Second Edition

Data Mining

Concepts and Techniques

Data Mining:
Concepts and Techniques

Second Edition

The Morgan Kaufmann Series in Data Management Systems
Series Editor: Jim Gray, Microsoft Research

Data Mining: Concepts and Techniques, Second Edition

Jiawei Han and Micheline Kamber

Querying XML: XQuery, XPath, and SQL/XML in context

Jim Melton and Stephen Buxton

Foundations of Multidimensional and Metric Data Structures

Hanan Samet

Database Modeling and Design: Logical Design, Fourth Edition

Toby J. Teorey, Sam S. Lightstone and Thomas P. Nadeau

Joe Celko’s SQL for Smarties: Advanced SQL Programming, Third Edition

Joe Celko

Moving Objects Databases

Ralf Guting and Markus Schneider

Joe Celko’s SQL Programming Style

Joe Celko

Data Mining: Practical Machine Learning Tools and Techniques, Second Edition
Tan Witten and Eibe Frank

Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration

Earl Cox

Data Modeling Essentials, Third Edition

Graeme C. Simsion and Graham C. Witt

Location-Based Services

Jochen Schiller and Agnes Voisard

Database Modeling with Microsft® Visio for Enterprise Architects

Terry Halpin, Ken Evans, Patrick Hallock, Bill Maclean

Designing Data-Intensive Web Applications

Stephano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and Maristella Matera
Mining the Web: Discovering Knowledge from Hypertext Data

Soumen Chakrabarti

Advanced SQL:II 1999—Understanding Object-Relational and Other Advanced Features
Jim Melton

Database Tuning: Principles, Experiments, and Troubleshooting Techniques
Dennis Shasha and Philippe Bonnet

SQL:1999—Understanding Relational Language Components

Jim Melton and Alan R. Simon

Information Visualization in Data Mining and Knowledge Discovery

Edited by Usama Fayyad, Georges G. Grinstein, and Andreas Wierse
Transactional Information Systems: Theory, Algorithms, and Practice of Concurrency
Control and Recovery

Gerhard Weikum and Gottfried Vossen

Spatial Databases: With Application to GIS

Philippe Rigaux, Michel Scholl, and Agnes Voisard

Information Modeling and Relational Databases: From Conceptual Analysis to Logical Design
Terry Halpin

Component Database Systems

Edited by Klaus R. Dittrich and Andreas Geppert

Managing Reference Data in Enterprise Databases: Binding Corporate Data to the Wider World
Malcolm Chisholm

Data Mining: Concepts and Techniques

Jiawei Han and Micheline Kamber

Understanding SQL and Java Together: A Guide to SQLJ, JDBC, and Related Technologies
Jim Melton and Andrew Eisenberg

Database: Principles, Programming, and Performance, Second Edition
Patrick and Elizabeth O’Neil

The Object Data Standard: ODMG 3.0

Edited by R. G. G. Cattell and Douglas K. Barry

Data on the Web: From Relations to Semistructured Data and XML

Serge Abiteboul, Peter Buneman, and Dan Suciu

Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations
Tan Witten and Eibe Frank

Joe Celko’s SQL for Smarties: Advanced SQL Programming, Second Edition
Joe Celko

Joe Celko’s Data and Databases: Concepts in Practice

Joe Celko

Developing Time-Oriented Database Applications in SQL

Richard T. Snodgrass

Web Farming for the Data Warehouse

Richard D. Hackathorn

Management of Heterogeneous and Autonomous Database Systems

Edited by Ahmed Elmagarmid, Marek Rusinkiewicz, and Amit Sheth
Object-Relational DBMSs: Tracking the Next Great Wave, Second Edition
Michael Stonebraker and Paul Brown,with Dorothy Moore

A Complete Guide to DB2 Universal Database

Don Chamberlin

Universal Database Management: A Guide to Object/Relational Technology
Cynthia Maro Saracco

Readings in Database Systems, Third Edition

Edited by Michael Stonebraker and Joseph M. Hellerstein

Understanding SQL’s Stored Procedures: A Complete Guide to SQL/PSM
Jim Melton

Principles of Multimedia Database Systems

V. S. Subrahmanian

Principles of Database Query Processing for Advanced Applications
Clement T. Yu and Weiyi Meng

Advanced Database Systems

Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T. Snodgrass,

V. S. Subrahmanian, and Roberto Zicari

Principles of Transaction Processing

Philip A. Bernstein and Eric Newcomer

Using the New DB2: IBMs Object-Relational Database System

Don Chamberlin

Distributed Algorithms

Nancy A. Lynch

Active Database Systems: Triggers and Rules For Advanced Database Processing
Edited by Jennifer Widom and Stefano Ceri

Migrating Legacy Systems: Gateways, Interfaces, & the Incremental Approach
Michael L. Brodie and Michael Stonebraker

Atomic Transactions

Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete

Query Processing for Advanced Database Systems

Edited by Johann Christoph Freytag, David Maier, and Gottfried Vossen
Transaction Processing: Concepts and Techniques

Jim Gray and Andreas Reuter

Building an Object-Oriented Database System: The Story of Oy

Edited by Francois Bancilhon, Claude Delobel, and Paris Kanellakis
Database Transaction Models for Advanced Applications

Edited by Ahmed K. Elmagarmid

A Guide to Developing Client/Server SQL Applications

Setrag Khoshafian, Arvola Chan, Anna Wong, and Harry K. T. Wong

The Benchmark Handbook for Database and Transaction Processing Systems, Second Edition
Edited by Jim Gray

Camelot and Avalon: A Distributed Transaction Facility

Edited by Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector
Readings in Object-Oriented Database Systems

Edited by Stanley B. Zdonik and David Maier

Data Mining:
Concepts and Techniques

Second Edition

Jiawel Han
University of lllinois at Urbana-Champaign

Micheline Kamber

AMSTERDAM BOSTON
HEIDELBERG LONDON y 4°
o NEW YORK OXFORD PARIS L‘
SAN DIEGO SAN FRANCISCO
ER SINGAPORE SYDNEY TOKYO MORGAN KAUFMANN PUBLISHERS

A
ELSEVI

Publisher Diane Cerra

Publishing Services Managers ~ Simon Crump, George Morrison
Editorial Assistant Asma Stephan

Cover Design Ross Carron Design

Cover Mosaic () Image Source/Getty Images
Composition diacriTech

Technical Illustration Dartmouth Publishing, Inc.
Copyeditor Multiscience Press

Proofreader Multiscience Press

Indexer Multiscience Press

Interior printer Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
(© 2006 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and
registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without
prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.co.uk. You may also complete your request on-line via the Elsevier homepage
(http://elsevier.com) by selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN 13:978-1-55860-901-3
ISBN 10: 1-55860-901-6

For information on all Morgan Kaufmann publications, visit our Web site at
www.mkp.com or www.books.elsevier.com

Printed in the United States of America
06 07 08 09 10 54321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOQOKAID o hre Foundation

Dedication

To Y. Dora and Lawrence for your love and encouragement

J.H.

To Erik, Kevan, Kian, and Mikael for your love and inspiration

M.K.

vii

Chapter

Contents

Foreword xix

Preface xxi

Introduction |

.1
1.2
1.3

1.5
1.6
1.7
1.8

What Motivated Data Mining? Why Is It Important? |
So, What Is Data Mining? 5

Data Mining—On What Kind of Data? 9

I.3.1 Relational Databases 10

[.3.2 Data Warehouses 12

[.3.3 Transactional Databases 14

.34 Advanced Data and Information Systems and Advanced
Applications |5

Data Mining Functionalities—What Kinds of Patterns Can Be

Mined? 21

|.4.1 Concept/Class Description: Characterization and
Discrimination 21

.42 Mining Frequent Patterns, Associations, and Correlations 23

.43 Classification and Prediction 24

.44 Cluster Analysis 25

.45 Outlier Analysis 26

|.4.6 Evolution Analysis 27

Are All of the Patterns Interesting? 27
Classification of Data Mining Systems 29
Data Mining Task Primitives 31

Integration of a Data Mining System with
a Database or Data Warehouse System 34

Major Issues in Data Mining 36

Contents

.10 Summary 39
Exercises 40
Bibliographic Notes 42

Chapter 2 Data Preprocessing 47
2.1 Why Preprocess the Data? 48

22 Descriptive Data Summarization 51
2.2.1 Measuring the Central Tendency 51
2.22 Measuring the Dispersion of Data 53
2.2.3 Graphic Displays of Basic Descriptive Data Summaries 56
2.3 Data Cleaning 61
2.3.1 Missing Values 61
232 Noisy Data 62
2.3.3 Data Cleaning as a Process 65
24 Data Integration and Transformation 67
24.1 Data Integration 67
242 Data Transformation 70
25 Data Reduction 72
2.5.1 Data Cube Aggregation 73
252 Attribute Subset Selection 75
2.5.3 Dimensionality Reduction 77
2.54 Numerosity Reduction 80
2.6 Data Discretization and Concept Hierarchy Generation 86
2.6.1 Discretization and Concept Hierarchy Generation for
Numerical Data 88
2.6.2 Concept Hierarchy Generation for Categorical Data 94
2.7 Summary 97
Exercises 97

Bibliographic Notes 101

Chapter 3 Data Warehouse and OLAP Technology: An Overview 105
3.1 What Is a Data Warehouse? 105
3.1.1 Differences between Operational Database Systems
and Data Warehouses 108
3.12 But, Why Have a Separate Data Warehouse! 109
32 A Multidimensional Data Model 110
3.2.1 From Tables and Spreadsheets to Data Cubes |10
3.2.2 Stars, Snowflakes, and Fact Constellations:
Schemas for Multidimensional Databases | 14
323 Examples for Defining Star, Snowflake,
and Fact Constellation Schemas |17

Chapter 4

33

34

35

36

Contents

3.24 Measures: Their Categorization and Computation |19
325 Concept Hierarchies 121
3.2.6 OLAP Operations in the Multidimensional Data Model
3.2.7 A Starnet Query Model for Querying

Multidimensional Databases 126

Data Warehouse Architecture 127

123

3.3.1 Steps for the Design and Construction of Data Warehouses

332 A Three-Tier Data Warehouse Architecture 130
3.3.3 Data Warehouse Back-End Tools and Utilities 134
3.34 Metadata Repository 134
335 Types of OLAP Servers: ROLAP versus MOLAP
versus HOLAP 135
Data Warehouse Implementation 137
34.1 Efficient Computation of Data Cubes 137
342 Indexing OLAP Data 14|
3.4.3 Efficient Processing of OLAP Queries 144
From Data Warehousing to Data Mining 146
3.5.1 Data Warehouse Usage 146
3.52 From On-Line Analytical Processing
to On-Line Analytical Mining 148
Summary 150
Exercises 152

Bibliographic Notes 154

Data Cube Computation and Data Generalization 157

4.1

4.2

Efficient Methods for Data Cube Computation 157
4.1.1 A Road Map for the Materialization of Different Kinds
of Cubes 158
4.1.2 Multiway Array Aggregation for Full Cube Computation
4.1.3 BUC: Computing Iceberg Cubes from the Apex Cuboid
Downward 168
4.1.4 Star-cubing: Computing Iceberg Cubes Using
a Dynamic Startree Structure 173
4.1.5 Precomputing Shell Fragments for Fast High-Dimensional
OLAP 178

|64

4.1.6 Computing Cubes with Complex Iceberg Conditions 187

Further Development of Data Cube and OLAP
Technology 189

4.2.1 Discovery-Driven Exploration of Data Cubes 189

422 Complex Aggregation at Multiple Granularity:
Multifeature Cubes 192

4.2.3 Constrained Gradient Analysis in Data Cubes 195

Xi

Xii

Contents

Chapter 5

43 Attribute-Oriented Induction—An Alternative
Method for Data Generalization and Concept Description 198
4.3.1 Attribute-Oriented Induction for Data Characterization 199
4.3.2 Efficient Implementation of Attribute-Oriented Induction 205
4.3.3 Presentation of the Derived Generalization 206
434 Mining Class Comparisons: Discriminating between
Different Classes 210
4.3.5 Class Description: Presentation of Both Characterization
and Comparison 215
44 Summary 218
Exercises 219

Bibliographic Notes 223

Mining Frequent Patterns, Associations, and Correlations 227
5.1 Basic Concepts and a Road Map 227
5.1.1 Market Basket Analysis: A Motivating Example 228
5.1.2 Frequent ltemsets, Closed ltemsets, and Association Rules 230
5.1.3 Frequent Pattern Mining: A Road Map 232
52 Efficient and Scalable Frequent Itemset Mining Methods 234
52.1 The Apriori Algorithm: Finding Frequent Itemsets Using
Candidate Generation 234
522 Generating Association Rules from Frequent ltemsets 239
523 Improving the Efficiency of Apriori 240
524 Mining Frequent ltemsets without Candidate Generation 242
525 Mining Frequent ltemsets Using Vertical Data Format 245
52.6 Mining Closed Frequent ltemsets 248
53 Mining Various Kinds of Association Rules 250
5.3.1 Mining Multilevel Association Rules 250
532 Mining Multidimensional Association Rules
from Relational Databases and Data Warehouses 254
54 From Association Mining to Correlation Analysis 259
54.1 Strong Rules Are Not Necessarily Interesting: An Example 260
542 From Association Analysis to Correlation Analysis 261
55 Constraint-Based Association Mining 265
55.1 Metarule-Guided Mining of Association Rules 266
552 Constraint Pushing: Mining Guided by Rule Constraints 267
56 Summary 272

Exercises 274
Bibliographic Notes 280

Contents

Chapter 6 Classification and Prediction 285

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

What Is Classification? What Is Prediction? 285

Issues Regarding Classification and Prediction 289
6.2.1 Preparing the Data for Classification and Prediction 289
6.2.2 Comparing Classification and Prediction Methods 290
Classification by Decision Tree Induction 291

6.3.1 Decision Tree Induction 292

6.3.2 Attribute Selection Measures 296

6.3.3 Tree Pruning 304

6.34 Scalability and Decision Tree Induction 306

Bayesian Classification 310

6.4.1 Bayes' Theorem 310

6.4.2 Naive Bayesian Classification 311

64.3 Bayesian Belief Networks 315

644 Training Bayesian Belief Networks 317

Rule-Based Classification 318

6.5.1 Using IF-THEN Rules for Classification 319

6.5.2 Rule Extraction from a Decision Tree 321

6.5.3 Rule Induction Using a Sequential Covering Algorithm 322
Classification by Backpropagation 327

6.6.1 A Multilayer Feed-Forward Neural Network 328

6.6.2 Defining a Network Topology 329

6.6.3 Backpropagation 329

6.64 Inside the Black Box: Backpropagation and Interpretability 334
Support Vector Machines 337

6.7.1 The Case When the Data Are Linearly Separable 337
6.7.2 The Case When the Data Are Linearly Inseparable 342
Associative Classification: Classification by Association
Rule Analysis 344

Lazy Learners (or Learning from Your Neighbors) 347
6.9.1 k-Nearest-Neighbor Classifiers 348

6.9.2 Case-Based Reasoning 350

Other Classification Methods 351

6.10.1 Genetic Algorithms 351

6.10.2 Rough Set Approach 351

6.10.3 Fuzzy Set Approaches 352

Prediction 354

6.11.1 Linear Regression 355

6.11.2 Nonlinear Regression 357

6.11.3 Other Regression-Based Methods 358

xiii

Xiv

Contents

Chapter 7

6.12

6.13

6.14

6.15

6.16

Accuracy and Error Measures 359

6.12.1 Classifier Accuracy Measures 360

6.12.2 Predictor Error Measures 362

Evaluating the Accuracy of a Classifier or Predictor 363
6.13.1 Holdout Method and Random Subsampling 364
6.13.2 Cross-validation 364

6.13.3 Bootstrap 365

Ensemble Methods—Increasing the Accuracy 366
6.14.1 Bagging 366

6.14.2 Boosting 367

Model Selection 370

6.15.1 Estimating Confidence Intervals 370

6.15.2 ROC Curves 372

Summary 373

Exercises 375

Bibliographic Notes 378

Cluster Analysis 383

7.1
72

7.3
74

7.5

7.6

What Is Cluster Analysis? 383

Types of Data in Cluster Analysis 386

7.2.1 Interval-Scaled Variables 387

7.2.2 Binary Variables 389

7.2.3 Categorical, Ordinal, and Ratio-Scaled Variables 392
724 Variables of Mixed Types 395

7.2.5 Vector Objects 397

A Categorization of Major Clustering Methods 398

Partitioning Methods 401

7.4.1 Classical Partitioning Methods: k-Means and k-Medoids 402

74.2 Partitioning Methods in Large Databases: From
k-Medoids to CLARANS 407

Hierarchical Methods 408

7.5.1 Agglomerative and Divisive Hierarchical Clustering 408

7.5.2 BIRCH: Balanced Iterative Reducing and Clustering
Using Hierarchies 412

7.5.3 ROCK: A Hierarchical Clustering Algorithm for
Categorical Attributes 414

7.54 Chameleon: A Hierarchical Clustering Algorithm
Using Dynamic Modeling 416

Density-Based Methods 418

7.6.1 DBSCAN: A Density-Based Clustering Method Based on
Connected Regions with Sufficiently High Density 418

Chapter 8

Contents XV

7.6.2 OPTICS: Ordering Points to Identify the Clustering
Structure 420
7.6.3 DENCLUE: Clustering Based on Density
Distribution Functions 422
7.7 Grid-Based Methods 424
7.7.1 STING: STatistical INformation Grid 425
7.7.2 WaveCluster: Clustering Using Wavelet Transformation 427
78 Model-Based Clustering Methods 429
7.8.1 Expectation-Maximization 429
7.82 Conceptual Clustering 43|
7.8.3 Neural Network Approach 433
79 Clustering High-Dimensional Data 434
79.1 CLIQUE: A Dimension-Growth Subspace Clustering Method 436
7.9.2 PROCLUS: A Dimension-Reduction Subspace Clustering
Method 439
79.3 Frequent Pattern—Based Clustering Methods 440
7.10 Constraint-Based Cluster Analysis 444
7.10.1 Clustering with Obstacle Objects 446
7.10.2 User-Constrained Cluster Analysis 448
7.10.3 Semi-Supervised Cluster Analysis 449
7.11 Outlier Analysis 451
7.1'1.1 Statistical Distribution-Based Outlier Detection 452
7.11.2 Distance-Based Outlier Detection 454
7.11.3 Density-Based Local Outlier Detection 455
7.114 Deviation-Based Outlier Detection 458

7.12 Summary 460
Exercises 461
Bibliographic Notes 464

Mining Stream, Time-Series, and Sequence Data 467
8.1 Mining Data Streams 468
8.1.1 Methodologies for Stream Data Processing and
Stream Data Systems 469
8.1.2 Stream OLAP and Stream Data Cubes 474
8.1.3 Frequent-Pattern Mining in Data Streams 479
8.114 Classification of Dynamic Data Streams 48|
8.1.5 Clustering Evolving Data Streams 486
82 Mining Time-Series Data 489
8.2.1 Trend Analysis 490
8.2.2 Similarity Search in Time-Series Analysis 493

XVi

Chapter

Contents

Chapter 9

8.3

8.4

8.5

Mining Sequence Patterns in Transactional Databases 498
8.3.1 Sequential Pattern Mining: Concepts and Primitives 498

8.3.2 Scalable Methods for Mining Sequential Patterns 500

8.3.3 Constraint-Based Mining of Sequential Patterns 509

8.34 Periodicity Analysis for Time-Related Sequence Data 512
Mining Sequence Patterns in Biological Data 513

8.4.1 Alignment of Biological Sequences 514

8.4.2 Hidden Markov Model for Biological Sequence Analysis 518
Summary 527

Exercises 528

Bibliographic Notes 531

Graph Mining, Social Network Analysis, and Multirelational
Data Mining 535

9.1

9.2

9.3

9.4

Graph Mining 535

9.1.1 Methods for Mining Frequent Subgraphs 536

9.1.2 Mining Variant and Constrained Substructure Patterns 545

9.1.3 Applications: Graph Indexing, Similarity Search, Classification,
and Clustering 551

Social Network Analysis 556

9.2.1 What s a Social Network? 556

9.22 Characteristics of Social Networks 557

9.2.3 Link Mining: Tasks and Challenges 561

9.24 Mining on Social Networks 565

Multirelational Data Mining 571

9.3.1 What Is Multirelational Data Mining? 571

9.3.2 ILP Approach to Multirelational Classification 573

9.3.3 Tuple ID Propagation 575

9.34 Multirelational Classification Using Tuple ID Propagation 577

9.3.5 Multirelational Clustering with User Guidance 580

Summary 584

Exercises 586

Bibliographic Notes 587

|0 Mining Object, Spatial, Multimedia, Text, and Web Data 591
10.1

Multidimensional Analysis and Descriptive Mining of Complex

Data Objects 591

[0.1.1 Generalization of Structured Data 592

10.1.2 Aggregation and Approximation in Spatial and Multimedia Data
Generalization 593

10.2

10.3

10.4

10.5

10.6

Contents

10.1.3 Generalization of Object Identifiers and Class/Subclass
Hierarchies 594

10.1.4 Generalization of Class Composition Hierarchies 595

[0.1.5 Construction and Mining of Object Cubes 596

|0.1.6 Generalization-Based Mining of Plan Databases by
Divide-and-Conquer 596

Spatial Data Mining 600

10.2.1 Spatial Data Cube Construction and Spatial OLAP 601

10.2.2 Mining Spatial Association and Co-location Patterns 605

10.2.3 Spatial Clustering Methods 606

10.24 Spatial Classification and Spatial Trend Analysis 606

10.2.5 Mining Raster Databases 607

Multimedia Data Mining 607

[0.3.1 Similarity Search in Multimedia Data 608

10.3.2 Multidimensional Analysis of Multimedia Data 609

10.3.3 Classification and Prediction Analysis of Multimedia Data 61 |

10.3.4 Mining Associations in Multimedia Data 612

10.3.5 Audio and Video Data Mining 613

Text Mining 614

10.4.1 Text Data Analysis and Information Retrieval 615

10.4.2 Dimensionality Reduction for Text 621

10.4.3 Text Mining Approaches 624

Mining the World Wide Web 628

[0.5.1 Mining the Web Page Layout Structure 630

10.5.2 Mining the Web's Link Structures to Identify
Authoritative Web Pages 631

10.5.3 Mining Multimedia Data on the Web 637

10.5.4 Automatic Classification of Web Documents 638

10.5.5 Web Usage Mining 640

Summary 641

Exercises 642

Bibliographic Notes 645

Chapter || Applications and Trends in Data Mining 649

Data Mining Applications 649

['1.1.1" Data Mining for Financial Data Analysis 649

['1.1.2 Data Mining for the Retail Industry 651

I'1.1.3 Data Mining for the Telecommunication Industry 652
['1.1.4 Data Mining for Biological Data Analysis 654

['1.1.5 Data Mining in Other Scientific Applications 657
['1.1.6 Data Mining for Intrusion Detection 658

xvii

xviii

Contents

1.5
1.6

Appendix

Data Mining System Products and Research Prototypes
['1.2.] How to Choose a Data Mining System 660
['1.2.2 Examples of Commercial Data Mining Systems 663

Additional Themes on Data Mining 665
I'1.3.1 Theoretical Foundations of Data Mining 665
I'1.3.2 Statistical Data Mining 666

[1.3.3 Visual and Audio Data Mining 667

I'1.3.4 Data Mining and Collaborative Filtering 670
Social Impacts of Data Mining 675

I'1.4.1 Ubiquitous and Invisible Data Mining 675
['1.4.2 Data Mining, Privacy, and Data Security 678

Trends in Data Mining 681
Summary 684
Exercises 685
Bibliographic Notes 687

An Introduction to Microsoft’s OLE DB for
Data Mining 691

A.l' Model Creation 693
A2 Model Training 695
A.3 Model Prediction and Browsing 697

Bibliography 703

Index 745

660

Foreword

We are deluged by data—scientific data, medical data, demographic data, financial data,
and marketing data. People have no time to look at this data. Human attention has
become the precious resource. So, we must find ways to automatically analyze the data,
to automatically classify it, to automatically summarize it, to automatically discover and
characterize trends in it, and to automatically flag anomalies. This is one of the most
active and exciting areas of the database research community. Researchers in areas includ-
ing statistics, visualization, artificial intelligence, and machine learning are contributing
to this field. The breadth of the field makes it difficult to grasp the extraordinary progress
over the last few decades.

Six years ago, Jiawei Han’s and Micheline Kamber’s seminal textbook organized and
presented Data Mining. It heralded a golden age of innovation in the field. This revision
of their book reflects that progress; more than half of the references and historical notes
are to recent work. The field has matured with many new and improved algorithms, and
has broadened to include many more datatypes: streams, sequences, graphs, time-series,
geospatial, audio, images, and video. We are certainly not at the end of the golden age—
indeed research and commercial interest in data mining continues to grow—but we are
all fortunate to have this modern compendium.

The book gives quick introductions to database and data mining concepts with
particular emphasis on data analysis. It then covers in a chapter-by-chapter tour the con-
cepts and techniques that underlie classification, prediction, association, and clustering.
These topics are presented with examples, a tour of the best algorithms for each prob-
lem class, and with pragmatic rules of thumb about when to apply each technique. The
Socratic presentation style is both very readable and very informative. I certainly learned
alot from reading the first edition and got re-educated and updated in reading the second
edition.

Jiawei Han and Micheline Kamber have been leading contributors to data mining
research. This is the text they use with their students to bring them up to speed on the

Xix

XX Foreword

field. The field is evolving very rapidly, but this book is a quick way to learn the basic ideas,
and to understand where the field is today. I found it very informative and stimulating,
and believe you will too.

Jim Gray
Microsoft Research
San Francisco, CA, USA

Preface

Our capabilities of both generating and collecting data have been increasing rapidly.
Contributing factors include the computerization of business, scientific, and government
transactions; the widespread use of digital cameras, publication tools, and bar codes for
most commercial products; and advances in data collection tools ranging from scanned
text and image platforms to satellite remote sensing systems. In addition, popular use
of the World Wide Web as a global information system has flooded us with a tremen-
dous amount of data and information. This explosive growth in stored or transient data
has generated an urgent need for new techniques and automated tools that can intelli-
gently assist us in transforming the vast amounts of data into useful information and
knowledge.

This book explores the concepts and techniques of data mining, a promising and
flourishing frontier in data and information systems and their applications. Data mining,
also popularly referred to as knowledge discovery from data (KDD), is the automated or
convenient extraction of patterns representing knowledge implicitly stored or captured
in large databases, data warehouses, the Web, other massive information repositories, or
data streams.

Data mining is a multidisciplinary field, drawing work from areas including database
technology, machine learning, statistics, pattern recognition, information retrieval,
neural networks, knowledge-based systems, artificial intelligence, high-performance
computing, and data visualization. We present techniques for the discovery of patterns
hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effec-
tiveness, and scalability. As a result, this book is not intended as an introduction to
database systems, machine learning, statistics, or other such areas, although we do pro-
vide the background necessary in these areas in order to facilitate the reader’s compre-
hension of their respective roles in data mining. Rather, the book is a comprehensive
introduction to data mining, presented with effectiveness and scalability issues in focus.
It should be useful for computing science students, application developers, and business
professionals, as well as researchers involved in any of the disciplines listed above.

Data mining emerged during the late 1980s, made great strides during the 1990s, and
continues to flourish into the new millennium. This book presents an overall picture
of the field, introducing interesting data mining techniques and systems and discussing

xxi

xxii

Preface

applications and research directions. An important motivation for writing this book was
the need to build an organized framework for the study of data mining—a challenging
task, owing to the extensive multidisciplinary nature of this fast-developing field. We
hope that this book will encourage people with different backgrounds and experiences
to exchange their views regarding data mining so as to contribute toward the further
promotion and shaping of this exciting and dynamic field.

Organization of the Book

Since the publication of the first edition of this book, great progress has been made in
the field of data mining. Many new data mining methods, systems, and applications have
been developed. This new edition substantially revises the first edition of the book, with
numerous enhancements and a reorganization of the technical contents of the entire
book. In addition, several new chapters are included to address recent developments on
mining complex types of data, including stream data, sequence data, graph structured
data, social network data, and multirelational data.

The chapters are described briefly as follows, with emphasis on the new material.

Chapter 1 provides an introduction to the multidisciplinary field of data mining.
It discusses the evolutionary path of database technology, which has led to the need
for data mining, and the importance of its applications. It examines the types of data
to be mined, including relational, transactional, and data warehouse data, as well as
complex types of data such as data streams, time-series, sequences, graphs, social net-
works, multirelational data, spatiotemporal data, multimedia data, text data, and Web
data. The chapter presents a general classification of data mining tasks, based on the
different kinds of knowledge to be mined. In comparison with the first edition, two
new sections are introduced: Section 1.7 is on data mining primitives, which allow
users to interactively communicate with data mining systems in order to direct the
mining process, and Section 1.8 discusses the issues regarding how to integrate a data
mining system with a database or data warehouse system. These two sections repre-
sent the condensed materials of Chapter 4, “Data Mining Primitives, Languages and
Architectures,” in the first edition. Finally, major challenges in the field are discussed.

Chapter 2 introduces techniques for preprocessing the data before mining. This
corresponds to Chapter 3 of the first edition. Because data preprocessing precedes the
construction of data warehouses, we address this topic here, and then follow with an
introduction to data warehouses in the subsequent chapter. This chapter describes var-
ious statistical methods for descriptive data summarization, including measuring both
central tendency and dispersion of data. The description of data cleaning methods has
been enhanced. Methods for data integration and transformation and data reduction are
discussed, including the use of concept hierarchies for dynamic and static discretization.
The automatic generation of concept hierarchies is also described.

Chapters 3 and 4 provide a solid introduction to data warehouse, OLAP (On-Line
Analytical Processing), and data generalization. These two chapters correspond to
Chapters 2 and 5 of the first edition, but with substantial enhancement regarding data

Preface xxiii

warehouse implementation methods. Chapter 3 introduces the basic concepts, archi-
tectures and general implementations of data warehouse and on-line analytical process-
ing, as well as the relationship between data warehousing and data mining. Chapter 4
takes a more in-depth look at data warehouse and OLAP technology, presenting a
detailed study of methods of data cube computation, including the recently developed
star-cubing and high-dimensional OLAP methods. Further explorations of data ware-
house and OLAP are discussed, such as discovery-driven cube exploration, multifeature
cubes for complex data mining queries, and cube gradient analysis. Attribute-oriented
induction, an alternative method for data generalization and concept description, is
also discussed.

Chapter 5 presents methods for mining frequent patterns, associations, and corre-
lations in transactional and relational databases and data warehouses. In addition to
introducing the basic concepts, such as market basket analysis, many techniques for fre-
quent itemset mining are presented in an organized way. These range from the basic
Apriori algorithm and its variations to more advanced methods that improve on effi-
ciency, including the frequent-pattern growth approach, frequent-pattern mining with
vertical data format, and mining closed frequent itemsets. The chapter also presents tech-
niques for mining multilevel association rules, multidimensional association rules, and
quantitative association rules. In comparison with the previous edition, this chapter has
placed greater emphasis on the generation of meaningful association and correlation
rules. Strategies for constraint-based mining and the use of interestingness measures to
focus the rule search are also described.

Chapter 6 describes methods for data classification and prediction, including decision
tree induction, Bayesian classification, rule-based classification, the neural network tech-
nique of backpropagation, support vector machines, associative classification, k-nearest
neighbor classifiers, case-based reasoning, genetic algorithms, rough set theory, and fuzzy
set approaches. Methods of regression are introduced. Issues regarding accuracy and how
to choose the best classifier or predictor are discussed. In comparison with the corre-
sponding chapter in the first edition, the sections on rule-based classification and support
vector machines are new, and the discussion of measuring and enhancing classification
and prediction accuracy has been greatly expanded.

Cluster analysis forms the topic of Chapter 7. Several major data clustering approaches
are presented, including partitioning methods, hierarchical methods, density-based
methods, grid-based methods, and model-based methods. New sections in this edition
introduce techniques for clustering high-dimensional data, as well as for constraint-
based cluster analysis. Outlier analysis is also discussed.

Chapters 8 to 10 treat advanced topics in data mining and cover a large body of
materials on recent progress in this frontier. These three chapters now replace our pre-
vious single chapter on advanced topics. Chapter 8 focuses on the mining of stream
data, time-series data, and sequence data (covering both transactional sequences and
biological sequences). The basic data mining techniques (such as frequent-pattern min-
ing, classification, clustering, and constraint-based mining) are extended for these types
of data. Chapter 9 discusses methods for graph and structural pattern mining, social
network analysis and multirelational data mining. Chapter 10 presents methods for

xxiv Preface

mining object, spatial, multimedia, text, and Web data, which cover a great deal of new
progress in these areas.

Finally, in Chapter 11, we summarize the concepts presented in this book and discuss
applications and trends in data mining. New material has been added on data mining for
biological and biomedical data analysis, other scientific applications, intrusion detection,
and collaborative filtering. Social impacts of data mining, such as privacy and data secu-
rity issues, are discussed, in addition to challenging research issues. Further discussion
of ubiquitous data mining has also been added.

The Appendix provides an introduction to Microsoft’s OLE DB for Data Mining
(OLEDB for DM).

Throughout the text, italic font is used to emphasize terms that are defined, while bold
font is used to highlight or summarize main ideas. Sans serif font is used for reserved
words. Bold italic font is used to represent multidimensional quantities.

This book has several strong features that set it apart from other texts on data min-
ing. It presents a very broad yet in-depth coverage from the spectrum of data mining,
especially regarding several recent research topics on data stream mining, graph min-
ing, social network analysis, and multirelational data mining. The chapters preceding
the advanced topics are written to be as self-contained as possible, so they may be read
in order of interest by the reader. All of the major methods of data mining are pre-
sented. Because we take a database point of view to data mining, the book also presents
many important topics in data mining, such as scalable algorithms and multidimensional
OLAP analysis, that are often overlooked or minimally treated in other books.

To the Instructor

This book is designed to give a broad, yet detailed overview of the field of data mining. It
can be used to teach an introductory course on data mining at an advanced undergraduate
level or at the first-year graduate level. In addition, it can also be used to teach an advanced
course on data mining.

If you plan to use the book to teach an introductory course, you may find that the
materials in Chapters 1 to 7 are essential, among which Chapter 4 may be omitted if you
do not plan to cover the implementation methods for data cubing and on-line analytical
processing in depth. Alternatively, you may omit some sections in Chapters 1 to 7 and
use Chapter 11 as the final coverage of applications and trends on data mining.

If you plan to use the book to teach an advanced course on data mining, you may use
Chapters 8 through 11. Moreover, additional materials and some recent research papers
may supplement selected themes from among the advanced topics of these chapters.

Individual chapters in this book can also be used for tutorials or for special topics
in related courses, such as database systems, machine learning, pattern recognition, and
intelligent data analysis.

Each chapter ends with a set of exercises, suitable as assigned homework. The exercises
are either short questions that test basic mastery of the material covered, longer questions
that require analytical thinking, or implementation projects. Some exercises can also be

Preface xxv

used as research discussion topics. The bibliographic notes at the end of each chapter can
be used to find the research literature that contains the origin of the concepts and meth-
ods presented, in-depth treatment of related topics, and possible extensions. Extensive
teaching aids are available from the book’s websites, such as lecture slides, reading lists,
and course syllabi.

To the Student

We hope that this textbook will spark your interest in the young yet fast-evolving field of
data mining. We have attempted to present the material in a clear manner, with careful
explanation of the topics covered. Each chapter ends with a summary describing the main
points. We have included many figures and illustrations throughout the text in order to
make the book more enjoyable and reader-friendly. Although this book was designed as
a textbook, we have tried to organize it so that it will also be useful to you as a reference
book or handbook, should you later decide to perform in-depth research in the related
fields or pursue a career in data mining.
What do you need to know in order to read this book?

You should have some knowledge of the concepts and terminology associated with
database systems, statistics, and machine learning. However, we do try to provide
enough background of the basics in these fields, so that if you are not so familiar with
these fields or your memory is a bit rusty, you will not have trouble following the
discussions in the book.

You should have some programming experience. In particular, you should be able to
read pseudo-code and understand simple data structures such as multidimensional
arrays.

To the Professional

This book was designed to cover a wide range of topics in the field of data mining. As a
result, it is an excellent handbook on the subject. Because each chapter is designed to be
as stand-alone as possible, you can focus on the topics that most interest you. The book
can be used by application programmers and information service managers who wish to
learn about the key ideas of data mining on their own. The book would also be useful for
technical data analysis staff in banking, insurance, medicine, and retailing industries who
are interested in applying data mining solutions to their businesses. Moreover, the book
may serve as a comprehensive survey of the data mining field, which may also benefit
researchers who would like to advance the state-of-the-art in data mining and extend
the scope of data mining applications.

The techniques and algorithms presented are of practical utility. Rather than select-
ing algorithms that perform well on small “toy” data sets, the algorithms described
in the book are geared for the discovery of patterns and knowledge hidden in large,

XXVi

Preface

real data sets. In Chapter 11, we briefly discuss data mining systems in commercial
use, as well as promising research prototypes. Algorithms presented in the book are
illustrated in pseudo-code. The pseudo-code is similar to the C programming lan-
guage, vet is designed so that it should be easy to follow by programmers unfamiliar
with C or C++. If you wish to implement any of the algorithms, you should find the
translation of our pseudo-code into the programming language of your choice to be
a fairly straightforward task.

Book Websites with Resources

The book has a website at www.cs.uiuc.edu/~hanj/bk2 and another with Morgan Kauf-
mann Publishers at www.mkp.com/datamining2e. These websites contain many sup-
plemental materials for readers of this book or anyone else with an interest in data
mining. The resources include:

Slide presentations per chapter. Lecture notes in Microsoft PowerPoint slides are
available for each chapter.

Artwork of the book. This may help you to make your own slides for your class-
room teaching.

Instructors’ manual. This complete set of answers to the exercises in the book is
available only to instructors from the publisher’s website.

Course syllabi and lecture plan. These are given for undergraduate and graduate
versions of introductory and advanced courses on data mining, which use the text
and slides.

Supplemental reading lists with hyperlinks. Seminal papers for supplemental read-
ing are organized per chapter.

Links to data mining data sets and software. We will provide a set of links to data
mining data sets and sites containing interesting data mining software pack-
ages, such as IlliMine from the University of Illinois at Urbana-Champaign
(http://illimine.cs.uiuc.edu).

Sample assignments, exams, course projects. A set of sample assignments, exams,
and course projects will be made available to instructors from the publisher’s
website.

Table of contents of the book in PDF.

Errata on the different printings of the book. We welcome you to point out any
errors in the book. Once the error is confirmed, we will update this errata list and
include acknowledgment of your contribution.

Comments or suggestions can be sent to hanj@cs.uiuc.edu. We would be happy to
hear from you.

Preface xxvii

Acknowledgments for the First Edition of the Book

We would like to express our sincere thanks to all those who have worked or are cur-
rently working with us on data mining—related research and/or the DBMiner project, or
have provided us with various support in data mining. These include Rakesh Agrawal,
Stella Atkins, Yvan Bedard, Binay Bhattacharya, (Yandong) Dora Cai, Nick Cercone,
Surajit Chaudhuri, Sonny H. S. Chee, Jianping Chen, Ming-Syan Chen, Qing Chen,
Qiming Chen, Shan Cheng, David Cheung, Shi Cong, Son Dao, Umeshwar Dayal,
James Delgrande, Guozhu Dong, Carole Edwards, Max Egenhofer, Martin Ester, Usama
Fayyad, Ling Feng, Ada Fu, Yongjian Fu, Daphne Gelbart, Randy Goebel, Jim Gray,
Robert Grossman, Wan Gong, Yike Guo, Eli Hagen, Howard Hamilton, Jing He, Larry
Henschen, Jean Hou, Mei-Chun Hsu, Kan Hu, Haiming Huang, Yue Huang, Julia
Itskevitch, Wen Jin, Tiko Kameda, Hiroyuki Kawano, Rizwan Kheraj, Eddie Kim, Won
Kim, Krzysztof Koperski, Hans-Peter Kriegel, Vipin Kumar, Laks V. S. Lakshmanan,
Joyce Man Lam, James Lau, Deyi Li, George (Wenmin) Li, Jin Li, Ze-Nian Li, Nancy
Liao, Gang Liu, Junqiang Liu, Ling Liu, Alan (Yijun) Lu, Hongjun Lu, Tong Lu, Wei Lu,
Xuebin Lu, Wo-Shun Luk, Heikki Mannila, Runying Mao, Abhay Mehta, Gabor Melli,
Alberto Mendelzon, Tim Merrett, Harvey Miller, Drew Miners, Behzad Mortazavi-Asl,
Richard Muntz, Raymond T. Ng, Vicent Ng, Shojiro Nishio, Beng-Chin Ooi, Tamer
Ozsu, Jian Pei, Gregory Piatetsky-Shapiro, Helen Pinto, Fred Popowich, Amynmo-
hamed Rajan, Peter Scheuermann, Shashi Shekhar, Wei-Min Shen, Avi Silberschatz,
Evangelos Simoudis, Nebojsa Stefanovic, Yin Jenny Tam, Simon Tang, Zhaohui Tang,
Dick Tsur, Anthony K. H. Tung, Ke Wang, Wei Wang, Zhaoxia Wang, Tony Wind, Lara
Winstone, Ju Wu, Betty (Bin) Xia, Cindy M. Xin, Xiaowei Xu, Qiang Yang, Yiwen Yin,
Clement Yu, Jeffrey Yu, Philip S. Yu, Osmar R. Zaiane, Carlo Zaniolo, Shuhua Zhang,
Zhong Zhang, Yvonne Zheng, Xiaofang Zhou, and Hua Zhu. We are also grateful to
Jean Hou, Helen Pinto, Lara Winstone, and Hua Zhu for their help with some of the
original figures in this book, and to Eugene Belchev for his careful proofreading of
each chapter.

We also wish to thank Diane Cerra, our Executive Editor at Morgan Kaufmann
Publishers, for her enthusiasm, patience, and support during our writing of this book,
as well as Howard Severson, our Production Editor, and his staff for their conscien-
tious efforts regarding production. We are indebted to all of the reviewers for their
invaluable feedback. Finally, we thank our families for their wholehearted support
throughout this project.

Acknowledgments for the Second Edition of the Book

We would like to express our grateful thanks to all of the previous and current mem-
bers of the Data Mining Group at UIUC, the faculty and students in the Data and
Information Systems (DAIS) Laboratory in the Department of Computer Science,
the University of Illinois at Urbana-Champaign, and many friends and colleagues,

xxviii Preface

whose constant support and encouragement have made our work on this edition a
rewarding experience. These include Gul Agha, Rakesh Agrawal, Loretta Auvil, Peter
Bajcsy, Geneva Belford, Deng Cai, Y. Dora Cai, Roy Cambell, Kevin C.-C. Chang, Sura-
jit Chaudhuri, Chen Chen, Yixin Chen, Yuguo Chen, Hong Cheng, David Cheung,
Shengnan Cong, Gerald DeJong, AnHai Doan, Guozhu Dong, Charios Ermopoulos,
Martin Ester, Christos Faloutsos, Wei Fan, Jack C. Feng, Ada Fu, Michael Garland,
Johannes Gehrke, Hector Gonzalez, Mehdi Harandi, Thomas Huang, Wen Jin, Chu-
lyun Kim, Sangkyum Kim, Won Kim, Won-Young Kim, David Kuck, Young-Koo Lee,
Harris Lewin, Xiaolei Li, Yifan Li, Chao Liu, Han Liu, Huan Liu, Hongyan Liu, Lei Liu,
Ying Lu, Klara Nahrstedt, David Padua, Jian Pei, Lenny Pitt, Daniel Reed, Dan Roth,
Bruce Schatz, Zheng Shao, Marc Snir, Zhaohui Tang, Bhavani M. Thuraisingham, Josep
Torrellas, Peter Tzvetkov, Benjamin W. Wah, Haixun Wang, Jianyong Wang, Ke Wang,
Muyuan Wang, Wei Wang, Michael Welge, Marianne Winslett, Ouri Wolfson, Andrew
Wu, Tianyi Wu, Dong Xin, Xifeng Yan, Jiong Yang, Xiaoxin Yin, Hwanjo Yu, Jeffrey
X. Yu, Philip S. Yu, Maria Zemankova, ChengXiang Zhai, Yuanyuan Zhou, and Wei
Zou. Deng Cai and ChengXiang Zhai have contributed to the text mining and Web
mining sections, Xifeng Yan to the graph mining section, and Xiaoxin Yin to the mul-
tirelational data mining section. Hong Cheng, Charios Ermopoulos, Hector Gonzalez,
David J. Hill, Chulyun Kim, Sangkyum Kim, Chao Liu, Hongyan Liu, Kasif Manzoor,
Tianyi Wu, Xifeng Yan, and Xiaoxin Yin have contributed to the proofreading of the
individual chapters of the manuscript.

We also which to thank Diane Cerra, our Publisher at Morgan Kaufmann Pub-
lishers, for her constant enthusiasm, patience, and support during our writing of this
book. We are indebted to Alan Rose, the book Production Project Manager, for his
tireless and ever prompt communications with us to sort out all details of the pro-
duction process. We are grateful for the invaluable feedback from all of the reviewers.
Finally, we thank our families for their wholehearted support throughout this project.

Introduction

This book is an introduction to a young and promising field called data mining and knowledge
discovery from data. The material in this book is presented from a database perspective,
where emphasis is placed on basic data mining concepts and techniques for uncovering
interesting data patterns hidden in large data sets. The implementation methods dis-
cussed are particularly oriented toward the development of scalable and efficient data
mining tools. In this chapter, you will learn how data mining is part of the natural
evolution of database technology, why data mining is important, and how it is defined.
You will learn about the general architecture of data mining systems, as well as gain
insight into the kinds of data on which mining can be performed, the types of patterns
that can be found, and how to tell which patterns represent useful knowledge. You
will study data mining primitives, from which data mining query languages can be
designed. Issues regarding how to integrate a data mining system with a database or
data warehouse are also discussed. In addition to studying a classification of data min-
ing systems, you will read about challenging research issues for building data mining
tools of the future.

What Motivated Data Mining? Why Is It Important?

Necessity is the mother of invention. —Plato

Data mining has attracted a great deal of attention in the information industry and in
society as a whole in recent years, due to the wide availability of huge amounts of data
and the imminent need for turning such data into useful information and knowledge.
The information and knowledge gained can be used for applications ranging from mar-
ket analysis, fraud detection, and customer retention, to production control and science
exploration.

Data mining can be viewed as a result of the natural evolution of information
technology. The database system industry has witnessed an evolutionary path in the
development of the following functionalities (Figure 1.1): data collection and database
creation, data management (including data storage and retrieval, and database

2

Chapter 1 Introduction

Data Collection and Database Creation
(1960s and earlier)
* Primitive file processing

Y

Database Management Systems

(1970s—early 1980s)

* Hierarchical and network database systems

* Relational database systems

* Data modeling tools: entity-relational models, etc.
* Indexing and accessing methods: B-trees, hashing, etc.
* Query languages: SQL, etc.

» User interfaces, forms and reports

* Query processing and query optimization

* Transactions, concurrency control and recovery
* On-line transaction processing (OLTP)

A

Y

Y

Advanced Database
Systems
(mid-1980s—present)

extended relational,
object-relational, etc.

spatial, temporal,
multimedia, active,
stream and sensor,
scientific and
engineering,
knowledge-based

* Advanced data models:

» Advanced applications:

Advanced Data Analysis:

Data Warehousing and Data Mining

(late 1980s—present)

* Data warehouse and OLAP

» Data mining and knowledge discovery:
generalization, classification, association,
clustering, frequent pattern and structured
pattern analysis, outlier analysis, trend
and deviation analysis, etc.

» Advanced data mining applications:
stream data mining, bio-data mining,
time-series analysis, text mining,

Web mining, intrusion detection, etc.

» Data mining and society:

privacy-preserving data mining

Web-based databases

(1990s—present)

* XML-based database
systems

* Integration with
information retrieval

¢ Data and information
integration

Y

New Generation of Integrated Data

| and Information Systems

A

(present—future)

Figure 1.1 The evolution of database system technology.

1.1 What Motivated Data Mining? Why Is It Important? 3

transaction processing), and advanced data analysis (involving data warehousing and
data mining). For instance, the early development of data collection and database
creation mechanisms served as a prerequisite for later development of effective mech-
anisms for data storage and retrieval, and query and transaction processing. With
numerous database systems offering query and transaction processing as common
practice, advanced data analysis has naturally become the next target.

Since the 1960s, database and information technology has been evolving system-
atically from primitive file processing systems to sophisticated and powerful database
systems. The research and development in database systems since the 1970s has pro-
gressed from early hierarchical and network database systems to the development of
relational database systems (where data are stored in relational table structures; see
Section 1.3.1), data modeling tools, and indexing and accessing methods. In addition,
users gained convenient and flexible data access through query languages, user inter-
faces, optimized query processing, and transaction management. Efficient methods
for on-line transaction processing (OLTP), where a query is viewed as a read-only
transaction, have contributed substantially to the evolution and wide acceptance of
relational technology as a major tool for efficient storage, retrieval, and management
of large amounts of data.

Database technology since the mid-1980s has been characterized by the popular
adoption of relational technology and an upsurge of research and development
activities on new and powerful database systems. These promote the development of
advanced data models such as extended-relational, object-oriented, object-relational,
and deductive models. Application-oriented database systems, including spatial, tem-
poral, multimedia, active, stream, and sensor, and scientific and engineering databases,
knowledge bases, and office information bases, have flourished. Issues related to the
distribution, diversification, and sharing of data have been studied extensively. Hetero-
geneous database systems and Internet-based global information systems such as the
World Wide Web (WWW) have also emerged and play a vital role in the information
industry.

The steady and amazing progress of computer hardware technology in the past
three decades has led to large supplies of powerful and affordable computers, data
collection equipment, and storage media. This technology provides a great boost to
the database and information industry, and makes a huge number of databases and
information repositories available for transaction management, information retrieval,
and data analysis.

Data can now be stored in many different kinds of databases and information
repositories. One data repository architecture that has emerged is the data warehouse
(Section 1.3.2), a repository of multiple heterogeneous data sources organized under a
unified schema at a single site in order to facilitate management decision making. Data
warehouse technology includes data cleaning, data integration, and on-line analytical
processing (OLAP), that is, analysis techniques with functionalities such as summa-
rization, consolidation, and aggregation as well as the ability to view information from
different angles. Although OLAP tools support multidimensional analysis and deci-
sion making, additional data analysis tools are required for in-depth analysis, such as

Chapter 1 Introduction

How can I analyze my data?

Figure 1.2 We are data rich, but information poor.

data classification, clustering, and the characterization of data changes over time. In
addition, huge volumes of data can be accumulated beyond databases and data ware-
houses. Typical examples include the World Wide Web and data streams, where data
flow in and out like streams, as in applications like video surveillance, telecommunica-
tion, and sensor networks. The effective and efficient analysis of data in such different
forms becomes a challenging task.

The abundance of data, coupled with the need for powerful data analysis tools, has
been described as a data rich but information poor situation. The fast-growing, tremen-
dous amount of data, collected and stored in large and numerous data repositories, has
far exceeded our human ability for comprehension without powerful tools (Figure 1.2).
As aresult, data collected in large data repositories become “data tombs”—data archives
that are seldom visited. Consequently, important decisions are often made based not on
the information-rich data stored in data repositories, but rather on a decision maker’s
intuition, simply because the decision maker does not have the tools to extract the valu-
able knowledge embedded in the vast amounts of data. In addition, consider expert
system technologies, which typically rely on users or domain experts to manually input
knowledge into knowledge bases. Unfortunately, this procedure is prone to biases and
errors, and is extremely time-consuming and costly. Data mining tools perform data
analysis and may uncover important data patterns, contributing greatly to business

1.2 So, What Is Data Mining? 5

strategies, knowledge bases, and scientific and medical research. The widening gap
between data and information calls for a systematic development of data mining tools
that will turn data tombs into “golden nuggets” of knowledge.

So, What Is Data Mining?

Simply stated, data mining refers to extracting or “mining” knowledge from large amounts
of data. The term is actually a misnomer. Remember that the mining of gold from rocks
or sand is referred to as gold mining rather than rock or sand mining. Thus, data mining
should have been more appropriately named “knowledge mining from data,” which is
unfortunately somewhat long. “Knowledge mining,” a shorter term, may not reflect the
emphasis on mining from large amounts of data. Nevertheless, mining is a vivid term
characterizing the process that finds a small set of precious nuggets from a great deal of
raw material (Figure 1.3). Thus, such a misnomer that carries both “data” and “min-
ing” became a popular choice. Many other terms carry a similar or slightly different
meaning to data mining, such as knowledge mining from data, knowledge extraction,
data/pattern analysis, data archaeology, and data dredging.

Many people treat data mining as a synonym for another popularly used term, Knowl-
edge Discovery from Data, or KDD. Alternatively, others view data mining as simply an

Figure 1.3 Data mining—searching for knowledge (interesting patterns) in your data.

Chapter 1 Introduction

6

= '
B '
m
nm) :
S & 2
o Z I Sl
7]] =1 '
_ S =]] '
e“ I O o H
|72] s < '
AE "
= € '
= .
& 5 2
o= 3
= <
= = =
|| » S 5 <
S D o)
D =
SR=
O =

Figure 1.4 Data mining as a step in the process of knowledge discovery.

1.2 So, What Is Data Mining? 7

essential step in the process of knowledge discovery. Knowledge discovery as a process
is depicted in Figure 1.4 and consists of an iterative sequence of the following steps:

I. Data cleaning (to remove noise and inconsistent data)

2. Data integration (where multiple data sources may be combined)!

3. Dataselection (where data relevant to the analysis task are retrieved from the database)
4

. Data transformation (where data are transformed or consolidated into forms appro-
priate for mining by performing summary or aggregation operations, for instance)?

5. Data mining (an essential process where intelligent methods are applied in order to
extract data patterns)

6. Pattern evaluation (to identify the truly interesting patterns representing knowledge
based on some interestingness measures; Section 1.5)

7. Knowledge presentation (where visualization and knowledge representation tech-
niques are used to present the mined knowledge to the user)

Steps 1 to 4 are different forms of data preprocessing, where the data are prepared
for mining. The data mining step may interact with the user or a knowledge base. The
interesting patterns are presented to the user and may be stored as new knowledge in
the knowledge base. Note that according to this view, data mining is only one step in the
entire process, albeit an essential one because it uncovers hidden patterns for evaluation.

We agree that data mining is a step in the knowledge discovery process. However, in
industry, in media, and in the database research milieu, the term data mining is becoming
more popular than the longer term of knowledge discovery from data. Therefore, in this
book, we choose to use the term data mining. We adopt a broad view of data mining
functionality: data mining is the process of discovering interesting knowledge from large
amounts of data stored in databases, data warehouses, or other information repositories.

Based on this view, the architecture of a typical data mining system may have the
following major components (Figure 1.5):

Database, data warehouse, World Wide Web, or other information repository: This
is one or a set of databases, data warehouses, spreadsheets, or other kinds of informa-
tion repositories. Data cleaning and data integration techniques may be performed
on the data.

Database or data warehouse server: The database or data warehouse server is respon-
sible for fetching the relevant data, based on the user’s data mining request.

'A popular trend in the information industry is to perform data cleaning and data integration as a
preprocessing step, where the resulting data are stored in a data warehouse.

2Sometimes data transformation and consolidation are performed before the data selection process,
particularly in the case of data warehousing. Data reduction may also be performed to obtain a smaller
representation of the original data without sacrificing its integrity.

Chapter 1 Introduction

v !

User Interface

1

i

[Pattern Evaluation

A Knowledge
/ Base

[Data Mining Engine
A

/

Database or
Data Warehouse Server

: data cleaning, integration and selection :

Database Data World Wide Other Info
Warehouse Web Repositories

Figure 1.5 Architecture of a typical data mining system.

Knowledge base: This is the domain knowledge that is used to guide the search or
evaluate the interestingness of resulting patterns. Such knowledge can include con-
cept hierarchies, used to organize attributes or attribute values into different levels of
abstraction. Knowledge such as user beliefs, which can be used to assess a pattern’s
interestingness based on its unexpectedness, may also be included. Other examples
of domain knowledge are additional interestingness constraints or thresholds, and
metadata (e.g., describing data from multiple heterogeneous sources).

Data mining engine: This is essential to the data mining system and ideally consists of
a set of functional modules for tasks such as characterization, association and correla-
tion analysis, classification, prediction, cluster analysis, outlier analysis, and evolution
analysis.

Pattern evaluation module: This component typically employs interestingness mea-
sures (Section 1.5) and interacts with the data mining modules so as to focus the
search toward interesting patterns. It may use interestingness thresholds to filter
out discovered patterns. Alternatively, the pattern evaluation module may be inte-
grated with the mining module, depending on the implementation of the data
mining method used. For efficient data mining, it is highly recommended to push

1.3 Data Mining—On What Kind of Data? 9

the evaluation of pattern interestingness as deep as possible into the mining process
so as to confine the search to only the interesting patterns.

User interface: This module communicates between users and the data mining system,
allowing the user to interact with the system by specifying a data mining query or
task, providing information to help focus the search, and performing exploratory data
mining based on the intermediate data mining results. In addition, this component
allows the user to browse database and data warehouse schemas or data structures,
evaluate mined patterns, and visualize the patterns in different forms.

From a data warehouse perspective, data mining can be viewed as an advanced stage
of on-line analytical processing (OLAP). However, data mining goes far beyond the nar-
row scope of summarization-style analytical processing of data warehouse systems by
incorporating more advanced techniques for data analysis.

Although there are many “data mining systems” on the market, not all of them can
perform true data mining. A data analysis system that does not handle large amounts of
data should be more appropriately categorized as a machine learning system, a statistical
data analysis tool, or an experimental system prototype. A system that can only per-
form data or information retrieval, including finding aggregate values, or that performs
deductive query answering in large databases should be more appropriately categorized
as a database system, an information retrieval system, or a deductive database system.

Data mining involves an integration of techniques from multiple disciplines such as
database and data warehouse technology, statistics, machine learning, high-performance
computing, pattern recognition, neural networks, data visualization, information
retrieval, image and signal processing, and spatial or temporal data analysis. We adopt
a database perspective in our presentation of data mining in this book. That is, empha-
sis is placed on efficient and scalable data mining techniques. For an algorithm to be
scalable, its running time should grow approximately linearly in proportion to the size
of the data, given the available system resources such as main memory and disk space.
By performing data mining, interesting knowledge, regularities, or high-level informa-
tion can be extracted from databases and viewed or browsed from different angles. The
discovered knowledge can be applied to decision making, process control, information
management, and query processing. Therefore, data mining is considered one of the most
important frontiers in database and information systems and one of the most promising
interdisciplinary developments in the information technology.

Data Mining—On What Kind of Data?

In this section, we examine a number of different data repositories on which mining
can be performed. In principle, data mining should be applicable to any kind of data
repository, as well as to transient data, such as data streams. Thus the scope of our
examination of data repositories will include relational databases, data warehouses,
transactional databases, advanced database systems, flat files, data streams, and the

10

Chapter 1 Introduction

1.3.1

Example 1.1

World Wide Web. Advanced database systems include object-relational databases and
specific application-oriented databases, such as spatial databases, time-series databases,
text databases, and multimedia databases. The challenges and techniques of mining may
differ for each of the repository systems.

Although this book assumes that readers have basic knowledge of information
systems, we provide a brief introduction to each of the major data repository systems
listed above. In this section, we also introduce the fictitious AllElectronics store, which
will be used to illustrate concepts throughout the text.

Relational Databases

A database system, also called a database management system (DBMS), consists of a
collection of interrelated data, known as a database, and a set of software programs to
manage and access the data. The software programs involve mechanisms for the defini-
tion of database structures; for data storage; for concurrent, shared, or distributed data
access; and for ensuring the consistency and security of the information stored, despite
system crashes or attempts at unauthorized access.

A relational database is a collection of tables, each of which is assigned a unique name.
Each table consists of a set of attributes (colummns or fields) and usually stores a large set
of tuples (records or rows). Each tuple in a relational table represents an object identified
by a unique key and described by a set of attribute values. A semantic data model, such
as an entity-relationship (ER) data model, is often constructed for relational databases.
An ER data model represents the database as a set of entities and their relationships.

Consider the following example.

A relational database for AllElectronics. The AllElectronics company is described by the
following relation tables: customer, item, employee, and branch. Fragments of the tables
described here are shown in Figure 1.6.

The relation customer consists of a set of attributes, including a unique customer
identity number (cust_ID), customer name, address, age, occupation, annual income,
credit information, category, and so on.

