustering on the microclusters. The second method, called ROCK, merges
clusters based on their interconnectivity. The third method, called Chameleon, explores
dynamic modeling in hierarchical clustering.

2To handle categoric data, dissimilarity measures such as those described in Sections 7.2.2 and 7.2.3 can
be used to replace |p−p′| with d(p, p′) in Equation (7.23).
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7.5.2 BIRCH: Balanced Iterative Reducing and Clustering
Using Hierarchies

BIRCH is designed for clustering a large amount of numerical data by integration of
hierarchical clustering (at the initial microclustering stage) and other clustering methods
such as iterative partitioning (at the later macroclustering stage). It overcomes the two
difficulties of agglomerative clustering methods: (1) scalability and (2) the inability to
undo what was done in the previous step.

BIRCH introduces two concepts, clustering feature and clustering feature tree
(CF tree), which are used to summarize cluster representations. These structures help the
clustering method achieve good speed and scalability in large databases and also make it
effective for incremental and dynamic clustering of incoming objects.

Let’s look closer at the above-mentioned structures. Given n d-dimensional data
objects or points in a cluster, we can define the centroid x0, radius R, and diameter D
of the cluster as follows:

x0 =

n

∑
i=1

xi

n (7.24)

R =

√

√

√

√

n

∑
i=1

(xi−x0)2

n (7.25)

D =

√

√

√

√

√

n

∑
i=1

n

∑
j=1

(xi−xj)2

n(n−1) (7.26)

where R is the average distance from member objects to the centroid, and D is the aver-
age pairwise distance within a cluster. Both R and D reflect the tightness of the cluster
around the centroid. A clustering feature (CF) is a three-dimensional vector summariz-
ing information about clusters of objects. Given n d-dimensional objects or points in a
cluster, {xi}, then the CF of the cluster is defined as

CF = 〈n, LS, SS〉, (7.27)

where n is the number of points in the cluster, LS is the linear sum of the n points (i.e.,
∑n

i=1 xi), and SS is the square sum of the data points (i.e., ∑n
i=1 xi

2).
A clustering feature is essentially a summary of the statistics for the given cluster:

the zeroth, first, and second moments of the cluster from a statistical point of view.
Clustering features are additive. For example, suppose that we have two disjoint clus-
ters, C1 and C2, having the clustering features, CF1 and CF2, respectively. The cluster-
ing feature for the cluster that is formed by merging C1 and C2 is simply CF1 + CF2.
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Clustering features are sufficient for calculating all of the measurements that are needed
for making clustering decisions in BIRCH. BIRCH thus utilizes storage efficiently by
employing the clustering features to summarize information about the clusters of objects,
thereby bypassing the need to store all objects.

Example 7.10 Clustering feature. Suppose that there are three points, (2, 5), (3, 2), and (4, 3), in a
cluster, C1. The clustering feature of C1 is

CF1 = 〈3,(2 + 3 + 4,5 + 2 + 3),(22 + 32 + 42,52 + 22 + 32)〉= 〈3,(9,10),(29,38)〉.

Suppose that C1 is disjoint to a second cluster, C2, where CF2 = 〈3, (35, 36), (417, 440)〉.
The clustering feature of a new cluster,C3, that is formed by mergingC1 andC2, is derived
by adding CF1 and CF2. That is,

CF3 = 〈3 + 3,(9 + 35,10 + 36),(29 + 417,38 + 440)〉= 〈6,(44,46),(446,478)〉.

A CF tree is a height-balanced tree that stores the clustering features for a hierarchical
clustering. An example is shown in Figure 7.8. By definition, a nonleaf node in a tree has
descendants or “children.” The nonleaf nodes store sums of the CFs of their children, and
thus summarize clustering information about their children. A CF tree has two param-
eters: branching factor, B, and threshold, T . The branching factor specifies the maximum
number of children per nonleaf node. The threshold parameter specifies the maximum
diameter of subclusters stored at the leaf nodes of the tree. These two parameters influ-
ence the size of the resulting tree.

BIRCH tries to produce the best clusters with the available resources. Given a limited
amount of main memory, an important consideration is to minimize the time required
for I/O. BIRCH applies a multiphase clustering technique: a single scan of the data set
yields a basic good clustering, and one or more additional scans can (optionally) be used
to further improve the quality. The primary phases are:

Phase 1: BIRCH scans the database to build an initial in-memory CF tree, which can
be viewed as a multilevel compression of the data that tries to preserve the inherent
clustering structure of the data.

CF1 CF2 Root levelCFk

CF11 CF12 First levelCF1k– – – –


Figure 7.8 A CF tree structure.
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Phase 2: BIRCH applies a (selected) clustering algorithm to cluster the leaf nodes of
the CF tree, which removes sparse clusters as outliers and groups dense clusters into
larger ones.

For Phase 1, the CF tree is built dynamically as objects are inserted. Thus, the method
is incremental. An object is inserted into the closest leaf entry (subcluster). If the diameter
of the subcluster stored in the leaf node after insertion is larger than the threshold value,
then the leaf node and possibly other nodes are split. After the insertion of the new object,
information about it is passed toward the root of the tree. The size of the CF tree can be
changed by modifying the threshold. If the size of the memory that is needed for storing
the CF tree is larger than the size of the main memory, then a smaller threshold value
can be specified and the CF tree is rebuilt. The rebuild process is performed by building
a new tree from the leaf nodes of the old tree. Thus, the process of rebuilding the tree is
done without the necessity of rereading all of the objects or points. This is similar to the
insertion and node split in the construction of B+-trees. Therefore, for building the tree,
data has to be read just once. Some heuristics and methods have been introduced to deal
with outliers and improve the quality of CF trees by additional scans of the data. Once
the CF tree is built, any clustering algorithm, such as a typical partitioning algorithm,
can be used with the CF tree in Phase 2.

“How effective is BIRCH?” The computation complexity of the algorithm is O(n),
where n is the number of objects to be clustered. Experiments have shown the linear
scalability of the algorithm with respect to the number of objects and good quality of
clustering of the data. However, since each node in a CF tree can hold only a limited
number of entries due to its size, a CF tree node does not always correspond to what a
user may consider a natural cluster. Moreover, if the clusters are not spherical in shape,
BIRCH does not perform well, because it uses the notion of radius or diameter to control
the boundary of a cluster.

7.5.3 ROCK: A Hierarchical Clustering Algorithm for
Categorical Attributes

ROCK (RObust Clustering using linKs) is a hierarchical clustering algorithm that
explores the concept of links (the number of common neighbors between two objects)
for data with categorical attributes. Traditional clustering algorithms for clustering data
with Boolean and categorical attributes use distance functions (such as those introduced
for binary variables in Section 7.2.2). However, experiments show that such distance
measures cannot lead to high-quality clusters when clustering categorical data. Further-
more, most clustering algorithms assess only the similarity between points when cluster-
ing; that is, at each step, points that are the most similar are merged into a single cluster.
This “localized” approach is prone to errors. For example, two distinct clusters may have
a few points or outliers that are close; therefore, relying on the similarity between points
to make clustering decisions could cause the two clusters to be merged. ROCK takes a
more global approach to clustering by considering the neighborhoods of individual pairs
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of points. If two similar points also have similar neighborhoods, then the two points
likely belong to the same cluster and so can be merged.

More formally, two points, pi and pj, are neighbors if sim(pi, pj) ≥ θ, where sim is a
similarity function and θ is a user-specified threshold. We can choose sim to be a distance
metric or even a nonmetric (provided by a domain expert or as in Section 7.2.5) that
is normalized so that its values fall between 0 and 1, with larger values indicating that
the points are more similar. The number of links between pi and pj is defined as the
number of common neighbors between pi and pj. If the number of links between two
points is large, then it is more likely that they belong to the same cluster. By considering
neighboring data points in the relationship between individual pairs of points, ROCK is
more robust than standard clustering methods that focus only on point similarity.

A good example of data containing categorical attributes is market basket data
(Chapter 5). Such data consists of a database of transactions, where each transaction
is a set of items. Transactions are considered records with Boolean attributes, each corre-
sponding to an individual item, such as bread or cheese. In the record for a transaction,
the attribute corresponding to an item is true if the transaction contains the item; oth-
erwise, it is false. Other data sets with categorical attributes can be handled in a similar
manner. ROCK’s concepts of neighbors and links are illustrated in the following exam-
ple, where the similarity between two “points” or transactions, Ti and Tj, is defined with
the Jaccard coefficient as

sim(Ti, Tj) =
|Ti∩Tj|
|Ti∪Tj|

. (7.28)

Example 7.11 Using neighborhood link information together with point similarity. Suppose that a
market basket database contains transactions regarding the items a, b, . . . , g. Consider
two clusters of transactions, C1 and C2. C1, which references the items 〈a, b, c, d, e〉, con-
tains the transactions {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d},
{b, c, e}, {b, d, e}, {c, d, e}. C2 references the items 〈a, b, f , g〉. It contains the trans-
actions {a, b, f}, {a, b, g}, {a, f , g}, {b, f , g}. Suppose, first, that we consider only the
similarity between points while ignoring neighborhood information. The Jaccard coeffi-
cient between the transactions {a, b, c} and {b, d, e} of C1 is 1

5 = 0.2. In fact, the Jaccard
coefficient between any pair of transactions in C1 ranges from 0.2 to 0.5 (e.g., {a, b, c}
and {a, b, d}). The Jaccard coefficient between transactions belonging to different clus-
ters may also reach 0.5 (e.g., {a, b, c} of C1 with {a, b, f} or {a, b, g} of C2). Clearly, by
using the Jaccard coefficient on its own, we cannot obtain the desired clusters.

On the other hand, the link-based approach of ROCK can successfully separate
the transactions into the appropriate clusters. As it turns out, for each transaction,
the transaction with which it has the most links is always another transaction from
the same cluster. For example, let θ = 0.5. Transaction {a, b, f} of C2 has five links
with transaction {a, b, g} of the same cluster (due to common neighbors {a, b, c},
{a, b, d}, {a, b, e}, {a, f , g}, and {b, f , g}). However, transaction {a, b, f} of C2 has
only three links with {a, b, c} of C1 (due to {a, b, d}, {a, b, e}, and {a, b, g}). Similarly,
transaction {a, f , g} of C2 has two links with every other transaction in C2, and
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zero links with each transaction in C1. Thus, the link-based approach, which considers
neighborhood information in addition to object similarity, can correctly distinguish
the two clusters of transactions.

Based on these ideas, ROCK first constructs a sparse graph from a given data similarity
matrix using a similarity threshold and the concept of shared neighbors. It then performs
agglomerative hierarchical clustering on the sparse graph. A goodness measure is used
to evaluate the clustering. Random sampling is used for scaling up to large data sets. The
worst-casetimecomplexityofROCKisO(n2 +nmmma +n2logn),wheremm andma arethe
maximum and average number of neighbors, respectively, and n is the number of objects.

In several real-life data sets, such as the congressional voting data set and the mush-
room data set at UC-Irvine Machine Learning Repository, ROCK has demonstrated its
power at deriving much more meaningful clusters than the traditional hierarchical clus-
tering algorithms.

7.5.4 Chameleon: A Hierarchical Clustering Algorithm
Using Dynamic Modeling

Chameleon is a hierarchical clustering algorithm that uses dynamic modeling to deter-
mine the similarity between pairs of clusters. It was derived based on the observed weak-
nesses of two hierarchical clustering algorithms: ROCK and CURE. ROCK and related
schemes emphasize cluster interconnectivity while ignoring information regarding
cluster proximity. CURE and related schemes consider cluster proximity yet ignore clus-
ter interconnectivity. In Chameleon, cluster similarity is assessed based on how
well-connected objects are within a cluster and on the proximity of clusters. That is, two
clusters are merged if their interconnectivity is high and they are close together. Thus,
Chameleon does not depend on a static, user-supplied model and can automatically
adapt to the internal characteristics of the clusters being merged. The merge process facil-
itates the discovery of natural and homogeneous clusters and applies to all types of data
as long as a similarity function can be specified.

“How does Chameleon work?” The main approach of Chameleon is illustrated in
Figure 7.9. Chameleon uses a k-nearest-neighbor graph approach to construct a sparse
graph, where each vertex of the graph represents a data object, and there exists an edge
between two vertices (objects) if one object is among the k-most-similar objects of the
other. The edges are weighted to reflect the similarity between objects. Chameleon uses a
graph partitioning algorithm to partition the k-nearest-neighbor graph into a large num-
ber of relatively small subclusters. It then uses an agglomerative hierarchical clustering
algorithm that repeatedly merges subclusters based on their similarity. To determine the
pairs of most similar subclusters, it takes into account both the interconnectivity as well
as the closeness of the clusters. We will give a mathematical definition for these criteria
shortly.

Note that the k-nearest-neighbor graph captures the concept of neighborhood dynam-
ically: the neighborhood radius of an object is determined by the density of the region in
which the object resides. In a dense region, the neighborhood is defined narrowly; in a
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Figure 7.9 Chameleon: Hierarchical clustering based on k-nearest neighbors and dynamic modeling.
Based on [KHK99].

sparse region, it is defined more widely. This tends to result in more natural clusters, in
comparison with density-based methods like DBSCAN (described in Section 7.6.1) that
instead use a global neighborhood. Moreover, the density of the region is recorded as the
weight of the edges. That is, the edges of a dense region tend to weigh more than that of
a sparse region.

The graph-partitioning algorithm partitions the k-nearest-neighbor graph such that
it minimizes the edge cut. That is, a cluster C is partitioned into subclusters Ci and C j so
as to minimize the weight of the edges that would be cut should C be bisected into Ci and
C j. Edge cut is denoted EC(Ci, C j) and assesses the absolute interconnectivity between
clusters Ci and C j.

Chameleon determines the similarity between each pair of clusters Ci and C j accord-
ing to their relative interconnectivity, RI(Ci, C j), and their relative closeness, RC(Ci, C j):

The relative interconnectivity, RI(Ci, C j), between two clusters, Ci and C j, is defined
as the absolute interconnectivity between Ci and C j, normalized with respect to the
internal interconnectivity of the two clusters, Ci and C j. That is,

RI(Ci, C j) =
|EC{Ci, C j}|

1
2 (|ECCi |+ |ECC j |)

, (7.29)

where EC{Ci, C j} is the edge cut, defined as above, for a cluster containing both Ci and
C j. Similarly, ECCi (or ECC j ) is the minimum sum of the cut edges that partition Ci
(or C j) into two roughly equal parts.

The relative closeness, RC(Ci, C j), between a pair of clusters,Ci andC j, is the absolute
closeness between Ci and C j, normalized with respect to the internal closeness of the
two clusters, Ci and C j. It is defined as

RC(Ci, C j) =
SEC{Ci, Cj}

|Ci|
|Ci|+|C j |SECCi

+ |C j |
|Ci|+|C j |SECCj

, (7.30)
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where SEC{Ci,Cj}
is the average weight of the edges that connect vertices in Ci to vertices

in C j, and SECCi
(or SECCj

) is the average weight of the edges that belong to the min-

cut bisector of cluster Ci (or C j).

Chameleon has been shown to have greater power at discovering arbitrarily shaped
clusters of high quality than several well-known algorithms such as BIRCH and density-
based DBSCAN. However, the processing cost for high-dimensional data may require
O(n2) time for n objects in the worst case.

7.6 Density-Based Methods

To discover clusters with arbitrary shape, density-based clustering methods have been
developed. These typically regard clusters as dense regions of objects in the data space
that are separated by regions of low density (representing noise). DBSCAN grows clus-
ters according to a density-based connectivity analysis. OPTICS extends DBSCAN to
produce a cluster ordering obtained from a wide range of parameter settings. DENCLUE
clusters objects based on a set of density distribution functions.

7.6.1 DBSCAN: A Density-Based Clustering Method Based on
Connected Regions with Sufficiently High Density

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-
based clustering algorithm. The algorithm grows regions with sufficiently high density
into clusters and discovers clusters of arbitrary shape in spatial databases with noise.
It defines a cluster as a maximal set of density-connected points.

The basic ideas of density-based clustering involve a number of new definitions. We
intuitively present these definitions, and then follow up with an example.

The neighborhood within a radius ε of a given object is called the ε-neighborhood of
the object.

If the ε-neighborhood of an object contains at least a minimum number, MinPts, of
objects, then the object is called a core object.

Given a set of objects, D, we say that an object p is directly density-reachable from
object q if p is within the ε-neighborhood of q, and q is a core object.

An object p is density-reachable from object q with respect to ε and MinPts in a set of
objects, D, if there is a chain of objects p1, . . . , pn, where p1 = q and pn = p such that
pi+1 is directly density-reachable from pi with respect to ε and MinPts, for 1≤ i≤ n,
pi ∈ D.

An object p is density-connected to object q with respect to ε and MinPts in a set of
objects, D, if there is an object o ∈ D such that both p and q are density-reachable
from o with respect to ε and MinPts.
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Density reachability is the transitive closure of direct density reachability, and this
relationship is asymmetric. Only core objects are mutually density reachable. Density
connectivity, however, is a symmetric relation.

Example 7.12 Density-reachability and density connectivity. Consider Figure 7.10 for a given ε
represented by the radius of the circles, and, say, let MinPts = 3. Based on the above
definitions:

Of the labeled points, m, p, o, and r are core objects because each is in an ε-neighbor-
hood containing at least three points.

q is directly density-reachable from m. m is directly density-reachable from p and vice
versa.

q is (indirectly) density-reachable from p because q is directly density-reachable from
m and m is directly density-reachable from p. However, p is not density-reachable
from q because q is not a core object. Similarly, r and s are density-reachable from o,
and o is density-reachable from r.

o, r, and s are all density-connected.

A density-based cluster is a set of density-connected objects that is maximal with
respect to density-reachability. Every object not contained in any cluster is considered
to be noise.

“How does DBSCAN find clusters?” DBSCAN searches for clusters by checking the
ε-neighborhood of each point in the database. If the ε-neighborhood of a point p con-
tains more than MinPts, a new cluster with p as a core object is created. DBSCAN then
iteratively collects directly density-reachable objects from these core objects, which may
involve the merge of a few density-reachable clusters. The process terminates when no
new point can be added to any cluster.

q

m

p s

o

r

Figure 7.10 Density reachability and density connectivity in density-based clustering. Based on
[EKSX96].
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If a spatial index is used, the computational complexity of DBSCAN is O(n logn),
where n is the number of database objects. Otherwise, it is O(n2). With appropriate set-
tings of the user-defined parameters ε and MinPts, the algorithm is effective at finding
arbitrary-shaped clusters.

7.6.2 OPTICS: Ordering Points to Identify the Clustering
Structure

Although DBSCAN can cluster objects given input parameters such as ε and MinPts, it
still leaves the user with the responsibility of selecting parameter values that will lead
to the discovery of acceptable clusters. Actually, this is a problem associated with many
other clustering algorithms. Such parameter settings are usually empirically set and diffi-
cult to determine, especially for real-world, high-dimensional data sets. Most algorithms
are very sensitive to such parameter values: slightly different settings may lead to very dif-
ferent clusterings of the data. Moreover, high-dimensional real data sets often have very
skewed distributions, such that their intrinsic clustering structure may not be character-
ized by global density parameters.

To help overcome this difficulty, a cluster analysis method called OPTICS was
proposed. Rather than produce a data set clustering explicitly, OPTICS computes an
augmented cluster ordering for automatic and interactive cluster analysis. This order-
ing represents the density-based clustering structure of the data. It contains infor-
mation that is equivalent to density-based clustering obtained from a wide range of
parameter settings. The cluster ordering can be used to extract basic clustering infor-
mation (such as cluster centers or arbitrary-shaped clusters) as well as provide the
intrinsic clustering structure.

By examining DBSCAN, we can easily see that for a constant MinPts value, density-
based clusters with respect to a higher density (i.e., a lower value for ε) are completely
contained in density-connected sets obtained with respect to a lower density. Recall
that the parameter ε is a distance—it is the neighborhood radius. Therefore, in order
to produce a set or ordering of density-based clusters, we can extend the DBSCAN
algorithm to process a set of distance parameter values at the same time. To con-
struct the different clusterings simultaneously, the objects should be processed in a
specific order. This order selects an object that is density-reachable with respect to
the lowest ε value so that clusters with higher density (lower ε) will be finished first.
Based on this idea, two values need to be stored for each object—core-distance and
reachability-distance:

The core-distance of an object p is the smallest ε′ value that makes {p} a core
object. If p is not a core object, the core-distance of p is undefined.

The reachability-distance of an object q with respect to another object p is the
greater value of the core-distance of p and the Euclidean distance between p and q.
If p is not a core object, the reachability-distance between p and q is undefined.



7.6 Density-Based Methods 421

p
e95 3 mm

e9

Core-distance of p

e 5 6 mm

p q1

q2

Reachability-distance (p, q1) 5 e95 3 mm

Reachability-distance (p, q2) 5 d(p, q2)

e 5 6 mm

Figure 7.11 OPTICS terminology. Based on [ABKS99].

Example 7.13 Core-distance and reachability-distance. Figure 7.11 illustrates the concepts of core-
distance and reachability-distance. Suppose that ε = 6 mm and MinPts = 5. The core-
distance of p is the distance, ε′, between p and the fourth closest data object. The
reachability-distance of q1 with respect to p is the core-distance of p (i.e., ε′= 3 mm)
because this is greater than the Euclidean distance from p to q1. The reachability-
distance of q2 with respect to p is the Euclidean distance from p to q2 because this
is greater than the core-distance of p.

“How are these values used?” The OPTICS algorithm creates an ordering of the
objects in a database, additionally storing the core-distance and a suitable reachability-
distance for each object. An algorithm was proposed to extract clusters based on
the ordering information produced by OPTICS. Such information is sufficient for
the extraction of all density-based clusterings with respect to any distance ε′ that is
smaller than the distance ε used in generating the order.

The cluster ordering of a data set can be represented graphically, which helps
in its understanding. For example, Figure 7.12 is the reachability plot for a simple
two-dimensional data set, which presents a general overview of how the data are
structured and clustered. The data objects are plotted in cluster order (horizontal
axis) together with their respective reachability-distance (vertical axis). The three
Gaussian “bumps” in the plot reflect three clusters in the data set. Methods have
also been developed for viewing clustering structures of high-dimensional data at
various levels of detail.

Because of the structural equivalence of the OPTICS algorithm to DBSCAN, the
OPTICS algorithm has the same runtime complexity as that of DBSCAN, that is,
O(n logn) if a spatial index is used, where n is the number of objects.
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Figure 7.12 Cluster ordering in OPTICS. Figure is based on [ABKS99].

7.6.3 DENCLUE: Clustering Based on Density
Distribution Functions

DENCLUE (DENsity-based CLUstEring) is a clustering method based on a set of
density distribution functions. The method is built on the following ideas: (1) the
influence of each data point can be formally modeled using a mathematical function,
called an influence function, which describes the impact of a data point within its
neighborhood; (2) the overall density of the data space can be modeled analytically
as the sum of the influence function applied to all data points; and (3) clusters can
then be determined mathematically by identifying density attractors, where density
attractors are local maxima of the overall density function.

Let x and y be objects or points in Fd , a d-dimensional input space. The influence
function of data object y on x is a function, f y

B : Fd→ R+
0 , which is defined in terms

of a basic influence function fB:

f y
B(x) = fB(x, y). (7.31)

This reflects the impact of y on x. In principle, the influence function can be an arbitrary
function that can be determined by the distance between two objects in a neighborhood.
The distance function, d(x, y), should be reflexive and symmetric, such as the Euclidean
distancefunction(Section7.2.1).Itcanbeusedtocomputea squarewaveinfluencefunction,
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fSquare(x, y) =

{

0 i f d(x, y)> σ
1 otherwise,

(7.32)

or a Gaussian influence function,

fGauss(x, y) = e
−

d(x, y)2

2σ2 . (7.33)

To help understand the concept of influence function, the following example offers
some additional insight.

Example 7.14 Influence function. Consider the square wave influence function of Equation (7.32).
If objects x and y are far apart from one another in the d-dimensional space, then the
distance, d(x, y), will be above some threshold, σ. In this case, the influence function
returns a 0, representing the lack of influence between distant points. On the other
hand, if x and y are “close” (where closeness is determined by the parameter σ), a
value of 1 is returned, representing the notion that one influences the other.

The density function at an object or point x ∈ Fd is defined as the sum of influ-
ence functions of all data points. That is, it is the total influence on x of all of the
data points. Given n data objects, D = {x1, . . . , xn} ⊂ Fd , the density function at x
is defined as

f D
B (x) =

n

∑
i=1

f xi
B (x) = f x1

B (x)+ f x2
B (x)+ · · ·+ f xn

B (x). (7.34)

For example, the density function that results from the Gaussian influence function
(7.33) is

f D
Gauss(x) =

n

∑
i=1

e
−

d(x, xi)2

2σ2 . (7.35)

Figure 7.13 shows a 2-D data set together with the corresponding overall density
functions for a square wave and a Gaussian influence function.

From the density function, we can define the gradient of the function and the
density attractor, the local maxima of the overall density function. A point x is said to
be density attracted to a density attractor x∗ if there exists a set of points x0, x1. . ., xk
such that x0 = x, xk = x∗ and the gradient of xi−1 is in the direction of xi for 0< i<
k. Intuitively, a density attractor influences many other points. For a continuous and
differentiable influence function, a hill-climbing algorithm guided by the gradient
can be used to determine the density attractor of a set of data points.

In general, points that are density attracted to x∗ may form a cluster. Based on the
above notions, both center-defined cluster and arbitrary-shape cluster can be formally
defined. A center-defined cluster for a density attractor, x∗, is a subset of points, C⊆D,
that are density-attracted by x∗, and where the density function at x∗ is no less than a
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Figure 7.13 Possible density functions for a 2-D data set. From [HK98].

threshold, ξ. Points that are density-attracted by x∗, but for which the density function
value is less than ξ, are considered outliers. That is, intuitively, points in a cluster are
influenced by many points, but outliers are not. An arbitrary-shape cluster for a set of
density attractors is a set of Cs, each being density-attracted to its respective density-
attractor, where (1) the density function value at each density-attractor is no less than a
threshold, ξ, and (2) there exists a path, P, from each density-attractor to another, where
the density function value for each point along the path is no less than ξ. Examples of
center-defined and arbitrary-shape clusters are shown in Figure 7.14.

“What major advantages does DENCLUE have in comparison with other clustering
algorithms?” There are several: (1) it has a solid mathematical foundation and general-
izes various clustering methods, including partitioning, hierarchical, and density-based
methods; (2) it has good clustering properties for data sets with large amounts of noise;
(3) it allows a compact mathematical description of arbitrarily shaped clusters in high-
dimen sional data sets; and (4) it uses grid cells, yet only keeps information about grid
cells that actually contain data points. It manages these cells in a tree-based access struc-
ture, and thus is significantly faster than some influential algorithms, such as DBSCAN.
However, the method requires careful selection of the density parameter σ and noise
threshold ξ, as the selection of such parameters may significantly influence the quality
of the clustering results.

7.7 Grid-Based Methods

The grid-based clustering approach uses a multiresolution grid data structure. It quan-
tizes the object space into a finite number of cells that form a grid structure on which
all of the operations for clustering are performed. The main advantage of the approach
is its fast processing time, which is typically independent of the number of data objects,
yet dependent on only the number of cells in each dimension in the quantized space.

Some typical examples of the grid-based approach include STING, which explores sta-
tistical information stored in the grid cells; WaveCluster, which clusters objects using a
wavelet transform method; and CLIQUE, which represents a grid-and density-based app-
roach for clustering in high-dimensional data space that will be introduced in Section 7.9.
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Figure 7.14 Examples of center-defined clusters (top row) and arbitrary-shape clusters (bottom row).

7.7.1 STING: STatistical INformation Grid

STING is a grid-based multiresolution clustering technique in which the spatial area is
divided into rectangular cells. There are usually several levels of such rectangular cells
corresponding to different levels of resolution, and these cells form a hierarchical struc-
ture: each cell at a high level is partitioned to form a number of cells at the next lower
level. Statistical information regarding the attributes in each grid cell (such as the mean,
maximum, and minimum values) is precomputed and stored. These statistical parame-
ters are useful for query processing, as described below.

Figure 7.15 shows a hierarchical structure for STING clustering. Statistical parameters
of higher-level cells can easily be computed from the parameters of the lower-level cells.
These parameters include the following: the attribute-independent parameter, count; the
attribute-dependent parameters, mean, stdev (standard deviation), min (minimum), max
(maximum); and the type of distribution that the attribute value in the cell follows, such
as normal, uniform, exponential, or none (if the distribution is unknown). When the data
are loaded into the database, the parameters count, mean, stdev, min, and max of the
bottom-level cells are calculated directly from the data. The value of distribution may
either be assigned by the user if the distribution type is known beforehand or obtained
by hypothesis tests such as the χ2 test. The type of distribution of a higher-level cell can
be computed based on the majority of distribution types of its corresponding lower-level
cells in conjunction with a threshold filtering process. If the distributions of the lower-
level cells disagree with each other and fail the threshold test, the distribution type of the
high-level cell is set to none.
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Figure 7.15 A hierarchical structure for STING clustering.

“How is this statistical information useful for query answering?” The statistical param-
eters can be used in a top-down, grid-based method as follows. First, a layer within the
hierarchical structure is determined from which the query-answering process is to start.
This layer typically contains a small number of cells. For each cell in the current layer, we
compute the confidence interval (or estimated range of probability) reflecting the cell’s
relevancy to the given query. The irrelevant cells are removed from further considera-
tion. Processing of the next lower level examines only the remaining relevant cells. This
process is repeated until the bottom layer is reached. At this time, if the query specifica-
tion is met, the regions of relevant cells that satisfy the query are returned. Otherwise, the
data that fall into the relevant cells are retrieved and further processed until they meet
the requirements of the query.

“What advantages does STING offer over other clustering methods?” STING offers sev-
eral advantages: (1) the grid-based computation is query-independent, because the sta-
tistical information stored in each cell represents the summary information of the data
in the grid cell, independent of the query; (2) the grid structure facilitates parallel pro-
cessing and incremental updating; and (3) the method’s efficiency is a major advan-
tage: STING goes through the database once to compute the statistical parameters of
the cells, and hence the time complexity of generating clusters is O(n), where n is the
total number of objects. After generating the hierarchical structure, the query process-
ing time is O(g), where g is the total number of grid cells at the lowest level, which is
usually much smaller than n.
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Because STING uses a multiresolution approach to cluster analysis, the quality of
STING clustering depends on the granularity of the lowest level of the grid structure. If
the granularity is very fine, the cost of processing will increase substantially; however, if
the bottom level of the grid structure is too coarse, it may reduce the quality of cluster
analysis. Moreover, STING does not consider the spatial relationship between the chil-
dren and their neighboring cells for construction of a parent cell. As a result, the shapes
of the resulting clusters are isothetic; that is, all of the cluster boundaries are either hori-
zontal or vertical, and no diagonal boundary is detected. This may lower the quality and
accuracy of the clusters despite the fast processing time of the technique.

7.7.2 WaveCluster: Clustering Using Wavelet Transformation

WaveCluster is a multiresolution clustering algorithm that first summarizes the data by
imposing a multidimensional grid structure onto the data space. It then uses a wavelet
transformation to transform the original feature space, finding dense regions in the trans-
formed space.

In this approach, each grid cell summarizes the information of a group of points that
map into the cell. This summary information typically fits into main memory for use by
the multiresolution wavelet transform and the subsequent cluster analysis.

A wavelet transform is a signal processing technique that decomposes a signal into
different frequency subbands. The wavelet model can be applied to d-dimensional sig-
nals by applying a one-dimensional wavelet transform d times. In applying a wavelet
transform, data are transformed so as to preserve the relative distance between objects
at different levels of resolution. This allows the natural clusters in the data to become
more distinguishable. Clusters can then be identified by searching for dense regions in
the new domain. Wavelet transforms are also discussed in Chapter 2, where they are used
for data reduction by compression. Additional references to the technique are given in
the bibliographic notes.

“Why is wavelet transformation useful for clustering?” It offers the following
advantages:

It provides unsupervised clustering. It uses hat-shaped filters that emphasize regions
where the points cluster, while suppressing weaker information outside of the clus-
ter boundaries. Thus, dense regions in the original feature space act as attractors for
nearby points and as inhibitors for points that are further away. This means that the
clusters in the data automatically stand out and “clear” the regions around them.
Thus, another advantage is that wavelet transformation can automatically result in
the removal of outliers.

The multiresolution property of wavelet transformations can help detect clusters at
varying levels of accuracy. For example, Figure 7.16 shows a sample of two-
dimensional feature space, where each point in the image represents the attribute
or feature values of one object in the spatial data set. Figure 7.17 shows the result-
ing wavelet transformation at different resolutions, from a fine scale (scale 1) to
a coarse scale (scale 3). At each level, the four subbands into which the original
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data are decomposed are shown. The subband shown in the upper-left quadrant
emphasizes the average neighborhood around each data point. The subband in the
upper-right quadrant emphasizes the horizontal edges of the data. The subband
in the lower-left quadrant emphasizes the vertical edges, while the subband in the
lower-right quadrant emphasizes the corners.

Wavelet-based clustering is very fast, with a computational complexity of O(n), where
n is the number of objects in the database. The algorithm implementation can be
made parallel.

WaveCluster is a grid-based and density-based algorithm. It conforms with many of
the requirements of a good clustering algorithm: It handles large data sets efficiently,
discovers clusters with arbitrary shape, successfully handles outliers, is insensitive to the
order of input, and does not require the specification of input parameters such as the

Figure 7.16 A sample of two-dimensional feature space. From [SCZ98].

(a) (b) (c)

Figure 7.17 Multiresolution of the feature space in Figure 7.16 at (a) scale 1 (high resolution); (b) scale
2 (medium resolution); and (c) scale 3 (low resolution). From [SCZ98].



7.8 Model-Based Clustering Methods 429

number of clusters or a neighborhood radius. In experimental studies, WaveCluster was
found to outperform BIRCH, CLARANS, and DBSCAN in terms of both efficiency and
clustering quality. The study also found WaveCluster capable of handling data with up
to 20 dimensions.

7.8 Model-Based Clustering Methods

Model-based clustering methods attempt to optimize the fit between the given data and
some mathematical model. Such methods are often based on the assumption that the
data are generated by a mixture of underlying probability distributions. In this section,
we describe three examples of model-based clustering. Section 7.8.1 presents an exten-
sion of the k-means partitioning algorithm, called Expectation-Maximization. Concep-
tual clustering is discussed in Section 7.8.2. A neural network approach to clustering is
given in Section 7.8.3.

7.8.1 Expectation-Maximization

In practice, each cluster can be represented mathematically by a parametric probability
distribution. The entire data is a mixture of these distributions, where each individual
distribution is typically referred to as a component distribution. We can therefore clus-
ter the data using a finite mixture density model of k probability distributions, where
each distribution represents a cluster. The problem is to estimate the parameters of the
probability distributions so as to best fit the data. Figure 7.18 is an example of a simple
finite mixture density model. There are two clusters. Each follows a normal or Gaussian
distribution with its own mean and standard deviation.

The EM (Expectation-Maximization) algorithm is a popular iterative refinement algo-
rithm that can be used for finding the parameter estimates. It can be viewed as an exten-
sion of the k-means paradigm, which assigns an object to the cluster with which it is most
similar, based on the cluster mean (Section 7.4.1). Instead of assigning each object to a
dedicated cluster, EM assigns each object to a cluster according to a weight representing
the probability of membership. In other words, there are no strict boundaries between
clusters. Therefore, new means are computed based on weighted measures.

EM starts with an initial estimate or “guess” of the parameters of the mixture model
(collectively referred to as the parameter vector). It iteratively rescores the objects against
the mixture density produced by the parameter vector. The rescored objects are then used
to update the parameter estimates. Each object is assigned a probability that it would
possess a certain set of attribute values given that it was a member of a given cluster. The
algorithm is described as follows:

1. Make an initial guess of the parameter vector: This involves randomly selecting k
objects to represent the cluster means or centers (as in k-means partitioning), as well
as making guesses for the additional parameters.



430 Chapter 7 Cluster Analysis

g(m1, s1)

g(m2, s2)

Figure 7.18 Each cluster can be represented by a probability distribution, centered at a mean, and with a
standard deviation. Here, we have two clusters, corresponding to the Gaussian distributions
g(m1, σ1) and g(m2, σ2), respectively, where the dashed circles represent the first standard
deviation of the distributions.

2. Iteratively refine the parameters (or clusters) based on the following two steps:

(a) Expectation Step: Assign each object xi to cluster Ck with the probability

P(xi ∈Ck) = p(Ck|xi) =
p(Ck)p(xi|Ck)

p(xi)
, (7.36)

where p(xi|Ck) = N(mk, Ek(xi)) follows the normal (i.e., Gaussian) distribution
around mean, mk, with expectation, Ek. In other words, this step calculates the
probability of cluster membership of object xi, for each of the clusters. These prob-
abilities are the “expected” cluster memberships for object xi.

(b) Maximization Step: Use the probability estimates from above to re-estimate (or
refine) the model parameters. For example,

mk =
1
n

n

∑
i=1

xiP(xi ∈Ck)
∑ j P(xi ∈C j)

. (7.37)

This step is the “maximization” of the likelihood of the distributions given the data.

The EM algorithm is simple and easy to implement. In practice, it converges fast but
may not reach the global optima. Convergence is guaranteed for certain forms of opti-
mization functions. The computational complexity is linear in d (the number of input
features), n (the number of objects), and t (the number of iterations).

Bayesian clustering methods focus on the computation of class-conditional
probability density. They are commonly used in the statistics community. In industry,
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AutoClass is a popular Bayesian clustering method that uses a variant of the EM algorithm.
The best clustering maximizes the ability to predict the attributes of an object given the
correct cluster of the object. AutoClass can also estimate the number of clusters. It has been
applied to several domains and was able to discover a new class of stars based on infrared
astronomy data. Further references are provided in the bibliographic notes.

7.8.2 Conceptual Clustering

Conceptual clustering is a form of clustering in machine learning that, given a set of
unlabeled objects, produces a classification scheme over the objects. Unlike conventional
clustering, which primarily identifies groups of like objects, conceptual clustering goes
one step further by also finding characteristic descriptions for each group, where each
group represents a concept or class. Hence, conceptual clustering is a two-step process:
clustering is performed first, followed by characterization. Here, clustering quality is not
solely a function of the individual objects. Rather, it incorporates factors such as the
generality and simplicity of the derived concept descriptions.

Most methods of conceptual clustering adopt a statistical approach that uses proba-
bility measurements in determining the concepts or clusters. Probabilistic descriptions
are typically used to represent each derived concept.

COBWEB is a popular and simple method of incremental conceptual clustering. Its
input objects are described by categorical attribute-value pairs. COBWEB creates a hier-
archical clustering in the form of a classification tree.

“But what is a classification tree? Is it the same as a decision tree?” Figure 7.19 shows
a classification tree for a set of animal data. A classification tree differs from a decision
tree. Each node in a classification tree refers to a concept and contains a probabilistic
description of that concept, which summarizes the objects classified under the node. The
probabilistic description includes the probability of the concept and conditional proba-
bilities of the form P(Ai = vi j|Ck), where Ai = vi j is an attribute-value pair (that is, the
ith attribute takes its jth possible value) and Ck is the concept class. (Counts are accu-
mulated and stored at each node for computation of the probabilities.) This is unlike
decision trees, which label branches rather than nodes and use logical rather than prob-
abilistic descriptors.3 The sibling nodes at a given level of a classification tree are said
to form a partition. To classify an object using a classification tree, a partial matching
function is employed to descend the tree along a path of “best” matching nodes.

COBWEB uses a heuristic evaluation measure called category utility to guide con-
struction of the tree. Category utility (CU) is defined as

∑n
k=1 P(Ck)[∑i ∑ j P(Ai = vi j|Ck)2−∑i ∑ j P(Ai = vi j)2]

n
, (7.38)

where n is the number of nodes, concepts, or “categories” forming a partition,
{C1, C2, . . . , Cn}, at the given level of the tree. In other words, category utility is the

3Decision trees are described in Chapter 6.



432 Chapter 7 Cluster Analysis

Animal

P(C0) 5 1.0

P(scales  C0) 5 0.25

…


Amphibian

P(C2) 5 0.25

P(moist  C2) 5 1.0

…


Mammal/bird

P(C3) 5 0.5

P(hair  C3) 5 0.5

…


Bird

P(C5) 5 0.5

P(feathers  C5) 5 1.0

…


Mammal

P(C4) 5 0.5

P(hair  C4) 5 1.0

…


Fish

P(C1) 5 0.25

P(scales  C1) 5 1.0

…


Figure 7.19 A classification tree. Figure is based on [Fis87].

increase in the expected number of attribute values that can be correctly guessed given
a partition (where this expected number corresponds to the term P(Ck)ΣiΣ jP(Ai =
vi j|Ck)2) over the expected number of correct guesses with no such knowledge (corre-
sponding to the term ΣiΣ jP(Ai = vi j)2). Although we do not have room to show the
derivation, category utility rewards intraclass similarity and interclass dissimilarity,
where:

Intraclass similarity is the probability P(Ai = vi j|Ck). The larger this value is, the
greater the proportion of class members that share this attribute-value pair and the
more predictable the pair is of class members.

Interclass dissimilarity is the probability P(Ck|Ai = vi j). The larger this value is, the
fewer the objects in contrasting classes that share this attribute-value pair and the
more predictive the pair is of the class.

Let’s look at how COBWEB works. COBWEB incrementally incorporates objects into
a classification tree.

“Given a new object, how does COBWEB decide where to incorporate it into the classi-
fication tree?” COBWEB descends the tree along an appropriate path, updating counts
along the way, in search of the “best host” or node at which to classify the object. This
decision is based on temporarily placing the object in each node and computing the cat-
egory utility of the resulting partition. The placement that results in the highest category
utility should be a good host for the object.
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“What if the object does not really belong to any of the concepts represented in the tree so
far? What if it is better to create a new node for the given object?” That is a good point. In
fact, COBWEB also computes the category utility of the partition that would result if a
new node were to be created for the object. This is compared to the above computation
based on the existing nodes. The object is then placed in an existing class, or a new class
is created for it, based on the partition with the highest category utility value. Notice that
COBWEB has the ability to automatically adjust the number of classes in a partition. It
does not need to rely on the user to provide such an input parameter.

The two operators mentioned above are highly sensitive to the input order of the
object. COBWEB has two additional operators that help make it less sensitive to input
order. These are merging and splitting. When an object is incorporated, the two best
hosts are considered for merging into a single class. Furthermore, COBWEB considers
splitting the children of the best host among the existing categories. These decisions are
based on category utility. The merging and splitting operators allow COBWEB to per-
form a bidirectional search—for example, a merge can undo a previous split.

COBWEB has a number of limitations. First, it is based on the assumption that prob-
ability distributions on separate attributes are statistically independent of one another.
This assumption is, however, not always true because correlation between attributes often
exists. Moreover, the probability distribution representation of clusters makes it quite
expensive to update and store the clusters. This is especially so when the attributes have
a large number of values because the time and space complexities depend not only on the
number of attributes, but also on the number of values for each attribute. Furthermore,
the classification tree is not height-balanced for skewed input data, which may cause the
time and space complexity to degrade dramatically.

CLASSIT is an extension of COBWEB for incremental clustering of continuous (or
real-valued) data. It stores a continuous normal distribution (i.e., mean and standard
deviation) for each individual attribute in each node and uses a modified category utility
measure that is an integral over continuous attributes instead of a sum over discrete
attributes as in COBWEB. However, it suffers similar problems as COBWEB and thus is
not suitable for clustering large database data.

Conceptual clustering is popular in the machine learning community. However, the
method does not scale well for large data sets.

7.8.3 Neural Network Approach

The neural network approach is motivated by biological neural networks.4 Roughly
speaking, a neural network is a set of connected input/output units, where each connec-
tion has a weight associated with it. Neural networks have several properties that make
them popular for clustering. First, neural networks are inherently parallel and distributed
processing architectures. Second, neural networks learn by adjusting their interconnec-
tion weights so as to best fit the data. This allows them to “normalize” or “prototype”

4Neural networks were also introduced in Chapter 6 on classification and prediction.
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the patterns and act as feature (or attribute) extractors for the various clusters. Third,
neural networks process numerical vectors and require object patterns to be represented
by quantitative features only. Many clustering tasks handle only numerical data or can
transform their data into quantitative features if needed.

The neural network approach to clustering tends to represent each cluster as an exem-
plar. An exemplar acts as a “prototype” of the cluster and does not necessarily have to
correspond to a particular data example or object. New objects can be distributed to
the cluster whose exemplar is the most similar, based on some distance measure. The
attributes of an object assigned to a cluster can be predicted from the attributes of the
cluster’s exemplar.

Self-organizing feature maps (SOMs) are one of the most popular neural network
methods for cluster analysis. They are sometimes referred to as Kohonen self-organizing
feature maps, after their creator, Teuvo Kohonon, or as topologically ordered maps.
SOMs’ goal is to represent all points in a high-dimensional source space by points
in a low-dimensional (usually 2-D or 3-D) target space, such that the distance and
proximity relationships (hence the topology) are preserved as much as possible. The
method is particularly useful when a nonlinear mapping is inherent in the problem
itself.

SOMs can also be viewed as a constrained version of k-means clustering, in which the
cluster centers tend to lie in a low-dimensional manifold in the feature or attribute space.
With SOMs, clustering is performed by having several units competing for the current
object. The unit whose weight vector is closest to the current object becomes the winning
or active unit. So as to move even closer to the input object, the weights of the winning
unit are adjusted, as well as those of its nearest neighbors. SOMs assume that there is
some topology or ordering among the input objects and that the units will eventually
take on this structure in space. The organization of units is said to form a feature map.
SOMs are believed to resemble processing that can occur in the brain and are useful for
visualizing high-dimensional data in 2-D or 3-D space.

The SOM approach has been used successfully for Web document clustering. The left
graph of Figure 7.20 shows the result of clustering 12,088 Web articles from the usenet
newsgroup comp.ai.neural-nets using the SOM approach, while the right graph of the
figure shows the result of drilling down on the keyword: “mining.”

The neural network approach to clustering has strong theoretical links with actual
brain processing. Further research is required to make it more effective and scalable in
large databases due to long processing times and the intricacies of complex data.

7.9 Clustering High-Dimensional Data

Most clustering methods are designed for clustering low-dimensional data and encounter
challenges when the dimensionality of the data grows really high (say, over 10
dimensions, or even over thousands of dimensions for some tasks). This is because when
the dimensionality increases, usually only a small number of dimensions are relevant to
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Figure 7.20 The result of SOM clustering of 12,088 Web articles on comp.ai.neural-nets (left), and
of drilling down on the keyword: “mining” (right). Based on http://websom.hut.fi/web-
som/comp.ai.neural-nets-new/html/root.html.

certain clusters, but data in the irrelevant dimensions may produce much noise and mask
the real clusters to be discovered. Moreover, when dimensionality increases, data usually
become increasingly sparse because the data points are likely located in different dimen-
sional subspaces. When the data become really sparse, data points located at different
dimensions can be considered as all equally distanced, and the distance measure, which
is essential for cluster analysis, becomes meaningless.

To overcome this difficulty, we may consider using feature (or attribute) transforma-
tion and feature (or attribute) selection techniques.

Feature transformation methods, such as principal component analysis5 and singular
value decomposition,6 transform the data onto a smaller space while generally preserving

5Principal component analysis was introduced in Chapter 2 as a method of dimensionality reduction.
6Singular value decomposition is discussed in Chapter 8.
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the original relative distance between objects. They summarize data by creating linear
combinations of the attributes, and may discover hidden structures in the data. How-
ever, such techniques do not actually remove any of the original attributes from analysis.
This is problematic when there are a large number of irrelevant attributes. The irrele-
vant information may mask the real clusters, even after transformation. Moreover, the
transformed features (attributes) are often difficult to interpret, making the clustering
results less useful. Thus, feature transformation is only suited to data sets where most
of the dimensions are relevant to the clustering task. Unfortunately, real-world data sets
tend to have many highly correlated, or redundant, dimensions.

Another way of tackling the curse of dimensionality is to try to remove some of the
dimensions. Attribute subset selection (or feature subset selection7) is commonly used
for data reduction by removing irrelevant or redundant dimensions (or attributes). Given
a set of attributes, attribute subset selection finds the subset of attributes that are most
relevant to the data mining task. Attribute subset selection involves searching through
various attribute subsets and evaluating these subsets using certain criteria. It is most
commonly performed by supervised learning—the most relevant set of attributes are
found with respect to the given class labels. It can also be performed by an unsupervised
process, such as entropy analysis, which is based on the property that entropy tends to
be low for data that contain tight clusters. Other evaluation functions, such as category
utility, may also be used.

Subspace clustering is an extension to attribute subset selection that has shown its
strength at high-dimensional clustering. It is based on the observation that different
subspaces may contain different, meaningful clusters. Subspace clustering searches for
groups of clusters within different subspaces of the same data set. The problem becomes
how to find such subspace clusters effectively and efficiently.

In this section, we introduce three approaches for effective clustering of
high-dimensional data: dimension-growth subspace clustering, represented by CLIQUE,
dimension-reduction projected clustering, represented by PROCLUS, and frequent pattern-
based clustering, represented by pCluster.

7.9.1 CLIQUE: A Dimension-Growth Subspace Clustering Method

CLIQUE (CLustering In QUEst) was the first algorithm proposed for dimension-growth
subspace clustering in high-dimensional space. In dimension-growth subspace cluster-
ing, the clustering process starts at single-dimensional subspaces and grows upward to
higher-dimensional ones. Because CLIQUE partitions each dimension like a grid struc-
ture and determines whether a cell is dense based on the number of points it contains,
it can also be viewed as an integration of density-based and grid-based clustering meth-
ods. However, its overall approach is typical of subspace clustering for high-dimensional
space, and so it is introduced in this section.

7Attribute subset selection is known in the machine learning literature as feature subset selection. It
was discussed in Chapter 2.
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The ideas of the CLIQUE clustering algorithm are outlined as follows.

Given a large set of multidimensional data points, the data space is usually not uni-
formly occupied by the data points. CLIQUE’s clustering identifies the sparse and
the “crowded” areas in space (or units), thereby discovering the overall distribution
patterns of the data set.

A unit is dense if the fraction of total data points contained in it exceeds an input
model parameter. In CLIQUE, a cluster is defined as a maximal set of connected dense
units.

“How does CLIQUE work?” CLIQUE performs multidimensional clustering in two
steps.

In the first step, CLIQUE partitions the d-dimensional data space into nonoverlap-
ping rectangular units, identifying the dense units among these. This is done (in 1-D)
for each dimension. For example, Figure 7.21 shows dense rectangular units found with
respect to age for the dimensions salary and (number of weeks of) vacation. The sub-
spaces representing these dense units are intersected to form a candidate search space in
which dense units of higher dimensionality may exist.

“Why does CLIQUE confine its search for dense units of higher dimensionality to the
intersection of the dense units in the subspaces?” The identification of the candidate search
space is based on the Apriori property used in association rule mining.8 In general, the
property employs prior knowledge of items in the search space so that portions of the
space can be pruned. The property, adapted for CLIQUE, states the following: If a
k-dimensional unit is dense, then so are its projections in (k−1)-dimensional space. That is,
given a k-dimensional candidate dense unit, if we check its (k−1)-th projection units and
find any that are not dense, then we know that the kth dimensional unit cannot be dense
either. Therefore, we can generate potential or candidate dense units in k-dimensional
space from the dense units found in (k− 1)-dimensional space. In general, the result-
ing space searched is much smaller than the original space. The dense units are then
examined in order to determine the clusters.

In the second step, CLIQUE generates a minimal description for each cluster as
follows. For each cluster, it determines the maximal region that covers the cluster of
connected dense units. It then determines a minimal cover (logic description) for each
cluster.

“How effective is CLIQUE?” CLIQUE automatically finds subspaces of the highest
dimensionality such that high-density clusters exist in those subspaces. It is insensitive to
the order of input objects and does not presume any canonical data distribution. It scales
linearly with the size of input and has good scalability as the number of dimensions in
the data is increased. However, obtaining meaningful clustering results is dependent on

8Association rule mining is described in detail in Chapter 5. In particular, the Apriori property is
described in Section 5.2.1. The Apriori property can also be used for cube computation, as described
in Chapter 4.
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Figure 7.21 Dense units found with respect to age for the dimensions salary and vacation are intersected
in order to provide a candidate search space for dense units of higher dimensionality.
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proper tuning of the grid size (which is a stable structure here) and the density threshold.
This is particularly difficult because the grid size and density threshold are used across all
combinations of dimensions in the data set. Thus, the accuracy of the clustering results
may be degraded at the expense of the simplicity of the method. Moreover, for a given
dense region, all projections of the region onto lower-dimensionality subspaces will also
be dense. This can result in a large overlap among the reported dense regions. Further-
more, it is difficult to find clusters of rather different density within different dimensional
subspaces.

Several extensions to this approach follow a similar philosophy. For example, let’s
think of a grid as a set of fixed bins. Instead of using fixed bins for each of the dimensions,
we can use an adaptive, data-driven strategy to dynamically determine the bins for each
dimension based on data distribution statistics. Alternatively, instead of using a density
threshold, we would use entropy (Chapter 6) as a measure of the quality of subspace
clusters.

7.9.2 PROCLUS: A Dimension-Reduction Subspace Clustering
Method

PROCLUS (PROjected CLUStering) is a typical dimension-reduction subspace clus-
tering method. That is, instead of starting from single-dimensional spaces, it starts
by finding an initial approximation of the clusters in the high-dimensional attribute
space. Each dimension is then assigned a weight for each cluster, and the updated
weights are used in the next iteration to regenerate the clusters. This leads to the explo-
ration of dense regions in all subspaces of some desired dimensionality and avoids
the generation of a large number of overlapped clusters in projected dimensions of
lower dimensionality.

PROCLUS finds the best set of medoids by a hill-climbing process similar to that used
in CLARANS, but generalized to deal with projected clustering. It adopts a distance mea-
sure called Manhattan segmental distance, which is the Manhattan distance on a set of
relevant dimensions. The PROCLUS algorithm consists of three phases: initialization,
iteration, and cluster refinement. In the initialization phase, it uses a greedy algorithm
to select a set of initial medoids that are far apart from each other so as to ensure that
each cluster is represented by at least one object in the selected set. More concretely, it
first chooses a random sample of data points proportional to the number of clusters
we wish to generate, and then applies the greedy algorithm to obtain an even smaller
final subset for the next phase. The iteration phase selects a random set of k medoids
from this reduced set (of medoids), and replaces “bad” medoids with randomly cho-
sen new medoids if the clustering is improved. For each medoid, a set of dimensions is
chosen whose average distances are small compared to statistical expectation. The total
number of dimensions associated to medoids must be k× l, where l is an input param-
eter that selects the average dimensionality of cluster subspaces. The refinement phase
computes new dimensions for each medoid based on the clusters found, reassigns points
to medoids, and removes outliers.



440 Chapter 7 Cluster Analysis

Experiments on PROCLUS show that the method is efficient and scalable at
finding high-dimensional clusters. Unlike CLIQUE, which outputs many overlapped
clusters, PROCLUS finds nonoverlapped partitions of points. The discovered clusters
may help better understand the high-dimensional data and facilitate other subse-
quence analyses.

7.9.3 Frequent Pattern–Based Clustering Methods

This section looks at how methods of frequent pattern mining can be applied to cluster-
ing, resulting in frequent pattern–based cluster analysis. Frequent pattern mining, as
the name implies, searches for patterns (such as sets of items or objects) that occur fre-
quently in large data sets. Frequent pattern mining can lead to the discovery of interesting
associations and correlations among data objects. Methods for frequent pattern mining
were introduced in Chapter 5. The idea behind frequent pattern–based cluster analysis is
that the frequent patterns discovered may also indicate clusters. Frequent pattern–based
cluster analysis is well suited to high-dimensional data. It can be viewed as an extension
of the dimension-growth subspace clustering approach. However, the boundaries of dif-
ferent dimensions are not obvious, since here they are represented by sets of frequent
itemsets. That is, rather than growing the clusters dimension by dimension, we grow
sets of frequent itemsets, which eventually lead to cluster descriptions. Typical examples
of frequent pattern–based cluster analysis include the clustering of text documents that
contain thousands of distinct keywords, and the analysis of microarray data that con-
tain tens of thousands of measured values or “features.” In this section, we examine two
forms of frequent pattern–based cluster analysis: frequent term–based text clustering and
clustering by pattern similarity in microarray data analysis.

In frequent term–based text clustering, text documents are clustered based on the
frequent terms they contain. Using the vocabulary of text document analysis, a term is
any sequence of characters separated from other terms by a delimiter. A term can be
made up of a single word or several words. In general, we first remove nontext informa-
tion (such as HTML tags and punctuation) and stop words. Terms are then extracted.
A stemming algorithm is then applied to reduce each term to its basic stem. In this way,
each document can be represented as a set of terms. Each set is typically large. Collec-
tively, a large set of documents will contain a very large set of distinct terms. If we treat
each term as a dimension, the dimension space will be of very high dimensionality! This
poses great challenges for document cluster analysis. The dimension space can be referred
to as term vector space, where each document is represented by a term vector.

This difficulty can be overcome by frequent term–based analysis. That is, by using an
efficient frequent itemset mining algorithm introduced in Section 5.2, we can mine a
set of frequent terms from the set of text documents. Then, instead of clustering on
high-dimensional term vector space, we need only consider the low-dimensional fre-
quent term sets as “cluster candidates.” Notice that a frequent term set is not a cluster
but rather the description of a cluster. The corresponding cluster consists of the set of
documents containing all of the terms of the frequent term set. A well-selected subset of
the set of all frequent term sets can be considered as a clustering.
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“How, then, can we select a good subset of the set of all frequent term sets?” This step
is critical because such a selection will determine the quality of the resulting clustering.
Let Fi be a set of frequent term sets and cov(Fi) be the set of documents covered by Fi.
That is, cov(Fi) refers to the documents that contain all of the terms in Fi. The general
principle for finding a well-selected subset, F1, . . . , Fk, of the set of all frequent term sets
is to ensure that (1) Σk

i=1cov(Fi) = D (i.e., the selected subset should cover all of the
documents to be clustered); and (2) the overlap between any two partitions, Fi and Fj
(for i 6= j), should be minimized. An overlap measure based on entropy9 is used to assess
cluster overlap by measuring the distribution of the documents supporting some cluster
over the remaining cluster candidates.

An advantage of frequent term–based text clustering is that it automatically gener-
ates a description for the generated clusters in terms of their frequent term sets. Tradi-
tional clustering methods produce only clusters—a description for the generated clusters
requires an additional processing step.

Another interesting approach for clustering high-dimensional data is based on pattern
similarity among the objects on a subset of dimensions. Here we introduce the pClus-
ter method, which performs clustering by pattern similarity in microarray data anal-
ysis. In DNA microarray analysis, the expression levels of two genes may rise and fall
synchronously in response to a set of environmental stimuli or conditions. Under the
pCluster model, two objects are similar if they exhibit a coherent pattern on a subset of
dimensions. Although the magnitude of their expression levels may not be close, the pat-
terns they exhibit can be very much alike. This is illustrated in Example 7.15. Discovery of
such clusters of genes is essential in revealing significant connections in gene regulatory
networks.

Example 7.15 Clustering by pattern similarity in DNA microarray analysis. Figure 7.22 shows a frag-
ment of microarray data containing only three genes (taken as “objects” here) and ten
attributes (columns a to j). No patterns among the three objects are visibly explicit. How-
ever, if two subsets of attributes, {b, c, h, j, e} and { f , d, a, g, i}, are selected and plotted
as in Figure 7.23(a) and (b) respectively, it is easy to see that they form some interest-
ing patterns: Figure 7.23(a) forms a shift pattern, where the three curves are similar to
each other with respect to a shift operation along the y-axis; while Figure 7.23(b) forms a
scaling pattern, where the three curves are similar to each other with respect to a scaling
operation along the y-axis.

Let us first examine how to discover shift patterns. In DNA microarray data, each row
corresponds to a gene and each column or attribute represents a condition under which
the gene is developed. The usual Euclidean distance measure cannot capture pattern
similarity, since the y values of different curves can be quite far apart. Alternatively, we
could first transform the data to derive new attributes, such as Ai j = vi−v j (where vi and

9Entropy is a measure from information theory. It was introduced in Chapter 2 regarding data dis-
cretization and is also described in Chapter 6 regarding decision tree construction.



442 Chapter 7 Cluster Analysis

a b c d e f g h i j

90

80

70

60

50

40

30

20

10

0

Object 1


Object 2


Object 3

Figure 7.22 Raw data from a fragment of microarray data containing only 3 objects and 10 attributes.
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Figure 7.23 Objects in Figure 7.22 form (a) a shift pattern in subspace {b, c, h, j, e}, and (b) a scaling
pattern in subspace { f , d, a, g, i}.

v j are object values for attributes Ai and A j, respectively), and then cluster on the derived
attributes. However, this would introduce d(d− 1)/2 dimensions for a d-dimensional
data set, which is undesirable for a nontrivial d value. A biclustering method was pro-
posed in an attempt to overcome these difficulties. It introduces a new measure, the mean
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squared residue score, which measures the coherence of the genes and conditions in a
submatrix of a DNA array. Let I ⊂ X and J ⊂ Y be subsets of genes, X , and conditions,
Y , respectively. The pair, (I, J), specifies a submatrix, AIJ , with the mean squared residue
score defined as

H(IJ) =
1
|I||J| ∑

i∈I, j∈J
(di j−diJ−dI j + dIJ)2, (7.39)

where di j is the measured value of gene i for condition j, and

diJ =
1
|J| ∑j∈J

di j, dI j =
1
|I|∑i∈I

di j, dIJ =
1
|I||J| ∑

i∈I, j∈J
di j, (7.40)

where diJ and dI j are the row and column means, respectively, and dIJ is the mean of
the subcluster matrix, AIJ . A submatrix, AIJ , is called a δ-bicluster if H(I, J) ≤ δ for
some δ > 0. A randomized algorithm is designed to find such clusters in a DNA array.
There are two major limitations of this method. First, a submatrix of a δ-bicluster is not
necessarily a δ-bicluster, which makes it difficult to design an efficient pattern growth–
based algorithm. Second, because of the averaging effect, a δ-bicluster may contain some
undesirable outliers yet still satisfy a rather small δ threshold.

To overcome the problems of the biclustering method, a pCluster model was intro-
duced as follows. Given objects x, y ∈ O and attributes a, b ∈ T , pScore is defined by a
2×2 matrix as

pScore(

[

dxa dxb

dya dyb

]

) = |(dxa−dxb)− (dya−dyb)|, (7.41)

where dxa is the value of object (or gene) x for attribute (or condition) a, and so on.
A pair, (O, T ), forms a δ-pCluster if, for any 2× 2 matrix, X , in (O, T ), we have
pScore(X)≤ δ for some δ > 0. Intuitively, this means that the change of values on the
two attributes between the two objects is confined by δ for every pair of objects in O and
every pair of attributes in T .

It is easy to see that δ-pCluster has the downward closure property; that is, if (O, T )
forms a δ-pCluster, then any of its submatrices is also a δ-pCluster. Moreover, because
a pCluster requires that every two objects and every two attributes conform with the
inequality, the clusters modeled by the pCluster method are more homogeneous than
those modeled by the bicluster method.

In frequent itemset mining, itemsets are considered frequent if they satisfy a minimum
support threshold, which reflects their frequency of occurrence. Based on the definition
of pCluster, the problem of mining pClusters becomes one of mining frequent patterns
in which each pair of objects and their corresponding features must satisfy the specified
δ threshold. A frequent pattern–growth method can easily be extended to mine such
patterns efficiently.
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Now, let’s look into how to discover scaling patterns. Notice that the original pScore
definition, though defined for shift patterns in Equation (7.41), can easily be extended
for scaling by introducing a new inequality,

dxa/dya

dxb/dyb
≤ δ′. (7.42)

This can be computed efficiently because Equation (7.41) is a logarithmic form of
Equation (7.42). That is, the same pCluster model can be applied to the data set after
converting the data to the logarithmic form. Thus, the efficient derivation of δ-pClusters
for shift patterns can naturally be extended for the derivation of δ-pClusters for scaling
patterns.

The pCluster model, though developed in the study of microarray data cluster
analysis, can be applied to many other applications that require finding similar or coher-
ent patterns involving a subset of numerical dimensions in large, high-dimensional
data sets.

7.10 Constraint-Based Cluster Analysis

In the above discussion, we assume that cluster analysis is an automated, algorithmic
computational process, based on the evaluation of similarity or distance functions among
a set of objects to be clustered, with little user guidance or interaction. However, users often
have a clear view of the application requirements, which they would ideally like to use to
guide the clustering process and influence the clustering results. Thus, in many applica-
tions, it is desirable to have the clustering process take user preferences and constraints
into consideration. Examples of such information include the expected number of clus-
ters, the minimal or maximal cluster size, weights for different objects or dimensions,
and other desirable characteristics of the resulting clusters. Moreover, when a clustering
task involves a rather high-dimensional space, it is very difficult to generate meaningful
clusters by relying solely on the clustering parameters. User input regarding important
dimensions or the desired results will serve as crucial hints or meaningful constraints
for effective clustering. In general, we contend that knowledge discovery would be most
effective if one could develop an environment for human-centered, exploratory min-
ing of data, that is, where the human user is allowed to play a key role in the process.
Foremost, a user should be allowed to specify a focus—directing the mining algorithm
toward the kind of “knowledge” that the user is interested in finding. Clearly, user-guided
mining will lead to more desirable results and capture the application semantics.

Constraint-based clustering finds clusters that satisfy user-specified preferences or
constraints. Depending on the nature of the constraints, constraint-based clustering
may adopt rather different approaches. Here are a few categories of constraints.

1. Constraints on individual objects: We can specify constraints on the objects to be
clustered. In a real estate application, for example, one may like to spatially cluster only
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those luxury mansions worth over a million dollars. This constraint confines the set
of objects to be clustered. It can easily be handled by preprocessing (e.g., performing
selection using an SQL query), after which the problem reduces to an instance of
unconstrained clustering.

2. Constraints on the selection of clustering parameters: A user may like to set a desired
range for each clustering parameter. Clustering parameters are usually quite specific
to the given clustering algorithm. Examples of parameters include k, the desired num-
ber of clusters in a k-means algorithm; or ε (the radius) and MinPts (the minimum
number of points) in the DBSCAN algorithm. Although such user-specified param-
eters may strongly influence the clustering results, they are usually confined to the
algorithm itself. Thus, their fine tuning and processing are usually not considered a
form of constraint-based clustering.

3. Constraints on distance or similarity functions: We can specify different distance or
similarity functions for specific attributes of the objects to be clustered, or different
distance measures for specific pairs of objects. When clustering sportsmen, for exam-
ple, we may use different weighting schemes for height, body weight, age, and skill
level. Although this will likely change the mining results, it may not alter the cluster-
ing process per se. However, in some cases, such changes may make the evaluation
of the distance function nontrivial, especially when it is tightly intertwined with the
clustering process. This can be seen in the following example.

Example 7.16 Clustering with obstacle objects. A city may have rivers, bridges, highways, lakes, and
mountains. We do not want to swim across a river to reach an automated banking
machine. Such obstacle objects and their effects can be captured by redefining the
distance functions among objects. Clustering with obstacle objects using a partition-
ing approach requires that the distance between each object and its corresponding
cluster center be reevaluated at each iteration whenever the cluster center is changed.
However, such reevaluation is quite expensive with the existence of obstacles. In this
case, efficient new methods should be developed for clustering with obstacle objects
in large data sets.

4. User-specified constraints on the properties of individual clusters: A user may like to
specify desired characteristics of the resulting clusters, which may strongly influence
the clustering process. Such constraint-based clustering arises naturally in practice,
as in Example 7.17.

Example 7.17 User-constrained cluster analysis. Suppose a package delivery company would like to
determine the locations for k service stations in a city. The company has a database
of customers that registers the customers’ names, locations, length of time since
the customers began using the company’s services, and average monthly charge.
We may formulate this location selection problem as an instance of unconstrained
clustering using a distance function computed based on customer location. How-
ever, a smarter approach is to partition the customers into two classes: high-value
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customers (who need frequent, regular service) and ordinary customers (who require
occasional service). In order to save costs and provide good service, the manager
adds the following constraints: (1) each station should serve at least 100 high-value
customers; and (2) each station should serve at least 5,000 ordinary customers.
Constraint-based clustering will take such constraints into consideration during the
clustering process.

5. Semi-supervised clustering based on “partial” supervision: The quality of unsuper-
vised clustering can be significantly improved using some weak form of supervision.
This may be in the form of pairwise constraints (i.e., pairs of objects labeled as belong-
ing to the same or different cluster). Such a constrained clustering process is called
semi-supervised clustering.

In this section, we examine how efficient constraint-based clustering methods can be
developed for large data sets. Since cases 1 and 2 above are trivial, we focus on cases 3 to
5 as typical forms of constraint-based cluster analysis.

7.10.1 Clustering with Obstacle Objects

Example 7.16 introduced the problem of clustering with obstacle objects regarding the
placement of automated banking machines. The machines should be easily accessible to
the bank’s customers. This means that during clustering, we must take obstacle objects
into consideration, such as rivers, highways, and mountains. Obstacles introduce con-
straints on the distance function. The straight-line distance between two points is mean-
ingless if there is an obstacle in the way. As pointed out in Example 7.16, we do not want
to have to swim across a river to get to a banking machine!

“How can we approach the problem of clustering with obstacles?” A partitioning clus-
tering method is preferable because it minimizes the distance between objects and
their cluster centers. If we choose the k-means method, a cluster center may not be
accessible given the presence of obstacles. For example, the cluster mean could turn
out to be in the middle of a lake. On the other hand, the k-medoids method chooses
an object within the cluster as a center and thus guarantees that such a problem can-
not occur. Recall that every time a new medoid is selected, the distance between each
object and its newly selected cluster center has to be recomputed. Because there could
be obstacles between two objects, the distance between two objects may have to be
derived by geometric computations (e.g., involving triangulation). The computational
cost can get very high if a large number of objects and obstacles are involved.

The clustering with obstacles problem can be represented using a graphical nota-
tion. First, a point, p, is visible from another point, q, in the region, R, if the straight
line joining p and q does not intersect any obstacles. A visibility graph is the graph,
V G = (V , E), such that each vertex of the obstacles has a corresponding node in
V and two nodes, v1 and v2, in V are joined by an edge in E if and only if the
corresponding vertices they represent are visible to each other. Let V G′ = (V ′, E ′)
be a visibility graph created from V G by adding two additional points, p and q, in
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V ′. E ′ contains an edge joining two points in V ′ if the two points are mutually vis-
ible. The shortest path between two points, p and q, will be a subpath of V G′ as
shown in Figure 7.24(a). We see that it begins with an edge from p to either v1, v2,
or v3, goes through some path in VG, and then ends with an edge from either v4 or
v5 to q.

To reduce the cost of distance computation between any two pairs of objects or
points, several preprocessing and optimization techniques can be used. One method
groups points that are close together into microclusters. This can be done by first
triangulating the region R into triangles, and then grouping nearby points in the
same triangle into microclusters, using a method similar to BIRCH or DBSCAN, as
shown in Figure 7.24(b). By processing microclusters rather than individual points,
the overall computation is reduced. After that, precomputation can be performed
to build two kinds of join indices based on the computation of the shortest paths:
(1) VV indices, for any pair of obstacle vertices, and (2) MV indices, for any pair
of microcluster and obstacle vertex. Use of the indices helps further optimize the
overall performance.

With such precomputation and optimization, the distance between any two points
(at the granularity level of microcluster) can be computed efficiently. Thus, the clus-
tering process can be performed in a manner similar to a typical efficient k-medoids
algorithm, such as CLARANS, and achieve good clustering quality for large data sets.
Given a large set of points, Figure 7.25(a) shows the result of clustering a large set of
points without considering obstacles, whereas Figure 7.25(b) shows the result with con-
sideration of obstacles. The latter represents rather different but more desirable clusters.
For example, if we carefully compare the upper left-hand corner of the two graphs, we
see that Figure 7.25(a) has a cluster center on an obstacle (making the center inaccessi-
ble), whereas all cluster centers in Figure 7.25(b) are accessible. A similar situation has
occurred with respect to the bottom right-hand corner of the graphs.
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Figure 7.24 Clustering with obstacle objects (o1 and o2): (a) a visibility graph, and (b) triangulation of
regions with microclusters. From [THH01].
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(a) (b)

Figure 7.25 Clustering results obtained without and with consideration of obstacles (where rivers and
inaccessible highways or city blocks are represented by polygons): (a) clustering without con-
sidering obstacles, and (b) clustering with obstacles.

7.10.2 User-Constrained Cluster Analysis

Let’s examine the problem of relocating package delivery centers, as illustrated in
Example 7.17. Specifically, a package delivery company with n customers would like
to determine locations for k service stations so as to minimize the traveling distance
between customers and service stations. The company’s customers are regarded as
either high-value customers (requiring frequent, regular services) or ordinary customers
(requiring occasional services). The manager has stipulated two constraints: each sta-
tion should serve (1) at least 100 high-value customers and (2) at least 5,000 ordinary
customers.

This can be considered as a constrained optimization problem. We could consider
using a mathematical programming approach to handle it. However, such a solution is
difficult to scale to large data sets. To cluster n customers into k clusters, a mathematical
programming approach will involve at least k× n variables. As n can be as large as a
few million, we could end up having to solve a few million simultaneous equations—
a very expensive feat. A more efficient approach is proposed that explores the idea of
microclustering, as illustrated below.

The general idea of clustering a large data set into k clusters satisfying user-specified
constraints goes as follows. First, we can find an initial “solution” by partitioning the
data set into k groups, satisfying the user-specified constraints, such as the two con-
straints in our example. We then iteratively refine the solution by moving objects from
one cluster to another, trying to satisfy the constraints. For example, we can move a set
of m customers from cluster Ci to C j if Ci has at least m surplus customers (under the
specified constraints), or if the result of moving customers into Ci from some other
clusters (including from C j) would result in such a surplus. The movement is desirable
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if the total sum of the distances of the objects to their corresponding cluster centers is
reduced. Such movement can be directed by selecting promising points to be moved,
such as objects that are currently assigned to some cluster, Ci, but that are actually closer
to a representative (e.g., centroid) of some other cluster, C j. We need to watch out for
and handle deadlock situations (where a constraint is impossible to satisfy), in which
case, a deadlock resolution strategy can be employed.

