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Introduction

In my position at IBM, I regularly brief executives, managers, and computer
professionals on data mining and neural network technology. In my brief-
ings, I cover the fundamentals of data mining and neural networks, and I
also discuss specific applications relevant to the customers’ businesses.
Since time is usually limited, my goal is to quickly give them a basic under-
standing of data mining and to spark their imaginations so they can visualize
how the technology can be used in their own enterprises. When I succeed, it
is satisfying to see their excitement as they “ponder the possibilities.” In the
question-and-answer period following my presentations, I am invariably
asked for a recommendation on a “good book on neural networks” so they
can learn more. With few exceptions, these people do not want to know how
neural networks work; they want to know how neural networks can be ap-
plied to solve business problems, using terminology they can understand
and real-world examples to which they can relate.

While there are many neural network books available today, most focus on
the inner workings of the technology. These texts approach neural networks
from either a cognitive science or an engineering perspective, with a corre-
sponding erphasis either on philosophical arguments or on a detailed treat-
ment of the complex mathematics underlying the various neural network
models. Other neural network books discuss academic applications, which
have little or no relation to real business problerms, and are full of C or C++
source code showing nitty-gritty implementation details. None of these ti-
tles would fit my definition of a “good book on neural networks” that is ap-
propriate for a business-oriented audience.

This book, however, is targeted directly at executives, managers, and
computer professionals by explaining data rining and neural networks from
a business information systems and management perspective. It presents
data mining with neural networks as a strategic business technology, with
the focus on the practical, competitive advantages they offer. In addition,
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the book provides a general methodology for neural network data mining
and application development using a set of realistic business problems as
examples. The examples are developed using a commercially available
neural network data mining tool, the IBM Neural Network Utility.

Data mining, the idea of extracting valuable information from data, is not
new. What is new is the wholesale computerization of business transactions
and the consequential flood of business data. What is new is the distributed
computer processing and storage technologies, which allow gigabytes and
terabytes of data to remain online, available for processing by client/server
applications. What is new are neural networks and the development of ad-
vanced algorithms for knowledge discovery. When combined, these new ca-
pabilities offer the promise of a lifesaver to businesses drowning in a sea of
their own data.

Neural networks are a computing technology whose fundamental purpose
is to recognize patterns in data. Based on a computing model similar to the un-
derlying structure of the human brain, neural networks share the brain's abil-
ity to learn or adapt in response to external inputs. When exposed to a stream
of training data, neural networks can discover previously unknown relation-
ships and learn complex nonlinear mappings in the data. Neural networks
provide some fundamental, new capabilities for processing business data.
However, tapping these new neural network data mining functions requires a
completely different application development process from traditional pro-
gramming. So even though the commercial use of neural network technology
has surged in the past 10 years, constructing successful neural network appli-
cations is still considered a “black art” by many in the software development
community. As will be shown, this is an unfortunate and inaccurate percep-
tion of the state of the art of neural network application development.

This book presents a comprehensive view of all the major issues related
to data mining and the practical application of neural networks to solving
real-world business problems. Beginning with an introduction to data min-
ing and neural network technologies from a business orientation, the book
continues with an examination of the data mining process and ends with ap-
plication examples. Appendices describe related technologies such as fuzzy
logic and genetic algorithms.

The data mining process starts with data preparation issues, including
data selection, cleansing, and preprocessing. Next, neural network model
and architecture selection is discussed, with the focus on the problems the
various models can solve, not the mathematical details of how they solve
them. Then the neural network training and testing process is described,
followed by a discussion of the use of data mining for decision support and
application development. Automated data mining through the use of intel-
ligent agents is also presented.

The application case studies deal with common business problerns. The
specific examples are chosen from a broad range of industries in order to be

relevant to most readers. The data mining functions of classification, clus-
tering, modeling, and time-series forecasting are illustrated in the examples.

When you finish reading this book, you will know what data mining is,
what problems neural networks can solve today, how to determine if a prob-
ler is appropriate for a neural network solution, how to set up the problem
for solution, and finally how to solve it. In short, [ will try to illuminate the
“plack art” of developing neural network applications and place it in a con-
text with other application development technologies such as object-ori-
ented computing and incremental development and prototyping techniques.

For business executives, managers, or computer professionals, this book
provides a thorough introduction to neural network technology and the is-
sues related to its application without getting bogged down in cornplex math
or needless details. The reader will be able to identify common business prob-
lems that are amenable to the neural network approach and will be sensitized
to the issues that can affect successful completion of such applications.

The book uses clear, nontechnical language and a case-study approach to
explore the issues involved in using neural networks to solve business prob-
lems. This text can be used profitably by someone trying to use neural net-
works to implement application solutions using commercial neural network
tools, or by managers trying to understand how neural networks can be ap-
plied to their businesses. Each chapter includes a summary at the end,
along with a reference list for further reading.

Part 1 spans eight chapters, including introductory chapters 1 and 2, and
then provides a comprehensive methodology and overview of the key issues
in data mining with neural networks for decision support and application
development.

Chapter 1 describes the business and information technology trends that
are contributing to the requirements for data mining applications. Key de-
velopments include the corporate data warehouse and the distributed com-
puting models. The major steps in the data mining process are detailed, and
a data mining architecture is presented. Data mining as enhanced decision
support and as application development are examined. A catalog of exam-
ple data mining applications in specific industries is described.

In chapter 2, neural networks are introduced as a fundamentally new
computing and problem-solving paradigm for approaching data mining ap-
plications. Neural corputing is presented as an alternative path on the evo-
lution of intelligent computing, a path that was dominated by symbolic
artificial intelligence. The key factors responsible for the initial rejection
and the recent reemergence of neural networks are discussed.

Chapter 2 also describes the paradigm shift required for problem solving
with neural networks as opposed to traditional computer programming. An
example of a knowledge worker is used to compare and contrast the use of
neural networks for similar tasks. Next, the neural processing element and
the mechanism for adaptive behavior is discussed. Then I focus on the ba-
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sic neural network computing functions: classification, clustering, model-
ing, and time-series forecasting.

Chapter 3 discusses the data preparation step, beginning with an overview
of the current state of the art in database managerent systems. Next, I high-
light the importance of data selection and representation to the neural net-
work application development process. Data representation schemes for
numeric and symbolic variables using real numbers and coded data types are
covered. Data preprocessing operations—including symbolic mapping, tax-
onomies, and scaling or thresholding of numeric values—are described.
Common techniques for data set management, including the quantity and
quality of the data, are discussed.

Chapter 4 presents a survey of the basic neural network learning para-
digms, including supervised, unsupervised, and reinforcement learning.
The major neural network topologies are discussed. Next, the most popular
types of neural network models and their capabilities are described. The fo-
cus is on the functional differences between neural network models, not on
their mathematical derivations. The chapter ends with a discussion of the
key issues in selecting a neural network model for a particular problem.

Chapter 5 walks the reader though a typical neural network development
process. First I highlight the importance of selecting an appropriate error
measure to indicate when the network training is complete. Next, I describe
the most important training parameters used to control the training time
and quality of the trained neural network. The iterative neural network de-
velopment process is examined, and throughout I give a feel for the “nor-
ral” evolution and how to detect “abnormal” problems.

Chapter 6 discusses the analysis of neural network models created through
data mining. This process of “discovering what the neural network learned” is
required for decision support applications. This chapter presents the most
common techniques for visualization of neural networks and data mining re-
sults. Rule generation from neural networks and input sensitivity analysis are
also described.

Chapter 7 describes the use of trained neural networks for the deploy-
ment of operational applications. I discuss data pre- and postprocessing re-
quirements at run time, how neural networks can be treated as simple
subroutines, and how neural network prediction accuracy can be moni-
tored. Application maintenance issues are also addressed.

Chapter 8 deals with the topic of intelligent agents and how the data mining
techniques and neural networks can be used to add learning to intelligent
agents. As computer systems become more complex, users are increasingly
looking to advanced software to ease their burdens. Intelligent agents can au-
tomate both user and system management tasks through a combination of
pattern recognition and domain knowledge.

Part 2 gives four detailed examples of how neural networks can be ap-
plied to solving business problems. Each application follows the data min-
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ing methodology used in Part 1, including a discussion of how the specific
example given can be generalized to solve other similar business problems.
A comprehensive list of application references is provided. Each chapter in
Part 2 can stand alone; no order is implied or suggested.

Chapter 9 combines customer database and sales transaction data to de-
fine target markets. This application uses neural networks to segment the
customers by creating clusters based on similarities of the custorner attrib-
utes. This information can then be used to target promotions at members of
the group who have the attributes in which we are interested. This chapter
includes a discussion of the analysis of clusters or segments in data mining
applications.

Chapter 10 uses market data on properties and selling prices to build a
price estimator for real estate appraisals. This is a classic example of using
neural networks for data mining. It is a simple modeling application, with
multiple input variables and one output (rmarket price or cost). Any business
that must make proposals can use its past experience with similar projects to
make fast, accurate estimates.

Chapter 11 mines customer profile information to rank customers or sup-
pliers. This application uses the information a business has available on its
current and past customers to build a neural network model that ranks
them in order of “goodness” (i.e., profitability). Prospective new customers
can be targeted or selected using their expected profitability.

Chapter 12 uses an inventory and sales transaction database to build a re-
plenishment system. This time-series forecasting application deals with
data that changes over time. The idea is to use past history to predict future
behavior. Issues unique to forecasting are discussed in depth.

Appendix A presents an overview of the IBM Neural Network Utility
products and their capabilities. The focus is on features of the product that
support the data mining and neural network application methodology pre-
sented in Part 1.

Appendix B is an introduction to fuzzy sets and fuzzy logic. Often used in
conjunction with neural networks, fuzzy logic, through fuzzy expert sys-
terns, provides an excellent way to add domain knowledge to data mining
operations.

Appendix C describes evolutionary programming and genetic algorithms.
Like neural networks, genetic algorithms are biologically inspired. They use
a metaphor for the process of natural selection to perform parallel searches.
Genetic algorithms are used to find optimal neural network architectures
and to adjust connection weights.

The glossary provides a list of the most common terms used in data
mining and neural network application development. The annotated bib-
liography contains a resource list of neural network reference books and
business-oriented application papers and articles, with brief descriptions
of their contents.




The Data Mining Process
Using Neural Networks

Part 1 presents a methodology for data mining with neural
networks. Structured around the major steps of data
preparation, data mining, and analysis of the mining results,
the eight chapters in this section highlight the issues specific
to neural network algorithms. The introduction mentioned the
“black art” label often used to refer to the neural network
development process. While perhaps not strictly cookbook in
approach, a careful reading of this material will considerably
enhance your chances of successfully training your neural
network. For those familiar with traditional data analysis
and model building, as well as those used to object-oriented
development, this process will seem comfortably familiar. The
emphasis is on the key steps and practical considerations, not
on the theoretical issues involved.

Part 1 begins with an introduction to data mining and
neural networks. Then the discussion turns to the many
aspects of data preparation, the first step required for data
mining, regardless of the data mining algorithm used. Of
specific importance to neural networks is the representation
of data, so the common representations and data types used
are discussed. The key aspects that differentiate neural
networks—training paradigm, topology, and learning
algorithms—are covered in detail. I describe the training
process, starting first with the definition of “success” and then

Part



2 The Data Mining Process Using Neural Networks

describing the most important learning parameters used to
control that process. After neural network training, I explore
methods for discovering what the neural network learned.
These techniques include visualization, rule generation,
sensitivity analysis, and model predictions. Then I discuss
how to deploy and maintain neural network applications.
Part 1 ends with a look at intelligent agent technology. In a
somewhat symbiotic relationship, intelligent agents can
control the mining of data, while data mining can be used to
add learning capabilities to intelligent agents.

Chapter

Introduction to Data Mining

“Information networks straddle the world.
Nothing remains concealed. Bul the sheer
volume of information dissolves the
information. We are unable to take it all in.”
GUNTHER GRASS (1990)

In this chapter, I discuss the business environment and information tech-
nology trends that have made data mining both necessary and achievable. I
provide a formal definition for data mining and describe the major steps in
the data mining process. Finally, I present a list of the many data mining ap-
plications that have been developed using neural network technology.

Data Mining: A Modern Business Requirement

Being a business manager or computing professional today is anything but
dull. As wave after wave of new information technology hits the market and
slowly gets assimilated into daily operations, the risks (and rewards) grow
higher for those who have to place their bets on the technology roulette
wheel. Get it right, and you might gain several points of market share at your
competitor’s expense. Get it wrong or do nothing, and you might have to
spend years trying to recover lost ground. As the old Chinese proverb says,
“May you live in interesting times.” Well, information technology workers
have certainly hit the jackpot.

Over the past three decades, the use of computer technology has evolved
from the piecemeal automation of certain business operations, such as ac-
counting and billing, into today’s integrated computing environments, which




offer end-to-end automation of all major business processes. Not only has
the computer technology changed. How that technology is viewed and how
it is used in a business has changed. From the new hardware configurations
using local and wide area networks for distributed client/server cormputing
to the software emphasis on object-oriented programming, these changes
support one overriding business requirement—process more data, faster, in
ever more complex ways.

In 1981, the IBM PC was introduced. Costing just $3000, it used a 16-bit
Intel 8088 processor, 64 kilobytes (KB) of RAM, and a single 5.25" floppy
drive. The first hard drive available was a Seagate 5.25" Winchester hard
drive, which stored a whopping 5 megabytes (MB) of data. In late 1995,
$3000 will buy a PC with an Intel Pentium processor, 16 MB of RAM, and a
1-gigabyte (GB) hard drive. In just 15 years, the amount of disk storage
available in a $3000 PC has increased 200 times.

In 1988, the IBM AS/400 midrange systems were announced with up to 96
MB of main memory and a maximum hard disk capacity of 38 GB using 400-
MB drives. In 1995, the AS/400 Advanced System supports 1.5 GB of main
memory and up to 260 GB of disk storage using 2-GB drives. In 1996, the
IBM DB2 MultiSystem for AS/400 will support databases up to 16 terabytes
spread across 32 AS/400 systems. From paper tape to punch cards, to mag-
netic drum, to the relentless advance in direct access storage devices
(DASD using IBM terminology, otherwise known as hard disk drives), the
increases in both data storage capabilities and device reliability have been
phenomenal. Figure 1.1 shows the recent explosion in the amount of infor-
raation stored on mainframe computer systers, a supposedly dying breed,
from the 1990 through 1995, and projected through 1998.

I have met with IBM customers who are gathering gigabytes of data daily.
They are literally unable to store all of their data online and have to put it to
tape for backup storage. This is like being a grain farmer with a bumper crop
who has to let it rot in the field because he doesn’t have storage. Just like a
crop in the field, business information decreases in value as it ages, and the
cost of planting the crop (gathering the data) has already been paid.

Increasingly, business data is seen as a valuable commodity in its own
right, not just as a by-product of processing the day’s transactions. Today's
operational data represents the current state of your business. When it is
combined with historical business data, it can tell you where you are going
and where you are. By taking operational data and dumping it to tape, you
might be protecting the data, but you are neglecting it as well. With busi-
ness decisions being made at a breakneck pace, managers and executives
need information on which to base those decisions. And that information
needs to be online.

But just being online isn't enough. The old query and reporting tools have
long since lost their ability to keep up with these information needs. New
client/server software that allows free-form queries has helped. But query
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Figure 1.1 Growth in mainframe data storage. (Source: International Data Corp.)

tools only help if you know what you are looking for. Multidimensional data-
bases, which provide three-dimensional views of data, and online analytical
processing (OLAP) tools are certainly enhancing business data analysis capa-
bilities. However, even they do not suffice in today’s competitive envirorunent.

What about all the information buried in your custorner transaction files?
Maybe there’s a trend that says your customers are switching to a different
product or configuration, and your inventory is going to be widely out of bal-
ance if you don't react. Maybe there is a string of transactions that are totally
out of character for that customer (has she lost her credit card?). Maybe the
crucial requirements for your next product in development are hidden in the
past purchases made by customers in the target market. Wouldn't it be nice
to find that information? After all, wasn't that part of the business case for
computerizing business operations in the first place? Wouldn't it be nice to
really cash in on that investment in computing technology?

If you've asked these questions, then you are not alone. Increasingly, peo-
ple want to leverage their investments in business data, to use it as an aid in
decision making, and to turn it into operational applications. Data mining
promises to do just that. More than just complex queries, data mining pro-
vides the means to discover information in raw business data. In many in-
dustries, it has become a business imperative. If you are not mining your
data for all it is worth, you are guilty of underuse of one of your company’s
greatest assets. Because in that data is information about your customers



6 The Data Mining Process Using Neural Networks

and the products they buy. As you will see, the old business maxim of “know
your custorner” is attainable today using data mining techniques.

The Evolution of Information Technology

The evolution in business computing over the past 30 years has been dra-
matic. It is often difficult to determine which came first, the change to the
flatter business organization or the new distributed computing capabilities.
While the raw processing power and storage capabilities of computers has
expanded at an astonishing pace, the business community has used that ad-
ditional computing power to improve efficiency in their operations and to
enhance their competitiveness in the markets they serve.

The computing styles have matched the organizations. The first comput-
ers were large mainframes that centralized a business organization's data
and computer data processing tasks. In many ways this matched the hier-
archical command and control management used by large corporations.
The management information systems (MIS) staff in their glass house (the
raised floors and air-conditioned computer rooms required by the main-
frames) controlled access to and processing of all corporate data.

The development of minicomputers or departmental computers was
somewhat an extension of the mainframe paradigm and somewhat a pre-
cursor of the future. These computers allowed groups of people working on
common tasks to control some of their computing environment, though
usually with the guidance and blessing of the central MIS organization.
Rather than wait for a new report or application to be developed by the MIS
organization, the department would hire its own programmers or software
engineers to solve its own computing problerns.

In the early 1980s, the development of the personal computer cornpletely
changed the dynamics of business computing, though it was some time be-
fore the central IS organization and the business management realized this.
Now an individual could purchase a PC and applications software and work
at his or her own desk to solve daily problems. The development of spread-
sheets and word processors gave the business justification for these pur-
chases. Over time, the environment evolved from a sprinkling of PCs or
workstations in the organization, to the point where nearly every knowl-
edge worker has a PC on his or her desk. While this evolution from central-
ized to distributed computing has dramatically changed how and where
data processing is performed in an organization, perhaps the biggest impact
is on how business data is created and managed.

The Data Warehouse

Looking at this computing evolution from a business data perspective raises
some interesting issues. In the host-centric computing model, the corporate
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data was stored on the central computer. This allowed the MIS organization
to manage the valuable corporate information, to safeguard it from theft or
damage, and to collect new business data as it was created through business
transactions. Of course, one downside to this central control to data was that
knowledge workers who needed to access the data often had to wait a long
time for the IS organization to respond to their needs. Writing new COBOL
or RPG programs to generate reports takes time (and programmers).

As department-level systems were introduced, the work group could exer-
cise more control of the data. Often this was off-loaded from the mainframe
and was sometimes out of date, but this sometimes stale data was a small price
to pay for relatively easy access to vital information. Conversely, if the depart-
mental computer was used to process transactions and create new business
data, then the information had to be moved up to the corporate data reposi-
tory. While this caused some problems for central MIS, they were usually more
than happy to get the application backlog down by pushing that work on the
departmental users. There was also some discomfort due to the distribution of
data, but again, that was a price they had to pay to meet the business needs.

When large numbers of stand-alone PCs were brought into offices, real
problems began to surface in the management of key business data. Now
the crack financial analyst crunching numbers on his or her PC spreadsheet
had key business data thal was totally out of the purview of the central MIS
organization. Who would back up the data? Who would ensure the security
of that information?

As the PCs were connected to the corporate cornputer network, some of
these problems were solved. The knowledge worker could download key in-
formation from the departmental or mainframe computers, process the
data with PC-based applications, and then return the data to the corporate
coffers. Today, the remote administration of PCs by IS has brought this
probleru full circle, back to the days when all crucial business data was un-
der control—well, not completely.

One problem with the proliferation of computers throughout the business
is the large number of databases scattered across systems. As the databases
in departmental and PC systems grew, the data was not always passed up to
the centralized system. Over time, information about customers, suppliers,
product design, and manufacturing operations was stored in separate data-
bases. While moving the data under centralized control is desirable because
of operational reality, many of these databases remain where they were orig-
inally deployed. They are needed to run the business. However, if strategic
new applications are ever going to be developed, this disparate set of data
needs to be consolidated under one (figurative) roof. This leads us to one of
the most sweeping ideas to hit the database management arena since rela-
tional databases—the data warehouse.

A data warehouse, as the name implies, is a data store for a large amount
of corporate data. The data quality and integrity can be maintained by a
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centralized staff. Applications developers do not have to deal with layouts
of multiple incompatible and sometimes overlapping databases. In short,
when they need to access corporate data, they know where to find it—in
the data warehouse. While the idea of centralized data management is not
new, how we got to this point is a combination of the history of the evolu-
tion of information technology and the tremendous growth in computing
storage capability. In a large corporate data warehouse, we are not talking
in terms of hundreds of megabytes of data (which can now be stored on a
single PC) but in the hundreds of trillions of bytes of data (terabytes).
Indeed, the idea is not so much that the data resides physically on a single
cornputer system, but that all of the data is stored and is accessible through
a network of distributed systems so that it presents itself as a seamless col-
lection of corporate data.

Figure 1.2 depicts a typical configuration of a corporate data warehouse.
Operational data is generated through transactions processed by applications

Operational
Data
(Gigabytes)

Transaction
Processing
System

Data Warehouse
(Terabytes)

Figure 1.2 Data warehouse architecture diagram.
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running on PCs and servers and is then stored in operational databases.
These operational databases usually hold several months of data and range
from 10 to 50 gigabytes in size. At certain intervals the operational data is
moved off the transaction processing systems onto the data warehousing sys-
ter. Products such as IBM’s DataPropagator and Visual Warehouse can auto-
mate these data replication tasks. The warehouse might be a network of PC
file servers, a midrange cormputer like an IBM AS/400, an IBM mainframe, or
some heterogeneous mix of computer systems. The data warehouse might
hold years of data and can swell to terabytes of data.

In addition to the aforementioned benefits for data quality and security, a
data warehouse opens new possibilities in terms of executive information
systems, decision support systems, and building line-of-business opera-
tional applications. With cormputers, as with people, you can’t make good
decisions unless you have all of the available data. A good corporate data
warehouse makes that data readily available. In addition, it makes possible
a whole new class of computing applications, now known as data mining.

Data Mining Overview

Data mining, also referred to as knowledge discovery (Frawley, Piatetsky-
Shapiro, and Matheus 1992), has become something of a buzzword in busi-
ness circles. Everyone wants it, and therefore many computer hardware and
software vendors claim that they have it. The only problem, of course, is that
not everyone agrees on what it is. To sore, it is client/server queries. To oth-
ers, it is multidimensional databases. To still others, it is OLAP with drill-
down capabilities. Seemingly the only points of agreerent are that it has to
do with database systems and that it is important. In this section, I explore
my view of exactly what data mining is, and more importantly, how it is done.
First, let’s start with a definition: Data mining s the efficient discovery of
valuable, nonobvious information from a large collection of data.

This innocuous sentence identifies some key attributes that can be used
to determine what is and is not “data mining.” The operative word in this de-
finition deals with the “discovery” of information frorm data. Notice that I am
not talking about complex queries where the user already has a suspicion
about a relationship in the data and wants to pull all of the information to-
gether to manually check or validate a hypothesis. Nor are we talking about
performing statistical tests of hypotheses using standard statistical tech-
niques. Data mining centers on the automated discovery of new facts and re-
lationships in data. The idea is that the raw material is the business data, and
the data mining algorithm is the excavator, sifting through the vast quanti-
ties of raw data looking for the valuable nuggets of business information.

A data mining operation is “efficient” if the value of the extracted infor-
mation exceeds the cost of processing the raw data. When viewed from this
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perspective, data mining efficiency is a return on investment statement, not
a processing time statement. To some people, a data mining algorithm is ef-
ficient only if it completes in under three minutes and supports interactive
analysis of the results. However, few people would argue against spending
two weeks of processing time (at a cost of $100,000) if a key design or man-
ufacturing process parameter is discovered and will save $1,000,000 in
costs over the next two years. Efficiency is a cost-versus-benefit statement.

When we specify nonobviousness as a requirement for data mining, this
is also a staternent about the efficiency and value of the process. If you
spend $10 on data mining only to find out something that was well known in
your business, then you have just wasted $10. And while many data mining
algorithms are used to process data in order to find relationships and pat-
terns, they often produce voluminous outputs of trivial, obvious informa-
tion. This information might make you feel better by confirming your own
understanding of the business fundamentals in your industry, but it does
not add value to your decision-making process. This separating the wheat
from the chaff is the back-end analysis of the data mining output. It is every
bit as important as the quantity and quality of the raw data, and of the data
mining algorithms (the tools) with which you process the data. The infor-
mation discovered through data mining is “valuable” only if it helps you gain
a competitive advantage in your business, or aids in the decision-making
process.

A “large collection of data” is certainly a subjective quantity. A small busi-
ness might consider a gigabyte of data to be a large database worthy of min-
ing. A large corporation might have multiple databases in the tens or
hundreds of gigabytes range. To some extent, a database is large enough for
data mining if it contains enough data so that the relationships are hidden
from view and so that valuable, nonobvious information can be extracted.

The data mining process consists of three major steps, as illustrated in
Figure 1.3. Of course, it all starts with a big pile of data. The first processing
step is data preparation, often referred to as “scrubbing the data.” Data is

Data
Preparation

Data Miring Data
Algorithm Analysis

Figure 1.3 The data mining process.
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selected, cleansed, and preprocessed under the guidance and knowledge of
a domain expert. Second, a data mining algorithm is used to process the
prepared data, compressing and transforming it to make it easy to identify
any latent valuable nuggets of information. The third phase is the data
analysis phase, where the data mining output is evaluated to see if addi-
tional domain knowledge was discovered and to determine the relative im-
portance of the facts generated by the mining algorithms. This is where
strategic business decisions are made using information gleaned by the data
mining process and where operational applications are deployed.

As businesses have computerized their operations, they have gradually
developed a collection of separate and sometimes incompatible systems.
Either through mergers of distinct information technology departments or
simply through the requirements for different applications, customer, sales
transactions, inventory, and design information usually exist in more than
one place in the corporate information systers. This duplication must be
reduced or eliminated in order to perform effective data mining. This con-
solidation of crucial business data is now being referred to as the corporate
“data warehouse.” While not an absolute prerequisite to data mining, devel-
oping a comprehensive data warehouse is a practical prerequisite to devel-
oping a flexible decision support system. To use a mining metaphor, it's a lot
easier to mine in an area with good roads and bridges than in the middle of
a forest or mountaintop, where the mining tools would have to be airlifted
in. Gaining access to the raw material is a part of the cost of the operation
and therefore affects the efficiency (return on investment). Having the cor-
porate data consolidated and readily available will make some data mining
operations more practical from a cost standpoint than if the data had to be
collected from scratch.

Unfortunately, just collecting the data in one place and making it easily
available isn’t enough. When operational data from transactions is loaded
into the data warehouse, it often contains missing or inaccurate data. How
good or bad the data is a function of the amount of input checking done in
the application that generates the transaction. Unfortunately, many de-
ployed applications are less than stellar when it comes to validating the in-
puts. To overcome this problem, the operational data must go through a
“cleansing” process, which takes care of missing or out-of-range values. If
this cleansing step is not done before the data is loaded into the data ware-
house, it will have to be performed repeatedly whenever that data is used in
a data mining operation.

For most data mining applications, the relatively clean data that resides in
the corporate data warehouse must usually be refined and processed before it
undergoes the data mining process. This preprocessing might involve joining
information from multiple tables, selecting specific rows or records of data,
and it most certainly includes selecting which columns or fields of data to look
at in the data mining step. Often two or more fields are combined to represent
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ratios or derived values. This data selection and ranipulation process is usu-
ally performed by someone with a good deal of knowledge about the problem
domain and the data related to the problem under study. Depending on the
data mining algorithm involved, the data might need to be formatted in spe-
cific ways (such as scaling of numeric data) before it is processed. While
viewed by some as a bothersome preliminary step (sort of like scraping the
old paint away before applying a fresh coat of paint), data preparation is cru-
cial to a successful data mining application. Indeed, IBM Consulting and inde-
pendent consultants confirm estimates that data preparation might consume
anywhere from 50% to 80% of the resources spent in a data mining operation.
The second step in data mining, once the data is collected and pre-
processed, is when the data mining algorithms perform the actual sifting
process. Many techniques have been used to perform the common data
mining activities of associations, clustering, classification, modeling, se-
quential patterns, and time-series forecasting. These techniques range from
statistics, to rough sets, to neural networks. See Table 1.1 for a list of the
most common data mining functions, the corresponding data mining algo-
rithms, and typical applications. Think of the different data mining algo-
rithms as the drill bits of the mining machine. If the ore is locked in hard
rock, then we might need a diamond drill (or algorithm of a certain type). If
it is in more porous rock, then we might be able to increase our efficiency by
using a less expensive drill bit (or algorithm). The type of data mining func-
tion we are trying to perform, along with the quality and quantity of data
available combine to specify which data mining algorithm should be used.

TABLE 1.1 Data Mining Functions

Data mining function Algorithm Application examples

Associations Statistics, set theory Market basket analysis

Classification Decision trees, neural networks Target marketing, quality

control, risk assessment
Clustering Neural networks, statistics Market segmentation, design
reuse
Modeling Linear and nonlinear regression, Ranking/scoring customers,
curve fitting, neural networks pricing models, process control

Times-series Statistics ARMA models, Box- Sales forecasting, interest rate

forecasting Jenkins, neural networks prediction, inventory control

Sequential patterns Statistics, set theory Market basket analysis over time

The third and final step is the analysis of the data mining results or out-
put. In some cases the output is in a form that makes it very easy to discern
the valuable nuggets of information from the trivial or uninteresting facts.
Figure 1.4 shows the output of a data mining run using the Quest associa-
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[Auto Accessories] AND [Tires] ==> [Automotive Services]
(conf = 89.2%, sup = 1.2%

[Home Laundry Appliances] ==> [Maintenance Agreements]
(conf = 61%, sup = 1.0%)

When a customer buys “Auto Accessories” and “Tires” then the customer buys “Automotive
Services” in 89.2% of the cases. This pattern is present in 1.2% of the transactions.

When a customer buys “Washer or Dryer” then the customer buys “Maintenance Agreements”
in 61% of the cascs. This pattern is present in 1.0% of the transactions.

Figure 1.4 Rule output from an association algorithm.

tion algorithm developed by IBM Almaden Research. The relationships be-
tween items in a market basket analysis are represented in if-then rule
form. The antecedent (left-hand side) lists the items purchased and the as-
sociation with the consequent (right-hand side) item in terms of confidence
(how often the items are purchased at the same time) and support (the
percentage of records in which the association appears). With the rules re-
cast into textual form, the valuable information is much easier to identify.
In other cases, however, the results will have to be analyzed either visually
or through another level of tools to classify the nuggets according to pre-
dicted value. Figure 1.5 illustrates a visualization of another market basket

Figure 1.5 Visualization of a clustering algorithm.
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analysis using segmentation performed by the IBM UK Scientific Center.
The graphic illustrates the statistical profile of the customers in each major
segment and how their attributes corpare to the whole population of cus-
tomers. Whatever data mining algorithm is used, the results will have to be
presented to the user. A successful data mining application involves the
transformation of raw data into a form that is more compact and under-
standable, and where relationships are explicitly defined.

I've talked about data mining as the process of extracting valuable infor-
mation from data. Of course, what makes information valuable to a business
is when that information leads to actions or market behavior that gives a
discernible competitive advantage. There are two major ways for busi-
nesses to use the output of a data mining process. The first is to enhance
strategic decision support processes. The second is to use the data mining
models as part of operational applications. I discuss these two principal
uses of data mining in the following sections.

Enhancing Decision Support

As the quantity of business data has grown, a new class of applications and
data analysis tools has emerged, called either decision support systers
(DSS), or executive information systems (EIS), depending on the software
vendor. Whatever it is called, the tool’s main thrust is to allow business de-
cision makers to analyze and detect patterns in data, and to aid them in
making strategic business decisions.

A typical use of decision support systems would be for a purchasing
agent or buyer for a large retailer to create an interactive query for sales
and inventory data for a particular product or product group. Once the data
is retrieved, the decision support system would allow the data to be dis-
played graphically in a variety of formats. Based on this transformation of
the raw data, the decision maker would decide what quantity of that prod-
uct should be ordered. Notice that the “discovery” element of this picture is
provided by the data analyst and her selection of which data to request and
view. In most respects, this is a query application integrated with a graphi-
cal display system.

In contrast, a data mining solution to this problem would be to mine a
database that contains sales and inventory information on the product.
Figure 1.6 shows a typical scenario for using data mining for decision sup-
port. Starting with a selection of prepared data, a neural network is used to
build a sales and inventory forecast model. This model is constructed auto-
matically from the data, using the learning capabilities of neural networks.
Once this model is created, “what-ifs” can be run through it by the analyst
to get more accurate predictions of the future sales and inventory require-
ments, or to determine the sensitivity of sales to changes in any of the input
variables. Importantly, when a computational model is generated from the
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Figure 1.6 Data mining for decision support.

raw data using a data mining algorithm, it also opens the way to complete
automation of the process. This is discussed in the next section.

Developing Business Applications

For the past 20 years, the standard approach to developing business appli-
cations has been to have a system analyst determine the data that needs to
be processed, and identify the major steps of the business process that op-
erates on that data. Once characterized, the problem is broken down into
subproblems, and algorithms are designed to operate on the data. This top-
down approach works well for a wide variety of problems and has become
the standard technique used by business programming shops worldwide.

Another, more modern approach is to perform an analysis of the problem
in terms of the business objects that are involved in the process and the op-
erations performed on or by those objects. This so-called object oriented
analysis and design, corbined with object-oriented programming languages
such as Smalltalk and C++ (even OO-COBOL) is fast becoming the preferred
application development technique for business. Major advantages are code
reuse and improved reliability because new applications are developed using
previously developed and tested objects. Although the focus is on objects
and their behavior rather than on problem decomposition, object-oriented
programming is still just another approach to writing algorithms for digital
computers.

As mentioned earlier, a third alternative exists for developing business
applications. This approach is based on data mining and the use of models
built during the discovery process. Figure 1.7 shows how data mining can
be used for automated application development. The prepared data is used
to build a neural network model of the function to be performed. Transac-
tions are then run through the neural network, and the outputs are used to
make automnated business decisions. This use of data mining places differ-
ent requirements on the data mining algorithms, since the perspicuity is not
so important. What is important in building business applications using data
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Figure 1.7 Data mining for application development.

mining is that the underlying processing functions—whether they be clus-
tering, classification, modeling, or time-series forecasting—are accurate and
reliable. Please note that applications built using a data mining algorithm do
not have to necessarily perform the business processing function “better”
than applications built through the traditional programmatical approach.
Equivalent accuracy would still yield significant benefits because the appli-
cation is generated automatically, as a by-product of the data mining process.
However, there are many cases where traditional programmed applications
cannot be developed, since no one in the business understands how the
data relates well enough to design or write an algorithm to capture those re-
lationships. It is here where the advantages of using data mining techniques
such as neural networks are really compelling.

Example Data Mining Applications

So far I have talked about data mining from a technological perspective.
Now let’s change our view to a business perspective (Li 1994). How are
businesses using data mining and neural networks today? What kind of ap-
plications have been successfully deployed? What industries are leading in
the adoption of this technology?
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Marketing

Every business has to market its products or services, and the cost of mar-
keting efforts must be factored into the ultimate selling price. Any technol-
ogy that can improve marketing results or lower marketing costs gets a
close look by businesses. In conjunction, customer credit, billing, and pur-
chases were some of the first business transactions to be automated with
computers, so large amounts of data are readily available for mining. These
factors have combined to make marketing one of the hottest application ar-
eas for data mining. This general area is referred to as database marketing
(Gessaroli 1995).

Customer relationship management is the term most used for the overall
process of exploiting customer-related information and using it to enhance
the revenue flow from an existing customer. Information on customer de-
mographics and their purchasing patterns are used to segment the cus-
tomers based on their underlying similarities, whether socioeconomic or by
their interests and hobbies as demonstrated by the products they purchase.
By determining similar classes of customers, advertising return on invest-
ment can be enhanced since the marketing messages are accurately reach-
ing those customers most likely to buy. By segmenting the customer base,
different products and services can be developed, which are tuned to ap-
peal to members of the specified group.

Database marketing—using data mining techniques against databases
with marketing information—can be used in several different aspects of the
customer/business relationship. This information can be used to improve
the customer retention rate by identifying customers who are likely to
switch to another provider. Since it costs much more to win a new customer
than to sell to an existing one, this application can have a significant impact
on profits. When knowledge about the customer is corabined with product
information, specific promotions can be run that increase the average pur-
chases made by that customer segment. By knowing what a particular cus-
tomer is interested in, marketing costs can be lowered through more
effective mailings, and customer satisfaction is improved because they are
not receiving what they perceive as “junk mail.”

Direct mail response campaigns use data mining to first select a target set
of customers. A test mailing is then made to a small subset of this set. Based
on the size of the response and the characteristics of those who responded,
a determination can be made as to who should be included in the subse-
quent mass mailing and which offer or offers should be included.

Retail

In the retail sector, perhaps the biggest application is market basket analy-
sis. This involves mining the point of sale transactions to find associations
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between products. This information is then used to determine product
affinities and suggest promotion strategies that can maximize profits.

A typical scenario is to collect all point-of-sale transactions in a database.
The transaction database is then mined to find those products that are most
strongly associated. When customers purchase baby diapers, they also tend
to purchase baby formula. Thus a retailer would not ordinarily put both di-
apers and formula on sale at the same time. Rather, using knowledge that
there is an association between these two products, the retailer would put
one on sale and place the other item next to or in close proximity to the first
item. The placement of items in grocery stores is no accident. The output of
a market-basket analysis would identify association between products that
had never been suspected. One anecdotal tale is of a convenience store
chain that noticed that there was a strong association between purchasers
of baby diapers and beer. Apparently, when Dad went out to pick up dia-
pers, he often picked up a sixpack along the way.

A related application is the use of sequential patterns to spot ternporal
trends or buying behavior. This is another application that is based on asso-
ciations between items or products, only now the focus is on their temporal
relationship. An example is when someone purchases a new suit, then with
a high likelihood they will return to purchase new dress shirts and ties. A re-
tailer would then use this information to try to encourage the purchase of
these related items in a single trip to the store because they might shop
elsewhere to pick up the accessories.

Finance

Data mining is in widespread use in the finance industry (Disney 1995).
Neural networks are used to detect patterns of potential fraudulent trans-
actions in consumer credit cards (Norton 1995). They are also used to pre-
dict interest rate and exchange rate fluctuations in currency markets.
Several brokerage houses use neural networks to help in managing stock
and bond portfolios (Schwartz 1994). Neural networks have been used for
credit risk assessments and for bankruptcy prediction in commercial lend-
ing and bond rating.