Similarly, each of the relations item, employee, and branch consists of a set of attributes
describing their properties.

Tables can also be used to represent the relationships between or among multiple
relation tables. For our example, these include purchases (customer purchases items,
creating a sales transaction that is handled by an employee), items_sold (lists the
items sold in a given transaction), and works_at (employee works at a branch of
AllElectronics). n

Relational data can be accessed by database queries written in a relational query
language, such as SQL, or with the assistance of graphical user interfaces. In the latter,
the user may employ a menu, for example, to specify attributes to be included in the
query, and the constraints on these attributes. A given query is transformed into a set of

1.3 Data Mining—On What Kind of Data? 1

customer
cust_ID | name address age | income | credit_info | category
Cl Smith, Sandy | 1223 Lake Ave., Chicago, IL | 31 | $78000 | 1 3
item
item_ID | name brand | category type price place_made | supplier | cost
13 hi-res-TV | Toshiba | high resolution | TV $988.00 | Japan NikoX | $600.00
18 Laptop Dell laptop computer | $1369.00 | USA Dell $983.00
employee
empl_ID | name category group salary commission
E55 Jones, Jane | home entertainment | manager | $118,000 2%
branch
branch_ID | name address
B1 City Square | 396 Michigan Ave., Chicago, IL
purchases
trans_ID | cust_ID | empl_ID | date time | method_paid | amount
T100 Cl E55 03/21/2005 | 15:45 | Visa $1357.00
items_sold
trans_ID | item_ID | qty
T100 13 1
T100 18 2
works_at
empl_ID | branch_ID
ES55 Bl

Figure 1.6 Fragments of relations from a relational database for AllElectronics.

relational operations, such as join, selection, and projection, and is then optimized for
efficient processing. A query allows retrieval of specified subsets of the data. Suppose that
your job is to analyze the AllElectronics data. Through the use of relational queries, you
can ask things like “Show me a list of all items that were sold in the last quarter.” Rela-
tional languages also include aggregate functions such as sum, avg (average), count, max
(maximum), and min (minimum). These allow you to ask things like “Show me the total
sales of the last month, grouped by branch,” or “How many sales transactions occurred
in the month of December?” or “Which sales person had the highest amount of sales?”

12

Chapter 1 Introduction

1.3.2

When data mining is applied to relational databases, we can go further by searching for
trends or data patterns. For example, data mining systems can analyze customer data to
predict the credit risk of new customers based on their income, age, and previous credit
information. Data mining systems may also detect deviations, such as items whose sales
are far from those expected in comparison with the previous year. Such deviations can
then be further investigated (e.g., has there been a change in packaging of such items, or
a significant increase in price?).

Relational databases are one of the most commonly available and rich information
repositories, and thus they are a major data form in our study of data mining.

Data Warehouses

Suppose that AllElectronics is a successful international company, with branches around
the world. Each branch has its own set of databases. The president of AllElectronics has
asked you to provide an analysis of the company’s sales per item type per branch for the
third quarter. This is a difficult task, particularly since the relevant data are spread out
over several databases, physically located at numerous sites.

If AllElectronics had a data warehouse, this task would be easy. A data ware-
house is a repository of information collected from multiple sources, stored under
a unified schema, and that usually resides at a single site. Data warehouses are con-
structed via a process of data cleaning, data integration, data transformation, data
loading, and periodic data refreshing. This process is discussed in Chapters 2 and 3.
Figure 1.7 shows the typical framework for construction and use of a data warehouse
for AllElectronics.

—
f—_—

. —]
~—————

Data source in Chicago A ——
In o
— Client)
~ -

— 1\ /
fmmm————
|

Query and |

Warehouse |\Analysis Tools!

—
|

Data source in New York

PR
f—o——

|

I Integrate \
| \
| Transform ,
|
|
|

Data

Load I/
Refresh /

e L

. 1
Data source in Toronto 17
v

—
f—o——

Lo
L Client)
~ -

l—
~—

Data source in Vancouver

Figure 1.7 Typical framework of a data warehouse for AllElectronics.

Example 1.2

1.3 Data Mining—On What Kind of Data? 13

To facilitate decision making, the data in a data warehouse are organized around
major subjects, such as customer, item, supplier, and activity. The data are stored to
provide information from a historical perspective (such as from the past 5-10 years)
and are typically summarized. For example, rather than storing the details of each
sales transaction, the data warehouse may store a summary of the transactions per
item type for each store or, summarized to a higher level, for each sales region.

A data warehouse is usually modeled by a multidimensional database structure,
where each dimension corresponds to an attribute or a set of attributes in the schema,
and each cell stores the value of some aggregate measure, such as count or sales_amount.
The actual physical structure of a data warehouse may be a relational data store or a
multidimensional data cube. A data cube provides a multidimensional view of data
and allows the precomputation and fast accessing of summarized data.

A data cube for AllElectronics. A data cube for summarized sales data of AllElectronics
is presented in Figure 1.8(a). The cube has three dimensions: address (with city values
Chicago, New York, Toronto, Vancouver), time (with quarter values Q1, Q2, Q3, Q4), and
item (with item type values home entertainment, computer, phone, security). The aggregate
value stored in each cell of the cube is sales_amount (in thousands). For example, the total
salesforthe first quarter, Q1, foritemsrelating to security systemsin Vancouver is $400,000,
as stored in cell (Vancouver, QI, security). Additional cubes may be used to store aggregate
sums over each dimension, corresponding to the aggregate values obtained using different
SQL group-bys (e.g., the total sales amount per city and quarter, or per city and item, or
per quarter and item, or per each individual dimension). (]

“I have also heard about data marts. What is the difference between a data warehouse and
a data mart?” you may ask. A data warehouse collects information about subjects that
span an entire organization, and thus its scope is enterprise-wide. A data mart, on the
other hand, is a department subset of a data warehouse. It focuses on selected subjects,
and thus its scope is department-wide.

By providing multidimensional data views and the precomputation of summarized
data, data warehouse systems are well suited for on-line analytical processing, or
OLAP. OLAP operations use background knowledge regarding the domain of the
data being studied in order to allow the presentation of data at different levels of
abstraction. Such operations accommodate different user viewpoints. Examples of
OLAP operations include drill-down and roll-up, which allow the user to view the
data at differing degrees of summarization, as illustrated in Figure 1.8(b). For instance,
we can drill down on sales data summarized by quarter to see the data summarized
by month. Similarly, we can roll up on sales data summarized by city to view the data
summarized by country.

Although data warehouse tools help support data analysis, additional tools for data
mining are required to allow more in-depth and automated analysis. An overview of
data warehouse and OLAP technology is provided in Chapter 3. Advanced issues regard-
ing data warehouse and OLAP implementation and data generalization are discussed in
Chapter 4.

14 Chapter 1 Introduction

& Chicago /440 /' / /
a@& New York 156(/ / /
&&“’% Toronto / 395 / / /

Vancouver /
< ,/ / <Vancouyer,
Q1 | 605 | 825 14 400 / Ql, security>
7 494
2 Q /
: |/
L d L
W
Q4
| computer | security
home phone
entertainment
(a) item (types)
(b) Drill-down Roll-up
on time data for Q1 on address
. &a)
: &
.i,@%\ Chicago /" / / / \&é‘ USA /200(/ / /
%5\(} New York / / / / @:‘@5 Canada 1000,
" Toronto
& S /S S S o d
Vancouver Q1
7 d
- Jan 150 £ Q
5 &
B & d
g Feb 100 s Q3
£ = /
= March 150 Q4
| computer | security | computer | security
home phone home phone
entertainment entertainment
item (types) item (types)

Figure 1.8 A multidimensional data cube, commonly used for data warehousing, (a) showing summa-
rized data for AllElectronics and (b) showing summarized data resulting from drill-down and
roll-up operations on the cube in (a). For improved readability, only some of the cube cell
values are shown.

[.3.3 Transactional Databases

In general, a transactional database consists of a file where each record represents a trans-
action. A transaction typically includes a unique transaction identity number (trans_ID)
and a list of the items making up the transaction (such as items purchased in a store).

Figure 1.9

Example 1.3

134

1.3 Data Mining—On What Kind of Data? 15

trans_ID | list of item_IDs
T100 I1, 13,18, I16
T200 12,18

Fragment of a transactional database for sales at AllElectronics.

The transactional database may have additional tables associated with it, which contain
other information regarding the sale, such as the date of the transaction, the customer ID
number, the ID number of the salesperson and of the branch at which the sale occurred,
and so on.

A transactional database for AllElectronics. Transactions can be stored in a table, with
one record per transaction. A fragment of a transactional database for AllElectronics
is shown in Figure 1.9. From the relational database point of view, the sales table in
Figure 1.9 is a nested relation because the attribute list of item_IDs contains a set of items.
Because most relational database systems do not support nested relational structures, the
transactional database is usually either stored in a flat file in a format similar to that of
the table in Figure 1.9 or unfolded into a standard relation in a format similar to that of
the items_sold table in Figure 1.6. L]

As an analyst of the AllElectronics database, you may ask, “Show me all the items
purchased by Sandy Smith” or “How many transactions include item number 13?”
Answering such queries may require a scan of the entire transactional database.

Suppose you would like to dig deeper into the data by asking, “Which items sold well
together?” This kind of market basket data analysis would enable you to bundle groups of
items together as a strategy for maximizing sales. For example, given the knowledge that
printers are commonly purchased together with computers, you could offer an expensive
model of printers at a discount to customers buying selected computers, in the hopes of
selling more of the expensive printers. A regular data retrieval system is not able to answer
queries like the one above. However, data mining systems for transactional data can do
so by identifying frequent itemsets, that is, sets of items that are frequently sold together.
The mining of such frequent patterns for transactional data is discussed in Chapter 5.

Advanced Data and Information Systems and
Advanced Applications

Relational database systems have been widely used in business applications. With the
progress of database technology, various kinds of advanced data and information sys-
tems have emerged and are undergoing development to address the requirements of new
applications.

16

Chapter 1 Introduction

The new database applications include handling spatial data (such as maps),
engineering design data (such as the design of buildings, system components, or inte-
grated circuits), hypertext and multimedia data (including text, image, video, and audio
data), time-related data (such as historical records or stock exchange data), stream data
(such as video surveillance and sensor data, where data flow in and out like streams), and
the World Wide Web (a huge, widely distributed information repository made available
by the Internet). These applications require efficient data structures and scalable meth-
ods for handling complex object structures; variable-length records; semistructured or
unstructured data; text, spatiotemporal, and multimedia data; and database schemas
with complex structures and dynamic changes.

Inresponsetotheseneeds,advanced database systemsand specificapplication-oriented
database systems have been developed. These include object-relational database systems,
temporal and time-series database systems, spatial and spatiotemporal database systems,
text and multimedia database systems, heterogeneous and legacy database systems, data
stream management systems, and Web-based global information systems.

While such databases or information repositories require sophisticated facilities to
efficiently store, retrieve, and update large amounts of complex data, they also provide
fertile grounds and raise many challenging research and implementation issues for data
mining. In this section, we describe each of the advanced database systems listed above.

Object-Relational Databases

Object-relational databases are constructed based on an object-relational data model.
This model extends the relational model by providing a rich data type for handling com-
plex objects and object orientation. Because most sophisticated database applications
need to handle complex objects and structures, object-relational databases are becom-
ing increasingly popular in industry and applications.

Conceptually, the object-relational data model inherits the essential concepts of
object-oriented databases, where, in general terms, each entity is considered as an
object. Following the AllElectronics example, objects can be individual employees, cus-
tomers, or items. Data and code relating to an object are encapsulated into a single
unit. Each object has associated with it the following:

A set of variables that describe the objects. These correspond to attributes in the
entity-relationship and relational models.

A set of messages that the object can use to communicate with other objects, or with
the rest of the database system.

A set of methods, where each method holds the code to implement a message. Upon
receiving a message, the method returns a value in response. For instance, the method
for the message get_photo(employee) will retrieve and return a photo of the given
employee object.

Objects that share a common set of properties can be grouped into an object class.
Each object is an instance of its class. Object classes can be organized into class/subclass

1.3 Data Mining—On What Kind of Data? 17

hierarchies so that each class represents properties that are common to objects in that
class. For instance, an employee class can contain variables like name, address, and birth-
date. Suppose that the class, sales_person, is a subclass of the class, employee. A sales_person
object would inherit all of the variables pertaining to its superclass of employee. In addi-
tion, it has all of the variables that pertain specifically to being a salesperson (e.g., com-
mission). Such a class inheritance feature benefits information sharing.

For data mining in object-relational systems, techniques need to be developed for
handling complex object structures, complex data types, class and subclass hierarchies,
property inheritance, and methods and procedures.

Temporal Databases, Sequence Databases, and
Time-Series Databases

A temporal database typically stores relational data that include time-related attributes.
These attributes may involve several timestamps, each having different semantics.
A sequence database stores sequences of ordered events, with or without a concrete
notion of time. Examples include customer shopping sequences, Web click streams, and
biological sequences. A time-series database stores sequences of values or events obtained
over repeated measurements of time (e.g., hourly, daily, weekly). Examples include data
collected from the stock exchange, inventory control, and the observation of natural
phenomena (like temperature and wind).

Data mining techniques can be used to find the characteristics of object evolution, or
the trend of changes for objects in the database. Such information can be useful in deci-
sion making and strategy planning. For instance, the mining of banking data may aid in
the scheduling of bank tellers according to the volume of customer traffic. Stock exchange
data can be mined to uncover trends that could help you plan investment strategies (e.g.,
when is the best time to purchase AllElectronics stock?). Such analyses typically require
defining multiple granularity of time. For example, time may be decomposed according
to fiscal years, academic years, or calendar years. Years may be further decomposed into
quarters or months.

Spatial Databases and Spatiotemporal Databases

Spatial databases contain spatial-related information. Examples include geographic
(map) databases, very large-scale integration (VLSI) or computed-aided design databases,
and medical and satellite image databases. Spatial data may be represented in raster for-
mat, consisting of n-dimensional bit maps or pixel maps. For example, a 2-D satellite
image may be represented as raster data, where each pixel registers the rainfall in a given
area. Maps can be represented in vector format, where roads, bridges, buildings, and
lakes are represented as unions or overlays of basic geometric constructs, such as points,
lines, polygons, and the partitions and networks formed by these components.
Geographic databases have numerous applications, ranging from forestry and ecol-
ogy planning to providing public service information regarding the location of telephone
and electric cables, pipes, and sewage systems. In addition, geographic databases are

18

Chapter 1 Introduction

commonly used in vehicle navigation and dispatching systems. An example of such a
system for taxis would store a city map with information regarding one-way streets, sug-
gested routes for moving from region A to region B during rush hour, and the location
of restaurants and hospitals, as well as the current location of each driver.

“What kind of data mining can be performed on spatial databases?” you may ask. Data
mining may uncover patterns describing the characteristics of houses located near a spec-
ified kind of location, such as a park, for instance. Other patterns may describe the cli-
mate of mountainous areas located at various altitudes, or describe the change in trend
of metropolitan poverty rates based on city distances from major highways. The relation-
ships among a set of spatial objects can be examined in order to discover which subsets of
objects are spatially auto-correlated or associated. Clusters and outliers can be identified
by spatial cluster analysis. Moreover, spatial classification can be performed to construct
models for prediction based on the relevant set of features of the spatial objects. Further-
more, “spatial data cubes” may be constructed to organize data into multidimensional
structures and hierarchies, on which OLAP operations (such as drill-down and roll-up)
can be performed.

A spatial database that stores spatial objects that change with time is called a
spatiotemporal database, from which interesting information can be mined. For exam-
ple, we may be able to group the trends of moving objects and identify some strangely
moving vehicles, or distinguish a bioterrorist attack from a normal outbreak of the flu
based on the geographic spread of a disease with time.

Text Databases and Multimedia Databases

Text databases are databases that contain word descriptions for objects. These word
descriptions are usually not simple keywords but rather long sentences or paragraphs,
such as product specifications, error or bug reports, warning messages, summary reports,
notes, or other documents. Text databases may be highly unstructured (such as some
Web pages on the World Wide Web). Some text databases may be somewhat structured,
that is, semistructured (such as e-mail messages and many HTML/XML Web pages),
whereas others are relatively well structured (such as library catalogue databases). Text
databases with highly regular structures typically can be implemented using relational
database systems.

“What can data mining on text databases uncover?” By mining text data, one may
uncover general and concise descriptions of the text documents, keyword or content
associations, as well as the clustering behavior of text objects. To do this, standard data
mining methods need to be integrated with information retrieval techniques and the
construction or use of hierarchies specifically for text data (such as dictionaries and the-
sauruses), as well as discipline-oriented term classification systems (such as in biochemi-
stry, medicine, law, or economics).

Multimedia databases store image, audio, and video data. They are used in appli-
cations such as picture content-based retrieval, voice-mail systems, video-on-demand
systems, the World Wide Web, and speech-based user interfaces that recognize spoken
commands. Multimedia databases must support large objects, because data objects such

1.3 Data Mining—On What Kind of Data? 19

as video can require gigabytes of storage. Specialized storage and search techniques are
also required. Because video and audio data require real-time retrieval at a steady and
predetermined rate in order to avoid picture or sound gaps and system buffer overflows,
such data are referred to as continuous-media data.

For multimedia data mining, storage and search techniques need to be integrated
with standard data mining methods. Promising approaches include the construction of
multimedia data cubes, the extraction of multiple features from multimedia data, and
similarity-based pattern matching.

Heterogeneous Databases and Legacy Databases

A heterogeneous database consists of a set of interconnected, autonomous component
databases. The components communicate in order to exchange information and answer
queries. Objects in one component database may differ greatly from objects in other
component databases, making it difficult to assimilate their semantics into the overall
heterogeneous database.

Many enterprises acquire legacy databases as a result of the long history of infor-
mation technology development (including the application of different hardware and
operating systems). A legacy database is a group of heterogeneous databases that com-
bines different kinds of data systems, such as relational or object-oriented databases,
hierarchical databases, network databases, spreadsheets, multimedia databases, or file
systems. The heterogeneous databases in a legacy database may be connected by intra-
or inter-computer networks.

Information exchange across such databases is difficult because it would require
precise transformation rules from one representation to another, considering diverse
semantics. Consider, for example, the problem in exchanging information regarding
student academic performance among different schools. Each school may have its own
computer system and use its own curriculum and grading system. One university may
adopt a quarter system, offer three courses on database systems, and assign grades from
A+ to F, whereas another may adopt a semester system, offer two courses on databases,
and assign grades from 1 to 10. It is very difficult to work out precise course-to-grade
transformation rules between the two universities, making information exchange dif-
ficult. Data mining techniques may provide an interesting solution to the information
exchange problem by performing statistical data distribution and correlation analysis,
and transforming the given data into higher, more generalized, conceptual levels (such
as fair, good, or excellent for student grades), from which information exchange can then
more easily be performed.

Data Streams

Many applications involve the generation and analysis of a new kind of data, called stream
data, where data flow in and out of an observation platform (or window) dynamically.
Such data streams have the following unique features: huge or possibly infinite volume,
dynamically changing, flowing in and out in a fixed order, allowing only one or a small

20

Chapter 1 Introduction

number of scans, and demanding fast (often real-time) response time. Typical examples of
data streams include various kinds of scientific and engineering data, time-series data,
and data produced in other dynamic environments, such as power supply, network traf-
fic, stock exchange, telecommunications, Web click streams, video surveillance, and
weather or environment monitoring.

Because data streams are normally not stored in any kind of data repository, effec-
tive and efficient management and analysis of stream data poses great challenges to
researchers. Currently, many researchers are investigating various issues relating to the
development of data stream management systems. A typical query model in such a system
is the continuous query model, where predefined queries constantly evaluate incoming
streams, collect aggregate data, report the current status of data streams, and respond to
their changes.

Mining data streams involves the efficient discovery of general patterns and dynamic
changes within stream data. For example, we may like to detect intrusions of a computer
network based on the anomaly of message flow, which may be discovered by clustering
data streams, dynamic construction of stream models, or comparing the current frequent
patterns with that at a certain previous time. Most stream data reside at a rather low level
of abstraction, whereas analysts are often more interested in higher and multiple levels
of abstraction. Thus, multilevel, multidimensional on-line analysis and mining should
be performed on stream data as well.

The World Wide Web

The World Wide Web and its associated distributed information services, such as
Yahoo!, Google, America Online, and AltaVista, provide rich, worldwide, on-line infor-
mation services, where data objects are linked together to facilitate interactive access.
Users seeking information of interest traverse from one object via links to another.
Such systems provide ample opportunities and challenges for data mining. For exam-
ple, understanding user access patterns will not only help improve system design (by
providing efficient access between highly correlated objects), but also leads to better
marketing decisions (e.g., by placing advertisements in frequently visited documents,
or by providing better customer/user classification and behavior analysis). Capturing
user access patterns in such distributed information environments is called Web usage
mining (or Weblog mining).

Although Web pages may appear fancy and informative to human readers, they can be
highly unstructured and lack a predefined schema, type, or pattern. Thus it is difficult for
computers to understand the semantic meaning of diverse Web pages and structure them
in an organized way for systematic information retrieval and data mining. Web services
that provide keyword-based searches without understanding the context behind the Web
pages can only offer limited help to users. For example, a Web search based on a single
keyword may return hundreds of Web page pointers containing the keyword, but most
of the pointers will be very weakly related to what the user wants to find. Data mining
can often provide additional help here than Web search services. For example, authori-
tative Web page analysis based on linkages among Web pages can help rank Web pages

1.4 Data Mining Functionalities—What Kinds of Patterns Can Be Mined? 21

based on their importance, influence, and topics. Automated Web page clustering and
classification help group and arrange Web pages in a multidimensional manner based
on their contents. Web community analysis helps identify hidden Web social networks
and communities and observe their evolution. Web mining is the development of scal-
able and effective Web data analysis and mining methods. It may help us learn about the
distribution of information on the Web in general, characterize and classify Web pages,
and uncover Web dynamics and the association and other relationships among different
Web pages, users, communities, and Web-based activities.

Data mining in advanced database and information systems is discussed in Chapters 8
to 10.

Data Mining Functionalities—What Kinds of Patterns
Can Be Mined?

We have observed various types of databases and information repositories on which data
mining can be performed. Let us now examine the kinds of data patterns that can be
mined.

Data mining functionalities are used to specify the kind of patterns to be found in
data mining tasks. In general, data mining tasks can be classified into two categories:
descriptive and predictive. Descriptive mining tasks characterize the general properties
of the data in the database. Predictive mining tasks perform inference on the current data
in order to make predictions.

In some cases, users may have no idea regarding what kinds of patterns in their data
may be interesting, and hence may like to search for several different kinds of patterns in
parallel. Thusitis important to have a data mining system that can mine multiple kinds of
patterns to accommodate different user expectations or applications. Furthermore, data
mining systems should be able to discover patterns at various granularity (i.e., different
levels of abstraction). Data mining systems should also allow users to specify hints to
guide or focus the search for interesting patterns. Because some patterns may not hold
for all of the data in the database, a measure of certainty or “trustworthiness” is usually
associated with each discovered pattern.

Data mining functionalities, and the kinds of patterns they can discover, are described
below.

|.4.] Concept/Class Description: Characterization and
Discrimination

Data can be associated with classes or concepts. For example, in the AllElectronics store,
classes of items for sale include computers and printers, and concepts of customers include
bigSpenders and budgetSpenders. It can be useful to describe individual classes and con-
cepts in summarized, concise, and yet precise terms. Such descriptions of a class or
a concept are called class/concept descriptions. These descriptions can be derived via
(1) data characterization, by summarizing the data of the class under study (often called

22

Chapter 1

Example 1.4

Example 1.5

Introduction

the target class) in general terms, or (2) data discrimination, by comparison of the target
class with one or a set of comparative classes (often called the contrasting classes), or
(3) both data characterization and discrimination.

Data characterization is a summarization of the general characteristics or features of
a target class of data. The data corresponding to the user-specified class are typically col-
lected by a database query. For example, to study the characteristics of software products
whose sales increased by 10% in the last year, the data related to such products can be
collected by executing an SQL query.

There are several methods for effective data summarization and characterization.
Simple data summaries based on statistical measures and plots are described in
Chapter 2. The data cube-based OLAP roll-up operation (Section 1.3.2) can be used
to perform user-controlled data summarization along a specified dimension. This
process is further detailed in Chapters 3 and 4, which discuss data warehousing. An
attribute-oriented induction technique can be used to perform data generalization and
characterization without step-by-step user interaction. This technique is described in
Chapter 4.

The output of data characterization can be presented in various forms. Examples
include pie charts, bar charts, curves, multidimensional data cubes, and multidimen-
sional tables, including crosstabs. The resulting descriptions can also be presented as
generalized relations or in rule form (called characteristic rules). These different output
forms and their transformations are discussed in Chapter 4.

Data characterization. A data mining system should be able to produce a description
summarizing the characteristics of customers who spend more than $1,000 a year at
AllElectronics. The result could be a general profile of the customers, such as they are
40-50 years old, employed, and have excellent credit ratings. The system should allow
users to drill down on any dimension, such as on occupation in order to view these
customers according to their type of employment. (]

Data discrimination is a comparison of the general features of target class data objects
with the general features of objects from one or a set of contrasting classes. The target
and contrasting classes can be specified by the user, and the corresponding data objects
retrieved through database queries. For example, the user may like to compare the gen-
eral features of software products whose sales increased by 10% in the last year with those
whose sales decreased by at least 30% during the same period. The methods used for data
discrimination are similar to those used for data characterization.

“How are discrimination descriptions output?” The forms of output presentation are
similar to those for characteristic descriptions, although discrimination descriptions
should include comparative measures that help distinguish between the target and con-
trasting classes. Discrimination descriptions expressed in rule form are referred to as
discriminant rules.

Data discrimination. A data mining system should be able to compare two groups of
AllElectronics customers, such as those who shop for computer products regularly (more

1.4 Data Mining Functionalities—What Kinds of Patterns Can Be Mined? 23

than two times a month) versus those who rarely shop for such products (i.e., less than
three times a year). The resulting description provides a general comparative profile of
the customers, such as 80% of the customers who frequently purchase computer prod-
ucts are between 20 and 40 years old and have a university education, whereas 60% of
the customers who infrequently buy such products are either seniors or youths, and have
no university degree. Drilling down on a dimension, such as occupation, or adding new
dimensions, such as income_level, may help in finding even more discriminative features
between the two classes. (]

Concept description, including characterization and discrimination, is described in
Chapter 4.

[.4.2 Mining Frequent Patterns, Associations, and Correlations

Frequent patterns, as the name suggests, are patterns that occur frequently in data. There
are many kinds of frequent patterns, including itemsets, subsequences, and substruc-
tures. A frequent itemset typically refers to a set of items that frequently appear together
in a transactional data set, such as milk and bread. A frequently occurring subsequence,
such as the pattern that customers tend to purchase first a PC, followed by a digital cam-
era, and then a memory card, is a (frequent) sequential pattern. A substructure can refer
to different structural forms, such as graphs, trees, or lattices, which may be combined
with itemsets or subsequences. If a substructure occurs frequently, it is called a (frequent)
structured pattern. Mining frequent patterns leads to the discovery of interesting associ-
ations and correlations within data.

Example 1.6 Association analysis. Suppose, as a marketing manager of AllElectronics, you would like to
determine which items are frequently purchased together within the same transactions.
An example of such a rule, mined from the AllElectronics transactional database, is

buys(X, “computer”) = buys(X, “software”) [support = 1%, confidence = 50%]

where X is a variable representing a customer. A confidence, or certainty, of 50% means
that if a customer buys a computer, there is a 50% chance that she will buy software
as well. A 1% support means that 1% of all of the transactions under analysis showed
that computer and software were purchased together. This association rule involves a
single attribute or predicate (i.e., buys) that repeats. Association rules that contain a single
predicate are referred to as single-dimensional association rules. Dropping the predicate
notation, the above rule can be written simply as “computer = software [1%, 50%]”.

Suppose, instead, that we are given the AllElectronics relational database relating to
purchases. A data mining system may find association rules like

age(X, “20...29”) Aincome(X, “20K...29K”) = buys(X, “CD player”)
[support = 2%, confidence = 60%]

The rule indicates that of the AllElectronics customers under study, 2% are 20 to
29 years of age with an income of 20,000 to 29,000 and have purchased a CD player

24

Chapter 1

1.4.3

Example 1.7

Introduction

at AllElectronics. There is a 60% probability that a customer in this age and income
group will purchase a CD player. Note that this is an association between more than
one attribute, or predicate (i.e., age, income, and buys). Adopting the terminology used
in multidimensional databases, where each attribute is referred to as a dimension, the
above rule can be referred to as a multidimensional association rule. (]

Typically, association rules are discarded as uninteresting if they do not satisfy both
a minimum support threshold and a minimum confidence threshold. Additional anal-
ysis can be performed to uncover interesting statistical correlations between associated
attribute-value pairs.

Frequent itemset mining is the simplest form of frequent pattern mining. The mining
of frequent patterns, associations, and correlations is discussed in Chapter 5, where par-
ticular emphasis is placed on efficient algorithms for frequent itemset mining. Sequential
pattern mining and structured pattern mining are considered advanced topics. They are
discussed in Chapters 8 and 9, respectively.

Classification and Prediction

Classification is the process of finding a model (or function) that describes and distin-
guishes data classes or concepts, for the purpose of being able to use the model to predict
the class of objects whose class label is unknown. The derived model is based on the anal-
ysis of a set of training data (i.e., data objects whose class label is known).

“How is the derived model presented?” The derived model may be represented in vari-
ous forms, such as classification (IF-THEN) rules, decision trees, mathematical formulae,
or neural networks (Figure 1.10). A decision tree is a flow-chart-like tree structure, where
each node denotes a test on an attribute value, each branch represents an outcome of the
test, and tree leaves represent classes or class distributions. Decision trees can easily be
converted to classification rules. A neural network, when used for classification, is typi-
cally a collection of neuron-like processing units with weighted connections between the
units. There are many other methods for constructing classification models, such as naive
Bayesian classification, support vector machines, and k-nearest neighbor classification.

Whereas classification predicts categorical (discrete, unordered) labels, prediction
models continuous-valued functions. That is, it is used to predict missing or unavail-
able numerical data values rather than class labels. Although the term prediction may
refer to both numeric prediction and class label prediction, in this book we use it to refer
primarily to numeric prediction. Regression analysis is a statistical methodology that is
most often used for numeric prediction, although other methods exist as well. Prediction
also encompasses the identification of distribution trends based on the available data.

Classification and prediction may need to be preceded by relevance analysis, which
attempts to identify attributes that do not contribute to the classification or prediction
process. These attributes can then be excluded.

Classification and prediction. Suppose, as sales manager of AllElectronics, you would
like to classify a large set of items in the store, based on three kinds of responses to a

1.4 Data Mining Functionalities—What Kinds of Patterns Can Be Mined? 25

(a)
age(X, "youth") AND income(X, "high") —— class(X, "A")
age(X, "youth") AND income(X, "low") —— class(X, "B")
age(X, "middle_aged") — class(X, "C")

age(X, "senior") — class(X, "C")

Figure 1.10 A classification model can be represented in various forms, such as (a) IF-THEN rules,
(b) a decision tree, or a (c) neural network.

sales campaign: good response, mild response, and no response. You would like to derive
a model for each of these three classes based on the descriptive features of the items,
such as price, brand, place_made, type, and category. The resulting classification should
maximally distinguish each class from the others, presenting an organized picture of the
data set. Suppose that the resulting classification is expressed in the form of a decision
tree. The decision tree, for instance, may identify price as being the single factor that best
distinguishes the three classes. The tree may reveal that, after price, other features that
help further distinguish objects of each class from another include brand and place_made.
Such a decision tree may help you understand the impact of the given sales campaign and
design a more effective campaign for the future.

Suppose instead, that rather than predicting categorical response labels for each store
item, you would like to predict the amount of revenue that each item will generate during
an upcoming sale at AllElectronics, based on previous sales data. This is an example of
(numeric) prediction because the model constructed will predict a continuous-valued
function, or ordered value. n

Chapter 6 discusses classification and prediction in further detail.

.44 Cluster Analysis

“Whatis cluster analysis?” Unlike classification and prediction, which analyze class-labeled
data objects, clustering analyzes data objects without consulting a known class label.

26

Chapter 1 Introduction

Figure 1.11

Example 1.8

1.4.5

A 2-D plot of customer data with respect to customer locations in a city, showing three data
clusters. Each cluster “center” is marked with a “+”.

In general, the class labels are not present in the training data simply because they are
not known to begin with. Clustering can be used to generate such labels. The objects are
clustered or grouped based on the principle of maximizing the intraclass similarity and
minimizing the interclass similarity. That is, clusters of objects are formed so that objects
within a cluster have high similarity in comparison to one another, but are very dissimilar
to objects in other clusters. Each cluster that is formed can be viewed as a class of objects,
from which rules can be derived. Clustering can also facilitate taxonomy formation, that
is, the organization of observations into a hierarchy of classes that group similar events
together.

Cluster analysis. Cluster analysis can be performed on AllElectronics customer data in
order to identify homogeneous subpopulations of customers. These clusters may repre-
sent individual target groups for marketing. Figure 1.11 shows a 2-D plot of customers
with respect to customer locations in a city. Three clusters of data points are evident. m

Cluster analysis forms the topic of Chapter 7.

Outlier Analysis

A database may contain data objects that do not comply with the general behavior or
model of the data. These data objects are outliers. Most data mining methods discard

Example 1.9

1.4.6

Example 1.10

1.5 Are All of the Patterns Interesting? 27

outliers as noise or exceptions. However, in some applications such as fraud detection, the
rare events can be more interesting than the more regularly occurring ones. The analysis
of outlier data is referred to as outlier mining.

Outliers may be detected using statistical tests that assume a distribution or proba-
bility model for the data, or using distance measures where objects that are a substantial
distance from any other cluster are considered outliers. Rather than using statistical or
distance measures, deviation-based methods identify outliers by examining differences
in the main characteristics of objects in a group.

Outlier analysis. Outlier analysis may uncover fraudulent usage of credit cards by detect-
ing purchases of extremely large amounts for a given account number in comparison to
regular charges incurred by the same account. Outlier values may also be detected with
respect to the location and type of purchase, or the purchase frequency. (]

Outlier analysis is also discussed in Chapter 7.

Evolution Analysis

Data evolution analysis describes and models regularities or trends for objects whose
behavior changes over time. Although this may include characterization, discrimina-
tion, association and correlation analysis, classification, prediction, or clustering of time-
related data, distinct features of such an analysis include time-series data analysis,
sequence or periodicity pattern matching, and similarity-based data analysis.

Evolution analysis. Suppose that you have the major stock market (time-series) data
of the last several years available from the New York Stock Exchange and you would
like to invest in shares of high-tech industrial companies. A data mining study of stock
exchange data may identify stock evolution regularities for overall stocks and for the
stocks of particular companies. Such regularities may help predict future trends in stock
market prices, contributing to your decision making regarding stock investments. (]

Data evolution analysis is discussed in Chapter 8.

Are All of the Patterns Interesting?

A data mining system has the potential to generate thousands or even millions of pat-
terns, or rules.

“So,” youmay ask, “are all of the patterns interesting?” Typically not—only a small frac-
tion of the patterns potentially generated would actually be of interest to any given user.

This raises some serious questions for data mining. You may wonder, “What makes a
pattern interesting? Can a data mining system generate all of the interesting patterns? Can
a data mining system generate only interesting patterns?”

To answer the first question, a pattern is interesting if it is (1) easily understood by
humans, (2) valid on new or test data with some degree of certainty, (3) potentially useful,

28

Chapter 1 Introduction

and (4) novel. A pattern is also interesting if it validates a hypothesis that the user sought
to confirm. An interesting pattern represents knowledge.

Several objective measures of pattern interestingness exist. These are based on the
structure of discovered patterns and the statistics underlying them. An objective measure
for association rules of the form X =Y is rule support, representing the percentage of
transactions from a transaction database that the given rule satisfies. This is taken to be
the probability P(X UY), where X UY indicates that a transaction contains both X and ¥,
that is, the union of itemsets X and Y. Another objective measure for association rules
is confidence, which assesses the degree of certainty of the detected association. This is
taken to be the conditional probability P(Y|X), that is, the probability that a transaction
containing X also contains Y. More formally, support and confidence are defined as

support(X =Y) =P(XUY).
confidence(X =Y) = P(Y|X).

In general, each interestingness measure is associated with a threshold, which may be
controlled by the user. For example, rules that do not satisfy a confidence threshold of,
say, 50% can be considered uninteresting. Rules below the threshold likely reflect noise,
exceptions, or minority cases and are probably of less value.

Although objective measures help identify interesting patterns, they are insufficient
unless combined with subjective measures that reflect the needs and interests of a par-
ticular user. For example, patterns describing the characteristics of customers who shop
frequently at AllElectronics should interest the marketing manager, but may be of little
interest to analysts studying the same database for patterns on employee performance.
Furthermore, many patterns that are interesting by objective standards may represent
common knowledge and, therefore, are actually uninteresting. Subjective interesting-
ness measures are based on user beliefs in the data. These measures find patterns inter-
esting if they are unexpected (contradicting a user’s belief) or offer strategic information
on which the user can act. In the latter case, such patterns are referred to as actionable.
Patterns that are expected can be interesting if they confirm a hypothesis that the user
wished to validate, or resemble a user’s hunch.

The second question—“Can a data mining system generate all of the interesting
patterns?”—refers to the completeness of a data mining algorithm. It is often unre-
alistic and inefficient for data mining systems to generate all of the possible patterns.
Instead, user-provided constraints and interestingness measures should be used to focus
the search. For some mining tasks, such as association, this is often sufficient to ensure
the completeness of the algorithm. Association rule mining is an example where the use
of constraints and interestingness measures can ensure the completeness of mining. The
methods involved are examined in detail in Chapter 5.

Finally, the third question—“Can a data mining system generate only interesting pat-
terns?”—is an optimization problem in data mining. It is highly desirable for data min-
ing systems to generate only interesting patterns. This would be much more efficient for
users and data mining systems, because neither would have to search through the pat-
terns generated in order to identify the truly interesting ones. Progress has been made in
this direction; however, such optimization remains a challenging issue in data mining.

1.6 Classification of Data Mining Systems 29

Measures of pattern interestingness are essential for the efficient discovery of patterns
of value to the given user. Such measures can be used after the data mining step in order
to rank the discovered patterns according to their interestingness, filtering out the unin-
teresting ones. More importantly, such measures can be used to guide and constrain the
discovery process, improving the search efficiency by pruning away subsets of the pattern
space that do not satisfy prespecified interestingness constraints. Such constraint-based
mining is described in Chapter 5 (with respect to association mining) and Chapter 7
(with respect to clustering).

Methods to assess pattern interestingness, and their use to improve data mining effi-
ciency, are discussed throughout the book, with respect to each kind of pattern that can
be mined.

Classification of Data Mining Systems

Data mining is an interdisciplinary field, the confluence of a set of disciplines, includ-
ing database systems, statistics, machine learning, visualization, and information science
(Figure 1.12). Moreover, depending on the data mining approach used, techniques from
other disciplines may be applied, such as neural networks, fuzzy and/or rough set theory,
knowledge representation, inductive logic programming, or high-performance comput-
ing. Depending on the kinds of data to be mined or on the given data mining application,
the data mining system may also integrate techniques from spatial data analysis, informa-
tion retrieval, pattern recognition, image analysis, signal processing, computer graphics,
Web technology, economics, business, bioinformatics, or psychology.

Because of the diversity of disciplines contributing to data mining, data mining research
is expected to generate a large variety of data mining systems. Therefore, it is necessary to
provide a clear classification of data mining systems, which may help potential users dis-
tinguish between such systems and identify those that best match their needs. Data mining
systems can be categorized according to various criteria, as follows:

Database
technology
Information Data Machine

science » Mining learning

(Visualization) ~ (Other disciplines)

Statistics

Figure 1.12 Data mining as a confluence of multiple disciplines.

30 Chapter 1 Introduction

Classification according to the kinds of databases mined: A data mining system can be
classified according to the kinds of databases mined. Database systems can be classi-
fied according to different criteria (such as data models, or the types of data or appli-
cations involved), each of which may require its own data mining technique. Data
mining systems can therefore be classified accordingly.

For instance, if classifying according to data models, we may have a relational,
transactional, object-relational, or data warehouse mining system. If classifying
according to the special types of data handled, we may have a spatial, time-series, text,
stream data, multimedia data mining system, or a World Wide Web mining system.

Classification according to the kinds of knowledge mined: Data mining systems can be
categorized according to the kinds of knowledge they mine, that is, based on data
mining functionalities, such as characterization, discrimination, association and cor-
relation analysis, classification, prediction, clustering, outlier analysis, and evolution
analysis. A comprehensive data mining system usually provides multiple and/or inte-
grated data mining functionalities.

Moreover, data mining systems can be distinguished based on the granularity or
levels of abstraction of the knowledge mined, including generalized knowledge (at a
high level of abstraction), primitive-level knowledge (at araw datalevel), or knowledge
at multiple levels (considering several levels of abstraction). An advanced data mining
system should facilitate the discovery of knowledge at multiple levels of abstraction.

Data mining systems can also be categorized as those that mine data regularities
(commonly occurring patterns) versus those that mine data irregularities (such as
exceptions, or outliers). In general, concept description, association and correlation
analysis, classification, prediction, and clustering mine data regularities, rejecting out-
liers as noise. These methods may also help detect outliers.

Classification according to the kinds of techniques utilized: Data mining systems can
be categorized according to the underlying data mining techniques employed. These
techniques can be described according to the degree of user interaction involved (e.g.,
autonomous systems, interactive exploratory systems, query-driven systems) or the
methods of data analysis employed (e.g., database-oriented or data warehouse—
oriented techniques, machine learning, statistics, visualization, pattern recognition,
neural networks, and so on). A sophisticated data mining system will often adopt
multiple data mining techniques or work out an effective, integrated technique that
combines the merits of a few individual approaches.

Classification according to the applications adapted: Data mining systems can also be
categorized according to the applications they adapt. For example, data mining
systems may be tailored specifically for finance, telecommunications, DNA, stock
markets, e-mail, and so on. Different applications often require the integration of
application-specific methods. Therefore, a generic, all-purpose data mining system
may not fit domain-specific mining tasks.

In general, Chapters 4 to 7 of this book are organized according to the various kinds
of knowledge mined. In Chapters 8 to 10, we discuss the mining of complex types of

1.7 Data Mining Task Primitives 31

data on a variety of advanced database systems. Chapter 11 describes major data mining
applications as well as typical commercial data mining systems. Criteria for choosing a
data mining system are also provided.

Data Mining Task Primitives

Each user will have a data mining task in mind, that is, some form of data analysis that
he or she would like to have performed. A data mining task can be specified in the form
of a data mining query, which is input to the data mining system. A data mining query is
defined in terms of data mining task primitives. These primitives allow the user to inter-
actively communicate with the data mining system during discovery in order to direct
the mining process, or examine the findings from different angles or depths. The data
mining primitives specify the following, as illustrated in Figure 1.13.

The set of task-relevant data to be mined: This specifies the portions of the database
or the set of data in which the user is interested. This includes the database attributes
or data warehouse dimensions of interest (referred to as the relevant attributes or
dimensions).

The kind of knowledge to be mined: This specifies the data mining functions to be per-
formed, such as characterization, discrimination, association or correlation analysis,
classification, prediction, clustering, outlier analysis, or evolution analysis.

The background knowledge to be used in the discovery process: This knowledge about
the domain to be mined is useful for guiding the knowledge discovery process and
for evaluating the patterns found. Concept hierarchies are a popular form of back-
ground knowledge, which allow data to be mined at multiple levels of abstraction.
An example of a concept hierarchy for the attribute (or dimension) age is shown in
Figure 1.14. User beliefs regarding relationships in the data are another form of back-
ground knowledge.

The interestingness measures and thresholds for pattern evaluation: They may be used
to guide the mining process or, after discovery, to evaluate the discovered patterns.
Different kinds of knowledge may have different interestingness measures. For exam-
ple, interestingness measures for association rules include support and confidence.
Rules whose support and confidence values are below user-specified thresholds are
considered uninteresting.

The expected representation for visualizing the discovered patterns: This refers to the
form in which discovered patterns are to be displayed, which may include rules, tables,
charts, graphs, decision trees, and cubes.

A data mining query language can be designed to incorporate these primitives,
allowing users to flexibly interact with data mining systems. Having a data mining query
language provides a foundation on which user-friendly graphical interfaces can be built.

32

Chapter 1 Introduction

Task-relevant data

Database or data warehouse name
Database tables or data warechouse cubes
Conditions for data selection

Relevant attributes or dimensions

Data grouping criteria

— Knowledge type to be mined
— Characterization
Discrimination
Association/correlation
Classification/prediction
Clustering

— Background knowledge
Concept hierarchies
User beliefs about relationships in the data

Pattern interestingness measures
Simplicity

Certainty (e.g., confidence)
Utility (e.g., support)

Novelty

Visualization of discovered patterns

Rules, tables, reports, charts, graphs, decision trees,
Vs Ve N
and cubes

Drill-down and roll-up

Figure 1.13 Primitives for specifying a data mining task.

This facilitates a data mining system’s communication with other information systems
and its integration with the overall information processing environment.

Designing a comprehensive data mining language is challenging because data mining
covers a wide spectrum of tasks, from data characterization to evolution analysis. Each
task has different requirements. The design of an effective data mining query language
requires a deep understanding of the power, limitation, and underlying mechanisms of
the various kinds of data mining tasks.

1.7 Data Mining Task Primitives 33

senior

middle_aged
20..39 40..59 60..89

Figure 1.14 A concept hierarchy for the attribute (or dimension) age. The root node represents the most

Example I.11

general abstraction level, denoted as all.

There are several proposals on data mining languages and standards. In this book,
we use a data mining query language known as DMQL (Data Mining Query Language),
which was designed as a teaching tool, based on the above primitives. Examples of its
use to specify data mining queries appear throughout this book. The language adopts
an SQL-like syntax, so that it can easily be integrated with the relational query language,
SQL. Let’s look at how it can be used to specify a data mining task.

Mining classification rules. Suppose, as a marketing manager of AllElectronics, you
would like to classify customers based on their buying patterns. You are especially
interested in those customers whose salary is no less than $40,000, and who have
bought more than $1,000 worth of items, each of which is priced at no less than
$100. In particular, you are interested in the customer’s age, income, the types of items
purchased, the purchase location, and where the items were made. You would like
to view the resulting classification in the form of rules. This data mining query is
expressed in DMQL? as follows, where each line of the query has been enumerated to
aid in our discussion.

(1) use database AllElectronics_db
(2) use hierarchy location_hierarchy for T.branch, age_hierarchy for C.age
(3) mine classification as promising_customers
(4) in relevance to C.age, C.income, L.type, I.place_made, T.branch
(5) from customer C, item I, transaction T
(6) where Litem_ID = T.item_ID and C.cust_ID = T.cust_ID
and C.income > 40,000 and L.price > 100
(7) group by T.cust_ID

*Note that in this book, query language keywords are displayed in sans serif font.

34

Chapter 1 Introduction

(8) having sum(IL.price) > 1,000
(9) display as rules

The data mining query is parsed to form an SQL query that retrieves the set of
task-relevant data specified by lines 1 and 4 to 8. That is, line 1 specifies the All-
Electronics database, line 4 lists the relevant attributes (i.e., on which mining is to be
performed) from the relations specified in line 5 for the conditions given in lines 6
and 7. Line 2 specifies that the concept hierarchies location_hierarchy and age_hierarchy
be used as background knowledge to generalize branch locations and customer age
values, respectively. Line 3 specifies that the kind of knowledge to be mined for this
task is classification. Note that we want to generate a classification model for “promis-
ing_customers” versus “non_promising_customers.” In classification, often, an attribute
may be specified as the class label attribute, whose values explicitly represent the classes.
However, in this example, the two classes are implicit. That is, the specified data are
retrieved and considered examples of “promising_customers,” whereas the remaining
customers in the customer table are considered as “non-promising_customers.” Clas-
sification is performed based on this training set. Line 9 specifies that the mining
results are to be displayed as a set of rules. Several detailed classification methods are
introduced in Chapter 6. L]

There is no standard data mining query language as of yet; however, researchers and
industry have been making good progress in this direction. Microsoft’s OLE DB for
Data Mining (described in the appendix of this book) includes DMX, an XML-styled
data mining language. Other standardization efforts include PMML (Programming data
Model Markup Language) and CRISP-DM (CRoss-Industry Standard Process for Data
Mining).

Integration of a Data Mining System with
a Database or Data Warehouse System

Section 1.2 outlined the major components of the architecture for a typical data mining
system (Figure 1.5). A good system architecture will facilitate the data mining system to
make best use of the software environment, accomplish data mining tasks in an efficient
and timely manner, interoperate and exchange information with other information sys-
tems, be adaptable to users’ diverse requirements, and evolve with time.

A critical question in the design of a data mining (DM) system is how to integrate
or couple the DM system with a database (DB) system and/or a data warehouse (DW)
system. If a DM system works as a stand-alone system or is embedded in an application
program, there are no DB or DW systems with which it has to communicate. This simple
scheme is called no coupling, where the main focus of the DM design rests on developing
effective and efficient algorithms for mining the available data sets. However, when a DM
system works in an environment that requires it to communicate with other information
system components, such as DB and DW systems, possible integration schemes include

1.8 Integration of a Data Mining System 35

no coupling, loose coupling, semitight coupling, and tight coupling. We examine each of
these schemes, as follows:

No coupling: No coupling means that a DM system will not utilize any function of a
DB or DW system. It may fetch data from a particular source (such as a file system),
process data using some data mining algorithms, and then store the mining results in
another file.

Such a system, though simple, suffers from several drawbacks. First, a DB system
provides a great deal of flexibility and efficiency at storing, organizing, accessing, and
processing data. Without using a DB/DW system, a DM system may spend a substan-
tial amount of time finding, collecting, cleaning, and transforming data. In DB and/or
DW systems, data tend to be well organized, indexed, cleaned, integrated, or consoli-
dated, so that finding the task-relevant, high-quality data becomes an easy task. Sec-
ond, there are many tested, scalable algorithms and data structures implemented in
DB and DW systems. It is feasible to realize efficient, scalable implementations using
such systems. Moreover, most data have been or will be stored in DB/DW systems.
Without any coupling of such systems, a DM system will need to use other tools to
extract data, making it difficult to integrate such a system into an information pro-
cessing environment. Thus, no coupling represents a poor design.

Loose coupling: Loose coupling means that a DM system will use some facilities of a
DB or DW system, fetching data from a data repository managed by these systems,
performing data mining, and then storing the mining results either in a file or in a
designated place in a database or data warehouse.

Loose coupling is better than no coupling because it can fetch any portion of data
stored in databases or data warehouses by using query processing, indexing, and other
system facilities. It incurs some advantages of the flexibility, efficiency, and other fea-
tures provided by such systems. However, many loosely coupled mining systems are
main memory-based. Because mining does not explore data structures and query
optimization methods provided by DB or DW systems, it is difficult for loose cou-
pling to achieve high scalability and good performance with large data sets.

Semitight coupling: Semitight coupling means that besides linking a DM system to
a DB/DW system, efficient implementations of a few essential data mining prim-
itives (identified by the analysis of frequently encountered data mining functions)
can be provided in the DB/DW system. These primitives can include sorting, index-
ing, aggregation, histogram analysis, multiway join, and precomputation of some
essential statistical measures, such as sum, count, max, min, standard deviation, and
so on. Moreover, some frequently used intermediate mining results can be precom-
puted and stored in the DB/DW system. Because these intermediate mining results
are either precomputed or can be computed efficiently, this design will enhance the
performance of a DM system.

Tight coupling: Tight coupling means that a DM system is smoothly integrated
into the DB/DW system. The data mining subsystem is treated as one functional

36

Chapter 1 Introduction

component of an information system. Data mining queries and functions are
optimized based on mining query analysis, data structures, indexing schemes,
and query processing methods of a DB or DW system. With further technology
advances, DM, DB, and DW systems will evolve and integrate together as one
information system with multiple functionalities. This will provide a uniform
information processing environment.

This approach is highly desirable because it facilitates efficient implementations
of data mining functions, high system performance, and an integrated information
processing environment.

With this analysis, it is easy to see that a data mining system should be coupled with a
DB/DW system. Loose coupling, though not efficient, is better than no coupling because
it uses both data and system facilities of a DB/DW system. Tight coupling is highly
desirable, but its implementation is nontrivial and more research is needed in this area.
Semitight coupling is a compromise between loose and tight coupling. It is important to
identify commonly used data mining primitives and provide efficient implementations
of such primitives in DB or DW systems.

Major Issues in Data Mining

The scope of this book addresses major issues in data mining regarding mining methodo-
logy, user interaction, performance, and diverse data types. These issues are introduced
below:

Mining methodology and user interaction issues: These reflect the kinds of knowledge
mined, the ability to mine knowledge at multiple granularities, the use of domain
knowledge, ad hoc mining, and knowledge visualization.

Mining different kinds of knowledge in databases: Because different users can
be interested in different kinds of knowledge, data mining should cover a wide
spectrum of data analysis and knowledge discovery tasks, including data char-
acterization, discrimination, association and correlation analysis, classification,
prediction, clustering, outlier analysis, and evolution analysis (which includes
trend and similarity analysis). These tasks may use the same database in differ-
ent ways and require the development of numerous data mining techniques.

Interactive mining of knowledge at multiple levels of abstraction: Because it is
difficult to know exactly what can be discovered within a database, the data
mining process should be interactive. For databases containing a huge amount
of data, appropriate sampling techniques can first be applied to facilitate inter-
active data exploration. Interactive mining allows users to focus the search
for patterns, providing and refining data mining requests based on returned
results. Specifically, knowledge should be mined by drilling down, rolling up,

1.9 Major Issues in Data Mining 37

and pivoting through the data space and knowledge space interactively, similar
to what OLAP can do on data cubes. In this way, the user can interact with
the data mining system to view data and discovered patterns at multiple gran-
ularities and from different angles.

Incorporation of background knowledge: Background knowledge, or information
regarding the domain under study, may be used to guide the discovery process and
allow discovered patterns to be expressed in concise terms and at different levels of
abstraction. Domain knowledge related to databases, such as integrity constraints
and deduction rules, can help focus and speed up a data mining process, or judge
the interestingness of discovered patterns.

Data mining query languages and ad hoc data mining: Relational query languages
(such as SQL) allow users to pose ad hoc queries for data retrieval. In a similar
vein, high-level data mining query languages need to be developed to allow users
to describe ad hoc data mining tasks by facilitating the specification of the rele-
vant sets of data for analysis, the domain knowledge, the kinds of knowledge to
be mined, and the conditions and constraints to be enforced on the discovered
patterns. Such a language should be integrated with a database or data warehouse
query language and optimized for efficient and flexible data mining.

Presentation and visualization of data mining results: Discovered knowledge should
be expressed in high-level languages, visual representations, or other expressive
forms so that the knowledge can be easily understood and directly usable by
humans. This is especially crucial if the data mining system is to be interactive.
This requires the system to adopt expressive knowledge representation techniques,
such as trees, tables, rules, graphs, charts, crosstabs, matrices, or curves.

Handling noisy or incomplete data: The data stored in a database may reflect noise,
exceptional cases, or incomplete data objects. When mining data regularities, these
objects may confuse the process, causing the knowledge model constructed to
overfit the data. As a result, the accuracy of the discovered patterns can be poor.
Data cleaning methods and data analysis methods that can handle noise are
required, as well as outlier mining methods for the discovery and analysis of
exceptional cases.

Pattern evaluation—the interestingness problem: A data mining system can uncover
thousands of patterns. Many of the patterns discovered may be uninteresting to
the given user, either because they represent common knowledge or lack nov-
elty. Several challenges remain regarding the development of techniques to assess
the interestingness of discovered patterns, particularly with regard to subjective
measures that estimate the value of patterns with respect to a given user class,
based on user beliefs or expectations. The use of interestingness measures or
user-specified constraints to guide the discovery process and reduce the search
space is another active area of research.

38 Chapter 1 Introduction

Performance issues: These include efficiency, scalability, and parallelization of data
mining algorithms.

Efficiency and scalability of data mining algorithms: To effectively extract informa-
tion from a huge amount of data in databases, data mining algorithms must be
efficient and scalable. In other words, the running time of a data mining algorithm
must be predictable and acceptable in large databases. From a database perspective
on knowledge discovery, efficiency and scalability are key issues in the implemen-
tation of data mining systems. Many of the issues discussed above under mining
methodology and user interaction must also consider efficiency and scalability.

Parallel, distributed, and incremental mining algorithms: The huge size of many
databases, the wide distribution of data, and the computational complexity of
some data mining methods are factors motivating the development of parallel and
distributed data mining algorithms. Such algorithms divide the data into par-
titions, which are processed in parallel. The results from the partitions are then
merged. Moreover, the high cost of some data mining processes promotes the need
for incremental data mining algorithms that incorporate database updates with-
out having to mine the entire data again “from scratch.” Such algorithms perform
knowledge modification incrementally to amend and strengthen what was previ-
ously discovered.

Issues relating to the diversity of database types:

Handling of relational and complex types of data: Because relational databases and
data warehouses are widely used, the development of efficient and effective data
mining systems for such data is important. However, other databases may contain
complex data objects, hypertext and multimedia data, spatial data, temporal data,
or transaction data. It is unrealistic to expect one system to mine all kinds of
data, given the diversity of data types and different goals of data mining. Specific
data mining systems should be constructed for mining specific kinds of data.
Therefore, one may expect to have different data mining systems for different
kinds of data.

Mining information from heterogeneous databases and global information systems:
Local- and wide-area computer networks (such as the Internet) connect many
sources of data, forming huge, distributed, and heterogeneous databases. The dis-
covery of knowledge from different sources of structured, semistructured, or
unstructured data with diverse data semantics poses great challenges to data
mining. Data mining may help disclose high-level data regularities in multiple
heterogeneous databases that are unlikely to be discovered by simple query sys-
tems and may improve information exchange and interoperability in heteroge-
neous databases. Web mining, which uncovers interesting knowledge about Web
contents, Web structures, Web usage, and Web dynamics, becomes a very chal-
lenging and fast-evolving field in data mining.

1.10 Summary 39

The above issues are considered major requirements and challenges for the further
evolution of data mining technology. Some of the challenges have been addressed in
recent data mining research and development, fo a certain extent, and are now consid-
ered requirements, while others are still at the research stage. The issues, however, con-
tinue to stimulate further investigation and improvement. Additional issues relating to
applications, privacy, and the social impacts of data mining are discussed in Chapter 11,
the final chapter of this book.

Summary

Database technology has evolved from primitive file processing to the development of
database management systems with query and transaction processing. Further
progress has led to the increasing demand for efficient and effective advanced data
analysis tools. This need is a result of the explosive growth in data collected from appli-
cations, including business and management, government administration, science
and engineering, and environmental control.

Data mining is the task of discovering interesting patterns from large amounts of data,
where the data can be stored in databases, data warehouses, or other information repos-
itories. It is a young interdisciplinary field, drawing from areas such as database sys-
tems, data warehousing, statistics, machine learning, data visualization, information
retrieval, and high-performance computing. Other contributing areas include neural
networks, pattern recognition, spatial data analysis, image databases, signal processing,
and many application fields, such as business, economics, and bioinformatics.

A knowledge discovery process includes data cleaning, data integration, data selec-
tion, data transformation, data mining, pattern evaluation, and knowledge
presentation.

The architecture of a typical data mining system includes a database and/or data
warehouse and their appropriate servers, a data mining engine and pattern evalua-
tion module (both of which interact with a knowledge base), and a graphical user
interface. Integration of the data mining components, as a whole, with a database
or data warehouse system can involve either no coupling, loose coupling, semitight
coupling, or tight coupling. A well-designed data mining system should offer tight or
semitight coupling with a database and/or data warehouse system.

Data patterns can be mined from many different kinds of databases, such as relational
databases, data warehouses, and transactional, and object-relational databases. Inter-
esting data patterns can also be extracted from other kinds of information reposito-
ries, including spatial, time-series, sequence, text, multimedia, and legacy databases,
data streams, and the World Wide Web.

A data warehouse is a repository for long-term storage of data from multiple sources,
organized so as to facilitate management decision making. The data are stored under

40

Chapter 1 Introduction

a unified schema and are typically summarized. Data warehouse systems provide
some data analysis capabilities, collectively referred to as OLAP (on-line analytical
processing).

Data mining functionalities include the discovery of concept/class descriptions,
associations and correlations, classification, prediction, clustering, trend analysis, out-
lier and deviation analysis, and similarity analysis. Characterization and discrimina-
tion are forms of data summarization.