To increase the clustering efficiency, data can first be preprocessed using the micro-
clustering idea to form microclusters (groups of points that are close together), thereby
avoiding the processing of all of the points individually. Object movement, deadlock
detection, and constraint satisfaction can be tested at the microcluster level, which re-
duces the number of points to be computed. Occasionally, such microclusters may need
to be broken up in order to resolve deadlocks under the constraints. This methodol-
ogy ensures that the effective clustering can be performed in large data sets under the
user-specified constraints with good efficiency and scalability.

7.10.3 Semi-Supervised Cluster Analysis

In comparison with supervised learning, clustering lacks guidance from users or classi-
fiers (such as class label information), and thus may not generate highly desirable clus-
ters. The quality of unsupervised clustering can be significantly improved using some
weak form of supervision, for example, in the form of pairwise constraints (i.e., pairs of
objects labeled as belonging to the same or different clusters). Such a clustering process
based on user feedback or guidance constraints is called semi-supervised clustering.

Methods for semi-supervised clustering can be categorized into two classes:
constraint-based semi-supervised clustering and distance-based semi-supervised clustering.
Constraint-based semi-supervised clustering relies on user-provided labels or constraints
to guide the algorithm toward a more appropriate data partitioning. This includes mod-
ifying the objective function based on constraints, or initializing and constraining the
clustering process based on the labeled objects. Distance-based semi-supervised clus-
tering employs an adaptive distance measure that is trained to satisfy the labels or con-
straints in the supervised data. Several different adaptive distance measures have been
used, such as string-edit distance trained using Expectation-Maximization (EM), and
Euclidean distance modified by a shortest distance algorithm.

An interesting clustering method, called CLTree (CLustering based on decision
TREEs), integrates unsupervised clustering with the idea of supervised classification. It
is an example of constraint-based semi-supervised clustering. It transforms a clustering
task into a classification task by viewing the set of points to be clustered as belonging to
one class, labeled as “Y ,” and adds a set of relatively uniformly distributed, “nonexistence
points” with a different class label, “N.” The problem of partitioning the data space into
data (dense) regions and empty (sparse) regions can then be transformed into a classifi-
cation problem. For example, Figure 7.26(a) contains a set of data points to be clustered.
These points can be viewed as a set of “Y ” points. Figure 7.26(b) shows the addition of
a set of uniformly distributed “N” points, represented by the “◦” points. The original
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(a) (b) (c)

Figure 7.26 Clustering through decision tree construction: (a) the set of data points to be clustered,
viewed as a set of “Y ” points, (b) the addition of a set of uniformly distributed “N” points,
represented by “◦”, and (c) the clustering result with “Y ” points only.

clustering problem is thus transformed into a classification problem, which works out
a scheme that distinguishes “Y ” and “N” points. A decision tree induction method can
be applied10 to partition the two-dimensional space, as shown in Figure 7.26(c). Two
clusters are identified, which are from the “Y ” points only.

Adding a large number of “N” points to the original data may introduce unneces-
sary overhead in computation. Furthermore, it is unlikely that any points added would
truly be uniformly distributed in a very high-dimensional space as this would require an
exponential number of points. To deal with this problem, we do not physically add any
of the “N” points, but only assume their existence. This works because the decision tree
method does not actually require the points. Instead, it only needs the number of “N”
points at each decision tree node. This number can be computed when needed, with-
out having to add points to the original data. Thus, CLTree can achieve the results in
Figure 7.26(c) without actually adding any “N” points to the original data. Again, two
clusters are identified.

The question then is how many (virtual) “N” points should be added in order to
achieve good clustering results. The answer follows this simple rule: At the root node, the
number of inherited “N” points is 0. At any current node, E , if the number of “N” points
inherited from the parent node of E is less than the number of “Y ” points in E , then the
number of “N” points for E is increased to the number of “Y ” points in E . (That is, we set
the number of “N” points to be as big as the number of “Y ” points.) Otherwise, the number
of inherited “N” points is used in E . The basic idea is to use an equal number of “N”
points to the number of “Y ” points.

Decision tree classification methods use a measure, typically based on information
gain, to select the attribute test for a decision node (Section 6.3.2). The data are then
split or partitioned according the test or “cut.” Unfortunately, with clustering, this can
lead to the fragmentation of some clusters into scattered regions. To address this problem,
methods were developed that use information gain, but allow the ability to look ahead.

10Decision tree induction was described in Chapter 6 on classification.
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That is, CLTree first finds initial cuts and then looks ahead to find better partitions that
cut less into cluster regions. It finds those cuts that form regions with a very low relative
density. The idea is that we want to split at the cut point that may result in a big empty
(“N”) region, which is more likely to separate clusters. With such tuning, CLTree can per-
form high-quality clustering in high-dimensional space. It can also find subspace clusters
as the decision tree method normally selects only a subset of the attributes. An interest-
ing by-product of this method is the empty (sparse) regions, which may also be useful
in certain applications. In marketing, for example, clusters may represent different seg-
ments of existing customers of a company, while empty regions reflect the profiles of
noncustomers. Knowing the profiles of noncustomers allows the company to tailor their
services or marketing to target these potential customers.

7.11 Outlier Analysis

“What is an outlier?” Very often, there exist data objects that do not comply with the
general behavior or model of the data. Such data objects, which are grossly different
from or inconsistent with the remaining set of data, are called outliers.

Outliers can be caused by measurement or execution error. For example, the display
of a person’s age as−999 could be caused by a program default setting of an unrecorded
age. Alternatively, outliers may be the result of inherent data variability. The salary of the
chief executive officer of a company, for instance, could naturally stand out as an outlier
among the salaries of the other employees in the firm.

Many data mining algorithms try to minimize the influence of outliers or eliminate
them all together. This, however, could result in the loss of important hidden information
because one person’s noise could be another person’s signal. In other words, the outliers
may be of particular interest, such as in the case of fraud detection, where outliers may
indicate fraudulent activity. Thus, outlier detection and analysis is an interesting data
mining task, referred to as outlier mining.

Outlier mining has wide applications. As mentioned previously, it can be used in fraud
detection, for example, by detecting unusual usage of credit cards or telecommunica-
tion services. In addition, it is useful in customized marketing for identifying the spend-
ing behavior of customers with extremely low or extremely high incomes, or in medical
analysis for finding unusual responses to various medical treatments.

Outlier mining can be described as follows: Given a set of n data points or objects
and k, the expected number of outliers, find the top k objects that are considerably
dissimilar, exceptional, or inconsistent with respect to the remaining data. The outlier
mining problem can be viewed as two subproblems: (1) define what data can be
considered as inconsistent in a given data set, and (2) find an efficient method to
mine the outliers so defined.

The problem of defining outliers is nontrivial. If a regression model is used for data
modeling, analysis of the residuals can give a good estimation for data “extremeness.”
The task becomes tricky, however, when finding outliers in time-series data, as they may
be hidden in trend, seasonal, or other cyclic changes. When multidimensional data are
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analyzed, not any particular one but rather a combination of dimension values may be
extreme. For nonnumeric (i.e., categorical) data, the definition of outliers requires special
consideration.

“What about using data visualization methods for outlier detection?” This may seem like
an obvious choice, since human eyes are very fast and effective at noticing data inconsis-
tencies. However, this does not apply to data containing cyclic plots, where values that
appear to be outliers could be perfectly valid values in reality. Data visualization meth-
ods are weak in detecting outliers in data with many categorical attributes or in data of
high dimensionality, since human eyes are good at visualizing numeric data of only two
to three dimensions.

In this section, we instead examine computer-based methods for outlier detection.
These can be categorized into four approaches: the statistical approach, the distance-based
approach, the density-based local outlier approach, and the deviation-based approach, each
of which are studied here. Notice that while clustering algorithms discard outliers as
noise, they can be modified to include outlier detection as a by-product of their execu-
tion. In general, users must check that each outlier discovered by these approaches is
indeed a “real” outlier.

7.11.1 Statistical Distribution-Based Outlier Detection

The statistical distribution-based approach to outlier detection assumes a distribution
or probability model for the given data set (e.g., a normal or Poisson distribution) and
then identifies outliers with respect to the model using a discordancy test. Application of
the test requires knowledge of the data set parameters (such as the assumed data distri-
bution), knowledge of distribution parameters (such as the mean and variance), and the
expected number of outliers.

“How does the discordancy testing work?” A statistical discordancy test examines two
hypotheses: a working hypothesis and an alternative hypothesis. A working hypothesis,
H, is a statement that the entire data set of n objects comes from an initial distribution
model, F , that is,

H : oi ∈ F , where i = 1, 2, . . . , n. (7.43)

The hypothesis is retained if there is no statistically significant evidence supporting its
rejection. A discordancy test verifies whether an object, oi, is significantly large (or small)
in relation to the distribution F . Different test statistics have been proposed for use as
a discordancy test, depending on the available knowledge of the data. Assuming that
some statistic, T , has been chosen for discordancy testing, and the value of the statistic for
object oi is vi, then the distribution of T is constructed. Significance probability, SP(vi) =
Prob(T > vi), is evaluated. If SP(vi) is sufficiently small, then oi is discordant and the
working hypothesis is rejected. An alternative hypothesis, H, which states that oi comes
from another distribution model, G, is adopted. The result is very much dependent on
which model F is chosen because oi may be an outlier under one model and a perfectly
valid value under another.
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The alternative distribution is very important in determining the power of the test,
that is, the probability that the working hypothesis is rejected when oi is really an outlier.
There are different kinds of alternative distributions.

Inherent alternative distribution: In this case, the working hypothesis that all of the
objects come from distribution F is rejected in favor of the alternative hypothesis that
all of the objects arise from another distribution, G:

H : oi ∈ G, where i = 1, 2, . . . , n. (7.44)

F and G may be different distributions or differ only in parameters of the same dis-
tribution. There are constraints on the form of the G distribution in that it must have
potential to produce outliers. For example, it may have a different mean or dispersion,
or a longer tail.

Mixture alternative distribution: The mixture alternative states that discordant values
are not outliers in the F population, but contaminants from some other population,
G. In this case, the alternative hypothesis is

H : oi ∈ (1−λ)F + λG, where i = 1, 2, . . . , n. (7.45)

Slippage alternative distribution: This alternative states that all of the objects (apart
from some prescribed small number) arise independently from the initial model, F ,
with its given parameters, whereas the remaining objects are independent observa-
tions from a modified version of F in which the parameters have been shifted.

There are two basic types of procedures for detecting outliers:

Block procedures: In this case, either all of the suspect objects are treated as outliers
or all of them are accepted as consistent.

Consecutive (or sequential) procedures: An example of such a procedure is the inside-
out procedure. Its main idea is that the object that is least “likely” to be an outlier is
tested first. If it is found to be an outlier, then all of the more extreme values are also
considered outliers; otherwise, the next most extreme object is tested, and so on. This
procedure tends to be more effective than block procedures.

“How effective is the statistical approach at outlier detection?” A major drawback is that
most tests are for single attributes, yet many data mining problems require finding out-
liers in multidimensional space. Moreover, the statistical approach requires knowledge
about parameters of the data set, such as the data distribution. However, in many cases,
the data distribution may not be known. Statistical methods do not guarantee that all
outliers will be found for the cases where no specific test was developed, or where the
observed distribution cannot be adequately modeled with any standard distribution.
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7.11.2 Distance-Based Outlier Detection

The notion of distance-based outliers was introduced to counter the main limitations
imposed by statistical methods. An object, o, in a data set, D, is a distance-based (DB)
outlier with parameters pct and dmin,11 that is, a DB(pct,dmin)-outlier, if at least a frac-
tion, pct, of the objects in D lie at a distance greater than dmin from o. In other words,
rather than relying on statistical tests, we can think of distance-based outliers as those
objects that do not have “enough” neighbors, where neighbors are defined based on
distance from the given object. In comparison with statistical-based methods, distance-
based outlier detection generalizes the ideas behind discordancy testing for various stan-
dard distributions. Distance-based outlier detection avoids the excessive computation
that can be associated with fitting the observed distribution into some standard distri-
bution and in selecting discordancy tests.

For many discordancy tests, it can be shown that if an object, o, is an outlier according
to the given test, then o is also a DB(pct, dmin)-outlier for some suitably defined pct and
dmin. For example, if objects that lie three or more standard deviations from the mean
are considered to be outliers, assuming a normal distribution, then this definition can
be generalized by a DB(0.9988, 0.13σ) outlier.12

Several efficient algorithms for mining distance-based outliers have been developed.
These are outlined as follows.

Index-based algorithm: Given a data set, the index-based algorithm uses multidimen-
sional indexing structures, such as R-trees or k-d trees, to search for neighbors of each
object o within radius dmin around that object. Let M be the maximum number of
objects within the dmin-neighborhood of an outlier. Therefore, once M +1 neighbors
of object o are found, it is clear that o is not an outlier. This algorithm has a worst-case
complexity of O(n2k), where n is the number of objects in the data set and k is the
dimensionality. The index-based algorithm scales well as k increases. However, this
complexity evaluation takes only the search time into account, even though the task
of building an index in itself can be computationally intensive.

Nested-loop algorithm: The nested-loop algorithm has the same computational com-
plexity as the index-based algorithm but avoids index structure construction and tries
to minimize the number of I/Os. It divides the memory buffer space into two halves
and the data set into several logical blocks. By carefully choosing the order in which
blocks are loaded into each half, I/O efficiency can be achieved.

11The parameter dmin is the neighborhood radius around object o. It corresponds to the parameter ε
in Section 7.6.1.
12The parameters pct and dmin are computed using the normal curve’s probability density function to
satisfy the probability condition (P|x−3| ≤ dmin)< 1− pct, i.e., P(3−dmin≤ x≤ 3+dmin)<−pct,
where x is an object. (Note that the solution may not be unique.) A dmin-neighborhood of radius 0.13
indicates a spread of ±0.13 units around the 3 σ mark (i.e., [2.87, 3.13]). For a complete proof of the
derivation, see [KN97].
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Cell-based algorithm: To avoid O(n2) computational complexity, a cell-based algorithm
was developed for memory-resident data sets. Its complexity is O(ck + n), where c
is a constant depending on the number of cells and k is the dimensionality. In this
method, the data space is partitioned into cells with a side length equal to dmin

2
√

k
. Each

cell has two layers surrounding it. The first layer is one cell thick, while the second
is d2
√

k− 1e cells thick, rounded up to the closest integer. The algorithm counts
outliers on a cell-by-cell rather than an object-by-object basis. For a given cell, it
accumulates three counts—the number of objects in the cell, in the cell and the first
layer together, and in the cell and both layers together. Let’s refer to these counts as
cell count, cell + 1 layer count, and cell + 2 layers count, respectively.
“How are outliers determined in this method?” Let M be the maximum number of
outliers that can exist in the dmin-neighborhood of an outlier.

An object, o, in the current cell is considered an outlier only if cell + 1 layer count
is less than or equal to M. If this condition does not hold, then all of the objects
in the cell can be removed from further investigation as they cannot be outliers.

If cell + 2 layers count is less than or equal to M, then all of the objects in the
cell are considered outliers. Otherwise, if this number is more than M, then it
is possible that some of the objects in the cell may be outliers. To detect these
outliers, object-by-object processing is used where, for each object, o, in the cell,
objects in the second layer of o are examined. For objects in the cell, only those
objects having no more than M points in their dmin-neighborhoods are outliers.
The dmin-neighborhood of an object consists of the object’s cell, all of its first
layer, and some of its second layer.

A variation to the algorithm is linear with respect to n and guarantees that no more
than three passes over the data set are required. It can be used for large disk-resident
data sets, yet does not scale well for high dimensions.

Distance-based outlier detection requires the user to set both the pct and dmin
parameters. Finding suitable settings for these parameters can involve much trial and
error.

7.11.3 Density-Based Local Outlier Detection

Statistical and distance-based outlier detection both depend on the overall or “global”
distribution of the given set of data points, D. However, data are usually not uniformly
distributed. These methods encounter difficulties when analyzing data with rather dif-
ferent density distributions, as illustrated in the following example.

Example 7.18 Necessity for density-based local outlier detection. Figure 7.27 shows a simple 2-D data
set containing 502 objects, with two obvious clusters. Cluster C1 contains 400 objects.
Cluster C2 contains 100 objects. Two additional objects, o1 and o2 are clearly outliers.
However, by distance-based outlier detection (which generalizes many notions from
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Figure 7.27 The necessity of density-based local outlier analysis. From [BKNS00].

statistical-based outlier detection), only o1 is a reasonable DB(pct, dmin)-outlier, because
if dmin is set to be less than the minimum distance between o2 andC2, then all 501 objects
are further away from o2 than dmin. Thus, o2 would be considered a DB(pct, dmin)-
outlier, but so would all of the objects in C1! On the other hand, if dmin is set to be greater
than the minimum distance between o2 and C2, then even when o2 is not regarded as an
outlier, some points in C1 may still be considered outliers.

This brings us to the notion of local outliers. An object is a local outlier if it is outlying
relative to its local neighborhood, particulary with respect to the density of the neighbor-
hood. In this view, o2 of Example 7.18 is a local outlier relative to the density of C2.
Object o1 is an outlier as well, and no objects in C1 are mislabeled as outliers. This forms
the basis of density-based local outlier detection. Another key idea of this approach to
outlier detection is that, unlike previous methods, it does not consider being an out-
lier as a binary property. Instead, it assesses the degree to which an object is an out-
lier. This degree of “outlierness” is computed as the local outlier factor (LOF) of an
object. It is local in the sense that the degree depends on how isolated the object is with
respect to the surrounding neighborhood. This approach can detect both global and local
outliers.

To define the local outlier factor of an object, we need to introduce the concepts of
k-distance, k-distance neighborhood, reachability distance,13 and local reachability den-
sity. These are defined as follows:

The k-distance of an object p is the maximal distance that p gets from its k-nearest
neighbors. This distance is denoted as k-distance(p). It is defined as the distance,
d(p, o), between p and an object o ∈ D, such that (1) for at least k objects, o′ ∈ D, it

13The reachability distance here is similar to the reachability distance defined for OPTICS in
Section 7.6.2, although it is given in a somewhat different context.
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holds that d(p, o′)≤ d(p, o). That is, there are at least k objects in D that are as close as
or closer to p than o, and (2) for at most k−1 objects, o′′ ∈D, it holds that d(p,o′′)<
d(p, o). That is, there are at most k−1 objects that are closer to p than o. You may be
wondering at this point how k is determined. The LOF method links to density-based
clustering in that it sets k to the parameter MinPts, which specifies the minimum num-
ber of points for use in identifying clusters based on density (Sections 7.6.1 and 7.6.2).
Here, MinPts (as k) is used to define the local neighborhood of an object, p.

The k-distance neighborhood of an object p is denoted Nk distance(p)(p), or Nk(p)
for short. By setting k to MinPts, we get NMinPts(p). It contains the MinPts-nearest
neighbors of p. That is, it contains every object whose distance is not greater than the
MinPts-distance of p.

The reachability distance of an object p with respect to object o (where o is within
the MinPts-nearest neighbors of p), is defined as reach distMinPts(p, o) = max{MinPts-
distance(o), d(p, o)}. Intuitively, if an object p is far away from o, then the reachability
distance between the two is simply their actual distance. However, if they are “suffi-
ciently” close (i.e., where p is within the MinPts-distance neighborhood of o), then
the actual distance is replaced by the MinPts-distance of o. This helps to significantly
reduce the statistical fluctuations of d(p, o) for all of the p close to o. The higher the
value of MinPts is, the more similar is the reachability distance for objects within
the same neighborhood.

Intuitively, the local reachability density of p is the inverse of the average reachability
density based on the MinPts-nearest neighbors of p. It is defined as

lrdMinPts(p) =
|NMinPts(p)|

Σo∈NMinPts(p)reach distMinPts(p, o)
. (7.46)

The local outlier factor (LOF) of p captures the degree to which we call p an outlier.
It is defined as

LOFMinPts(p) =
∑o∈NMinPts(p)

lrdMinPts(o)
lrdMinPts(p)

|NMinPts(p)|
. (7.47)

It is the average of the ratio of the local reachability density of p and those of p’s
MinPts-nearest neighbors. It is easy to see that the lower p’s local reachability density
is, and the higher the local reachability density of p’s MinPts-nearest neighbors are,
the higher LOF(p) is.

From this definition, if an object p is not a local outlier, LOF(p) is close to 1. The more
that p is qualified to be a local outlier, the higher LOF(p) is. Therefore, we can determine
whether a point p is a local outlier based on the computation of LOF(p). Experiments
based on both synthetic and real-world large data sets have demonstrated the power of
LOF at identifying local outliers.
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7.11.4 Deviation-Based Outlier Detection

Deviation-based outlier detection does not use statistical tests or distance-based
measures to identify exceptional objects. Instead, it identifies outliers by examining the
main characteristics of objects in a group. Objects that “deviate” from this description are
considered outliers. Hence, in this approach the term deviations is typically used to refer
to outliers. In this section, we study two techniques for deviation-based outlier detec-
tion. The first sequentially compares objects in a set, while the second employs an OLAP
data cube approach.

Sequential Exception Technique
The sequential exception technique simulates the way in which humans can distinguish
unusual objects from among a series of supposedly like objects. It uses implicit redun-
dancy of the data. Given a data set, D, of n objects, it builds a sequence of subsets,
{D1, D2, . . . , Dm}, of these objects with 2≤ m≤ n such that

D j−1 ⊂ D j, where D j ⊆ D. (7.48)

Dissimilarities are assessed between subsets in the sequence. The technique introduces
the following key terms.

Exception set: This is the set of deviations or outliers. It is defined as the smallest
subset of objects whose removal results in the greatest reduction of dissimilarity in
the residual set.14

Dissimilarity function: This function does not require a metric distance between the
objects. It is any function that, if given a set of objects, returns a low value if the objects
are similar to one another. The greater the dissimilarity among the objects, the higher
the value returned by the function. The dissimilarity of a subset is incrementally com-
puted based on the subset prior to it in the sequence. Given a subset of n numbers,
{x1, . . . , xn}, a possible dissimilarity function is the variance of the numbers in the
set, that is,

1
n

n

∑
i=1

(xi− x)2, (7.49)

where x is the mean of the n numbers in the set. For character strings, the dissimilarity
function may be in the form of a pattern string (e.g., containing wildcard characters)
that is used to cover all of the patterns seen so far. The dissimilarity increases when
the pattern covering all of the strings in D j−1 does not cover any string in D j that is
not in D j−1.

14For interested readers, this is equivalent to the greatest reduction in Kolmogorov complexity for the
amount of data discarded.
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Cardinality function: This is typically the count of the number of objects in a given set.

Smoothing factor: This function is computed for each subset in the sequence. It
assesses how much the dissimilarity can be reduced by removing the subset from the
original set of objects. This value is scaled by the cardinality of the set. The subset
whose smoothing factor value is the largest is the exception set.

The general task of finding an exception set can be NP-hard (i.e., intractable).
A sequential approach is computationally feasible and can be implemented using a linear
algorithm.

“How does this technique work?” Instead of assessing the dissimilarity of the current
subset with respect to its complementary set, the algorithm selects a sequence of subsets
from the set for analysis. For every subset, it determines the dissimilarity difference of
the subset with respect to the preceding subset in the sequence.

“Can’t the order of the subsets in the sequence affect the results?” To help alleviate any
possible influence of the input order on the results, the above process can be repeated
several times, each with a different random ordering of the subsets. The subset with the
largest smoothing factor value, among all of the iterations, becomes the exception set.

OLAP Data Cube Technique
An OLAP approach to deviation detection uses data cubes to identify regions of anoma-
lies in large multidimensional data. This technique was described in detail in Chapter 4.
For added efficiency, the deviation detection process is overlapped with cube compu-
tation. The approach is a form of discovery-driven exploration, in which precomputed
measures indicating data exceptions are used to guide the user in data analysis, at all lev-
els of aggregation. A cell value in the cube is considered an exception if it is significantly
different from the expected value, based on a statistical model. The method uses visual
cues such as background color to reflect the degree of exception of each cell. The user
can choose to drill down on cells that are flagged as exceptions. The measure value of a
cell may reflect exceptions occurring at more detailed or lower levels of the cube, where
these exceptions are not visible from the current level.

The model considers variations and patterns in the measure value across all of the
dimensions to which a cell belongs. For example, suppose that you have a data cube for
sales data and are viewing the sales summarized per month. With the help of the visual
cues, you notice an increase in sales in December in comparison to all other months.
This may seem like an exception in the time dimension. However, by drilling down on
the month of December to reveal the sales per item in that month, you note that there
is a similar increase in sales for other items during December. Therefore, an increase
in total sales in December is not an exception if the item dimension is considered. The
model considers exceptions hidden at all aggregated group-by’s of a data cube. Manual
detection of such exceptions is difficult because the search space is typically very large,
particularly when there are many dimensions involving concept hierarchies with several
levels.
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7.12 Summary

A cluster is a collection of data objects that are similar to one another within the same
cluster and are dissimilar to the objects in other clusters. The process of grouping a
set of physical or abstract objects into classes of similar objects is called clustering.

Cluster analysis has wide applications, including market or customer segmentation,
pattern recognition, biological studies, spatial data analysis, Web document classifi-
cation, and many others. Cluster analysis can be used as a stand-alone data mining
tool to gain insight into the data distribution or can serve as a preprocessing step for
other data mining algorithms operating on the detected clusters.

The quality of clustering can be assessed based on a measure of dissimilarity of objects,
which can be computed for various types of data, including interval-scaled, binary,
categorical, ordinal, and ratio-scaled variables, or combinations of these variable types.
For nonmetric vector data, the cosine measure and the Tanimoto coefficient are often
used in the assessment of similarity.

Clustering is a dynamic field of research in data mining. Many clustering algorithms
have been developed. These can be categorized into partitioning methods, hierarchical
methods, density-based methods, grid-based methods, model-based methods, methods
for high-dimensional data (including frequent pattern–based methods), and constraint-
based methods. Some algorithms may belong to more than one category.

A partitioning method first creates an initial set of k partitions, where parameter
k is the number of partitions to construct. It then uses an iterative relocation tech-
nique that attempts to improve the partitioning by moving objects from one group
to another. Typical partitioning methods include k-means, k-medoids, CLARANS,
and their improvements.

A hierarchical method creates a hierarchical decomposition of the given set of data
objects. The method can be classified as being either agglomerative (bottom-up) or
divisive (top-down), based on how the hierarchical decomposition is formed. To com-
pensate for the rigidity of merge or split, the quality of hierarchical agglomeration can
be improved by analyzing object linkages at each hierarchical partitioning (such as
in ROCK and Chameleon), or by first performing microclustering (that is, group-
ing objects into “microclusters”) and then operating on the microclusters with other
clustering techniques, such as iterative relocation (as in BIRCH).

A density-based method clusters objects based on the notion of density. It either
grows clusters according to the density of neighborhood objects (such as in DBSCAN)
or according to some density function (such as in DENCLUE). OPTICS is a density-
based method that generates an augmented ordering of the clustering structure of
the data.

A grid-based method first quantizes the object space into a finite number of cells that
form a grid structure, and then performs clustering on the grid structure. STING is
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a typical example of a grid-based method based on statistical information stored in
grid cells. WaveCluster and CLIQUE are two clustering algorithms that are both grid-
based and density-based.

A model-based method hypothesizes a model for each of the clusters and finds the
best fit of the data to that model. Examples of model-based clustering include the
EM algorithm (which uses a mixture density model), conceptual clustering (such
as COBWEB), and neural network approaches (such as self-organizing feature
maps).

Clustering high-dimensional data is of crucial importance, because in many
advanced applications, data objects such as text documents and microarray data
are high-dimensional in nature. There are three typical methods to handle high-
dimensional data sets: dimension-growth subspace clustering, represented by CLIQUE,
dimension-reduction projected clustering, represented by PROCLUS, and frequent
pattern–based clustering, represented by pCluster.

A constraint-based clustering method groups objects based on application-
dependent or user-specified constraints. For example, clustering with the existence of
obstacle objects and clustering under user-specified constraints are typical methods of
constraint-based clustering. Typical examples include clustering with the existence
of obstacle objects, clustering under user-specified constraints, and semi-supervised
clustering based on “weak” supervision (such as pairs of objects labeled as belonging
to the same or different cluster).

One person’s noise could be another person’s signal. Outlier detection and analysis are
very useful for fraud detection, customized marketing, medical analysis, and many
other tasks. Computer-based outlier analysis methods typically follow either a statisti-
cal distribution-based approach, a distance-based approach, a density-based local outlier
detection approach, or a deviation-based approach.

Exercises

7.1 Briefly outline how to compute the dissimilarity between objects described by the
following types of variables:

(a) Numerical (interval-scaled) variables

(b) Asymmetric binary variables

(c) Categorical variables

(d) Ratio-scaled variables

(e) Nonmetric vector objects

7.2 Given the following measurements for the variable age:

18, 22, 25, 42, 28, 43, 33, 35, 56, 28,
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standardize the variable by the following:

(a) Compute the mean absolute deviation of age.

(b) Compute the z-score for the first four measurements.

7.3 Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8):

(a) Compute the Euclidean distance between the two objects.

(b) Compute the Manhattan distance between the two objects.

(c) Compute the Minkowski distance between the two objects, using q = 3.

7.4 Section 7.2.3 gave a method wherein a categorical variable having M states can be encoded
by M asymmetric binary variables. Propose a more efficient encoding scheme and state
why it is more efficient.

7.5 Briefly describe the following approaches to clustering: partitioning methods, hierarchical
methods, density-based methods, grid-based methods, model-based methods, methods
for high-dimensional data, and constraint-based methods. Give examples in each case.

7.6 Suppose that the data mining task is to cluster the following eight points (with (x, y)
representing location) into three clusters:

A1(2, 10), A2(2, 5), A3(8, 4), B1(5, 8), B2(7, 5), B3(6, 4), C1(1, 2), C2(4, 9).

The distance function is Euclidean distance. Suppose initially we assign A1, B1, and C1
as the center of each cluster, respectively. Use the k-means algorithm to show only

(a) The three cluster centers after the first round execution

(b) The final three clusters

7.7 Both k-means and k-medoids algorithms can perform effective clustering. Illustrate the
strength and weakness of k-means in comparison with the k-medoids algorithm. Also,
illustrate the strength and weakness of these schemes in comparison with a hierarchical
clustering scheme (such as AGNES).

7.8 Use a diagram to illustrate how, for a constant MinPts value, density-based clusters with
respect to a higher density (i.e., a lower value for ε, the neighborhood radius) are com-
pletely contained in density-connected sets obtained with respect to a lower density.

7.9 Why is it that BIRCH encounters difficulties in finding clusters of arbitrary shape but
OPTICS does not? Can you propose some modifications to BIRCH to help it find clusters
of arbitrary shape?

7.10 Present conditions under which density-based clustering is more suitable than
partitioning-based clustering and hierarchical clustering. Given some application exam-
ples to support your argument.

7.11 Give an example of how specific clustering methods may be integrated, for example,
where one clustering algorithm is used as a preprocessing step for another. In
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addition, provide reasoning on why the integration of two methods may sometimes lead
to improved clustering quality and efficiency.

7.12 Clustering has been popularly recognized as an important data mining task with broad
applications. Give one application example for each of the following cases:

(a) An application that takes clustering as a major data mining function

(b) An application that takes clustering as a preprocessing tool for data preparation for
other data mining tasks

7.13 Data cubes and multidimensional databases contain categorical, ordinal, and numerical
data in hierarchical or aggregate forms. Based on what you have learned about the cluster-
ing methods, design a clustering method that finds clusters in large data cubes effectively
and efficiently.

7.14 Subspace clustering is a methodology for finding interesting clusters in high-dimensional
space. This methodology can be applied to cluster any kind of data. Outline an efficient
algorithm that may extend density connectivity-based clustering for finding clusters of
arbitrary shapes in projected dimensions in a high-dimensional data set.

7.15 [Contributed by Alex Kotov] Describe each of the following clustering algorithms in terms
of the following criteria: (i) shapes of clusters that can be determined; (ii) input para-
meters that must be specified; and (iii) limitations.

(a) k-means

(b) k-medoids

(c) CLARA

(d) BIRCH

(e) ROCK

(f) Chameleon

(g) DBSCAN

7.16 [Contributed by Tao Cheng] Many clustering algorithms handle either only numerical
data, such as BIRCH, or only categorical data, such as ROCK, but not both. Analyze why
this is the case. Note, however, that the EM clustering algorithm can easily be extended
to handle data with both numerical and categorical attributes. Briefly explain why it can
do so and how.

7.17 Human eyes are fast and effective at judging the quality of clustering methods for two-
dimensional data. Can you design a data visualization method that may help humans
visualize data clusters and judge the clustering quality for three-dimensional data? What
about for even higher-dimensional data?

7.18 Suppose that you are to allocate a number of automatic teller machines (ATMs) in a
given region so as to satisfy a number of constraints. Households or places of work
may be clustered so that typically one ATM is assigned per cluster. The clustering, how-
ever, may be constrained by two factors: (1) obstacle objects (i.e., there are bridges,
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rivers, and highways that can affect ATM accessibility), and (2) additional user-specified
constraints, such as each ATM should serve at least 10,000 households. How can a cluster-
ing algorithm such as k-means be modified for quality clustering under both constraints?

7.19 For constraint-based clustering, aside from having the minimum number of customers
in each cluster (for ATM allocation) as a constraint, there could be many other kinds of
constraints. For example, a constraint could be in the form of the maximum number
of customers per cluster, average income of customers per cluster, maximum distance
between every two clusters, and so on. Categorize the kinds of constraints that can be
imposed on the clusters produced and discuss how to perform clustering efficiently under
such kinds of constraints.

7.20 Design a privacy-preserving clustering method so that a data owner would be able to
ask a third party to mine the data for quality clustering without worrying about the
potential inappropriate disclosure of certain private or sensitive information stored
in the data.

7.21 Why is outlier mining important? Briefly describe the different approaches behind
statistical-based outlier detection, distanced-based outlier detection, density-based local out-
lier detection, and deviation-based outlier detection.

7.22 Local outlier factor (LOF) is an interesting notion for the discovery of local outliers
in an environment where data objects are distributed rather unevenly. However, its
performance should be further improved in order to efficiently discover local outliers.
Can you propose an efficient method for effective discovery of local outliers in large
data sets?
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8Mining Stream, Time-Series,
and Sequence Data

Our previous chapters introduced the basic concepts and techniques of data mining. The techniques
studied, however, were for simple and structured data sets, such as data in relational
databases, transactional databases, and data warehouses. The growth of data in various
complex forms (e.g., semi-structured and unstructured, spatial and temporal, hypertext
and multimedia) has been explosive owing to the rapid progress of data collection and
advanced database system technologies, and the World Wide Web. Therefore, an increas-
ingly important task in data mining is to mine complex types of data. Furthermore, many
data mining applications need to mine patterns that are more sophisticated than those
discussed earlier, including sequential patterns, subgraph patterns, and features in inter-
connected networks. We treat such tasks as advanced topics in data mining.

In the following chapters, we examine how to further develop the essential data min-
ing techniques (such as characterization, association, classification, and clustering) and
how to develop new ones to cope with complex types of data. We start off, in this chapter,
by discussing the mining of stream, time-series, and sequence data. Chapter 9 focuses
on the mining of graphs, social networks, and multirelational data. Chapter 10 examines
mining object, spatial, multimedia, text, and Web data. Research into such mining is fast
evolving. Our discussion provides a broad introduction. We expect that many new books
dedicated to the mining of complex kinds of data will become available in the future.

As this chapter focuses on the mining of stream data, time-series data, and sequence
data, let’s look at each of these areas.

Imagine a satellite-mounted remote sensor that is constantly generating data. The
data are massive (e.g., terabytes in volume), temporally ordered, fast changing, and poten-
tially infinite. This is an example of stream data. Other examples include telecommu-
nications data, transaction data from the retail industry, and data from electric power
grids. Traditional OLAP and data mining methods typically require multiple scans of
the data and are therefore infeasible for stream data applications. In Section 8.1, we study
advanced mining methods for the analysis of such constantly flowing data.

A time-series database consists of sequences of values or events obtained over repeated
measurements of time. Suppose that you are given time-series data relating to stock
market prices. How can the data be analyzed to identify trends? Given such data for
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two different stocks, can we find any similarities between the two? These questions are
explored in Section 8.2. Other applications involving time-series data include economic
and sales forecasting, utility studies, and the observation of natural phenomena (such as
atmosphere, temperature, and wind).

A sequence database consists of sequences of ordered elements or events, recorded
with or without a concrete notion of time. Sequential pattern mining is the discovery
of frequently occurring ordered events or subsequences as patterns. An example of a
sequential pattern is “Customers who buy a Canon digital camera are likely to buy an HP
color printer within a month.” Periodic patterns, which recur in regular periods or dura-
tions, are another kind of pattern related to sequences. Section 8.3 studies methods of
sequential pattern mining.

Recent research in bioinformatics has resulted in the development of numerous meth-
ods for the analysis of biological sequences, such as DNA and protein sequences.
Section 8.4 introduces several popular methods, including biological sequence alignment
algorithms and the hidden Markov model.

8.1 Mining Data Streams

Tremendous and potentially infinite volumes of data streams are often generated by
real-time surveillance systems, communication networks, Internet traffic, on-line trans-
actions in the financial market or retail industry, electric power grids, industry pro-
duction processes, scientific and engineering experiments, remote sensors, and other
dynamic environments. Unlike traditional data sets, stream data flow in and out of a
computer system continuously and with varying update rates. They are temporally ordered,
fast changing, massive, and potentially infinite. It may be impossible to store an entire
data stream or to scan through it multiple times due to its tremendous volume. More-
over, stream data tend to be of a rather low level of abstraction, whereas most analysts
are interested in relatively high-level dynamic changes, such as trends and deviations. To
discover knowledge or patterns from data streams, it is necessary to develop single-scan,
on-line, multilevel, multidimensional stream processing and analysis methods.

Such single-scan, on-line data analysis methodology should not be confined to only
stream data. It is also critically important for processing nonstream data that are mas-
sive. With data volumes mounting by terabytes or even petabytes, stream data nicely
capture our data processing needs of today: even when the complete set of data is col-
lected and can be stored in massive data storage devices, single scan (as in data stream
systems) instead of random access (as in database systems) may still be the most realistic
processing mode, because it is often too expensive to scan such a data set multiple times.

In this section, we introduce several on-line stream data analysis and mining methods.
Section 8.1.1 introduces the basic methodologies for stream data processing and query-
ing. Multidimensional analysis of stream data, encompassing stream data cubes and
multiple granularities of time, is described in Section 8.1.2. Frequent-pattern mining
and classification are presented in Sections 8.1.3 and 8.1.4, respectively. The clustering
of dynamically evolving data streams is addressed in Section 8.1.5.
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8.1.1 Methodologies for Stream Data Processing and
Stream Data Systems

As seen from the previous discussion, it is impractical to scan through an entire data
stream more than once. Sometimes we cannot even “look” at every element of a stream
because the stream flows in so fast and changes so quickly. The gigantic size of such
data sets also implies that we generally cannot store the entire stream data set in main
memory or even on disk. The problem is not just that there is a lot of data, it is that the
universes that we are keeping track of are relatively large, where a universe is the domain
of possible values for an attribute. For example, if we were tracking the ages of millions of
people, our universe would be relatively small, perhaps between zero and one hundred
and twenty. We could easily maintain exact summaries of such data. In contrast, the
universe corresponding to the set of all pairs of IP addresses on the Internet is very large,
which makes exact storage intractable. A reasonable way of thinking about data streams
is to actually think of a physical stream of water. Heraclitus once said that you can never
step in the same stream twice,1 and so it is with stream data.

For effective processing of stream data, new data structures, techniques, and algo-
rithms are needed. Because we do not have an infinite amount of space to store stream
data, we often trade off between accuracy and storage. That is, we generally are willing
to settle for approximate rather than exact answers. Synopses allow for this by provid-
ing summaries of the data, which typically can be used to return approximate answers
to queries. Synopses use synopsis data structures, which are any data structures that are
substantially smaller than their base data set (in this case, the stream data). From the
algorithmic point of view, we want our algorithms to be efficient in both space and time.
Instead of storing all or most elements seen so far, using O(N) space, we often want to
use polylogarithmic space, O(logk N), where N is the number of elements in the stream
data. We may relax the requirement that our answers are exact, and ask for approximate
answers within a small error range with high probability. That is, many data stream–
based algorithms compute an approximate answer within a factor ε of the actual answer,
with high probability. Generally, as the approximation factor (1+ε) goes down, the space
requirements go up. In this section, we examine some common synopsis data structures
and techniques.

Random Sampling
Rather than deal with an entire data stream, we can think of sampling the stream at peri-
odic intervals. “To obtain an unbiased sampling of the data, we need to know the length
of the stream in advance. But what can we do if we do not know this length in advance?”
In this case, we need to modify our approach.

1Plato citing Heraclitus: “Heraclitus somewhere says that all things are in process and nothing stays
still, and likening existing things to the stream of a river he says you would not step twice into the same
river.”
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A technique called reservoir sampling can be used to select an unbiased random
sample of s elements without replacement. The idea behind reservoir sampling is rel-
atively simple. We maintain a sample of size at least s, called the “reservoir,” from which
a random sample of size s can be generated. However, generating this sample from the
reservoir can be costly, especially when the reservoir is large. To avoid this step, we main-
tain a set of s candidates in the reservoir, which form a true random sample of the ele-
ments seen so far in the stream. As the data stream flows, every new element has a certain
probability of replacing an old element in the reservoir. Let’s say we have seen N elements
thus far in the stream. The probability that a new element replaces an old one, chosen
at random, is then s/N. This maintains the invariant that the set of s candidates in our
reservoir forms a random sample of the elements seen so far.

Sliding Windows
Instead of sampling the data stream randomly, we can use the sliding window model to
analyze stream data. The basic idea is that rather than running computations on all of
the data seen so far, or on some sample, we can make decisions based only on recent data.
More formally, at every time t, a new data element arrives. This element “expires” at time
t + w, where w is the window “size” or length. The sliding window model is useful for
stocks or sensor networks, where only recent events may be important. It also reduces
memory requirements because only a small window of data is stored.

Histograms
The histogram is a synopsis data structure that can be used to approximate the frequency
distribution of element values in a data stream. A histogram partitions the data into a
set of contiguous buckets. Depending on the partitioning rule used, the width (bucket
value range) and depth (number of elements per bucket) can vary. The equal-width par-
titioning rule is a simple way to construct histograms, where the range of each bucket is
the same. Although easy to implement, this may not sample the probability distribution
function well. A better approach is to use V-Optimal histograms (see Section 2.5.4). Sim-
ilar to clustering, V-Optimal histograms define bucket sizes that minimize the frequency
variance within each bucket, which better captures the distribution of the data. These
histograms can then be used to approximate query answers rather than using sampling
techniques.

Multiresolution Methods
A common way to deal with a large amount of data is through the use of data reduction
methods (see Section 2.5). A popular data reduction method is the use of divide-and-
conquer strategies such as multiresolution data structures. These allow a program to
trade off between accuracy and storage, but also offer the ability to understand a data
stream at multiple levels of detail.
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A concrete example is a balanced binary tree, where we try to maintain this balance as
new data come in. Each level of the tree provides a different resolution. The farther away
we are from the tree root, the more detailed is the level of resolution.

A more sophisticated way to form multiple resolutions is to use a clustering method
to organize stream data into a hierarchical structure of trees. For example, we can use a
typical hierarchical clustering data structure like CF-tree in BIRCH (see Section 7.5.2)
to form a hierarchy of microclusters. With dynamic stream data flowing in and out, sum-
mary statistics of data streams can be incrementally updated over time in the hierarchy
of microclusters. Information in such microclusters can be aggregated into larger macro-
clusters depending on the application requirements to derive general data statistics at
multiresolution.

Wavelets (Section 2.5.3), a technique from signal processing, can be used to build a
multiresolution hierarchy structure over an input signal, in this case, the stream data.
Given an input signal, we would like to break it down or rewrite it in terms of simple,
orthogonal basis functions. The simplest basis is the Haar wavelet. Using this basis cor-
responds to recursively performing averaging and differencing at multiple levels of reso-
lution. Haar wavelets are easy to understand and implement. They are especially good at
dealing with spatial and multimedia data. Wavelets have been used as approximations to
histograms for query optimization. Moreover, wavelet-based histograms can be dynam-
ically maintained over time. Thus, wavelets are a popular multiresolution method for
data stream compression.

Sketches
Synopses techniques mainly differ by how exactly they trade off accuracy for storage.
Sampling techniques and sliding window models focus on a small part of the data,
whereas other synopses try to summarize the entire data, often at multiple levels of detail.
Some techniques require multiple passes over the data, such as histograms and wavelets,
whereas other methods, such as sketches, can operate in a single pass.

Suppose that, ideally, we would like to maintain the full histogram over the universe
of objects or elements in a data stream, where the universe is U = {1, 2, . . . , v} and the
stream is A = {a1, a2, . . . , aN}. That is, for each value i in the universe, we want to main-
tain the frequency or number of occurrences of i in the sequence A. If the universe is large,
this structure can be quite large as well. Thus, we need a smaller representation instead.

Let’s consider the frequency moments of A. These are the numbers, Fk, defined as

Fk =
v

∑
i=1

mk
i , (8.1)

where v is the universe or domain size (as above), mi is the frequency of i in the sequence,
and k ≥ 0. In particular, F0 is the number of distinct elements in the sequence. F1 is
the length of the sequence (that is, N, here). F2 is known as the self-join size, the repeat
rate, or as Gini’s index of homogeneity. The frequency moments of a data set provide
useful information about the data for database applications, such as query answering. In
addition, they indicate the degree of skew or asymmetry in the data (Section 2.2.1), which
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is useful in parallel database applications for determining an appropriate partitioning
algorithm for the data.

When the amount of memory available is smaller than v, we need to employ a synop-
sis. The estimation of the frequency moments can be done by synopses that are known as
sketches. These build a small-space summary for a distribution vector (e.g., histogram)
using randomized linear projections of the underlying data vectors. Sketches provide
probabilistic guarantees on the quality of the approximate answer (e.g., the answer to
the given query is 12± 1 with a probability of 0.90). Given N elements and a universe
U of v values, such sketches can approximate F0, F1, and F2 in O(logv + logN) space.
The basic idea is to hash every element uniformly at random to either zi ∈ {−1, + 1},
and then maintain a random variable, X = ∑i mizi. It can be shown that X2 is a good
estimate for F2. To explain why this works, we can think of hashing elements to −1 or
+1 as assigning each element value to an arbitrary side of a tug of war. When we sum up
to get X , we can think of measuring the displacement of the rope from the center point.
By squaring X , we square this displacement, capturing the data skew, F2.

To get an even better estimate, we can maintain multiple random variables, Xi. Then
by choosing the median value of the square of these variables, we can increase our con-
fidence that the estimated value is close to F2.

From a database perspective, sketch partitioning was developed to improve the
performance of sketching on data stream query optimization. Sketch partitioning uses
coarse statistical information on the base data to intelligently partition the domain of the
underlying attributes in a way that provably tightens the error guarantees.

Randomized Algorithms
Randomized algorithms, in the form of random sampling and sketching, are often used
to deal with massive, high-dimensional data streams. The use of randomization often
leads to simpler and more efficient algorithms in comparison to known deterministic
algorithms.

If a randomized algorithm always returns the right answer but the running times vary,
it is known as a Las Vegas algorithm. In contrast, a Monte Carlo algorithm has bounds
on the running time but may not return the correct result. We mainly consider Monte
Carlo algorithms. One way to think of a randomized algorithm is simply as a probability
distribution over a set of deterministic algorithms.

Given that a randomized algorithm returns a random variable as a result, we would
like to have bounds on the tail probability of that random variable. This tells us that the
probability that a random variable deviates from its expected value is small. One basic
tool is Chebyshev’s Inequality. Let X be a random variable with mean µ and standard
deviation σ (variance σ2). Chebyshev’s inequality says that

P(|X−µ|> k)≤ σ2

k2 (8.2)

for any given positive real number, k. This inequality can be used to bound the variance
of a random variable.
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In many cases, multiple random variables can be used to boost the confidence in our
results. As long as these random variables are fully independent, Chernoff bounds can be
used. Let X1, X2, . . . , Xn be independent Poisson trials. In a Poisson trial, the probability
of success varies from trial to trial. If X is the sum of X1 to Xn, then a weaker version of
the Chernoff bound tells us that

Pr[X < (1 + δ)µ]< e−µδ2/4 (8.3)

where δ ∈ (0, 1]. This shows that the probability decreases exponentially as we move
from the mean, which makes poor estimates much more unlikely.

Data Stream Management Systems and Stream Queries
In traditional database systems, data are stored in finite and persistent databases. However,
stream data are infinite and impossible to store fully in a database. In a Data Stream Man-
agement System (DSMS), there may be multiple data streams. They arrive on-line and
are continuous, temporally ordered, and potentially infinite. Once an element from a data
stream has been processed, it is discarded or archived, and it cannot be easily retrieved
unless it is explicitly stored in memory.

A stream data query processing architecture includes three parts: end user, query pro-
cessor, and scratch space (which may consist of main memory and disks). An end user
issues a query to the DSMS, and the query processor takes the query, processes it using
the information stored in the scratch space, and returns the results to the user.

Queries can be either one-time queries or continuous queries. A one-time query is eval-
uated once over a point-in-time snapshot of the data set, with the answer returned to the
user. A continuous query is evaluated continuously as data streams continue to arrive.
The answer to a continuous query is produced over time, always reflecting the stream
data seen so far. A continuous query can act as a watchdog, as in “sound the alarm if the
power consumption for Block 25 exceeds a certain threshold.” Moreover, a query can be pre-
defined (i.e., supplied to the data stream management system before any relevant data
have arrived) or ad hoc (i.e., issued on-line after the data streams have already begun).
A predefined query is generally a continuous query, whereas an ad hoc query can be
either one-time or continuous.

Stream Query Processing
The special properties of stream data introduce new challenges in query processing.
In particular, data streams may grow unboundedly, and it is possible that queries may
require unbounded memory to produce an exact answer. How can we distinguish
between queries that can be answered exactly using a given bounded amount of memory
and queries that must be approximated? Actually, without knowing the size of the input
data streams, it is impossible to place a limit on the memory requirements for most com-
mon queries, such as those involving joins, unless the domains of the attributes involved
in the query are restricted. This is because without domain restrictions, an unbounded
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number of attribute values must be remembered because they might turn out to join
with tuples that arrive in the future.

Providing an exact answer to a query may require unbounded main memory; therefore
a more realistic solution is to provide an approximate answer to the query. Approximate
query answering relaxes the memory requirements and also helps in handling system
load, because streams can come in too fast to process exactly. In addition, ad hoc queries
need approximate history to return an answer. We have already discussed common syn-
opses that are useful for approximate query answering, such as random sampling, sliding
windows, histograms, and sketches.

As this chapter focuses on stream data mining, we will not go into any further details
of stream query processing methods. For additional discussion, interested readers may
consult the literature recommended in the bibliographic notes of this chapter.

8.1.2 Stream OLAP and Stream Data Cubes

Stream data are generated continuously in a dynamic environment, with huge volume,
infinite flow, and fast-changing behavior. It is impossible to store such data streams com-
pletely in a data warehouse. Most stream data represent low-level information, consisting
of various kinds of detailed temporal and other features. To find interesting or unusual
patterns, it is essential to perform multidimensional analysis on aggregate measures (such
as sum and average). This would facilitate the discovery of critical changes in the data at
higher levels of abstraction, from which users can drill down to examine more detailed
levels, when needed. Thus multidimensional OLAP analysis is still needed in stream data
analysis, but how can we implement it?

Consider the following motivating example.

Example 8.1 Multidimensional analysis for power supply stream data. A power supply station gen-
erates infinite streams of power usage data. Suppose individual user, street address, and
second are the attributes at the lowest level of granularity. Given a large number of users,
it is only realistic to analyze the fluctuation of power usage at certain high levels, such
as by city or street district and by quarter (of an hour), making timely power supply
adjustments and handling unusual situations.

Conceptually, for multidimensional analysis, we can view such stream data as a virtual
data cube, consisting of one or a few measures and a set of dimensions, including one
time dimension, and a few other dimensions, such as location, user-category, and so on.
However, in practice, it is impossible to materialize such a data cube, because the mate-
rialization requires a huge amount of data to be computed and stored. Some efficient
methods must be developed for systematic analysis of such data.

Data warehouse and OLAP technology is based on the integration and consolidation
of data in multidimensional space to facilitate powerful and fast on-line data analysis.
A fundamental difference in the analysis of stream data from that of relational and ware-
house data is that the stream data are generated in huge volume, flowing in and out
dynamically and changing rapidly. Due to limited memory, disk space, and processing
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power, it is impossible to register completely the detailed level of data and compute a fully
materialized cube. A realistic design is to explore several data compression techniques,
including (1) tilted time frame on the time dimension, (2) storing data only at some crit-
ical layers, and (3) exploring efficient computation of a very partially materialized data
cube. The (partial) stream data cubes so constructed are much smaller than those con-
structed from the raw stream data but will still be effective for multidimensional stream
data analysis. We examine such a design in more detail.

Time Dimension with Compressed Time
Scale: Tilted Time Frame
In stream data analysis, people are usually interested in recent changes at a fine scale but
in long-term changes at a coarse scale. Naturally, we can register time at different levels of
granularity. The most recent time is registered at the finest granularity; the more distant
time is registered at a coarser granularity; and the level of coarseness depends on the
application requirements and on how old the time point is (from the current time). Such
a time dimension model is called a tilted time frame. This model is sufficient for many
analysis tasks and also ensures that the total amount of data to retain in memory or to
be stored on disk is small.

There are many possible ways to design a titled time frame. Here we introduce three
models, as illustrated in Figure 8.1: (1) natural tilted time frame model, (2) logarithmic
tilted time frame model, and (3) progressive logarithmic tilted time frame model.

A natural tilted time frame model is shown in Figure 8.1(a), where the time frame
(or window) is structured in multiple granularities based on the “natural” or usual time
scale: the most recent 4 quarters (15 minutes), followed by the last 24 hours, then
31 days, and then 12 months (the actual scale used is determined by the application).
Based on this model, we can compute frequent itemsets in the last hour with the pre-
cision of a quarter of an hour, or in the last day with the precision of an hour, and

Time

Time
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Now
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(b) A logarithmic tilted time frame model.

(a) A natural tilted time frame model.
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Figure 8.1 Three models for tilted time frames.
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so on until the whole year with the precision of a month.2 This model registers only
4 + 24 + 31 + 12 = 71 units of time for a year instead of 365× 24× 4 = 35,040 units,
with an acceptable trade-off of the grain of granularity at a distant time.

The second model is the logarithmic tilted time frame model, as shown in
Figure 8.1(b), where the time frame is structured in multiple granularities according
to a logarithmic scale. Suppose that the most recent slot holds the transactions of the
current quarter. The remaining slots are for the last quarter, the next two quarters (ago),
4 quarters, 8 quarters, 16 quarters, and so on, growing at an exponential rate. According
to this model, with one year of data and the finest precision at a quarter, we would need
log2(365×24×4)+1 = 16.1 units of time instead of 365×24×4 = 35,040 units. That
is, we would just need 17 time frames to store the compressed information.

The third method is the progressive logarithmic tilted time frame model, where snap-
shots are stored at differing levels of granularity depending on the recency. Let T be the
clock time elapsed since the beginning of the stream. Snapshots are classified into differ-
ent frame numbers, which can vary from 0 to max frame, where log2(T )−max capacity≤
max frame ≤ log2(T ), and max capacity is the maximal number of snapshots held in
each frame.

Each snapshot is represented by its timestamp. The rules for insertion of a snapshot
t (at time t) into the snapshot frame table are defined as follows: (1) if (t mod 2i) = 0
but (t mod 2i+1) 6= 0, t is inserted into frame number i if i≤max frame; otherwise (i.e.,
i>max frame), t is inserted into max frame; and (2) each slot has a max capacity. At the
insertion of t into frame number i, if the slot already reaches its max capacity, the oldest
snapshot in this frame is removed and the new snapshot inserted.

Example 8.2 Progressive logarithmic tilted time frame. Consider the snapshot frame table of
Figure 8.1(c), where max frame is 5 and max capacity is 3. Let’s look at how timestamp
64 was inserted into the table. We know (64 mod 26) = 0 but (64 mod 27) 6= 0, that is,
i = 6. However, since this value of i exceeds max frame, 64 was inserted into frame 5 instead
of frame 6. Suppose we now need to insert a timestamp of 70. At time 70, since (70
mod 21) = 0 but (70 mod 22) 6= 0, we would insert 70 into frame number 1. This would
knock out the oldest snapshot of 58, given the slot capacity of 3. From the table, we see that
the closer a timestamp is to the current time, the denser are the snapshots stored.

In the logarithmic and progressive logarithmic models discussed above, we have
assumed that the base is 2. Similar rules can be applied to any base α, where α is an
integer and α > 1. All three tilted time frame models provide a natural way for incre-
mental insertion of data and for gradually fading out older values.

The tilted time frame models shown are sufficient for typical time-related queries,
and at the same time, ensure that the total amount of data to retain in memory and/or
to be computed is small.

2We align the time axis with the natural calendar time. Thus, for each granularity level of the tilted time
frame, there might be a partial interval, which is less than a full unit at that level.



8.1 Mining Data Streams 477

Depending on the given application, we can provide different fading factors in the
titled time frames, such as by placing more weight on the more recent time frames. We
can also have flexible alternative ways to design the tilted time frames. For example, sup-
pose that we are interested in comparing the stock average from each day of the current
week with the corresponding averages from the same weekdays last week, last month, or
last year. In this case, we can single out Monday to Friday instead of compressing them
into the whole week as one unit.

Critical Layers
Even with the tilted time frame model, it can still be too costly to dynamically compute
and store a materialized cube. Such a cube may have quite a few dimensions, each con-
taining multiple levels with many distinct values. Because stream data analysis has only
limited memory space but requires fast response time, we need additional strategies that
work in conjunction with the tilted time frame model. One approach is to compute and
store only some mission-critical cuboids of the full data cube.

In many applications, it is beneficial to dynamically and incrementally compute and
store two critical cuboids (or layers), which are determined based on their conceptual
and computational importance in stream data analysis. The first layer, called the minimal
interest layer, is the minimally interesting layer that an analyst would like to study. It is
necessary to have such a layer because it is often neither cost effective nor interesting
in practice to examine the minute details of stream data. The second layer, called the
observation layer, is the layer at which an analyst (or an automated system) would like
to continuously study the data. This can involve making decisions regarding the signaling
of exceptions, or drilling down along certain paths to lower layers to find cells indicating
data exceptions.

Example 8.3 Critical layers for a power supply stream data cube. Let’s refer back to Example 8.1
regarding the multidimensional analysis of stream data for a power supply station.
Dimensions at the lowest level of granularity (i.e., the raw data layer) included individ-
ual user, street address, and second. At the minimal interest layer, these three dimensions
are user group, street block, and minute, respectively. Those at the observation layer are
∗ (meaning all user), city, and quarter, respectively, as shown in Figure 8.2.

Based on this design, we would not need to compute any cuboids that are lower than
the minimal interest layer because they would be beyond user interest. Thus, to compute
our base cuboid, representing the cells of minimal interest, we need to compute and store
the (three-dimensional) aggregate cells for the (user group, street block, minute) group-
by. This can be done by aggregations on the dimensions user and address by rolling up
from individual user to user group and from street address to street block, respectively,
and by rolling up on the time dimension from second to minute.

Similarly, the cuboids at the observation layer should be computed dynamically, tak-
ing the tilted time frame model into account as well. This is the layer that an analyst
takes as an observation deck, watching the current stream data by examining the slope
of changes at this layer to make decisions. This layer can be obtained by rolling up the
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observation layer

minimal interest layer

primitive data layer
(individual_user, street_address, second)
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(*, city, quarter)

Figure 8.2 Two critical layers in a “power supply station” stream data cube.

cube along the user dimension to ∗ (for all user), along the address dimension to city, and
along the time dimension to quarter. If something unusual is observed, the analyst can
investigate by drilling down to lower levels to find data exceptions.

Partial Materialization of a Stream Cube
“What if a user needs a layer that would be between the two critical layers?” Materializing
a cube at only two critical layers leaves much room for how to compute the cuboids in
between. These cuboids can be precomputed fully, partially, or not at all (i.e., leave every-
thing to be computed on the fly). An interesting method is popular path cubing, which
rolls up the cuboids from the minimal interest layer to the observation layer by following
one popular drilling path, materializes only the layers along the path, and leaves other
layers to be computed only when needed. This method achieves a reasonable trade-off
between space, computation time, and flexibility, and has quick incremental aggregation
time, quick drilling time, and small space requirements.

To facilitate efficient computation and storage of the popular path of the stream cube,
a compact data structure needs to be introduced so that the space taken in the compu-
tation of aggregations is minimized. A hyperlinked tree structure called H-tree is revised
and adopted here to ensure that a compact structure is maintained in memory for effi-
cient computation of multidimensional and multilevel aggregations.

Each branch of the H-tree is organized in the same order as the specified popular
path. The aggregate cells are stored in the nonleaf nodes of the H-tree, forming
the computed cuboids along the popular path. Aggregation for each corresponding
slot in the tilted time frame is performed from the minimal interest layer all the
way up to the observation layer by aggregating along the popular path. The step-
by-step aggregation is performed while inserting the new generalized tuples into the
corresponding time slots.
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The H-tree ordering is based on the popular drilling path given by users or experts.
This ordering facilitates the computation and storage of the cuboids along the path.
The aggregations along the drilling path from the minimal interest layer to the obser-
vation layer are performed during the generalizing of the stream data to the minimal
interest layer, which takes only one scan of stream data. Because all the cells to be
computed are the cuboids along the popular path, and the cuboids to be computed are
the nonleaf nodes associated with the H-tree, both space and computation overheads
are minimized.

Although it is impossible to materialize all the cells of a stream cube, the stream data
cube so designed facilitates fast on-line drilling along any single dimension or along
combinations of a small number of dimensions. The H-tree-based architecture facili-
tates incremental updating of stream cubes as well.

8.1.3 Frequent-Pattern Mining in Data Streams

As discussed in Chapter 5, frequent-pattern mining finds a set of patterns that occur
frequently in a data set, where a pattern can be a set of items (called an itemset),
a subsequence, or a substructure. A pattern is considered frequent if its count sat-
isfies a minimum support. Scalable methods for mining frequent patterns have been
extensively studied for static data sets. However, mining such patterns in dynamic
data streams poses substantial new challenges. Many existing frequent-pattern min-
ing algorithms require the system to scan the whole data set more than once, but
this is unrealistic for infinite data streams. How can we perform incremental updates
of frequent itemsets for stream data since an infrequent itemset can become frequent
later on, and hence cannot be ignored? Moreover, a frequent itemset can become
infrequent as well. The number of infrequent itemsets is exponential and so it is
impossible to keep track of all of them.

To overcome this difficulty, there are two possible approaches. One is to keep
track of only a predefined, limited set of items and itemsets. This method has very
limited usage and expressive power because it requires the system to confine the
scope of examination to only the set of predefined itemsets beforehand. The sec-
ond approach is to derive an approximate set of answers. In practice, approximate
answers are often sufficient. A number of approximate item or itemset counting
algorithms have been developed in recent research. Here we introduce one such
algorithm: the Lossy Counting algorithm. It approximates the frequency of items
or itemsets within a user-specified error bound, ε. This concept is illustrated as
follows.

Example 8.4 Approximate frequent items. A router is interested in all items whose frequency is at least
1% (min support) of the entire traffic stream seen so far. It is felt that 1/10 of min support
(i.e., ε = 0.1%) is an acceptable margin of error. This means that all frequent items with
a support of at least min support will be output, but that some items with a support of
at least (min support− ε) will also be output.



480 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Lossy Counting Algorithm
We first introduce the Lossy Counting algorithm for frequent items. This algorithm is
fairly simple but quite efficient. We then look at how the method can be extended to find
approximate frequent itemsets.

“How does the Lossy Counting algorithm find frequent items?” A user first provides two
input parameters: (1) the min support threshold, σ, and (2) the error bound mentioned
previously, denoted as ε. The incoming stream is conceptually divided into buckets of
width w = d1/εe. Let N be the current stream length, that is, the number of items seen so
far. The algorithm uses a frequency-list data structure for all items with frequency greater
than 0. For each item, the list maintains f , the approximate frequency count, and ∆, the
maximum possible error of f .

The algorithm processes buckets of items as follows. When a new bucket comes in, the
items in the bucket are added to the frequency list. If a given item already exists in the
list, we simply increase its frequency count, f . Otherwise, we insert it into the list with a
frequency count of 1. If the new item is from the bth bucket, we set ∆, the maximum pos-
sible error on the frequency count of the item, to be b−1. Based on our discussion so far,
the item frequency counts hold the actual frequencies rather than approximations. They
become approximates, however, because of the next step. Whenever a bucket “bound-
ary” is reached (that is, N has reached a multiple of width w, such as w, 2w, 3w, etc.), the
frequency list is examined. Let b be the current bucket number. An item entry is deleted
if, for that entry, f + ∆ ≤ b. In this way, the algorithm aims to keep the frequency list
small so that it may fit in main memory. The frequency count stored for each item will
either be the true frequency of the item or an underestimate of it.

“By how much can a frequency count be underestimated?” One of the most important
factors in approximation algorithms is the approximation ratio (or error bound). Let’s
look at the case where an item is deleted. This occurs when f +∆≤ b for an item, where
b is the current bucket number. We know that b ≤ N/w, that is, b ≤ εN. The actual
frequency of an item is at most f +∆. Thus, the most that an item can be underestimated
is εN. If the actual support of this item is σ (this is the minimum support or lower bound
for it to be considered frequent), then the actual frequency is σN, and the frequency, f ,
on the frequency list should be at least (σN− εN). Thus, if we output all of the items in
the frequency list having an f value of at least (σN− εN), then all of the frequent items
will be output. In addition, some subfrequent items (with an actual frequency of at least
σN− εN but less than σN) will be output, too.

The Lossy Counting algorithm has three nice properties: (1) there are no false neg-
atives, that is, there is no true frequent item that is not output; (2) false positives are
quite “positive” as well, since the output items will have a frequency of at least σN−εN;
and (3) the frequency of a frequent item can be underestimated by at most εN. For fre-
quent items, this underestimation is only a small fraction of its true frequency, so this
approximation is acceptable.

“How much space is needed to save the frequency list?” It has been shown that the
algorithm takes at most 1

ε log(εN) entries in computation, where N is the stream
length so far. If we assume that elements with very low frequency tend to occur
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more or less uniformly at random, then it has been shown that Lossy Counting
requires no more than 7

ε space. Thus, the space requirement for this algorithm is
reasonable.

It is much more difficult to find frequent itemsets than to find frequent items in data
streams, because the number of possible itemsets grows exponentially with that of dif-
ferent items. As a consequence, there will be many more frequent itemsets. If we still
process the data bucket by bucket, we will probably run out of memory. An alternative
is to process as many buckets as we can at a time.

To find frequent itemsets, transactions are still divided by buckets with bucket size,
w = d1/εe. However, this time, we will read as many buckets as possible into main
memory. As before, we maintain a frequency list, although now it pertains to itemsets
rather than items. Suppose we can read β buckets into main memory. After that, we
update the frequency list by all these buckets as follows. If a given itemset already
exists in the frequency list, we update f by counting the occurrences of the itemset
among the current batch of β buckets. If the updated entry satisfies f + ∆≤ b, where
b is the current bucket number, we delete the entry. If an itemset has frequency f ≥ β
and does not appear in the list, it is inserted as a new entry where ∆ is set to b−β as
the maximum error of f .

In practice, β will be large, such as greater than 30. This approach will save memory
because all itemsets with frequency less than β will not be recorded in the frequency list
anymore. For smaller values of β (such as 1 for the frequent item version of the algorithm
described earlier), more spurious subsets will find their way into the frequency list. This
would drastically increase the average size and refresh rate of the frequency list and harm
the algorithm’s efficiency in both time and space.

In general, Lossy Counting is a simple but effective algorithm for finding frequent
items and itemsets approximately. Its limitations lie in three aspects: (1) the space
bound is insufficient because the frequency list may grow infinitely as the stream goes
on; (2) for frequent itemsets, the algorithm scans each transaction many times and the
size of main memory will greatly impact the efficiency of the algorithm; and (3) the
output is based on all of the previous data, although users can be more interested
in recent data than that in the remote past. A tilted time frame model with different
time granularities can be integrated with Lossy Counting in order to emphasize the
recency of the data.

8.1.4 Classification of Dynamic Data Streams

In Chapter 6, we studied several methods for the classification of static data. Classifica-
tion is a two-step process consisting of learning, or model construction (where a model is
constructed based on class-labeled tuples from a training data set), and classification, or
model usage (where the model is used to predict the class labels of tuples from new data
sets). The latter lends itself to stream data, as new examples are immediately classified by
the model as they arrive.

“So, does this mean we can apply traditional classification methods to stream data as
well?” In a traditional setting, the training data reside in a relatively static database. Many
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classification methods will scan the training data multiple times. Therefore, the first
step of model construction is typically performed off-line as a batch process. With data
streams, however, there is typically no off-line phase. The data flow in so quickly that
storage and multiple scans are infeasible.

To further illustrate how traditional classification methods are inappropriate for
stream data, consider the practice of constructing decision trees as models. Most decision
tree algorithms tend to follow the same basic top-down, recursive strategy, yet differ in
the statistical measure used to choose an optimal splitting attribute. To review, a decision
tree consists of internal (nonleaf) nodes, branches, and leaf nodes. An attribute selection
measure is used to select the splitting attribute for the current node. This is taken to be
the attribute that best discriminates the training tuples according to class. In general,
branches are grown for each possible value of the splitting attribute, the training tuples
are partitioned accordingly, and the process is recursively repeated at each branch. How-
ever, in the stream environment, it is neither possible to collect the complete set of data
nor realistic to rescan the data, thus such a method has to be re-examined.

Another distinguishing characteristic of data streams is that they are time-varying,
as opposed to traditional database systems, where only the current state is stored. This
change in the nature of the data takes the form of changes in the target classification
model over time and is referred to as concept drift. Concept drift is an important con-
sideration when dealing with stream data.

Several methods have been proposed for the classification of stream data. We intro-
duce four of them in this subsection. The first three, namely the Hoeffding tree algorithm,
Very Fast Decision Tree (VFDT), and Concept-adapting Very Fast Decision Tree (CVFDT),
extend traditional decision tree induction. The fourth uses a classifier ensemble approach,
in which multiple classifiers are considered using a voting method.

Hoeffding Tree Algorithm
The Hoeffding tree algorithm is a decision tree learning method for stream data classi-
fication. It was initially used to track Web clickstreams and construct models to predict
which Web hosts and Web sites a user is likely to access. It typically runs in sublinear
time and produces a nearly identical decision tree to that of traditional batch learners.
It uses Hoeffding trees, which exploit the idea that a small sample can often be enough
to choose an optimal splitting attribute. This idea is supported mathematically by the
Hoeffding bound (or additive Chernoff bound). Suppose we make N independent obser-
vations of a random variable r with range R, where r is an attribute selection measure.
(For a probability, R is one, and for an information gain, it is log c, where c is the number
of classes.) In the case of Hoeffding trees, r is information gain. If we compute the mean,
r, of this sample, the Hoeffding bound states that the true mean of r is at least r−ε, with
probability 1−δ, where δ is user-specified and

ε =

√

R2ln(1/δ)
2N

. (8.4)
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The Hoeffding tree algorithm uses the Hoeffding bound to determine, with high
probability, the smallest number, N, of examples needed at a node when selecting a split-
ting attribute. This attribute would be the same as that chosen using infinite examples!
We’ll see how this is done shortly. The Hoeffding bound is independent of the probability
distribution, unlike most other bound equations. This is desirable, as it may be impossi-
ble to know the probability distribution of the information gain, or whichever attribute
selection measure is used.

“How does the Hoeffding tree algorithm use the Hoeffding bound?” The algorithm takes
as input a sequence of training examples, S, described by attributes A, and the accuracy
parameter, δ. In addition, the evaluation function G(Ai) is supplied, which could be
information gain, gain ratio, Gini index, or some other attribute selection measure. At
each node in the decision tree, we need to maximize G(Ai) for one of the remaining
attributes, Ai. Our goal is to find the smallest number of tuples, N, for which the Hoeffd-
ing bound is satisfied. For a given node, let Aa be the attribute that achieves the highest
G, and Ab be the attribute that achieves the second highest G. If G(Aa)−G(Ab) > ε,
where ε is calculated from Equation (8.4), we can confidently say that this difference is
larger than zero. We select Aa as the best splitting attribute with confidence 1−δ.

The only statistics that must be maintained in the Hoeffding tree algorithm are the
counts nijk for the value v j of attribute Ai with class label yk. Therefore, if d is the number
of attributes, v is the maximum number of values for any attribute, c is the number of
classes, and l is the maximum depth (or number of levels) of the tree, then the total
memory required is O(ldvc). This memory requirement is very modest compared to
other decision tree algorithms, which usually store the entire training set in memory.

“How does the Hoeffding tree compare with trees produced by traditional decision trees
algorithms that run in batch mode?” The Hoeffding tree becomes asymptotically close
to that produced by the batch learner. Specifically, the expected disagreement between
the Hoeffding tree and a decision tree with infinite examples is at most δ/p, where p
is the leaf probability, or the probability that an example will fall into a leaf. If the two
best splitting attributes differ by 10% (i.e., ε/R = 0.10), then by Equation (8.4), it would
take 380 examples to ensure a desired accuracy of 90% (i.e., δ = 0.1). For δ = 0.0001,
it would take only 725 examples, demonstrating an exponential improvement in δ with
only a linear increase in the number of examples. For this latter case, if p = 1%, the
expected disagreement between the trees would be at most δ/p = 0.01%, with only 725
examples per node.

In addition to high accuracy with a small sample, Hoeffding trees have other attrac-
tive properties for dealing with stream data. First, multiple scans of the same data
are never performed. This is important because data streams often become too large
to store. Furthermore, the algorithm is incremental, which can be seen in Figure 8.3
(adapted from [GGR02]). The figure demonstrates how new examples are integrated
into the tree as they stream in. This property contrasts with batch learners, which wait
until the data are accumulated before constructing the model. Another advantage of
incrementally building the tree is that we can use it to classify data even while it is being
built. The tree will continue to grow and become more accurate as more training data
stream in.
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Figure 8.3 The nodes of the Hoeffding tree are created incrementally as more samples stream in.