In the finance industry, different classes of customers are treated differ-
ently, based on the perceived risk to the lender (Margarita and Beltratti
1992). Thus, classifying the amount of risk associated with a customer or
with a particular transaction is extremely important. A modest improve-
ment in the ability to detect impending bankruptcies, for example, will yield
an appreciable revenue increase to the financial institution (Udo 1993).

In the commodities trading arena, a complex set of variables is used to
construct trading strategies (Grudnitski and Osburn 1993). While the effi-
cient market theory has been widely accepted for years, many brokerage
houses still rely on technical traders to analyze the data and make educated
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guesses about the markets. The most important ability is to detect trends or
changes in movement of the market as a whole or of some particular segment
or stock (Komo, Chang, and Ko 1994). This is also true in the currency ex-
change area. Neural networks’ abilities to model time-series and complex
nonlinear functions has prompted their use in all of these application areas.

Manufacturing

The complexity in modern manufacturing environments and the require-
ments for both efficiency and high quality has prompted the use of data
mining in several areas. Neural networks are used in computer aided design
to match part requirements to existing parts for design reuse, in job sched-
uling and manufacturing control, in optimization of chemical processes, and
to minimize energy consumption. Neural networks are also widely used in
quality control and automated inspection applications.

Job shop scheduling is a difficult problem that deals with assigning the
sequence of jobs and how work is assigned to specific machines in a manu-
facturing plant. There are usually many constraints that absolutely must be
met, such as the sequence of process steps and whether a particular mate-
rial can be processed by a specific machine. In addition to these hard con-
straints, there are soft ones such as optimizing operating efficiencies by
avoiding needless setup and reconfiguration of machines by scheduling
similar types of products or operations on the same piece of equipment.
Neural networks have been used to satisfy these constraints while generat-
ing optimized job assignments.

Manufacturing process control deals with the automated adjustment of pa-
rameters that control the quality and quantity of products produced by the
manufacturing facility. A well-known technique called statistical process con-
trol is used to track the quality of the goods produced by a manufacturer by
measuring the variability and tolerances in various aspects of the finished
goods. Using examples of good and bad parts, neural networks have been
used as aids in the control of processes and the detection of subtle flaws in
the plant outputs.

In some chemical manufacturing processes, complex mixtures of chemi-
cals must be heated, cooled, mixed, and transported by an automatic con-
trol system. Dangerous situations or abnormal operating conditions must be
detected and compensated for automatically, or the system could explode.
Neural networks have been used to minimize the generation of waste prod-
ucts and to improve the properties of the material produced, such as steel
from blast furnaces.

Automated inspection is a requirement in many manufacturing environ-
ments where high-speed and high-output quantities can overwhelm the
abilities of human inspectors to accurately and reliably spot defects in work
in process. Using digital images, neural networks have been used to detect
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faults in rolled steel and aluminum, in printed circuit boards, and in con-
surner product packaging. They have been used to classify the grades of
fruit, and to sort products as they come off of an integrated assembly line.

Health and medical

There are two primary uses for data mining in the Health industry: the ad-
ministration of patient services, billing, insurance, etc., and the diagnosis
and treatment of disease.

The health industry isusing data mining to detect fraudulent insurance
claims from both unscrupulous patients and health care providers. A com-
mon approach is to develop a model for a “normal” pattern of activity and
then detect and scrutinize “abnormal” behavior. Both clustering and model-
ing functions are used for this. Another major application is to identify the
most cost-effective health care providers. Many aspects of the health in-
dustry are under tight government control, and compliance with govern-
ment regulations must be maintained.

Data ' mining is also being used to automate the diagnosis of cervical
cancer, breast cancer, and heart attacks (Sabbatini 1992). Patient data
can be collected on a large population and presented to a neural network.
Thus a data mining system can look at more patients in one day than a
human doctor could see in a lifetime. Neural networks’ abilities to syn-
thesize a large body of data and to detect subtle patterns have proven to
be effective (Harrison, Chee, and Kennedy 1994).

Energy and utility

Suppliers of electrical power are subject to large swings in demand for ser-
vice. A single weather front moving through a region can considerably in-
crease demand for power in a matter of hours. Decisions have to be made as
to whether plants should be brought online or taken down for preventive
maintenance. Large consumers of electrical power such as manufacturing
plants are often charged based on their peak energy usage, so it is in their in-
terest to manage their consumption to minimize excessive demands for ser-
vice. This major dependency on accurate load forecasts has made the utility
industry one of the major users of neural networks (Park et. al. 1990).

Another application in the energy industry is the search for new gas or oil
deposits. Neural networks have been successfully used to aid in analysis of
soundings taken at test drilling sites for detecting changes in the strata of
rock and to identify likely sites for mineral deposits.

Summary

The changes in the business computing environment over the past three
decades have been dramatic. Computer processing and storage technology
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advances provide businesses with the ability to keep hundreds of gigabytes
or even terabytes of data online. However, this is a good news, bad news
story. The good news is that now we can have years of historical business
data available for decision support applications. The bad news is that tradi-
tional data query and analysis methods are not capable of dealing with that
much data. The consequence is that businesses are drowning in data.

Data mining or knowledge discovery offers a solution to this problem.
With the emphasis on the discovery of valuable information from large
databases, data mining provides added value to the investment in the cor-
porate data warehouse. The data mining process consists of three basic
steps: data preparation, information discovery by a data mining algorithm,
and analysis of the mining algorithm output.

The benefits of data mining are evident in two major business activities,
decision support and application development. In decision support sys-
tems, data mining transforms the data to reveal hidden information in the
form of facts, rules, and graphical representations of the data. The ex-
tremely large amounts of data are compressed to reveal the inner relation-
ships among the data elements. When used in the application development
cycle, data mining with neural networks provides automated construction
of transaction processing systerms and forecasting models.

Applications of data mining span all industries. Businesses of all types
use data mining to target marketing messages to specific customer sets,
both to satisfy their customers’ needs and to increase revenues. Retailers
use data mining to find associations between products purchased at the
same time and to forecast sales and corresponding inventory requirements.
The finance industry uses data mining techniques to manage risks and to
detect trends in the markets. Manufacturers use neural networks in the de-
sign, production scheduling, process control, and quality inspections of
their products. Hospitals and insurance companies mine their data to de-
tect fraudulent claims by health care providers and patients, and physicians
use advanced pattern recognition capabilities of neural networks to auto-
mate laboratory tests. Utilities use neural networks to forecast demand and
quickly respond to equipment outages and changes in the weather.

Any business with data about its customers, suppliers, products, and sales
can benefit from data mining. When businesses are looking for the slightest
edge over their competition, they are willing to travel far and wide and spend
millions of dollars to buy information about their markets. Often this infor-
mation is sitting right in their offices, hidden away in their data warehouses.
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Chapter

Introduction to Neural Networks

“Man is still the most extraordinary computer
of all.” JOHN F. KENNEDY

“We want to replace the computer melaphor
with the brain metaphor.”
DAVID RUMELHART

Neural Networks: A Data Mining Engine

Neural networks are one of the key technologies used for data mining. In
this chapter, I explore the history of neural networks, how they compare to
traditional computing approaches, and why they are a natural technology
for performing data mining activities.

A Historical Perspective

The history of computing is filled with crucial twists and turns. From the
first visions of Charles Babbage and his mechanical computing device, the
Difference Engine, to John von Neumann and the development of the mod-
ern digital computer, many potential paths and technologies were exam-
ined and then rejected as political and market forces made their natural
selection. Figure 2.1 shows some of the major milestones in computing,
from both a computer hardware and software view. In 1937, Alan Turing
developed his theory of the Turing machine, a device that could read in-
structions from a paper tape and simulate any other computing machine.

23
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Hardware

Figure 2.1 Computing evolution time line.

When McCullough and Pitts (1943) wrote their paper on the binary neuron,
they were using the human brain as their computational model. John von
Neumann picked up these ideas and developed them, along with others,
into the computing model we know today, the stored-program, serial, “von
Neumann” computer. It is somewhat ironic that what began as a crude
model of the brain has, over time, become the accepted metaphor for how
the brain actually works.

For a brief period, analog computers competed with digital computers.
The analog computers mapped very well to advanced mathematics and cal-
culus and could be used for modeling natural phenomena. However, they
could not be used for accurate mathematical computations such as business
accounting and inventory management. Here the digital computer proved
superior. And as more and more problems were mapped to the digital
realm, digital computers became the dominant type of computers. Today,
the term “computer” is synonymous with “digital.”

A similar story occurred with the development of intelligent computers.
In the late 1950s and early 1960s, there were two major schools of thought.
One school wanted to model computation on the basic architecture and key
attributes of what was known about the human brain. The other school felt
that intelligence could be produced in machines through the use of symbol
manipulation. The two approaches were tightly coupled to the prevailing
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philosophical positions regarding the fundamental nature of intelligence
and led to a major debate in the intelligent computing arena.

Intelligent Computing: Symbol Manipulation or Pattern
Recognition?

Why has the digital computer become the common metaphor for how the
human brain works? Why is the logical, sequential processing of the elec-
tronic computer used as the model of the organized mind? Are computers
accurate models of the biological brain? The answers to these questions de-
pend on your definition of intelligence.

What separates humans from the lower life forms? For years, great thinkers
have claimed that humans manipulate symbols, and that this ability found
in the human cerebellum is the unique machinery that gives us intelligence.
Not just intelligence enough for survival, but intelligence that allows plan-
ning, engineering, and feats of architecture on a grand scale.

When Newell and Simon proposed their physical symbol system hypothe-
sis in 1955, the digital computer was only ten years old (Jubak 1992). They
realized that while digital computers were extremely good and fast number
crunchers, they could also be extremely fast symbol processors. All that was
needed was a simple abstraction mapping symbols to numbers. Their claim
was that a “physical symbol system has the necessary and sufficient means
for general intelligent action.” Not only were they saying that symbol manip-
ulations could lead to intelligent behavior, they stated that it was “necessary.”
If people exhibit intelligent behavior, then it must be because they are using
formal rules to manipulate symbols. This assumption of the logical equiva-
lence between symbol processing computers and the human brain became
the basis for most of the artificial intelligence work in the next three decades.

What these scientists seemed to overlook was that our symbol processing
forebrain processes information that has already been processed at a sub-
symbolic level by the body senses. Our hearing, vision, taste, and tactile in-
put provide the human brain with a wealth of information with which to
reason about the world. Some people call this subsymbolic processing fea-
ture detection. And what is feature detection? It is a process of pattern re-
cognition that occurs largely at a subconscious level. People develop many
context-sensitive models of what to expect as we interact with the world.
Even though we might be thinking about something else, our built-in nov-
elty detectors break through our thoughts and tell us when something out
of the ordinary or unexpected is happening. For example, when driving 'a
car, the subconscious often takes over the routine tasks, and our mind is
free to wander until we “notice” something unexpected in the traffic.

Figure 2.2 illustrates the major differences in approaches between the
symbolic and the subsymbolic (or neural network) school of artificial inteld
ligence. Those espousing the symbolic view would say that knowledge must:
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Figure 2.2 Symbol processing and subsymbolic processing.

be explicitly represented by rules, and that the flow of consciousness is best
described by a serial process. Those with a subsymbolic or connectionist
slant would say that massive parallelism and analog computation is a fun-
damental aspect of intelligence. This leads to the robust qualities of neural
networks in contrast to the well-known “brittleness” associated with Boolean
logic rule-based systems when they operate near the edges of their domain
knowledge. In some sense, the different technical approaches mirror differ-
ences in the philosophy of mind. In one, intelligence is purely a function of
the higher-order processes derived in a top-down manner. In the other, in-
telligence is an emergent phenomena, springing forth from the interactions
of many simple processors from the bottom up. Of course, the real answer
probably lies somewhere in the middle of these extremes.

Computer Metaphor Versus the Brain Metaphor

In the early 1960s, the symbol processing school recognized that digital
computers were good at manipulating numbers, and that numbers could be

Introduction to Neural Networks 27

used to represent symbols. The use of this simple abstraction from symbols
to numbers meant that without any changes to the common digital com-
puter architecture, we had a symbol processing computer. The symbol pro-
cessing researchers demonstrated some significant early successes, such as
computer programs that could do college-level calculus and mathematical
theorem proving. Solving such seemingly difficult problems suggested that
symbol processing was surely the way to go if we wanted to develop intelli-
gent cornputer systems.

During the same time, the brain-based or connectionist researchers were
trying to show that connected networks of simple processing units could
demonstrate emergent intelligent behavior. Rosenblatt’s Perceptron model
(1962) and Widrow'’s Adeline (1960) were two examples of the types of
neural networks built during this time. The Perceptron was purported to be
a model of the mind, and the capabilities were subjected to hype now re-
served for certain 32-bit operating systems. The Adaline was shown to be
quite capable of solving hard engineering problems in an area that became
known as adaptive filtering. However, while the neural network researchers
were able to show some interesting results, they soon hit a brick wall due to
seemingly insurmountable theoretical problems. Their learning algorithms
could only work for single-layer neural networks, which limited them to
solving only simple, linearly-separable problems. Minsky and Pappert, two
researchers from the symbol processing school who were very knowledge-
able about neural networks, highlighted these theoretical limitations in
their critical book, Perceptrons (1969). Neural networks research all but
ended in the United States by the late 1960s, although some work contin-
ued in Europe.

Meanwhile, the symbol processing school of artificial intelligence pro-
ceeded full speed ahead. Special-purpose programming languages such as
Prolog and Lisp were developed for writing symbol processing programs.
Indeed, specialized computers known as Al workstations were developed to
provide the high-powered processing needed to simulate intelligence
through symbol processing. Researchers moved on from calculus and theo-
rem proving to problems such as image recognition, speech recognition,
planning, and scheduling. Rule-based expert systems were developed to
simulate the problem-solving techniques used by human experts. Funding
and graduate students poured into symbol-based artificial intelligence re-
search year after year. It was not until the mid-1980s that people realized
that progress was not being nmade as fast as was promised.

Symbolic Al was always “just around the corner” from crossing that mag-
ical threshold into mainstream applications. All that was needed was more
powerful computers, more funding, more time. Not that the research was
fruitless. New computer interface techniques such as graphical user inter-
faces were refined on the Al workstations. New programming paradigms—
such as the object-oriented language, Smalltalk—were invented. Expert
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systems went commercial and solved some difficult real-world problems.
However, the deep results leading to truly intelligent machines did not
seem to be coming any closer even after decades of research. This lack of
progress on some of the fundamental problems in developing intelligent
software systems led researchers to reexamine the work from the 1960s on
neural networks and to rediscover the work of a small group of researchers
who carried on, even after neural networks “lost” to symbolic AL

In the mid-1980s, researchers started publishing new results and updat-
ing old results on fundamental neural network problems. In the early 1960s
when researchers were first working on computers that could learn, both
the available computer hardware and the theoretical understanding of the
issues were not up to the task. In the intervening years, researchers had de-
veloped new neural network training algorithms that overcame the limita-
tions of the early Perceptron and Adaline models. The PDP research group
(where PDP means parallel distributed processing) had been working for
several years and published their two-volume manifesto in 1986 (Rumelhart
and McClelland). These books served to entice many young graduate stu-
dents to pick up the connectionist or neural network cause. The PDP books
popularized the backward propagation of errors algorithm, a learning algo-
rithm that allowed multiple-layer neural networks to be constructed. Other
articles in the book covered self-organizing and competitive behavior, re-
current neural networks, and applications of neural networks to optimiza-
tion and cognitive modeling. The First International Conference on Neural
Networks, held in 1987, served as the formal kickoff for much of the current
research on neural networks. These theoretical advances, along with the
availability of relatively cheap computing power, allowed both academic re-
searchers and commercial application developers to explore using neural
networks to solve their problems.

A variety of factors play a role in determining whether a technology be-
comes a commercial success or failure. Perhaps the most crucial point is
whether viable alternatives exist to solve the pressing problems of the day.
The failure of symbolic artificial intelligence to satisfy industry require-
ments for robust pattern recognition and adaptive behavior opened the
door for neural networks to reenter the technical stage. It also helped that
a whole new generation of researchers arrived on the scene who didn’t
“know” that neural networks wouldn’'t work. The advance in computing
power and integrated circuits, which made putting hundreds of processors
on a single chip possible, certainly contributed to the reemergence of neural
network technology.

If you have heard about neural networks in the past few years, it might
have been in the context of a “hot new technology” that is revolutionizing
fields like stock portfolio management (Rugiero 1994) and credit card fraud
detection (Norton 1994). Or it might have been in the realm of science fic-
tion. Which is it? Science fiction or science fact? Well, that depends on your
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point of view. If you are interested in using neural networks to solve practi-
cal problems, such as predicting future sales, modeling a manufacturing
process, or detecting failures in machines, then neural networks are real,
here today, and available (see Table 2.1 for a list of commercial neural net-
work applications). If you want to build Commander Data, the personable
android on the “Star Trek: The Next Generation” show, then you are still
talking fiction. Neural networks have not allowed the creation of machines
with humanlike intelligence or behavior. However, researchers in many
fields, from neurophysiology and cognitive science to computer science and
electrical engineering, are working toward that goal.

The availability of commercial neural network development tools has in-
creased the number of fielded applications. Tools from vendors such as HNC
Inc., IBM Corp., NeuralWare Inc., and Ward Systems Group run on PCs,
workstations, minicomputers, and mainframes. These tools provide interac-
tive environments for developing neural networks and the means to deploy
applications. See appendix A for a description of the functions provided by
the IBM Neural Network Utility.

In summary, we are now at a technological state where neural computing,
computing based on a brainlike model, is both possible and practical. It has
now been almost 10 years since the reemergence of neural networks. The
combination of the march of computing technology and theoretical work has

TABLE 2.1 Commercial Neural Network Applications

Application Industry Function

Database marketing all Clustering, Classification,
Modeling

Customer relationship all Clustering, Classification,

management Modeling

Fraud detection Finance, Insurance, Health  Classification, Modeling

Optical character recognition  Finance, Retail Classification

Handwriting recognition Computer, Finance Clustering, Classification

Sales forecasting, Manufacturing, Wholesale,  Clustering, Time-Series

inventory contro} Retail, Distribution Forecasting

Stock portfolio management Finance Classification, Time-Series
Forecasting

Bankruptcy prediction Finance Modeling

Job shop scheduling Manufacturing/Process Constraint Satisfaction

Process control Manufacturing/Process Modeling

Bond rating Finance Classification

Mortgage underwriting Finance Modeling, Time-Series
Forecasting

Mineral exploration Energy Clustering, Classification

Medical (}ab) diagnosis Health Classification, Modeling

Power demand prediction Utility/Manufacturing Time-Series Forecasting

Computer virus detection Computer Classification

Speech recognition Computer Clustering, Classification

Market price estimation Real Estate, Finance Modeling
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created a fundamentally new approach to solving problems with computers.
Much more than just an incremental step forward in computing ability, neural
networks are a leap forward, providing a completely new paradigm both for
formulating problems and for solving them. In the next section, I examine how
we must change our fundamental problem-solving approach if we are to ex-
ploit this new technology.

Changing the Problem-Solving Paradigm

Solving problems with computers has become commonplace. It is done
every day by many people. However, it is by no means natural for most
people. Even those with an aptitude for computer programming must be
trained in the organized, step-by-step procedures required to write a
program to get a computer to solve a problem. Some people are unable to
think at the level of detail necessary to specify the sequence of elemen-
tary operations needed to perform even the most basic computing func-
tions. Good programmers have linear, sequential thought processes. They
view a problem as a connect-the-dots puzzle, where the first and last points
are specified, and their job is to link the dots, one by one, until the solution
emerges.

The problems we use computers to solve are quite varied. They could be
traditional computer applications such as accounting and payroll, or they
could be optimization problems such as how to assign shipments to trucks
for delivery, or how to manage an inventory replenishment system. In every
case, the original problem must be recast into a form that can be solved on
a computer, using computer programming languages.

One of the basic tasks that a computer systems analyst must perform is
to translate business problems into computer solutions. There are a large
number of methodologies for doing this. Perhaps the most common is the
top-down structured approach, where a problem is broken down into sub-
problems. Data is identified and processes are defined for manipulating the
data. Well-known techniques are used to design programs and algorithms to
solve the data processing problem. After that it is just a simaple matter of
programming. It's been done a million times.

For the past 20 years, the computer science curriculum in universities
has been based on this approach to solving problems with corputers.
Classes on data structures, algorithms, systems analysis and design, and
programming languages such as COBOL, Pascal, and C are all standard of-
ferings. Students are taught all of the important information needed to de-
fine, conceptualize, and solve problems on digital computers.

In the past few years, the old top-down structured design and central-
ized application has given way to an approach based on objects. Instead
of focusing on data and then deciding how to process it, object-oriented
analysis and design focuses on defining business objects that correspond
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to real-world objects. Each object contains some set of data, which de-
fines its current statc, and a set of operations, which that object can per-
form or respond to. Hand in hand with a new problem analysis model is
the increasing use of object-oriented programming languages such as
Smalltalk and C++ (object-oriented C), which support the constructs
used in object-oriented analysis. This major shift in the systems analysis
methodology is currently causing a corresponding change in university
computer science curriculums. In many ways, the move to object-ori-
ented technology is a major new paradigm for solving problems on digital
computers. The rigid waterfall software development process, which
flows from requirements, to analysis and design, to code and test, which
was the standard development methodology under the structured pro-
gramming technique, is now giving way to the iterative development and
rapid prototyping process more natural for the new object-oriented ap-
proach. The software development method has changed, but the funda-
mental computing architecture has not.

But what if the underlying computing architecture is not a serial digital
machine? What if it is massively parallel, with hundreds or thousands of
processors? In a similar way, we need to develop a curriculum on parallel
computing, on parallelizing processes and synchronizing access to shared
variables. When we change the underlying assumptions about the computer
architecture, we call into question many of the basic tenets of the computer
industry’s approach and the accumulated knowledge in solving problems
with computers gained over the past 30 years. Classes on parallel architec-
ture and programming are being offered. If we treat the transition to mas-
sive parallelism as an evolutionary step from serial computers, we think we
can get there. But it is hard to teach many people how to think in parallel.
After all, we have just learned how to train people to think in linear, se-
quential ways so they could program digital computers.

Change is hard, especially when a methodology has proven useful and
profitable over the past 30 years. Now suppose we have a new type of com-
puter—not just a logical extension of serial digital computers, but a radi-
cally different computing model and architecture. How are we going to
teach people to solve problems using these computers? It won't be easy if
we approach the problem as one of retraining thousands of programmers. It
will be impossible if we try to present a modified version of the familiar wa-
terfall software development process.

What we need is a totally different approach. A fundamentally different
computing model requires a rethinking of the software development process
from problem definition through testing. Neural networks and neural net-
work development are a different computing model, and solving problems
with neural networks is quite similar to the way people naturally solve prob-
lerns. A neural network learns to solve problems by being given data, exam-
ples of the problem, and its solution. People do this all of the time.
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Knowledge Workers and Neural Networks

Suppose we just hired a new loan officer to make credit decisions for our
bank (let's call her Jennifer). Jennifer will be given some hard and fast
rules, but there is 4 large gray area where the loan decision is up to her.
Either she grants the loan and we take our chances, or she doesn’t grant the
loan and we give up the opportunity to make money on the loan. It’s going
to take a while for Jennifer to learn how to do this well. Figure 2.3 shows
Jennifer at her desk for her first day on the job.

How will | ever
learn this?

Figure 2.3 Jennifer at work, first day on the job.

Jennifer processes about 10 loans a day. At first, every application is a
completely new experience. Some loans she can determine sirply based on
the lack of a job, history of bankruptcy, or other aspects. Others she needs
to just weigh the information and make a “gut call.” One person’s income
history is stable, they have two kids, and the loan is for a good purpose.
Jennifer weighs all of these factors and says, “Yes, let's take this business.”
Another one is not so clear cut. The person has changed jobs recently, there
are some late payments on some of the credit history. Jennifer says “No,
let’s not take this business.”

Over time, Jennifer gets feedback on her performance. Each month her
manager comes in and lists the customers with late payments. Jennifer re-
views those loan applications and now sees telltale signs of problems. She
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continues to learn how to judge whether someone is going to pay back the
loan on time or not. Of course, Jennifer gets no feedback on the ones she re-
jects. They might have gone across the street to Second National Bank and
been given the loan she rejected, and that bank made the money she gave
up. But overall, Jennifer is doing a pretty good job, the bank is lending most
of the money it has allocated to loans, and it has a reasonable default rate.
Let’s examine what Jennifer has done. She looked at many examples of ap-
plicants and learned to classify them as good or bad prospects. More than
that, she can say which one is a “better” risk than another. If Jennifer made
a wrong determination on someone who later didn't repay the loan, she got
feedback that said, “You made a mistake.” So Jennifer had to look at the ap-
plicant data and adjust her internal weightings for the significance of various
factors. In short, Jennifer “learned” how to perform her job. (See Figure 2.4.)

I'm bored!

DECEMBER
1

Figure 2.4 Jennifer at work, six months later.

Now let’s say the bank’s management would like Jennifer to move on to
business loans. But they still need to cover the consumer side of the busi-
ness. Rather than hire and train a new person to learn the distinctions be-
tween good and bad credit risks, they would like to “clone” Jennifer (or at
Jeast her expertise). They would like to use her accurulated experience in
an automated way. Bank management has heard of a new application tech-
nology called neural networks, which can learn to do the same job Jennifer
does. Jennifer says “I doubt it. How can it learn to act the way I do?” Well,
first all of the data from Jennifer’s loan decisions must be collected. Each
transaction has the application data and her decision and, for the ones she
accepted, the profitability and currency of the account. The neural network
is presented with the same factors Jennifer used to make her decisions,
along with her decision. After a brief “training” period, the neural network
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is ready to test. A new application comes in, and it is presented to the
neural network. It makes a decision. Jennifer looks over the application and
says “Wow, it did just what I would have done. How did it do that?”

Like many decision or knowledge worker tasks, the expert in this example
learned to weigh the various input factors and corbine them to come up with
an overall score or decision. Initially, some decisions were made that were
“wrong.” In order to correct the mistake, the expert had to adjust her internal
weightings so that next time she would not make the same mistake. This isa
common framework for many jobs performed by people. They might start out
with some rules that can be used in the extreme or clear-cut cases. But the
real skill comes in learning how to judge the in-between cases, in recognizing
the subtle distinctions between success and failure. The most-often-used
metaphors are that the expert “sees the solution,” or “the answer jumps out.”

Building neural network applications is similar to training a new knowl-
edge worker. We must be able to give examples of the clear-cut extreme
cases, and we must be able to give sufficient data in the “gray” cases so that
the neural network can learn to accurately make decisions. Will the decision
always be correct? No. Does the knowledge worker or expert always make
the correct decision? Obviously not. But the expert learns from experience,
and so can the neural network.

Making Decisions: The Neural Processing Element

The digital corputer architecture (see Figure 2.5) consists of a central pro-
cessing unit (CPU) with a set of registers and an arithmetic logic unit
(ALU), along with a store of addressable memory that holds both instruc-
tions and data. The digital computer is called a sequential machine because
it starts reading instructions from memory and then walks through memory
(with some skips or branches here or there as dictated by the program),
reading instructions and data, processing the data using the ALU, and then
writing the results back to the memory.

CPU Memory
-~ Address

Instructions
| mtnemcereserom—— |

Program
Counter

Figure 2.5 Digital computer architecture diagram.
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Loan Loan
Rejected Approved

Figure 2.6 Making decisions the digital way.

Using a digital computer to make a decision is a relatively straightforward
process. The arithmetic logic unit, as you might expect from the name, per-
forms mathematical operations such as addition and subtraction. It also
performs basic Boolean logic functions such as testing whether two num-
bers are equal, or whether one is larger than another one. Making Boolean
or binary yes/no decisions is a fundamental part of a digital computer.

Because of this, mapping from a high-level language computer statement
such as “if Income > 100000 then LoanApproved = True else LoanApproved
= False” into elementary computer operations is easy. The value of Income
and 100000 are loaded into registers from memory. The ALU tests o see if
Income is greater than 100000 and if this is True, then the “LoanApproved =
True” code is executed, otherwise the “LoanApproved = False” code is exe-
cuted. While this might seem terribly obvious to you, I point this out to em-
phasize that the type of decision making that we can do in programming
languages is a function of the underlying capability of the digital CPU. The
programming languages we use today were built up and derived from the ba-
sic binary computing capabilities of digital computers. This relationship col-
ors all of our thinking about how we make decisions with computers today.

Figure 2.6 illustrates how applications are developed using digital com-
puters. A set of business rules or algorithms is translated into a computer
program. The input data is fed into the program, the program processes the
data and spits out a yes or no decision.

Of course, coding a decision statement is not hard. Knowing what the
number should be to test for is the hard part (should it be 100000 or
1005007?). The point is that digital computers are great at making binary
(yes/no) decisions, as long as you tell them exactly what to compare. Life
is not always so simple.

Unlike the digital computer, neural networks and neural computers are
based on a model of the brain. A processing element in a neural network
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Figure 2.7 Making decisions the neural network way.

makes decisions in a very different way than a digital computer. Rather than
reading an instruction from memory and then loading data items into regis-
ters and performing the specified logical operation like a digital computer, a
neural processing element operates much differently.

A neural processing element receives inputs from other connected pro-
cessing elements. These input signals or values pass through weighted con-
nections, which either amplify or diminish the signals. Inside the neural
processing element, all of these input signals are summed together to give
the total input to the unit. This total input value is then passed through a
mathematical function to produce an output or decision value ranging from
0 to 1. Notice that this is a real valued (analog) output, not a digital 0/1 out-
put. If the input signal matches the connection weights exactly, then the
output is close to 1. If the input signal totally mismatches the connection
weights then the output is close to 0. Varying degrees of similarity are rep-
resented by the intermediate values. Now, of course, we can force the
neural processing element to make a binary (1/0) decision, but by using
analog values ranging between 0.0 and 1.0 as the outputs, we are retaining
more information to pass on to the next layer of neural processing units. In
a very real sense, neural networks are analog computers.

Figure 2.7 shows how a neural network would be used to make a loan
approval application. The inputs to the neural network are examples or
case histories of the application problem and its solution. The loan appli-
cation data is fed into the neural network and a value from 0.0 to 1.0 is
the result.

Each neural processing element acts as a simple pattern recognition ma-
chine. It checks the input signals against its memory traces (connection
weights) and produces an output signal that corresponds to the degree of
match between those patterns. In typical neural networks, there are hun-
dreds of neural processing elements whose pattern recognition and deci-
sion-making abilities are harnessed together to solve problems.
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The Learning Process: Adjusting Our Biases

Suppose we present an input pattern to a neural network and it produces an
output signal that is wildly incorrect. What mechanism exists to change the
output? For example, let’s say that the output value is much lower than it
should be. One way to increase the output of the neural processing elernent
is to move the memory traces or connection weights closer to the input sig-
nal. This would improve the degree of match and increase the output value.

This is exactly the method used to “program” or “train” neural network
computers. Examples are presented to a neural network, it makes a predic-
tion, and the connection weights are adjusted so that the output corre-
sponds more closely to the desired output. This adjustment process is done
automatically by the learning algorithm being used to train the network. By
making connections stronger or weaker, reinforcing or inhibiting, the artifi-
cial neural network is mimicking the behavior of the synapses of the brain,
which undergo physical changes in response to input patterns and feed-
back. Figure 2.8 is an example of this process. In step 1, the neural network

Desired

Step 1

A Desired Actual

Step 2

A Desired Actual

Step 3

C

D

Figure 2.8 Neural networks—learning from experience.
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outputs a value less than the desired value. Based on the difference be-
tween the desired and actual outputs, the connection weights are modified.
In step 2, we see that connection weight B is smaller and weight C is larger,
producing an actual output that is now slightly larger than desired. Once
again, the weights are adjusted. In this case, weight C is reduced, so that the
output for step 3 is very close to the desired output.

Basic Neural Network Functions

It should come as no surprise that neural networks perform many of the
kinds of tasks that humans do. These tasks, which are important for our sur-
vival as a species, involve simultaneous processing of large amounts of data
(vision, hearing, touch), where fast, accurate pattern recognition and re-
sponses are required. The architecture of the human brain evolved to solve
these types of problems.

Classification

Perhaps the most basic function performed by our brain is that of discrimi-
nation, or classification between two things. We are capable of analyzing ob-
jects using the subtlest and finest features to assess both the similarities
and differences. We can classify animals as friendly or dangerous, plants as
good to eat or poisonous, weather as pleasant or threatening. Every day, in
hundreds and thousands of cases, we classify things. In the business envi-
ronment, we have another need to make classifications. Is a loan applicant
worthy of a mortgage for a new house? Should we extend a line of credit to
a growing business? Should we mail our new catalog to this set of customers
or to another one? We make these decisions based on classification.

Clustering

While classification is important, it can certainly be overdone. Making too
fine a distinction between things can be as serious a problem as not being
able to decide at all. Because we have limited storage capacity in our brain
(we still haven't figured out how to add an extender card), it is important
for us to be able to cluster similar iteras or things together. Not only is clus-
tering useful from an efficiency standpoint, but the ability to group like
things together (called chunking by artificial intelligence practitioners) is a
very important reasoning tool. It is through clustering that we can think in
termas of higher abstractions, solving broader problers by getting above all
of the nitty-gritty details.

The business applications of clustering are mainly in the marketing arena.
By clustering customers into groups based on important similar attributes,
such as which products they buy or demographics they share, you can start
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to understand your markets in finer detail. This information can be used to
target these groups of similar customers with products that many of them
have purchased in the past or add-on services, which might appeal to that
segment. This use of clustering is also called market segmentation.

Associative memory

The human mind is an amazing storage device. A lifetime worth of memo-
ries are stored with an indexing system that would make a database admin-
istrator drool. People store information by associating things or ideas with
other related memories. There seems to be a complex network of semanti-
cally related ideas stored in the brain. One of the fundamental theories of
learning in the brain, called Hebbian learning after Donald Hebb (1949),
says that when two neurons are activated in the brain at the same time,
then the connection between them grows stronger. At the time, Hebb pos-
tulated that physical changes in the synapse of the neurons took place. This
hypothesis has since been proven by neurophysiologists.

Some of the earliest work in neural networks deals with the creation of
associative memories. Unlike classification or modeling where we are trying
to learn some fundamental relationship between inputs and output, asso-
ciative memory requires a mapping of any two items. Neural network mod-
els such as Binary Adaptive Memories and Hopfield networks have been
shown to be limited capacity, but working, associative memories.

Modeling or regression

People build practical, useful mental models all of the time. Seldom do they
resort to writing a complex set of mathematical equations or use other formal
methods. Rather, most people build models relating inputs and outputs based
on the examples they have seen in their everyday life. These models can be
rather trivial, such as knowing that when there are dark clouds in the sky and
the wind starts picking up that a storm is probably on the way. Or they can be
more complex, like a stock trader who watches plots of leading economic in-
dicators to know when to buy or sell. The ability to make accurate predictions
from complex examples involving many variables is a great asset.

By seeing only a few examples, people can learn to model relationships.
We use our ability to interpolate between the exact examples to generalize
to novel cases or problems we have never seen before. It is the ability to
generalize that is a strength of neural network technology.

Time-series forecasting and prediction

Like modeling, which involves making a static one-time prediction based on
current information, time-series prediction involves looking at current in-
formation and predicting what is going to happen. However, with time-
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series predictions, we typically are looking at what has happened for some
period back through time and predicting for some point in the future. The
temporal or time element makes time-series prediction both more difficult
and more rewarding. Someone who can predict the future based on what
has occurred in the past can clearly have tremendous advantages over
someone who cannot.

People are very good at using context to help modify their predictions of
what the outcome of certain situations will be. For example, knowing that it
is a day after a holiday would suggest to most people that banks would be
busier than normal, and a shopper would take this into account. If a bank
manager were planning staffing requirements, then this would be consid-
ered. When neural networks are used for time-series forecasting problems,
neural networks also must be given this context information so they can
factor it into their predictions.

Constraint satisfaction

Most people are very good at solving complex problems that involve multi-
ple simultaneous constraints. For example, we might have a list of errands
to run. Knowing that buying groceries should be at the end and that we can
perform three of the tasks at a single shopping center would help us in our
planning. In business, we often want to maximize conflicting goals, increase
customer satisfaction, reduce costs, increase quality, and maximize. profits.
We can certainly increase customer satisfaction if we sell our products at
half price. However, this wouldn’t be good for our profitability. We could re-
duce costs by cutting out inventory down to just a few items, but this would
certainly have a negative impact on customer satisfaction.

Having multiple conflicting goals is a natural part of life. People deal with
this state of affairs all of the time and think nothing of it. Digital computers
and Boolean logic, however, have a hard time dealing with this. In contrast,
neural networks with their weighted connections and analog computing
have proven themselves extremely adept at solving constraint satisfaction
and optimization problems.

Summary

People are familiar with the computer metaphor, that the human brain is
nothing more than a computer made of flesh. This view is the result of
both the success of the digital computer and of the symbolic school of ar-
tificial intelligence where rule processing and symbol manipulation were
equated with intelligence. However, neural networks present an alterna-
tive model based on the massive parallelism and the pattern recognition
abilities of the brain.
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Neural networks share much more with the architecture and our current
understanding of how people learn and make decisions than with the cur-
rent digital computer model. Neural networks learn from examples. They
take complex, noisy data and make educated guesses based on what they
have learned from the past. Given the requirements for data mining against
large databases of historical data, neural networks are a natural technology
for this type of application.

More than just a new computing architecture, neural networks offer a
completely different paradigm for solving problems with computers. In my
example, I showed how a knowledge worker learns to do her job by working
through examples and getting feedback on her performance. This approach
was contrasted to how computers are used to solve these kinds of problems.
The neural network training approach is more similar to how people work
and learn.

The process of learning in neural networks is to use feedback to adjust in-
ternal connections, which in turn affect the output or answer produced.
The neural processing element combines all of the inputs to it and produces
an output, which is essentially a measure of the match between the input
pattern and its connection weights. When hundreds of these neural proces-
sors are combined, we have the ability to solve difficult problems such as
credit scoring.

Many of the basic functions performed by neural networks are mirrored
by human abilities. These include making distinctions between items (clas-
sification), dividing similar things into groups (clustering), associating two
or more things (associative memory), learning to predict outcomes based
on examples (modeling), being able to predict into the future (time-series
forecasting), and finally juggling multiple goals and coming up with a good-
enough solution (constraint satisfaction).

Neural networks are a computing model grounded on the ability to rec-
ognize patterns in data. As a consequence, they have many applications to
data mining and analysis. In the remainder of this book, I explore how
neural networks can be applied to solve common business problems.
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Chapter

Data Preparation

“The real question is not whether machines
think, but whether men do.”
B.F. SKINNER

In this chapter, I explore the issues related to the first major step in the data
mining process—data preparation. Modern database system architectures,
data access, data cleansing, and data selection are described. The remain-
der of the chapter deals with data set management and the preprocessing of
data for data mining with neural networks.