A pattern represents knowledge if it is easily understood by humans; valid on test
data with some degree of certainty; and potentially useful, novel, or validates a hunch
about which the user was curious. Measures of pattern interestingness, either objec-
tive or subjective, can be used to guide the discovery process.

Data mining systems can be classified according to the kinds of databases mined, the
kinds of knowledge mined, the techniques used, or the applications adapted.

We have studied five primitives for specifying a data mining task in the form of a data
mining query. These primitives are the specification of task-relevant data (i.e., the
data set to be mined), the kind of knowledge to be mined, background knowledge
(typically in the form of concept hierarchies), interestingness measures, and knowl-
edge presentation and visualization techniques to be used for displaying the discov-
ered patterns.

Data mining query languages can be designed to support ad hoc and interactive data
mining. A data mining query language, such as DMQL, should provide commands
for specifying each of the data mining primitives. Such query languages are SQL-
based and may eventually form a standard on which graphical user interfaces for data
mining can be based.

Efficient and effective data mining in large databases poses numerous requirements
and great challenges to researchers and developers. The issues involved include data
mining methodology, user interaction, performance and scalability, and the process-
ing of a large variety of data types. Other issues include the exploration of data mining
applications and their social impacts.

Exercises

1.1 What is data mining? In your answer, address the following:

(a)
(b)

(o)
(d)

Is it another hype?

Is it a simple transformation of technology developed from databases, statistics, and
machine learning?

Explain how the evolution of database technology led to data mining.

Describe the steps involved in data mining when viewed as a process of knowledge
discovery.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
1.10
1.11

1.12

1.13

Exercises 41

Present an example where data mining is crucial to the success of a business. What data
mining functions does this business need? Can they be performed alternatively by data
query processing or simple statistical analysis?

Suppose your task as a software engineer at Big University is to design a data mining
system to examine the university course database, which contains the following infor-
mation: the name, address, and status (e.g., undergraduate or graduate) of each student,
the courses taken, and the cumulative grade point average (GPA). Describe the architec-
ture you would choose. What is the purpose of each component of this architecture?

How is a data warehouse different from a database? How are they similar?

Briefly describe the following advanced database systems and applications: object-
relational databases, spatial databases, text databases, multimedia databases, stream data,
the World Wide Web.

Define each of the following data mining functionalities: characterization, discrimina-
tion, association and correlation analysis, classification, prediction, clustering, and evo-
lution analysis. Give examples of each data mining functionality, using a real-life database
with which you are familiar.

What is the difference between discrimination and classification? Between characteri-
zation and clustering? Between classification and prediction? For each of these pairs of
tasks, how are they similar?

Based on your observation, describe another possible kind of knowledge that needs to be
discovered by data mining methods but has not been listed in this chapter. Does it require
a mining methodology that is quite different from those outlined in this chapter?

List and describe the five primitives for specifying a data mining task.
Describe why concept hierarchies are useful in data mining.

Outliers are often discarded as noise. However, one person’s garbage could be another’s
treasure. For example, exceptions in credit card transactions can help us detect the fraud-
ulent use of credit cards. Taking fraudulence detection as an example, propose two meth-
ods that can be used to detect outliers and discuss which one is more reliable.

Recent applications pay special attention to spatiotemporal data streams. A spatiotem-
poral data stream contains spatial information that changes over time, and is in the form
of stream data (i.e., the data flow in and out like possibly infinite streams).

(a) Present three application examples of spatiotemporal data streams.

(b) Discuss what kind of interesting knowledge can be mined from such data streams,
with limited time and resources.

(c) Identify and discuss the major challenges in spatiotemporal data mining.

(d) Using one application example, sketch a method to mine one kind of knowledge
from such stream data efficiently.

Describe the differences between the following approaches for the integration of a data
mining system with a database or data warehouse system: no coupling, loose coupling,

42

Chapter 1

1.14

1.15

1.16

Introduction

semitight coupling, and tight coupling. State which approach you think is the most
popular, and why.

Describe three challenges to data mining regarding data mining methodology and user
interaction issues.

What are the major challenges of mining a huge amount of data (such as billions of
tuples) in comparison with mining a small amount of data (such as a few hundred tuple
data set)?

Outline the major research challenges of data mining in one specific application domain,
such as stream/sensor data analysis, spatiotemporal data analysis, or bioinformatics.

Bibliographic Notes

The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley
[PSFI1], is an early collection of research papers on knowledge discovery from data. The
book Advances in Knowledge Discovery and Data Mining, edited by Fayyad, Piatetsky-
Shapiro, Smyth, and Uthurusamy [FPSSe96], is a collection of later research results on
knowledge discovery and data mining. There have been many data mining books pub-
lished in recent years, including Predictive Data Mining by Weiss and Indurkhya [W198],
Data Mining Solutions: Methods and Tools for Solving Real-World Problems by Westphal
and Blaxton [WB98], Mastering Data Mining: The Art and Science of Customer Rela-
tionship Management by Berry and Linoff [BL99], Building Data Mining Applications for
CRM by Berson, Smith, and Thearling [BST99], Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations by Witten and Frank [WFO05], Principles
of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila, and
Smyth [HMSO01], The Elements of Statistical Learning by Hastie, Tibshirani, and Fried-
man [HTFO1], Data Mining: Introductory and Advanced Topics by Dunham [Dun03],
Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra and Acharya
[MAO03], and Introduction to Data Mining by Tan, Steinbach and Kumar [TSK05]. There
are also books containing collections of papers on particular aspects of knowledge
discovery, such as Machine Learning and Data Mining: Methods and Applications edited
by Michalski, Brakto, and Kubat [MBK98], and Relational Data Mining edited by
Dzeroski and Lavrac [De01], as well as many tutorial notes on data mining in major
database, data mining, and machine learning conferences.

KDnuggets News, moderated by Piatetsky-Shapiro since 1991, is a regular, free elec-
tronic newsletter containing information relevant to data mining and knowledge discov-
ery. The KDnuggets website, located at www.kdnuggets.com, contains a good collection of
information relating to data mining.

The data mining community started its first international conference on knowledge
discovery and data mining in 1995 [Fe95]. The conference evolved from the four inter-
national workshops on knowledge discovery in databases, held from 1989 to 1994 [PS89,
PS91a, FUe93, Fe94]. ACM-SIGKDD, a Special Interest Group on Knowledge Discovery

Bibliographic Notes 43

in Databases, was set up under ACM in 1998. In 1999, ACM-SIGKDD organized the
fifth international conference on knowledge discovery and data mining (KDD’99). The
IEEE Computer Science Society has organized its annual data mining conference, Inter-
national Conference on Data Mining (ICDM), since 2001. SIAM (Society on Industrial
and Applied Mathematics) has organized its annual data mining conference, SIAM Data
Mining conference (SDM), since 2002. A dedicated journal, Data Mining and Knowl-
edge Discovery, published by Kluwers Publishers, has been available since 1997. ACM-
SIGKDD also publishes a biannual newsletter, SIGKDD Explorations. There are a few
other international or regional conferences on data mining, such as the Pacific Asian
Conference on Knowledge Discovery and Data Mining (PAKDD), the European Con-
ference on Principles and Practice of Knowledge Discovery in Databases (PKDD), and
the International Conference on Data Warehousing and Knowledge Discovery (DaWaK).

Research in data mining has also been published in books, conferences, and jour-
nals on databases, statistics, machine learning, and data visualization. References to such
sources are listed below.

Popular textbooks on database systems include Database Systems: The Complete Book
by Garcia-Molina, Ullman, and Widom [GMUWO2], Database Management Systems by
Ramakrishnan and Gehrke [RGO03], Database System Concepts by Silberschatz, Korth,
and Sudarshan [SKS02], and Fundamentals of Database Systems by Elmasri and Navathe
[ENO03]. For an edited collection of seminal articles on database systems, see Readings
in Database Systems by Hellerstein and Stonebraker [HS05]. Many books on data ware-
house technology, systems, and applications have been published in the last several years,
such as The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling by
Kimball and M. Ross [KR02], The Data Warehouse Lifecycle Toolkit: Expert Methods for
Designing, Developing, and Deploying Data Warehouses by Kimball, Reeves, Ross, et al.
[KRRT98], Mastering Data Warehouse Design: Relational and Dimensional Techniques by
Imbhoff, Galemmo, and Geiger [IGG03], Building the Data Warehouse by Inmon [Inm96],
and OLAP Solutions: Building Multidimensional Information Systems by Thomsen
[Tho97]. A set of research papers on materialized views and data warehouse implementa-
tions were collected in Materialized Views: Techniques, Implementations, and Applications
by Gupta and Mumick [GM99]. Chaudhuri and Dayal [CD97] present a comprehensive
overview of data warehouse technology.

Research results relating to data mining and data warehousing have been published in
the proceedings of many international database conferences, including the ACM-
SIGMOD International Conference on Management of Data (SIGMOD), the International
Conference on Very Large Data Bases (VLDB), the ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS), the International Conference on Data
Engineering (ICDE), the International Conference on Extending Database Technology
(EDBT), the International Conference on Database Theory (ICDT), the International Con-
ference on Information and Knowledge Management (CIKM), the International Conference
on Database and Expert Systems Applications (DEXA), and the International Symposium
on Database Systems for Advanced Applications (DASFAA). Research in data mining is
also published in major database journals, such as IEEE Transactions on Knowledge and
Data Engineering (TKDE), ACM Transactions on Database Systems (TODS), Journal of

44

Chapter 1 Introduction

ACM (JACM), Information Systems, The VLDB Journal, Data and Knowledge Engineering,
International Journal of Intelligent Information Systems (JIIS), and Knowledge and Infor-
mation Systems (KAIS).

Many effective data mining methods have been developed by statisticians and pattern
recognition researchers, and introduced in a rich set of textbooks. An overview of classi-
fication from a statistical pattern recognition perspective can be found in Pattern Classi-
fication by Duda, Hart, Stork [DHS01]. There are also many textbooks covering different
topics in statistical analysis, such as Mathematical Statistics: Basic Ideas and Selected Topics
by Bickel and Doksum [BDO01], The Statistical Sleuth: A Course in Methods of Data Anal-
ysis by Ramsey and Schafer [RS01], Applied Linear Statistical Models by Neter, Kutner,
Nachtsheim, and Wasserman [NKNW96], An Introduction to Generalized Linear Models
by Dobson [Dob05], Applied Statistical Time Series Analysis by Shumway [Shu88], and
Applied Multivariate Statistical Analysis by Johnson and Wichern [JWO05].

Research in statistics is published in the proceedings of several major statistical confer-
ences, including Joint Statistical Meetings, International Conference of the Royal Statistical
Society, and Symposium on the Interface: Computing Science and Statistics. Other sources
of publication include the Journal of the Royal Statistical Society, The Annals of Statistics,
Journal of American Statistical Association, Technometrics, and Biometrika.

Textbooks and reference books on machine learning include Machine Learning, An
Artificial Intelligence Approach, Vols. 1-4, edited by Michalski et al. [MCM83, MCM86,
KM90, MT94], C4.5: Programs for Machine Learning by Quinlan [Qui93], Elements of
Machine Learning by Langley [Lan96], and Machine Learning by Mitchell [Mit97]. The
book Computer Systems That Learn: Classification and Prediction Methods from Statistics,
Neural Nets, Machine Learning, and Expert Systems by Weiss and Kulikowski [WK91]
compares classification and prediction methods from several different fields. For an
edited collection of seminal articles on machine learning, see Readings in Machine Learn-
ing by Shavlik and Dietterich [SD90].

Machine learning research is published in the proceedings of several large machine
learning and artificial intelligence conferences, including the International Conference on
Machine Learning (ML), the ACM Conference on Computational Learning Theory (COLT),
the International Joint Conference on Artificial Intelligence (IJCAI), and the American Asso-
ciation of Artificial Intelligence Conference (AAAI). Other sources of publication include
major machine learning, artificial intelligence, pattern recognition, and knowledge
system journals, some of which have been mentioned above. Others include Machine
Learning (ML), Artificial Intelligence Journal (Al), IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), and Cognitive Science.

Pioneering work on data visualization techniques is described in The Visual Display
of Quantitative Information [Tuf83], Envisioning Information [Tuf90], and Visual Expla-
nations: Images and Quantities, Evidence and Narrative [Tuf97], all by Tufte, in addition
to Graphics and Graphic Information Processing by Bertin [Ber81], Visualizing Data by
Cleveland [Cle93], and Information Visualization in Data Mining and Knowledge Dis-
covery edited by Fayyad, Grinstein, and Wierse [FGWO01]. Major conferences and sym-
posiums on visualization include ACM Human Factors in Computing Systems (CHI),
Visualization, and the International Symposium on Information Visualization. Research

Bibliographic Notes 45

on visualization is also published in Transactions on Visualization and Computer
Graphics, Journal of Computational and Graphical Statistics, and IEEE Computer Graphics
and Applications.

The DMQL data mining query language was proposed by Han, Fu, Wang,
et al. [HFW196] for the DBMiner data mining system. Other examples include Discov-
ery Board (formerly Data Mine) by Imielinski, Virmani, and Abdulghani [IVA96], and
MSQL by Imielinski and Virmani [IV99]. MINE RULE, an SQL-like operator for mining
single-dimensional association rules, was proposed by Meo, Psaila, and Ceri [MPC96]
and extended by Baralis and Psaila [BP97]. Microsoft Corporation has made a major
data mining standardization effort by proposing OLE DB for Data Mining (DM) [Cor00]
and the DMX language [TMO05, TMKO5]. An introduction to the data mining language
primitives of DMX can be found in the appendix of this book. Other standardization
efforts include PMML (Programming data Model Markup Language) [Ras04], described
at www.dmg.org, and CRISP-DM (CRoss-Industry Standard Process for Data Mining),
described at www.crisp-dm.org.

Architectures of data mining systems have been discussed by many researchers in con-
ference panels and meetings. The recent design of data mining languages, such as [BP97,
IV99, Cor00, Ras04], the proposal of on-line analytical mining, such as [Han98], and
the study of optimization of data mining queries, such as [NLHP98, STA98, LNHP99],
can be viewed as steps toward the tight integration of data mining systems with database
systems and data warehouse systems. For relational or object-relational systems, data
mining primitives as proposed by Sarawagi, Thomas, and Agrawal [STA98] may be used
as building blocks for the efficient implementation of data mining in such database
systems.

Data Preprocessing

Today’s real-world databases are highly susceptible to noisy, missing, and inconsistent data due
to their typically huge size (often several gigabytes or more) and their likely origin from
multiple, heterogenous sources. Low-quality data will lead to low-quality mining results.
“How can the data be preprocessed in order to help improve the quality of the data and,
consequently, of the mining results? How can the data be preprocessed so as to improve the
efficiency and ease of the mining process?”

There are a number of data preprocessing techniques. Data cleaning can be applied to
remove noise and correct inconsistencies in the data. Data integration merges data from
multiple sources into a coherent data store, such as a data warehouse. Data transforma-
tions, such as normalization, may be applied. For example, normalization may improve
the accuracy and efficiency of mining algorithms involving distance measurements. Data
reduction can reduce the data size by aggregating, eliminating redundant features, or clus-
tering, for instance. These techniques are not mutually exclusive; they may work together.
For example, data cleaning can involve transformations to correct wrong data, such as
by transforming all entries for a date field to a common format. Data processing tech-
niques, when applied before mining, can substantially improve the overall quality of the
patterns mined and/or the time required for the actual mining.

In this chapter, we introduce the basic concepts of data preprocessing in Section 2.1.
Section 2.2 presents descriptive data summarization, which serves as a foundation for
data preprocessing. Descriptive data summarization helps us study the general charac-
teristics of the data and identify the presence of noise or outliers, which is useful for
successful data cleaning and data integration. The methods for data preprocessing are
organized into the following categories: data cleaning (Section 2.3), data integration and
transformation (Section 2.4), and data reduction (Section 2.5). Concept hierarchies can
be used in an alternative form of data reduction where we replace low-level data (such
as raw values for age) with higher-level concepts (such as youth, middle-aged, or senior).
This form of data reduction is the topic of Section 2.6, wherein we discuss the automatic
eneration of concept hierarchies from numerical data using data discretization
techniques. The automatic generation of concept hierarchies from categorical data is also
described.

47

48

Chapter 2 Data Preprocessing

Why Preprocess the Data?

Imagine that you are a manager at AllElectronics and have been charged with analyzing
the company’s data with respect to the sales at your branch. You immediately set out
to perform this task. You carefully inspect the company’s database and data warehouse,
identifying and selecting the attributes or dimensions to be included in your analysis,
such as item, price, and units_sold. Alas! You notice that several of the attributes for var-
ious tuples have no recorded value. For your analysis, you would like to include infor-
mation as to whether each item purchased was advertised as on sale, yet you discover
that this information has not been recorded. Furthermore, users of your database sys-
tem have reported errors, unusual values, and inconsistencies in the data recorded for
some transactions. In other words, the data you wish to analyze by data mining tech-
niques are incomplete (lacking attribute values or certain attributes of interest, or con-
taining only aggregate data), noisy (containing errors, or outlier values that deviate from
the expected), and inconsistent (e.g., containing discrepancies in the department codes
used to categorize items). Welcome to the real world!

Incomplete, noisy, and inconsistent data are commonplace properties of large real-
world databases and data warehouses. Incomplete data can occur for a number of rea-
sons. Attributes of interest may not always be available, such as customer information
for sales transaction data. Other data may not be included simply because it was not
considered important at the time of entry. Relevant data may not be recorded due to a
misunderstanding, or because of equipment malfunctions. Data that were inconsistent
with other recorded data may have been deleted. Furthermore, the recording of the his-
tory or modifications to the data may have been overlooked. Missing data, particularly
for tuples with missing values for some attributes, may need to be inferred.

There are many possible reasons for noisy data (having incorrect attribute values). The
data collection instruments used may be faulty. There may have been human or computer
errors occurring at data entry. Errors in data transmission can also occur. There may be
technology limitations, such as limited buffer size for coordinating synchronized data
transfer and consumption. Incorrect data may also result from inconsistencies in naming
conventions or data codes used, or inconsistent formats for input fields, such as date.
Duplicate tuples also require data cleaning.

Data cleaning routines work to “clean” the data by filling in missing values, smooth-
ing noisy data, identifying or removing outliers, and resolving inconsistencies. If users
believe the data are dirty, they are unlikely to trust the results of any data mining that
has been applied to it. Furthermore, dirty data can cause confusion for the mining pro-
cedure, resulting in unreliable output. Although most mining routines have some pro-
cedures for dealing with incomplete or noisy data, they are not always robust. Instead,
they may concentrate on avoiding overfitting the data to the function being modeled.
Therefore, a useful preprocessing step is to run your data through some data cleaning
routines. Section 2.3 discusses methods for cleaning up your data.

Getting back to your task at AllElectronics, suppose that you would like to include
data from multiple sources in your analysis. This would involve integrating multiple

2.1 Why Preprocess the Data? 49

databases, data cubes, or files, that is, data integration. Yet some attributes representing
a given concept may have different names in different databases, causing inconsistencies
and redundancies. For example, the attribute for customer identification may be referred
to as customer_id in one data store and cust_id in another. Naming inconsistencies may
also occur for attribute values. For example, the same first name could be registered as
“Bill” in one database, but “William” in another, and “B.” in the third. Furthermore, you
suspect that some attributes may be inferred from others (e.g., annual revenue). Having
a large amount of redundant data may slow down or confuse the knowledge discovery
process. Clearly, in addition to data cleaning, steps must be taken to help avoid redundan-
cies during data integration. Typically, data cleaning and data integration are performed
as a preprocessing step when preparing the data for a data warehouse. Additional data
cleaning can be performed to detect and remove redundancies that may have resulted
from data integration.

Getting back to your data, you have decided, say, that you would like to use a distance-
based mining algorithm for your analysis, such as neural networks, nearest-neighbor
classifiers, or clustering.1 Such methods provide better results if the data to be ana-
lyzed have been normalized, that is, scaled to a specific range such as [0.0, 1.0]. Your
customer data, for example, contain the attributes age and annual salary. The annual
salary attribute usually takes much larger values than age. Therefore, if the attributes are
left unnormalized, the distance measurements taken on annual salary will generally out-
weigh distance measurements taken on age. Furthermore, it would be useful for your
analysis to obtain aggregate information as to the sales per customer region—something
that is not part of any precomputed data cube in your data warehouse. You soon realize
that data transformation operations, such as normalization and aggregation, are addi-
tional data preprocessing procedures that would contribute toward the success of the
mining process. Data integration and data transformation are discussed in Section 2.4.

“Hmmm,” you wonder, as you consider your data even further. “The data set I have
selected for analysis is HUGE, which is sure to slow down the mining process. Is there any
way I can reduce the size of my data set, without jeopardizing the data mining results?”
Data reduction obtains a reduced representation of the data set that is much smaller
in volume, yet produces the same (or almost the same) analytical results. There are a
number of strategies for data reduction. These include data aggregation (e.g., building a
data cube), attribute subset selection (e.g., removing irrelevant attributes through correla-
tion analysis), dimensionality reduction (e.g., using encoding schemes such as minimum
length encoding or wavelets), and numerosity reduction (e.g., “replacing” the data by
alternative, smaller representations such as clusters or parametric models). Data reduc-
tion is the topic of Section 2.5. Data can also be “reduced” by generalization with the
use of concept hierarchies, where low-level concepts, such as city for customer location,
are replaced with higher-level concepts, such as region or province_or_state. A concept
hierarchy organizes the concepts into varying levels of abstraction. Data discretization is

'Neural networks and nearest-neighbor classifiers are described in Chapter 6, and clustering is discussed
in Chapter 7.

Chapter 2 Data Preprocessing

Data cleaning] ™~ —
 —
/ \
/
- /1N
Data integration ~~—
— \
EE——

[L T %

Data transformation -2,32,100,59,48 —>» —0.02, 0.32, 1.00, 0.59, 0.48
Data reduction attributes attributes
Al A2 A3 Al26 - Al A3 .. All5
. Ti g
§ T2 S T4
S T3 —> 2
2 T4 g Ti456
=] =
g .
T2000

Figure 2.1 Forms of data preprocessing.

a form of data reduction that is very useful for the automatic generation of concept hier-
archies from numerical data. This is described in Section 2.6, along with the automatic
generation of concept hierarchies for categorical data.

Figure 2.1 summarizes the data preprocessing steps described here. Note that the
above categorization is not mutually exclusive. For example, the removal of redundant
data may be seen as a form of data cleaning, as well as data reduction.

In summary, real-world data tend to be dirty, incomplete, and inconsistent. Data
preprocessing techniques can improve the quality of the data, thereby helping to improve
the accuracy and efficiency of the subsequent mining process. Data preprocessing is an

2.

2.2 Descriptive Data Summarization 51

important step in the knowledge discovery process, because quality decisions must be
based on quality data. Detecting data anomalies, rectifying them early, and reducing the
data to be analyzed can lead to huge payoffs for decision making.

Descriptive Data Summarization

For data preprocessing to be successful, it is essential to have an overall picture of your
data. Descriptive data summarization techniques can be used to identify the typical prop-
erties of your data and highlight which data values should be treated as noise or outliers.
Thus, we first introduce the basic concepts of descriptive data summarization before get-
ting into the concrete workings of data preprocessing techniques.

For many data preprocessing tasks, users would like to learn about data character-
istics regarding both central tendency and dispersion of the data. Measures of central
tendency include mean, median, mode, and midrange, while measures of data dispersion
include quartiles, interquartile range (IQR), and variance. These descriptive statistics are
of great help in understanding the distribution of the data. Such measures have been
studied extensively in the statistical literature. From the data mining point of view, we
need to examine how they can be computed efficiently in large databases. In particular,
it is necessary to introduce the notions of distributive measure, algebraic measure, and
holistic measure. Knowing what kind of measure we are dealing with can help us choose
an efficient implementation for it.

Measuring the Central Tendency

In this section, we look at various ways to measure the central tendency of data. The
most common and most effective numerical measure of the “center” of a set of data is
the (arithmetic) mean. Let x1,xp,...,xy be a set of N values or observations, such as for
some attribute, like salary. The mean of this set of values is

N
2

=1 _ X1+x+--+xy
N N '

This corresponds to the built-in aggregate function, average (avg() in SQL), provided in
relational database systems.

A distributive measure is a measure (i.e., function) that can be computed for a
given data set by partitioning the data into smaller subsets, computing the measure
for each subset, and then merging the results in order to arrive at the measure’s value
for the original (entire) data set. Both sum() and count() are distributive measures
because they can be computed in this manner. Other examples include max() and
min(). An algebraic measure is a measure that can be computed by applying an alge-
braic function to one or more distributive measures. Hence, average (or mean()) is
an algebraic measure because it can be computed by sum()/count(). When computing

_;C:

(2.1)

52

Chapter 2 Data Preprocessing

data cubes?, sum() and count() are typically saved in precomputation. Thus, the
derivation of average for data cubes is straightforward.

Sometimes, each value x; in a set may be associated with a weight w;, fori=1,...,N.
The weights reflect the significance, importance, or occurrence frequency attached to
their respective values. In this case, we can compute

N

Z WiX;

i=1
N
2w
i=1

This is called the weighted arithmetic mean or the weighted average. Note that the
weighted average is another example of an algebraic measure.

Although the mean is the single most useful quantity for describing a data set, it is not
always the best way of measuring the center of the data. A major problem with the mean
is its sensitivity to extreme (e.g., outlier) values. Even a small number of extreme values
can corrupt the mean. For example, the mean salary at a company may be substantially
pushed up by that of a few highly paid managers. Similarly, the average score of a class
in an exam could be pulled down quite a bit by a few very low scores. To offset the effect
caused by a small number of extreme values, we can instead use the trimmed mean,
which is the mean obtained after chopping off values at the high and low extremes. For
example, we can sort the values observed for salary and remove the top and bottom 2%
before computing the mean. We should avoid trimming too large a portion (such as
20%) at both ends as this can result in the loss of valuable information.

For skewed (asymmetric) data, a better measure of the center of data is the median.
Suppose that a given data set of N distinct values is sorted in numerical order. If N is odd,
then the median is the middle value of the ordered set; otherwise (i.e., if N is even), the
median is the average of the middle two values.

A holistic measure is a measure that must be computed on the entire data set as a
whole. It cannot be computed by partitioning the given data into subsets and merging
the values obtained for the measure in each subset. The median is an example of a holis-
tic measure. Holistic measures are much more expensive to compute than distributive
measures such as those listed above.

We can, however, easily approximate the median value of a data set. Assume that data are
grouped in intervals according to their x; data values and that the frequency (i.e., number
of data values) of each interval is known. For example, people may be grouped according
to their annual salary in intervals such as 10-20K, 20-30K, and so on. Let the interval that
contains the median frequency be the median interval. We can approximate the median
of the entire data set (e.g., the median salary) by interpolation using the formula:

N/2 — (X freq),
freqmediun

_ WIXp Fwoxp + - WXy
witwr++wy

X =

(2.2)

median = Ly + (> width, (2.3)

2Data cube computation is described in detail in Chapters 3 and 4.

2.2 Descriptive Data Summarization 53

Mean Mode Mean Mean Mode
Median [N
Mode e
| [
i (N
i P
1 L1
1 Media
1
H
(a) symmetric data (b) positively skewed data (c) negatively skewed data

Figure 2.2 Mean, median, and mode of symmetric versus positively and negatively skewed data.

122

where L; is the lower boundary of the median interval, N is the number of values in the
entire data set, (3 freq), is the sum of the frequencies of all of the intervals that are lower
than the median interval, freqmeqian is the frequency of the median interval, and width
is the width of the median interval.

Another measure of central tendency is the mode. The mode for a set of data is the
value that occurs most frequently in the set. It is possible for the greatest frequency to
correspond to several different values, which results in more than one mode. Data sets
with one, two, or three modes are respectively called unimodal, bimodal, and trimodal.
In general, a data set with two or more modes is multimodal. At the other extreme, if
each data value occurs only once, then there is no mode.

For unimodal frequency curves that are moderately skewed (asymmetrical), we have
the following empirical relation:

mean — mode = 3 X (mean — median). (2.4)

This implies that the mode for unimodal frequency curves that are moderately skewed
can easily be computed if the mean and median values are known.

In a unimodal frequency curve with perfect symmetric data distribution, the mean,
median, and mode are all at the same center value, as shown in Figure 2.2(a). However,
data in most real applications are not symmetric. They may instead be either positively
skewed, where the mode occurs at a value that is smaller than the median (Figure 2.2(b)),
or negatively skewed, where the mode occurs at a value greater than the median
(Figure 2.2(c)).

The midrange can also be used to assess the central tendency of a data set. It is the
average of the largest and smallest values in the set. This algebraic measure is easy to
compute using the SQL aggregate functions, max() and min().

Measuring the Dispersion of Data

The degree to which numerical data tend to spread is called the dispersion, or variance of
the data. The most common measures of data dispersion are range, the five-number sum-
mary (based on quartiles), the interquartile range, and the standard deviation. Boxplots

54

Chapter 2 Data Preprocessing

can be plotted based on the five-number summary and are a useful tool for identifying
outliers.

Range, Quartiles, Outliers, and Boxplots

Let x1,x2,...,xy be a set of observations for some attribute. The range of the set is the
difference between the largest (max()) and smallest (min()) values. For the remainder of
this section, let’s assume that the data are sorted in increasing numerical order.

The kth percentile of a set of data in numerical order is the value x; having the property
that k percent of the data entries lie at or below x;. The median (discussed in the previous
subsection) is the 50th percentile.

The most commonly used percentiles other than the median are quartiles. The first
quartile, denoted by Qy, is the 25th percentile; the third quartile, denoted by Q3, is the
75th percentile. The quartiles, including the median, give some indication of the center,
spread, and shape of a distribution. The distance between the first and third quartiles is
a simple measure of spread that gives the range covered by the middle half of the data.
This distance is called the interquartile range (/QR) and is defined as

IQR=03—-0;. (2.5)

Based on reasoning similar to that in our analysis of the median in Section 2.2.1, we can
conclude that Q; and Q3 are holistic measures, as is IQR.

No single numerical measure of spread, such as IQR, is very useful for describing
skewed distributions. The spreads of two sides of a skewed distribution are unequal
(Figure 2.2). Therefore, it is more informative to also provide the two quartiles Q; and
03, along with the median. A common rule of thumb for identifying suspected outliers
is to single out values falling at least 1.5 x IQR above the third quartile or below the first
quartile.

Because Q1, the median, and Q3 together contain no information about the endpoints
(e.g., tails) of the data, a fuller summary of the shape of a distribution can be obtained
by providing the lowest and highest data values as well. This is known as the five-number
summary. The five-number summary of a distribution consists of the median, the quar-
tiles Q1 and Q3, and the smallest and largest individual observations, written in the order
Minimum, Q1, Median, Q3, Maximum.

Boxplots are a popular way of visualizing a distribution. A boxplot incorporates the
five-number summary as follows:

Typically, the ends of the box are at the quartiles, so that the box length is the interquar-
tile range, IQR.

The median is marked by a line within the box.

Two lines (called whiskers) outside the box extend to the smallest (Minimum) and

largest (Maximum) observations.

When dealing with a moderate number of observations, it is worthwhile to plot
potential outliers individually. To do this in a boxplot, the whiskers are extended to

2.2 Descriptive Data Summarization 55

200 — ¢
-
180 . T :
1
160 -} ' —
-
140 | |
1
~ T
1
< 120 4 | —
.S 1
=
a 1
= 100
-]
80 1 L
1
CU I - L
| 1
| 1
40 — - €4 L
41
20 —
Branch 1 Branch 2 Branch 3 Branch 4

Figure 2.3 Boxplot for the unit price data for items sold at four branches of AllElectronics during a given
time period.

the extreme low and high observations only if these values are less than 1.5 x IQR
beyond the quartiles. Otherwise, the whiskers terminate at the most extreme obser-
vations occurring within 1.5 X IQR of the quartiles. The remaining cases are plotted
individually. Boxplots can be used in the comparisons of several sets of compatible
data. Figure 2.3 shows boxplots for unit price data for items sold at four branches of
AllElectronics during a given time period. For branch 1, we see that the median price
of items sold is $80, Q; is $60, Q3 is $100. Notice that two outlying observations for
this branch were plotted individually, as their values of 175 and 202 are more than
1.5 times the IQR here of 40. The efficient computation of boxplots, or even approximate
boxplots (based on approximates of the five-number summary), remains a
challenging issue for the mining of large data sets.

Variance and Standard Deviation
The variance of N observations, x1,x3,...,Xy, is
= S Lye Ly (2.6)
N &] N 1 N 1 > .

where x is the mean value of the observations, as defined in Equation (2.1). The standard
deviation, G, of the observations is the square root of the variance, o2,

56

Chapter 2 Data Preprocessing

213

The basic properties of the standard deviation, G, as a measure of spread are

6 measures spread about the mean and should be used only when the mean is chosen
as the measure of center.

6 = 0 only when there is no spread, that is, when all observations have the same value.
Otherwise ¢ > 0.

The variance and standard deviation are algebraic measures because they can be com-
puted from distributive measures. That is, N (which is count() in SQL), ¥ x; (which is
the sum() of x;), and 3,x? (which is the sum() of x?) can be computed in any partition
and then merged to feed into the algebraic Equation (2.6). Thus the computation of the
variance and standard deviation is scalable in large databases.

Graphic Displays of Basic Descriptive Data Summaries

Aside from the bar charts, pie charts, and line graphs used in most statistical or graph-
ical data presentation software packages, there are other popular types of graphs for
the display of data summaries and distributions. These include histograms, quantile
plots, g-q plots, scatter plots, and loess curves. Such graphs are very helpful for the visual
inspection of your data.

Plotting histograms, or frequency histograms, is a graphical method for summariz-
ing the distribution of a given attribute. A histogram for an attribute A partitions the data
distribution of A into disjoint subsets, or buckets. Typically, the width of each bucket is
uniform. Each bucket is represented by a rectangle whose height is equal to the count or
relative frequency of the values at the bucket. If A is categoric, such as automobile_model
or item_type, then one rectangle is drawn for each known value of A, and the resulting
graph is more commonly referred to as a bar chart. If A is numeric, the term histogram
is preferred. Partitioning rules for constructing histograms for numerical attributes are
discussed in Section 2.5.4. In an equal-width histogram, for example, each bucket rep-
resents an equal-width range of numerical attribute A.

Figure 2.4 shows a histogram for the data set of Table 2.1, where buckets are defined by
equal-width ranges representing $20 increments and the frequency is the count of items
sold. Histograms are at least a century old and are a widely used univariate graphical
method. However, they may not be as effective as the quantile plot, g-q plot, and boxplot
methods for comparing groups of univariate observations.

A quantile plot is a simple and effective way to have a first look at a univariate
data distribution. First, it displays all of the data for the given attribute (allowing the
user to assess both the overall behavior and unusual occurrences). Second, it plots
quantile information. The mechanism used in this step is slightly different from the
percentile computation discussed in Section 2.2.2. Let x;, for i =1 to N, be the data
sorted in increasing order so that x; is the smallest observation and xy is the largest.
Each observation, x;, is paired with a percentage, f;, which indicates that approximately
100£;% of the data are below or equal to the value, x;. We say “approximately” because

2.2 Descriptive Data Summarization 57

6000

5000
=
24000
g
e
= 3000
o
5 2000
&)

1000 ~

0 : : : B -
40-59 60-79 80-99 100-119 120-139
Unit Price ($)

Figure 2.4 A histogram for the data set of Table 2.1.

Table 2.1 A set of unit price data for items sold at a branch of AllElectronics.

Unit price ($) Count of items sold
40 275
43 300
47 250
74 360
75 515
78 540
115 320
117 270
120 350

there may not be a value with exactly a fraction, f;, of the data below or equal to x;.
Note that the 0.25 quantile corresponds to quartile Qj, the 0.50 quantile is the median,
and the 0.75 quantile is Q3.

Let
i—0.5

fi= N (2.7)

These numbers increase in equal steps of 1/N, ranging from 1/2N (which is slightly
above zero) to 1 — 1 /2N (which is slightly below one). On a quantile plot, x; is graphed
against f;. This allows us to compare different distributions based on their quantiles.
For example, given the quantile plots of sales data for two different time periods, we can

58

Chapter 2

Figure 2.5

Data Preprocessing

140 -

[
N
(=]
!
*

Unit price ($
—_

[\ I) W e - R]
S O O O O

0.000 0.250 0.500 0.750 1.000
f-value

A quantile plot for the unit price data of Table 2.1.

compare their O, median, O3, and other f; values at a glance. Figure 2.5 shows a quantile
plot for the unit price data of Table 2.1.

A quantile-quantile plot, or q-q plot, graphs the quantiles of one univariate
distribution against the corresponding quantiles of another. It is a powerful visualization
toolin that it allows the user to view whether there is a shift in going from one distribution
to another.

Suppose that we have two sets of observations for the variable unit price, taken from
two different branch locations. Let xi,...,xy be the data from the first branch, and
Y1,--.,ym be the data from the second, where each data set is sorted in increasing order.
If M = N (i.e., the number of points in each set is the same), then we simply plot y;
against x;, where y; and x; are both (i —0.5)/N quantiles of their respective data sets.
If M < N (i.e., the second branch has fewer observations than the first), there can be
only M points on the q-q plot. Here, y; is the (i —0.5) /M quantile of the y data, which
is plotted against the (i —0.5)/M quantile of the x data. This computation typically
involves interpolation.

Figure 2.6 shows a quantile-quantile plot for unit price data of items sold at two dif-
ferent branches of AllElectronics during a given time period. Each point corresponds to
the same quantile for each data set and shows the unit price of items sold at branch 1
versus branch 2 for that quantile. For example, here the lowest point in the left corner
corresponds to the 0.03 quantile. (To aid in comparison, we also show a straight line that
represents the case of when, for each given quantile, the unit price at each branch is the
same. In addition, the darker points correspond to the data for Qj, the median, and Q3,
respectively.) We see that at this quantile, the unit price of items sold at branch 1 was
slightly less than that at branch 2. In other words, 3% of items sold at branch 1 were less
than or equal to $40, while 3% of items at branch 2 were less than or equal to $42. At the
highest quantile, we see that the unit price of items at branch 2 was slightly less than that
at branch 1. In general, we note that there is a shift in the distribution of branch 1 with
respect to branch 2 in that the unit prices of items sold at branch 1 tend to be lower than
those at branch 2.

Figure 2.6

Figure 2.7

2.2 Descriptive Data Summarization 59

Branch 2 (unit price $)

40 T T T T T T T 1
40 50 60 70 80 90 100 110 120

Branch 1 (unit price $)

A quantile-quantile plot for unit price data from two different branches.
700 -
600 - o %o0qe .
500 o 3 L.
o=} 9, ¢ @
< .0
% 400 * .
é’ O ¢ - ¢
g 300 - AR A
200 -~
100
0 T T T T T T |
0 20 40 60 80 100 120 140
Unit price ($)

A scatter plot for the data set of Table 2.1.

A scatter plot is one of the most effective graphical methods for determining if there
appears to be a relationship, pattern, or trend between two numerical attributes. To
construct a scatter plot, each pair of values is treated as a pair of coordinates in an alge-
braic sense and plotted as points in the plane. Figure 2.7 shows a scatter plot for the set of
data in Table 2.1. The scatter plot is a useful method for providing a first look at bivariate
data to see clusters of points and outliers, or to explore the possibility of correlation rela-
tionships.® In Figure 2.8, we see examples of positive and negative correlations between

3 A statistical test for correlation is given in Section 2.4.1 on data integration (Equation (2.8)).

60 Chapter 2 Data Preprocessing

N P
. ®e .« o .
. ° o o N
L]

e o, o’.{% .::’.'.0.:: o. ® . . :..
Poe Lo LA e o o H So0® < %
.0. 4 .o‘°o .. % % o ® o ® F3 .oo L4 . .

. * .3'0...0 .‘0..005. o? - .o: o

oo R }
S
. A .. e

Figure 2.9 Three cases where there is no observed correlation between the two plotted attributes in each
of the data sets.

two attributes in two different data sets. Figure 2.9 shows three cases for which there is
no correlation relationship between the two attributes in each of the given data sets.

When dealing with several attributes, the scatter-plot matrix is a useful extension to
the scatter plot. Given n attributes, a scatter-plot matrix is an n x n grid of scatter plots
that provides a visualization of each attribute (or dimension) with every other attribute.
The scatter-plot matrix becomes less effective as the number of attributes under study
grows. In this case, user interactions such as zooming and panning become necessary to
help interpret the individual scatter plots effectively.

A loess curve is another important exploratory graphic aid that adds a smooth curve
to a scatter plot in order to provide better perception of the pattern of dependence. The
word loess is short for “local regression.” Figure 2.10 shows a loess curve for the set of
data in Table 2.1.

To fit a loess curve, values need to be set for two parameters—a,, a smoothing param-
eter, and A, the degree of the polynomials that are fitted by the regression. While o can be
any positive number (typical values are between 1/4 and 1), A can be 1 or 2. The goal in
choosing a is to produce a fit that is as smooth as possible without unduly distorting the
underlying pattern in the data. The curve becomes smoother as o increases. There may be
some lack of fit, however, indicating possible “missing” data patterns. If o is very small, the
underlying pattern is tracked, yet overfitting of the data may occur where local “wiggles”
in the curve may not be supported by the data. If the underlying pattern of the data has a

Figure 2.10

23.1

2.3 Data Cleaning 61

700
600
500
400 -
300
200

Items sold

100

| | |
0 20 40 60 80 100 120 140
Unit price ($)

A loess curve for the data set of Table 2.1.

“gentle” curvature with no local maxima and minima, then local linear fitting is usually
sufficient (A = 1). However, if there are local maxima or minima, then local quadratic
fitting (A = 2) typically does a better job of following the pattern of the data and main-
taining local smoothness.

In conclusion, descriptive data summaries provide valuable insight into the overall
behavior of your data. By helping to identify noise and outliers, they are especially useful
for data cleaning.

Data Cleaning

Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning (or data
cleansing) routines attempt to fill in missing values, smooth out noise while identify-
ing outliers, and correct inconsistencies in the data. In this section, you will study basic
methods for data cleaning. Section 2.3.1 looks at ways of handling missing values.
Section 2.3.2 explains data smoothing techniques. Section 2.3.3 discusses approaches to
data cleaning as a process.

Missing Values

Imagine that you need to analyze AllElectronics sales and customer data. You note that
many tuples have no recorded value for several attributes, such as customer income. How
can you go about filling in the missing values for this attribute? Let’s look at the following
methods:

I. Ignore the tuple: This is usually done when the class label is missing (assuming the
mining task involves classification). This method is not very effective, unless the tuple
contains several attributes with missing values. It is especially poor when the percent-
age of missing values per attribute varies considerably.

62

Chapter 2 Data Preprocessing

132

2. Fill in the missing value manually: In general, this approach is time-consuming and
may not be feasible given a large data set with many missing values.

3. Use a global constant to fill in the missing value: Replace all missing attribute values
by the same constant, such as a label like “Unknown” or —eo. If missing values are
replaced by, say, “Unknown,” then the mining program may mistakenly think that
they form an interesting concept, since they all have a value in common—that of
“Unknown.” Hence, although this method is simple, it is not foolproof.

4. Use the attribute mean to fill in the missing value: For example, suppose that the
average income of AllElectronics customers is $56,000. Use this value to replace the
missing value for income.

5. Use the attribute mean for all samples belonging to the same class as the given tuple:
For example, if classifying customers according to credit_risk, replace the missing value
with the average income value for customers in the same credit risk category as that
of the given tuple.

6. Use the most probable value to fill in the missing value: This may be determined
with regression, inference-based tools using a Bayesian formalism, or decision tree
induction. For example, using the other customer attributes in your data set, you
may construct a decision tree to predict the missing values for income. Decision
trees, regression, and Bayesian inference are described in detail in Chapter 6.

Methods 3 to 6 bias the data. The filled-in value may not be correct. Method 6,
however, is a popular strategy. In comparison to the other methods, it uses the most
information from the present data to predict missing values. By considering the values
of the other attributes in its estimation of the missing value for income, there is a greater
chance that the relationships between income and the other attributes are preserved.

It is important to note that, in some cases, a missing value may not imply an error
in the data! For example, when applying for a credit card, candidates may be asked to
supply their driver’s license number. Candidates who do not have a driver’s license may
naturally leave this field blank. Forms should allow respondents to specify values such as
“not applicable”. Software routines may also be used to uncover other null values, such
as “don’t know”, “?”, or “none”. Ideally, each attribute should have one or more rules
regarding the null condition. The rules may specify whether or not nulls are allowed,
and/or how such values should be handled or transformed. Fields may also be inten-
tionally left blank if they are to be provided in a later step of the business process. Hence,
although we can try our best to clean the data after it is seized, good design of databases
and of data entry procedures should help minimize the number of missing values or
errors in the first place.

Noisy Data

“What is noise?” Noise is a random error or variance in a measured variable. Given a
numerical attribute such as, say, price, how can we “smooth” out the data to remove the
noise? Let’s look at the following data smoothing techniques:

2.3 Data Cleaning 63

Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34
Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15
Bin 2: 21, 21, 24
Bin 3: 25, 28, 34

Smoothing by bin means:

Bin1:9,9,9
Bin 2: 22, 22,22
Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15
Bin 2: 21, 21, 24
Bin 3: 25, 25, 34

Figure 2.11 Binning methods for data smoothing.

I. Binning: Binning methods smooth a sorted data value by consulting its “neighbor-
hood,” that is, the values around it. The sorted values are distributed into a number
of “buckets,” or bins. Because binning methods consult the neighborhood of values,
they perform local smoothing. Figure 2.11 illustrates some binning techniques. In this
example, the data for price are first sorted and then partitioned into equal-frequency
bins of size 3 (i.e., each bin contains three values). In smoothing by bin means, each
value in a bin is replaced by the mean value of the bin. For example, the mean of the
values 4, 8, and 15 in Bin 1 is 9. Therefore, each original value in this bin is replaced
by the value 9. Similarly, smoothing by bin medians can be employed, in which each
bin value is replaced by the bin median. In smoothing by bin boundaries, the mini-
mum and maximum values in a given bin are identified as the bin boundaries. Each
bin value is then replaced by the closest boundary value. In general, the larger the
width, the greater the effect of the smoothing. Alternatively, bins may be equal-width,
where the interval range of values in each bin is constant. Binning is also used as a
discretization technique and is further discussed in Section 2.6.

2. Regression: Data can be smoothed by fitting the data to a function, such as with
regression. Linear regression involves finding the “best” line to fit two attributes (or
variables), so that one attribute can be used to predict the other. Multiple linear
regression is an extension of linear regression, where more than two attributes are
involved and the data are fit to a multidimensional surface. Regression is further
described in Section 2.5.4, as well as in Chapter 6.

Chapter 2 Data Preprocessing

Figure 2.12 A 2-D plot of customer data with respect to customer locations in a city, showing three
data clusters. Each cluster centroid is marked with a “+”, representing the average point
in space for that cluster. Outliers may be detected as values that fall outside of the sets
of clusters.

3. Clustering: Outliers may be detected by clustering, where similar values are organized
into groups, or “clusters.” Intuitively, values that fall outside of the set of clusters may
be considered outliers (Figure 2.12). Chapter 7 is dedicated to the topic of clustering
and outlier analysis.

Many methods for data smoothing are also methods for data reduction involv-
ing discretization. For example, the binning techniques described above reduce the
number of distinct values per attribute. This acts as a form of data reduction for
logic-based data mining methods, such as decision tree induction, which repeatedly
make value comparisons on sorted data. Concept hierarchies are a form of data dis-
cretization that can also be used for data smoothing. A concept hierarchy for price, for
example, may map real price values into inexpensive, moderately_priced, and expensive,
thereby reducing the number of data values to be handled by the mining process.
Data discretization is discussed in Section 2.6. Some methods of classification, such
as neural networks, have built-in data smoothing mechanisms. Classification is the
topic of Chapter 6.

2.3 Data Cleaning 65

133 Data Cleaning as a Process

Missing values, noise, and inconsistencies contribute to inaccurate data. So far, we have
looked at techniques for handling missing data and for smoothing data. “But data clean-
ing is a big job. What about data cleaning as a process? How exactly does one proceed in
tackling this task? Are there any tools out there to help?”

The first step in data cleaning as a process is discrepancy detection. Discrepancies can
be caused by several factors, including poorly designed data entry forms that have many
optional fields, human error in data entry, deliberate errors (e.g., respondents not wanting
to divulge information about themselves), and data decay (e.g., outdated addresses). Dis-
crepancies may also arise from inconsistent data representations and the inconsistent use
of codes. Errorsininstrumentation devices thatrecord data, and system errors, are another
source of discrepancies. Errors can also occur when the data are (inadequately) used for
purposes other than originally intended. There may also be inconsistencies due to data
integration (e.g., where a given attribute can have different names in different databases).*

“So, how can we proceed with discrepancy detection?” As a starting point, use any knowl-
edge you may already have regarding properties of the data. Such knowledge or “data
about data” is referred to as metadata. For example, what are the domain and data type of
each attribute? What are the acceptable values for each attribute? What is the range of the
length of values? Do all values fall within the expected range? Are there any known depen-
dencies between attributes? The descriptive data summaries presented in Section 2.2 are
useful here for grasping data trends and identifying anomalies. For example, values that
are more than two standard deviations away from the mean for a given attribute may
be flagged as potential outliers. In this step, you may write your own scripts and/or use
some of the tools that we discuss further below. From this, you may find noise, outliers,
and unusual values that need investigation.

Asadataanalyst, you should be on the lookout for the inconsistent use of codes and any
inconsistent data representations (such as “2004/12/25” and “25/12/2004” for date). Field
overloading is another source of errors that typically results when developers squeeze new
attribute definitions into unused (bit) portions of already defined attributes (e.g., using
an unused bit of an attribute whose value range uses only, say, 31 out of 32 bits).

The data should also be examined regarding unique rules, consecutive rules, and null
rules. A unique rule says that each value of the given attribute must be different from
all other values for that attribute. A consecutive rule says that there can be no miss-
ing values between the lowest and highest values for the attribute, and that all values
must also be unique (e.g., as in check numbers). A null rule specifies the use of blanks,
question marks, special characters, or other strings that may indicate the null condi-
tion (e.g., where a value for a given attribute is not available), and how such values
should be handled. As mentioned in Section 2.3.1, reasons for missing values may include
(1) the person originally asked to provide a value for the attribute refuses and/or finds

4Data integration and the removal of redundant data that can result from such integration are further
described in Section 2.4.1.

66

Chapter 2 Data Preprocessing

that the information requested is not applicable (e.g., a license-number attribute left blank
by nondrivers); (2) the data entry person does not know the correct value; or (3) the value
is to be provided by a later step of the process. The null rule should specify how to record
the null condition, for example, such as to store zero for numerical attributes, a blank
for character attributes, or any other conventions that may be in use (such as that entries
like “don’t know” or “?” should be transformed to blank).

There are a number of different commercial tools that can aid in the step of discrepancy
detection. Data scrubbing tools use simple domain knowledge (e.g., knowledge of postal
addresses, and spell-checking) to detect errors and make corrections in the data. These
tools rely on parsing and fuzzy matching techniques when cleaning data from multiple
sources. Data auditing tools find discrepancies by analyzing the data to discover rules
and relationships, and detecting data that violate such conditions. They are variants of
data mining tools. For example, they may employ statistical analysis to find correlations,
or clustering to identify outliers. They may also use the descriptive data summaries that
were described in Section 2.2.

Some data inconsistencies may be corrected manually using external references. For
example, errors made at data entry may be corrected by performing a paper trace. Most
errors, however, will require data transformations. This is the second step in data cleaning
as a process. That is, once we find discrepancies, we typically need to define and apply
(a series of) transformations to correct them.

Commercial tools can assist in the data transformation step. Data migration tools
allow simple transformations to be specified, such as to replace the string “gender” by
“sex”. ETL (extraction/transformation/loading) tools allow users to specify transforms
through a graphical user interface (GUI). These tools typically support only a restricted
set of transforms so that, often, we may also choose to write custom scripts for this step
of the data cleaning process.

The two-step process of discrepancy detection and data transformation (to correct dis-
crepancies) iterates. This process, however, is error-prone and time-consuming. Some
transformations may introduce more discrepancies. Some nested discrepancies may only
be detected after others have been fixed. For example, a typo such as “20004” in a year field
may only surface once all date values have been converted to a uniform format. Transfor-
mations are often done as a batch process while the user waits without feedback. Only
after the transformation is complete can the user go back and check that no new anoma-
lies have been created by mistake. Typically, numerous iterations are required before the
user issatisfied. Any tuples that cannotbe automatically handled by a given transformation
are typically written to a file without any explanation regarding the reasoning behind their
failure. As a result, the entire data cleaning process also suffers from a lack of interactivity.

New approaches to data cleaning emphasize increased interactivity. Potter’s Wheel, for
example, is a publicly available data cleaning tool (see http://control.cs.berkeley.edu/abc)
that integrates discrepancy detection and transformation. Users gradually build a series of
transformations by composing and debugging individual transformations, one step at a
time, on a spreadsheet-like interface. The transformations can be specified graphically or
by providing examples. Results are shown immediately on the records that are visible on
the screen. The user can choose to undo the transformations, so that transformations

24.1

2.4 Data Integration and Transformation 67

that introduced additional errors can be “erased.” The tool performs discrepancy
checking automatically in the background on the latest transformed view of the data.
Users can gradually develop and refine transformations as discrepancies are found,
leading to more effective and efficient data cleaning.

Another approach to increased interactivity in data cleaning is the development of
declarative languages for the specification of data transformation operators. Such work
focuses on defining powerful extensions to SQL and algorithms that enable users to
express data cleaning specifications efficiently.

As we discover more about the data, it is important to keep updating the metadata
to reflect this knowledge. This will help speed up data cleaning on future versions of the
same data store.

Data Integration and Transformation

Data mining often requires data integration—the merging of data from multiple data
stores. The data may also need to be transformed into forms appropriate for mining.
This section describes both data integration and data transformation.

Data Integration

It is likely that your data analysis task will involve data integration, which combines data
from multiple sources into a coherent data store, as in data warehousing. These sources
may include multiple databases, data cubes, or flat files.

There are a number of issues to consider during data integration. Schema integration
and object matching can be tricky. How can equivalent real-world entities from multiple
data sources be matched up? This is referred to as the entity identification problem.
For example, how can the data analyst or the computer be sure that customer_id in one
database and cust_number in another refer to the same attribute? Examples of metadata
for each attribute include the name, meaning, data type, and range of values permitted
for the attribute, and null rules for handling blank, zero, or null values (Section 2.3).
Such metadata can be used to help avoid errors in schema integration. The metadata
may also be used to help transform the data (e.g., where data codes for pay_type in one
database may be “H” and “S”, and I and 2 in another). Hence, this step also relates to
data cleaning, as described earlier.

Redundancy is another important issue. An attribute (such as annual revenue, for
instance) may be redundant if it can be “derived” from another attribute or set of
attributes. Inconsistencies in attribute or dimension naming can also cause redundan-
cies in the resulting data set.

Some redundancies can be detected by correlation analysis. Given two attributes, such
analysis can measure how strongly one attribute implies the other, based on the available
data. For numerical attributes, we can evaluate the correlation between two attributes, A
and B, by computing the correlation coefficient (also known as Pearson’s product moment
coefficient, named after its inventer, Karl Pearson). This is

68

Chapter 2 Data Preprocessing

N
(a;—A)(bi — B) Z(aibi) — NAB

i=1
= = , 2.8
TA.B NG0B NG0B (2:8)

=

I
R

where N is the number of tuples, a; and b; are the respective values of A and B in tuple i,
A and B are the respective mean values of A and B, 64 and 6 are the respective standard
deviations of A and B (as defined in Section 2.2.2), and X(a;b;) is the sum of the AB
cross-product (that is, for each tuple, the value for A is multiplied by the value for B in
that tuple). Note that —1 < r4 p < 41.1f r4 pis greater than 0, then A and B are positively
correlated, meaning that the values of A increase as the values of B increase. The higher
the value, the stronger the correlation (i.e., the more each attribute implies the other).
Hence, a higher value may indicate that A (or B) may be removed as a redundancy. If the
resulting value is equal to 0, then A and B are independent and there is no correlation
between them. If the resulting value is less than 0, then A and B are negatively correlated,
where the values of one attribute increase as the values of the other attribute decrease.
This means that each attribute discourages the other. Scatter plots can also be used to
view correlations between attributes (Section 2.2.3).

Note that correlation does not imply causality. That is, if A and B are correlated, this
does not necessarily imply that A causes B or that B causes A. For example, in analyzing a
demographic database, we may find that attributes representing the number of hospitals
and the number of car thefts in a region are correlated. This does not mean that one
causes the other. Both are actually causally linked to a third attribute, namely, population.

For categorical (discrete) data, a correlation relationship between two attributes, A
and B, can be discovered by a y° (chi-square) test. Suppose A has c distinct values, namely
ay,ayz,...dc. B has rdistinct values, namely by, bs, ... b,. The data tuples described by A
and B can be shown as a contingency table, with the c values of A making up the columns
and the r values of B making up the rows. Let (A;,B;) denote the event that attribute A
takes on value g; and attribute B takes on value b}, that is, where (A=a;,B= bj). Each
and every possible (A;, B;) joint event has its own cell (or slot) in the table. The) value
(also known as the Pearson y statistic) is computed as:

i=1 ¢ij

r 2
0;i —e;;
y2 = yY (0ij — ¢ij) , (2.9)
j=1
where 0;; is the observed frequency (i.e., actual count) of the joint event (A;, B;) and ¢;;
is the expected frequency of (A;, B;), which can be computed as

count(A = a;) x count(B = bj)
N b

€jj = (2.10)
where N is the number of data tuples, count (A = a;) is the number of tuples having value
a; for A, and count(B = bj;) is the number of tuples having value b; for B. The sum in
Equation (2.9) is computed over all of the r x ¢ cells. Note that the cells that contribute
the most to the % value are those whose actual count is very different from that expected.

2.4 Data Integration and Transformation 69

Table 2.2 A2 x 2 contingency table for the data of Example 2.1.

Example 2.1

Are gender and preferred_Reading correlated?

male female Total

fiction 250 (90) 200 (360) 450
non_fiction 50 (210) 1000 (840) 1050
Total 300 1200 1500

The ? statistic tests the hypothesis that A and B are independent. The test is based on
a significance level, with (r — 1) X (¢ — 1) degrees of freedom. We will illustrate the use
of this statistic in an example below. If the hypothesis can be rejected, then we say that A
and B are statistically related or associated.

Let’s look at a concrete example.

Correlation analysis of categorical attributes using 2. Suppose that a group of 1,500
people was surveyed. The gender of each person was noted. Each person was polled as to
whether their preferred type of reading material was fiction or nonfiction. Thus, we have
two attributes, gender and preferred_reading. The observed frequency (or count) of each
possible joint event is summarized in the contingency table shown in Table 2.2, where
the numbers in parentheses are the expected frequencies (calculated based on the data
distribution for both attributes using Equation (2.10)).

Using Equation (2.10), we can verify the expected frequencies for each cell. For exam-
ple, the expected frequency for the cell (male, fiction) is

count(male) x count(fiction) 300 x 450

_ _ — 90,
e N 1500

and so on. Notice that in any row, the sum of the expected frequencies must equal the

total observed frequency for that row, and the sum of the expected frequencies in any col-
umn must also equal the total observed frequency for that column. Using Equation (2.9)
for xz computation, we get

) (250—-90)> (50—210)> (200 —360)> (1000 — 840)>
X = + + +
90 210 360 840
= 284.44+121.90+71.11 +30.48 = 507.93.

For this 2 x 2 table, the degrees of freedom are (2 —1)(2 — 1) = 1. For 1 degree of
freedom, the %2 value needed to reject the hypothesis at the 0.001 significance level is
10.828 (taken from the table of upper percentage points of the x* distribution, typically
available from any textbook on statistics). Since our computed value is above this, we can
reject the hypothesis that gender and preferred_reading are independent and conclude that
the two attributes are (strongly) correlated for the given group of people. (]

In addition to detecting redundancies between attributes, duplication should also
be detected at the tuple level (e.g., where there are two or more identical tuples for a

70

Chapter 2 Data Preprocessing

142

given unique data entry case). The use of denormalized tables (often done to improve
performance by avoiding joins) is another source of data redundancy. Inconsistencies
often arise between various duplicates, due to inaccurate data entry or updating some
but not all of the occurrences of the data. For example, if a purchase order database con-
tains attributes for the purchaser’s name and address instead of a key to this information
in a purchaser database, discrepancies can occur, such as the same purchaser’s name
appearing with different addresses within the purchase order database.