There are, however, weaknesses to the Hoeffding tree algorithm. For example,
the algorithm spends a great deal of time with attributes that have nearly identical
splitting quality. In addition, the memory utilization can be further optimized. Finally,
the algorithm cannot handle concept drift, because once a node is created, it can never
change.

Very Fast Decision Tree (VFDT) and Concept-adapting
Very Fast Decision Tree (CVFDT)
The VFDT (Very Fast Decision Tree) algorithm makes several modifications to the
Hoeffding tree algorithm to improve both speed and memory utilization. The
modifications include breaking near-ties during attribute selection more aggressively,
computing the G function after a number of training examples, deactivating the least
promising leaves whenever memory is running low, dropping poor splitting attributes,
and improving the initialization method. VFDT works well on stream data and also com-
pares extremely well to traditional classifiers in both speed and accuracy. However, it still
cannot handle concept drift in data streams.

“What can we do to manage concept drift?” Basically, we need a way to identify
in a timely manner those elements of the stream that are no longer consistent with
the current concepts. A common approach is to use a sliding window. The intuition
behind it is to incorporate new examples yet eliminate the effects of old ones. We
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can repeatedly apply a traditional classifier to the examples in the sliding window.
As new examples arrive, they are inserted into the beginning of the window; a
corresponding number of examples is removed from the end of the window, and
the classifier is reapplied. This technique, however, is sensitive to the window size, w.
If w is too large, the model will not accurately represent the concept drift. On the
other hand, if w is too small, then there will not be enough examples to construct
an accurate model. Moreover, it will become very expensive to continually construct
a new classifier model.

To adapt to concept-drifting data streams, the VFDT algorithm was further developed
into the Concept-adapting Very Fast Decision Tree algorithm (CVFDT). CVFDT also
uses a sliding window approach; however, it does not construct a new model from scratch
each time. Rather, it updates statistics at the nodes by incrementing the counts associated
with new examples and decrementing the counts associated with old ones. Therefore, if
there is a concept drift, some nodes may no longer pass the Hoeffding bound. When this
happens, an alternate subtree will be grown, with the new best splitting attribute at the
root. As new examples stream in, the alternate subtree will continue to develop, without
yet being used for classification. Once the alternate subtree becomes more accurate than
the existing one, the old subtree is replaced.

Empirical studies show that CVFDT achieves better accuracy than VFDT with
time-changing data streams. In addition, the size of the tree in CVFDT is much
smaller than that in VFDT, because the latter accumulates many outdated examples.

A Classifier Ensemble Approach to Stream
Data Classification
Let’s look at another approach to classifying concept drifting data streams, where we
instead use a classifier ensemble. The idea is to train an ensemble or group of classifiers
(using, say, C4.5, or naïve Bayes) from sequential chunks of the data stream. That is,
whenever a new chunk arrives, we build a new classifier from it. The individual clas-
sifiers are weighted based on their expected classification accuracy in a time-changing
environment. Only the top-k classifiers are kept. The decisions are then based on the
weighted votes of the classifiers.

“Why is this approach useful?” There are several reasons for involving more than
one classifier. Decision trees are not necessarily the most natural method for han-
dling concept drift. Specifically, if an attribute near the root of the tree in CVFDT
no longer passes the Hoeffding bound, a large portion of the tree must be regrown.
Many other classifiers, such as naïve Bayes, are not subject to this weakness. In
addition, naïve Bayesian classifiers also supply relative probabilities along with the
class labels, which expresses the confidence of a decision. Furthermore, CVFDT’s
automatic elimination of old examples may not be prudent. Rather than keeping
only the most up-to-date examples, the ensemble approach discards the least accu-
rate classifiers. Experimentation shows that the ensemble approach achieves greater
accuracy than any one of the single classifiers.
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8.1.5 Clustering Evolving Data Streams

Imagine a huge amount of dynamic stream data. Many applications require the
automated clustering of such data into groups based on their similarities. Examples
include applications for network intrusion detection, analyzing Web clickstreams, and
stock market analysis. Although there are many powerful methods for clustering static
data sets (Chapter 7), clustering data streams places additional constraints on such algo-
rithms. As we have seen, the data stream model of computation requires algorithms to
make a single pass over the data, with bounded memory and limited processing time,
whereas the stream may be highly dynamic and evolving over time.

For effective clustering of stream data, several new methodologies have been devel-
oped, as follows:

Compute and store summaries of past data: Due to limited memory space and
fast response requirements, compute summaries of the previously seen data, store
the relevant results, and use such summaries to compute important statistics when
required.

Apply a divide-and-conquer strategy: Divide data streams into chunks based on order
of arrival, compute summaries for these chunks, and then merge the summaries. In
this way, larger models can be built out of smaller building blocks.

Incremental clustering of incoming data streams: Because stream data enter the sys-
tem continuously and incrementally, the clusters derived must be incrementally
refined.

Perform microclustering as well as macroclustering analysis: Stream clusters can
be computed in two steps: (1) compute and store summaries at the microcluster
level, where microclusters are formed by applying a hierarchical bottom-up clustering
algorithm (Section 7.5.1), and (2) compute macroclusters (such as by using another
clustering algorithm to group the microclusters) at the user-specified level. This two-
step computation effectively compresses the data and often results in a smaller margin
of error.

Explore multiple time granularity for the analysis of cluster evolution: Because the
more recent data often play a different role from that of the remote (i.e., older) data in
stream data analysis, use a tilted time frame model to store snapshots of summarized
data at different points in time.

Divide stream clustering into on-line and off-line processes: While data are stream-
ing in, basic summaries of data snapshots should be computed, stored, and incremen-
tally updated. Therefore, an on-line process is needed to maintain such dynamically
changing clusters. Meanwhile, a user may pose queries to ask about past, current, or
evolving clusters. Such analysis can be performed off-line or as a process independent
of on-line cluster maintenance.

Several algorithms have been developed for clustering data streams. Two of them,
namely, STREAM and CluStream, are introduced here.
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STREAM: A k-Medians-based Stream Clustering
Algorithm
Given a data stream model of points, X1, . . . ,XN , with timestamps, T1, . . . , TN , the objec-
tive of stream clustering is to maintain a consistently good clustering of the sequence
seen so far using a small amount of memory and time.

STREAM is a single-pass, constant factor approximation algorithm that was devel-
oped for the k-medians problem. The k-medians problem is to cluster N data points into
k clusters or groups such that the sum squared error (SSQ) between the points and the
cluster center to which they are assigned is minimized. The idea is to assign similar points
to the same cluster, where these points are dissimilar from points in other clusters.

Recall that in the stream data model, data points can only be seen once, and memory
and time are limited. To achieve high-quality clustering, the STREAM algorithm pro-
cesses data streams in buckets (or batches) of m points, with each bucket fitting in main
memory. For each bucket, bi, STREAM clusters the bucket’s points into k clusters. It then
summarizes the bucket information by retaining only the information regarding the k
centers, with each cluster center being weighted by the number of points assigned to its
cluster. STREAM then discards the points, retaining only the center information. Once
enough centers have been collected, the weighted centers are again clustered to produce
another set of O(k) cluster centers. This is repeated so that at every level, at most m points
are retained. This approach results in a one-pass, O(kN)-time, O(Nε)-space (for some
constant ε< 1), constant-factor approximation algorithm for data stream k-medians.

STREAM derives quality k-medians clusters with limited space and time. However,
it considers neither the evolution of the data nor time granularity. The clustering can
become dominated by the older, outdated data of the stream. In real life, the nature of
the clusters may vary with both the moment at which they are computed, as well as the
time horizon over which they are measured. For example, a user may wish to examine
clusters occurring last week, last month, or last year. These may be considerably differ-
ent. Therefore, a data stream clustering algorithm should also provide the flexibility to
compute clusters over user-defined time periods in an interactive manner. The following
algorithm, CluStream, addresses these concerns.

CluStream: Clustering Evolving Data Streams
CluStream is an algorithm for the clustering of evolving data streams based on user-
specified, on-line clustering queries. It divides the clustering process into on-line and off-
line components. The on-line component computes and stores summary statistics about
the data stream using microclusters, and performs incremental on-line computation and
maintenance of the microclusters. The off-line component does macroclustering and
answers various user questions using the stored summary statistics, which are based on
the tilted time frame model.

To cluster evolving data streams based on both historical and current stream data
information, the tilted time frame model (such as a progressive logarithmic model) is
adopted, which stores the snapshots of a set of microclusters at different levels of
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granularity depending on recency. The intuition here is that more information will be
needed for more recent events as opposed to older events. The stored information can
be used for processing history-related, user-specific clustering queries.

A microcluster in CluStream is represented as a clustering feature. CluStream extends
the concept of the clustering feature developed in BIRCH (see Section 7.5.2) to include the
temporal domain. As a temporal extension of the clustering feature, a microcluster for a set
of d-dimensional points, X1, . . . , Xn, with timestamps, T1, . . . , Tn, is defined as the (2d +3)
tuple (CF2x,CF1x,CF2t , CF1t , n), wherein CF2x and CF1x are d-dimensional vectors
while CF2t , CF1t , and n are scalars. CF2x maintains the sum of the squares of the data
values per dimension, that is, ∑n

i=1 X2
i . Similarly, for each dimension, the sum of the data

values is maintained in CF1x. From a statistical point of view, CF2x and CF1x represent
the second- and first-order moments (Section 8.1.1) of the data, respectively. The sum of
squaresof the timestamps ismaintained inCF2t .Thesumof the timestamps ismaintained
in CF1t . Finally, the number of data points in the microcluster is maintained in n.

Clustering features have additive and subtractive properties that make them very use-
ful for data stream cluster analysis. For example, two microclusters can be merged by
adding their respective clustering features. Furthermore, a large number of microclusters
can be maintained without using a great deal of memory. Snapshots of these microclus-
ters are stored away at key points in time based on the tilted time frame.

The on-line microcluster processing is divided into two phases: (1) statistical data
collection and (2) updating of microclusters. In the first phase, a total of q microclus-
ters, M1, . . . , Mq, are maintained, where q is usually significantly larger than the number
of natural clusters and is determined by the amount of available memory. In the second
phase, microclusters are updated. Each new data point is added to either an existing clus-
ter or a new one. To decide whether a new cluster is required, a maximum boundary for
each cluster is defined. If the new data point falls within the boundary, it is added to the
cluster; otherwise, it is the first data point in a new cluster. When a data point is added to
an existing cluster, it is “absorbed” because of the additive property of the microclusters.
When a data point is added to a new cluster, the least recently used existing cluster has
to be removed or two existing clusters have to be merged, depending on certain criteria,
in order to create memory space for the new cluster.

The off-line component can perform user-directed macroclustering or cluster evolu-
tion analysis. Macroclustering allows a user to explore the stream clusters over different
time horizons. A time horizon, h, is a history of length h of the stream. Given a user-
specified time horizon, h, and the number of desired macroclusters, k, macroclustering
finds k high-level clusters over h. This is done as follows: First, the snapshot at time tc−h
is subtracted from the snapshot at the current time, tc. Clusters older than the begin-
ning of the horizon are not included. The microclusters in the horizon are considered as
weighted pseudo-points and are reclustered in order to determine higher-level clusters.
Notice that the clustering process is similar to the method used in STREAM but requires
only two snapshots (the beginning and end of the horizon) and is more flexible over a
range of user queries.

“What if a user wants to see how clusters have changed over, say, the last quarter or the
last year?” Cluster evolution analysis looks at how clusters change over time. Given a
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user-specified time horizon, h, and two clock times, t1 and t2 (where t1 < t2), cluster
evolution analysis examines the evolving nature of the data arriving between (t2−h, t2)
and that arriving between (t1−h, t1). This involves answering questions like whether new
clusters in the data at time t1 were not present at time t2, or whether some of the original
clusters were lost. This also involves analyzing whether some of the original clusters at
time t1 shifted in position and nature. With the available microcluster information, this
can be done by computing the net snapshots of the microclusters, N(t1, h) and N(t2, h),
and then computing the snapshot changes over time. Such evolution analysis of the data
over time can be used for network intrusion detection to identify new types of attacks
within the network.

CluStream was shown to derive high-quality clusters, especially when the changes are
dramatic. Moreover, it offers rich functionality to the user because it registers the essen-
tial historical information with respect to cluster evolution. The tilted time frame along
with the microclustering structure allow for better accuracy and efficiency on real data.
Finally, it maintains scalability in terms of stream size, dimensionality, and the number
of clusters.

In general, stream data mining is still a fast-evolving research field. With the mas-
sive amount of data streams populating many applications, it is expected that many
new stream data mining methods will be developed, especially for data streams contain-
ing additional semantic information, such as time-series streams, spatiotemporal data
streams, and video and audio data streams.

8.2 Mining Time-Series Data

“What is a time-series database?” A time-series database consists of sequences of val-
ues or events obtained over repeated measurements of time. The values are typically
measured at equal time intervals (e.g., hourly, daily, weekly). Time-series databases are
popular in many applications, such as stock market analysis, economic and sales fore-
casting, budgetary analysis, utility studies, inventory studies, yield projections, work-
load projections, process and quality control, observation of natural phenomena (such
as atmosphere, temperature, wind, earthquake), scientific and engineering experiments,
and medical treatments. A time-series database is also a sequence database. However, a
sequence database is any database that consists of sequences of ordered events, with or
without concrete notions of time. For example, Web page traversal sequences and cus-
tomer shopping transaction sequences are sequence data, but they may not be time-series
data. The mining of sequence data is discussed in Section 8.3.

With the growing deployment of a large number of sensors, telemetry devices, and
other on-line data collection tools, the amount of time-series data is increasing rapidly,
often in the order of gigabytes per day (such as in stock trading) or even per minute
(such as from NASA space programs). How can we find correlation relationships within
time-series data? How can we analyze such huge numbers of time series to find similar
or regular patterns, trends, bursts (such as sudden sharp changes), and outliers, with
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fast or even on-line real-time response? This has become an increasingly important and
challenging problem. In this section, we examine several aspects of mining time-series
databases, with a focus on trend analysis and similarity search.

8.2.1 Trend Analysis

A time series involving a variable Y , representing, say, the daily closing price of a share in
a stock market, can be viewed as a function of time t, that is, Y = F(t). Such a function
can be illustrated as a time-series graph, as shown in Figure 8.4, which describes a point
moving with the passage of time.

“How can we study time-series data?” In general, there are two goals in time-series
analysis: (1) modeling time series (i.e., to gain insight into the mechanisms or underlying
forces that generate the time series), and (2) forecasting time series (i.e., to predict the
future values of the time-series variables).

Trend analysis consists of the following four major components or movements for
characterizing time-series data:

Trend or long-term movements: These indicate the general direction in which a time-
series graph is moving over a long interval of time. This movement is displayed by a
trend curve, or a trend line. For example, the trend curve of Figure 8.4 is indicated by
a dashed curve. Typical methods for determining a trend curve or trend line include
the weighted moving average method and the least squares method, discussed later.

Cyclic movements or cyclic variations: These refer to the cycles, that is, the long-term
oscillations about a trend line or curve, which may or may not be periodic. That is,
the cycles need not necessarily follow exactly similar patterns after equal intervals of
time.

pr
ic

e

time

AllElectronics stock
10 day moving average

Figure 8.4 Time-series data of the stock price of AllElectronics over time. The trend is shown with a
dashed curve, calculated by a moving average.
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Seasonal movements or seasonal variations: These are systematic or calendar related.
Examples include events that recur annually, such as the sudden increase in sales of
chocolates and flowers before Valentine’s Day or of department store items before
Christmas. The observed increase in water consumption in summer due to warm
weather is another example. In these examples, seasonal movements are the identical
or nearly identical patterns that a time series appears to follow during corresponding
months of successive years.

Irregular or random movements: These characterize the sporadic motion of time
series due to random or chance events, such as labor disputes, floods, or announced
personnel changes within companies.

Note that regression analysis has been a popular tool for modeling time series, finding
trends and outliers in such data sets. Regression is a fundamental topic in statistics and
is described in many textbooks. Thus, we will not spend much time on this theme.3

However, pure regression analysis cannot capture all of the four movements described
above that occur in real-world applications. Hence, our discussion of trend analysis and
modeling time series focuses on the above movements.

The trend, cyclic, seasonal, and irregular movements are represented by the variables
T , C, S, I, respectively. Time-series modeling is also referred to as the decomposition of a
time series into these four basic movements. The time-series variable Y can be modeled
as either the product of the four variables (i.e., Y = T ×C× S× I) or their sum. This
choice is typically empirical.

“Given a sequence of values for Y (i.e., y1, y2, y3, . . .) for analysis, how can we adjust the
data for seasonal fluctuations?” This can be performed by estimating and then removing
from the time series the influences of the data that are systematic or calendar related.
In many business transactions, for example, there are expected regular seasonal fluctua-
tions, such as higher sales volumes during the Christmas season. Such fluctuations can
conceal both the true underlying movement of the series as well as certain nonseasonal
characteristics that may be of interest. Therefore, it is important to identify such seasonal
variations and “deseasonalize” the data. For this purpose, the concept of seasonal index
is introduced, as a set of numbers showing the relative values of a variable during the
months of a year. For example, if the sales during October, November, and December are
80%, 120%, and 140% of the average monthly sales for the whole year, respectively, then
80, 120, and 140 are the seasonal index numbers for the year. If the original monthly data
are divided by the corresponding seasonal index numbers, the resulting data are said to
be deseasonalized, or adjusted for seasonal variations. Such data still include trend, cyclic,
and irregular movements.

To detect seasonal patterns, we can also look for correlations between each ith element
of the series and (i−k)th element (where k is referred to as the lag) using autocorrelation
analysis. For example, we can measure the correlation in sales for every twelfth month,

3A simple introduction to regression is included in Chapter 6: Classification and Prediction.



492 Chapter 8 Mining Stream, Time-Series, and Sequence Data

where here, k = 12. The correlation coefficient given in Chapter 2 (Equation (2.8)) can
be used. Let 〈y1, y2, . . . , yN〉 be the time series. To apply Equation (2.8), the two attributes
in the equation respectively refer to the two random variables representing the time series
viewed with lag k. These times series are 〈y1, y2, . . . , yN−k〉 and 〈yk+1, yk+2, . . . , yN〉. A zero
value indicates that there is no correlation relationship. A positive value indicates a positive
correlation, that is, both variables increase together. A negative value indicates a negative
correlation, that is, one variable increases as the other decreases. The higher the positive
(or negative) value is, the greater is the positive (or negative) correlation relationship.

“How can we determine the trend of the data?” A common method for determining
trend is to calculate a moving average of order n as the following sequence of arithmetic
means:

y1 + y2 + · · ·+ yn

n
,

y2 + y3 + · · ·+ yn+1

n
,

y3 + y4 + · · ·+ yn+2

n
, · · · (8.5)

A moving average tends to reduce the amount of variation present in the data set. Thus
the process of replacing the time series by its moving average eliminates unwanted fluc-
tuations and is therefore also referred to as the smoothing of time series. If weighted
arithmetic means are used in Sequence (8.5), the resulting sequence is called a weighted
moving average of order n.

Example 8.5 Moving averages. Given a sequence of nine values, we can compute its moving average
of order 3, and its weighted moving average of order 3 using the weights (1, 4, 1). This
information can be displayed in tabular form, where each value in the moving average
is the mean of the three values immediately above it, and each value in the weighted
moving average is the weighted average of the three values immediately above it.

Original data: 3 7 2 0 4 5 9 7 2

Moving average of order 3: 4 3 2 3 6 7 6

Weighted (1, 4, 1) moving average of order 3: 5.5 2.5 1 3.5 5.5 8 6.5

Using the first equation in Sequence 8.5, we calculate the first moving average as
3 + 7 + 2

3 = 4. The first weighted average value is calculated as 1×3 + 4×7 + 1×2
1 + 4 + 1 = 5.5.

The weighted average typically assigns greater weights to the central elements in order
to offset the smoothing effect.

A moving average loses the data at the beginning and end of a series; may some-
times generate cycles or other movements that are not present in the original data; and
may be strongly affected by the presence of extreme values. Notice that the influence of
extreme values can be reduced by employing a weighted moving average with appropriate
weights as shown in Example 8.5. An appropriate moving average can help smooth out
irregular variations in the data. In general, small deviations tend to occur with large fre-
quency, whereas large deviations tend to occur with small frequency, following a normal
distribution.

“Are there other ways to estimate the trend?” Yes, one such method is the freehand
method, where an approximate curve or line is drawn to fit a set of data based on the
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user’s own judgment. This method is costly and barely reliable for any large-scale data
mining. An alternative is the least squares method,4 where we consider the best-fitting
curveC as the least squares curve, that is, the curve having the minimum of ∑n

i=1 d2
i , where

the deviation or error, di, is the difference between the value yi of a point (xi, yi) and the
corresponding value as determined from the curve C.

The data can then be adjusted for trend by dividing the data by their corresponding
trend values. As mentioned earlier, an appropriate moving average will smooth out the
irregular variations. This leaves us with only cyclic variations for further analysis. If peri-
odicity or approximate periodicity of cycles occurs, cyclic indexes can be constructed in
a manner similar to that for seasonal indexes.

In practice, it is useful to first graph the time series and qualitatively estimate the
presence of long-term trends, seasonal variations, and cyclic variations. This may help
in selecting a suitable method for analysis and in comprehending its results.

Time-series forecasting finds a mathematical formula that will approximately gen-
erate the historical patterns in a time series. It is used to make long-term or short-
term predictions of future values. There are several models for forecasting: ARIMA
(Auto-Regressive Integrated Moving Average), also known as the Box-Jenkins method-
ology (after its creators), is a popular example. It is powerful yet rather complex to
use. The quality of the results obtained may depend on the user’s level of experience.
Interested readers may consult the bibliographic notes for references to the technique.

8.2.2 Similarity Search in Time-Series Analysis

“What is a similarity search?” Unlike normal database queries, which find data that match
the given query exactly, a similarity search finds data sequences that differ only slightly
from the given query sequence. Given a set of time-series sequences, S, there are two
types of similarity searches: subsequence matching and whole sequence matching. Subse-
quence matching finds the sequences in S that contain subsequences that are similar
to a given query sequence x, while whole sequence matching finds a set of sequences
in S that are similar to each other (as a whole). Subsequence matching is a more fre-
quently encountered problem in applications. Similarity search in time-series analysis is
useful for financial market analysis (e.g., stock data analysis), medical diagnosis (e.g., car-
diogram analysis), and in scientific or engineering databases (e.g., power consumption
analysis).

Data Reduction and Transformation Techniques
Due to the tremendous size and high-dimensionality of time-series data, data reduction
often serves as the first step in time-series analysis. Data reduction leads to not only much
smaller storage space but also much faster processing. As discussed in Chapter 2, major

4The least squares method was introduced in Section 6.11.1 under the topic of linear regression.



494 Chapter 8 Mining Stream, Time-Series, and Sequence Data

strategies for data reduction include attribute subset selection (which removes
irrelevant or redundant attributes or dimensions), dimensionality reduction (which typi-
callyemployssignalprocessingtechniquestoobtainareducedversionof theoriginaldata),
and numerosity reduction (where data are replaced or estimated by alternative, smaller rep-
resentations, such as histograms, clustering, and sampling). Because time series can be
viewed as data of very high dimensionality where each point of time can be viewed as a
dimension, dimensionality reduction is our major concern here. For example, to compute
correlations between two time-series curves, the reduction of the time series from length
(i.e., dimension) n to k may lead to a reduction from O(n) to O(k) in computational com-
plexity. If k� n, the complexity of the computation will be greatly reduced.

Several dimensionality reduction techniques can be used in time-series analysis.
Examples include (1) the discrete Fourier transform (DFT) as the classical data reduction
technique, (2) more recently developed discrete wavelet transforms (DWT), (3) Singu-
lar Value Decomposition (SVD) based on Principle Components Analysis (PCA),5 and
(4) random projection-based sketch techniques (as discussed in Section 8.1.1), which
can also give a good-quality synopsis of data. Because we have touched on these topics
earlier in this book, and because a thorough explanation is beyond our scope, we will not
go into great detail here. The first three techniques listed are signal processing techniques.
A given time series can be considered as a finite sequence of real values (or coefficients),
recorded over time in some object space. The data or signal is transformed (using a spe-
cific transformation function) into a signal in a transformed space. A small subset of the
“strongest” transformed coefficients are saved as features. These features form a feature
space, which is simply a projection of the transformed space. This representation is sparse
so that operations that can take advantage of data sparsity are computationally very fast
if performed in feature space. The features can be transformed back into object space,
resulting in a compressed approximation of the original data.

Many techniques for signal analysis require the data to be in the frequency domain.
Therefore, distance-preserving orthonormal transformations are often used to trans-
form the data from the time domain to the frequency domain. Usually, a data-independent
transformation is applied, where the transformation matrix is determined a priori, inde-
pendent of the input data. Because the distance between two signals in the time domain
is the same as their Euclidean distance in the frequency domain, the DFT does a good
job of preserving essentials in the first few coefficients. By keeping only the first few (i.e.,
“strongest”) coefficients of the DFT, we can compute the lower bounds of the actual
distance.

Indexing Methods for Similarity Search
“Once the data are transformed by, say, a DFT, how can we provide support for efficient
search in time-series data?” For efficient accessing, a multidimensional index can be

5The Discrete Fourier transform, wavelet transforms, and principal components analysis are briefly
introduced in Section 2.5.3.
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constructed using the first few Fourier coefficients. When a similarity query is submitted
to the system, the index can be used to retrieve the sequences that are at most a certain
small distance away from the query sequence. Postprocessing is then performed by com-
puting the actual distance between sequences in the time domain and discarding any
false matches.

For subsequence matching, each sequence can be broken down into a set of “pieces”
of windows with length w. In one approach, the features of the subsequence inside each
window are then extracted. Each sequence is mapped to a “trail” in the feature space.
The trail of each sequence is divided into “subtrails,” each represented by a minimum
bounding rectangle. A multipiece assembly algorithm can then be used to search for
longer sequence matches.

Various kinds of indexing methods have been explored to speed up the similarity
search. For example, R-trees and R?-trees have been used to store the minimal bounding
rectangles mentioned above. In addition, the ε-kdB tree has been developed for faster spa-
tial similarity joins on high-dimensional points, and suffix trees have also been explored.
References are given in the bibliographic notes.

Similarity Search Methods
The above trail-based approach to similarity search was pioneering, yet has a number of
limitations. In particular, it uses the Euclidean distance as a similarity measure, which is
sensitive to outliers. Furthermore, what if there are differences in the baseline and scale of
the two time series being compared? What if there are gaps? Here, we discuss an approach
that addresses these issues.

For similarity analysis of time-series data, Euclidean distance is typically used as a
similarity measure. Here, the smaller the distance between two sets of time-series data,
the more similar are the two series. However, we cannot directly apply the Euclidean
distance. Instead, we need to consider differences in the baseline and scale (or amplitude)
of our two series. For example, one stock’s value may have a baseline of around $20 and
fluctuate with a relatively large amplitude (such as between $15 and $25), while another
could have a baseline of around $100 and fluctuate with a relatively small amplitude
(such as between $90 and $110). The distance from one baseline to another is referred
to as the offset.

A straightforward approach to solving the baseline and scale problem is to apply a nor-
malization transformation. For example, a sequence X = 〈x1, x2, . . . , xn〉 can be replaced
by a normalized sequence X ′ = 〈x′1, x′2, . . . , x′n〉, using the following formula,

x′i =
xi−µ

σ
(8.6)

where µ is the mean value of the sequence X and σ is the standard deviation of X . We
can transform other sequences using the same formula, and then compare them for
similarity.

Most real-world applications do not require the matching subsequences to be
perfectly aligned along the time axis. In other words, we should allow for pairs of
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subsequences to match if they are of the same shape, but differ due to the presence
of gaps within a sequence (where one of the series may be missing some of the
values that exist in the other) or differences in offsets or amplitudes. This is partic-
ularly useful in many similar sequence analyses, such as stock market analysis and
cardiogram analysis.

“How can subsequence matching be performed to allow for such differences?” Users
or experts can specify parameters such as a sliding window size, the width of an
envelope for similarity, the maximum gap, a matching fraction, and so on. Figure 8.5
illustrates the process involved, starting with two sequences in their original form.
First, gaps are removed. The resulting sequences are normalized with respect to offset
translation (where one time series is adjusted to align with the other by shifting the
baseline or phase) and amplitude scaling. For this normalization, techniques such
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Figure 8.5 Subsequence matching in time-series data: The original sequences are of the same shape,
yet adjustments need to be made to deal with differences in gaps, offsets, and amplitudes.
These adjustments allow subsequences to be matched within an envelope of width ε. Based
on [ALSS95].
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as those described in Section 2.4.2 may be used. Two subsequences are considered
similar and can be matched if one lies within an envelope of ε width around the
other (where ε is a small number, specified by a user or expert), ignoring outliers.
Two sequences are similar if they have enough nonoverlapping time-ordered pairs of
similar subsequences.

Based on the above, a similarity search that handles gaps and differences in offsets and
amplitudes can be performed by the following steps:

1. Atomic matching: Normalize the data. Find all pairs of gap-free windows of a small
length that are similar.

2. Window stitching: Stitch similar windows to form pairs of large similar subsequences,
allowing gaps between atomic matches.

3. Subsequence ordering: Linearly order the subsequence matches to determine whether
enough similar pieces exist.

With such processing, sequences of similar shape but with gaps or differences in offsets
or amplitudes can be found to match each other or to match query templates.

Query Languages for Time Sequences
“How can I specify the similarity search to be performed?” We need to design and
develop powerful query languages to facilitate the specification of similarity searches
in time sequences. A time-sequence query language should be able to specify not only
simple similarity queries like “Find all of the sequences similar to a given subsequence
Q,” but also sophisticated queries like “Find all of the sequences that are similar to
some sequence in class C1, but not similar to any sequence in class C2.” Moreover,
it should be able to support various kinds of queries, such as range queries and
nearest-neighbor queries.

An interesting kind of time-sequence query language is a shape definition lan-
guage. It allows users to define and query the overall shape of time sequences using
human-readable series of sequence transitions or macros, while ignoring the specific
details.

Example 8.6 Using a shape definition language. The pattern up, Up, UP can be used to describe
increasing degrees of rising slopes. A macro, such as spike, can denote a sequence like
(SteepUps, flat, SteepDowns), where SteepUps is defined as ({Up, UP}, {Up, UP},
{Up, UP}), which means that one SteepUps consists of three steep up-slopes, each cor-
responding to either Up or UP. SteepDowns is similarly defined.

Such a shape definition language increases the users’ flexibility at specifying queries
of desired shapes for sequence similarity search.
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8.3 Mining Sequence Patterns in Transactional Databases

A sequence database consists of sequences of ordered elements or events, recorded with
or without a concrete notion of time. There are many applications involving sequence
data. Typical examples include customer shopping sequences, Web clickstreams, bio-
logical sequences, sequences of events in science and engineering, and in natural and
social developments. In this section, we study sequential pattern mining in transactional
databases. In particular, we start with the basic concepts of sequential pattern mining in
Section 8.3.1. Section 8.3.2 presents several scalable methods for such mining.
Constraint-based sequential pattern mining is described in Section 8.3.3. Periodicity
analysis for sequence data is discussed in Section 8.3.4. Specific methods for mining
sequence patterns in biological data are addressed in Section 8.4.

8.3.1 Sequential Pattern Mining: Concepts and Primitives

“What is sequential pattern mining?” Sequential pattern mining is the mining of fre-
quently occurring ordered events or subsequences as patterns. An example of a sequen-
tial pattern is “Customers who buy a Canon digital camera are likely to buy an HP color
printer within a month.” For retail data, sequential patterns are useful for shelf placement
and promotions. This industry, as well as telecommunications and other businesses, may
also use sequential patterns for targeted marketing, customer retention, and many other
tasks. Other areas in which sequential patterns can be applied include Web access pat-
tern analysis, weather prediction, production processes, and network intrusion detec-
tion. Notice that most studies of sequential pattern mining concentrate on categorical (or
symbolic) patterns, whereas numerical curve analysis usually belongs to the scope of trend
analysis and forecasting in statistical time-series analysis, as discussed in Section 8.2.

The sequential pattern mining problem was first introduced by Agrawal and Srikant
in 1995 [AS95] based on their study of customer purchase sequences, as follows: “Given a
set of sequences, where each sequence consists of a list of events (or elements) and each event
consists of a set of items, and given a user-specified minimum support threshold of min sup,
sequential pattern mining finds all frequent subsequences, that is, the subsequences whose
occurrence frequency in the set of sequences is no less than min sup.”

Let’s establish some vocabulary for our discussion of sequential pattern mining. Let
I = {I1, I2, . . . , Ip} be the set of all items. An itemset is a nonempty set of items.
A sequence is an ordered list of events. A sequence s is denoted 〈e1e2e3 · · ·el〉, where
event e1 occurs before e2, which occurs before e3, and so on. Event e j is also called an
element of s. In the case of customer purchase data, an event refers to a shopping trip in
which a customer bought items at a certain store. The event is thus an itemset, that is,
an unordered list of items that the customer purchased during the trip. The itemset (or
event) is denoted (x1x2 · · ·xq), where xk is an item. For brevity, the brackets are omitted
if an element has only one item, that is, element (x) is written as x. Suppose that a cus-
tomer made several shopping trips to the store. These ordered events form a sequence
for the customer. That is, the customer first bought the items in s1, then later bought
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the items in s2, and so on. An item can occur at most once in an event of a sequence,
but can occur multiple times in different events of a sequence. The number of instances
of items in a sequence is called the length of the sequence. A sequence with length l is
called an l-sequence. A sequence α = 〈a1a2 · · ·an〉 is called a subsequence of another
sequence β = 〈b1b2 · · ·bm〉, and β is a supersequence of α, denoted as α v β, if there
exist integers 1≤ j1 < j2 < · · ·< jn ≤ m such that a1 ⊆ b j1 , a2 ⊆ b j2 , . . . , an ⊆ b jn . For
example, if α = 〈(ab), d〉 and β = 〈(abc), (de)〉, where a, b, c, d, and e are items, then α
is a subsequence of β and β is a supersequence of α.

A sequence database, S, is a set of tuples, 〈SID, s〉, where SID is a sequence ID and
s is a sequence. For our example, S contains sequences for all customers of the store.
A tuple 〈SID, s〉 is said to contain a sequence α, if α is a subsequence of s. The support
of a sequence α in a sequence database S is the number of tuples in the database con-
taining α, that is, supportS(α) = | {〈SID, s〉|(〈SID, s〉 ∈ S)∧(αv s)} |. It can be denoted
as support(α) if the sequence database is clear from the context. Given a positive inte-
ger min sup as the minimum support threshold, a sequence α is frequent in sequence
database S if supportS(α)≥min sup. That is, for sequence α to be frequent, it must occur
at least min sup times in S. A frequent sequence is called a sequential pattern. A sequen-
tial pattern with length l is called an l-pattern. The following example illustrates these
concepts.

Example 8.7 Sequential patterns. Consider the sequence database, S, given in Table 8.1, which will
be used in examples throughout this section. Let min sup = 2. The set of items in the
database is {a, b, c, d, e, f , g}. The database contains four sequences.

Let’s look at sequence 1, which is 〈a(abc)(ac)d(cf )〉. It has five events, namely (a),
(abc), (ac), (d), and (cf ), which occur in the order listed. Items a and c each appear
more than once in different events of the sequence. There are nine instances of items in
sequence 1; therefore, it has a length of nine and is called a 9-sequence. Item a occurs three
times in sequence 1 and so contributes three to the length of the sequence. However,
the entire sequence contributes only one to the support of 〈a〉. Sequence 〈a(bc)df 〉 is
a subsequence of sequence 1 since the events of the former are each subsets of events
in sequence 1, and the order of events is preserved. Consider subsequence s = 〈(ab)c〉.
Looking at the sequence database, S, we see that sequences 1 and 3 are the only ones that
contain the subsequence s. The support of s is thus 2, which satisfies minimum support.

Table 8.1 A sequence database

Sequence ID Sequence

1 〈a(abc)(ac)d(c f )〉
2 〈(ad)c(bc)(ae)〉
3 〈(e f )(ab)(d f )cb〉
4 〈eg(a f )cbc〉
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Therefore, s is frequent, and so we call it a sequential pattern. It is a 3-pattern since it is a
sequential pattern of length three.

This model of sequential pattern mining is an abstraction of customer-shopping
sequence analysis. Scalable methods for sequential pattern mining on such data are
described in Section 8.3.2, which follows. Many other sequential pattern mining appli-
cations may not be covered by this model. For example, when analyzing Web clickstream
sequences, gaps between clicks become important if one wants to predict what the next
click might be. In DNA sequence analysis, approximate patterns become useful since
DNA sequences may contain (symbol) insertions, deletions, and mutations. Such diverse
requirements can be viewed as constraint relaxation or enforcement. In Section 8.3.3, we
discuss how to extend the basic sequential mining model to constrained sequential pat-
tern mining in order to handle these cases.

8.3.2 Scalable Methods for Mining Sequential Patterns

Sequential pattern mining is computationally challenging because such mining may gen-
erate and/or test a combinatorially explosive number of intermediate subsequences.

“How can we develop efficient and scalable methods for sequential pattern mining?”
Recent developments have made progress in two directions: (1) efficient methods for
mining the full set of sequential patterns, and (2) efficient methods for mining only
the set of closed sequential patterns, where a sequential pattern s is closed if there exists
no sequential pattern s′ where s′ is a proper supersequence of s, and s′ has the same
(frequency) support as s.6 Because all of the subsequences of a frequent sequence are
also frequent, mining the set of closed sequential patterns may avoid the generation of
unnecessary subsequences and thus lead to more compact results as well as more effi-
cient methods than mining the full set. We will first examine methods for mining the
full set and then study how they can be extended for mining the closed set. In addition,
we discuss modifications for mining multilevel, multidimensional sequential patterns
(i.e., with multiple levels of granularity).

The major approaches for mining the full set of sequential patterns are similar to
those introduced for frequent itemset mining in Chapter 5. Here, we discuss three such
approaches for sequential pattern mining, represented by the algorithms GSP, SPADE,
and PrefixSpan, respectively. GSP adopts a candidate generate-and-test approach using
horizonal data format (where the data are represented as 〈sequence ID : sequence of
itemsets〉, as usual, where each itemset is an event). SPADE adopts a candidate generate-
and-test approach using vertical data format (where the data are represented as 〈itemset :
(sequence ID, event ID)〉). The vertical data format can be obtained by transforming
from a horizontally formatted sequence database in just one scan. PrefixSpan is a pat-
tern growth method, which does not require candidate generation.

6Closed frequent itemsets were introduced in Chapter 5. Here, the definition is applied to sequential
patterns.
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All three approaches either directly or indirectly explore the Apriori property, stated
as follows: every nonempty subsequence of a sequential pattern is a sequential pattern.
(Recall that for a pattern to be called sequential, it must be frequent. That is, it must sat-
isfy minimum support.) The Apriori property is antimonotonic (or downward-closed)
in that, if a sequence cannot pass a test (e.g., regarding minimum support), all of its
supersequences will also fail the test. Use of this property to prune the search space can
help make the discovery of sequential patterns more efficient.

GSP: A Sequential Pattern Mining Algorithm
Based on Candidate Generate-and-Test
GSP (Generalized Sequential Patterns) is a sequential pattern mining method that
was developed by Srikant and Agrawal in 1996. It is an extension of their seminal
algorithm for frequent itemset mining, known as Apriori (Section 5.2). GSP uses the
downward-closure property of sequential patterns and adopts a multiple-pass, candi-
date generate-and-test approach. The algorithm is outlined as follows. In the first scan
of the database, it finds all of the frequent items, that is, those with minimum sup-
port. Each such item yields a 1-event frequent sequence consisting of that item. Each
subsequent pass starts with a seed set of sequential patterns—the set of sequential
patterns found in the previous pass. This seed set is used to generate new potentially
frequent patterns, called candidate sequences. Each candidate sequence contains one
more item than the seed sequential pattern from which it was generated (where each
event in the pattern may contain one or multiple items). Recall that the number of
instances of items in a sequence is the length of the sequence. So, all of the candidate
sequences in a given pass will have the same length. We refer to a sequence with
length k as a k-sequence. Let Ck denote the set of candidate k-sequences. A pass
over the database finds the support for each candidate k-sequence. The candidates
in Ck with at least min sup form Lk, the set of all frequent k-sequences. This set then
becomes the seed set for the next pass, k+1. The algorithm terminates when no new
sequential pattern is found in a pass, or no candidate sequence can be generated.

The method is illustrated in the following example.

Example 8.8 GSP: Candidate generate-and-test (using horizontal data format). Suppose we are given
the same sequence database, S, of Table 8.1 from Example 8.7, with min sup = 2. Note
that the data are represented in horizontal data format. In the first scan (k = 1), GSP
collects the support for each item. The set of candidate 1-sequences is thus (shown
here in the form of “sequence:support”): 〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 3, 〈d〉 : 3, 〈e〉 : 3,
〈 f 〉 : 3, 〈g〉 : 1.

The sequence 〈g〉 has a support of only 1 and is the only sequence that does not satisfy
minimum support. By filtering it out, we obtain the first seed set, L1 = {〈a〉, 〈b〉, 〈c〉, 〈d〉,
〈e〉, 〈 f 〉}. Each member in the set represents a 1-event sequential pattern. Each subsequent
pass starts with the seed set found in the previous pass and uses it to generate new candidate
sequences, which are potentially frequent.
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Using L1 as the seed set, this set of six length-1 sequential patterns generates a set of
6× 6 + 6 × 5

2 = 51 candidate sequences of length 2, C2 = {〈aa〉, 〈ab〉, . . . , 〈a f 〉, 〈ba〉,
〈bb〉, . . . , 〈 f f 〉, 〈(ab)〉, 〈(ac)〉, . . . , 〈(e f )〉}.

In general, the set of candidates is generated by a self-join of the sequential patterns
found in the previous pass (see Section 5.2.1 for details). GSP applies the Apriori property
to prune the set of candidates as follows. In the k-th pass, a sequence is a candidate only
if each of its length-(k−1) subsequences is a sequential pattern found at the (k−1)-th
pass. A new scan of the database collects the support for each candidate sequence and
finds a new set of sequential patterns, Lk. This set becomes the seed for the next pass. The
algorithm terminates when no sequential pattern is found in a pass or when no candidate
sequence is generated. Clearly, the number of scans is at least the maximum length of
sequential patterns. GSP needs one more scan if the sequential patterns obtained in the
last scan still generate new candidates (none of which are found to be frequent).

Although GSP benefits from the Apriori pruning, it still generates a large number of
candidates. In this example, six length-1 sequential patterns generate 51 length-2 candi-
dates; 22 length-2 sequential patterns generate 64 length-3 candidates; and so on. Some
candidates generated by GSP may not appear in the database at all. In this example, 13
out of 64 length-3 candidates do not appear in the database, resulting in wasted time.

The example shows that although an Apriori-like sequential pattern mining method,
such as GSP, reduces search space, it typically needs to scan the database multiple times.
It will likely generate a huge set of candidate sequences, especially when mining long
sequences. There is a need for more efficient mining methods.

SPADE: An Apriori-Based Vertical Data Format
Sequential Pattern Mining Algorithm
The Apriori-like sequential pattern mining approach (based on candidate generate-and-
test) can also be explored by mapping a sequence database into vertical data format. In
vertical data format, the database becomes a set of tuples of the form 〈itemset :
(sequence ID, event ID)〉. That is, for a given itemset, we record the sequence identifier
and corresponding event identifier for which the itemset occurs. The event identifier
serves as a timestamp within a sequence. The event ID of the ith itemset (or event) in
a sequence is i. Note than an itemset can occur in more than one sequence. The set of
(sequence ID, event ID) pairs for a given itemset forms the ID list of the itemset. The
mapping from horizontal to vertical format requires one scan of the database. A major
advantage of using this format is that we can determine the support of any k-sequence
by simply joining the ID lists of any two of its (k−1)-length subsequences. The length
of the resulting ID list (i.e., unique sequence ID values) is equal to the support of the
k-sequence, which tells us whether the sequence is frequent.

SPADE (Sequential PAttern Discovery using Equivalent classes) is an Apriori-based
sequential pattern mining algorithm that uses vertical data format. As with GSP, SPADE
requires one scan to find the frequent 1-sequences. To find candidate 2-sequences,
we join all pairs of single items if they are frequent (therein, it applies the Apriori
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property), if they share the same sequence identifier, and if their event identifiers follow a
sequential ordering. That is, the first item in the pair must occur as an event before the
second item, where both occur in the same sequence. Similarly, we can grow the length
of itemsets from length 2 to length 3, and so on. The procedure stops when no frequent
sequences can be found or no such sequences can be formed by such joins. The following
example helps illustrate the process.

Example 8.9 SPADE: Candidate generate-and-test using vertical data format. Let min sup = 2. Our
running example sequence database, S, of Table 8.1 is in horizonal data format. SPADE
first scans S and transforms it into vertical format, as shown in Figure 8.6(a). Each item-
set (or event) is associated with its ID list, which is the set of SID (sequence ID) and EID
(event ID) pairs that contain the itemset. The ID list for individual items, a, b, and so
on, is shown in Figure 8.6(b). For example, the ID list for item b consists of the follow-
ing (SID, EID) pairs: {(1, 2), (2, 3), (3, 2), (3, 5), (4, 5)}, where the entry (1, 2) means
that b occurs in sequence 1, event 2, and so on. Items a and b are frequent. They can
be joined to form the length-2 sequence, 〈a, b〉. We find the support of this sequence
as follows. We join the ID lists of a and b by joining on the same sequence ID wher-
ever, according to the event IDs, a occurs before b. That is, the join must preserve the
temporal order of the events involved. The result of such a join for a and b is shown
in the ID list for ab of Figure 8.6(c). For example, the ID list for 2-sequence ab is a
set of triples, (SID, EID(a), EID(b)), namely {(1, 1, 2), (2, 1, 3), (3, 2, 5), (4, 3, 5)}. The
entry (2, 1, 3), for example, shows that both a and b occur in sequence 2, and that a
(event 1 of the sequence) occurs before b (event 3), as required. Furthermore, the fre-
quent 2-sequences can be joined (while considering the Apriori pruning heuristic that
the (k-1)-subsequences of a candidate k-sequence must be frequent) to form 3-sequences,
as in Figure 8.6(d), and so on. The process terminates when no frequent sequences can
be found or no candidate sequences can be formed. Additional details of the method can
be found in Zaki [Zak01].

The use of vertical data format, with the creation of ID lists, reduces scans of the
sequence database. The ID lists carry the information necessary to find the support of
candidates. As the length of a frequent sequence increases, the size of its ID list decreases,
resulting in very fast joins. However, the basic search methodology of SPADE and GSP
is breadth-first search (e.g., exploring 1-sequences, then 2-sequences, and so on) and
Apriori pruning. Despite the pruning, both algorithms have to generate large sets of
candidates in breadth-first manner in order to grow longer sequences. Thus, most of
the difficulties suffered in the GSP algorithm recur in SPADE as well.

PrefixSpan: Prefix-Projected Sequential Pattern Growth
Pattern growth is a method of frequent-pattern mining that does not require candi-
date generation. The technique originated in the FP-growth algorithm for transaction
databases, presented in Section 5.2.4. The general idea of this approach is as follows: it
finds the frequent single items, then compresses this information into a frequent-pattern
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SID EID itemset

1 1 a

1 2 abc

1 3 ac

1 4 d

1 5 cf

2 1 ad

2 2 c

2 3 bc

2 4 ae

3 1 ef

3 2 ab

3 3 df

3 4 c

3 5 b

4 1 e

4 2 g

4 3 af

4 4 c

4 5 b

4 6 c

(a) vertical format database

a b · · ·
SID EID SID EID · · ·

1 1 1 2

1 2 2 3

1 3 3 2

2 1 3 5

2 4 4 5

3 2

4 3

(b) ID lists for some 1-sequences

ab ba · · ·
SID EID(a) EID(b) SID EID(b) EID(a) · · ·

1 1 2 1 2 3

2 1 3 2 3 4

3 2 5

4 3 5

(c) ID lists for some 2-sequences

aba · · ·
SID EID(a) EID(b) EID(a) · · ·

1 1 2 3

2 1 3 4

(d) ID lists for some 3-sequences

Figure 8.6 The SPADE mining process: (a) vertical format database; (b) to (d) show fragments of the
ID lists for 1-sequences, 2-sequences, and 3-sequences, respectively.

tree, or FP-tree. The FP-tree is used to generate a set of projected databases, each associ-
ated with one frequent item. Each of these databases is mined separately. The algorithm
builds prefix patterns, which it concatenates with suffix patterns to find frequent pat-
terns, avoiding candidate generation. Here, we look at PrefixSpan, which extends the
pattern-growth approach to instead mine sequential patterns.

Suppose that all the items within an event are listed alphabetically. For example,
instead of listing the items in an event as, say, (bac), we list them as (abc) without loss of
generality. Given a sequence α = 〈e1e2 · · ·en〉 (where each ei corresponds to a frequent
event in a sequence database, S), a sequence β = 〈e′1e′2 · · ·e′m〉 (m ≤ n) is called a prefix
of α if and only if (1) e′i = ei for (i≤ m−1); (2) e′m ⊆ em; and (3) all the frequent items
in (em− e′m) are alphabetically after those in e′m. Sequence γ = 〈e′′mem+1 · · ·en〉 is called
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the suffix of α with respect to prefix β, denoted as γ = α/β, where e′′m = (em− e′m).7 We
also denote α = β · γ. Note if β is not a subsequence of α, the suffix of α with respect to
β is empty.

We illustrate these concepts with the following example.

Example 8.10 Prefix and suffix. Let sequences = 〈a(abc)(ac)d(c f )〉,whichcorresponds tosequence1of
our running example sequence database. 〈a〉, 〈aa〉, 〈a(ab)〉, and 〈a(abc)〉 are four prefixes
of s. 〈(abc)(ac)d(c f )〉 is the suffix of s with respect to the prefix 〈a〉; 〈( bc)(ac)d(c f )〉 is
its suffix with respect to the prefix 〈aa〉; and 〈( c)(ac)d(c f )〉 is its suffix with respect to
the prefix 〈a(ab)〉.

Based on the concepts of prefix and suffix, the problem of mining sequential patterns
can be decomposed into a set of subproblems as shown:

1. Let {〈x1〉, 〈x2〉, . . . , 〈xn〉} be the complete set of length-1 sequential patterns in a
sequence database, S. The complete set of sequential patterns in S can be partitioned
into n disjoint subsets. The ith subset (1≤ i≤ n) is the set of sequential patterns with
prefix 〈xi〉.

2. Let α be a length-l sequential pattern and {β1, β2, . . . , βm} be the set of all length-
(l +1) sequential patterns with prefix α. The complete set of sequential patterns with
prefix α, except for α itself, can be partitioned into m disjoint subsets. The jth subset
(1≤ j ≤ m) is the set of sequential patterns prefixed with β j.

Based on this observation, the problem can be partitioned recursively. That is, each
subset of sequential patterns can be further partitioned when necessary. This forms a
divide-and-conquer framework. To mine the subsets of sequential patterns, we construct
corresponding projected databases and mine each one recursively.

Let’s use our running example to examine how to use the prefix-based projection
approach for mining sequential patterns.

Example 8.11 PrefixSpan: A pattern-growth approach. Using the same sequence database, S, of Table 8.1
with min sup = 2, sequential patterns in S can be mined by a prefix-projection method
in the following steps.

1. Find length-1 sequential patterns. Scan S once to find all of the frequent items in
sequences. Each of these frequent items is a length-1 sequential pattern. They are
〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, and 〈 f 〉 : 3, where the notation “〈pattern〉 : count”
represents the pattern and its associated support count.

7If e′′m is not empty, the suffix is also denoted as 〈( items in e′′m)em+1 · · ·en〉.
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Table 8.2 Projected databases and sequential patterns

prefix projected database sequential patterns

〈a〉 〈(abc)(ac)d(c f )〉,
〈( d)c(bc)(ae)〉,
〈( b)(d f )eb〉, 〈( f )cbc〉

〈a〉, 〈aa〉, 〈ab〉, 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉,
〈abc〉, 〈(ab)〉, 〈(ab)c〉, 〈(ab)d〉, 〈(ab) f 〉,
〈(ab)dc〉, 〈ac〉, 〈aca〉, 〈acb〉, 〈acc〉, 〈ad〉,
〈adc〉, 〈a f 〉

〈b〉 〈( c)(ac)d(c f )〉,
〈( c)(ae)〉, 〈(d f )cb〉,
〈c〉

〈b〉, 〈ba〉, 〈bc〉, 〈(bc)〉, 〈(bc)a〉, 〈bd〉, 〈bdc〉,
〈b f 〉

〈c〉 〈(ac)d(c f )〉,
〈(bc)(ae)〉, 〈b〉, 〈bc〉

〈c〉, 〈ca〉, 〈cb〉, 〈cc〉

〈d〉 〈(c f )〉, 〈c(bc)(ae)〉,
〈( f )cb〉

〈d〉, 〈db〉, 〈dc〉, 〈dcb〉

〈e〉 〈( f )(ab)(d f )cb〉,
〈(a f )cbc〉

〈e〉, 〈ea〉, 〈eab〉, 〈eac〉, 〈eacb〉, 〈eb〉, 〈ebc〉,
〈ec〉, 〈ecb〉, 〈e f 〉, 〈e f b〉, 〈e f c〉, 〈e f cb〉.

〈 f 〉 〈(ab)(d f )cb〉, 〈cbc〉 〈 f 〉, 〈 f b〉, 〈 f bc〉, 〈 f c〉, 〈 f cb〉

2. Partition the search space. The complete set of sequential patterns can be partitioned
into the following six subsets according to the six prefixes: (1) the ones with prefix
〈a〉, (2) the ones with prefix 〈b〉, . . . , and (6) the ones with prefix 〈 f 〉.

3. Find subsets of sequential patterns. The subsets of sequential patterns mentioned
in step 2 can be mined by constructing corresponding projected databases and
mining each recursively. The projected databases, as well as the sequential patterns
found in them, are listed in Table 8.2, while the mining process is explained as
follows:

(a) Find sequential patterns with prefix 〈a〉. Only the sequences containing 〈a〉 should
be collected. Moreover, in a sequence containing 〈a〉, only the subsequence prefixed
with the first occurrence of 〈a〉 should be considered. For example, in sequence
〈(e f )(ab)(d f )cb〉, only the subsequence 〈( b)(d f )cb〉 should be considered for
mining sequential patterns prefixed with 〈a〉. Notice that ( b) means that the last
event in the prefix, which is a, together with b, form one event.
The sequences in S containing 〈a〉 are projected with respect to 〈a〉 to form the
〈a〉-projected database, which consists of four suffix sequences: 〈(abc)(ac)d(c f )〉,
〈( d)c(bc)(ae)〉, 〈( b)(d f )cb〉, and 〈( f )cbc〉.
By scanning the 〈a〉-projected database once, its locally frequent items are iden-
tified as a : 2, b : 4, b : 2, c : 4, d : 2, and f : 2. Thus all the length-2 sequential
patterns prefixed with 〈a〉 are found, and they are: 〈aa〉 : 2, 〈ab〉 : 4, 〈(ab)〉 : 2,
〈ac〉 : 4, 〈ad〉 : 2, and 〈a f 〉 : 2.
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Recursively, all sequential patterns with prefix 〈a〉 can be partitioned into six
subsets: (1) those prefixed with 〈aa〉, (2) those with 〈ab〉, . . . , and finally, (6) those
with 〈af 〉. These subsets can be mined by constructing respective projected data-
bases and mining each recursively as follows:

i. The 〈aa〉-projected database consists of two nonempty (suffix) subsequences
prefixed with 〈aa〉: {〈( bc)(ac)d(c f )〉, {〈( e)〉}. Because there is no hope of
generating any frequent subsequence from this projected database, the pro-
cessing of the 〈aa〉-projected database terminates.

ii. The 〈ab〉-projected database consists of three suffix sequences: 〈( c)(ac)d
(cf )〉, 〈( c)a〉, and 〈c〉. Recursively mining the 〈ab〉-projected database
returns four sequential patterns: 〈( c)〉, 〈( c)a〉, 〈a〉, and 〈c〉 (i.e., 〈a(bc)〉,
〈a(bc)a〉, 〈aba〉, and 〈abc〉.) They form the complete set of sequential pat-
terns prefixed with 〈ab〉.

iii. The 〈(ab)〉-projected database contains only two sequences: 〈( c)(ac) d(c f )〉
and 〈(df )cb〉, which leads to the finding of the following sequential patterns
prefixed with 〈(ab)〉: 〈c〉, 〈d〉, 〈 f 〉, and 〈dc〉.

iv. The 〈ac〉-, 〈ad〉-, and 〈af 〉- projected databases can be constructed and recur-
sively mined in a similar manner. The sequential patterns found are shown in
Table 8.2.

(b) Find sequential patterns with prefix 〈b〉, 〈c〉, 〈d〉, 〈e〉, and 〈 f 〉, respectively. This
can be done by constructing the 〈b〉-, 〈c〉-, 〈d〉-, 〈e〉-, and 〈 f 〉-projected databases
and mining them respectively. The projected databases as well as the sequential
patterns found are also shown in Table 8.2.

4. The set of sequential patterns is the collection of patterns found in the above recursive
mining process.

The method described above generates no candidate sequences in the mining pro-
cess. However, it may generate many projected databases, one for each frequent prefix-
subsequence. Forming a large number of projected databases recursively may become the
major cost of the method, if such databases have to be generated physically. An impor-
tant optimization technique is pseudo-projection, which registers the index (or identi-
fier) of the corresponding sequence and the starting position of the projected suffix in
the sequence instead of performing physical projection. That is, a physical projection
of a sequence is replaced by registering a sequence identifier and the projected posi-
tion index point. Pseudo-projection reduces the cost of projection substantially when
such projection can be done in main memory. However, it may not be efficient if the
pseudo-projection is used for disk-based accessing because random access of disk space
is costly. The suggested approach is that if the original sequence database or the projected
databases are too big to fit in memory, the physical projection should be applied; how-
ever, the execution should be swapped to pseudo-projection once the projected databases
can fit in memory. This methodology is adopted in the PrefixSpan implementation.
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Figure 8.7 A backward subpattern and a backward superpattern.

A performance comparison of GSP, SPADE, and PrefixSpan shows that PrefixSpan has
the best overall performance. SPADE, although weaker than PrefixSpan in most cases,
outperforms GSP. Generating huge candidate sets may consume a tremendous amount
of memory, thereby causing candidate generate-and-test algorithms to become very slow.
The comparison also found that when there is a large number of frequent subsequences,
all three algorithms run slowly. This problem can be partially solved by closed sequential
pattern mining.

Mining Closed Sequential Patterns
Because mining the complete set of frequent subsequences can generate a huge number
of sequential patterns, an interesting alternative is to mine frequent closed subsequences
only, that is, those containing no supersequence with the same support. Mining closed
sequential patterns can produce a significantly less number of sequences than the full set
of sequential patterns. Note that the full set of frequent subsequences, together with their
supports, can easily be derived from the closed subsequences. Thus, closed subsequences
have the same expressive power as the corresponding full set of subsequences. Because
of their compactness, they may also be quicker to find.

CloSpan is an efficient closed sequential pattern mining method. The method is based
on a property of sequence databases, called equivalence of projected databases, stated as
follows: Two projected sequence databases, S|α = S|β,8 αv β (i.e.,α is a subsequence of β),
are equivalent if and only if the total number of items in S|α is equal to the total number of
items in S|β.

Based on this property, CloSpan can prune the nonclosed sequences from further
consideration during the mining process. That is, whenever we find two prefix-based
projected databases that are exactly the same, we can stop growing one of them. This
can be used to prune backward subpatterns and backward superpatterns as indicated in
Figure 8.7.

8In S|α, a sequence database S is projected with respect to sequence (e.g., prefix) α. The notation S|β can
be similarly defined.
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After such pruning and mining, a postprocessing step is still required in order to delete
nonclosed sequential patterns that may exist in the derived set. A later algorithm called
BIDE (which performs a bidirectional search) can further optimize this process to avoid
such additional checking.

Empirical results show that CloSpan often derives a much smaller set of sequential
patterns in a shorter time than PrefixSpan, which mines the complete set of sequential
patterns.

Mining Multidimensional, Multilevel Sequential Patterns
Sequence identifiers (representing individual customers, for example) and sequence
items (such as products bought) are often associated with additional pieces of infor-
mation. Sequential pattern mining should take advantage of such additional informa-
tion to discover interesting patterns in multidimensional, multilevel information space.
Take customer shopping transactions, for instance. In a sequence database for such data,
the additional information associated with sequence IDs could include customer age,
address, group, and profession. Information associated with items could include item
category, brand, model type, model number, place manufactured, and manufacture date.
Mining multidimensional, multilevel sequential patterns is the discovery of interesting
patterns in such a broad dimensional space, at different levels of detail.

Example 8.12 Multidimensional, multilevel sequential patterns. The discovery that “Retired customers
who purchase a digital camera are likely to purchase a color printer within a month” and
that “Young adults who purchase a laptop are likely to buy a flash drive within two weeks”
are examples of multidimensional, multilevel sequential patterns. By grouping customers
into “retired customers” and “young adults” according to the values in the age dimension,
and by generalizing items to, say, “digital camera” rather than a specific model, the pat-
terns mined here are associated with additional dimensions and are at a higher level of
granularity.

“Can a typical sequential pattern algorithm such as PrefixSpan be extended to efficiently
mine multidimensional, multilevel sequential patterns?” One suggested modification is to
associate the multidimensional, multilevel information with the sequence ID and
item ID, respectively, which the mining method can take into consideration when find-
ing frequent subsequences. For example, (Chicago, middle aged, business) can be asso-
ciated with sequence ID 1002 (for a given customer), whereas (Digital camera, Canon,
Supershot, SD400, Japan, 2005) can be associated with item ID 543005 in the sequence.
A sequential pattern mining algorithm will use such information in the mining process
to find sequential patterns associated with multidimensional, multilevel information.

8.3.3 Constraint-Based Mining of Sequential Patterns

As shown in our study of frequent-pattern mining in Chapter 5, mining that is performed
without user- or expert-specified constraints may generate numerous patterns that are
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of no interest. Such unfocused mining can reduce both the efficiency and usability of
frequent-pattern mining. Thus, we promote constraint-based mining, which incorpo-
rates user-specified constraints to reduce the search space and derive only patterns that
are of interest to the user.

Constraints can be expressed in many forms. They may specify desired relation-
ships between attributes, attribute values, or aggregates within the resulting patterns
mined. Regular expressions can also be used as constraints in the form of “pattern
templates,” which specify the desired form of the patterns to be mined. The gen-
eral concepts introduced for constraint-based frequent pattern mining in Section 5.5.1
apply to constraint-based sequential pattern mining as well. The key idea to note is that
these kinds of constraints can be used during the mining process to confine the search
space, thereby improving (1) the efficiency of the mining and (2) the interestingness
of the resulting patterns found. This idea is also referred to as “pushing the constraints
deep into the mining process.”

We now examine some typical examples of constraints for sequential pattern mining.
First, constraints can be related to the duration, T , of a sequence. The duration may
be the maximal or minimal length of the sequence in the database, or a user-specified
duration related to time, such as the year 2005. Sequential pattern mining can then be
confined to the data within the specified duration, T .

Constraints relating to the maximal or minimal length (duration) can be treated as
antimonotonic or monotonic constraints, respectively. For example, the constraint T ≤ 10
is antimonotonic since, if a sequence does not satisfy this constraint, then neither will
any of its supersequences (which are, obviously, longer). The constraint T > 10 is mono-
tonic. This means that if a sequence satisfies the constraint, then all of its supersequences
will also satisfy the constraint. We have already seen several examples in this chapter
of how antimonotonic constraints (such as those involving minimum support) can be
pushed deep into the mining process to prune the search space. Monotonic constraints
can be used in a way similar to its frequent-pattern counterpart as well.

Constraints related to a specific duration, such as a particular year, are considered
succinct constraints. A constraint is succinct if we can enumerate all and only those
sequences that are guaranteed to satisfy the constraint, even before support counting
begins. Suppose, here, T = 2005. By selecting the data for which year = 2005, we can
enumerate all of the sequences guaranteed to satisfy the constraint before mining begins.
In other words, we don’t need to generate and test. Thus, such constraints contribute
toward efficiency in that they avoid the substantial overhead of the generate-and-test
paradigm.

Durations may also be defined as being related to sets of partitioned sequences, such
as every year, or every month after stock dips, or every two weeks before and after an
earthquake. In such cases, periodic patterns (Section 8.3.4) can be discovered.

Second, the constraint may be related to an event folding window, w. A set of events
occurring within a specified period can be viewed as occurring together. If w is set to be as
long as the duration, T , it finds time-insensitive frequent patterns—these are essentially
frequent patterns, such as “In 1999, customers who bought a PC bought a digital camera
as well” (i.e., without bothering about which items were bought first). If w is set to 0
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(i.e., no event sequence folding), sequential patterns are found where each event occurs
at a distinct time instant, such as “A customer who bought a PC and then a digital camera
is likely to buy an SD memory chip in a month.” If w is set to be something in between
(e.g., for transactions occurring within the same month or within a sliding window of
24 hours), then these transactions are considered as occurring within the same period,
and such sequences are “folded” in the analysis.

Third, a desired (time) gap between events in the discovered patterns may be speci-
fied as a constraint. Possible cases are: (1) gap = 0 (no gap is allowed), which is to find
strictly consecutive sequential patterns like ai−1aiai+1. For example, if the event fold-
ing window is set to a week, this will find frequent patterns occurring in consecutive
weeks; (2) min gap ≤ gap ≤ max gap, which is to find patterns that are separated by at
least min gap but at most max gap, such as “If a person rents movie A, it is likely she will
rent movie B within 30 days” implies gap ≤ 30 (days); and (3) gap = c 6= 0, which is to
find patterns with an exact gap, c. It is straightforward to push gap constraints into the
sequential pattern mining process. With minor modifications to the mining process, it
can handle constraints with approximate gaps as well.

Finally, a user can specify constraints on the kinds of sequential patterns by provid-
ing “pattern templates” in the form of serial episodes and parallel episodes using regular
expressions. A serial episode is a set of events that occurs in a total order, whereas a paral-
lel episode is a set of events whose occurrence ordering is trivial. Consider the following
example.

Example 8.13 Specifying serial episodes and parallel episodes with regular expressions. Let the nota-
tion (E , t) represent event type E at time t. Consider the data (A, 1), (C, 2), and (B, 5) with
an event folding window width of w = 2, where the serial episode A→ B and the parallel
episode A & C both occur in the data. The user can specify constraints in the form of a
regular expression, such as (A|B)C ∗ (D|E), which indicates that the user would like to
find patterns where event A and B first occur (but they are parallel in that their relative
ordering is unimportant), followed by one or a set of events C, followed by the events D
and E (where D can occur either before or after E). Other events can occur in between
those specified in the regular expression.

A regular expression constraint may be neither antimonotonic nor monotonic. In
such cases, we cannot use it to prune the search space in the same ways as described above.
However, by modifying the PrefixSpan-based pattern-growth approach, such constraints
can be handled elegantly. Let’s examine one such example.

Example 8.14 Constraint-based sequential pattern mining with a regular expression constraint. Sup-
pose that our task is to mine sequential patterns, again using the sequence database, S,
of Table 8.1. This time, however, we are particularly interested in patterns that match the
regular expression constraint, C = 〈a?{bb|(bc)d|dd}〉, with minimum support.

Such a regular expression constraint is neither antimonotonic, nor monotonic, nor
succinct. Therefore, it cannot be pushed deep into the mining process. Nonetheless, this
constraint can easily be integrated with the pattern-growth mining process as follows.
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First, only the 〈a〉-projected database, S|〈a〉, needs to be mined, since the regular

expression constraint C starts with a. Retain only the sequences in S|〈a〉 that contain

items within the set {b, c, d}. Second, the remaining mining can proceed from the suf-
fix. This is essentially the SuffixSpan algorithm, which is symmetric to PrefixSpan in that
it grows suffixes from the end of the sequence forward. The growth should match the
suffix as the constraint, 〈{bb|(bc)d|dd}〉. For the projected databases that match these
suffixes, we can grow sequential patterns either in prefix- or suffix-expansion manner to
find all of the remaining sequential patterns.

Thus, we have seen several ways in which constraints can be used to improve the
efficiency and usability of sequential pattern mining.

8.3.4 Periodicity Analysis for Time-Related Sequence Data

“What is periodicity analysis?” Periodicity analysis is the mining of periodic patterns, that
is, the search for recurring patterns in time-related sequence data. Periodicity analysis can
be applied to many important areas. For example, seasons, tides, planet trajectories, daily
power consumptions, daily traffic patterns, and weekly TV programs all present certain
periodic patterns. Periodicity analysis is often performed over time-series data, which
consists of sequences of values or events typically measured at equal time intervals (e.g.,
hourly, daily, weekly). It can also be applied to other time-related sequence data where
the value or event may occur at a nonequal time interval or at any time (e.g., on-line
transactions). Moreover, the items to be analyzed can be numerical data, such as daily
temperature or power consumption fluctuations, or categorical data (events), such as
purchasing a product or watching a game.

The problem of mining periodic patterns can be viewed from different perspectives.
Based on the coverage of the pattern, we can categorize periodic patterns into full versus
partial periodic patterns:

A full periodic pattern is a pattern where every point in time contributes (precisely
or approximately) to the cyclic behavior of a time-related sequence. For example, all
of the days in the year approximately contribute to the season cycle of the year.

A partial periodic pattern specifies the periodic behavior of a time-related sequence
at some but not all of the points in time. For example, Sandy reads the New York
Times from 7:00 to 7:30 every weekday morning, but her activities at other times do
not have much regularity. Partial periodicity is a looser form of periodicity than full
periodicity and occurs more commonly in the real world.

Based on the precision of the periodicity, a pattern can be either synchronous or asyn-
chronous, where the former requires that an event occur at a relatively fixed offset in
each “stable” period, such as 3 p.m. every day, whereas the latter allows that the event
fluctuates in a somewhat loosely defined period. A pattern can also be either precise or
approximate, depending on the data value or the offset within a period. For example, if
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Sandy reads the newspaper at 7:00 on some days, but at 7:10 or 7:15 on others, this is an
approximate periodic pattern.

Techniques for full periodicity analysis for numerical values have been studied in
signal analysis and statistics. Methods like FFT (Fast Fourier Transformation) are com-
monly used to transform data from the time domain to the frequency domain in order
to facilitate such analysis.

Mining partial, categorical, and asynchronous periodic patterns poses more challeng-
ing problems in regards to the development of efficient data mining solutions. This is
because most statistical methods or those relying on time-to-frequency domain trans-
formations are either inapplicable or expensive at handling such problems.

Take mining partial periodicity as an example. Because partial periodicity mixes peri-
odic events and nonperiodic events together in the same period, a time-to-frequency
transformation method, such as FFT, becomes ineffective because it treats the time series
as an inseparable flow of values. Certain periodicity detection methods can uncover
some partial periodic patterns, but only if the period, length, and timing of the segment
(subsequence of interest) in the partial patterns have certain behaviors and are explicitly
specified. For the newspaper reading example, we need to explicitly specify details such
as “Find the regular activities of Sandy during the half-hour after 7:00 for a period of
24 hours.” A naïve adaptation of such methods to the partial periodic pattern mining
problem would be prohibitively expensive, requiring their application to a huge number
of possible combinations of the three parameters of period, length, and timing.

Most of the studies on mining partial periodic patterns apply the Apriori property
heuristic and adopt some variations of Apriori-like mining methods. Constraints can
also be pushed deep into the mining process. Studies have also been performed on the
efficient mining of partially periodic event patterns or asynchronous periodic patterns
with unknown or with approximate periods.

Mining partial periodicity may lead to the discovery of cyclic or periodic association
rules, which are rules that associate a set of events that occur periodically. An exam-
ple of a periodic association rule is “Based on day-to-day transactions, if afternoon tea is
well received between 3:00 to 5:00 p.m., dinner will sell well between 7:00 to 9:00 p.m. on
weekends.”

Due to the diversity of applications of time-related sequence data, further develop-
ment of efficient algorithms for mining various kinds of periodic patterns in sequence
databases is desired.

8.4 Mining Sequence Patterns in Biological Data

Bioinformatics is a promising young field that applies computer technology in molecu-
lar biology and develops algorithms and methods to manage and analyze biological data.
Because DNA and protein sequences are essential biological data and exist in huge vol-
umes as well, it is important to develop effective methods to compare and align biological
sequences and discover biosequence patterns.
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Before we get into further details, let’s look at the type of data being analyzed. DNA and
proteins sequences are long linear chains of chemical components. In the case of DNA,
these components or “building blocks” are four nucleotides (also called bases), namely
adenine (A), cytosine (C), guanine (G), and thymine (T). In the case of proteins, the com-
ponents are 20 amino acids, denoted by 20 different letters of the alphabet. A gene is a
sequence of typically hundreds of individual nucleotides arranged in a particular order.
A genome is the complete set of genes of an organism. When proteins are needed, the cor-
responding genes are transcribed into RNA. RNA is a chain of nucleotides. DNA directs
the synthesis of a variety of RNA molecules, each with a unique role in cellular function.

“Why is it useful to compare and align biosequences?” The alignment is based on the fact
that all living organisms are related by evolution. This implies that the nucleotide (DNA,
RNA) and proteins sequences of the species that are closer to each other in evolution
should exhibit more similarities. An alignment is the process of lining up sequences to
achieve a maximal level of identity, which also expresses the degree of similarity between
sequences. Two sequences are homologous if they share a common ancestor. The degree
of similarity obtained by sequence alignment can be useful in determining the possibility
of homology between two sequences. Such an alignment also helps determine the relative
positions of multiple species in an evolution tree, which is called a phylogenetic tree.

In Section 8.4.1, we first study methods for pairwise alignment (i.e., the alignment
of two biological sequences). This is followed by methods for multiple sequence align-
ment. Section 8.4.2 introduces the popularly used Hidden Markov Model (HMM) for
biological sequence analysis.

8.4.1 Alignment of Biological Sequences

The problem of alignment of biological sequences can be described as follows: Given
two or more input biological sequences, identify similar sequences with long conserved sub-
sequences. If the number of sequences to be aligned is exactly two, it is called pairwise
sequence alignment; otherwise, it is multiple sequence alignment. The sequences to be
compared and aligned can be either nucleotides (DNA/RNA) or amino acids (proteins).
For nucleotides, two symbols align if they are identical. However, for amino acids, two
symbols align if they are identical, or if one can be derived from the other by substitutions
that are likely to occur in nature. There are two kinds of alignments: local alignments ver-
sus global alignments. The former means that only portions of the sequences are aligned,
whereas the latter requires alignment over the entire length of the sequences.