Data: The Raw Material

It is certainly true that having data is a necessary prerequisite to doing data
mining. However, just having the data is not always sufficient. There is al-
ways the question of if we have enough data. Then there is the issue of if we
have clean, reliable data. Finally, and most importantly, is the determination
of whether we have the right data. Only someone with domain knowledge,
someone who understands the data and what it means, can select the right
data for a data mining operation. As we will see, this application of knowl-
edge about the data is used in several different ways in data mining, espe-
cially in the data preparation phase.

In most cases, the data used for a data mining operation has been just sit-
ting around collecting dust. The data is created as a by-product of performing
common business transactions, is stored in an operational database, and is
archived to tape for long-term storage. Many companies are implementing
corporate data warehouses, which keep the operational data online and avail-
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able for extended periods of time. Some companies are creating marketing
databases, which keep only information related to customer relationships
and purchasing history online. Whatever historical data is available, it is the
raw material for the data mining process.

One problem that often arises when a data mining process is proposed is
that only part of the business process is computerized. Part of the process is
online, and part of it is manual, so only a portion of the data is available on the
computer system. For example, in a credit approval process, most of the in-
formation is entered into the computer system, but the credit report and ap-
praiser’s report are not. They are part of the credit applicant’s paper folder. In
this case, we have all of the data, but it is not available in a form that can be
used immediately for data mining. If the goal is to analyze or automate this
process through data mining, we will first have to get the information from the
paper documents into the computer system. The cost of this can be substan-
tial. An alternative approach is to automate the entire process and begin col-
lecting the data so that data mining can be performed at some future time.

Although it might sound crazy, we might want to do data mining even
though we don't have any data. Obviously this doesn’t make sense for deci-
sion support applications, but for certain types of application development
it works well. The key is that even though we don’t have the data, we can
generate it. That is, we don’t have records of actual decisions, but we can
write some rules that can be used to generate training examples, which de-
fine 80% of the desired behavior. With this approach, we can off-load 80%
of the caseloads from workers (the easy cases), and let thera focus on 20%
of the cases (the hard cases). In the mean time we can start collecting the
decisions they make and later update the neural network so it can cover
more cases in the gray area.

The data used in a data mining project might be stored either in a flat file
or in a database. Even when the data is actually stored in a database, it is of-
ten dumped to a flat file for processing by the data mining algorithms. This
is sometimes done for simplicity, as an easy way of handing off data to a
consultant or third party who is actually going to do the data mining. In
other cases, this is done to avoid the performance penalties, which are
sometime paid when iterating through large relational databases. One issue
that arises when large data sets have to be preprocessed is ensuring that
there is enough disk space for all of the preprocessed data. In the next sec-
tion, we look at the basic features of relational database systems and some
of the performance issues.

Modern Database Systems

A computer system is not considered complete today without having some
sort of database capabilities. Although data can be stored in plain text files
easily enough, any significant data processing activity where business trans-
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actions are processed, read, and updated today use a relational database. In
the past, hierarchical databases such as IBM’s IMS or network databases
such as CODASYL were used to store business data. The advent of object-
oriented programming languages has prompted the development of a new
form of database systems based on the object paradigm. Object databases
have become very popular, and they are growing quite rapidly. But even
though much data still resides in the hierarchical and network databases on
mainframe computers, and object databases are growing, the information
technology world today relies largely on relational database technology and
will for the foreseeable future.

Relational databases such as IBM DB2, Oracle, and Sybase all treat data
as a collection of records called tuples (see Figure 3.1). Each record or row
in the database consists of a collection of colurns or fields. Thus a rela-
tional database, no matter how large, can always be considered to be a large
table of data consisting of rows and columns. The relational algebra first de-
signed by Codd and Date (1990) specifies a set of logical operations that
can be used to select rows, extract columns, and join two or more relational
tables together in order to get the desired “view” of the data. This manipu-
lation of relational data has been standardized in the industry by the
Structured Query Language, SQL. Business application programming lan-
guages such as COBOL and RPG support SQL interfaces to relational data-
bases. Even client-based graphical query tools end up ultimately issuing
dynamic or static SQL statements to access the host data.

Accessing data from a database consists of selecting columns of data
from either all records or from records containing specific values or ranges
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Relational Database

Select * from Table A where Age > 18 and Age < 30
Select ltem from Table C, Table A where Table A.Name = Table C.Name and Age > 18

Figure 3.1 Relational database systems.
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of values in the data. The result of all SQL operations on relational database
tables is another table. This table is then accessed either using key fields or
sequentially by using a cursor to walk through the table. Thus, when all is
said and done, the data coming from a relational database is a single record
consisting of a set of columns or fields.

As the amount of data generated in a typical business day has grown, the
relational databases that store this data have also needed to grow. Today in-
dividual relational databases can be gigabytes in size. ‘In 1994, 32% of the
DB2/400 databases ranged in size from 11 to 50 gigabytes, while 18% of
Oracle databases were also in that range (Ovum 1994). Almost 30% of the
DB2 databases on mainframe computers were larger than 50 gigabytes.
Depending on the complexity of the layout of the tables, a query for infor-
mation from a set of tables might take anywhere from seconds or minutes,
to even hours or days to complete. As the business user's focus has turned
to the task of examining the business data, demands on database perfor-
mance has increased to such an extent that much of the differentiation be-
tween commercial database vendors is not in the features and function, but
in the area of performance.

Parallel Databases

As the quest for better performance has continued, database vendors have
moved to parallel hardware configurations in order to provide the needed
transaction processing and query response times. These paraliel database
architectures can be split into two major camps, symmetrical multiprocess-
ing (SMP) or tightly coupled systems, and shared nothing or loosely cou-
pled systems. In the following sections, we explore these two popular parallel
database architectures.

SMP database architectures

Symmetrical multiprocessing database systems use multiple processors
sharing memory in the same computer system to process queries in paral-
lel. All of the processors in the system can access all of the data on the hard
disks, and they also all share the system memory. In most SMP systems, a
single query is split into pieces, and these pieces are sent off to the individ-
ual processors in the system. Figure 3.2 shows a task or application running
on a four-way AS/400 system with the SMP version of DB2 for 05/400. Each
processor can work on its part of the problem, accessing the hard disks to
retrieve the data and returning its partial results. These partial results then
have to be combined to return the overall results of the query to the re-
questing application program.

One major problem with SMP database systems is that the shared mem-
ory becomes a system bottleneck. This is because each processor, while
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Figure 3.2 SMP database systems.

able to perform independently on a piece of the problem, still has to wait
until the main memory is not being accessed by any of the other processors
in the system. SMP is usually effective for small number of processors, rang-
ing from 4 up to about 16.

Shared-nothing database architectures

Because of the scaling problems of SMP database systems, vendors have in-
troduced loosely coupled or shared-nothing database systems. In a shared-
nothing architecture, each processor has its own disks and its own memory,
so that memory is no longer a bottleneck. Figure 3.3 depicts an example of
a customer database in a shared-nothing configuration. The individual rela-
tional database table is split across three nodes in an three-way shared
database system. When a query is run, the query is sent to each processor,
which checks the data on its local disks using its own memory and then
sends back the partial results. As in an SMP system, the partial results are
corbined to yield the final query results, which are returned to the appli-
cation program.

The beauty of shared-nothing parallel databases is that they are inher-
ently scalable. Systems with 128 and more nodes have been built and used
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Figure 3.3 Shared-nothing database systems.

in commercial environments. Shared-nothing databases are true parallel
databases. All database operations—including inserts, deletes, and index-
ing operations—can be performed in parallel with the corresponding in-
creases in performance. To many people, data warehousing doesn't really
make sense unless you are talking about a shared-nothing database archi-
tecture. The IBM SP2 with DB2 Parallel Edition and DB2 MultiSystem for
AS/400 are both examples of shared-nothing, highly scalable relational
database systems (Finkelstein 1995).

Data Cleansing

When operational data gets loaded into a centralized data warehouse, the
data often must go through a process known as “data cleansing.” A sad but
true fact is that not all operational transactions are correct. They might con-
tain inaccurate values, missing data, or other inconsistencies in the data.
The transaction might be checked by an application program, which detects
the bad data and notifies the originator of this, but the bad data often re-
mains in the database. This was not such a problem when the database was
viewed primarily as an archival mechanism. However, if the data warehouse
is to be turned into a fount of raw material for corporate business intelli-
gence gathering, then the data must be as clean and correct as possible.
Several techniques are being used to clean data either before or after it
gets into the data warehouse. These include rule-based techniques, which
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evaluate each data item against metaknowledge (knowledge about the
data) about the range of data expected in that field and constraints or rela-
tionships to other fields in the record (Simoudis, Livezey, and Kerber 1995).
Visualization can also be used to easily identify outliers, or out of range
data, in large data sets. Another approach is to use statistical information to
set missing or incorrect field values to neutral, valid values.

Data Selection

Once we have the database to train the neural network, the next step is to
decide what data is important for the task we are trying to automate. Maybe
our database has 100 fields, but only 10 are used in making a decision. The
problem is that, in many cases, we don't know exactly which parameters are
important in a decision process. Fortunately, neural networks can be used
to help determine which parameters are important and to build a model re-
lating those parameters. '

The data selection process really takes place across two dimensions. First
is the columns or parameters, which will be part of the data mining process.
Second is the selection of rows or records, based on the values of individual
fields. The underlying mechanism used to access all relational databases is
SQL, as discussed earlier. However, most database front-end tools allow
users to specify which data to access using fill-in-the-blank forms.

The data selection step requires some detailed knowledge of the problem
domain and the underlying data. Often the data that is stored in the data-
base needs to be massaged or enhanced before data mining can begin. This
preprocessing step is described in the next section.

Data Preprocessing

Data preprocessing is the step when the clean data we have selected is en-
hanced. Sometimes this enhancement involves generating new data items
from one or more fields, and sometimes it means replacing several fields with
a single field that contains more information. Remember, the number of input
fields is not necessarily a measure of the information content being provided
to the data mining algorithm. Some of the data could be redundant; that is,
some of the attributes are simply different ways of measuring the same ef-
fect. Sometimes the data needs to be transformed into a form that is accept-
able as input to a specific data mining algorithm, such as a neural network.

Computed attributes

A common requirement in data mining is to take two or more fields in com-
bination to yield a new field or attribute. This is usually in the form of a ra-
tio of two values, but could also be the sum, product, or difference of the
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values. Other transformations could be turning a date into a day of the week
or day of the year. Computed attributes are often necessary because the
transaction processing application was designed to handle the minimum
amount of data required to log the transaction. In the past, the focus has
been on minimizing storage requirements and processing time, and not on
maximizing the amount of information gathered by transactions.

Scaling

Another transformation involves the more general issue of scaling data for
presentation to the neural network. Most neural network models accept nu-
meric data only in the range of 0.0 to 1.0 or -1.0 to +1.0, depending on the
activation functions used in the neural processing elements. Consequently,
data usually must be scaled down to that range.

Scalar values that are more or less uniformly distributed over a range can
be scaled directly to the 0 to 1.0 range. If the data values are skewed, a
piece-wise linear or a logarithmic function can be used to transform the
data, which can then be scaled into the desired range. Discrete variables
can be represented by coded types with 0 and 1 values, or they can be as-
signed values in the desired continuous range.

Normalization

Vectors or arrays of numeric data can sometimes be treated as groups of
numbers. In these cases, we might need to normalize or scale the vectors as
a group. There are several ways of doing this. Perhaps the most common
vector normalization method is to sum the squares of each element, take
the square root of the sum, and then divide each element by the norm. This
is called the Euclidean norm. A second way to normalize vector data is to
simply sum up all of the elements in the vector and then divide each num-
ber by the sum. In this way, the normalized elements sum to 1.0, and each
takes on a value representing the percentage of contribution they make. A
third way to normalize vector data is to divide each vector element by the
maximum value in the array. This max norm is also useful since it requires
very little overhead processing cost.

Symbolic mappings and taxonomies

In many cases we need to perform transformations of symbols to other sym-
bols before we can turn them into numeric values. A common use would be
to aggregate members of some class or group into a single symbol for data
representation purposes. For example, a store might sell 100 varieties of
juice, all with unique SKUs (store keeping units) and alphanumeric identi-
fiers. If we want to model the purchases of various classes of beverages, we
need to treat all of these products as one.
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This type of mapping can be used to look at categories at several levels
of granularity. For example, we could go through several stages of map-
pings, depending on our needs. Figure 3.4 shows a common use of tax-
onomies to view problems at different levels of abstraction. If we managed
a grocery store, we might be interested in the relationship between sales of
condiments and some other category of food (hot dogs, hamburgers, buns)
or the weather. At one level, we think about and group all condiments into
one abstract category. Or we could go down one level and think about in-
dividual types of condiments such as pickles. Then we could check the re-
lationship between pickle consumption and the number of births recorded
at the local hospitals. Or if we need to restock our pickle supply, we need
information about particular types of pickles that are selling well. At the
next level (not shown) we would have to determine which brand and size
to carry in our store.

Symbolic to numeric translations

Symbolic to numeric translations are often required to turn discrete sym-
bols or categories into numerical values for processing by the data mining
algorithms. The most basic form this can take is of a simple table lookup,
where the symbol is compared against a list of symbols and when it is found,
a corresponding numeric value is used. Care must be taken to ensure that
illegal or undefined symbols get assigned some common “don’t care” or “un-
known” value. Another more sophisticated approach is to use a hashing
function, which is an algorithm that takes a character string and generates
a unique numeric value.
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Data Representations

Although there are many data types supported in relational database sys-
tems, most can be easily mapped into three logical data types. These in-
clude continuous numeric values, discrete numeric values, and categorical
or symbolic discrete values. Time and date information present certain
cha]lenges, but they can also be mapped into numeric values by using the
appropriate functions.

Figure 3.5 illustrates the major data types and how they can be repre-
sented for neural network data mining operations. If we start with a symbol
“Apple,” we could either map it to a specific integer value using a symbol
table, or we could use a hash function to come up with a unique integer
value for the string. This gives us a numeric discrete (integer) value. This
value could be presented to a neural network in some cases. However, we
usually want to take that value and either scale it or translate it into a coded
type. In Figure 3.5, the symbol “Apple” is mapped to a discrete value of “5."
This is scaled to 0.5 if we want to use a single real-valued continuous input,
or it can be converted into any of the three codes shown on the right. In the
following sections, I describe how source data can be translated between
these basic logical types for use with neural networks for data mining.

Numeric data representations

Numeric data can be simple binary values (0 or 1) indicating on/off states,
or it can be a range of discrete values (1 to 10) or a continuous range from
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Figure 3.5 Common data representations for neural networks.
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~1000 to +1000. In each case we must decide how to scale and represent
that data. Most neural networks accept inputs in the range of 0 to 1 or—1 to
+1. In this case binary parameters can be represented by the extremes of
the input range.

Discrete values

Discrete variables are ones that take on only a fixed set of values. These
typically denote a small set of classes, a set of responses to multiple choice
questions (for example, A through E), or a fixed interval of integer values.
The challenge for neural network representation of discrete values is to
present these variable values in such a way that the network is able to dis-
cern the differences between values and can tell the relative magnitude of
the differences if that information is available. Various coded data types are
used to represent these values. In the following sections, I describe the
most commonly used codes.

One-of-N codes. When a variable can take on a set of discrete values, it
must be transformed into a representation that presents a unique set of
inputs to the neural network for each distinct discrete value. Perhaps the
most common representation for discrete variables is the one-of-N code.
A one-of-N code has a length equal to the number of discrete categories
allowed for the variable, where every element in the code vector is a 0,
except for the single element, which represents the code value. For ex-
ample if we have a set with four elements { apples, peaches, purmpkin, pie },
we can represent apples as 1 0 0 0, peaches as 0 1 0 0, pumpkin as 0 01
0, and pie as 0 0 0 1. The nice thing about one-of-N codes is that they are
simple, easy to use, and the neural network can easily learn to discrimi-
nate between the various values. However, for variables with a large
number of values, the one-of-N code can be very costly in terms of the
size of the neural network. Using this representation, a single variable
could expand to 100 or 1000 inputs with a corresponding explosion in the
number of input weights.

Binary codes. An alternative representation is the standard binary code.
Here each discrete category is assigned a value from 1 to N and repre-
sented by a string of binary digits. That is, if we have 64 possible values,
we could represent it with a binary code vector of length 6. As long as the
discrete values are arbitrary and not ordered in any way, a binary code is
a fine way to represent data. However, note that there are large differ-
ences in the bit values as the discrete numbers get converted to binary
codes. The seventh item has a code of 0 0 0 1 1 1, while the eighth has a
code of 0 0 1 0 0 0. The Hamming distance is a measure of the similarity
or difference between two binary strings. In this case, going from 7 to 8
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results in a Hamming distance of 4. If we want the neural network to treat
input patterns with a 7 or 8 as “similar,” then we might want to choose
the thermometer or temperature code.

Thermometer codes. A thermometer code is used most often when the dis-
crete values are related in some way, usually by increasing or decreasing
values. For example, we might have a discrete variable that takes on the fol-
lowing values { poor, good, better, best }. In this case we would like the dif-
ference between poor and best to be large (in Hamming distance) and the
difference between better and best to be smaller. This is exactly what hap-
pens with a thermometer code since poor is represented as 1 0 0 0, while
bestis 1 1 1 1 (Hamming distance of 4), while better is representedas 111
0, (better to best is only a Hamming distance of 1 away).

There are other coding schemes that also work for discrete variables, but,
in general, the one-of-N, binary and thermometer codes seem to get the job
done.

Continuous values

For continuous values, the most common form of data translation operation
is scaling of the data. For example, a variable that can take on values from
0 to 100 can be linearly scaled from 0.0 to 1.0. So a 20 would take on a value
of 0.2, while an 80 would take on a value of 0.8. For evenly distributed vari-
ables like this, simple linear scaling works fine.

But what if the data is skewed in some way? For example, suppose 80% of
the data is below 50 and we need to teach the neural network to make fine
distinctions between values in the 0 to 50 range. An option is to scale the
data using a piece-wise linear approach so that the data in the 0 to 50 range
is expanded in representation, while the less important 50 to 100 range is
compressed. This can be done by taking the 0, 50, 100 input range and scal-
ing that onto a 0, 0.80, 1.00 range. In this case an input value of 50 gets as-
signed a value of 0.8, while a value of 75 gets assigned a value of 0.9. A
95-count difference in the input value translates into only a 0.1 difference
that the neural network sees. However, an input of 10 would have a value of
0.16, while an input of 25 would be 0.40. Here the neural network sees a big-
ger difference in the input value and so can more easily discriminate between
the differences in the input value. This might or might not be important. But
it is important to remember that if a small difference in the input is really sig-
nificant, say changing from 31 to 33° Fahrenheit, then we want to make sure
our representation shows this significance to the neural network.

Another common need is to threshold data so that values out of the range
of interest do not needlessly dilute our representation. For example, sup-
pose that we have a range of incomes from 0 to 300,000 dollars. But we are
only checking whether the person has an income of 35,000 or more. We
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might simply threshold the income so that values between 0 and 35,000 are
passed through (and then scaled to 0 to 1), while values over 35,000 get
thresholded to 35,000 (and so get a value of 1). Since we don't care about
the full range of this variable, why make the neural network try to relate dif-
ferences in incorne with our decision? There is no need to make the neural
network learn something that it doesn't have to. It is wasted effort.

Symbolic data representations

We encounter symbolic data quite often in neural network applications. The
most comumon, and easiest to deal with, are Boolean variables such as yes/no
and male/female. However, quite often we must add a third condition (even
for Boolean variables), which is the unknown condition. In this case we can
use a one-of-N code of length 3 (yes, no, unknown) or a binary code of
length 2 (yes, no, unknown, <unused>). Or we can decide to represent no
as 0, yes as 1, and unknown as 0.5. All of the representations are valid. It de-
pends on what is required by the application. The trade-off is in network size
(the number of inputs) versus the ease of training (reduced training time).

For symbolic data representing unrelated discrete values, we simply map
the symbol to an integer from 1 to N. For example, {apples, peaches, pump-
kin, pie} maps to 1, 2, 3, 4. Of course, we would probably then scale 1-4 to
0-1 so that apples = 0.0, peaches = 0.33, pumpkin = 0.66, pie = 1.0. In
essence we have the same representation options as discussed previously in
the numeric discrete case. But each unique symbol must be mapped to a
unique numeric value (see Figure 3.5). Depending on the application, we
might or might not want to treat symbols with mismatched case (apple ver-
sus Apple), for example, as different symbols.

For symbolic data representing related values, such as {good, better,
best] we must be careful to map them to consecutive integers and use a
data representation that preserves this ranking information, such as a ther-
moreter code or a simple linear scale.

For symbolic data that is of a continuous nature, this is more complex.
For example, if we want to be sensitive to a difference of a single character
in a string and note that it is similar to another string, the mapping to nu-
meric values becomes more difficult.

Data Representation Impact on Training Time

Data representation is important. If wrong decisions are made regarding rep-
resentation, it might be impossible for the neural network to learn the rela-
tionship we are trying to teach it. However, there is usually a set of possible
data representations that are sufficient to train a network. In all cases, it is
important to understand how your data representation decisions will affect
both the training time for the neural network and the accuracy obtained.
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In general, the more explicit the data representation, the easier it will be
for the neural network to learn. For example, taking a discrete variable and
using a one-of-N vector code will typically train the fastest. However, the
cost is that you are adding N input units and a factor of N additional weights
to the network. Again, in general, the larger the network in terms of pro-
cessing units and connection weights, the less well it will generalize and the
longer it will take to train. Taking the same discrete variable and assigning
it to a single input unit, where each discrete value is represented by a dif-
ference of 0.1 in input magnitude, is certainly a more compact representa-
tion. A smaller neural network and one that generalizes better is likely to
result. However, it will take the neural network a lot longer to adjust its
weights from that single input unit in order to learn that a difference of a
tenth is a significant difference that indicates a completely unique value for
that input variable.

Managing Training Data Sets

A very important aspect of using neural networks for data mining and ap-
plication development is how to manage your raw material, the historical
data. The most common approach is to randomly divide the source data
into two or more data sets. One subset of the data is used to train the neural
network, and another subset is used to test the accuracy of the neural net-
work. It is important to realize that the neural network never “sees” the test
data while it is in training mode. That is, it never learns or adjusts its
weights using the test data. Some people suggest that a third subset is re-
quired that is withheld even from the developer of the neural network
model (not that anyone would cheat!). In this three-subset scenario, the de-
veloper uses a train-and-test data set to build the neural network model and
a third party independently tests the network using the validation data.
Figure 3.6 shows a typical use of data sets in neural network training.
Multiple input files or databases are combined in the data preparation step
to create the source data set. This data set is then split into a training set, a
testing set, and a validation set.

There are some cases when this usual method is not appropriate. One is
when the data is of a temporal or time-series nature. This data must be used
in continuous temporal sequences in order to maintain the information it
contains. Random selection from this data set would be catastrophic. In this
case, it is typical to use data from a certain time period for training and the
most recent data for the testing and/or validation phases.

Another case is when there is not sufficient data to allow random sampling
to reasonably provide a representative sample of the input data population.
In this case, statistical techniques might be required to ensure that both the
training and test data sets contain representative samples of the data.
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Figure 3.6 Data set management.

Data Quantity

Since data is the most important ingredient in data mining, ensuring that
we have enough of our raw material is crucial. In most applications, the
amount of data is at a premium, and several techniques must be used to
squeeze the most utility out of it.

A rough rule of thumb with neural networks is that you need two data
items for each connection in the neural network. So a back propagation
network with 10 inputs, 5 hidden units, and 5 outputs would need approxi-
mately “2 * (10 * 5) + (5 * 5) = 150" training examples to be able to train ac-
curately. In practice, many successful neural network applications have
been developed using less data than this guideline suggests.

When using real data to train a neural network, it is typical to have 98% of
the data representing “good” customers or “normal” conditions, and only have
a small percentage of examples for the cases we really want to detect (i.e.,
“bad” customers or “abnormal” operating conditions). One technique to in-
crease the percentage is to simply duplicate the number of training examples
that contain the underrepresented class of training pattern. Another tech-
nique is to take the small number of test cases and modify them by injecting
small amounts of random noise into the input values and then use these noisy
inputs as additional training cases. Another option is to create the additional
training examples by hand.

Data Quality: Garbage In, Garbage Out

In addition to the management of the data, a major concern in neural net-
work data mining is the quality of the data. Most databases contain incom-
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plete and inaccurate data. Depending on the amount of data available, you
might be able to simply ignore any obviously bad records. However, in many
cases you will have limited data available, and so you will have to try to
scrub the data by supplying values for missing fields. The most common
techniques is to set the fields to the mean or median value if it is numeric or
to the mode of a discrete variable.

As in more traditional statistical analysis, outliers are a concern. A single
record with a value one or two orders of magnitude larger or smaller than
the rest of the data set can severely impact the performance of a neural net-
work model (Simoudis, Levezey, Kerber 1995). A cursory scan of the range
of each variable or a simple scatter plot can usually identify extreme cases
when this occurs.

Neural network data mining, as the name implies, is highly dependent on
the quality and quantity of data. If ever there was a system where GIGO was
the rule (garbage in, garbage out), neural networks is it. They are highly
forgiving of noisy and incomplete data, but they are only as good as the data
they are trained with. See the paper by Cortes, Jackel, and Chiang (1995)
for an excellent discussion of the effects of bad data on learning.

Summary

While the goal of data mining is to extract valuable information from data, it
is an undeniable fact that the quality of the results relates directly to the
quantity and quality of the data being mined. Data might be generated by
transaction processing programs, might be entered into a database from ex-
isting manual paper-based processes, or it might even be generated by do-
main experts. In any case, it is important that missing and out of range
values are scrubbed in the data preprocessing phase. The data might be
stored in flat files or in databases, or both. Often data has to be selected and
combined from several sources before data mining begins.

The majority of data used in data mining resides in relational database
systems. I briefly discussed the relational data model of rows or tuples and
columns or fields. The Structured Query Language (SQL) is the primary
method for manipulating data in relational databases. When we get into the
extremely large gigabyte and terabyte data sets, then performance of the
relational database system becomes more important. Two primary methods
for performance speedup used today are symmetrical multiprocessing
(SMP) and the shared-nothing or loosely coupled systems. Both parallel ar-
chitectures provide improved performance for data access, but the shared-
nothing architecture is more scalable and will be required for the larger
data warehouse systems.

Data representation and preprocessing are extremely important to neural
network data mining. Experienced application consultants estimate that
range from 50% to 75% of the development time is spent working with the
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data before it even sees a neural network. Thus having powerful data access
tools, data cleansing, and preprocessing operations are essential to effec-
tive data mining.

The basic data types used for mining are categorical data, discrete nu-
meric data, and continuous numeric data. Symbols can be turned into dis-
crete numeric data through hashing functions or through symbol table
maps. Numeric data, in turn, can be represented as coded data types such
as one-of-N, thermometer, or regular binary codes. Continuous data can be
scaled, thresholded, and discretized. Symbolic data can be mapped into dif-
ferent levels of abstraction by using taxonomies. Deciding which represen-
tation is best is usually a job of the domain expert who does the data
preparation. Understanding the semantics of the data is crucial for select-
ing the appropriate data representations. The decisions concerning what
data representation to use for the various variables can have a significant
impact on the performance of the neural network, in terms of training time,
processing time required to process transactions, and how well the neural
network generalizes to inputs it has never seen before.
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Chapter

Neural Network Models
and Architectures

“A learning machine is any device whose
actions are influenced by past experiences.”
NILS NILSSON

There are many different types of neural network models or paradigms. At
every neural network conference, literally hundreds of variations will be
presented. Consequently, after you have decided to use neural networks to
do data mining, your next decision is, “Which neural network model do I
use?” This chapter explores the most popular neural network models in
terms of the learning approaches, their basic connection topology, and their
processing functions and capabilities.

The Basic Learning Paradigms

Perhaps the most useful way to categorize the different neural network
models is by the basic learning paradigm or approach they use. The three
main learning paradigms are supervised, unsupervised, and reinforcement.
Supervised is the most common training paradigm used today to develop
neural network classification and prediction applications, while unsuper-
vised learning is often used for clustering and segmentation in data mining
for decision support. Reinforcement learning, though used less frequently
than the other methods today, has applications in optimization over time
and adaptive control.
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Before we get into the three types in detail, let’s quickly relate these train-
ing paradigms to situations we are familiar with. Supervised learning is like
trying to learn a new task from your mother. After every attempt you make to
solve the problem, you have a very attentive teacher who gives you specific,
immediate feedback on how well you did. Unsupervised learning is like being
given a stack of documents, a file cabinet with unmarked file folders, and hav-
ing to create a coherent filing scheme from scratch. Reinforcement learning
is the most like real life. It's like having a job. You are given a sequence of
tasks requiring decisions and at some point down the road, you are given a
performance appraisal. You are told whether you are doing well or not, but it's
up to you to figure out which decisions were right and which were wrong.

Supervised learning

The supervised learning paradigm is equivalent to “programming by exam-
ple.” In this approach, the neural network is given a problem or case, and it
makes a prediction or classification (see Figure 4.1). At this point the su-
pervisor says, “Oh, no, you did it wrong!” and indicates what the answer
should be. Now we have something to go on. The learning algorithm takes
the difference between the correct or desired output and the actual predic-
tion the neural network made, and the algorithm uses that information to
adjust the weights of the neural network so that next time, the prediction
-will be closer to the correct answer. Unlike people, who usually don’t have
to be shown the same problem over and over before they get the idea,
neural networks are somewhat slow. They must be shown the examples
tens, hundreds, or even thousands of times before they can accurately pre-
dict the correct answer to some complex problems.

Supervised learning is used when you have a database of examples that
contain both problem statements and the answer. Now you might say, “What
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Figure 4.1 Supervised learning paradigm.
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good is this, if I already know the answer? What is the neural network doing
that I can’t do already?” It can learn how the input and output are related. It
can learn to look at problems the same way you do and make similar deci-
sions. It can look (and learn) from hundreds or thousands of examples pro-
duced by the best performers in your organization. Moreover, it canlearn to
do this without programming it with instructions such as first do this . . .
then do that . . . ad nauseam. In a relatively automated process, a neural net-
work can turn a pile of data into a decision support system! Turning data
into line of business applications is data mining at its most powerful best.

Supervised learning is a useful approach for training neural networks to per-
form classifications, function approximation or models, and time-series fore-
casting where the network is trained to predict outputs at some point in the
future. It is especially useful in problems where data in the form of input/out-
put examples is available, but no one knows the exact transformation for pro-
cessing the input and producing the output. Despite the amazing things that
can be learned from data using statistical and other mathematical analysis
techniques, there are still many real-world problerus that are highly nonlinear,
have complex relationships between multiple variables, and for which the for-
mal mathematical function is not known or cannot be easily derived. Another
type of problem for which supervised neural networks are ideal is the case
when the problem itself changes over time. If we are trying to control a manu-
facturing process that is susceptible to changes due to variable weather or ma-
chine tool wear, then a neural network can be used to model and adapt to
these changing conditions.

Unsupervised learning

Unsupervised learning is used in cases where we have lots of data, but we
don't know the answer. We dont know the answer, but we do know the
question. If we don't know the question, we might as well quit right now.
The question is, “How are these data related? What items are sirilar or dif-
ferent and in what way?” In effect, we want the neural network to look at
the patterns of data and to cluster them so that similar patterns get put into
the same cluster (see Figure 4.2). The neural network using unsupervised
learning can perform this task with great precision. Of course, you have to
represent the data correctly so that the neural network can discriminate be-
tween important differences in the data and unimportant ones. Once the
partitioning is done, we’ll need to do some analysis of the network to get a
complete application (we'll talk about that later). This clustering approach
is a quite useful function, as we will see.

Neural networks that are trained using unsupervised methods are called
self-organizing because they receive no direction on what the desired or
correct output should be. When presented with a series of input patterns,
the output processing units self-organize by initially competing to recognize
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Figure 4.2 Unsupervised learning paradigm.

the pattern, and then cooperating to adjust their connection weights. Over
time, an unsupervised network evolves so that each output unit is sensitive
to and will recognize inputs from a specific portion of the input space.

Reinforcement learning

The third major neural network training paradigm is called reinforcement
learning. In reinforcement learning, we have examples of the problem or
case, but we do not have the exact answer, or at least not immediately (see
Figure 4.3). For example, let’s say we are playing a game, we have a board
position, we make a move, the opponent makes a move, we make a move, etc.
After 10 or 20 moves, we win or we lose. Now this is our reinforcement sig-
nal. We make a series of decisions, and only later do we find out whether they
were right or wrong (how lifelike!). The neural network reinforcement learn-
ing approach allows very difficult temporal (time-dependent) problems to be
solved. In some respects, reinforcement learning is the most true-to-life par-
adigm. For that reason, it is also one of the hardest to use to solve problems.

If exact feedback information is available, then supervised training will al-
most always be faster and more economical than reinforcement learning.
However, when the problem involves some time sequential process or when
the exact feedback is not available and only secondary signals are visible,
then reinforcement learning is an appropriate technique to use. Researchers
have shown that neural network models that use reinforcement learning are
performing a mathematical optimization function similar to dynamic pro-
graraming (Sutton 1988). This approach allows optimal strategies to be de-
rived in economic and control applications.

Neural Network Topologies

The arrangement of neural processing units and their interconnections can
have a profound impact on the processing capabilities of the neural net-
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Figure 4.3 Reinforcement learning paradigm.

works. In general, all neural networks have some set of processing units
that receive inputs from the outside world, which we refer to appropriately
as the “input units.” Many neural networks also have one or more layers of
“hidden” processing units that receive inputs only from other processing
units. A layer or “slab” of processing units receives a vector of data or the
outputs of a previous layer of units and processes them in parallel. The set
of processing units that represents the final result of the neural network
computation is designated as the “output units.” There are three major con-
nection topologies that define how data flows between the input, hidden,
and output processing units. These main categories—feedforward, limited
recurrent, and fully recurrent networks—are described in detail in the next
sections.

Feedforward networks

Feedforward networks are used in situations when we can bring all of the
information to bear on a problem at once, and we can present it to the
neural network. It is like a pop quiz, where the teacher walks in, writes a set
of facts on the board, and says, “OK, tell me the answer.” You must take the
data, process it, and “jump to a conclusion.” In this type of neural network,
the data flows through the network in one direction, and the answer is
based solely on the current set of inputs.

In Figure 4.4, we see a typical feedforward neural network topology. Data
enters the neural network through the input units on the left. The input values
are assigned to the input units as the unit activation values. The output values
of the units are modulated by the connection weights, either being magnified
if the connection weight is positive and greater than 1.0, or being diminished
if the connection weight is between 0.0 and 1.0. If the connection weight is
negative, the signal is magnified or diminished in the opposite direction.
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Figure 4.4 Feedforward neural
networks.

Each processing unit combines all of the input signals coming into the unit
along with a threshold value. This total input signal is then passed through
an activation function to determine the actual output of the processing unit,
which in turn becomes the input to another layer of units in a multilayer net-
work. The most typical activation function used in neural networks is the S-
shaped or sigmoid (also called the logistic) function. This function converts
an input value to an output ranging from 0 to 1.0. The effect of the threshold
weights is to shift the curve right or left, thereby making the output value
higher or lower, depending on the sign of the threshold weight.

As shown in Figure 4.4, the data flows from the input layer through zero,
one, or more succeeding hidden layers and then to the output layer. In most
networks, the units from one layer are fully connected to the units in the next
layer. However, this is not a requirement of feedforward neural networks. In
some cases, especially when the neural network connections and weights are
constructed from a rule or predicate form, there could be less connection
weights than in a fully connected network. There are also techniques for prun-
ing unnecessary weights from a neural network after it is trained. In general,
the less weights there are, the faster the network will be able to process data
and the better it will generalize to unseen inputs. It is important to remember
that “feedforward” is a definition of connection topology and data flow. It does
not imply any specific type of activation function or training paradigm.

Limited recurrent networks

Recurrent networks are used in situations when we have current informa-
tion to give the network, but the sequence of inputs is important, and we
need the neural network to somehow store a record of the prior inputs and
factor them in with the current data to produce an answer. In recurrent net-
works, information about past inputs is fed back into and mixed with the in-
puts through recurrent or feedback connections for hidden or output units.
In this way, the neural network contains a memory of the past inputs via the
activations (see Figure 4.5).

Two major architectures for limited recurrent networks are widely used.
Elman (1990) suggested allowing feedback from the hidden units to a set of
additional inputs called context units. Earlier, Jordan (1986) described a net-
work with feedback from the output units back to a set of context units. This
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form of recurrence is a compromise between the simplicity of a feedforward
network and the complexity of a fully recurrent neural network because it
still allows the popular back propagation training algorithm (described in the
following) to be used.

Fully recurrent networks

Fully recurrent networks, as their name suggests, provide two-way connec-
tions between all processors in the neural network. A subset of the units is
designated as the input processors, and they are assigned or clamped to the
specified input values. The data then flows to all adjacent connected units
and circulates back and forth until the activation of the units stabilizes.
Figure 4.6 shows the input units feeding into both the hidden units (if any)
and the output units. The activations of the hidden and output units then
are recomputed until the neural network stabilizes. At this point, the output
values can be read from the output layer of processing units.

Fully recurrent networks are complex, dynamical systems, and they ex-
hibit all of the power and instability associated with limit cycles and chaotic
behavior of such systems. Unlike feedforward network variants, which have
a deterministic time to produce an output value (based on the time for the
data to flow through the network), fully recurrent networks can take an in-
determinate amount of time.

In the best case, the neural network will reverberate a few times and
quickly settle into a stable, minimal energy state. At this time, the output val-
ues can be read from the output units. In less optimal circurstances, the net-
work might cycle quite a few times before it settles into an answer. In worst
cases, the network will fall into a limit cycle, visiting the same set of answer
states over and over without ever settling down. Another possibility is that
the network will enter a chaotic pattern and never visit the same output state.

o

Figure 4.5 Partial recurrent neural networks.
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Figure 4.6 Fully recurrent neural
networks.

By placing some constraints on the connection weights, we can ensure
that the network will enter a stable state. The connections between units
must be symmetrical. Fully recurrent networks are used primarily for opti-
mization problems and as associative memories. A nice attribute with opti-
mization problems is that depending on the time available, you can choose
to get the recurrent network’s current answer or wait a longer time for it to
settle into a better one. This behavior is similar to the performance of peo-
ple in certain tasks.

Neural Network Models

As mentioned earlier, the combination of topology, learning paradigm, and
learning algorithm define a neural network model. There are a wide selec-
tion of popular neural network models. For data mining, perhaps the back
propagation network and the Kohonen feature map are the most popular.
However, there are many different types of neural networks in use. Some
are optimized for fast training, others for fast recall of stored memories,
others for computing the best possible answer regardless of training or re-
call time. But the best model for a given application or data mining function
depends on the data and the function required.