A third important issue in data integration is the detection and resolution of data
value conflicts. For example, for the same real-world entity, attribute values from
different sources may differ. This may be due to differences in representation, scaling,
or encoding. For instance, a weight attribute may be stored in metric units in one
system and British imperial units in another. For a hotel chain, the price of rooms
in different cities may involve not only different currencies but also different services
(such as free breakfast) and taxes. An attribute in one system may be recorded at
a lower level of abstraction than the “same” attribute in another. For example, the
total_sales in one database may refer to one branch of All_Electronics, while an attribute
of the same name in another database may refer to the total sales for All_Electronics
stores in a given region.

When matching attributes from one database to another during integration, special
attention must be paid to the structure of the data. This is to ensure that any attribute
functional dependencies and referential constraints in the source system match those in
the target system. For example, in one system, a discount may be applied to the order,
whereas in another system it is applied to each individual line item within the order.
If this is not caught before integration, items in the target system may be improperly
discounted.

The semantic heterogeneity and structure of data pose great challenges in data inte-
gration. Careful integration of the data from multiple sources can help reduce and avoid
redundancies and inconsistencies in the resulting data set. This can help improve the
accuracy and speed of the subsequent mining process.

Data Transformation

In data transformation, the data are transformed or consolidated into forms appropriate
for mining. Data transformation can involve the following:

Smoothing, which works to remove noise from the data. Such techniques include
binning, regression, and clustering.

Aggregation, where summary or aggregation operations are applied to the data. For
example, the daily sales data may be aggregated so as to compute monthly and annual
total amounts. This step is typically used in constructing a data cube for analysis of
the data at multiple granularities.

Generalization of the data, where low-level or “primitive” (raw) data are replaced by
higher-level concepts through the use of concept hierarchies. For example, categorical

Example 2.2

2.4 Data Integration and Transformation 71

attributes, like street, can be generalized to higher-level concepts, like city or country.
Similarly, values for numerical attributes, like age, may be mapped to higher-level
concepts, like youth, middle-aged, and senior.

Normalization, where the attribute data are scaled so as to fall within a small specified
range, such as —1.0 to 1.0, or 0.0 to 1.0.

Attribute construction (or feature construction), where new attributes are constructed
and added from the given set of attributes to help the mining process.

Smoothing is a form of data cleaning and was addressed in Section 2.3.2. Section 2.3.3
on the data cleaning process also discussed ETL tools, where users specify transforma-
tions to correct data inconsistencies. Aggregation and generalization serve as forms of
data reduction and are discussed in Sections 2.5 and 2.6, respectively. In this section, we
therefore discuss normalization and attribute construction.

An attribute is normalized by scaling its values so that they fall within a small specified
range, such as 0.0 to 1.0. Normalization is particularly useful for classification algorithms
involving neural networks, or distance measurements such as nearest-neighbor classifi-
cation and clustering. If using the neural network backpropagation algorithm for clas-
sification mining (Chapter 6), normalizing the input values for each attribute measured
in the training tuples will help speed up the learning phase. For distance-based methods,
normalization helps prevent attributes with initially large ranges (e.g., income) from out-
weighing attributes with initially smaller ranges (e.g., binary attributes). There are many
methods for data normalization. We study three: min-max normalization, z-score nor-
malization, and normalization by decimal scaling.

Min-max normalization performs a linear transformation on the original data. Sup-
pose that mins and max, are the minimum and maximum values of an attribute, A.
Min-max normalization maps a value, v, of A to V' in the range [new_mina, new_maxy|
by computing

, Vv —ming . .
V= ——————(new_maxs — new_miny) + new_miny. (2.11)
max, — ming

Min-max normalization preserves the relationships among the original data values.
It will encounter an “out-of-bounds” error if a future input case for normalization falls
outside of the original data range for A.

Min-max normalization. Suppose that the minimum and maximum values for the
attribute income are $12,000 and $98,000, respectively. We would like to map income to
the range [0.0,1.0]. By min-max normalization, a value of $73,600 for income is trans-
73,600— 12,000 _
In z-score normalization (or zero-mean normalization), the values for an attribute,
A, are normalized based on the mean and standard deviation of A. A value, v, of A is
normalized to v' by computing

72

Chapter 2

Example 2.3

Example 2.4

Data Preprocessing

Vv = , (2.12)
CA
where A and G4 are the mean and standard deviation, respectively, of attribute A. This
method of normalization is useful when the actual minimum and maximum of attribute
A are unknown, or when there are outliers that dominate the min-max normalization.

z-score normalization Suppose that the mean and standard deviation of the values for

the attribute income are $54,000 and $16,000, respectively. With z-score normalization,
73.600-54.000 _ | 595

16,000 u

a value of $73,600 for income is transformed to
Normalization by decimal scaling normalizes by moving the decimal point of values
of attribute A. The number of decimal points moved depends on the maximum absolute
value of A. A value, v, of A is normalized to v/ by computing
, v

- 2.13
V=107 (2.13)

where j is the smallest integer such that Max(]V'|) < 1.

Decimal scaling. Suppose that the recorded values of A range from —986 to 917. The
maximum absolute value of A is 986. To normalize by decimal scaling, we therefore divide
each value by 1,000 (i.e., j = 3) so that —986 normalizes to —0.986 and 917 normalizes
to 0.917. L]

Note that normalization can change the original data quite a bit, especially the lat-
ter two methods shown above. It is also necessary to save the normalization parameters
(such as the mean and standard deviation if using z-score normalization) so that future
data can be normalized in a uniform manner.

In attribute construction,’ new attributes are constructed from the given attributes
and added in order to help improve the accuracy and understanding of structure in
high-dimensional data. For example, we may wish to add the attribute area based on
the attributes height and width. By combining attributes, attribute construction can dis-
cover missing information about the relationships between data attributes that can be
useful for knowledge discovery.

Data Reduction

Imagine that you have selected data from the AllElectronics data warehouse for analysis.
The data set will likely be huge! Complex data analysis and mining on huge amounts of
data can take a long time, making such analysis impractical or infeasible.

5In the machine learning literature, attribute construction is known as feature construction.

25.1

2.5 Data Reduction 73

Data reduction techniques can be applied to obtain a reduced representation of the
data set that is much smaller in volume, yet closely maintains the integrity of the original
data. That is, mining on the reduced data set should be more efficient yet produce the
same (or almost the same) analytical results.

Strategies for data reduction include the following:

I. Data cube aggregation, where aggregation operations are applied to the data in the
construction of a data cube.

2. Attribute subset selection, where irrelevant, weakly relevant, or redundant attributes
or dimensions may be detected and removed.

3. Dimensionality reduction, where encoding mechanisms are used to reduce the data
set size.

4. Numerosity reduction, where the data are replaced or estimated by alternative, smaller
data representations such as parametric models (which need store only the model
parameters instead of the actual data) or nonparametric methods such as clustering,
sampling, and the use of histograms.

5. Discretization and concept hierarchy generation, where raw data values for attributes
are replaced by ranges or higher conceptual levels. Data discretization is a form of
numerosity reduction that is very useful for the automatic generation of concept hier-
archies. Discretization and concept hierarchy generation are powerful tools for data
mining, in that they allow the mining of data at multiple levels of abstraction. We
therefore defer the discussion of discretization and concept hierarchy generation to
Section 2.6, which is devoted entirely to this topic.

Strategies 1 to 4 above are discussed in the remainder of this section. The computational
time spent on data reduction should not outweigh or “erase” the time saved by mining
on a reduced data set size.

Data Cube Aggregation

Imagine that you have collected the data for your analysis. These data consist of the
AllElectronics sales per quarter, for the years 2002 to 2004. You are, however, interested
in the annual sales (total per year), rather than the total per quarter. Thus the data
can be aggregated so that the resulting data summarize the total sales per year instead
of per quarter. This aggregation is illustrated in Figure 2.13. The resulting data set is
smaller in volume, without loss of information necessary for the analysis task.

Data cubes are discussed in detail in Chapter 3 on data warehousing. We briefly
introduce some concepts here. Data cubes store multidimensional aggregated infor-
mation. For example, Figure 2.14 shows a data cube for multidimensional analysis of
sales data with respect to annual sales per item type for each AllElectronics branch.
Each cell holds an aggregate data value, corresponding to the data point in mul-
tidimensional space. (For readability, only some cell values are shown.) Concept

74 Chapter 2 Data Preprocessing

Year 2004
Quartor | Saleg
YearI 2003 b
Year2002 [
0
Quarter Sales |0 | Year Sales
Ql $224,0008 2002 | $1,568,000
Q2 $408,000 [> 2003 | $2,356,000
Q3 $350,000 2004 | $3,594,000
Q4 $586,000

Figure 2.13 Sales data for a given branch of AllElectronics for the years 2002 to 2004. On the left, the sales
are shown per quarter. On the right, the data are aggregated to provide the annual sales.

D
&
N
o €
B
A
home
entertainment 568
v
% computer 750
g
= phone [150
security 50

2002 2003 2004

year

Figure 2.14 A data cube for sales at AllElectronics.

hierarchies may exist for each attribute, allowing the analysis of data at multiple
levels of abstraction. For example, a hierarchy for branch could allow branches to
be grouped into regions, based on their address. Data cubes provide fast access to
precomputed, summarized data, thereby benefiting on-line analytical processing as
well as data mining.

The cube created at the lowest level of abstraction is referred to as the base
cuboid. The base cuboid should correspond to an individual entity of interest, such
as sales or customer. In other words, the lowest level should be usable, or useful
for the analysis. A cube at the highest level of abstraction is the apex cuboid. For
the sales data of Figure 2.14, the apex cuboid would give one total—the total sales

152

2.5 Data Reduction 75

for all three years, for all item types, and for all branches. Data cubes created for
varying levels of abstraction are often referred to as cuboids, so that a data cube may
instead refer to a lattice of cuboids. Fach higher level of abstraction further reduces
the resulting data size. When replying to data mining requests, the smallest available
cuboid relevant to the given task should be used. This issue is also addressed in
Chapter 3.

Attribute Subset Selection

Data sets for analysis may contain hundreds of attributes, many of which may be
irrelevant to the mining task or redundant. For example, if the task is to classify
customers as to whether or not they are likely to purchase a popular new CD at
AllElectronics when notified of a sale, attributes such as the customer’s telephone num-
ber are likely to be irrelevant, unlike attributes such as age or music_taste. Although
it may be possible for a domain expert to pick out some of the useful attributes,
this can be a difficult and time-consuming task, especially when the behavior of the
data is not well known (hence, a reason behind its analysis!). Leaving out relevant
attributes or keeping irrelevant attributes may be detrimental, causing confusion for
the mining algorithm employed. This can result in discovered patterns of poor qual-
ity. In addition, the added volume of irrelevant or redundant attributes can slow
down the mining process.

Attribute subset selection® reduces the data set size by removing irrelevant or
redundant attributes (or dimensions). The goal of attribute subset selection is to
find a minimum set of attributes such that the resulting probability distribution of
the data classes is as close as possible to the original distribution obtained using all
attributes. Mining on a reduced set of attributes has an additional benefit. It reduces
the number of attributes appearing in the discovered patterns, helping to make the
patterns easier to understand.

“How can we find a ‘good’ subset of the original attributes?” For n attributes, there are
2" possible subsets. An exhaustive search for the optimal subset of attributes can be pro-
hibitively expensive, especially as n and the number of data classes increase. Therefore,
heuristic methods that explore a reduced search space are commonly used for attribute
subset selection. These methods are typically greedy in that, while searching through
attribute space, they always make what looks to be the best choice at the time. Their
strategy is to make a locally optimal choice in the hope that this will lead to a globally
optimal solution. Such greedy methods are effective in practice and may come close to
estimating an optimal solution.

The “best” (and “worst”) attributes are typically determined using tests of statistical
significance, which assume that the attributes are independent of one another. Many

°In machine learning, attribute subset selection is known as feature subset selection.

76

Chapter 2 Data Preprocessing

Forward selection

Backward elimination

Decision tree induction

Initial attribute set:
{A1, Ay, A3, Ay, As, Ag}

Initial reduced set:

{

=>{A}

=>{A|,A;}

=> Reduced attribute set:

Initial attribute set:
{A1, Ay, A3, Ay, As, Ag}

=>{A}, A3, Ay, As, A}

=>{A}, Ay, As, A}

=> Reduced attribute set:
{Ay, Ay, Ag}

Initial attribute set:
{A, Ay, Az, Ay, As, Ag

{A, Ay, A}

=> Reduced attribute set:
{A1, Ay, Ag}

Figure 2.15 Greedy (heuristic) methods for attribute subset selection.

other attribute evaluation measures can be used, such as the information gain measure
used in building decision trees for classification.”

Basic heuristic methods of attribute subset selection include the following techniques,

some of which are illustrated in Figure 2.15.

Stepwise forward selection: The procedure starts with an empty set of attributes as
the reduced set. The best of the original attributes is determined and added to the
reduced set. At each subsequent iteration or step, the best of the remaining original
attributes is added to the set.

Stepwise backward elimination: The procedure starts with the full set of attributes.
At each step, it removes the worst attribute remaining in the set.

Combination of forward selection and backward elimination: The stepwise forward
selection and backward elimination methods can be combined so that, at each step,
the procedure selects the best attribute and removes the worst from among the remain-
ing attributes.

Decision tree induction: Decision tree algorithms, such as ID3, C4.5, and CART, were
originally intended for classification. Decision tree induction constructs a flowchart-
like structure where each internal (nonleaf) node denotes a test on an attribute, each
branch corresponds to an outcome of the test, and each external (leaf) node denotes a

"The information gain measure is described in detail in Chapter 6. It is briefly described in Section 2.6.1
with respect to attribute discretization.

253

2.5 Data Reduction 77

class prediction. At each node, the algorithm chooses the “best” attribute to partition
the data into individual classes.

When decision tree induction is used for attribute subset selection, a tree is
constructed from the given data. All attributesthatdonotappearin the treeareassumed
to be irrelevant. The set of attributes appearing in the tree form the reduced subset of
attributes.

The stopping criteria for the methods may vary. The procedure may employ a thresh-
old on the measure used to determine when to stop the attribute selection process.

Dimensionality Reduction

In dimensionality reduction, data encoding or transformations are applied so as to obtain
a reduced or “compressed” representation of the original data. If the original data can
be reconstructed from the compressed data without any loss of information, the data
reduction is called lossless. If, instead, we can reconstruct only an approximation of
the original data, then the data reduction is called lossy. There are several well-tuned
algorithms for string compression. Although they are typically lossless, they allow only
limited manipulation of the data. In this section, we instead focus on two popular and
effective methods of lossy dimensionality reduction: wavelet transforms and principal
components analysis.

Wavelet Transforms

The discrete wavelet transform (DWT) is a linear signal processing technique that, when
applied to a data vector X, transforms it to a numerically different vector, X', of wavelet
coefficients. The two vectors are of the same length. When applying this technique to
data reduction, we consider each tuple as an n-dimensional data vector, that is, X =
(x1,X2,...,X,), depicting n measurements made on the tuple from n database attributes.®

“How can this technique be useful for data reduction if the wavelet transformed data are
of the same length as the original data?” The usefulness lies in the fact that the wavelet
transformed data can be truncated. A compressed approximation of the data can be
retained by storing only a small fraction of the strongest of the wavelet coefficients.
For example, all wavelet coefficients larger than some user-specified threshold can be
retained. All other coefficients are set to 0. The resulting data representation is there-
fore very sparse, so that operations that can take advantage of data sparsity are compu-
tationally very fast if performed in wavelet space. The technique also works to remove
noise without smoothing out the main features of the data, making it effective for data
cleaning as well. Given a set of coefficients, an approximation of the original data can be
constructed by applying the inverse of the DWT used.

8In our notation, any variable representing a vector is shown in bold italic font; measurements depicting
the vector are shown in italic font.

78

Chapter 2

Figure 2.16

Data Preprocessing

0.8
0.6 -
0.6
0.4 - 0.4 1
02 - 02 7
0.0
0.0 —
T T T T T T T T T T T
—1.0 =05 0.0 05 1.0 15 20 0 2 4 6
(a) Haar-2 (b) Daubechies-4

Examples of wavelet families. The number next to a wavelet name is the number of vanishing
moments of the wavelet. This is a set of mathematical relationships that the coefficients must
satisfy and is related to the number of coefficients.

The DWT is closely related to the discrete Fourier transform (DFT), a signal processing
technique involving sines and cosines. In general, however, the DWT achieves better lossy
compression. That is, if the same number of coefficients is retained fora DWT and a DFT
of a given data vector, the DWT version will provide a more accurate approximation of
the original data. Hence, for an equivalent approximation, the DWT requires less space
than the DFT. Unlike the DFT, wavelets are quite localized in space, contributing to the
conservation of local detail.

There is only one DFT, yet there are several families of DWTs. Figure 2.16 shows
some wavelet families. Popular wavelet transforms include the Haar-2, Daubechies-4,
and Daubechies-6 transforms. The general procedure for applying a discrete wavelet
transform uses a hierarchical pyramid algorithm that halves the data at each iteration,
resulting in fast computational speed. The method is as follows:

I. The length, L, of the input data vector must be an integer power of 2. This condition
can be met by padding the data vector with zeros as necessary (L > n).

2. Each transform involves applying two functions. The first applies some data smooth-
ing, such as a sum or weighted average. The second performs a weighted difference,
which acts to bring out the detailed features of the data.

3. The two functions are applied to pairs of data points in X, that is, to all pairs of
measurements (xp;,Xx2;+1). This results in two sets of data of length L/2. In general,
these represent a smoothed or low-frequency version of the input data and the high-
frequency content of it, respectively.

4. The two functions are recursively applied to the sets of data obtained in the previous
loop, until the resulting data sets obtained are of length 2.

5. Selected values from the data sets obtained in the above iterations are designated the
wavelet coefficients of the transformed data.

2.5 Data Reduction 79

Equivalently, a matrix multiplication can be applied to the input data in order to
obtain the wavelet coefficients, where the matrix used depends on the given DWT. The
matrix must be orthonormal, meaning that the columns are unit vectors and are
mutually orthogonal, so that the matrix inverse is just its transpose. Although we do
not have room to discuss it here, this property allows the reconstruction of the data from
the smooth and smooth-difference data sets. By factoring the matrix used into a product
of a few sparse matrices, the resulting “fast DWT” algorithm has a complexity of O(n)
for an input vector of length n.

Wavelet transforms can be applied to multidimensional data, such as a data cube.
This is done by first applying the transform to the first dimension, then to the second,
and so on. The computational complexity involved is linear with respect to the number
of cells in the cube. Wavelet transforms give good results on sparse or skewed data and
on data with ordered attributes. Lossy compression by wavelets is reportedly better than
JPEG compression, the current commercial standard. Wavelet transforms have many
real-world applications, including the compression of fingerprint images, computer
vision, analysis of time-series data, and data cleaning.

Principal Components Analysis

In this subsection we provide an intuitive introduction to principal components analysis
as a method of dimesionality reduction. A detailed theoretical explanation is beyond the
scope of this book.

Suppose that the data to be reduced consist of tuples or data vectors described by
n attributes or dimensions. Principal components analysis, or PCA (also called the
Karhunen-Loeve, or K-L, method), searches for k n-dimensional orthogonal vectors
that can best be used to represent the data, where k < n. The original data are thus
projected onto a much smaller space, resulting in dimensionality reduction. Unlike
attribute subset selection, which reduces the attribute set size by retaining a subset
of the initial set of attributes, PCA “combines” the essence of attributes by creating
an alternative, smaller set of variables. The initial data can then be projected onto
this smaller set. PCA often reveals relationships that were not previously suspected
and thereby allows interpretations that would not ordinarily result.

The basic procedure is as follows:

I. The input data are normalized, so that each attribute falls within the same range. This
step helps ensure that attributes with large domains will not dominate attributes with
smaller domains.

2. PCA computes k orthonormal vectors that provide a basis for the normalized input
data. These are unit vectors that each point in a direction perpendicular to the others.
These vectors are referred to as the principal components. The input data are a linear
combination of the principal components.

3. The principal components are sorted in order of decreasing “significance” or
strength. The principal components essentially serve as a new set of axes for the

80

Chapter 2

Figure 2.17

154

Data Preprocessing

X

Y

Principal components analysis. ¥; and Y, are the first two principal components for the
given data.

data, providing important information about variance. That is, the sorted axes are
such that the first axis shows the most variance among the data, the second axis
shows the next highest variance, and so on. For example, Figure 2.17 shows the
first two principal components, ¥; and Y5, for the given set of data originally
mapped to the axes X; and X,. This information helps identify groups or patterns
within the data.

4. Because the components are sorted according to decreasing order of “significance,”
the size of the data can be reduced by eliminating the weaker components, that
is, those with low variance. Using the strongest principal components, it should
be possible to reconstruct a good approximation of the original data.

PCA is computationally inexpensive, can be applied to ordered and unordered
attributes, and can handle sparse data and skewed data. Multidimensional data
of more than two dimensions can be handled by reducing the problem to two
dimensions. Principal components may be used as inputs to multiple regression
and cluster analysis. In comparison with wavelet transforms, PCA tends to be better
at handling sparse data, whereas wavelet transforms are more suitable for data of
high dimensionality.

Numerosity Reduction

“Can we reduce the data volume by choosing alternative, ‘smaller’ forms of data represen-
tation?” Techniques of numerosity reduction can indeed be applied for this purpose.
These techniques may be parametric or nonparametric. For parametric methods, a
model is used to estimate the data, so that typically only the data parameters need to
be stored, instead of the actual data. (Outliers may also be stored.) Log-linear models,
which estimate discrete multidimensional probability distributions, are an example.
Nonparametric methods for storing reduced representations of the data include his-
tograms, clustering, and sampling.
Let’s look at each of the numerosity reduction techniques mentioned above.

Example 2.5

2.5 Data Reduction 8l

Regression and Log-Linear Models

Regression and log-linear models can be used to approximate the given data. In (simple)
linear regression, the data are modeled to fit a straight line. For example, a random vari-
able, y (called a response variable), can be modeled as a linear function of another random
variable, x (called a predictor variable), with the equation

y=wx+b, (2.14)

where the variance of y is assumed to be constant. In the context of data mining, x and y
are numerical database attributes. The coefficients, w and b (called regression coefficients),
specify the slope of the line and the Y-intercept, respectively. These coefficients can be
solved for by the method of least squares, which minimizes the error between the actual
line separating the data and the estimate of the line. Multiple linear regression is an
extension of (simple) linear regression, which allows a response variable, y, to be modeled
as a linear function of two or more predictor variables.

Log-linear models approximate discrete multidimensional probability distribu-
tions. Given a set of tuples in n dimensions (e.g., described by n attributes), we
can consider each tuple as a point in an n-dimensional space. Log-linear models
can be used to estimate the probability of each point in a multidimensional space
for a set of discretized attributes, based on a smaller subset of dimensional combi-
nations. This allows a higher-dimensional data space to be constructed from lower-
dimensional spaces. Log-linear models are therefore also useful for dimensionality
reduction (since the lower-dimensional points together typically occupy less space
than the original data points) and data smoothing (since aggregate estimates in the
lower-dimensional space are less subject to sampling variations than the estimates in
the higher-dimensional space).

Regression and log-linear models can both be used on sparse data, although their
application may be limited. While both methods can handle skewed data, regression does
exceptionally well. Regression can be computationally intensive when applied to high-
dimensional data, whereas log-linear models show good scalability for up to 10 or so
dimensions. Regression and log-linear models are further discussed in Section 6.11.

Histograms

Histograms use binning to approximate data distributions and are a popular form
of data reduction. Histograms were introduced in Section 2.2.3. A histogram for an
attribute, A, partitions the data distribution of A into disjoint subsets, or buckets. If
each bucket represents only a single attribute-value/frequency pair, the buckets are
called singleton buckets. Often, buckets instead represent continuous ranges for the
given attribute.

Histograms. The following data are a list of prices of commonly sold items at AllElec-
tronics (rounded to the nearest dollar). The numbers have been sorted: 1, 1, 5, 5, 5, 5, 5,
8, 8,10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 20,
20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30, 30, 30.

82

Chapter 2 Data Preprocessing

A
10
9]
8] —
7 _
6] —
s
g 5 - — —
2
9
4] — —
3]
2]
. 1
0 | | | | | | >
5 10 15 20 25 30
price ($)

Figure 2.18 A histogram for price using singleton buckets—each bucket represents one price-value/
frequency pair.

Figure 2.18 shows a histogram for the data using singleton buckets. To further reduce
the data, it is common to have each bucket denote a continuous range of values for the
given attribute. In Figure 2.19, each bucket represents a different $10 range for price. m

“How are the buckets determined and the attribute values partitioned?” There are several
partitioning rules, including the following:

Equal-width: In an equal-width histogram, the width of each bucket range is uniform
(such as the width of $10 for the buckets in Figure 2.19).

Equal-frequency (or equidepth): In an equal-frequency histogram, the buckets are
created so that, roughly, the frequency of each bucket is constant (that is, each bucket
contains roughly the same number of contiguous data samples).

V-Optimal: If we consider all of the possible histograms for a given number of buckets,
the V-Optimal histogram is the one with the least variance. Histogram variance is a
weighted sum of the original values that each bucket represents, where bucket weight
is equal to the number of values in the bucket.

MaxDiff: In a MaxDiff histogram, we consider the difference between each pair of
adjacent values. A bucket boundary is established between each pair for pairs having
the § — 1 largest differences, where B is the user-specified number of buckets.

2.5 Data Reduction 83

25

20

15

count

10

\

0 T T T
1-10 11-20 21-30

price ($)

Figure 2.19 An equal-width histogram for price, where values are aggregated so that each bucket has a
uniform width of $10.

V-Optimal and MaxDiff histograms tend to be the most accurate and practical. His-
tograms are highly effective at approximating both sparse and dense data, as well as highly
skewed and uniform data. The histograms described above for single attributes can be
extended for multiple attributes. Multidimensional histograms can capture dependencies
between attributes. Such histograms have been found effective in approximating data
with up to five attributes. More studies are needed regarding the effectiveness of multidi-
mensional histograms for very high dimensions. Singleton buckets are useful for storing
outliers with high frequency.

Clustering

Clustering techniques consider data tuples as objects. They partition the objects into
groups or clusters, so that objects within a cluster are “similar” to one another and
“dissimilar” to objects in other clusters. Similarity is commonly defined in terms of how
“close” the objects are in space, based on a distance function. The “quality” of a cluster
may be represented by its diameter, the maximum distance between any two objects in
the cluster. Centroid distance is an alternative measure of cluster quality and is defined as
the average distance of each cluster object from the cluster centroid (denoting the “aver-
age object,” or average point in space for the cluster). Figure 2.12 of Section 2.3.2 shows a
2-D plot of customer data with respect to customer locations in a city, where the centroid
of each cluster is shown with a “+”. Three data clusters are visible.

In data reduction, the cluster representations of the data are used to replace the
actual data. The effectiveness of this technique depends on the nature of the data. It
is much more effective for data that can be organized into distinct clusters than for
smeared data.

84

Chapter 2 Data Preprocessing

3396 5411 8392 9544

VARV
A A A A

Figure 2.20 The root of a B+-tree for a given set of data.

In database systems, multidimensional index trees are primarily used for provid-
ing fast data access. They can also be used for hierarchical data reduction, providing a
multiresolution clustering of the data. This can be used to provide approximate answers
to queries. An index tree recursively partitions the multidimensional space for a given
set of data objects, with the root node representing the entire space. Such trees are typi-
cally balanced, consisting of internal and leaf nodes. Each parent node contains keys and
pointers to child nodes that, collectively, represent the space represented by the parent
node. Each leaf node contains pointers to the data tuples they represent (or to the actual
tuples).

An index tree can therefore store aggregate and detail data at varying levels of reso-
lution or abstraction. It provides a hierarchy of clusterings of the data set, where each
cluster has a label that holds for the data contained in the cluster. If we consider each
child of a parent node as a bucket, then an index tree can be considered as a hierarchi-
cal histogram. For example, consider the root of a B+-tree as shown in Figure 2.20, with
pointers to the data keys 986, 3396, 5411, 8392, and 9544. Suppose that the tree contains
10,000 tuples with keys ranging from 1 to 9999. The data in the tree can be approxi-
mated by an equal-frequency histogram of six buckets for the key ranges 1 to 985, 986 to
3395, 3396 to 5410, 5411 to 8391, 8392 to 9543, and 9544 to 9999. Each bucket contains
roughly 10,000/6 items. Similarly, each bucket is subdivided into smaller buckets, allow-
ing for aggregate data at a finer-detailed level. The use of multidimensional index trees as
a form of data reduction relies on an ordering of the attribute values in each dimension.
Two-dimensional or multidimensional index trees include R-trees, quad-trees, and their
variations. They are well suited for handling both sparse and skewed data.

There are many measures for defining clusters and cluster quality. Clustering methods
are further described in Chapter 7.

Sampling

Sampling can be used as a data reduction technique because it allows a large data set to
be represented by a much smaller random sample (or subset) of the data. Suppose that
alarge data set, D, contains N tuples. Let’s look at the most common ways that we could
sample D for data reduction, as illustrated in Figure 2.21.

T1
T2
T3

T100

2.5 Data Reduction

85

T1 SRSWOR T5
™ (s=4) Tl
T T T8
T4 T6
T5 SRSWR
Te (s=4) T4
T7
7 T4
T8
T1
Cluster sample
(s=2)
T901|
ee |
T201 —
T101] N T701]
f — I
— T201
T202
—_—T
T203
T300
Stratified sample
(according to age)
T38 youth T38 youth
T256 youth T391 youth
T307 youth T117 middle_aged
T391 : youth T138 middle_aged
T96 m%ddle_aged T290 middle_aged
T117 mfddle_aged T326 middle_aged
T138 middle_aged T69 senior
T263 middle_aged
T290 middle_aged
T308 middle_aged
T326 middle_aged
T387 middle_aged
T69 senior
T284 senior

Figure 2.21 Sampling can be used for data reduction.

86

Chapter 2 Data Preprocessing

Simple random sample without replacement (SRSWOR) of size s: This is created by
drawing s of the N tuples from D (s < N), where the probability of drawing any tuple
in D is 1 /N, that is, all tuples are equally likely to be sampled.

Simple random sample with replacement (SRSWR) of size s: This is similar to
SRSWOR, except that each time a tuple is drawn from D, it is recorded and then
replaced. That is, after a tuple is drawn, it is placed back in D so that it may be drawn
again.

Cluster sample: If the tuples in D are grouped into M mutually disjoint “clusters,”
then an SRS of s clusters can be obtained, where s < M. For example, tuples in a
database are usually retrieved a page at a time, so that each page can be considered
a cluster. A reduced data representation can be obtained by applying, say, SRSWOR
to the pages, resulting in a cluster sample of the tuples. Other clustering criteria con-
veying rich semantics can also be explored. For example, in a spatial database, we
may choose to define clusters geographically based on how closely different areas are
located.

Stratified sample: If D is divided into mutually disjoint parts called strata, a stratified
sample of D is generated by obtaining an SRS at each stratum. This helps ensure a
representative sample, especially when the data are skewed. For example, a stratified
sample may be obtained from customer data, where a stratum is created for each cus-
tomer age group. In this way, the age group having the smallest number of customers
will be sure to be represented.

An advantage of sampling for data reduction is that the cost of obtaining a sample
is proportional to the size of the sample, s, as opposed to N, the data set size. Hence,
sampling complexity is potentially sublinear to the size of the data. Other data reduc-
tion techniques can require at least one complete pass through D. For a fixed sample
size, sampling complexity increases only linearly as the number of data dimensions, n,
increases, whereas techniques using histograms, for example, increase exponentially in 7.

When applied to data reduction, sampling is most commonly used to estimate the
answer to an aggregate query. It is possible (using the central limit theorem) to determine
a sufficient sample size for estimating a given function within a specified degree of error.
This sample size, s, may be extremely small in comparison to N. Sampling is a natural
choice for the progressive refinement of a reduced data set. Such a set can be further
refined by simply increasing the sample size.

Data Discretization and Concept Hierarchy Generation

Data discretization techniques can be used to reduce the number of values for a given
continuous attribute by dividing the range of the attribute into intervals. Interval labels
can then be used to replace actual data values. Replacing numerous values of a continuous
attribute by a small number of interval labels thereby reduces and simplifies the original
data. Thisleadstoaconcise, easy-to-use, knowledge-level representation of mining results.

2.6 Data Discretization and Concept Hierarchy Generation 87

Discretization techniques can be categorized based on how the discretization is
performed, such as whether it uses class information or which direction it proceeds
(i.e., top-down vs. bottom-up). If the discretization process uses class information,
then we say it is supervised discretization. Otherwise, it is unsupervised. If the process
starts by first finding one or a few points (called split points or cut points) to split the
entire attribute range, and then repeats this recursively on the resulting intervals, it is
called top-down discretization or splitting. This contrasts with bottom-up discretization
or merging, which starts by considering all of the continuous values as potential
split-points, removes some by merging neighborhood values to form intervals, and
then recursively applies this process to the resulting intervals. Discretization can be
performed recursively on an attribute to provide a hierarchical or multiresolution
partitioning of the attribute values, known as a concept hierarchy. Concept hierarchies
are useful for mining at multiple levels of abstraction.

A concept hierarchy for a given numerical attribute defines a discretization of the
attribute. Concept hierarchies can be used to reduce the data by collecting and replac-
ing low-level concepts (such as numerical values for the attribute age) with higher-level
concepts (such as youth, middle-aged, or senior). Although detail is lost by such data gen-
eralization, the generalized data may be more meaningful and easier to interpret. This
contributes to a consistent representation of data mining results among multiple mining
tasks, which is a common requirement. In addition, mining on a reduced data set requires
fewer input/output operations and is more efficient than mining on a larger, ungeneral-
ized data set. Because of these benefits, discretization techniques and concept hierarchies
are typically applied before data mining as a preprocessing step, rather than during min-
ing. An example of a concept hierarchy for the attribute price is given in Figure 2.22. More
than one concept hierarchy can be defined for the same attribute in order to accommo-
date the needs of various users.

Manual definition of concept hierarchies can be a tedious and time-consuming
task for a user or a domain expert. Fortunately, several discretization methods can
be used to automatically generate or dynamically refine concept hierarchies for
numerical attributes. Furthermore, many hierarchies for categorical attributes are

($0...$1000]

[($0...$200]] [($200...$400]] [($400...$600]] [($600...$80()]] [($800...$1000]]

(80... ||(s100... ($200... [($300... ($400... [|($500... (8600... || ($700... (8800... || (8900...
$100] || $200] $300] || $400] $500] || $600] $700] || $800] $900] || $1000]

Figure 2.22 A concept hierarchy for the attribute price, where an interval ($X ...$Y] denotes the range
from $X (exclusive) to $Y (inclusive).

88

Chapter 2 Data Preprocessing

2.6.1

implicit within the database schema and can be automatically defined at the schema
definition level.
Let’s look at the generation of concept hierarchies for numerical and categorical data.

Discretization and Concept Hierarchy Generation for
Numerical Data

Itis difficult and laborious to specify concept hierarchies for numerical attributes because
of the wide diversity of possible data ranges and the frequent updates of data values. Such
manual specification can also be quite arbitrary.

Concept hierarchies for numerical attributes can be constructed automatically based
on data discretization. We examine the following methods: binning, histogram analysis,
entropy-based discretization, y>-merging, cluster analysis, and discretization by intuitive
partitioning. In general, each method assumes that the values to be discretized are sorted
in ascending order.

Binning

Binning is a top-down splitting technique based on a specified number of bins.
Section 2.3.2 discussed binning methods for data smoothing. These methods are
also used as discretization methods for numerosity reduction and concept hierarchy
generation. For example, attribute values can be discretized by applying equal-width
or equal-frequency binning, and then replacing each bin value by the bin mean or
median, as in smoothing by bin means or smoothing by bin medians, respectively. These
techniques can be applied recursively to the resulting partitions in order to gener-
ate concept hierarchies. Binning does not use class information and is therefore an
unsupervised discretization technique. It is sensitive to the user-specified number of
bins, as well as the presence of outliers.

Histogram Analysis

Like binning, histogram analysis is an unsupervised discretization technique because
it does not use class information. Histograms partition the values for an attribute, A,
into disjoint ranges called buckets. Histograms were introduced in Section 2.2.3. Parti-
tioning rules for defining histograms were described in Section 2.5.4. In an equal-width
histogram, for example, the values are partitioned into equal-sized partitions or ranges
(such as in Figure 2.19 for price, where each bucket has a width of $10). With an equal-
frequency histogram, the values are partitioned so that, ideally, each partition contains
the same number of data tuples. The histogram analysis algorithm can be applied recur-
sively to each partition in order to automatically generate a multilevel concept hierarchy,
with the procedure terminating once a prespecified number of concept levels has been
reached. A minimum interval size can also be used per level to control the recursive pro-
cedure. This specifies the minimum width of a partition, or the minimum number of
values for each partition at each level. Histograms can also be partitioned based on clus-
ter analysis of the data distribution, as described below.

2.6 Data Discretization and Concept Hierarchy Generation 89

Entropy-Based Discretization

Entropy is one of the most commonly used discretization measures. It was first intro-
duced by Claude Shannon in pioneering work on information theory and the concept
of information gain. Entropy-based discretization is a supervised, top-down splitting
technique. It explores class distribution information in its calculation and determination
of split-points (data values for partitioning an attribute range). To discretize a numer-
ical attribute, A, the method selects the value of A that has the minimum entropy as a
split-point, and recursively partitions the resulting intervals to arrive at a hierarchical
discretization. Such discretization forms a concept hierarchy for A.

Let D consist of data tuples defined by a set of attributes and a class-label attribute.
The class-label attribute provides the class information per tuple. The basic method for
entropy-based discretization of an attribute A within the set is as follows:

I. Each value of A can be considered as a potential interval boundary or split-point
(denoted split_point) to partition the range of A. That is, a split-point for A can par-
tition the tuples in D into two subsets satisfying the conditions A < split_point and
A > split_point, respectively, thereby creating a binary discretization.

2. Entropy-based discretization, as mentioned above, uses information regarding the
class label of tuples. To explain the intuition behind entropy-based discretization,
we must take a glimpse at classification. Suppose we want to classify the tuples in
D by partitioning on attribute A and some split-point. Ideally, we would like this
partitioning to result in an exact classification of the tuples. For example, if we had
two classes, we would hope that all of the tuples of, say, class C; will fall into one
partition, and all of the tuples of class C, will fall into the other partition. However,
this is unlikely. For example, the first partition may contain many tuples of Cy, but
also some of C;. How much more information would we still need for a perfect
classification, after this partitioning? This amount is called the expected information
requirement for classifying a tuple in D based on partitioning by A. It is given by

Info, (D) = mEntropy(Dl)+ |D;||Entropy(D2), (2.15)
where Dy and D, correspond to the tuples in D satisfying the conditions A <
split_point and A > split_point, respectively; |D| is the number of tuples in D, and so
on. The entropy function for a given set is calculated based on the class distribution
of the tuples in the set. For example, given m classes, C1,Cy,...,Cy, the entropy of
D1 is

Entropy(Dy) = —) pilog,(pi), (2.16)

m
i=1

where p; is the probability of class C; in D1, determined by dividing the number of
tuples of class C; in D; by |D1|, the total number of tuples in D;. Therefore, when

selecting a split-point for attribute A, we want to pick the attribute value that gives the
minimum expected information requirement (i.e., min(Info, (D))). This would result

90

Chapter 2 Data Preprocessing

in the minimum amount of expected information (still) required to perfectly classify
the tuples after partitioning by A < split_point and A > split_point. This is equivalent
to the attribute-value pair with the maximum information gain (the further details
of which are given in Chapter 6 on classification.) Note that the value of Entropy(D;)
can be computed similarly as in Equation (2.16).

“But our task is discretization, not classification!”, you may exclaim. This is true. We
use the split-point to partition the range of A into two intervals, corresponding to
A < split_point and A > split_point.

3. The process of determining a split-point is recursively applied to each partition
obtained, until some stopping criterion is met, such as when the minimum infor-
mation requirement on all candidate split-points is less than a small threshold, €, or
when the number of intervals is greater than a threshold, max_interval.

Entropy-based discretization can reduce data size. Unlike the other methods mentioned
here so far, entropy-based discretization uses class information. This makes it more likely
that the interval boundaries (split-points) are defined to occur in places that may help
improve classification accuracy. The entropy and information gain measures described
here are also used for decision tree induction. These measures are revisited in greater
detail in Section 6.3.2.

Interval Merging by x2 Analysis

ChiMerge is a y2-based discretization method. The discretization methods that we have
studied up to this point have all employed a top-down, splitting strategy. This contrasts
with ChiMerge, which employs a bottom-up approach by finding the best neighbor-
ing intervals and then merging these to form larger intervals, recursively. The method is
supervised in that it uses class information. The basic notion is that for accurate
discretization, the relative class frequencies should be fairly consistent within an interval.
Therefore, if two adjacent intervals have a very similar distribution of classes, then the
intervals can be merged. Otherwise, they should remain separate.

ChiMerge proceeds as follows. Initially, each distinct value of a numerical attribute A
is considered to be one interval. x? tests are performed for every pair of adjacent intervals.
Adjacent intervals with the least > values are merged together, because low values for
a pair indicate similar class distributions. This merging process proceeds recursively until
a predefined stopping criterion is met.

The xz statistic was introduced in Section 2.4.1 on data integration, where we
explained its use to detect a correlation relationship between two categorical attributes
(Equation (2.9)). Because ChiMerge treats intervals as discrete categories, Equation (2.9)
can be applied. The ¥ statistic tests the hypothesis that two adjacent intervals for a given
attribute are independent of the class. Following the method in Example 2.1, we can con-
struct a contingency table for our data. The contingency table has two columns (repre-
senting the two adjacent intervals) and m rows, where m is the number of distinct classes.
Applying Equation (2.9) here, the cell value o;; is the count of tuples in the " interval
and j" class. Similarly, the expected frequency of o;; is ¢;; = (number of tuples in interval

2.6 Data Discretization and Concept Hierarchy Generation 91

i) x (number of tuples in class j)/N, where N is the total number of data tuples. Low >
values for an interval pair indicate that the intervals are independent of the class and can,
therefore, be merged.

The stopping criterion is typically determined by three conditions. First, merging
stops when 2 values of all pairs of adjacent intervals exceed some threshold, which is
determined by a specified significance level. A too (or very) high value of significance
level for the %2 test may cause overdiscretization, whereas a too (or very) low value may
lead to underdiscretization. Typically, the significance level is set between 0.10 and 0.01.
Second, the number of intervals cannot be over a prespecified max-interval, such as 10 to
15. Finally, recall that the premise behind ChiMerge is that the relative class frequencies
should be fairly consistent within an interval. In practice, some inconsistency is allowed,
although this should be no more than a prespecified threshold, such as 3%, which may
be estimated from the training data. This last condition can be used to remove irrelevant
attributes from the data set.

Cluster Analysis

Cluster analysis is a popular data discretization method. A clustering algorithm can be
applied to discretize a numerical attribute, A, by partitioning the values of A into clusters
or groups. Clustering takes the distribution of A into consideration, as well as the close-
ness of data points, and therefore is able to produce high-quality discretization results.
Clustering can be used to generate a concept hierarchy for A by following either a top-
down splitting strategy or a bottom-up merging strategy, where each cluster forms a
node of the concept hierarchy. In the former, each initial cluster or partition may be fur-
ther decomposed into several subclusters, forming a lower level of the hierarchy. In the
latter, clusters are formed by repeatedly grouping neighboring clusters in order to form
higher-level concepts. Clustering methods for data mining are studied in Chapter 7.

Discretization by Intuitive Partitioning

Although the above discretization methods are useful in the generation of numerical
hierarchies, many users would like to see numerical ranges partitioned into relatively
uniform, easy-to-read intervals that appear intuitive or “natural.” For example, annual
salaries broken into ranges like ($50,000, $60,000] are often more desirable than ranges
like ($51,263.98, $60,872.34], obtained by, say, some sophisticated clustering analysis.

The 3-4-5 rule can be used to segment numerical data into relatively uniform, natural-
seeming intervals. In general, the rule partitions a given range of data into 3, 4, or 5
relatively equal-width intervals, recursively and level by level, based on the value range
at the most significant digit. We will illustrate the use of the rule with an example further
below. The rule is as follows:

If an interval covers 3, 6, 7, or 9 distinct values at the most significant digit, then
partition the range into 3 intervals (3 equal-width intervals for 3, 6, and 9; and 3
intervals in the grouping of 2-3-2 for 7).

92

Chapter 2 Data Preprocessing

Example 2.6

If it covers 2, 4, or 8 distinct values at the most significant digit, then partition the
range into 4 equal-width intervals.

If it covers 1, 5, or 10 distinct values at the most significant digit, then partition the
range into 5 equal-width intervals.

The rule can be recursively applied to each interval, creating a concept hierarchy for
the given numerical attribute. Real-world data often contain extremely large posi-
tive and/or negative outlier values, which could distort any top-down discretization
method based on minimum and maximum data values. For example, the assets of
a few people could be several orders of magnitude higher than those of others in
the same data set. Discretization based on the maximal asset values may lead to a
highly biased hierarchy. Thus the top-level discretization can be performed based
on the range of data values representing the majority (e.g., 5th percentile to 95th
percentile) of the given data. The extremely high or low values beyond the top-level
discretization will form distinct interval(s) that can be handled separately, but in a
similar manner.

The following example illustrates the use of the 3-4-5 rule for the automatic construc-
tion of a numerical hierarchy.

Numeric concept hierarchy generation by intuitive partitioning. Suppose that prof-
its at different branches of AllElectronics for the year 2004 cover a wide range, from
—$351,976.00 to $4,700,896.50. A user desires the automatic generation of a concept
hierarchy for profit. For improved readability, we use the notation (/...r] to represent
the interval (I, r]. For example, (—$1,000,000...$0] denotes the range from —$1,000,000
(exclusive) to $0 (inclusive).

Suppose that the data within the 5th percentile and 95th percentile are between
—$159,876 and $1,838,761. The results of applying the 3-4-5 rule are shown in
Figure 2.23.

I. Based on the above information, the minimum and maximum values are MIN =
—$351,976.00, and MAX = $4,700,896.50. The low (5th percentile) and high (95th
percentile) values to be considered for the top or first level of discretization are LOW =
—$159,876, and HIGH = $1,838,761.

2. Given LOW and HIGH, the most significant digit (msd) is at the million dollar digit

position (i.e., msd = 1,000,000). Rounding LOW down to the million dollar digit,
we get LOW' = —$1,000,000; rounding HIGH up to the million dollar digit, we get
HIGH' = +$2,000,000.

3. Since this interval ranges over three distinct values at the most significant digit, that

is, (2,000,000 — (—1,000,000)) /1,000,000 = 3, the segment is partitioned into three
equal-width subsegments according to the 3-4-5 rule: (—$1,000,000...$0],
($0...$1,000,000], and ($1,000,000...%$2,000,000]. This represents the top tier of
the hierarchy.

2.6 Data Discretization and Concept Hierarchy Generation 93

Count

< 1 . "

- I ' I ' ™
Step1 —$351,976 —$159,876 Profit $1,838,761 $4,700,896.50
MIN LOW HIGH MAX

(i.e., Sth percentile) (i.e., 95th percentile)
Step 2 msd = 1,000,000 LOW” = —$1,000,000 HIGH” = $2,000,000

Step 3 (—$1,000,000...$2,000,000]

T

(—$1,000,000...$0] ($0...$1,000,000] ($1,000,000...$2,000,000]

Step 4 (—$400,000...$5,000,000]

(—$400,000...0] (0...$1,000,000] ($1,000,000...$2,000,000] ($2,000,000...$5,000,000]

Step 5
(—$400,000... ($0... ($1,000,000... ($2,000,000...
—$300,000] $200.,000] $1,200,000] $3,000,000]
(—$300,000... ($200,000... ($1,200,000... ($3.000.000...
—$200,000] $400,000] $1,400,000] o

$4,000,000]

(—$200,000... ($400,000... ($1,400,000... ($4.000.000...
—$100,000] $600,000] $1,600,000] $5.000.000]
(=$100,000... ($600,000... ($1,600,000...
$0] $800,000] $1,800,000]
($800,000... ($1,800,000.".

$1,000,000] $2,000,000]

Figure 2.23 Automatic generation of a concept hierarchy for profit based on the 3-4-5 rule.

4. We now examine the MIN and MAX values to see how they “fit” into the first-level
partitions. Since the first interval (—$1,000,000...$0] covers the MIN value, that is,
LOW' < MIN, we can adjust the left boundary of this interval to make the interval
smaller. The most significant digit of MIN is the hundred thousand digit position.

94

Chapter 2 Data Preprocessing

Rounding MIN down to this position, we get MIN' = —$400,000. Therefore, the
first interval is redefined as (—$400,000...0].

Since the last interval, ($1,000,000...%$2,000,000], does not cover the MAX value,
that is, MAX > HIGH', we need to create a new interval to cover it. Rounding
up MAX at its most significant digit position, the new interval is ($2,000,000
...$5,000,000]. Hence, the topmost level of the hierarchy contains four par-
titions, (—$400,000...%0], ($0...$1,000,000], ($1,000,000...$2,000,000], and
($2,000,000...$5,000,000].

. Recursively, each interval can be further partitioned according to the 3-4-5 rule to

form the next lower level of the hierarchy:

The first interval, (—$400,000...$0], is partitioned into 4 subintervals:
(—$400,000...—$300,000], (—$300,000... —$200,000],(—$200,000. .. —$100,000],
and (—$100,000...$0].

The second interval, ($0...$1,000,000], is partitioned into 5 subintervals: ($0...
$200,000],($200,000. .. $400,000],($400,000. . . $600,000],($600,000. .. $800,000],
and ($800,000. .. $1,000,000].

The third interval, ($1,000,000...$2,000,000], is partitioned into 5 subintervals:
($1,000,000...$1,200,000],($1,200,000...$1,400,000],($1,400,000... $1,600,000],
($1,600,000...$1,800,000], and ($1,800,000. .. $2,000,000].

The last interval, ($2,000,000...$5,000,000], is partitioned into 3 subintervals:
($2,000,000...$3,000,000], ($3,000,000...$4,000,000], and ($4,000,000
...$5,000,000].

Similarly, the 3-4-5 rule can be carried on iteratively at deeper levels, as necessary. m

1.6.2 Concept Hierarchy Generation for Categorical Data

Categorical data are discrete data. Categorical attributes have a finite (but possibly large)
number of distinct values, with no ordering among the values. Examples include geo-
graphic location, job category, and item type. There are several methods for the generation
of concept hierarchies for categorical data.

Specification of a partial ordering of attributes explicitly at the schema level by users or

experts: Concept hierarchies for categorical attributes or dimensions typically involve
a group of attributes. A user or expert can easily define a concept hierarchy by spec-
ifying a partial or total ordering of the attributes at the schema level. For example,
a relational database or a dimension location of a data warehouse may contain the
following group of attributes: street, city, province_or_state, and country. A hierarchy
can be defined by specifying the total ordering among these attributes at the schema
level, such as street < city < province_or_state < country.

Specification of a portion of a hierarchy by explicit data grouping: This is essentially

the manual definition of a portion of a concept hierarchy. In a large database, it

2.6 Data Discretization and Concept Hierarchy Generation 95

is unrealistic to define an entire concept hierarchy by explicit value enumeration.
On the contrary, we can easily specify explicit groupings for a small portion of
intermediate-level data. For example, after specifying that province and country
form a hierarchy at the schema level, a user could define some intermediate levels
manually, such as “{Alberta, Saskatchewan, Manitoba} C prairies_Canada” and
“{British Columbia, prairies_Canada} C Western_Canada”.

Specification of a set of attributes, but not of their partial ordering: A user may spec-
ify a set of attributes forming a concept hierarchy, but omit to explicitly state their
partial ordering. The system can then try to automatically generate the attribute
ordering so as to construct a meaningful concept hierarchy. “Without knowledge
of data semantics, how can a hierarchical ordering for an arbitrary set of categorical
attributes be found?” Consider the following observation that since higher-level con-
cepts generally cover several subordinate lower-level concepts, an attribute defining
a high concept level (e.g., country) will usually contain a smaller number of dis-
tinct values than an attribute defining a lower concept level (e.g., street). Based on
this observation, a concept hierarchy can be automatically generated based on the
number of distinct values per attribute in the given attribute set. The attribute with
the most distinct values is placed at the lowest level of the hierarchy. The lower
the number of distinct values an attribute has, the higher it is in the generated
concept hierarchy. This heuristic rule works well in many cases. Some local-level
swapping or adjustments may be applied by users or experts, when necessary, after
examination of the generated hierarchy.

Let’s examine an example of this method.

Example 2.7 Concept hierarchy generation based on the number of distinct values per attribute. Sup-
pose a user selects a set of location-oriented attributes, street, country, province_or_state,
and city, from the AllElectronics database, but does not specify the hierarchical ordering
among the attributes.

A concept hierarchy for location can be generated automatically, as illustrated in
Figure 2.24. First, sort the attributes in ascending order based on the number of
distinct values in each attribute. This results in the following (where the number of
distinct values per attribute is shown in parentheses): country (15), province_or_state
(365), city (3567), and street (674,339). Second, generate the hierarchy from the top
down according to the sorted order, with the first attribute at the top level and
the last attribute at the bottom level. Finally, the user can examine the generated
hierarchy, and when necessary, modify it to reflect desired semantic relationships
among the attributes. In this example, it is obvious that there is no need to modify
the generated hierarchy. (]

Note that this heuristic rule is not foolproof. For example, a time dimension in a
database may contain 20 distinct years, 12 distinct months, and 7 distinct days of the
week. However, this does not suggest that the time hierarchy should be “year < month
< days_of_the_week”, with days_of_the_week at the top of the hierarchy.

96 Chapter 2 Data Preprocessing

country 15 distinct values

g

province_or_state 365 distinct values

i
VAV

city 3,567 distinct values

street 674,339 distinct values

g

Figure 2.24 Automatic generation of a schema concept hierarchy based on the number of distinct
attribute values.

Specification of only a partial set of attributes: Sometimes a user can be sloppy when
defining a hierarchy, or have only a vague idea about what should be included in a
hierarchy. Consequently, the user may have included only a small subset of the rel-
evant attributes in the hierarchy specification. For example, instead of including all
of the hierarchically relevant attributes for location, the user may have specified only
street and city. To handle such partially specified hierarchies, it is important to embed
data semantics in the database schema so that attributes with tight semantic connec-
tions can be pinned together. In this way, the specification of one attribute may trigger
a whole group of semantically tightly linked attributes to be “dragged in” to form a
complete hierarchy. Users, however, should have the option to override this feature,
as necessary.

Example 2.8 Concept hierarchy generation using prespecified semantic connections. Suppose that
a data mining expert (serving as an administrator) has pinned together the five attri-
butes number, street, city, province_or_state, and country, because they are closely linked
semantically regarding the notion of location. If a user were to specify only the attribute
city for a hierarchy defining location, the system can automatically drag in all of the above
five semantically related attributes to form a hierarchy. The user may choose to drop any
of these attributes, such as number and street, from the hierarchy, keeping city as the
lowest conceptual level in the hierarchy. n

2.7 Summary 97

Summary

Data preprocessing is an important issue for both data warehousing and data mining,
as real-world data tend to be incomplete, noisy, and inconsistent. Data preprocessing
includes data cleaning, data integration, data transformation, and data reduction.

Descriptive data summarization provides the analytical foundation for data pre-
processing. The basic statistical measures for data summarization include mean,
weighted mean, median, and mode for measuring the central tendency of data, and
range, quartiles, interquartile range, variance, and standard deviation for measur-
ing the dispersion of data. Graphical representations, such as histograms, boxplots,
quantile plots, quantile-quantile plots, scatter plots, and scatter-plot matrices, facili-
tate visual inspection of the data and are thus useful for data preprocessing and
mining.

Data cleaning routines attempt to fill in missing values, smooth out noise while
identifying outliers, and correct inconsistencies in the data. Data cleaning is usually
performed as an iterative two-step process consisting of discrepancy detection and
data transformation.

Data integration combines data from multiple sources to form a coherent data store.
Metadata, correlation analysis, data conflict detection, and the resolution of semantic
heterogeneity contribute toward smooth data integration.

Data transformation routines convert the data into appropriate forms for mining.
For example, attribute data may be normalized so as to fall between a small range,
such as 0.0 to 1.0.

Data reduction techniques such as data cube aggregation, attribute subset selection,
dimensionality reduction, numerosity reduction, and discretization can be used to
obtain a reduced representation of the data while minimizing the loss of information
content.

Data discretization and automatic generation of concept hierarchies for numerical
data can involve techniques such as binning, histogram analysis, entropy-based dis-
cretization, > analysis, cluster analysis, and discretization by intuitive partitioning.
For categorical data, concept hierarchies may be generated based on the number of
distinct values of the attributes defining the hierarchy.

Although numerous methods of data preprocessing have been developed, data pre-
processing remains an active area of research, due to the huge amount of inconsistent
or dirty data and the complexity of the problem.

Exercises

2.1 Data quality can be assessed in terms of accuracy, completeness, and consistency. Propose
two other dimensions of data quality.

98

Chapter 2

2.2

2.3

2.4

2.5

2.6

2.7

Data Preprocessing

Suppose that the values for a given set of data are grouped into intervals. The intervals
and corresponding frequencies are as follows.

age frequency
1-5 200
5-15 450
15-20 300
20-50 1500
50-80 700
80-110 44

Compute an approximate median value for the data.

Give three additional commonly used statistical measures (i.e., not illustrated in this
chapter) for the characterization of data dispersion, and discuss how they can be com-
puted efficiently in large databases.

Suppose that the data for analysis includes the attribute age. The age values for the data

tuples are (in increasing order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33,
33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

(a) What is the mean of the data? What is the median?

(b) What is the mode of the data? Comment on the data’s modality (i.e., bimodal,
trimodal, etc.).

(c) What is the midrange of the data?

(d) Canvyou find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?
(e) Give the five-number summary of the data.

(f) Show a boxplot of the data.

(g) How is a quantile-quantile plot different from a quantile plot?

In many applications, new data sets are incrementally added to the existing large data sets.
Thus an important consideration for computing descriptive data summary is whether a
measure can be computed efficiently in incremental manner. Use count, standard devia-
tion, and median as examples to show that a distributive or algebraic measure facilitates
efficient incremental computation, whereas a holistic measure does not.

In real-world data, tuples with missing values for some attributes are a common occur-

rence. Describe various methods for handling this problem.

Using the data for age given in Exercise 2.4, answer the following.

(a) Use smoothing by bin means to smooth the data, using a bin depth of 3. Illustrate
your steps. Comment on the effect of this technique for the given data.

(b) How might you determine outliers in the data?

(c) What other methods are there for data smoothing?

Exercises 99

2.8 Discuss issues to consider during data integration.

2.9 Suppose a hospital tested the age and body fat data for 18 randomly selected adults with
the following result:

age 23 23 27 27 39 41 47 49 50
%fat | 9.5 | 265 | 7.8 | 17.8 | 31.4 | 25.9 | 27.4 | 27.2 | 31.2

age 52 54 54 56 57 58 58 60 61
%fat | 34.6 | 42.5 | 28.8 | 33.4 | 30.2 | 34.1 | 329 | 41.2 | 35.7

(a) Calculate the mean, median, and standard deviation of age and %fat.
(b) Draw the boxplots for age and %fat.

(c) Draw a scatter plot and a g-q plot based on these two variables.

(d) Normalize the two variables based on z-score normalization.

(e) Calculatethe correlation coefficient (Pearson’s product moment coefficient). Are these
two variables positively or negatively correlated?

2.10 What are the value ranges of the following normalization methods?

(a) min-max normalization
(b) z-score normalization
(c) normalization by decimal scaling

2.11 Use the two methods below to normalize the following group of data:
200, 300, 400, 600, 1000

(a) min-max normalization by setting min = 0 and max =1
(b) z-score normalization

2.12 Using the data for age given in Exercise 2.4, answer the following:

(a) Usemin-maxnormalization to transform the value 35 for age onto the range [0.0, 1.0].

(b) Use z-score normalization to transform the value 35 for age, where the standard
deviation of age is 12.94 years.

(c) Use normalization by decimal scaling to transform the value 35 for age.

(d) Comment on which method you would prefer to use for the given data, giving
reasons as to why.

2.13 Use a flowchart to summarize the following procedures for attribute subset selection:

(a) stepwise forward selection
(b) stepwise backward elimination
(c) a combination of forward selection and backward elimination

100 Chapter 2 Data Preprocessing

2.14 Suppose a group of 12 sales price records has been sorted as follows:

2.15

2.16

2.17

2.18

5,10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215
Partition them into three bins by each of the following methods:

(a) equal-frequency (equidepth) partitioning
(b) equal-width partitioning
(c) clustering

Using the data for age given in Exercise 2.4,

(a) Plot an equal-width histogram of width 10.