For either nucleotides or amino acids, insertions, deletions, and substitutions occur
in nature with different probabilities. Substitution matrices are used to represent the
probabilities of substitutions of nucleotides or amino acids and probabilities of inser-
tions and deletions. Usually, we use the gap character, “−”, to indicate positions where
it is preferable not to align two symbols. To evaluate the quality of alignments, a scor-
ing mechanism is typically defined, which usually counts identical or similar symbols as
positive scores and gaps as negative ones. The algebraic sum of the scores is taken as the
alignment measure. The goal of alignment is to achieve the maximal score among all the
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possible alignments. However, it is very expensive (more exactly, an NP-hard problem)
to find optimal alignment. Therefore, various heuristic methods have been developed to
find suboptimal alignments.

Pairwise Alignment

Example 8.15 Pairwise alignment. Suppose we have two amino acid sequences as follows, and the sub-
stitution matrix of amino acids for pairwise alignment is shown in Table 8.3.

Suppose the penalty for initiating a gap (called the gap penalty) is −8 and that for
extending a gap (i.e., gap extension penalty) is also−8. We can then compare two poten-
tial sequence alignment candidates, as shown in Figure 8.8 (a) and (b) by calculating
their total alignment scores.

The total score of the alignment for Figure 8.8(a) is (−2) + (−8) + (5) + (−8) +
(−8) + (15) + (−8) + (10) + (6) + (−8) + (6) = 0, whereas that for Figure 8.8(b) is

Table 8.3 The substitution matrix of amino acids.

HEAGAWGHEE

PAWHEAE

A E G H W

A 5 −1 0 −2 −3

E −1 6 −3 0 −3

H −2 0 −2 10 −3

P −1 −1 −2 −2 −4

W −3 −3 −3 −3 15

H E A G A W G H E − E

| | | | |
P − A − − W − H E A E

(a)

H E A G A W G H E − E

| | | | |
− − P − A W − H E A E

(b)

Figure 8.8 Scoring two potential pairwise alignments, (a) and (b), of amino acids.
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(−8) + (−8) + (−1) + (−8) + (5) + (15) + (−8) + (10) + (6) + (−8) + (6) = 1. Thus
the alignment of Figure 8.8(b) is slightly better than that in Figure 8.8(a).

Biologists have developed 20 × 20 triangular matrices that provide the weights for
comparing identical and different amino acids as well as the penalties that should be
attributed to gaps. Two frequently used matrices are PAM (Percent Accepted Mutation)
and BLOSUM (BlOcks SUbstitution Matrix). These substitution matrices represent the
weights obtained by comparing the amino acid substitutions that have occurred through
evolution.

For global pairwise sequence alignment, two influential algorithms have been pro-
posed: the Needleman-Wunsch Algorithm and the Smith-Waterman Algorithm. The for-
mer uses weights for the outmost edges that encourage the best overall global alignment,
whereas the latter favors the contiguity of segments being aligned. Both build up “opti-
mal” alignment from “optimal” alignments of subsequences. Both use the methodology
of dynamic programming. Since these algorithms use recursion to fill in an intermediate
results table, it takes O(mn) space and O(n2) time to execute them. Such computational
complexity could be feasible for moderate-sized sequences but is not feasible for align-
ing large sequences, especially for entire genomes, where a genome is the complete set
of genes of an organism. Another approach called dot matrix plot uses Boolean matri-
ces to represent possible alignments that can be detected visually. The method is simple
and facilitates easy visual inspection. However, it still takes O(n2) in time and space to
construct and inspect such matrices.

To reduce the computational complexity, heuristic alignment algorithms have been
proposed. Heuristic algorithms speed up the alignment process at the price of possibly
missing the best scoring alignment. There are two influential heuristic alignment pro-
grams: (1) BLAST (Basic Local Alignment Search Tool), and (2) FASTA (Fast Alignment
Tool). Both find high-scoring local alignments between a query sequence and a target
database. Their basic idea is to first locate high-scoring short stretches and then extend
them to achieve suboptimal alignments. Because the BLAST algorithm has been very
popular in biology and bioinformatics research, we examine it in greater detail here.

The BLAST Local Alignment Algorithm
The BLAST algorithm was first developed by Altschul, Gish, Miller, et al. around 1990
at the National Center for Biotechnology Information (NCBI). The software, its tutori-
als, and a wealth of other information can be accessed at www.ncbi.nlm.nih.gov/BLAST/.
BLAST finds regions of local similarity between biosequences. The program compares
nucleotide or protein sequences to sequence databases and calculates the statistical signif-
icance of matches. BLAST can be used to infer functional and evolutionary relationships
between sequences as well as to help identify members of gene families.

The NCBI website contains many common BLAST databases. According to their con-
tent, they are grouped into nucleotide and protein databases. NCBI also provides spe-
cialized BLAST databases such as the vector screening database, a variety of genome
databases for different organisms, and trace databases.
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BLAST applies a heuristic method to find the highest local alignments between a
query sequence and a database. BLAST improves the overall speed of search by breaking
the sequences to be compared into sequences of fragments (referred to as words) and
initially seeking matches between these words. In BLAST, the words are considered as
k-tuples. For DNA nucleotides, a word typically consists of 11 bases (nucleotides),
whereas for proteins, a word typically consists of 3 amino acids. BLAST first creates a hash
table of neighborhood (i.e., closely matching) words, while the threshold for “closeness”
is set based on statistics. It starts from exact matches to neighborhood words. Because
good alignments should contain many close matches, we can use statistics to determine
which matches are significant. By hashing, we can find matches in O(n) (linear) time. By
extending matches in both directions, the method finds high-quality alignments consist-
ing of many high-scoring and maximum segment pairs.

There are many versions and extensions of the BLAST algorithms. For example,
MEGABLAST, Discontiguous MEGABLAST, and BLASTN all can be used to identify a
nucleotide sequence. MEGABLAST is specifically designed to efficiently find long align-
ments between very similar sequences, and thus is the best tool to use to find the identical
match to a query sequence. Discontiguous MEGABLAST is better at finding nucleotide
sequencesthataresimilar,butnotidentical(i.e.,gappedalignments), toanucleotidequery.
One of the important parameters governing the sensitivity of BLAST searches is the length
of the initial words, or word size. The word size is adjustable in BLASTN and can be reduced
from the default value to a minimum of 7 to increase search sensitivity. Thus BLASTN
is better than MEGABLAST at finding alignments to related nucleotide sequences from
other organisms. For protein searches, BLASTP, PSI-BLAST, and PHI-BLAST are popular.
Standard protein-protein BLAST (BLASTP) is used for both identifying a query amino
acid sequence and for finding similar sequences in protein databases. Position-Specific
Iterated (PSI)-BLAST is designed for more sensitive protein-protein similarity searches.
It is useful for finding very distantly related proteins. Pattern-Hit Initiated (PHI)-BLAST
can do a restricted protein pattern search. It is designed to search for proteins that contain
a pattern specified by the user and are similar to the query sequence in the vicinity of the
pattern. This dual requirement is intended to reduce the number of database hits that
contain the pattern, but are likely to have no true homology to the query.

Multiple Sequence Alignment Methods
Multiple sequence alignment is usually performed on a set of sequences of amino acids
that are believed to have similar structures. The goal is to find common patterns that are
conserved among all the sequences being considered.

The alignment of multiple sequences has many applications. First, such an alignment
may assist in the identification of highly conserved residues (amino acids), which are
likely to be essential sites for structure and function. This will guide or help pairwise
alignment as well. Second, it will help build gene or protein families using conserved
regions, forming a basis for phylogenetic analysis (i.e., the inference of evolutionary rela-
tionships between genes). Third, conserved regions can be used to develop primers for
amplifying DNA sequences and probes for DNA microarray analysis.
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From the computational point of view, it is more challenging to align multiple
sequences than to perform pairwise alignment of two sequences. This is because mul-
tisequence alignment can be considered as a multidimensional alignment problem, and
there are many more possibilities for approximate alignments of subsequences in multi-
ple dimensions.

There are two major approaches for approximate multiple sequence alignment. The
first method reduces a multiple alignment to a series of pairwise alignments and then
combines the result. The popular Feng-Doolittle alignment method belongs to this
approach. Feng-Doolittle alignment first computes all of the possible pairwise align-
ments by dynamic programming and converts or normalizes alignment scores to dis-
tances. It then constructs a “guide tree” by clustering and performs progressive alignment
based on the guide tree in a bottom-up manner. Following this approach, a multiple
alignment tool, Clustal W, and its variants have been developed as software packages for
multiple sequence alignments. The software handles a variety of input/output formats
and provides displays for visual inspection.

The second multiple sequence alignment method uses hidden Markov models
(HMMs). Due to the extensive use and popularity of hidden Markov models, we devote
an entire section to this approach. It is introduced in Section 8.4.2, which follows.

From the above discussion, we can see that several interesting methods have been
developed for multiple sequence alignment. Due to its computational complexity, the
development of effective and scalable methods for multiple sequence alignment remains
an active research topic in biological data mining.

8.4.2 Hidden Markov Model for Biological Sequence Analysis

Given a biological sequence, such as a DNA sequence or an amino acid (protein),
biologists would like to analyze what that sequence represents. For example, is a given
DNA sequence a gene or not? Or, to which family of proteins does a particular amino
acid sequence belong? In general, given sequences of symbols from some alphabet, we
would like to represent the structure or statistical regularities of classes of sequences. In
this section, we discuss Markov chains and hidden Markov models—probabilistic mod-
els that are well suited for this type of task. Other areas of research, such as speech and
pattern recognition, are faced with similar sequence analysis tasks.

ToillustrateourdiscussionofMarkovchainsandhiddenMarkovmodels,weuseaclassic
problem in biological sequence analysis—that of finding CpG islands in a DNA sequence.
Here, the alphabet consists of four nucleotides, namely, A (adenine), C (cytosine), G (gua-
nine),andT(thymine).CpGdenotesapair(orsubsequence)ofnucleotides,whereGappears
immediately after C along a DNA strand. The C in a CpG pair is often modified by a process
knownasmethylation(wheretheCisreplacedbymethyl-C,whichtendstomutatetoT).As
aresult,CpGpairsoccurinfrequentlyinthehumangenome.However,methylationisoften
suppressed around promotors or “start” regions of many genes. These areas contain a rela-
tivelyhighconcentrationofCpGpairs, collectivelyreferredtoalongachromosomeas CpG
islands, which typically vary in length from a few hundred to a few thousand nucleotides
long. CpG islands are very useful in genome mapping projects.
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Two important questions that biologists have when studying DNA sequences are
(1) given a short sequence, is it from a CpG island or not? and (2) given a long sequence,
can we find all of the CpG islands within it? We start our exploration of these questions
by introducing Markov chains.

Markov Chain
A Markov chain is a model that generates sequences in which the probability of a sym-
bol depends only on the previous symbol. Figure 8.9 is an example Markov chain model.
A Markov chain model is defined by (a) a set of states, Q, which emit symbols and (b) a
set of transitions between states. States are represented by circles and transitions are rep-
resented by arrows. Each transition has an associated transition probability, ai j, which
represents the conditional probability of going to state j in the next step, given that the
current state is i. The sum of all transition probabilities from a given state must equal 1,
that is, ∑ j∈Q ai j = 1 for all j ∈ Q. If an arc is not shown, it is assumed to have a 0 prob-
ability. The transition probabilities can also be written as a transition matrix, A = {ai j}.

Example 8.16 Markov chain. The Markov chain in Figure 8.9 is a probabilistic model for CpG islands.
The states are A, C, G, and T. For readability, only some of the transition probabilities
are shown. For example, the transition probability from state G to state T is 0.14, that is,
P(xi = T|xi−1 = G) = 0.14. Here, the emitted symbols are understood. For example, the
symbol C is emitted when transitioning from state C. In speech recognition, the symbols
emitted could represent spoken words or phrases.

Given some sequence x of length L, how probable is x given the model? If x is a DNA
sequence, we could use our Markov chain model to determine how probable it is that x
is from a CpG island. To do so, we look at the probability of x as a path, x1x2 . . .xL, in
the chain. This is the probability of starting in the first state, x1, and making successive
transitions to x2, x3, and so on, to xL. In a Markov chain model, the probability of xL

A G

TC

0.14

0.44
0.36

Figure 8.9 A Markov chain model.
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depends on the value of only the previous one state, xL−1, not on the entire previous
sequence.9 This characteristic is known as the Markov property, which can be written as

P(x) = P(xL|xL−1)P(xL−1|xL−2) · · ·P(x2|x1)P(x1)
(8.7)

= P(x1)
L

∏
i=2

P(xi|xi−1).

That is, the Markov chain can only “remember” the previous one state of its history.
Beyond that, it is “memoryless.”

In Equation (8.7), we need to specify P(x1), the probability of the starting state. For
simplicity, we would like to model this as a transition too. This can be done by adding
a begin state, denoted 0, so that the starting state becomes x0 = 0. Similarly, we can add
an end state, also denoted as 0. Note that P(xi|xi−1) is the transition probability, axi−1xi .
Therefore, Equation (8.7) can be rewritten as

P(x) =
L

∏
i=1

axi−1xi , (8.8)

which computes the probability that sequence x belongs to the given Markov chain model,
that is, P(x|model). Note that the begin and end states are silent in that they do not emit
symbols in the path through the chain.

We can use the Markov chain model for classification. Suppose that we want to distin-
guish CpG islands from other “non-CpG” sequence regions. Given training sequences
from CpG islands (labeled “+”) and from non-CpG islands (labeled “−”), we can con-
struct two Markov chain models—the first, denoted “+”, to represent CpG islands, and
the second, denoted “−”, to represent non-CpG islands. Given a sequence, x, we use the
respective models to compute P(x|+), the probability that x is from a CpG island, and
P(x|−), the probability that it is from a non-CpG island. The log-odds ratio can then be
used to classify x based on these two probabilities.

“But first, how can we estimate the transition probabilities for each model?” Before we
can compute the probability of x being from either of the two models, we need to estimate
the transition probabilities for the models. Given the CpG (+) training sequences, we can
estimate the transition probabilities for the CpG island model as

a+
i j =

c+
i j

∑k c+
ik

, (8.9)

where c+
i j is the number of times that nucleotide j follows nucleotide i in the given

sequences labeled “+”. For the non-CpG model, we use the non-CpG island sequences
(labeled “−”) in a similar way to estimate a−i j .

9This is known as a first-order Markov chain model, since xL depends only on the previous state, xL−1.
In general, for the k-th-order Markov chain model, the probability of xL depends on the values of only
the previous k states.
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To determine whether x is from a CpG island or not, we compare the models using
the logs-odds ratio, defined as

log
P(x|+)
P(x|−)

=
L

∑
i=1

log
a+

xi−1xi

a−xi−1xi

. (8.10)

If this ratio is greater than 0, then we say that x is from a CpG island.

Example 8.17 Classification using a Markov chain. Our model for CpG islands and our model for
non-CpG islands both have the same structure, as shown in our example Markov chain
of Figure 8.9. Let CpG+ be the transition matrix for the CpG island model. Similarly,
CpG− is the transition matrix for the non-CpG island model. These are (adapted from
Durbin, Eddy, Krogh, and Mitchison [DEKM98]):

CpG+ =

















A C G T

A 0.20 0.26 0.44 0.10

C 0.16 0.36 0.28 0.20

G 0.15 0.35 0.36 0.14

T 0.09 0.37 0.36 0.18

















(8.11)

CpG− =

















A C G T

A 0.27 0.19 0.31 0.23

C 0.33 0.31 0.08 0.28

G 0.26 0.24 0.31 0.19

T 0.19 0.25 0.28 0.28

















(8.12)

Notice that the transition probability a+
CG = 0.28 is higher than a−CG = 0.08. Suppose we

are given the sequence x = CGCG. The log-odds ratio of x is

log
0.28
0.08

+ log
0.35
0.24

+ log
0.28
0.08

= 1.25> 0.

Thus, we say that x is from a CpG island.

In summary, we can use a Markov chain model to determine if a DNA sequence, x, is
from a CpG island. This was the first of our two important questions mentioned at the
beginning of this section. To answer the second question, that of finding all of the CpG
islands in a given sequence, we move on to hidden Markov models.

Hidden Markov Model
Given a long DNA sequence, how can we find all CpG islands within it? We could try
the Markov chain method above, using a sliding window. For each window, we could
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compute the log-odds ratio. CpG islands within intersecting windows could be merged
to determine CpG islands within the long sequence. This approach has some difficulties:
It is not clear what window size to use, and CpG islands tend to vary in length.

What if, instead, we merge the two Markov chains from above (for CpG islands and
non-CpG islands, respectively) and add transition probabilities between the two chains?
The result is a hidden Markov model, as shown in Figure 8.10. The states are renamed
by adding “+” and “−” labels to distinguish them. For readability, only the transitions
between “+” and “−” states are shown, in addition to those for the begin and end states.
Let π = π1π2 . . .πL be a path of states that generates a sequence of symbols, x = x1x2 . . .xL.
In a Markov chain, the path through the chain for x is unique. With a hidden Markov
model, however, different paths can generate the same sequence. For example, the states
C+ and C− both emit the symbol C. Therefore, we say the model is “hidden” in that
we do not know for sure which states were visited in generating the sequence. The tran-
sition probabilities between the original two models can be determined using training
sequences containing transitions between CpG islands and non-CpG islands.

A Hidden Markov Model (HMM) is defined by

a set of states, Q

a set of transitions, where transition probability akl = P(πi = l|πi−1 = k) is the prob-
ability of transitioning from state k to state l for k, l ∈ Q

an emission probability, ek(b) = P(xi = b|πi = k), for each state, k, and each symbol,
b, where ek(b) is the probability of seeing symbol b in state k. The sum of all emission
probabilities at a given state must equal 1, that is, ∑b ek = 1 for each state, k.

Example 8.18 A hidden Markov model. The transition matrix for the hidden Markov model of
Figure 8.10 is larger than that of Example 8.16 for our earlier Markov chain example.

G+C+

G–
C–


T+A+

T–
A–


O O

Figure 8.10 A hidden Markov model.
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It contains the states A+, C+, G+, T+, A−, C−, G−, T− (not shown). The transition
probabilities between the “+” states are as before. Similarly, the transition probabili-
ties between the “−” states are as before. The transition probabilities between “+” and
“−” states can be determined as mentioned above, using training sequences containing
known transitions from CpG islands to non-CpG islands, and vice versa. The emis-
sion probabilities are eA+(A) = 1, eA+(C) = 0, eA+(G) = 0, eA+(T ) = 0, eA−(A) = 1,
eA−(C) = 0, eA−(G) = 0, eA−(T ) = 0, and so on. Although here the probability of emit-
ting a symbol at a state is either 0 or 1, in general, emission probabilities need not be
zero-one.

Tasks using hidden Markov models include:

Evaluation: Given a sequence, x, determine the probability, P(x), of obtaining x in the
model.

Decoding: Given a sequence, determine the most probable path through the model
that produced the sequence.

Learning: Given a model and a set of training sequences, find the model parameters
(i.e., the transition and emission probabilities) that explain the training sequences
with relatively high probability. The goal is to find a model that generalizes well to
sequences we have not seen before.

Evaluation, decoding, and learning can be handled using the forward algorithm,
Viterbi algorithm, and Baum-Welch algorithm, respectively. These algorithms are dis-
cussed in the following sections.

Forward Algorithm
What is the probability, P(x), that sequence x was generated by a given hidden Markov
model (where, say, the model represents a sequence class)? This problem can be solved
using the forward algorithm.

Let x = x1x2 . . . xL be our sequence of symbols. A path is a sequence of states. Many
paths can generate x. Consider one such path, which we denote π = π1π2 . . .πL. If we
incorporate the begin and end states, denoted as 0, we can write π as π0 = 0, π1π2 . . .πL,
πL+1 = 0. The probability that the model generated sequence x using path π is

P(x, π) = a0π1 eπ1(x1) ·aπ1π2 eπ2(x2) · · · ·aπL−1πL eπL(xL) ·aπL0

(8.13)
= a0π1

L

∏
i=1

eπi(xi)aπiπi+1

where πL+1 = 0. We must, however, consider all of the paths that can generate x. There-
fore, the probability of x given the model is

P(x) = ∑
π

P(x, π). (8.14)

That is, we add the probabilities of all possible paths for x.
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Algorithm: Forward algorithm. Find the probability, P(x), that sequence x was generated by the given hidden
Markov model.

Input:

A hidden Markov model, defined by a set of states, Q, that emit symbols, and by transition and emission
probabilities;

x, a sequence of symbols.

Output: Probability, P(x).

Method:

(1) Initialization (i = 0): f0(0) = 1, fk(0) = 0 for k > 0
(2) Recursion (i = 1 . . .L): fl(i) = el(xi)∑k fk(i−1)akl

(3) Termination: P(x) = ∑k fk(L)ak0

Figure 8.11 Forward algorithm.

Unfortunately, the number of paths can be exponential with respect to the length,
L, of x, so brute force evaluation by enumerating all paths is impractical. The forward
algorithm exploits a dynamic programming technique to solve this problem. It defines
forward variables, fk(i), to be the probability of being in state k having observed the first
i symbols of sequence x. We want to compute fπL+1=0(L), the probability of being in the
end state having observed all of sequence x.

The forward algorithm is shown in Figure 8.11. It consists of three steps. In step 1,
the forward variables are initialized for all states. Because we have not viewed any part of
the sequence at this point, the probability of being in the start state is 1 (i.e., f0(0) = 1),
and the probability of being in any other state is 0. In step 2, the algorithm sums over all
the probabilities of all the paths leading from one state emission to another. It does this
recursively for each move from state to state. Step 3 gives the termination condition. The
whole sequence (of length L) has been viewed, and we enter the end state, 0. We end up
with the summed-over probability of generating the required sequence of symbols.

Viterbi Algorithm
Given a sequence, x, what is the most probable path in the model that generates x? This
problem of decoding can be solved using the Viterbi algorithm.

Many paths can generate x. We want to find the most probable one, π?, that is, the
path that maximizes the probability of having generated x. This is π? = argmaxπP(π|x).10

It so happens that this is equal to argmaxπP(x, π). (The proof is left as an exercise for the
reader.) We saw how to compute P(x, π) in Equation (8.13). For a sequence of length L,
there are |Q|L possible paths, where |Q| is the number of states in the model. It is

10In mathematics, argmax stands for the argument of the maximum. Here, this means that we want the
path, π, for which P(π|x) attains its maximum value.
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infeasible to enumerate all of these possible paths! Once again, we resort to a dynamic
programming technique to solve the problem.

At each step along the way, the Viterbi algorithm tries to find the most probable
path leading from one symbol of the sequence to the next. We define vl(i) to be the
probability of the most probable path accounting for the first i symbols of x and
ending in state l. To find π?, we need to compute maxkvk(L), the probability of the
most probable path accounting for all of the sequence and ending in the end state.
The probability, vl(i), is

vl(i) = el(xi) ·maxk(vl(k)akl), (8.15)

which states that the most probable path that generates x1 . . .xi and ends in state l has to
emit xi in state xl (hence, the emission probability, el(xi)) and has to contain the most
probable path that generates x1 . . .xi−1 and ends in state k, followed by a transition from
state k to state l (hence, the transition probability, akl). Thus, we can compute vk(L) for
any state, k, recursively to obtain the probability of the most probable path.

The Viterbi algorithm is shown in Figure 8.12. Step 1 performs initialization. Every
path starts at the begin state (0) with probability 1. Thus, for i = 0, we have v0(0) = 1, and
the probability of starting at any other state is 0. Step 2 applies the recurrence formula for
i = 1 to L. At each iteration, we assume that we know the most likely path for x1 . . . xi−1
that ends in state k, for all k ∈Q. To find the most likely path to the i-th state from there,
we maximize vk(i−1)akl over all predecessors k ∈Q of l. To obtain vl(i), we multiply by
el(xi) since we have to emit xi from l. This gives us the first formula in step 2. The values
vk(i) are stored in a Q×L dynamic programming matrix. We keep pointers (ptr) in this
matrix so that we can obtain the path itself. The algorithm terminates in step 3, where
finally, we have maxkvk(L). We enter the end state of 0 (hence, the transition probability,
ak0) but do not emit a symbol. The Viterbi algorithm runs in O(|Q|2|L|) time. It is more
efficient than the forward algorithm because it investigates only the most probable path
and avoids summing over all possible paths.

Algorithm: Viterbi algorithm. Find the most probable path that emits the sequence of symbols, x.

Input:

A hidden Markov model, defined by a set of states, Q, that emit symbols, and by transition and emission
probabilities;

x, a sequence of symbols.

Output: The most probable path, π∗.

Method:

(1) Initialization (i = 0): v0(0) = 1, vk(0) = 0 for k > 0
(2) Recursion (i = 1 . . .L): vl(i) = el(xi)maxk(vk(i−1)akl)

ptri(l) = argmaxk(vk(i−1)akl)
(3) Termination: P(x,π∗) = maxk(vk(L)ak0)

π∗L = argmaxk(vk(L)ak0)

Figure 8.12 Viterbi (decoding) algorithm.
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Baum-Welch Algorithm
Given a training set of sequences, how can we determine the parameters of a hidden
Markov model that will best explain the sequences? In other words, we want to learn or
adjust the transition and emission probabilities of the model so that it can predict the
path of future sequences of symbols. If we know the state path for each training sequence,
learning the model parameters is simple. We can compute the percentage of times each
particular transition or emission is used in the set of training sequences to determine akl ,
the transition probabilities, and ek(b), the emission probabilities.

When the paths for the training sequences are unknown, there is no longer a direct
closed-form equation for the estimated parameter values. An iterative procedure must be
used, like the Baum-Welch algorithm. The Baum-Welch algorithm is a special case of the
EM algorithm (Section 7.8.1), which is a family of algorithms for learning probabilistic
models in problems that involve hidden states.

The Baum-Welch algorithm is shown in Figure 8.13. The problem of finding the
optimal transition and emission probabilities is intractable. Instead, the Baum-Welch
algorithm finds a locally optimal solution. In step 1, it initializes the probabilities to
an arbitrary estimate. It then continuously re-estimates the probabilities (step 2) until
convergence (i.e., when there is very little change in the probability values between iter-
ations). The re-estimation first calculates the expected transmission and emission prob-
abilities. The transition and emission probabilities are then updated to maximize the
likelihood of the expected values.

In summary, Markov chains and hidden Markov models are probabilistic models in
which the probability of a state depends only on that of the previous state. They are par-
ticularly useful for the analysis of biological sequence data, whose tasks include evalua-
tion, decoding, and learning. We have studied the forward, Viterbi, and Baum-Welch
algorithms. The algorithms require multiplying many probabilities, resulting in very

Algorithm: Baum-Welch algorithm. Find the model parameters (transition and emission probabilities) that
best explain the training set of sequences.

Input:

A training set of sequences.

Output:

Transition probabilities, akl ;

Emission probabilities, ek(b);

Method:

(1) initialize the transmission and emission probabilities;

(2) iterate until convergence

(2.1) calculate the expected number of times each transition or emission is used

(2.2) adjust the parameters to maximize the likelihood of these expected values

Figure 8.13 Baum-Welch (learning) algorithm.
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small numbers that can cause underflow arithmetic errors. A way around this is to use
the logarithms of the probabilities.

8.5 Summary

Stream data flow in and out of a computer system continuously and with varying
update rates. They are temporally ordered, fast changing, massive (e.g., gigabytes to ter-
abytes in volume), and potentially infinite. Applications involving stream data include
telecommunications, financial markets, and satellite data processing.

Synopses provide summaries of stream data, which typically can be used to return
approximate answers to queries. Random sampling, sliding windows, histograms, mul-
tiresolution methods (e.g., for data reduction), sketches (which operate in a single
pass), and randomized algorithms are all forms of synopses.

The tilted time frame model allows data to be stored at multiple granularities of time.
The most recent time is registered at the finest granularity. The most distant time is
at the coarsest granularity.

A stream data cube can store compressed data by (1) using the tilted time frame model
on the time dimension, (2) storing data at only some critical layers, which reflect
the levels of data that are of most interest to the analyst, and (3) performing partial
materialization based on “popular paths” through the critical layers.

Traditional methods of frequent itemset mining, classification, and clustering tend to
scan the data multiple times, making them infeasible for stream data. Stream-based
versions of such mining instead try to find approximate answers within a user-specified
error bound. Examples include the Lossy Counting algorithm for frequent itemset
stream mining; the Hoeffding tree, VFDT, and CVFDT algorithms for stream data
classification; and the STREAM and CluStream algorithms for stream data clustering.

A time-series database consists of sequences of values or events changing with time,
typically measured at equal time intervals. Applications include stock market analysis,
economic and sales forecasting, cardiogram analysis, and the observation of weather
phenomena.

Trend analysis decomposes time-series data into the following: trend (long-term)
movements, cyclic movements, seasonal movements (which are systematic or calendar
related), and irregular movements (due to random or chance events).

Subsequence matching is a form of similarity search that finds subsequences that
are similar to a given query sequence. Such methods match subsequences that have
the same shape, while accounting for gaps (missing values) and differences in base-
line/offset and scale.

A sequence database consists of sequences of ordered elements or events, recorded
with or without a concrete notion of time. Examples of sequence data include cus-
tomer shopping sequences, Web clickstreams, and biological sequences.
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Sequential pattern mining is the mining of frequently occurring ordered events or
subsequences as patterns. Given a sequence database, any sequence that satisfies min-
imum support is frequent and is called a sequential pattern. An example of a sequen-
tial pattern is “Customers who buy a Canon digital camera are likely to buy an HP
color printer within a month.” Algorithms for sequential pattern mining include GSP,
SPADE, and PrefixSpan, as well as CloSpan (which mines closed sequential patterns).

Constraint-based mining of sequential patterns incorporates user-specified
constraints to reduce the search space and derive only patterns that are of interest
to the user. Constraints may relate to the duration of a sequence, to an event fold-
ing window (where events occurring within such a window of time can be viewed as
occurring together), and to gaps between events. Pattern templates may also be spec-
ified as a form of constraint using regular expressions.

Periodicity analysis is the mining of periodic patterns, that is, the search for recurring
patterns in time-related sequence databases. Full periodic and partial periodic patterns
can be mined, as well as periodic association rules.

Biological sequence analysis compares, aligns, indexes, and analyzes biological
sequences, which can be either sequences of nucleotides or of amino acids. Biose-
quenceanalysisplaysacrucial role inbioinformaticsandmodernbiology.Suchanalysis
can be partitioned into two essential tasks: pairwise sequence alignment and multi-
ple sequence alignment. The dynamic programming approach is commonly used for
sequence alignments. Among many available analysis packages, BLAST (Basic Local
Alignment Search Tool) is one of the most popular tools in biosequence analysis.

Markov chains and hidden Markov models are probabilistic models in which the
probability of a state depends only on that of the previous state. They are particu-
larly useful for the analysis of biological sequence data. Given a sequence of symbols,
x, the forward algorithm finds the probability of obtaining x in the model, whereas
the Viterbi algorithm finds the most probable path (corresponding to x) through the
model. The Baum-Welch algorithm learns or adjusts the model parameters (transition
and emission probabilities) so as to best explain a set of training sequences.

Exercises

8.1 A stream data cube should be relatively stable in size with respect to infinite data streams.
Moreover, it should be incrementally updateable with respect to infinite data streams.
Show that the stream cube proposed in Section 8.1.2 satisfies these two requirements.

8.2 In stream data analysis, we are often interested in only the nontrivial or exceptionally
large cube cells. These can be formulated as iceberg conditions. Thus, it may seem that
the iceberg cube [BR99] is a likely model for stream cube architecture. Unfortunately,
this is not the case because iceberg cubes cannot accommodate the incremental updates
required due to the constant arrival of new data. Explain why.
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8.3 An important task in stream data analysis is to detect outliers in a multidimensional
environment. An example is the detection of unusual power surges, where the dimen-
sions include time (i.e., comparing with the normal duration), region (i.e., comparing
with surrounding regions), sector (i.e., university, residence, government), and so on.
Outline an efficient stream OLAP method that can detect outliers in data streams. Pro-
vide reasons as to why your design can ensure such quality.

8.4 Frequent itemset mining in data streams is a challenging task. It is too costly to keep the
frequency count for every itemset. However, because a currently infrequent itemset may
become frequent, and a currently frequent one may become infrequent in the future,
it is important to keep as much frequency count information as possible. Given a fixed
amount of memory, can you work out a good mechanism that may maintain high-quality
approximation of itemset counting?

8.5 For the above approximate frequent itemset counting problem, it is interesting to incor-
porate the notion of tilted time frame. That is, we can put less weight on more remote
itemsets when counting frequent itemsets. Design an efficient method that may obtain
high-quality approximation of itemset frequency in data streams in this case.

8.6 A classification model may change dynamically along with the changes of training data
streams. This is known as concept drift. Explain why decision tree induction may not
be a suitable method for such dynamically changing data sets. Is naïve Bayesian a better
method on such data sets? Comparing with the naïve Bayesian approach, is lazy evalua-
tion (such as the k-nearest-neighbor approach) even better? Explain your reasoning.

8.7 The concept of microclustering has been popular for on-line maintenance of cluster-
ing information for data streams. By exploring the power of microclustering, design an
effective density-based clustering method for clustering evolving data streams.

8.8 Suppose that a power station stores data regarding power consumption levels by time and
by region, in addition to power usage information per customer in each region. Discuss
how to solve the following problems in such a time-series database:

(a) Find similar power consumption curve fragments for a given region on Fridays.

(b) Every time a power consumption curve rises sharply, what may happen within the
next 20 minutes?

(c) How can we find the most influential features that distinguish a stable power con-
sumption region from an unstable one?

8.9 Regression is commonly used in trend analysis for time-series data sets. An item in a
time-series database is usually associated with properties in multidimensional space.
For example, an electric power consumer may be associated with consumer location,
category, and time of usage (weekdays vs. weekends). In such a multidimensional
space, it is often necessary to perform regression analysis in an OLAP manner (i.e.,
drilling and rolling along any dimension combinations that a user desires). Design
an efficient mechanism so that regression analysis can be performed efficiently in
multidimensional space.
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8.10 Suppose that a restaurant chain would like to mine customers’ consumption behavior
relating to major sport events, such as “Every time there is a major sport event on TV, the
sales of Kentucky Fried Chicken will go up 20% one hour before the match.”

(a) For this problem, there are multiple sequences (each corresponding to one restau-
rant in the chain). However, each sequence is long and contains multiple occurrences
of a (sequential) pattern. Thus this problem is different from the setting of sequential
pattern mining problem discussed in this chapter. Analyze what are the differences
in the two problem definitions and how such differences may influence the develop-
ment of mining algorithms.

(b) Develop a method for finding such patterns efficiently.

8.11 (Implementation project) The sequential pattern mining algorithm introduced by
Srikant and Agrawal [SA96] finds sequential patterns among a set of sequences. Although
there have been interesting follow-up studies, such as the development of the algorithms
SPADE (Zaki [Zak01]), PrefixSpan (Pei, Han, Mortazavi-Asl, et al. [PHMA+01]), and
CloSpan (Yan, Han, and Afshar [YHA03]), the basic definition of “sequential pattern”
has not changed. However, suppose we would like to find frequently occurring subse-
quences (i.e., sequential patterns) within one given sequence, where, say, gaps are not
allowed. (That is, we do not consider AG to be a subsequence of the sequence ATG.)
For example, the string ATGCTCGAGCT contains a substring GCT with a support of
2. Derive an efficient algorithm that finds the complete set of subsequences satisfying a
minimum support threshold. Explain how your algorithm works using a small example,
and show some performance results for your implementation.

8.12 Suppose frequent subsequences have been mined from a sequence database, with a given
(relative) minimum support, min sup. The database can be updated in two cases:
(i) adding new sequences (e.g., new customers buying items), and (ii) appending new
subsequences to some existing sequences (e.g., existing customers buying new items). For
each case, work out an efficient incremental mining method that derives the complete sub-
sequences satisfying min sup, without mining the whole sequence database from scratch.

8.13 Closed sequential patterns can be viewed as a lossless compression of a large set of sequen-
tial patterns. However, the set of closed sequential patterns may still be too large for effec-
tive analysis. There should be some mechanism for lossy compression that may further
reduce the set of sequential patterns derived from a sequence database.

(a) Provide a good definition of lossy compression of sequential patterns, and reason
why such a definition may lead to effective compression with minimal information
loss (i.e., high compression quality).

(b) Develop an efficient method for such pattern compression.

(c) Develop an efficient method that mines such compressed patterns directly from a
sequence database.

8.14 As discussed in Section 8.3.4, mining partial periodic patterns will require a user to spec-
ify the length of the period. This may burden the user and reduces the effectiveness of
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mining. Propose a method that will automatically mine the minimal period of a pattern
without requiring a predefined period. Moreover, extend the method to find approximate
periodicity where the period will not need to be precise (i.e., it can fluctuate within a
specified small range).

8.15 There are several major differences between biological sequential patterns and transac-
tional sequential patterns. First, in transactional sequential patterns, the gaps between
two events are usually nonessential. For example, the pattern “purchasing a digital camera
two months after purchasing a PC” does not imply that the two purchases are consecutive.
However, for biological sequences, gaps play an important role in patterns. Second, pat-
terns in a transactional sequence are usually precise. However, a biological pattern can be
quite imprecise, allowing insertions, deletions, and mutations. Discuss how the mining
methodologies in these two domains are influenced by such differences.

8.16 BLAST is a typical heuristic alignment method for pairwise sequence alignment. It first
locates high-scoring short stretches and then extends them to achieve suboptimal align-
ments. When the sequences to be aligned are really long, BLAST may run quite slowly.
Propose and discuss some enhancements to improve the scalability of such a method.

8.17 The Viterbi algorithm uses the equality, argmaxπP(π|x) = argmaxπP(x, π), in its search
for the most probable path, π∗, through a hidden Markov model for a given sequence of
symbols, x. Prove the equality.

8.18 (Implementation project) A dishonest casino uses a fair die most of the time. However, it
switches to a loaded die with a probability of 0.05, and switches back to the fair die with
a probability 0.10. The fair die has a probability of 1

6 of rolling any number. The loaded
die has P(1) = P(2) = P(3) = P(4) = P(5) = 0.10 and P(6) = 0.50.

(a) Draw a hidden Markov model for the dishonest casino problem using two states,
Fair (F) and Loaded (L). Show all transition and emission probabilities.

(b) Suppose you pick up a die at random and roll a 6. What is the probability that the
die is loaded, that is, find P(6|DL)? What is the probability that it is fair, that is, find
P(6|DF)? What is the probability of rolling a 6 from the die you picked up? If you
roll a sequence of 666, what is the probability that the die is loaded?

(c) Write a program that, given a sequence of rolls (e.g., x = 5114362366 . . .), predicts
when the fair die was used and when the loaded die was used. (Hint: This is similar
to detecting CpG islands and non-CPG islands in a given long sequence.) Use the
Viterbi algorithm to get the most probable path through the model. Describe your
implementation in report form, showing your code and some examples.
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There have been extensive studies on stream data management and the processing
of continuous queries in stream data. For a description of synopsis data structures for
stream data, see Gibbons and Matias [GM98]. Vitter introduced the notion of reservoir
sampling as a way to select an unbiased random sample of n elements without replace-
ment from a larger ordered set of size N, where N is unknown [Vit85]. Stream query
or aggregate processing methods have been proposed by Chandrasekaran and Franklin
[CF02], Gehrke, Korn, and Srivastava [GKS01], Dobra, Garofalakis, Gehrke, and Ras-
togi [DGGR02], and Madden, Shah, Hellerstein, and Raman [MSHR02]. A one-pass
summary method for processing approximate aggregate queries using wavelets was pro-
posed by Gilbert, Kotidis, Muthukrishnan, and Strauss [GKMS01]. Statstream, a statisti-
cal method for the monitoring of thousands of data streams in real time, was developed
by Zhu and Shasha [ZS02, SZ04].

There are also many stream data projects. Examples include Aurora by Zdonik,
Cetintemel, Cherniack, et al. [ZCC+02], which is targeted toward stream monitoring
applications; STREAM, developed at Stanford University by Babcock, Babu, Datar,
et al., aims at developing a general-purpose Data Stream Management System (DSMS)
[BBD+02]; and an early system called Tapestry by Terry, Goldberg, Nichols, and Oki
[TGNO92], which used continuous queries for content-based filtering over an append-
only database of email and bulletin board messages. A restricted subset of SQL was
used as the query language in order to provide guarantees about efficient evaluation
and append-only query results.

A multidimensional stream cube model was proposed by Chen, Dong, Han, et al.
[CDH+02] in their study of multidimensional regression analysis of time-series data
streams. MAIDS (Mining Alarming Incidents from Data Streams), a stream data mining
system built on top of such a stream data cube, was developed by Cai, Clutter, Pape, et al.
[CCP+04].

For mining frequent items and itemsets on stream data, Manku and Motwani pro-
posed sticky sampling and lossy counting algorithms for approximate frequency counts
over data streams [MM02]. Karp, Papadimitriou, and Shenker proposed a counting algo-
rithm for finding frequent elements in data streams [KPS03]. Giannella, Han, Pei, et al.
proposed a method for mining frequent patterns in data streams at multiple time gran-
ularities [GHP+04]. Metwally, Agrawal, and El Abbadi proposed a memory-efficient
method for computing frequent and top-k elements in data streams [MAA05].

For stream data classification, Domingos and Hulten proposed the VFDT algorithm,
based on their Hoeffding tree algorithm [DH00]. CVFDT, a later version of VFDT, was
developed by Hulten, Spencer, and Domingos [HSD01] to handle concept drift in time-
changing data streams. Wang, Fan, Yu, and Han proposed an ensemble classifier to mine
concept-drifting data streams [WFYH03]. Aggarwal, Han, Wang, and Yu developed a
k-nearest-neighbor-based method for classify evolving data streams [AHWY04b].

Several methods have been proposed for clustering data streams. The k-median-
based STREAM algorithm was proposed by Guha, Mishra, Motwani, and O’Callaghan
[GMMO00] and by O’Callaghan, Mishra, Meyerson, et al. [OMM+02]. Aggarwal, Han,
Wang, and Yu proposed CluStream, a framework for clustering evolving data streams
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[AHWY03], and HPStream, a framework for projected clustering of high-dimensional
data streams [AHWY04a].

Statistical methods for time-series analysis have been proposed and studied extensively
in statistics, such as in Chatfield [Cha03], Brockwell and Davis [BD02], and Shumway and
Stoffer [SS05]. StatSoft’s Electronic Textbook (www.statsoft.com/textbook/ stathome.html)
is a useful online resource that includes a discussion on time-series data analysis. The
ARIMA forecasting method is described in Box, Jenkins, and Reinsel [BJR94]. Efficient
similarity search in sequence databases was studied by Agrawal, Faloutsos, and Swami
[AFS93]. A fast subsequence matching method in time-series databases was presented by
Faloutsos, Ranganathan, and Manolopoulos [FRM94]. Agrawal, Lin, Sawhney, and Shim
[ALSS95] developed a method for fast similarity search in the presence of noise, scaling,
and translation in time-series databases. Language primitives for querying shapes of his-
tories were proposed by Agrawal, Psaila, Wimmers, and Zait [APWZ95]. Other work on
similarity-based search of time-series data includes Rafiei and Mendelzon [RM97], and
Yi, Jagadish, and Faloutsos [YJF98]. Yi, Sidiropoulos, Johnson, Jagadish, et al. [YSJ+00]
introduced a method for on-line mining for co-evolving time sequences. Chen, Dong,
Han, et al. [CDH+02] proposed a multidimensional regression method for analysis of
multidimensional time-series data. Shasha and Zhu present a state-of-the-art overview of
the methods for high-performance discovery in time series [SZ04].

The problem of mining sequential patterns was first proposed by Agrawal and Srikant
[AS95]. In the Apriori-based GSP algorithm, Srikant and Agrawal [SA96] generalized
their earlier notion to include time constraints, a sliding time window, and user-defined
taxonomies. Zaki [Zak01] developed a vertical-format-based sequential pattern mining
method called SPADE, which is an extension of vertical-format-based frequent itemset
mining methods, like Eclat and Charm [Zak98, ZH02]. PrefixSpan, a pattern growth
approach to sequential pattern mining, and its predecessor, FreeSpan, were developed
by Pei, Han, Mortazavi-Asl, et al. [HPMA+00, PHMA+01, PHMA+04]. The CloSpan
algorithm for mining closed sequential patterns was proposed by Yan, Han, and Afshar
[YHA03]. BIDE, a bidirectional search for mining frequent closed sequences, was devel-
oped by Wang and Han [WH04].

The studies of sequential pattern mining have been extended in several different
ways. Mannila, Toivonen, and Verkamo [MTV97] consider frequent episodes in se-
quences, where episodes are essentially acyclic graphs of events whose edges specify
the temporal before-and-after relationship but without timing-interval restrictions.
Sequence pattern mining for plan failures was proposed in Zaki, Lesh, and Ogihara
[ZLO98]. Garofalakis, Rastogi, and Shim [GRS99a] proposed the use of regular expres-
sions as a flexible constraint specification tool that enables user-controlled focus to be
incorporated into the sequential pattern mining process. The embedding of multidi-
mensional, multilevel information into a transformed sequence database for sequen-
tial pattern mining was proposed by Pinto, Han, Pei, et al. [PHP+01]. Pei, Han, and
Wang studied issues regarding constraint-based sequential pattern mining [PHW02].
CLUSEQ is a sequence clustering algorithm, developed by Yang and Wang [YW03].
An incremental sequential pattern mining algorithm, IncSpan, was proposed by
Cheng, Yan, and Han [CYH04]. SeqIndex, efficient sequence indexing by frequent and
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discriminative analysis of sequential patterns, was studied by Cheng, Yan, and Han
[CYH05]. A method for parallel mining of closed sequential patterns was proposed
by Cong, Han, and Padua [CHP05].

Data mining for periodicity analysis has been an interesting theme in data mining.
Özden, Ramaswamy, and Silberschatz [ORS98] studied methods for mining periodic

or cyclic association rules. Lu, Han, and Feng [LHF98] proposed intertransaction asso-
ciation rules, which are implication rules whose two sides are totally ordered episodes
with timing-interval restrictions (on the events in the episodes and on the two sides).
Bettini, Wang, and Jajodia [BWJ98] consider a generalization of intertransaction associ-
ation rules. The notion of mining partial periodicity was first proposed by Han, Dong,
and Yin, together with a max-subpattern hit set method [HDY99]. Ma and Hellerstein
[MH01a] proposed a method for mining partially periodic event patterns with unknown
periods. Yang, Wang, and Yu studied mining asynchronous periodic patterns in time-
series data [YWY03].

Methods for the analysis of biological sequences have been introduced in many text-
books, such as Waterman [Wat95], Setubal and Meidanis [SM97], Durbin, Eddy, Krogh,
and Mitchison [DEKM98], Baldi and Brunak [BB01], Krane and Raymer [KR03], Jones
and Pevzner [JP04], and Baxevanis and Ouellette [BO04]. BLAST was developed by
Altschul, Gish, Miller, et al. [AGM+90]. Information about BLAST can be found
at the NCBI Web site www.ncbi.nlm.nih.gov/BLAST/. For a systematic introduction of
the BLAST algorithms and usages, see the book “BLAST” by Korf, Yandell, and
Bedell [KYB03].

For an introduction to Markov chains and hidden Markov models from a biological
sequence perspective, see Durbin, Eddy, Krogh, and Mitchison [DEKM98] and Jones and
Pevzner [JP04]. A general introduction can be found in Rabiner [Rab89]. Eddy and Krogh
have each respectively headed the development of software packages for hidden Markov
models forproteinsequenceanalysis,namelyHMMER(pronounced“hammer,”available
at http://hmmer.wustl.edu/) and SAM (www.cse.ucsc.edu/research/ compbio/sam.html).



9Graph Mining, Social Network
Analysis, and Multirelational

Data Mining

We have studied frequent-itemset mining in Chapter 5 and sequential-pattern mining in Section
3 of Chapter 8. Many scientific and commercial applications need patterns that are more
complicated than frequent itemsets and sequential patterns and require extra effort to
discover. Such sophisticated patterns go beyond sets and sequences, toward trees, lattices,
graphs, networks, and other complex structures.

As a general data structure, graphs have become increasingly important in modeling
sophisticated structures and their interactions, with broad applications including chemi-
cal informatics, bioinformatics, computer vision, video indexing, text retrieval, and Web
analysis. Mining frequent subgraph patterns for further characterization, discrimination,
classification, and cluster analysis becomes an important task. Moreover, graphs that link
many nodes together may form different kinds of networks, such as telecommunication
networks, computer networks, biological networks, and Web and social community net-
works. Because such networks have been studied extensively in the context of social net-
works, their analysis has often been referred to as social network analysis. Furthermore,
in a relational database, objects are semantically linked across multiple relations. Mining
in a relational database often requires mining across multiple interconnected relations,
which is similar to mining in connected graphs or networks. Such kind of mining across
data relations is considered multirelational data mining.

In this chapter, we study knowledge discovery in such interconnected and complex
structured data. Section 9.1 introduces graph mining, where the core of the problem is
mining frequent subgraph patterns over a collection of graphs. Section 9.2 presents con-
cepts and methods for social network analysis. Section 9.3 examines methods for mul-
tirelational data mining, including both cross-relational classification and user-guided
multirelational cluster analysis.

9.1 Graph Mining

Graphs become increasingly important in modeling complicated structures, such as
circuits, images, chemical compounds, protein structures, biological networks, social
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networks, the Web, workflows, and XML documents. Many graph search algorithms
have been developed in chemical informatics, computer vision, video indexing, and text
retrieval. With the increasing demand on the analysis of large amounts of structured
data, graph mining has become an active and important theme in data mining.

Among the various kinds of graph patterns, frequent substructures are the very basic
patterns that can be discovered in a collection of graphs. They are useful for charac-
terizing graph sets, discriminating different groups of graphs, classifying and cluster-
ing graphs, building graph indices, and facilitating similarity search in graph databases.
Recent studies have developed several graph mining methods and applied them to the
discovery of interesting patterns in various applications. For example, there have been
reports on the discovery of active chemical structures in HIV-screening datasets by con-
trasting the support of frequent graphs between different classes. There have been stud-
ies on the use of frequent structures as features to classify chemical compounds, on the
frequent graph mining technique to study protein structural families, on the detection
of considerably large frequent subpathways in metabolic networks, and on the use of
frequent graph patterns for graph indexing and similarity search in graph databases.
Although graph mining may include mining frequent subgraph patterns, graph classifi-
cation, clustering, and other analysis tasks, in this section we focus on mining frequent
subgraphs. We look at various methods, their extensions, and applications.

9.1.1 Methods for Mining Frequent Subgraphs

Before presenting graph mining methods, it is necessary to first introduce some prelim-
inary concepts relating to frequent graph mining.

We denote the vertex set of a graph g by V (g) and the edge set by E(g). A label func-
tion, L, maps a vertex or an edge to a label. A graph g is a subgraph of another graph
g′ if there exists a subgraph isomorphism from g to g′. Given a labeled graph data set,
D = {G1,G2, . . . ,Gn}, we define support(g) (or f requency(g)) as the percentage (or
number) of graphs in D where g is a subgraph. A frequent graph is a graph whose sup-
port is no less than a minimum support threshold, min sup.

Example 9.1 Frequent subgraph. Figure 9.1 shows a sample set of chemical structures. Figure 9.2
depicts two of the frequent subgraphs in this data set, given a minimum support of
66.6%.

“How can we discover frequent substructures?” The discovery of frequent substructures
usually consists of two steps. In the first step, we generate frequent substructure candi-
dates. The frequency of each candidate is checked in the second step. Most studies on
frequent substructure discovery focus on the optimization of the first step, because the
second step involves a subgraph isomorphism test whose computational complexity is
excessively high (i.e., NP-complete).

In this section, we look at various methods for frequent substructure mining. In gen-
eral, there are two basic approaches to this problem: an Apriori-based approach and a
pattern-growth approach.
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Figure 9.2 Frequent graphs.

Apriori-based Approach
Apriori-based frequent substructure mining algorithms share similar characteristics with
Apriori-based frequent itemset mining algorithms (Chapter 5). The search for frequent
graphs starts with graphs of small “size,” and proceeds in a bottom-up manner by gen-
erating candidates having an extra vertex, edge, or path. The definition of graph size
depends on the algorithm used.

The general framework of Apriori-based methods for frequent substructure mining is
outlined in Figure 9.3. We refer to this algorithm as AprioriGraph. Sk is the frequent sub-
structure set of size k. We will clarify the definition of graph size when we describe specific
Apriori-based methods further below. AprioriGraph adopts a level-wise mining method-
ology. At each iteration, the size of newly discovered frequent substructures is increased
by one. These new substructures are first generated by joining two similar but slightly
different frequent subgraphs that were discovered in the previous call to AprioriGraph.
This candidate generation procedure is outlined on line 4. The frequency of the newly
formed graphs is then checked. Those found to be frequent are used to generate larger
candidates in the next round.

The main design complexity of Apriori-based substructure mining algorithms is
the candidate generation step. The candidate generation in frequent itemset mining is
straightforward. For example, suppose we have two frequent itemsets of size-3: (abc) and
(bcd). The frequent itemset candidate of size-4 generated from them is simply (abcd),
derived from a join. However, the candidate generation problem in frequent substruc-
ture mining is harder than that in frequent itemset mining, because there are many ways
to join two substructures.
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Algorithm: AprioriGraph. Apriori-based frequent substructure mining.

Input:

D, a graph data set;

min sup, the minimum support threshold.

Output:

Sk, the frequent substructure set.

Method:
S1← frequent single-elements in the data set;
Call AprioriGraph(D, min sup, S1);

procedure AprioriGraph(D, min sup, Sk)

(1) Sk+1←?;

(2) for each frequent gi ∈ Sk do

(3) for each frequent g j ∈ Sk do

(4) for each size (k + 1) graph g formed by the merge of gi and g j do

(5) if g is frequent in D and g 6∈ Sk+1 then

(6) insert g into Sk+1;

(7) if sk+1 6=? then

(8) AprioriGraph(D, min sup, Sk+1);

(9) return;

Figure 9.3 AprioriGraph.

Recent Apriori-based algorithms for frequent substructure mining include AGM,
FSG, and a path-join method. AGM shares similar characteristics with Apriori-based
itemset mining. FSG and the path-join method explore edges and connections in an
Apriori-based fashion. Each of these methods explores various candidate generation
strategies.

The AGM algorithm uses a vertex-based candidate generation method that increases
the substructure size by one vertex at each iteration of AprioriGraph. Two size-k fre-
quent graphs are joined only if they have the same size-(k−1) subgraph. Here, graph
size is the number of vertices in the graph. The newly formed candidate includes the
size-(k−1) subgraph in common and the additional two vertices from the two size-k
patterns. Because it is undetermined whether there is an edge connecting the addi-
tional two vertices, we actually can form two substructures. Figure 9.4 depicts the two
substructures joined by two chains (where a chain is a sequence of connected edges).

The FSG algorithm adopts an edge-based candidate generation strategy that increases
the substructure size by one edge in each call of AprioriGraph. Two size-k patterns are
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+

Figure 9.4 AGM: Two substructures joined by two chains.

+

Figure 9.5 FSG: Two substructure patterns and their potential candidates.

merged if and only if they share the same subgraph having k− 1 edges, which is called
the core. Here, graph size is taken to be the number of edges in the graph. The newly
formed candidate includes the core and the additional two edges from the size-k patterns.
Figure 9.5 shows potential candidates formed by two structure patterns. Each candidate
has one more edge than these two patterns. This example illustrates the complexity of
joining two structures to form a large pattern candidate.

In the third Apriori-based approach, an edge-disjoint path method was proposed,
where graphs are classified by the number of disjoint paths they have, and two paths
are edge-disjoint if they do not share any common edge. A substructure pattern with
k + 1 disjoint paths is generated by joining substructures with k disjoint paths.

Apriori-based algorithms have considerable overhead when joining two size-k fre-
quent substructures to generate size-(k + 1) graph candidates. In order to avoid such
overhead, non-Apriori-based algorithms have recently been developed, most of which
adopt the pattern-growth methodology. This methodology tries to extend patterns
directly from a single pattern. In the following, we introduce the pattern-growth
approach for frequent subgraph mining.

Pattern-Growth Approach
The Apriori-based approach has to use the breadth-first search (BFS) strategy because of
its level-wise candidate generation. In order to determine whether a size-(k + 1) graph
is frequent, it must check all of its corresponding size-k subgraphs to obtain an upper
bound of its frequency. Thus, before mining any size-(k + 1) subgraph, the Apriori-like
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Algorithm: PatternGrowthGraph. Simplistic pattern growth-based frequent substructure
mining.

Input:

g, a frequent graph;

D, a graph data set;

min sup, minimum support threshold.

Output:

The frequent graph set, S.

Method:

S←?;
Call PatternGrowthGraph(g, D, min sup, S);

procedure PatternGrowthGraph(g, D, min sup, S)

(1) if g ∈ S then return;

(2) else insert g into S;

(3) scan D once, find all the edges e such that g can be extended to g�x e;

(4) for each frequent g�x e do

(5) PatternGrowthGraph(g�x e, D, min sup, S);

(6) return;

Figure 9.6 PatternGrowthGraph.

approach usually has to complete the mining of size-k subgraphs. Therefore, BFS is
necessary in the Apriori-like approach. In contrast, the pattern-growth approach is more
flexible regarding its search method. It can use breadth-first search as well as depth-first
search (DFS), the latter of which consumes less memory.

A graph g can be extended by adding a new edge e. The newly formed graph is denoted
by g�x e. Edge e may or may not introduce a new vertex to g. If e introduces a new vertex,
we denote the new graph by g �x f e, otherwise, g �xb e, where f or b indicates that the
extension is in a forward or backward direction.

Figure 9.6 illustrates a general framework for pattern growth–based frequent sub-
structure mining. We refer to the algorithm as PatternGrowthGraph. For each discov-
ered graph g, it performs extensions recursively until all the frequent graphs with g
embedded are discovered. The recursion stops once no frequent graph can be generated.

PatternGrowthGraph is simple, but not efficient. The bottleneck is at the ineffi-
ciency of extending a graph. The same graph can be discovered many times. For
example, there may exist n different (n− 1)-edge graphs that can be extended to
the same n-edge graph. The repeated discovery of the same graph is computation-
ally inefficient. We call a graph that is discovered a second time a duplicate graph.
Although line 1 of PatternGrowthGraph gets rid of duplicate graphs, the generation
and detection of duplicate graphs may increase the workload. In order to reduce the
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Figure 9.7 DFS subscripting.

generation of duplicate graphs, each frequent graph should be extended as conser-
vatively as possible. This principle leads to the design of several new algorithms. A
typical such example is the gSpan algorithm, as described below.

The gSpan algorithm is designed to reduce the generation of duplicate graphs. It need
not search previously discovered frequent graphs for duplicate detection. It does not
extend any duplicate graph, yet still guarantees the discovery of the complete set of fre-
quent graphs.

Let’s see how the gSpan algorithm works. To traverse graphs, it adopts a depth-first
search. Initially, a starting vertex is randomly chosen and the vertices in a graph are
marked so that we can tell which vertices have been visited. The visited vertex set is
expanded repeatedly until a full depth-first search (DFS) tree is built. One graph may
have various DFS trees depending on how the depth-first search is performed (i.e., the
vertex visiting order). The darkened edges in Figure 9.7(b) to 9.7(d) show three DFS
trees for the same graph of Figure 9.7(a). The vertex labels are x, y, and z; the edge labels
are a and b. Alphabetic order is taken as the default order in the labels. When building
a DFS tree, the visiting sequence of vertices forms a linear order. We use subscripts to
record this order, where i< j means vi is visited before v j when the depth-first search is
performed. A graph G subscripted with a DFS tree T is written as GT . T is called a DFS
subscripting of G.

Given a DFS tree T , we call the starting vertex in T , v0, the root. The last visited vertex,
vn, is called the right-most vertex. The straight path from v0 to vn is called the right-most
path. In Figure 9.7(b) to 9.7(d), three different subscriptings are generated based on the
corresponding DFS trees. The right-most path is (v0,v1,v3) in Figure 9.7(b) and 9.7(c),
and (v0,v1,v2,v3) in Figure 9.7(d).

PatternGrowth extends a frequent graph in every possible position, which may gener-
ate a large number of duplicate graphs. The gSpan algorithm introduces a more sophis-
ticated extension method. The new method restricts the extension as follows: Given a
graph G and a DFS tree T in G, a new edge e can be added between the right-most vertex
and another vertex on the right-most path (backward extension); or it can introduce a
new vertex and connect to a vertex on the right-most path (forward extension). Because
both kinds of extensions take place on the right-most path, we call them right-most exten-
sion, denoted by G�r e (for brevity, T is omitted here).
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Example 9.2 Backward extension and forward extension. If we want to extend the graph in
Figure 9.7(b), the backward extension candidates can be (v3,v0). The forward exten-
sion candidates can be edges extending from v3, v1, or v0 with a new vertex introduced.

Figure 9.8(b) to 9.8(g) shows all the potential right-most extensions of Figure 9.8(a).
The darkened vertices show the right-most path. Among these, Figure 9.8(b) to 9.8(d)
grows from the right-most vertex while Figure 9.8(e) to 9.8(g) grows from other vertices
on the right-most path. Figure 9.8(b.0) to 9.8(b.4) are children of Figure 9.8(b), and
Figure 9.8(f.0) to 9.8(f.3) are children of Figure 9.8(f). In summary, backward extension
only takes place on the right-most vertex, while forward extension introduces a new edge
from vertices on the right-most path.

Because many DFS trees/subscriptings may exist for the same graph, we choose one
of them as the base subscripting and only conduct right-most extension on that DFS
tree/subscripting. Otherwise, right-most extension cannot reduce the generation of dupli-
cate graphs because we would have to extend the same graph for every DFS subscripting.

We transform each subscripted graph to an edge sequence, called a DFS code, so that
we can build an order among these sequences. The goal is to select the subscripting that
generates the minimum sequence as its base subscripting. There are two kinds of orders
in this transformation process: (1) edge order, which maps edges in a subscripted graph
into a sequence; and (2) sequence order, which builds an order among edge sequences
(i.e., graphs).

(a) (b) (c) (d) (e) (f) (g)

(b.0) (b.1) (b.2) (b.3) (b.4) (f.0) (f.1) (f.2) (f.3)

Figure 9.8 Right-most extension.
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First, we introduce edge order. Intuitively, DFS tree defines the discovery order of
forward edges. For the graph shown in Figure 9.7(b), the forward edges are visited in the
order of (0,1),(1,2),(1,3). Now we put backward edges into the order as follows. Given
a vertex v, all of its backward edges should appear just before its forward edges. If v does
not have any forward edge, we put its backward edges after the forward edge, where v is
the second vertex. For vertex v2 in Figure 9.7(b), its backward edge (2,0) should appear
after (1,2) because v2 does not have any forward edge. Among the backward edges from
the same vertex, we can enforce an order. Assume that a vertex vi has two backward
edges, (i, j1) and (i, j2). If j1 < j2, then edge (i, j1) will appear before edge (i, j2). So
far, we have completed the ordering of the edges in a graph. Based on this order, a graph
can be transformed into an edge sequence. A complete sequence for Figure 9.7(b) is
(0,1),(1,2),(2,0),(1,3).

Based on this ordering, three different DFS codes, γ0, γ1, and γ2, generated by DFS
subscriptings in Figure 9.7(b), 9.7(c), and 9.7(d), respectively, are shown in Table 9.1.
An edge is represented by a 5-tuple, (i, j, li, l(i, j), l j); li and l j are the labels of vi and v j,
respectively, and l(i, j) is the label of the edge connecting them.

Through DFS coding, a one-to-one mapping is built between a subscripted graph and
a DFS code (a one-to-many mapping between a graph and DFS codes). When the context
is clear, we treat a subscripted graph and its DFS code as the same. All the notations on
subscripted graphs can also be applied to DFS codes. The graph represented by a DFS
code α is written Gα.

Second, we define an order among edge sequences. Since one graph may have several
DFS codes, we want to build an order among these codes and select one code to represent
the graph. Because we are dealing with labeled graphs, the label information should be
considered as one of the ordering factors. The labels of vertices and edges are used to
break the tie when two edges have the exact same subscript, but different labels. Let the
edge order relation ≺T take the first priority, the vertex label li take the second priority,
the edge label l(i, j) take the third, and the vertex label l j take the fourth to determine
the order of two edges. For example, the first edge of the three DFS codes in Table 9.1 is
(0,1,X ,a,X), (0,1,X ,a,X), and (0,1,Y,b,X), respectively. All of them share the same
subscript (0,1). So relation ≺T cannot tell the difference among them. But using label
information, following the order of first vertex label, edge label, and second vertex label,
we have (0,1,X ,a,X) < (0,1,Y,b,X). The ordering based on the above rules is called

Table 9.1 DFS code for Figure 9.7(b), 9.7(c), and 9.7(d).

edge γ0 γ1 γ2

e0 (0,1,X ,a,X) (0,1,X ,a,X) (0,1,Y,b,X)

e1 (1,2,X ,a,Z) (1,2,X ,b,Y ) (1,2,X ,a,X)

e2 (2,0,Z,b,X) (1,3,X ,a,Z) (2,3,X ,b,Z)

e3 (1,3,X ,b,Y ) (3,0,Z,b,X) (3,1,Z,a,X)
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Figure 9.9 Lexicographic search tree.

DFS Lexicographic Order. According to this ordering, we have γ0 < γ1 < γ2 for the DFS
codes listed in Table 9.1.

Based on the DFS lexicographic ordering, the minimum DFS code of a given graph G,
written as dfs(G), is the minimal one among all the DFS codes. For example, code γ0 in
Table 9.1 is the minimum DFS code of the graph in Figure 9.7(a). The subscripting that
generates the minimum DFS code is called the base subscripting.

We have the following important relationship between the minimum DFS code and
the isomorphism of the two graphs: Given two graphs G and G

′
, G is isomorphic to G

′

if and only if dfs(G) = dfs(G
′
). Based on this property, what we need to do for mining

frequent subgraphs is to perform only the right-most extensions on the minimum DFS
codes, since such an extension will guarantee the completeness of mining results.

Figure 9.9 shows how to arrange all DFS codes in a search tree through right-most
extensions. The root is an empty code. Each node is a DFS code encoding a graph. Each
edge represents a right-most extension from a (k−1)-length DFS code to a k-length DSF
code. The tree itself is ordered: left siblings are smaller than right siblings in the sense
of DFS lexicographic order. Because any graph has at least one DFS code, the search
tree can enumerate all possible subgraphs in a graph data set. However, one graph may
have several DFS codes, minimum and nonminimum. The search of nonminimum DFS
codes does not produce useful results. “Is it necessary to perform right-most extension on
nonminimum DFS codes?” The answer is “no.” If codes s and s′ in Figure 9.9 encode the
same graph, the search space under s′ can be safely pruned.

The details of gSpan are depicted in Figure 9.10. gSpan is called recursively to extend
graph patterns so that their frequent descendants are found until their support is lower
than min sup or its code is not minimum any more. The difference between gSpan and
PatternGrowth is at the right-most extension and extension termination of nonmini-
mum DFS codes (lines 1-2). We replace the existence judgement in lines 1-2 of Pattern-
Growth with the inequation s 6= d f s(s). Actually, s 6= d f s(s) is more efficient to calculate.
Line 5 requires exhaustive enumeration of s in D in order to count the frequency of all
the possible right-most extensions of s.

The algorithm of Figure 9.10 implements a depth-first search version of gSpan.
Actually, breadth-first search works too: for each newly discovered frequent subgraph
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Algorithm: gSpan. Pattern growth-based frequent substructure mining that reduces duplicate
graph generation.

Input:

s, a DFS code;

D, a graph data set;

min sup, the minimum support threshold.

Output:

The frequent graph set, S.

Method:
S←?;
Call gSpan(s, D, min sup, S);

procedure PatternGrowthGraph(s, D, min sup, S)

(1) if s 6= d f s(s), then

(2) return;

(3) insert s into S;

(4) set C to?;

(5) scan D once, find all the edges e such that s can be right-most extended to s�r e;
insert s�r e into C and count its frequency;

(6) sort C in DFS lexicographic order;

(7) for each frequent s�r e in C do

(8) gSpan(s�r e, D, min sup, S);

(9) return;

Figure 9.10 gSpan: A pattern-growth algorithm for frequent substructure mining.

in line 8, instead of directly calling gSpan, we insert it into a global first-in-first-out
queue Q, which records all subgraphs that have not been extended. We then “gSpan”
each subgraph in Q one by one. The performance of a breadth-first search version
of gSpan is very close to that of the depth-first search, although the latter usually
consumes less memory.

9.1.2 Mining Variant and Constrained Substructure Patterns

The frequent subgraph mining discussed in the previous section handles only one spe-
cial kind of graphs: labeled, undirected, connected simple graphs without any specific con-
straints. That is, we assume that the database to be mined contains a set of graphs, each
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consisting of a set of labeled vertices and labeled but undirected edges, with no other
constraints. However, many applications or users may need to enforce various kinds of
constraints on the patterns to be mined or seek variant substructure patterns. For exam-
ple, we may like to mine patterns, each of which contains certain specific vertices/edges,
or where the total number of vertices/edges is within a specified range. Or what if we seek
patterns where the average density of the graph patterns is above a threshold? Although
it is possible to develop customized algorithms for each such case, there are too many
variant cases to consider. Instead, a general framework is needed—one that can classify
constraints on the graph patterns. Efficient constraint-based methods can then be devel-
oped for mining substructure patterns and their variants. In this section, we study several
variants and constrained substructure patterns and look at how they can be mined.

Mining Closed Frequent Substructures
The first important variation of a frequent substructure is the closed frequent substruc-
ture. Take mining frequent subgraphs as an example. As with frequent itemset mining
and sequential pattern mining, mining graph patterns may generate an explosive number
of patterns. This is particularly true for dense data sets, because all of the subgraphs of a
frequent graph are also frequent. This is an inherent problem, because according to the
Apriori property, all the subgraphs of a frequent substructure must be frequent. A large
graph pattern may generate an exponential number of frequent subgraphs. For exam-
ple, among 423 confirmed active chemical compounds in an AIDS antiviral screen data
set, there are nearly 1 million frequent graph patterns whose support is at least 5%. This
renders the further analysis on frequent graphs nearly impossible.

One way to alleviate this problem is to mine only frequent closed graphs, where a
frequent graph G is closed if and only if there is no proper supergraph G′ that has the
same support as G. Alternatively, we can mine maximal subgraph patterns where a fre-
quent pattern G is maximal if and only if there is no frequent super-pattern of G. A set of
closed subgraph patterns has the same expressive power as the full set of subgraph pat-
terns under the same minimum support threshold, because the latter can be generated
by the derived set of closed graph patterns. On the other hand, the maximal pattern set is
a subset of the closed pattern set. It is usually more compact than the closed pattern set.
However, we cannot use it to reconstruct the entire set of frequent patterns—the sup-
port information of a pattern is lost if it is a proper subpattern of a maximal pattern, yet
carries a different support.

Example 9.3 Maximal frequent graph. The two graphs in Figure 9.2 are closed frequent graphs, but
only the first graph is a maximal frequent graph. The second graph is not maximal
because it has a frequent supergraph.

Mining closed graphs leads to a complete but more compact representation. For exam-
ple, for the AIDS antiviral data set mentioned above, among the 1 million frequent
graphs, only about 2,000 are closed frequent graphs. If further analysis, such as
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classification or clustering, is performed on closed frequent graphs instead of frequent
graphs, it will achieve similar accuracy with less redundancy and higher efficiency.

An efficient method, called CloseGraph, was developed for mining closed frequent
graphs by extension of the gSpan algorithm. Experimental study has shown that Close-
Graph often generates far fewer graph patterns and runs more efficiently than gSpan,
which mines the full pattern set.

Extension of Pattern-Growth Approach: Mining
Alternative Substructure Patterns
A typical pattern-growth graph mining algorithm, such as gSpan or CloseGraph, mines
labeled, connected, undirected frequent or closed subgraph patterns. Such a graph mining
framework can easily be extended for mining alternative substructure patterns. Here we
discuss a few such alternatives.

First, the method can be extended for mining unlabeled or partially labeled graphs.
Each vertex and each edge in our previously discussed graphs contain labels. Alterna-
tively, if none of the vertices and edges in a graph are labeled, the graph is unlabeled.
A graph is partially labeled if only some of the edges and/or vertices are labeled. To
handle such cases, we can build a label set that contains the original label set and
a new empty label, φ. Label φ is assigned to vertices and edges that do not have
labels. Notice that label φ may match with any label or with φ only, depending on the
application semantics. With this transformation, gSpan (and CloseGraph) can directly
mine unlabeled or partially labeled graphs.

Second, we examine whether gSpan can be extended to mining nonsimple graphs. A
nonsimple graph may have a self-loop (i.e., an edge joins a vertex to itself) and multiple
edges (i.e., several edges connecting two of the same vertices). In gSpan, we always first
grow backward edges and then forward edges. In order to accommodate self-loops, the
growing order should be changed to backward edges, self-loops, and forward edges. If we
allow sharing of the same vertices in two neighboring edges in a DFS code, the definition
of DFS lexicographic order can handle multiple edges smoothly. Thus gSpan can mine
nonsimple graphs efficiently, too.

Third, we see how gSpan can be extended to handle mining directed graphs. In a
directed graph, each edge of the graph has a defined direction. If we use a 5-tuple,
(i, j, li, l(i, j), l j), to represent an undirected edge, then for directed edges, a new state is
introduced to form a 6-tuple, (i, j,d, li, l(i, j), l j), where d represents the direction of an
edge. Let d = +1 be the direction from i (vi) to j (v j), whereas d = −1 is that from
j (v j) to i (vi). Notice that the sign of d is not related to the forwardness or backwardness
of an edge. When extending a graph with one more edge, this edge may have two choices
of d, which only introduces a new state in the growing procedure and need not change
the framework of gSpan.