The discussion that follows is intended to provide an intuitive under-
standing of the differences between the major types of neural networks. No
details of the mathematics behind these models are provided. As mentioned
in the preface, there are already a large number of textbooks that describe
the math derivations in considerable detail. Wasserman’s books provide a
good introduction to neural network theory (1987, 1993), although his first
book is getting a little dated. Hertz, Krogh, and Palmer (1993) give one of
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the most comprehensive treatments of the literature and the mathematics
associated with the models. If you crave a dose of calculus, these books will
not disappoint. But in keeping with the goal of writing a book for an infor-
mation processing and business audience, the following discussion uses
words and graphics, even when a formula might clarify the point for some
readers.

Back propagation networks

A back propagation neural network uses a feedforward topology, supervised
learning, and the (what else) back propagation learning algorithm. This al-
gorithm was responsible in large part for the reemergence of neural net-
works in the mid-1980s. Rumelhart, Hinton, and Williams (1986), working
as part of the Parallel Distributed Processing group of neural network re-
searchers, popularized the back propagation algorithm (which they called
the generalized delta rule) with their clear, mathematical derivation and
simple examples of the use of the algorithm. Their siraple rebuttal of Minsky
and Pappert’s criticism of neural networks’ inability to learn simple prob-
lems, such as the exclusive OR logic function, showed that a basic limitation
of neural networks had been overcome.

Back propagation is a general-purpose learning algorithm. It is powerful
but also expensive in terms of computational requirements for training. A
back propagation network with a single hidden layer of processing elements
can model any continuous function to any degree of accuracy (given enough
processing elements in the hidden layer). There are literally hundreds of
variations of back propagation in the neural network literature, and all claim
to be superior to “basic” back propagation in one way or the other. Indeed,
since back propagation is based on a relatively simple form of optimization
known as gradient descent, mathematically astute observers soon pro-
posed modifications using more powerful techniques such as conjugate gra-
dient and Newton's methods (see Wasserman, 1993, for a discussion of some
of the many variations of back propagation). However, “basic” back propa-
gation is still the most widely used variant. Its two primary virtues are that it
is simple and easy to understand, and it works for a wide range of problems.

The basic back propagation algorithm consists of three steps (see Figure
4.7). The input pattern is presented to the input layer of the network.
These inputs are propagated through the network until they reach the out-
put units. This forward pass produces the actual or predicted output pat-
tern. Because back propagation is a supervised learning algorithm, the
desired outputs are given as part of the training vector. The actual network
outputs are subtracted from the desired outputs and an error signal is pro-
duced. This error signal is then the basis for the back propagation step,
whereby the errors are passed back through the neural network by com-
puting the contribution of each hidden processing unit and deriving the cor-
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Figure 4.7 Back propagation networks.

responding adjustment needed to produce the correct output. The connection
weights are then adjusted and the neural network has just “learned” from
an experience.

As mentioned earlier, back propagation is a powerful and flexible tool for
data modeling and analysis. Suppose you want to do linear regression. A
back propagation network with no hidden units can be easily used to build
a regression model relating multiple input parameters to multiple outputs
or dependent variables. This type of back propagation network actually
uses an algorithm called the delta rule, first proposed by Widrow and Hoff

1960).
¢ Adding a single layer of hidden units turns the linear neural network into
a nonlinear one, capable of performing multivariate logistic regression, but
with some distinct advantages over the traditional statistical technique.
Using a back propagation network to do logistic regression allows you to
model multiple outputs at the same time. Confounding effects from multi-
ple input parameters can be captured in a single back propagation network
model.

Back propagation neural networks can be used for classification, model-
ing, and time-series forecasting. For classification problems, the input at-
tributes are mapped to the desired classification categories. The training of
the neural network amounts to setting up the correct set of discriminant
functions to correctly classify the inputs. For building models or function
approximation, the input attributes are mapped to the function output.
This could be a single output such as a pricing model, or it could be complex
models with multiple outputs such as trying to predict two or more func-
tions at once.

Time-series forecasting can be accomplished with back propagation net-
works through a technique known as the “sliding window.” Inputs for a set
period of time can be presented to the neural network, and the desired out-
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put is the function at the next time period. Various time relations can be
learned using this method. For example, the neural network could be
trained to predict the next output in the sequence or the output three or
four steps in the future. This technique was used by Sejnowski in his fa-
mous NetTalk experiment, where he taught a neural network to map text to
phonemes for input to a speech synthesizer (1988).

Two major learning parameters are used to control the training process of
a back propagation network. The learn rate is used to specify whether the
neural network is going to make major adjustments after each learning trial
or if it is only going to make minor adjustments. Momentum is used to con-
trol possible oscillations in the weights, which could be caused by alter-
nately signed error signals. While most commercial back propagation tools
provide anywhere from 1 to 10 or more parameters for you to set, these two
will usually produce the most irapact on the neural network training time
and performance.

Kohonen feature maps

Kohonen feature maps are feedforward networks that use an unsupervised
training algorithm, and through a process called self-organization, config-
ure the output units into a topological or spatial map. Kohonen (1988) was
one of the few researchers who continued working on neural networks and
associative memory even after they lost their cachet as a research topic in
the 1960s. His work was reevaluated during the late 1980s, and the utility of
the self-organizing feature map was recognized. Kohonen has presented
several enhancements to this model, including a supervised learning variant
known as Learning Vector Quantization (LVQ).

A feature map neural network consists of two layers of processing units,
an input layer fully connected to a competitive output layer. There are no
hidden units. When an input pattern is presented to the feature map, the
units in the output layer compete with each other for the right to be declared
the winner. The winning output unit is typically the unit whose incoming
connection weights are the closest to the input pattern (in terms of
Euclidean distance). Thus the input is presented and each output unit com-
putes its closeness or match score to the input pattern. The output that is
deemed closest to the input pattern is declared the winner and so earns the
right to have its connection weights adjusted. The connection weights are
moved in the direction of the input pattern by a factor determined by a learn-
ing rate parameter. This is the basic nature of competitive neural networks.

The Kohonen feature map creates a topological mapping by adjusting
not only the winner’s weights, but also adjusting the weights of the adja-
cent output units in close proximity or in the neighborhood of the winner.
So not only does the winner get adjusted, but the whole neighborhood of
output units gets moved closer to the input pattern. Starting from ran-
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domized weight values, the output units slowly align themselves such that
when an input pattern is presented, a neighborhood of units responds to
the input pattern. As training progresses, the size of the neighborhood ra-
diating out from the winning unit is decreased. Initially large numbers of
output units will be updated, and later on smaller and smaller numbers
are updated until at the end of training only the winning unit is adjusted.
Similarly, the learning rate will decrease as training progresses, and in
some implementations, the learn rate decays with the distance from the
winning output unit.

Looking at the feature map from the perspective of the connection
weights, the Kohonen map has performed a process called vector quantiza-
tion or code book generation in the engineering literature. The connection
weights represent a typical or prototype input pattern for the subset of in-
puts that fall into that cluster. The process of taking a set of high dimen-
sional data and reducing it to a set of clusters is called segmentation. The
high-dimensional input space is reduced to a two-dimensional map. If the
index of the winning output unit is used, it essentially partitions the input
patterns into a set of categories or clusters.

From a data mining perspective, two sets of useful information are avail-
able from a trained feature map. Similar customers, products, or behaviors
are automatically clustered together or segmented so that marketing mes-
sages can be targeted at homogeneous groups. The information in the con-
nection weights of each cluster defines the typical attributes of an item that
falls into that segment. This information lends itself to immediate use for
evaluating what the clusters mean (see Figure 4.8). When combined with
appropriate visualization tools and/or analysis of both the population and
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Figure 4.8 Kohonen self-organizing feature maps.
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Figure 4.9 Radial basis function networks.

segment statistics, the makeup of the segments identified by the feature
map can be analyzed and turned into valuable business intelligence.

Recurrent back propagation

Recurrent back propagation is, as the name suggests, a back propagation
network with feedback or recurrent connections. Typically, the feedback is
limited to either the hidden layer units or the output units. In either config-
uration, adding feedback from the activation of outputs from the prior pat-
tern introduces a kind of memory to the process. Thus adding recurrent
connections to a back propagation network enhances its ability to learn
temporal sequences without fundamentally changing the training process.
Recurrent back propagation networks will, in general, perform better than
regular back propagation networks on time-series prediction problems.

Radial basis function

Radial basis function (RBF) networks are feedforward networks trained us-
ing a supervised training algorithm. They are typically configured with a sin-
gle hidden layer of units whose activation function is selected from a class of
functions called basis functions (see Figure 4.9). While similar to back
propagation in many respects, radial basis function networks have several
advantages. They usually train much faster than back propagation networks.
They are less susceptible to problems with nonstationary inputs because of
the behavior of the radial basis function hidden units. Radial basis function
networks are similar to the probabilistic neural networks in many respects
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(Wasserman 1993). Popularized by Moody and Darken (1989), radial basis
function networks have proven to be a useful neural network architecture.

The major difference between radial basis function networks and back
propagation networks is the behavior of the single hidden layer. Rather than
using the sigmoidal or S-shaped activation function as in back propagation,
the hidden units in RBF networks use a Gaussian or some other basis kernel
function. Each hidden unit acts as a locally tuned processor that computes a
score for the match between the input vector and its connection weights or
centers. In effect, the basis units are highly specialized pattern detectors.
The weights connecting the basis units to the outputs are used to take linear
combinations of the hidden units to product the final classification or output.

Remember that in a back propagation network, all weights in all of the
layers are adjusted at the same time. In radial basis function networks, how-
ever, the weights into the hidden layer basis units are usually set before the
second layer of weights is adjusted. As the input moves away from the con-
nection weights, the activation value falls off. This behavior leads to the use
of the term “center” for the first-layer weights. These center weights can be
computed using Kohonen feature maps, statistical methods such as K-
Means clustering, or some other means. In any case, they are then used to
set the areas of sensitivity for the RBF hidden units, which then remain
fixed. Once the hidden layer weights are set, a second phase of training is
used to adjust the output weights. This process typically uses the standard
back propagation training rule.

In its simplest form, all hidden units in the RBF network have the same
width or degree of sensitivity to inputs. However, in portions of the input
space where there are few patterns, it is sometime desirable to have hidden
units with a wide area of reception. Likewise, in portions of the input space,
which are crowded, it might be desirable to have very highly tuned proces-
sors with narrow reception fields. Computing these individual widths in-
creases the performance of the RBF network at the expense of a more
complicated training process.

Adaptive resonance theory

Adaptive resonance theory (ART) networks are a family of recurrent net-
works that can be used for clustering. Based on the work of researcher
Stephen Grossberg (1987), the ART models are designed to be biologically
plausible. Input patterns are presented to the network, and an output unit
is declared a winner in a process similar to the Kohonen feature maps.
However, the feedback connections from the winner output encode the ex-
pected input pattern template (see Figure 4.10). If the actual input pattern
does not match the expected connection weights to a sufficient degree,
then the winner output is shut off, and the next closest output unit is de-
clared as the winner. This process continues until one of the output unit’s
expectation is satisfied to within the required tolerance. If none of the out-
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Figure 4.10 Adaptive resonance networks.

put units wins, then a new output unit is committed with the initial ex-
pected pattern set to the current input pattern.

The ART family of networks has been expanded through the addition of
fuzzy logic, which allows real-valued inputs, and through the ARTMAP ar-
chitecture, which allows supervised training. The ARTMAP architecture
uses back-to-back ART networks, one to classify the input patterns and one
to encode the matching output patterns. The MAP part of ARTMAP is a
field of units (or indexes, depending on the implementation) that serves as
an index between the input ART network and the output ART network.
While the details of the training algorithm are quite complex, the basic op-
eration for recall is surprisingly simple. The input pattern is presented to
the input ART network, which comes up with a winner output. This winner
output is mapped to a corresponding output unit in the output ART net-
work. The expected pattern is read out of the output ART network, which
provides the overall output or prediction pattern.

Probabilistic neural networks

Probabilistic neural networks (PNN) feature a feedforward architecture
and supervised training algorithm similar to back propagation (Specht
1990). Instead of adjusting the input layer weights using the generalized
delta rule, each training input pattern is used as the connection weights
to a new hidden unit. In effect, each input pattern is incorporated into
the PNN architecture. This technique is extremely fast, since only one
pass through the network is required to set the input connection weights.
Additional passes might be used to adjust the output weights to fine-tune
the network outputs.
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Several researchers have recognized that adding a hidden unit for each in-
put pattern might be overkill. Various clustering schemes have been pro-
posed to cut down on the number of hidden units when input patterns are close
in input space and can be represented by a single hidden unit. Probabilistic
neural networks offer several advantages over back propagation networks
(Wasserman 1993). Training is much faster, usually a single pass. Given
enough input data, the PNN will converge to a Bayesian (optimum) classifier.
Probabilistic neural networks allow true incremental learning where new
training data can be added at any time without requiring retraining of the en-
tire network. And because of the statistical basis for the PNN, it can give an
indication of the amount of evidence it has for basing its decision.

Other neural network models

While I have presented the major neural network models, there are many
more that are used by various people for specific problems. Generalized re-
gression neural network (GRNN) is a relatively new model that subsumes
the functionality of RBF and PNN networks (Caudill 1994). Hopfield net-
works and Boltzmann networks are fully recurrent networks that are used
for optimization and constraint satisfaction problems, which are not usually
considered as data mining applications of neural networks (Hertz, Krogh,
and Palmer 1991).

Key Issues in Selecting Models and Architecture

Selecting which neural network model to use for a particular application is
straightforward if you use the following process. First, select the function
you want to perform. This can include clustering, classification, modeling,
or time-series approximation. Then look at the input data you have to train
the network. If the data is all binary, or if it contains real-valued inputs, that
might disqualify some of the network architectures. Next you should deter-
mine how much data you have and how fast you need to train the network.
This might suggest using probabilistic neural networks or radial basis func-
tion networks rather than a back propagation network. Table 4.1 can be
used to aid in this selection process. Most commercial neural network tools
should support at least one variant of these algorithms.

Our definition of architecture is the number of inputs, hidden, and output
units. So in my view, you might select a back propagation model, but ex-
plore several different architectures having different numbers of hidden
layers, and/or hidden units.

Data type and quantity

In some cases, whether the data is all binary or contains some real num-
bers might help determine which neural network model to use. The stan-
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TABLE 4.1 Neural Network Models and Their Functions

Model Training paradigm Topology Primary functions
Adaptive Resonance Unsupervised Recurrent Clustering
Theory
ARTMAP Supervised Recurrent Classification
Back propagation Supervised Feedforward Classification,
. modeling, time-series
Radial basis function Supervised Feedforward Classification, modeling,
networks time-series
Probabilistic neural Supervised Feedforward Classification
networks
Kohonen feature maps Unsupervised Feedforward Clustering
Learning vector Supervised Feedforward Classification
quantization
Recurrent back Supervised Limited recurrent  Modeling, time-series
propagation '
Temporal difference Reinforcement Feedforward Time-series
learning

dard ART network (called ART 1) works only with binary data and is
probably preferable to Kohonen maps for clustering if the data is all bi-
nary. If the input data has real values, then fuzzy ART or Kohonen maps
should be used.

Training requirements: online or batch learning

In general, whenever we want online learning, then training speed becomes
the overriding factor in determining which neural network model to use.
Back propagation and recurrent back propagation train quite slowly and so
are almost never used in real-time or online learning situations. ART and
radial basis function networks, however, train quite fast, usually in a few
passes over the data.

Functional requirements

Based on the function required, some models can be disqualified. For ex-
ample, ART and Kohonen feature maps are clustering algorithms. They
cannot be used for modeling or time-series forecasting. If you need to do
clustering, then back propagation could be used, but it will be much slower
training than using ART of Kohonen maps.

Summary

Neural networks are differentiated along three major axes: the training par-
adigm, the connection topology, and the learning algorithm. The most used
training paradigm is supervised training, where an input pattern and a cor-
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responding output pattern are presented to the neural network. The differ-
ence between the desired and actual outputs is used to adjust the neural
network weights.

Unsupervised learning is used when we want to use the neural network
to perform clustering or segmentation of the input data. Reinforcement
learning is used in situations where the desired output is not known until
some time later in the training sequence. These three training paradigms
cover a wide range of application areas.

Neural networks are organized into layers of neural processing units.
Most neural networks have a layer of input units, one or more layers of
hidden units, and finally a layer of output units. Data can flow between
the units in these layers in several ways. In feedforward networks, data
comes in the input units, flows through any hidden layers, and then flows
to the output units where the answer appears. Limited recurrent net-
works have some feedback connections, which are used to provide prior-
state information, or a memory, to the neural network. This is most useful
in problems involving time-dependent patterns. Fully recurrent networks
have bidirectional connections between all processing units. The com-
plex dynamics allow fully recurrent networks to model extremely nonlin-
ear functions and to solve optimization and constraint satisfaction
problems. However, they can be unstable and might oscillate or fall into
limit cycles.

The most popular type of neural network is the back propagation net-
work. It is a feedforward network and uses a supervised training method to
adjust its weights. Kohonen feature maps, also known as self-organizing
maps, are feedforward neural networks trained using unsupervised learn-
ing. Kohonen maps self-organize into topological maps where inputs that
are close together in the input space are mapped onto adjacent output units
in the neural network output layer. Recurrent back propagation is a hybrid
network that uses limited recurrence and the standard supervised back
propagation learning algorithm. Radial basis function networks are feedfor-
ward networks that are trained with supervised learning and have a single
layer of hidden units that use a Gaussian basis function to compute the hid-
den layer activations. Adaptive resonance theory networks are recurrent
networks that are trained using unsupervised learning. Probabilistic neural
networks are supervised feedforward networks where a new hidden unit is
allocated for each training input. There are many other neural network
models that use different combinations of training paradigms, topologies,
and learning algorithuns.

The processing or data mining function required places definite con-
straints on which neural network models can be used for applications. Table
4.1 lists the major models and the functions that they can perform well,
whether it is classification, clustering, modeling, or forecasting.
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Chapter

Training and Testing
Neural Networks

“Training is everything. The peach was once
a bitter almond; cauliflower but cabbage with
a college education.” MARK TWAIN (1894)

“It’s all to do with training: you can do a lot

if you're properly trained.”
QUEEN ELIZABETH II

In this chapter, I explore the issues related to training a neural network to
perform a specific processing function, whether it is classification, clustering,
modeling, or time-series forecasting. I describe the most important parame-
ters used in the most popular neural network models and how they can be
used to control the training process. I talk about the usual training process
for both supervised and unsupervised networks, and | also discuss the man-
agement of the training data and how it impacts the training process.

Once the data preparation is complete and the neural network model and
architecture have been selected, the next step is to train the neural net-
work. Because of the large variety in the types of neural networks, this
process can be very dependent on the exact neural model and the function
you are trying to train the neural network to perform. Some networks re-
quire only one pass through the data, while others might require hundreds
or thousands. Some networks have only a few parameters to control the
training process, while others might present a bewildering set of parameters
to adjust. So when someone asks how long it takes to train a neural network,
the answer is, “It depends.” It depends on the neural network and its archi-
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tecture, if it has ten, or hundreds of processing units, and if there are hun-
dreds or thousands of training patterns. And, of course, it depends on your
application and what your definition of “trained” is.

In most cases, we want to train the network with a subset of the examples
and then test the network performance with another smaller subset. This
train/test split is used to ensure that the neural network has learned the ir-
portant aspects of the job it is being asked to do.

Most neural networks begin the training process with the connection
weights initialized to small random values. The training control parameters
are set, and the training data patterns are presented to the neural network,
one after the other. As training progresses, the connection weights are ad-
justed, and we can monitor the performance of the network. In supervised
training, we want to alternate between training and test data to ensure that
we are getting good generalization by monitoring the average prediction er-
rors. In unsupervised training, we usually want to visualize the arrangement
of the output units. Table 5.1 shows the major learning parameters used for
the various data mining functions.

At some point, it might become clear that the neural network is not able
to learn the function we are trying to teach it. This is when the methodol-

TABLE 5.1 Learning Parameters for Neural Networks

Parameter Models Function

Controls the step size for weight
adjustments. Decreases over time for some
types of neural networks.

Learn rate All

Momentum Back progagation Smooths the effects of weight adjustments
over time.
Error tolerance Back propagation Specifies how close the output value must

be to the desired value before the error is
considered to be zero.

Selects the activation function which is used
by the neural processing unit. Most
common is the sigmoid or logistic activation
function, but hyperbolic tangent, signum or
step function, and Gaussian are also used.

Activation function  All

Vigilance ART Specifies how similar the input patterns
must be to be classified as belonging to the
same category.

Neighborhood Kohenen maps Defines the size or area of units surrounding

the winner which get their weights updated.

Neighborhood decreases over time.

Number of epochs  Kohonen maps, others  For networks which train for a fixed number
of passes through the training data,
determines the number of passes.
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ogy provided in this chapter will become most useful. Trial and error might
seem natural, but it can consume a lot of time and money (O'Sullivan 1993).
A disciplined approach to iterative neural network development can be the
difference between success and failure in a decision support or application
development project.

Defining Success: When Is the Neural Network Trained?

Once you have selected a neural network model, chosen the data represen-
tations, and are all ready to start training, the next decision is, “How do you
know when the network is trained?” Depending on the type of neural net-
work and on the function you are performing, the answer to this question
will vary. If you are performing classification, then you want to monitor the
number of correct and incorrect classifications the network makes when it
is in testing mode. When clustering data, the training process is usually de-
termined by the number of passes, or epochs, taken through the training
data. If you are trying to build a model or time-series forecaster, then you
probably want to minimize the prediction error. Regardless of the function
required, once the neural network is trained and meets the specified accu-
racy, then the connection weights are “locked” so they cannot be adjusted.
In the following sections, we explore the acceptance criteria used for train-
ing neural network to perform classification, clustering, modeling, and
time-series forecasting.

Classification

The measure of success in a classification problem is the accuracy of the
classifier, usually defined as the percentage of correct classifications. In
some applications, getting an incorrect classification is worse than getting
no classification at all. In these cases, a “don’t know” or uncertain answer is
desired. By selecting your data representation for the network outputs, you
can obtain the behavior you require.

For example, let’s say we want to classify customers into three types:
poor, good, and excellent. We use a one-of-N code to represent our output
and then train the network with an error tolerance of 0.1. We created an
output filter that selects the highest output unit as the winning category.
That is, if the outputs are 0.9, 0.4, and 0.3, we say that the winner is 0.9, and
the corresponding category is poor. Note also that if the outputs are 0.9,
0.89, and 0.87, we would still classify the customer as poor, even though the
network has high prediction values for good and excellent. Even if the out-
puts were 0.2, 0.19, and 0.1, the output classification would be that the cus-
tomer was poor. One way to avoid this problem is to put a threshold limit on
the output units before you perform the one-of-N code conversion. Usually
we want the output value to be at least 0.6 before we say that the unit is ON.
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If we put this threshold value in place, then we could add a fourth category,
unknown or undecided, to represent the case where none of the network
output units had a value above 0.6.

A confusion matrix is a text or graphic visualization that indicates where
the classification errors are occurring. A text version lists the possible out-
put categories and the corresponding percentages of correct and incorrect
classifications (see Figure 5.1).

Clustering

The output of a clustering network is usually open to analysis by the user.
In most cases, the training regimen is determined simply by the number of
times the data is presented to the neural network, and by how fast the
learning rate and the neighborhood decay. Kohonen feature maps, for ex-
ample, might use a linear decay of the learn rate and a linear reduction in a
square neighborhood function, or they might use an exponential decay in
learn rate and a Gaussian or circular neighborhood function. The user
would specify the number of epochs, or complete passes through the train-
ing data, and the initial learn rate. The network would train for the specified
number of epochs and then stop. Figure 5.2 shows the output activations,
represented by a Hinton diagram, of a Kohonen network used to cluster
some data. Note that units close to the winner also have low activations,
which are denoted by small boxes.

Adaptive resonance network training is controlled primarily by the vigi-
lance training parameter and by the learn rate. The higher the vigilance, the
more discriminating the network will be. ART networks are trained until a
stable coding is obtained. An adaptive resonance network is considered sta-
ble when the training data goes through two complete passes, and each in-
put pattern falls into the same output class as on the previous pass.
Depending on the application, you might want to lock the ART network
weights so that they will not be adjusted when the neural network is de-
ployed. However, one of the advantages of the adaptive resonance theory
model is that it can be used for online learning, where it can recognize novel
input patterns and allocate new output categories when necessary. One

Predicted Qutput Category

Category A | Category B | Category C
Category A 0.60 0.25 0.15
Cateqgory B 0.25 0.45 0.30
Category C 0.15 0.30 0.55

Figure 5.1 Confusion matrix for classification problems,
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Figure 5.2 Hinton diagram for clustering applications.

point to remember is that ART networks are sensitive to the order of the
training data. Thus there is no guarantee that specific input patterns will
map to the same output category on consecutive training runs if the train-
ing data set is modified in any way.

Modeling

In modeling or regression problems, the usual error measure is the root mean
square error. Remember, in modeling problems, we are usually trying to learn
some function with multiple inputs and one or more dependent output vari-
ables. The average or mean squared error (MSE) or the root mean squared
error (RMS) are good measures of the prediction accuracy. When training is
just started and the neural network weights have been randomized, the RMS
error is usually quite high. The expected behavior is that as the neural net-
work is trained, the RMS error will gradually fall until it reaches a stable min-
imum. Figure 5.3 shows the RMS error for a single training run of a back
propagation network. If the prediction error does not fall, or it begins oscil-
lating up and down, there is a chance that the network has fallen into a local
minima. In this case, you will have to reset (or randomize) the neural net-
work weights and start again. If the neural network still does not converge,
you might need to change some of the values of your training parameters, or
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Figure 5.3 Time plot of RMS error during modeling training.

revisit some of your data representation and model architecture decisions
(see “Network convergence issues” later in this chapter for more discussion
of what to do when a neural network does not converge).

Care must be taken when using the RMS error as the only indicator of
neural network performance. In some cases, the neural network learns that
the best way to minimize the RMS error is to always output the mean value
of the function. This behavior occurs primarily with functions whose output
is symmetrical about some value. In this case, it is also useful to monitor the
RMS error of the worst pattern. If the average RMS error for the training set
is falling, but the RMS error of the worst pattern is growing larger, then it
might be the case that the neural network is starting to average rather than
fit the function.

Forecasting

Like the modeling applications, forecasting is a prediction problem, and so
the root mean square error is used. Another good way to visualize the per-
formance of a forecasting neural network is to use a time plot of the actual
and desired network outputs (see Figure 5.4).

Time-series forecasting is a tricky modeling problem. There might be
some underlying long-term trend that is also influenced by some cyclical
factor such as the time of year (referred to as seasonality). On top of these
trends there is usually a random component that causes variability and un-
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certainty in any prediction. The randomness can be statistically character-
ized by some probability distribution, or it could be, in fact, caused by a de-
terministic nonlinear process referred to as a chaotic time series (Rogers
and Vemuri 1994).

People have been using statistics to predict linear trends with random
components for years (McClave and Benson 1982). However, trying to fore-
cast complex nonlinear or chaotic time series is another matter. Neural net-
works have shown themselves to be excellent tools for modeling complex
time-series problems, especially recurrent neural networks, which are them-
selves nonlinear dynamic systems.

Controlling the Training Process with Learning Parameters

Once we have determined what network performance is required for our
application, we can then start the training process. Once again, depending
on the type of learning algorithm and neural network used, there are para-
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Figure 5.4 Time-series prediction plot.
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meters that must be set in order to control the training process. In all of
the neural network research papers that have been written, l{terany .thou-
sands of parameters have been defined. In the following section, 1 discuss
the learning parameters you are most likely to en(.:ounter, based on the
training paradigm, whether supervised or unsupervised.

Supervised training

In supervised training, we present a pattern to the neural netwqu, it makes
a prediction, and we compare the predicted output to the desired output.
Thus we have explicit information about the performance of tt}e network.
The major parameters used in supervised training have 'to c!o with how the
error is computed and how big a step we take when adjusting the connec-
tion weights in the direction of the desired output.

Learning rate. Almost all neural network model's have a learning rate pa-
rameter associated with them. The learning rate is the knob you can turn to
control whether you have a hyperactive student or .a slow-and-steady
learner. In a typical supervised training case, a pattern is pre§ented to the
neural network, it makes an incorrect prediction, a_nd the dlffere.nce be-
tween the desired output and the actual output is used t‘o adjust the
weights. The learning rate parameter controls the magnitude of the
changes we make when adjusting the connection weights to mqve them to-
ward the correct value for the current training pattern and desired outp_ut.
That is, do we take a giant step toward the corr_ect value“s (large learning
rate) or a small step (small learning rate). You might ask, “Why use a sntl)all
learning rate? Let’s get this over with—fast.” Howeve_r, you must remem| }(:r
that you not only want the neural network to learn t_hls pattern, but also t e
previous one and the next one. With a large learning rate, we are mak¥ng
large changes in the weights after each pattern is presented, m’aybe causq\g
giant oscillations in their values. Also, remember that we don't necessarll);
want to get the exact answer on each training pattern. We ‘want the neura
network to learn the major features of the problem so that it can generalize
it has never seen before. _
to (I;?tt(:f\rﬁ;v};zlr: learning rate actually gets us to the end of successful train-
ing by taking many small steps faster than if we try to' take the fa§t tragk. Of
course, this depends on the problem at hand. There is no hz.n'fn in trying to
train with a relatively large learn rate when you begin trz‘nnmg, but ev_en
then it is usually beneficial to lower the learning rate over time as the train-
ing progresses. The idea is that you make large corrections early on, and
then you fine-tune as you go along.

Momentum. Momentum is a training parameter that goes hand in har}d
with the learning rate. Its effect is to filter out high-frequency changes in
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the weight values, so that there is less chance that the neural network will
start oscillating around a set of values. The momentum parameter causes
the errors from previous training patterns to be averaged together over time
and added to the current error. So if the error on a single pattern forces a
large change in the direction of the neural network weights, this effect can
be mitigated by averaging the errors from the previous training patterns.

This is especially true if the previous pattern errors were forcing the
network weights in the opposite direction. Instead of using error informa-,
tion from a single training pattern (as would be the case when momentum
is set to 0), the errors from the prior patterns are averaged in. The overall
result is that the weights are less likely to be driven back and forth in al-
ternate directions. .

Error tolerance. Supervised training methods provide the neural network
with input/output pairs in the training data. The target or desired outputs
are specified in the range of the activation function of the output units. For
example, standard back propagation networks, using the logistic activation.
function, require that the target outputs be in the range of 0.0 to 1.0. Some
comumercial neural network development tools use the hyperbolic tangent
functions, which require outputs in the —1.0 to +1.0 range.

Most commerecial tools will allow you to specify an error tolerance. This
training parameter is used to control “how close is close enough.” In many
cases, an error tolerance of 0.1 is used. This means that if the target value
is 1.0, a network output value above 0.9 (1.0 - 0.1 = 0.9) is within the toler-
ance, and the error is treated as 0.0. One of the main reasons for using an
error tolerance is to avoid driving the network weights to extreme values. If
you keep the output unit activations value in the range of 0.1 to 0.9 (witha
tolerance of 0.1), then you are staying in the linear range of the logistic
function. As you try to drive the output values up to 1.0 or down to 0.0, the
net input (the sum of the input signals to the unit) must be quite large.
Since the outputs of the other units will only be in the range of 0 to 1, this
will usually require that the weights grow larger. Once the weights grow to
large values and the output of the logistic function is above the knee of the
S-shape curve, it is quite hard to change the output of the unit. This condi-
tion is often called “network paralysis” (Wasserman 1989).

Unsupervised learning

In unsupervised learning, the most important parameter is the selection for
the number of outputs. This was described in the network architecture sec-
tion, but it bears repeating. When a neural network is used for clustering or
segmentation, the specification for the number of output units defines the
granularity of the segmentations. If this is too large or small, then the re-
sults of the segmentation will be disappointing.
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However, once the architecture is set, there are several learning parame-
ters that can be used to control the segmentation process. Like supervised
neural networks, most unsupervised neural networks also have a learn rate
that is used to control the step size in the adjustment of the connection
weights. Specific to unsupervised models are the neighborhood parameters
for Kohonen maps and the vigilance parameter used in ART networks.

Neighborhood. When a Kohonen self-organizing feature map is used to
cluster data, there are two popular methods for controlling which units get
their weights changed. One is to use a square neighborhood function with a
linear decrease in the learning rate. The other is to use a Gaussian shaped
neighborhood with an exponential decay of the learning rate. Although the
quality of the solutions is quite similar, the second approach leads to a sim-
pler model, in terms of parameters that must be set by a user.

In this case, the major decision is how quickly (or slowly) you want the
neural network to settle down. By selecting a large value for the number of
epochs parameter, you are telling the neural network to take its time be-
fore it settles on the final clusters. In contrast, when you select a smaller
value, you are telling the neural network to make a quick decision. The
quick-decision approach is a statement about the training time and pro-
cessing of the data.

The neighborhood in a Kohonen feature map defines the area around the
winning unit, where the nonwinning units weights will also be modified.
Typically, this parameter is set to a value roughly half the size of the maxi-
mum dimension of the output layer. So if the winning unit is in the center of
a 6-by-6 output layer, and the neighborhood is 2, then not only the winning
unit, but also the 8 units one step away, and the 14 units 2 steps away will
also have their weights adjusted.

The neighborhood value is important in keeping the locality of the topo-
graphic maps created by the Kohonen maps. As training progresses, the
neighborhood value or scope is decreased, so that at the end, only the win-
ning unit’s weights are modified. Remember, if you are using a Gaussian
neighborhood function, this is taken care of automatically.

Vigilance. When using adaptive resonance theory (ART) networks, the
number of outputs selected in the architecture is a statement about the
maximum number of possible outputs, not necessarily how many outputs
will actually be used. Adaptive resonance networks have a vigilance param-
eter that controls how picky the neural network is going to be when clus-
tering the data (Carpenter and Grossberg 1988). Look at it this way: If the
vigilance is low and two patterns are similar, then they will be clustered to-
gether. That is, for clustering purposes, the two patterns fall into the same
output unit or category. However, if we raise the vigilance parameter, then
the neural network is more discriminating when evaluating the differences
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between two patterns. What would have been “close-enough” with a vigi-
lance of 0.5 might not be if the vigilance is 0.8. In this case, the network will
say, “Hey, this is a totally new class of input patterns here, so I better com-
mit a new output unit.”

The control allowed by the vigilance parameter is one of the nicest fea-
tures of the adaptive resonance networks. However, if the vigilance parame-
ter is set too high, then the adaptive resonance network will allocate new
output units for almost every input, and soon we will use up all of the output
units. What do we do in this case? Well, either we can lower the vigilance pa-
rameter so the network isn't so picky, or we can change the network archi-
tecture by allocating more output units (classes).

Adaptive resonance networks train until they reach a stable state. This is
when each input pattern gets classified into the same output unit on two
consecutive passes. Be aware that adaptive resonance networks are sensi-
tive to the order in which items are presented. For a given input data set, if
the order is randomized, then different clustering could resuit.

lterative Development Process

Despite all of your selections, it is quite possible that the first or second
time that you try to train it, the neural network will not be able to meet your
acceptance criteria. When this happens you are then in a troubleshooting
mode. What can be wrong and how can you fix it?

Figure 5.5 shows the iterative nature of the neural network development
process. The major steps are data selection and representation, neural net-
work model selection, architecture specification, training parameter selec-
tion, and choosing an appropriate acceptance criteria. If any of these
decisions are off the mark, the neural network might not be able to learn
what you are trying to teach it. In the following sections, I describe the ma-
jor decision points and the recovery options when things go wrong during
training.

Network convergence issues

How do you know when you are in trouble when training a neural network
model? The first hint is that it takes a long, long time for the network to
train, and you are monitoring the classification accuracy or the prediction
accuracy of the neural network. If you are plotting the RMS error, you will
see that it falls quickly and then stays flat, or that it oscillates up and dowmn.
Either of these two conditions might mean that the network is trapped in a
local minima, while the objective is to reach the global minima.

There are two primary ways around this problem. First, you can add
some random noise to the neural network weights in order to try to break it
free from the local minima. The other option is to reset the network weights
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Figure 5.5 lterative process for training neural networks.

to new random values and start training all over again. However, this might
not be enough to get the neural network to converge on a solution. A.ny of
the design decisions you made might be negatively impacting the ability of
the neural network to learn the function you are trying to teach.

Model selection. It is sometimes best to revisit your major choices in the
same order as your original decisions. Did you select an inappropriate
neural network model for the function you are trying to perform? If so, then
picking a neural network model that can perform the function is the solu-
tion. If not, then it is most likely a simple matter of adding more hidden
units or another layer of hidden units. In practice, one layer of hidden units
usually will suffice. Two layers are required only if you have added a large
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number of hidden units and the network still has not converged. If you do
not provide enough hidden units, the neural network will not have the com-
putational power to learn some complex nonlinear functions.

Other factors besides the neural network architecture could be at work.
Maybe the data has a strong temporal or time element embedded in it.
Often a recurrent back propagation or a radial basis function network will
perform better than regular back propagation. If the inputs are nonstation-
ary, that is they change slowly over time, then radial basis function net-
works are definitely going to work best.

Data representation. If a neural network does not converge to a solution,
and you are sure that your model architecture is appropriate for the prob-
lem, then the next thing to reevaluate is your data representation decisions.
In some cases, a key input parameter is not being scaled or coded in a man-
ner that lets the neural network learn its importance to the function at hand.
One example is a continuous variable, which has a large range in the origi-
nal domain and is scaled down to a 0 to 1 value for presentation to the neural
network. Perhaps a thermometer coding with one unit for each magnitude
of 10 is in order. This would change the representation of the input pararm-
eter from a single input to 5, 6, or 7, depending on the range of the value.

A more serious problem is when a key parameter is missing from the
training data. In some ways, this is the most difficuit problem to detect. You
can easily spend much time playing around with the data representation
trying to get the network to converge. Unfortunately, this is one area where
experience is required to know what a normal training process feels like
and what one that is doomed to failure feels like. This is also why it is im-
portant to have a domain expert involved who can provide ideas when
things are not working. A domain expert might recognize that an important
parameter is missing from the training data.

Model architectures. In some cases, we have done everything right, but the
network just won'’t converge. It could be that the problem is just too com-
plex for the architecture you have specified. By adding additional hidden
units, and even another hidden layer, you are enhancing the computational
abilities of the neural network. Each new connection weight is another free
variable, which can be adjusted. That is why it is good practice to start out
with an abundant supply of hidden units when you first start working on a
problem. Once you are sure that the neural network can learn the function,
you can start reducing the number of hidden units until the generalization
performance meets your requirements. But beware. Too much of a good
thing can be bad, too!