(b) Sketch examples of each of the following sampling techniques: SRSWOR, SRSWR,
cluster sampling, stratified sampling. Use samples of size 5 and the strata “youth,”
“middle-aged,” and “senior.”

[Contributed by Chen Chen| The median is one of the most important holistic mea-
sures in data analysis. Propose several methods for median approximation. Analyze their
respective complexity under different parameter settings and decide to what extent the
real value can be approximated. Moreover, suggest a heuristic strategy to balance between
accuracy and complexity and then apply it to all methods you have given.

[Contributed by Deng Cai] It is important to define or select similarity measures in data
analysis. However, there is no commonly accepted subjective similarity measure. Using
different similarity measures may deduce different results. Nonetheless, some apparently
different similarity measures may be equivalent after some transformation.

Suppose we have the following two-dimensional data set:

Al | A
xp | 15| 1.7
x| 2 |19
x3 | 1.6 | 1.8
x4 | 1.2 | 15
x5 | 1.5 | 1.0

(a) Consider the data as two-dimensional data points. Given a new data point, x =
(1.4,1.6) asa query, rank the database points based on similarity with the query using
(1) Euclidean distance (Equation 7.5), and (2) cosine similarity (Equation 7.16).

(b) Normalize the data set to make the norm of each data point equal to 1. Use Euclidean
distance on the transformed data to rank the data points.

ChiMerge [Ker92] is a supervised, bottom-up (i.e., merge-based) data discretization
method. It relies on %2 analysis: adjacent intervals with the least x> values are merged
together until the stopping criterion is satisfied.

2.19

2.20

Bibliographic Notes 101

(a) Briefly describe how ChiMerge works.

(b) Take the IRIS data set, obtained from http://www.ics.uci.edu/~mlearn/MLRepository.
html (UC-Irvine Machine Learning Data Repository), as a data set to be discretized.
Perform data discretization for each of the four numerical attributes using the
ChiMerge method. (Let the stopping criteria be: max-interval = 6.) You need to
write a small program to do this to avoid clumsy numerical computation. Submit
your simple analysis and your test results: split points, final intervals, and your doc-
umented source program.

Propose an algorithm, in pseudo-code or in your favorite programming language, for
the following:

(a) The automatic generation of a concept hierarchy for categorical data based on the
number of distinct values of attributes in the given schema

(b) The automatic generation of a concept hierarchy for numerical data based on the
equal-width partitioning rule

(c) The automatic generation of a concept hierarchy for numerical data based on the
equal-frequency partitioning rule

Robust data loading poses a challenge in database systems because the input data are
often dirty. In many cases, an input record may have several missing values and some
records could be contaminated (i.e., with some data values out of range or of a different
data type than expected). Work out an automated data cleaning and loading algorithm
so that the erroneous data will be marked and contaminated data will not be mistakenly
inserted into the database during data loading.

Bibliographic Notes

Data preprocessing is discussed in a number of textbooks, including English [Eng99],
Pyle [Pyl99], Loshin [Los01], Redman [Red01], and Dasu and Johnson [DJ03]. More
specific references to individual preprocessing techniques are given below.

Methods for descriptive data summarization have been studied in the statistics liter-
ature long before the onset of computers. Good summaries of statistical descriptive data
mining methods include Freedman, Pisani, and Purves [FPP97], and Devore [Dev95].
For statistics-based visualization of data using boxplots, quantile plots, quantile-quantile
plots, scatter plots, and loess curves, see Cleveland [Cle93].

For discussion regarding data quality, see Redman [Red92], Wang, Storey, and Firth
[WSF95], Wand and Wang [WW96], Ballou and Tayi [BT99], and Olson [Ols03]. Pot-
ter’s Wheel (http://control.cs.berkeley.edu/abc), the interactive data cleaning tool des-
cribed in Section 2.3.3, is presented in Raman and Hellerstein [RHO1]. An example
of the development of declarative languages for the specification of data transforma-
tion operators is given in Galhardas, Florescu, Shasha, et al. [GFS*01]. The handling of
missing attribute values is discussed in Friedman [Fri77], Breiman, Friedman, Olshen,

102

Chapter 2 Data Preprocessing

and Stone [BFOS84], and Quinlan [Qui89]. A method for the detection of outlier or
“garbage” patterns in a handwritten character database is given in Guyon, Matic, and
Vapnik [GMV96]. Binning and data normalization are treated in many texts, including
Kennedy, Lee, Van Roy, et al. [KLV 98], Weiss and Indurkhya [WI98], and Pyle [Pyl99].
Systems that include attribute (or feature) construction include BACON by Langley,
Simon, Bradshaw, and Zytkow [LSBZ87], Stagger by Schlimmer [Sch86], FRINGE by
Pagallo [Pag89], and AQ17-DCI by Bloedorn and Michalski [BM98]. Attribute con-
struction is also described in Liu and Motoda [LM98], [Le98]. Dasu, Johnson, Muthukr-
ishnan, and Shkapenyuk [DJMSO02] developed a system called Bellman wherein they
propose a set of methods for building a data quality browser by mining on the
structure of the database.

A good survey of data reduction techniques can be found in Barbara, Du Mouchel,
Faloutos, et al. [BDF"97]. For algorithms on data cubes and their precomputation, see
Sarawagi and Stonebraker [SS94], Agarwal, Agrawal, Deshpande, et al. [AADT96],
Harinarayan, Rajaraman, and Ullman [HRU96], Ross and Srivastava [RS97], and Zhao,
Deshpande, and Naughton [ZDN97]. Attribute subset selection (or feature subset selec-
tion) is described in many texts, such as Neter, Kutner, Nachtsheim, and Wasserman
[NKNW96], Dash and Liu [DL97], and Liu and Motoda [LM98, LM98b]. A combi-
nation forward selection and backward elimination method was proposed in Siedlecki
and Sklansky [SS88]. A wrapper approach to attribute selection is described in Kohavi
and John [K]J97]. Unsupervised attribute subset selection is described in Dash, Liu, and
Yao [DLY97]. For a description of wavelets for dimensionality reduction, see Press,
Teukolosky, Vetterling, and Flannery [PTVF96]. A general account of wavelets can be
found in Hubbard [Hub96]. For a list of wavelet software packages, see Bruce, Donoho,
and Gao [BDG96]. Daubechies transforms are described in Daubechies [Dau92]. The
book by Press et al. [PTVF96] includes an introduction to singular value decomposition
for principal components analysis. Routines for PCA are included in most statistical soft-
ware packages, such as SAS (www.sas.com/SASHome.html).

An introduction to regression and log-linear models can be found in several text-
books, such as James [Jam85], Dobson [Dob90], Johnson and Wichern [JW92], Devore
[Dev95], and Neter et al. [NKNW96]. For log-linear models (known as multiplicative
models in the computer science literature), see Pear] [Pea88]. For a general introduction
to histograms, see Barbaré et al. [BDFT97] and Devore and Peck [DP97]. For exten-
sions of single attribute histograms to multiple attributes, see Muralikrishna and DeWitt
[MD88] and Poosala and Ioannidis [P197]. Several references to clustering algorithms
are given in Chapter 7 of this book, which is devoted to the topic. A survey of mul-
tidimensional indexing structures is given in Gaede and Giinther [GG98]. The use of
multidimensional index trees for data aggregation is discussed in Aoki [Aok98]. Index
trees include R-trees (Guttman [Gut84]), quad-trees (Finkel and Bentley [FB74]), and
their variations. For discussion on sampling and data mining, see Kivinen and Mannila
[KM94] and John and Langley [JL96].

There are many methods for assessing attribute relevance. Each has its own bias. The
information gain measure is biased toward attributes with many values. Many alterna-
tives have been proposed, such as gain ratio (Quinlan [Qui93]), which considers the

Bibliographic Notes 103

probability of each attribute value. Other relevance measures include the gini index
(Breiman, Friedman, Olshen, and Stone [BFOS84]), the > contingency table statistic,
and the uncertainty coefficient (Johnson and Wichern [JW92]). For a comparison of
attribute selection measures for decision tree induction, see Buntine and Niblett [BN92].
For additional methods, see Liu and Motoda [LM98b], Dash and Liu [DL97], and
Almuallim and Dietterich [AD91].

Liu, Hussain, Tan, and Dash [LHTDO02] performed a comprehensive survey of data
discretization methods. Entropy-based discretization with the C4.5 algorithm is descri-
bed in Quinlan [Qui93]. In Catlett [Cat91], the D-2 system binarizes a numerical fea-
ture recursively. ChiMerge by Kerber [Ker92] and Chi2 by Liu and Setiono [LS95] are
methods for the automatic discretization of numerical attributes that both employ the
x? statistic. Fayyad and Irani [FI93] apply the minimum description length principle to
determine the number of intervals for numerical discretization. Concept hierarchies and
their automatic generation from categorical data are described in Han and Fu [HF94].

Data Warehouse and OLAP
Technology: An Overview

Data warehouses generalize and consolidate data in multidimensional space. The construction of
data warehouses involves data cleaning, data integration, and data transformation and
can be viewed as an important preprocessing step for data mining. Moreover, data ware-
houses provide on-line analytical processing (OLAP) tools for the interactive analysis of
multidimensional data of varied granularities, which facilitates effective data generaliza-
tion and data mining. Many other data mining functions, such as association, classifi-
cation, prediction, and clustering, can be integrated with OLAP operations to enhance
interactive mining of knowledge at multiple levels of abstraction. Hence, the data ware-
house has become an increasingly important platform for data analysis and on-line ana-
lytical processing and will provide an effective platform for data mining. Therefore, data
warehousing and OLAP form an essential step in the knowledge discovery process. This
chapter presents an overview of data warehouse and OLAP technology. Such an overview
is essential for understanding the overall data mining and knowledge discovery process.

In this chapter, we study a well-accepted definition of the data warehouse and see
why more and more organizations are building data warehouses for the analysis of their
data. In particular, we study the data cube, a multidimensional data model for data ware-
houses and OLAP, as well as OLAP operations such as roll-up, drill-down, slicing, and
dicing. We also look at data warehouse architecture, including steps on data warehouse
design and construction. An overview of data warehouse implementation examines gen-
eral strategies for efficient data cube computation, OLAP data indexing, and OLAP query
processing. Finally, we look at on-line-analytical mining, a powerful paradigm that inte-
grates data warehouse and OLAP technology with that of data mining.

What Is a Data Warehouse?

Data warehousing provides architectures and tools for business executives to systemat-
ically organize, understand, and use their data to make strategic decisions. Data ware-
house systems are valuable tools in today’s competitive, fast-evolving world. In the last
several years, many firms have spent millions of dollars in building enterprise-wide data

105

106

Chapter 3 Data Warehouse and OLAP Technology: An Overview

warehouses. Many people feel that with competition mounting in every industry, data
warehousing is the latest must-have marketing weapon—a way to retain customers by
learning more about their needs.

“Then, what exactly is a data warehouse?” Data warehouses have been defined in many
ways, making it difficult to formulate a rigorous definition. Loosely speaking, a data
warehouse refers to a database that is maintained separately from an organization’s oper-
ational databases. Data warehouse systems allow for the integration of a variety of appli-
cation systems. They support information processing by providing a solid platform of
consolidated historical data for analysis.

According to William H. Inmon, a leading architect in the construction of data ware-
house systems, “A data warehouse is a subject-oriented, integrated, time-variant, and
nonvolatile collection of data in support of management’s decision making process”
[Inm96]. This short, but comprehensive definition presents the major features of a data
warehouse. The four keywords, subject-oriented, integrated, time-variant, and nonvolatile,
distinguish data warehouses from other data repository systems, such as relational
database systems, transaction processing systems, and file systems. Let’s take a closer
look at each of these key features.

Subject-oriented: A data warehouse is organized around major subjects, such as cus-
tomer, supplier, product, and sales. Rather than concentrating on the day-to-day oper-
ations and transaction processing of an organization, a data warehouse focuses on the
modeling and analysis of data for decision makers. Hence, data warehouses typically
provide a simple and concise view around particular subject issues by excluding data
that are not useful in the decision support process.

Integrated: A data warehouse is usually constructed by integrating multiple heteroge-
neous sources, such as relational databases, flat files, and on-line transaction records.
Data cleaning and data integration techniques are applied to ensure consistency in
naming conventions, encoding structures, attribute measures, and so on.

Time-variant: Data are stored to provide information from a historical perspective
(e.g., the past 5-10 years). Every key structure in the data warehouse contains, either
implicitly or explicitly, an element of time.

Nonvolatile: A data warehouse is always a physically separate store of data trans-
formed from the application data found in the operational environment. Due to
this separation, a data warehouse does not require transaction processing, recovery,
and concurrency control mechanisms. It usually requires only two operations in data
accessing: initial loading of data and access of data.

In sum, a data warehouse is a semantically consistent data store that serves as a phys-
ical implementation of a decision support data model and stores the information on
which an enterprise needs to make strategic decisions. A data warehouse is also often
viewed as an architecture, constructed by integrating data from multiple heterogeneous
sources to support structured and/or ad hoc queries, analytical reporting, and decision
making.

3.1 WhatIs a Data Warehouse? 107

Based on this information, we view data warehousing as the process of constructing
and using data warehouses. The construction of a data warehouse requires data cleaning,
data integration, and data consolidation. The utilization of a data warehouse often neces-
sitates a collection of decision support technologies. This allows “knowledge workers”
(e.g., managers, analysts, and executives) to use the warehouse to quickly and conve-
niently obtain an overview of the data, and to make sound decisions based on informa-
tion in the warehouse. Some authors use the term “data warehousing” to refer only to
the process of data warehouse construction, while the term “warehouse DBMS” is used
to refer to the management and utilization of data warehouses. We will not make this
distinction here.

“How are organizations using the information from data warehouses?” Many organi-
zations use this information to support business decision-making activities, including
(1) increasing customer focus, which includes the analysis of customer buying pat-
terns (such as buying preference, buying time, budget cycles, and appetites for spend-
ing); (2) repositioning products and managing product portfolios by comparing the
performance of sales by quarter, by year, and by geographic regions in order to fine-
tune production strategies; (3) analyzing operations and looking for sources of profit;
and (4) managing the customer relationships, making environmental corrections, and
managing the cost of corporate assets.

Data warehousing is also very useful from the point of view of heterogeneous database
integration. Many organizations typically collect diverse kinds of data and maintain large
databases from multiple, heterogeneous, autonomous, and distributed information
sources. To integrate such data, and provide easy and efficient access to it, is highly desir-
able, yet challenging. Much effort has been spent in the database industry and research
community toward achieving this goal.

The traditional database approach to heterogeneous database integration is to build
wrappers and integrators (or mediators), on top of multiple, heterogeneous databases.
When a query is posed to a client site, a metadata dictionary is used to translate the query
into queries appropriate for the individual heterogeneous sites involved. These queries
are then mapped and sent to local query processors. The results returned from the dif-
ferent sites are integrated into a global answer set. This query-driven approach requires
complex information filtering and integration processes, and competes for resources
with processing at local sources. It is inefficient and potentially expensive for frequent
queries, especially for queries requiring aggregations.

Data warehousing provides an interesting alternative to the traditional approach of
heterogeneous database integration described above. Rather than using a query-driven
approach, data warehousing employs an update-driven approach in which information
from multiple, heterogeneous sources is integrated in advance and stored in a warehouse
for direct querying and analysis. Unlike on-line transaction processing databases, data
warehouses do not contain the most current information. However, a data warehouse
brings high performance to the integrated heterogeneous database system because data
are copied, preprocessed, integrated, annotated, summarized, and restructured into one
semantic data store. Furthermore, query processing in data warehouses does not interfere
with the processing at local sources. Moreover, data warehouses can store and integrate

108

Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.1.1

historical information and support complex multidimensional queries. As a result, data
warehousing has become popular in industry.

Differences between Operational Database Systems
and Data Warehouses

Because most people are familiar with commercial relational database systems, it is easy
to understand what a data warehouse is by comparing these two kinds of systems.

The major task of on-line operational database systems is to perform on-line trans-
action and query processing. These systems are called on-line transaction processing
(OLTP) systems. They cover most of the day-to-day operations of an organization, such
as purchasing, inventory, manufacturing, banking, payroll, registration, and accounting.
Data warehouse systems, on the other hand, serve users or knowledge workers in the role
of data analysis and decision making. Such systems can organize and present data in var-
ious formats in order to accommodate the diverse needs of the different users. These
systems are known as on-line analytical processing (OLAP) systems.

The major distinguishing features between OLTP and OLAP are summarized as
follows:

Users and system orientation: An OLTP system is customer-oriented and is used for
transaction and query processing by clerks, clients, and information technology pro-
fessionals. An OLAP system is market-oriented and is used for data analysis by knowl-
edge workers, including managers, executives, and analysts.

Data contents: An OLTP system manages current data that, typically, are too detailed
to be easily used for decision making. An OLAP system manages large amounts of
historical data, provides facilities for summarization and aggregation, and stores and
manages information at different levels of granularity. These features make the data
easier to use in informed decision making.

Database design: An OLTP system usually adopts an entity-relationship (ER) data
model and an application-oriented database design. An OLAP system typically adopts
either a star or snowflake model (to be discussed in Section 3.2.2) and a subject-
oriented database design.

View: An OLTP system focuses mainly on the current data within an enterprise or
department, without referring to historical data or data in different organizations.
In contrast, an OLAP system often spans multiple versions of a database schema,
due to the evolutionary process of an organization. OLAP systems also deal with
information that originates from different organizations, integrating information
from many data stores. Because of their huge volume, OLAP data are stored on
multiple storage media.

Access patterns: The access patterns of an OLTP system consist mainly of short, atomic
transactions. Such a system requires concurrency control and recovery mechanisms.
However, accesses to OLAP systems are mostly read-only operations (because most

Table 3.1 Comparison between OLTP and OLAP systems.

3.1 What Is a Data Warehouse? 109

Feature oLTP OLAP

Characteristic operational processing informational processing

Orientation transaction analysis

User clerk, DBA, database professional knowledge worker (e.g., manager,
executive, analyst)

Function day-to-day operations long-term informational requirements,
decision support

DB design ER based, application-oriented star/snowflake, subject-oriented

Data current; guaranteed up-to-date historical; accuracy maintained
over time

Summarization primitive, highly detailed summarized, consolidated

View detailed, flat relational summarized, multidimensional

Unit of work short, simple transaction complex query

Access read/write mostly read

Focus data in information out

Operations index/hash on primary key lots of scans

Number of records
accessed

Number of users
DB size

Priority

Metric

tens
thousands
100 MB to GB

high performance, high availability

transaction throughput

millions

hundreds

100 GB to TB

high flexibility, end-user autonomy

query throughput, response time

NOTE: Table is partially based on [CD97].

data warehouses store historical rather than up-to-date information), although many
could be complex queries.

Other features that distinguish between OLTP and OLAP systems include database size,
frequency of operations, and performance metrics. These are summarized in Table 3.1.

3.1.2 But, Why Have a Separate Data Warehouse?

Because operational databases store huge amounts of data, you may wonder, “why not
perform on-line analytical processing directly on such databases instead of spending addi-
tional time and resources to construct a separate data warehouse?” A major reason for such
a separation is to help promote the high performance of both systems. An operational
database is designed and tuned from known tasks and workloads, such as indexing and
hashing using primary keys, searching for particular records, and optimizing “canned”

110 Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.0

queries. On the other hand, data warehouse queries are often complex. They involve the
computation of large groups of data at summarized levels, and may require the use of spe-
cial data organization, access, and implementation methods based on multidimensional
views. Processing OLAP queries in operational databases would substantially degrade
the performance of operational tasks.

Moreover, an operational database supports the concurrent processing of multiple
transactions. Concurrency control and recovery mechanisms, such as locking and log-
ging, are required to ensure the consistency and robustness of transactions. An OLAP
query often needs read-only access of data records for summarization and aggregation.
Concurrency control and recovery mechanisms, if applied for such OLAP operations,
may jeopardize the execution of concurrent transactions and thus substantially reduce
the throughput of an OLTP system.

Finally, the separation of operational databases from data warehouses is based on the
different structures, contents, and uses of the data in these two systems. Decision sup-
port requires historical data, whereas operational databases do not typically maintain
historical data. In this context, the data in operational databases, though abundant, is
usually far from complete for decision making. Decision support requires consolidation
(such as aggregation and summarization) of data from heterogeneous sources, result-
ing in high-quality, clean, and integrated data. In contrast, operational databases con-
tain only detailed raw data, such as transactions, which need to be consolidated before
analysis. Because the two systems provide quite different functionalities and require dif-
ferent kinds of data, it is presently necessary to maintain separate databases. However,
many vendors of operational relational database management systems are beginning to
optimize such systems to support OLAP queries. As this trend continues, the separation
between OLTP and OLAP systems is expected to decrease.

A Multidimensional Data Model

Data warehouses and OLAP tools are based on a multidimensional data model. This
model views data in the form of a data cube. In this section, you will learn how data
cubes model n-dimensional data. You will also learn about concept hierarchies and how
they can be used in basic OLAP operations to allow interactive mining at multiple levels
of abstraction.

From Tables and Spreadsheets to Data Cubes

“What is a data cube?” A data cube allows data to be modeled and viewed in multiple
dimensions. It is defined by dimensions and facts.

In general terms, dimensions are the perspectives or entities with respect to which
an organization wants to keep records. For example, AllElectronics may create a sales
data warehouse in order to keep records of the store’s sales with respect to the
dimensions time, item, branch, and location. These dimensions allow the store to
keep track of things like monthly sales of items and the branches and locations

3.2 A Multidimensional Data Model 111

Table 3.2 A 2-D view of sales data for AllElectronics according to the dimensions time and item,
where the sales are from branches located in the city of Vancouver. The measure dis-
played is dollars_sold (in thousands).

location = “Vancouver”

item (type)

home
time (quarter) entertainment computer phone security
Q1 605 825 14 400
Q2 680 952 31 512
Q3 812 1023 30 501
Q4 927 1038 38 580

at which the items were sold. Each dimension may have a table associated with
it, called a dimension table, which further describes the dimension. For example,
a dimension table for itern may contain the attributes itern_name, brand, and type.
Dimension tables can be specified by users or experts, or automatically generated
and adjusted based on data distributions.

A multidimensional data model is typically organized around a central theme, like
sales, for instance. This theme is represented by a fact table. Facts are numerical mea-
sures. Think of them as the quantities by which we want to analyze relationships between
dimensions. Examples of facts for a sales data warehouse include dollars_sold
(sales amount in dollars), units_sold (number of units sold), and amount_budgeted. The
fact table contains the names of the facts, or measures, as well as keys to each of the related
dimension tables. You will soon get a clearer picture of how this works when we look at
multidimensional schemas.

Although we usually think of cubes as 3-D geometric structures, in data warehousing
the data cube is n-dimensional. To gain a better understanding of data cubes and the
multidimensional data model, let’s start by looking at a simple 2-D data cube that is, in
fact, a table or spreadsheet for sales data from AllElectronics. In particular, we will look at
the AllElectronics sales data for items sold per quarter in the city of Vancouver. These data
are shown in Table 3.2. In this 2-D representation, the sales for Vancouver are shown with
respect to the time dimension (organized in quarters) and the itern dimension (organized
according to the types of items sold). The fact or measure displayed is dollars_sold (in
thousands).

Now, suppose that we would like to view the sales data with a third dimension. For
instance, suppose we would like to view the data according to time and item, as well as
location for the cities Chicago, New York, Toronto, and Vancouver. These 3-D data are
shown in Table 3.3. The 3-D data of Table 3.3 are represented as a series of 2-D tables.
Conceptually, we may also represent the same data in the form of a 3-D data cube, as in
Figure 3.1.

112

Chapter 3 Data Warehouse and OLAP Technology: An Overview

Table 3.3 A 3-D view of sales data for AllElectronics, according to the dimensions time, item, and
location. The measure displayed is dollars_sold (in thousands).

location = “Chicago” location = “New York” location = “Toronto” location = “Vancouver”

item item item item

home home home home
time ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec.
Q1 854 882 89 623 1087 968 38 872 818 746 43 591 605 825 14 400
Q2 943 890 ©64 698 1130 1024 41 925 894 769 52 682 680 952 31 512
Q3 1032 924 59 789 1034 1048 45 1002 940 795 58 728 812 1023 30 501
Q4 1129 992 63 870 1142 1091 54 984 978 864 59 784 927 1038 38 580

N
& Chicago 854 %82

“@ New York 1087968 38
W° Toronto 818 746,743 591
\00 Vancouver

7 Q1| 605|825 | 14 | 400

%

T Q2| 680952 31 | 512

=

E Q3| 812(1023] 30 | 501

Y

§ Q4 | 927 1038 38 | 580
computer security

home phone
entertainment

item (types)

Figure 3.1 A 3-D data cube representation of the data in Table 3.3, according to the dimensions time,

item, and location. The measure displayed is dollars_sold (in thousands).

Suppose that we would now like to view our sales data with an additional fourth
dimension, such as supplier. Viewing things in 4-D becomes tricky. However, we can
think of a 4-D cube as being a series of 3-D cubes, as shown in Figure 3.2. If we continue
in this way, we may display any n-D data as a series of (n — 1)-D “cubes.” The data cube is
a metaphor for multidimensional data storage. The actual physical storage of such data
may differ from its logical representation. The important thing to remember is that data
cubes are n-dimensional and do not confine data to 3-D.

The above tables show the data at different degrees of summarization. In the data
warehousing research literature, a data cube such as each of the above is often referred to

3.2 A Multidimensional Data Model 113

& supplier = “SUP1” supplier = “SUP2” supplier = “SUP3”
\'0\ Chicago /777 A~ """ T AT 7 AT >
New York

\0 Toronto
g& Vdncouver

A = 45 I ks --->
= QI 605|825 14 | 400
£
5@
g 1 T g
g
sl T T 1T U (11T 1TV 1111 .
|computer| security |computer| security |computer| security
home phone home phone home phone
entertainment entertainment entertainment
item (types) item (types) item (types)

Figure 3.2 A 4-D data cube representation of sales data, according to the dimensions time, item, location,
and supplier. The measure displayed is dollars_sold (in thousands). For improved readability,
only some of the cube values are shown.

all 0-D (apex) cuboid

location 1-D cuboids
Q) supplier

<

time, item (} D location. 2-D cuboids
time, llocation supplier
’ ‘ , 3-D cuboids
time, item, location Q)
time, ttem, supplier item, location,
supplier
time, item, location, supplier 4-D (base) cuboid

Figure 3.3 Lattice of cuboids, making up a 4-D data cube for the dimensions time, item, location, and
supplier. Each cuboid represents a different degree of summarization.

as a cuboid. Given a set of dimensions, we can generate a cuboid for each of the possible
subsets of the given dimensions. The result would form a lattice of cuboids, each showing
the data at a different level of summarization, or group by. The lattice of cuboids is then
referred to as a data cube. Figure 3.3 shows a lattice of cuboids forming a data cube for
the dimensions time, item, location, and supplier.

114 Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.2

Example 3.1

The cuboid that holds the lowest level of summarization is called the base cuboid. For
example, the 4-D cuboid in Figure 3.2 is the base cuboid for the given time, item, location,
and supplier dimensions. Figure 3.1 is a 3-D (nonbase) cuboid for time, item, and location,
summarized for all suppliers. The 0-D cuboid, which holds the highest level of summa-
rization, is called the apex cuboid. In our example, this is the total sales, or dollars_sold,
summarized over all four dimensions. The apex cuboid is typically denoted by all.

Stars, Snowflakes, and Fact Constellations:
Schemas for Multidimensional Databases

The entity-relationship data model is commonly used in the design of relational
databases, where a database schema consists of a set of entities and the relationships
between them. Such a data model is appropriate for on-line transaction processing.
A data warehouse, however, requires a concise, subject-oriented schema that facilitates
on-line data analysis.

The most popular data model for a data warehouse is a multidimensional model.
Such a model can exist in the form of a star schema, a snowflake schema, or a fact con-
stellation schema. Let’s look at each of these schema types.

Star schema: The most common modeling paradigm is the star schema, in which the
data warehouse contains (1) a large central table (fact table) containing the bulk of
the data, with no redundancy, and (2) a set of smaller attendant tables (dimension
tables), one for each dimension. The schema graph resembles a starburst, with the
dimension tables displayed in a radial pattern around the central fact table.

Star schema. A star schema for AllElectronics sales is shown in Figure 3.4. Sales are consid-
ered along four dimensions, namely, time, item, branch, and location. The schema contains
a central fact table for sales that contains keys to each of the four dimensions, along with
two measures: dollars_sold and units_sold. To minimize the size of the fact table, dimension
identifiers (such as time_key and item_key) are system-generated identifiers. (]

Notice that in the star schema, each dimension is represented by only one table, and
each table contains a set of attributes. For example, the location dimension table contains
the attribute set {location_key, street, city, province_or_state, country}. This constraint may
introduce some redundancy. For example, “Vancouver” and “Victoria” are both cities in
the Canadian province of British Columbia. Entries for such cities in the location dimen-
sion table will create redundancy among the attributes province_or_state and country,
that is, (..., Vancouver, British Columbia, Canada) and (..., Victoria, British Columbia,
Canada). Moreover, the attributes within a dimension table may form either a hierarchy
(total order) or a lattice (partial order).

Snowflake schema: The snowflake schema is a variant of the star schema model, where
some dimension tables are normalized, thereby further splitting the data into addi-
tional tables. The resulting schema graph forms a shape similar to a snowflake.

Figure 3.4

Example 3.2

3.2 A Multidimensional Data Model 115

time
dimension table

item
dimension table

sales
fact table

time_ key time_key item_key
day item_key item_name
day_of_the_week branch_key brand
month location_key type
quarter dollars_sold supplier_type
\year units_sold —
branch location

dimension table dimension table

p
branch_key location_key
branch_name street
branch_type city

province_or_state

\country

Star schema of a data warehouse for sales.

The major difference between the snowflake and star schema models is that the
dimension tables of the snowflake model may be kept in normalized form to reduce
redundancies. Such a table is easy to maintain and saves storage space. However,
this saving of space is negligible in comparison to the typical magnitude of the fact
table. Furthermore, the snowflake structure can reduce the effectiveness of browsing,
since more joins will be needed to execute a query. Consequently, the system per-
formance may be adversely impacted. Hence, although the snowflake schema reduces
redundancy, it is not as popular as the star schema in data warehouse design.

Snowflake schema. A snowflake schema for AllElectronics sales is given in Figure 3.5.
Here, the sales fact table is identical to that of the star schema in Figure 3.4. The
main difference between the two schemas is in the definition of dimension tables.
The single dimension table for itern in the star schema is normalized in the snowflake
schema, resulting in new item and supplier tables. For example, the itern dimension
table now contains the attributes item_key, item_name, brand, type, and supplier_key,
where supplier_key is linked to the supplier dimension table, containing supplier_key
and supplier_type information. Similarly, the single dimension table for location in the
star schema can be normalized into two new tables: location and city. The city_key in
the new location table links to the city dimension. Notice that further normalization
can be performed on province_or_state and country in the snowflake schema shown
in Figure 3.5, when desirable. n

116

Figure 3.5

Example 3.3

Chapter 3 Data Warehouse and OLAP Technology: An Overview

time sales item supplier
dimension table fact table dimension table dimension table
(time,key time_key] ritemfkey) (supplierfkey
day item_key I/ item_name fupplier_type
day_of_week branch_key brand
month location_key type
quarter dollars_sold supplier_key
B ﬁ
_year units_sold
branch location

dimension table dimension table

city

branch_key location_key

branch_name street dimension table

branch_type city_key —{ city_key
— city

province_or_state

countr
. y

Snowflake schema of a data warehouse for sales.

Fact constellation: Sophisticated applications may require multiple fact tables to share
dimension tables. This kind of schema can be viewed as a collection of stars, and hence
is called a galaxy schema or a fact constellation.

Fact constellation. A fact constellation schema is shown in Figure 3.6. This schema spec-
ifies two fact tables, sales and shipping. The sales table definition is identical to that of
the star schema (Figure 3.4). The shipping table has five dimensions, or keys: item_key,
time_key, shipper_key, from_location, and to_location, and two measures: dollars_cost and
units_shipped. A fact constellation schema allows dimension tables to be shared between
fact tables. For example, the dimensions tables for time, item, and location are shared
between both the sales and shipping fact tables. (]

In data warehousing, there is a distinction between a data warehouse and a data mart.
A data warehouse collects information about subjects that span the entire organization,
such as customers, items, sales, assets, and personnel, and thus its scope is enterprise-wide.
For data warehouses, the fact constellation schema is commonly used, since it can model
multiple, interrelated subjects. A data mart, on the other hand, is a department subset
of the data warehouse that focuses on selected subjects, and thus its scope is department-
wide. For data marts, the star or snowflake schema are commonly used, since both are
geared toward modeling single subjects, although the star schema is more popular and
efficient.

3.2 A Multidimensional Data Model

time sales item shipping shipper
dimension table fact table dimension table fact table dimension table
rtime_key (—] time_key ritem_key) item_key rshipper_key
day item_key item_name time_key shipper_name
day_of_week branch_key brand shipper_key — location_key
month location_key type] from_location shipper_type
0 - _
quarter dollars_sold (supplier_type H to_location
| year units_sold dollars_cost
units_shipped
branch location
dimension table dimension table
" N
branch_key — location_key =

branch_name street

branch_type city

— 1
province_or_state
country

Figure 3.6 Fact constellation schema of a data warehouse for sales and shipping.

323

Example 3.4

Examples for Defining Star, Snowflake,
and Fact Constellation Schemas

“How can I define a multidimensional schema for my data?” Just as relational query
languages like SQL can be used to specify relational queries, a data mining query lan-
guage can be used to specify data mining tasks. In particular, we examine how to define
data warehouses and data marts in our SQL-based data mining query language, DMQL.

Data warehouses and data marts can be defined using two language primitives, one
for cube definition and one for dimension definition. The cube definition statement has the
following syntax:

define cube (cube_name) [(dimension_list)]: (measure_list)
The dimension definition statement has the following syntax:
define dimension (dimension_name) as (({attribute_or_dimension_list))

Let’s look at examples of how to define the star, snowflake, and fact constellation
schemas of Examples 3.1 to 3.3 using DMQL. DMQL keywords are displayed in sans
serif font.

Star schema definition. The star schema of Example 3.1 and Figure 3.4 is defined in
DMQL as follows:

define cube sales_star [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*)

118 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Example 3.5

Example 3.6

define dimension time as (time_key, day, day_of_week, month, quarter, year)

define dimension item as (item_key, item_name, brand, type, supplier_type)

define dimension branch as (branch_key, branch_name, branch_type)

define dimension location as (location_key, street, city, province_or_state,
country)

The define cube statement defines a data cube called sales_star, which corresponds
to the central sales fact table of Example 3.1. This command specifies the dimensions
and the two measures, dollars_sold and units_sold. The data cube has four dimensions,
namely, time, item, branch, and location. A define dimension statement is used to define
each of the dimensions. n

Snowflake schema definition. The snowflake schema of Example 3.2 and Figure 3.5 is
defined in DMQL as follows:

define cube sales_snowflake [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier
(supplier_key, supplier_type))
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location key, street, city
(city_key, city, province_or_state, country))

This definition is similar to that of sales_star (Example 3.4), except that, here, the item
and location dimension tables are normalized. For instance, the itern dimension of the
sales_star data cube has been normalized in the sales_snowflake cube into two dimension
tables, item and supplier. Note that the dimension definition for supplier is specified within
the definition for item. Defining supplier in this way implicitly creates a supplier_key in the
item dimension table definition. Similarly, the location dimension of the sales_star data
cube has been normalized in the sales_snowflake cube into two dimension tables, location
and city. The dimension definition for city is specified within the definition for location.
In this way, a city_key is implicitly created in the location dimension table definition. m

Finally, a fact constellation schema can be defined as a set of interconnected cubes.
Below is an example.

Fact constellation schema definition. The fact constellation schema of Example 3.3 and
Figure 3.6 is defined in DMQL as follows:

define cube sales [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location key, street, city, province_or_state,
country)

3.24

3.2 A Multidimensional Data Model 119

define cube shipping [time, item, shipper, from_location, to_location]:
dollars_cost = sum(cost_in_dollars), units_shipped = count(*)

define dimension time as time in cube sales

define dimension item as item in cube sales

define dimension shipper as (shipper_key, shipper_name, location as
location in cube sales, shipper_type)

define dimension from_location as location in cube sales

define dimension to_location as location in cube sales

A define cube statement is used to define data cubes for sales and shipping, cor-
responding to the two fact tables of the schema of Example 3.3. Note that the time,
item, and location dimensions of the sales cube are shared with the shipping cube.
This is indicated for the time dimension, for example, as follows. Under the define
cube statement for shipping, the statement “define dimension time as time in cube
sales” is specified. (]

Measures: Their Categorization and Computation

“How are measures computed?” To answer this question, we first study how measures can
be categorized.! Note that a multidimensional point in the data cube space can be defined
by a set of dimension-value pairs, for example, (time = “Q1”, location = “Vancouver”,
item = “computer”). A data cube measure is a numerical function that can be evaluated
at each point in the data cube space. A measure value is computed for a given point by
aggregating the data corresponding to the respective dimension-value pairs defining the
given point. We will look at concrete examples of this shortly.

Measures can be organized into three categories (i.e., distributive, algebraic, holistic),
based on the kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in a distributed
manner as follows. Suppose the data are partitioned into n sets. We apply the function
to each partition, resulting in n aggregate values. If the result derived by applying the
function to the n aggregate values is the same as that derived by applying the func-
tion to the entire data set (without partitioning), the function can be computed in
a distributed manner. For example, count() can be computed for a data cube by first
partitioning the cube into a set of subcubes, computing count() for each subcube, and
then summing up the counts obtained for each subcube. Hence, count() is a distribu-
tive aggregate function. For the same reason, sum(), min(), and max() are distributive
aggregate functions. A measure is distributive if it is obtained by applying a distribu-
tive aggregate function. Distributive measures can be computed efficiently because
they can be computed in a distributive manner.

This categorization was briefly introduced in Chapter 2 with regards to the computation of measures
for descriptive data summaries. We reexamine it here in the context of data cube measures.

120 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Algebraic: An aggregate function is algebraic if it can be computed by an algebraic
function with M arguments (where M is a bounded positive integer), each of which
is obtained by applying a distributive aggregate function. For example, avg() (aver-
age) can be computed by sum()/count(), where both sum() and count() are dis-
tributive aggregate functions. Similarly, it can be shown that min_N() and max_N()
(which find the N minimum and N maximum values, respectively, in a given set)
and standard_deviation() are algebraic aggregate functions. A measure is algebraic
if it is obtained by applying an algebraic aggregate function.

Holistic: An aggregate function is holistic if there is no constant bound on the stor-
age size needed to describe a subaggregate. That is, there does not exist an algebraic
function with M arguments (where M is a constant) that characterizes the computa-
tion. Common examples of holistic functions include median(), mode(), and rank().

Most large data cube applications require efficient computation of distributive and
algebraic measures. Many efficient techniques for this exist. In contrast, it is difficult to
compute holistic measures efficiently. Efficient techniques to approximate the computa-
tion of some holistic measures, however, do exist. For example, rather than computing
the exact median(), Equation (2.3) of Chapter 2 can be used to estimate the approxi-
mate median value for a large data set. In many cases, such techniques are sufficient to
overcome the difficulties of efficient computation of holistic measures.

Example 3.7 Interpreting measures for data cubes. Many measures of a data cube can be computed by
relational aggregation operations. In Figure 3.4, we saw a star schema for AllElectronics
sales that contains two measures, namely, dollars_sold and units_sold. In Example 3.4, the
sales_star data cube corresponding to the schema was defined using DMQL commands.
“But how are these commands interpreted in order to generate the specified data cube?”

Suppose that the relational database schema of AllElectronics is the following:

time(time_key, day, day_of_week, month, quarter, year)

item(item_key, item_name, brand, type, supplier_type)

branch(branch_key, branch_name, branch_type)

location(location key, street, city, province_or_state, country)

sales(time_key, item _key, branch_key, location_key, number_of_units_sold, price)

The DMQL specification of Example 3.4 is translated into the following SQL query,
which generates the required sales_star cube. Here, the sum aggregate function, is used
to compute both dollars_sold and units_sold:

select s.time_key, s.item_key, s.branch key, s.location_key,
sum(s.number_of_units_sold * s.price), sum(s.number_of_units_sold)
from time t, item 1, branch b, location |, sales s,
where s.time_key = t.time_key and s.item_key = i.item_key
and s.branch_key = b.branch_key and s.location_key = Llocation_key
group by s.time_key, s.item_key, s.branch_key, s.location_key

3.05

3.2 A Multidimensional Data Model 121

The cube created in the above query is the base cuboid of the sales_star data cube. It
contains all of the dimensions specified in the data cube definition, where the granularity
of each dimension is at the join key level. A join key is a key that links a fact table and
a dimension table. The fact table associated with a base cuboid is sometimes referred to
as the base fact table.

By changing the group by clauses, we can generate other cuboids for the sales_star data
cube. For example, instead of grouping by s.time_key, we can group by t.month, which will
sum up the measures of each group by month. Also, removing “group by s.branch_key”
will generate a higher-level cuboid (where sales are summed for all branches, rather than
broken down per branch). Suppose we modify the above SQL query by removing all of
the group by clauses. This will result in obtaining the total sum of dollars_sold and the
total count of units_sold for the given data. This zero-dimensional cuboid is the apex
cuboid of the sales_star data cube. In addition, other cuboids can be generated by apply-
ing selection and/or projection operations on the base cuboid, resulting in a lattice of
cuboids as described in Section 3.2.1. Each cuboid corresponds to a different degree of
summarization of the given data. (]

Most of the current data cube technology confines the measures of multidimensional
databases to numerical data. However, measures can also be applied to other kinds of
data, such as spatial, multimedia, or text data. This will be discussed in future chapters.

Concept Hierarchies

A concept hierarchy defines a sequence of mappings from a set of low-level concepts
to higher-level, more general concepts. Consider a concept hierarchy for the dimension
location. City values for location include Vancouver, Toronto, New York, and Chicago. Each
city, however, can be mapped to the province or state to which it belongs. For example,
Vancouver can be mapped to British Columbia, and Chicago to Illinois. The provinces and
states can in turn be mapped to the country to which they belong, such as Canada or the
USA. These mappings form a concept hierarchy for the dimension location, mapping a set
of low-level concepts (i.e., cities) to higher-level, more general concepts (i.e., countries).
The concept hierarchy described above is illustrated in Figure 3.7.

Many concept hierarchies are implicit within the database schema. For example, sup-
pose that the dimension location is described by the attributes number, street, city,
province_or_state, zipcode,and country. These attributes are related by a total order, forming
a concept hierarchy such as “street < city < province_or_state < country”. This hierarchy
is shown in Figure 3.8(a). Alternatively, the attributes of a dimension may be organized
in a partial order, forming a lattice. An example of a partial order for the time dimension
based on the attributes day, week, month, quarter, and year is “day < {month <quarter;
week} < year”.? This lattice structure is shown in Figure 3.8(b). A concept hierarchy

2Since a week often crosses the boundary of two consecutive months, it is usually not treated as a lower
abstraction of month. Instead, it is often treated as a lower abstraction of year, since a year contains
approximately 52 weeks.

122

Chapter 3

Figure 3.7

Figure 3.8

Data Warehouse and OLAP Technology: An Overview

location

all

country

province_or_state

British Columbia]

city (Vancouver)---(Victoria) (Toronto) - (Ottawa) (New York)--- (Buffalo) (Chicago) -

A concept hierarchy for the dimension location. Due to space limitations, not all of the nodes
of the hierarchy are shown (as indicated by the use of “ellipsis” between nodes).

country O O year
province_or_state i quarter (/
city i month 1 week
street i day

(a) (b)

Hierarchical and lattice structures of attributes in warehouse dimensions: (a) a hierarchy for
location; (b) a lattice for time.

that is a total or partial order among attributes in a database schema is called a schema
hierarchy. Concept hierarchies that are common to many applications may be prede-
fined in the data mining system, such as the concept hierarchy for time. Data mining
systems should provide users with the flexibility to tailor predefined hierarchies accord-
ing to their particular needs. For example, users may like to define a fiscal year starting
on April 1 or an academic year starting on September 1.

Figure 3.9

3.2.6

Example 3.8

3.2 A Multidimensional Data Model 123

' ($0...$1000] .

(($0..A$200|) (($200.‘.$4001) (($400..4$6OO]) (($600...$800]) (($800...$1000])

(80 ... ($100...4 [(5200...4 [($300...§ |($400...4]($500...8 |($600...}[($700...§ |($800...}[($900...
$100] $200] $300] $400] $500] $600] $700] $800] $900] $1000]

A concept hierarchy for the attribute price.

Concept hierarchies may also be defined by discretizing or grouping values for a given
dimension or attribute, resulting in a set-grouping hierarchy. A total or partial order can
be defined among groups of values. An example of a set-grouping hierarchy is shown in
Figure 3.9 for the dimension price, where an interval ($X ...$Y] denotes the range from
$X (exclusive) to $Y (inclusive).

There may be more than one concept hierarchy for a given attribute or dimension,
based on different user viewpoints. For instance, a user may prefer to organize price by
defining ranges for inexpensive, moderately_priced, and expensive.

Concept hierarchies may be provided manually by system users, domain experts, or
knowledge engineers, or may be automatically generated based on statistical analysis of
the data distribution. The automatic generation of concept hierarchies is discussed in
Chapter 2 as a preprocessing step in preparation for data mining.

Concept hierarchies allow data to be handled at varying levels of abstraction, as we
shall see in the following subsection.

OLAP Operations in the Multidimensional Data Model

“How are concept hierarchies useful in OLAP?” In the multidimensional model, data are
organized into multiple dimensions, and each dimension contains multiple levels of
abstraction defined by concept hierarchies. This organization provides users with the
flexibility to view data from different perspectives. A number of OLAP data cube opera-
tions exist to materialize these different views, allowing interactive querying and analysis
of the data at hand. Hence, OLAP provides a user-friendly environment for interactive
data analysis.

OLAP operations. Let’s look at some typical OLAP operations for multidimensional
data. Each of the operations described below is illustrated in Figure 3.10. At the center
of the figure is a data cube for AllElectronics sales. The cube contains the dimensions
location, time, and item, where location is aggregated with respect to city values, time is
aggregated with respect to quarters, and item is aggregated with respect to item types. To

124 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Figure 3.10

BN D
& Toront >
S Ve S S
c°° = i\°‘\ Canada
v 5 Q1] 605 o
3 g Q o 7 Q11w
Q2 2@
= E
computer %’ Q3
home =
entertainment = Q4
item (types) |compuler| security
home phone
dice for entertainment
(location = “Toronto” or “Vancouver”) item (types)
and (time = “Q1” or “Q2”) and
(item = “home entertainment” or “computer”)
roll-up
on location
(from cities
to countries),
.\@
@\‘ Chicago_77y
.o New York A5607
c@\” Toronto 305,
AOY Vancouver
7 Q1| 605|825 14 | 400
g
F @
&)
N0}
g
=] Q4
Slice | . |)
for time = “Q17 computer | security
home phone
entertainment drill-down
item (types) on time
) (from quarters
2 Chicago to months)
15, New York
=
-S Toronto
3
= Vancouver | 605 825 14 |400
& Chicago
& New York

| compulerl security
oo Toronto

home phone o
entertainment A9 Vancouver
item (types) January 150
February 100
March 150
Z M
£ May
5 June
£
home < July
_ entertainment 605 § August
§. pogn September]
Zz computer October
§ phone 14 November
= D
security 400 ecember
|compuler| security
) |New York |Vanc0uver home phone
Chicago Toronto entertainment
location (cities) item (types)

Examples of typical OLAP operations on multidimensional data.

3.2 A Multidimensional Data Model 125

aid in our explanation, we refer to this cube as the central cube. The measure displayed
is dollars_sold (in thousands). (For improved readability, only some of the cubes’ cell
values are shown.) The data examined are for the cities Chicago, New York, Toronto, and
Vancouver.

Roll-up: The roll-up operation (also called the drill-up operation by some vendors)
performs aggregation on a data cube, either by climbing up a concept hierarchy for
a dimension or by dimension reduction. Figure 3.10 shows the result of a roll-up
operation performed on the central cube by climbing up the concept hierarchy for
location given in Figure 3.7. This hierarchy was defined as the total order “street
< city < province_or_state < country.” The roll-up operation shown aggregates
the data by ascending the location hierarchy from the level of city to the level of
country. In other words, rather than grouping the data by city, the resulting cube
groups the data by country.

When roll-up is performed by dimension reduction, one or more dimensions are
removed from the given cube. For example, consider a sales data cube containing only
the two dimensions location and time. Roll-up may be performed by removing, say,
the time dimension, resulting in an aggregation of the total sales by location, rather
than by location and by time.

Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to
more detailed data. Drill-down can be realized by either stepping down a concept hier-
archy for a dimension or introducing additional dimensions. Figure 3.10 shows the
result of a drill-down operation performed on the central cube by stepping down a
concept hierarchy for time defined as “day < month < quarter < year.” Drill-down
occurs by descending the time hierarchy from the level of quarter to the more detailed
level of month. The resulting data cube details the total sales per month rather than
summarizing them by quarter.

Because a drill-down adds more detail to the given data, it can also be performed
by adding new dimensions to a cube. For example, a drill-down on the central cube of
Figure 3.10 can occur by introducing an additional dimension, such as customer_group.

Slice and dice: The slice operation performs a selection on one dimension of the
given cube, resulting in a subcube. Figure 3.10 shows a slice operation where
the sales data are selected from the central cube for the dimension time using
the criterion time = “QI”. The dice operation defines a subcube by performing a
selection on two or more dimensions. Figure 3.10 shows a dice operation on the
central cube based on the following selection criteria that involve three dimensions:
(location = “Toronto” or “Vancouver”) and (time = “QI” or “Q2”) and (item =
“home entertainment” or “computer”).

Pivot (rotate): Pivot (also called rotate) is a visualization operation that rotates the data
axes in view in order to provide an alternative presentation of the data. Figure 3.10
shows a pivot operation where the item and location axes in a 2-D slice are rotated.

126 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Other examples include rotating the axes in a 3-D cube, or transforming a 3-D cube
into a series of 2-D planes.

Other OLAP operations: Some OLAP systems offer additional drilling operations. For
example, drill-across executes queries involving (i.e., across) more than one fact table.
The drill-through operation uses relational SQL facilities to drill through the bottom
level of a data cube down to its back-end relational tables.

Other OLAP operations may include ranking the top N or bottom N items in lists,
as well as computing moving averages, growth rates, interests, internal rates of return,
depreciation, currency conversions, and statistical functions. []

OLAP offers analytical modeling capabilities, including a calculation engine for deriv-
ing ratios, variance, and so on, and for computing measures across multiple dimensions.
It can generate summarizations, aggregations, and hierarchies at each granularity level
and at every dimension intersection. OLAP also supports functional models for forecast-
ing, trend analysis, and statistical analysis. In this context, an OLAP engine is a powerful
data analysis tool.

OLAP Systems versus Statistical Databases

Many of the characteristics of OLAP systems, such as the use of a multidimensional
data model and concept hierarchies, the association of measures with dimensions, and
the notions of roll-up and drill-down, also exist in earlier work on statistical databases
(SDBs). A statistical database is a database system that is designed to support statistical
applications. Similarities between the two types of systems are rarely discussed, mainly
due to differences in terminology and application domains.

OLAP and SDB systems, however, have distinguishing differences. While SDBs tend to
focus on socioeconomic applications, OLAP has been targeted for business applications.
Privacy issues regarding concept hierarchies are a major concern for SDBs. For example,
given summarized socioeconomic data, it is controversial to allow users to view the cor-
responding low-level data. Finally, unlike SDBs, OLAP systems are designed for handling
huge amounts of data efficiently.

3.2.1 A Starnet Query Model for Querying

Example 3.9

Multidimensional Databases

The querying of multidimensional databases can be based on a starnet model. A starnet
model consists of radial lines emanating from a central point, where each line represents
a concept hierarchy for a dimension. Each abstraction level in the hierarchy is called a
footprint. These represent the granularities available for use by OLAP operations such
as drill-down and roll-up.

Starnet. A starnet query model for the AllElectronics data warehouse is shown in
Figure 3.11. This starnet consists of four radial lines, representing concept hierarchies

Figure 3.11

3.3 Data Warehouse Architecture 127

location
customer

continent
group
country

province_or_state category

city name

street

O O O—> item

' S
brand category type

time

Modeling business queries: a starnet model.

for the dimensions location, customer, item, and time, respectively. Each line consists of
footprints representing abstraction levels of the dimension. For example, the time line
has four footprints: “day,” “month,” “quarter,” and “year.” A concept hierarchy may
involve a single attribute (like date for the time hierarchy) or several attributes (e.g.,
the concept hierarchy for location involves the attributes street, city, province_or_state,
and country). In order to examine the item sales at AllElectronics, users can roll up
along the time dimension from month to quarter, or, say, drill down along the location
dimension from country to city. Concept hierarchies can be used to generalize data
by replacing low-level values (such as “day” for the time dimension) by higher-level
abstractions (such as “year”), or to specialize data by replacing higher-level abstractions
with lower-level values. L]

Data Warehouse Architecture

In this section, we discuss issues regarding data warehouse architecture. Section 3.3.1
gives a general account of how to design and construct a data warehouse. Section 3.3.2
describes a three-tier data warehouse architecture. Section 3.3.3 describes back-end
tools and utilities for data warehouses. Section 3.3.4 describes the metadata repository.
Section 3.3.5 presents various types of warehouse servers for OLAP processing.

128

Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.3.] Steps for the Design and Construction of Data Warehouses

This subsection presents a business analysis framework for data warehouse design. The
basic steps involved in the design process are also described.

The Design of a Data Warehouse: A Business
Analysis Framework

“What can business analysts gain from having a data warehouse?” First, having a data
warehouse may provide a competitive advantage by presenting relevant information from
which to measure performance and make critical adjustments in order to help win over
competitors. Second, a data warehouse can enhance business productivity because it is
able to quickly and efficiently gather information that accurately describes the organi-
zation. Third, a data warehouse facilitates customer relationship management because it
provides a consistent view of customers and items across all lines of business, all depart-
ments, and all markets. Finally, a data warehouse may bring about cost reduction by track-
ing trends, patterns, and exceptions over long periods in a consistent and reliable manner.

To design an effective data warehouse we need to understand and analyze business
needs and construct a business analysis framework. The construction of a large and com-
plex information system can be viewed as the construction of a large and complex build-
ing, for which the owner, architect, and builder have different views. These views are
combined to form a complex framework that represents the top-down, business-driven,
or owner’s perspective, as well as the bottom-up, builder-driven, or implementor’s view
of the information system.

Four different views regarding the design of a data warehouse must be considered: the
top-down view, the data source view, the data warehouse view, and the business
query view.

The top-down view allows the selection of the relevant information necessary for
the data warehouse. This information matches the current and future business
needs.

The data source view exposes the information being captured, stored, and man-
aged by operational systems. This information may be documented at various
levels of detail and accuracy, from individual data source tables to integrated
data source tables. Data sources are often modeled by traditional data model-
ing techniques, such as the entity-relationship model or CASE (computer-aided
software engineering) tools.

The data warehouse view includes fact tables and dimension tables. It represents the
information that is stored inside the data warehouse, including precalculated totals
and counts, as well as information regarding the source, date, and time of origin,
added to provide historical context.

Finally, the business query view is the perspective of data in the data warehouse from
the viewpoint of the end user.

3.3 Data Warehouse Architecture 129

Building and using a data warehouse is a complex task because it requires business
skills, technology skills, and program management skills. Regarding business skills, building
a data warehouse involves understanding how such systems store and manage their data,
how to build extractors that transfer data from the operational system to the data ware-
house, and how to build warehouse refresh software that keeps the data warehouse rea-
sonably up-to-date with the operational system’s data. Using a data warehouse involves
understanding the significance of the data it contains, as well as understanding and trans-
lating the business requirements into queries that can be satisfied by the data warehouse.
Regarding technology skills, data analysts are required to understand how to make assess-
ments from quantitative information and derive facts based on conclusions from his-
torical information in the data warehouse. These skills include the ability to discover
patterns and trends, to extrapolate trends based on history and look for anomalies or
paradigm shifts, and to present coherent managerial recommendations based on such
analysis. Finally, program management skills involve the need to interface with many tech-
nologies, vendors, and end users in order to deliver results in a timely and cost-effective
manner.

The Process of Data Warehouse Design

A data warehouse can be built using a top-down approach, a bottom-up approach, or a
combination of both. The top-down approach starts with the overall design and plan-
ning. It is useful in cases where the technology is mature and well known, and where the
business problems that must be solved are clear and well understood. The bottom-up
approach starts with experiments and prototypes. This is useful in the early stage of busi-
ness modeling and technology development. It allows an organization to move forward
at considerably less expense and to evaluate the benefits of the technology before mak-
ing significant commitments. In the combined approach, an organization can exploit
the planned and strategic nature of the top-down approach while retaining the rapid
implementation and opportunistic application of the bottom-up approach.

From the software engineering point of view, the design and construction of a data
warehouse may consist of the following steps: planning, requirements study, problem anal-
ysis, warehouse design, data integration and testing, and finally deployment of the data ware-
house. Large software systems can be developed using two methodologies: the waterfall
method or the spiral method. The waterfall method performs a structured and systematic
analysis at each step before proceeding to the next, which is like a waterfall, falling from
one step to the next. The spiral method involves the rapid generation of increasingly
functional systems, with short intervals between successive releases. This is considered
a good choice for data warehouse development, especially for data marts, because the
turnaround time is short, modifications can be done quickly, and new designs and tech-
nologies can be adapted in a timely manner.

In general, the warehouse design process consists of the following steps:

I. Choose a business process to model, for example, orders, invoices, shipments,
inventory, account administration, sales, or the general ledger. If the business

130 Chapter 3 Data Warehouse and OLAP Technology: An Overview

process is organizational and involves multiple complex object collections, a data
warehouse model should be followed. However, if the process is departmental
and focuses on the analysis of one kind of business process, a data mart model
should be chosen.

2. Choose the grain of the business process. The grain is the fundamental, atomic level
of data to be represented in the fact table for this process, for example, individual
transactions, individual daily snapshots, and so on.

3. Choose the dimensions that will apply to each fact table record. Typical dimensions
are time, item, customer, supplier, warehouse, transaction type, and status.

4. Choose the measures that will populate each fact table record. Typical measures are
numeric additive quantities like dollars_sold and units_sold.

Because data warehouse construction is a difficult and long-term task, its imple-
mentation scope should be clearly defined. The goals of an initial data warehouse
implementation should be specific, achievable, and measurable. This involves deter-
mining the time and budget allocations, the subset of the organization that is to be
modeled, the number of data sources selected, and the number and types of depart-
ments to be served.

Once a data warehouse is designed and constructed, the initial deployment of
the warehouse includes initial installation, roll-out planning, training, and orienta-
tion. Platform upgrades and maintenance must also be considered. Data warehouse
administration includes data refreshment, data source synchronization, planning for
disaster recovery, managing access control and security, managing data growth, man-
aging database performance, and data warehouse enhancement and extension. Scope
management includes controlling the number and range of queries, dimensions, and
reports; limiting the size of the data warehouse; or limiting the schedule, budget, or
resources.

Various kinds of data warehouse design tools are available. Data warehouse devel-
opment tools provide functions to define and edit metadata repository contents (such
as schemas, scripts, or rules), answer queries, output reports, and ship metadata to
and from relational database system catalogues. Planning and analysis tools study the
impact of schema changes and of refresh performance when changing refresh rates or
time windows.

3.3.2 A Three-Tier Data Warehouse Architecture

Data warehouses often adopt a three-tier architecture, as presented in Figure 3.12.

I. The bottom tier is a warehouse database server that is almost always a relational
database system. Back-end tools and utilities are used to feed data into the bottom
tier from operational databases or other external sources (such as customer profile
information provided by external consultants). These tools and utilities perform data
extraction, cleaning, and transformation (e.g., to merge similar data from different

3.3 Data Warehouse Architecture 131

Query/report Analysis Data mining
Top tier:
H |—| H front-end tools
OLAP server OLAP server
Middle tier:
OLAP server

Monitoring Administration Data warehouse Data marts
()) — Bottom i
ottom tier:
N
. \ data warehouse
Metadata repoV
f server

____________________________________ 124 13 S N
Clean
Transform
Load

Refresh

Data

o080 E8
——
Operational databases External sources

Figure 3.12 A three-tier data warehousing architecture.

sources into a unified format), as well as load and refresh functions to update the
data warehouse (Section 3.3.3). The data are extracted using application program
interfaces known as gateways. A gateway is supported by the underlying DBMS and
allows client programs to generate SQL code to be executed at a server. Examples
of gateways include ODBC (Open Database Connection) and OLEDB (Open Link-
ing and Embedding for Databases) by Microsoft and JDBC (Java Database Connec-
tion). This tier also contains a metadata repository, which stores information about
the data warehouse and its contents. The metadata repository is further described in
Section 3.3.4.