Fourth, the method can also be extended to mining disconnected graphs. There are
two cases to be considered: (1) the graphs in the data set may be disconnected, and
(2) the graph patterns may be disconnected. For the first case, we can transform the
original data set by adding a virtual vertex to connect the disconnected graphs in each



548 Chapter 9 Graph Mining, Social Network Analysis, and Multirelational Data Mining

graph. We then apply gSpan on the new graph data set. For the second case, we redefine
the DFS code. A disconnected graph pattern can be viewed as a set of connected graphs,
r = {g0,g1, . . . ,gm}, where gi is a connected graph, 0 ≤ i ≤ m. Because each graph can
be mapped to a minimum DFS code, a disconnected graph r can be translated into a
code, γ = (s0,s1, . . . ,sm), where si is the minimum DFS code of gi. The order of gi in r
is irrelevant. Thus, we enforce an order in {si} such that s0 ≤ s1 ≤ . . . ≤ sm. γ can be
extended by either adding one-edge sm+1 (sm ≤ sm+1) or by extending sm, . . . , and s0.
When checking the frequency of γ in the graph data set, make sure that g0,g1, . . . , and
gm are disconnected with each other.

Finally, if we view a tree as a degenerated graph, it is straightforward to extend the
method to mining frequent subtrees. In comparison with a general graph, a tree can be
considered as a degenerated direct graph that does not contain any edges that can go back
to its parent or ancestor nodes. Thus if we consider that our traversal always starts at the
root (because the tree does not contain any backward edges), gSpan is ready to mine tree
structures. Based on the mining efficiency of the pattern growth–based approach, it is
expected that gSpan can achieve good performance in tree-structure mining.

Constraint-Based Mining of Substructure Patterns
As we have seen in previous chapters, various kinds of constraints can be associated with
a user’s mining request. Rather than developing many case-specific substructure mining
algorithms, it is more appropriate to set up a general framework of constraint-based
substructure mining so that systematic strategies can be developed to push constraints
deep into the mining process.

Constraint-based mining of frequent substructures can be developed systematically,
similar to the constraint-based mining of frequent patterns and sequential patterns intro-
duced in Chapters 5 and 8. Take graph mining as an example. As with the constraint-
based frequent pattern mining framework outlined in Chapter 5, graph constraints can
be classified into a few categories, including antimonotonic, monotonic, and succinct. Effi-
cient constraint-based mining methods can be developed in a similar way by extending
efficient graph-pattern mining algorithms, such as gSpan and CloseGraph.

Example 9.4 Constraint-based substructure mining. Let’s examine a few commonly encountered
classes of constraints to see how the constraint-pushing technique can be integrated into
the pattern-growth mining framework.

1. Element, set, or subgraph containment constraint. Suppose a user requires that the
mined patterns contain a particular set of subgraphs. This is a succinct constraint,
which can be pushed deep into the beginning of the mining process. That is, we can
take the given set of subgraphs as a query, perform selection first using the constraint,
and then mine on the selected data set by growing (i.e., extending) the patterns from
the given set of subgraphs. A similar strategy can be developed if we require that the
mined graph pattern must contain a particular set of edges or vertices.
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2. Geometric constraint. A geometric constraint can be that the angle between each
pair of connected edges must be within a range, written as “CG = min angle≤ angle
(e1,e2,v,v1,v2) ≤ max angle,” where two edges e1 and e2 are connected at vertex v
with the two vertices at the other ends as v1 and v2, respectively. CG is an antimono-
tonic constraint because if one angle in a graph formed by two edges does not satisfy
CG, further growth on the graph will never satisfy CG. Thus CG can be pushed deep
into the edge growth process and reject any growth that does not satisfy CG.

3. Value-sum constraint. For example, such a constraint can be that the sum of (positive)
weights on the edges, Sume, be within a range low and high. This constraint can be
split into two constraints, Sume ≥ low and Sume ≤ high. The former is a monotonic
constraint, because once it is satisfied, further “growth” on the graph by adding more
edges will always satisfy the constraint. The latter is an antimonotonic constraint,
because once the condition is not satisfied, further growth of Sume will never satisfy
it. The constraint pushing strategy can then be easily worked out.

Notice that a graph-mining query may contain multiple constraints. For example,
we may want to mine graph patterns that satisfy constraints on both the geometric and
minimal sum of edge weights. In such cases, we should try to push multiple constraints
simultaneously, exploring a method similar to that developed for frequent itemset min-
ing. For the multiple constraints that are difficult to push in simultaneously, customized
constraint-based mining algorithms should be developed accordingly.

Mining Approximate Frequent Substructures
An alternative way to reduce the number of patterns to be generated is to mine
approximate frequent substructures, which allow slight structural variations. With this
technique, we can represent several slightly different frequent substructures using one
approximate substructure.

The principle of minimum description length (Chapter 6) is adopted in a substructure
discovery system called SUBDUE, which mines approximate frequent substructures. It
looks for a substructure pattern that can best compress a graph set based on the Mini-
mum Description Length (MDL) principle, which essentially states that the simplest rep-
resentation is preferred. SUBDUE adopts a constrained beam search method. It grows a
single vertex incrementally by expanding a node in it. At each expansion, it searches for
the best total description length: the description length of the pattern and the description
length of the graph set with all the instances of the pattern condensed into single nodes.
SUBDUE performs approximate matching to allow slight variations of substructures,
thus supporting the discovery of approximate substructures.

There should be many different ways to mine approximate substructure patterns.
Some may lead to a better representation of the entire set of substructure patterns,
whereas others may lead to more efficient mining techniques. More research is needed
in this direction.
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Mining Coherent Substructures
A frequent substructure G is a coherent subgraph if the mutual information between
G and each of its own subgraphs is above some threshold. The number of coher-
ent substructures is significantly smaller than that of frequent substructures. Thus,
mining coherent substructures can efficiently prune redundant patterns (i.e., patterns
that are similar to each other and have similar support). A promising method was
developed for mining such substructures. Its experiments demonstrate that in mining
spatial motifs from protein structure graphs, the discovered coherent substructures
are usually statistically significant. This indicates that coherent substructure mining
selects a small subset of features that have high distinguishing power between protein
classes.

Mining Dense Substructures
In the analysis of graph pattern mining, researchers have found that there exists a spe-
cific kind of graph structure, called a relational graph, where each node label is used only
once per graph. The relational graph is widely used in modeling and analyzing massive
networks (e.g., biological networks, social networks, transportation networks, and the
World Wide Web). In biological networks, nodes represent objects like genes, proteins,
and enzymes, whereas edges encode the relationships, such as control, reaction, and cor-
relation, between these objects. In social networks, each node represents a unique entity,
and an edge describes a kind of relationship between entities. One particular interesting
pattern is the frequent highly connected or dense subgraph in large relational graphs. In
social networks, this kind of pattern can help identify groups where people are strongly
associated. In computational biology, a highly connected subgraph could represent a set
of genes within the same functional module (i.e., a set of genes participating in the same
biological pathways).

This may seem like a simple constraint-pushing problem using the minimal or average
degree of a vertex, where the degree of a vertex v is the number of edges that connect v.
Unfortunately, things are not so simple. Although average degree and minimum degree
display some level of connectivity in a graph, they cannot guarantee that the graph is
connected in a balanced way. Figure 9.11 shows an example where some part of a graph
may be loosely connected even if its average degree and minimum degree are both high.
The removal of edge e1 would make the whole graph fall apart. We may enforce the

e1

Figure 9.11 Average Degree: 3.25, Minimum Degree: 3.
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following downward closure constraint: a graph is highly connected if and only if each
of its connected subgraphs is highly connected. However, some global tightly connected
graphs may not be locally well connected. It is too strict to have this downward closure
constraint. Thus, we adopt the concept of edge connectivity, as follows: Given a graph G,
an edge cut is a set of edges Ec such that E(G)−Ec is disconnected. A minimum cut
is the smallest set in all edge cuts. The edge connectivity of G is the size of a minimum
cut. A graph is dense if its edge connectivity is no less than a specified minimum cut
threshold.

Now the problem becomes how to mine closed frequent dense relational graphs
that satisfy a user-specified connectivity constraint. There are two approaches to min-
ing such closed dense graphs efficiently: a pattern-growth approach called Close-
Cut and a pattern-reduction approach called Splat. We briefly outline their ideas as
follows.

Similar to pattern-growth frequent itemset mining, CloseCut first starts with a small
frequent candidate graph and extends it as much as possible by adding new edges until
it finds the largest supergraph with the same support (i.e., its closed supergraph). The
discovered graph is decomposed to extract subgraphs satisfying the connectivity con-
straint. It then extends the candidate graph by adding new edges, and repeats the above
operations until no candidate graph is frequent.

Instead of enumerating graphs from small ones to large ones, Splat directly intersects
relational graphs to obtain highly connected graphs. Let pattern g be a highly connected
graph in relational graphs Gi1 ,Gi2 , . . ., and Gil (i1 < i2 < .. . < il). In order to mine
patterns in a larger set {Gi1 ,Gi2 , . . ., Gil , Gil+1}, Splat intersects g with graph Gil+1 . Let
g′ = g∩Gil+1 . Some edges in g may be removed because they do not exist in graph Gil+1 .
Thus, the connectivity of the new graph g′may no longer satisfy the constraint. If so, g′ is
decomposed into smaller highly connected subgraphs. We progressively reduce the size
of candidate graphs by intersection and decomposition operations. We call this approach
a pattern-reduction approach.

Both methods have shown good scalability in large graph data sets. CloseCut has
better performance on patterns with high support and low connectivity. On the con-
trary, Splat can filter frequent graphs with low connectivity in the early stage of min-
ing, thus achieving better performance for the high-connectivity constraints. Both
methods are successfully used to extract interesting patterns from multiple biological
networks.

9.1.3 Applications: Graph Indexing, Similarity Search, Classification,
and Clustering

In the previous two sections, we discussed methods for mining various kinds of
frequent substructures. There are many interesting applications of the discovered
structured patterns. These include building graph indices in large graph databases,
performing similarity search in such data sets, characterizing structure data sets, and
classifying and clustering the complex structures. We examine such applications in
this section.
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Graph Indexing with Discriminative Frequent
Substructures
Indexing is essential for efficient search and query processing in database and infor-
mation systems. Technology has evolved from single-dimensional to multidimensional
indexing, claiming a broad spectrum of successful applications, including relational
database systems and spatiotemporal, time-series, multimedia, text-, and Web-based
information systems. However, the traditional indexing approach encounters challenges
in databases involving complex objects, like graphs, because a graph may contain an
exponential number of subgraphs. It is ineffective to build an index based on vertices
or edges, because such features are nonselective and unable to distinguish graphs. On
the other hand, building index structures based on subgraphs may lead to an explosive
number of index entries.

Recent studies on graph indexing have proposed a path-based indexing approach,
which takes the path as the basic indexing unit. This approach is used in the GraphGrep
and Daylight systems. The general idea is to enumerate all of the existing paths in
a database up to maxL length and index them, where a path is a vertex sequence,
v1,v2, . . . ,vk, such that, ∀1≤ i≤ k−1, (vi,vi+1) is an edge. The method uses the index
to identify every graph, gi, that contains all of the paths (up to maxL length) in query
q. Even though paths are easier to manipulate than trees and graphs, and the index
space is predefined, the path-based approach may not be suitable for complex graph
queries, because the set of paths in a graph database is usually huge. The structural
information in the graph is lost when a query graph is broken apart. It is likely that
many false-positive answers will be returned. This can be seen from the following
example.

Example 9.5 Difficulty with the path-based indexing approach. Figure 9.12 is a sample chemical
data set extracted from an AIDS antiviral screening database.1 For simplicity, we ignore
the bond type. Figure 9.13 shows a sample query: 2,3-dimethylbutane. Assume that this
query is posed to the sample database. Although only graph (c) in Figure 9.12 is the
answer, graphs (a) and (b) cannot be pruned because both of them contain all of the
paths existing in the query graph: c, c− c, c− c− c, and c− c− c− c. In this case,
carbon chains (up to length 3) are not discriminative enough to distinguish the sample
graphs. This indicates that the path may not be a good structure to serve as an index
feature.

A method called gIndex was developed to build a compact and effective graph index
structure. It takes frequent and discriminative substructures as index features. Frequent
substructures are ideal candidates because they explore the shared structures in the data
and are relatively stable to database updates. To reduce the index size (i.e., the number
of frequent substructures that are used in the indices), the concept of discriminative

1http://dtp.nci.nih.gov/docs/aids/aids data.html.
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Figure 9.13 A sample query.

frequent substructure is introduced. A frequent substructure is discriminative if its
support cannot be well approximated by the intersection of the graph sets that contain
one of its subgraphs. The experiments on the AIDS antiviral data sets and others show
that this method leads to far smaller index structures. In addition, it achieves similar per-
formance in comparison with the other indexing methods, such as the path index and
the index built directly on frequent substructures.

Substructure Similarity Search in Graph Databases
Bioinformatics and chem-informatics applications involve query-based search in mas-
sive, complex structural data. Even with a graph index, such search can encounter chal-
lenges because it is often too restrictive to search for an exact match of an index entry.
Efficient similarity search of complex structures becomes a vital operation. Let’s examine
a simple example.

Example 9.6 Similarity search of chemical structures. Figure 9.14 is a chemical data set with three
molecules. Figure 9.15 shows a substructure query. Obviously, no match exists for this
query graph. If we relax the query by taking out one edge, then caffeine and thesal in
Figure 9.14(a) and 9.14(b) will be good matches. If we relax the query further, the struc-
ture in Figure 9.14(c) could also be an answer.



554 Chapter 9 Graph Mining, Social Network Analysis, and Multirelational Data Mining

N

N

N

N

O

O
(a) caffeine

N
N

S

O O

N

N
N

N

O

O

N

N

N

N

O

O
(b) thesal

(c) viagra

Figure 9.14 A chemical database.

N

N

N

N

O

Figure 9.15 A query graph.

A naïve solution to this similarity search problem is to form a set of subgraph queries
with one or more edge deletions and then use the exact substructure search. This does
not work when the number of deletions is more than 1. For example, if we allow three
edges to be deleted in a 20-edge query graph, it may generate

(20
3

)

= 1140 substructure
queries, which are too expensive to check.
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A feature-based structural filtering algorithm, called Grafil (Graph Similarity Filter-
ing), was developed to filter graphs efficiently in large-scale graph databases. Grafil mod-
els each query graph as a set of features and transforms the edge deletions into “feature
misses” in the query graph. It is shown that using too many features will not leverage the
filtering performance. Therefore, a multifilter composition strategy is developed, where
each filter uses a distinct and complementary subset of the features. The filters are con-
structed by a hierarchical, one-dimensional clustering algorithm that groups features
with similar selectivity into a feature set. Experiments have shown that the multifilter
strategy can significantly improve performance for a moderate relaxation ratio.

Classification and Cluster Analysis Using Graph Patterns
“Can we apply the discovered patterns to classification and cluster analysis? If so, how?”
The discovered frequent graph patterns and/or their variants can be used as features for
graph classification. First, we mine frequent graph patterns in the training set. The fea-
tures that are frequent in one class but rather infrequent in the other class(es) should be
considered as highly discriminative features. Such features will then be used for model
construction. To achieve high-quality classification, we can adjust the thresholds on
frequency, discriminativeness, and graph connectivity based on the data, the number
and quality of the features generated, and the classification accuracy. Various classifi-
cation approaches, including support vector machines, naïve Bayesian, and associative
classification, can be used in such graph-based classification.

Similarly, cluster analysis can be explored with mined graph patterns. The set of graphs
that share a large set of similar graph patterns should be considered as highly similar and
should be grouped into similar clusters. Notice that the concept of graph connectivity (or
minimal cuts) introduced in the section for mining frequent dense graphs can be used
as an important measure to group similar graphs into clusters. In addition, the mini-
mal support threshold can be used as a way to adjust the number of frequent clusters
or generate hierarchical clusters. The graphs that do not belong to any cluster or that
are far away from the derived clusters can be considered as outliers. Thus outliers can be
considered as a by-product of cluster analysis.

Many different kinds of graphs can be discovered in graph pattern mining, espe-
cially when we consider the possibilities of setting different kinds of thresholds. Different
graph patterns may likely lead to different classification and clustering results, thus it
is important to consider mining graph patterns and graph classification/clustering as
an intertwined process rather than a two-step process. That is, the qualities of graph
classification and clustering can be improved by exploring alternative methods and
thresholds when mining graph patterns.

9.2 Social Network Analysis

The notion of social networks, where relationships between entities are represented as
links in a graph, has attracted increasing attention in the past decades. Thus social
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network analysis, from a data mining perspective, is also called link analysis or link
mining. In this section, we introduce the concept of social networks in Section 9.2.1, and
study the characteristics of social networks in Section 9.2.2. In Section 9.2.3, we look at
the tasks and challenges involved in link mining, and finally, explore exemplar forms of
mining on social networks in Section 9.2.4.

9.2.1 What Is a Social Network?

From the point of view of data mining, a social network is a heterogeneous and multire-
lational data set represented by a graph. The graph is typically very large, with nodes
corresponding to objects and edges corresponding to links representing relationships or
interactions between objects. Both nodes and links have attributes. Objects may have
class labels. Links can be one-directional and are not required to be binary.

Social networks need not be social in context. There are many real-world instances
of technological, business, economic, and biologic social networks. Examples include
electrical power grids, telephone call graphs, the spread of computer viruses, the World
Wide Web, and coauthorship and citation networks of scientists. Customer networks
and collaborative filtering problems (where product recommendations are made based
on the preferences of other customers) are other examples. In biology, examples range
from epidemiological networks, cellular and metabolic networks, and food webs, to the
neural network of the nematode worm Caenorhabditis elegans (the only creature whose
neural network has been completely mapped). The exchange of e-mail messages within
corporations, newsgroups, chat rooms, friendships, sex webs (linking sexual partners),
and the quintessential “old-boy” network (i.e., the overlapping boards of directors of the
largest companies in the United States) are examples from sociology.

Small world (social) networks have received considerable attention as of late. They
reflect the concept of “small worlds,” which originally focused on networks among indi-
viduals. The phrase captures the initial surprise between two strangers (“What a small
world!”) when they realize that they are indirectly linked to one another through mutual
acquaintances. In 1967, Harvard sociologist, Stanley Milgram, and his colleagues
conducted experiments in which people in Kansas and Nebraska were asked to direct let-
ters to strangers in Boston by forwarding them to friends who they thought might know
the strangers in Boston. Half of the letters were successfully delivered through no more
than five intermediaries. Additional studies by Milgram and others, conducted between
other cities, have shown that there appears to be a universal “six degrees of separation”
between any two individuals in the world. Examples of small world networks are shown in
Figure 9.16. Small world networks have been characterized as having a high degree of
local clustering for a small fraction of the nodes (i.e., these nodes are interconnected
with one another), which at the same time are no more than a few degrees of separation
from the remaining nodes. It is believed that many social, physical, human-designed,
and biological networks exhibit such small world characteristics. These characteristics
are further described and modeled in Section 9.2.2.

“Why all this interest in small world networks and social networks, in general? What is the
interest in characterizing networks and in mining them to learn more about their structure?”
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Figure 9.16 Real-world examples of social networks: (a) science coauthor network, (b) connected pages on
a part of the Internet, (c) biochemical pathway network, and (d) New York state electric power grid. Figure
9.16 (a), (b), and (c) are from www.nd.edu/∼networks/publications.html#talks0001 by Barabási, Oltvai, Jeong
et al. Figure 9.11(d) is from [Str01], available at http://tam.cornell.edu/Strogatz.html#pub.

The reason is that structure always affects function. For example, the topology of social
networks affects the spread of infectious disease through a structured population. The
topology of a power grid affects the stability and robustness of its power transmission.
For instance, a power failure in Cleveland, Ohio, on August 14, 2003, triggered, through
an interconnecting grid system, the shutting down of nuclear power plants in New York
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state and Ohio, and led to widespread power blackouts in many parts of the Northeastern
United States and Southeastern Canada, which affected approximately 50 million people.
The interest in networks is part of broader research in the accurate and complete descrip-
tion of complex systems. Previously, the networks available for experimental study were
small and few, with very little information available regarding individual nodes. Thanks
to the Internet, huge amounts of data on very large social networks are now available.
These typically contain from tens of thousands to millions of nodes. Often, a great deal
of information is available at the level of individual nodes. The availability of powerful
computers has made it possible to probe the structure of networks. Searching social net-
works can help us better understand how we can reach other people. In addition, research
on small worlds, with their relatively small separation between nodes, can help us design
networks that facilitate the efficient transmission of information or other resources with-
out having to overload the network with too many redundant connections. For example,
it may help us design smarter search agents on the Web, which can find relevant websites
in response to a query, all within the smallest number of degrees of separation from the
initial website (which is, typically, a search engine).

9.2.2 Characteristics of Social Networks

As seen in the previous section, knowing the characteristics of small world networks is
useful in many situations. We can build graph generation models, which incorporate
the characteristics. These may be used to predict how a network may look in the future,
answering “what-if ” questions. Taking the Internet as an example, we may ask “What
will the Internet look like when the number of nodes doubles?” and “What will the number
of edges be?”. If a hypothesis contradicts the generally accepted characteristics, this raises
a flag as to the questionable plausibility of the hypothesis. This can help detect abnormal-
ities in existing graphs, which may indicate fraud, spam, or Distributed Denial of Service
(DDoS) attacks. Models of graph generation can also be used for simulations when real
graphs are excessively large and thus, impossible to collect (such as a very large network
of friendships). In this section, we study the basic characteristics of social networks as
well as a model for graph generation.

“What qualities can we look at when characterizing social networks?” Most studies
examine the nodes’ degrees, that is, the number of edges incident to each node, and the
distances between a pair of nodes, as measured by the shortest path length. (This measure
embodies the small world notion that individuals are linked via short chains.) In particu-
lar, the network diameter is the maximum distance between pairs of nodes. Other node-
to-node distances include the average distance between pairs and the effective diameter
(i.e., the minimum distance, d, such that for at least 90% of the reachable node pairs, the
path length is at most d).

Social networks are rarely static. Their graph representations evolve as nodes and
edges are added or deleted over time. In general, social networks tend to exhibit the
following phenomena:

1. Densification power law: Previously, it was believed that as a network evolves, the
number of degrees grows linearly in the number of nodes. This was known as the
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constant average degree assumption. However, extensive experiments have shown that,
on the contrary, networks become increasingly dense over time with the average degree
increasing (and hence, the number of edges growing superlinearly in the number of
nodes). The densification follows the densification power law (or growth power law),
which states

e(t) ∝ n(t)a, (9.1)

where e(t) and n(t), respectively, represent the number of edges and nodes of the
graph at time t, and the exponent a generally lies strictly between 1 and 2. Note that
if a = 1, this corresponds to constant average degree over time, whereas a = 2 corre-
sponds to an extremely dense graph where each node has edges to a constant fraction
of all nodes.

2. Shrinking diameter: It has been experimentally shown that the effective diameter
tends to decrease as the network grows. This contradicts an earlier belief that the diam-
eter slowly increases as a function of network size. As an intuitive example, consider
a citation network, where nodes are papers and a citation from one paper to another
is indicated by a directed edge. The out-links of a node, v (representing the papers
cited by v), are “frozen” at the moment it joins the graph. The decreasing distances
between pairs of nodes consequently appears to be the result of subsequent papers
acting as “bridges” by citing earlier papers from other areas.

3. Heavy-tailed out-degree and in-degree distributions: The number of out-degrees for
a node tends to follow a heavy-tailed distribution by observing the power law, 1/na,
where n is the rank of the node in the order of decreasing out-degrees and typi-
cally, 0 < a < 2 (Figure 9.17). The smaller the value of a, the heavier the tail. This
phenomena is represented in the preferential attachment model, where each new
node attaches to an existing network by a constant number of out-links, following a

Figure 9.17 The number of out-degrees (y-axis) for a node tends to follow a heavy-tailed distribution.
The node rank (x-axis) is defined as the order of deceasing out-degrees of the node.
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“rich-get-richer” rule. The in-degrees also follow a heavy-tailed distribution, although
it tends be more skewed than the out-degrees distribution.

A Forest Fire model for graph generation was proposed, which captures these charac-
teristics of graph evolution over time. It is based on the notion that new nodes attach to
the network by “burning” through existing edges in epidemic fashion. It uses two param-
eters, forward burning probability, p, and backward burning ratio, r, which are described
below. Suppose a new node, v, arrives at time t. It attaches to Gt , the graph constructed
so far, in the following steps:

1. It chooses an ambassador node, w, at random, and forms a link to w.

2. It selects x links incident to w, where x is a random number that is binomially dis-
tributed with mean (1− p)−1. It chooses from out-links and in-links of w but selects
in-links with probability r times lower than out-links. Let w1,w2, . . . ,wx denote the
nodes at the other end of the selected edges.

3. Our new node, v, forms out-links to w1,w2, . . . ,wx and then applies step 2 recursively
to each of w1,w2, . . . ,wx. Nodes cannot be visited a second time so as to prevent the
construction from cycling. The process continues until it dies out.

For an intuitive feel of the model, we return to our example of a citation network.
The author of a new paper, v, initially consults w, and follows a subset of its references
(which may be either forward or backward) to the papers w1,w2, . . . ,wx. It continues
accumulating references recursively by consulting these papers.

Several earlier models of network evolution were based on static graphs, identifying
network characteristics from a single or small number of snapshots, with little empha-
sis on finding trends over time. The Forest Fire model combines the essence of several
earlier models, while considering the evolution of networks over time. The heavy-tailed
out-degrees property is observed in that, owing to the recursive nature of link formation,
new nodes have a good chance of burning many edges and thus producing large out-
degrees. The heavy-tailed in-degrees property is preserved in that Forest Fire follows the
“rich-get-richer” rule: highly linked nodes can easily be reached by a new node, regard-
less of which ambassador the new node starts from. The flavor of a model known as the
copying model is also observed in that a new node copies many of the neighbors of its
ambassador. The densification power law is upheld in that a new node will have many
links near the community of its ambassador, a few links beyond this, and much fewer
farther away. Rigorous empirical studies found that the shrinking diameter property was
upheld. Nodes with heavy-tailed out-degrees may serve as “bridges” that connect for-
merly disparate parts of the network, decreasing the network diameter.

9.2.3 Link Mining: Tasks and Challenges

“How can we mine social networks?” Traditional methods of machine learning and data
mining, taking, as input, a random sample of homogenous objects from a single
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relation, may not be appropriate here. The data comprising social networks tend to be
heterogeneous, multirelational, and semi-structured. As a result, a new field of research
has emerged called link mining. Link mining is a confluence of research in social net-
works, link analysis, hypertext and Web mining, graph mining, relational learning, and
inductive logic programming. It embodies descriptive and predictive modeling. By con-
sidering links (the relationships between objects), more information is made available
to the mining process. This brings about several new tasks. Here, we list these tasks with
examples from various domains:

1. Link-based object classification. In traditional classification methods, objects are clas-
sified based on the attributes that describe them. Link-based classification predicts the
category of an object based not only on its attributes, but also on its links, and on the
attributes of linked objects.
Web page classification is a well-recognized example of link-based classification. It pre-
dicts the category of a Web page based on word occurrence (words that occur on the
page) and anchor text (the hyperlink words, that is, the words you click on when you
click on a link), both of which serve as attributes. In addition, classification is based
on links between pages and other attributes of the pages and links. In the bibliogra-
phy domain, objects include papers, authors, institutions, journals, and conferences.
A classification task is to predict the topic of a paper based on word occurrence, cita-
tions (other papers that cite the paper), and cocitations (other papers that are cited
within the paper), where the citations act as links. An example from epidemiology is
the task of predicting the disease type of a patient based on characteristics (e.g., symp-
toms) of the patient, and on characteristics of other people with whom the patient has
been in contact. (These other people are referred to as the patients’ contacts.)

2. Object type prediction. This predicts the type of an object, based on its attributes and
its links, and on the attributes of objects linked to it. In the bibliographic domain, we
may want to predict the venue type of a publication as either conference, journal,
or workshop. In the communication domain, a similar task is to predict whether a
communication contact is by e-mail, phone call, or mail.

3. Link type prediction. This predicts the type or purpose of a link, based on prop-
erties of the objects involved. Given epidemiological data, for instance, we may
try to predict whether two people who know each other are family members,
coworkers, or acquaintances. In another example, we may want to predict whether
there is an advisor-advisee relationship between two coauthors. Given Web page
data, we can try to predict whether a link on a page is an advertising link or a
navigational link.

4. Predicting link existence. Unlike link type prediction, where we know a connection
exists between two objects and we want to predict its type, instead we may want
to predict whether a link exists between two objects. Examples include predicting
whether there will be a link between two Web pages, and whether a paper will cite
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another paper. In epidemiology, we can try to predict with whom a patient came
in contact.

5. Link cardinality estimation. There are two forms of link cardinality estimation. First,
we may predict the number of links to an object. This is useful, for instance, in predict-
ing the authoritativeness of a Web page based on the number of links to it (in-links).
Similarly, the number of out-links can be used to identify Web pages that act as hubs,
where a hub is one or a set of Web pages that point to many authoritative pages of the
same topic. In the bibliographic domain, the number of citations in a paper may indi-
cate the impact of the paper—the more citations the paper has, the more influential
it is likely to be. In epidemiology, predicting the number of links between a patient
and his or her contacts is an indication of the potential for disease transmission.
A more difficult form of link cardinality estimation predicts the number of objects
reached along a path from an object. This is important in estimating the number of
objects that will be returned by a query. In the Web page domain, we may predict the
number of pages that would be retrieved by crawling a site (where crawling refers to
a methodological, automated search through the Web, mainly to create a copy of all
of the visited pages for later processing by a search engine). Regarding citations, we
can also use link cardinality estimation to predict the number of citations of a specific
author in a given journal.

6. Object reconciliation. In object reconciliation, the task is to predict whether two
objects are, in fact, the same, based on their attributes and links. This task is com-
mon in information extraction, duplication elimination, object consolidation, and
citation matching, and is also known as record linkage or identity uncertainty. Exam-
ples include predicting whether two websites are mirrors of each other, whether two
citations actually refer to the same paper, and whether two apparent disease strains
are really the same.

7. Group detection. Group detection is a clustering task. It predicts when a set of objects
belong to the same group or cluster, based on their attributes as well as their link
structure. An area of application is the identification of Web communities, where a
Web community is a collection of Web pages that focus on a particular theme or
topic. A similar example in the bibliographic domain is the identification of research
communities.

8. Subgraph detection. Subgraph identification finds characteristic subgraphs within
networks. This is a form of graph search and was described in Section 9.1. An example
from biology is the discovery of subgraphs corresponding to protein structures. In
chemistry, we can search for subgraphs representing chemical substructures.

9. Metadata mining. Metadata are data about data. Metadata provide semi-structured
data about unstructured data, ranging from text and Web data to multimedia data-
bases. It is useful for data integration tasks in many domains. Metadata mining can
be used for schema mapping (where, say, the attribute customer id from one database
is mapped to cust number from another database because they both refer to the
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same entity); schema discovery, which generates schema from semi-structured data;
and schema reformulation, which refines the schema based on the mined metadata.
Examples include matching two bibliographic sources, discovering schema from
unstructured or semi-structured data on the Web, and mapping between two medi-
cal ontologies.

In summary, the exploitation of link information between objects brings on addi-
tional tasks for link mining in comparison with traditional mining approaches. The
implementation of these tasks, however, invokes many challenges. We examine several
of these challenges here:

1. Logical versus statistical dependencies. Two types of dependencies reside in the
graph—link structures (representing the logical relationship between objects) and
probabilistic dependencies (representing statistical relationships, such as correlation
between attributes of objects where, typically, such objects are logically related). The
coherent handling of these dependencies is also a challenge for multirelational data
mining, where the data to be mined exist in multiple tables. We must search over the
different possible logical relationships between objects, in addition to the standard
search over probabilistic dependencies between attributes. This takes a huge search
space, which further complicates finding a plausible mathematical model. Methods
developed in inductive logic programming may be applied here, which focus on search
over logical relationships.

2. Feature construction. In link-based classification, we consider the attributes of an
object as well as the attributes of objects linked to it. In addition, the links may also
have attributes. The goal of feature construction is to construct a single feature rep-
resenting these attributes. This can involve feature selection and feature aggregation.
In feature selection, only the most discriminating features are included.2 Feature
aggregation takes a multiset of values over the set of related objects and returns a sum-
mary of it. This summary may be, for instance, the mode (most frequently occurring
value); the mean value of the set (if the values are numerical); or the median or “mid-
dle” value (if the values are ordered). However, in practice, this method is not always
appropriate.

3. Instances versus classes. This alludes to whether the model refers explicitly to indi-
viduals or to classes (generic categories) of individuals. An advantage of the former
model is that it may be used to connect particular individuals with high probability.
An advantage of the latter model is that it may be used to generalize to new situations,
with different individuals.

4. Collective classification and collective consolidation. Consider training a model for
classification, based on a set of class-labeled objects. Traditional classification

2Feature (or attribute) selection was introduced in Chapter 2.
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methods consider only the attributes of the objects. After training, suppose we are
given a new set of unlabeled objects. Use of the model to infer the class labels for the
new objects is complicated due to possible correlations between objects—the labels of
linked objects may be correlated. Classification should therefore involve an additional
iterative step that updates (or consolidates) the class label of each object based on the
labels of objects linked to it. In this sense, classification is done collectively rather than
independently.

5. Effective use of labeled and unlabeled data. A recent strategy in learning is to incorpo-
rate a mix of both labeled and unlabeled data. Unlabeled data can help infer the object
attribute distribution. Links between unlabeled (test) data allow us to use attributes of
linked objects. Links between labeled (training) data and unlabeled (test) data induce
dependencies that can help make more accurate inferences.

6. Link prediction. A challenge in link prediction is that the prior probability of a par-
ticular link between objects is typically extremely low. Approaches to link prediction
have been proposed based on a number of measures for analyzing the proximity of
nodes in a network. Probabilistic models have been proposed as well. For large data
sets, it may be more effective to model links at a higher level.

7. Closed versus open world assumption. Most traditional approaches assume that we
know all the potential entities in the domain. This “closed world” assumption is unre-
alistic in real-world applications. Work in this area includes the introduction of a lan-
guage for specifying probability distributions over relational structures that involve a
varying set of objects.

8. Community mining from multirelational networks. Typical work on social network
analysis includes the discovery of groups of objects that share similar properties. This
is known as community mining. Web page linkage is an example, where a discovered
community may be a set of Web pages on a particular topic. Most algorithms for
community mining assume that there is only one social network, representing a rela-
tively homogenous relationship. In reality, there exist multiple, heterogeneous social
networks, representing various relationships. A new challenge is the mining of hid-
den communities on such heterogeneous social networks, which is also known as
community mining on multirelational social networks.

These challenges will continue to stimulate much research in link mining.

9.2.4 Mining on Social Networks

In this section, we explore exemplar areas of mining on social networks, namely, link
prediction, mining customer networks for viral marketing, mining newsgroups using
networks, and community mining from multirelational networks. Other exemplars
include characteristic subgraph detection (discussed in Section 9.1) and mining link
structures on the Web (addressed in Chapter 10 on text and Web mining). Pointers to
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research on link-based classification and clustering are given in the bibliographic notes
and exercises.

Link Prediction: What Edges Will Be Added to the
Network?
Social networks are dynamic. New links appear, indicating new interactions between
objects. In the link prediction problem, we are given a snapshot of a social network at
time t and wish to predict the edges that will be added to the network during the interval
from time t to a given future time, t ′. In essence, we seek to uncover the extent to which
the evolution of a social network can be modeled using features intrinsic to the model
itself. As an example, consider a social network of coauthorship among scientists. Intu-
itively, we may predict that two scientists who are “close” in the network may be likely
to collaborate in the future. Hence, link prediction can be thought of as a contribution
to the study of social network evolution models.

Approaches to link prediction have been proposed based on several measures for
analyzing the “proximity” of nodes in a network. Many measures originate from tech-
niques in graph theory and social network analysis. The general methodology is as
follows: All methods assign a connection weight, score(X, Y), to pairs of nodes, X
and Y, based on the given proximity measure and input graph, G. A ranked list in
decreasing order of score(X, Y) is produced. This gives the predicted new links in
decreasing order of confidence. The predictions can be evaluated based on real obser-
vations on experimental data sets.

The simplest approach ranks pairs, 〈X, Y〉, by the length of their shortest path in
G. This embodies the small world notion that all individuals are linked through short
chains. (Since the convention is to rank all pairs in order of decreasing score, here,
score(X, Y) is defined as the negative of the shortest path length.) Several measures
use neighborhood information. The simplest such measure is common neighbors—the
greater the number of neighbors that X and Y have in common, the more likely X
and Y are to form a link in the future. Intuitively, if authors X and Y have never
written a paper together but have many colleagues in common, the more likely they
are to collaborate in the future. Other measures are based on the ensemble of all paths
between two nodes. The Katz measure, for example, computes a weighted sum over all
paths between X and Y, where shorter paths are assigned heavier weights. All of the
measures can be used in conjunction with higher-level approaches, such as clustering.
For instance, the link prediction method can be applied to a cleaned-up version of
the graph, in which spurious edges have been removed.

In experiments conducted on bibliographic citation data sets, no one method is
superior to all others. Several methods significantly outperform a random predictor,
which suggests that network topology can provide useful information for link prediction.
The Katz measure, and variations of it based on clustering, performed consistently well,
although the accuracy of prediction is still very low. Future work on link prediction may
focus on finding better ways to use network topology information, as well as to improve
the efficiency of node distance calculations such as by approximation.
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Mining Customer Networks for Viral Marketing
Viral marketing is an application of social network mining that explores how individu-
als can influence the buying behavior of others. Traditionally, companies have employed
direct marketing (where the decision to market to a particular individual is based solely
on her characteristics) or mass marketing (where individuals are targeted based on the
population segment to which they belong). These approaches, however, neglect the influ-
ence that customers can have on the purchasing decisions of others. For example, con-
sider a person who decides to see a particular movie and persuades a group of friends to
see the same film. Viral marketing aims to optimize the positive word-of-mouth effect
among customers. It can choose to spend more money marketing to an individual if
that person has many social connections. Thus, by considering the interactions between
customers, viral marketing may obtain higher profits than traditional marketing, which
ignores such interactions.

The growth of the Internet over the past two decades has led to the availability of many
social networks that can be mined for the purposes of viral marketing. Examples include
e-mail mailing lists, UseNet groups, on-line forums, instant relay chat (IRC), instant
messaging, collaborative filtering systems, and knowledge-sharing sites. Knowledge-
sharing sites (such as Epinions at www.epinions.com) allow users to offer advice or rate
products to help others, typically for free. Users can rate the usefulness or “trustworthi-
ness” of a review, and may possibly rate other reviewers as well. In this way, a network
of trust relationships between users (known as a “web of trust”) evolves, representing a
social network for mining.

The network value of a customer is the expected increase in sales to others that results
from marketing to that customer. In the example given, if our customer convinces
others to see a certain movie, then the movie studio is justified in spending more money
on promoting the film to her. If, instead, our customer typically listens to others when
deciding what movie to see, then marketing spent on her may be a waste of resources.
Viral marketing considers a customer’s network value. Ideally, we would like to mine a
customer’s network (e.g., of friends and relatives) to predict how probable she is to buy
a certain product based not only on the characteristics of the customer, but also on the
influence of the customer’s neighbors in the network. If we market to a particular set of
customers then, through viral marketing, we may query the expected profit from the entire
network, after the influence of those customers has propagated throughout. This would
allow us to search for the optimal set of customers to which to market. Considering the
network value of customers (which is overlooked by traditional direct marketing), this
may result in an improved marketing plan.

Given a set of n potential customers, let Xi be a Boolean variable that is set to 1 if
customer i purchases the product being marketed, and 0 otherwise. The neighbors of Xi
are the customers who directly influence Xi. Mi is defined as the marketing action that
is taken for customer i. Mi could be Boolean (such as, set to 1 if the customer is sent
a coupon, and 0 otherwise) or categoric (indicating which of several possible actions is
taken). Alternatively, Mi may be continuous-valued (indicating the size of the discount
offered, for example). We would like to find the marketing plan that maximizes profit.
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A probabilistic model was proposed that optimizes Mi as a continuous value. That is,
it optimizes the amount of marketing money spent on each customer, rather than just
making a binary decision on whether to target the customer.

The model considers the following factors that influence a customer’s network value.
First, the customer should have high connectivity in the network and also give the prod-
uct a good rating. If a highly-connected customer gives a negative review, her network
value can be negative, in which case, marketing to her is not recommended. Second, the
customer should have more influence on others (preferably, much more) than they have
on her. Third, the recursive nature of this word-of-mouth type of influence should be
considered. A customer may influence acquaintances, who in turn, may like the product
and influence other people, and so on, until the whole network is reached. The model
also incorporates another important consideration: it may pay to lose money on some
customers if they are influential enough in a positive way. For example, giving a product
for free to a well-selected customer may pay off many times in sales to other customers.
This is a big twist from traditional direct marketing, which will only offer a customer
a discount if the expected profits from the customer alone exceed the cost of the offer.
The model takes into consideration the fact that we have only partial knowledge of the
network and that gathering such knowledge can have an associated cost.

The task of finding the optimal set of customers is formalized as a well-defined opti-
mization problem: find the set of customers that maximizes the net profits. This problem is
known to be NP-hard (intractable); however, it can be approximated within 63% of the
optimal using a simple hill-climbing search procedure. Customers are added to the set as
long as this improves overall profit. The method was found to be robust in the presence
of incomplete knowledge of the network.

Viral marketing techniques may be applied to other areas that require a large social
outcome with only limited resources. Reducing the spread of HIV, combatting teenage
smoking, and grass-roots political initiative are some examples. The application of
viral marketing techniques to the Web domain, and vice versa, is an area of further
research.

Mining Newsgroups Using Networks
Web-based social network analysis is closely related to Web mining, a topic to be studied
in the next chapter. There we will introduce two popular Web page ranking algorithms,
PageRank and HITS, which are proposed based on the fact that a link of Web page A to
B usually indicates the endorsement of B by A.

The situation is rather different in newsgroups on topic discussions. A typical news-
group posting consists of one or more quoted lines from another posting followed by
the opinion of the author. Such quoted responses form “quotation links” and create a
network in which the vertices represent individuals and the links “responded-to” rela-
tionships. An interesting phenomenon is that people more frequently respond to a mes-
sage when they disagree than when they agree. This behavior exists in many newsgroups
and is in sharp contrast to the Web page link graph, where linkage is an indicator of
agreement or common interest. Based on this behavior, one can effectively classify and
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partition authors in the newsgroup into opposite camps by analyzing the graph structure
of the responses.

This newsgroup classification process can be performed using a graph-theoretic
approach. The quotation network (or graph) can be constructed by building a quo-
tation link between person i and person j if i has quoted from an earlier posting
written by j. We can consider any bipartition of the vertices into two sets: F represents
those for an issue and A represents those against it. If most edges in a newsgroup
graph represent disagreements, then the optimum choice is to maximize the num-
ber of edges across these two sets. Because it is known that theoretically the max-cut
problem (i.e., maximizing the number of edges to cut so that a graph is partitioned
into two disconnected subgraphs) is an NP-hard problem, we need to explore some
alternative, practical solutions. In particular, we can exploit two additional facts that
hold in our situation: (1) rather than being a general graph, our instance is largely
a bipartite graph with some noise edges added, and (2) neither side of the bipartite
graph is much smaller than the other. In such situations, we can transform the problem
into a minimum-weight, approximately balanced cut problem, which in turn can be
well approximated by computationally simple spectral methods. Moreover, to further
enhance the classification accuracy, we can first manually categorize a small number
of prolific posters and tag the corresponding vertices in the graph. This information
can then be used to bootstrap a better overall partitioning by enforcing the constraint
that those classified on one side by human effort should remain on that side during
the algorithmic partitioning of the graph.

Based on these ideas, an efficient algorithm was proposed. Experiments with some
newsgroup data sets on several highly debatable social topics, such as abortion, gun
control, and immigration, demonstrate that links carry less noisy information than
text. Methods based on linguistic and statistical analysis of text yield lower accuracy
on such newsgroup data sets than that based on the link analysis shown earlier
because the vocabulary used by the opponent sides tends to be largely identical,
and many newsgroup postings consist of too-brief text to facilitate reliable linguistic
analysis.

Community Mining from Multirelational Networks
With the growth of the Web, community mining has attracted increasing attention.
A great deal of such work has focused on mining implicit communities of Web pages,
of scientific literature from the Web, and of document citations. In principle, a com-
munity can be defined as a group of objects sharing some common properties. Com-
munity mining can be thought of as subgraph identification. For example, in Web
page linkage, two Web pages (objects) are related if there is a hyperlink between them.
A graph of Web page linkages can be mined to identify a community or set of Web
pages on a particular topic.

Most techniques for graph mining and community mining are based on a homoge-
nous graph, that is, they assume only one kind of relationship exists between the objects.
However, in real social networks, there are always various kinds of relationships
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between the objects. Each relation can be viewed as a relation network. In this sense,
the multiple relations form a multirelational social network (also referred to as a
heterogeneous social network). Each kind of relation may play a distinct role in a
particular task. Here, the different relation graphs can provide us with different
communities.

To find a community with certain properties, we first need to identify which relation
plays an important role in such a community. Such a relation might not exist explicitly,
that is, we may need to first discover such a hidden relation before finding the community
on such a relation network. Different users may be interested in different relations within
a network. Thus, if we mine networks by assuming only one kind of relation, we may end
up missing out on a lot of valuable hidden community information, and such mining
may not be adaptable to the diverse information needs of various users. This brings us to
the problem of multirelational community mining, which involves the mining of hidden
communities on heterogeneous social networks.

Let us consider a simple example. In a typical human community, there may exist
many relations: some people work at the same place; some share the same interests; some
go to the same hospital, and so on. Mathematically, this community can be characterized
by a large graph in which the nodes represent people and the edges evaluate their relation
strength. Because there are different kinds of relations, the edges of this graph should be
heterogeneous. For some tasks, we can also model this community using several homo-
geneous graphs. Each graph reflects one kind of relation. Suppose an infectious disease
breaks out, and the government tries to find those most likely to be infected. Obviously,
the existing relationships among people cannot play an equivalent role. It seems reason-
able to assume that under such a situation the relation “works at the same place” or “lives
together” should play a critical role. The question becomes: “How can we select the rela-
tion that is most relevant to the disease spreading? Is there a hidden relation (based on the
explicit relations) that best reveals the spread path of the disease?”

These questions can be modeled mathematically as relation selection and extraction
in multirelational social network analysis. The problem of relation extraction can be sim-
ply stated as follows: In a heterogeneous social network, based on some labeled examples
(e.g., provided by a user as queries), how can we evaluate the importance of different rela-
tions? In addition, how can we obtain a combination of the existing relations, which best
matches the relation of labeled examples?

As an example, consider the network in Figure 9.18, which has three different
relations, shown as (a), (b), and (c), respectively. Suppose a user requires that the four
colored objects belong to the same community and specifies this with a query. Clearly,
the relative importance of each of the three relations differs with respect to the user’s
information need. Of the three relations, we see that (a) is the most relevant to the user’s
need and is thus the most important, while (b) comes in second. Relation (c) can be seen
as noise in regards to the user’s information need. Traditional social network analysis
does not distinguish these relations. The different relations are treated equally. They are
simply combined together for describing the structure between objects. Unfortunately,
in this example, relation (c) has a negative effect for this purpose. However, if we com-
bine these relations according to their importance, relation (c) can be easily excluded,
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(a) (b) (c)

Figure 9.18 There are three relations in the network. The four colored objects are required to belong to
the same community, according to a user query.

leaving relations (a) and (b) to be used to discover the community structure, which is
consistent with the user’s requirement.

A user might submit a more complex query in some situations. For example, a user
may specify that, say, the two upper colored objects and the two lower colored objects
should belong to different communities. In this situation, the importance of the three
relations of Figure 9.18 changes. Relation (b) becomes the most important, while relation
(a) becomes useless (and even has a negative effect with regards to the query). Thus, in
a multirelational social network, community mining should be dependent on the user’s
query (or information need). A user’s query can be very flexible. Earlier techniques focus
on only a single relational network and are independent of the user’s query and thus
cannot cope with such a complex situation.

An algorithm for relation extraction and selection was proposed, which models the
task as an optimization problem. The problem can be mathematically defined as follows.
Given are a set of objects and a set of relations, which can be represented by a set of graphs
Gi(V,Ei), i = 1, . . . ,n, where n is the number of relations, V is the set of nodes (objects),
and Ei is the set of edges with respect to the i-th relation. The weights on the edges can be
naturally defined according to the relation strength of two objects. The algorithm char-
acterizes each relation by a graph with a weight matrix. Let Mi denote the weight matrix
associated with Gi, i = 1, . . . ,n. Each element in the matrix reflects the relation strength
between a pair of objects in the relation. Suppose a hidden relation is represented by a
graph ̂G(V, ̂E), and ̂M denotes the weight matrix associated with ̂G. A user specifies her
information need as a query in the form of a set of labeled objects X = [x1, · · · ,xm] and
y = [y1, · · · ,ym], where y j is the label of xj (such labeled objects indicate partial informa-

tion of the hidden relation ̂G). The algorithm aims at finding a linear combination of
these weight matrices that can best approximate ̂G (the weight matrix associated with the
labeled examples.) The obtained combination is more likely to meet the user’s informa-
tion need, so it leads to better performance in community mining.

The algorithm was tested on bibliographic data. Naturally, multiple relations exist
between authors. Authors can publish papers in thousands of different conferences, and
each conference can be considered as a relation, resulting in a multirelational social net-
work. Given some user-provided examples (like a group of authors), the algorithm can
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extract a new relation using the examples and find all other groups in that relation. The
extracted relation can be interpreted as the groups of authors that share certain kinds of
similar interests.

9.3 Multirelational Data Mining

Relational databases are the most popular repository for structured data. In a relational
database, multiple relations are linked together via entity-relationship links (Chap-
ter 1). Many classification approaches (such as neural networks and support vector
machines) can only be applied to data represented in single, “flat” relational form—
that is, they expect data in a single table. However, many real-world applications, such
as credit card fraud detection, loan applications, and biological data analysis, involve
decision-making processes based on information stored in multiple relations in a rela-
tional database. Thus, multirelational data mining has become a field of strategic
importance.

9.3.1 What Is Multirelational Data Mining?

Multirelational data mining (MRDM) methods search for patterns that involve multi-
ple tables (relations) from a relational database. Consider the multirelational schema of
Figure 9.19, which defines a financial database. Each table or relation represents an entity
orarelationship,describedbyasetofattributes.Linksbetweenrelationsshowtherelation-
ship between them. One method to apply traditional data mining methods (which assume
that the data reside in a single table) is propositionalization, which converts multiple rela-
tional data into a single flat data relation, using joins and aggregations. This, however,
could lead to the generation of a huge, undesirable “universal relation” (involving all of
the attributes). Furthermore, it can result in the loss of information, including essential
semantic information represented by the links in the database design.

Multirelational data mining aims to discover knowledge directly from relational data.
There are different multirelational data mining tasks, including multirelational classi-
fication, clustering, and frequent pattern mining. Multirelational classification aims to
build a classification model that utilizes information in different relations. Multirela-
tional clustering aims to group tuples into clusters using their own attributes as well
as tuples related to them in different relations. Multirelational frequent pattern mining
aims at finding patterns involving interconnected items in different relations. We first
use multirelational classification as an example to illustrate the purpose and procedure
of multirelational data mining. We then introduce multirelational classification and mul-
tirelational clustering in detail in the following sections.

In a database for multirelational classification, there is one target relation, Rt , whose
tuples are called target tuples and are associated with class labels. The other relations are
nontarget relations. Each relation may have one primary key (which uniquely identifies
tuples in the relation) and several foreign keys (where a primary key in one relation can
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Figure 9.19 A financial database (from [PKDD CUP 99]).

be linked to the foreign key in another). If we assume a two-class problem, then we pick
one class as the positive class and the other as the negative class. The most important task
for building an accurate multirelational classifier is to find relevant features in different
relations that help distinguish positive and negative target tuples.

Example 9.7 A database for multirelational classification. Consider the relational database of
Figure 9.19. Arrows go from primary keys to corresponding foreign keys. Suppose the
target relation is Loan. Each target tuple is either positive or negative, indicating whe-
ther the loan is paid on time. The task of multirelational classification is to build a
hypothesis to distinguish positive and negative target tuples, using information in dif-
ferent relations.

For classification, in general, we search for hypotheses that help distinguish positive
and negative target tuples. The most popular form of hypotheses for multirelational clas-
sification is sets of rules. Each rule is a list (logical conjunct) of predicates, associated with
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Loan

loan ID account ID amount duration payment class

1 124 1000 12 120 +

2 124 4000 12 350 +

3 108 10000 24 500 −
4 45 12000 36 400 −
5 45 2000 24 90 +

Account

account ID frequency date

124 monthly 960227

108 weekly 950923

45 monthly 941209

67 weekly 950101

Figure 9.20 An example database (the last column of the Loan relation contains the class labels.)

a class label. A predicate is a constraint on an attribute in a relation. A predicate is often
defined based on a certain join path, as illustrated in Example 9.8. A target tuple satisfies
a rule if and only if it satisfies every predicate of the rule.

Example 9.8 Predicates and rules. Predicate “p1 = Loan(L, , , , payment >= 12, )” means that
the duration of loan L is no less than 12 months. It is an example of a numerical predi-
cate. Predicate “p2 = Loan(L, A, , , , ), Account(A, , f requency = monthly, )” is
defined on the join path, Loan ./ Account, which means that the associated account of a
loan has frequency “monthly.” It is a categorical predicate. Suppose that a rule for positive
(+) target tuples is “r = Loan(L,+) :−Loan(L, A, , , , ), Account(A, , f requency =
monthly, ).” We say a tuple, t, in Loan satisfies r if and only if any tuple in Account that
is joinable with t has the value “monthly” in the frequency attribute of Account. Consider
the example database of Figure 9.20. Two such tuples (namely, with account IDs of 124
and 45) in Account satisfy the predicate Account(A, , f requency = monthly, ). There-
fore, four tuples (with loan IDs of 1, 2, 4, and 5) in Loan satisfy the rule.

Given the training data that contain a target relation and a set of nontarget relations,
a rule-based multirelational classification approach will build a model consisting of a set
of rules. When predicting the class label of a target tuple t, it will make the prediction
based on all rules satisfied by t. For example, it may predict t’s class label based on the
rule with highest accuracy on the training set.

9.3.2 ILP Approach to Multirelational Classification

Inductive Logic Programming (ILP) is the most widely used category of approaches to
multirelational classification. There are many ILP approaches. In general, they aim to
find hypotheses of a certain format that can predict the class labels of target tuples, based
on background knowledge (i.e., the information stored in all relations). The ILP problem
is defined as follows: Given background knowledge B, a set of positive examples P, and a set
of negative examples N, find a hypothesis H such that: (1) ∀t ∈P : H∪B |= t (completeness),
and (2) ∀t ∈ N : H ∪B |6= t (consistency), where |= stands for logical implication.
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Well-known ILP systems include FOIL, Golem, and Progol. FOIL is a top-down
learner, which builds rules that cover many positive examples and few negative ones.
Golem is a bottom-up learner, which performs generalizations from the most specific
rules. Progol uses a combined search strategy. Recent approaches, like TILDE, Mr-
SMOTI, and RPTs, use the idea of C4.5 and inductively construct decision trees from
relational data.

Although many ILP approaches achieve good classification accuracy, most of them
are not highly scalable with respect to the number of relations in the database. The target
relation can usually join with each nontarget relation via multiple join paths. Thus, in
a database with reasonably complex schema, a large number of join paths will need to
be explored. In order to identify good features, many ILP approaches repeatedly join the
relations along different join paths and evaluate features based on the joined relation.
This is time consuming, especially when the joined relation contains many more tuples
than the target relation.

We look at FOIL as a typical example of ILP approaches. FOIL is a sequential
covering algorithm that builds rules one at a time. After building a rule, all positive
target tuples satisfying that rule are removed, and FOIL will focus on tuples that have
not been covered by any rule. When building each rule, predicates are added one by
one. At each step, every possible predicate is evaluated, and the best one is appended
to the current rule.

To evaluate a predicate p, FOIL temporarily appends it to the current rule. This forms
the rule r + p. FOIL constructs a new data set, which contains all target tuples satisfying
r + p, together with the relevant nontarget tuples on the join path specified by r + p.
Predicate p is evaluated based on the number of positive and negative target tuples sat-
isfying r + p, using the foil gain measure, which is defined as follows: Let P(r) and N(r)
denote the number of positive and negative tuples satisfying a rule r, respectively. Sup-
pose the current rule is r. The foil gain of p is computed as follows:

I(r) =− log
P(r)

P(r)+ N(r)
(9.2)

foil gain(p) = P(r + p) · [I(r)− I(r + p)] (9.3)

Intuitively, foil gain(p) represents the total number of bits saved in representing positive
tuples by appending p to the current rule. It indicates how much the predictive power of
the rule can be increased by appending p to it. The best predicate found is the one with
the highest foil gain.

Example 9.9 Search for predicates by joins. Consider the example database of Figure 9.20. Our task
is to learn rules to distinguish positive (+) and negative (−) target tuples. In order to
compute the foil gain of predicates in a nontarget relation like Account, FOIL needs to
first create a joined relation of Loan and Account, as in Figure 9.21. For each predicate
p in Account, FOIL needs to find all positive and negative tuples satisfying r + p, where
r is the current rule.
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Loan ./ Account

loan ID account ID amount duration payment frequency date class

1 124 1000 12 120 monthly 960227 +

2 124 4000 12 350 monthly 960227 +

3 108 10000 24 500 weekly 950923 −
4 45 12000 36 400 monthly 941209 −
5 45 2000 24 90 monthly 941209 +

Figure 9.21 The joined relation of Loan and Account.

The foil gain of all predicates on a certain attribute can be computed by scanning
the corresponding column in the joined relation once. It can also find the best predi-
cate in a continuous attribute, by first sorting that column and then iterating from the
smallest value to the largest one to compute the foil gain, using each value as the splitting
point.

Many ILP approaches for multirelational classification use similar methods to evalu-
ate predicates. For databases with complex schema, the search space is huge, and there are
many possible predicates at each step. For example, in the database in Figure 9.19, Loan
can join with Account, Order, Transaction, and Disposition, each of which can join with
several other relations. To build rules, FOIL needs to repeatedly construct many joined
relations by physical joins to find good predicates. This procedure becomes very time
consuming for databases with reasonably complex schemas.

9.3.3 Tuple ID Propagation

Tuple ID propagation is a technique for performing virtual join, which greatly improves
efficiency of multirelational classification. Instead of physically joining relations, they are
virtually joined by attaching the IDs of target tuples to tuples in nontarget relations. In
this way the predicates can be evaluated as if a physical join were performed. Tuple ID
propagation is flexible and efficient, because IDs can easily be propagated between any
two relations, requiring only small amounts of data transfer and extra storage space. By
doing so, predicates in different relations can be evaluated with little redundant
computation.

Suppose that the primary key of the target relation is an attribute of integers, which
represents the ID of each target tuple (we can create such a primary key if there isn’t one).
Suppose two relations, R1 and R2, can be joined by attributes R1.A and R2.A. In tuple
ID propagation, each tuple t in R1 is associated with a set of IDs in the target relation,
represented by IDset(t). For each tuple u in R2, we set IDset(u) =

⋃

t∈R1,t.A=u.A IDset(t).
That is, the tuple IDs in the IDset for tuple t of R1 are propagated to each tuple, u, in R2
that is joinable with t on attribute A.
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Loan

loan ID account ID · · · class

1 124 +

2 124 +

3 108 −
4 45 −
5 45 +

Account

account ID frequency date ID set class labels

124 monthly 960227 1, 2 2+, 0−
108 weekly 950923 3 0+, 1−

45 monthly 941209 4, 5 1+, 1−
67 weekly 950101 – 0+, 0−

Figure 9.22 Example of tuple ID propagation (some attributes in Loan are not shown).

Example 9.10 Tuple ID propagation. Consider the example database shown in Figure 9.22, which has
the same schema as in Figure 9.20. The relations are joinable on the attribute account ID.
Instead of performing a physical join, the IDs and class labels of target (Loan) tuples
can be propagated to the Account relation. For example, the first two tuples in Loan are
joinable with the first tuple in Account, thus their tuple IDs ({1,2}) are propagated to
the first tuple in Account. The other tuple IDs are propagated in the same way.

To further illustrate tuple ID propagation, let’s see how it can be used to compute
the foil gain of predicates without having to perform physical joins. Given relations R1
and R2 as above, suppose that R1 is the target relation, and all tuples in R1 satisfy the
current rule (others have been eliminated). For convenience, let the current rule contain
a predicate on R1.A, which enables the join of R1 with R2. For each tuple u of R2, IDset(u)
represents all target tuples joinable with u, using the join path specified in the current
rule. If tuple IDs are propagated from R1 to R2, then the foil gain of every predicate in
R2 can be computed using the propagated IDs on R2.

Example 9.11 Computing foil gain using tuple ID propagation (IDsets). Suppose the current rule, r,
is “Loan(L,+) : − Loan(L, A, , , , ).” From Figure 9.22, we note that three pos-
itive and two negative target tuples satisfy r. Therefore, P(r) = 3 and N(r) = 2. (This
would have been determined during the process of building the current rule.) To eval-
uate predicate p = “Account(A, , frequency = monthly, ),” we need to find the tuples
in the Account relation that satisfy p. There are two such tuples, namely, {124, 45}.
We find the IDs of target tuples that can be joined with these two tuples by taking the
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union of their corresponding IDsets. This results in {1, 2, 4, 5}. Among these, there are
three positive and one negative target tuples. Thus, P(r + p) = 3 and N(r + p) = 1.
The foil gain of predicate p can easily be computed from Equations 9.2 and 9.3. That is,
foil gain(p) = 3 · [− log2(3/5)+ log2(3/4)] = 0.966. Thus, with tuple propagation, we
are able to compute the foil gain without having to perform any physical joins.

Besides propagating IDs from the target relation to relations directly joinable with it,
we can also propagate IDs transitively from one nontarget relation to another. Suppose
two nontarget relations, R2 and R3, can be joined by attributes R2.A and R3.A. For each
tuple v in R2, IDset(v) represents the target tuples joinable with v (using the join path
specified by the current rule). By propagating IDs from R2 to R3 through the join R2.A =
R3.A, for each tuple u in R3, IDset(u) represents target tuples that can be joined with u
(using the join path in the current rule, plus the join R2.A = R3.A). Thus, by tuple ID
propagation between nontarget relations, we can also compute the foil gain based on the
propagated IDs.

Tuple ID propagation, although valuable, should be enforced with certain constraints.
There are two cases where such propagation could be counterproductive: (1) propagation
via large fan-outs, and (2) propagation via long, weak links. The first case occurs when,
after propagating the IDs to a relation R, it is found that every tuple in R is joined with
many target tuples and every target tuple is joined with many tuples in R. The semantic
link between R and the target relation is then typically very weak because the link is
unselective. For example, propagation among people via birth-country links may not be
productive. The second case occurs when the propagation goes through long links (e.g.,
linking a student with his car dealer’s pet may not be productive, either). From the sake
of efficiency and accuracy, propagation via such links is discouraged.

9.3.4 Multirelational Classification Using Tuple ID Propagation

In this section we introduce CrossMine, an approach that uses tuple ID propagation
for multirelational classification. To better integrate the information of ID propagation,
CrossMine uses complex predicates as elements of rules. A complex predicate, p, contains
two parts:

1. prop-path: This indicates how to propagate IDs. For example, the path “Loan.
account ID → Account.account ID” indicates propagating IDs from Loan to
Account using account ID. If no ID propagation is involved, prop-path is empty.

2. constraint: This is a predicate indicating the constraint on the relation to which the
IDs are propagated. It can be either categorical or numerical.

A complex predicate is usually equivalent to two conventional predicates. For exam-
ple, the rule “Loan(L,+) :−Loan(L, A, , , , ), Account(A, , frequent = monthly, )”
can be represented by “Loan(+) : −[Loan.account ID → Account.account ID,
Account.frequency = monthly].”
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CrossMine builds a classifier containing a set of rules, each containing a list of com-
plex predicates and a class label. The algorithm of CrossMine is shown in Figure 9.23.
CrossMine is also a sequential covering algorithm like FOIL. It builds rules one at a time.
After a rule r is built, all positive target tuples satisfying r are removed from the data

Algorithm: CrossMine. Rule-based classification across multiple relations.

Input:

D, a relational database;

Rt a target relation.

Output:

A set of rules for predicting class labels of target tuples.

Method:

(1) rule set R← /0;

(2) while (true)

(3) rule r← empty-rule;

(4) set Rt to active;

(5) repeat

(6) Complex predicate p← the predicate with highest foil gain;

(7) if foil gain(p)< MIN FOIL GAIN then

(8) break;

(9) else

(10) r← r + p; // append predicate, increasing rule length by 1

(11) remove all target tuples not satisfying r;

(12) update IDs on every active relation;

(13) if p.constraint is on an inactive relation then

(14) set that relation active;

(15) endif

(16) until (r.length = MAX RULE LENGTH)

(17) if r = empty-rule then break;

(18) R← R∪{r};
(19) remove all positive target tuples satisfying r;

(20) set all relations inactive;

(21) endwhile

(22) return R;

Figure 9.23 Algorithm CrossMine.
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set. To build a rule, CrossMine repeatedly searches for the best complex predicate and
appends it to the current rule, until the stop criterion is met. A relation is active if it
appears in the current rule. Before searching for the next best predicate, each active rela-
tion is required to have the IDset of propagated IDs for each of its tuples. When searching
for a predicate, CrossMine evaluates all of the possible predicates on any active relation
or any relation that is joinable with an active relation. When there are more than two
classes of target tuples, CrossMine builds a set of rules for each class.

“How does CrossMine find the best predicate to append to the current rule?” At each
step, CrossMine uses tuple ID propagation to search for the best predicate in all of the
active relations, or relations that are joinable with any active relation. In our example, at
first only the Loan relation is active. If the first best predicate is found in, say, the Account
relation, Account becomes active as well. CrossMine tries to propagate the tuple IDs from
Loan or Account to other relations to find the next best predicate. In this way, the search
range is gradually expanded along promising directions reflecting strong semantic links
between entities. This avoids aimless search in the huge hypothesis space.

Suppose that CrossMine is searching for the best predicate on a categorical attribute,
Ac, in a relation, R. CrossMine evaluates all possible predicates and selects the best one.
For each value ai of Ac, a predicate pi = [R.Ac = ai] is built. CrossMine scans the values of
each tuple on Ac to find the numbers of positive and negative target tuples satisfying each
predicate, pi. The foil gain of each pi can then be computed to find the best predicate.
For numerical predicates, it uses the method described in Section 9.3.2.

The above algorithm may fail to find good predicates in databases containing rela-
tions that are only used to join with other relations. For example, in the database of
Figure 9.24, there is no useful attribute in the Has Loan relation. Therefore, the rules built
will not involve any predicates on the Client and District relations. CrossMine adopts a
look-one-ahead method to solve this problem. After IDs have been propagated to a rela-
tion R (such as Has Loan), if R contains a foreign key referencing the primary key of a

relation R
′

(such as client ID of Client), then IDs are propagated from R to R
′
, and used

Figure 9.24 Another example database.
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to search for good predicates in R
′
. By this method, in the example of Figure 9.24, we can

find rules like “Loan(+) :−[Loan.loan ID →Has Loan.loan ID, Has Loan.client ID →
Client.client ID, Client.birthdate < 01/01/60].”

After generating a classifier, CrossMine needs to predict the class labels of unlabeled
target tuples. Suppose there is a rule, r = Rt(+) : −p1, p2, . . . , pk, where each pi is a
complex predicate. CrossMine propagates the IDs of target tuples along the prop-path of
each predicate, and prunes all IDs of target tuples not satisfying the constraint of pi. In
this way it can easily find all target tuples satisfying each rule. For each target tuple t, the
most accurate rule that is satisfied by t is used to predict the class label of t.

“How does CrossMine fare in terms of scalability and accuracy?” Experiments have
shown that CrossMine is highly scalable compared with traditional ILP approaches and
also achieves high accuracy. These features make it attractive for multirelational classifi-
cation in real-world databases.

9.3.5 Multirelational Clustering with User Guidance

Multirelational clustering is the process of partitioning data objects into a set of clusters
based on their similarity, utilizing information in multiple relations. In this section we
will introduce CrossClus (Cross-relational Clustering with user guidance), an algorithm
for multirelational clustering that explores how to utilize user guidance in clustering and
tuple ID propagation to avoid physical joins.

One major challenge in multirelational clustering is that there are too many attributes
in different relations, and usually only a small portion of them are relevant to a specific
clustering task. Consider the computer science department database of Figure 9.25. In
order to cluster students, attributes cover many different aspects of information, such
as courses taken by students, publications of students, advisors and research groups of
students, and so on. A user is usually interested in clustering students using a certain
aspect of information (e.g., clustering students by their research areas). Users often have
a good grasp of their application’s requirements and data semantics. Therefore, a user’s
guidance, even in the form of a simple query, can be used to improve the efficiency and
quality of high-dimensional multirelational clustering. CrossClus accepts user queries
that contain a target relation and one or more pertinent attributes, which together specify
the clustering goal of the user.

Example 9.12 User guidance in the form of a simple query. Consider the database of Figure 9.25.
Suppose the user is interested in clustering students based on their research areas. Here,
the target relation is Student and the pertinent attribute is area from the Group relation.
A user query for this task can be specified as “cluster Student with Group.area.”

In order to utilize attributes in different relations for clustering, CrossClus defines
multirelational attributes. A multirelational attribute Ã is defined by a join path
Rt ./ R1 ./ · · · ./ Rk, an attribute Rk.A of Rk, and possibly an aggregation operator
(e.g., average, count, max). Ã is formally represented by [Ã. joinpath, Ã.attr, Ã.aggr],
in which Ã.aggr is optional. A multirelational attribute Ã is either a categorical feature
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Figure 9.25 Schema of a computer science department database.

or a numerical one, depending on whether Rk.A is categorical or numerical. If Ã is a
categorical feature, then for a target tuple t, t.Ã represents the distribution of values
among tuples in Rk that are joinable with t. For example, suppose Ã = [Student ./
Register ./ OpenCourse ./ Course, area] (areas of courses taken by each student).
If a student t1 takes four courses in database and four courses in AI, then t1.Ã =
(database:0.5, AI:0.5). If Ã is numerical, then it has a certain aggregation operator
(average, count, max, . . . ), and t.Ã is the aggregated value of tuples in Rk that are
joinable with t.

In the multirelational clustering process, CrossClus needs to search pertinent
attributes across multiple relations. CrossClus must address two major challenges in
the searching process. First, the target relation, Rt , can usually join with each nontar-
get relation, R, via many different join paths, and each attribute in R can be used as
a multirelational attribute. It is impossible to perform any kind of exhaustive search
in this huge search space. Second, among the huge number of attributes, some are
pertinent to the user query (e.g., a student’s advisor is related to her research area),
whereas many others are irrelevant (e.g., a student’s classmates’ personal information).
How can we identify pertinent attributes while avoiding aimless search in irrelevant
regions in the attribute space?
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To overcome these challenges, CrossClus must confine the search process. It considers
the relational schema as a graph, with relations being nodes and joins being edges. It
adopts a heuristic approach, which starts search from the user-specified attribute, and
then repeatedly searches for useful attributes in the neighborhood of existing attributes.
In this way it gradually expands the search scope to related relations, but will not go deep
into random directions.

“How does CrossClus decide if a neighboring attribute is pertinent?” CrossClus looks at
how attributes cluster target tuples. The pertinent attributes are selected based on their
relationships to the user-specified attributes. In essence, if two attributes cluster tuples
very differently, their similarity is low and they are unlikely to be related. If they cluster
tuples in a similar way, they should be considered related. However, if they cluster tuples
in almost the same way, their similarity is very high, which indicates that they contain
redundant information. From the set of pertinent features found, CrossClus selects a set
of nonredundant features so that the similarity between any two features is no greater
than a specified maximum.

CrossClus uses the similarity vector of each attribute for evaluating the similarity
between attributes, which is defined as follows. Suppose there are N target tuples,

t1, . . . , tN . Let VÃ be the similarity vector of attribute Ã. It is an N2-dimensional vec-
tor that indicates the similarity between each pair of target tuples, ti and t j, based on
Ã. To compare two attributes by the way they cluster tuples, we can look at how alike
their similarity vectors are, by computing the inner product of the two similarity vec-
tors. However, this is expensive to compute. Many applications cannot even afford to
store N2-dimensional vectors. Instead, CrossClus converts the hard problem of comput-
ing the similarity between similarity vectors to an easier problem of computing similar-
ities between attribute values, which can be solved in linear time.

Example 9.13 Multirelational search for pertinent attributes. Let’s look at how CrossClus proceeds in
answering the query of Example 9.12, where the user has specified her desire to clus-
ter students by their research areas. To create the initial multirelational attribute for this
query, CrossClus searches for the shortest join path from the target relation, Student, to
the relation Group, and creates a multirelational attribute Ã using this path. We simulate
the procedure of attribute searching, as shown in Figure 9.26. An initial pertinent mul-
tirelational attribute [Student ./ WorkIn ./ Group , area] is created for this query (step 1
in the figure). At first CrossClus considers attributes in the following relations that are
joinable with either the target relation or the relation containing the initial pertinent
attribute: Advise, Publish, Registration, WorkIn, and Group. Suppose the best attribute
is [Student ./ Advise , professor], which corresponds to the student’s advisor (step 2). This
brings the Professor relation into consideration in further search. CrossClus will search
for additional pertinent features until most tuples are sufficiently covered. CrossClus uses
tuple ID propagation (Section 9.3.3) to virtually join different relations, thereby avoid-
ing expensive physical joins during its search.
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Figure 9.26 Search for pertinent attributes in CrossClus.

Now that we have an intuitive idea of how CrossClus employs user guidance to search
for attributes that are highly pertinent to the user’s query, the next question is, how does it
perform the actual clustering? With the potentially large number of target tuples, an effi-
cient and scalable clustering algorithm is needed. Because the multirelational attributes
do not form a Euclidean space, the k-medoids method (Section 7.4.1) was chosen, which
requires only a distance measure between tuples. In particular, CLARANS (Section 7.4.2),
an efficient k-medoids algorithm for large databases, was used. The main idea of
CLARANS is to consider the whole space of all possible clusterings as a graph and to use
randomized search to find good clusterings in this graph. It starts by randomly select-
ing k tuples as the initial medoids (or cluster representatives), from which it constructs
k clusters. In each step, an existing medoid is replaced by a new randomly selected medoid.
If the replacement leads to better clustering, the new medoid is kept. This procedure is
repeated until the clusters remain stable.