If some additional hidden units is good, is adding many more better? In
most cases, no! Giving the neural network more hidden units (and the asso-
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ciated connection weights) can actually make it too easy for the network. In
some cases, the neural network will simply learn to memorize the training
patterns. The neural network has optimized to the training set’s particular
patterns and has not extracted the important relationships in the data. You
could have saved yourself time and money by just using a lookup table. The
whole point is to get the neural network to detect key features in the data
in order to generalize when presented with patterns it has not seen before.
There is nothing worse than a fat, lazy neural network. By keeping the hid-
den layers as thin as possible, you usually get the best results.

Avoiding Overtraining

When training a neural network, it is important to understand when to stop.
It is natural to think that if 100 epochs is good, then 1000 epochs will be much
better. However, this intuitive idea of “more practice is better” doesn’t hold
with neural networks. If the same training patterns or examples are given to
the neural network over and over, and the weights are adjusted to match
the desired outputs, we are essentially telling the network to memorize the
patterns, rather than to extract the essence of the relationships. What hap-
pens is that the neural network performs extremely well on the training
data. However, when it is presented with patterns it hasn’t seen before, it
cannot generalize and does not perform well. What is the problem? It is
called overtraining.

Overtraining a neural network is similar to when an athlete practices and
practices for an event on his home court. When the actual competition
starts and he or she is faced with an unfamiliar arena and circumstances, it
might be impossible for him or her to react and perform at the same levels
as during training.

It is important to remember that we are not trying to get the neural net-
work to make the best predictions it can on the training data. We are trying to
optimize its performance on the testing and validation data. Most commercial
neural network tools provide the means to automatically switch between
training and testing data. The idea is to check the network performance on
the testing data while you are training.

Automating the Process

What has been described in the preceding sections is the manual process of
building a neural network model. It requires some degree of skill and expe-
rience with neural networks and model building in order to be successful.
Having to tweak many parameters and make somewhat arbitrary decisions
concerning the neural network architecture does not seem like a great ad-
vantage to some application developers. Because of this, researchers have
worked in a variety of ways to minimize these problems.
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Perhaps the first attempt was to automate the selection of the appropri-
ate number of hidden layers and hidden units in the neural network. This
was approached in a number of ways: a priori attempts to compute the re-
quired architecture by looking at the data, building arbitrary large networks
and then pruning out nodes and connections until the smallest network that
could do the job is produced, and starting with a small network and then
growing it up until it can perform the task appropriately.

Genetic algorithms are often used to optimize functions using parallel
search methods based on the biological theory of natural selection (for a
detailed discussion of genetic algorithms, see appendix C). If we view the
selection of the number of hidden layers and hidden units as an opti-
mization problem, genetic algorithms can be used to help find the opti-
mum architecture.

The idea of pruning nodes and weights from neural networks in order to
improve their generalization capabilities has been explored by several re-
search groups (Sietsma and Dow 1988). A network with an arbitrarily large
number of hidden units is created and trained to perform some processing
function. Then the weights connected to a node are analyzed to see if they
contribute to the accurate prediction of the output pattern. If the weights
are extremely small, or if they do not impact the prediction error when they
are removed, then that node and its weights are pruned or removed from
the network. This process continues until the removal of any additional
node causes a decrease in the performance on the test set.

Several researchers have also explored the opposite approach to pruning.
That is, a small neural network is created and additional hidden nodes and
weights are added incrementally. The network prediction error is moni-
tored, and as long as performance on the test data is improving, additional
hidden units are added. The cascade-correlation network (Fahlman 1989)
allocates a whole set of potential new network nodes. These new nodes
compete with each other and the one that reduces the prediction error the
most is added to the network. Perhaps the highest level of automation of
the neural network data mining process will come with the use of intelligent

agents. In chapter 8, we will explore intelligent agents and data mining in
detail.

Summary

Training a neural network is the hardest part of using neural networks for
data mining. It is the equivalent step to sitting down and writing the algo-
rithm (and coding and testing it) using a conventional programming lan-
guage. This chapter presented a methodology for training and testing
neural networks that, while not strictly cookbook, is certainly more struc-
tured than the “black-art” label usually attributed to the neural network de-
velopment process. As with any project, the first task is to understand what
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function you are trying to perform. From this, a likely candidate can be se-
Jected from the many available neural network models.

Once a neural network model has been selected, the next step is to define
our measure of success, that is, what level the neural network must achieve
in terms of classification or modeling accuracy before we call it “trained.”
For classification, the appropriate measure is the percentage of correct and
incorrect classifications. For modeling and time-series forecasting, it is the
mean squared error or the root mean squared error. Successful clustering is
more subjective and often is dependent on the completion of cluster analy-
sis after the neural network has self-organized.

There are several training parameters that are used to control the neural
network development process. The most common parameter is the learn
rate, which controls the size of the adjustments made to the connection
weights. Supervised training algorithms also include a momentum term,
which averages the weight changes over multiple patterns and serves to
minimize oscillations in the weights. The error tolerance is used in super-
vised training to limit the tendency of neural networks to become para-
lyzed by extremely large weights, which result from trying to drive the
outputs to their extreme values. In Kohonen maps, controlling the decay of
the learn rate and the size and rate of decay in the neighborhood parame-
ter are important. Adaptive resonance networks use the vigilance parame-
ter to control the degree of similarity in input patterns that are mapped to
the same class.

Neural network training is an iterative process, very similar in principle
and technique to rapid application development or object-oriented proto-
typing. Several iterations are usually required before a successful training
run is achieved. The principal steps in the process include data selection
and data representation, which are sometimes considered to be part of the
data preparation phase. Neural network model selection is next, followed
by the definition of the architecture, which is the number of input, hidden,
and output units. The training parameters then need to be set and the train-
ing data presented to the neural network. The appropriate error or perfor-
mance measurements must be monitored to determine if the neural network
is converging to a solution or if one of the previous steps needs to be revisited.

Overtraining is a degenerate case where a neural network is trained re-
peatedly on data such that it memorizes or overfits the function relating in-
puts to outputs. When new data is presented to an overtrained network, it
will produce large prediction errors because it has not learned the funda-
mental relationships in the training data.

Researchers and commercial neural network tool vendors have made
progress in automating the neural network development process. From
model selection, to selecting the appropriate number of hidden units, to re-
moving unnecessary input variables, to choosing the best data representa-
tion, techniques are being developed to simplify things. No matter how
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automated things become, your thorough understanding of the neural net-
work development process will serve you well.
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Chapter

Analyzing Neural Networks
for Decision Support

“It is a capital mistake to theorize before one
has data.” SIR ARTHUR CONAN DOYLE

When data mining is used for decision support applications, creating the
neural network model is only the first part of the process. The next part, and
the most important from a decision maker’s perspective, is to find out what
the neural network learned. In this chapter, I describe a set of postprocess-
ing activities that are used to open up the neural network “black box” and
transform the collection of network weights into a set of visualizations,
rules, and parameter relationships that people can easily comprehend.

Discovering What the Network Learned

When using neural networks as models for transaction processing, the most
important issue is whether the weights in the neural network accurately
capture the classification, model, or forecast needed for the application. If
we use credit files to create a neural network loan officer, then what matters
is that we maximize our profit and minimize our losses. However, in decision
support applications, what is important is not that the neural network was
able to learn to discriminate between good and bad credit risks, but that the
network was able to identify what factors are key in making this determina-
tion. In short, for decision support applications, we want to know what the
neural network learned.

99
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Unfortunately, this is one of the most difficult aspects of using neural net-
works. After all, what is a neural network but a collection of processing ele-
ments and connection weights? Fortunately, however, there are techniques
for ferreting out this information from a trained neural net».vorlf. One ap-
proach is to treat the neural network as a “black box,” probe it with test in-
puts, and record the outputs. This is the input sensitivity approach. Another
approach is to present the input data to the neural network and then gen-
erate a set of rules that describe the logical functions performed by the
neural network based on inspections of its internal states and connecti.on
weights. A third approach is to represent the neural network visua}l_y, using
a graphical representation so that the wonderful pattern recognition ma-
chine known as the human brain can contribute to the process.

The technique used to analyze the neural networks depends on the type
of data mining function being performed. This is necessary beca_use the
type of information the neural network has learned is qualitatively different,
based on the function it was trained to do. For example, if you are cluster-
ing customers for a market segmentation application, the output. of the
neural network is the identifier of the cluster that the customers fell into. At
this point, statistical analysis of the attributes of the customers in ea?h seg-
ment might be warranted, along with visualization techniques descrlbe.d in
the following. Or we might want to view the connection weights flowing into
each output unit (cluster) and analyze them to see what the neural network
learned were the “prototypical” customers for that segment. We might then
want to cluster the customers from a segment into additional clusters. This
would allow us to drill down to a finer and finer level of details, as required.

In modeling and forecasting applications, the information discovered by
the neural network is encoded in the connection weights. The most obvious
use of the trained neural network is to use it to play what-ifs against the
model. If a neural network has learned to model a function, even if you don't
have a mathematical formula for the function, you can still learn a great deal
about it by varying the input parameters and seeing what the f'szect is on

the output. Let’s say we built a model of the yield or return on investment
for a set of products. If we input the data ona set of proposed dtevelopment
projects, we can use the estimates in our evaluation of their busme§s casef;.
Or we can do a complete sensitivity analysis of the inputs to determine their
relative importance to the return on investment.

Sensitivity Analysis

While there are many different types of information that might be gleaned
using data mining with neural networks, perhaps the crucial thing to learn is
which parameters are most important for a specific function. If you are mod-
eling customer satisfaction, then it is important to know which %lSpeCF of
your customer relationship has the most impact on the level of satisfaction.
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If you have a fixed number of dollars to spend, should you spend it on a new
waiting room for your customers, or should you hire another technician so
the average wait is 10 minutes less? Determining the impact or effect of an
input variable on the output of a model is called sensitivity analysis.

A neural network can be used to do sensitivity analysis in a variety of
ways. One approach is to treat the network as a “black box.” To determine
the impact that a particular input variable has on the output, you need to
hold the other inputs to some fixed value, such as their mean or median
value, and vary only the input while you monitor the change in outputs. If
you vary the input from its minimum to its maximum value and nothing hap-
pens to the output, then the input variable is not very important to the func-
tion being modeled. However, if the output changes considerably, then the
input is certainly important because it affects the output. The trick in per-
forming sensitivity analysis in this way is to repeat this process for each vari-
able in a controlled manner so that you can tell the “relative” importance of
each parameter. In this way, you have a ranking of the parameters according
to their impact on the output value. For example, let’s say we are modeling
the price of a stock. We build a model and then perform input sensitivity
analysis. When we look at each input variable, we might see that the day of
the week is the most important predictor of what is going to happen to the
price of the stock. We could then use this information to our advantage.

A more automated approach to performing sensitivity analysis with back
propagation neural networks is to keep track of the error terms computed
during the back propagation step. By computing the error all the way back
to the input layer, we have a measure of the degree to which each input con-
tributes to the output error. Looking at this another way, the input with the
largest error has the largest impact on the output. By accumulating these
errors over time and then normalizing them, we can compute the relative
contribution of each input to the output errors. In effect, we have discov-
ered the sensitivity of the function being modeled to changes in each input.

Rule Generation from Neural Networks

A common output of data mining or knowledge discovery algorithms is the
transformation of the raw data into if-then rules. Standard inductive learn-
ing techniques such as decision trees can easily be used to generate such
rule sets. One of the reasons this is so straightforward to do with decision
trees is that each node in the tree is a binary condition or test. If value A is
greater than B, then take one branch of the tree, else take the other.
However, as has been pointed out before, having to define some arbitrary
point as the dividing line between two sets of items will certainly lead to
crisp answers, but not necessarily the correct ones.

One of the perennial criticisms of neural networks has been that they are
a “black box,” inscrutable, unable to explain their operation or how they ar-
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rived at a certain decision. One very effective representation for knowledge,
especially in classification problems, is to derive a set of rules from the raw
data. One can then inspect this set of rules and try to determine which in-
puts are important. In this case, the neural network data mining process is
transforming a set of data examples into a set of rules that tries to explain
how the inputs cause the data to be partitioned into different classes.

Early on in the renaissance of neural networks, they were often com-
pared and contrasted with rule-based expert systems. One point became
clear. It is quite easy to map from a rule set to an equivalent neural network,
but it is not so easy to go the other way. Why? Because the nonlinear deci-
sion elements in a neural network have more expressive power than the
simple Boolean conditions used in most expert systems. This is not to say
that neural networks somehow subsume the functionality that rule-based
expert systems provide. In fact, I was one of the first to explore the rela-
tionships and synergy between neural networks and expert systems (Bigus
1990). Rather, the point is that neural networks, with their coliection of real
valued weights and nonlinear decision functions, are quite complex com-
puting devices. Mapping their function onto a set of Boolean rules is chal-
lenging but certainly not impossible.

Gallant’s (1988) pocket algorithm was one of the first attempts to map
neural networks into rules. However, he used a neural network with Boolean
decision elements, which simplifies the problem. Several researchers have
tried to convert standard back propagation networks into rule sets. Narazaki,
Shigaki, and Watanabe (1995) use a technique against trained networks with
continuous inputs. They use a function analysis approach to identify re-
gions in the input space that control the network output values. Other re-
search in rule generation from neural networks include work by Kane and
Milgram (1994) and Avner (1995).

Visualization

While neural networks are powerful pattern recognition machines in their
own right, there is still nothing so powerful as the human ability to see and
recognize patterns in two- and three-dimensional data. Consequently, visual-
ization techniques play an important role in the analysis of the outputs of the
data mining process. Actually, visualization is often used in the data prepara-
tion step to help in the selection of variables for use in the data mining appli-
cation. In this section we look at a variety of graphical representations of
data, of neural networks, and of the outputs of the data mining algorithms.

Standard graphics

Anyone who has used a spreadsheet, such as Lotus 1-2-3, is familiar with
the wide range of charts that are used to view data. We take these graphic
views to be somewhat standard visualization techniques. They include bar
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charts or histograms, scatter plots for viewing two-dimensional data, sur-
face plots for viewing three-dimensional data, line plots for seeing a single
variable change over time, and pie charts for viewing discrete variables.

The IBM Neural Network Utility (NNU) provides these visualizations
through its Inspector windows (IBM 1994). In Figure 6.1, a histogram of the
distribution of an input variable is shown. By using this view on each input
parameter, we can see whether the data is badly skewed and also whether
outliers are present. This information can be used in data cleansing and in
deciding what data preprocessing functions are required.

Figure 6.2 illustrates an NNU scatter plot view, where the X axis is the av-
erage RMS error and the Y axis is the maximum RMS error. This graphic can
be used to easily see whether the neural network is converging to a solution.
Although basic, these standard types of graphics can be used to good effect.

Over the past decade, a set of views specific to neural networks has been
developed. These provide information about the network architecture, pro-
cessing unit’s state, and connection weights. In the following section I de-
scribe these graphical views.

Neural network graphic

A useful technique for viewing the state of a neural network is a network
graphic, such as that provided with NNU to show the neural processing
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Figure 6.2 Scatter plot view.

units and their interconnections (see Figure 6.3). The topology of the net-
work is apparent from the number of processing elements in each layer and
the number of layers drawn in the graphic.

The activations of the processing units are depicted as circles, and their
values are indicated through the use of colors. NNU allows thresholds to be
set for on/off/fundecided states, which are shown using red/blue/white col-
ored circles. '

Connection weights are drawn as lines connecting the processing units.
The sign of the connection weight is indicated using color (red for positive
weights, blue for negative valued weights). In NNU, thresholds can be s:et o)
that only weights whose magnitude is larger than the threshold will be
shown. This is an easy way to determine which inputs have a large impact
on the network output by seeing which input units have large connection
weights into the hidden layer. Some neural network developers try to assign
labels to the hidden units by watching the unit activations and correlating
them with the value of certain inputs.
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Hinton diagram

The connection weights contain information about the relative importance
and correlation between input variables. In some sense, the absolute mag-
nitude and the sign can be used as an indication of the importance of the in-
put. One of the most popular visualization techniques used with neural
networks is the Hinton diagram, named after researcher Geoffrey Hinton.
A Hinton diagram is a collection of boxes whose size represents the relative
magnitude of the connection weight and whose color depends on its sign,
positive or negative. Hinton diagrams are an excellent way to visualize the
weights in a neural network. Figure 6.4 shows the NNU Hinton diagram
view of the weights of a back propagation network.

If we are performing some high-level function with a data mining tool,
then we also need to view the results from the same high-level perspective.
For example, if we are trying to cluster our customer base, we need tools to
help us analyze those clusters and determine what they mean. Even data
mining algorithms that output rules, which are supposedly easy to under-
stand, can benefit from visualization techniques.

Clustering and segmentation visualization

IBM in Hursley, UK has developed a set of data mining and visualization
tools to support its consulting practice in the insurance, finance, and travel
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industries. Figure 6.5, shows a graphical view of the output of their cluster-
ing or segmentation algorithm. The statistical attributes of the merr.lbers of
the selected cluster are displayed as pie charts or bar charts against the
population statistics.

Sifting through the Output Using Domain Knowledge

When a data mining algorithm is used to process data, it performs a trans-
form, usually from some high-dimensional data into some more understand-
able form. In most cases, however, even though the data was transformed,
the volume is still too large to be easily digested by an analyst._ If we trans-
form 1,000,000 records into 1000 rules or facts, then that is goodness.
However, if someone then has to analyze the 1000 facts b3_’ hand, then that
is not goodness. There might be only ten important facts in the 1000: H.ow
can we help the data mining tool provide only those facts 'that contain im-
portant information? One major way is to pro 'de_ domain knowledge to
guide the search. To do this requires objective functions that can be used to
measure the value of the generated rules.

Summary

While neural networks are wonderful pattern recognition ma“chines, the{
do not easily give up the secrets of what they learned. The “knowledge
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they gain through the data mining process is implicit in their structure
and in the values of the connection weights. So while we might have
transformed a million records into a thousand weights, the task still re-
mains to translate that compressed information into a form that people
can easily understand.

For clustering or segmentation, the output of the data mining process is
the assignment of each input pattern into a cluster of other similar inputs.
Thus the valuable information learned from this process is easily obtainable
for use by a data analyst. Likewise, when neural networks are used for clas-
sification, modeling, or forecasting, the output of the neural network is, at
face value, valuable information that can be used in decision support appli-
cations. No one would argue that it is not useful to know that for a given set
of inputs, sales would increase 10%, or that by changing the amount of a
chemical in a process that the yield would increase 5%. This sort of infor-
mation is readily available and easily extracted from a trained neural net-
work. But that assumes we are treating the neural network as a “black box”
system. Some people are uncomfortable with this type of data mining.

Another approach is to use our “black box” neural network to determine
the relative importance or sensitivity of the model to changes in the various
inputs. This information is more understandable because it can be repre-
sented by rules, such as, “If variable X increases 5%, then output Y de-
creases 10%.” Neural networks that are trained using the back propagation
learning algorithm can automatically compute the relative importance or
sensitivity of the inputs as a by-product of the training process. This infor-

Figure 6.5 IBM Hursley segmentation visualization.
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mation includes ranking the inputs by the relative contribution to the pre-

diction error.

Using computer graphics visualizing the information contained in a
neural network is another wag*to overcome the black-box objection. Neural
network graphics can show the sign and magnitude of connections and the
activation values on the processing units. Specialized graphics such as
Hinton diagrams clearly depict neural network connection weights and
clustering results. Other more standard graphics such as line plots, scatter
plots, histograms, and surface plots can be used to evaluate input data for
data cleansing and preprocessing, and to analyze the accuracy of neural
network predictions.
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Chapter

Deploying Neural
Network Applications

Data mining can be used for much more than just decision support applica-
tions. When neural networks are used as the data mining algorithm, the out-
put of the process is a trained model. This model can be used to process
transactions and perform clustering, classifications, and predictions on data
in real time. There is no need to write programs and algorithms to process
the inputs and produce the appropriate outputs. In a real sense, this func-
tion comes for free, as a by-product of the neural network data mining pro-
cess. In this chapter, I discuss the issues related to the use of neural
networks in applications and how to monitor the predictions or results of
the neural network to see if retraining is necessary.

Application Development with Neural Networks

Data mining is the process of extracting valuable information from data.
Application development is the use of neural networks and the data mining
process for the ultimate goal of fielding a business application. While the
processes are similar, application development has some unique requirements.

When neural networks are used in an application, they are usually only
one component or module in the entire program. Often, more than one
neural network is used in an application. This requires management of
the source data files, the preprocessed training and test data files, and
the neural networks themselves. There might also be scripts used for au-
tomated training of the neural networks. For a deployed application,
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there is the question of maintenance and regression testing. While much
of the application development process is the same as for a programming
project, neural networks differ in several respects. For example, there is
no coding phase with neural networks, assuming you are using a com-
mercial neural network development tool. If you are “rolling your own”
neural network algorithms, then you have both the problem of coding
and testing the algorithm and the training and testing of any neural net-
work models you build. ’

When developing applications with neural networks, you must keep in
mind that it is an iterative process, much like application prototyping in an
object-oriented or rapid application development (RAD) environment. In
chapter 5, I detailed the iterative steps required for the neural network
training and testing process. However, it bears repeating here. Neural net-
works do not lend themselves to traditional waterfall application develop-
ment techniques. If you are forced to use a sequential methodology for the
overall application development cycle, make sure you allow enough time for
several iterations of model building in the neural network component.

Over the years, a recurring question from people has been, “How do you
know the neural network is going to work when you deploy it?” The answer
is quite simple. You test it! There is no reason why a neural network appli-
cation could not be as stable and predictable as any other commercially de-
veloped application. Actually, many of the attributes of neural networks
should make them more robust in a deployed application. Whether you are
building C programs, Smalltalk programs, or neural networks, you must
have a complete set of test cases. If you have a set of test cases that ade-
quately tests a C module that transforms a set of inputs and returns an out-
put value, then that same test suite could and should be used to validate the
performance of a neural network, which is trained to do the same transfor-
mation of inputs to outputs. An acceptance test is an acceptance test. If the
code module or the neural network performs adequately on a comprehen-
sive test suite, which covers the space of possible inputs, then you ship it.
And in most cases, the robust processing attributes of neural networks will
react better than a program using Boolean conditions or rules when con-
fronted with unexpected or ill-formed inputs.

Transaction Processing with Neural Networks

When a neural network is used as part of an operational application, the
neural network is just another processing module, much like a subroutine
or procedure. The neural network was trained to classify or cluster a set of
inputs, or to model a function, or to make a prediction over time. Whatever
the function, the trained neural network is the application module. All that
is required to turn it into a transaction processor is to present input data to
it and to retrieve the results from the output units.

Deploying Neural Network Applications 111

In the simplest case, the application might consist of an input dialog or
display panel that a data entry clerk uses to enter the data from a transac-
tion. This data probably contains a mixture of categorical or symbolic data,
some identifiers such as name or customer ID, and some numeric data.
These inputs must be checked for validity, just like you would do for any
other application. Once the input data is checked, it has to go through the
same preprocessing steps you performed when you trained the neural net-
work. If there are any computed fields or scaled data, then those operations
must be done. Once the data is preprocessed, it is passed through the
neural network. The output values are then read from the neural network,
and any postprocessing function such as scaling, thresholding, or conver-
sion to categorical values is performed. This postprocessed data is then dis-
played to the user as the result. This is the process that would go into
automating the loan approval example in chapter 2.

You might ask, “Wait a minute, what about all this preprocessing and
postprocessing stuff? Doesn't that require programming?” The answer is as
usual, “It depends.” If you are “rolling your own” neural network algorithm
from scratch, then yes you would also have to provide the pre- and post-
processing code. If you are using a commercial tool, then you might still have
to write the pre- and postprocessing code, since not all tools provide those
functions. With the IBM Neural Network Utility, you can perform all of the
pre- and postprocessing functions without any additional coding. Building
an application consists of constructing the input/output dialog and writing
a small program to call the NNU application programming interface (see ap-
pendix A for more information on NNU). Actually, NNU can be used to dis-
play the dialogs as well.

In more complicated cases, the input to the neural network might come
from some other data processing program and is passed through the neural
network. Then some additional processing of the neural network output
might be performed by the application code. In this case, as in the interac-
tive case, however, NNU can perform the pre- and postprocessing required
by the neural network.

The Subroutine Metaphor

In most cases, the function performed by the neural network can be
thought of as a simple subroutine or function in C or Pascal, or as a proce-
dure in COBOL. The input data is presented to the neural network, gets
processed by it, and the output is returned to the calling program. Of
course, we know that often there is preprocessing to be done before the in-
put data is passed to the neural network. Likewise, we often need to scale
or transform the raw neural network output data into terms that a user can
more easily understand. Figure 7.1 shows a typical use of neural networks
when embedded in an application.
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Figure 7.1 Neural networks as subroutines.

Lock It Up, or Online Learning?

Once you have trained the neural network and achieved acceptable perfor-
mance using whatever error measure is appropriate for the function, you
usually enter maintenance mode. In most cases, once a network is trained,
you lock the weights, thereby ending any adjustments, and deploy the net-
work in an application. In some rare instances, you might want to deploy the
network while it is still in training mode so that it can learn from experience
after it is deployed. The idea is that you are deploying a neural network that
has been trained with typical data, and it will be further fine-tuned based on
how it is actually going to be used. If online learning is a requirement, then
you must carefully choose which neural network model you use. Some neural
networks cannot easily be used with online learning. Adaptive resonance net-
works and probabilistic neural networks are two that can be trained online.
Deploying a generically trained neural network and then customizing or
adapting it in the field is possible even without online learning. You could
simply collect data from the installation over time and monitor the neural
network'’s performance. When the results are out of some specified limit
(outside of your original acceptance criteria, for example) then you can
force a retraining of the neural network. Some commercial tools provide ei-
ther application programming interfaces (APIs) or scripts, which can auto-
matically retrain the neural network using the latest data. This accomplishes
the same thing as online learning, but without the associated performance
penalties, since the retraining can be done offline or at off-peak hours.

Maintaining the Network

Once deployed, the predictive accuracy or performance of the neural net-
work must be monitored, just as you would monitor a new employee. The
very same measures that were used to judge the human expert could be ap-
plied to the neural network expert. Our expectation is that the neural net-
work would have fewer sick days.
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A neural network that is trained and then deployed for a long period is like
having an employee who is trained to perform a specific task and then does
nothing to update his or her skills. You will periodically need to retrain the
neural network using the latest data that captures the latest trends and give
feedback to the neural network on its performance. If the neural network
made an incorrect prediction or decision, make a new training example by
taking the input data and adding the known correct answer as the desired
output. In this way, you can modify the behavior of the neural network.

Monitoring Neural Network Performance

If you build an operational neural network application, you should also pro-
vide a mechanism for monitoring the neural network’s accuracy over time.
This can be as simple as gathering the information on the transactions that
the neural network performed and the associated predictions or classifica-
tions it made. As soon as the outcome of those decisions are known, that in-
formation can be used as a new test or validation data set to see if the neural
network still meets the original acceptance criteria. If the results fall below
some specified level, then either an automatic or manual retraining cycle
must be performed.

When Retraining Isn’t Enough—Stale Model or Changed World?

If after monitoring a neural network model over time and retraining it, the
predictive accuracy still does not meet the acceptance level, there is a good
chance that something fundamental has changed in the problemn domain.
Either a new variable is now significant or the dynamics of the problem
have changed in a major way. The first step would be to try adding addi-
tional hidden units to see if the network simply can no longer deal with the
function it is trying to learn. If this does not improve the performance back
to the original levels, then you must go back to step one and review which
parameters might now be contributing to the function, and try to collect
data on those parameters.

Summary

Application development with neural networks is the use of data mining
techniques for the ultimate goal of fielding business applications. The con-
cept of generating application code directly from data is still somewhat rad-
ical, but the productivity gains can be impressive. This technique can be
used for problems where the conditions are changing, and the application
program or rules would have to be constantly recoded in order to keep up.
Simply retraining the neural network with the latest data could refresh the
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application. In cases where there is no known algorithm for solving the
problem, but where data exists, neural networks might be the only method
for providing a solution.

A trained neural network can be regarded much like a subroutine in a stan-
dard programming language. The main application program passes a buffer
or set of input data to the neural network, which processes those inputs and
produces one or more outputs. These results can be used for further pro-
cessing by the application. Sometimes preprocessing and postprocessing
steps are required for the data passed into and retrieved from the neural net-
work. Typical operations are scaling the input data and transforming symbolic
data to numeric format. Commercial neural network development tools such
as the IBM Neural Network Utility will automatically perform these process-
ing steps for you.

Neural network development requires extensive testing, just like tradi-
tional program developrent. It is crucial that the test suite covers all likely
input conditions, especially at the extremes. Once deployed, the perfor-
mance of the neural network should be monitored, either manually or auto-
matically. A degradation of neural network predictive accuracy indicates
that retraining is needed or that a fundamental change has occurred in the
function being modeled.
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Chapter

Intelligent Agents and
Automated Data Mining

“The future of compuling will be 100% driven
by delegating to, rather than manipulating,
compulers.” NICHOLAS NEGROPONTE

This chapter focuses on intelligent agents, a special type of software appli-
cation that is rapidly gaining acceptance in advanced computing environ-
ments such as the Internet and the World Wide Web. Intelligent agents can
be used to automate several aspects of the data mining process. In turn, the
data mining functions presented in the preceding chapters can be used to
provide the ultimate ability to an intelligent agent—the ability to learn or
adapt to changes in its environment. In the following sections, I discuss in-
telligent agent technology in general and then describe how the technology
might be used in conjunction with data mining.

What Are Intelligent Agents?

Like data mining, the term “intelligent agent” has become a catchall phrase
used more for marketing software than to describe specific functions or ca-
pabilities of software components. In general, an intelligent agent consists of
a sensing element that can receive events, a recognizer or classifier that de-
termines which event occurred, a set of logic ranging from hard-coded pro-
grams to rule-based inferencing, and a mechanism for taking action in the
world. Other attributes that are important include mobility and learning. An
agent is mobile if it can navigate through a network and perform tasks on re-

115




116  The Data Mining Process Using Neural Networks

mote machines. A learning agent adapts to the wants of its user and can au-
tomatically change its behavior in the face of environmental changes.

A primary aspect in the use of intelligent agents is the concept of delega-
tion of authority (Maes 1994). In this case, the user is delegating the re-
sponsibility (and drudgery) of performing certain time-consuming computer
operations to “smart” software. By virtue of this delegation, the user is free
to move on to other tasks and even to disconnect from the computer while
the software agent busily sees that the job completes. An important benefi-
cial side-effect of this delegation is that the user does not even have to learn
how to do the computer operation in the first place. In some respects, intel-
ligent agents are a layer of software that provides the usability attributes
that many novice users have needed from computers for years.

Types of Agents

The nature of intelligent agents is such that they are optimized to perform
certain functions or tasks on behalf of a user (or even a computer system).
IBM maps intelligent agents onto a graph with two axes, intelligence and
agency (Aparicio et. al. 1995). This graph, shown in Figure 8.1, is quite use-
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Figure 8.1 IBM intelligent agent graph.
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ful for comparing different intelligent agent systems. On the intelligence
axis, agents go from simply specifying user preferences, to active reasoning,
through rule-based expert systems, all the way up to agents that can learn
as they go. Agency is defined as the degree of autonomy and authority that
the user permits the agent to have. At the very least, agents must run inde-
pendently or asynchronously on the systems. In this respect, old PC-DOS
terminate and stay resident (TSR) programs that intercept keystrokes are
simple-minded agents. At the next level of agency, an intelligent agent
should represent the user and interact with the operating system. More ad-
vanced agents should communicate with applications running on the sys-
tem, and ultimately, interact with other intelligent agents.

Several categories or types of agents have been defined, based on thelr
abilities and, more often, on the task they are designed to perform. For ex-
ample, a booking agent might be designed to go out and find jobs for your
rock band. You could have a fairly rudimentary agent that goes out and in-
teracts with nightclub owner agents to see if you have a mutual open date,
so it can schedule a job. This agent might have fixed logic and only be able
to ask about a minimum price and open calendar dates. If you have more
money to spend, you might get a more intelligent booking agent that has
some knowledge embedded in it to negotiate with the nightclub owner
agent to get your band the best possible price. Both of these agents would
be called “booking agents.” The difference is in their capabilities of doing
that job. In the same way, other agents—such as information filtering
agents, brokering agents, system agents, and user interface agents—are de-
fined by the type of job they do, not necessarily how “intelligent” they are.
It seems that with intelligent agents, as with people, knowledge and adapt-
ability will differentiate the successful ones from the less effective ones.
And just calling something an “intelligent agent” doesn’t make it one. Even
though the classification of intelligent agents is still evolving, the next sec-
tions describe the major categories recognized today.

Filtering agents

One of the cries of the information age is that we are drowning in a sea of
data. There is simply more information generated each day than any one of
us has the time to read through, much less comprehend. Filtering agents, as
their name implies, act as a sieve that allows information of particular in-
terest or relevance to us to get through, while stemming the flow of useless
or nuisance information.

The filtering agents work in a variety of formats. Perhaps the most widely
used format is one where the user provides a template or profile of the top-
ics or subjects that are of interest. When presented with a list of documents
in a database, a filtering agent scans the documents and ranks them based
on how well their content matches the user’s area of interest. Or the filter-
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ing agent serves as an e-mail filter, automatically filing and disposing of
messages based on their sender (the so-called bozo filter used with news-
groups and forums) or on the information content. Filtering agents could
also interact with other agents, if necessary. For example, a filtering agent
could send e-mail marked “Urgent!” to a Notifier or Alarm agent, which
would inform you that an “Urgent!” message has arrived. IBM’s IntelliAgent
is an example of an e-mail filtering agent for use with Lotus Notes. It pro-
vides a graphical rule editor and a simple inference engine for automating
routine mail handling.

A filtering agent with learning ability could automatically adapt the user’s
interest profile, refining it or broadening it, based on explicit feedback from
the user, or by watching which articles or documents get saved and which
get deleted.

Information agents

The counterpart to the filtering agent, which cuts down on information re-
ceived, is the information agent, which goes out and actively finds informa-
tion for the user. Used primarily on the Internet and World Wide Web,
information agents can scan through online databases, document libraries,
or through directories in search of documents that might be of interest to
the user (Mobus and Aparicio 1994). As a research or intelligence gathering
tool, information agents could provide an invaluable service, keeping the
user apprised of any new developments in a field or of new web sites that
contain information related to their area of interest.

User interface agents

When interacting with a desktop application, a user’s skills might range
from novice to expert. User interface agents are used to monitor the user
interactions with the application and can control various aspects of that in-
teraction, such as the level of prompting or the number of options available.
For example, a new user typically needs lots of help and few choices. More
experienced users, however, find that verbose help gets in the way, and
they want to be able to easily access all features of a product. Coach (Selker
1994) is a user interface agent that monitors the user’s interaction with a
product and creates personalized help based on that interaction. Open
Sesame, from Charles River Analytics, is a user interface agent for Apple
Macintosh computers that “watches” the user perform tasks and then in-
terrupts the user when it notices something, and asks if the user would like
Open Sesame to automate that task. While somewhat intrusive, this type of
user interface agent can be effective.

Maes (1994) defines four ways in which a user interface agent can learn.
First, it can observe (through window system events) and imitate the user’s
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behavior. Second, it can adapt based on explicit user feedback, whereby the
user “grades” the agent on how well it performed an action. Third, the agent
can be trained by the user through explicit examples. Fourth, the agent can
learn through communications with other agents. All of these approaches
imply supervised learning from a neural network perspective.

Office or work flow agents

An office management agent automates the kind of mundane tasks that
take up so much time at the office. These tasks include scheduling meet-
ings, sending faxes, holding design review meetings, and updating process
documents. Some of these tasks are now falling under the umbrella of “work
group” or “work flow” software because they deal with documents and cal-
endars. One agent has been developed for scheduling meetings based on
observed user preferences (Kozierok and Maes 1993). Whatever the name
that ultimately gets attached to these agents, their role in automating com-
mon business functions will most likely produce some of the biggest effi-
ciency gains of any intelligent agent applications.

System agents

System agents are software agents whose main job is to manage the opera-
tions of a computing system or data communications network. These agents
monitor for device failures or system overloads and redirect work to other
parts of the system in order to maintain a set level of performance and/or
reliability. As computer installations become more distributed, the impor-
tance of system agents rises.

Network management agents have existed for years. Using Simple
Network Management Protocol (SNMP), these agents reside on devices
connected to the network and collect and report status information to the
managing computer. However, these are considered “dumb” agents by to-
day’s standards. Intelligent “system” agents are involved not only in moni-
toring the status of resources on the computer network, but also they are
active managers of those resources. System agents must be proactive, re-
sponding not only to specific events in the environment, but opportunisti-
cally taking the initiative to recognize situations that call for preemptive
actions (Jennings and Wooldridge 1995).

Intelligent agents on a computer system could handle job scheduling to
meet performance goals (Bigus 1994a). They also could be used to auto-
matically adapt the allocation of system resources to various classes of jobs
(Bigus 1994b). In this case, neural networks are used to model the rela-
tionships between the computer work load, available resources, and the re-
sulting performance. Acting as an intelligent resource manager, a neural
network controller could respond to changes in the work load by reallocat-
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ing the computer system resources to balance the impact on the response
times of various job classes. Similar approaches have been used to balance
work load across distributed computer systems, and to ensure quality-of-
service levels in data communication networks.

Brokering or commercial agents

In the real world, a broker acts as an intermediary to a buyer and seller. An
agent that acts as a broker is a software program that takes a request from
a buyer and searches for a set of possible sellers using the buyer’s criteria
for the item of interest. If and when potential sellers are found that can sat-
isfy the buyer’s request, then the broker agent can return the results to the
user, who chooses a seller and manually executes the transaction. Or else,
the agent can automatically execute the transaction on behalf of the user.

This form of electronic commerce is often presented as the ultimate form
of intelligent agent application. After all, when we finally get to this point,
agents will really have to be good. Both parties will have to have complete
trust in their agent’s ability to protect their interests and meet their criteria
for a successful transaction. This commercial scenario also brings out many
of the major issues that must be resolved before agent-based electronic
commerce can become a reality. First, each agent must be opaque. That is,
its internal knowledge about its ultimate goals and the strategy it will em-
ploy must not be visible in any way to the other agent. This implies a level
of robustness and integrity not usually associated with commercial soft-
ware. Second, its identity must be verifiable. When one agent tries to buy
something from another agent, it must be able to verify that the other agent
actually represents a legitimate seller, not someone who only wants to
reach a deal so that they can get access to the buyer's credit card numbers.

There are other issues to be resolved before broker agents reach com-
mercial viability. For example, when a broker agent is sent out onto the net-
work, how does the user know that it will not end up on a server machine
that is under the control of hackers who will disassemble that agent in or-
der to discover its inner workings? Because of the financial aspects of their
use, security will be the major issue for broker agents. The interaction with
other broker agents also relies on resolving many issues of multiagent sys-
tems. These are described in more detail in the following section.