2. The middle tier is an OLAP server that is typically implemented using either
(1) a relational OLAP (ROLAP) model, that is, an extended relational DBMS that

132

Chapter 3 Data Warehouse and OLAP Technology: An Overview

maps operations on multidimensional data to standard relational operations; or
(2) a multidimensional OLAP (MOLAP) model, that is, a special-purpose server
that directly implements multidimensional data and operations. OLAP servers are
discussed in Section 3.3.5.

3. The top tier is a front-end client layer, which contains query and reporting tools,
analysis tools, and/or data mining tools (e.g., trend analysis, prediction, and so on).

From the architecture point of view, there are three data warehouse models: the enter-
prise warehouse, the data mart, and the virtual warehouse.

Enterprise warehouse: An enterprise warehouse collects all of the information about
subjects spanning the entire organization. It provides corporate-wide data inte-
gration, usually from one or more operational systems or external information
providers, and is cross-functional in scope. It typically contains detailed data as
well as summarized data, and can range in size from a few gigabytes to hundreds
of gigabytes, terabytes, or beyond. An enterprise data warehouse may be imple-
mented on traditional mainframes, computer superservers, or parallel architecture
platforms. It requires extensive business modeling and may take years to design
and build.

Data mart: A data mart contains a subset of corporate-wide data that is of value to a
specific group of users. The scope is confined to specific selected subjects. For exam-
ple, a marketing data mart may confine its subjects to customer, item, and sales. The
data contained in data marts tend to be summarized.

Data marts are usually implemented on low-cost departmental servers that are
UNIX/LINUX- or Windows-based. The implementation cycle of a data mart is
more likely to be measured in weeks rather than months or years. However, it
may involve complex integration in the long run if its design and planning were
not enterprise-wide.

Depending on the source of data, data marts can be categorized as independent or
dependent. Independent data marts are sourced from data captured from one or more
operational systems or external information providers, or from data generated locally
within a particular department or geographic area. Dependent data marts are sourced
directly from enterprise data warehouses.

Virtual warehouse: A virtual warehouse is a set of views over operational databases. For
efficient query processing, only some of the possible summary views may be materi-
alized. A virtual warehouse is easy to build but requires excess capacity on operational
database servers.

“What are the pros and cons of the top-down and bottom-up approaches to data ware-
house development?” The top-down development of an enterprise warehouse serves as
a systematic solution and minimizes integration problems. However, it is expensive,
takes a long time to develop, and lacks flexibility due to the difficulty in achieving

3.3 Data Warehouse Architecture 133

consistency and consensus for a common data model for the entire organization. The
bottom-up approach to the design, development, and deployment of independent
data marts provides flexibility, low cost, and rapid return of investment. It, however,
can lead to problems when integrating various disparate data marts into a consistent
enterprise data warehouse.

A recommended method for the development of data warehouse systems is to
implement the warehouse in an incremental and evolutionary manner, as shown in
Figure 3.13. First, a high-level corporate data model is defined within a reasonably
short period (such as one or two months) that provides a corporate-wide, consistent,
integrated view of data among different subjects and potential usages. This high-level
model, although it will need to be refined in the further development of enterprise
data warehouses and departmental data marts, will greatly reduce future integration
problems. Second, independent data marts can be implemented in parallel with
the enterprise warehouse based on the same corporate data model set as above.
Third, distributed data marts can be constructed to integrate different data marts via
hub servers. Finally, a multitier data warehouse is constructed where the enterprise
warehouse is the sole custodian of all warehouse data, which is then distributed to
the various dependent data marts.

Multitier
data

warehouse

Distributed

data marts
Enterprise
Data Data data
_‘ mart —‘ warehouse
I Model refinement Model refinement
Define a high-level corporate data model]

Figure 3.13 A recommended approach for data warehouse development.

134

Chapter 3 Data Warehouse and OLAP Technology: An Overview

333

334

Data Warehouse Back-End Tools and Utilities

Data warehouse systems use back-end tools and utilities to populate and refresh their
data (Figure 3.12). These tools and utilities include the following functions:

Data extraction, which typically gathers data from multiple, heterogeneous, and exter-
nal sources

Data cleaning, which detects errors in the data and rectifies them when possible

Data transformation, which converts data from legacy or host format to warehouse
format

Load, which sorts, summarizes, consolidates, computes views, checks integrity, and
builds indices and partitions

Refresh, which propagates the updates from the data sources to the warehouse

Besides cleaning, loading, refreshing, and metadata definition tools, data warehouse sys-
tems usually provide a good set of data warehouse management tools.

Data cleaning and data transformation are important steps in improving the quality
of the data and, subsequently, of the data mining results. They are described in Chapter 2
on Data Preprocessing. Because we are mostly interested in the aspects of data warehous-
ing technology related to data mining, we will not get into the details of the remaining
tools and recommend interested readers to consult books dedicated to data warehousing
technology.

Metadata Repository

Metadata are data about data. When used in a data warehouse, metadata are the data that
define warehouse objects. Figure 3.12 showed a metadata repository within the bottom
tier of the data warehousing architecture. Metadata are created for the data names and
definitions of the given warehouse. Additional metadata are created and captured for
timestamping any extracted data, the source of the extracted data, and missing fields
that have been added by data cleaning or integration processes.

A metadata repository should contain the following:

A description of the structure of the data warehouse, which includes the warehouse
schema, view, dimensions, hierarchies, and derived data definitions, as well as data
mart locations and contents

Operational metadata, which include data lineage (history of migrated data and the
sequence of transformations applied to it), currency of data (active, archived, or
purged), and monitoring information (warehouse usage statistics, error reports, and
audit trails)

The algorithms used for summarization, which include measure and dimension defi-
nition algorithms, data on granularity, partitions, subject areas, aggregation, summa-
rization, and predefined queries and reports

3.3.5

3.3 Data Warehouse Architecture 135

The mapping from the operational environment to the data warehouse, which includes
source databases and their contents, gateway descriptions, data partitions, data extrac-
tion, cleaning, transformation rules and defaults, data refresh and purging rules, and
security (user authorization and access control)

Data related to system performance, which include indices and profiles that improve
data access and retrieval performance, in addition to rules for the timing and schedul-
ing of refresh, update, and replication cycles

Business metadata, which include business terms and definitions, data ownership
information, and charging policies

A data warehouse contains different levels of summarization, of which metadata is
one type. Other types include current detailed data (which are almost always on disk),
older detailed data (which are usually on tertiary storage), lightly summarized data and
highly summarized data (which may or may not be physically housed).

Metadata play a very different role than other data warehouse data and are important
for many reasons. For example, metadata are used as a directory to help the decision
support system analyst locate the contents of the data warehouse, as a guide to the map-
ping of data when the data are transformed from the operational environment to the
data warehouse environment, and as a guide to the algorithms used for summarization
between the current detailed data and the lightly summarized data, and between the
lightly summarized data and the highly summarized data. Metadata should be stored
and managed persistently (i.e., on disk).

Types of OLAP Servers: ROLAP versus MOLAP
versus HOLAP

Logically, OLAP servers present business users with multidimensional data from data
warehouses or data marts, without concerns regarding how or where the data are stored.
However, the physical architecture and implementation of OLAP servers must consider
data storage issues. Implementations of a warehouse server for OLAP processing include
the following:

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in
between a relational back-end server and client front-end tools. They use a relational
or extended-relational DBMS to store and manage warehouse data, and OLAP middle-
ware to support missing pieces. ROLAP servers include optimization for each DBMS
back end, implementation of aggregation navigation logic, and additional tools and
services. ROLAP technology tends to have greater scalability than MOLAP technol-
ogy. The DSS server of Microstrategy, for example, adopts the ROLAP approach.

Multidimensional OLAP (MOLAP) servers: These servers support multidimensional
views of data through array-based multidimensional storage engines. They map multi-
dimensional views directly to data cube array structures. The advantage of using a data

136 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Example 3.10

Table 3.4

cube is that it allows fast indexing to precomputed summarized data. Notice that with
multidimensional data stores, the storage utilization may be low if the data set is sparse.
In such cases, sparse matrix compression techniques should be explored (Chapter 4).
Many MOLAP servers adopt a two-level storage representation to handle dense and
sparse data sets: denser subcubes are identified and stored as array structures, whereas
sparse subcubes employ compression technology for efficient storage utilization.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and
MOLAP technology, benefiting from the greater scalability of ROLAP and the faster
computation of MOLAP. For example, a HOLAP server may allow large volumes
of detail data to be stored in a relational database, while aggregations are kept in a
separate MOLAP store. The Microsoft SQL Server 2000 supports a hybrid OLAP
server.

Specialized SQL servers: To meet the growing demand of OLAP processing in relational
databases, some database system vendors implement specialized SQL servers that pro-
vide advanced query language and query processing support for SQL queries over star
and snowflake schemas in a read-only environment.

“How are data actually stored in ROLAP and MOLAP architectures?” Let’s first look
at ROLAP. As its name implies, ROLAP uses relational tables to store data for on-line
analytical processing. Recall that the fact table associated with a base cuboid is referred
to as a base fact table. The base fact table stores data at the abstraction level indicated by
the join keys in the schema for the given data cube. Aggregated data can also be stored
in fact tables, referred to as summary fact tables. Some summary fact tables store both
base fact table data and aggregated data, as in Example 3.10. Alternatively, separate sum-
mary fact tables can be used for each level of abstraction, to store only aggregated data.

A ROLAP data store. Table 3.4 shows a summary fact table that contains both base fact
data and aggregated data. The schema of the table is “(record_identifier (RID), item, ...,
day, month, quarter, year, dollars_sold)”, where day, month, quarter, and year define the
date of sales, and dollars_sold is the sales amount. Consider the tuples with an RID of 1001
and 1002, respectively. The data of these tuples are at the base fact level, where the date
of sales is October 15, 2003, and October 23, 2003, respectively. Consider the tuple with
an RID of 5001. This tuple is at a more general level of abstraction than the tuples 1001

Single table for base and summary facts.

RID item .. day month quarter year dollars_sold
1001 TV 15 10 Q4 2003 250.60
1002 TV 23 10 Q4 2003 175.00

5001 TV all 10 Q4 2003 45,786.08

34.1

Example 3.11

3.4 Data Warehouse Implementation 137

and 1002. The day value has been generalized to all, so that the corresponding time value
is October 2003. That is, the dollars_sold amount shown is an aggregation representing
the entire month of October 2003, rather than just October 15 or 23, 2003. The special
value all is used to represent subtotals in summarized data. [

MOLAP uses multidimensional array structures to store data for on-line analytical
processing. This structure is discussed in the following section on data warehouse imple-
mentation and, in greater detail, in Chapter 4.

Most data warehouse systems adopt a client-server architecture. A relational data store
always resides at the data warehouse/data mart server site. A multidimensional data store
can reside at either the database server site or the client site.

Data Warehouse Implementation

Data warehouses contain huge volumes of data. OLAP servers demand that decision
support queries be answered in the order of seconds. Therefore, it is crucial for data ware-
house systems to support highly efficient cube computation techniques, access methods,
and query processing techniques. In this section, we present an overview of methods for
the efficient implementation of data warehouse systems.

Efficient Computation of Data Cubes

At the core of multidimensional data analysis is the efficient computation of aggregations
across many sets of dimensions. In SQL terms, these aggregations are referred to as
group-by’s. Each group-by can be represented by a cuboid, where the set of group-by’s
forms a lattice of cuboids defining a data cube. In this section, we explore issues relating
to the efficient computation of data cubes.

The compute cube Operator and the

Curse of Dimensionality

One approach to cube computation extends SQL so as to include a compute cube oper-
ator. The compute cube operator computes aggregates over all subsets of the dimensions
specified in the operation. This can require excessive storage space, especially for large

numbers of dimensions. We start with an intuitive look at what is involved in the efficient
computation of data cubes.

A data cube is a lattice of cuboids. Suppose that you would like to create a data cube for
AllElectronics sales that contains the following: city, item, year, and sales_in_dollars. You
would like to be able to analyze the data, with queries such as the following:

“Compute the sum of sales, grouping by city and item.”
“Compute the sum of sales, grouping by city.”

“Compute the sum of sales, grouping by item.”

138

Chapter 3 Data Warehouse and OLAP Technology: An Overview

What is the total number of cuboids, or group-by’s, that can be computed for this
data cube? Taking the three attributes, city, item, and year, as the dimensions for the
data cube, and sales_in_dollars as the measure, the total number of cuboids, or group-
by’s, that can be computed for this data cube is 23 = 8. The possible group-by’s are
the following: {(city, item, year), (city, item), (city, year), (item, year), (city), (item),
(year), ()}, where () means that the group-by is empty (i.e., the dimensions are not
grouped). These group-by’s form a lattice of cuboids for the data cube, as shown
in Figure 3.14. The base cuboid contains all three dimensions, city, item, and year.
It can return the total sales for any combination of the three dimensions. The apex
cuboid, or 0-D cuboid, refers to the case where the group-by is empty. It contains
the total sum of all sales. The base cuboid is the least generalized (most specific) of
the cuboids. The apex cuboid is the most generalized (least specific) of the cuboids,
and is often denoted as all. If we start at the apex cuboid and explore downward in
the lattice, this is equivalent to drilling down within the data cube. If we start at the
base cuboid and explore upward, this is akin to rolling up. (]

An SQL query containing no group-by, such as “compute the sum of total sales,” is a
zero-dimensional operation. An SQL query containing one group-by, such as “compute
the sum of sales, group by city,” is a one-dimensional operation. A cube operator on
n dimensions is equivalent to a collection of group by statements, one for each subset

O-D (apex) cuboid

1-D cuboids

2-D cuboids

(city, item) (item, year)

3-D (base) cuboid

(city, item, year)

Figure 3.14 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.

The base cuboid contains the three dimensions city, item, and year.

3.4 Data Warehouse Implementation 139

of the n dimensions. Therefore, the cube operator is the n-dimensional generalization of
the group by operator.

Based on the syntax of DMQL introduced in Section 3.2.3, the data cube in
Example 3.11 could be defined as

define cube sales_cube [city, item, year]: sum(sales_in_dollars)

For a cube with n dimensions, there are a total of 2" cuboids, including the base
cuboid. A statement such as

compute cube sales_cube

would explicitly instruct the system to compute the sales aggregate cuboids for all of the
eight subsets of the set {city, item, year}, including the empty subset. A cube computation
operator was first proposed and studied by Gray et al. [GCB*97].

On-line analytical processing may need to access different cuboids for different queries.
Therefore, it may seem like a good idea to compute all or at least some of the cuboids
in a data cube in advance. Precomputation leads to fast response time and avoids some
redundant computation. Most, if not all, OLAP products resort to some degree of pre-
computation of multidimensional aggregates.

A major challenge related to this precomputation, however, is that the required storage
space may explode if all of the cuboids in a data cube are precomputed, especially when
the cube has many dimensions. The storage requirements are even more excessive when
many of the dimensions have associated concept hierarchies, each with multiple levels.
This problem is referred to as the curse of dimensionality. The extent of the curse of
dimensionality is illustrated below.

“How many cuboids are there in an n-dimensional data cube?” If there were no
hierarchies associated with each dimension, then the total number of cuboids for
an n-dimensional data cube, as we have seen above, is 2". However, in practice,
many dimensions do have hierarchies. For example, the dimension time is usually not
explored at only one conceptual level, such as year, but rather at multiple conceptual
levels, such as in the hierarchy “day < month < quarter < year”. For an n-dimensional
data cube, the total number of cuboids that can be generated (including the cuboids
generated by climbing up the hierarchies along each dimension) is

n

Total number of cuboids = H(L,- +1), (3.1)
i=1

where L; is the number of levels associated with dimension i. One is added to L; in
Equation (3.1) to include the virtual top level, all. (Note that generalizing to all is equiv-
alent to the removal of the dimension.) This formula is based on the fact that, at most,
one abstraction level in each dimension will appear in a cuboid. For example, the time
dimension as specified above has 4 conceptual levels, or 5 if we include the virtual level all.
If the cube has 10 dimensions and each dimension has 5 levels (including all), the total
number of cuboids that can be generated is 5'° ~ 9.8 x 10°. The size of each cuboid
also depends on the cardinality (i.e., number of distinct values) of each dimension. For
example, if the AllElectronics branch in each city sold every item, there would be

140 Chapter 3 Data Warehouse and OLAP Technology: An Overview

|city| % |item| tuples in the city-item group-by alone. As the number of dimensions,
number of conceptual hierarchies, or cardinality increases, the storage space required
for many of the group-by’s will grossly exceed the (fixed) size of the input relation.

By now, you probably realize that it is unrealistic to precompute and materialize all
of the cuboids that can possibly be generated for a data cube (or from a base cuboid). If
there are many cuboids, and these cuboids are large in size, a more reasonable option is
partial materialization, that is, to materialize only some of the possible cuboids that can
be generated.

Partial Materialization: Selected
Computation of Cuboids

There are three choices for data cube materialization given a base cuboid:

I. No materialization: Do not precompute any of the “nonbase” cuboids. This leads to
computing expensive multidimensional aggregates on the fly, which can be extremely
slow.

2. Full materialization: Precompute all of the cuboids. The resulting lattice of computed
cuboids is referred to as the full cube. This choice typically requires huge amounts of
memory space in order to store all of the precomputed cuboids.

3. Partial materialization: Selectively compute a proper subset of the whole set of possi-
ble cuboids. Alternatively, we may compute a subset of the cube, which contains only
those cells that satisfy some user-specified criterion, such as where the tuple count of
each cellis above some threshold. We will use the term subcube to refer to the latter case,
where only some of the cells may be precomputed for various cuboids. Partial materi-
alization represents an interesting trade-off between storage space and response time.

The partial materialization of cuboids or subcubes should consider three factors:
(1) identify the subset of cuboids or subcubes to materialize; (2) exploit the mate-
rialized cuboids or subcubes during query processing; and (3) efficiently update the
materialized cuboids or subcubes during load and refresh.

The selection of the subset of cuboids or subcubes to materialize should take into
account the queries in the workload, their frequencies, and their accessing costs. In addi-
tion, it should consider workload characteristics, the cost for incremental updates, and the
total storage requirements. The selection must also consider the broad context of physical
database design, such as the generation and selection of indices. Several OLAP products
have adopted heuristic approaches for cuboid and subcube selection. A popular approach
is to materialize the set of cuboids on which other frequently referenced cuboids are based.
Alternatively, we can compute an iceberg cube, which is a data cube that stores only those
cube cells whose aggregate value (e.g., count) is above some minimum support threshold.
Another common strategy is to materialize a shell cube. This involves precomputing the
cuboids for only a small number of dimensions (such as 3 to 5) of a data cube. Queries
on additional combinations of the dimensions can be computed on-the-fly. Because our

3.4 Data Warehouse Implementation 141

aim in this chapter is to provide a solid introduction and overview of data warehousing
for data mining, we defer our detailed discussion of cuboid selection and computation
to Chapter 4, which studies data warehouse and OLAP implementation in greater depth.

Once the selected cuboids have been materialized, it is important to take advantage of
them during query processing. This involves several issues, such as how to determine the
relevant cuboid(s) from among the candidate materialized cuboids, how to use available
index structures on the materialized cuboids, and how to transform the OLAP opera-
tions onto the selected cuboid(s). These issues are discussed in Section 3.4.3 as well as in
Chapter 4.

Finally, during load and refresh, the materialized cuboids should be updated effi-
ciently. Parallelism and incremental update techniques for this operation should be
explored.

342 Indexing OLAP Data

To facilitate efficient data accessing, most data warehouse systems support index struc-
tures and materialized views (using cuboids). General methods to select cuboids for
materialization were discussed in the previous section. In this section, we examine how
to index OLAP data by bitmap indexing and join indexing.

The bitmap indexing method is popular in OLAP products because it allows quick
searching in data cubes. The bitmap index is an alternative representation of the
record_ID (RID) list. In the bitmap index for a given attribute, there is a distinct bit
vector, By, for each value v in the domain of the attribute. If the domain of a given
attribute consists of n values, then n bits are needed for each entry in the bitmap index
(i.e., there are n bit vectors). If the attribute has the value v for a given row in the data
table, then the bit representing that value is set to 1 in the corresponding row of the
bitmap index. All other bits for that row are set to 0.

Example 3.12 Bitmap indexing. In the AllElectronics data warehouse, suppose the dimension item at the
top level has four values (representing item types): “home entertainment,” “computer,”
“phone,” and “security.” Each value (e.g., “computer”) is represented by a bit vector in
the bitmap index table for item. Suppose that the cube is stored as a relation table with
100,000 rows. Because the domain of item consists of four values, the bitmap index table
requires four bit vectors (or lists), each with 100,000 bits. Figure 3.15 shows a base (data)
table containing the dimensions iten and city, and its mapping to bitmap index tables
for each of the dimensions. m

Bitmap indexing is advantageous compared to hash and tree indices. It is especially
useful for low-cardinality domains because comparison, join, and aggregation opera-
tions are then reduced to bit arithmetic, which substantially reduces the processing time.
Bitmap indexing leads to significant reductions in space and I/O since a string of charac-
ters can be represented by a single bit. For higher-cardinality domains, the method can
be adapted using compression techniques.

The join indexing method gained popularity from its use in relational database query
processing. Traditional indexing maps the value in a given column to a list of rows having

142 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Figure 3.15

Example 3.13

Base table Item bitmap index table City bitmap index table
RID | item | city RID | H C P S RID | V T
R1 H v R1 1 0 0 0 R1 1 0
R2 C v R2 0 1 0 0 R2 1 0
R3 P v R3 0 0 1 0 R3 1 0
R4 S v R4 0 0 0 1 R4 1 0
RS H T RS 1 0 0 0 RS 0 1
R6 Cc T R6 0 1 0 0 R6 0 1
R7 P T R7 0 0 1 0 R7 0 1
RS S T RS 0 0 0 1 RS 0 1

Note: H for “home entertainment, ” C for “computer, ” P for “phone, ” S for “security,
V for “Vancouver, ” T for “Toronto.”

Indexing OLAP data using bitmap indices.

that value. In contrast, join indexing registers the joinable rows of two relations from a
relational database. For example, if two relations R(RID, A) and S(B, SID) join on the
attributes A and B, then the join index record contains the pair (RID, SID), where RID
and SID are record identifiers from the R and S relations, respectively. Hence, the join
index records can identify joinable tuples without performing costly join operations. Join
indexing is especially useful for maintaining the relationship between a foreign key® and
its matching primary keys, from the joinable relation.

The star schema model of data warehouses makes join indexing attractive for cross-
table search, because the linkage between a fact table and its corresponding dimension
tables comprises the foreign key of the fact table and the primary key of the dimen-
sion table. Join indexing maintains relationships between attribute values of a dimension
(e.g., within a dimension table) and the corresponding rows in the fact table. Join indices
may span multiple dimensions to form composite join indices. We can use join indices
to identify subcubes that are of interest.

Join indexing. In Example 3.4, we defined a star schema for AllElectronics of the form
“sales_star [time, item, branch, location]: dollars_sold = sum (sales_in_dollars)”. An exam-
ple of a join index relationship between the sales fact table and the dimension tables for
location and item is shown in Figure 3.16. For example, the “Main Street” value in the
location dimension table joins with tuples T57, T238, and T884 of the sales fact table.
Similarly, the “Sony-TV” value in the itern dimension table joins with tuples T57 and
T459 of the sales fact table. The corresponding join index tables are shown in Figure 3.17.

3A set of attributes in a relation schema that forms a primary key for another relation schema is called
a foreign key.

3.4 Data Warehouse Implementation

sales
location item
T57
Main Street Sony-TV
T238
T459
T884

143

Join index table for

Figure 3.16 Linkages between a sales fact table and dimension tables for location and item.

Join index table for

location/sales item/sales
location sales_key item sales_key
Main Street T57 Sony-TV T57
Main Street T238 Sony-TV T459
Main Street T884

Join index table linking two dimensions

location/item/sales
location item sales_key
Main Street Sony-TV T57

location and item shown in Figure 3.16.

Figure 3.17 Join index tables based on the linkages between the sales fact table and dimension tables for

Suppose that there are 360 time values, 100 items, 50 branches, 30 locations, and
10 million sales tuples in the sales_star data cube. If the sales fact table has recorded
sales for only 30 items, the remaining 70 items will obviously not participate in joins.
If join indices are not used, additional I/Os have to be performed to bring the joining
portions of the fact table and dimension tables together.

144

Chapter 3 Data Warehouse and OLAP Technology: An Overview

343

To further speed up query processing, the join indexing and bitmap indexing methods
can be integrated to form bitmapped join indices.

Efficient Processing of OLAP Queries

The purpose of materializing cuboids and constructing OLAP index structures is to
speed up query processing in data cubes. Given materialized views, query processing
should proceed as follows:

I. Determine which operations should be performed on the available cuboids: This
involves transforming any selection, projection, roll-up (group-by), and drill-down
operations specified in the query into corresponding SQL and/or OLAP operations.
For example, slicing and dicing a data cube may correspond to selection and/or pro-
jection operations on a materialized cuboid.

2. Determinetowhich materialized cuboid(s) therelevant operationsshould be applied:
This involves identifying all of the materialized cuboids that may potentially be used
to answer the query, pruning the above set using knowledge of “dominance” relation-
ships among the cuboids, estimating the costs of using the remaining materialized
cuboids, and selecting the cuboid with the least cost.

Example 3.14 OLAP query processing. Suppose that we define a data cube for AllElectronics of the form

“sales_cube [time, item, location]: sum(sales_in_dollars)”. The dimension hierarchies used
are “day < month < quarter < year” for time, “item_name < brand < type” for item, and
“street < city < province_or_state < country” for location.

Suppose that the query to be processed is on {brand, province_or_state}, with the
selection constant “year = 2004”. Also, suppose that there are four materialized cuboids
available, as follows:

cuboid 1: {year, item_name, city}
cuboid 2: {year, brand, country}
cuboid 3: {year, brand, province_or_state}

cuboid 4: {item_name, province_or_state} where year = 2004

“Which of the above four cuboids should be selected to process the query?” Finer-
granularity data cannot be generated from coarser-granularity data. Therefore, cuboid 2
cannot be used because country is a more general concept than province_or_state.
Cuboids 1, 3, and 4 can be used to process the query because (1) they have the same set
or a superset of the dimensions in the query, (2) the selection clause in the query can
imply the selection in the cuboid, and (3) the abstraction levels for the itern and loca-
tion dimensions in these cuboids are at a finer level than brand and province_or_state,
respectively.

“How would the costs of each cuboid compare if used to process the query?” It is
likely that using cuboid 1 would cost the most because both itemn_name and city are

3.5 Data Warehouse Implementation 145

at a lower level than the brand and province_or_state concepts specified in the query.
If there are not many year values associated with items in the cube, but there are
several item_names for each brand, then cuboid 3 will be smaller than cuboid 4, and
thus cuboid 3 should be chosen to process the query. However, if efficient indices
are available for cuboid 4, then cuboid 4 may be a better choice. Therefore, some
cost-based estimation is required in order to decide which set of cuboids should be
selected for query processing. (]

Because the storage model of a MOLAP server is an n-dimensional array, the front-
end multidimensional queries are mapped directly to server storage structures, which
provide direct addressing capabilities. The straightforward array representation of the
data cube has good indexing properties, but has poor storage utilization when the data
are sparse. For efficient storage and processing, sparse matrix and data compression tech-
niques should therefore be applied. The details of several such methods of cube compu-
tation are presented in Chapter 4.

The storage structures used by dense and sparse arrays may differ, making it advan-
tageous to adopt a two-level approach to MOLAP query processing: use array structures
for dense arrays, and sparse matrix structures for sparse arrays. The two-dimensional
dense arrays can be indexed by B-trees.

To process a query in MOLAP, the dense one- and two-dimensional arrays must first
be identified. Indices are then built to these arrays using traditional indexing structures.
The two-level approach increases storage utilization without sacrificing direct addressing
capabilities.

“Arethere any other strategies for answering queries quickly?” Some strategies for answer-
ing queries quickly concentrate on providing intermediate feedback to the users. For exam-
ple,in on-line aggregation, a data mining system can display “what it knows so far” instead
of waiting until the query is fully processed. Such an approximate answer to the given data
mining query is periodically refreshed and refined as the computation process continues.
Confidence intervals are associated with each estimate, providing the user with additional
feedback regarding the reliability of the answer so far. This promotes interactivity with
the system—the user gains insight as to whether or not he or she is probing in the “right”
direction without having to wait until the end of the query. While on-line aggregation
does not improve the total time to answer a query, the overall data mining process should
be quicker due to the increased interactivity with the system.

Another approach is to employ top N queries. Suppose that you are interested in find-
ing only the best-selling items among the millions of items sold at AllElectronics. Rather
than waiting to obtain a list of all store items, sorted in decreasing order of sales, you
would like to see only the top N. Using statistics, query processing can be optimized to
return the top N items, rather than the whole sorted list. This results in faster response
time while helping to promote user interactivity and reduce wasted resources.

The goal of this section was to provide an overview of data warehouse implementa-
tion. Chapter 4 presents a more advanced treatment of this topic. It examines the efficient
computation of data cubes and processing of OLAP queries in greater depth, providing
detailed algorithms.

146

Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.5.1

From Data Warehousing to Data Mining

“How do data warehousing and OLAP relate to data mining?” In this section, we study the
usage of data warehousing for information processing, analytical processing, and data
mining. We also introduce on-line analytical mining (OLAM), a powerful paradigm that
integrates OLAP with data mining technology.

Data Warehouse Usage

Data warehouses and data marts are used in a wide range of applications. Business
executives use the data in data warehouses and data marts to perform data analysis and
make strategic decisions. In many firms, data warehouses are used as an integral part
of a plan-execute-assess “closed-loop” feedback system for enterprise management.
Data warehouses are used extensively in banking and financial services, consumer
goods and retail distribution sectors, and controlled manufacturing, such as demand-
based production.

Typically, the longer a data warehouse has been in use, the more it will have evolved.
This evolution takes place throughout a number of phases. Initially, the data warehouse
is mainly used for generating reports and answering predefined queries. Progressively, it
is used to analyze summarized and detailed data, where the results are presented in the
form of reports and charts. Later, the data warehouse is used for strategic purposes, per-
forming multidimensional analysis and sophisticated slice-and-dice operations. Finally,
the data warehouse may be employed for knowledge discovery and strategic decision
making using data mining tools. In this context, the tools for data warechousing can be
categorized into access and retrieval tools, database reporting tools, data analysis tools, and
data mining tools.

Business users need to have the means to know what exists in the data warehouse
(through metadata), how to access the contents of the data warehouse, how to examine
the contents using analysis tools, and how to present the results of such analysis.

There are three kinds of data warehouse applications: information processing, analyt-
ical processing, and data mining:

Information processing supports querying, basic statistical analysis, and reporting
using crosstabs, tables, charts, or graphs. A current trend in data warehouse infor-
mation processing is to construct low-cost Web-based accessing tools that are then
integrated with Web browsers.

Analytical processing supports basic OLAP operations, including slice-and-dice,
drill-down, roll-up, and pivoting. It generally operates on historical data in both sum-
marized and detailed forms. The major strength of on-line analytical processing over
information processing is the multidimensional data analysis of data warehouse data.

Data mining supports knowledge discovery by finding hidden patterns and associa-
tions, constructing analytical models, performing classification and prediction, and
presenting the mining results using visualization tools.

3.5 From Data Warehousing to Data Mining 147

“How does data mining relate to information processing and on-line analytical
processing?” Information processing, based on queries, can find useful information. How-
ever, answers to such queries reflect the information directly stored in databases or com-
putable by aggregate functions. They do not reflect sophisticated patterns or regularities
buried in the database. Therefore, information processing is not data mining.

On-line analytical processing comes a step closer to data mining because it can
derive information summarized at multiple granularities from user-specified subsets
of a data warehouse. Such descriptions are equivalent to the class/concept descrip-
tions discussed in Chapter 1. Because data mining systems can also mine generalized
class/concept descriptions, this raises some interesting questions: “Do OLAP systems
perform data mining? Are OLAP systems actually data mining systems?”

The functionalities of OLAP and data mining can be viewed as disjoint: OLAP is
a data summarization/aggregation tool that helps simplify data analysis, while data
mining allows the automated discovery of implicit patterns and interesting knowledge
hidden in large amounts of data. OLAP tools are targeted toward simplifying and
supporting interactive data analysis, whereas the goal of data mining tools is to
automate as much of the process as possible, while still allowing users to guide the
process. In this sense, data mining goes one step beyond traditional on-line analytical
processing.

An alternative and broader view of data mining may be adopted in which data
mining covers both data description and data modeling. Because OLAP systems can
present general descriptions of data from data warehouses, OLAP functions are essen-
tially for user-directed data summary and comparison (by drilling, pivoting, slicing,
dicing, and other operations). These are, though limited, data mining functionalities.
Yet according to this view, data mining covers a much broader spectrum than simple
OLAP operations because it performs not only data summary and comparison but
also association, classification, prediction, clustering, time-series analysis, and other
data analysis tasks.

Data mining is not confined to the analysis of data stored in data warehouses. It may
analyze data existing at more detailed granularities than the summarized data provided
in a data warehouse. It may also analyze transactional, spatial, textual, and multimedia
data that are difficult to model with current multidimensional database technology. In
this context, data mining covers a broader spectrum than OLAP with respect to data
mining functionality and the complexity of the data handled.

Because data mining involves more automated and deeper analysis than OLAP,
data mining is expected to have broader applications. Data mining can help busi-
ness managers find and reach more suitable customers, as well as gain critical
business insights that may help drive market share and raise profits. In addi-
tion, data mining can help managers understand customer group characteristics
and develop optimal pricing strategies accordingly, correct item bundling based
not on intuition but on actual item groups derived from customer purchase pat-
terns, reduce promotional spending, and at the same time increase the overall net
effectiveness of promotions.

148

Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.5.2 From On-Line Analytical Processing to
On-Line Analytical Mining

In the field of data mining, substantial research has been performed for data mining on
various platforms, including transaction databases, relational databases, spatial databases,
text databases, time-series databases, flat files, data warehouses, and so on.

On-line analytical mining (OLAM) (also called OLAP mining) integrates on-line
analytical processing (OLAP) with data mining and mining knowledge in multidi-
mensional databases. Among the many different paradigms and architectures of data
mining systems, OLAM is particularly important for the following reasons:

High quality of data in data warehouses: Most data mining tools need to work
on integrated, consistent, and cleaned data, which requires costly data clean-
ing, data integration, and data transformation as preprocessing steps. A data
warehouse constructed by such preprocessing serves as a valuable source of high-
quality data for OLAP as well as for data mining. Notice that data mining may
also serve as a valuable tool for data cleaning and data integration as well.

Available information processing infrastructure surrounding data warehouses:
Comprehensive information processing and data analysis infrastructures have been
or will be systematically constructed surrounding data warehouses, which include
accessing, integration, consolidation, and transformation of multiple heterogeneous
databases, ODBC/OLE DB connections, Web-accessing and service facilities, and
reporting and OLAP analysis tools. It is prudent to make the best use of the
available infrastructures rather than constructing everything from scratch.

OLAP-based exploratory data analysis: Effective data mining needs exploratory
data analysis. A user will often want to traverse through a database, select por-
tions of relevant data, analyze them at different granularities, and present knowl-
edge/results in different forms. On-line analytical mining provides facilities for
data mining on different subsets of data and at different levels of abstraction,
by drilling, pivoting, filtering, dicing, and slicing on a data cube and on some
intermediate data mining results. This, together with data/knowledge visualization
tools, will greatly enhance the power and flexibility of exploratory data mining.

On-line selection of data mining functions: Often a user may not know what
kinds of knowledge she would like to mine. By integrating OLAP with multiple
data mining functions, on-line analytical mining provides users with the flexibility
to select desired data mining functions and swap data mining tasks dynamically.

Architecture for On-Line Analytical Mining

An OLAM server performs analytical mining in data cubes in a similar manner as an
OLAP server performs on-line analytical processing. An integrated OLAM and OLAP
architecture is shown in Figure 3.18, where the OLAM and OLAP servers both accept
user on-line queries (or commands) via a graphical user interface API and work with
the data cube in the data analysis via a cube API. A metadata directory is used to

3.5 From Data Warehousing to Data Mining

Constraint-based Mining result
mining query
Layer 4
l user interface
..... (Graphical user interface API), e

i A i A
\
OLAM > | OLAP Layer 3
engine < engine OLAP/OLAM
i A A

. (Cube API) ____________

. < Meta
: data

=
=)
o
=
\d

Layer 2
multidimensional
database
o C Database API)

o Layer 1
Filtering data repository

Data filtering
Data integration

Databases

Data cleaning

Data
warehouse

Databases | patq integration

149

Figure 3.18 An integrated OLAM and OLAP architecture.

guide the access of the data cube. The data cube can be constructed by accessing
and/or integrating multiple databases via an MDDB API and/or by filtering a data
warehouse via a database API that may support OLE DB or ODBC connections.
Since an OLAM server may perform multiple data mining tasks, such as concept
description, association, classification, prediction, clustering, time-series analysis, and
so on, it usually consists of multiple integrated data mining modules and is more

sophisticated than an OLAP server.

150 Chapter 3 Data Warehouse and OLAP Technology: An Overview

Chapter 4 describes data warehouses on a finer level by exploring implementation
issues such as data cube computation, OLAP query answering strategies, and methods
of generalization. The chapters following it are devoted to the study of data min-
ing techniques. As we have seen, the introduction to data warehousing and OLAP
technology presented in this chapter is essential to our study of data mining. This
is because data warehousing provides users with large amounts of clean, organized,
and summarized data, which greatly facilitates data mining. For example, rather than
storing the details of each sales transaction, a data warehouse may store a summary
of the transactions per item type for each branch or, summarized to a higher level,
for each country. The capability of OLAP to provide multiple and dynamic views
of summarized data in a data warehouse sets a solid foundation for successful data
mining.

Moreover, we also believe that data mining should be a human-centered process.
Rather than asking a data mining system to generate patterns and knowledge automat-
ically, a user will often need to interact with the system to perform exploratory data
analysis. OLAP sets a good example for interactive data analysis and provides the necessary
preparations for exploratory data mining. Consider the discovery of association patterns,
for example. Instead of mining associations at a primitive (i.e., low) data level among
transactions, users should be allowed to specify roll-up operations along any dimension.
For example, a user may like to roll up on the itemn dimension to go from viewing the data
for particular TV sets that were purchased to viewing the brands of these TVs, such as
SONY or Panasonic. Users may also navigate from the transaction level to the customer
level or customer-type level in the search for interesting associations. Such an OLAP-
style of data mining is characteristic of OLAP mining. In our study of the principles of
data mining in this book, we place particular emphasis on OLAP mining, that is, on the
integration of data mining and OLAP technology.

Summary

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile
collection of data organized in support of management decision making. Several
factors distinguish data warehouses from operational databases. Because the two
systems provide quite different functionalities and require different kinds of data,
it is necessary to maintain data warehouses separately from operational databases.

A multidimensional data model is typically used for the design of corporate data
warehouses and departmental data marts. Such a model can adopt a star schema,
snowflake schema, or fact constellation schema. The core of the multidimensional
model is the data cube, which consists of a large set of facts (or measures) and a
number of dimensions. Dimensions are the entities or perspectives with respect to
which an organization wants to keep records and are hierarchical in nature.

A data cube consists of a lattice of cuboids, each corresponding to a different
degree of summarization of the given multidimensional data.

3.6 Summary 151

Concept hierarchies organize the values of attributes or dimensions into gradual
levels of abstraction. They are useful in mining at multiple levels of abstraction.

On-line analytical processing (OLAP) can be performed in data warehouses/marts
using the multidimensional data model. Typical OLAP operations include roll-
up, drill-(down, across, through), slice-and-dice, pivot (rotate), as well as statistical
operations such as ranking and computing moving averages and growth rates.
OLAP operations can be implemented efficiently using the data cube structure.

Data warehouses often adopt a three-tier architecture. The bottom tier is a warehouse
database server, which is typically a relational database system. The middle tier is an
OLAP server, and the top tier is a client, containing query and reporting tools.

A data warehouse contains back-end tools and utilities for populating and refresh-
ing the warehouse. These cover data extraction, data cleaning, data transformation,
loading, refreshing, and warehouse management.

Data warehouse metadata are data defining the warehouse objects. A metadata
repository provides details regarding the warehouse structure, data history, the
algorithms used for summarization, mappings from the source data to warehouse
form, system performance, and business terms and issues.

OLAP servers may use relational OLAP (ROLAP), or multidimensional OLAP
(MOLAP), or hybrid OLAP (HOLAP). A ROLAP server uses an extended rela-
tional DBMS that maps OLAP operations on multidimensional data to standard
relational operations. A MOLAP server maps multidimensional data views directly
to array structures. A HOLAP server combines ROLAP and MOLAP. For example,
it may use ROLAP for historical data while maintaining frequently accessed data
in a separate MOLAP store.

Full materialization refers to the computation of all of the cuboids in the lattice defin-
ing a data cube. It typically requires an excessive amount of storage space, particularly
as the number of dimensions and size of associated concept hierarchies grow. This
problem is known as the curse of dimensionality. Alternatively, partial materializa-
tion is the selective computation of a subset of the cuboids or subcubes in the lattice.
For example, an iceberg cube is a data cube that stores only those cube cells whose
aggregate value (e.g., count) is above some minimum support threshold.

OLAP query processing can be made more efficient with the use of indexing tech-
niques. In bitmap indexing, each attribute has its own bitmap index table. Bitmap
indexing reduces join, aggregation, and comparison operations to bit arithmetic.
Join indexing registers the joinable rows of two or more relations from a rela-
tional database, reducing the overall cost of OLAP join operations. Bitmapped
join indexing, which combines the bitmap and join index methods, can be used
to further speed up OLAP query processing.

Data warehouses are used for information processing (querying and reporting), ana-
Iytical processing (which allows users to navigate through summarized and detailed

152

Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.1

3.2

3.3

3.4

data by OLAP operations), and data mining (which supports knowledge discovery).
OLAP-based data mining is referred to as OLAP mining, or on-line analytical mining
(OLAM), which emphasizes the interactive and exploratory nature of OLAP
mining.

Exercises

State why, for the integration of multiple heterogeneous information sources, many
companies in industry prefer the update-driven approach (which constructs and uses
data warehouses), rather than the query-driven approach (which applies wrappers and
integrators). Describe situations where the query-driven approach is preferable over
the update-driven approach.

Briefly compare the following concepts. You may use an example to explain your
point(s).

(a) Snowflake schema, fact constellation, starnet query model
(b) Data cleaning, data transformation, refresh
(c) Enterprise warehouse, data mart, virtual warehouse

Suppose that a data warehouse consists of the three dimensions time, doctor, and
patient, and the two measures count and charge, where charge is the fee that a doctor
charges a patient for a visit.

(a) Enumerate three classes of schemas that are popularly used for modeling data
warehouses.

(b) Draw a schema diagram for the above data warehouse using one of the schema
classes listed in (a).

(c) Starting with the base cuboid [day, doctor, patient], what specific OLAP operations
should be performed in order to list the total fee collected by each doctor in 2004?

(d) To obtain the same list, write an SQL query assuming the data are stored in a
relational database with the schema fee (day, month, year, doctor, hospital, patient,
count, charge).

Suppose that a data warehouse for Big University consists of the following four dimen-
sions: student, course, semester, and instructor, and two measures count and avg_grade.
When at the lowest conceptual level (e.g., for a given student, course, semester, and
instructor combination), the avg_grade measure stores the actual course grade of the
student. At higher conceptual levels, avg_grade stores the average grade for the given
combination.

(a) Draw a snowflake schema diagram for the data warehouse.

(b) Starting with the base cuboid [student, course, semester, instructor], what specific
OLAP operations (e.g., roll-up from semester to year) should one perform in order
to list the average grade of CS courses for each Big University student.

Exercises 153

(c) If each dimension has five levels (including all), such as “student < major <
status < university < all”, how many cuboids will this cube contain (including
the base and apex cuboids)?

3.5 Suppose that a data warehouse consists of the four dimensions, date, spectator, loca-
tion, and game, and the two measures, count and charge, where charge is the fare that
a spectator pays when watching a game on a given date. Spectators may be students,
adults, or seniors, with each category having its own charge rate.

(a) Draw a star schema diagram for the data warehouse.

(b) Starting with the base cuboid [date, spectator, location, game], what specific OLAP
operations should one perform in order to list the total charge paid by student
spectators at GM_Place in 2004?

(c) Bitmap indexing is useful in data warehousing. Taking this cube as an example,
briefly discuss advantages and problems of using a bitmap index structure.

3.6 A data warehouse can be modeled by either a star schema or a snowflake schema.
Briefly describe the similarities and the differences of the two models, and then
analyze their advantages and disadvantages with regard to one another. Give your
opinion of which might be more empirically useful and state the reasons behind
your answer.

3.7 Design a data warehouse for a regional weather bureau. The weather bureau has about
1,000 probes, which are scattered throughout various land and ocean locations in the
region to collect basic weather data, including air pressure, temperature, and precipita-
tion at each hour. All data are sent to the central station, which has collected such data
for over 10 years. Your design should facilitate efficient querying and on-line analytical
processing, and derive general weather patterns in multidimensional space.

3.8 A popular data warehouse implementation is to construct a multidimensional database,
known as a data cube. Unfortunately, this may often generate a huge, yet very sparse
multidimensional matrix. Present an example illustrating such a huge and sparse data
cube.

3.9 Regarding the computation of measures in a data cube:

(a) Enumerate three categories of measures, based on the kind of aggregate functions
used in computing a data cube.

(b) For a data cube with the three dimensions time, location, and item, which category
does the function variance belong to? Describe how to compute it if the cube is
partitioned into many chunks.

Hint: The formula for computing variance is %Z{»V:l(x,- —Xx;)%, where x; is the
average of Nx;s.

(c) Suppose the function is “top 10 sales”. Discuss how to efficiently compute this
measure in a data cube.

3.10 Suppose that we need to record three measures in a data cube: min, average, and
median. Design an efficient computation and storage method for each measure given

154

Chapter 3 Data Warehouse and OLAP Technology: An Overview

3.11

3.12

3.13

3.14

that the cube allows data to be deleted incrementally (i.e., in small portions at a time)
from the cube.

In data warehouse technology, a multiple dimensional view can be implemented by a
relational database technique (ROLAP), or by a multidimensional database technique
(MOLAP), or by a hybrid database technique (HOLAP).

(a) Briefly describe each implementation technique.

(b) For each technique, explain how each of the following functions may be
implemented:

i. The generation of a data warehouse (including aggregation)
ii. Roll-up
iii. Drill-down
iv. Incremental updating
Which implementation techniques do you prefer, and why?

Suppose that a data warehouse contains 20 dimensions, each with about five levels
of granularity.

(a) Users are mainly interested in four particular dimensions, each having three
frequently accessed levels for rolling up and drilling down. How would you design
a data cube structure to efficiently support this preference?

(b) At times, a user may want to drill through the cube, down to the raw data for
one or two particular dimensions. How would you support this feature?

A data cube, C, has n dimensions, and each dimension has exactly p distinct values
in the base cuboid. Assume that there are no concept hierarchies associated with the
dimensions.

(a) What is the maximum number of cells possible in the base cuboid?
(b) What is the minimum number of cells possible in the base cuboid?

(c) What is the maximum number of cells possible (including both base cells and
aggregate cells) in the data cube, C?

(d) What is the minimum number of cells possible in the data cube, C?

What are the differences between the three main types of data warehouse usage:
information processing, analytical processing, and data mining? Discuss the motivation
behind OLAP mining (OLAM).

Bibliographic Notes

There are a good number of introductory level textbooks on data warehousing
and OLAP technology, including Kimball and Ross [KR02], Imhoff, Galemmo, and
Geiger [IGGO03], Inmon [Inm96], Berson and Smith [BS97b], and Thomsen [Tho97].

Bibliographic Notes 155

Chaudhuri and Dayal [CD97] provide a general overview of data warehousing and
OLAP technology. A set of research papers on materialized views and data warehouse
implementations were collected in Materialized Views: Techniques, Implementations,
and Applications by Gupta and Mumick [GM99].

The history of decision support systems can be traced back to the 1960s. However,
the proposal of the construction of large data warehouses for multidimensional data
analysis is credited to Codd [CCS93], who coined the term OLAP for on-line analytical
processing. The OLAP council was established in 1995. Widom [Wid95] identified
several research problems in data warehousing. Kimball and Ross [KR02] provide an
overview of the deficiencies of SQL regarding the ability to support comparisons that
are common in the business world and present a good set of application cases that
require data warehousing and OLAP technology. For an overview of OLAP systems
versus statistical databases, see Shoshani [Sho97].

Gray, Chauduri, Bosworth et al. [GCBT97] proposed the data cube as a relational
aggregation operator generalizing group-by, crosstabs, and subtotals. Harinarayan,
Rajaraman, and Ullman [HRU96] proposed a greedy algorithm for the partial mate-
rialization of cuboids in the computation of a data cube. Sarawagi and Stonebraker
[SS94] developed a chunk-based computation technique for the efficient organiza-
tion of large multidimensional arrays. Agarwal, Agrawal, Deshpande, et al. [AAD"96]
proposed several methods for the efficient computation of multidimensional aggre-
gates for ROLAP servers. A chunk-based multiway array aggregation method for data
cube computation in MOLAP was proposed in Zhao, Deshpande, and Naughton
[ZDN97]. Ross and Srivastava [RS97] pointed out the problem of the curse of dimen-
sionality in cube materialization and developed a method for computing sparse data
cubes. Iceberg queries were first described in Fang, Shivakumar, Garcia-Molina, et al.
[FSGM198]. BUC, an efficient bottom-up method for computing iceberg cubes was
introduced by Beyer and Ramakrishnan [BR99]. References for the further develop-
ment of cube computation methods are given in the Bibliographic Notes of Chapter 4.
The use of join indices to speed up relational query processing was proposed by Val-
duriez [Val87]. O’Neil and Graefe [OG95] proposed a bitmapped join index method
to speed up OLAP-based query processing. A discussion of the performance of bitmap-
ping and other nontraditional index techniques is given in O’Neil and Quass [OQ97].

For work regarding the selection of materialized cuboids for efficient OLAP query
processing, see Chaudhuri and Dayal [CD97], Harinarayan, Rajaraman, and Ullman
[HRU96], and Sristava, Dar, Jagadish, and Levy [SDJL96]. Methods for cube size esti-
mation can be found in Deshpande, Naughton, Ramasamy, et al. [DNR*97], Ross and
Srivastava [RS97], and Beyer and Ramakrishnan [BR99]. Agrawal, Gupta, and Sarawagi
[AGS97] proposed operations for modeling multidimensional databases. Methods for
answering queries quickly by on-line aggregation are described in Hellerstein, Haas, and
Wang [HHW97] and Hellerstein, Avnur, Chou, et al. [HAC"99]. Techniques for esti-
mating the top N queries are proposed in Carey and Kossman [CK98] and Donjerkovic
and Ramakrishnan [DR99]. Further studies on intelligent OLAP and discovery-driven
exploration of data cubes are presented in the Bibliographic Notes of Chapter 4.

Data Cube Computation and
Data Generalization

Data generalization is a process that abstracts a large set of task-relevant data in a database from
a relatively low conceptual level to higher conceptual levels. Users like the ease and flex-
ibility of having large data sets summarized in concise and succinct terms, at different
levels of granularity, and from different angles. Such data descriptions help provide an
overall picture of the data at hand.

Data warehousing and OLAP perform data generalization by summarizing data at
varying levels of abstraction. An overview of such technology was presented in
Chapter 3. From a data analysis point of view, data generalization is a form of descriptive
data mining, which describes data in a concise and summarative manner and presents
interesting general properties of the data. In this chapter, we look at descriptive data min-
ing in greater detail. Descriptive data mining differs from predictive data mining, which
analyzes data in order to construct one or a set of models and attempts to predict the
behavior of new data sets. Predictive data mining, such as classification, regression anal-
ysis, and trend analysis, is covered in later chapters.

This chapter is organized into three main sections. The first two sections expand
on notions of data warehouse and OLAP implementation presented in the previous
chapter, while the third presents an alternative method for data generalization. In
particular, Section 4.1 shows how to efficiently compute data cubes at varying levels
of abstraction. It presents an in-depth look at specific methods for data cube com-
putation. Section 4.2 presents methods for further exploration of OLAP and data
cubes. This includes discovery-driven exploration of data cubes, analysis of cubes
with sophisticated features, and cube gradient analysis. Finally, Section 4.3 presents
another method of data generalization, known as attribute-oriented induction.

Efficient Methods for Data Cube Computation

Data cube computation is an essential task in data warehouse implementation. The
precomputation of all or part of a data cube can greatly reduce the response time and
enhance the performance of on-line analytical processing. However, such computation
is challenging because it may require substantial computational time and storage

157

158

Chapter 4 Data Cube Computation and Data Generalization

space. This section explores efficient methods for data cube computation. Section 4.1.1
introduces general concepts and computation strategies relating to cube materializa-
tion. Sections 4.1.2 to 4.1.5 detail specific computation algorithms, namely, MultiWay
array aggregation, BUC, Star-Cubing, the computation of shell fragments, and the
computation of cubes involving complex measures.

4.1. A Road Map for the Materialization of Different Kinds

of Cubes

Data cubes facilitate the on-line analytical processing of multidimensional data. “But
how can we compute data cubes in advance, so that they are handy and readily available for
query processing?” This section contrasts full cube materialization (i.e., precomputation)
versus various strategies for partial cube materialization. For completeness, we begin
with a review of the basic terminology involving data cubes. We also introduce a cube
cell notation that is useful for describing data cube computation methods.

Cube Materialization: Full Cube, Iceberg Cube, Closed
Cube, and Shell Cube

Figure 4.1 shows a 3-D data cube for the dimensions A, B, and C, and an aggregate
measure, M. A data cube is a lattice of cuboids. Each cuboid represents a group-by.
ABC is the base cuboid, containing all three of the dimensions. Here, the aggregate
measure, M, is computed for each possible combination of the three dimensions. The
base cuboid is the least generalized of all of the cuboids in the data cube. The most
generalized cuboid is the apex cuboid, commonly represented as all. It contains one
value—it aggregates measure M for all of the tuples stored in the base cuboid. To drill
down in the data cube, we move from the apex cuboid, downward in the lattice. To

all (apex cuboid)

A B C
AB AC BC
ABC (base cuboid)

Figure 4.1 Lattice of cuboids, making up a 3-D data cube with the dimensions A, B, and C for some

aggregate measure, M.

Example 4.1

4.1 Efficient Methods for Data Cube Computation 159

roll up, we move from the base cuboid, upward. For the purposes of our discussion
in this chapter, we will always use the term data cube to refer to a lattice of cuboids
rather than an individual cuboid.

A cell in the base cuboid is a base cell. A cell from a nonbase cuboid is an aggregate
cell. An aggregate cell aggregates over one or more dimensions, where each aggregated
dimension is indicated by a “x” in the cell notation. Suppose we have an n-dimensional
data cube. Let a = (ay, a2, .. ., ay, measures) be a cell from one of the cuboids making
up the data cube. We say that a is an m-dimensional cell (that is, from an m-dimensional
cuboid) if exactly m (m < n) values among {a;, as,..., a, } are not “x”. If m = n, then a
is a base cell; otherwise, it is an aggregate cell (i.e., where m < n).

Base and aggregate cells. Consider a data cube with the dimensions month, city, and
customer_group, and the measure price. (Jan, *, *,2800) and (x, Toronto, *, 1200)
are 1-D cells, (Jan, *, Business, 150) is a 2-D cell, and (Jan, Toronto, Business, 45) is a
3-D cell. Here, all base cells are 3-D, whereas 1-D and 2-D cells are aggregate cells. m

An ancestor-descendant relationship may exist between cells. In an n-dimensional
data cube, an i-D cell a = (ay, ap,..., a,, measures,) is an ancestor of a j-D cell
b= (by, by,..., by, measuresy), and b is a descendant of a, if and only if (1) i < j, and
(2) for 1 <m < n, a;, = b, whenever a,, # “*”. In particular, cell a is called a parent of
cell b, and b is a child of g, if and only if j =i+ 1 and b is a descendant of a.

Example 4.2 Ancestor and descendant cells. Referring to our previous example, 1-D cell a = (Jan,

*, x,2800), and 2-D cell b = (Jan, *, Business, 150), are ancestors of 3-D cell
¢ = (Jan, Toronto, Business, 45); ¢ is a descendant of both a and b; b is a parent
of ¢, and c is a child of b. n

In order to ensure fast on-line analytical processing, it is sometimes desirable to pre-
compute the full cube (i.e., all the cells of all of the cuboids for a given data cube). This,
however, is exponential to the number of dimensions. That is, a data cube of n dimen-
sions contains 2" cuboids. There are even more cuboids if we consider concept hierar-
chies for each dimension.! In addition, the size of each cuboid depends on the cardinality
of its dimensions. Thus, precomputation of the full cube can require huge and often
excessive amounts of memory.

Nonetheless, full cube computation algorithms are important. Individual cuboids
may be stored on secondary storage and accessed when necessary. Alternatively, we can
use such algorithms to compute smaller cubes, consisting of a subset of the given set
of dimensions, or a smaller range of possible values for some of the dimensions. In
such cases, the smaller cube is a full cube for the given subset of dimensions and/or
dimension values. A thorough understanding of full cube computation methods will

'Equation (3.1) gives the total number of cuboids in a data cube where each dimension has an associated
concept hierarchy.

160 Chapter 4 Data Cube Computation and Data Generalization

help us develop efficient methods for computing partial cubes. Hence, it is important to
explore scalable methods for computing all of the cuboids making up a data cube, that is,
for full materialization. These methods must take into consideration the limited amount
of main memory available for cuboid computation, the total size of the computed data
cube, as well as the time required for such computation.

Partial materialization of data cubes offers an interesting trade-off between storage
space and response time for OLAP. Instead of computing the full cube, we can compute
only a subset of the data cube’s cuboids, or subcubes consisting of subsets of cells from
the various cuboids.

Many cells in a cuboid may actually be of little or no interest to the data analyst.
Recall that each cell in a full cube records an aggregate value. Measures such as count,
sum, or sales_in_dollars are commonly used. For many cells in a cuboid, the measure
value will be zero. When the product of the cardinalities for the dimensions in a
cuboid is large relative to the number of nonzero-valued tuples that are stored in the
cuboid, then we say that the cuboid is sparse. If a cube contains many sparse cuboids,
we say that the cube is sparse.

In many cases, a substantial amount of the cube’s space could be taken up by a large
number of cells with very low measure values. This is because the cube cells are often quite
sparsely distributed within a multiple dimensional space. For example, a customer may
only buy a few items in a store at a time. Such an event will generate only a few nonempty
cells, leaving most other cube cells empty. In such situations, it is useful to materialize
only those cells in a cuboid (group-by) whose measure value is above some minimum
threshold. In a data cube for sales, say, we may wish to materialize only those cells for
which count > 10 (i.e., where at least 10 tuples exist for the cell’s given combination of
dimensions), or only those cells representing sales > $100. This not only saves processing
time and disk space, but also leads to a more focused analysis. The cells that cannot
pass the threshold are likely to be too trivial to warrant further analysis. Such partially
materialized cubes are known as iceberg cubes. The minimum threshold is called the
minimum support threshold, or minimum support(min_sup), for short. By materializing
only a fraction of the cells in a data cube, the result is seen as the “tip of the iceberg,”
where the “iceberg” is the potential full cube including all cells. An iceberg cube can be
specified with an SQL query, as shown in the following example.