CrossClus provides the clustering results to the user, together with information about
each attribute. From the attributes of multiple relations, their join paths, and aggre-
gation operators, the user learns the meaning of each cluster, and thus gains a better
understanding of the clustering results.
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9.4 Summary

Graphs represent a more general class of structures than sets, sequences, lattices, and
trees. Graph mining is used to mine frequent graph patterns, and perform character-
ization, discrimination, classification, and cluster analysis over large graph data sets.
Graph mining has a broad spectrum of applications in chemical informatics, bioin-
formatics, computer vision, video indexing, text retrieval, and Web analysis.

Efficient methods have been developed for mining frequent subgraph patterns. They
can be categorized into Apriori-based and pattern growth–based approaches. The
Apriori-based approach has to use the breadth-first search (BFS) strategy because of
its level-wise candidate generation. The pattern-growth approach is more flexible with
respect to the search method. A typical pattern-growth method is gSpan, which
explores additional optimization techniques in pattern growth and achieves high per-
formance. The further extension of gSpan for mining closed frequent graph patterns
leads to the CloseGraph algorithm, which mines more compressed but complete sets
of graph patterns, given the minimum support threshold.

There are many interesting variant graph patterns, including approximate frequent
graphs, coherent graphs, and dense graphs. A general framework that considers con-
straints is needed for mining such patterns. Moreover, various user-specific
constraints can be pushed deep into the graph pattern mining process to improve
mining efficiency.

Application development of graph mining has led to the generation of compact and
effective graph index structures using frequent and discriminative graph patterns.
Structure similarity search can be achieved by exploration of multiple graph features.
Classification and cluster analysis of graph data sets can be explored by their inte-
gration with the graph pattern mining process.

A social network is a heterogeneous and multirelational data set represented by a graph,
which is typically very large, with nodes corresponding to objects, and edges (or links)
representing relationships between objects.

Small world networks reflect the concept of small worlds, which originally focused on
networks among individuals. They have been characterized as having a high degree of
local clustering for a small fraction of the nodes (i.e., these nodes are interconnected
with one another), while being no more than a few degrees of separation from the
remaining nodes.

Social networks exhibit certain characteristics. They tend to follow the densification
power law, which states that networks become increasingly dense over time. Shrinking
diameter is another characteristic, where the effective diameter often decreases as the
network grows. Node out-degrees and in-degrees typically follow a heavy-tailed distri-
bution. A Forest Fire model for graph generation was proposed, which incorporates
these characteristics.
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Link mining is a confluence of research in social networks, link analysis, hypertext
and Web mining, graph mining, relational learning, and inductive logic program-
ming. Link mining tasks include link-based object classification, object type predic-
tion, link type prediction, link existence prediction, link cardinality estimation, object
reconciliation (which predicts whether two objects are, in fact, the same), and group
detection (which clusters objects). Other tasks include subgraph identification (which
finds characteristic subgraphs within networks) and metadata mining (which uncov-
ers schema-type information regarding unstructured data).

In link prediction, measures for analyzing the proximity of network nodes can be
used to predict and rank new links. Examples include the shortest path (which ranks
node pairs by their shortest path in the network) and common neighbors (where the
greater the number of neighbors that two nodes share, the more likely they are to
form a link). Other measures may be based on the ensemble of all paths between two
nodes.

Viral marketing aims to optimize the positive word-of-mouth effect among
customers. By considering the interactions between customers, it can choose to
spend more money marketing to an individual if that person has many social
connections.

Newsgroup discussions form a kind of network based on the “responded-to” rela-
tionships. Because people generally respond more frequently to a message when they
disagree than when they agree, graph partitioning algorithms can be used to mine
newsgroups based on such a network to effectively classify authors in the newsgroup
into opposite camps.

Most community mining methods assume that there is only one kind of relation in the
network, and moreover, the mining results are independent of the users’ information
needs. In reality, there may be multiple relations between objects, which collectively
form a multirelational social network (or heterogeneous social network). Relation selec-
tion and extraction in such networks evaluates the importance of the different relations
with respect to user information provided as queries. In addition, it searches for a
combination of the existing relations that may reveal a hidden community within the
multirelational network.

Multirelational data mining (MRDM) methods search for patterns that involve mul-
tiple tables (relations) from a relational database.

Inductive Logic Programming (ILP) is the most widely used category of approaches
to multirelational classification. It finds hypotheses of a certain format that can pre-
dict the class labels of target tuples, based on background knowledge. Although many
ILP approaches achieve good classification accuracy, most are not highly scalable due
to the computational expense of repeated joins.

Tuple ID propagation is a method for virtually joining different relations by attaching
the IDs of target tuples to tuples in nontarget relations. It is much less costly than
physical joins, in both time and space.
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CrossMine and CrossClus are methods for multirelational classification and
multirelational clustering, respectively. Both use tuple ID propagation to avoid phys-
ical joins. In addition, CrossClus employs user guidance to constrain the search space.

Exercises

9.1 Given two predefined sets of graphs, contrast patterns are substructures that are frequent
in one set but infrequent in the other. Discuss how to mine contrast patterns efficiently
in large graph data sets.

9.2 Multidimensional information can be associated with the vertices and edges of each graph.
Study how to develop efficient methods for mining multidimensional graph patterns.

9.3 Constraints often play an important role in efficient graph mining. There are many poten-
tialconstraintsbasedonusers’ requests ingraphmining.Forexample,onemaywantgraph
patterns containing or excluding certain vertices (or edges), with minimal or maximal size,
containing certain subgraphs, with certain summation values, and so on. Based on how
a constraint behaves in graph mining, give a systematic classification of constraints and
work out rules on how to maximally use such constraints in efficient graph mining.

9.4 Our discussion of frequent graph pattern mining was confined to graph transactions (i.e.,
considering each graph in a graph database as a single “transaction” in a transactional
database). In many applications, one needs to mine frequent subgraphs in a large single
graph (such as the Web or a large social network). Study how to develop efficient methods
for mining frequent and closed graph patterns in such data sets.

9.5 What are the challenges for classification in a large social network in comparison with clas-
sification in a single data relation? Suppose each node in a network represents a paper,
associated with certain properties, such as author, research topic, and so on, and each
directed edge from node A to node B indicates that paper A cites paper B. Design an effec-
tive classification scheme that may effectively build a model for highly regarded papers
on a particular topic.

9.6 A group of students are linked to each other in a social network via advisors, courses,
research groups, and friendship relationships. Present a clustering method that may par-
tition students into different groups according to their research interests.

9.7 Many diseases spread via people’s physical contacts in public places, such as offices, class-
rooms, buses, shopping centers, hotels, and restaurants. Suppose a database registers the
concrete movement of many people (e.g., location, time, duration, and activity). Design
a method that can be used to rank the “not visited” places during a virus-spreading
season.

9.8 Design an effective method that discovers hierarchical clusters in a social network, such as
a hierarchical network of friends.

9.9 Social networks evolve with time. Suppose the history of a social network is kept. Design
a method that may discover the trend of evolution of the network.
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9.10 There often exist multiple social networks linking a group of objects. For example, a
student could be in a class, a research project group, a family member, member of a
neighborhood, and so on. It is often beneficial to consider their joint effects or interac-
tions. Design an efficient method in social network analysis that may incorporate mul-
tiple social networks in data mining.

9.11 Outline an efficient method that may find strong correlation rules in a large, multirela-
tional database.

9.12 It is important to take a user’s advice to cluster objects across multiple relations, because
many features among these relations could be relevant to the objects. A user may select a
sample set of objects and claim that some should be in the same cluster but some cannot.
Outline an effective clustering method with such user guidance.

9.13 As a result of the close relationships among multiple departments or enterprises, it is
necessary to perform data mining across multiple but interlinked databases. In compar-
ison with multirelational data mining, one major difficulty with mining across multiple
databases is semantic heterogeneity across databases. For example, “William Nelson” in
one database could be “Bill Nelson” or “B. Nelson” in another one. Design a data mining
method that may consolidate such objects by exploring object linkages among multiple
databases.

9.14 Outline an effective method that performs classification across multiple heterogeneous
databases.
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10Mining Object, Spatial,
Multimedia, Text, and

Web Data

Our previous chapters on advanced data mining discussed how to uncover knowledge from
stream, time-series, sequence, graph, social network, and multirelational data. In this
chapter, we examine data mining methods that handle object, spatial, multimedia,
text, and Web data. These kinds of data are commonly encountered in many social,
economic, scientific, engineering, and governmental applications, and pose new chal-
lenges in data mining. We first examine how to perform multidimensional analysis and
descriptive mining of complex data objects in Section 10.1. We then study methods
for mining spatial data (Section 10.2), multimedia data (Section 10.3), text (Section
10.4), and the World Wide Web (Section 10.5) in sequence.

10.1 Multidimensional Analysis and Descriptive Mining of
Complex Data Objects

Many advanced, data-intensive applications, such as scientific research and engineering
design, need to store, access, and analyze complex but relatively structured data objects.
These objects cannot be represented as simple and uniformly structured records (i.e.,
tuples) in data relations. Such application requirements have motivated the design and
development of object-relational and object-oriented database systems. Both kinds of sys-
tems deal with the efficient storage and access of vast amounts of disk-based complex
structured data objects. These systems organize a large set of complex data objects into
classes, which are in turn organized into class/subclass hierarchies. Each object in a class
is associated with (1) an object-identifier, (2) a set of attributes that may contain sophis-
ticated data structures, set- or list-valued data, class composition hierarchies, multi-
media data, and (3) a set of methods that specify the computational routines or rules
associated with the object class. There has been extensive research in the field of database
systems on how to efficiently index, store, access, and manipulate complex objects in
object-relational and object-oriented database systems. Technologies handling these
issues are discussed in many books on database systems, especially on object-oriented
and object-relational database systems.

591
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One step beyond the storage and access of massive-scaled, complex object data is the
systematic analysis and mining of such data. This includes two major tasks: (1) con-
struct multidimensional data warehouses for complex object data and perform online
analytical processing (OLAP) in such data warehouses, and (2) develop effective and
scalable methods for mining knowledge from object databases and/or data warehouses.
The second task is largely covered by the mining of specific kinds of data (such as spatial,
temporal, sequence, graph- or tree-structured, text, and multimedia data), since these
data form the major new kinds of complex data objects. As in Chapters 8 and 9, in this
chapter we continue to study methods for mining complex data. Thus, our focus in this
section will be mainly on how to construct object data warehouses and perform OLAP
analysis on data warehouses for such data.

A major limitation of many commercial data warehouse and OLAP tools for multi-
dimensional database analysis is their restriction on the allowable data types for dimen-
sions and measures. Most data cube implementations confine dimensions to nonnumeric
data, and measures to simple, aggregated values. To introduce data mining and multi-
dimensional data analysis for complex objects, this section examines how to perform
generalization on complex structured objects and construct object cubes for OLAP and
mining in object databases.

To facilitate generalization and induction in object-relational and object-oriented
databases, it is important to study how each component of such databases can be gene-
ralized, and how the generalized data can be used for multidimensional data analysis and
data mining.

10.1.1 Generalization of Structured Data
An important feature of object-relational and object-oriented databases is their capabil-
ity of storing, accessing, and modeling complex structure-valued data, such as set- and
list-valued data and data with nested structures.

“How can generalization be performed on such data?” Let’s start by looking at the
generalization of set-valued, list-valued, and sequence-valued attributes.

A set-valued attribute may be of homogeneous or heterogeneous type. Typically,
set-valued data can be generalized by (1) generalization of each value in the set to its
corresponding higher-level concept, or (2) derivation of the general behavior of the set,
such as the number of elements in the set, the types or value ranges in the set, the
weighted average for numerical data, or the major clusters formed by the set. More-
over, generalization can be performed by applying different generalization operators to
explore alternative generalization paths. In this case, the result of generalization is a
heterogeneous set.

Example 10.1 Generalization of a set-valued attribute. Suppose that the hobby of a person is a set-valued
attribute containing the set of values {tennis, hockey, soccer, violin, SimCity}. This set can
be generalized to a set of high-level concepts, such as {sports, music, computer games}
or into the number 5 (i.e., the number of hobbies in the set). Moreover, a count can
be associated with a generalized value to indicate how many elements are generalized to
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that value, as in {sports(3), music(1), computer games(1)}, where sports(3) indicates three
kinds of sports, and so on.

A set-valued attribute may be generalized to a set-valued or a single-valued attribute;
a single-valued attribute may be generalized to a set-valued attribute if the values form a
lattice or “hierarchy” or if the generalization follows different paths. Further generaliza-
tions on such a generalized set-valued attribute should follow the generalization path of
each value in the set.

List-valued attributes and sequence-valued attributes can be generalized in a manner
similar to that for set-valued attributes except that the order of the elements in the list or
sequence should be preserved in the generalization. Each value in the list can be genera-
lized into its corresponding higher-level concept. Alternatively, a list can be generalized
according to its general behavior, such as the length of the list, the type of list elements, the
value range, the weighted average value for numerical data, or by dropping unimportant
elements in the list. A list may be generalized into a list, a set, or a single value.

Example 10.2 Generalization of list-valued attributes. Consider the following list or sequence of data
for a person’s education record: “((B.Sc. in Electrical Engineering, U.B.C., Dec., 1998),
(M.Sc. in Computer Engineering, U. Maryland, May, 2001), (Ph.D. in Computer Science,
UCLA, Aug., 2005))”. This can be generalized by dropping less important descriptions
(attributes) of each tuple in the list, such as by dropping the month attribute to obtain
“((B.Sc., U.B.C., 1998), . . .)”, and/or by retaining only the most important tuple(s) in the
list, e.g., “(Ph.D. in Computer Science, UCLA, 2005)”.

A complex structure-valued attribute may contain sets, tuples, lists, trees, records,
and their combinations, where one structure may be nested in another at any level. In gen-
eral, a structure-valued attribute can be generalized in several ways, such as (1) genera-
lizing each attribute in the structure while maintaining the shape of the structure,
(2) flattening the structure and generalizing the flattened structure, (3) summarizing the
low-level structures by high-level concepts or aggregation, and (4) returning the type or
an overview of the structure.

In general, statistical analysis and cluster analysis may help toward deciding on the
directions and degrees of generalization to perform, since most generalization processes
are to retain main features and remove noise, outliers, or fluctuations.

10.1.2 Aggregation and Approximation in Spatial
and Multimedia Data Generalization
Aggregation and approximation are another important means of generalization. They
are especially useful for generalizing attributes with large sets of values, complex struc-
tures, and spatial or multimedia data.

Let’s take spatial data as an example. We would like to generalize detailed geo-
graphic points into clustered regions, such as business, residential, industrial, or agri-
cultural areas, according to land usage. Such generalization often requires the merge
of a set of geographic areas by spatial operations, such as spatial union or spatial
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clustering methods. Aggregation and approximation are important techniques for
this form of generalization. In a spatial merge, it is necessary to not only merge the
regions of similar types within the same general class but also to compute the total
areas, average density, or other aggregate functions while ignoring some scattered
regions with different types if they are unimportant to the study. Other spatial oper-
ators, such as spatial-union, spatial-overlapping, and spatial-intersection (which may
require the merging of scattered small regions into large, clustered regions) can also
use spatial aggregation and approximation as data generalization operators.

Example 10.3 Spatial aggregation and approximation. Suppose that we have different pieces of land
for various purposes of agricultural usage, such as the planting of vegetables, grains,
and fruits. These pieces can be merged or aggregated into one large piece of agricultural
land by a spatial merge. However, such a piece of agricultural land may contain highways,
houses, and small stores. If the majority of the land is used for agriculture, the scattered
regions for other purposes can be ignored, and the whole region can be claimed as an
agricultural area by approximation.

A multimedia database may contain complex texts, graphics, images, video fragments,
maps, voice, music, and other forms of audio/video information. Multimedia data are
typically stored as sequences of bytes with variable lengths, and segments of data are
linked together or indexed in a multidimensional way for easy reference.

Generalization on multimedia data can be performed by recognition and extraction
of the essential features and/or general patterns of such data. There are many ways to
extract such information. For an image, the size, color, shape, texture, orientation, and
relative positions and structures of the contained objects or regions in the image can
be extracted by aggregation and/or approximation. For a segment of music, its melody
can be summarized based on the approximate patterns that repeatedly occur in the seg-
ment, while its style can be summarized based on its tone, tempo, or the major musical
instruments played. For an article, its abstract or general organizational structure (e.g.,
the table of contents, the subject and index terms that frequently occur in the article,
etc.) may serve as its generalization.

In general, it is a challenging task to generalize spatial data and multimedia data in
order to extract interesting knowledge implicitly stored in the data. Technologies deve-
loped in spatial databases and multimedia databases, such as spatial data accessing and
analysis techniques, pattern recognition, image analysis, text analysis, content-based
image/text retrieval and multidimensional indexing methods, should be integrated with
data generalization and data mining techniques to achieve satisfactory results. Tech-
niques for mining such data are further discussed in the following sections.

10.1.3 Generalization of Object Identifiers
and Class/Subclass Hierarchies
“How can object identifiers be generalized?” At first glance, it may seem impossible
to generalize an object identifier. It remains unchanged even after structural reor-
ganization of the data. However, since objects in an object-oriented database are
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organized into classes, which in turn are organized into class/subclass hierarchies,
the generalization of an object can be performed by referring to its associated
hierarchy. Thus, an object identifier can be generalized as follows. First, the object
identifier is generalized to the identifier of the lowest subclass to which the object
belongs. The identifier of this subclass can then, in turn, be generalized to a higher-
level class/subclass identifier by climbing up the class/subclass hierarchy. Similarly, a
class or a subclass can be generalized to its corresponding superclass(es) by climbing
up its associated class/subclass hierarchy.

“Can inherited properties of objects be generalized?” Since object-oriented databases are
organized into class/subclass hierarchies, some attributes or methods of an object class
are not explicitly specified in the class but are inherited from higher-level classes of the
object. Some object-oriented database systems allow multiple inheritance, where proper-
ties can be inherited from more than one superclass when the class/subclass “hierarchy”
is organized in the shape of a lattice. The inherited properties of an object can be derived
by query processing in the object-oriented database. From the data generalization point
of view, it is unnecessary to distinguish which data are stored within the class and which
are inherited from its superclass. As long as the set of relevant data are collected by query
processing, the data mining process will treat the inherited data in the same manner as
the data stored in the object class, and perform generalization accordingly.

Methods are an important component of object-oriented databases. They can also be
inherited by objects. Many behavioral data of objects can be derived by the application
of methods. Since a method is usually defined by a computational procedure/function
or by a set of deduction rules, it is impossible to perform generalization on the method
itself. However, generalization can be performed on the data derived by application of
the method. That is, once the set of task-relevant data is derived by application of the
method, generalization can then be performed on these data.

10.1.4 Generalization of Class Composition Hierarchies

An attribute of an object may be composed of or described by another object, some of
whose attributes may be in turn composed of or described by other objects, thus forming
a class composition hierarchy. Generalization on a class composition hierarchy can be
viewed as generalization on a set of nested structured data (which are possibly infinite,
if the nesting is recursive).

In principle, the reference to a composite object may traverse via a long sequence
of references along the corresponding class composition hierarchy. However, in most
cases, the longer the sequence of references traversed, the weaker the semantic link-
age between the original object and the referenced composite object. For example, an
attribute vehicles owned of an object class student could refer to another object class car,
which may contain an attribute auto dealer, which may refer to attributes describing
the dealer’s manager and children. Obviously, it is unlikely that any interesting general
regularities exist between a student and her car dealer’s manager’s children. Therefore,
generalization on a class of objects should be performed on the descriptive attribute val-
ues and methods of the class, with limited reference to its closely related components
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via its closely related linkages in the class composition hierarchy. That is, in order to
discover interesting knowledge, generalization should be performed on the objects in the
class composition hierarchy that are closely related in semantics to the currently focused
class(es), but not on those that have only remote and rather weak semantic linkages.

10.1.5 Construction and Mining of Object Cubes

In an object database, data generalization and multidimensional analysis are not applied
to individual objects but to classes of objects. Since a set of objects in a class may share
many attributes and methods, and the generalization of each attribute and method may
apply a sequence of generalization operators, the major issue becomes how to make
the generalization processes cooperate among different attributes and methods in the
class(es).

“So, how can class-based generalization be performed for a large set of objects?” For class-
based generalization, the attribute-oriented induction method developed in Chapter 4 for
mining characteristics of relational databases can be extended to mine data character-
istics in object databases. Consider that a generalization-based data mining process can
be viewed as the application of a sequence of class-based generalization operators on
different attributes. Generalization can continue until the resulting class contains a small
number of generalized objects that can be summarized as a concise, generalized rule in
high-level terms. For efficient implementation, the generalization of multidimensional
attributes of a complex object class can be performed by examining each attribute (or
dimension), generalizing each attribute to simple-valued data, and constructing a mul-
tidimensional data cube, called an object cube. Once an object cube is constructed,
multidimensional analysis and data mining can be performed on it in a manner simi-
lar to that for relational data cubes.

Notice that from the application point of view, it is not always desirable to generalize
a set of values to single-valued data. Consider the attribute keyword, which may contain
a set of keywords describing a book. It does not make much sense to generalize this set
of keywords to one single value. In this context, it is difficult to construct an object cube
containing the keyword dimension. We will address some progress in this direction in
the next section when discussing spatial data cube construction. However, it remains a
challenging research issue to develop techniques for handling set-valued data effectively
in object cube construction and object-based multidimensional analysis.

10.1.6 Generalization-Based Mining of Plan Databases
by Divide-and-Conquer

To show how generalization can play an important role in mining complex databases,
we examine a case of mining significant patterns of successful actions in a plan database
using a divide-and-conquer strategy.

A plan consists of a variable sequence of actions. A plan database, or simply a
planbase, is a large collection of plans. Plan mining is the task of mining significant
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patterns or knowledge from a planbase. Plan mining can be used to discover travel
patterns of business passengers in an air flight database or to find significant patterns
from the sequences of actions in the repair of automobiles. Plan mining is differ-
ent from sequential pattern mining, where a large number of frequently occurring
sequences are mined at a very detailed level. Instead, plan mining is the extraction
of important or significant generalized (sequential) patterns from a planbase.

Let’s examine the plan mining process using an air travel example.

Example 10.4 An air flight planbase. Suppose that the air travel planbase shown in Table 10.1 stores
customer flight sequences, where each record corresponds to an action in a sequential
database, and a sequence of records sharing the same plan number is considered as one
plan with a sequence of actions. The columns departure and arrival specify the codes of
the airports involved. Table 10.2 stores information about each airport.

There could be many patterns mined from a planbase like Table 10.1. For example,
we may discover that most flights from cities in the Atlantic United States to Midwestern
cities have a stopover at ORD in Chicago, which could be because ORD is the princi-
pal hub for several major airlines. Notice that the airports that act as airline hubs (such
as LAX in Los Angeles, ORD in Chicago, and JFK in New York) can easily be derived
from Table 10.2 based on airport size. However, there could be hundreds of hubs in a
travel database. Indiscriminate mining may result in a large number of “rules” that lack
substantial support, without providing a clear overall picture.

Table 10.1 A database of travel plans: a travel planbase.

plan# action# departure departure time arrival arrival time airline · · ·
1 1 ALB 800 JFK 900 TWA · · ·
1 2 JFK 1000 ORD 1230 UA · · ·
1 3 ORD 1300 LAX 1600 UA · · ·
1 4 LAX 1710 SAN 1800 DAL · · ·
2 1 SPI 900 ORD 950 AA · · ·
...

...
...

...
...

...
...

...

Table 10.2 An airport information table.

airport code city state region airport size · · ·
ORD Chicago Illinois Mid-West 100000 · · ·
SPI Springfield Illinois Mid-West 10000 · · ·
LAX Los Angeles California Pacific 80000 · · ·
ALB Albany New York Atlantic 20000 · · ·

...
...

...
...

...
...
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Figure 10.1 A multidimensional view of a database.

“So, how should we go about mining a planbase?” We would like to find a small
number of general (sequential) patterns that cover a substantial portion of the plans,
and then we can divide our search efforts based on such mined sequences. The key to
mining such patterns is to generalize the plans in the planbase to a sufficiently high level.
A multidimensional database model, such as the one shown in Figure 10.1 for the air
flight planbase, can be used to facilitate such plan generalization. Since low-level infor-
mation may never share enough commonality to form succinct plans, we should do the
following: (1) generalize the planbase in different directions using the multidimensional
model; (2) observe when the generalized plans share common, interesting, sequential
patterns with substantial support; and (3) derive high-level, concise plans.

Let’s examine this planbase. By combining tuples with the same plan number, the
sequences of actions (shown in terms of airport codes) may appear as follows:

ALB - JFK - ORD - LAX - SAN

SPI - ORD - JFK - SYR

. . .
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Table 10.3 Multidimensional generalization of a planbase.

plan# loc seq size seq state seq region seq · · ·
1 ALB-JFK-ORD-LAX-SAN S-L-L-L-S N-N-I-C-C E-E-M-P-P · · ·
2 SPI-ORD-JFK-SYR S-L-L-S I-I-N-N M-M-E-E · · ·
...

...
...

...
...

...

Table 10.4 Merging consecutive, identical actions in plans.

plan# size seq state seq region seq · · ·
1 S-L+-S N+-I-C+ E+-M-P+ · · ·
2 S-L+-S I+-N+ M+-E+ · · ·
...

...
...

...
...

These sequences may look very different. However, they can be generalized in multiple
dimensions. When they are generalized based on the airport size dimension, we observe
some interesting sequential patterns, like S-L-L-S, where L represents a large airport (i.e.,
a hub), and S represents a relatively small regional airport, as shown in Table 10.3.

The generalization of a large number of air travel plans may lead to some rather gen-
eral but highly regular patterns. This is often the case if the merge and optional operators
are applied to the generalized sequences, where the former merges (and collapses) con-
secutive identical symbols into one using the transitive closure notation “+” to represent
a sequence of actions of the same type, whereas the latter uses the notation “[ ]” to indi-
cate that the object or action inside the square brackets “[ ]” is optional. Table 10.4 shows
the result of applying the merge operator to the plans of Table 10.3.

By merging and collapsing similar actions, we can derive generalized sequential pat-
terns, such as Pattern (10.1):

[S]−L+− [S] [98.5%] (10.1)

The pattern states that 98.5% of travel plans have the pattern [S]− L+− [S], where
[S] indicates that action S is optional, and L+ indicates one or more repetitions of L.
In other words, the travel pattern consists of flying first from possibly a small airport,
hopping through one to many large airports, and finally reaching a large (or possibly, a
small) airport.

After a sequential pattern is found with sufficient support, it can be used to parti-
tion the planbase. We can then mine each partition to find common characteristics. For
example, from a partitioned planbase, we may find

flight(x,y)∧airport size(x,S)∧airport size(y,L)⇒region(x) = region(y) [75%], (10.2)
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which means that for a direct flight from a small airport x to a large airport y, there is a
75% probability that x and y belong to the same region.

This example demonstrates a divide-and-conquer strategy, which first finds interest-
ing, high-level concise sequences of plans by multidimensional generalization of a
planbase, and then partitions the planbase based on mined patterns to discover the corre-
sponding characteristics of subplanbases. This mining approach can be applied to many
other applications. For example, in Weblog mining, we can study general access patterns
from the Web to identify popular Web portals and common paths before digging into
detailed subordinate patterns.

The plan mining technique can be further developed in several aspects. For instance,
a minimum support threshold similar to that in association rule mining can be used to
determine the level of generalization and ensure that a pattern covers a sufficient num-
ber of cases. Additional operators in plan mining can be explored, such as less than.
Other variations include extracting associations from subsequences, or mining sequence
patterns involving multidimensional attributes—for example, the patterns involving
both airport size and location. Such dimension-combined mining also requires the gen-
eralization of each dimension to a high level before examination of the combined sequence
patterns.

10.2 Spatial Data Mining

A spatial database stores a large amount of space-related data, such as maps, prepro-
cessed remote sensing or medical imaging data, and VLSI chip layout data. Spatial
databases have many features distinguishing them from relational databases. They
carry topological and/or distance information, usually organized by sophisticated,
multidimensional spatial indexing structures that are accessed by spatial data access
methods and often require spatial reasoning, geometric computation, and spatial
knowledge representation techniques.

Spatial data mining refers to the extraction of knowledge, spatial relationships, or
other interesting patterns not explicitly stored in spatial databases. Such mining demands
an integration of data mining with spatial database technologies. It can be used for under-
standing spatial data, discovering spatial relationships and relationships between spatial
and nonspatial data, constructing spatial knowledge bases, reorganizing spatial databases,
and optimizing spatial queries. It is expected to have wide applications in geographic
information systems, geomarketing, remote sensing, image database exploration, medi-
cal imaging, navigation, traffic control, environmental studies, and many other areas
where spatial data are used. A crucial challenge to spatial data mining is the exploration
of efficient spatial data mining techniques due to the huge amount of spatial data and the
complexity of spatial data types and spatial access methods.

“What about using statistical techniques for spatial data mining?” Statistical spatial data
analysis has been a popular approach to analyzing spatial data and exploring geographic
information. The term geostatistics is often associated with continuous geographic space,
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whereas the term spatial statistics is often associated with discrete space. In a statistical
model that handles nonspatial data, one usually assumes statistical independence among
different portions of data. However, different from traditional data sets, there is no such
independence among spatially distributed data because in reality, spatial objects are often
interrelated, or more exactly spatially co-located, in the sense that the closer the two objects
are located, the more likely they share similar properties. For example, nature resource,
climate, temperature, and economic situations are likely to be similar in geographically
closely located regions. People even consider this as the first law of geography: “Everything
is related to everything else, but nearby things are more related than distant things.” Such
a property of close interdependency across nearby space leads to the notion of spatial
autocorrelation. Based on this notion, spatial statistical modeling methods have been
developed with good success. Spatial data mining will further develop spatial statistical
analysis methods and extend them for huge amounts of spatial data, with more emphasis
on efficiency, scalability, cooperation with database and data warehouse systems,
improved user interaction, and the discovery of new types of knowledge.

10.2.1 Spatial Data Cube Construction and Spatial OLAP

“Can we construct a spatial data warehouse?” Yes, as with relational data, we can integrate
spatial data to construct a data warehouse that facilitates spatial data mining. A spatial
data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection
of both spatial and nonspatial data in support of spatial data mining and spatial-data-
related decision-making processes.

Let’s look at the following example.

Example 10.5 Spatial data cube and spatial OLAP. There are about 3,000 weather probes distributed in
British Columbia (BC), Canada, each recording daily temperature and precipitation for
a designated small area and transmitting signals to a provincial weather station. With a
spatial data warehouse that supports spatial OLAP, a user can view weather patterns on a
map by month, by region, and by different combinations of temperature and precipita-
tion, and can dynamically drill down or roll up along any dimension to explore desired
patterns, such as “wet and hot regions in the Fraser Valley in Summer 1999.”

There are several challenging issues regarding the construction and utilization of
spatial data warehouses. The first challenge is the integration of spatial data from het-
erogeneous sources and systems. Spatial data are usually stored in different industry
firms and government agencies using various data formats. Data formats are not only
structure-specific (e.g., raster- vs. vector-based spatial data, object-oriented vs. relational
models, different spatial storage and indexing structures), but also vendor-specific (e.g.,
ESRI, MapInfo, Intergraph). There has been a great deal of work on the integration and
exchange of heterogeneous spatial data, which has paved the way for spatial data inte-
gration and spatial data warehouse construction.

The second challenge is the realization of fast and flexible on-line analytical processing
in spatial data warehouses. The star schema model introduced in Chapter 3 is a good
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choice for modeling spatial data warehouses because it provides a concise and organized
warehouse structure and facilitates OLAP operations. However, in a spatial warehouse,
both dimensions and measures may contain spatial components.

There are three types of dimensions in a spatial data cube:

A nonspatial dimension contains only nonspatial data. Nonspatial dimensions
temperature and precipitation can be constructed for the warehouse in Example 10.5,
since each contains nonspatial data whose generalizations are nonspatial (such as
“hot” for temperature and “wet” for precipitation).

A spatial-to-nonspatial dimension is a dimension whose primitive-level data are spa-
tial but whose generalization, starting at a certain high level, becomes nonspatial. For
example, the spatial dimension city relays geographic data for the U.S. map. Suppose
that the dimension’s spatial representation of, say, Seattle is generalized to the string
“pacific northwest.” Although “pacific northwest” is a spatial concept, its representa-
tion is not spatial (since, in our example, it is a string). It therefore plays the role of a
nonspatial dimension.

A spatial-to-spatial dimension is a dimension whose primitive level and all of its high-
level generalized data are spatial. For example, the dimension equi temperature region
contains spatial data, as do all of its generalizations, such as with regions covering
0-5 degrees (Celsius), 5-10 degrees, and so on.

We distinguish two types of measures in a spatial data cube:

A numerical measure contains only numerical data. For example, one measure in a
spatial data warehouse could be the monthly revenue of a region, so that a roll-up may
compute the total revenue by year, by county, and so on. Numerical measures can be
further classified into distributive, algebraic, and holistic, as discussed in Chapter 3.

A spatial measure contains a collection of pointers to spatial objects. For example,
in a generalization (or roll-up) in the spatial data cube of Example 10.5, the regions
with the same range of temperature and precipitation will be grouped into the same
cell, and the measure so formed contains a collection of pointers to those regions.

A nonspatial data cube contains only nonspatial dimensions and numerical measures.
If a spatial data cube contains spatial dimensions but no spatial measures, its OLAP
operations, such as drilling or pivoting, can be implemented in a manner similar to that
for nonspatial data cubes.

“But what if I need to use spatial measures in a spatial data cube?” This notion raises
some challenging issues on efficient implementation, as shown in the following example.

Example 10.6 Numerical versus spatial measures. A star schema for the BC weather warehouse of
Example 10.5 is shown in Figure 10.2. It consists of four dimensions: region temperature,
time, and precipitation, and three measures: region map, area, and count. A concept hier-
archy for each dimension can be created by users or experts, or generated automatically
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by data clustering analysis. Figure 10.3 presents hierarchies for each of the dimensions
in the BC weather warehouse.

Of the three measures, area and count are numerical measures that can be computed
similarly as for nonspatial data cubes; region map is a spatial measure that represents a
collection of spatial pointers to the corresponding regions. Since different spatial OLAP
operations result in different collections of spatial objects in region map, it is a major
challenge to compute the merges of a large number of regions flexibly and dynami-
cally. For example, two different roll-ups on the BC weather map data (Figure 10.2) may
produce two different generalized region maps, as shown in Figure 10.4, each being the
result of merging a large number of small (probe) regions from Figure 10.2.

Figure 10.2 A star schema of the BC weather spatial data warehouse and corresponding BC weather
probes map.

region name dimension: time dimension:

probe location < district < city < region hour < day < month < season

< province

temperature dimension: precipitation dimension:

(cold, mild, hot)⊂ all(temperature) (dry, fair, wet)⊂ all(precipitation)

(below −20,−20...−11,−10...0)⊂ cold (0...0.05, 0.06...0.2)⊂ dry

(0...10, 11...15, 16...20)⊂mild (0.2...0.5, 0.6...1.0, 1.1...1.5)⊂ fair

(20...25, 26...30, 31...35, above 35)⊂ hot (1.5...2.0, 2.1...3.0, 3.1...5.0, above 5.0)

⊂ wet

Figure 10.3 Hierarchies for each dimension of the BC weather data warehouse.
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Figure 10.4 Generalized regions after different roll-up operations.

“Can we precompute all of the possible spatial merges and store them in the corresponding
cuboid cells of a spatial data cube?” The answer is—probably not. Unlike a numerical mea-
sure where each aggregated value requires only a few bytes of space, a merged region map
of BC may require multi-megabytes of storage. Thus, we face a dilemma in balancing the
cost of on-line computation and the space overhead of storing computed measures: the
substantial computation cost for on-the-fly computation of spatial aggregations calls for
precomputation, yet substantial overhead for storing aggregated spatial values discour-
ages it.

There are at least three possible choices in regard to the computation of spatial
measures in spatial data cube construction:

Collect and store the corresponding spatial object pointers but do not perform precom-
putation of spatial measures in the spatial data cube. This can be implemented by
storing, in the corresponding cube cell, a pointer to a collection of spatial object point-
ers, and invoking and performing the spatial merge (or other computation) of the cor-
responding spatial objects, when necessary, on the fly. This method is a good choice if
only spatial display is required (i.e., no real spatial merge has to be performed), or if
there are not many regions to be merged in any pointer collection (so that the on-line
merge is not very costly), or if on-line spatial merge computation is fast (recently,
some efficient spatial merge methods have been developed for fast spatial OLAP).
Since OLAP results are often used for on-line spatial analysis and mining, it is still
recommended to precompute some of the spatially connected regions to speed up
such analysis.

Precompute and store a rough approximation of the spatial measures in the spatial data
cube. This choice is good for a rough view or coarse estimation of spatial merge results
under the assumption that it requires little storage space. For example, a minimum
bounding rectangle (MBR), representedbytwopoints, canbetakenasaroughestimate
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of a merged region. Such a precomputed result is small and can be presented quickly
to users. If higher precision is needed for specific cells, the application can either fetch
precomputed high-quality results, if available, or compute them on the fly.

Selectively precompute some spatial measures in the spatial data cube. This can be a
smart choice. The question becomes, “Which portion of the cube should be selected
for materialization?” The selection can be performed at the cuboid level, that is, either
precompute and store each set of mergeable spatial regions for each cell of a selected
cuboid, or precompute none if the cuboid is not selected. Since a cuboid usually con-
sists of a large number of spatial objects, it may involve precomputation and storage
of a large number of mergeable spatial objects, some of which may be rarely used.
Therefore, it is recommended to perform selection at a finer granularity level: exam-
ining each group of mergeable spatial objects in a cuboid to determine whether such
a merge should be precomputed. The decision should be based on the utility (such as
access frequency or access priority), shareability of merged regions, and the balanced
overall cost of space and on-line computation.

With efficient implementation of spatial data cubes and spatial OLAP, generalization-
based descriptive spatial mining, such as spatial characterization and discrimination, can
be performed efficiently.

10.2.2 Mining Spatial Association and Co-location Patterns

Similar to the mining of association rules in transactional and relational databases,
spatial association rules can be mined in spatial databases. A spatial association rule is of
the form A⇒ B [s%,c%], where A and B are sets of spatial or nonspatial predicates, s%
is the support of the rule, and c% is the confidence of the rule. For example, the following
is a spatial association rule:

is a(X ,“school”)∧ close to(X ,“sports center”)⇒ close to(X ,“park”) [0.5%,80%].

This rule states that 80% of schools that are close to sports centers are also close to
parks, and 0.5% of the data belongs to such a case.

Various kinds of spatial predicates can constitute a spatial association rule. Examples
include distance information (such as close to and far away), topological relations (like
intersect, overlap, and disjoint), and spatial orientations (like left of and west of).

Since spatial association mining needs to evaluate multiple spatial relationships among
a large number of spatial objects, the process could be quite costly. An interesting mining
optimization method called progressive refinement can be adopted in spatial association
analysis. The method first mines large data sets roughly using a fast algorithm and then
improves the quality of mining in a pruned data set using a more expensive algorithm.

To ensure that the pruned data set covers the complete set of answers when applying
the high-quality data mining algorithms at a later stage, an important requirement for the
rough mining algorithm applied in the early stage is the superset coverage property: that
is, it preserves all of the potential answers. In other words, it should allow a false-positive
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test, which might include some data sets that do not belong to the answer sets, but it
should not allow a false-negative test, which might exclude some potential answers.

For mining spatial associations related to the spatial predicate close to, we can first
collect the candidates that pass the minimum support threshold by

Applying certain rough spatial evaluation algorithms, for example, using an MBR
structure (which registers only two spatial points rather than a set of complex
polygons), and

Evaluating the relaxed spatial predicate, g close to, which is a generalized close to
covering a broader context that includes close to, touch, and intersect.

If two spatial objects are closely located, their enclosing MBRs must be closely located,
matching g close to. However, the reverse is not always true: if the enclosing MBRs are
closely located, the two spatial objects may or may not be located so closely. Thus, the
MBR pruning is a false-positive testing tool for closeness: only those that pass the rough
test need to be further examined using more expensive spatial computation algorithms.
With this preprocessing, only the patterns that are frequent at the approximation level will
need to be examined by more detailed and finer, yet more expensive, spatial computation.

Besides mining spatial association rules, one may like to identify groups of particular
features that appear frequently close to each other in a geospatial map. Such a problem
is essentially the problem of mining spatial co-locations. Finding spatial co-locations
can be considered as a special case of mining spatial associations. However, based on the
property of spatial autocorrelation, interesting features likely coexist in closely located
regions. Thus spatial co-location can be just what one really wants to explore. Efficient
methods can be developed for mining spatial co-locations by exploring the methodolo-
gies like Aprori and progressive refinement, similar to what has been done for mining
spatial association rules.

10.2.3 Spatial Clustering Methods

Spatial data clustering identifies clusters, or densely populated regions, according to some
distance measurement in a large, multidimensional data set. Spatial clustering methods
were thoroughly studied in Chapter 7 since cluster analysis usually considers spatial data
clustering in examples and applications. Therefore, readers interested in spatial cluster-
ing should refer to Chapter 7.

10.2.4 Spatial Classification and Spatial Trend Analysis

Spatial classification analyzes spatial objects to derive classification schemes in relevance
to certain spatial properties, such as the neighborhood of a district, highway, or river.

Example 10.7 Spatial classification. Suppose that you would like to classify regions in a province into
rich versus poor according to the average family income. In doing so, you would like
to identify the important spatial-related factors that determine a region’s classification.
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Many properties are associated with spatial objects, such as hosting a university,
containing interstate highways, being near a lake or ocean, and so on. These prop-
erties can be used for relevance analysis and to find interesting classification schemes.
Such classification schemes may be represented in the form of decision trees or rules,
for example, as described in Chapter 6.

Spatial trend analysis deals with another issue: the detection of changes and trends
along a spatial dimension. Typically, trend analysis detects changes with time, such as the
changes of temporal patterns in time-series data. Spatial trend analysis replaces time with
space and studies the trend of nonspatial or spatial data changing with space. For example,
we may observe the trend of changes in economic situation when moving away from the
center of a city, or the trend of changes of the climate or vegetation with the increasing
distance from an ocean. For such analyses, regression and correlation analysis methods
are often applied by utilization of spatial data structures and spatial access methods.

There are also many applications where patterns are changing with both space and
time. For example, traffic flows on highways and in cities are both time and space related.
Weather patterns are also closely related to both time and space. Although there have
been a few interesting studies on spatial classification and spatial trend analysis, the inves-
tigation of spatiotemporal data mining is still in its early stage. More methods and appli-
cations of spatial classification and trend analysis, especially those associated with time,
need to be explored.

10.2.5 Mining Raster Databases

Spatial database systems usually handle vector data that consist of points, lines, polygons
(regions), and their compositions, such as networks or partitions. Typical examples of
such data include maps, design graphs, and 3-D representations of the arrangement of
the chains of protein molecules. However, a huge amount of space-related data are in
digital raster (image) forms, such as satellite images, remote sensing data, and computer
tomography. It is important to explore data mining in raster or image databases. Methods
for mining raster and image data are examined in the following section regarding the
mining of multimedia data.

10.3 Multimedia Data Mining

“What is a multimedia database?” A multimedia database system stores and manages a
large collection of multimedia data, such as audio, video, image, graphics, speech, text,
document, and hypertext data, which contain text, text markups, and linkages. Multi-
media database systems are increasingly common owing to the popular use of audio-
video equipment, digital cameras, CD-ROMs, and the Internet. Typical multimedia
database systems include NASA’s EOS (Earth Observation System), various kinds of
image and audio-video databases, and Internet databases.

In this section, our study of multimedia data mining focuses on image data mining.
Mining text data and mining the World Wide Web are studied in the two subsequent
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sections. Here we introduce multimedia data mining methods, including similarity
search in multimedia data, multidimensional analysis, classification and prediction
analysis, and mining associations in multimedia data.

10.3.1 Similarity Search in Multimedia Data

“When searching for similarities in multimedia data, can we search on either the data
description or the data content?” That is correct. For similarity searching in multimedia
data, we consider two main families of multimedia indexing and retrieval systems: (1)
description-based retrieval systems, which build indices and perform object retrieval
based on image descriptions, such as keywords, captions, size, and time of creation;
and (2) content-based retrieval systems, which support retrieval based on the image
content, such as color histogram, texture, pattern, image topology, and the shape of
objects and their layouts and locations within the image. Description-based retrieval
is labor-intensive if performed manually. If automated, the results are typically of
poor quality. For example, the assignment of keywords to images can be a tricky and
arbitrary task. Recent development of Web-based image clustering and classification
methods has improved the quality of description-based Web image retrieval, because
imagesurrounded text information as well as Web linkage information can be used
to extract proper description and group images describing a similar theme together.
Content-based retrieval uses visual features to index images and promotes object
retrieval based on feature similarity, which is highly desirable in many applications.

In a content-based image retrieval system, there are often two kinds of queries: image-
sample-based queries and image feature specification queries. Image-sample-based queries
find all of the images that are similar to the given image sample. This search compares
the feature vector (or signature) extracted from the sample with the feature vectors of
images that have already been extracted and indexed in the image database. Based on
this comparison, images that are close to the sample image are returned. Image feature
specification queries specify or sketch image features like color, texture, or shape, which
are translated into a feature vector to be matched with the feature vectors of the images in
the database. Content-based retrieval has wide applications, including medical diagnosis,
weather prediction, TV production, Web search engines for images, and e-commerce.
Some systems, such as QBIC (Query By Image Content), support both sample-based and
image feature specification queries. There are also systems that support both content-
based and description-based retrieval.

Several approaches have been proposed and studied for similarity-based retrieval in
image databases, based on image signature:

Color histogram–based signature: In this approach, the signature of an image
includes color histograms based on the color composition of an image regardless of
its scale or orientation. This method does not contain any information about shape,
image topology, or texture. Thus, two images with similar color composition but
that contain very different shapes or textures may be identified as similar, although
they could be completely unrelated semantically.
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Multifeature composed signature: In this approach, the signature of an image
includes a composition of multiple features: color histogram, shape, image topol-
ogy, and texture. The extracted image features are stored as metadata, and images
are indexed based on such metadata. Often, separate distance functions can be
defined for each feature and subsequently combined to derive the overall results.
Multidimensional content-based search often uses one or a few probe features to
search for images containing such (similar) features. It can therefore be used to
search for similar images. This is the most popularly used approach in practice.

Wavelet-based signature: This approach uses the dominant wavelet coefficients of an
image as its signature. Wavelets capture shape, texture, and image topology informa-
tion in a single unified framework.1 This improves efficiency and reduces the need
for providing multiple search primitives (unlike the second method above). How-
ever, since this method computes a single signature for an entire image, it may fail to
identify images containing similar objects where the objects differ in location or size.

Wavelet-based signature with region-based granularity: In this approach, the com-
putation and comparison of signatures are at the granularity of regions, not the entire
image. This is based on the observation that similar images may contain similar
regions, but a region in one image could be a translation or scaling of a matching
region in the other. Therefore, a similarity measure between the query image Q and
a target image T can be defined in terms of the fraction of the area of the two images
covered by matching pairs of regions from Q and T . Such a region-based similar-
ity search can find images containing similar objects, where these objects may be
translated or scaled.

10.3.2 Multidimensional Analysis of Multimedia Data

“Can we construct a data cube for multimedia data analysis?” To facilitate the multidimen-
sional analysis of large multimedia databases, multimedia data cubes can be designed and
constructed in a manner similar to that for traditional data cubes from relational data.
A multimedia data cube can contain additional dimensions and measures for multime-
dia information, such as color, texture, and shape.

Let’s examine a multimedia data mining system prototype called MultiMediaMiner,
which extends the DBMiner system by handling multimedia data. The example database
tested in the MultiMediaMiner system is constructed as follows. Each image contains
two descriptors: a feature descriptor and a layout descriptor. The original image is not
stored directly in the database; only its descriptors are stored. The description informa-
tion encompasses fields like image file name, image URL, image type (e.g., gif, tiff, jpeg,
mpeg, bmp, avi), a list of all known Web pages referring to the image (i.e., parent URLs), a
list of keywords, and a thumbnail used by the user interface for image and video brows-
ing. The feature descriptor is a set of vectors for each visual characteristic. The main

1Wavelet analysis was introduced in Section 2.5.3.
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vectors are a color vector containing the color histogram quantized to 512 colors (8×
8×8 for R×G×B), an MFC (Most Frequent Color) vector, and an MFO (Most Frequent
Orientation) vector. The MFC and MFO contain five color centroids and five edge ori-
entation centroids for the five most frequent colors and five most frequent orientations,
respectively. The edge orientations used are 0◦, 22.5◦, 45◦, 67.5◦, 90◦, and so on. The
layout descriptor contains a color layout vector and an edge layout vector. Regardless
of their original size, all images are assigned an 8× 8 grid. The most frequent color for
each of the 64 cells is stored in the color layout vector, and the number of edges for each
orientation in each of the cells is stored in the edge layout vector. Other sizes of grids,
like 4×4, 2×2, and 1×1, can easily be derived.

The Image Excavator component of MultiMediaMiner uses image contextual infor-
mation, like HTML tags in Web pages, to derive keywords. By traversing on-line direc-
tory structures, like the Yahoo! directory, it is possible to create hierarchies of keywords
mapped onto the directories in which the image was found. These graphs are used as
concept hierarchies for the dimension keyword in the multimedia data cube.

“What kind of dimensions can a multimedia data cube have?” A multimedia data
cube can have many dimensions. The following are some examples: the size of the
image or video in bytes; the width and height of the frames (or pictures), constituting
two dimensions; the date on which the image or video was created (or last modified);
the format type of the image or video; the frame sequence duration in seconds;
the image or video Internet domain; the Internet domain of pages referencing the
image or video (parent URL); the keywords; a color dimension; an edge-orientation
dimension; and so on. Concept hierarchies for many numerical dimensions may be
automatically defined. For other dimensions, such as for Internet domains or color,
predefined hierarchies may be used.

The construction of a multimedia data cube will facilitate multidimensional analysis
of multimedia data primarily based on visual content, and the mining of multiple kinds of
knowledge, including summarization, comparison, classification, association,
and clustering. The Classifier module of MultiMediaMiner and its output are presented
in Figure 10.5.

The multimedia data cube seems to be an interesting model for multidimensional
analysis of multimedia data. However, we should note that it is difficult to implement
a data cube efficiently given a large number of dimensions. This curse of dimensiona-
lity is especially serious in the case of multimedia data cubes. We may like to model
color, orientation, texture, keywords, and so on, as multiple dimensions in a multimedia
data cube. However, many of these attributes are set-oriented instead of single-valued.
For example, one image may correspond to a set of keywords. It may contain a set of
objects, each associated with a set of colors. If we use each keyword as a dimension or
each detailed color as a dimension in the design of the data cube, it will create a huge
number of dimensions. On the other hand, not doing so may lead to the modeling of an
image at a rather rough, limited, and imprecise scale. More research is needed on how
to design a multimedia data cube that may strike a balance between efficiency and the
power of representation.
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Figure 10.5 An output of the Classifier module of MultiMediaMiner.

10.3.3 Classification and Prediction Analysis of Multimedia Data

Classification and predictive modeling have been used for mining multimedia data, espe-
cially in scientific research, such as astronomy, seismology, and geoscientific research. In
general, all of the classification methods discussed in Chapter 6 can be used in image
analysis and pattern recognition. Moreover, in-depth statistical pattern analysis methods
are popular for distinguishing subtle features and building high-quality models.

Example 10.8 Classification and prediction analysis of astronomy data. Taking sky images that have
been carefully classified by astronomers as the training set, we can construct models
for the recognition of galaxies, stars, and other stellar objects, based on properties like
magnitudes, areas, intensity, image moments, and orientation. A large number of sky
images taken by telescopes or space probes can then be tested against the constructed
models in order to identify new celestial bodies. Similar studies have successfully been
performed to identify volcanoes on Venus.

Data preprocessing is important when mining image data and can include data
cleaning, data transformation, and feature extraction. Aside from standard methods used
in pattern recognition, such as edge detection and Hough transformations, techniques
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can be explored, such as the decomposition of images to eigenvectors or the adoption
of probabilistic models to deal with uncertainty. Since the image data are often in huge
volumes and may require substantial processing power, parallel and distributed process-
ing are useful. Image data mining classification and clustering are closely linked to image
analysis and scientific data mining, and thus many image analysis techniques and scien-
tific data analysis methods can be applied to image data mining.

The popular use of the World Wide Web has made the Web a rich and gigantic reposi-
tory of multimedia data. The Web not only collects a tremendous number of photos, pic-
tures, albums, and video images in the form of on-line multimedia libraries, but also has
numerous photos, pictures, animations, and other multimedia forms on almost every
Web page. Such pictures and photos, surrounded by text descriptions, located at the
different blocks of Web pages, or embedded inside news or text articles, may serve rather
different purposes, such as forming an inseparable component of the content, serving as
an advertisement, or suggesting an alternative topic. Furthermore, these Web pages are
linked with other Web pages in a complicated way. Such text, image location, and Web
linkage information, if used properly, may help understand the contents of the text or
assist classification and clustering of images on the Web. Data mining by making good
use of relative locations and linkages among images, text, blocks within a page, and page
links on the Web becomes an important direction in Web data analysis, which will be
further examined in Section 10.5 on Web mining.

10.3.4 Mining Associations in Multimedia Data

“What kinds of associations can be mined in multimedia data?” Association rules involving
multimedia objects can be mined in image and video databases. At least three categories
can be observed:

Associations between image content and nonimage content features: A rule like “If at
least 50% of the upper part of the picture is blue, then it is likely to represent sky” belongs
to this category since it links the image content to the keyword sky.

Associations among image contents that are not related to spatial relationships: A
rule like “If a picture contains two blue squares, then it is likely to contain one red circle
as well” belongs to this category since the associations are all regarding image contents.

Associations among image contents related to spatial relationships: A rule like “If
a red triangle is between two yellow squares, then it is likely a big oval-shaped object
is underneath” belongs to this category since it associates objects in the image with
spatial relationships.

To mine associations among multimedia objects, we can treat each image as a tran-
saction and find frequently occurring patterns among different images.

“What are the differences between mining association rules in multimedia databases
versus in transaction databases?” There are some subtle differences. First, an image may
contain multiple objects, each with many features such as color, shape, texture,
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keyword, and spatial location, so there could be many possible associations. In many
cases, a feature may be considered as the same in two images at a certain level of resolu-
tion, but different at a finer resolution level. Therefore, it is essential to promote a pro-
gressive resolution refinement approach. That is, we can first mine frequently occurring
patterns at a relatively rough resolution level, and then focus only on those that have
passed the minimum support threshold when mining at a finer resolution level. This is
because the patterns that are not frequent at a rough level cannot be frequent at finer
resolution levels. Such a multiresolution mining strategy substantially reduces the over-
all data mining cost without loss of the quality and completeness of data mining results.
This leads to an efficient methodology for mining frequent itemsets and associations in
large multimedia databases.

Second, because a picture containing multiple recurrent objects is an important
feature in image analysis, recurrence of the same objects should not be ignored in asso-
ciation analysis. For example, a picture containing two golden circles is treated quite
differently from that containing only one. This is quite different from that in a transac-
tion database, where the fact that a person buys one gallon of milk or two may often be
treated the same as “buys milk.” Therefore, the definition of multimedia association and
its measurements, such as support and confidence, should be adjusted accordingly.

Third, there often exist important spatial relationships among multimedia objects,
such as above, beneath, between, nearby, left-of, and so on. These features are very use-
ful for exploring object associations and correlations. Spatial relationships together with
other content-based multimedia features, such as color, shape, texture, and keywords,
may form interesting associations. Thus, spatial data mining methods and properties of
topological spatial relationships become important for multimedia mining.

10.3.5 Audio and Video Data Mining

Besides still images, an incommensurable amount of audiovisual information is becom-
ing available in digital form, in digital archives, on the World Wide Web, in broadcast data
streams, and in personal and professional databases. This amount is rapidly growing.
There are great demands for effective content-based retrieval and data mining methods
for audio and video data. Typical examples include searching for and multimedia editing
of particular video clips in a TV studio, detecting suspicious persons or scenes in surveil-
lance videos, searching for particular events in a personal multimedia repository such as
MyLifeBits, discovering patterns and outliers in weather radar recordings, and finding a
particular melody or tune in your MP3 audio album.

To facilitate the recording, search, and analysis of audio and video information from
multimedia data, industry and standardization committees have made great strides
toward developing a set of standards for multimedia information description and com-
pression. For example, MPEG-k (developed by MPEG: Moving Picture Experts Group)
and JPEG are typical video compression schemes. The most recently released MPEG-7,
formally named “Multimedia Content Description Interface,” is a standard for describ-
ing the multimedia content data. It supports some degree of interpretation of the infor-
mation meaning, which can be passed onto, or accessed by, a device or a computer.
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MPEG-7 is not aimed at any one application in particular; rather, the elements that
MPEG-7 standardizes support as broad a range of applications as possible. The audiovi-
sual data description in MPEG-7 includes still pictures, video, graphics, audio, speech,
three-dimensional models, and information about how these data elements are com-
bined in the multimedia presentation.

The MPEG committee standardizes the following elements in MPEG-7: (1) a set of
descriptors, where each descriptor defines the syntax and semantics of a feature, such as
color, shape, texture, image topology, motion, or title; (2) a set of descriptor schemes,
where each scheme specifies the structure and semantics of the relationships between
its components (descriptors or description schemes); (3) a set of coding schemes for
the descriptors, and (4) a description definition language (DDL) to specify schemes and
descriptors. Such standardization greatly facilitates content-based video retrieval and
video data mining.

It is unrealistic to treat a video clip as a long sequence of individual still pictures and
analyze each picture since there are too many pictures, and most adjacent images could
be rather similar. In order to capture the story or event structure of a video, it is better
to treat each video clip as a collection of actions and events in time and first temporarily
segment them into video shots. A shot is a group of frames or pictures where the video
content from one frame to the adjacent ones does not change abruptly. Moreover, the
most representative frame in a video shot is considered the key frame of the shot. Each key
frame can be analyzed using the image feature extraction and analysis methods studied
above in the content-based image retrieval. The sequence of key frames will then be used
to define the sequence of the events happening in the video clip. Thus the detection of
shots and the extraction of key frames from video clips become the essential tasks in
video processing and mining.

Video data mining is still in its infancy. There are still a lot of research issues to be
solved before it becomes general practice. Similarity-based preprocessing, compression,
indexing and retrieval, information extraction, redundancy removal, frequent pattern
discovery, classification, clustering, and trend and outlier detection are important data
mining tasks in this domain.

10.4 Text Mining

Most previous studies of data mining have focused on structured data, such as relational,
transactional, and data warehouse data. However, in reality, a substantial portion of
the available information is stored in text databases (or document databases), which
consist of large collections of documents from various sources, such as news articles,
research papers, books, digital libraries, e-mail messages, and Web pages. Text databases
are rapidly growing due to the increasing amount of information available in electronic
form, such as electronic publications, various kinds of electronic documents, e-mail, and
the World Wide Web (which can also be viewed as a huge, interconnected, dynamic text
database). Nowadays most of the information in government, industry, business, and
other institutions are stored electronically, in the form of text databases.
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Data stored in most text databases are semistructured data in that they are neither
completely unstructured nor completely structured. For example, a document may
contain a few structured fields, such as title, authors, publication date, category, and
so on, but also contain some largely unstructured text components, such as abstract
and contents. There have been a great deal of studies on the modeling and imple-
mentation of semistructured data in recent database research. Moreover, information
retrieval techniques, such as text indexing methods, have been developed to handle
unstructured documents.

Traditional information retrieval techniques become inadequate for the increasingly
vast amounts of text data. Typically, only a small fraction of the many available docu-
ments will be relevant to a given individual user. Without knowing what could be in the
documents, it is difficult to formulate effective queries for analyzing and extracting useful
information from the data. Users need tools to compare different documents, rank the
importance and relevance of the documents, or find patterns and trends across multiple
documents. Thus, text mining has become an increasingly popular and essential theme
in data mining.

10.4.1 Text Data Analysis and Information Retrieval

“What is information retrieval?” Information retrieval (IR) is a field that has been devel-
oping in parallel with database systems for many years. Unlike the field of database
systems, which has focused on query and transaction processing of structured data, infor-
mation retrieval is concerned with the organization and retrieval of information from a
large number of text-based documents. Since information retrieval and database sys-
tems each handle different kinds of data, some database system problems are usually not
present in information retrieval systems, such as concurrency control, recovery, trans-
action management, and update. Also, some common information retrieval problems
are usually not encountered in traditional database systems, such as unstructured docu-
ments, approximate search based on keywords, and the notion of relevance.

Due to the abundance of text information, information retrieval has found many
applications. There exist many information retrieval systems, such as on-line library
catalog systems, on-line document management systems, and the more recently devel-
oped Web search engines.

A typical information retrieval problem is to locate relevant documents in a docu-
ment collection based on a user’s query, which is often some keywords describing an
information need, although it could also be an example relevant document. In such a
search problem, a user takes the initiative to “pull” the relevant information out from
the collection; this is most appropriate when a user has some ad hoc (i.e., short-term)
information need, such as finding information to buy a used car. When a user has a
long-term information need (e.g., a researcher’s interests), a retrieval system may also
take the initiative to “push” any newly arrived information item to a user if the item
is judged as being relevant to the user’s information need. Such an information access
process is called information filtering, and the corresponding systems are often called fil-
tering systems or recommender systems. From a technical viewpoint, however, search and
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filtering share many common techniques. Below we briefly discuss the major techniques
in information retrieval with a focus on search techniques.

Basic Measures for Text Retrieval: Precision and Recall
“Suppose that a text retrieval system has just retrieved a number of documents for me based
on my input in the form of a query. How can we assess how accurate or correct the system
was?” Let the set of documents relevant to a query be denoted as {Relevant}, and the set
of documents retrieved be denoted as {Retrieved}. The set of documents that are both
relevant and retrieved is denoted as {Relevant} ∩ {Retrieved}, as shown in the Venn
diagram of Figure 10.6. There are two basic measures for assessing the quality of text
retrieval:

Precision: This is the percentage of retrieved documents that are in fact relevant to
the query (i.e., “correct” responses). It is formally defined as

precision =
|{Relevant}∩{Retrieved}|

|{Retrieved}|
.

Recall: This is the percentage of documents that are relevant to the query and were,
in fact, retrieved. It is formally defined as

recall =
|{Relevant}∩{Retrieved}|

|{Relevant}|
.

An information retrieval system often needs to trade off recall for precision or vice
versa. One commonly used trade-off is the F-score, which is defined as the harmonic
mean of recall and precision:

F score =
recall× precision

(recall + precision)/2
.

The harmonic mean discourages a system that sacrifices one measure for another too
drastically.

All documents

Retrieved
documents

Relevant
documents

Relevant and
retrieved

Figure 10.6 Relationship between the set of relevant documents and the set of retrieved documents.
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Precision, recall, and F-score are the basic measures of a retrieved set of documents.
These three measures are not directly useful for comparing two ranked lists of documents
because they are not sensitive to the internal ranking of the documents in a retrieved set.
In order to measure the quality of a ranked list of documents, it is common to compute an
average of precisions at all the ranks where a new relevant document is returned. It is also
common to plot a graph of precisions at many different levels of recall; a higher curve
represents a better-quality information retrieval system. For more details about these
measures, readers may consult an information retrieval textbook, such as [BYRN99].

Text Retrieval Methods
“What methods are there for information retrieval?” Broadly speaking, retrieval methods
fall into two categories: They generally either view the retrieval problem as a document
selection problem or as a document ranking problem.

In document selection methods, the query is regarded as specifying constraints for
selecting relevant documents. A typical method of this category is the Boolean retrieval
model, in which a document is represented by a set of keywords and a user provides
a Boolean expression of keywords, such as “car and repair shops,” “tea or coffee,” or
“database systems but not Oracle.” The retrieval system would take such a Boolean query
and return documents that satisfy the Boolean expression. Because of the difficulty in
prescribing a user’s information need exactly with a Boolean query, the Boolean retrieval
method generally only works well when the user knows a lot about the document collec-
tion and can formulate a good query in this way.

Document ranking methods use the query to rank all documents in the order of
relevance. For ordinary users and exploratory queries, these methods are more appro-
priate than document selection methods. Most modern information retrieval systems
present a ranked list of documents in response to a user’s keyword query. There are
many different ranking methods based on a large spectrum of mathematical founda-
tions, including algebra, logic, probability, and statistics. The common intuition behind
all of these methods is that we may match the keywords in a query with those in the
documents and score each document based on how well it matches the query. The goal
is to approximate the degree of relevance of a document with a score computed based on
information such as the frequency of words in the document and the whole collection.
Notice that it is inherently difficult to provide a precise measure of the degree of relevance
between a set of keywords. For example, it is difficult to quantify the distance between
data mining and data analysis. Comprehensive empirical evaluation is thus essential for
validating any retrieval method.

A detailed discussion of all of these retrieval methods is clearly out of the scope of this
book. Following we briefly discuss the most popular approach—the vector space model.
For other models, readers may refer to information retrieval textbooks, as referenced
in the bibliographic notes. Although we focus on the vector space model, some steps
discussed are not specific to this particular approach.

The basic idea of the vector space model is the following: We represent a document
and a query both as vectors in a high-dimensional space corresponding to all the
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keywords and use an appropriate similarity measure to compute the similarity between
the query vector and the document vector. The similarity values can then be used for
ranking documents.

“How do we tokenize text?” The first step in most retrieval systems is to identify key-
words for representing documents, a preprocessing step often called tokenization. To
avoid indexing useless words, a text retrieval system often associates a stop list with a set
of documents. A stop list is a set of words that are deemed “irrelevant.” For example, a,
the, of, for, with, and so on are stop words, even though they may appear frequently. Stop
lists may vary per document set. For example, database systems could be an important
keyword in a newspaper. However, it may be considered as a stop word in a set of research
papers presented in a database systems conference.

A group of different words may share the same word stem. A text retrieval system
needs to identify groups of words where the words in a group are small syntactic variants
of one another and collect only the common word stem per group. For example, the
group of words drug, drugged, and drugs, share a common word stem, drug, and can be
viewed as different occurrences of the same word.

“How can we model a document to facilitate information retrieval?” Starting with a set
of d documents and a set of t terms, we can model each document as a vector v in the
t dimensional space R

t , which is why this method is called the vector-space model. Let
the term frequency be the number of occurrences of term t in the document d, that is,
freq(d, t). The (weighted) term-frequency matrix TF(d, t) measures the association of a
term t with respect to the given document d: it is generally defined as 0 if the document
does not contain the term, and nonzero otherwise. There are many ways to define the
term-weighting for the nonzero entries in such a vector. For example, we can simply set
TF(d, t) = 1 if the term t occurs in the document d, or use the term frequency freq(d, t),
or the relative term frequency, that is, the term frequency versus the total number of
occurrences of all the terms in the document. There are also other ways to normalize the
term frequency. For example, the Cornell SMART system uses the following formula to
compute the (normalized) term frequency:

TF(d, t) =

{

0 if freq(d, t) = 0

1 + log(1 + log(freq(d, t))) otherwise.
(10.3)

Besides the term frequency measure, there is another important measure, called
inverse document frequency (IDF), that represents the scaling factor, or the importance,
of a term t. If a term t occurs in many documents, its importance will be scaled down
due to its reduced discriminative power. For example, the term database systems may
likely be less important if it occurs in many research papers in a database system confer-
ence. According to the same Cornell SMART system, IDF(t) is defined by the following
formula:

IDF(t) = log
1 + |d|
|dt |

, (10.4)

where d is the document collection, and dt is the set of documents containing term t. If
|dt | � |d|, the term t will have a large IDF scaling factor and vice versa.
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In a complete vector-space model, TF and IDF are combined together, which forms
the TF-IDF measure:

TF-IDF(d, t) = TF(d, t)× IDF(t). (10.5)

Let us examine how to compute similarity among a set of documents based on the
notions of term frequency and inverse document frequency.

Example 10.9 Term frequency and inverse document frequency. Table 10.5 shows a term frequency
matrix where each row represents a document vector, each column represents a term,
and each entry registers freq(di, t j), the number of occurrences of term t j in document di.
Based on this table we can calculate the TF-IDF value of a term in a document. For
example, for t6 in d4, we have

TF(d4, t6) = 1 + log(1 + log(15)) = 1.3377

IDF(t6) = log
1 + 5

3
= 0.301.

Therefore,
TF-IDF(d4, t6) = 1.3377×0.301 = 0.403

“How can we determine if two documents are similar?” Since similar documents are
expected to have similar relative term frequencies, we can measure the similarity among a
set of documents or between a document and a query (often defined as a set of keywords),
based on similar relative term occurrences in the frequency table. Many metrics have
been proposed for measuring document similarity based on relative term occurrences
or document vectors. A representative metric is the cosine measure, defined as follows.
Let v1 and v2 be two document vectors. Their cosine similarity is defined as

sim(v1,v2) =
v1 · v2

|v1||v2|
, (10.6)

where the inner product v1 · v2 is the standard vector dot product, defined as Σt
i=1v1iv2i,

and the norm |v1| in the denominator is defined as |v1|=
√

v1 · v1.

Table 10.5 A term frequency matrix showing the frequency of terms per document.

document/term t1 t2 t3 t4 t5 t6 t7

d1 0 4 10 8 0 5 0

d2 5 19 7 16 0 0 32

d3 15 0 0 4 9 0 17

d4 22 3 12 0 5 15 0

d5 0 7 0 9 2 4 12
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Text Indexing Techniques
There are several popular text retrieval indexing techniques, including inverted indices
and signature files.

An inverted index is an index structure that maintains two hash indexed or B+-tree
indexed tables: document table and term table, where

document table consists of a set of document records, each containing two fields:
doc id and posting list, where posting list is a list of terms (or pointers to terms) that
occur in the document, sorted according to some relevance measure.

term table consists of a set of term records, each containing two fields: term id and
posting list, where posting list specifies a list of document identifiers in which the term
appears.

With such organization, it is easy to answer queries like “Find all of the documents asso-
ciated with a given set of terms,” or “Find all of the terms associated with a given set of
documents.” For example, to find all of the documents associated with a set of terms, we
can first find a list of document identifiers in term table for each term, and then inter-
sect them to obtain the set of relevant documents. Inverted indices are widely used in
industry. They are easy to implement. The posting lists could be rather long, making the
storage requirement quite large. They are easy to implement, but are not satisfactory at
handling synonymy (where two very different words can have the same meaning) and
polysemy (where an individual word may have many meanings).

A signature file is a file that stores a signature record for each document in the database.
Each signature has a fixed size of b bits representing terms. A simple encoding scheme
goes as follows. Each bit of a document signature is initialized to 0. A bit is set to 1 if the
term it represents appears in the document. A signature S1 matches another signature S2
if each bit that is set in signature S2 is also set in S1. Since there are usually more terms
than available bits, multiple terms may be mapped into the same bit. Such multiple-to-
one mappings make the search expensive because a document that matches the signature
of a query does not necessarily contain the set of keywords of the query. The document
has to be retrieved, parsed, stemmed, and checked. Improvements can be made by first
performing frequency analysis, stemming, and by filtering stop words, and then using a
hashing technique and superimposed coding technique to encode the list of terms into
bit representation. Nevertheless, the problem of multiple-to-one mappings still exists,
which is the major disadvantage of this approach.

Readers can refer to [WMB99] for more detailed discussion of indexing techniques,
including how to compress an index.

Query Processing Techniques
Once an inverted index is created for a document collection, a retrieval system can answer
a keyword query quickly by looking up which documents contain the query keywords.
Specifically, we will maintain a score accumulator for each document and update these
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accumulators as we go through each query term. For each query term, we will fetch all of
the documents that match the term and increase their scores. More sophisticated query
processing techniques are discussed in [WMB99].

When examples of relevant documents are available, the system can learn from such
examples to improve retrieval performance. This is called relevance feedback and has
proven to be effective in improving retrieval performance. When we do not have such
relevant examples, a system can assume the top few retrieved documents in some initial
retrieval results to be relevant and extract more related keywords to expand a query. Such
feedback is called pseudo-feedback or blind feedback and is essentially a process of mining
useful keywords from the top retrieved documents. Pseudo-feedback also often leads to
improved retrieval performance.

One major limitation of many existing retrieval methods is that they are based on
exact keyword matching. However, due to the complexity of natural languages, keyword-
based retrieval can encounter two major difficulties. The first is the synonymy problem:
two words with identical or similar meanings may have very different surface forms. For
example, a user’s query may use the word “automobile,” but a relevant document may
use “vehicle” instead of “automobile.” The second is the polysemy problem: the same
keyword, such as mining, or Java, may mean different things in different contexts.

We now discuss some advanced techniques that can help solve these problems as well
as reduce the index size.

10.4.2 Dimensionality Reduction for Text

With the similarity metrics introduced in Section 10.4.1, we can construct similarity-
based indices on text documents. Text-based queries can then be represented as vectors,
which can be used to search for their nearest neighbors in a document collection. How-
ever, for any nontrivial document database, the number of terms T and the number of
documents D are usually quite large. Such high dimensionality leads to the problem of
inefficient computation, since the resulting frequency table will have size T ×D. Fur-
thermore, the high dimensionality also leads to very sparse vectors and increases the
difficulty in detecting and exploiting the relationships among terms (e.g., synonymy).
To overcome these problems, dimensionality reduction techniques such as latent
semantic indexing, probabilistic latent semantic analysis, and locality preserving indexing
can be used.

We now briefly introduce these methods. To explain the basic idea beneath latent
semantic indexing and locality preserving indexing, we need to use some matrix and
vector notations. In the following part, we use x1, . . . ,xtn ∈ Rm to represent the n doc-
uments with m features (words). They can be represented as a term-document matrix
X = [x1,x2, . . . ,xn].

Latent Semantic Indexing
Latent semantic indexing (LSI) is one of the most popular algorithms for docu-
ment dimensionality reduction. It is fundamentally based on SVD (singular value
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decomposition). Suppose the rank of the term-document X is r, then LSI decomposes X
using SVD as follows:

X = UΣV T , (10.7)

where Σ = diag(σ1, . . . ,σr) and σ1 ≥ σ2 ≥ ·· · ≥ σr are the singular values of X , U =
[a1, . . . ,ar] and ai is called the left singular vector, and V = [v1, . . . ,vr], and vi is called
the right singular vector. LSI uses the first k vectors in U as the transformation matrix to
embed the original documents into a k-dimensional subspace. It can be easily checked
that the column vectors of U are the eigenvectors of XXT . The basic idea of LSI is to
extract the most representative features, and at the same time the reconstruction error
can be minimized. Let a be the transformation vector. The objective function of LSI can
be stated as follows:

aopt = argmin
a
‖X−aaT X‖2 = argmax

a
aT XXT a, (10.8)

with the constraint,
aT a = 1. (10.9)

Since XXT is symmetric, the basis functions of LSI are orthogonal.