Multi-agent systems

While a single intelligent agent is interesting as an intermediary between a
single user and a system, the truly exciting applications for intelligent
agents usually involve the interaction of multiple agents. Broker agents and
system agents, for example, depend on the existence of other intelligent
agents in order to do their job. How will the these agents “talk” to each
other? How will we ensure that they speak the same language? Will they
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have the same knowledge representation and belief systems? Unfortu-
nately, Fhe answers to some of these questions are years of research away.

Dgspn?e this, efforts are already underway to standardize an agent con;-
mum.ca.tlon language (ACL). Gensereth and Ketchpel (1994) define ACL as
consisting of three parts: its vocabulary, an inner language called Knowledge
Interchafxge F9m1at (KIF), and an outer language called Knowledge Query
and Ma{upulamon Language (KQML). In this ACL view of intelligent agents
somet.hmg -is a “real” agent only if it communicates through ACL. ’

thlf: this effort might be premature, it is certain that some sort of com-
n.lon dialect will be needed for intelligent agents to communicate effec-
t1ve'ly. Agents might be based on standard object interfaces such as the
Object Management Group’s Common Object Request Broker (CORBA)
and IBM’s System Object Model (SOM). It is also possible that compound
dc?cument architectures such as Lotus Notes, OpenDoc, or Microsoft's OLE
will be the integration point for intelligent agents. ,

Agent Scripting Languages

One of the most basic attributes of agents is that they respond and react to
ev.ents. This event might be a user input event such as a mouse click, or it
mxght be a system event such as a notice that a piece of electronic ma’il has
arrived. In either case, the event triggers the agent to evaluate the item and
make a determination as to what action should be taken.

Interpreted languages such as BASIC, IBM's REXX, and Unix Shell scripts
haye been used for years as easy ways to quickly automate user tasks. The
primary reason for using interpreted scripting languages for agents is their
mobility. The source code can be sent around a network and run on any
server syster that has an interpreter. Another advantage of an interpreted
language is that the scripts must run in a virtual machine. This provides
some level of security against an agent with destructive intent from causing
ham.\ t.o the system it is running on. The Telescript language from General
Mz.agnc is one example of a scripting language developed specifically for cre-
atl.ng. mobile agents (Wayner 1994). Java from Sun Microsystems is also
gaining widespread popularity and support.

Adding Domain Knowledge through Rules

An agent that features hard-coded logic is, in most ways, just a piece of in-
terpreted code. Just as no one would call an old BASIC g)rogram an intelli-
gent agent, many people would classify this type of agent as being of the
dumb” variety. It is the addition of rules and an inference engine that
g;o:es a:\ agent up 50 the next step in the intelligence hierarchy. These ex-
rt systems provide the domain kn
i poms Drotide the knowledge an agent needs to perform a
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Traditional expert systems

The symbolic school of artificial intelligence made a real contribution to ap-
plication development with the invention of the rule-based expert system.
An expert system combines knowledge, usually represented as a set of if-
then rules, an inference engine, which contains the program logic, and a
working memory or workspace (Rich and Knight 1991).

The rule base contains the knowledge that applies to a certain problem or
domain. The data used in the inferencing can be provided by the user, can
be obtained from the system or applications, or can be generated by the
rules themselves. The inferencing process works in one of two modes, for-
ward chaining or backward chaining.

In forward chaining, the expert system starts with a set of data. The ryle
set is evaluated by testing the antecedents, the “if” part, of each rule.
Depending on the type of inference engine used, one rule is selected to
“fire” using a selection process called conflict resolution. Factors such as
how specific the rule is (how many antecedent clauses it has), how recent
the working memory values are, whether the rule has just fired, and even
rule priorities are used to determine which rule is chosen. The consequent
or action part of the rule is then performed. This action will usually change
one or more variables in the working memory. Another round of conflict
resolution is performed, resulting in another rule being chosen to fire. This
process repeats until a state is reached where no rules can be selected to
fire. The results of the inferencing process are then read out of the working
memory.

An example of a forward chaining expert system application is a configy-
rator. In this case, a set of rules is written that defines all of the constraints
that must be met in order to have a valid configuration for a piece of equip-
ment. The initial data is the set of options for the system that the custorer
wants to order. The inference engine runs through the rules whose conse-
quents generate a list of the parts required to build this piece of equipmeng,

Backward chaining goes about the inferencing process in the opposite or-
der from forward chaining. In backward chaining, a goal is specified, wheye
the goal is a variable that appears in one or more consequents of rules. One
of the rules is chosen and then the variables in the antecedent clauses are
given values (bound) to make the rule true. Once these variable have vallgg
assigned to them, rules whose consequent clauses are now true are le.
lected and, in turn, their antecedent clauses are made true. This protss
continues until a solution is found where all variables are bound to legal Yy
ues. If a conflict arises at any point in the process, then the inference enf\ye
backtracks, or undoes some of the variable assignments, and searches
other path through the rules.

A standard backward chaining application is a diagnostic system. The ﬂ5;111
is to find the determination of the problem. Medical diagnosis systems ‘ﬂ\\re
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one of the earliest applications of backward chaining expert systems. Here
the goal is to find the diagnosis of a disease. As the inference engine back
chains through the rule set, the doctor or nurse is asked a set of questions
concerning the symptoms or measurements of the person being diagnosed.
Only the information that the expert system (through the backward chain-
ing process) deems important is asked of the user. If and when a logically
consistent path from a specific diagnosis back to the available set of data on
the patient exists, then the expert system stops and returns the diagnosis.

An advantage of both forward and backward chaining expert systems is
that their inferencing process can be traced. By logging the sequence of
rule firings and the state of the working memory, a user can query most ex-
pert systems as to why a piece of information is being requested and what
line of inference the expert system is following in pursuit of the answer.
This trace facility can be used to train new users in the problem-solving
techniques used by experts in the field, or it can be used to give the experts
a “warm fuzzy” that the rule-base has actually captured their knowledge
and is providing valid solutions to the problems.

One disadvantage of rule-based expert systems is that all of the knowl-
edge must be represented as if-then rules. Experience has shown that very
few experts can explicitly define the set of rules they use (probably because
they don't use a set of rules) to solve problems presented to them. This
knowledge acquisition bottleneck was one of the reasons that data-centric
methods such as neural networks have been used in place of traditional ex-
pert systerus in applications. The rule bases generated by long, tedious in-
terviews of knowledge engineers produced rule sets that defined what the
knowledge engineer thought that the expert thought he used to solve the
problem.

Fuzzy expert systems

Fuzzy expert systems are a combination of fuzzy logic and forward chaining
rule systems (Kandel 1992). Instead of using binary or Boolean logic when
evaluating rule clauses, a fuzzy expert system uses fuzzy logic operators.
Rather than providing true/false results for each clause, a fuzzy inference
engine produces a membership value that ranges from 0 to 1. So fuzzy ex-
pert systems are more like analog than digital computers, in the same way
that neural networks are more analog than digital. See appendix B for an
overview of fuzzy systems.

Another major difference in fuzzy expert systems compared to standard
forward chaining expert systems is that there is no rule selection, or con-
flict resolution, process. In a fuzzy expert system, all rules are fired in par-
allel. That is, each rule is evaluated based on the current values of the
working memory. Rather than having only one rule “fire” and performing its
consequent clause, every rule fires, producing a collection of fuzzy sets.
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These fuzzy sets are modified by the degree of membership or truth associ-
ated with their antecedent clauses, and then they are combined together.
The fuzzy set output is then defuzzified into a crisp output value.

The real power in adding Boolean or fuzzy rule-based inferencing to in-
telligent agents is in the increased flexibility in representing domain knowl-
edge and in the powerful problem-solving techniques that accompany the
inference engines. Rather than having a fixed set of logic coded in a pro-
gram, a rule-based expert system provides a mechanism to incrementally
add new behaviors to the agent. After the intelligent agent is deployed, the
designer could use feedback on its performance to enhance it through mod-
ifications to the agent rule base. Even better would be if the intelligent
agent could adapt automatically using online learning techniques such as
genetic algorithms or neural networks.

Adding Learning to Agents through Data Mining

While more difficult to implement, a learning agent would also obviously be
much more valuable than a fixed-function agent. Learning provides the
mechanism for an initially generic filtering agent to adapt and become a
truly “personal” filtering agent. Such an agent would become an extension
of the user.

Perhaps the ultimate goal of intelligent agents is to have them learn as they
perform their tasks for the user. Depending on the technology used to im-
plement the learning functions, learning could be done incrementally on an
event by event basis, or the user actions or events could be saved in a log file
for batch learning. There are advantages and disadvantages to each method.

Incremental learning is probably the best way to enhance an intelligent
agent. After each task is completed by the agent, the experiences (in the
form of event/action pairs) are integrated into the intelligent agent’s knowl-
edge base or model of the world. Theoretically, the agent will get better and
better at doing its job, and the user benefits from this function. Adding
learning to intelligent agents is like providing the user with automatic, free
upgrades to software. However, the software agent is also subject to being
distorted if its experiences with the system or other agents are illogical. The
key is going to be to allow the agent to adapt while avoiding severe patholo-
gies in its behavior over time.

One disadvantage to incremental learning is that the learning process
might be expensive computationally. If you are using broker agents to trade
commodities for your account, then you might want your agents to focus on
performing the transactions you specify, and not spend their time trying to
learn as they go. This performance penalty could be avoided if the learning
is delayed until the agent is inactive.

Batch learning, where the agent only tries to integrate its experiences after
it has collected a substantial amount of data, is really just a way of doing auto-
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mated data mining. At set intervals of time or when sufficient data is collected,
the agent would go into a “learning mode,” where it examines the trace data,
possibly integrating it with information concerning the results of its actions,
and performs an automated data mining sequence. The result of this could be
rules that could be used in an inference engine. Or more easily, the knowledge
base could be a neural network model or a set of neural network models.

A disadvantage of batch learning is that, during the update phase, the
agent is essentially unavailable for use. Depending on the type of agent and
the environment it operates in, this might not be a problem. For example,
taking a system management agent that monitors a nuclear plant offline for
an hour to train it would not make sense.

Automating Data Mining with Intelligent Agents

In this chapter, 1 have talked about how intelligent agents can automate
tasks for users, and the role data mining (learning) can play in enhancing
agent abilities. In chapters 3 through 5, I presented the process by which we
can perform data mining using neural networks. This process has several
major steps, including data preparation, neural network model and archi-
tecture selection, training and testing the neural network, and finally analy-
sis of the output and conversion into domain knowledge. In this section, I
change my focus from agents to data mining, and I explore how intelligent
agents can be used to automate the entire data mining process.

Data preparation

Reviewing the steps listed in chapter 3, data preparation involves data se-
lection, data cleansing, data preprocessing, and data representation. With
the use of intelligent agents we can automate several of these steps.

Data selection is a form of domain knowledge. The domain expert uses his
or her knowledge about the problem and the available data to select data rel-
evant to the data mining function being performed. One possibility for au-
tomating this step, especially in unstructured or ill-defined domains, is to
perform automatic sensitivity analysis to determine which parameters should
be used in learning. This lessens the dependency on having a domain expert
available to examine the problem every time something changes in the envi-
ronment.

Data cleansing could certainly be automated through the use of an intel-
ligent agent with a rule base. When a record is added or updated in a rela-
tional database, a trigger could call the intelligent agent to examine the
transaction data. The rules in its rule base would specify how to cleanse
missing or invalid data.

Data preprocessing also requires domain knowledge. For example, there
is no way to know that computed attributes or derived fields need to be gen-
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erated. However, more standard preprocessing and data representation
steps such as scaling, symbol mapping, and normalization, which are usu-
ally specified by the data mining expert, could be automated using rules
and basic statistical information about the variables.

Model and architecture selection

In most data mining applications, the neural network model is selected
based on the function required. This knowledge could be embedded in an in-
telligent agent using simple rules. However, the model architecture (the
number of layers or hidden units) would have to be chosen based on the data
representations used. An intelligent agent could use domain knowledge con-
cerning neural network architectures and the training and testing process to
control the search for the optimum architecture, possibly through the use of
genetic algorithmus (see the discussion in appendix C).

Training and testing

Automating the training and testing process is perhaps the easiest part of
the job. The IBM Neural Network Utility, for example, provides a scripting
component that allows the user to specify training and testing strategies to
control the entire training cycle. This includes setting network parameters
and monitoring network performance. However, there is still the issue of
what training parameter values produce the neural network with the most
accurate predictions or the best generalization. Fuzzy rule systems have
been used to control the training of back propagation networks. So an intel-
ligent agent with a fuzzy rule base as its domain knowledge could control the
selection of learning parameters and possibly the whole training process.

Output analysis

Once the neural network model is created by the data mining process, the
next step is discovering what it learned. While visualization is not a candi-
date for automation, sensitivity analysis and “black box” testing of the
model could be automated. An intelligent agent could scan through the
facts or rules generated by some data mining algorithms to identify items
that contain valuable information.

Agent-directed data mining

The major advantage of using intelligent agents to automate the data min-
ing task is that it enables data mining of online transactions. In some re-
spects, this is similar to online analytical processing. However, again, the
basic distinction between data mining and OLAP is that data mining in-
volves discovery. By mining the data as it comes into the data warehouse or
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operational database, any crucial information or trend can be detected and
handled in an automated way by the controlling business application pro-
gram. If a filtering agent is the vehicle for doing this, then it can send an
event to an alarm or notifier agent to alert a monitoring program or human
decision maker. I have proposed this technique in customer briefings for
several years, as a way to do automated decision support using neural net-
works and database triggers. Recently, Agrawal and Psaila (1995) proposed
a similar approach, and dubbed it “active data mining.”

Summary

Intelligent agents are a new class of software that can automatically per-
form computer functions for a user. Agents can be classified along two ma-
jor dimensions: intelligence and agency. Simple agents have hard-coded
control logic. Intermediate-level agents use rule-based inferencing to add
additional capabilities and task-specific domain knowledge. The most ad-
vanced intelligent agents have the ability to learn and adapt as they perform
work for the user and interact with the computer system and other agents.
On the agency scale, running asynchronously or autonomously is a basic re-
quirement, while interacting and representing users is a more sophisticated
behavior. The ultimate goal is for agents to share information, cooperate to
solve large problems, and interact with each other. '

Intelligent agents are usually classified according to the type of task or
function they perform. Thus we have filtering agents that shield users from
junk messages, information agents that actively seek out documents of in-
terest to the user, and work flow agents that automate everyday office or
work group functions like scheduling meetings. More complex agents in-
clude system agents, which manage computer and data networks, and bro-
ker agents, which perform financial transactions on behalf of the user.
Multiagent systems offer much promise but still need to overcome many
technical hurdles to provide the security and communications mechanisms
for multiple independent agents to work together to solve problems.

Rule-based expert systems provide a flexible method for adding domain
knowledge to an agent, and furnish more powerful problem solving strate-
gies than are usually possible with fixed-logic programs. Both traditional
expert systems using Boolean logic and new fuzzy rule systems can be used
in agents.

Learning capabilities offered by neural networks add the ultimate func-
tion to intelligent agents—the ability to personalize or customize according
to the wants of the user. Most often, these learning or discovery processes
are done against trace data from user actions or system events. Thus data
mining plays a role in allowing agents to adapt to their environments.

Having intelligent agents around to monitor events, classify them, and
take action provides a way to automate the data mining process. Agent-
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directed data mining could use database triggers to signal when new data
should be mined.
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Part

Data Mining Application
Case Studies

This section explores several data mining applications in detail. The
business problems range from market segmentation to customer
ranking, to sales forecasting and inventory control. Each problem can
be studied independently of the others. However, each problem
solution uses the neural network data mining methodology presented
in Part 1. All of the applications are developed using the IBM Neural
Network Utility. The discussion focuses on the data, the business
problem, and the data mining process, not on the mechanics of using
the tool to develop the applicatgon. While the Neural Network Utility is
a capable commercial development tool, it is not the only one
available. Whether your tool of choice is NNU or some other neural
network product, the methodology should be applicable. These
applications are used for illustration and so are necessarily
simplified. While the number of data fields and source data might be
larger in “real” applications, I have made every effort to make these
applications realistic and useful.




Chapter

Market Segmentation

“The secret of business is to know something
that nobody else knows.”
ARISTOTLE ONASSIS

Problem Definition

One of the major challenges facing any business in any industry is to un-
derstand its customers. This understanding needs to occur at many levels.
First, what products are customers most interested in and what features or
services would they be willing to pay a premium for? Second, who are the
customers? What does a “typical” customer look like? Is the customer 20 or
40 years old? Is the average income 20,000 dollars a year or 60,000 a year?
Is the customer single or married with children? This information is useful
for a variety of reasons. With information on product requirements, a man-
ufacturer or retailer can ensure that it builds or stocks what its customers
want. With information about the demographics of its customer set, the
business can target sales promotions directly at the current or prospective
customers who are most likely to buy from the company. These techniques
are called target marketing, and they rely principally on the ability to seg-
ment or cluster the total market into more specialized niches that can be
served with a higher degree of satisfaction (and profit). Taken to the ex-
treme, target marketing gets to the point where there is a “market of one.”

This kind of application is a classic example of data mining (Verity and
Mitchell 1995). With each business transaction during each business day, raw
data is collected concerning the customers and their purchases. Every time
a customer is added to the customer database, more information is available
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about the types of people who want to do business with your company. Also,
with each purchase, the customer is providing information about his or her
requirements and what he or she is willing to pay to satisfy those require-
ments. This is information that businesses have collected as normal book-
keeping logs, and this data can be mined to obtain strategic marketing
information. Unfortunately, some businesses do not even realize the value of
the data that they routinely dump to tape and put safely away in their com-
puter backup vaults. Unlike fine wines, the value of that data is not going to
necessarily increase with age.

What kind of customer information is required to perform data mining?
Information concerning a customer's demographics (sex, age, marital sta-
tus, etc.), economic status (salary, household income, debt ratio, home-
owner, etc.) and geographic information (state, city, neighborhood, rural/
urbar/suburban, etc.) can all be used to define specific customer segments
that share similar interests or product requirements.

Information regarding product purchases is easily obtained from point-
of-sale systerns. This information can then be matched to the customer who
made the purchase, along with information details about the product. If fol-
low-up surveys are done to determine the level of customer satisfaction
with the product, a clear picture can be drawn of the relationships between
a customer, the product, and the degree of satisfaction.

In the next sections, I work through an example of a target marketing ap-
plication. I use the IBM Neural Network Utility (NNU) to do the data trans-
lation and the market segmentation with neural networks (See appendix A
for details on NNU). For the analysis of the output results, I use Lotus 1-2-
3. Several other commercial neural network tools and other spreadsheets
could be used with equivalent results.

Data Selection

In this example, the business is a chain of department stores. The business
management has decided to focus on five product categories in the coring
year: sporting goods, home exercise equipment, home appliances, enter-
tainment (electronics, music, and videos), and home furnishings. Rather
than blanket the existing customer base with advertisements and catalogs
featuring merchandise from these categories, the management would like
to first understand more about the customers who buy these types of prod-
ucts. The first step will be to analyze the current customer set, and the sec-
ond will be to buy mailing lists of new or prospective customers to target.
An additional question is whether there is any strong correlation between
customers who make purchases in one category and any of the others. This
information will be used to determine the content and format of direct mail
campaigns to the targeted customer set. The goal is to maximize the return
on our marketing investment.
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The business has information from three databases: a customer database,
a product database, and a transaction database. The following data is avail-
able for the data mining project:

® Customer: customer name, customer ID, age, sex, marital status, address,
income, homeowner

® Product: product name, SKU, price, cost, product category, quantity in
stock, quantity on order

® Transactions: Customer name, SKU, date and time, amount

The first order of business is to aggregate the data so that we have the in-
formation we need to do the segmentation. Although we have detailed in-
formation on each purchase transaction each customer has made, what we
really need is to scan the transaction database and determine whether the
customer has made purchases from any of the five target categories. Using
SQL, we join the product and transaction databases on the SKU, selecting
the customer name, product category, and amount of the purchase. This
step produces a table with customer name, product category, and amount
of the purchase. We then process this table with a simple program such that
when a record is read with a product category that matches one of our five
targets, we add the amount of the purchase to the corresponding field in
the new customer interest table, We also compute the total amount pur-
chased by the customer. Our new table looks like this:

= Customer interests: customer name, sporting, exercise, appliances, en-
tertainment, furniture, total

The next step is to select what data to use as the basis for the segmenta-
tion. This selection process involves two dimensions: first, which records or
subset of the total customer base do we want to segment, and second,
which customer attributes should we use? Now, in some cases, segmenting
the entire customer base is desirable. However, in many cases, customers
are selected based on some subset of the customer population. For exam-
ple, we might want to segment the married customers if we are trying to se-
lect which children’s furniture line to add to our stores. Or we might want
to segment the customers who own their own homes. Just as SQL queries
are used to drill down and examine finer and finer levels of detail in the
data, so can segmentation be used to subset the customers into smaller and
smaller groups, based on their shared attributes. In our case, we will start
with the entire customer set and look at subsets only if required. '

The selection of which fields to use is crucial for the segmentation to be
successful. In this application, the customer name is not important for our
analysis. We will use the customer age, sex, marital status, income, and
whether the customer is a homeowner, combined with the customer inter-
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TABLE 9.1 Selected Data for Customer Segmentation

Attribute Logical Data Type Values Representation
Age Continuous numeric 18-74 Scaled (0.0 to 1.0)
Sex Categorical Male, Female, 1,0,05
Unknown
Marital Status Categorical Single, Married, 1,0,06
. Divorced, Unknown
Homeowner Categorical Yes, No, Unknown 1,0,05
Sporting Goods ($) Continuous numeric  $0 to $1500 Scaled (0.0 to 1.0)

Scaled (0.0 to 1.0)
Scaled (0.0 to 1.0)
Scaled (0.0 t0 1.0)
Scaled (0.0 to 1.0)
Scaled (0.0 to 1.0)

Exercise Equipment ($) Continuous numeric $0 to $2500
Home Appliances ($) Continuous numeric  $0 to $5000
Electronics/Music ($) Continuous numeric  $0 to $2500
Furniture ($) Continuous numeric  $0 to $5000
Total Amount ($) Continuous numeric  $0 to $15000

est information we derived on the five product categories. Table 9.1 shows
the selected field names, logical data types, and the range of possible values.

Data Representation

Now that we have selected which fields will be used as inputs for the seg-
mentation, the next step is to decide what data representation and prepro-
cessing is required for each field.

Customer age is given as a continuous numeric field, ranging from 18 to
74. Unlike other data mining algorithms, which require continuous variables
to be discretized or broken up into segments, neural networks can take con-
tinuous inputs without any problem. When clustering data with neural net-
works, it is standard practice to normalize the input data to a range of 0.0 to
1.0, so we will scale the input down to 0.0 to 1.0.

Sex is a categorical field containing either an “M” character for male, a
«F* character for female, or “U” for unknown. We need to map the “M” and
“F values to numeric values, usually 0 and 1. What if we don't know the sex
of the customer? How do we represent a “don't know” value? This is han-
dled by mapping the “U” (or any other character) to a 0.5 value.

Marital status contains information in character form also. The letters are
«g” for single, “M” for married, “D” for divorced, “U” for unknown. However,
in this case, we don't really care whether the person is single or divorced.
So in a preprocessing step, we map any “D” to “S” so that we have only three
valid values, “S”, “M”, and “U”. We map these to 0, 1, and 0.5 respectively.
Note that this data representation preserves the semantics of this field by
giving maximum separation to the single and married states, while the un-
known value is placed in the middle of these extremes.

The income field has a range from $0 to $80,000. In this example, we take
the simplest approach and scale this down to 0.0 to 1.0. In some applica-
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tions, there might be a very large range of incomes (from thousands up to
millions). If this is so, then taking the log of the income usually works bet-
ter than simply scaling the data. The homeowner field is another categori-
cal or discrete field. We will map the “Y” to a 1, the “N” to a 0, and “U”
(unknown) to 0.5.

The purchase amounts for the five product categories are represented as
continuous numeric values. The ranges of these values for the one thousand
customers selected for this application are shown in Table 9.1. These values
are all scaled linearly down to a range of 0.0 to 1.0.

The Neural Network Utility provides a data translation function that per-
forms all of the required symbol mapping and numeric scaling operations.
Figure 9.1 shows the NNU Translate template, which corresponds to our
data representation specifications.

Model and Architecture Selection

Once we have decided what data to use and how to represent it to the
neural network, the next step is to select which neural network model to
use. Table 4.1 showed that Kohonen feature maps and adaptive resonance
networks could be used for this kind of clustering. In this example, we will
use a Kohonen feature map, which is more commonly used for data mining
applications (Kohonen 1988).

Based on our data selection and representation, we know that we have 10
inputs to the neural network (age, sex, marital status, income, homeowner,
and the amounts for the product categories). We decide to segment our
customers into 4 groups, so we will specify 4 output units for the Kohonen
map. Notice that this is an arbitrary decision. We could have just as easily
decided to segment the customers into 6, 8, or even 16 groups.

Translate Editor - e\customer.xit

File Selected Edit View Windows Help

Name Usage Rep Pre Source Table Dest Post
Sex Input 1 None Symbol Table  Number None
MaritalStatus Input 1 None Symbol Table Number Scald
Age Input 1 Scale Number None Number None
Income Input 1 Scale Number None Number None
OwnHome Input 1 None Symbol Table  Number None
SportingGoods Input 1 Scale Number None Number None
ExerciseEquipm Input 1 Scale Number None Number None
Homeflppliances Input 1 Scale Number None Number None
Entertainment/ Input 1 Scale Number None Number None
Furniture Input 1 Scale Number None Number None
Totals Ignore 1 Scale Number None Number None
Fields:11 In:10 Out:0 Ignore:1 [InBut:11 Num:8 Sym:3 _JloutBuf:16 Num:10 Sym

Figure 9.1 NNU translate template for segmentation application.
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Segmenting Data with Neural Networks

There are three basic steps to doing segmentation with neural networks.
We have to specify our source data, preprocess the data, and present this
data to the neural network for segmentation. Figure 9.2 shows a Neural
Network Utility application module set up for training the Kohonen fea-
ture map network. The NNU module editor shows three NNU objects
connected to form our segmentation application. The Import gbject de-
fines the data source, which is a comma-delimited text file. This source
data is fed into a Translate Filter, which transforms the symbolic data and
scales the numeric data as specified in the Translate template in Figure
9.1. The preprocessed data is then passed to the neural network. Our
Network object contains an NNU feature map, which we created with 10
inputs and a 2-by-2 output layer.

Before we start training the network, we open several NNU Inspectors to
view some of the data elements in the NNU application module so we can
monitor the progress of the training. Inspector 1 shows the source input
data. Inspector 2 shows the output of the Translate Filter object. Notice
that the symbolic input fields have been transformed into numeric values,
and that the numeric inputs have been scaled down to a range of 0.0 to 1.0.
Inspector 3 is configured to display the output layer of our Kohonen net-
work using a Hinton diagram view and a 2-by-2 layout. The Hinton diagram

lsel Inspector) - CustomerData f,’,"’.f,‘l' nspector? - Datafilter =]+ Jl=linspector4 - KohonenMx]2]

|

“Object Data Edit View QObject Data Edit View Object Data Edit
Options Help Options _ Help View Options _Help
TextViewTitle TextViewTitle TextviewTitle
Output Buffer Array Output Buffer Array Neural Network Parameters
R 0: 1 Net State t
e 1 033333 Net Epoch 20
2:S 2: 0.19643 Net Record 7
329 3: 0.58103 Winner 2
4:34861.8 4:1 Wwinner Activation 0.69644
5Y 5: 0.68531 Learn Rate 0
6:1027.97 6: 0.50443 Neighborhood
7:1261.07 7: 0.34508
8: 17254 8: 0.51369
9:1284.22 9: 0.059348 o
}(‘] 223573? 5;: " Neural Netwa-rrutilitv - customer.mod

Module Selected Edit Qptions  Windows Jools lrain Help

Qvject Data Edit | g Dir: ejoeldata Objects: 3 1007 7 Modified Modules: 2
Yiew Options Hel

Fivanoiogran (R RO AR e - <o a2
Net Output Array - _

o (][] ‘-.J//"E‘?J\Igfl
2 0O D [G) DataFiiter X e

CustomerData
P e
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view is a graphic showing white (positive) and black (negative) boxes
whose sizes vary with the magnitude of the output. Since we are monitoring
the activations of the neural network, all of the values will be positive. Also,
since the feature map uses a Euclidean measure of the closeness of the in-
put pattern to the connection weights, those outputs with the smallest size
are actually the closest to the inputs. Inspector 4 shows the major feature
map parameters, which we monitor during the training process. These in-
clude the Net State, which tells us whether the neural network is in training
or locked mode, the Winner, which identifies the winning output unit, and
the Learn Rate.

The default NNU parameters for a feature map network start with a
learn rate of 0.1 and decrease by 0.05 per epoch. Thus it takes 20 epochs
until the network is trained. To train the network, we use the NNU Run
function, which continuously reads patterns from the data set and passes
them through the Translate Filter, where they are preprocessed and then
presented to the neural network. As the neural network is trained, the
Inspectors are continuously updated. As the module runs, we see the
Learn Rate parameter in Inspector 4 decrease after each epoch or com-
plete pass through the training data. We can also watch the Hinton dia-
gram to see that there is some variety in which unit wins for each input
pattern. When the learn rate goes down to 0.0, the Net State goes from
training (0) to locked (1). We can either manually stop the training run
when we see that the network is locked, or we could set an NNU break-
point so that the Run will halt automatically when the Net State changes
tol.

After the Kohonen map has clustered the source data, we want to cap-
ture and analyze the results. To do this with NNU, we open an Inspector on
the Network, select a Network Analysis view, and log the Net Record, the
Winner, and the Winner Activation to a comma-delimited text file. The Net
Record tells us which input record we are processing. The Winner identifies
which cluster the customer fell into, while the Winner Activation indicates
how close the input pattern is to the winning unit's weights. For our analy-
sis, we load these three columns into a Lotus 1-2-3 spreadsheet, right next
to the source data. Using the spreadsheet, we sort the data using the clus-
ter number as the primary key and the customer ID as the secondary key.
When this is done, we have split the customer base into four segments. We
use Lotus macros to compare the makeup of the clusters and compare them
to the overall population statistics.

In order to understand the information discovered by the segmentation,
we need to first look at the makeup of the overall customer set. The average
customer is 42 years old, has a yearly income of $35,000, is more likely to be
a female (48% to 42%, 10% unknown), is probably married (50% to 35%
single, 15% unknown), and has a 40% chance of being a homeowner. This
group as a whole spends, on average, $500 on sporting goods, $1000 on ex-
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ercise equipment, $1250 on appliances, $718 on entertainment, and ap-
proximately $1100 on furniture. While these averages are interesting, they
are a conglomeration of people, and probably do not accurately represent
any single customer.

The customer set was split by the Kohonen map into four groups, as
shown in Figure 9.3. The largest group makes up 42.8% of the customers
and has a very similar makeup to the customer set average. The one big dif-
ference is that this group spends almost twice the average on home appli-
ances. The next largest group, 24.9%, is older (52 versus 42), spends almost
half the average on sports and exercise equipment, less on appliances and
entertainment, but spends over $500 more than the average customer on
furniture. The next group, made up of 20.4% of the customer set, mimics
the overall customer set with the exception that they spend only Y% the
amount on appliances. The smallest segment, consisting of 11.9%, averages
just 26 years of age. They spend twice the average on sports equipment and
entertainment, but less than the average on appliances and furniture. Thus
our “average” customer has now been broken out into four sets of cus-
tomers who exhibit very different consumer behaviors. Figure 9.4 illus-
trates the average spending on the five targeted product categories by the
total customer population and the customers in each segment.

Market Segmentation
Segment size. average age

Segment 4 (Age 26) (11.9%)

Segment 1 {Age 43) (42.8%
B Segment 3 (Age 62) (20.4%) egment 1 {Age 43) (42.8%)

Segment 2 (Age 42) (24.8%)

Figure 9.3 Segmentation results: segment size and average age.
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Figure 9.4 Market segmentation analysis.

Related Applications and Discussion

Now that we have our segmentation and analysis of the clusters, the chal-
lenge is to interpret this data and turn it into business decisions. We know
we have four distinct groups of customers with different spending habits.
From a marketing perspective, we can now target promotions at these
groups. Customers who fell into the largest group will get promotions on ap-
pliances. The second largest group, which is older, will get furniture cata-
logs, not sporting goods or exercise equipment. The fourth group will be
targeted with sporting goods and entertainment advertisements. This infor-
mation basically “falls out” of the segmentation. It is useful for our tactical
sales strategy. But what about strategic issues. Have we learned anything
about our customer set?

An analysis of the statistical makeup of the four groups shows that sex is
not a determining factor for which cluster they fell into, nor is marital sta-
tus. The biggest contributing factors are age, income, to some extent, and
most importantly whether or not they are homeowners. To find out more
about these segments, we might need to cluster at a finer level, say into 9
groups or 16 groups, or we might want to take the customers from just one
of the four segments and cluster them again. This would break that segment
down into finer detail. A common approach is to first segment the cus-
tomers into groups that have the behavior we want—for example, customers
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who spend a lot on entertainment—and then build a ranking model for that
specific group. We could then buy customer lists and run them through the
ranking model to determine whom we should send our entertainment cata-
logs to. Using this approach, we would expect good results because we have
selected customers who are most like our current “best” customers.

In doing segmentation or clustering, one of the most basic things to re-
member is that there is no “right” answer. If you select 10 outputs or clus-
ters, the customers will be partitioned into 10 distinct groups, using a mix
of their attributes. If you select 4 outputs, they will be divided into 4 distinct
groups. If you run the same network on the same data 4 times, will the re-
sults be identical? Probably not. The initial weights of the neural network
are randomly selected. So assuming that you have different initial weights,
there is a good chance that the results will be slightly different for each
training run. Is this a problem? Probably not. Provided there is not some
major anomaly in the data, most of the customers will be classified into the
same groups for each run. To illustrate this, we segmented the customer set
again with a Kohonen map using different parameters for the neighborhood
and number of epochs. The results were slightly different, with segments of
44%, 20.5%, 21.9%, and 13%. However, analysis of the makeup of the
groups was consistent with the first segmentation results. What is impor-
tant is that the different segments are identified and that they capture the
same basic qualitative information.

The whole process of training the Kohonen maps took approximately one
hour using the Neural Network Utility. This included setting up the trans-
late template and training the neural networks.

On the first training run, the first unit was declared the winner on every
pattern. That is, the data was not segmented at all, but was placed in the
same class. To overcome this problem, we needed to use the “conscience”
parameter provided by the NNU implementation of feature maps (DeSieno
1988). A well-known problem with competitive neural networks, like
Kohonen maps, is that sometimes only some of the output units are posi-
tioned to “win” on input patterns. The result is that other outputs are left
out in the cold; they do not ever get to win and therefore do not get their
weights adjusted toward the part of the input space where the input data is.
The conscience parameter lets units that are not strictly closest in
Euclidean space to win and thereby get “in the game.” On a test run of a
3-by-3 output Kohonen map, a similar thing happened. The four corner
units won all of the inputs, and the other output units weren't used at all.
This might or might not be a problem in this case, however, since the 4 out-

puts that won most likely discovered the same segments as the 2-by-2 net-
work. When a conscience value was added, then all 9 of the outputs were
active and the data was clustered into 9 segments.

The main idea used in this decision support application was to segment
the customers and to analyze the makeup of those segments. The same ba-
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sic approach could be used to analyze data on stores. For example, if you
have 1000 stores in 40 states that you need to supply, you certainly don't
want to have the exact same product mix in all of the stores. However, you
also don’t necessarily want to build 1000 inventory control models for each
product carried by each store. A solution is to segment these stores based
on the sales of products in the various categories. If you can cluster them
into 16 segments and treat the stores that are grouped in the same cluster
as being identical, then this greatly simplifies the logistical problems while
still customizing the product mix to meet the stores sales patterns. In
essence, we are using the clustering capabilities of neural networks to com-
press our data from the possibly hundreds of attributes down into the num-
ber of segments we desire.

Applying this approach to an inventory application, we could cluster our
products based on their attributes. When a new product is introduced that
we have no sales history about, it is sometimes difficult to predict what the
appropriate inventory level and stock reorder threshold should be. By run-
ning the product attributes through a segmentation neural network, we
could use the same demand curves as the other products that fall into that
segment.

For some reason, many people use back propagation neural networks for
these kinds of applications. However, Kohonen feature maps, and to some
extent ART networks, have real advantages over back propagation when
used for clustering. Their training is usually much faster than training a
back propagation network, and they have fewer training parameters to set.
The use of unsupervised learning to segment data is a powerful form of data
mining, especially when it is combined with specialized analysis and visual-
ization tools. (See Figures 1.6 and 6.5).

Summary

In this example application, we explored a common scenario for using data
mining to do market segmentation. Our available data on customers, prod-
ucts, and customer purchases was aggregated and selected to give us a view
of the customer attributes and their behavior with respect to five target
product categories.

The first step in our application was to select exactly which data should
be used for the segmentation and then to choose appropriate data repre-
sentations. For clustering with neural networks, the data is usually normal-
ized or scaled to a range of 0.0 to 1.0. We used a Kohonen feature map to
cluster this data into four groups, and we did some high-level analysis of the
custormer segments. The IBM Neural Network Utility was used to do the
data preprocessing and the clustering. Four distinct groups of customers
were identified, in terms of their behavior toward the five target product
categories. We used Lotus 1-2-3 to analyze the results.
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Clustering or segmentation with unsupervised neural networks is a rela-
tively easy process. In some cases, this is done iteratively. Data is first seg-
mented to target specific groups with desired attributes or behaviors, and then
segmented again for detailed analysis of those groups. The major challenge in
data mining using segmentation is the analysis of the resulting clusters.
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10

Real Estate Pricing Model

“Everything is worth what its purchaser will
pay forit.” PUBLILIUS SYRUS

One of the most commmon problems faced by a business in any industry is
how much to charge for its products and services. Of course, the costs of
providing the product or service must be covered, but what is the appropri-
ate level of profit to make? In markets where cost/plus pricing is used, this
is a rather straightforward problem. However, in many cases, the market
value of a product or service has only a passing relationship to the intrinsic
value of the item. For example, two used cars made by different manufac-
turers might be on the market. They are the same age, have the same
mileage, and might have been purchased for the same price. Does that mean
they will have the same market value today? Of course not.

If one is a trendy model that holds its resale value, it could be worth much
more. What if a manufacturing defect caused reliability problems with that
specific model? This would lower its resale value. What if new car prices
have just risen by 20%? This would have a positive impact on the resale
value of used cars. While it is easy to look up the current average trade-in
value of a car, the factors that affect those values are many. The question
arises, “Can you write a formula for computing the market price of an item
based on the attributes of the item and on current market conditions?” The
answer is, “Probably not.” There are usually complex, nonlinear relation-
ships between variables that interact in subtle ways to determine the price
someone is willing to pay.