Example 4.3 Iceberg cube.

compute cube sales_iceberg as

select month, city, customer_group, count(*)
from salesInfo

cube by montbh, city, customer_group

having count(*) >= min_sup

The compute cube statement specifies the precomputation of the iceberg cube,
sales_iceberg, with the dimensions month, city, and customer_group, and the aggregate mea-
sure count(). The input tuples are in the salesInfo relation. The cube by clause specifies
that aggregates (group-by’s) are to be formed for each of the possible subsets of the given

4.1 Efficient Methods for Data Cube Computation 161

dimensions. If we were computing the full cube, each group-by would correspond to a
cuboid in the data cube lattice. The constraint specified in the having clause is known as
theiceberg condition. Here, the iceberg measure is count. Note that the iceberg cube com-
puted for Example 4.3 could be used to answer group-by queries on any combination of
the specified dimensions of the form having count(*) >= v, where v > min_sup. Instead
of count, the iceberg condition could specify more complex measures, such as average.
If we were to omit the having clause of our example, we would end up with the full
cube. Let’s call this cube sales_cube. The iceberg cube, sales_iceberg, excludes all the cells
of sales_cube whose count is less than min_sup. Obviously, if we were to set the minimum
support to 1 in sales_iceberg, the resulting cube would be the full cube, sales_cube. n

A naive approach to computing an iceberg cube would be to first compute the full
cube and then prune the cells that do not satisfy the iceberg condition. However, this is
still prohibitively expensive. An efficient approach is to compute only the iceberg cube
directly without computing the full cube. Sections 4.1.3 and 4.1.4 discuss methods for
efficient iceberg cube computation.

Introducing iceberg cubes will lessen the burden of computing trivial aggregate cells
in a data cube. However, we could still end up with a large number of uninteresting cells
to compute. For example, suppose that there are 2 base cells for a database of 100 dimen-
sions, denoted as {(a1, a2, as, ..., aip) : 10, (a1, az, bs, ..., bioo) : 10}, where each has
a cell count of 10. If the minimum support is set to 10, there will still be an impermis-
sible number of cells to compute and store, although most of them are not interesting.
For example, there are 2% — 6 distinct aggregate cells,” like { (a1, az, a3, as, . . ., agg, *) :
10,..., (al,az, *,a4,...,a99,a100) - 10,..., (al,az,ag, Kooy K, *) . 10}, but most of
them do not contain much new information. If we ignore all of the aggregate cells that can
be obtained by replacing some constants by *’s while keeping the same measure value,
there are only three distinct cells left: {(ay, a2, a3,..., aioo) : 10, (a1, a2, b3, ..., bigo) :
10, (a1, @, *,...,*) : 20}. That is, out of 2'%! — 6 distinct aggregate cells, only 3 really
offer new information.

To systematically compress a data cube, we need to introduce the concept of closed
coverage. A cell, c, is a closed cell if there exists no cell, d, such that d is a specialization
(descendant) of cell ¢ (thatis, where d is obtained by replacing a * in ¢ with a non-x* value),
and d has the same measure value as c. A closed cube is a data cube consisting of only
closed cells. For example, the three cells derived above are the three closed cells of the data
cube forthedataset: { (a1, a2, as, ..., aipo) : 10, (ay, az, b3, ..., bioo) : 10}. They form the
lattice of a closed cube as shown in Figure 4.2. Other nonclosed cells can be derived from

their corresponding closed cells in this lattice. For example, “(ay, *, *,..., %) : 20” can
be derived from “(ay, az, *,..., *) : 20” because the former is a generalized nonclosed
cell of the latter. Similarly, we have “(ay, az, b3, *,...,*): 10”.

Another strategy for partial materialization is to precompute only the cuboids
involving a small number of dimensions, such as 3 to 5. These cuboids form a cube

2The proof is left as an exercise for the reader.

162

Chapter 4 Data Cube Computation and Data Generalization

Figure 4.2

(ay, ay, *, ..., %) : 20

(ay, ay, a, ..., ajpg) = 10 (ay, ay, b3, ..., bygg) : 10

Three closed cells forming the lattice of a closed cube.

shell for the corresponding data cube. Queries on additional combinations of the
dimensions will have to be computed on the fly. For example, we could compute all
cuboids with 3 dimensions or less in an n-dimensional data cube, resulting in a cube
shell of size 3. This, however, can still result in a large number of cuboids to compute,
particularly when 7 is large. Alternatively, we can choose to precompute only portions
or fragments of the cube shell, based on cuboids of interest. Section 4.1.5 discusses a
method for computing such shell fragments and explores how they can be used for
efficient OLAP query processing.

General Strategies for Cube Computation

With different kinds of cubes as described above, we can expect that there are a good
number of methods for efficient computation. In general, there are two basic data struc-
tures used for storing cuboids. Relational tables are used as the basic data structure for the
implementation of relational OLAP (ROLAP), while multidimensional arrays are used
as the basic data structure in multidimensional OLAP (MOLAP). Although ROLAP and
MOLAP may each explore different cube computation techniques, some optimization
“tricks” can be shared among the different data representations. The following are gen-
eral optimization techniques for the efficient computation of data cubes.

Optimization Technique 1: Sorting, hashing, and grouping. Sorting, hashing, and
grouping operations should be applied to the dimension attributes in order to reorder
and cluster related tuples.

In cube computation, aggregation is performed on the tuples (or cells) that share
the same set of dimension values. Thus it is important to explore sorting, hashing, and
grouping operations to access and group such data together to facilitate computation of
such aggregates.

For example, to compute total sales by branch, day, and item, it is more efficient to
sort tuples or cells by branch, and then by day, and then group them according to the
item name. Efficient implementations of such operations in large data sets have been
extensively studied in the database research community. Such implementations can be
extended to data cube computation.

4.1 Efficient Methods for Data Cube Computation 163

This technique can also be further extended to perform shared-sorts (i.e., sharing
sorting costs across multiple cuboids when sort-based methods are used), or to perform
shared-partitions (i.e., sharing the partitioning cost across multiple cuboids when hash-
based algorithms are used).

Optimization Technique 2: Simultaneous aggregation and caching intermediate results.
In cube computation, it is efficient to compute higher-level aggregates from previously
computed lower-level aggregates, rather than from the base fact table. Moreover, simulta-
neous aggregation from cached intermediate computation results may lead to the reduc-
tion of expensive disk I/O operations.

For example, to compute sales by branch, we can use the intermediate results derived
from the computation of a lower-level cuboid, such as sales by branch and day. This
technique can be further extended to perform amortized scans (i.e., computing as many
cuboids as possible at the same time to amortize disk reads).

Optimization Technique 3: Aggregation from the smallest child, when there exist
multiple child cuboids. When there exist multiple child cuboids, it is usually more effi-
cient to compute the desired parent (i.e., more generalized) cuboid from the smallest,
previously computed child cuboid.

For example, to compute a sales cuboid, Cpapcn>, when there exist two previously com-
puted cuboids, Cypranch.yeart a0d Cpranch,irem)> it is obviously more efficient to compute
Chranci, from the former than from the latter if there are many more distinct items than
distinct years.

Many other optimization tricks may further improve the computational efficiency.
For example, string dimension attributes can be mapped to integers with values ranging
from zero to the cardinality of the attribute. However, the following optimization tech-
nique plays a particularly important role in iceberg cube computation.

Optimization Technique 4: The Apriori pruning method can be explored to compute
iceberg cubes efficiently. The Apriori property,” in the context of data cubes, states as
follows: If a given cell does not satisfy minimum support, then no descendant (i.e., more
specialized or detailed version) of the cell will satisfy minimum support either. This property
can be used to substantially reduce the computation of iceberg cubes.

Recall that the specification of iceberg cubes contains an iceberg condition, which is
a constraint on the cells to be materialized. A common iceberg condition is that the cells
must satisfy a minimum support threshold, such as a minimum count or sum.
In this situation, the Apriori property can be used to prune away the exploration of the
descendants of the cell. For example, if the count of a cell, ¢, in a cuboid is less than
a minimum support threshold, v, then the count of any of ¢’s descendant cells in the
lower-level cuboids can never be greater than or equal to v, and thus can be pruned.
In other words, if a condition (e.g., the iceberg condition specified in a having clause)

3The Apriori property was proposed in the Apriori algorithm for association rule mining by R. Agrawal
and R. Srikant [AS94]. Many algorithms in association rule mining have adopted this property. Associ-
ation rule mining is the topic of Chapter 5.

164

Chapter 4 Data Cube Computation and Data Generalization

4.1.2

is violated for some cell ¢, then every descendant of ¢ will also violate that condition.
Measures that obey this property are known as antimonotonic.* This form of pruning
was made popular in association rule mining, yet also aids in data cube computation
by cutting processing time and disk space requirements. It can lead to a more focused
analysis because cells that cannot pass the threshold are unlikely to be of interest.

In the following subsections, we introduce several popular methods for efficient cube
computation that explore some or all of the above optimization strategies. Section 4.1.2
describes the multiway array aggregation (MultiWay) method for computing full cubes.
The remaining sections describe methods for computing iceberg cubes. Section 4.1.3 des-
cribes a method known as BUC, which computes iceberg cubes from the apex cuboid,
downward. Section 4.1.4 describes the Star-Cubing method, which integrates top-down
and bottom-up computation. Section 4.1.5 describes a minimal cubing approach that
computes shell fragments for efficient high-dimensional OLAP. Finally, Section 4.1.6
describes a method for computing iceberg cubes with complex measures, such as average.
To simplify our discussion, we exclude the cuboids that would be generated by climbing
up any existing hierarchies for the dimensions. Such kinds of cubes can be computed
by extension of the discussed methods. Methods for the efficient computation of closed
cubes are left as an exercise for interested readers.

Multiway Array Aggregation for Full Cube Computation

The Multiway Array Aggregation (or simply MultiWay) method computes a full data
cube by using a multidimensional array as its basic data structure. It is a typical MOLAP
approach that uses direct array addressing, where dimension values are accessed via the
position or index of their corresponding array locations. Hence, MultiWay cannot per-
form any value-based reordering as an optimization technique. A different approach is
developed for the array-based cube construction, as follows:

I. Partition the array into chunks. A chunk is a subcube that is small enough to fit into
the memory available for cube computation. Chunking is a method for dividing an
n-dimensional array into small n-dimensional chunks, where each chunk is stored as
an object on disk. The chunks are compressed so as to remove wasted space resulting
from empty array cells (i.e., cells that do not contain any valid data, whose cell count
is zero). For instance, “chunkID + offset” can be used as a cell addressing mechanism
to compress a sparse array structure and when searching for cells within a chunk.
Such a compression technique is powerful enough to handle sparse cubes, both on
disk and in memory.

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells. The order in
which cells are visited can be optimized so as to minimize the number of times that each
cell must be revisited, thereby reducing memory access and storage costs. The trick is

4 Antimonotone is based on condition violation. This differs from monotone, which is based on condition
satisfaction.

Example 4.4

4.1 Efficient Methods for Data Cube Computation 165

to exploit this ordering so that partial aggregates can be computed simultaneously,
and any unnecessary revisiting of cells is avoided.

Because this chunking technique involves “overlapping” some of the aggrega-
tion computations, it is referred to as multiway array aggregation. It performs
simultaneous aggregation—that is, it computes aggregations simultaneously on
multiple dimensions.

We explain this approach to array-based cube construction by looking at a concrete
example.

Multiway array cube computation. Consider a 3-D data array containing the three dimen-
sions A, B, and C. The 3-D array is partitioned into small, memory-based chunks. In this

example, the array is partitioned into 64 chunks as shown in Figure 4.3. Dimension A

is organized into four equal-sized partitions, ag, a1, a2, and a3. Dimensions B and C

are similarly organized into four partitions each. Chunks 1, 2, ..., 64 correspond to the

subcubes apboco, aiboco, ..., azbzcs, respectively. Suppose that the cardinality of the

dimensions A, B, and C is 40, 400, and 4000, respectively. Thus, the size of the array for

each dimension, A, B, and C, is also 40, 400, and 4000, respectively. The size of each par-

tition in A, B, and C is therefore 10, 100, and 1000, respectively. Full materialization of
the corresponding data cube involves the computation of all of the cuboids defining this

cube. The resulting full cube consists of the following cuboids:

The base cuboid, denoted by ABC (from which all of the other cuboids are directly
or indirectly computed). This cube is already computed and corresponds to the given
3-D array.

The 2-D cuboids, AB, AC, and BC, which respectively correspond to the group-by’s
AB, AC, and BC. These cuboids must be computed.

The 1-D cuboids, A, B, and C, which respectively correspond to the group-by’s A, B,
and C. These cuboids must be computed.

The 0-D (apex) cuboid, denoted by all, which corresponds to the group-by (); that is,
there is no group-by here. This cuboid must be computed. It consists of one value. If,
say, the data cube measure is count, then the value to be computed is simply the total
count of all of the tuples in ABC.

Let’s look at how the multiway array aggregation technique is used in this computa-
tion. There are many possible orderings with which chunks can be read into memory
for use in cube computation. Consider the ordering labeled from 1 to 64, shown in
Figure 4.3. Suppose we would like to compute the boco chunk of the BC cuboid. We
allocate space for this chunk in chunk memory. By scanning chunks 1 to 4 of ABC,
the boco chunk is computed. That is, the cells for bocy are aggregated over ag to as.
The chunk memory can then be assigned to the next chunk, b;cp, which completes
its aggregation after the scanning of the next four chunks of ABC: 5 to 8. Continuing

166

Chapter 4 Data Cube Computation and Data Generalization

Figure 4.3 A 3-D array for the dimensions A, B, and C, organized into 64 chunks. Each chunk is small

enough to fit into the memory available for cube computation.

in this way, the entire BC cuboid can be computed. Therefore, only one chunk of BC
needs to be in memory, at a time, for the computation of all of the chunks of BC.

In computing the BC cuboid, we will have scanned each of the 64 chunks. “Is there
a way to avoid having to rescan all of these chunks for the computation of other cuboids,
such as AC and AB?” The answer is, most definitely—yes. This is where the “multiway
computation” or “simultaneous aggregation” idea comes in. For example, when chunk 1
(i.e., agbpcp) is being scanned (say, for the computation of the 2-D chunk bycg of BC, as
described above), all of the other 2-D chunks relating to agboco can be simultaneously
computed. That is, when apbgcy is being scanned, each of the three chunks, byco, apco,
and apby, on the three 2-D aggregation planes, BC, AC, and AB, should be computed
then as well. In other words, multiway computation simultaneously aggregates to each
of the 2-D planes while a 3-D chunk is in memory.

4.1 Efficient Methods for Data Cube Computation 167

Now let’s look at how different orderings of chunk scanning and of cuboid compu-
tation can affect the overall data cube computation efficiency. Recall that the size of the
dimensions A, B, and C'is 40, 400, and 4000, respectively. Therefore, the largest 2-D plane
is BC (of size 400 x 4000 = 1, 600, 000). The second largest 2-D plane is AC (of size
40 x 4000 = 160, 000). AB is the smallest 2-D plane (with a size of 40 x 400 = 16, 000).

Suppose that the chunks are scanned in the order shown, from chunk 1 to 64. By
scanning in this order, one chunk of the largest 2-D plane, BC, is fully computed for
each row scanned. That is, byocy is fully aggregated after scanning the row containing
chunks 1 to 4; bjco is fully aggregated after scanning chunks 5 to 8, and so on.
In comparison, the complete computation of one chunk of the second largest 2-D
plane, AC, requires scanning 13 chunks, given the ordering from 1 to 64. That is,
apco is fully aggregated only after the scanning of chunks 1, 5, 9, and 13. Finally,
the complete computation of one chunk of the smallest 2-D plane, AB, requires
scanning 49 chunks. For example, agpbg is fully aggregated after scanning chunks 1,
17, 33, and 49. Hence, AB requires the longest scan of chunks in order to complete
its computation. To avoid bringing a 3-D chunk into memory more than once, the
minimum memory requirement for holding all relevant 2-D planes in chunk memory,
according to the chunk ordering of 1 to 64, is as follows: 40 x 400 (for the whole
AB plane) + 40 x 1000 (for one row of the AC plane) + 100 x 1000 (for one chunk
of the BC plane) = 16,000+ 40,000+ 100,000 = 156,000 memory units.

Suppose, instead, that the chunks are scanned in the order 1, 17, 33, 49, 5, 21, 37,
53, and so on. That is, suppose the scan is in the order of first aggregating toward the
AB plane, and then toward the AC plane, and lastly toward the BC plane. The minimum
memory requirement for holding 2-D planes in chunk memory would be as follows:
400 x 4000 (for the whole BC plane) + 40 x 1000 (for one row of the AC plane) + 10 x
100 (for one chunk of the AB plane) = 1,600,000 + 40,000 + 1000 = 1,641,000 memory
units. Notice that this is more than 10 times the memory requirement of the scan ordering
of 1 to 64.

Similarly, we can work out the minimum memory requirements for the multiway
computation of the 1-D and 0-D cuboids. Figure 4.4 shows the most efficient ordering
and the least efficient ordering, based on the minimum memory requirements for the
data cube computation. The most efficient ordering is the chunk ordering of 1 to 64. m

Example 4.4 assumes that there is enough memory space for one-pass cube compu-
tation (i.e., to compute all of the cuboids from one scan of all of the chunks). If there
is insufficient memory space, the computation will require more than one pass through
the 3-D array. In such cases, however, the basic principle of ordered chunk computa-
tion remains the same. MultiWay is most effective when the product of the cardinalities
of dimensions is moderate and the data are not too sparse. When the dimensionality is
high or the data are very sparse, the in-memory arrays become too large to fit in memory,
and this method becomes infeasible.

With the use of appropriate sparse array compression techniques and careful ordering
of the computation of cuboids, it has been shown by experiments that MultiWay array
cube computation is significantly faster than traditional ROLAP (relationa record-based)

168 Chapter 4 Data Cube Computation and Data Generalization

all all
A B C A B C
\/ /0 N\
AB AC BC AB AC BC
ABC ABC
(a) (b)

Figure 4.4 Two orderings of multiway array aggregation for computation of the 3-D cube of Example 4.4:
(a) most efficient ordering of array aggregation (minimum memory requirements = 156,000
memory units); (b) least efficient ordering of array aggregation (minimum memory require-
ments = 1,641,000 memory units).

computation. Unlike ROLAP, the array structure of MultiWay does not require saving
space to store search keys. Furthermore, MultiWay uses direct array addressing, which is
faster than the key-based addressing search strategy of ROLAP. For ROLAP cube compu-
tation, instead of cubing a table directly, it can be faster to convert the table to an array, cube
the array, and then convert the result back to a table. However, this observation works only
for cubes with a relatively small number of dimensions because the number of cuboids to
be computed is exponential to the number of dimensions.

“What would happen if we tried to use MultiWay to compute iceberg cubes?” Remember
that the Apriori property states that if a given cell does not satisfy minimum support, then
neither will any of its descendants. Unfortunately, MultiWay’s computation starts from
the base cuboid and progresses upward toward more generalized, ancestor cuboids. It
cannot take advantage of Apriori pruning, which requires a parent node to be computed
before its child (i.e., more specific) nodes. For example, if the count of a cell ¢ in, say,
AB, does not satisfy the minimum support specified in the iceberg condition, then we
cannot prune away computation of ¢’s ancestors in the A or B cuboids, because the count
of these cells may be greater than that of c.

4.1.3 BUC: Computing Iceberg Cubes from the Apex Cuboid
Downward

BUC is an algorithm for the computation of sparse and iceberg cubes. Unlike MultiWay,
BUC constructs the cube from the apex cuboid toward the base cuboid. This allows BUC

4.1 Efficient Methods for Data Cube Computation 169

to share data partitioning costs. This order of processing also allows BUC to prune during
construction, using the Apriori property.

Figure 4.1 shows a lattice of cuboids, making up a 3-D data cube with the dimensions
A, B, and C. The apex (0-D) cuboid, representing the concept all (that is, (x, *, *)), is
at the top of the lattice. This is the most aggregated or generalized level. The 3-D base
cuboid, ABC, is at the bottom of the lattice. It is the least aggregated (most detailed or
specialized) level. This representation of a lattice of cuboids, with the apex at the top and
the base at the bottom, is commonly accepted in data warehousing. It consolidates the
notions of drill-down (where we can move from a highly aggregated cell to lower, more
detailed cells) and roll-up (where we can move from detailed, low-level cells to higher-
level, more aggregated cells).

BUC stands for “Bottom-Up Construction.” However, according to the lattice con-
vention described above and used throughout this book, the order of processing of BUC
is actually top-down! The authors of BUC view a lattice of cuboids in the reverse order,
with the apex cuboid at the bottom and the base cuboid at the top. In that view, BUC
does bottom-up construction. However, because we adopt the application worldview
where drill-down refers to drilling from the apex cuboid down toward the base cuboid,
the exploration process of BUC is regarded as top-down. BUC’s exploration for the
computation of a 3-D data cube is shown in Figure 4.5.

The BUC algorithm is shown in Figure 4.6. We first give an explanation of the
algorithm and then follow up with an example. Initially, the algorithm is called with
the input relation (set of tuples). BUC aggregates the entire input (line 1) and writes

all

Figure 4.5 BUC’s exploration for the computation of a 3-D data cube. Note that the computation starts
from the apex cuboid.

170 Chapter 4 Data Cube Computation and Data Generalization

Algorithm: BUC. Algorithm for the computation of sparse and iceberg cubes.
Input:
input: the relation to aggregate;
dim: the starting dimension for this iteration.
Globals:
constant numDims: the total number of dimensions;
constant cardinality[numDims]: the cardinality of each dimension;
constant min_sup: the minimum number of tuples in a partition in order for it to be output;
outputRec: the current output record;

dataCount[numDims]: stores the size of each partition. dataCount[i] is a list of integers of size
cardinality[i].

Output: Recursively output the iceberg cube cells satisfying the minimum support.

Method:

(1) Aggregate(input); // Scan input to compute measure, e.g., count. Place result in outputRec.
(2) if input.count() == 1 then // Optimization
WriteAncestors(input[0], dim); return;
endif
(3) write outputRec;
(4) for (d = dim; d < numDims;, d+ +) do //Partition each dimension
(5) C = cardinality[d];

(6) Partition(input, d, C, dataCount[d]); //create C partitions of data for dimension d
(7) k=0;

(8) for (i =0;i < C;i++) do // for each partition (each value of dimension d)

9) ¢ = dataCount[d][i];

(10) if ¢ >= min_sup then // test the iceberg condition

(11) outputRec.dim[d] = input[k].dim[d];

(12) BUC(input[k...k+c], d +1); // aggregate on next dimension

(13) endif

(14) k +=¢;

(15) endfor
(16) outputRec.dim[d] = all;
(17) endfor

Figure 4.6 BUC algorithm for the computation of sparse or iceberg cubes [BR99].

the resulting total (line 3). (Line 2 is an optimization feature that is discussed later in our
example.) For each dimension d (line 4), the input is partitioned on d (line 6). On return
from Partition(), dataCount contains the total number of tuples for each distinct value
of dimension d. Each distinct value of d forms its own partition. Line 8 iterates through
each partition. Line 10 tests the partition for minimum support. That is, if the number
of tuples in the partition satisfies (i.e., is >) the minimum support, then the partition
becomes the input relation for a recursive call made to BUC, which computes the ice-
berg cube on the partitions for dimensions d + 1 to numDims (line 12). Note that for a
full cube (i.e., where minimum support in the having clause is 1), the minimum support

Example 4.5

4.1 Efficient Methods for Data Cube Computation 171

condition is always satisfied. Thus, the recursive call descends one level deeper into the
lattice. Upon return from the recursive call, we continue with the next partition for d.
After all the partitions have been processed, the entire process is repeated for each of the
remaining dimensions.

We explain how BUC works with the following example.

BUC construction of an iceberg cube. Consider the iceberg cube expressed in SQL as
follows:

compute cube iceberg_cube as
select A, B, C, D, count(¥)
from R

cube by A, B, C,D

having count(*) >=3

Let’s see how BUC constructs the iceberg cube for the dimensions A, B, C, and D,
where the minimum support count is 3. Suppose that dimension A has four distinct
values, ay, a, as, as; B has four distinct values, by, by, b3, bs; C has two distinct values,
1, ¢2; and D has two distinct values, d, dy. If we consider each group-by to be a par-
tition, then we must compute every combination of the grouping attributes that satisfy
minimum support (i.e., that have 3 tuples).

Figure 4.7 illustrates how the input is partitioned first according to the different attri-
bute values of dimension A, and then B, C, and D. To do so, BUC scans the input,
aggregating the tuples to obtain a count for all, corresponding to the cell (x, *, *, *).
Dimension A is used to split the input into four partitions, one for each distinct value of
A. The number of tuples (counts) for each distinct value of A is recorded in dataCount.

BUC uses the Apriori property to save time while searching for tuples that satisfy
the iceberg condition. Starting with A dimension value, a;, the a; partition is aggre-
gated, creating one tuple for the A group-by, corresponding to the cell (aj, *, *, *).
Suppose (aj, *, *, *) satisfies the minimum support, in which case a recursive call is
made on the partition for a;. BUC partitions a; on the dimension B. It checks the count
of (a1, by, *, *) to see if it satisfies the minimum support. If it does, it outputs the aggre-
gated tuple to the AB group-by and recurses on (ay, bj, *, *) to partition on C, starting
with c¢j. Suppose the cell count for (ay, by, c1, *) is 2, which does not satisfy the min-
imum support. According to the Apriori property, if a cell does not satisfy minimum
support, then neither can any of its descendants. Therefore, BUC prunes any further
exploration of (ay, by, c1, *). That is, it avoids partitioning this cell on dimension D. It
backtracks to the ay, b; partition and recurses on (aj, by, ¢, *), and so on. By checking
the iceberg condition each time before performing a recursive call, BUC saves a great
deal of processing time whenever a cell’s count does not satisfy the minimum support.

The partition process is facilitated by a linear sorting method, CountingSort. Count-
ingSort is fast because it does not perform any key comparisons to find partition bound-
aries. In addition, the counts computed during the sort can be reused to compute the
group-by’s in BUC. Line 2 is an optimization for partitions having a count of 1, such as

172

Chapter 4 Data Cube Computation and Data Generalization

ay

by

€1

ap

as

ay

Figure 4.7 Snapshot of BUC partitioning given an example 4-D data set.

(a1, by, *, *) in our example. To save on partitioning costs, the count is written to each
of the tuple’s ancestor group-by’s. This is particularly useful since, in practice, many

partitions have a single tuple.

The performance of BUC is sensitive to the order of the dimensions and to skew in the
data. Ideally, the most discriminating dimensions should be processed first. Dimensions
should be processed in order of decreasing cardinality. The higher the cardinality is, the
smaller the partitions are, and thus, the more partitions there will be, thereby providing
BUC with greater opportunity for pruning. Similarly, the more uniform a dimension is

(i.e., having less skew), the better it is for pruning.

BUC’s major contribution is the idea of sharing partitioning costs. However, unlike
MultiWay, it does not share the computation of aggregates between parent and child
group-by’s. For example, the computation of cuboid AB does not help that of ABC. The

latter needs to be computed essentially from scratch.

4.1 Efficient Methods for Data Cube Computation 173

4.1.4 Star-Cubing: Computing Iceberg Cubes Using
a Dynamic Star-tree Structure

In this section, we describe the Star-Cubing algorithm for computing iceberg cubes.
Star-Cubing combines the strengths of the other methods we have studied up to this
point. It integrates top-down and bottom-up cube computation and explores both mul-
tidimensional aggregation (similar to MultiWay) and Apriori-like pruning (similar to
BUC). It operates from a data structure called a star-tree, which performs lossless data
compression, thereby reducing the computation time and memory requirements.

The Star-Cubing algorithm explores both the bottom-up and top-down computa-
tion models as follows: On the global computation order, it uses the bottom-up model.
However, it has a sublayer underneath based on the top-down model, which explores
the notion of shared dimensions, as we shall see below. This integration allows the algo-
rithm to aggregate on multiple dimensions while still partitioning parent group-by’s and
pruning child group-by’s that do not satisfy the iceberg condition.

Star-Cubing’s approach is illustrated in Figure 4.8 for the computation of a 4-D
data cube. If we were to follow only the bottom-up model (similar to Multiway), then
the cuboids marked as pruned by Star-Cubing would still be explored. Star-Cubing is
able to prune the indicated cuboids because it considers shared dimensions. ACD/A
means cuboid ACD has shared dimension A, ABD/AB means cuboid ABD has shared
dimension AB, ABC/ABC means cuboid ABC has shared dimension ABC, and so
on. This comes from the generalization that all the cuboids in the subtree rooted
at ACD include dimension A, all those rooted at ABD include dimensions AB, and
all those rooted at ABC include dimensions ABC (even though there is only one
such cuboid). We call these common dimensions the shared dimensions of those

particular subtrees.
all
=== | I__x
| pruned: | | pruned

| I | |
LA L BB

| prune: | \ \\\

L AB/AB | AC/AC AD/A BC/BC BD/B

ABC/ABC ABD/AB ACD/A BCD

T~

ABCD

Figure 4.8 Star-Cubing: Bottom-up computation with top-down expansion of shared dimensions.

174 Chapter 4 Data Cube Computation and Data Generalization

Example 4.6

Figure 4.9

The introduction of shared dimensions facilitates shared computation. Because
the shared dimensions are identified early on in the tree expansion, we can avoid
recomputing them later. For example, cuboid AB extending from ABD in Figure 4.8
would actually be pruned because AB was already computed in ABD/AB. Similarly,
cuboid A extending from AD would also be pruned because it was already computed
in ACD/A.

Shared dimensions allow us to do Apriori-like pruning if the measure of an ice-
berg cube, such as count, is antimonotonic; that is, if the aggregate value on a shared
dimension does not satisfy the iceberg condition, then all of the cells descending from
this shared dimension cannot satisfy the iceberg condition either. Such cells and all of
their descendants can be pruned, because these descendant cells are, by definition,
more specialized (i.e., contain more dimensions) than those in the shared dimen-
sion(s). The number of tuples covered by the descendant cells will be less than or
equal to the number of tuples covered by the shared dimensions. Therefore, if the
aggregate value on a shared dimension fails the iceberg condition, the descendant
cells cannot satisfy it either.

Pruning shared dimensions. If the value in the shared dimension A is a; and it fails
to satisfy the iceberg condition, then the whole subtree rooted at a;CD/a; (including
a1C/a\C, aiD/ay, a1 /a;) can be pruned because they are all more specialized versions
ofaj. n

To explain how the Star-Cubing algorithm works, we need to explain a few more
concepts, namely, cuboid trees, star-nodes, and star-trees.

We use trees to represent individual cuboids. Figure 4.9 shows a fragment of the
cuboid tree of the base cuboid, ABCD. Each level in the tree represents a dimension, and
each node represents an attribute value. Each node has four fields: the attribute value,
aggregate value, pointer(s) to possible descendant(s), and pointer to possible sibling.
Tuples in the cuboid are inserted one by one into the tree. A path from the root to a leaf

a;: 30 a,: 20 as: 20 ay: 20

by: 10 by: 10 by: 10

A fragment of the base cuboid tree.

4.1 Efficient Methods for Data Cube Computation 175

node represents a tuple. For example, node ¢; in the tree has an aggregate (count) value
of 5, which indicates that there are five cells of value (ay, b1, 2, *). This representation
collapses the common prefixes to save memory usage and allows us to aggregate the val-
ues at internal nodes. With aggregate values at internal nodes, we can prune based on
shared dimensions. For example, the cuboid tree of AB can be used to prune possible
cells in ABD.

If the single dimensional aggregate on an attribute value p does not satisfy the iceberg
condition, it is useless to distinguish such nodes in the iceberg cube computation. Thus
the node p can be replaced by * so that the cuboid tree can be further compressed. We
say that the node p in an attribute A is a star-node if the single dimensional aggregate on
p does not satisfy the iceberg condition; otherwise, p is a non-star-node. A cuboid tree
that is compressed using star-nodes is called a star-tree.

The following is an example of star-tree construction.

Example 4.7 Star-tree construction. A base cuboid table is shown in Table 4.1. There are 5 tuples

Table 4.1

Table 4.2

and 4 dimensions. The cardinalities for dimensions A, B, C, D are 2, 4, 4, 4,
respectively. The one-dimensional aggregates for all attributes are shown in Table 4.2.
Suppose min_sup = 2 in the iceberg condition. Clearly, only attribute values a1, ap,
b1, ¢3, dy satisfy the condition. All the other values are below the threshold and thus
become star-nodes. By collapsing star-nodes, the reduced base table is Table 4.3.
Notice that the table contains two fewer rows and also fewer distinct values than
Table 4.1.

We use the reduced base table to construct the cuboid tree because it is smaller. The
resultant star-tree is shown in Figure 4.10. To help identify which nodes are star-nodes, a

Base (Cuboid) Table: Before star reduction.

A B C D count
a by c1 d 1
ap by c4 d3 1
aj by c dy 1
a b3 c3 dy 1
a by c3 dy 1

One-Dimensional Aggregates.

Dimension count = 1 count > 2
A — a1(3),ax(2)
B b27 b3: b4 bl(z)
C C15 €25 C4 c3(2)
D dy, dy, d3 dy(2)

176 Chapter 4

Table 4.3

Figure 4.10

Example 4.8

Data Cube Computation and Data Generalization

Compressed Base Table: After star reduction.

A B C D count
aj by * * 2
ap * * * 1
a * c3 dy 2
root:5 Star Table
PN p—
a,:3 ay:2 by —*
NN
b*:1 b2 b*:2 ¢, —m*
‘ ‘ c, —m ¥
c*:1 c*:2 52 c, —m*
‘ ‘ d, —»*
d*:1 da*:2 dy2

Star-tree and star-table.

star-table is constructed for each star-tree. Figure 4.10 also shows the corresponding star-
table for the star-tree (where only the star-nodes are shown in the star-table). In actual
implementation, a bit-vector or hash table could be used to represent the star-table for
fast lookup. (]

By collapsing star-nodes, the star-tree provides a lossless compression of the original
data. It provides a good improvement in memory usage, yet the time required to search
for nodes or tuples in the tree is costly. To reduce this cost, the nodes in the star-tree
are sorted in alphabetic order for each dimension, with the star-nodes appearing first. In
general, nodes are sorted in the order %, py, p2, ..., py at each level.

Now, let’s see how the Star-Cubing algorithm uses star-trees to compute an iceberg
cube. The algorithm is given in Figure 4.13.

Star-Cubing. Using the star-tree generated in Example 4.7 (Figure 4.10), we start the
process of aggregation by traversing in a bottom-up fashion. Traversal is depth-first. The
first stage (i.e., the processing of the first branch of the tree) is shown in Figure 4.11.
The leftmost tree in the figure is the base star-tree. Each attribute value is shown with its
corresponding aggregate value. In addition, subscripts by the nodes in the tree show the

Figure 4.11

4.1 Efficient Methods for Data Cube Computation

177

root:5; : BCD:1, : a;CD/a;:1 : a1b*Dla b*:13 : aib*c*laib*c*:1y

I I I I

/\ I I / I I

I I I I

a;:3; a2 1 b*l; | c¥ily | d*:15 |

I I I I

\ I | I | I I

I I I I

b*:13 b2 b*:2 : c*ily : d*:ls : :

| I I I I

I I I I

c*ily c*:2 c3:2 : d*:1s : : :

I I I I

I I I I

I I I I

d*:15 a2 dy:2 : : : :
Base-Tree I BCD-Tree ' ACD/A-Tree ' ADB/AB-Tree ! ABC/ABC-Tree

Aggregation Stage One: Processing of the left-most branch of BaseTree.

order of traversal. The remaining four trees are BCD,ACD /A, ABD /AB,ABC /ABC. They
are the child trees of the base star-tree, and correspond to the level of three-dimensional
cuboids above the base cuboid in Figure 4.8. The subscripts in them correspond to the
same subscripts in the base tree—they denote the step or order in which they are created
during the tree traversal. For example, when the algorithm is at step 1, the BCD child tree
root is created. At step 2, the ACD/A child tree root is created. At step 3, the ABD/AB
tree root and the b* node in BCD are created.

When the algorithm has reached step 5, the trees in memory are exactly as shown in
Figure 4.11. Because the depth-first traversal has reached a leaf at this point, it starts back-
tracking. Before traversing back, the algorithm notices that all possible nodes in the base
dimension (ABC) have been visited. This means the ABC/ABC tree is complete, so the
count is output and the tree is destroyed. Similarly, upon moving back from dx to c* and
seeing that cx has no siblings, the countinABD /AB is also output and the tree is destroyed.

When the algorithm is at b* during the back-traversal, it notices that there exists a
sibling in b;. Therefore, it will keep ACD /A in memory and perform a depth-first search
on by just as it did on bx*. This traversal and the resultant trees are shown in Figure 4.12.
The child trees ACD /A and ABD /AB are created again but now with the new values from
the b; subtree. For example, notice that the aggregate count of ¢+ in the ACD /A tree has
increased from 1 to 3. The trees that remained intact during the last traversal are reused
and the new aggregate values are added on. For instance, another branch is added to the
BCD tree.

Just like before, the algorithm will reach a leaf node at d* and traverse back. This
time, it will reach @; and notice that there exists a sibling in a,. In this case, all child
trees except BCD in Figure 4.12 are destroyed. Afterward, the algorithm will perform the
same traversal on ap. BCD continues to grow while the other subtrees start fresh with a,
instead of a;. n

A node must satisfy two conditions in order to generate child trees: (1) the measure
of the node must satisfy the iceberg condition; and (2) the tree to be generated must

178

Chapter 4 Data Cube Computation and Data Generalization

root:5, : BCD:3, : a,CD/a,:3, : a,b,D/ab,:24 : a;b c*/a b ctily
1 1 1 1
I I I I
1 1 1 1
B X 1 1 1 1
a;:3, a2 : b*:1, b,:2¢ : c*:3, : d*:24 :
1 1 1 1
\ 1 ‘ 1 1 1
1 1 1 1
X b,:2 b2 | ! ! !
e | ety ct2, | d¥3g 1 1
1 1 1 1
1 ‘ 1 1 1
1 1 1 1
1 1 1 1
2 21 gl ar2g I I
1 R 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
k. 1 1 1 1
a2 dg2 1 1 1
1 1 1 1
1 1 1 1

BaseTree i BCD-Tree | ACD/A-Tree | ABD/AB-Tree | ABC/ABC-Tree

Figure 4.12 Aggregation Stage Two: Processing of the second branch of BaseTree.

4.1.5

include at least one non-star (i.e., nontrivial) node. This is because if all the nodes were
star-nodes, then none of them would satisfy min_sup. Therefore, it would be a complete
waste to compute them. This pruning is observed in Figures 4.11 and 4.12. For example,
the left subtree extending from node a; in the base-tree in Figure 4.11 does not include
any non-star-nodes. Therefore, the a;CD/a; subtree should not have been generated. It
is shown, however, for illustration of the child tree generation process.

Star-Cubing is sensitive to the ordering of dimensions, as with other iceberg cube
construction algorithms. For best performance, the dimensions are processed in order of
decreasing cardinality. This leads to a better chance of early pruning, because the higher
the cardinality, the smaller the partitions, and therefore the higher possibility that the
partition will be pruned.

Star-Cubing can also be used for full cube computation. When computing the full
cube for a dense data set, Star-Cubing’s performance is comparable with MultiWay and
is much faster than BUC. If the data set is sparse, Star-Cubing is significantly faster
than MultiWay and faster than BUC, in most cases. For iceberg cube computation, Star-
Cubing is faster than BUC, where the data are skewed and the speedup factor increases
as min_sup decreases.

Precomputing Shell Fragments for Fast High-Dimensional
OLAP

Recall the reason that we are interested in precomputing data cubes: Data cubes facili-
tate fast on-line analytical processing (OLAP) in a multidimensional data space. How-
ever, a full data cube of high dimensionality needs massive storage space and unrealistic
computation time. Iceberg cubes provide a more feasible alternative, as we have seen,
wherein the iceberg condition is used to specify the computation of only a subset of the
full cube’s cells. However, although an iceberg cube is smaller and requires less com-
putation time than its corresponding full cube, it is not an ultimate solution. For one,
the computation and storage of the iceberg cube can still be costly. For example, if the

4.1 Efficient Methods for Data Cube Computation 179

Algorithm: Star-Cubing. Compute iceberg cubes by Star-Cubing.
Input:
R: a relational table
min_support: minimum support threshold for the iceberg condition (taking count as the measure).
Output: The computed iceberg cube.
Method: Each star-tree corresponds to one cuboid tree node, and vice versa.

BEGIN
scan R twice, create star-table S and star-tree T';
output count of T'root;
call starcubing(T; T.root);

END

procedure starcubing(T, cnode)// cnode: current node

(1) for each non-null child C of T’s cuboid tree

(2) insert or aggregate cnode to the corresponding
position or node in C’s star-tree;

(3) if (cnode.count > min_support) then {

(4) if (cnode # root) then

(5) output cnode.count;

(6) if (cnode is a leaf) then

(7) output cnode.count;

(8) else { // initiate a new cuboid tree

9) create C¢ as a child of T’s cuboid tree;
(10) let Te be C¢’s star-tree;

(11) Tc.root's count = cnode.count;

(12) }

(13) }

(14) if (cnode is not a leaf) then

(15) starcubing('T, cnode.first_child);
(16) if (Cc is not null) then {

(17) starcubing(Tc, Te.root);

(18) remove Cc from T’s cuboid tree; }
(19) if (cnode has sibling) then

(20) starcubing(T, cnode.sibling);

(21) remove T;

}

Figure 4.13 The Star-Cubing algorithm.

base cuboid cell, (aj, a, ..., dep), passes minimum support (or the iceberg threshold),
it will generate 2% iceberg cube cells. Second, it is difficult to determine an appropriate
iceberg threshold. Setting the threshold too low will result in a huge cube, whereas set-
ting the threshold too high may invalidate many useful applications. Third, an iceberg
cube cannot be incrementally updated. Once an aggregate cell falls below the iceberg
threshold and is pruned, its measure value is lost. Any incremental update would require
recomputing the cells from scratch. This is extremely undesirable for large real-life appli-
cations where incremental appending of new data is the norm.

180 Chapter 4 Data Cube Computation and Data Generalization

One possible solution, which has been implemented in some commercial data
warehouse systems, is to compute a thin cube shell. For example, we could compute
all cuboids with three dimensions or less in a 60-dimensional data cube, resulting in
cube shell of size 3. The resulting set of cuboids would require much less computation
and storage than the full 60-dimensional data cube. However, there are two disadvan-
tages of this approach. First, we would still need to compute (630) + (620) +60=136,050
cuboids, each with many cells. Second, such a cube shell does not support high-
dimensional OLAP because (1) it does not support OLAP on four or more dimen-
sions, and (2) it cannot even support drilling along three dimensions, such as, say,
(A4, As, Ag), on a subset of data selected based on the constants provided in three
other dimensions, such as (Aj, Ay, A3). This requires the computation of the corre-
sponding six-dimensional cuboid.

Instead of computing a cube shell, we can compute only portions or fragments of it.
This section discusses the shell fragment approach for OLAP query processing. It is based
on the following key observation about OLAP in high-dimensional space. Although a
data cube may contain many dimensions, most OLAP operations are performed on only
a small number of dimensions at a time. In other words, an OLAP query is likely to
ignore many dimensions (i.e., treating them as irrelevant), fix some dimensions (e.g.,
using query constants as instantiations), and leave only a few to be manipulated (for
drilling, pivoting, etc.). This is because it is neither realistic nor fruitful for anyone to
comprehend the changes of thousands of cells involving tens of dimensions simultane-
ously in a high-dimensional space at the same time. Instead, it is more natural to first
locate some cuboids of interest and then drill along one or two dimensions to examine
the changes of a few related dimensions. Most analysts will only need to examine, at any
one moment, the combinations of a small number of dimensions. This implies that if
multidimensional aggregates can be computed quickly on a small number of dimensions
inside a high-dimensional space, we may still achieve fast OLAP without materializing the
original high-dimensional data cube. Computing the full cube (or, often, even an iceberg
cube or shell cube) can be excessive. Instead, a semi-on-line computation model with cer-
tain preprocessing may offer a more feasible solution. Given a base cuboid, some quick
preparation computation can be done first (i.e., off-line). After that, a query can then be
computed on-line using the preprocessed data.

The shell fragment approach follows such a semi-on-line computation strategy. It
involves two algorithms: one for computing shell fragment cubes and one for query pro-
cessing with the fragment cubes. The shell fragment approach can handle databases of
extremely high dimensionality and can quickly compute small local cubes on-line. It
explores the inverted index data structure, which is popular in information retrieval and
Web-based information systems. The basic idea is as follows. Given a high-dimensional
data set, we partition the dimensions into a set of disjoint dimension fragments, convert
each fragment into its corresponding inverted index representation, and then construct
shell fragment cubes while keeping the inverted indices associated with the cube cells.
Using the precomputed shell fragment cubes, we can dynamically assemble and compute
cuboid cells of the required data cube on-line. This is made efficient by set intersection
operations on the inverted indices.

Example 4.9

Table 4.4

Table 4.5

4.1 Efficient Methods for Data Cube Computation 181

To illustrate the shell fragment approach, we use the tiny database of Table 4.4
as a running example. Let the cube measure be count(). Other measures will be
discussed later. We first look at how to construct the inverted index for the given
database.

Construct the inverted index. For each attribute value in each dimension, list the tuple
identifiers (TIDs) of all the tuples that have that value. For example, attribute value a,
appears in tuples 4 and 5. The TIDlist for a, then contains exactly two items, namely
4 and 5. The resulting inverted index table is shown in Table 4.5. It retains all of the
information of the original database. It uses exactly the same amount of memory as the
original database. (]

“How do we compute shell fragments of a data cube?” The shell fragment compu-
tation algorithm, Frag-Shells, is summarized in Figure 4.14. We first partition all the
dimensions of the given data set into independent groups of dimensions, called frag-
ments (line 1). We scan the base cuboid and construct an inverted index for each attribute
(lines 2 to 6). Line 3 is for when the measure is other than the tuple count(), which will

The original database.

TID A B C D E

1 ap by cl di el
2 ay by c1 d el
3 ai by c1 dy e)
4 ap by C1 di e
5 a by c1 dp e3

The inverted index.

Attribute Value Tuple ID List List Size

a {1,2,3} 3
aa {4,5} 2
by {1,4,5} 3
by {2,3} 2
cl {1,2,3,4,5} 5
d {1,3,4,5} 4
dy {2} 1
el {1,2} 2
e {3, 4} 2
e3 {5} 1

182 Chapter 4 Data Cube Computation and Data Generalization

Figure 4.14

Example 4.10

Algorithm: Frag-Shells. Compute shell fragments on a given high-dimensional base table (i.e., base cuboid).
Input: A base cuboid, B, of n dimensions, namely, (Ay,...,A,).
Output:

a set of fragment partitions, {Py,... P}, and their corresponding (local) fragment cubes, {S1,..., Sk},
where P; represents some set of dimension(s) and Py U...U Py make up all the n dimensions

an ID_measure array if the measure is not the tuple count, count()

Method:
(

—

) partition the set of dimensions (Ay, ..., A,) into
a set of k fragments Py, ..., P, (based on data & query distribution)
(2) scan base cuboid, B, once and do the following {

(3) insert each (TID, measure) into ID_measure array
(4) for each attribute value a; of each dimension A;
(5) build an inverted index entry: (a;, TIDlist)

) }

)
(7) for each fragment partition P;
(8) build a local fragment cube, S;, by intersecting their
corresponding TIDlists and computing their measures

Algorithm for shell fragment computation.

be described later. For each fragment, we compute the full local (i.e., fragment-based)
data cube while retaining the inverted indices (lines 7 to 8). Consider a database of
60 dimensions, namely, Ay, A, ..., Ago. We can first partition the 60 dimensions into 20
fragments of size 3: (A1, Ay, A3), (A4, As, Ag), - . ., (Ass, Asg, Agp). For each fragment, we
compute its full data cube while recording the inverted indices. For example, in fragment
(A1, A2, A3z), we would compute seven cuboids: A, Az, A3, A1Az, A2A3, A1A3z, A1A2A3.
Furthermore, an inverted index is retained for each cell in the cuboids. That is, for each
cell, its associated TIDlist is recorded.

The benefit of computing local cubes of each shell fragment instead of computing
the complete cube shell can be seen by a simple calculation. For a base cuboid of 60
dimensions, there are only 7 x 20 = 140 cuboids to be computed according to the above
shell fragment partitioning. This is in contrast to the 36,050 cuboids computed for the
cube shell of size 3 described earlier! Notice that the above fragment partitioning is based
simply on the grouping of consecutive dimensions. A more desirable approach would be
to partition based on popular dimension groupings. Such information can be obtained
from domain experts or the past history of OLAP queries.

Let’s return to our running example to see how shell fragments are computed.

Compute shell fragments. Suppose we are to compute the shell fragments of size 3. We
first divide the five dimensions into two fragments, namely (A, B, C) and (D, E). For each
fragment, we compute the full local data cube by intersecting the TIDlists in Table 4.5
in a top-down depth-first order in the cuboid lattice. For example, to compute the cell

Table 4.6

Table 4.7

4.1 Efficient Methods for Data Cube Computation 183

Cuboid AB.

Cell Intersection Tuple ID List List Size
(ai, b)) {1,2,3}N{1,4,5} {11 1
(ai, br) {1,2,3}N{2,3} {2,3} 2
(az,b1) {4,5}n{1,4,5} {4,5} 2
(a2, b2) {45} N{2,3} {} 0
Cuboid DE.

Cell Intersection Tuple ID List List Size
(di,e1) {1,3,4,5}n{1,2} {1} 1
(di,e) {1,3,4,5}N{3,4} {3, 4} 2
(di,e3) {1,3,4,5}n{5} {5} 1
(da,er) {2} n{1,2} {2} 1

(a1, by, *), we intersect the tuple ID lists of a; and b; to obtain a new list of {2, 3}. Cuboid
AB is shown in Table 4.6.

After computing cuboid AB, we can then compute cuboid ABC by intersecting all
pairwise combinations between Table 4.6 and the row ¢ in Table 4.5. Notice that because
cell (az, by) is empty, it can be effectively discarded in subsequent computations, based
on the Apriori property. The same process can be applied to compute fragment (D, E),
which is completely independent from computing (A, B, C). Cuboid DE is shown in
Table 4.7. (]

If the measure in the iceberg condition is count() (as in tuple counting), there is
no need to reference the original database for this because the length of the TIDlist
is equivalent to the tuple count. “Do we need to reference the original database if
computing other measures, such as average()?” Actually, we can build and reference an
ID_measure array instead, which stores what we need to compute other measures.
For example, to compute average(), we let the ID_measure array hold three elements,
namely, (TID, item_count, sum), for each cell (line 3 of the shell computation algo-
rithm). The average() measure for each aggregate cell can then be computed by access-
ing only this ID_measure array, using sum()/item_count(). Considering a database with
100 tuples, each taking 4 bytes each for TID, item_count, and sum, the ID_measure
array requires 12 MB, whereas the corresponding database of 60 dimensions will
require (60 +3) x 4 x 10® = 252 MB (assuming each attribute value takes 4 bytes).
Obviously, ID_measure array is a more compact data structure and is more likely to
fit in memory than the corresponding high-dimensional database.

To illustrate the design of the ID_measure array, let’s look at the following example.

184 Chapter 4 Data Cube Computation and Data Generalization

Example 4.11

Table 4.8

Table 4.9

Computing cubes with the average() measure. Suppose that Table 4.8 shows an example
sales database where each tuple has two associated values, such as item_count and sum,
where item_count is the count of items sold.

To compute a data cube for this database with the measure average(), we need to
have a TIDlist for each cell: {TIDy,..., TID,}. Because each TID is uniquely asso-
ciated with a particular set of measure values, all future computations just need to
fetch the measure values associated with the tuples in the list. In other words, by
keeping an ID_measure array in memory for on-line processing, we can handle com-
plex algebraic measures, such as average, variance, and standard deviation. Table 4.9
shows what exactly should be kept for our example, which is substantially smaller
than the database itself. (]

The shell fragments are negligible in both storage space and computation time in
comparison with the full data cube. Note that we can also use the Frag-Shells algo-
rithm to compute the full data cube by including all of the dimensions as a single frag-
ment. Because the order of computation with respect to the cuboid lattice is top-down
and depth-first (similar to that of BUC), the algorithm can perform Apriori pruning if
applied to the construction of iceberg cubes.

“Once we have computed the shell fragments, how can they be used to answer OLAP
queries?” Given the precomputed shell fragments, we can view the cube space as a virtual
cube and perform OLAP queries related to the cube on-line. In general, there are two
types of queries: (1) point query and (2) subcube query.

A database with two measure values.

TIDb A B C D E item_count sum

1 al b1 C1 dl el 5 70
2 ap by ¢ dy e 3 10
3 ay b2 C1 d] e 8 20
4 a by ¢ d e 5 40
5 a by ¢ d e3 2 30
ID_measure array of Table 4.8.

TID item_count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

Example 4.12

4.1 Efficient Methods for Data Cube Computation 185

In a point query, all of the relevant dimensions in the cube have been instantiated
(that is, there are no inquired dimensions in the relevant set of dimensions). For
example, in an n-dimensional data cube, A1A;...A,, a point query could be in the
form of <A1,A5,A9 : M?>, where A1 = {all, alg},A5 = {052, ass, a59},A9 = ao4, and
M is the inquired measure for each corresponding cube cell. For a cube with a small
number of dimensions, we can use “*” to represent a “don’t care” position where the
corresponding dimension is irrelevant, that is, neither inquired nor instantiated. For
example, in the query (az, by, c¢1, di, *:count()?) for the database in Table 4.4, the
first four dimension values are instantiated to az, by, ¢, and dj, respectively, while
the last dimension is irrelevant, and count() (which is the tuple count by context) is
the inquired measure.

In a subcube query, at least one of the relevant dimensions in the cube is inquired.
For example, in an n-dimensional data cube A1A; ... A, a subcube query could be in the
form (A, As?, Ag, A21? : M?), where A| = {a11, aig} and Ag = ags, As and A, are the
inquired dimensions, and M is the inquired measure. For a cube with a small number
of dimensions, we can use “x” for an irrelevant dimension and “?” for an inquired one.
For example, in the query (as, ?, ¢1, *, ?:count()?) we see that the first and third
dimension values are instantiated to a; and ¢y, respectively, while the fourth is irrelevant,
and the second and the fifth are inquired. A subcube query computes all possible value
combinations of the inquired dimensions. It essentially returns a local data cube consisting
of the inquired dimensions.

“How can we use shell fragments to answer a point query?” Because a point query explic-
itly provides the set of instantiated variables on the set of relevant dimensions, we can
make maximal use of the precomputed shell fragments by finding the best fitting (that
is, dimension-wise completely matching) fragments to fetch and intersect the associated
TIDlists.

Let the point query be of the form (o, o}, o, 0, : M?), where 0; represents a set of
instantiated values of dimension A;, and so on for a.;, o, and o.,,. First, we check the
shell fragment schema to determine which dimensions among A;, A j, Ay, and A, are in
the same fragment(s). Suppose A; and A; are in the same fragment, while A; and A,
are in two other fragments. We fetch the corresponding TIDlists on the precomputed
2-D fragment for dimensions A; and A; using the instantiations o; and 0.;, and fetch
the TIDlists on the 1-D fragments for dimensions Ay and A, using the instantiations oy
and o, respectively. The obtained TIDlists are intersected to derive the TIDlist table.
This table is then used to derive the specified measure (e.g., by taking the length of the
TIDlists for tuple count(), or by fetching item_count() and sum() from the ID_measure
array to compute average()) for the final set of cells.

Point query. Suppose a user wants to compute the point query, (as, b1, c1, di, *:
count()?), for our database in Table 4.4 and that the shell fragments for the partitions
(A, B,C) and (D, E) are precomputed as described in Example 4.10. The query is broken
down into two subqueries based on the precomputed fragments: (as, b1, ¢1, *, *) and
(%, *, *, dj, *). The best fit precomputed shell fragments for the two subqueries are
ABC and D. The fetch of the TIDlists for the two subqueries returns two lists: {4, 5} and

186 Chapter 4 Data Cube Computation and Data Generalization

Example 4.13

{1, 3,4, 5}. Their intersection is the list {4, 5}, which is of size 2. Thus the final answer
is count() = 2. n

A subcube query returns a local data cube based on the instantiated and inquired
dimensions. Such a data cube needs to be aggregated in a multidimensional way
so that on-line analytical processing (such as drilling, dicing, pivoting, etc.) can be
made available to users for flexible manipulation and analysis. Because instantiated
dimensions usually provide highly selective constants that dramatically reduce the
size of the valid TIDlists, we should make maximal use of the precomputed shell
fragments by finding the fragments that best fit the set of instantiated dimensions,
and fetching and intersecting the associated TIDlists to derive the reduced TIDlist.
This list can then be used to intersect the best-fitting shell fragments consisting of
the inquired dimensions. This will generate the relevant and inquired base cuboid,
which can then be used to compute the relevant subcube on the fly using an efficient
on-line cubing algorithm.

Let the subcube query be of the form (o, o), Ax?, 0, Ay? : M?), where 0y, 0., and
0., represent a set of instantiated values of dimension A;, A j, and A, respectively, and Ay
and A, represent two inquired dimensions. First, we check the shell fragment schema to
determine which dimensions among (1) A;, A}, and A, and (2) among A; and A, are in
the same fragment partition. Suppose A; and A belong to the same fragment, as do A
and A, but that A, is in a different fragment. We fetch the corresponding TIDlists in the
precomputed 2-D fragment for A; and A; using the instantiations o; and o}, then fetch
the TIDlist on the precomputed 1-D fragment for A, using instantiation o,, and then
fetch the TIDlists on the precomputed 1-D fragments for Ay and A, respectively, using no
instantiations (i.e., all possible values). The obtained TIDlists are intersected to derive the
final TIDlists, which are used to fetch the corresponding measures from the ID_measure
array to derive the “base cuboid” of a 2-D subcube for two dimensions (A, A,). A fast cube
computation algorithm can be applied to compute this 2-D cube based on the derived base
cuboid. The computed 2-D cube is then ready for OLAP operations.

Subcube query. Suppose a user wants to compute the subcube query, (as, b1, ?, %, ?:
count()?), for our database in Table 4.4, and that the shell fragments have been pre-
computed as described in Example 4.10. The query can be broken into three best-fit
fragments according to the instantiated and inquired dimensions: AB, C, and E, where
AB has the instantiation (ay, b1). The fetch of the TIDlists for these partitions returns:
(az, b1):{4, 5}, (c1):{1, 2, 3,4, 5}, and {(e1:{1, 2}), (e2:{3, 4}), (e3:{5})}, respectively.
The intersection of these corresponding TIDlists contains a cuboid with two tuples: {(c1,
2):{4}>, (c1, e3):{5}}. This base cuboid can be used to compute the 2-D data cube,
which is trivial. (]

5That is, the intersection of the TIDlists for (ay, b;), (c1), and (ey) is {4}.

4.1.6

Example 4.14

Table 4.10

4.1 Efficient Methods for Data Cube Computation 187

For large data sets, a fragment size of 2 or 3 typically results in reasonable storage
requirements for the shell fragments and for fast query response time. Querying with
shell fragments is substantially faster than answering queries using precomputed data
cubes that are stored on disk. In comparison to full cube computation, Frag-Shells is
recommended if there are less than four inquired dimensions. Otherwise, more efficient
algorithms, such as Star-Cubing, can be used for fast on-line cube computation. Frag-
Shells can easily be extended to allow incremental updates, the details of which are left
as an exercise.

Computing Cubes with Complex Iceberg Conditions

The iceberg cubes we have discussed so far contain only simple iceberg conditions,
such as count > 50 or price_sum > 1000 (specified in the having clause). Such con-
ditions have a nice property: if the condition is violated for some cell c, then every
descendant of ¢ will also violate that condition. For example, if the quantity of an item
I sold in a region R; is less than 50, then the same item / sold in a subregion of R;
can never satisfy the condition count > 50. Conditions that obey this property are
known as antimonotonic.

Not all iceberg conditions are antimonotonic. For example, the condition avg(price)
> 800 is not antimonotonic. This is because if the average price of an item, such as,
say, “TV”, in region Ry, is less than $800, then a descendant of the cell representing
“TV” and Ry, such as “TV” in a subregion of R, can still have an average price of
over $800.

“Can we still push such an iceberg condition deep into the cube computation process for
improved efficiency?” To answer this question, we first look at an example.

Iceberg cube with the average measure. Consider the salesInfo table given in Table 4.10,
which registers sales related to month, day, city, customer group, item, and price.