Locality Preserving Indexing
Different from LSI, which aims to extract the most representative features, Locality Pre-
serving Indexing (LPI) aims to extract the most discriminative features. The basic idea of
LPI is to preserve the locality information (i.e., if two documents are near each other in
the original document space, LPI tries to keep these two documents close together in the
reduced dimensionality space). Since the neighboring documents (data points in high-
dimensional space) probably relate to the same topic, LPI is able to map the documents
related to the same semantics as close to each other as possible.

Given the document set x1, . . . ,xn ∈Rm, LPI constructs a similarity matrix S ∈Rn×n.
The transformation vectors of LPI can be obtained by solving the following minimization
problem:

aopt = argmin
a ∑

i, j

(

aT xi−aT x j
)2

Si j = argmin
a

aT XLXT a, (10.10)

with the constraint,
aT XDXT a = 1, (10.11)

where L = D−S is the Graph Laplacian and Dii = ∑ j Si j. Dii measures the local density
around xi. LPI constructs the similarity matrix S as

Si j =















xT
i x j

‖xT
i x j‖

, if xi is among the p nearest neighbors of x j

or x j is among the p nearest neighbors of xi

0, otherwise.

(10.12)

Thus, the objective function in LPI incurs a heavy penalty if neighboring points xi and x j
are mapped far apart. Therefore, minimizing it is an attempt to ensure that if xi and x j are
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“close” then yi (= aT xi) and y j (= aT x j) are close as well. Finally, the basis functions of LPI
are the eigenvectors associated with the smallest eigenvalues of the following generalized
eigen-problem:

XLXT a = λXDXT a. (10.13)

LSI aims to find the best subspace approximation to the original document space
in the sense of minimizing the global reconstruction error. In other words, LSI seeks
to uncover the most representative features. LPI aims to discover the local geometrical
structure of the document space. Since the neighboring documents (data points in high-
dimensional space) probably relate to the same topic, LPI can have more discriminating
power than LSI. Theoretical analysis of LPI shows that LPI is an unsupervised approxi-
mation of the supervised Linear Discriminant Analysis (LDA). Therefore, for document
clustering and document classification, we might expect LPI to have better performance
than LSI. This was confirmed empirically.

Probabilistic Latent Semantic Indexing
The probabilistic latent semantic indexing (PLSI) method is similar to LSI, but achieves
dimensionality reduction through a probabilistic mixture model. Specifically, we assume
there are k latent common themes in the document collection, and each is character-
ized by a multinomial word distribution. A document is regarded as a sample of a mix-
ture model with these theme models as components. We fit such a mixture model to all
the documents, and the obtained k component multinomial models can be regarded as
defining k new semantic dimensions. The mixing weights of a document can be used as
a new representation of the document in the low latent semantic dimensions.

Formally, let C = {d1,d2, . . . ,dn} be a collection of n documents. Let θ1, . . . ,θk be k
theme multinomial distributions. A word w in document di is regarded as a sample of
the following mixture model.

pdi(w) =
k

∑
j=1

[πdi, j p(w|θ j)] (10.14)

where πdi, j is a document-specific mixing weight for the j-th aspect theme, and ∑k
j=1

πdi, j = 1.
The log-likelihood of the collection C is

log p(C|Λ) =
n

∑
i=1

∑
w∈V

[c(w,di) log(
k

∑
j=1

(πdi, j p(w|θ j)))], (10.15)

where V is the set of all the words (i.e., vocabulary), c(w,di) is the count of word w in
document di, andΛ= ({θ j,{πdi, j}n

i=1}k
j=1) is the set of all the theme model parameters.

The model can be estimated using the Expectation-Maximization (EM) algorithm
(Chapter 7), which computes the following maximum likelihood estimate:

Λ̂= argmaxΛ log p(C|Λ). (10.16)

Once the model is estimated, θ1, . . . ,θk define k new semantic dimensions and πdi, j
gives a representation of di in this low-dimension space.
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10.4.3 Text Mining Approaches

There are many approaches to text mining, which can be classified from different
perspectives, based on the inputs taken in the text mining system and the data min-
ing tasks to be performed. In general, the major approaches, based on the kinds of
data they take as input, are: (1) the keyword-based approach, where the input is
a set of keywords or terms in the documents, (2) the tagging approach, where the
input is a set of tags, and (3) the information-extraction approach, which inputs
semantic information, such as events, facts, or entities uncovered by information
extraction. A simple keyword-based approach may only discover relationships at a
relatively shallow level, such as rediscovery of compound nouns (e.g., “database”
and “systems”) or co-occurring patterns with less significance (e.g., “terrorist” and
“explosion”). It may not bring much deep understanding to the text. The tagging
approach may rely on tags obtained by manual tagging (which is costly and is unfeasi-
ble for large collections of documents) or by some automated categorization algorithm
(which may process a relatively small set of tags and require defining the categories
beforehand). The information-extraction approach is more advanced and may lead
to the discovery of some deep knowledge, but it requires semantic analysis of text by
natural language understanding and machine learning methods. This is a challenging
knowledge discovery task.

Various text mining tasks can be performed on the extracted keywords, tags, or seman-
tic information. These include document clustering, classification, information extrac-
tion, association analysis, and trend analysis. We examine a few such tasks in the following
discussion.

Keyword-Based Association Analysis
“What is keyword-based association analysis?” Such analysis collects sets of keywords or
terms that occur frequently together and then finds the association or correlation rela-
tionships among them.

Like most of the analyses in text databases, association analysis first preprocesses the
text data by parsing, stemming, removing stop words, and so on, and then evokes asso-
ciation mining algorithms. In a document database, each document can be viewed as a
transaction, while a set of keywords in the document can be considered as a set of items
in the transaction. That is, the database is in the format

{document id,a set of keywords}.

The problem of keyword association mining in document databases is thereby mapped
to item association mining in transaction databases, where many interesting methods
have been developed, as described in Chapter 5.

Notice that a set of frequently occurring consecutive or closely located keywords may
form a term or a phrase. The association mining process can help detect compound
associations, that is, domain-dependent terms or phrases, such as [Stanford, University]
or [U.S., President, George W. Bush], or noncompound associations, such as [dollars,
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shares, exchange, total, commission, stake, securities]. Mining based on these associations
is referred to as “term-level association mining” (as opposed to mining on individual
words). Term recognition and term-level association mining enjoy two advantages in
text analysis: (1) terms and phrases are automatically tagged so there is no need for
human effort in tagging documents; and (2) the number of meaningless results is greatly
reduced, as is the execution time of the mining algorithms.

With such term and phrase recognition, term-level mining can be evoked to find asso-
ciations among a set of detected terms and keywords. Some users may like to find asso-
ciations between pairs of keywords or terms from a given set of keywords or phrases,
whereas others may wish to find the maximal set of terms occurring together. Therefore,
based on user mining requirements, standard association mining or max-pattern mining
algorithms may be evoked.

Document Classification Analysis
Automated document classification is an important text mining task because, with the
existence of a tremendous number of on-line documents, it is tedious yet essential to
be able to automatically organize such documents into classes to facilitate document
retrieval and subsequent analysis. Document classification has been used in automated
topic tagging (i.e., assigning labels to documents), topic directory construction, identifi-
cation of the document writing styles (which may help narrow down the possible authors
of anonymous documents), and classifying the purposes of hyperlinks associated with a
set of documents.

“How can automated document classification be performed?” A general procedure is as
follows: First, a set of preclassified documents is taken as the training set. The training set
is then analyzed in order to derive a classification scheme. Such a classification scheme
often needs to be refined with a testing process. The so-derived classification scheme can
be used for classification of other on-line documents.

This process appears similar to the classification of relational data. However, there is
a fundamental difference. Relational data are well structured: each tuple is defined by
a set of attribute-value pairs. For example, in the tuple {sunny, warm, dry, not windy,
play tennis}, the value “sunny” corresponds to the attribute weather outlook, “warm”
corresponds to the attribute temperature, and so on. The classification analysis decides
which set of attribute-value pairs has the greatest discriminating power in determining
whether a person is going to play tennis. On the other hand, document databases are not
structured according to attribute-value pairs. That is, a set of keywords associated with a
set of documents is not organized into a fixed set of attributes or dimensions. If we view
each distinct keyword, term, or feature in the document as a dimension, there may be
thousands of dimensions in a set of documents. Therefore, commonly used relational
data-oriented classification methods, such as decision tree analysis, may not be effective
for the classification of document databases.

Based on our study of a wide spectrum of classification methods in Chapter 6, here
we examine a few typical classification methods that have been used successfully in text
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classification. These include nearest-neighbor classification, feature selection methods,
Bayesian classification, support vector machines, and association-based classification.

According to the vector-space model, two documents are similar if they share simi-
lar document vectors. This model motivates the construction of the k-nearest-neighbor
classifier, based on the intuition that similar documents are expected to be assigned the
same class label. We can simply index all of the training documents, each associated with
its corresponding class label. When a test document is submitted, we can treat it as a
query to the IR system and retrieve from the training set k documents that are most
similar to the query, where k is a tunable constant. The class label of the test document
can be determined based on the class label distribution of its k nearest neighbors. Such
class label distribution can also be refined, such as based on weighted counts instead of
raw counts, or setting aside a portion of labeled documents for validation. By tuning k
and incorporating the suggested refinements, this kind of classifier can achieve accuracy
comparable with the best classifier. However, since the method needs nontrivial space to
store (possibly redundant) training information and additional time for inverted index
lookup, it has additional space and time overhead in comparison with other kinds of
classifiers.

The vector-space model may assign large weight to rare items disregarding its class
distribution characteristics. Such rare items may lead to ineffective classification. Let’s
examine an example in the TF-IDF measure computation. Suppose there are two terms
t1 and t2 in two classes C1 and C2, each having 100 training documents. Term t1 occurs in
five documents in each class (i.e., 5% of the overall corpus), but t2 occurs in 20 documents
in class C1 only (i.e., 10% of the overall corpus). Term t1 will have a higher TF-IDF value
because it is rarer, but it is obvious t2 has stronger discriminative power in this case.
A feature selection2 process can be used to remove terms in the training documents
that are statistically uncorrelated with the class labels. This will reduce the set of terms
to be used in classification, thus improving both efficiency and accuracy.

After feature selection, which removes nonfeature terms, the resulting “cleansed”
training documents can be used for effective classification. Bayesian classification is
one of several popular techniques that can be used for effective document classifica-
tion. Since document classification can be viewed as the calculation of the statistical
distribution of documents in specific classes, a Bayesian classifier first trains the model
by calculating a generative document distribution P(d|c) to each class c of document
d and then tests which class is most likely to generate the test document. Since both
methods handle high-dimensional data sets, they can be used for effective document
classification. Other classification methods have also been used in documentation clas-
sification. For example, if we represent classes by numbers and construct a direct map-
ping function from term space to the class variable, support vector machines can be
used to perform effective classification since they work well in high-dimensional space.
The least-square linear regression method is also used as a method for discriminative
classification.

2Feature (or attribute) selection is described in Chapter 2.
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Finally, we introduce association-based classification, which classifies documents
based on a set of associated, frequently occurring text patterns. Notice that very frequent
terms are likely poor discriminators. Thus only those terms that are not very frequent
and that have good discriminative power will be used in document classification. Such an
association-based classification method proceeds as follows: First, keywords and terms
can be extracted by information retrieval and simple association analysis techniques.
Second, concept hierarchies of keywords and terms can be obtained using available term
classes, such as WordNet, or relying on expert knowledge, or some keyword classification
systems. Documents in the training set can also be classified into class hierarchies. A term
association mining method can then be applied to discover sets of associated terms that
can be used to maximally distinguish one class of documents from others. This derives
a set of association rules associated with each document class. Such classification rules
can be ordered based on their discriminative power and occurrence frequency, and used
to classify new documents. Such kind of association-based document classifier has been
proven effective.

For Web document classification, the Web page linkage information can be used to
further assist the identification of document classes. Web linkage analysis methods are
discussed in Section 10.5.

Document Clustering Analysis
Document clustering is one of the most crucial techniques for organizing documents in
an unsupervised manner. When documents are represented as term vectors, the clus-
tering methods described in Chapter 7 can be applied. However, the document space is
always of very high dimensionality, ranging from several hundreds to thousands. Due to
the curse of dimensionality, it makes sense to first project the documents into a lower-
dimensional subspace in which the semantic structure of the document space becomes
clear. In the low-dimensional semantic space, the traditional clustering algorithms can
then be applied. To this end, spectral clustering, mixture model clustering, clustering
using Latent Semantic Indexing, and clustering using Locality Preserving Indexing are
the most well-known techniques. We discuss each of these methods here.

The spectral clustering method first performs spectral embedding (dimensionality
reduction) on the original data, and then applies the traditional clustering algorithm
(e.g., k-means) on the reduced document space. Recently, work on spectral clustering
shows its capability to handle highly nonlinear data (the data space has high curvature
at every local area). Its strong connections to differential geometry make it capable of
discovering the manifold structure of the document space. One major drawback of these
spectral clustering algorithms might be that they use the nonlinear embedding (dimen-
sionality reduction), which is only defined on “training” data. They have to use all of
the data points to learn the embedding. When the data set is very large, it is computa-
tionally expensive to learn such an embedding. This restricts the application of spectral
clustering on large data sets.

Themixturemodelclusteringmethodmodels thetextdatawithamixturemodel,often
involving multinomial component models. Clustering involves two steps: (1) estimating
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the model parameters based on the text data and any additional prior knowledge, and
(2) inferring the clusters based on the estimated model parameters. Depending on how
the mixture model is defined, these methods can cluster words and documents at the same
time.ProbabilisticLatentSemanticAnalysis(PLSA)andLatentDirichletAllocation(LDA)
are two examples of such techniques. One potential advantage of such clustering methods
is that the clusters can be designed to facilitate comparative analysis of documents.

The Latent Semantic Indexing (LSI) and Locality Preserving Indexing (LPI) meth-
ods introduced in Section 10.4.2 are linear dimensionality reduction methods. We can
acquire the transformation vectors (embedding function) in LSI and LPI. Such embed-
ding functions are defined everywhere; thus, we can use part of the data to learn the
embedding function and embed all of the data to low-dimensional space. With this trick,
clustering using LSI and LPI can handle large document data corpus.

As discussed in the previous section, LSI aims to find the best subspace approxima-
tion to the original document space in the sense of minimizing the global reconstruc-
tion error. In other words, LSI seeks to uncover the most representative features rather
than the most discriminative features for document representation. Therefore, LSI might
not be optimal in discriminating documents with different semantics, which is the ulti-
mate goal of clustering. LPI aims to discover the local geometrical structure and can have
more discriminating power. Experiments show that for clustering, LPI as a dimension-
ality reduction method is more suitable than LSI. Compared with LSI and LPI, the PLSI
method reveals the latent semantic dimensions in a more interpretable way and can easily
be extended to incorporate any prior knowledge or preferences about clustering.

10.5 Mining the World Wide Web

The World Wide Web serves as a huge, widely distributed, global information service cen-
ter for news, advertisements, consumer information, financial management, education,
government, e-commerce, and many other information services. The Web also contains
a rich and dynamic collection of hyperlink information and Web page access and usage
information, providing rich sources for data mining. However, based on the following
observations, the Web also poses great challenges for effective resource and knowledge
discovery.

The Web seems to be too huge for effective data warehousing and data mining. The size
of the Web is in the order of hundreds of terabytes and is still growing rapidly. Many
organizations and societies place most of their public-accessible information on the
Web. It is barely possible to set up a data warehouse to replicate, store, or integrate all
of the data on the Web.3

3There have been efforts to store or integrate all of the data on the Web. For example, a huge Internet
archive can be accessed at www.archive.org.
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The complexity of Web pages is far greater than that of any traditional text document
collection. Web pages lack a unifying structure. They contain far more authoring style
and content variations than any set of books or other traditional text-based docu-
ments. The Web is considered a huge digital library; however, the tremendous number
of documents in this library are not arranged according to any particular sorted order.
There is no index by category, nor by title, author, cover page, table of contents, and
so on. It can be very challenging to search for the information you desire in such a
library!

The Web is a highly dynamic information source. Not only does the Web grow rapidly,
but its information is also constantly updated. News, stock markets, weather, sports,
shopping, company advertisements, and numerous other Web pages are updated reg-
ularly on the Web. Linkage information and access records are also updated frequently.

The Web serves a broad diversity of user communities. The Internet currently connects
more than 100 million workstations, and its user community is still rapidly expand-
ing. Users may have very different backgrounds, interests, and usage purposes. Most
users may not have good knowledge of the structure of the information network and
may not be aware of the heavy cost of a particular search. They can easily get lost by
groping in the “darkness” of the network, or become bored by taking many access
“hops” and waiting impatiently for a piece of information.

Only a small portion of the information on the Web is truly relevant or useful. It is said
that 99% of the Web information is useless to 99% of Web users. Although this may
not seem obvious, it is true that a particular person is generally interested in only a
tiny portion of the Web, while the rest of the Web contains information that is unin-
teresting to the user and may swamp desired search results. How can the portion of
the Web that is truly relevant to your interest be determined? How can we find high-
quality Web pages on a specified topic?

These challenges have promoted research into efficient and effective discovery and use
of resources on the Internet.

There are many index-based Web search engines. These search the Web, index Web
pages, and build and store huge keyword-based indices that help locate sets of
Web pages containing certain keywords. With such search engines, an experienced user
may be able to quickly locate documents by providing a set of tightly constrained key-
words and phrases. However, a simple keyword-based search engine suffers from several
deficiencies. First, a topic of any breadth can easily contain hundreds of thousands of
documents. This can lead to a huge number of document entries returned by a search
engine, many of which are only marginally relevant to the topic or may contain materials
of poor quality. Second, many documents that are highly relevant to a topic may not con-
tain keywords defining them. This is referred to as the polysemy problem, discussed in
the previous section on text mining. For example, the keyword Java may refer to the Java
programming language, or an island in Indonesia, or brewed coffee. As another example,
a search based on the keyword search engine may not find even the most popular Web
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search engines like Google, Yahoo!, AltaVista, or America Online if these services do not
claim to be search engines on their Web pages. This indicates that a simple keyword-
based Web search engine is not sufficient for Web resource discovery.

“If a keyword-based Web search engine is not sufficient for Web resource discovery, how
can we even think of doing Web mining?” Compared with keyword-based Web search, Web
mining is a more challenging task that searches for Web structures, ranks the importance
of Web contents, discovers the regularity and dynamics of Web contents, and mines Web
access patterns. However, Web mining can be used to substantially enhance the power of
a Web search engine since Web mining may identify authoritative Web pages, classify Web
documents, and resolve many ambiguities and subtleties raised in keyword-based Web
search. In general, Web mining tasks can be classified into three categories: Web content
mining, Web structure mining, and Web usage mining. Alternatively, Web structures can
be treated as a part of Web contents so that Web mining can instead be simply classified
into Web content mining and Web usage mining.

In the following subsections, we discuss several important issues related to Web min-
ing: mining the Web page layout structure (Section 10.5.1), mining the Web’s link structures
(Section 10.5.2), mining multimedia data on the Web (Section 10.5.3), automatic classifi-
cation of Web documents (Section 10.5.4), and Weblog mining (Section 10.5.5).

10.5.1 Mining the Web Page Layout Structure

Compared with traditional plain text, a Web page has more structure. Web pages are
also regarded as semi-structured data. The basic structure of a Web page is its DOM4

(Document Object Model) structure. The DOM structure of a Web page is a tree struc-
ture, where every HTML tag in the page corresponds to a node in the DOM tree. The
Web page can be segmented by some predefined structural tags. Useful tags include 〈P〉
(paragraph), 〈TABLE〉 (table), 〈UL〉 (list), 〈H1〉 ∼ 〈H6〉 (heading), etc. Thus the DOM
structure can be used to facilitate information extraction.

Unfortunately, due to the flexibility of HTML syntax, many Web pages do not obey
the W3C HTML specifications, which may result in errors in the DOM tree structure.
Moreover, the DOM tree was initially introduced for presentation in the browser rather
than description of the semantic structure of the Web page. For example, even though
two nodes in the DOM tree have the same parent, the two nodes might not be more
semantically related to each other than to other nodes. Figure 10.7 shows an example
page.5 Figure 10.7(a) shows part of the HTML source (we only keep the backbone code),
and Figure 10.7(b) shows the DOM tree of the page. Although we have surrounding
description text for each image, the DOM tree structure fails to correctly identify the
semantic relationships between different parts.

In the sense of human perception, people always view a Web page as different
semantic objects rather than as a single object. Some research efforts show that users

4www.w3c.org/DOM
5http://yahooligans.yahoo.com/content/ecards/content/ecards/category?c=133&g=16
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Figure 10.7 The HTML source and DOM tree structure of a sample page. It is difficult to extract the
correct semantic content structure of the page.

always expect that certain functional parts of a Web page (e.g., navigational links
or an advertisement bar) appear at certain positions on the page. Actually, when
a Web page is presented to the user, the spatial and visual cues can help the user
unconsciously divide the Web page into several semantic parts. Therefore, it is possible
to automatically segment the Web pages by using the spatial and visual cues. Based
on this observation, we can develop algorithms to extract the Web page content
structure based on spatial and visual information.

Here, we introduce an algorithm called VIsion-based Page Segmentation (VIPS).
VIPS aims to extract the semantic structure of a Web page based on its visual presen-
tation. Such semantic structure is a tree structure: each node in the tree corresponds
to a block. Each node will be assigned a value (Degree of Coherence) to indicate
how coherent is the content in the block based on visual perception. The VIPS algo-
rithm makes full use of the page layout feature. It first extracts all of the suitable
blocks from the HTML DOM tree, and then it finds the separators between these
blocks. Here separators denote the horizontal or vertical lines in a Web page that
visually cross with no blocks. Based on these separators, the semantic tree of the Web
page is constructed. A Web page can be represented as a set of blocks (leaf nodes
of the semantic tree). Compared with DOM-based methods, the segments obtained
by VIPS are more semantically aggregated. Noisy information, such as navigation,
advertisement, and decoration can be easily removed because these elements are often
placed in certain positions on a page. Contents with different topics are distinguished
as separate blocks. Figure 10.8 illustrates the procedure of VIPS algorithm, and
Figure 10.9 shows the partition result of the same page as in Figure 10.7.

10.5.2 Mining the Web’s Link Structures to Identify
Authoritative Web Pages

“What is meant by authoritative Web pages?” Suppose you would like to search for Web
pages relating to a given topic, such as financial investing. In addition to retrieving pages
that are relevant, you also hope that the pages retrieved will be of high quality, or authori-
tative on the topic.
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Figure 10.8 The process flow of vision-based page segmentation algorithm.

Figure 10.9 Partition using VIPS (The image with their surrounding text are accurately identified)

“But how can a search engine automatically identify authoritative Web pages for my
topic?” Interestingly, the secrecy of authority is hiding in Web page linkages. The Web
consists not only of pages, but also of hyperlinks pointing from one page to another.
These hyperlinks contain an enormous amount of latent human annotation that can
help automatically infer the notion of authority. When an author of a Web page cre-
ates a hyperlink pointing to another Web page, this can be considered as the author’s
endorsement of the other page. The collective endorsement of a given page by different
authors on the Web may indicate the importance of the page and may naturally lead
to the discovery of authoritative Web pages. Therefore, the tremendous amount of Web
linkage information provides rich information about the relevance, the quality, and the
structure of the Web’s contents, and thus is a rich source for Web mining.

This idea has motivated some interesting studies on mining authoritative pages on the
Web. In the 1970s, researchers in information retrieval proposed methods of using cita-
tions among journal articles to evaluate the quality of research papers. However, unlike
journal citations, the Web linkage structure has some unique features. First, not every
hyperlink represents the endorsement we seek. Some links are created for other pur-
poses, such as for navigation or for paid advertisements. Yet overall, if the majority of
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hyperlinks are for endorsement, then the collective opinion will still dominate. Second,
for commercial or competitive interests, one authority will seldom have its Web page
point to its rival authorities in the same field. For example, Coca-Cola may prefer not
to endorse its competitor Pepsi by not linking to Pepsi’s Web pages. Third, authoritative
pages are seldom particularly descriptive. For example, the main Web page of Yahoo!
may not contain the explicit self-description “Web search engine.”

These properties of Web link structures have led researchers to consider another
important category of Web pages called a hub. A hub is one or a set of Web pages that pro-
vides collections of links to authorities. Hub pages may not be prominent, or there may
exist few links pointing to them; however, they provide links to a collection of promi-
nent sites on a common topic. Such pages could be lists of recommended links on indi-
vidual home pages, such as recommended reference sites from a course home page, or
professionally assembled resource lists on commercial sites. Hub pages play the role of
implicitly conferring authorities on a focused topic. In general, a good hub is a page that
points to many good authorities; a good authority is a page pointed to by many good
hubs. Such a mutual reinforcement relationship between hubs and authorities helps the
mining of authoritative Web pages and automated discovery of high-quality Web struc-
tures and resources.

“So, how can we use hub pages to find authoritative pages?” An algorithm using hubs,
called HITS (Hyperlink-Induced Topic Search), was developed as follows. First, HITS
uses the query terms to collect a starting set of, say, 200 pages from an index-based search
engine. These pages form the root set. Since many of these pages are presumably relevant
to the search topic, some of them should contain links to most of the prominent author-
ities. Therefore, the root set can be expanded into a base set by including all of the pages
that the root-set pages link to and all of the pages that link to a page in the root set, up
to a designated size cutoff such as 1,000 to 5,000 pages (to be included in the base set).

Second, a weight-propagation phase is initiated. This iterative process determines
numerical estimates of hub and authority weights. Notice that links between two pages
with the same Web domain (i.e., sharing the same first level in their URLs) often serve
as a navigation function and thus do not confer authority. Such links are excluded from
the weight-propagation analysis.

We first associate a non-negative authority weight, ap, and a non-negative hub weight,
hp, with each page p in the base set, and initialize all a and h values to a uniform constant.
The weights are normalized and an invariant is maintained that the squares of all weights
sum to 1. The authority and hub weights are updated based on the following equations:

ap = Σ(q such that q→p) hq (10.17)

hp = Σ(q such that q←p) aq (10.18)

Equation (10.17) implies that if a page is pointed to by many good hubs, its authority
weight should increase (i.e., it is the sum of the current hub weights of all of the pages
pointing to it). Equation (10.18) implies that if a page is pointing to many good author-
ities, its hub weight should increase (i.e., it is the sum of the current authority weights of
all of the pages it points to).
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These equations can be written in matrix form as follows. Let us number the pages
{1,2, . . . ,n} and define their adjacency matrix A to be an n× n matrix where A(i, j) is
1 if page i links to page j, or 0 otherwise. Similarly, we define the authority weight vector
a = (a1,a2, . . . ,an), and the hub weight vector h = (h1,h2, . . . ,hn). Thus, we have

h = A ·a (10.19)

a = AT ·h, (10.20)

where AT is the transposition of matrix A. Unfolding these two equations k times,
we have

h = A ·a = AAT h = (AAT )h = (AAT )2h = · · ·= (AAT )kh (10.21)

a = AT ·h = AT Aa = (AT A)a = (AT A)2a = · · ·= (AT A)ka. (10.22)

According to linear algebra, these two sequences of iterations, when normalized, con-
verge to the principal eigenvectors of AAT and AT A, respectively. This also proves that
the authority and hub weights are intrinsic features of the linked pages collected and are
not influenced by the initial weight settings.

Finally, the HITS algorithm outputs a short list of the pages with large hub weights,
and the pages with large authority weights for the given search topic. Many experiments
have shown that HITS provides surprisingly good search results for a wide range of
queries.

Although relying extensively on links can lead to encouraging results, the method may
encounter some difficulties by ignoring textual contexts. For example, HITS sometimes
drifts when hubs contain multiple topics. It may also cause “topic hijacking” when many
pages from a single website point to the same single popular site, giving the site too large
a share of the authority weight. Such problems can be overcome by replacing the sums of
Equations (10.17) and (10.18) with weighted sums, scaling down the weights of multiple
links from within the same site, using anchor text (the text surrounding hyperlink defini-
tions in Web pages) to adjust the weight of the links along which authority is propagated,
and breaking large hub pages into smaller units.

Google’s PageRank algorithm is based on a similar principle. By analyzing Web links
and textual context information, it has been reported that such systems can achieve
better-quality search results than those generated by term-index engines like AltaVista
and those created by human ontologists such as at Yahoo!.

The above link analysis algorithms are based on the following two assumptions. First,
links convey human endorsement. That is, if there exists a link from page A to page B and
these two pages are authored by different people, then the link implies that the author of
page A found page B valuable. Thus the importance of a page can be propagated to those
pages it links to. Second, pages that are co-cited by a certain page are likely related to
the same topic. However, these two assumptions may not hold in many cases. A typical
example is the Web page at http://news.yahoo.com (Figure 10.10), which contains mul-
tiple semantics (marked with rectangles with different colors) and many links only for
navigation and advertisement (the left region). In this case, the importance of each page
may be miscalculated by PageRank, and topic drift may occur in HITS when the popular
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Figure 10.10 Part of a sample Web page (news.yahoo.com). Clearly, this page is made up of different
semantic blocks (with different color rectangles). Different blocks have different importances
in the page. The links in different blocks point to the pages with different topics.

sites such as Web search engines are so close to any topic, and thus are ranked at the top
regardless of the topics.

These two problems are caused by the fact that a single Web page often contains mul-
tiple semantics, and the different parts of the Web page have different importance in that
page. Thus, from the perspective of semantics, a Web page should not be the smallest
unit. The hyperlinks contained in different semantic blocks usually point to the pages
of different topics. Naturally, it is more reasonable to regard the semantic blocks as the
smallest units of information.
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By using the VIPS algorithm introduced in Section 10.5.1, we can extract page-to-
block and block-to-page relationships and then construct a page graph and a block graph.
Based on this graph model, the new link analysis algorithms are capable of discovering
the intrinsic semantic structure of the Web. The above two assumptions become reason-
able in block-level link analysis algorithms. Thus, the new algorithms can improve the
performance of search in Web context.

The graph model in block-level link analysis is induced from two kinds of relation-
ships, that is, block-to-page (link structure) and page-to-block (page layout).

The block-to-page relationship is obtained from link analysis. Because a Web page
generally contains several semantic blocks, different blocks are related to different topics.
Therefore, it might be more reasonable to consider the hyperlinks from block to page,
rather than from page to page. Let Z denote the block-to-page matrix with dimension
n× k. Z can be formally defined as follows:

Zi j =

{

1/si, if there is a link from block i to page j

0, otherwise,
(10.23)

where si is the number of pages to which block i links. Zi j can also be viewed as a prob-
ability of jumping from block i to page j. The block-to-page relationship gives a more
accurate and robust representation of the link structures of the Web.

The page-to-block relationships are obtained from page layout analysis. Let X denote
the page-to-block matrix with dimension k× n. As we have described, each Web page
can be segmented into blocks. Thus, X can be naturally defined as follows:

Xi j =

{

fpi(b j), if b j ∈ pi

0, otherwise,
(10.24)

where f is a function that assigns to every block b in page p an importance value. Speci-
fically, the bigger fp(b) is, the more important the block b is. Function f is empi-
rically defined below,

fp(b) = α× the size of block b
the distance between the center of b and the center of the screen

, (10.25)

where α is a normalization factor to make the sum of fp(b) to be 1, that is,

∑
b∈p

fp(b) = 1

Note that fp(b) can also be viewed as a probability that the user is focused on the block
b when viewing the page p. Some more sophisticated definitions of f can be formulated
by considering the background color, fonts, and so on. Also, f can be learned from some
prelabeled data (the importance value of the blocks can be defined by people) as a regres-
sion problem by using learning algorithms, such as support vector machines and neural
networks.
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Based on the block-to-page and page-to-block relations, a new Web page graph that
incorporates the block importance information can be defined as

W
P

= XZ, (10.26)

where X is a k×n page-to-block matrix, and Z is a n×k block-to-page matrix. Thus W
P

is a k× k page-to-page matrix.
The block-level PageRank can be calculated on the new Web page graph. Experiments

have shown the powerfulness of block-level link analysis.

10.5.3 Mining Multimedia Data on the Web

A huge amount of multimedia data are available on the Web in different forms. These
include video, audio, images, pictures, and graphs. There is an increasing demand for
effective methods for organizing and retrieving such multimedia data.

Compared with the general-purpose multimedia data mining, the multimedia data
on the Web bear many different properties. Web-based multimedia data are embedded
on the Web page and are associated with text and link information. These texts and links
can also be regarded as features of the multimedia data. Using some Web page layout
mining techniques (like VIPS), a Web page can be partitioned into a set of semantic blocks.
Thus, the block that contains multimedia data can be regarded as a whole. Searching and
organizing the Web multimedia data can be referred to as searching and organizing the
multimedia blocks.

Let’s consider Web images as an example. Figures 10.7 and 10.9 already show that
VIPS can help identify the surrounding text for Web images. Such surrounding text pro-
vides a textual description of Web images and can be used to build an image index. The
Web image search problem can then be partially completed using traditional text search
techniques. Many commercial Web image search engines, such as Google and Yahoo!,
use such approaches.

The block-level link analysis technique described in Section 10.5.2 can be used to
organize Web images. In particular, the image graph deduced from block-level link anal-
ysis can be used to achieve high-quality Web image clustering results.

To construct a Web-image graph, in addition to the block-to-page and page-to-block
relations, we need to consider a new relation: block-to-image relation. Let Y denote the
block-to-image matrix with dimension n×m. For each image, at least one block contains
this image. Thus, Y can be simply defined below:

Yi j =

{

1/si, if I j ∈ bi

0, otherwise,
(10.27)

where si is the number of images contained in the image block bi.

Now we first construct the block graph from which the image graph can be further
induced. In block-level link analysis, the block graph is defined as:

W
B

= (1− t)ZX + tD−1U, (10.28)
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where t is a suitable constant. D is a diagonal matrix, Dii = ∑ j Ui j. Ui j is 0 if block i and
block j are contained in two different Web pages; otherwise, it is set to the DOC (degree
of coherence, a property of the block, which is the result of the VIPS algorithm) value of
the smallest block containing both block i and block j. It is easy to check that the sum of
each row of D−1U is 1. Thus, W

B
can be viewed as a probability transition matrix such

that W
B

(a,b) is the probability of jumping from block a to block b.
Once the block graph is obtained, the image graph can be constructed correspond-

ingly by noticing the fact that every image is contained in at least one block. In this way,
the weight matrix of the image graph can be naturally defined as follows:

W
I

= Y TW
B

Y, (10.29)

where W
I

is an m×m matrix. If two images i and j are in the same block, say b, then
W

I
(i, j) = W

B
(b,b) = 0. However, the images in the same block are supposed to be

semantically related. Thus, we get a new definition as follows:

W
I

= tD−1Y TY +(1− t)Y TW
B

Y, (10.30)

where t is a suitable constant, and D is a diagonal matrix, Dii = ∑ j(Y TY )i j.

Such an image graph can better reflect the semantic relationships between the images.
With this image graph, clustering and embedding can be naturally acquired.
Figure 10.11(a) shows the embedding results of 1,710 images from the Yahooligans
website.6 Each data point represents an image. Each color stands for a semantic class.
Clearly, the image data set was accurately clustered into six categories. Some example
images of these six categories (i.e., mammal, fish, reptile, bird, amphibian, and insect)
are shown in Figure 10.12.

If we use traditional link analysis methods that consider hyperlinks from page to page,
the 2-D embedding result is shown in Figure 10.11(b). As can be seen, the six categories
were mixed together and can hardly be separated. This comparison shows that the image
graph model deduced from block-level link analysis is more powerful than traditional
methods as to describing the intrinsic semantic relationships between WWW images.

10.5.4 Automatic Classification of Web Documents
In the automatic classification of Web documents, each document is assigned a class
label from a set of predefined topic categories, based on a set of examples of preclassified
documents. For example, Yahoo!’s taxonomy and its associated documents can be used
as training and test sets in order to derive a Web document classification scheme. This
scheme may then be used to classify new Web documents by assigning categories from
the same taxonomy.

Keyword-based document classification methods were discussed in Section 10.4.3, as
well as keyword-based association analysis. These methods can be used for Web doc-
ument classification. Such a term-based classification scheme has shown good results

6www.yahooligans.com/content/animals
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Figure 10.11 2-D embedding of the WWW images. (a) The image graph is constructed using block-level
link analysis. Each color (shape) represents a semantic category. Clearly, they are well sepa-
rated. (b) The image graph was constructed based on traditional perspective that the hyper-
links are considered from pages to pages. The image graph was induced from the page-to-page
and page-to-image relationships.

Mammal Amphibian Insect

Bird Reptile Fish

Figure 10.12 Six image categories.

in Web page classification. However, because a Web page may contain multiple themes,
advertisement, and navigation information, block-based page content analysis may play an
important role in construction of high-quality classification models. Moreover, because
hyperlinks contain high-quality semantic clues to a page’s topic, it is beneficial to make
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good use of such semantic information in order to achieve even better accuracy than
pure keyword-based classification. Note that because the hyperlinks surrounding a doc-
ument may be quite noisy, naïve use of terms in a document’s hyperlink neighborhood
can even degrade accuracy. The use of block-based Web linkage analysis as introduced
in the previous subsections will reduce such noise and enhance the quality of Web
document classification.

There have been extensive research activities on the construction and use of the
semantic Web, a Web information infrastructure that is expected to bring structure to
the Web based on the semantic meaning of the contents of Web pages. Web document
classification by Web mining will help in the automatic extraction of the semantic
meaning of Web pages and build up ontology for the semantic Web. Conversely, the
semantic Web, if successfully constructed, will greatly help automated Web document
classification as well.

10.5.5 Web Usage Mining

“What is Web usage mining?” Besides mining Web contents and Web linkage structures,
another important task for Web mining is Web usage mining, which mines Weblog
records to discover user access patterns of Web pages. Analyzing and exploring regulari-
ties in Weblog records can identify potential customers for electronic commerce, enhance
the quality and delivery of Internet information services to the end user, and improve
Web server system performance.

A Web server usually registers a (Web) log entry, or Weblog entry, for every access of
a Web page. It includes the URL requested, the IP address from which the request orig-
inated, and a timestamp. For Web-based e-commerce servers, a huge number of Web
access log records are being collected. Popular websites may register Weblog records in
the order of hundreds of megabytes every day. Weblog databases provide rich informa-
tion about Web dynamics. Thus it is important to develop sophisticated Weblog mining
techniques.

In developing techniques for Web usage mining, we may consider the following. First,
although it is encouraging and exciting to imagine the various potential applications of
Weblog file analysis, it is important to know that the success of such applications depends
on what and how much valid and reliable knowledge can be discovered from the large
raw log data. Often, raw Weblog data need to be cleaned, condensed, and transformed
in order to retrieve and analyze significant and useful information. In principle, these
preprocessing methods are similar to those discussed in Chapter 2, although Weblog
customized preprocessing is often needed.

Second, with the available URL, time, IP address, and Web page content information,
a multidimensional view can be constructed on the Weblog database, and multidimen-
sional OLAP analysis can be performed to find the top N users, top N accessed Web pages,
most frequently accessed time periods, and so on, which will help discover potential cus-
tomers, users, markets, and others.

Third, data mining can be performed on Weblog records to find association patterns,
sequential patterns, and trends of Web accessing. For Web access pattern mining, it is
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often necessary to take further measures to obtain additional information of user traversal
to facilitate detailed Weblog analysis. Such additional information may include user-
browsing sequences of the Web pages in the Web server buffer.

With the use of such Weblog files, studies have been conducted on analyzing system
performance, improving system design by Web caching, Web page prefetching, and Web
page swapping; understanding the nature of Web traffic; and understanding user reaction
and motivation. For example, some studies have proposed adaptive sites: websites that
improve themselves by learning from user access patterns. Weblog analysis may also help
build customized Web services for individual users.

Because Weblog data provide information about what kind of users will access what
kind of Web pages, Weblog information can be integrated with Web content and Web
linkage structure mining to help Web page ranking, Web document classification, and the
construction of a multilayered Web information base as well. A particularly interesting
application of Web usage mining is to mine a user’s interaction history and search context
on the client side to extract useful information for improving the ranking accuracy for
the given user. For example, if a user submits a keyword query “Java” to a search engine,
and then selects “Java programming language” from the returned entries for viewing,
the system can infer that the displayed snippet for this Web page is interesting to the
user. It can then raise the rank of pages similar to “Java programming language” and
avoid presenting distracting pages about “Java Island.” Hence the quality of search is
improved, because search is contextualized and personalized.

10.6 Summary

Vast amounts of data are stored in various complex forms, such as structured or
unstructured, hypertext, and multimedia. Thus, mining complex types of data, includ-
ing object data, spatial data, multimedia data, text data, and Web data, has become an
increasingly important task in data mining.

Multidimensional analysis and data mining can be performed in object-relational
and object-oriented databases, by (1) class-based generalization of complex objects,
including set-valued, list-valued, and other sophisticated types of data, class/subclass
hierarchies, and class composition hierarchies; (2) constructing object data cubes; and
(3) performing generalization-based mining. A plan database can be mined by a
generalization-based, divide-and-conquer approach in order to find interesting gen-
eral patterns at different levels of abstraction.

Spatial data mining is the discovery of interesting patterns from large geospatial
databases. Spatial data cubes that contain spatial dimensions and measures can be
constructed. Spatial OLAP can be implemented to facilitate multidimensional spatial
data analysis. Spatial data mining includes mining spatial association and co-location
patterns, clustering, classification, and spatial trend and outlier analysis.

Multimedia data mining is the discovery of interesting patterns from multimedia
databases that store and manage large collections of multimedia objects, including
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audio data, image data, video data, sequence data, and hypertext data containing
text, text markups, and linkages. Issues in multimedia data mining include content-
based retrieval and similarity search, and generalization and multidimensional analysis.
Multimedia data cubes contain additional dimensions and measures for multimedia
information. Other topics in multimedia mining include classification and prediction
analysis, mining associations, and audio and video data mining.

A substantial portion of the available information is stored in text or document
databases that consist of large collections of documents, such as news articles, techni-
cal papers, books, digital libraries, e-mail messages, and Web pages. Text information
retrieval and data mining has thus become increasingly important. Precision, recall,
and the F-score are three based measures from Information Retrieval (IR). Various
text retrieval methods have been developed. These typically either focus on document
selection (where the query is regarded as providing constraints) or document ranking
(where the query is used to rank documents in order of relevance). The vector-space
model is a popular example of the latter kind. Latex Sementic Indexing (LSI), Locality
Preserving Indexing (LPI), and Probabilistic LSI can be used for text dimensionality
reduction. Text mining goes one step beyond keyword-based and similarity-based
information retrieval and discovers knowledge from semistructured text data using
methods such as keyword-based association analysis, document classification, and doc-
ument clustering.

The World Wide Web serves as a huge, widely distributed, global information ser-
vice center for news, advertisements, consumer information, financial management,
education, government, e-commerce, and many other services. It also contains a rich
and dynamic collection of hyperlink information, and access and usage information,
providing rich sources for data mining. Web mining includes mining Web linkage
structures, Web contents, and Web access patterns. This involves mining the Web page
layout structure, mining the Web’s link structures to identify authoritative Web pages,
mining multimedia data on the Web, automatic classification of Web documents, and
Web usage mining.

Exercises

10.1 An object cube can be constructed by generalization of an object-oriented or object-
relational database into relatively structured data before performing multidimensional
analysis. Because a set of complex data objects or properties can be generalized in mul-
tiple directions and thus derive multiple generalized features, such generalization may
lead to a high-dimensional, but rather sparse (generalized) “object cube.” Discuss how
to perform effective online analytical processing in such an object cube.

10.2 A heterogeneous database system consists of multiple database systems that are defined
independently, but that need to exchange and transform information among themselves
and answer local and global queries. Discuss how to process a descriptive mining query
in such a system using a generalization-based approach.
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10.3 A plan database consists of a set of action sequences, such as legs of connecting flights,
which can be generalized to find generalized sequence plans. Similarly, a structure database
may consists of a set of structures, such as trees or graphs, which may also be generalized
to find generalized structures. Outline a scalable method that may effectively perform
such generalized structure mining.

10.4 Suppose that a city transportation department would like to perform data analysis on
highway traffic for the planning of highway construction based on the city traffic data
collected at different hours every day.

(a) Design a spatial data warehouse that stores the highway traffic information so that
people can easily see the average and peak time traffic flow by highway, by time of
day, and by weekdays, and the traffic situation when a major accident occurs.

(b) What information can we mine from such a spatial data warehouse to help city
planners?

(c) This data warehouse contains both spatial and temporal data. Propose one mining
technique that can efficiently mine interesting patterns from such a spatiotemporal
data warehouse.

10.5 Spatial association mining can be implemented in at least two ways: (1) dynamic com-
putation of spatial association relationships among different spatial objects, based on
the mining query, and (2) precomputation of spatial distances between spatial objects,
where the association mining is based on such precomputed results. Discuss (1) how to
implement each approach efficiently and (2) which approach is preferable under what
situation.

10.6 Traffic situations are often auto-correlated: the congestion at one highway intersection
may trigger the congestion in nearby highway segments after a short period of time.
Suppose we are given highway traffic history data in Chicago, including road construc-
tion segment, traffic speed associated with highway segment, direction, time, and so on.
Moreover, we are given weather conditions by weather bureau in Chicago. Design a data
mining method to find high-quality spatiotemporal association rules that may guide us to
predict what could be the expected traffic situation at a given highway location.

10.7 Similarity search in multimedia has been a major theme in developing multimedia data
retrieval systems. However, many multimedia data mining methods are based on the anal-
ysis of isolated simple multimedia features, such as color, shape, description, keywords,
and so on.

(a) Can you show that an integration of similarity-based search with data mining may
bring important progress in multimedia data mining? You may take any one mining
task as an example, such as multidimensional analysis, classification, association, or
clustering.

(b) Outline an implementation technique that applies a similarity-based search method
to enhance the quality of clustering in multimedia data.
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10.8 It is challenging but important to discover unusual events from video data in real time or
in a very short time frame. An example is the detection of an explosion near a bus stop
or a car collision at a highway junction. Outline a video data mining method that can be
used for this purpose.

10.9 Precision and recall are two essential quality measures of an information retrieval system.

(a) Explain why it is the usual practice to trade one measure for the other. Explain why
the F-score is a good measure for this purpose.

(b) Illustrate the methods that may effectively improve the F-score in an information
retrieval system.

10.10 TF-IDF has been used as an effective measure in document classification.

(a) Give one example to show that TF-IDF may not be always a good measure in docu-
ment classification.

(b) Define another measure that may overcome this difficulty.

10.11 An e-mail database is a database that stores a large number of electronic mail (e-mail)
messages. It can be viewed as a semistructured database consisting mainly of text data.
Discuss the following.

(a) How can such an e-mail database be structured so as to facilitate multidimensional
search, such as by sender, by receiver, by subject, and by time?

(b) What can be mined from such an e-mail database?

(c) Suppose you have roughly classified a set of your previous e-mail messages as junk,
unimportant, normal, or important. Describe how a data mining system may take
this as the training set to automatically classify new e-mail messages or unclassified
ones.

10.12 Junk e-mail is one of the most annoying things in Web-based business or personal com-
munications. Design an effective scheme (which may consist of a set of methods) that
can be used to filter out junk e-mails effectively and discuss how such methods should be
evolved along with time.

10.13 It is difficult to construct a global data warehouse for the World Wide Web due to its
dynamic nature and the huge amounts of data stored in it. However, it is still interesting
and useful to construct data warehouses for summarized, localized, multidimensional
information on the Internet. Suppose that an Internet information service company
would like to set up an Internet-based data warehouse to help tourists choose local hotels
and restaurants.

(a) Can you design a Web-based tourist data warehouse that would facilitate such a
service?

(b) Suppose each hotel and/or restaurant contains a Web page of its own. Discuss how
to locate such Web pages and what methods should be used to extract information
from these Web pages in order to populate your Web-based tourist data warehouse.
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(c) Discuss how to implement a mining method that may provide additional associ-
ated information, such as “90% of customers who stay at the Downtown Hilton dine
at the Emperor Garden Restaurant at least twice,” each time a search returns a new
Web page.

10.14 Each scientific or engineering discipline has its own subject index classification standard
that is often used for classifying documents in its discipline.

(a) Design a Web document classification method that can take such a subject index to
classify a set of Web documents automatically.

(b) Discuss how to use Web linkage information to improve the quality of such classifi-
cation.

(c) Discuss how to use Web usage information to improve the quality of such classifica-
tion.

10.15 It is interesting to cluster a large set of Web pages based on their similarity.

(a) Discuss what should be the similarity measure in such cluster analysis.

(b) Discuss how the block-level analysis may influence the clustering results and how to
develop an efficient algorithms based on this philosophy.

(c) Since different users may like to cluster a set of Web pages differently, discuss how
a user may interact with a system to influence the final clustering results, and how
such a mechanism can be developed systematically.

10.16 Weblog records provide rich Web usage information for data mining.

(a) Mining Weblog access sequences may help prefetch certain Web pages into a Web
server buffer, such as those pages that are likely to be requested in the next several
clicks. Design an efficient implementation method that may help mining such access
sequences.

(b) Mining Weblog access records can help cluster users into separate groups to facilitate
customized marketing. Discuss how to develop an efficient implementation method
that may help user clustering.
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published, such as Gonzalez and Woods [GW02], Russ [Rus02], and Duda, Hart,
and Stork [DHS01]. The theory and practice of multimedia database systems have
been introduced in many textbooks and surveys, including Subramanian [Sub98], Yu
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Chen, DeWitt, Tian, and Wang [CDTW00]. Florescu, Levy, and Mendelzon [FLM98]
presented a comprehensive overview of research on Web databases. An introduction to
the the semantic Web was presented by Berners-Lee, Hendler, and Lassila [BLHL01].
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for assisting classification. Chakrabarti et al. [Cha01, CJT01] addressed the fine-grained
topic distillation and disaggregated hubs into regions by analyzing DOM structure as
well as intrapage text distribution. Lin and Ho [LH02] considered 〈TABLE〉 tag and its
offspring as a content block and used an entropy-based approach to discover informa-
tive ones. Bar-Yossef and Rajagopalan [BYR02] proposed the template detection prob-
lem and presented an algorithm based on the DOM structure and the link information.
Cai et al. [CYWM03, CHWM04] proposed the Vision-based Page Segmentation algo-
rithm and developed the block-level link analysis techniques. They have also successfully
applied the block-level link analysis on Web search [CYWM04] and Web image organiz-
ing and mining [CHM+04, CHL+04].

Web page classification was studied by Chakrabarti, Dom, and Indyk [CDI98] and
Wang, Zhou, and Liew [WZL99]. A multilayer database approach for constructing a Web
warehouse was studied by Zaïane and Han [ZH95]. Web usage mining has been pro-
moted and implemented by many industry firms. Automatic construction of adaptive
websites based on learning from Weblog user access patterns was proposed by Perkowitz
and Etzioni [PE99]. The use of Weblog access patterns for exploring Web usability was
studied by Tauscher and Greenberg [TG97]. A research prototype system, WebLogMiner,
was reported by Zaïane, Xin, and Han [ZXH98]. Srivastava, Cooley, Deshpande, and Tan
[SCDT00] presented a survey of Web usage mining and its applications. Shen, Tan, and
Zhai used Weblog search history to facilitate context-sensitive information retrieval and
personalized Web search [STZ05].



11Applications and Trends in
Data Mining

As a young research field, data mining has made broad and significant progress since its early
beginnings in the 1980s. Today, data mining is used in a vast array of areas, and numerous
commercial data mining systems are available. Many challenges, however, still remain.
In this final chapter, we study applications and trends in data mining. We begin by view-
ing data mining applications in business and in science. We then provide tips on what to
consider when purchasing a data mining software system. Additional themes in data
mining are described, such as theoretical foundations of data mining, statistical tech-
niques for data mining, visual and audio mining, and collaborative recommender sys-
tems that incorporate data mining techniques. The social impacts of data mining are
discussed, including ubiquitous and invisible data mining and privacy issues. Finally, we
examine current and expected data mining trends that arise in response to challenges in
the field.

11.1 Data Mining Applications

In the previous chapters of this book, we have studied principles and methods for
mining relational data, data warehouses, and complex types of data (including stream
data, time-series and sequence data, complex structured data, spatiotemporal data,
multimedia data, heterogeneous multidatabase data, text data, and Web data). Because
data mining is a relatively young discipline with wide and diverse applications, there
is still a nontrivial gap between general principles of data mining and application-
specific, effective data mining tools. In this section, we examine a few application
domains and discuss how customized data mining tools should be developed for such
applications.

11.1.1 Data Mining for Financial Data Analysis

Most banks and financial institutions offer a wide variety of banking services (such as
checking and savings accounts for business or individual customers), credit (such as

649



650 Chapter 11 Applications and Trends in Data Mining

business, mortgage, and automobile loans), and investment services (such as mutual
funds). Some also offer insurance services and stock investment services.

Financial data collected in the banking and financial industry are often relatively com-
plete, reliable, and of high quality, which facilitates systematic data analysis and data
mining. Here we present a few typical cases:

Design and construction of data warehouses for multidimensional data analysis and
data mining: Like many other applications, data warehouses need to be constructed
for banking and financial data. Multidimensional data analysis methods should be
used to analyze the general properties of such data. For example, one may like to view
the debt and revenue changes by month, by region, by sector, and by other factors,
along with maximum, minimum, total, average, trend, and other statistical infor-
mation. Data warehouses, data cubes, multifeature and discovery-driven data cubes,
characterization and class comparisons, and outlier analysis all play important roles
in financial data analysis and mining.

Loan payment prediction and customer credit policy analysis: Loan payment predic-
tion and customer credit analysis are critical to the business of a bank. Many factors
can strongly or weakly influence loan payment performance and customer credit rat-
ing. Data mining methods, such as attribute selection and attribute relevance ranking,
may help identify important factors and eliminate irrelevant ones. For example, fac-
tors related to the risk of loan payments include loan-to-value ratio, term of the loan,
debt ratio (total amount of monthly debt versus the total monthly income), payment-
to-income ratio, customer income level, education level, residence region, and credit
history. Analysis of the customer payment history may find that, say, payment-to-
income ratio is a dominant factor, while education level and debt ratio are not. The
bank may then decide to adjust its loan-granting policy so as to grant loans to those
customers whose applications were previously denied but whose profiles show rela-
tively low risks according to the critical factor analysis.

Classification and clustering of customers for targeted marketing: Classification and
clustering methods can be used for customer group identification and targeted mar-
keting. For example, we can use classification to identify the most crucial factors
that may influence a customer’s decision regarding banking. Customers with similar
behaviors regarding loan payments may be identified by multidimensional clustering
techniques. These can help identify customer groups, associate a new customer with
an appropriate customer group, and facilitate targeted marketing.

Detection of money laundering and other financial crimes: To detect money laun-
dering and other financial crimes, it is important to integrate information from mul-
tiple databases (like bank transaction databases, and federal or state crime history
databases), as long as they are potentially related to the study. Multiple data analysis
tools can then be used to detect unusual patterns, such as large amounts of cash flow
at certain periods, by certain groups of customers. Useful tools include data visual-
ization tools (to display transaction activities using graphs by time and by groups
of customers), linkage analysis tools (to identify links among different customers
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and activities), classification tools (to filter unrelated attributes and rank the highly
related ones), clustering tools (to group different cases), outlier analysis tools (to
detect unusual amounts of fund transfers or other activities), and sequential pattern
analysis tools (to characterize unusual access sequences). These tools may identify
important relationships and patterns of activities and help investigators focus on
suspicious cases for further detailed examination.

11.1.2 Data Mining for the Retail Industry

The retail industry is a major application area for data mining, since it collects huge
amounts of data on sales, customer shopping history, goods transportation, consump-
tion, and service. The quantity of data collected continues to expand rapidly, especially
due to the increasing ease, availability, and popularity of business conducted on the Web,
or e-commerce. Today, many stores also have websites where customers can make pur-
chases on-line. Some businesses, such as Amazon.com (www.amazon.com), exist solely
on-line, without any brick-and-mortar (i.e., physical) store locations. Retail data provide
a rich source for data mining.

Retail data mining can help identify customer buying behaviors, discover customer
shopping patterns and trends, improve the quality of customer service, achieve bet-
ter customer retention and satisfaction, enhance goods consumption ratios, design
more effective goods transportation and distribution policies, and reduce the cost of
business.

A few examples of data mining in the retail industry are outlined as follows.

Design and construction of data warehouses based on the benefits of data mining:
Because retail data cover a wide spectrum (including sales, customers, employees,
goods transportation, consumption, and services), there can be many ways to design a
data warehouse for this industry. The levels of detail to include may also vary substan-
tially. The outcome of preliminary data mining exercises can be used to help guide the
design and development of data warehouse structures. This involves deciding which
dimensions and levels to include and what preprocessing to perform in order to facil-
itate effective data mining.

Multidimensional analysis of sales, customers, products, time, and region: The retail
industry requires timely information regarding customer needs, product sales, trends,
and fashions, as well as the quality, cost, profit, and service of commodities. It is there-
fore important to provide powerful multidimensional analysis and visualization tools,
including the construction of sophisticated data cubes according to the needs of data
analysis. The multifeature data cube, introduced in Chapter 4, is a useful data struc-
ture in retail data analysis because it facilitates analysis on aggregates with complex
conditions.

Analysis of the effectiveness of sales campaigns: The retail industry conducts sales
campaigns using advertisements, coupons, and various kinds of discounts and bonuses
to promote products and attract customers. Careful analysis of the effectiveness
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of sales campaigns can help improve company profits. Multidimensional analysis can
be used for this purpose by comparing the amount of sales and the number of trans-
actions containing the sales items during the sales period versus those containing the
same items before or after the sales campaign. Moreover, association analysis may dis-
close which items are likely to be purchased together with the items on sale, especially
in comparison with the sales before or after the campaign.

Customer retention—analysis of customer loyalty: With customer loyalty card infor-
mation, one can register sequences of purchases of particular customers. Customer
loyalty and purchase trends can be analyzed systematically. Goods purchased at differ-
ent periods by the same customers can be grouped into sequences. Sequential pattern
mining (Chapter 8) can then be used to investigate changes in customer consump-
tion or loyalty and suggest adjustments on the pricing and variety of goods in order
to help retain customers and attract new ones.

Product recommendation and cross-referencing of items: By mining associations
from sales records, one may discover that a customer who buys a digital camera is
likely to buy another set of items. Such information can be used to form product
recommendations. Collaborative recommender systems use data mining techniques
to make personalized product recommendations during live customer transactions,
based on the opinions of other customers (Section 11.3.4). Product recommenda-
tions can also be advertised on sales receipts, in weekly flyers, or on the Web to help
improve customer service, aid customers in selecting items, and increase sales. Sim-
ilarly, information such as “hot items this week” or attractive deals can be displayed
together with the associative information in order to promote sales.

11.1.3 Data Mining for the Telecommunication Industry

The telecommunication industry has quickly evolved from offering local and long-
distance telephone services to providing many other comprehensive communication ser-
vices, including fax, pager, cellular phone, Internet messenger, images, e-mail, computer
and Web data transmission, and other data traffic. The integration of telecommunica-
tion, computer network, Internet, and numerous other means of communication and
computing is also underway. Moreover, with the deregulation of the telecommunication
industry in many countries and the development of new computer and communication
technologies, the telecommunication market is rapidly expanding and highly competi-
tive. This creates a great demand for data mining in order to help understand the business
involved, identify telecommunication patterns, catch fraudulent activities, make better
use of resources, and improve the quality of service.

The following are a few scenarios for which data mining may improve telecommu-
nication services:

Multidimensional analysis of telecommunication data: Telecommunication data are
intrinsically multidimensional, with dimensions such as calling-time, duration,
location of caller, location of callee, and type of call. The multidimensional analysis
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of such data can be used to identify and compare the data traffic, system workload,
resource usage, user group behavior, and profit. For example, analysts in the industry
may wish to regularly view charts and graphs regarding calling source, destination,
volume, and time-of-day usage patterns. Therefore, it is often useful to consolidate
telecommunication data into large data warehouses and routinely perform multidi-
mensional analysis using OLAP and visualization tools.

Fraudulent pattern analysis and the identification of unusual patterns: Fraudu-
lent activity costs the telecommunication industry millions of dollars per year. It
is important to (1) identify potentially fraudulent users and their atypical usage
patterns; (2) detect attempts to gain fraudulent entry to customer accounts; and
(3) discover unusual patterns that may need special attention, such as busy-hour
frustrated call attempts, switch and route congestion patterns, and periodic calls
from automatic dial-out equipment (like fax machines) that have been improperly
programmed. Many of these patterns can be discovered by multidimensional analysis,
cluster analysis, and outlier analysis.

Multidimensional association and sequential pattern analysis: The discovery of asso-
ciation and sequential patterns in multidimensional analysis can be used to promote
telecommunication services. For example, suppose you would like to find usage pat-
terns for a set of communication services by customer group, by month, and by time
of day. The calling records may be grouped by customer in the following form:

〈customer ID, residence,office, time,date, service 1, service 2, · · ·〉

A sequential pattern like “If a customer in the Los Angeles area works in a city different
from her residence, she is likely to first use long-distance service between two cities around
5 p.m. and then use a cellular phone for at least 30 minutes in the subsequent hour every
weekday” can be further probed by drilling up and down in order to determine whether
it holds for particular pairs of cities and particular groups of persons (e.g., engineers,
doctors). This can help promote the sales of specific long-distance and cellular phone
combinations and improve the availability of particular services in the region.

Mobile telecommunication services: Mobile telecommunication, Web and infor-
mation services, and mobile computing are becoming increasingly integrated and
common in our work and life. One important feature of mobile telecommunica-
tion data is its association with spatiotemporal information. Spatiotemporal data
mining may become essential for finding certain patterns. For example, unusually
busy mobile phone traffic at certain locations may indicate something abnormal
happening in these locations. Moreover, ease of use is crucial for enticing cus-
tomers to adopt new mobile services. Data mining will likely play a major role in
the design of adaptive solutions enabling users to obtain useful information with
relatively few keystrokes.

Use of visualization tools in telecommunication data analysis: Tools for OLAP
visualization, linkage visualization, association visualization, clustering, and outlier
visualization have been shown to be very useful for telecommunication data analysis.
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11.1.4 Data Mining for Biological Data Analysis

The past decade has seen an explosive growth in genomics, proteomics, functional
genomics, and biomedical research. Examples range from the identification and com-
parative analysis of the genomes of human and other species (by discovering sequencing
patterns, gene functions, and evolution paths) to the investigation of genetic networks
and protein pathways, and the development of new pharmaceuticals and advances in
cancer therapies. Biological data mining has become an essential part of a new research
field called bioinformatics. Since the field of biological data mining is broad, rich, and
dynamic, it is impossible to cover such an important and flourishing theme in one sub-
section. Here we outline only a few interesting topics in this field, with an emphasis
on genomic and proteomic data analysis. A comprehensive introduction to biological
data mining could fill several books. A good set of bioinformatics and biological data
analysis books have already been published, and more are expected to come. References
are provided in our bibliographic notes.

DNA sequences form the foundation of the genetic codes of all living organisms. All
DNA sequences are comprised of four basic building blocks, called nucleotides: adenine
(A), cytosine (C), guanine (G), and thymine (T). These four nucleotides (or bases) are
combined to form long sequences or chains that resemble a twisted ladder. The DNA
carry the information and biochemical machinery that can be copied from generation to
generation. During the processes of “copying,” insertions, deletions, or mutations (also
called substitutions) of nucleotides are introduced into the DNA sequence, forming
different evolution paths. A gene usually comprises hundreds of individual nucleotides
arranged in a particular order. The nucleotides can be ordered and sequenced in an
almost unlimited number of ways to form distinct genes. A genome is the complete set
of genes of an organism. The human genome is estimated to contain around 20,000 to
25,000 genes. Genomics is the analysis of genome sequences.

Proteins are essential molecules for any organism. They perform life functions and
make up the majority of cellular structures. The approximately 25,000 human genes give
rise to about 1 million proteins through a series of translational modifications and gene
splicing mechanisms. Amino acids (or residues) are the building blocks of proteins. There
are 20 amino acids, denoted by 20 different letters of the alphabet. Each of the amino
acids is coded for by one or more triplets of nucleotides making up DNA. The end of the
chain is coded for by another set of triplets. Thus, a linear string or sequence of DNA is
translated into a sequence of amino acids, forming a protein (Figure 11.1). A proteome
is the complete set of protein molecules present in a cell, tissue, or organism. Proteomics
is the study of proteome sequences. Proteomes are dynamic, changing from minute to
minute in response to tens of thousands of intra- and extracellular environmental signals.

DNA sequence . . . CTA CAC ACG T GT AAC · · ·

amino acid sequence . . . L H T C N · · ·

Figure 11.1 A DNA sequence and corresponding amino acid sequence.
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Chemical properties of the amino acids cause the protein chains to fold up into specific
three-dimensional structures. This three-dimensional folding of the chain determines
the biological function of a protein. Genes make up only about 2% of the human genome.
The remainder consists of noncoding regions. Recent studies have found that a lot of
noncoding DNA sequences may also have played crucial roles in protein generation and
species evolution.

The identification of DNA or amino acid sequence patterns that play roles in various
biological functions, genetic diseases, and evolution is challenging. This requires a great
deal of research in computational algorithms, statistics, mathematical programming,
data mining, machine learning, information retrieval, and other disciplines to develop
effective genomic and proteomic data analysis tools.

Data mining may contribute to biological data analysis in the following aspects:

Semantic integration of heterogeneous, distributed genomic and proteomic data-
bases: Genomic and proteomic data sets are often generated at different labs and by
different methods. They are distributed, heterogenous, and of a wide variety. The
semantic integration of such data is essential to the cross-site analysis of biological
data. Moreover, it is important to find correct linkages between research literature
and their associated biological entities. Such integration and linkage analysis would
facilitate the systematic and coordinated analysis of genome and biological data.
This has promoted the development of integrated data warehouses and distributed
federated databases to store and manage the primary and derived biological data.
Data cleaning, data integration, reference reconciliation, classification, and clustering
methods will facilitate the integration of biological data and the construction of data
warehouses for biological data analysis.

Alignment, indexing, similarity search, and comparative analysis of multiple nucleo-
tide/protein sequences: Various biological sequence alignment methods have been
developed in the past two decades. BLAST and FASTA, in particular, are tools for the
systematic analysis of genomic and proteomic data. Biological sequence analysis meth-
ods differ from many sequential pattern analysis algorithms proposed in data mining
research. They should allow for gaps and mismatches between a query sequence and
the sequence data to be searched in order to deal with insertions, deletions, and muta-
tions. Moreover, for protein sequences, two amino acids should also be considered a
“match” if one can be derived from the other by substitutions that are likely to occur
in nature. Sophisticated statistical analysis and dynamic programming methods often
play a key role in the development of alignment algorithms. Indices can be constructed
on such data sets so that precise and similarity searches can be performed efficiently.

There is a combinatorial number of ways to approximately align multiple
sequences. Therefore, multiple sequence alignment is considered a more challeng-
ing task. Methods that can help include (1) reducing a multiple alignment to a series
of pairwise alignments and then combining the result, and (2) using Hidden Markov
Models or HMMs (Chapter 8). However, the efficient and systematic alignment of
multiple biological sequences remains an active research topic. Multiple sequence
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alignments can be used to identify highly conserved residues among genomes, and
such conserved regions can be used to build phylogenetic trees to infer evolutionary
relationships among species. Moreover, it may help disclose the secrets of evolution
at the genomic level.

From the point of view of medical sciences, genomic and proteomic sequences
isolated from diseased and healthy tissues can be compared to identify critical dif-
ferences between them. Sequences occurring more frequently in the diseased sam-
ples may indicate the genetic factors of the disease. Those occurring more frequently
only in the healthy samples may indicate mechanisms that protect the body from the
disease. Although genetic analysis requires similarity search, the technique needed
here is different from that used for time-series data (Chapter 8). The analysis of time
series typically uses data transformation methods such as scaling, normalization, and
window stitching, which are ineffective for genetic data because such data are non-
numeric. These methods do not consider the interconnections between nucleotides,
which play an important role in biologic function. It is important to further develop
efficient sequential pattern analysis methods for comparative analysis of biological
sequences.

Discovery of structural patterns and analysis of genetic networks and protein path-
ways: In biology, protein sequences are folded into three-dimensional structures,
and such structures interact with each other based on their relative positions and the
distances between them. Such complex interactions form the basis of sophisticated
genetic networks and protein pathways. It is crucial to discover structural patterns
and regularities among such huge but complex biological networks. To this extent,
it is important to develop powerful and scalable data mining methods to discover
approximate and frequent structural patterns and to study the regularities and irreg-
ularities among such interconnected biological networks.

Association and path analysis: identifying co-occurring gene sequences and link-
ing genes to different stages of disease development: Currently, many studies have
focused on the comparison of one gene to another. However, most diseases are not
triggered by a single gene but by a combination of genes acting together. Association
analysis methods can be used to help determine the kinds of genes that are likely to
co-occur in target samples. Such analysis would facilitate the discovery of groups of
genes and the study of interactions and relationships between them.

While a group of genes may contribute to a disease process, different genes may
become active at different stages of the disease. If the sequence of genetic activities
across the different stages of disease development can be identified, it may be possible
to develop pharmaceutical interventions that target the different stages separately,
therefore achieving more effective treatment of the disease. Such path analysis is
expected to play an important role in genetic studies.

Visualization tools in genetic data analysis: Alignments among genomic or
proteomic sequences and the interactions among complex biological structures are
most effectively presented in graphic forms, transformed into various kinds of
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easy-to-understand visual displays. Such visually appealing structures and patterns
facilitate pattern understanding, knowledge discovery, and interactive data explo-
ration. Visualization and visual data mining therefore play an important role in
biological data analysis.

11.1.5 Data Mining in Other Scientific Applications

Previously, most scientific data analysis tasks tended to handle relatively small and homo-
geneous data sets. Such data were typically analyzed using a “formulate hypothesis, build
model, and evaluate results” paradigm. In these cases, statistical techniques were appro-
priate and typically employed for their analysis (see Section 11.3.2). Data collection
and storage technologies have recently improved, so that today, scientific data can be
amassed at much higher speeds and lower costs. This has resulted in the accumula-
tion of huge volumes of high-dimensional data, stream data, and heterogenous data,
containing rich spatial and temporal information. Consequently, scientific applications
are shifting from the “hypothesize-and-test” paradigm toward a “collect and store data,
mine for new hypotheses, confirm with data or experimentation” process. This shift
brings about new challenges for data mining.

Vast amounts of data have been collected from scientific domains (including geo-
sciences, astronomy, and meteorology) using sophisticated telescopes, multispectral
high-resolution remote satellite sensors, and global positioning systems. Large data sets
are being generated due to fast numerical simulations in various fields, such as cli-
mate and ecosystem modeling, chemical engineering, fluid dynamics, and structural
mechanics. Other areas requiring the analysis of large amounts of complex data include
telecommunications (Section 11.1.3) and biomedical engineering (Section 11.1.4).
In this section, we look at some of the challenges brought about by emerging scien-
tific applications of data mining, such as the following:

Data warehouses and data preprocessing: Data warehouses are critical for infor-
mation exchange and data mining. In the area of geospatial data, however, no true
geospatial data warehouse exists today. Creating such a warehouse requires finding
means for resolving geographic and temporal data incompatibilities, such as reconcil-
ing semantics, referencing systems, geometry, accuracy, and precision. For scientific
applications in general, methods are needed for integrating data from heterogeneous
sources (such as data covering different time periods) and for identifying events.
For climate and ecosystem data, for instance (which are spatial and temporal), the
problem is that there are too many events in the spatial domain and too few in the
temporal domain. (For example, El Niño events occur only every four to seven years,
and previous data might not have been collected as systematically as today.) Methods
are needed for the efficient computation of sophisticated spatial aggregates and the
handling of spatial-related data streams.

Mining complex data types: Scientific data sets are heterogeneous in nature, typi-
cally involving semi-structured and unstructured data, such as multimedia data and
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georeferenced stream data. Robust methods are needed for handling spatiotemporal
data, related concept hierarchies, and complex geographic relationships (e.g., non-
Euclidian distances).

Graph-based mining: It is often difficult or impossible to model several physical
phenomena and processes due to limitations of existing modeling approaches. Alter-
natively, labeled graphs may be used to capture many of the spatial, topological,
geometric, and other relational characteristics present in scientific data sets. In graph-
modeling, each object to be mined is represented by a vertex in a graph, and edges
between vertices represent relationships between objects. For example, graphs can
be used to model chemical structures and data generated by numerical simulations,
such as fluid-flow simulations. The success of graph-modeling, however, depends on
improvements in the scalability and efficiency of many classical data mining tasks,
such as classification, frequent pattern mining, and clustering.

Visualization tools and domain-specific knowledge: High-level graphical user inter-
faces and visualization tools are required for scientific data mining systems. These
should be integrated with existing domain-specific information systems and database
systems to guide researchers and general users in searching for patterns, interpreting
and visualizing discovered patterns, and using discovered knowledge in their decision
making.

11.1.6 Data Mining for Intrusion Detection

The security of our computer systems and data is at continual risk. The extensive growth
of the Internet and increasing availability of tools and tricks for intruding and attacking
networks have prompted intrusion detection to become a critical component of net-
work administration. An intrusion can be defined as any set of actions that threaten the
integrity, confidentiality, or availability of a network resource (such as user accounts, file
systems, system kernels, and so on).

Most commercial intrusion detection systems are limiting and do not provide a
complete solution. Such systems typically employ a misuse detection strategy. Misuse
detection searches for patterns of program or user behavior that match known intrusion
scenarios, which are stored as signatures. These hand-coded signatures are laboriously
provided by human experts based on their extensive knowledge of intrusion techniques.
If a pattern match is found, this signals an event for which an alarm is raised. Human
security analysts evaluate the alarms to decide what action to take, whether it be shutting
down part of the system, alerting the relevant Internet service provider of suspicious traf-
fic, or simply noting unusual traffic for future reference. An intrusion detection system
for a large complex network can typically generate thousands or millions of alarms per
day, representing an overwhelming task for the security analysts. Because systems are
not static, the signatures need to be updated whenever new software versions arrive or
changes in network configuration occur. An additional, major drawback is that misuse
detection can only identify cases that match the signatures. That is, it is unable to detect
new or previously unknown intrusion techniques.
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Novel intrusions may be found by anomaly detection strategies. Anomaly detection
builds models of normal network behavior (called profiles), which it uses to detect new
patterns that significantly deviate from the profiles. Such deviations may represent actual
intrusions or simply be new behaviors that need to be added to the profiles. The main
advantage of anomaly detection is that it may detect novel intrusions that have not yet
been observed. Typically, a human analyst must sort through the deviations to ascertain
which represent real intrusions. A limiting factor of anomaly detection is the high per-
centage of false positives. New patterns of intrusion can be added to the set of signatures
for misuse detection.