Now just because it is difficult doesn’t mean the job is impossible. One job
that requires market analysis is a real estate appraiser. In this process, the
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estimator looks at the house, noting how old it is, how big it is, how many
bedrooms and baths it has, and walks around the property noting the size of
the lot and the degree of landscaping. Then the appraiser adds or subtracts
for special features such as fireplaces, central air conditioning, extra large
garage, deck, permanent siding, etc. In essence, the estimator is collecting
information on the attributes of the property, weighing their relative contri-
butions, and coming up with an estimate of the market price. An experi-
enced estimator compares the home to other homes that are similar and
that have sold in the recent past. This gives valuable information on the cur-
rent market value for homes like the one being appraised.

How does a good estimator or real estate agent learn the trade? By start-
ing out with a small collection of homes with which he or she is familiar. As
the agent spends more time on the job, additional homes come along with
special or unique features. When the homes sell, the agent gets feedback on
the market and whether the features enhanced or detracted from the market
value of the home. If the real estate agent moves to a different area of the
country, the standard features of a home will change, and the relative value
of home attributes will vary. For example, an in-ground pool might well de-
tract from the value of a home in Minnesota, while it would be a desired fea-
ture of a house in Florida. Likewise, a screened yard is a valuable addition in
Florida but would be undesirable in Minnesota. The point is that even though
the real estate agent might be quite experienced in appraising hormes, much
of that knowledge deals with the local tastes and building practices.

If we want to write a real estate appraisal application using COBOL or
RPG, we would have to first write code to search through our database for
homes that are “similar” to the one being appraised. Then we would have to
write a formula that takes all of the home attributes and calculates a market
price. Or we could take the price of the closest matching homes and then
add or deduct for features that are different between the homes. This
would not be a simple application.

However, we can use data mining to build this kind of application more
easily. In this example, our training data consists of a set of attributes on a
property and the known selling price. The property attributes are those
listed on the common multilist forms. The neural network can “see” hun-
dreds or thousands of homes an hour. Over the training time, the neural
network can learn the fine distinctions between properties and how the var-
ious attributes affect the price. In addition, we could take this very same
framework and use data from different cities to create customized real es-
tate pricing models for each locale.

The basic data mining function we need to perform is called modeling or
scoring. Statisticians would call this a multivariate nonlinear regression
problem, We want to find out how all of those attributes contribute to the
market value of the property. Our solution is to build a neural network to
model this function. The IBM Neural Network Utility (NNU) is used to per-
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form the data preprocessing and to train the neural network (IBM 1994a).
Appendix A presents details on the functions provided by NNU. Other com-
mercial neural network tools could also be used. In the next section, I de-
scribe the data used for this application.

Data Selection

A standard multilist form has a large number of attributes about real estate
properties for sale, In this example we will build a price estimator for prop-
erties in Rochester, MN (voted #1 or #2 in Money Magazine’s “best places
to live” ranking in 1993, 1994, and 1995). The attributes we are interested
in include the lot size, the age of the home, the living space, and the num-
ber of bedrooms and baths. We track the size of the garage (if any), since in
Minnesota it gets extremely cold, and this is an important feature. There
are five main home styles in Rochester: small Cape Cods in the center of
town, one-story ranches, split entry homes, multilevel homes, and tradi-
tional two-story colonials. One important attribute in the Rochester real es-
tate market is the quadrant of the city where the property is located. The
southwest area is considered prime because many doctors from the Mayo
Clinic reside there. The northeast, with its rolling hills, would be the next
area of preference, followed by the northwest area near IBM, quite popular
with families, and finally the southeast quadrant. Table 10.1 shows the
property attributes we use in this application.

Data Representation

The home style is a categorical field with values of cape, ranch, colonial
(two-story), multilevel, and split-entry. These symbolic values will be
mapped into integers ranging from 1 to 5. The home style is known to have
a strong impact on the home's value, and so a one-of-N encoding is used.

TABLE 10.1 Selected Data for Real Estate Pricing Model

Attribute Logical data type Values Representation
Building style Categorical Ranch, split, cape, One-of-N code

‘ X colonial, multi
Location (quadrant) Categorical NW, NE, SW, SE One-of-N code
Age ) Continuous nrumeric  0to 36 Scaled (0.0 to 1.0)
Lot sizes (acres) Categorical 0.25, 0.33,0.5,1.0,2.0 Scaled (0.0 to 1.0)
Number of bedrooms Discrete numeric 2,3,4,56 Scaled (0.0 to 1.0)
Number of bathrooms  Discrete numeric 1,15,2,25,3 Scaled (0.0 to 1.0)
Garage (nurmber Discrete numeric 0,1,2,3 Scaled (0.0 to 1.0)

of cars) . -

Li\.ring space (sq. ft.) Continuous numeric 750 to 3000 Scaled (0.0 to 1.0)
Price Continuous numeric  $80,000 to $180,000 Scaled (0.0 to 1.0)
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The location of the home is represented by a categorical field with four
values, NW, NE, SW, and SE. These symbols are mapped into integers and
then coded using a one-of-N code. Our other option is to use a single input,
with 0.0, 0.33, 0.66, and 1.0 representing the locations. However, the one-
of-N data representation gives the neural network explicit information
about the importance of the location to the selling price of the property.

The age of the home is a continuous numeric field ranging from 1 to 36
years old. It will be scaled down to 0.0 to 1.0. The lot size is a categorical
field with values ranging from 0.25 to 2.0. The five common lot sizes are
scaled into a range of 0 to 1.

The number of bedrooms is a discrete numeric field ranging from 2 to 5.
The number of baths is also a discrete numeric field. Both will be scaled
down to a range of 0.0 and 1.0. Note that no information is lost because of
the scaling. The data is just compressed.

The size of the garage is a discrete numeric field with values from 0 to 3.
This data is scaled to a range of 0 to 1. The living space of the home, which
is a continuous numeric field ranging from 750 to 3000 square feet, is scaled
down to 0.0 to 1.0.

The selling price of the home is the dependent or output variable. Home
prices in Rochester range from $50,000 to $300,000, but in this example we
will use $80,000 to $180,000 for simplicity. A linear scaling down to 0.0 and
1.0 will be used for this field. While the scaling used for the input fields is
somewhat up to the person doing the modeling, the output variable must be
scaled to the same range as the range of the activation function of the out-
put units in the neural network. In our case, we use the standard logistic
function, which ranges from 0 to 1. However, if we were using the hyper-
bolic tangent, we would need to scale from -1 to 1, and if we were using the
symmetric logistic function provided by NNU, we would have to scale it
from -0.5 to +0.5. This is required because the error in the back propaga-
tion learning algorithm is computed as desired minus actual, and they must
be in the same range.

An NNU Translate Filter will perform all of the required preprocessing for
our data. The categorical data is mapped to integers and then turned into
one-of-N codes. The continuous and discrete numeric fields are scaled into
our target range of 0.0 to 1.0. NNU requires a Translate template to specify
these transformations. Figure 10.1 shows the NNU Translate template for
our initial data representations.

Model and Architecture Selection

This kind of modeling problem usually requires a back propagation, recur-
rent back propagation, or a radial basis function network (see Table 4.1 in
chapter 4). We will use the back propagation network because it is by far
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Figure 10.1 NNU translate template for modeling application.

the most popular neural network model and it is, in some respects, the eas-
iest to work with.

The architecture of the neural network is mostly subject to our data rep-
resentation decisions. The number of inputs and the number of outputs are
determined by these choices. Our major architectural decision deals with
the number of hidden layers and hidden units. Sadly, there is no cut-and-
dried technique for making these choices. As described in chapter 4, this is
an area ripe for automation. Because a feedforward neural network with
one hidden layer can theoretically model any continuous function (and we
assume our real estate price is a continuous function), we choose one hid-
den layer. Our initial choice for the number of hidden units is 10. This is ar-
bitrary and will be modified up or down if we have trouble getting the
network to converge.

Training and Testing the Neural Network

In doing modeling, we have the luxury of knowing what the “right answer”
is. In this case, we have the set of attributes of the real estate property, and
the known selling price. The first decision we need to make is how accurate
our model has to be. This depends on exactly what the model is going to be
u§ed for. If we are going to use this model as part of a customer service
kiosk in a mall, where the customer selects a home style, lot size, location,
ete. and then gets an estimate of what a home like that will cost, then prob-
ably being within 5% would be fine. However, if the model is being used to
validate real estate appraisals as part of a mortgage underwriting process,
we might want a 2% or even 1% accuracy. We also must specify if this is the
“average” accuracy, or the “worst case” accuracy. We could have an average
of 5% but occasionally be off by 20%. This could cause real problems with
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our customers. In our case, we would like the worst case to be within 5%.
Before we start training the neural network, we don't really know how ac-
curate a model we can get. It might be that it will be impossible to get to the
level of accuracy we specify. However, it is important to start out with the
goal firmly in mind. Otherwise, how do we know when we are done? Often,
it is when the time we have to train the network runs out.

Now is a good time to examine what it really means to have a 5% accuracy
in terms of neural network error rates. Our model has multiple inputs and a
single output. This output ranges from 0.0 to 1.0, but the source data was
scaled down from a range of 80,000 to 180,000 (this working range of
$100,000 was chosen to make the following discussion more clear). When
the desired output is $170,000, this scales down to a value of 0.9 (80,000 +
(0.9 = 100,000) = $170,000). When the actual network output is 0.85
($165,000), we are within our specified performance range. NNU reports
the prediction error in several ways. The one we are most interested in is the
average root mean squared error (average RMS). This is computed by tak-
ing the difference between the desired and actual output (0.9 -0.85 = 0.05),
squaring it (0.05 * 0.05 = 0.0025), suraming up the squares (with only one
output this step is not needed) and dividing by the number of outputs (1, in
this example) and then taking the square root, which gives us the 0.05 back
again. When we have a single output unit, the average RMS error is the same
as the average output error. Because we have scaled the output variable by
a factor of 100,000, and because there is only a single output, we can inter-
pret the average RMS error as the actual prediction error (scale 0.05 RMS
error by 100,000 to get a $5000 prediction error on the price of the house).

Because we not only want the average RMS error to be below 5%, but we
also want the worst-case prediction error to be below 5%, we need to mon-
itor the maximum RMS error parameter that NNU provides for back propa-
gation networks. This is the RMS error for the worst pattern we have seen.
To bring this discussion back to the problem domain, we want our model to
be accurate to within $5000 of the actual selling price for a similar home,
and to ensure this level of accuracy, we need to monitor the maximum RMS
error parameter and make sure it stays below 0.05. Another important point
to remember is that we must reach this level of performance on the test
data, not only on the training data. That is the true test of the predictive ac-
curacy of the neural network.

Figure 10.2 shows an NNU application module set up for training a back
propagation network. The Import objects define the data sources. One con-
tains 80% of our source data and the other points to a file containing 20% of
the data. We can use either one at a time. We start by using the training
Import file.

The Import objects are connected to the Translate Filter, which will pre-
process the source data before it is fed into the neural network. This Filter
uses the Translate template we defined in Figure 10.1. The Translate Filter
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Figure 10.2 NNU module and Inspectors for modeling application.

processes the data and passes it to the Network object. Our neural network
is the NNU back propagation model. We specified the number of inputs as 15,
the number of hidden units in layer 1 as 10, the number of hidden units in
layers 2 and 3 as the default value of 0, and the number of outputs as 1.
Remember, the number of input and output units is determined by our data
representations. The number of hidden units was chosen arbitrarily, as a rea-
sonable starting point. At this point we are ready to train the neural network.

Before we start training the network, though, we want to open Inspectors
or views on some of the data elements in the NNU application module so we
can monitor the progress of the training. We open two Inspectors with text
views on the Filter object’s Input Array and Output Array. This shows us the
source data coming from the text file into the Filter, and the translated data
coming out of the Filter object.

To watch the state of the neural network as we train, we create two
Inspectors on the Network object. On the first one, we select the following
network parameters, Net State, Net Record Index, Learn Rate, Momentum,
Tolerance, Ave RMS Error, and Max RMS Error. We monitor Net State be-
cause that shows us if we are in training (0) mode or if the weights are locked
(1). We watch the Net Record Index to see that we are moving through the
source data correctly. The Learn Rate, Momentum, and error Tolerance are
the three learning parameters we use to control the training process. The av-
erage RMS error and maximum RMS error are our most important error mea-
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sures for modeling with back propagation networks. On the second Network
Inspector, we select the average RMS error and the maximum RMS error pa-
rameters and select an XY plot view. The XY plot view is a graphical display
showing time on the X axis, the size of the error on the Y axis. The desired
behavior is for both error measures to decay over time.

The default NNU parameters for a back propagation network start with a
Learn Rate of 0.2 and a Momentum of 0.9. Because we want the accuracy to
be within 5%, we set the error Tolerance to 0.05 (instead of the default,
which is 0.1). This is important because otherwise the network would only
ever try to train to a 10% accuracy level since anything within 0.1 would be
considered as having no error.

To train the network, the NNU IDE continuously reads data from the ac-
tive Import object and passes it through the Translate Filter for prepro-
cessing, and into the Network. After the data is processed by the neural
network, the output data is passed to another Translate Filter, which scales
the neural network output back up to the 80,000 to 180,000 range.

Our first objective when training a neural network is to get a feel for how
difficult the function is going to be to learn. Therefore, we first train the
back propagation network for only 25 epochs. As the neural network trains,
the prediction error starts to oscillate, so we halt the run. Oscillation of the
error indicates that the neural network is having difficulty converging.
Sometimes this is because the network is stuck in a local minima and can't
get out. Other times, it is because the weights have grown too large and
some of the units are forced completely in an on or off state. At this point
the average RMS error is 0.020, well within our acceptance limit of 0.05, but
the maximum RMS error is 0.119, which is not (remember this corresponds
to a prediction error of $11,900 as the worst case). Even though the neural
network didn't converge, we lock the network weights and switch to the
Test Import object to see how the network will perform on the test data.
When these 200 records are run through the network, our average RMS er-
ror is 0.049 (3% worse than on the training set), and the worst-case error is
0.076, which is actually better than on the training data.

At this point, we lower the error tolerance to 0.01, reset the network, and
start the training cycle again. After 100 epochs, the average RMS error is
0.0085, and the maximum RMS error is 0.089. This is still higher than we'd
like, but we are getting closer. We lock the network and switch to the test
data again. This time the average RMS error is 0.035 and the maximum RMS
error is 0.050. If we only cared about the prediction accuracy on the test
data, we would say “ship it.” Unfortunately, it looks like there are some ex-
amples in the training data that are extremely difficult for the neural net-
work to learn because the worst-case prediction error is higher on the
training data than on the test data. We could continue trying to modify the
training parameters to see if we can bring the error down on the training
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set, or we could go back and change our architecture. At this point, we opt
to add more hidden units.

We construct a new back propagation network with 15 inputs, 20 units in
the hidden layer, and 1 output unit. The error Tolerance is kept at 0.01, the
Learn Rate is bumped up to 0.5 (from 0.2) and we repeat the training cycle.
We raise the Learn Rate to speed training because the neural network seems
reaspnably stable. After 200 epochs, the average RMS error is 0.005 and the
maximum error is 0.048 (below our 5% threshold). On the test or holdout
data, the average RMS error is 0.023 and the worst-case error is 0.027. So we
haYe successfully built a predictive model that can give accurate estimates
(within 5%) of the actual selling price for homes in Rochester, MN. The en-
tire training process took approximately two hours.

Deploying and Maintaining the Application

To deliver this neural network model as an application, we need a data en-
try screen of some kind, as simple or fancy as we want to make it. The input
data is the information shown in Table 10.1 (without the price, of course).
This text data needs to be preprocessed and passed to the neural network
which produces an output value between 0.0 and 1.0. We then scale thls’
value back up to the price range that the customers will see. Notice that
these are the identical steps we performed in our training process.

If we use NNU, we can use the same application module that we used to
build the model. We could use NNU's Application Delivery Environment
shell to build the stand-alone application. Another option is to write a sim-
ple application to call the NNU application programming interface (API)
passing in the buffer of input data and retrieving the scaled output for dis-,
play (IBM 1994b).

After just training the neural network, we know that it is an accurate
model of the current real estate market in Rochester, MN. But what about
next week or next month? In any modeling application, we need to period-
ically check the model to see if it is still valid. This could be as simple as key-
ing in 10 recent home sales and checking the model estimate versus the
actual selling price. If any of the estimates are more than 5% out of range
then we retrain the network with the latest data. Or we could automaticall};
test the model each night against the day’s sales, and if the model is out of

the range of our acceptance criteria, we kick off a batch training session to
update the model.

Related Applications and Discussion

Once we have an accurate real estate pricing model, we can use it in a num-
ber of ways. We could give it to all of our real estate agents to take along in
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their notebook computers. We could provide a GUl data entry screen where
they enter the attributes of a property someone is selling, and it returns an
estimate of the current market value. If the customer is also looking to trade
up to a newer house, the real estate agent could enter the customer’s wish
list and give the customer a feeling for what his or her dream home would
cost, all in the privacy of the customer’s own home.

We could turn this into a customer service kiosk in our local mall location.
The kiosk stops traffic long enough for the “gallery of homes” display to
catch people’s eye. The potential customers could enter data on the homes
they are looking to buy or sell and get a “no-hassles” estimate. Another pos-
sibility is to use the model as a training tool for new real estate appraisers,
where trainees are given homes to appraise, and check their answers
against the pricing model. Or it could be used as a “second opinion” on ap-
praisals submitted for mortgage insurance or for a home mortgage loan. We
could let local builders use the tools to select the right type of home to
build, which will have the most market appeal. As we have shown, a single
pricing model, built using data mining with neural networks, is a versatile
information processing tool.

In this example we used real estate data to build a price estimator. However,
this simple example represents a broad range of potential data mining ap-
plications. The basic processing function performed is called modeling or
function approximation. The neural network learned to map a set of inputs
to an output value. Although, in this example, we modeled a function with
only a single output, neural networks can be trained to mimic complex non-
linear functions with multiple output variables. Instead of real estate data,
we could just as easily have used data relating manufacturing process para-
meters to product quality levels, or financial market information to the
value of a futures contract. The real power of data mining with neural net-
works is that they can turn data into applications. And the nature of the
data determines the type of application that is produced.

Summary

In this example application, we took a set of attributes describing real es-
tate properties and built a pricing estimator. Starting with a database of
homes and their selling prices, we selected several data fields and chose ap-
propriate data representations based on the type of information contained
in those variables. We used a back propagation neural network to build a
model relating the input data to the market price of the property. The IBM
Neural Network Utility was used to do the data preprocessing and to train
and test the neural network. After several iterations through the training
process, we developed a pricing model that was accurate to within 5% of
the actual value.
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Mining data to bui_ld predictive models using neural networks is a fast
way to develop applications. This approach can be applied to data from
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Chapter

11

Customer Ranking Model

“When you've got them by their wallets, their
hearts and minds will follow.”
FERN NAITO

Problem Definition

A major requirement for any buginess to grow is to find new sources of rev-
enue. This expansion of a business can be done in two ways: find new prod-
ucts to sell to your existing cusfomers, or find additional customers. One of
the tried-and-true methods fotigrowth is to understand who your current
customers are, and then try to ﬁnd other people who are most like your cur-
rent customers,

Another similar problem is when a business has a large customer base but
wants to target specific promokions at its best customers. In one sense, the
business needs to rank its existing customer set based on a set of parame-
ters that define what a “good” customer means. Is it the most profitable cus-
tomers? Or maybe it is the customers who generate the highest volume of
business transactions. Or maybe it is the customers who have the longest re-
lationship with the business, the loyal customers. Or maybe it is some com-
bination of these factors.

Now it is not difficult to do a SQL query against a customer database to list
customers based on the dollar amount of their total purchases, or on the
length of time since their first transaction with your business. But combining
multiple factors, each with different levels of importance (weighting), is not a
simple matter at all. This is an example where a complex query will not suffice.

Neural networks have excelled in applications that require a complex
weighting of multiple factors. In many ways, we are asking a much more
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profound question than, “Which customers generated the most sales last
year?" It is, “What are the attributes of my best customers?” If we know that,
then we can search for new customers who meet that profile and be fairly cer-
tain that our marketing costs will be handsomely rewarded by new business.

In this example, our business is a custom print shop. We have been serv-
ing a collection of local businesses for some time, and we now want to target
the most profitable segments to try to grow our business. A new salesper-
son is being hired, and we want to direct him or her toward the most lucra-
tive customers. Our example data mining application is to take information
on our existing customers and mine that data to build a neural network
classifier that we can then use to rank potential new customers. We will use
the IBM Neural Network Utility (NNU) to perform the data preprocessing
and data mining (IBM 1994a). (See appendix A for more information on
NNU.) Other commercial neural network tools that provide similar func-
tions to NNU could be used in its place. The Lotus 1-2-3 spreadsheet is used
to do analysis of the input data.

Data Selection

Our customer database contains information about our customers, such as
their names, addresses, how long they have been in business, the type of
businesses they are in, their annual revenue, the average number of trans-
actions or jobs they have contracted over the past year, and the average
revenue and profitability of those transactions. The first idea that comes to
mind is to rank the customers on their average profitability of the transac-
tions. Those with the highest margins will be our first target. As mentioned
before, this can be done using an SQL query, and it is a reasonable approach
for our current customers. But we want to find out whom we should target
for new business.

In this application, we will use all of the available information to build a
neural network model that can accurately rank the customers according to
their “goodness.” Our goodness measure will be a score that is a combina-
tion of the average number of transactions and the average profitability of
those transactions. That way we will target both high-volume and high-prof-
itability customers. As a secondary data mining application, once we have
this model, we will perform a sensitivity analysis to understand which cus-
tomer attributes are the best predictors of profitability. Table 11.1 shows
the data that we have available to build our customer ranking model.

Data Representation

The age of the company, or the number of years in business, is a continuous
numeric field ranging from 1 to 15 years. We will scale this down to 0.0 to
1.0. The number of employees is also a continuous numeric field that is
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TABLE 11.1 Selected Data for Customer Ranking Application

Attribute Logical data type Values Representation
Years in business Continuous numeric  1-156 Scaled (0.0 to 1.0)
Number of employees Continuous numeric 1 to 100 Scaled (0.0 to 1.0)
Type of business Categorical Manufacturing, One-of-N code
Service, Retail,
Nonprofit
Revenue Continuous numeric  $0 to $4,000,000 Scaled (0.0 to 1.0)
Ave. number of orders  Continuous numeric 1 to 80 Scaled (0.0t0 1.0)
Ave. revenue per order  Continuous numeric ~ $6 to $250 Scaled (0.0 to 1.0)
Ave. profit per order Continuous numeric ~ $1 to $50 Scaled (0.0 to 1.0)
Goodness Continuous numeric 6 to 2600 One-of-N code

somewhat correlated with the age of the company. However, we feel that
this is an important indicator and should be considered separately. We will
take the range of 1 to 100 and scale it down to O to 1.

The type of business is one of four categories: manufacturing, service, re-
tail, or a nonprofit organization. In this data mining application, we feel that
this is one of the most important factors because the type of work contracted
is dependent on this. Manufacturing businesses print sales brochures, prod-
uct installation guides, and service manuals, which are usually high-volume
jobs. Service companies print service contracts and coupons. Retail busi-
nesses have varied needs, from one-time signs to color advertising circulars
and inserts. Nonprofit organizations have newsletters and materials for di-
rect mail campaigns. Because of its importance, the type of business will be
represented by a one-of-N code for best visibility to the neural network.

The revenue of the company is a continuous value ranging from $0 to
$4,000,000. A preliminary analysis of this showed that this was normally dis-
tributed over this range. So we will simply scale this down to 0.0 to 1.0. If this
was skewed, then we would take the log of the revenue to normalize the data.

The average number of orders per year is a continuous numeric field with
values ranging from 1 to 80. The average revenue per order ranges from $6
to $250, while the average profit per order is in the range of $1 to $50.
These fields are scaled down to 0 to 1.

We will compute a new field, which we will call “goodness,” by multiply-
ing the average number of orders by the average profit per order. This fac-
tor will be split using a threshold function into three categories, which we
will call “A,” “B,” and “C.” For example, companies with a goodness score
above 1000 are “A” customers, customers over 500 are “B” customers, and
customers below that are “C” customers. These three categories will be
turned into a one-of-N code. Note that is a somewhat arbitrary decision. By
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Figure 11.1 NNU translate template for classification application.

turning the goodness measure into three discrete categories, we have as-
signed a grade to our current (and prospective) customers. An alternative
is to turn this into a neural network modeling problem with a single output.
Either approach is valid. It all depends on how you want to use the ranking
model. We could ask the neural network to classify the customers, or we
could ask it to simply score them, and then classify them ourselves.

The Neural Network Utility provides a data translation function called a
Translate Filter. Using the NNU Translate Editor, we specified our source
data and the required symbol mapping and scaling operations. Figure 11.1
shows an NNU Translate Filter set up for this problem.

Model and Architecture Selection

The data mining function we require in this application is classification.
Table 4.1 in chapter 4 lists the major neural network models and their pri-
mary uses. While several different models can perform classification, we
will use the standard back propagation network, which is supported by
NNU. Based on our data representation choices, we have 10 inputs (years
in business, number of employees, four types of businesses, revenue, aver-
age number of orders, average revenue per order, average profit per order)
and 3 outputs (goodness represented as A, B, C). Our initial architecture
will have one hidden layer of 15 units. The number of hidden units is an ar-
bitrary decision, based on our experience training neural networks. If we
have problems getting the neural network to classify the customers, we
might have to increase this value.

Training and Testing the Neural Network

To train this neural network classifier, we need to split our source data of
1000 records into a training and a testing data set, with 80% assigned to
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training and 20% assigned to testing. The Generation function of NNU ran-
domly selects the records and creates the data sets. An alternative is to
manually split the data using an editor or to write a program to split the
source file into two parts of the correct size. Because NNU already provides
this feature, we make use of it. Also, we will use a control script to manage
the training of this model. The control script, shown in Figure 11.2, sets the
network parameters and then switches back and forth between the training

Comment Customer Ranking Application control script
Debug ON

Variable NETWORK

Set NETWORK = Backpropl
Variable TRAINED

Set TRAINED = FALSE

Variable BESTRATIO

Set BESTRATIO = 1.0

ClearAll

Comment Set. Training Parameters
Set NETWORK LearnRate = 0.1
Set NETWORK Momentum = 0.9
Set NETWORK Tolerance = 0.3
Reset NETWORK

Comment Loop while training the network
While TRAINED = FALSE

RunMacro TrainBackProp

RunMacro TestBackProp

EndWhile

Macro TrainBackProp

Set NETWORK NetState = 0

Set Trainlmport State = ON

Set Module StepsPerCycle = 800

SetBreakPoint NETWORK BadPattern Ratio < 0.10
Run

ClearAll

EndMacro

Macro TestBackProp

Set Testimport State = ON

Set Module StepsPerCycle = 200

Set NETWORK NetState = 1

Cycle

Cycle

If NETWORK BadPatternRatio > BESTRATIO
Set TRAINED = TRUE

Else

GetValue NETWORK BadPatternRatio = BESTRATIO
Endif

EndMacro

Figure 11.2 NNU control script for the training neural network classifier.
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and testing data sets. When the number of misclassifications on the testing
data starts to increase, we stop the training cycle, lock the network weights,
and then analyze the network model. Remember, we want to train the
neural network to have the best classification accuracy on the test data, not
on the training data.

Before we start training the network, we have to decide what our accep-
tance criteria is in order for the neural network classifier to be considered
“trained.” Since we have somewhat arbitrarily split the goodness measure
into three segments, we need to be somewhat relaxed in our requirements
from the classifier. If we did segmentation on the customers and determined
the exact number of unique clusters, then that would allow us to be more ex-
acting. The output of this tool is going to be used to help our new salesperson
target new customers, so we want it to be fairly accurate. But we also recog-
nize that all good prospects won't necessarily turn into new customers. Our
goal is to correctly classify 90% of the customers into classes A, B, and C.

For classification problems, NNU provides a network parameter called
Bad Pattern Ratio, which is, as the name suggests, the number of patterns
that fall outside of the error tolerance range divided by the total number of
patterns. A bad pattern ratio of 0.10, means that 10% of the patterns were
misclassified. So our target is to get 2 0.10 or lower value in the bad pattern
ratio on the test data.

On our first training run, we used a learn rate of 0.1, the default momen-
tum value of 0.9, and an error tolerance of 0.3. The reason for the large er-
ror tolerance is that in classification problems, we are driving the neural
network output units to 1s and 0s. Our desired output pattern is a one-of-N
code with three elements, so there will always be one unit on and two units
off. Having an error tolerance of 0.3 means that the output unit only has to
be greater than 0.7 to be considered a 1, and less than 0.3 to be considered
a zero. This will help avoid a problem known as saturation, which occurs
when the connection weights get too large, and the output of the process-
ing unit is forced into either an on (1) or off (0) state.

In our example, after 200 training epochs, the back propagation network
was not converging at all. The bad pattern ratio was still above 0.20, so we
halted training. The first thing that came to mind was the target range for
the classifier. We were using a binary one-of-N code, and maybe this was
giving the network problems. So we added a scale postoperator to the NNU
Translate Filter so that the one-of-N codes produced are in the range of 0.1

(0) to 0.9 (1). Our hope was that this would improve the convergence of the
network. After several more trials, it was clear that this was not the problem
either. If it was, using the large error tolerance would have avoided this
problem. So back to the drawing board.

Maybe the thresholds we used to split the goodness score into categories
were falling in the middle of a natural cluster in the data. So we looked at the
distribution again using Lotus 1-2-3 and decided to split the goodness codes
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into four parts: A, B, C, and D, with breaks at scores of 500, 750, 1000. Now
we will classify the customers into four groups, with A and B making up ap-
proximately 25% of the customers, C making up 15%, and D the remainder.

On our next training run, the network converged to a bad pattern ratio of
0.08, under our target of 0.10 after 200 training epochs. We locked the net-
work and switched to the test data set containing 200 additional customers.
The bad pattern ratio on these customers was 9.8%, which also meets our
acceptance criteria. At this point we have a classifier that can take informa-
tion on prospective customers and make a prediction (based on our current
customer base) of what kind of customers they will be.

Sensitivity Analysis

Having a neural network classifier that can accurately predict which com-
panies have the potential to become profitable customers is nice. However,
we would also like to understand what factors separate our best customers
from our good customers. Knowing this can have a profound effect on how
we run our business. Should we only seek out new business from manufac-
turing companies? Or should we focus on retailers? Are young, fast-growing
companies the most profitable, or do we want older, more stable cus-
tomers? In this section, we will examine how we can use our neural network
classifier to answer some of these questions.

Our first approach is to treat the neural network as a “black box.” It is a
seer that knows all (at least we can pretend)! The key, of course, is knowing
which questions to ask, or maybe, how to ask them. In the Neural Network
Utility development environment, there is a function called the Import dia-
log. It allows you to submit “what-if” questions to a neural network. Also, it
provides a way to “lock” field values so you can more easily see the effect that
changing one or more input values has on the classification. Figure 11.3
shows the NNU Import dialog for our customer ranking application.

First, we lock our neural network so that it is in runtime or prediction
mode. We can walk through our training or test data and stop when we
come to a case we are interested in exploring. We enter the average val-
ues for all of the fields and then lock all but the type of business. In turn,
we enter each type of business and see if that has an impact on the clas-
sification. Service, manufacturing, and retail businesses are classified as
C or average customers. Nonprofit organizations are classified as D cus-
tomers. Remember, all the other values are held at the average value.
This tells us that the average nonprofit organization is less desirable than
any other type of customer.

Looking at service businesses, if they are average customers they have a
C rating. But when we bump the average profit per transaction from 17 (av-
erage) to 22, they move into the B category. When their average profit per
transaction is above 30, they move into the A category. Of course, finding
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Figure 11.3 Sensitivily analysis of the neural network classifier.

customers who buy only high margin products or services is not easy.
Another approach would be to look at increasing the number of orders per
customer. If the profit per transaction is average, then the average number
of yearly orders needs to be at least 45 (compared to the average of 32) to
move into the B category, and at least 60 to move up to the A category. So
for our custom printer business, if we can get our service business cus-
tomers to increase their orders by one a month, they will be B customers,
and by two orders a month, they move into the A category, our most prof-
itable customer category.

One way to automate this sensitivity analysis process is to generate a test
data file that contains the average values for each attribute and then, one by
one, cycles through the range of each individual attribute and recor<.is the
output. This can be taken to the next level by varying two or more attributes
at the same time to identify confounding effects. A spreadsheet or other data
analysis tool can be used to graph the decision points. For example, we cogld
plot the attribute values on the horizontal axis and the goodn_ess categ_ones
on the vertical axis. We could also use rule-generating data mining algorithms
to transform this data into rules. These are just a few of the ways to discover
what the neural network learned.
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Deploying and Maintaining the Application

Deploying our neural network classifier as an application requires the fol-
lowing steps. First, the source data must be read from a file or input from a
data entry screen. This data must then be preprocessed, passed through
the neural network classifier, and then postprocessed to convert the net-
work output value into one of the four categories. These are the very same
steps we performed while training the neural network.

If we use the Neural Network Utility to deploy this application, we can
use the NNU application programming interface (API) to load the same ap-
plication module we used to train the classifier. We could write a five- or six-
line program (as illustrated in appendix A) to automatically process the
data in a source file and write the results in an output file.

Maintaining the neural network classifier involves monitoring its perfor-
mance to see if its classification accuracy begins to fall off. If it does, then
retraining with the latest customer information and goodness score will be
necessary. This is one of the primary advantages to using data mining tech-
niques for application development. When the application needs to be up-
dated, you simply mine the latest data to refresh the neural network.

Related Applications and Discussion

We can use the classifier as we originally intended, which is to rank new or
prospective customers for our business. We can also use our customer rank-
ing model to examine our current customers to identify which ones deserve
more attention or special treatment. Customers who fall into our “A” or “B”
rank might warrant special credit terms or other incentives because they
are very profitable, and we want to keep them as our customers.

The most likely use for our classifier is as a batch application. We can run
our current customers and information on new customers through the
neural network and store their grades or rankings in another field in the
database. Or we can use our classifier as a means to select which customers
to target. This approach was used in a telemarketing application developed
by Churchill Systems, Inc., for a medical equipment supplier (Kestelyn
1992). In this application, the company had a large number of inactive ac-
counts. A customer ranking application was developed using NNU. The in-
active customers were run through the neural network, and their rank or
score was added to their customer database record. When telemarketers
were free, they would select names from the top of the sorted list of inac-
tive customers who were most like their current best customers. They re-
ported a large increase in reactivation of inactive accounts.

A classifier can be used as an automated decision maker. If data is avail-
able on the decisions that an expert makes, then an equivalent neural net-
work classifier can usually be developed. The advantages of these “expert
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networks” are that they do not require that the expert describe the deci-
sion-making process in terms of if-then rules, and that the performance of
two, three, or more experts can be combined into a single “hybrid” or “su-
per” expert.

While in this example we took a value that was continuous and arbitrarily
broke it into categories, there are many other applications where the cate-
gories occur naturally. For example, in a quality control application, the
product under test is either good or bad. A consumer credit application re-
sults in a yes or no answer. In some cases, there might be a third category,
which we will call “maybe” for items that fell into the gray area. Items that
are classified as “maybe” might have to get routed to a human expert who
will make the final determination. But automating the easy calls can signif-
icantly improve operating efficiency and actually enhance the human ex-
pert’s job satisfaction, since he or she is seeing more interesting cases.

Summary

In this example application, we mined information on our current cus-
tomers to build a classifier to rank them according to a goodness score. This
score was then broken into three categories, representing A, B, and C cus-
tomers. We selected several customer attributes and chose appropriate
data representations for them. The IBM Neural Network Utility application
development tool was used to perform the data preprocessing and to train
and test the neural network classifier. After several iterations, we decided
to break the goodness into a four-tiered scale, after which we successfully
trained a neural network that correctly classified 90% of the customer
records into the corresponding categories.

Mining our customer data using neural networks allowed us to perform sen-
sitivity analysis against the neural classifier. We did some preliminary analysis
using the NNU Import Dialog to explore the impact that the type of business
had on the quality of customers and the effects of increased transactions or
profit mix. We discussed how the sensitivity analysis could be automated.
Sensitivity analysis provides a way for us to discover what the neural network
learned during the data mining process. Mining data with neural network clas-
sifiers provides a way to produce applications and a mechanism for extracting
strategic business information for decision support.
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Chapter

12

Sales Forecasting

“If you can look into the seeds of time and say
which grain will grow, and which will not,
speak then to me.”

SHAKESPEARE, Macbeth

The ability to detect patterns over time has proven to be quite useful to hu-
manity. The high priests of ancient civilizations used their understanding of
- astronomy to predict the passing of the seasons, the course of the weather,
and the growth of the crops. Today, one of the most useful business applica-
tions of neural networks is using their ability to capture relationships in
time-series predictions. Knowing what direction a market is heading or
identifying a hot product before your competitors do has obvious implica-
tions for your business. If knowledge is money, foreknowledge is money in
the bank (hence, the insider trading rules).

In this chapter, I focus on the problem of sales forecasting and inventory
management. We have a set of products to sell, and we need to predict sales
and order inventory so that we minimize our carrying costs. At the same
time, we do not want to lose sales because we are out of a popular item. This
is a problem in any manufacturing, wholesale, or retail operation. Conve-
nience stores are especially subject to this problem because someone who is
motivated to go out looking for his or her favorite ice cream or beer is cer-
tainly willing to move on to the next store if the first one doesn't have what
the customer wants (Francella 1995).

Many factors contribute to whether an item is on the shelf when a cus-
tomer comes in to purchase it. First is the item’s supply or availability from
the manufacturer and the lead time required to receive new items when

1R7
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stocks get low. Next is the expected demand for the product. Related to this
is whether any advertising or promotion is planned or underway for the prod-
uct (or related products), which might have a temporary impact on demand.

In this example application, our business is 2 new and late-model used
car dealer. The cost of carrying excess inventory is prohibitive, and manag-
ing the number of cars on the lot at any time is a major headache. There are
cyclical swings and abrupt short-term demand increases in our sales his-
tory. Our current inventory control system amounts to simply replacing the
cars we sold. However, the lead times on some models cause lost sales.
Management feels that if we can build a relatively accurate sales forecast,
both inventory management and staffing operations will be enhanced. We
will use the IBM Neural Network Utility (NNU) to build a neural network
sales forecasting application (IBM 1994a). Appendix A provides details on
NNU data mining capabilities.

Data Selection

Our database contains daily and weekly sales histories on all car models
over the past five years. While we know that there are differences in sales
based on the day of the week, we are not worried about getting to this fine
level of granularity. We have, on average, a two-week lead time from the fac-
tory and usually less when we can find a car from the local network of deal-
ers. If we can accurately predict weekly sales two weeks in advance, then
we can make sure we have the inventory we need. This information will also
be used to schedule sales staff and the part-time car prep technicians.