Suppose, as data analysts, we have the following query: Find groups of sales that contain
at least 50 items and whose average item price is at least $800, grouped by month, city, and/or
customer group. We can specify an iceberg cube, sales_avg_iceberg, to answer the query, as
follows:

A salesInfo table.

month day city cust_group item price
Jan 10 Chicago Education HP Printer 485
Jan 15 Chicago Household Sony TV 1,200

Jan 20 New York Education Canon Camera 1,280
Feb 20 New York Business IBM Laptop 2,500
Mar 4 Vancouver Education Seagate HD 520

188

Chapter 4 Data Cube Computation and Data Generalization

compute cube sales_avg_iceberg as

select month, city, customer_group, avg(price), count(x)
from salesInfo

cube by month, city, customer_group

having avg(price) >= 800 and count(x) >= 50

Here, the iceberg condition involves the measure average, which is not antimonotonic.
This implies that if a cell, ¢, cannot satisfy the iceberg condition, “average(c) > v”, we
cannot prune away the descendants of ¢ because it is possible that the average value for
some of them may satisfy the condition. L]

“How can we compute sales_avg_iceberg?” It would be highly inefficient to first
materialize the full data cube and then select the cells satisfying the having clause
of the iceberg condition. We have seen that a cube with an antimonotonic iceberg
condition can be computed efficiently by exploring the Apriori property. However,
because this iceberg cube involves a non-antimonotonic iceberg condition, Apri-
ori pruning cannot be applied. “Can we transform the non-antimonotonic condition
to a somewhat weaker but antimonotonic one so that we can still take advantage of
pruning?”

The answer is “yes.” Here we examine one interesting such method. A cell ¢ is said to
have n base cells if it covers n nonempty descendant base cells. The top-k average of c,
denoted as avg”(c), is the average value (i.e., price) of the top-k base cells of ¢ (i.e., the first
k cells when all the base cells in ¢ are sorted in value-descending order) if k < n; or —eo
if k > n. With this notion of top-k average, we can transform the original iceberg con-
dition “avg(price) > v and count(x) > k” into the weaker but antimonotonic condition
“avg®(c) > v”. The reasoning is that if the average of the top-k nonempty descendant
base cells of a cell ¢ is less than v, there exists no subset from this set of base cells that
can contain k or more base cells and have a bigger average value than v. Thus, it is safe
to prune away the cell c.

It is costly to sort and keep the top-k base cell values for each aggregated cell. For effi-
cient implementation, we can use only a few records to register some aggregated values
to facilitate similar pruning. For example, we could use one record, ry, to keep the sum
and count of the cells whose value is no less than v, and a few records, such as ry, r;, and
r3, to keep the sum and count of the cells whose price falls into the range of [0.8 — 1.0),
[0.6 —0.8), [0.4 — 0.6) of v, respectively. If the counts of ry and r| are no less than & but
the average of the two is less than v, there is no hope of finding any descendants of ¢ that
can satisfy the iceberg condition. Thus ¢ and its descendants can be pruned off in iceberg
cube computation.

Similar transformation methods can be applied to many other iceberg conditions,
such as those involving average on a set of positive and negative values, range, variance,
and standard deviation. Details of the transformation methods are left as an exercise for
interested readers.

4.2.1

4.2 Further Development of Data Cube and OLAP Technology 189

Further Development of Data Cube and OLAP
Technology

In this section, we study further developments of data cube and OLAP technology.
Section 4.2.1 describes data mining by discovery-driven exploration of data cubes,
where anomalies in the data are automatically detected and marked for the user
with visual cues. Section 4.2.2 describes multifeature cubes for complex data mining
queries involving multiple dependent aggregates at multiple granularity. Section 4.2.3
presents methods for constrained gradient analysis in data cubes, which identifies cube
cells that have dramatic changes in value in comparison with their siblings, ancestors,
or descendants.

Discovery-Driven Exploration of Data Cubes

As studied in previous sections, a data cube may have a large number of cuboids, and each
cuboid may contain a large number of (aggregate) cells. With such an overwhelmingly
large space, it becomes a burden for users to even just browse a cube, let alone think of
exploring it thoroughly. Tools need to be developed to assist users in intelligently explor-
ing the huge aggregated space of a data cube.

Discovery-driven exploration is such a cube exploration approach. In discovery-
driven exploration, precomputed measures indicating data exceptions are used to guide
the user in the data analysis process, at all levels of aggregation. We hereafter refer to
these measures as exception indicators. Intuitively, an exception is a data cube cell value
that is significantly different from the value anticipated, based on a statistical model. The
model considers variations and patterns in the measure value across all of the dimensions
to which a cell belongs. For example, if the analysis of item-sales data reveals an increase
in sales in December in comparison to all other months, this may seem like an exception
in the time dimension. However, it is not an exception if the item dimension is consid-
ered, since there is a similar increase in sales for other items during December. The model
considers exceptions hidden at all aggregated group-by’s of a data cube. Visual cues such
as background color are used to reflect the degree of exception of each cell, based on
the precomputed exception indicators. Efficient algorithms have been proposed for cube
construction, as discussed in Section 4.1. The computation of exception indicators can
be overlapped with cube construction, so that the overall construction of data cubes for
discovery-driven exploration is efficient.

Three measures are used as exception indicators to help identify data anomalies. These
measures indicate the degree of surprise that the quantity in a cell holds, with respect to
its expected value. The measures are computed and associated with every cell, for all
levels of aggregation. They are as follows:

SelfExp: This indicates the degree of surprise of the cell value, relative to other cells
at the same level of aggregation.

190 Chapter 4 Data Cube Computation and Data Generalization

Example 4.15

Figure 4.15

InExp: This indicates the degree of surprise somewhere beneath the cell, if we were to
drill down from it.

PathExp: This indicates the degree of surprise for each drill-down path from the cell.

The use of these measures for discovery-driven exploration of data cubes is illustrated in
the following example.

Discovery-driven exploration of a data cube. Suppose that you would like to analyze the
monthly sales at AllElectronics as a percentage difference from the previous month. The
dimensions involved are item, time, and region. You begin by studying the data aggregated
over all items and sales regions for each month, as shown in Figure 4.15.

To view the exception indicators, you would click on a button marked highlight excep-
tions on the screen. This translates the SelfExp and InExp values into visual cues, dis-
played with each cell. The background color of each cell is based on its SelfExp value. In
addition, a box is drawn around each cell, where the thickness and color of the box are
a function of its InExp value. Thick boxes indicate high InExp values. In both cases, the
darker the color, the greater the degree of exception. For example, the dark, thick boxes
for sales during July, August, and September signal the user to explore the lower-level
aggregations of these cells by drilling down.

Drill-downs can be executed along the aggregated item or region dimensions. “Which
path has more exceptions?” you wonder. To find this out, you select a cell of interest and
trigger a path exception module that colors each dimension based on the PathExp value
of the cell. This value reflects the degree of surprise of that path. Suppose that the path
along item contains more exceptions.

A drill-down along item results in the cube slice of Figure 4.16, showing the sales over
time for each item. At this point, you are presented with many different sales values to
analyze. By clicking on the highlight exceptions button, the visual cues are displayed,
bringing focus toward the exceptions. Consider the sales difference of 41% for “Sony
b/w printers” in September. This cell has a dark background, indicating a high SelfExp
value, meaning that the cell is an exception. Consider now the sales difference of —15%
for “Sony b/w printers” in November, and of —11% in December. The —11% value for
December is marked as an exception, while the —15% value is not, even though —15% is
abigger deviation than —11%. This is because the exception indicators consider all of the
dimensions that a cell is in. Notice that the December sales of most of the other items have
a large positive value, while the November sales do not. Therefore, by considering the

e 2

Sum of sales Month

Jan Feb | Mar | Apr | May | Jun Jul |Aug Sep | Oct | Nov | Dec

-9% [I[-1%]| 2% | 4% J

Total 1% [-1% [0% | 1% | 3% |[-1%

Change in sales over time.

Figure 4.16

Figure 4.17

4.2 Further Development of Data Cube and OLAP Technology 191

()
Avg. sales Month
Item Jan | Feb | Mar | Apr | May | Jun | Jul [Aug [Sep [Oct [Nov }EI
Sony b/w printer 9% | 8% | 2% | 5% | 14% | 4% | 0% ~15% B9
Sony color printer 0% | 0% | 3% | 2% | 4% |-10%|-13%| 0% | 4% | —6% | 4%
HP b/w printer 2% | 1% | 2% | 3% | 8% | 0% |-12%| 9% | 3% | 3% | 6%
HP color printer 0% | 0% | 2% | 1% | 0% |-1% | 7% | 2% | 1% | 4% | 1%
IBM desktop computer 1% | 2% | -1% | =1%| 3% || 3% ||-10%|| 4% || 1% | —4% | -1%
IBM laptop computer 0% | 0% | -1%| 3% | 4% | 2% |-10%| 2% | 0% | -9% | 3%
Toshiba desktop computer 2% | 5% | 1% | 1% | -1%| 1% |G| 3% | -5% | -1% | -1%
Toshiba laptop computer 1% | 0% | 3% | 0% | 2% 2% | 5% | 3% | 2% | -1% | 0%
Logitech mouse 3% | 2% | -1%| 0% | 4% | 6% |-11%| 2% | 1% | 4% | 0%
(Ergo-way mouse 0% [0% | 2% | 3% | 1% | 2% | 2% | =5% | 0% | —5% | 8%

Change in sales for each item-time combination.

(Avg. sales Month
Region Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
North -1% | =3% | -1% 0% 3% | 4% -7% 1% 0% | —3% | -3%
South 1% [1% [9% [6% | 1% 9% (EBE%| 4% [1% [7%
East 1% | 2% | 2% | 3% | 1% | 18% | —2% | 11% | —3% | 2% | —1%
[West 4% 0% | 1% | 3% | 5% | 1% |-18% | 8% 5% | 8% | 1%

Change in sales for the item IBM desktop computer per region.

position of the cell in the cube, the sales difference for “Sony b/w printers” in December
is exceptional, while the November sales difference of this item is not.

The InExp values can be used to indicate exceptions at lower levels that are not visible
at the current level. Consider the cells for “IBM desktop computers” in July and September.
These both have a dark, thick box around them, indicating high InExp values. You may
decide to further explore the sales of “IBM desktop computers” by drilling down along
region. The resulting sales difference by region is shown in Figure 4.17, where the highlight
exceptions option has been invoked. The visual cues displayed make it easy to instantly
notice an exception for the sales of “IBM desktop computers” in the southern region,
where such sales have decreased by —39% and —34% in July and September, respectively.
These detailed exceptions were far from obvious when we were viewing the data as an
item-time group-by, aggregated over region in Figure 4.16. Thus, the InExp value is useful
for searching for exceptions at lower-level cells of the cube. Because no other cells in
Figure 4.17 have a high InExp value, you may roll up back to the data of Figure 4.16 and

192

Chapter 4 Data Cube Computation and Data Generalization

4.1.2

choose another cell from which to drill down. In this way, the exception indicators can
be used to guide the discovery of interesting anomalies in the data. (]

“How are the exception values computed?” The SelfExp, InExp, and PathExp measures
are based on a statistical method for table analysis. They take into account all of the
group-by’s (aggregations) in which a given cell value participates. A cell value is con-
sidered an exception based on how much it differs from its expected value, where its
expected value is determined with a statistical model described below. The difference
between a given cell value and its expected value is called a residual. Intuitively, the larger
the residual, the more the given cell value is an exception. The comparison of residual
values requires us to scale the values based on the expected standard deviation associated
with the residuals. A cell value is therefore considered an exception if its scaled residual
value exceeds a prespecified threshold. The SelfExp, InExp, and PathExp measures are
based on this scaled residual.

The expected value of a given cell is a function of the higher-level group-by’s of the
given cell. For example, given a cube with the three dimensions A, B, and C, the expected
value for a cell at the ith position in A, the jth position in B, and the kth position in C
is a function of v, v}, Yf Y y;;‘-B , VA€, and yﬁcc, which are coefficients of the statistical
model used. The coefficients reflect how different the values at more detailed levels are,
based on generalized impressions formed by looking at higher-level aggregations. In this
way, the exception quality of a cell value is based on the exceptions of the values below it.
Thus, when seeing an exception, it is natural for the user to further explore the exception
by drilling down.

“How can the data cube be efficiently constructed for discovery-driven exploration?”
This computation consists of three phases. The first step involves the computation of
the aggregate values defining the cube, such as sum or count, over which exceptions
will be found. The second phase consists of model fitting, in which the coefficients
mentioned above are determined and used to compute the standardized residuals.
This phase can be overlapped with the first phase because the computations involved
are similar. The third phase computes the SelfExp, InExp, and PathExp values, based
on the standardized residuals. This phase is computationally similar to phase 1. There-
fore, the computation of data cubes for discovery-driven exploration can be done
efficiently.

Complex Aggregation at Multiple Granularity:
Multifeature Cubes

Data cubes facilitate the answering of data mining queries as they allow the computa-
tion of aggregate data at multiple levels of granularity. In this section, you will learn
about multifeature cubes, which compute complex queries involving multiple dependent
aggregates at multiple granularity. These cubes are very useful in practice. Many com-
plex data mining queries can be answered by multifeature cubes without any significant
increase in computational cost, in comparison to cube computation for simple queries
with standard data cubes.

Example 4.16

Example 4.17

4.2 Further Development of Data Cube and OLAP Technology 193

All of the examples in this section are from the Purchases data of AllElectronics, where
an item is purchased in a sales region on a business day (year, month, day). The shelf life
in months of a given item is stored in shelf. The item price and sales (in dollars) at a given
region are stored in price and sales, respectively. To aid in our study of multifeature cubes,
let’s first look at an example of a simple data cube.

Query 1: A simple data cube query. Find the total sales in 2004, broken down by item,
region, and month, with subtotals for each dimension.

To answer Query 1, a data cube is constructed that aggregates the total sales at the
following eight different levels of granularity: {(item, region, month), (item, region),
(item, month), (month, region), (item), (month), (region), ()}, where () represents all.
Query 1 uses a typical data cube like that introduced in the previous chapter. We
call such a data cube a simple data cube because it does not involve any dependent aggre-
gates. L]

“What is meant by ‘dependent aggregates’® We answer this by studying the following
example of a complex query.

Query 2: A complex query. Grouping by all subsets of {item, region, month}, find the
maximum price in 2004 for each group and the total sales among all maximum price
tuples.

The specification of such a query using standard SQL can be long, repetitive, and
difficult to optimize and maintain. Alternatively, Query 2 can be specified concisely using
an extended SQL syntax as follows:

select item, region, month, max(price), sum(R.sales)
from Purchases

where year = 2004

cube by item, region, month: R

such that R.price = max(price)

The tuples representing purchases in 2004 are first selected. The cube by clause
computes aggregates (or group-by’s) for all possible combinations of the attributes item,
region, and month. It is an n-dimensional generalization of the group by clause. The
attributes specified in the cube by clause are the grouping attributes. Tuples with the
same value on all grouping attributes form one group. Let the groups be gy, ..., g,. For
each group of tuples g;, the maximum price maxg, among the tuples forming the group
is computed. The variable R is a grouping variable, ranging over all tuples in group g;
whose price is equal to max,, (as specified in the such that clause). The sum of sales of the
tuples in g; that R ranges over is computed and returned with the values of the grouping
attributes of g;. The resulting cube is a multifeature cube in that it supports complex
data mining queries for which multiple dependent aggregates are computed at a variety
of granularities. For example, the sum of sales returned in Query 2 is dependent on the
set of maximum price tuples for each group. (]

194 Chapter 4 Data Cube Computation and Data Generalization

{ = MIN(R1.shelf)} { = MAX(R1.shelf)}
R2 R3

R1 {=MAX(price)}

RO

Figure 4.18 A multifeature cube graph for Query 3.

Let’s look at another example.

Example 4.18 Query 3: An even more complex query. Grouping by all subsets of {item, region, month},
find the maximum price in 2004 for each group. Among the maximum price tuples, find
the minimum and maximum item shelf lives. Also find the fraction of the total sales due
to tuples that have minimum shelf life within the set of all maximum price tuples, and
the fraction of the total sales due to tuples that have maximum shelf life within the set of
all maximum price tuples.

The multifeature cube graph of Figure 4.18 helps illustrate the aggregate dependen-
cies in the query. There is one node for each grouping variable, plus an additional initial
node, RO. Starting from node RO, the set of maximum price tuples in 2004 is first com-
puted (node R1). The graph indicates that grouping variables R2 and R3 are “dependent”
on R1, since a directed line is drawn from R1 to each of R2 and R3. In a multifeature cube
graph, a directed line from grouping variable R; to R ; means that R ; always ranges over a
subset of the tuples that R; ranges over. When expressing the query in extended SQL, we
write “R; in R;” as shorthand to refer to this case. For example, the minimum shelf life
tuples at R2 range over the maximum price tuples at R1, that is, “R2 in RI.” Similarly,
the maximum shelf life tuples at R3 range over the maximum price tuples at R1, that is,
“R3inRI.”

From the graph, we can express Query 3 in extended SQL as follows:

select item, region, month, max(price), min(R1.shelf), max(R1.shelf),
sum(R1.sales), sum(R2.sales), sum(R3.sales)

from Purchases

where year = 2004

cube by item, region, month: R1, R2, R3

413

4.2 Further Development of Data Cube and OLAP Technology 195

such that R1.price = max(price) and
R2 in R1 and R2.shelf = min(R1.shelf) and
R3 in R1 and R3.shelf = max(R1.shelf)

“How can multifeature cubes be computed efficiently?” The computation of a multifea-
ture cube depends on the types of aggregate functions used in the cube. In Chapter 3,
we saw that aggregate functions can be categorized as either distributive, algebraic, or
holistic. Multifeature cubes can be organized into the same categories and computed
efficiently by minor extension of the previously studied cube computation methods.

Constrained Gradient Analysis in Data Cubes

Many data cube applications need to analyze the changes of complex measures in multidi-
mensional space. For example, in real estate, we may want to ask what are the changes of
the average house price in the Vancouver area in the year 2004 compared against 2003,
and the answer could be “the average price for those sold to professionals in the West End
went down by 20%, while those sold to business people in Metrotown went up by 10%,
etc.” Expressions such as “professionals in the West End” correspond to cuboid cells and
describe sectors of the business modeled by the data cube.

The problem of mining changes of complex measures in a multidimensional space was
first proposed by Imielinski, Khachiyan, and Abdulghani [IKA02] as the cubegrade prob-
lem, which can be viewed as a generalization of association rules® and data cubes. It stud-
ies how changes in a set of measures (aggregates) of interest are associated with changes
in the underlying characteristics of sectors, where changes in sector characteristics are
expressed in terms of dimensions of the cube and are limited to specialization (drill-
down), generalization (roll-up), and mutation (a change in one of the cube’s dimensions).
For example, we may want to ask “what kind of sector characteristics are associated with
major changes in average house price in the Vancouver area in 2004?” The answer will
be pairs of sectors, associated with major changes in average house price, including, for
example, “the sector of professional buyers in the West End area of Vancouver” versus
“the sector of all buyers in the entire area of Vancouver” as a specialization (or general-
ization). The cubegrade problem is significantly more expressive than association rules,
because it captures data trends and handles complex measures, not just count, as asso-
ciation rules do. The problem has broad applications, from trend analysis to answering
“what-if” questions and discovering exceptions or outliers.

The curse of dimensionality and the need for understandable results pose serious chal-
lenges for finding an efficient and scalable solution to the cubegrade problem. Here we
examine a confined but interesting version of the cubegrade problem, called

6 Association rules were introduced in Chapter 1. They are often used in market basket analysis to
find associations between items purchased in transactional sales databases. Association rule mining is
described in detail in Chapter 5.

196 Chapter 4 Data Cube Computation and Data Generalization

Example 4.19

constrained multidimensional gradient analysis, which reduces the search space and
derives interesting results. It incorporates the following types of constraints:

I. Significance constraint: This ensures that we examine only the cells that have certain
“statistical significance” in the data, such as containing at least a specified number
of base cells or at least a certain total sales. In the data cube context, this constraint
acts as the iceberg condition, which prunes a huge number of trivial cells from the
answer set.

2. Probe constraint: This selects a subset of cells (called probe cells) from all of the pos-
sible cells as starting points for examination. Because the cubegrade problem needs
to compare each cell in the cube with other cells that are either specializations, gener-
alizations, or mutations of the given cell, it extracts pairs of similar cell characteristics
associated with big changes in measure in a data cube. Given three cells, a, b, and ¢, if
a is a specialization of b, then we say it is a descendant of b, in which case, b is a gen-
eralization or ancestor of a. Cell ¢ is a mutation of a if the two have identical values in
all but one dimension, where the dimension for which they vary cannot have a value of
“x”. Cells a and ¢ are considered siblings. Even when considering only iceberg cubes,
a large number of pairs may still be generated. Probe constraints allow the user to
specify a subset of cells that are of interest for the analysis task. In this way, the study
is focused only on these cells and their relationships with corresponding ancestors,
descendants, and siblings.

3. Gradient constraint: This specifies the user’s range of interest on the gradient
(measure change). A user is typically interested in only certain types of changes
between the cells (sectors) under comparison. For example, we may be interested
in only those cells whose average profit increases by more than 40% compared to
that of the probe cells. Such changes can be specified as a threshold in the form
of either a ratio or a difference between certain measure values of the cells under
comparison. A cell that captures the change from the probe cell is referred to as
a gradient cell.

The following example illustrates each of the above types of constraints.

Constrained average gradient analysis. The base table, D, for AllElectronics sales has the
schema

sales(year, city, customer _group, item_group, count, avg_price).

Attributes year, city, customer_group, and item_group are the dimensional attributes;
count and avg_price are the measure attributes. Table 4.11 shows a set of base and aggre-
gate cells. Tuple ¢y is a base cell, while tuples ¢, ¢3, and ¢4 are aggregate cells. Tuple c3 is
a sibling of ¢, ¢4 is an ancestor of ¢;, and ¢; is a descendant of c;.

Suppose that the significance constraint, C;g, is (count > 100), meaning that a cell
with count no less than 100 is regarded as significant. Suppose that the probe constraint,
Cprp» is (city = “Vancouver,” customer_group = “Business,” item_group = *). This means

Table 4.11

4.2 Further Development of Data Cube and OLAP Technology 197

A set of base and aggregate cells.

c1 (2000, Vancouver, Business, PC, 300, $2100)
) (%, Vancouver, Business, PC, 2800, $1900)
3 (, Toronto, Business, PC, 7900, $2350)
c4 (%, *, Business, PC, 58600, $2250)

that the set of probe cells, P, is the set of aggregate tuples regarding the sales of the
Business customer group in Vancouver, for every product group, provided the count in
the tuple is greater than or equal to 100. It is easy to see that ¢; € P.

Let the gradient constraint, Cgr4q(cys ¢p), be (avg_price(cg)/avg_price(c,) > 1.4).
The constrained gradient analysis problem is thus to find all pairs, (cg, ¢,), where ¢, is
a probe cell in P; ¢, is a sibling, ancestor, or descendant of c; ¢, is a significant cell, and
cg’s average price is at least 40% more than c,,’s. (]

If a data cube is fully materialized, the query posed in Example 4.19 becomes a rela-
tively simple retrieval of the pairs of computed cells that satisfy the constraints. Unfor-
tunately, the number of aggregate cells is often too huge to be precomputed and stored.
Typically, only the base table or cuboid is available, so that the task then becomes how to
efficiently compute the gradient-probe pairs from it.

One rudimentary approach to computing such gradients is to conduct a search for the
gradient cells, once per probe cell. This approach is inefficient because it would involve
a large amount of repeated work for different probe cells. A suggested method is a set-
oriented approach that starts with a set of probe cells, utilizes constraints early on during
search, and explores pruning, when possible, during progressive computation of pairs of
cells. With each gradient cell, the set of all possible probe cells that might co-occur in
interesting gradient-probe pairs are associated with some descendants of the gradient
cell. These probe cells are considered “live probe cells.” This set is used to search for
future gradient cells, while considering significance constraints and gradient constraints
to reduce the search space as follows:

I. The significance constraints can be used directly for pruning: If a cell, ¢, cannot satisfy
the significance constraint, then ¢ and its descendants can be pruned because none of
them can be significant, and

2. Because the gradient constraint may specify a complex measure (such as avg > v),
the incorporation of both the significance constraint and the gradient constraint can
be used for pruning in a manner similar to that discussed in Section 4.1.6 on com-
puting cubes with complex iceberg conditions. That is, we can explore a weaker but
antimonotonic form of the constraint, such as the top-k average, avg*(c) > v, where k
is the significance constraint (such as 100 in Example 4.19), and v is derived from the
gradient constraint based on v = ¢4 X v,,, where ¢, is the gradient_contraint_threshold,
and v, is the value of the corresponding probe cell. That is, if the current cell, ¢, cannot

198

Chapter 4 Data Cube Computation and Data Generalization

satisfy this constraint, further exploration of its descendants will be useless and thus
can be pruned.

The constrained cube gradient analysis has been shown to be effective at exploring the
significant changes among related cube cells in multidimensional space.

Attribute-Oriented Induction—An Alternative Method
for Data Generalization and Concept Description

Data generalization summarizes data by replacing relatively low-level values (such as
numeric values for an attribute age) with higher-level concepts (such as young, middle-
aged, and senior). Given the large amount of data stored in databases, it is useful to be
able to describe concepts in concise and succinct terms at generalized (rather than low)
levels of abstraction. Allowing data sets to be generalized at multiple levels of abstraction
facilitates users in examining the general behavior of the data. Given the AllElectron-
ics database, for example, instead of examining individual customer transactions, sales
managers may prefer to view the data generalized to higher levels, such as summarized
by customer groups according to geographic regions, frequency of purchases per group,
and customer income.

This leads us to the notion of concept description, which is a form of data generaliza-
tion. A concept typically refers to a collection of data such as frequent_buyers,
graduate_students, and so on. As a data mining task, concept description is not a sim-
ple enumeration of the data. Instead, concept description generates descriptions for the
characterization and comparison of the data. It is sometimes called class description,
when the concept to be described refers to a class of objects. Characterization provides
a concise and succinct summarization of the given collection of data, while concept or
class comparison (also known as discrimination) provides descriptions comparing two
or more collections of data.

Up to this point, we have studied data cube (or OLAP) approaches to concept descrip-
tion using multidimensional, multilevel data generalization in data warehouses. “Is data
cube technology sufficient to accomplish all kinds of concept description tasks for large data
sets?” Consider the following cases.

Complex data types and aggregation: Data warehouses and OLAP tools are based on a
multidimensional data model that views data in the form of a data cube, consisting of
dimensions (or attributes) and measures (aggregate functions). However, many cur-
rent OLAP systems confine dimensions to nonnumeric data and measures to numeric
data. In reality, the database can include attributes of various data types, including
numeric, nonnumeric, spatial, text, or image, which ideally should be included in
the concept description. Furthermore, the aggregation of attributes in a database
may include sophisticated data types, such as the collection of nonnumeric data,
the merging of spatial regions, the composition of images, the integration of texts,

4.3 Attribute-Oriented Induction—An Alternative Method 199

and the grouping of object pointers. Therefore, OLAP, with its restrictions on the
possible dimension and measure types, represents a simplified model for data analy-
sis. Concept description should handle complex data types of the attributes and their
aggregations, as necessary.

User-control versus automation: On-line analytical processing in data warehouses is
a user-controlled process. The selection of dimensions and the application of OLAP
operations, such as drill-down, roll-up, slicing, and dicing, are primarily directed
and controlled by the users. Although the control in most OLAP systems is quite
user-friendly, users do require a good understanding of the role of each dimension.
Furthermore, in order to find a satisfactory description of the data, users may need to
specify a long sequence of OLAP operations. It is often desirable to have a more auto-
mated process that helps users determine which dimensions (or attributes) should
be included in the analysis, and the degree to which the given data set should be
generalized in order to produce an interesting summarization of the data.

This section presents an alternative method for concept description, called attribute-
oriented induction, which works for complex types of data and relies on a data-driven
generalization process.

43.1 Attribute-Oriented Induction for Data Characterization

The attribute-oriented induction (AOI) approach to concept description was first
proposed in 1989, a few years before the introduction of the data cube approach. The
data cube approach is essentially based on materialized views of the data, which typ-
ically have been precomputed in a data warehouse. In general, it performs off-line
aggregation before an OLAP or data mining query is submitted for processing. On
the other hand, the attribute-oriented induction approach is basically a query-oriented,
generalization-based, on-line data analysis technique. Note that there is no inherent
barrier distinguishing the two approaches based on on-line aggregation versus off-line
precomputation. Some aggregations in the data cube can be computed on-line, while
off-line precomputation of multidimensional space can speed up attribute-oriented
induction as well.

The general idea of attribute-oriented induction is to first collect the task-relevant
data using a database query and then perform generalization based on the exami-
nation of the number of distinct values of each attribute in the relevant set of data.
The generalization is performed by either attribute removal or attribute generalization.
Aggregation is performed by merging identical generalized tuples and accumulating
their respective counts. This reduces the size of the generalized data set. The resulting
generalized relation can be mapped into different forms for presentation to the user,
such as charts or rules.

The following examples illustrate the process of attribute-oriented induction. We first
discuss its use for characterization. The method is extended for the mining of class
comparisons in Section 4.3.4.

200 Chapter 4 Data Cube Computation and Data Generalization

Example 4.20 A data mining query for characterization. Suppose that a user would like to describe
the general characteristics of graduate students in the Big University database, given the
attributes name, gender, major, birth_place, birth_date, residence, phone# (telephone
number), and gpa (grade_point_average). A data mining query for this characterization
can be expressed in the data mining query language, DMQL, as follows:

use Big_University_DB

mine characteristics as “Science_Students”

in relevance to name, gender, major, birth_place, birth_date, residence,
phone#, gpa

from student

where status in “graduate”

We will see how this example of a typical data mining query can apply attribute-
oriented induction for mining characteristic descriptions.

First, data focusing should be performed before attribute-oriented induction. This
step corresponds to the specification of the task-relevant data (i.e., data for analysis). The
data are collected based on the information provided in the data mining query. Because a
data mining query is usually relevant to only a portion of the database, selecting the rele-
vant set of data not only makes mining more efficient, but also derives more meaningful
results than mining the entire database.

Specifying the set of relevant attributes (i.e., attributes for mining, as indicated in
DMQL with the in relevance to clause) may be difficult for the user. A user may select
only a few attributes that he or she feels may be important, while missing others that
could also play a role in the description. For example, suppose that the dimension
birth_place is defined by the attributes city, province_or_state, and country. Of these
attributes, let’s say that the user has only thought to specify city. In order to allow
generalization on the birth_place dimension, the other attributes defining this dimen-
sion should also be included. In other words, having the system automatically include
province_or_state and country as relevant attributes allows city to be generalized to these
higher conceptual levels during the induction process.

At the other extreme, suppose that the user may have introduced too many attributes
by specifying all of the possible attributes with the clause “in relevance to *”. In this case,
all of the attributes in the relation specified by the from clause would be included in the
analysis. Many of these attributes are unlikely to contribute to an interesting description.
A correlation-based (Section 2.4.1) or entropy-based (Section 2.6.1) analysis method can
be used to perform attribute relevance analysis and filter out statistically irrelevant or
weakly relevant attributes from the descriptive mining process. Other approaches, such
as attribute subset selection, are also described in Chapter 2.

“What does the ‘where status in “graduate” clause mean?” This where clause implies
that a concept hierarchy exists for the attribute status. Such a concept hierarchy organizes
primitive-level data values for status, such as “M.Sc.”, “M.A.”, “M.B.A.”, “Ph.D.”, “B.Sc.”,
“B.A.”, into higher conceptual levels, such as “graduate” and “undergraduate.” This use

4.3 Attribute-Oriented Induction—An Alternative Method 201

Table 4.12 Initial working relation: a collection of task-relevant data.

name gender major birth_place birth_date residence phone#t gpa

Jim Woodman M CS Vancouver, BC, Canada 8-12-76 3511 Main St., Richmond 687-4598 3.67
Scott Lachance M CS Montreal, Que, Canada 28-7-75 345 1st Ave., Richmond 253-9106 3.70
Laura Lee F physics Seattle, WA, USA 25-8-70 125 Austin Ave., Burnaby 420-5232 3.83

of concept hierarchies does not appear in traditional relational query languages, yet is
likely to become a common feature in data mining query languages.

The data mining query presented above is transformed into the following relational
query for the collection of the task-relevant set of data:

use Big_University_DB

select name, gender, major, birth_place, birth_date, residence, phone#, gpa
from student

where status in { “M.Sc.”, “M.A.”, “M.B.A.”, “Ph.D.”}

The transformed query is executed against the relational database, Big_University_DB,
and returns the data shown in Table 4.12. This table is called the (task-relevant) initial
working relation. It is the data on which induction will be performed. Note that each
tuple is, in fact, a conjunction of attribute-value pairs. Hence, we can think of a tuple
within a relation as a rule of conjuncts, and of induction on the relation as the general-
ization of these rules. L]

“Now that the data are ready for attribute-oriented induction, how is attribute-oriented
induction performed?” The essential operation of attribute-oriented induction is data
generalization, which can be performed in either of two ways on the initial working rela-
tion: attribute removal and attribute generalization.

Attribute removal is based on the following rule: If there is a large set of distinct
values for an attribute of the initial working relation, but either (1) there is no generalization
operator on the attribute (e.g., there is no concept hierarchy defined for the attribute), or (2)
its higher-level concepts are expressed in terms of other attributes, then the attribute should
be removed from the working relation.

Let’s examine the reasoning behind this rule. An attribute-value pair represents a con-
junct in a generalized tuple, or rule. The removal of a conjunct eliminates a constraint
and thus generalizes the rule. If, as in case 1, there is a large set of distinct values for an
attribute but there is no generalization operator for it, the attribute should be removed
because it cannot be generalized, and preserving it would imply keeping a large number
of disjuncts, which contradicts the goal of generating concise rules. On the other hand,
consider case 2, where the higher-level concepts of the attribute are expressed in terms
of other attributes. For example, suppose that the attribute in question is street, whose
higher-level concepts are represented by the attributes {city, province_or_state, country).

202

Chapter 4 Data Cube Computation and Data Generalization

The removal of street is equivalent to the application of a generalization operator. This
rule corresponds to the generalization rule known as dropping conditions in the machine
learning literature on learning from examples.

Attribute generalization is based on the following rule: If there is a large set of distinct
values for an attribute in the initial working relation, and there exists a set of generalization
operators on the attribute, then a generalization operator should be selected and applied
to the attribute. This rule is based on the following reasoning. Use of a generalization
operator to generalize an attribute value within a tuple, or rule, in the working relation
will make the rule cover more of the original data tuples, thus generalizing the concept it
represents. This corresponds to the generalization rule known as climbing generalization
trees in learning from examples, or concept tree ascension.

Both rules, attribute removal and attribute generalization, claim that if there is a large
set of distinct values for an attribute, further generalization should be applied. This raises
the question: how large is “a large set of distinct values for an attribute” considered to be?

Depending on the attributes or application involved, a user may prefer some attributes
to remain at a rather low abstraction level while others are generalized to higher levels.
The control of how high an attribute should be generalized is typically quite subjective.
The control of this process is called attribute generalization control. If the attribute is
generalized “too high,” it may lead to overgeneralization, and the resulting rules may
not be very informative. On the other hand, if the attribute is not generalized to a
“sufficiently high level,” then undergeneralization may result, where the rules obtained
may not be informative either. Thus, a balance should be attained in attribute-oriented
generalization.

There are many possible ways to control a generalization process. We will describe
two common approaches and then illustrate how they work with an example.

The first technique, called attribute generalization threshold control, either sets one
generalization threshold for all of the attributes, or sets one threshold for each attribute.
If the number of distinct values in an attribute is greater than the attribute threshold,
further attribute removal or attribute generalization should be performed. Data mining
systems typically have a default attribute threshold value generally ranging from 2 to 8
and should allow experts and users to modify the threshold values as well. If a user feels
that the generalization reaches too high a level for a particular attribute, the threshold
can be increased. This corresponds to drilling down along the attribute. Also, to further
generalize a relation, the user can reduce the threshold of a particular attribute, which
corresponds to rolling up along the attribute.

The second technique, called generalized relation threshold control, sets a threshold
for the generalized relation. If the number of (distinct) tuples in the generalized
relation is greater than the threshold, further generalization should be performed.
Otherwise, no further generalization should be performed. Such a threshold may
also be preset in the data mining system (usually within a range of 10 to 30), or
set by an expert or user, and should be adjustable. For example, if a user feels that
the generalized relation is too small, he or she can increase the threshold, which
implies drilling down. Otherwise, to further generalize a relation, the threshold can
be reduced, which implies rolling up.

Example 4.21

4.3 Attribute-Oriented Induction—An Alternative Method 203

These two techniques can be applied in sequence: first apply the attribute threshold
control technique to generalize each attribute, and then apply relation threshold con-
trol to further reduce the size of the generalized relation. No matter which generaliza-
tion control technique is applied, the user should be allowed to adjust the generalization
thresholds in order to obtain interesting concept descriptions.

In many database-oriented induction processes, users are interested in obtaining
quantitative or statistical information about the data at different levels of abstraction.
Thus, it is important to accumulate count and other aggregate values in the induction
process. Conceptually, this is performed as follows. The aggregate function, count, is
associated with each database tuple. Its value for each tuple in the initial working relation
is initialized to 1. Through attribute removal and attribute generalization, tuples within
the initial working relation may be generalized, resulting in groups of identical tuples. In
this case, all of the identical tuples forming a group should be merged into one tuple.
The count of this new, generalized tuple is set to the total number of tuples from the ini-
tial working relation that are represented by (i.e., were merged into) the new generalized
tuple. For example, suppose that by attribute-oriented induction, 52 data tuples from the
initial working relation are all generalized to the same tuple, 7. That is, the generalization
of these 52 tuples resulted in 52 identical instances of tuple 7. These 52 identical tuples
are merged to form one instance of T', whose count is set to 52. Other popular aggregate
functions that could also be associated with each tuple include sum and avg. For a given
generalized tuple, sum contains the sum of the values of a given numeric attribute for
the initial working relation tuples making up the generalized tuple. Suppose that tuple
T contained sum(units_sold) as an aggregate function. The sum value for tuple 7" would
then be set to the total number of units sold for each of the 52 tuples. The aggregate avg
(average) is computed according to the formula, avg = sum/count.

Attribute-oriented induction. Here we show how attribute-oriented induction is per-
formed on the initial working relation of Table 4.12. For each attribute of the relation,
the generalization proceeds as follows:

I. name: Since there are a large number of distinct values for name and there is no
generalization operation defined on it, this attribute is removed.

2. gender: Since there are only two distinct values for gender, this attribute is retained
and no generalization is performed on it.

3. major: Suppose that a concept hierarchy has been defined that allows the attribute
major to be generalized to the values {artséscience, engineering, business}. Suppose
also that the attribute generalization threshold is set to 5, and that there are more than
20 distinct values for major in the initial working relation. By attribute generalization
and attribute generalization control, major is therefore generalized by climbing the
given concept hierarchy.

4. birth_place: This attribute has a large number of distinct values; therefore, we would
like to generalize it. Suppose that a concept hierarchy exists for birth_place, defined

204

Chapter 4 Data Cube Computation and Data Generalization

Table 4.13

as “city < province_or_state < country”. If the number of distinct values for country
in the initial working relation is greater than the attribute generalization threshold,
then birth_place should be removed, because even though a generalization operator
exists for it, the generalization threshold would not be satisfied. If instead, the number
of distinct values for country is less than the attribute generalization threshold, then
birth_place should be generalized to birth_country.

. birth_date: Suppose that a hierarchy exists that can generalize birth_date to age, and age

to age_range, and that the number of age ranges (or intervals) is small with respect to
the attribute generalization threshold. Generalization of birth_date should therefore
take place.

. residence: Supposethatresidenceisdefined by theattributes number, street, residence_city,

residence_province_or_state, and residence_country. The number of distinct values for
number and street will likely be very high, since these concepts are quite low level. The
attributes number and street should therefore be removed, so that residence is then
generalized to residence_city, which contains fewer distinct values.

. phone#: As with the attribute name above, this attribute contains too many distinct

values and should therefore be removed in generalization.

gpa: Suppose that a concept hierarchy exists for gpa that groups values for grade
point average into numerical intervals like {3.75-4.0, 3.5-3.75,... }, which in turn
are grouped into descriptive values, such as {excellent, very good,...}. The attribute
can therefore be generalized.

The generalization process will result in groups of identical tuples. For example, the

first two tuples of Table 4.12 both generalize to the same identical tuple (namely, the first
tuple shown in Table 4.13). Such identical tuples are then merged into one, with their
counts accumulated. This process leads to the generalized relation shown in Table 4.13.

Based on the vocabulary used in OLAP, we may view count as a measure, and the

remaining attributes as dimensions. Note that aggregate functions, such as sum, may be
applied to numerical attributes, like salary and sales. These attributes are referred to as
measure attributes. (]

Implementation techniques and methods of presenting the derived generalization are

discussed in the following subsections.

A generalized relation obtained by attribute-oriented induction on the data of
Table 4.12.
gender major birth_country age_range residence_city gpa count

M Science Canada 20-25 Richmond very _good 16
F Science Foreign 25-30 Burnaby excellent 22

4.3 Attribute-Oriented Induction—An Alternative Method 205

4.3.1 Efficient Implementation of Attribute-Oriented Induction

“How is attribute-oriented induction actually implemented?” The previous subsection
provided an introduction to attribute-oriented induction. The general procedure is sum-
marized in Figure 4.19. The efficiency of this algorithm is analyzed as follows:

Step 1 of the algorithm is essentially a relational query to collect the task-relevant data
into the working relation, W. Its processing efficiency depends on the query process-
ing methods used. Given the successful implementation and commercialization of
database systems, this step is expected to have good performance.

Algorithm: Attribute oriented induction. Mining generalized characteristics in a relational database given a
user’s data mining request.

Input:
DB, a relational database;
DMQuery, a data mining query;
a_list, a list of attributes (containing attributes, a;);
Gen(a;), a set of concept hierarchies or generalization operators on attributes, a;;
a-gen_thresh(a;), attribute generalization thresholds for each a;.

Output: P, a Prime_generalized_relation.
Method:

1. W « get_task_relevant_data (DMQuery, DB); // Let W, the working relation, hold the task-relevant
data.

2. prepare_for_generalization (W); // This is implemented as follows.

(a) Scan W and collect the distinct values for each attribute, a;. (Note: If W is very large, this may be
done by examining a sample of W.)

(b) For each attribute a;, determine whether a; should be removed, and if not, compute its minimum
desired level L; based on its given or default attribute threshold, and determine the mapping-
pairs (v, V'), where v is a distinct value of g; in W, and v/ is its corresponding generalized value at
level L;.

3. P « generalization (W),
The Prime_generalized_relation, P, is derived by replacing each value v in W by its corresponding v/ in
the mapping while accumulating count and computing any other aggregate values.
This step can be implemented efficiently using either of the two following variations:

(a) For each generalized tuple, insert the tuple into a sorted prime relation P by a binary search: if the
tuple is already in P, simply increase its count and other aggregate values accordingly; otherwise,
insert it into P.

(b) Since in most cases the number of distinct values at the prime relation level is small, the prime
relation can be coded as an m-dimensional array where m is the number of attributes in P,
and each dimension contains the corresponding generalized attribute values. Each array element
holds the corresponding count and other aggregation values, if any. The insertion of a generalized
tuple is performed by measure aggregation in the corresponding array element.

Figure 4.19 Basic algorithm for attribute-oriented induction.

206 Chapter4

433

Example 4.22

Example 4.23

Data Cube Computation and Data Generalization

Step 2 collects statistics on the working relation. This requires scanning the relation
at most once. The cost for computing the minimum desired level and determining
the mapping pairs, (v, V'), for each attribute is dependent on the number of distinct
values for each attribute and is smaller than N, the number of tuples in the initial
relation.

Step 3 derives the prime relation, P. This is performed by inserting generalized tuples
into P. There are a total of N tuples in W and p tuples in P. For each tuple, ¢, in
W, we substitute its attribute values based on the derived mapping-pairs. This results
in a generalized tuple, ¢. If variation (a) is adopted, each ¢ takes O(log p) to find
the location for count increment or tuple insertion. Thus the total time complexity
is O(N x log p) for all of the generalized tuples. If variation (b) is adopted, each #
takes O(1) to find the tuple for count increment. Thus the overall time complexity is
O(N) for all of the generalized tuples.

Many data analysis tasks need to examine a good number of dimensions or attributes.
This may involve dynamically introducing and testing additional attributes rather than
just those specified in the mining query. Moreover, a user with little knowledge of the
truly relevant set of data may simply specify “in relevance to *” in the mining query,
which includes all of the attributes into the analysis. Therefore, an advanced concept
description mining process needs to perform attribute relevance analysis on large sets
of attributes to select the most relevant ones. Such analysis may employ correlation or
entropy measures, as described in Chapter 2 on data preprocessing.

Presentation of the Derived Generalization

“Attribute-oriented induction generates one or a set of generalized descriptions. How can
these descriptions be visualized?” The descriptions can be presented to the user in a num-
ber of different ways. Generalized descriptions resulting from attribute-oriented induc-
tion are most commonly displayed in the form of a generalized relation (or table).

Generalized relation (table). Suppose that attribute-oriented induction was performed
on a sales relation of the AllElectronics database, resulting in the generalized description
of Table 4.14 for sales in 2004. The description is shown in the form of a generalized
relation. Table 4.13 of Example 4.21 is another example of a generalized relation. (]

Descriptions can also be visualized in the form of cross-tabulations, or crosstabs. In
a two-dimensional crosstab, each row represents a value from an attribute, and each col-
umn represents a value from another attribute. In an n-dimensional crosstab (for n > 2),
the columns may represent the values of more than one attribute, with subtotals shown
for attribute-value groupings. This representation is similar to spreadsheets. It is easy to
map directly from a data cube structure to a crosstab.

Cross-tabulation. The generalized relation shown in Table 4.14 can be transformed into
the 3-D cross-tabulation shown in Table 4.15. (]

Table 4.14

Table 4.15

Example 4.24

Example 4.25

4.3 Attribute-Oriented Induction—An Alternative Method 207

A generalized relation for the sales in 2004.

location item sales (in million dollars) count (in thousands)
Asia vV 15 300
Europe vV 12 250
North_America vV 28 450
Asia computer 120 1000
Europe computer 150 1200
North_America computer 200 1800

A crosstab for the sales in 2004.

item
TV computer both_items
location sales count sales count sales count
Asia 15 300 120 1000 135 1300
Europe 12 250 150 1200 162 1450
North_America 28 450 200 1800 228 2250
all_regions 45 1000 470 4000 525 5000

Generalized data can be presented graphically, using bar charts, pie charts, and curves.
Visualization with graphs is popular in data analysis. Such graphs and curves can
represent 2-D or 3-D data.

Bar chart and pie chart. The sales data of the crosstab shown in Table 4.15 can be trans-
formed into the bar chart representation of Figure 4.20 and the pie chart representation
of Figure 4.21. [

Finally, a 3-D generalized relation or crosstab can be represented by a 3-D data cube,
which is useful for browsing the data at different levels of generalization.

Cube view. Consider the data cube shown in Figure 4.22 for the dimensions item, location,
and cost. This is the same kind of data cube that we have seen so far, although it is presented
in a slightly different way. Here, the size of a cell (displayed as a tiny cube) represents the
count of the corresponding cell, while the brightness of the cell can be used to represent
another measure of the cell, such as sum (sales). Pivoting, drilling, and slicing-and-dicing
operations can be performed on the data cube browser by mouse clicking. (]

A generalized relation may also be represented in the form of logic rules. Typically,
each generalized tuple represents a rule disjunct. Because data in a large database usually
span a diverse range of distributions, a single generalized tuple is unlikely to cover, or

208 Chapter 4 Data Cube Computation and Data Generalization

[JAsia
[Europe
250 — B North America
200
w 150 -
[
E —
100
50 |
0
TV Computers TV + Computers
Figure 4.20 Bar chart representation of the sales in 2004.
Asia
North (27.27%)
America
(50.91%)
Europe
(21.82%)

Figure 4.21

TV Sales

Asia Asia
North (25.53%) North (25.71%)
America America
(42.56%) (43.43%)

Europe Europe

(31.91%) (30.86%)

Computer Sales TV + Computer Sales

Pie chart representation of the sales in 2004.

represent, 100% of the initial working relation tuples, or cases. Thus, quantitative infor-
mation, such as the percentage of data tuples that satisfy the left- and right-hand side of
the rule, should be associated with each rule. A logic rule that is associated with quanti-
tative information is called a quantitative rule.

To define a quantitative characteristic rule, we introduce the t-weight as an interest-
ingness measure that describes the typicality of each disjunct in the rule, or of each tuple

4.3 Attribute-Oriented Induction—An Alternative Method 209

Figure 4.22 A 3-D cube view representation of the sales in 2004.

in the corresponding generalized relation. The measure is defined as follows. Let the class
of objects that is to be characterized (or described by the rule) be called the target class.
Let g, be a generalized tuple describing the target class. The t-weight for g, is the per-
centage of tuples of the target class from the initial working relation that are covered by
qn. Formally, we have

t_weight = count(qa)/X}_,count(qa), (4.1)

where 7 is the number of tuples for the target class in the generalized relation; qy, . . ., gy
are tuples for the target class in the generalized relation; and ¢, isin gy, . . ., gn. Obviously,
the range for the t-weight is [0.0, 1.0] or [0%, 100%].

A quantitative characteristic rule can then be represented either (1) in logic form by
associating the corresponding t-weight value with each disjunct covering the target class,
or (2) in the relational table or crosstab form by changing the count values in these tables
for tuples of the target class to the corresponding t-weight values.

Each disjunct of a quantitative characteristic rule represents a condition. In general,
the disjunction of these conditions forms a necessary condition of the target class, since
the condition is derived based on all of the cases of the target class; that is, all tuples
of the target class must satisfy this condition. However, the rule may not be a sufficient
condition of the target class, since a tuple satisfying the same condition could belong to
another class. Therefore, the rule should be expressed in the form

VX, target_class(X) = condition; (X)[t : w1V - -V condition,,(X)[t : wy]. (4.2)

210 Chapter 4 Data Cube Computation and Data Generalization

Example 4.26

434

The rule indicates that if X is in the target_class, there is a probability of w; that X
satisfies condition;, where w; is the t-weight value for condition or disjunct i, and i is
in{l,...,m}.

Quantitative characteristic rule. The crosstab shown in Table 4.15 can be transformed
into logic rule form. Let the target class be the set of computer items. The corresponding
characteristic rule, in logic form, is

VX, item(X) = “computer” =
(location(X) = “Asia”) [t : 25.00%)] V (location(X) = “Europe”) [t : 30.00%)] V
(location(X) = “North_America”) [t : 45, 00%]

Notice that the first t-weight value of 25.00% is obtained by 1000, the value corres-
ponding to the count slot for “(Asia,computer)”, divided by 4000, the value correspond-
ing to the count slot for “(all_regions, computer)”. (That is, 4000 represents the total
number of computer items sold.) The t-weights of the other two disjuncts were simi-
larly derived. Quantitative characteristic rules for other target classes can be computed
in a similar fashion. (]

“How can the t-weight and interestingness measures in general be used by the data
mining system to display only the concept descriptions that it objectively evaluates as
interesting?” A threshold can be set for this purpose. For example, if the t-weight
of a generalized tuple is lower than the threshold, then the tuple is considered to
represent only a negligible portion of the database and can therefore be ignored
as uninteresting. Ignoring such negligible tuples does not mean that they should be
removed from the intermediate results (i.e., the prime generalized relation, or the data
cube, depending on the implementation) because they may contribute to subsequent
further exploration of the data by the user via interactive rolling up or drilling down
of other dimensions and levels of abstraction. Such a threshold may be referred to
as a significance threshold or support threshold, where the latter term is commonly
used in association rule mining.

Mining Class Comparisons: Discriminating between
Different Classes

In many applications, users may not be interested in having a single class (or concept)
described or characterized, but rather would prefer to mine a description that compares
or distinguishes one class (or concept) from other comparable classes (or concepts). Class
discrimination or comparison (hereafter referred to as class comparison) mines descrip-
tions that distinguish a target class from its contrasting classes. Notice that the target and
contrasting classes must be comparable in the sense that they share similar dimensions
and attributes. For example, the three classes, person, address, and item, are not compara-
ble. However, the sales in the last three years are comparable classes, and so are computer
science students versus physics students.

4.3 Attribute-Oriented Induction—An Alternative Method 211

Our discussions on class characterization in the previous sections handle multilevel
data summarization and characterization in a single class. The techniques developed
can be extended to handle class comparison across several comparable classes. For
example, the attribute generalization process described for class characterization can
be modified so that the generalization is performed synchronously among all the
classes compared. This allows the attributes in all of the classes to be generalized
to the same levels of abstraction. Suppose, for instance, that we are given the AllElec-
tronics data for sales in 2003 and sales in 2004 and would like to compare these two
classes. Consider the dimension location with abstractions at the city, province_or_state,
and country levels. Fach class of data should be generalized to the same location
level. That is, they are synchronously all generalized to either the city level, or the
province_or_state level, or the country level. Ideally, this is more useful than comparing,
say, the sales in Vancouver in 2003 with the sales in the United States in 2004 (i.e.,
where each set of sales data is generalized to a different level). The users, however,
should have the option to overwrite such an automated, synchronous comparison
with their own choices, when preferred.

“How is class comparison performed?” In general, the procedure is as follows:

I. Data collection: The set of relevant data in the database is collected by query process-
ing and is partitioned respectively into a target class and one or a set of contrasting
class(es).

2. Dimension relevance analysis: If there are many dimensions, then dimension rele-
vance analysis should be performed on these classes to select only the highly relevant
dimensions for further analysis. Correlation or entropy-based measures can be used
for this step (Chapter 2).

3. Synchronous generalization: Generalization is performed on the target class to the
level controlled by a user- or expert-specified dimension threshold, which results in
a prime target class relation. The concepts in the contrasting class(es) are general-
ized to the same level as those in the prime target class relation, forming the prime
contrasting class(es) relation.

4. Presentation of the derived comparison: The resulting class comparison description
can be visualized in the form of tables, graphs, and rules. This presentation usually
includes a “contrasting” measure such as count% (percentage count) that reflects the
comparison between the target and contrasting classes. The user can adjust the com-
parison description by applying drill-down, roll-up, and other OLAP operations to
the target and contrasting classes, as desired.

The above discussion outlines a general algorithm for mining comparisons in data-
bases. In comparison with characterization, the above algorithm involves synchronous
generalization of the target class with the contrasting classes, so that classes are simulta-
neously compared at the same levels of abstraction.

The following example mines a class comparison describing the graduate students
and the undergraduate students at Big University.

212

Chapter 4 Data Cube Computation and Data Generalization

Example 4.27 Mining a class comparison. Suppose that you would like to compare the general

properties between the graduate students and the undergraduate students at Big Univer-
sity, given the attributes name, gender, major, birth_place, birth_date, residence, phone#,
and gpa.

This data mining task can be expressed in DMQL as follows:

use Big_University_DB

mine comparison as “grad_vs_undergrad_students”

in relevance to name, gender, major, birth_place, birth_date, residence,
phone#, gpa

for “graduate_students”

where status in “graduate”

versus “undergraduate_students”

where status in “undergraduate”

analyze count%

from student

Let’s see how this typical example of a data mining query for mining comparison
descriptions can be processed.

First, the query is transformed into two relational queries that collect two sets of
task-relevant data: one for the initial target class working relation, and the other for
the initial contrasting class working relation, as shown in Tables 4.16 and 4.17. This
can also be viewed as the construction of a data cube, where the status {graduate,
undergraduate} serves as one dimension, and the other attributes form the remaining
dimensions.

Table 4.16 Initial working relations: the targer class (graduate students)

name gender major birth_place birth_date residence phonett gpa

Jim Woodman M CS Vancouver, BC, Canada 8-12-76 3511 Main St., Richmond 687-4598 3.67
Scott Lachance M CS Montreal, Que, Canada 28-7-75 345 Ist Ave., Vancouver 253-9106 3.70
Laura Lee F Physics Seattle, WA, USA 25-8-70 125 Austin Ave., Burnaby 420-5232 3.83

Table 4.17 Initial working relations: the contrasting class (undergraduate students)

name gender major birth_place birth_date residence phone#t gpa

Bob Schumann M Chemistry Calgary, Alt, Canada 10-1-78 2642 Halifax St., Burnaby 294-4291 2.96
Amy Eau F Biology Golden, BC, Canada 30-3-76 463 Sunset Cres., Vancouver 681-5417 3.52

Table 4.18

Table 4.19

4.3 Attribute-Oriented Induction—An Alternative Method 213

Second, dimension relevance analysis can be performed, when necessary, on the two
classes of data. After this analysis, irrelevant or weakly relevant dimensions, such as name,
gender, birth_place, residence, and phone#, are removed from the resulting classes. Only
the highly relevant attributes are included in the subsequent analysis.

Third, synchronous generalization is performed: Generalization is performed on the
target class to the levels controlled by user- or expert-specified dimension thresholds,
forming the prime target class relation. The contrasting class is generalized to the same
levels as those in the prime target class relation, forming the prime contrasting class(es)
relation, as presented in Tables 4.18 and 4.19. In comparison with undergraduate
students, graduate students tend to be older and have a higher GPA, in general.

Finally, the resulting class comparison is presented in the form of tables, graphs,
and/or rules. This visualization includes a contrasting measure (such as count%) that
compares between the target class and the contrasting class. For example, 5.02% of the
graduate students majoring in Science are between 26 and 30 years of age and have
a “good” GPA, while only 2.32% of undergraduates have these same characteristics.
Drilling and other OLAP operations may be performed on the target and contrasting
classes as deemed necessary by the user in order to adjust the abstraction levels of
the final description. (]

“How can class comparison descriptions be presented?” As with class characteriza-
tions, class comparisons can be presented to the user in various forms, including

Prime generalized relation for the target class (graduate

students)

major age_range gpa count%
Science 21...25 good 5.53%
Science 26...30 good 5.02%
Science over_30 very_good 5.86%
Business over_30 excellent 4.68%

Prime generalized relation for the contrasting
class (undergraduate students)

major age_range gpa count%
Science 16...20 fair 5.53%
Science 16...20 good 4.53%
Science 26...30 good 2.32%

Business over_30 excellent 0.68%

214 Chapter4

Example 4.28

Table 4.20

Data Cube Computation and Data Generalization

generalized relations, crosstabs, bar charts, pie charts, curves, cubes, and rules. With
the exception of logic rules, these forms are used in the same way for characterization
as for comparison. In this section, we discuss the visualization of class comparisons
in the form of discriminant rules.

As is similar with characterization descriptions, the discriminative features of the tar-
get and contrasting classes of a comparison description can be described quantitatively
by a quantitative discriminant rule, which associates a statistical interestingness measure,
d-weight, with each generalized tuple in the description.

Let g, be a generalized tuple, and C; be the target class, where g, covers some tuples of
the target class. Note that it is possible that g, also covers some tuples of the contrasting
classes, particularly since we are dealing with a comparison description. The d-weight
for g, is the ratio of the number of tuples from the initial target class working relation
that are covered by g, to the total number of tuples in both the initial target class and
contrasting class working relations that are covered by g,. Formally, the d-weight of g,
for the class C; is defined as

d_weight = count(gq, € C;)/Z{ count(q, € C;), (4.3)
where m is the total number of the target and contrasting classes, C; is in {Ci,..., Cp},
and count (g, € C;) is the number of tuples of class C; that are covered by ¢,. The range
for the d-weight is [0.0, 1.0] (or [0%, 100%]).

A high d-weight in the target class indicates that the concept represented by the gen-
eralized tuple is primarily derived from the target class, whereas a low d-weight implies
that the concept is primarily derived from the contrasting classes. A threshold can be set
to control the display of interesting tuples based on the d-weight or other measures used,
as described in Section 4.3.3.

Computing the d-weight measure. In Example 4.27, suppose that the count distribution
for the generalized tuple, major = “Science” AND age_range = “21...25” AND
gpa = “good”, from Tables 4.18 and 4.19 is as shown in Table 20.

The d-weight for the given generalized tuple is 90/(90 + 210) = 30% with respect to
the target class, and 210/(90 + 210) = 70% with respect to the contrasting class. That is,
if a student majoring in Science is 21 to 25 years old and has a “good” gpa, then based on the
data, there is a 30% probability that she is a graduate student, versus a 70% probability that

Count distribution between graduate and undergraduate
students for a generalized tuple.

status major age_range gha count

graduate Science 21..25 good 90
undergraduate Science 21..25 good 210

Example 4.29

43.5

Example 4.30

4.3 Attribute-Oriented Induction—An Alternative Method 215

she is an undergraduate student. Similarly, the d-weights for the other generalized tuples
in Tables 4.18 and 4.19 can be derived. (]

A quantitative discriminant rule for the target class of a given comparison description
is written in the form

VX, target_class(X)<condition(X) [d:d_weight], (4.4)

where the condition is formed by a generalized tuple of the description. This is different
from rules obtained in class characterization, where the arrow of implication is from left
to right.

Quantitative discriminant rule. Based on the generalized tuple and co