As we can see from this discussion, current traditional intrusion detection systems
face many limitations. This has led to an increased interest in data mining for intrusion
detection. The following are areas in which data mining technology may be applied or
further developed for intrusion detection:

Development of data mining algorithms for intrusion detection: Data mining
algorithms can be used for misuse detection and anomaly detection. In misuse detec-
tion, training data are labeled as either “normal” or “intrusion.” A classifier can
then be derived to detect known intrusions. Research in this area has included the
application of classification algorithms, association rule mining, and cost-sensitive
modeling. Anomaly detection builds models of normal behavior and automatically
detects significant deviations from it. Supervised or unsupervised learning can be
used. In a supervised approach, the model is developed based on training data that
are known to be “normal.” In an unsupervised approach, no information is given
about the training data. Anomaly detection research has included the application of
classification algorithms, statistical approaches, clustering, and outlier analysis. The
techniques used must be efficient and scalable, and capable of handling network data
of high volume, dimensionality, and heterogeneity.

Association and correlation analysis, and aggregation to help select and build dis-
criminating attributes: Association and correlation mining can be applied to find
relationships between system attributes describing the network data. Such informa-
tion can provide insight regarding the selection of useful attributes for intrusion
detection. New attributes derived from aggregated data may also be helpful, such as
summary counts of traffic matching a particular pattern.

Analysis of stream data: Due to the transient and dynamic nature of intrusions and
malicious attacks, it is crucial to perform intrusion detection in the data stream
environment. Moreover, an event may be normal on its own, but considered mali-
cious if viewed as part of a sequence of events. Thus it is necessary to study what
sequences of events are frequently encountered together, find sequential patterns,
and identify outliers. Other data mining methods for finding evolving clusters and
building dynamic classification models in data streams are also necessary for real-time
intrusion detection.

Distributed data mining: Intrusions can be launched from several different locations
and targeted to many different destinations. Distributed data mining methods may
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be used to analyze network data from several network locations in order to detect
these distributed attacks.

Visualization and querying tools: Visualization tools should be available for viewing
any anomalous patterns detected. Such tools may include features for viewing associ-
ations, clusters, and outliers. Intrusion detection systems should also have a graphical
user interface that allows security analysts to pose queries regarding the network data
or intrusion detection results.

In comparison to traditional intrusion detection systems, intrusion detection systems
based on data mining are generally more precise and require far less manual processing
and input from human experts.

11.2 Data Mining System Products and Research Prototypes

Although data mining is a relatively young field with many issues that still need to
be researched in depth, many off-the-shelf data mining system products and domain-
specific data mining application softwares are available. As a discipline, data mining has
a relatively short history and is constantly evolving—new data mining systems appear
on the market every year; new functions, features, and visualization tools are added to
existing systems on a constant basis; and efforts toward the standardization of data min-
ing language are still underway. Therefore, it is not our intention in this book to provide
a detailed description of commercial data mining systems. Instead, we describe the fea-
tures to consider when selecting a data mining product and offer a quick introduction
to a few typical data mining systems. Reference articles, websites, and recent surveys of
data mining systems are listed in the bibliographic notes.

11.2.1 How to Choose a Data Mining System

With many data mining system products available on the market, you may ask, “What
kind of system should I choose?” Some people may be under the impression that data
mining systems, like many commercial relational database systems, share the same well-
defined operations and a standard query language, and behave similarly on common
functionalities. If such were the case, the choice would depend more on the systems’
hardware platform, compatibility, robustness, scalability, price, and service. Unfortu-
nately, this is far from reality. Many commercial data mining systems have little in com-
mon with respect to data mining functionality or methodology and may even work with
completely different kinds of data sets.

To choose a data mining system that is appropriate for your task, it is important to
have a multidimensional view of data mining systems. In general, data mining systems
should be assessed based on the following multiple features:

Data types: Most data mining systems that are available on the market handle for-
matted, record-based, relational-like data with numerical, categorical, and symbolic
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attributes. The data could be in the form of ASCII text, relational database data, or
data warehouse data. It is important to check what exact format(s) each system you
are considering can handle. Some kinds of data or applications may require special-
ized algorithms to search for patterns, and so their requirements may not be handled
by off-the-shelf, generic data mining systems. Instead, specialized data mining sys-
tems may be used, which mine either text documents, geospatial data, multimedia
data, stream data, time-series data, biological data, or Web data, or are dedicated to
specific applications (such as finance, the retail industry, or telecommunications).
Moreover, many data mining companies offer customized data mining solutions that
incorporate essential data mining functions or methodologies.

System issues: A given data mining system may run on only one operating system or
on several. The most popular operating systems that host data mining software are
UNIX/Linux and Microsoft Windows. There are also data mining systems that run
on Macintosh, OS/2, and others. Large industry-oriented data mining systems often
adopt a client/server architecture, where the client could be a personal computer,
and the server could be a set of powerful parallel computers. A recent trend has data
mining systems providing Web-based interfaces and allowing XML data as input
and/or output.

Data sources: This refers to the specific data formats on which the data mining system
will operate. Some systems work only on ASCII text files, whereas many others work
on relational data, or data warehouse data, accessing multiple relational data sources.
It is important that a data mining system supports ODBC connections or OLE DB
for ODBC connections. These ensure open database connections, that is, the ability
to access any relational data (including those in IBM/DB2, Microsoft SQL Server,
Microsoft Access, Oracle, Sybase, etc.), as well as formatted ASCII text data.

Data mining functions and methodologies: Data mining functions form the core
of a data mining system. Some data mining systems provide only one data mining
function, such as classification. Others may support multiple data mining functions,
such as concept description, discovery-driven OLAP analysis, association mining,
linkage analysis, statistical analysis, classification, prediction, clustering, outlier anal-
ysis, similarity search, sequential pattern analysis, and visual data mining. For a given
data mining function (such as classification), some systems may support only one
method, whereas others may support a wide variety of methods (such as decision
tree analysis, Bayesian networks, neural networks, support vector machines, rule-
based classification, k-nearest-neighbor methods, genetic algorithms, and case-based
reasoning). Data mining systems that support multiple data mining functions and
multiple methods per function provide the user with greater flexibility and analysis
power. Many problems may require users to try a few different mining functions or
incorporate several together, and different methods can be more effective than others
for different kinds of data. In order to take advantage of the added flexibility, how-
ever, users may require further training and experience. Thus such systems should
also provide novice users with convenient access to the most popular function and
method, or to default settings.
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Coupling data mining with database and/or data warehouse systems: A data mining
system should be coupled with a database and/or data warehouse system, where the
coupled components are seamlessly integrated into a uniform information processing
environment. In general, there are four forms of such coupling: no coupling, loose cou-
pling, semitight coupling, and tight coupling (Chapter 1). Some data mining systems
work only with ASCII data files and are not coupled with database or data warehouse
systems at all. Such systems have difficulties using the data stored in database systems
and handling large data sets efficiently. In data mining systems that are loosely cou-
pled with database and data warehouse systems, the data are retrieved into a buffer
or main memory by database or warehouse operations, and then mining functions
are applied to analyze the retrieved data. These systems may not be equipped with
scalable algorithms to handle large data sets when processing data mining queries.
The coupling of a data mining system with a database or data warehouse system may
be semitight, providing the efficient implementation of a few essential data mining
primitives (such as sorting, indexing, aggregation, histogram analysis, multiway join,
and the precomputation of some statistical measures). Ideally, a data mining system
should be tightly coupled with a database system in the sense that the data mining
and data retrieval processes are integrated by optimizing data mining queries deep
into the iterative mining and retrieval process. Tight coupling of data mining with
OLAP-based data warehouse systems is also desirable so that data mining and OLAP
operations can be integrated to provide OLAP-mining features.

Scalability: Data mining has two kinds of scalability issues: row (or database size)
scalability and column (or dimension) scalability. A data mining system is considered
row scalable if, when the number of rows is enlarged 10 times, it takes no more
than 10 times to execute the same data mining queries. A data mining system is
considered column scalable if the mining query execution time increases linearly
with the number of columns (or attributes or dimensions). Due to the curse of
dimensionality, it is much more challenging to make a system column scalable than
row scalable.

Visualization tools: “A picture is worth a thousand words”—this is very true in data
mining. Visualization in data mining can be categorized into data visualization, min-
ing result visualization, mining process visualization, and visual data mining, as dis-
cussed in Section 11.3.3. The variety, quality, and flexibility of visualization tools may
strongly influence the usability, interpretability, and attractiveness of a data mining
system.

Data mining query language and graphical user interface: Data mining is an explora-
tory process. An easy-to-use and high-quality graphical user interface is essential in
order to promote user-guided, highly interactive data mining. Most data mining sys-
tems provide user-friendly interfaces for mining. However, unlike relational database
systems, where most graphical user interfaces are constructed on top of SQL (which
serves as a standard, well-designed database query language), most data mining sys-
tems do not share any underlying data mining query language. Lack of a standard
data mining language makes it difficult to standardize data mining products and to
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ensure the interoperability of data mining systems. Recent efforts at defining and
standardizing data mining query languages include Microsoft’s OLE DB for Data
Mining, which is described in the appendix of this book. Other standardization efforts
include PMML (or Predictive Model Markup Language), part of an international con-
sortium led by DMG (www.dmg.org), and CRISP-DM (or Cross-Industry Standard
Process for Data Mining), described at www.crisp-dm.org.

11.2.2 Examples of Commercial Data Mining Systems

As mentioned earlier, due to the infancy and rapid evolution of the data mining market,
it is not our intention in this book to describe any particular commercial data mining
system in detail. Instead, we briefly outline a few typical data mining systems in order to
give the reader an idea of what is available. We organize these systems into three groups:
data mining products offered by large database or hardware vendors, those offered by
vendors of statistical analysis software, and those originating from the machine learning
community.

Many data mining systems specialize in one data mining function, such as classifica-
tion, or just one approach for a data mining function, such as decision tree classification.
Other systems provide a broad spectrum of data mining functions. Most of the systems
described below provide multiple data mining functions and explore multiple knowl-
edge discovery techniques. Website URLs for the various systems are provided in the
bibliographic notes.

From database system and graphics system vendors:

Intelligent Miner is an IBM data mining product that provides a wide range of data
mining functions, including association mining, classification, regression, predic-
tive modeling, deviation detection, clustering, and sequential pattern analysis. It
also provides an application toolkit containing neural network algorithms, statistical
methods, data preparation tools, and data visualization tools. Distinctive features of
Intelligent Miner include the scalability of its mining algorithms and its tight inte-
gration with IBM’s DB2 relational database system.

Microsoft SQL Server 2005 is a database management system that incorporates mul-
tiple data mining functions smoothly in its relational database system and data
warehouse system environments. It includes association mining, classification (using
decision tree, naïve Bayes, and neural network algorithms), regression trees, sequence
clustering, and time-series analysis. In addition, Microsoft SQL Server 2005 supports
the integration of algorithms developed by third-party vendors and application users.

MineSet, available from Purple Insight, was introduced by SGI in 1999. It pro-
vides multiple data mining functions, including association mining and classifica-
tion, as well as advanced statistics and visualization tools. A distinguishing feature
of MineSet is its set of robust graphics tools, including rule visualizer, tree visualizer,
map visualizer, and (multidimensional data) scatter visualizer for the visualization
of data and data mining results.



664 Chapter 11 Applications and Trends in Data Mining

Oracle Data Mining (ODM), an option to Oracle Database 10g Enterprise Edition,
provides several data mining functions, including association mining, classification,
prediction, regression, clustering, and sequence similarity search and analysis. Oracle
Database 10g also provides an embedded data warehousing infrastructure for multi-
dimensional data analysis.

From vendors of statistical analysis or data mining software:

Clementine, from SPSS, provides an integrated data mining development environ-
ment for end users and developers. Multiple data mining functions, including
association mining, classification, prediction, clustering, and visualization tools, are
incorporated into the system. A distinguishing feature of Clementine is its object-
oriented, extended module interface, which allows users’ algorithms and utilities to
be added to Clementine’s visual programming environment.

Enterprise Miner was developed by SAS Institute, Inc. It provides multiple data mining
functions, including association mining, classification, regression, clustering, time-
series analysis, and statistical analysis packages. A distinctive feature of Enterprise
Miner is its variety of statistical analysis tools, which are built based on the long history
of SAS in the market of statistical analysis.

Insightful Miner, from Insightful Inc., provides several data mining functions,
including data cleaning, classification, prediction, clustering, and statistical analysis
packages, along with visualization tools. A distinguishing feature is its visual inter-
face, which allows users to wire components together to create self-documenting
programs.

Originating from the machine learning community:

CART, available from Salford Systems, is the commercial version of the CART (Clas-
sification and Regression Trees) system discussed in Chapter 6. It creates decision
trees for classification and regression trees for prediction. CART employs boosting
to improve accuracy. Several attribute selection measures are available.

See5 and C5.0, available from RuleQuest, are commercial versions of the C4.5 decision
tree and rule generation method described in Chapter 6. See5 is the Windows version
of C4.5, while C5.0 is its UNIX counterpart. Both incorporate boosting. The source
code is also provided.

Weka, developed at the University of Waikato in New Zealand, is open-source data
mining software in Java. It contains a collection of algorithms for data mining tasks,
including data preprocessing, association mining, classification, regression, cluster-
ing, and visualization.

Many other commercial data mining systems and research prototypes are also fast evolv-
ing. Interested readers may wish to consult timely surveys on data warehousing and data
mining products.
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11.3 Additional Themes on Data Mining

Due to the broad scope of data mining and the large variety of data mining
methodologies, not all of the themes on data mining can be thoroughly covered in this
book. In this section, we briefly discuss several interesting themes that were not fully
addressed in the previous chapters of this book.

11.3.1 Theoretical Foundations of Data Mining

Research on the theoretical foundations of data mining has yet to mature. A solid and
systematic theoretical foundation is important because it can help provide a coherent
framework for the development, evaluation, and practice of data mining technology.
Several theories for the basis of data mining include the following:

Data reduction: In this theory, the basis of data mining is to reduce the data repre-
sentation. Data reduction trades accuracy for speed in response to the need to obtain
quick approximate answers to queries on very large databases. Data reduction tech-
niques include singular value decomposition (the driving element behind principal
components analysis), wavelets, regression, log-linear models, histograms, clustering,
sampling, and the construction of index trees.

Data compression: According to this theory, the basis of data mining is to compress
the given data by encoding in terms of bits, association rules, decision trees, clusters,
and so on. Encoding based on the minimum description length principle states that
the “best” theory to infer from a set of data is the one that minimizes the length of
the theory and the length of the data when encoded, using the theory as a predictor
for the data. This encoding is typically in bits.

Pattern discovery: In this theory, the basis of data mining is to discover patterns
occurring in the database, such as associations, classification models, sequential pat-
terns, and so on. Areas such as machine learning, neural network, association mining,
sequential pattern mining, clustering, and several other subfields contribute to this
theory.

Probability theory: This is based on statistical theory. In this theory, the basis of data
mining is to discover joint probability distributions of random variables, for example,
Bayesian belief networks or hierarchical Bayesian models.

Microeconomic view: The microeconomic view considers data mining as the task
of finding patterns that are interesting only to the extent that they can be used in
the decision-making process of some enterprise (e.g., regarding marketing strategies
and production plans). This view is one of utility, in which patterns are considered
interesting if they can be acted on. Enterprises are regarded as facing optimization
problems, where the object is to maximize the utility or value of a decision. In this
theory, data mining becomes a nonlinear optimization problem.
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Inductive databases: According to this theory, a database schema consists of data
and patterns that are stored in the database. Data mining is therefore the problem
of performing induction on databases, where the task is to query the data and the
theory (i.e., patterns) of the database. This view is popular among many researchers
in database systems.

These theories are not mutually exclusive. For example, pattern discovery can also be
seen as a form of data reduction or data compression. Ideally, a theoretical framework
should be able to model typical data mining tasks (such as association, classification, and
clustering), have a probabilistic nature, be able to handle different forms of data, and
consider the iterative and interactive essence of data mining. Further efforts are required
toward the establishment of a well-defined framework for data mining, which satisfies
these requirements.

11.3.2 Statistical Data Mining

The data mining techniques described in this book are primarily database-oriented,
that is, designed for the efficient handling of huge amounts of data that are typically
multidimensional and possibly of various complex types. There are, however, many
well-established statistical techniques for data analysis, particularly for numeric data.
These techniques have been applied extensively to some types of scientific data (e.g., data
from experiments in physics, engineering, manufacturing, psychology, and medicine), as
well as to data from economics and the social sciences. Some of these techniques, such
as principal components analysis (Chapter 2), regression (Chapter 6), and clustering
(Chapter 7), have already been addressed in this book. A thorough discussion of major
statistical methods for data analysis is beyond the scope of this book; however, several
methods are mentioned here for the sake of completeness. Pointers to these techniques
are provided in the bibliographic notes.

Regression: In general, these methods are used to predict the value of a response
(dependent) variable from one or more predictor (independent) variables where the
variables are numeric. There are various forms of regression, such as linear, multi-
ple, weighted, polynomial, nonparametric, and robust (robust methods are useful
when errors fail to satisfy normalcy conditions or when the data contain significant
outliers).

Generalized linear models: These models, and their generalization (generalized addi-
tive models), allow a categorical response variable (or some transformation of it) to
be related to a set of predictor variables in a manner similar to the modeling of a
numeric response variable using linear regression. Generalized linear models include
logistic regression and Poisson regression.

Analysis of variance: These techniques analyze experimental data for two or more
populations described by a numeric response variable and one or more categorical
variables (factors). In general, an ANOVA (single-factor analysis of variance) problem
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involves a comparison of k population or treatment means to determine if at least
two of the means are different. More complex ANOVA problems also exist.

Mixed-effect models: These models are for analyzing grouped data—data that can be
classified according to one or more grouping variables. They typically describe rela-
tionships between a response variable and some covariates in data grouped according
to one or more factors. Common areas of application include multilevel data, repeated
measures data, block designs, and longitudinal data.

Factor analysis: This method is used to determine which variables are combined to
generate a given factor. For example, for many psychiatric data, it is not possible to
measure a certain factor of interest directly (such as intelligence); however, it is often
possible to measure other quantities (such as student test scores) that reflect the factor
of interest. Here, none of the variables are designated as dependent.

Discriminant analysis: This technique is used to predict a categorical response vari-
able. Unlike generalized linear models, it assumes that the independent variables fol-
low a multivariate normal distribution. The procedure attempts to determine several
discriminant functions (linear combinations of the independent variables) that dis-
criminate among the groups defined by the response variable. Discriminant analysis
is commonly used in social sciences.

Time series analysis: There are many statistical techniques for analyzing time-series
data, such as autoregression methods, univariate ARIMA (autoregressive integrated
moving average) modeling, and long-memory time-series modeling.

Survival analysis: Several well-established statistical techniques exist for survival anal-
ysis. These techniques originally were designed to predict the probability that a patient
undergoing a medical treatment would survive at least to time t. Methods for survival
analysis, however, are also commonly applied to manufacturing settings to estimate
the life span of industrial equipment. Popular methods include Kaplan-Meier esti-
mates of survival, Cox proportional hazards regression models, and their extensions.

Quality control: Various statistics can be used to prepare charts for quality control,
such as Shewhart charts and cusum charts (both of which display group summary
statistics). These statistics include the mean, standard deviation, range, count, moving
average, moving standard deviation, and moving range.

11.3.3 Visual and Audio Data Mining

Visual data mining discovers implicit and useful knowledge from large data sets using
data and/or knowledge visualization techniques. The human visual system is controlled
by the eyes and brain, the latter of which can be thought of as a powerful, highly parallel
processing and reasoning engine containing a large knowledge base. Visual data min-
ing essentially combines the power of these components, making it a highly attractive
and effective tool for the comprehension of data distributions, patterns, clusters, and
outliers in data.
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Visual data mining can be viewed as an integration of two disciplines: data visualiza-
tion and data mining. It is also closely related to computer graphics, multimedia systems,
human computer interaction, pattern recognition, and high-performance computing.
In general, data visualization and data mining can be integrated in the following ways:

Data visualization: Data in a database or data warehouse can be viewed at different
levels of granularity or abstraction, or as different combinations of attributes or dimen-
sions. Data can be presented in various visual forms, such as boxplots, 3-D cubes, data
distribution charts, curves, surfaces, link graphs, and so on. Figures 11.2 and 11.3 from
StatSoft showdatadistributions inmultidimensionalspace.Visualdisplaycanhelpgive
users a clear impression and overview of the data characteristics in a database.

Data mining result visualization: Visualization of data mining results is the presen-
tation of the results or knowledge obtained from data mining in visual forms. Such
forms may include scatter plots and boxplots (obtained from descriptive data min-
ing), as well as decision trees, association rules, clusters, outliers, generalized rules,
and so on. For example, scatter plots are shown in Figure 11.4 from SAS Enterprise
Miner. Figure 11.5, from MineSet, uses a plane associated with a set of pillars to

Figure 11.2 Boxplots showing multiple variable combinations in StatSoft.
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Figure 11.3 Multidimensional data distribution analysis in StatSoft.

describe a set of association rules mined from a database. Figure 11.6, also from
MineSet, presents a decision tree. Figure 11.7, from IBM Intelligent Miner, presents
a set of clusters and the properties associated with them.

Data mining process visualization: This type of visualization presents the various
processes of data mining in visual forms so that users can see how the data are
extracted and from which database or data warehouse they are extracted, as well as
how the selected data are cleaned, integrated, preprocessed, and mined. Moreover, it
may also show which method is selected for data mining, where the results are stored,
and how they may be viewed. Figure 11.8 shows a visual presentation of data mining
processes by the Clementine data mining system.

Interactive visual data mining: In (interactive) visual data mining, visualization tools
can be used in the data mining process to help users make smart data mining deci-
sions. For example, the data distribution in a set of attributes can be displayed using
colored sectors (where the whole space is represented by a circle). This display helps
users determine which sector should first be selected for classification and where a
good split point for this sector may be. An example of this is shown in Figure 11.9,
which is the output of a perception-based classification system (PBC) developed at
the University of Munich.
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Figure 11.4 Visualization of data mining results in SAS Enterprise Miner.

Audio data mining uses audio signals to indicate the patterns of data or the features
of data mining results. Although visual data mining may disclose interesting pat-
terns using graphical displays, it requires users to concentrate on watching patterns
and identifying interesting or novel features within them. This can sometimes be
quite tiresome. If patterns can be transformed into sound and music, then instead
of watching pictures, we can listen to pitches, rhythms, tune, and melody in order
to identify anything interesting or unusual. This may relieve some of the burden of
visual concentration and be more relaxing than visual mining. Therefore, audio data
mining is an interesting complement to visual mining.

11.3.4 Data Mining and Collaborative Filtering

Today’s consumers are faced with millions of goods and services when shopping
on-line. Recommender systems help consumers by making product recommen-
dations during live customer transactions. A collaborative filtering approach is
commonly used, in which products are recommended based on the opinions of
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Figure 11.5 Visualization of association rules in MineSet.

Figure 11.6 Visualization of a decision tree in MineSet.
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Figure 11.7 Visualization of cluster groupings in IBM Intelligent Miner.

other customers. Collaborative recommender systems may employ data mining or
statistical techniques to search for similarities among customer preferences. Consider
the following example.

Example 11.1 Collaborative Filtering. Suppose that you visit the website of an on-line bookstore (such
as Amazon.com) with the intention of purchasing a book that you’ve been wanting
to read. You type in the name of the book. This is not the first time you’ve visited
the website. You’ve browsed through it before and even made purchases from it last
Christmas. The web-store remembers your previous visits, having stored clickstream
information and information regarding your past purchases. The system displays the
description and price of the book you have just specified. It compares your interests
with other customers having similar interests and recommends additional book titles,
saying “Customers who bought the book you have specified also bought these other titles as
well.” From surveying the list, you see another title that sparks your interest and decide
to purchase that one as well.

Now for a bigger purchase. You go to another on-line store with the intention of
purchasing a digital camera. The system suggests additional items to consider based on
previously mined sequential patterns, such as “Customers who buy this kind of
digital camera are likely to buy a particular brand of printer, memory card, or photo



11.3 Additional Themes on Data Mining 673

Figure 11.8 Visualization of data mining processes by Clementine.

editing software within three months.” You decide to buy just the camera, without
any additional items. A week later, you receive coupons from the store regarding the
additional items.

A collaborative recommender system works by finding a set of customers, referred to
as neighbors, that have a history of agreeing with the target customer (such as, they tend
to buy similar sets of products, or give similar ratings for certain products). Collabo-
rative recommender systems face two major challenges: scalability and ensuring quality
recommendations to the consumer. Scalability is important, because e-commerce sys-
tems must be able to search through millions of potential neighbors in real time. If
the site is using browsing patterns as indications of product preference, it may have
thousands of data points for some of its customers. Ensuring quality recommendations
is essential in order to gain consumers’ trust. If consumers follow a system recommenda-
tion but then do not end up liking the product, they are less likely to use the recommender
system again. As with classification systems, recommender systems can make two types
of errors: false negatives and false positives. Here, false negatives are products that the
system fails to recommend, although the consumer would like them. False positives are
products that are recommended, but which the consumer does not like. False positives
are less desirable because they can annoy or anger consumers.
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Figure 11.9 Perception-based classification (PBC): An interactive visual mining approach.

An advantage of recommender systems is that they provide personalization for
customers of e-commerce, promoting one-to-one marketing. Amazon.com, a pio-
neer in the use of collaborative recommender systems, offers “a personalized store
for every customer” as part of their marketing strategy. Personalization can benefit
both the consumers and the company involved. By having more accurate models of
their customers, companies gain a better understanding of customer needs. Serving
these needs can result in greater success regarding cross-selling of related products,
upselling, product affinities, one-to-one promotions, larger baskets, and customer
retention.

Dimension reduction, association mining, clustering, and Bayesian learning are some
of the techniques that have been adapted for collaborative recommender systems. While
collaborative filtering explores the ratings of items provided by similar users, some rec-
ommender systems explore a content-based method that provides recommendations
based on the similarity of the contents contained in an item. Moreover, some sys-
tems integrate both content-based and user-based methods to achieve further improved
recommendations.

Collaborative recommender systems are a form of intelligent query answering, which
consists of analyzing the intent of a query and providing generalized, neighborhood, or
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associated information relevant to the query. For example, rather than simply returning
the book description and price in response to a customer’s query, returning additional
information that is related to the query but that was not explicitly asked for (such as book
evaluation comments, recommendations of other books, or sales statistics) provides an
intelligent answer to the same query.

11.4 Social Impacts of Data Mining

For most of us, data mining is part of our daily lives, although we may often be unaware
of its presence. Section 11.4.1 looks at several examples of “ubiquitous and invisible”
data mining, affecting everyday things from the products stocked at our local supermar-
ket, to the ads we see while surfing the Internet, to crime prevention. Data mining can
offer the individual many benefits by improving customer service and satisfaction, and
lifestyle, in general. However, it also has serious implications regarding one’s right to
privacy and data security. These issues are the topic of Section 11.4.2.

11.4.1 Ubiquitous and Invisible Data Mining

Data mining is present in many aspects of our daily lives, whether we realize it or not. It
affects how we shop, work, search for information, and can even influence our leisure
time, health, and well-being. In this section, we look at examples of such ubiquitous
(or ever-present) data mining. Several of these examples also represent invisible data
mining, in which “smart” software, such as Web search engines, customer-adaptive Web
services (e.g., using recommender algorithms), “intelligent” database systems, e-mail
managers, ticket masters, and so on, incorporates data mining into its functional com-
ponents, often unbeknownst to the user.

From grocery stores that print personalized coupons on customer receipts to on-line
stores that recommend additional items based on customer interests, data mining has
innovatively influenced what we buy, the way we shop, as well as our experience while
shopping. One example is Wal-Mart, which has approximately 100 million customers
visiting its more than 3,600 stores in the United States every week. Wal-Mart has 460
terabytes of point-of-sale data stored on Teradata mainframes, made by NCR. To put this
into perspective, experts estimate that the Internet has less than half this amount of data.
Wal-Mart allows suppliers to access data on their products and perform analyses using
data mining software. This allows suppliers to identify customer buying patterns, control
inventory and product placement, and identify new merchandizing opportunities. All
of these affect which items (and how many) end up on the stores’ shelves—something
to think about the next time you wander through the aisles at Wal-Mart.

Data mining has shaped the on-line shopping experience. Many shoppers routinely
turn to on-line stores to purchase books, music, movies, and toys. Section 11.3.4 dis-
cussed the use of collaborative recommender systems, which offer personalized product
recommendations based on the opinions of other customers. Amazon.com was at the
forefront of using such a personalized, data mining–based approach as a marketing
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strategy. CEO and founder Jeff Bezos had observed that in traditional brick-and-mortar
stores, the hardest part is getting the customer into the store. Once the customer is
there, she is likely to buy something, since the cost of going to another store is high.
Therefore, the marketing for brick-and-mortar stores tends to emphasize drawing cus-
tomers in, rather than the actual in-store customer experience. This is in contrast
to on-line stores, where customers can “walk out” and enter another on-line store
with just a click of the mouse. Amazon.com capitalized on this difference, offering a
“personalized store for every customer.” They use several data mining techniques to
identify customer’s likes and make reliable recommendations.

While we’re on the topic of shopping, suppose you’ve been doing a lot of buying
with your credit cards. Nowadays, it is not unusual to receive a phone call from one’s
credit card company regarding suspicious or unusual patterns of spending. Credit card
companies (and long-distance telephone service providers, for that matter) use data
mining to detect fraudulent usage, saving billions of dollars a year.

Many companies increasingly use data mining for customer relationship manage-
ment (CRM), which helps provide more customized, personal service addressing
individual customer’s needs, in lieu of mass marketing. By studying browsing and
purchasing patterns on Web stores, companies can tailor advertisements and promo-
tions to customer profiles, so that customers are less likely to be annoyed with unwanted
mass mailings or junk mail. These actions can result in substantial cost savings for com-
panies. The customers further benefit in that they are more likely to be notified of offers
that are actually of interest, resulting in less waste of personal time and greater satisfac-
tion. This recurring theme can make its way several times into our day, as we shall see
later.

Data mining has greatly influenced the ways in which people use computers, search
for information, and work. Suppose that you are sitting at your computer and have just
logged onto the Internet. Chances are, you have a personalized portal, that is, the initial
Web page displayed by your Internet service provider is designed to have a look and
feel that reflects your personal interests. Yahoo (www.yahoo.com) was the first to intro-
duce this concept. Usage logs from MyYahoo are mined to provide Yahoo with valuable
information regarding an individual’s Web usage habits, enabling Yahoo to provide per-
sonalized content. This, in turn, has contributed to Yahoo’s consistent ranking as one
of the top Web search providers for years, according to Advertising Age’s BtoB maga-
zine’s Media Power 50 (www.btobonline.com), which recognizes the 50 most powerful
and targeted business-to-business advertising outlets each year.

After logging onto the Internet, you decide to check your e-mail. Unbeknownst
to you, several annoying e-mails have already been deleted, thanks to a spam filter
that uses classification algorithms to recognize spam. After processing your e-mail,
you go to Google (www.google.com), which provides access to information from over
2 billion Web pages indexed on its server. Google is one of the most popular and widely
used Internet search engines. Using Google to search for information has become a way
of life for many people. Google is so popular that it has even become a new verb in
the English language, meaning “to search for (something) on the Internet using the
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Google search engine or, by extension, any comprehensive search engine.”1 You decide
to type in some keywords for a topic of interest. Google returns a list of websites on
your topic of interest, mined and organized by PageRank. Unlike earlier search engines,
which concentrated solely on Web content when returning the pages relevant to a query,
PageRank measures the importance of a page using structural link information from the
Web graph. It is the core of Google’s Web mining technology.

While you are viewing the results of your Google query, various ads pop up relating
to your query. Google’s strategy of tailoring advertising to match the user’s interests is
successful—it has increased the clicks for the companies involved by four to five times.
This also makes you happier, because you are less likely to be pestered with irrelevant
ads. Google was named a top-10 advertising venue by Media Power 50.

Web-wide tracking is a technology that tracks a user across each site she visits. So, while
surfingtheWeb, informationabouteverysite youvisitmayberecorded,whichcanprovide
marketers with information reflecting your interests, lifestyle, and habits. DoubleClick
Inc.’s DART ad management technology uses Web-wide tracking to target advertising
based on behavioral or demographic attributes. Companies pay to use DoubleClick’s ser-
vice on their websites. The clickstream data from all of the sites using DoubleClick are
pooled and analyzed for profile information regarding users who visit any of these sites.
DoubleClick can then tailor advertisements to end users on behalf of its clients. In general,
customer-tailored advertisements are not limited to ads placed on Web stores or company
mail-outs. In the future, digital television and on-line books and newspapers may also
provide advertisements that are designed and selected specifically for the given viewer or
viewer group based on customer profiling information and demographics.

While you’re using the computer, you remember to go to eBay (www.ebay.com) to
see how the bidding is coming along for some items you had posted earlier this week.
You are pleased with the bids made so far, implicitly assuming that they are authentic.
Luckily, eBay now uses data mining to distinguish fraudulent bids from real ones.

As we have seen throughout this book, data mining and OLAP technologies can help
us in our work in many ways. Business analysts, scientists, and governments can all use
data mining to analyze and gain insight into their data. They may use data mining and
OLAP tools, without needing to know the details of any of the underlying algorithms.
All that matters to the user is the end result returned by such systems, which they can
then process or use for their decision making.

Data mining can also influence our leisure time involving dining and entertainment.
Suppose that, on the way home from work, you stop for some fast food. A major fast-
food restaurant used data mining to understand customer behavior via market-basket
and time-series analyses. Consequently, a campaign was launched to convert “drinkers”
to “eaters” by offering hamburger-drink combinations for little more than the price of the
drink alone. That’s food for thought, the next time you order a meal combo. With a little
help from data mining, it is possible that the restaurant may even know what you want to

1http://open-dictionary.com.
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order before you reach the counter. Bob, an automated fast-food restaurant management
system developed by HyperActive Technologies (www.hyperactivetechnologies.com),
predicts what people are likely to order based on the type of car they drive to the restaurant,
and on their height. For example, if a pick-up truck pulls up, the customer is likely to order
a quarter pounder. A family car is likely to include children, which means chicken nuggets
and fries. The idea is to advise the chefs of the right food to cook for incoming customers
to provide faster service, better-quality food, and reduce food wastage.

After eating, you decide to spend the evening at home relaxing on the couch. Block-
buster (www.blockbuster.com) uses collaborative recommender systems to suggest movie
rentals to individual customers. Other movie recommender systems available on the Inter-
net include MovieLens (www.movielens.umn.edu) and Netflix (www.netflix.com). (There
are even recommender systems for restaurants, music, and books that are not specifically
tied to any company.) Or perhaps you may prefer to watch television instead. NBC uses
data mining to profile the audiences of each show. The information gleaned contributes
toward NBC’s programming decisions and advertising. Therefore, the time and day of
week of your favorite show may be determined by data mining.

Finally, data mining can contribute toward our health and well-being. Several phar-
maceutical companies use data mining software to analyze data when developing drugs
and to find associations between patients, drugs, and outcomes. It is also being used to
detect beneficial side effects of drugs. The hair-loss pill Propecia, for example, was first
developed to treat prostrate enlargement. Data mining performed on a study of patients
found that it also promoted hair growth on the scalp. Data mining can also be used to keep
our streets safe. The data mining system Clementine from SPSS is being used by police
departments to identify key patterns in crime data. It has also been used by police to
detect unsolved crimes that may have been committed by the same criminal. Many police
departments around the world are using data mining software for crime prevention, such
as the Dutch police’s use of DataDetective (www.sentient.nl) to find patterns in criminal
databases. Such discoveries can contribute toward controlling crime.

As we can see, data mining is omnipresent. For data mining to become further
accepted and used as a technology, continuing research and development are needed
in the many areas mentioned as challenges throughout this book—efficiency and scal-
ability, increased user interaction, incorporation of background knowledge and visual-
ization techniques, the evolution of a standardized data mining query language, effective
methods for finding interesting patterns, improved handling of complex data types and
stream data, real-time data mining, Web mining, and so on. In addition, the integration
of data mining into existing business and scientific technologies, to provide domain-
specific data mining systems, will further contribute toward the advancement of the
technology. The success of data mining solutions tailored for e-commerce applications,
as opposed to generic data mining systems, is an example.

11.4.2 Data Mining, Privacy, and Data Security

With more and more information accessible in electronic forms and available on the
Web, and with increasingly powerful data mining tools being developed and put into
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use, there are increasing concerns that data mining may pose a threat to our privacy
and data security. However, it is important to note that most of the major data mining
applications do not even touch personal data. Prominent examples include applica-
tions involving natural resources, the prediction of floods and droughts, meteorology,
astronomy, geography, geology, biology, and other scientific and engineering data. Fur-
thermore, most studies in data mining focus on the development of scalable algorithms
and also do not involve personal data. The focus of data mining technology is on the
discovery of general patterns, not on specific information regarding individuals. In this
sense, we believe that the real privacy concerns are with unconstrained access of individ-
ual records, like credit card and banking applications, for example, which must access
privacy-sensitive information. For those data mining applications that do involve per-
sonal data, in many cases, simple methods such as removing sensitive IDs from data may
protect the privacy of most individuals. Numerous data security–enhancing techniques
have been developed recently. In addition, there has been a great deal of recent effort on
developing privacy-preserving data mining methods. In this section, we look at some of
the advances in protecting privacy and data security in data mining.

In 1980, the Organization for Economic Co-operation and Development (OECD)
established a set of international guidelines, referred to as fair information practices.
These guidelines aim to protect privacy and data accuracy. They cover aspects relating
to data collection, use, openness, security, quality, and accountability. They include the
following principles:

Purpose specification and use limitation: The purposes for which personal data are
collected should be specified at the time of collection, and the data collected should
not exceed the stated purpose. Data mining is typically a secondary purpose of the
data collection. It has been argued that attaching a disclaimer that the data may also
be used for mining is generally not accepted as sufficient disclosure of intent. Due to
the exploratory nature of data mining, it is impossible to know what patterns may
be discovered; therefore, there is no certainty over how they may be used.

Openness: There should be a general policy of openness about developments, prac-
tices, and policies with respect to personal data. Individuals have the right to know the
nature of the data collected about them, the identity of the data controller (respon-
sible for ensuring the principles), and how the data are being used.

Security Safeguards: Personal data should be protected by reasonable security safe-
guards against such risks as loss or unauthorized access, destruction, use, modifi-
cation, or disclosure of data.

Individual Participation: An individual should have the right to learn whether the data
controller has data relating to him or her, and if so, what that data is. The individual
may also challenge such data. If the challenge is successful, the individual has the right
to have the data erased, corrected, or completed. Typically, inaccurate data are only
detected when an individual experiences some repercussion from it, such as the denial
of credit or withholding of a payment. The organization involved usually cannot detect
such inaccuracies because they lack the contextual knowledge necessary.
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“How can these principles help protect customers from companies that collect personal
client data?” One solution is for such companies to provide consumers with multiple
opt-out choices, allowing consumers to specify limitations on the use of their personal
data, such as (1) the consumer’s personal data are not to be used at all for data mining;
(2) the consumer’s data can be used for data mining, but the identity of each consumer
or any information that may lead to the disclosure of a person’s identity should be
removed; (3) the data may be used for in-house mining only; or (4) the data may be
used in-house and externally as well. Alternatively, companies may provide consumers
with positive consent, that is, by allowing consumers to opt in on the secondary use of
their information for data mining. Ideally, consumers should be able to call a toll-free
number or access a company website in order to opt in or out and request access to their
personal data.

Counterterrorism is a new application area for data mining that is gaining interest.
Data mining for counterterrorism may be used to detect unusual patterns, terrorist
activities (including bioterrorism), and fraudulent behavior. This application area is in
its infancy because it faces many challenges. These include developing algorithms for
real-time mining (e.g., for building models in real time, so as to detect real-time threats
such as that a building is scheduled to be bombed by 10 a.m. the next morning); for
multimedia data mining (involving audio, video, and image mining, in addition to text
mining); and in finding unclassified data to test such applications. While this new form
of data mining raises concerns about individual privacy, it is again important to note
that the data mining research is to develop a tool for the detection of abnormal patterns
or activities, and the use of such tools to access certain data to uncover terrorist patterns
or activities is confined only to authorized security agents.

“What can we do to secure the privacy of individuals while collecting and mining data?”
Many data security–enhancing techniques have been developed to help protect data.
Databases can employ a multilevel security model to classify and restrict data according
to various security levels, with users permitted access to only their authorized level.
It has been shown, however, that users executing specific queries at their authorized
security level can still infer more sensitive information, and that a similar possibility can
occur through data mining. Encryption is another technique in which individual data
items may be encoded. This may involve blind signatures (which build on public key
encryption), biometric encryption (e.g., where the image of a person’s iris or fingerprint
is used to encode his or her personal information), and anonymous databases (which
permit the consolidation of various databases but limit access to personal information to
only those who need to know; personal information is encrypted and stored at different
locations). Intrusion detection is another active area of research that helps protect the
privacy of personal data.

Privacy-preserving data mining is a new area of data mining research that is emerging
in response to privacy protection during mining. It is also known as privacy-enhanced or
privacy-sensitive data mining. It deals with obtaining valid data mining results without
learning the underlying data values. There are two common approaches: secure multi-
party computation and data obscuration. In secure multiparty computation, data values
are encoded using simulation and cryptographic techniques so that no party can learn
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another’s data values. This approach can be impractical when mining large databases.
In data obscuration, the actual data are distorted by aggregation (such as using the aver-
age income for a neighborhood, rather than the actual income of residents) or by adding
random noise. The original distribution of a collection of distorted data values can be
approximated using a reconstruction algorithm. Mining can be performed using these
approximated values, rather than the actual ones. Although a common framework for
defining, measuring, and evaluating privacy is needed, many advances have been made.
The field is expected to flourish.

Like any other technology, data mining may be misused. However, we must not
lose sight of all the benefits that data mining research can bring, ranging from insights
gained from medical and scientific applications to increased customer satisfaction by
helping companies better suit their clients’ needs. We expect that computer scientists,
policy experts, and counterterrorism experts will continue to work with social scien-
tists, lawyers, companies and consumers to take responsibility in building solutions
to ensure data privacy protection and security. In this way, we may continue to reap
the benefits of data mining in terms of time and money savings and the discovery of
new knowledge.

11.5 Trends in Data Mining

The diversity of data, data mining tasks, and data mining approaches poses many chal-
lenging research issues in data mining. The development of efficient and effective data
mining methods and systems, the construction of interactive and integrated data mining
environments, the design of data mining languages, and the application of data min-
ing techniques to solve large application problems are important tasks for data mining
researchers and data mining system and application developers. This section describes
some of the trends in data mining that reflect the pursuit of these challenges:

Application exploration: Early data mining applications focused mainly on helping
businesses gain a competitive edge. The exploration of data mining for businesses
continues to expand as e-commerce and e-marketing have become mainstream ele-
ments of the retail industry. Data mining is increasingly used for the exploration
of applications in other areas, such as financial analysis, telecommunications,
biomedicine, and science. Emerging application areas include data mining for coun-
terterrorism (including and beyond intrusion detection) and mobile (wireless) data
mining. As generic data mining systems may have limitations in dealing with
application-specific problems, we may see a trend toward the development of more
application-specific data mining systems.

Scalable and interactive data mining methods: In contrast with traditional data anal-
ysis methods, data mining must be able to handle huge amounts of data efficiently
and, if possible, interactively. Because the amount of data being collected continues
to increase rapidly, scalable algorithms for individual and integrated data mining
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functions become essential. One important direction toward improving the overall
efficiency of the mining process while increasing user interaction is constraint-based
mining. This provides users with added control by allowing the specification and use
of constraints to guide data mining systems in their search for interesting patterns.

Integration of data mining with database systems, data warehouse systems, and
Web database systems: Database systems, data warehouse systems, and the Web have
become mainstream information processing systems. It is important to ensure that
data mining serves as an essential data analysis component that can be smoothly
integrated into such an information processing environment. As discussed earlier,
a data mining system should be tightly coupled with database and data warehouse
systems. Transaction management, query processing, on-line analytical processing,
and on-line analytical mining should be integrated into one unified framework. This
will ensure data availability, data mining portability, scalability, high performance,
and an integrated information processing environment for multidimensional data
analysis and exploration.

Standardization of data mining language: A standard data mining language or other
standardization efforts will facilitate the systematic development of data mining solu-
tions, improve interoperability among multiple data mining systems and functions,
and promote the education and use of data mining systems in industry and society.
Recent efforts in this direction include Microsoft’s OLE DB for Data Mining (the
appendix of this book provides an introduction), PMML, and CRISP-DM.

Visual data mining: Visual data mining is an effective way to discover knowledge
from huge amounts of data. The systematic study and development of visual data
mining techniques will facilitate the promotion and use of data mining as a tool for
data analysis.

New methods for mining complex types of data: As shown in Chapters 8 to 10,
mining complex types of data is an important research frontier in data mining.
Although progress has been made in mining stream, time-series, sequence, graph,
spatiotemporal, multimedia, and text data, there is still a huge gap between the needs
for these applications and the available technology. More research is required, espe-
cially toward the integration of data mining methods with existing data analysis
techniques for these types of data.

Biological data mining: Although biological data mining can be considered under
“application exploration” or “mining complex types of data,” the unique combi-
nation of complexity, richness, size, and importance of biological data warrants
special attention in data mining. Mining DNA and protein sequences, mining high-
dimensional microarray data, biological pathway and network analysis, link analysis
across heterogeneous biological data, and information integration of biological data
by data mining are interesting topics for biological data mining research.

Data mining and software engineering: As software programs become increasingly
bulky in size, sophisticated in complexity, and tend to originate from the integration
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of multiple components developed by different software teams, it is an increasingly
challenging task to ensure software robustness and reliability. The analysis of the
executions of a buggy software program is essentially a data mining process—
tracing the data generated during program executions may disclose important
patterns and outliers that may lead to the eventual automated discovery of software
bugs. We expect that the further development of data mining methodologies for soft-
ware debugging will enhance software robustness and bring new vigor to software
engineering.

Web mining: Issues related to Web mining were also discussed in Chapter 10. Given
the huge amount of information available on the Web and the increasingly important
role that the Web plays in today’s society, Web content mining, Weblog mining, and
data mining services on the Internet will become one of the most important and
flourishing subfields in data mining.

Distributed data mining: Traditional data mining methods, designed to work at a
centralized location, do not work well in many of the distributed computing environ-
ments present today (e.g., the Internet, intranets, local area networks, high-speed
wireless networks, and sensor networks). Advances in distributed data mining meth-
ods are expected.

Real-time or time-critical data mining: Many applications involving stream data
(such as e-commerce, Web mining, stock analysis, intrusion detection, mobile data
mining, and data mining for counterterrorism) require dynamic data mining models
to be built in real time. Additional development is needed in this area.

Graph mining, link analysis, and social network analysis: Graph mining, link analy-
sis, and social network analysis are useful for capturing sequential, topological, geo-
metric, and other relational characteristics of many scientific data sets (such as for
chemical compounds and biological networks) and social data sets (such as for the
analysis of hidden criminal networks). Such modeling is also useful for analyzing links
in Web structure mining. The development of efficient graph and linkage models is
a challenge for data mining.

Multirelational and multidatabase data mining: Most data mining approaches search
for patterns in a single relational table or in a single database. However, most real-
world data and information are spread across multiple tables and databases. Multire-
lational data mining methods search for patterns involving multiple tables (relations)
from a relational database. Multidatabase mining searches for patterns across mul-
tiple databases. Further research is expected in effective and efficient data mining
across multiple relations and multiple databases.

Privacy protection and information security in data mining: An abundance of
recorded personal information available in electronic forms and on the Web, cou-
pled with increasingly powerful data mining tools, poses a threat to our privacy
and data security. Growing interest in data mining for counterterrorism also adds
to the threat. Further development of privacy-preserving data mining methods is
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foreseen. The collaboration of technologists, social scientists, law experts, and
companies is needed to produce a rigorous definition of privacy and a formalism
to prove privacy-preservation in data mining.

We look forward to the next generation of data mining technology and the further
benefits that it will bring with confidence.

11.6 Summary

Many customized data mining tools have been developed for domain-specific appli-
cations, including finance, the retail industry, telecommunications, bioinformatics,
intrusion detection, and other science, engineering, and government data analysis.
Such practice integrates domain-specific knowledge with data analysis techniques
and provides mission-specific data mining solutions.

There are many data mining systems and research prototypes to choose from. When
selecting a data mining product that is appropriate for one’s task, it is important to
consider various features of data mining systems from a multidimensional point of
view. These include data types, system issues, data sources, data mining functions
and methodologies, tight coupling of the data mining system with a database or data
warehouse system, scalability, visualization tools, and data mining query language
and graphical user interfaces.

Researchers have been striving to build theoretical foundations for data mining.
Several interesting proposals have appeared, based on data reduction, data com-
pression, pattern discovery, probability theory, microeconomic theory, and inductive
databases.

Visual data mining integrates data mining and data visualization in order to discover
implicit and useful knowledge from large data sets. Forms of visual data mining
include data visualization, data mining result visualization, data mining process visu-
alization, and interactive visual data mining. Audio data mining uses audio signals to
indicate data patterns or features of data mining results.

Several well-established statistical methods have been proposed for data analysis,
such as regression, generalized linear models, analysis of variance, mixed-effect
models, factor analysis, discriminant analysis, time-series analysis, survival analy-
sis, and quality control. Full coverage of statistical data analysis methods is beyond
the scope of this book. Interested readers are referred to the statistical literature
cited in the bibliographic notes for background on such statistical analysis tools.

Collaborative recommender systems offer personalized product recommendations
based on the opinions of other customers. They may employ data mining or statistical
techniques to search for similarities among customer preferences.
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Ubiquitous data mining is the ever presence of data mining in many aspects of
our daily lives. It can influence how we shop, work, search for information, and use
a computer, as well as our leisure time, health, and well-being. In invisible data min-
ing, “smart” software, such as Web search engines, customer-adaptive Web services
(e.g., using recommender algorithms), e-mail managers, and so on, incorporates
data mining into its functional components, often unbeknownst to the user.

A major social concern of data mining is the issue of privacy and data security,
particularly as the amount of data collected on individuals continues to grow.
Fair information practices were established for privacy and data protection and
cover aspects regarding the collection and use of personal data. Data mining for
counterterrorism can benefit homeland security and save lives, yet raises additional
concerns for privacy due to the possible access of personal data. Efforts towards
ensuring privacy and data security include the development of privacy-preserving
data mining (which deals with obtaining valid data mining results without learn-
ing the underlying data values) and data security–enhancing techniques (such as
encryption).

Trends in data mining include further efforts toward the exploration of new appli-
cation areas, improved scalable and interactive methods (including constraint-based
mining), the integration of data mining with data warehousing and database systems,
the standardization of data mining languages, visualization methods, and new meth-
ods for handling complex data types. Other trends include biological data mining,
mining software bugs, Web mining, distributed and real-time mining, graph mining,
social network analysis, multirelational and multidatabase data mining, data privacy
protection, and data security.

Exercises

11.1 Research and describe an application of data mining that was not presented in this chapter.
Discuss how different forms of data mining can be used in the application.

11.2 Suppose that you are in the market to purchase a data mining system.

(a) Regarding the coupling of a data mining system with a database and/or data ware-
house system, what are the differences between no coupling, loose coupling, semitight
coupling, and tight coupling?

(b) What is the difference between row scalability and column scalability?
(c) Which feature(s) from those listed above would you look for when selecting a data

mining system?

11.3 Study an existing commercial data mining system. Outline the major features of such a
system from a multidimensional point of view, including data types handled, architecture
of the system, data sources, data mining functions, data mining methodologies, coupling
with database or data warehouse systems, scalability, visualization tools, and graphical
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user interfaces. Can you propose one improvement to such a system and outline how to
realize it?

11.4 (Research project) Relational database query languages, like SQL, have played an essen-
tial role in the development of relational database systems. Similarly, a data mining query
language may provide great flexibility for users to interact with a data mining system
and pose various kinds of data mining queries and constraints. It is expected that dif-
ferent data mining query languages may be designed for mining different types of data
(such as relational, text, spatiotemporal, and multimedia data) and for different kinds of
applications (such as financial data analysis, biological data analysis, and social network
analysis). Select an application. Based on your application requirements and the types
of data to be handled, design such a data mining language and study its implementation
and optimization issues.

11.5 Why is the establishment of theoretical foundations important for data mining? Name
and describe the main theoretical foundations that have been proposed for data mining.
Comment on how they each satisfy (or fail to satisfy) the requirements of an ideal
theoretical framework for data mining.

11.6 (Research project) Building a theory for data mining is to set up a theoretical framework
so that the major data mining functions can be explained under this framework. Take
one theory as an example (e.g., data compression theory) and examine how the major
data mining functions can fit into this framework. If some functions cannot fit well in
the current theoretical framework, can you propose a way to extend the framework so
that it can explain these functions?

11.7 There is a strong linkage between statistical data analysis and data mining. Some people
think of data mining as automated and scalable methods for statistical data analysis. Do
you agree or disagree with this perception? Present one statistical analysis method that
can be automated and/or scaled up nicely by integration with the current data mining
methodology.

11.8 What are the differences between visual data mining and data visualization? Data visualiza-
tion may suffer from the data abundance problem. For example, it is not easy to visually
discover interesting properties of network connections if a social network is huge, with
complex and dense connections. Propose a data mining method that may help people see
through the network topology to the interesting features of the social network.

11.9 Propose a few implementation methods for audio data mining. Can we integrate audio
and visual data mining to bring fun and power to data mining? Is it possible to develop
some video data mining methods? State some scenarios and your solutions to make such
integrated audiovisual mining effective.

11.10 General-purpose computers and domain-independent relational database systems have
become a large market in the last several decades. However, many people feel that generic
data mining systems will not prevail in the data mining market. What do you think? For
data mining, should we focus our efforts on developing domain-independent data mining
tools or on developing domain-specific data mining solutions? Present your reasoning.
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11.11 What is a collaborative recommender system? In what ways does it differ from a customeror
product-based clustering system? How does it differ from a typical classification or pre-
dictive modeling system? Outline one method of collaborative filtering. Discuss why it
works and what its limitations are in practice.

11.12 Suppose that your local bank has a data mining system. The bank has been studying
your debit card usage patterns. Noticing that you make many transactions at home
renovation stores, the bank decides to contact you, offering information regarding their
special loans for home improvements.

(a) Discuss how this may conflict with your right to privacy.

(b) Describe another situation in which you feel that data mining can infringe on your
privacy.

(c) Describe a privacy-preserving data mining method that may allow the bank to per-
form customer pattern analysis without infringing on customers’ right to privacy.

(d) What are some examples where data mining could be used to help society? Can you
think of ways it could be used that may be detrimental to society?

11.13 What are the major challenges faced in bringing data mining research to market? Illus-
trate one data mining research issue that, in your view, may have a strong impact on the
market and on society. Discuss how to approach such a research issue.

11.14 Based on your view, what is the most challenging research problem in data mining? If you
were given a number of years of time and a good number of researchers and implemen-
tors, can you work out a plan so that progress can be made toward a solution to such
a problem? How?

11.15 Based on your study, suggest a possible new frontier in data mining that was not men-
tioned in this chapter.
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Appendix

An Introduction to Microsoft’s
OLE DB for Data Mining

Most data mining products are difficult to integrate with user applications due to the lack of
standardization protocols. This current state of the data mining industry can be con-
sidered similar to the database industry before the introduction of SQL. Consider, for
example, a classification application that uses a decision tree package from some ven-
dor. Later, it is decided to employ, say, a support vector machine package from another
vendor. Typically, each data mining vendor has its own data mining package, which does
not communicate with other products. A difficulty arises as the products from the two
different vendors do not have a common interface. The application must be rebuilt from
scratch. An additional problem is that most commercial data mining products do not
perform mining directly on relational databases, where most data are stored. Instead,
the data must be extracted from a relational database to an intermediate storage format.
This requires expensive data porting and transformation operations.

A solution to these problems has been proposed in the form of Microsoft’s OLE DB for
Data Mining (OLE DB for DM).1 OLE DB for DM is a major step toward the standardi-
zation of data mining language primitives and aims to become the industry standard. It
adopts many concepts in relational database systems and applies them to the data mining
field, providing a standard programming API. It is designed to allow data mining client
applications (or data mining consumers) to consume data mining services from a wide
variety of data mining software packages (or data mining providers). Figure A.1 shows the
basic architecture of OLE DB for DM. It allows consumer applications to communicate
with different data mining providers through the same API (SQL style). This appendix
provides an introduction to OLE DB for DM.

1OLE DB for DM API Version 1.0 was introduced in July 2000. As of late 2005, Version 2.0 has not
yet been released, although its release is planned shortly. The information presented in this appendix is
based on Tang, MacLennan, and Kim [TMK05] and on a draft of Chapter 3: OLE DB for Data Mining
from the upcoming book, Data Mining with SQL Server 2005, by Z. Tang and J. MacLennan from Wiley
& Sons (2005) [TM05]. For additional details not presented in this appendix, readers may refer to the
book and to Microsoft’s forthcoming document on Version 2.0 (see www.Microsoft.com).
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Figure A.1 Basic architecture of OLE DB for Data Mining [TMK05].

At the core of OLE DB for DM is DMX (Data Mining eXtensions), an SQL-like data
mining query language. As an extension of OLE (Object Linking and Embedding) DB,
OLE DB for DM allows the definition of a virtual object called a Data Mining Model.
DMX statements can be used to create, modify, and work with data mining models.
DMX also contains several functions that can be used to retrieve and display statisti-
cal information about the mining models. The manipulation of a data mining model is
similar to that of an SQL table.

OLE DB for DM describes an abstraction of the data mining process. The three main
operations performed are model creation, model training, and model prediction and brows-
ing. These are described as follows:

1. Model creation. First, we must create a data mining model object (hereafter referred
to as a data mining model), which is similar to the creation of a table in a relational
database. At this point, we can think of the model as an empty table, defined by input
columns, one or more predictable columns, and the name of the data mining algo-
rithm to be used when the model is later trained by the data mining provider. The
create command is used in this operation.

2. Model training. In this operation, data are loaded into the model and used to train it.
The data mining provider uses the algorithm specified during creation of the model to
search for patterns in the data. The resulting discovered patterns make up the model
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content. They are stored in the data mining model, instead of the training data. The
insert command is used in this operation.

3. Model prediction and browsing. A select statement is used to consult the data mining
model content in order to make predictions and browse statistics obtained by the
model.

Let’s talk a bit about data. The data pertaining to a single entity (such as a customer)
are referred to as a case. A simple case corresponds to a row in a table (defined by the
attributes customer ID, gender, and age, for example). Cases can also be nested, providing
a list of information associated with a given entity. For example, if in addition to the
customer attributes above, we also include the list of items purchased by the customer,
this is an example of a nested case. A nested case contains at least one table column. OLE
DB for DM uses table columns as defined by the Data Shaping Service included with
Microsoft Data Access Components (MDAC) products.

Example A.1 A nested case of customer data. A given customer entity may be described by the columns
(or attributes) customer ID, gender, and age, and the table column, item purchases,
describing the set of items purchased by the customer (i.e., item name and item quantity),
as follows:

customer ID gender age item purchases

item name item quantity

101 F 34 milk 3

bread 2

diapers 1

For the remainder of this appendix, we will study examples of each of the major data
mining model operations: creation, training, and prediction and browsing.

A.1 Model Creation

A data mining model is considered as a relational table. The create command is used to
create a mining model, as shown in the following example.

Example A.2 Model creation. The following statement specifies the columns of (or attributes defining)
a data mining model for home ownership prediction and the data mining algorithm to
be used later for its training.
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create mining model home ownership prediction
(

customer ID long key,
gender text discrete,
age long discretized(),
income long continuous,
profession text discrete,
home ownership text discrete predict,

)
using Microsoft Decision Trees

The statement includes the following information. The model uses gender, age, income,
and profession to predict the home ownership category of the customer. Attribute cus-
tomer ID is of type key, meaning that it can uniquely identify a customer case row.
Attributes gender and profession are of type text. Attribute age is continuous (of type
long) but is to be discretized. The specification discretized() indicates that a default
method of discretization is to be used. Alternatively, we could have used discretized
(method, n), where method is a discretization method of the provider and n is the recom-
mended number of buckets (intervals) to be used in dividing up the value range for age.
The keyword predict shows that home ownership is the predicted attribute for the model.
Note that it is possible to have more than one predicted attribute, although, in this case,
there is only one. Other attribute types not appearing above include ordered, cyclical,
sequence time, probability, variance, stdev, and support. The using clause specifies the
decision tree algorithm to be used by the provider to later train the model. This clause
may be followed by provider-specific pairs of parameter-value settings to be used by the
algorithm.

Let’s look at another example. This one includes a table column, which lists the items
purchased by each customer.

Example A.3 Model creation involving a table column (for nested cases). Suppose that we would like
to predict the items (and their associated quantity and name) that a customer may be
interested in buying, based on the customer’s gender, age, income, profession, home
ownership status, and items already purchased by the customer. The specification for
this market basket model is:

create mining model market basket prediction
(

customer ID long key,
gender text discrete,
age long discretized(),
income long continuous,
profession text discrete,
home ownership text discrete,

item purchases table predict
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(
item name text key,
item quantity long normal continuous,

)
)
using Microsoft Decision Trees

The predicted attribute item purchases is actually a table column (for nested cases)
defined by item name (a key of item purchases) and item quantity. Knowledge of the
distribution of continuous attributes may be used by some data mining providers. Here,
item quantity is known to have a normal distribution, and so this is specified. Other
distribution models include uniform, lognormal, binomial, multinomial, and Poisson.

If we do not want the items already purchased to be considered by the model, we
would replace the keyword predict by predict only. This specifies that items purchased is
to be used only as a predictable column and not as an input column as well.

Creating data mining models is straightforward with the insert command. In the next
section, we look at how to train the models.

A.2 Model Training

In model training, data are loaded into the data mining model. The data mining
algorithm that was specified during model creation is now invoked. It “consumes” or
analyzes the data to discover patterns among the attribute values. These patterns (such
as rules, for example) or an abstraction of them are then inserted into or stored in the
mining model, forming part of the model content. Hence, an insert command is used
to specify model training. At the end of the command’s execution, it is the discovered
patterns, not the training data, that populate the mining model.

The model training syntax is

insert into 〈mining model name〉
[ 〈mapped model columns〉]

〈source data query〉,

where 〈mining model name〉 specifies the model to be trained and 〈mapped model
columns〉 lists the columns of the model to which input data are to be mapped. Typi-
cally, 〈source data query〉 is a select query from a relational database, which retrieves
the training data. Most data mining providers are embedded within the relational data-
base management system (RDBMS) containing the source data, in which case, 〈source
data query〉 needs to read data from other data sources. The openrowset statement of
OLE DB supports querying data from a data source through an OLE DB provider. The
syntax is

openrowset(‘provider name’, ‘provider string’, ‘database query’),
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where ‘provider name’ is the name of the OLE DB provider (such as MSSQL for
Microsoft SQL Server), ‘provider string’ is the connection string for the provider, and
‘database query’ is the SQL query supported by the provider. The query returns a rowset,
which is the training data. Note that the training data does not have to be loaded ahead
of time and does not have to be transformed into any intermediate storage format.

If the training data contains nested cases, then the database query must use the shape
command, provided by the Data Shaping Service defined in OLE DB. This creates a
hierarchical rowset, that is, it loads the nested cases into the relevant table columns, as
necessary.

Let’s look at an example that brings all of these ideas together.

Example A.4 Model training. The following statement specifies the training data to be used to populate
the model basket prediction model. Training the model results in populating it with the
discovered patterns. The line numbers are shown only to aid in our explanation.

(1) insert into market basket prediction
(2) ( customer ID, gender, age, income, profession, home ownership
(3) item purchases (skip, item name, item quantity)
(4) )
(5) openrowset(‘sqloledb’, ‘myserver’; ‘mylogin’; ‘mypwd’,
(6) ‘shape
(7) { select customer ID, gender, age, income, profession,

home ownership from Customers }
(8) append
(9) ( { select cust ID, item name, item quantity from Purchases }
(10) relate customer ID to cust ID)
(11) as item purchases’
(12) )

Line 1 uses the insert into command to populate the model, with lines 2 and 3 speci-
fying the fields in the model to be populated. The keyword skip in line 3 is used because
the source data contains a column that is not used by the data mining model. The open-
rowset command accesses the source data. Because our model contains a table column,
the shape command (lines 6 to 11) is used to create the nested table, item purchases.

Suppose instead that we wanted to train our simpler model, home ownership predic-
tion, which does not contain any table column. The statement would be the same as above
except that lines 6 to 11 would be replaced by the line

‘select customer ID, gender, age, income, profession, home ownership
from Customers’

In summary, the manner in which the data mining model is populated is similar to
that for populating an ordinary table. Note that the statement is independent of the data
mining algorithm used.
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A.3 Model Prediction and Browsing

A trained model can be considered a sort of “truth table,” conceptually containing a row
for every possible combination of values for each column (attribute) in the data mining
model, including any predicted columns as well. This table is a major component of the
model content. It can be browsed to make predictions or to look up learned statistics.

Predictions are made for a set of test data (containing, say, new customers for which
the home ownership status is not known). The test data are “joined” with the mining
model (i.e., the truth table) using a special kind of join known as prediction join. A select
command retrieves the resulting predictions.

In this section, we look at several examples of using a data mining model to make
predictions, as well as querying and browsing the model content.

Example A.5 Model prediction. This statement predicts the home ownership status of customers based
on the model home ownership prediction. In particular, we are only interested in the sta-
tus of customers older than 35 years of age.

(1) select t.customer ID, home ownership prediction.home ownership
(2) from home ownership prediction
(3) prediction join
(4) openrowset(‘Provider=Microsoft.Jet.OLEDB’; ‘datasource=c\:customer.db,’
(5) ‘select * from Customers’) as t
(6) on home ownership prediction.gender = t.gender and
(7) home ownership prediction.age = t.age and
(8) home ownership prediction.income = t.income and
(9) home ownership prediction.profession = t.profession
(10) where t.age > 35

The prediction join operator joins the model’s “truth table” (set of all possible cases)
with the test data specified by the openrowset command (lines 4 to 5). The join is made
on the conditions specified by the on clause (in lines 6 to 9), where customers must be
at least 35 years old (line 10). Note that the dot operator (“.”) can be used to refer to a
column from the scope of a nested case. The select command (line 1) operates on the
resulting join, returning a home ownership prediction for each customer ID.

Note that if the column names of the input table (test cases) are exactly the same as
the column names of the mining model, we can alternatively use natural prediction join
in line 3 and omit the on clause (lines 6 to 9).

In addition, the model can be queried for various values and statistics, as shown in
the following example.

Example A.6 List distinct values for an attribute. The set of distinct values for profession can be retrieved
with the statement

select distinct profession from home ownership prediction
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Similarly, the list of all items that may be purchased can be obtained with the statement

select distinct item purchases.item name from home ownership prediction

OLE DB for DM provides several functions that can be used to statistically describe
predictions. For example, the likelihood of a predicted value can be viewed with the
PredictProbability() function, as shown in the following example.

Example A.7 List predicted probability for each class/category or cluster. This statement returns a
table with the predicted home ownership status of each customer, along with the associ-
ated probability.

select customer ID, Predict(home ownership), PredictProbability
(home ownership) as prob

. . .

The output is:

101

102

103

104

…


owns_house�
rents�
owns_house�
owns_condo�
…


customer_ID home_ownership

0.78

0.85

0.90

0.55

…


prob

For each customer, the model returns the most probable class value (here, the status
of home ownership) and the corresponding probability. Note that, as a shortcut, we could
have selected home ownership directly, that is, “select home ownership” is the same as
“select Predict(home ownership).”

If, instead, we are interested in the predicted probability of a particular home owner-
ship status, such as owns house, we can add this as a parameter of the PredictProbability
function, as follows:

select customer ID, Predict(home ownership, ‘owns house’) as prob owns house
. . .



A.3 Model Prediction and Browsing 699

This returns:

101

102

103

104

…


customer_ID prob_owns_house

0.78

0.05

0.90

0.27

…


Suppose, instead, that we have a model that groups the data into clusters. The Cluster()
and ClusterProbability() functions can be similarly used to view the probability associ-
ated with each cluster membership assignment, as in:

select customer ID, gender, Cluster() as C, ClusterProbability() as CP
. . .

This returns:

101

102

…


F

Μ

…


customer_ID gender

3

5

…


C

0.37

0.26

…


CP

where C is a cluster identifier showing the most likely cluster to which a case belongs and
CP is the associated probability.

OLE DB for DM provides several other prediction functions that return a scalar
(nontable) value, such as PredictSupport(), which returns the count of cases in sup-
port of the predicted column value; PredictStdev() and PredictVariance() for the
standard deviation and variance, respectively, of the predicted attribute (generally
for continuous attributes); and PredictProbabilityStdev() and PredictProbabilityVari-
ance(). The functions RangeMid(), RangeMin(), and RangeMax(), respectively, return
the midpoint, minimum, and maximum value of the predicted bucket for a dis-
cretized column.

The PredictHistogram() function can be used to return a histogram of all possible
values and associated statistics for a predicted or clustered column. The histogram is in
the form of a table column, which includes the columns $Support, $Variance, $Stdev,
$Probability, $ProbabilityVariance, and $ProbabilityStdev.

Example A.8 List histogram with predictions. The following provides a histogram for the predicted
attribute, home ownership, showing the support and probability of each home ownership
category:

select customer ID, PredictHistogram(home ownership) as histogram
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101 owns_house

owns_condo

rents

…


customer_ID histogram

home_ownership

786

134

80

…


$Support

0.786

0.134

0.080


…


…

…

…

…


$Probability

…


…


If the argument of PredictHistogram is Cluster(), then a histogram is returned for each
case showing the possible cluster identifiers and associated support, probability, and so
on. OLE DB for DM provides other functions that also return table columns. For exam-
ple, TopCount can be used to view the top k rows in a nested table, per case, as deter-
mined according to a user-specified rank function. This is useful when the number of
nested rows per case is large. TopSum returns the top k rows, per case, such that the total
value for a specified reference column is at least a specified sum. Other examples include
PredictAssociation, PredictSequence, and PredictTimeSeries. Note that some functions
can take either table columns or scalar (nontable) columns as input, such as Predict and
the latter two above.

Let’s look at how we may predict associations.

Example A.9 Predict associations. The following uses the PredictAssociation function to produce a
list of items a customer may be interested in buying, based on the items the customer
has already bought. It uses our market basket model of Example A.3:

select customer ID, PredictAssociation(item purchases, exclusive)
from market basket prediction
prediction join

openrowset(. . .)

The PredictAssociation function returns the table column, item purchases.

101 F

customer_ID item_ purchasesgender

milk

bread

cereal

eggs

item_name

3

2

2

1

item_quantity

The parameter exclusive specifies that any items the customer may have purchased
are not to be included (i.e., only a prediction of what other items a customer is likely to
buy is shown).

There are a few things to note regarding this example. First, the Predict function is
special in that it knows what kind of knowledge is being predicted, based on the data
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mining algorithm specified for the model. Therefore, specifying Predict(item purchases)
in this query is equivalent to specifying PredictAssociation(item purchases).

There are two alternatives to the exclusive parameter, namely, inclusive and input only.
We use inclusive if we want the prediction to contain the complete set of items available
in the store, with associated predicted quantities. Suppose instead that we are only inter-
ested in a subset of the complete set of items (where this subset is the “input case”).
Specifically, for each of these items, we want to predict the quantity that a customer
may purchase, or the likelihood of purchasing the item. In this case, we would specify
input only as the parameter.

How do we specify that we are interested in the likelihood that the customer will pur-
chase an item, for each item in a given input set? We add the include statistics param-
eter to the Predict (or PredictAssociation) function. These statistics are $Support and
$Probability, which are included as columns in the output for item purchases. For a given
item and customer combination, $Support is the number of similar cases (i.e., customers
who bought the same item as the given customer and who have the same profile informa-
tion). $Probability is the likelihood we mentioned earlier. That is, it is the likelihood that
a customer will buy the given item. (Note that this is not the likelihood of the predicted
quantity.) This results in the query:

select customer ID, Predict(item purchases, include statistics, input only)
from market basket prediction
prediction join

openrowset(. . .)

OLE DB for DM has defined a set of schema rowsets, which are tables of metadata.
We can access such metadata regarding the mining services available on a server (where
the services may come from different providers); the parameters for each of the mining
algorithms; mining models; model columns; and model content. Such information can
be queried.

Example A.10 Model content query. The following returns the discovered patterns, represented in
tabular format. (This is the “truth table” we referred to earlier.)

select * from home ownership prediction.content

The model’s content may also be queried to view a set of nodes (e.g., for a decision
tree), rules, formulae, or distributions. This content depends on the data mining algo-
rithm used. The content may also be viewed by extracting an XML description of it in
the form of a string. Interpretation of such a string, however, requires expertise on behalf
of the client application. Navigational operations are provided for browsing model con-
tent represented as a directed graph (e.g., a decision tree). Discovered rules may also be
extracted in PMML (Predictive Model Markup Language) format.

For these methods to function, the client must have certain components, namely, the
OLE DB client for ADO programming or the DSO libraries for DSO programming.
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However, in cases where it is not feasible to install the client components, developers
can use Microsoft’s XML for Analysis. XML for Analysis is a SOAP-based XML API that
standardizes the interaction between clients and analytical data providers. It allows con-
nection and interaction from any client platform without any specific client components
to communicate to the server. This facilitates application deployment and allows cross-
platform development.

As we have seen, OLE DB for DM is a powerful tool for creating and training data min-
ing models and using them for predictions. It is a major step toward the standardization
of a provider-independent data mining language. Together with XML for Analysis, data
mining algorithms from various vendors can easily plug into consumer applications.
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