We also have information on any factory sales incentives at least two
weeks in advance. We run local print and radio advertising, which we know
have a positive impact on sales. This information is in the form of weekly
sales reports. In addition, we have context information that we can use to
help the network to learn other environmental factors that could impact the
sales. The effect of the month or time of year is called seasonality. By en-
coding and providing the time information, the neural network can learn to
identify seasonal patterns that affect sales (Nelson et. al 1994).

In our sales database we have the following information:

s Sales: Date, Car Model, Model Year, Cost, Selling Price, Carrying Time,
Promotions

To construct our sales forecasting system, we take the Date information
and process it to get an indicator as to what quarter of the calendar year we
are in. Typically the first quarter is slow, the second picks up some, the third
is the best, and the fourth quarter lags a bit. In addition, we compute an end-
of-month indicator that is turned on for the week, which includes the last
few days of each month. This was added because we know there is a end-of-
month surge in sales as the sales manager tries to get sales on the books.
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TABLE 12.1 Selected Data for Sales Forecasting Application

Attribute Logical data type Values Representation
Promotion Categorical None, print, radio, One-of-N
factory
Time of year (quarter)  Discrete numeric 1,2,3,4 Scaled (0.0 to 1.0)
End of month flag Discrete numeric Oand 1 Binary
Weekly sales Continuous numeric 20 to 50 Scaled (0.0 to 1.0)

We have noticed that there is some carryover from one week to the next.
Special promotions tend to increase customer traffic for the following week
also. Weather also has an impact on our sales. As a consequence, our sales
pick up during the warm summer and early fall months. However, since the
weather is quite variable, we will only use the calendar quarter to indicate
seasonality.

To give the neural network some information on the recent sales figures,
we give information from the current week, including the current week’s
seasonality, promotions, end-of-month marker, and total number of cars
sold. This information is combined with the known information for the next
week. The goal is for the neural network to accurately predict next week’s
sales. This sales estimate will then be fed back into the neural network fore-
caster to predict the sales for following week because we really want to
forecast two weeks out. Another approach would be to train a neural net-
work that would predict two weeks into the future. Depending on the ap-
plication, this is certainly possible. Neural network forecasting models have
been used successfully to predict sales six months, and even a year, in ad-
vance. However, for this example, we chose to use the simpler one-week
model and use it iteratively to forecast two weeks in advance. Table 12.1
shows the data used to build our sales forecasting system.

Data Representation

The time of year is represented by a discrete numeric field with values from
0 to 3 corresponding to each quarter. We scale these values to a range of 0.0
to 1.0. This information is used to give the neural network any information
it needs about seasonality in making its sales prediction.

The promotion field is a categorical value that indicates the type of pro-
motion going on, if any. The type of advertising is assumed to have an impact
on demand. The values include no promotion, print or radio advertising, or
factory incentives. We use a one-of-N coding for the promotion field.

The number of units sold each week over the last five year period ranges
from 20 to around 50. In this application, this sales figure is scaled down to
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Sales Output 1 Scale Number None Number None
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Figure 12.1 NNU translate template for forecasting application.

a range of 0.0 to 1.0. Please note, however, that sometimes it is bet.ter to
scale the dependent or output variable in a neuxial_ network modehl}g or
forecasting application to a range of 0.1 to 0.9. Dnvmg tl.le oquut. units to
their extremes (that is, 0.0 and 1.0 for the standard logistic activation func-
tion) requires large connection weights. If the neural netwqu model pre-
dicts accurately everywhere but at the extremes, then changing the scaling
elp.

rngkfecI(*)I:lliiral}I I\?etwork Utility provides a data transformatior} tool called a
Translate Filter. The scaling and transformation of data is specified by some-
thing called a Translate template. Figure 12.1 shows the NNU Translate tem-
plate we used in this application.

Model and Architecture Selection

As illustrated in Table 4.1 in chapter 4, there are three majpr types of neural
networks that can be used to build time-series forecasting mode!s: bac_k
propagation, which is the jack-of-all-trades of nel.xral networks, radial be.ms
function networks, and recurrent back propagation netwprks. If there is a
lot of variability in the data, then radial basis functions might perfox:m best
because their fixed center weights allow the network to learr} qdferent
mappings for different portions of the input space. .As the training data
moves around, the rest of the radial basis function waghts do _not degrade.
This stability to nonstationary inputs makes radial basis function networks
for modeli roblems. .
ex]gzléin;t)ropagatiorl:nngefworks, on the other hand, are susceptible to some-
thing called the “herd effect.” As the input data moves around the input
space, all of the connection weights are adjusted and tend Fo move to follow
the inputs. This behavior occurs when the weights are gdjusted after each
training pattern is presented, which is the standard technique used. Another
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concern when using back propagation for time-series forecasting is that
feedforward neural networks have no “memory.” If the function being mod-
eled has complex dynamics that are dependent on three or four prior
states, then all of this information must be presented to the back propaga-
tion network at the same time. This technique is called the “sliding window”
approach. While it works and has been used for many applications, it does
have the drawback that it might require large networks with many input
units, which results in long training times.

In some cases, a fully recurrent neural network is required to capture the
behavior of complex dynamical systems. However, training recurrent net-
works can be extremely time-consuming, making the standard back propa-
gation training algorithm seem fast in comparison. In this example, we will
try to use the standard back propagation network, and then see if the lim-
ited recurrent network provided with NNU performs better.

The number of input and output units is determined by our data rep-
resentation and by the number of prior time steps required by the func-
tion. In our example, we will use context information and sales data from
the current week plus the context information for the next week to pre-
dict the next week’s sales. This means that we need 13 input units (4
units for promotion, time of year, end-of-month indicator, sales from the
current week, 4 units for next week'’s promotion, next week’s time of
year, and next week’s end-of-month indicator) and a single output unit
representing next week’s sales.

In addition, we specify one hidden layer with 25 hidden units. As we dis-
cussed previously, this initial choice is somewhat arbitrary and selected
based on our experience. This experience also tells us that this number
might have to be increased or decreased if we have difficulty training the
neural network. Do not labor over whether to use 23 or 27 hidden units.
While fewer hidden units usually result in better generalization, spending a
lot of time searching for the optimal number is often not worth the effort.

Training and Testing the Neural Network

Before we start training the neural network, we first have to decide what
level of prediction accuracy is acceptable. The sales forecasting system is
going to be used to predict sales two weeks in the future by making two
passes through the forecasting model. This gives us some time to either
trade with other dealers for inventory, or go to the auto auction to pick up
some late-model used cars. An average prediction accuracy of 10% is con-
sidered acceptable. In the car business, we aren't ever really in danger of
having no cars to sell. The problem is trying to manage the carrying costs of
having an overstock on the lot. For the neural network, this translates into
an average root mean square (RMS) error of less than 0.10.
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We start with a standard back propagation network. Figure 12:2 shows an
NNU application module set up for this problem. The Modglg editor (on t.he
bottom left) shows two Import objects that have our traiung and testing
data. For the training data, we took four and one-half years of weekly sales
data. We will test the forecaster with the most recent six months of dgta.
This decision points out one of the problems with time-series foreca}stmg
problems. We are using historical data. What if the world has changed in the
past six months? How will our neural network ever learn th(.e data? Actually,
this is a problem even if we used the latest data to train the network.
Tomorrow something fundamental to our problem could change (for exam-
ple, interest rates go up 2%), which completely blows our model away. The
only way we can deal with this is to try to get all of the relevant variables
into our model. For example, if sales are sensitive to interest rates, then, by
all means, that should be an input variable. . .

Back to the NNU module again, the Import objects feed their data into
the Translate Filter, which preprocesses the data. This data is passed t.o the
neural network, which uses the data in training. The network output is fed
into another Translate Filter, which scales the value back up to the number

ars sold.
o ’(;‘o monitor the training of our neural network, we open several NNU
Inspectors on the module. We open one on the Inpu.t Array of .the prepro-
cessing Translate Filter to see the source data coming from either of our

Inspector] - InépectorZ-lnputFilg |ns;ec(or3-BackPropl
Object Data £dit Object Data Edit Yiew Qbject Data Edit View Options

TextVi TextViewTitle TextViewTitle
Input Bu Output Buffer Arr Neural Network Parameters
0: 2 (] 0 Net State (1]
13 21 1 Net Record 193
2.0 4: 0.66667 (1] Learn Rate 05
3. 38.329 6: 0.67763 0 Momentum 6.3
4:1 8¢ [ Tolerance 0.01
53 10: 1 0.66667 Bad Pattern Ratio 0.89744
6: 6 120 0.59132
7. 35.739 ] 4 - Ba 0
ve Neural Network Utility - sales.modf_Object Data Edit YView Options Hel)
Module Selected Edit Options Windows To TimePlotTItle
Standalone Dir: ejoeldata Objects: 7 23208 193 Mod
3 = ; B 0.5
3 RN v E
o 0 iy Lo L) B O
| 0.25
| 025
SalesTrain e 0.124 ————e.
s DY IS A
(1] 12 25 a8 5¢

Neural Network Parameters

Recurrent!
SalesTest « Ave RMS Error o Max RMS Error

Readv
Figure 12.2 NNU module and Inspectors for forecasting application.
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Imports, and we open another one on the Output Array of the Translate
Filter to see the preprocessed data going into the Network. On the Network
object itself, we open two more Inspectors. One is used to view the key
neural network parameters, which in this case are the Net State, the Net
Record index, the Learn Rate, the Momentum, the error Tolerance, and the
Bad Pattern Ratio. The Net State tells us whether the network is locked or
is in training mode. The Net Record index indicates which input record we
are processing. Learn Rate, Momentum, and error Tolerance are used to
control the learning in the neural network. Finally, the Bad Pattern Ratio is
used to monitor the percentage of training patterns that are within our
specified Error Tolerance. The second Inspector on the Network object is a
time-plot of two error parameters, the average RMS error, and the maxi-
mum RMS error.

Because this is a time-series problem, we modify the default Learn Rate
and Momentum parameters set by NNU. For Learn Rate we use 0.5 instead
of 0.2, and for Momentum we use 0.3 instead of 0.9. Our experience with
time-series problems tells us that Momentum can have an adverse impact
on training. In some cases it works fine, in others not so well. The behavior
of the neural network during training is extremely dependent on the net-
work architecture, the data, and the type of function being performed. The
initial choices for parameters are not crucial. We typically try a couple of
combinations of parameters to see how the network reacts. In general, we
want to use the largest learn rate we can to speed up the training. Many de-
velopers gradually drop the learn rate as the training progresses to improve
predictive accuracy.

We start training the neural network using the NNU Run function. Records
are continuously read from the training Import and pass through the con-
nected NNU objects. After approximately 100 epochs or complete passes
through the training data, the network has already reached an average RMS
error of below 0.05. However, the maximum or worst-case prediction error
is above 0.20. The prediction errors were coming down nicely but then
started to oscillate. This behavior is made obvious by the time-plot Inspec-
tor we opened on the network.

As we step through the training data, we examine the input records that
are giving the neural network problems. These are the records with the
highest prediction errors. It is clear that whenever there is a promotion
code of 4 (factory incentives), the network has trouble. This promotion
code seems to be a key factor, whether it appears in the current or the up-
coming week’s context information. Our initial data representation for the
promotion field was a one-of-N code. This should give the network enough
indication of the “specialness” of the factory code because a single input
unit is devoted to representing factory promotions. However, just to make
sure this isn't causing problems, we change the NNU Translate Template for
the promotion field so that it uses a thermometer code. When the promo-
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tion is factory (code value 4) then four inputs are turned on (to 1). This
might help the network recognize the significance of the factory promotion
more than just having a single one-of-4 inputs turn on with the one-of-N
code representation.

We start another training run, and after 75 epochs the average RMS error
is 0.06 and the maximum error is now only 0.165. The same network and
same parameters were used. So it seems that changing the data represen-
tation of the promotion field helped. But sometimes just the difference in
the initial random weights can improve (or worsen) the neural network pre-
diction accuracy. We lock the network and switch over to the test data, the
most recent six months of sales data. The network does well. The average
RMS error is 0.068 and worst case is only 0.15. Because the network is con-
verging well, we unlock the neural network weights, switch back to the
training data, and resume training the network.

After another 75 epochs, the average RMS error is down to 0.047, while
the worst case is still around 0.16 on the training data. This time we open an
Inspector on the network output and the desired output and use an NNU
time-plot view to see how closely the predictions are tracking the actual
sales values. We also logged the actual and predicted values to a cornma-de-
limited text file. Figure 12.3 is a graph of the actual versus predicted values.
While the network is not catching all of the peaks (which look to be occur-
ring when the end of month flag is on), it has definitely learned the basic
sales curve. The prediction problems at the extremes might be caused by
our decision to scale the output value to between 0.0 and 1.0, as we dis-
cussed in the data representation section.

S smuscsveon __ FD

Weekly Sales Forecast
Predicted vs. Actual

w00

a—0w

Week
—  Actual * Predicted

Figure 12.3 Graph of predicted versus actual sales.
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Next we try a limited recurrent back propagation network to see how it per-
forms. This type of neural network has a memory and should perform better
than regular back propagation on this type of problem. The NNU iraplemen-
tation of the limited recurrent neural networks allows you to specify whether
the feedback should come from the first hidden layer of units, or from the out-
put layer. In this example, we use the first hidden layer. The effect is that our
25 hidden units are copied back to 25 extra input or context units. This net-
work is obviously much larger than the back propagation network.

We train this network using the same data and training parameters as
above. After 100 epochs, our network has an average RMS error of 0.049 and
a maximum RMS error of 0.143. This is better than the back propagation net-
work, but it also took longer to train because of the additional processing
units and connection weights. For this time-series forecasting problem at
least, the recurrence does not result in any significant improvement in per-
formance.

However, this is one of the nice things about using commercial neural net-
works tools like NNU. It is very easy to try other neural network models to see
if they give better performance than standard back propagation networks.

Deploying and Maintaining the Application

Now that we have an accurate sales forecasting model, the next step is to
integrate it into our inventory control system and, to some extent, our staff
scheduling system. The inventory control system is an online system that is
already automated. However, the staff scheduling system is still done by
Charley, the sales manager, who looks at last year’s schedule and makes up
a new one for this year.

To get a prediction from our neural network, we need to present the
same information as during the training process, the prior week’s data
along with the context information for the next week. In addition, we
have to construct the following week’s context information and use our
first estimate as input to the forecaster a second time. This will give us
our forecast for two weeks out.

We have all of this information available, so this is not a problem. The data
has to be preprocessed, run through the neural network, and then the out-
put has to be scaled back into stock units or number of cars. If we use the
Neural Network Utility to deploy this application, we can use the same ap-
plication module as we used in the training process. We will have to use the
NNU application programming interface (API) to load the application mod-
ule and process the source data. Fortunately, this works well on our IBM
AS/400 system and can be called by our RPG or COBOL programs.

Maintaining this application will be quite easy. Every month, we can add
the last four weeks of sales information to the test data and move four more
weeks of data into our training set. Training time takes about ten minutes
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on a PC, or we can train the neural network on our AS/400 system during
our weekend batch processing. As we use the forecasting system, we can
see when it is accurate and when it has difficulty. If we notice some new fac-
tor that impacts sales, we can start tracking it and add it to our input data
at some time in the future. Adding new input variables will require chang-
ing the architecture of the neural network and repeating the data mining
process we followed in this chapter.

Related Applications and Discussion

Time-series forecasting is a very difficult problem. However, an accurate
model can be used very profitably by a business. Mining historical data to
discover trends has been one of the most popular uses of neural networks
in the past decade (Vemuri and Rogers 1994). Neural networks’ ability to
model nonlinear functions make them particularly suited to time-series
modeling.

Application of time-series prediction include stock price forecasting,
electrical power demand forecasting, and sales forecasting. There is a large
amount of literature on modeling dynamic systems for control, which is a
very.similar problem (Narendra 1992). Forecasting the future state of a sys-
tem is also required for building stable controllers for complex systems,
such as computer operating systems (Bigus 1993).

In this example, we used a technique known as the “sliding window” to
present past information to the neural network so that it could predict
ahead, into the future. The function we were modeling, while nonlinear, was
relatively simple and required information about one prior state in order to
be modeled with reasonable accuracy. Some cases might require five or
even ten past states in order for the neural network to capture the dynam-
ics. Note that we did not attempt to give the neural network a sequence of
weekly sales numbers without providing any context variables. The infor-
mation provided by the end-of-month flag and the type of promotion gave
the neural network important clues as to the future direction of the sales.
Otherwise, the network would have seen unexpected blips at seemingly
random times (but we know that it was the end-of-month sales rush, or a
factory incentive). It is vitally important to give the neural network what-
ever contextual information is available. Predicting the future is hard
enough, even with all of the available information.

Summary

In this chapter, we created a neural network forecasting tool to predict
weekly sales at an automobile dealer. We provided information on the cur-
rent week’s sales and context information, such as planned promotions, for
the future week. We computed time of year and time of month information
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from the date and tried several data representations in our application. The
IBM Neural Network Utility was used to perform the data pre- and postpro-
cessing and to train and test our neural networks. Our forecasting model
was able to predict with an average accuracy of greater than 95%. We iden-
tified that factory promotions caused extreme fluctuations in the weekly
sales figures.

Mining historical data to build time-series forecasters is one way of learn-
ing from past experience. Neural networks can discover hidden relation-
ships in temporal data and can be used to develop powerful business
applications.
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Appendix

IBM Neural Network Utility

The example applications in Part 2 of this book were developed using the
IBM Neural Network Utility running under 0S/2 Warp. This appendix de-
scribes the major features of the product and how they relate to the data
mining methodology described in Part 1.

Product Overview

The IBM Neural Network Utility (NNU) is a family of six products that runs
on four different operating systems: AIX on IBM RISC System/6000 systems,
0S8/400 on IBM AS/400 systems, and 0S/2 and Microsoft Windows 3.1 run-
ning on personal computers. The Neural Network Utility is a tool for neural
network data mining and application development. Version 3.1 of NNU, re-
leased in December, 1994, provides support for data preparation, several
types of neural network data mining algorithms, and graphical views for
data analysis and visualization of the data mining outputs (Bigus 1995).

First brought to market in 1990, the Neural Network Utility was one of the
first commercial neural network tools aimed at business users. Designed
and developed in IBM’s Rochester, Minnesota programming lab, NNU began
in 1988 as an advanced technology study to determine whether neural net-
works would be useful in commercial business processing environments
such as the IBM AS/400 systems (Bigus 1991). NNU was originally devel-
oped in Pascal, then was redesigned and ported to a combination of C and
Smalltalk, and currently is implemented in C and C++. NNU supports multi-
ple platforms with a comron code base. Approximately 95% of the source
code is shared across platforms.
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Figure A.1 Neural Network Utility product family.

Figure A.1 shows the platforms and development modes of operation
supported by NNU 3.1. 0S/2 and Windows can be used as stand-alone de-
velopment environments, or they can be used as clients in a distributed
client/server mode. In client/server mode, the NNU clients display the
graphical user interface, but the data resides and the processing is done on
the server machine. Both IBM RISC System/6000 (including SP2) and IBM
AS/400 machines can be NNU servers, providing data and compute power
to the clients.

The Neural Network Utility development environment allows the
graphical construction of data mining applications. This includes specify-
ing multiple data sources, multiple data transformation steps, and a mix-
ture of neural network data mining functions and fuzzy rule base
processing. The NNU environment is extensible, allowing custom neural
network models to be added and other types of data mining and data
transformation filters.

Interactive Development Environment

The Neural Network Utility provides the Interactive Development Environ-
ment (IDE) for training and testing neural networks and for developing
fuzzy rule systems (IBM 1994a). The IDE uses a visual editor to allow the
user to graphically connect NNU objects to specify data flow and process-
ing (see Figure A.2). There are several kinds of NNU objects. Imports and
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Exports support database and file I/O. Filters are used to transform the
data, either by using an NNU Translate template, which specifies data
transformations, or a program supplied by the user. Network objects pro-
vide neural network processing. Fuzzy rule bases are used to add knowl-
edge-based processing using a fuzzy inference engine. SubModules allow
the hierarchical construction of applications using other NNU application
modules. Script objects provide a simple procedural language for automat-
ing the training and testing of neural networks.

In addition to the Module editor, the NNU IDE provides several special-
purpose editors: a Translate editor for specifying data transformations, a
Fuzzy Rule editor for creating fuzzy rule bases and fuzzy sets, and a Script
editor for creating control scripts. Additional functions in the IDE are the
application generation feature, which lets the user select a problem type
and then generates the NNU module for that function, and Inspectors for vi-
sualization of objects in the NNU application module.

Data Preparation

The Neural Network Utility supports several phases of the data preparation
process. In stand-alone mode on a PC or workstation, NNU can access data
from flat files, spreadsheets, and relational databases (DB2/2 under 0S/2,
and any ODBC compliant database under Microsoft Windows 3.1). In client/
server mode, NNU can access remote data from IBM AS/400 systems and
IBM RS/6000 systems. The NNU Translate Filter provides support for sim-
ple data cleansing operations through default symbol substitutions for cat-
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Flgure A.2 Necural Network Utility module editor.
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egorical data, and thresholding to remove outliers for numeric data when
the valid range of values is known.

The NNU Translate Filter provides a rich set of operations for data pre-
and postprocessing. Six logical data types are supported, including sym-
bols, numbers, vectors of numbers, one-of-N codes, binary codes, and ther-
mometer codes. The Translate Filter supports data type conversions so that
numeric values can be converted into the coded types for presentation to
the neural network and can be converted back from codes to numbers on
the output side. Symbol-to-number and number-to-symbol conversion is
handled through lookup symbol tables. Taxonomies can be created through
symbol-to-symbol mappings using the same mechanism.

A single NNU Translate Filter can perform a preprocessing operation on
data, then do a logical data type conversion, and then perform a postpro-
cessing operation on the output data. For example, a symbol could be
mapped into a discrete numeric value as a preprocessing operation. This
number could then be converted into a thermometer code of the required
length. This binary string could then be turned into a bipolar value (+0.5 to
-0.5) through a scale operation as the postprocessing operation. In NNU,
multiple Translate Filters can be strung together to perform an extremely
complex series of data transformations.

The pre- and postprocessing operations include transcendental func-
tions, bitwise operations, division and modulus, ceiling, floor, piecewise lin-
ear scaling, thresholding with multiple ranges, rounding, truncation, and
more. For symbols, strings can be cast into all upper or lowercase and
mapped into other symbols. Numeric vectors can be normalized using three
different norms.

When the same operation is required on multiple fields in a record, the
NNU Translate template has a replication parameter. Using this feature, for
example, a 100-question, multiple-choice survey could be represented by a
single Translate template entry. Symbols A-F could be mapped into 1-6 and
then either scaled to the range 0 to 1 or translated into a coded type.

The NNU Translate Filter functions can be used as a one-time prepro-
cessing operation or as a transformation to be applied to each record before
it is presented to the neural network. All of this preprocessing function is
available to the data analyst through a template-based Translate Editor
(shown in Figure A.3) with no programming required. One function that
NNU does not provide is a computed attribute, which is derived from a com-
bination of two other fields.

Through its Application Generation function, NNU can handle data set
management, allowing the splitting of a source data set into separate train-
ing and testing sets with user-specified percentages. The NNU Generation
function scans the source data file, automatically specifies scaling operators
for numeric fields, and creates symbol tables for categorical fields.
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Figure A.3 Neural Network Utility translate editor.

The application generation function first appeared in Version 2 of NNU. It
allows a user to specify the basic problem type and the source data file, and
then it automatically prepares the data, creates a translate template for it,
and selects and generates a neural network model and architecture for the
problem. The end result is an NNU application module that is ready for the
training and testing stage.

The source data can be either a flat file, a local database file (DB2/2 or an
ODBC compliant database), or a remote database. The user specifies how
the data should be split into train/test sets by percentages and also selects
whether the source data should be automatically transiated and saved in an
encoded form. This option is for performance, since it requires only a single
pass through the data and the data preprocessing is completed. The alter-
native is to translate or preprocess each record before it is presented to the
neural network. This means that the same record keeps getting translated
over and over during the training process.

NNU will scan the source file and find the minimum, maximum, and mean
of the numeric fields, and set up symbol mapping tables for categorical or
discrete symbolic fields. The default is for all data to be scaled to an input
range of 0 to 1, although this can be changed by the user to whatever range
is required by the neural network model.

Neural Network Models and Architecture

The Neural Network Utility provides seven popular neural network models
and includes an open application programming interface for adding custom or
user-defined models. These models include back propagation, limited recur-
rent back propagation, radial basis functions, adaptive resonance networks,
Kohonen feature maps, temporal difference learning, and routing networks.
The following sections briefly describe the model implementations in NNU.
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Back propagation networks

NNU provides a fairly standard implementation of Rumelhart, Hinton, and
Williams definition of the back propagation algorithm. It provides learn rate,
momentum, and error tolerance to control training. The activation function
is the standard logistic with an option for symmetric (bipolar) outputs rang-
ing from -0.5 to +0.5 and a variable temperature parameter that con\trols
the slope of the function. Back propagation networks can be constructed
with 0, 1, 2, or 3 hidden layers.

Recurrent back propagation networks

The recurrent back propagation model in NNU is based on the standard
NNU back propagation network. An architecture selection parameter is
specified when the neural network is created to indicate whether feedback
is to be from the first hidden layer or from the output layer. On the forward
pass, the activations of the hidden layer or output layer are copied to the
input context units. A decay parameter is provided to control the nature of
the feedback signals. Recurrent back propagation is identical to back prop-
agation in all other respects.

Kohonen feature maps

The NNU self-organizing feature maps implement the standard Kohonen
specification using a Euclidean distance metric, a square neighborhood
function, and linear reduction in learn rate over time. An alternative method
uses a Gaussian neighborhood function with exponential decay in the learn
rate. The user can specify a square or rectangular two-dimensional grid for
the output layer.

Adaptive resonance networks

The NNU adaptive resonance theory networks are loosely based on
Grossberg’s ART algorithm (1987). It has been modified so that it accepts
both binary and real input values. The vigilance parameter is the primary
means for controlling the training process. Parameters are provided to indi-
cate whether all of the output units have been coramitted during training.

Radial basis function networks

The NNU radial basis function networks provide several modes of opera-
tion. The hidden layer units can use either a Gaussian, thin plate spline, or
multiquadratic basis function, and they can either be normalized or not.
The basis center weights can either be set explicitly (they can be found us-
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ing Kohonen feature maps as a preliminary step), or a variation of k-means
clustering can be used to automatically determinegthe centers. The weights
to the output layer are adjusted using the delta rule.

Temporal difference learning networks

NNU provides an implementation of temporal difference learning network
based on Sutton’s definition (1988). This network does not use the stan-
dard “desired minus actual” formula to compute the errors. It takes the dif-
ference between the previous output and the current output. A lambda
parameter is provided to control the amount of effect the past has on the to-
tal error term. Temporal difference networks can be used to create adaptive
critics using NNU.

Training and Testing Support

The Neural Network Utility provides several features to aid in the training
and testing of neural networks used in data mining applications. To auto-
mate the training process, NNU provides a scripting language. NNU also
provides visualization tools for viewing the neural network parameters and
arrays as the training progresses.

Scripting

The Neural Network Utility scripting language has features such as vari-
ables, if-then-else statements, macros, while loops, and comments. The lan-
guage has commands for controlling the data source, locking or unlocking
the network weights, setting training parameters, logging data, and turning
Inspectors on and off. Variables can be used to build “generic” training
scripts, which can be used over and over. The macro construct allows com-
mon sequences of operations to be grouped together and called as a sub-
routine. The if-then-else and while-loop control structures make it easy to
implement features such as save-best-net using any criteria the user wants.
Switching between training and testing data sources and conditionally log-
ging test results are operations that can be automated using NNU scripts.

The NNU Script Editor, shown in Figure A.4, provides context-sensitive
help for constructing valid control script statements. NNU scripts are regu-
lar text files, so they can also be written using the text editor of your choice.

Once a script is developed for a particular application, the script can be
shipped as part of the NNU application module, allowing automated re-
training of the network in the field. Thus scripts are useful not only for use
in the initial training process, but also can be used to maintain a neural net-
work once it is deployed.
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Figure A.4 Neural Network Utility script editor.

Fuzzy Rule Systems

NNU provides a fuzzy rule editor and fuzzy inference engine for doing rule-
based processing in conjunction with neural networks. The user must de-
fine fuzzy variables and their associated fuzzy sets, and then specify a set of
fuzzy if-then rules for processing the data.

Fuzzy variables can be either discrete or continuous. Discrete variables
can either be numeric or symbolic. The continuous variables might have
multiple fuzzy sets defined over their domain. Fuzzy sets can be either
trapezoidal, triangular, rectangular, or made up of arbitrary line segments.

Fuzzy rules are made up of one or more antecedent clauses and a single
consequent clause. Each clause is a fuzzy statement of the form “FuzzyVar
is FuzzySet” or “FuzzyVar = constant.” The rule base can contain rules that
depend on other rules in order to be valid. For example, one set of rules
could compute the value of variable A. Another set of rules could use fuzzy
variable A in their antecedents, in order to compute the value of the result
or output variable B. As each consequent variable is computed, it is de-
fuzzified before it is used in the next set of rules.
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The Fuzzy Rule editor, shown in Figure A.5, allows the user to graphically
definc fuzzy variables, fuzzy sets, and fuzzy rules. The fuzzy sets over a
fuzzy variable are shown graphically so the user can easily see if the entire
domain is covered. For a more detailed discussion of fuzzy logic and fuzzy
systems, see appendix B.

Visualization and Analysis

The Interactive Development Environment provides a set of visualization
and analysis tools called Inspectors. Inspectors can be opened on an NNU
object to view either data in buffers, neural network parameters and arrays,
or fuzzy rule system variables and fuzzy set values.

NNU Inspectors allow the user to select a variety of data, depending on
the NNU object being inspected. For neural networks, one or more network
parameters can be selected. For fuzzy rule bases, fuzzy variables and fuzzy
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Figure A.5 Neural Network Utility fuzzy rule editor.
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rules can be chosen. All objects can display the input and output buffers,
and using the series function, up to six independent data items can be spec-
ified for inspection.

The NNU Inspectors provide several additional functions besides displaying
text and graphical views of information. Any data selected for Inspection can
also be logged to a text file. Field labels can be loaded from Translate tem-
plates so they are readily identified in text displays.

The Inspector windows can display the selected data using several differ-
ent graphical representations. Time plots are useful for charting the evolu-
tion of errors over time. Hinton diagrams provide an effective way to examine
weight arrays or outputs of clustering operations. Line plots and bar charts
can be used to visualize classification outputs. Scatter plots help show cor-
relations between two variables. Histograms are used to display the distrib-
ution of input data.

Special network graphic views depict the layout of the neural network
processing elements and their connections. Fuzzy variables and fuzzy rules
can be displayed either in textual form or graphically, by drawing the fuzzy
membership functions. Using the network analysis view, combinations of
neural network parameters and arrays can be displayed or logged for fur-
ther analysis.

Deploying and Maintaining Neural Network Applications

The Neural Network Utility provides two mechanisms for deploying appli-
cation modules developed with NNU. The first is the Application Delivery
Environment, which is a simple shell program that allows the user to spec-
ify input and output dialogs for processing by an NNU module. The ADE
can also process batch files. The second and most commonly used is the
NNU application programming interface (API).

The NNU API is a language neutral AP with approximately 80 callable
functions (IBM 1994b). The user can embed any NNU application module
into code through a simple series of API calls. The sequence of operations
includes:

1. Initialize the NNU API (INITNNUAPD).
2. Create an NNU module object (CREATEMODULE).
3. Load an NNU application module (OPENMODULE).

4. Processing Loop
¢ Set the input data (SET...ARRAY).
 Step the module to process the data (STEPMODULE).
¢ Get the output data (GET...ARRAY).

5. Close the NNU API (CLOSENNUAPI).
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NNU saves application modules, network definitions, translate templates,
and control scripts as text files. During client/server development, these
files are automatically moved from the client up to the server for process-
ing, and then brought back down when the development session is com-
plete. To move a deployed application from one NNU platform to another
requires that the text files be moved from machine to machine, and that the
NNU API is installed on the target machine.

Summary

The IBM Neural Network Utility provides many of the functions required for
successful data mining applications. The NNU Translate Filters can be used
for data cleansing and for performing the data transformations required by
neural networks. The scripting language allows automated training and
testing sequences to be defined and reused. Knowledge-based processing
in the form of fuzzy rules can be combined with neural networks to develop
applications.

Several different neural network models are provided with NNU. Back
propagation, recurrent back propagation, and radial basis function net-
works can be used for supervised learning. Kohonen feature maps and
adaptive resonance networks provide support for unsupervised learning ap-
plications. Temporal difference networks are trained using reinforcement
learning techniques. The functions provided by this collection of neural net-
work models include classifications, clustering, modeling, and time-series
forecasting.

The NNU Interactive Development Environment is a graphical editor for
constructing applications using NNU objects. Additional graphical editors
are provided for specifying data translation, scripts, and fuzzy expert sys-
tems. Inspectors allow graphical analysis of input data and neural network
state information during the data mining process. Data logging is supported
to allow analysis with other visualization tools. The NNU Application
Delivery Environment and the Application Programming Interface allows
the deployment of neural network applications.
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Appendix

Fuzzy Logic

“So far as the laws of mathematics refer to

reality, they are not certain. And so far as

they are certain, they do not refer to reality.”
ALBERT EINSTEIN

The world is a fuzzy place. Although people like to think of things as clear
cut, black and white, this is more of an artifice of Western ways than a nat-
ural phenomena. Bart Kosko opens his book, Fuzzy Thinking (1993), with
the story of an apple being eaten. It starts out shiny and whole. Undeniably
it is an apple. As bite after bite is taken, it becomes less and less recogniz-
able as an apple. Until finally, it is completely gone. At what point did the ap-
ple turn into nonapple? To Kosko, the apple being eaten is a fuzzy apple.
After the first bite, it is in the gray area between wholeness and nothingness.
He states, “Fuzziness is grayness.”

If this seems like a familiar point, I made very much this same distinction
back in chapter 2 when I discussed how digital computers work with binary
logic and how neural networks compute an analog value or degree of match
ranging from one extreme to the other. There is a natural synergy between
neural networks and fuzzy logic. Zadeh (1994) states that fuzzy logic is con-
cerned with imprecision, while neural networks deal with learning, and
probabilistic reasoning (which includes genetic algorithms) focuses on un-
certainty. These three disciplines together form the basis for what he calls
“soft computing” (also often called natural computing). They compose a set
of complementary approaches to intelligent computing.
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In this appendix, 1 present an introduction to fuzzy sets, fuzzy logic, and
fuzzy rule systems. I also examine some of the ways that fuzzy logic and
neural networks have been combined synergistically.

Introduction

When you hear the term fuzzy logic, what image does it bring to mind?
Usually someone says something like “Oh, that's what we use around
here!” Unfortunately, the English word “fuzzy” has very negative conno-
tations. It means unclear, imprecise, not well thought out. Combine the
term “fuzzy” with “logic,” and you get a seeming contradiction in ideas.
When people think of logic, it is the ultimate in precision, rock-solid, in-
disputable. To be logical is perhaps the highest compliment you can give
to a scientist or engineer.

When we say “logic,” we are usually referring to Aristotle's logic, first
developed in 300 A.D. Aristotelian logic is the basis of much of Western
thought. It has been studied and explored by thousands of scientists and
philosophers since its inception. It is based on a single, simple but all-en-
compassing idea: A statement is either true or false. It is a binary logic al-
lowing only two values, either something is true or it isn't. There is no
middle ground. This is both a strength and a weakness of Aristotelian
logic.

Fuzzy Sets

The concept of fuzzy sets was first proposed by Dr. Lotfi Zadeh, then the
head of the electrical engineering department at the University of California
at Berkeley, in 1965. There was a strong reaction from other scientists
against fuzzy logic. Some of it was a reaction to the label, and in some sense
it is unfortunate the Zadeh chose the term “fuzzy.” Another valid descrip-
tion is multivalued logic, which does not carry the negative connotations of
“fuzzy” in the English language.

Zadeh’s fuzzy sets are based on a simple extension of standard binary
sets. In order to understand fuzzy sets, on which fuzzy logic and fuzzy rules
are built, let’s first review standard set theory.

A set consists of a group of items or objects. An object is either in the set
or not in the set. For example, we can have a set of tall people and a set of
short people. Larry, Curly, and Moe are tall people. Groucho, Zeppo, and
Hippo are short.

Set A
Set B

{ Larry, Curly, Moe }
{ Groucho, Zeppo, Hippo }
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We can define membership functions for each person mentioned previously:

member (A,Larry) = 1, or Larry is in set A.
member (B, Larry) = 0, or Larry is not in set B,

Similarly, we can define truth values for the other people. In order to be log-
ical, we need to have a rule to determine who is tall and who is short: “Anyone
over 6 feet in height is tall.” Figure B.1 shows our rule in graphic form.

Now we have a new person, Jay, who is exactly 6 feet tall. Does he belong
in the tall set, A, or in the short set, B? Our rule says tall people are “over 6
feet,” so Jay is in the short set, B. It seems kind of arbitrary, doesn't it? But
when using binary logic, we have to make a decision one way or the other,
but not both.

“Aha,” you say, “All we have to do is divide the population into more than
two sets.” We can have very short people, sort-of-short people, kind-of-
short people, and short people. Also, a single person could be a member in
more than one set. This is true. However, the basic point remains the same.
A binary decision must be made: “Is Jay a member of the set or not?”

This example illustrates a major weakness of binary logic. It doesn't nec-
essarily hold against the real world. In our world there are many cases
where black-or-white, binary logic simply doesn't apply. Yet we make it ap-
ply, since much of our science is based on making this distinction.

In fuzzy sets, Zadeh introduced the idea that an item can have partial
membership in a set. At the extremes, fuzzy logic is equivalent to binary
logic. For example, someone 4 feet tall has a membership value of 0 in the
fuzzy tall set. Another person who is 7 feet tall has a membership value of 1
in the fuzzy tall set. Compare the fuzzy set membership function in Figure
B.2 to the binary set function shown in Figure B.1.

How about our 6-foot person, Jay? Well, he could have a membership
value of 0.75 in the fuzzy tall set as shown in Figure B.2. His membership

Short Tall

o 5 6 7
Height

Figure B.1 Boolean tall set.
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Tallness

0 5 6 7 Figure B.2 Fuzzy tall set.
Height

value in the fuzzy short set (not shown) could have a value of 0.2. In fuzzy
logic, he doesn't have to be A or B, tall or short, one or the other. Jay can be
a member of the fuzzy set A and fuzzy set B to some degree, which ranges
from O to 1. This is the basic difference between binary sets and fuzzy sets.
Instead of A AND not-A = ¢, fuzzy set theory says that A AND not-A < > ¢.
Or a glass can be both half empty and half full.

In standard set theory, we can combine the elements of two sets with the
union or AND operator. In fuzzy set theory, this is usually performed by tak-
ing the MIN operator on paired elements of both sets. In standard set the-
ory, we can take the intersection or OR of two sets. In fuzzy set theory this
is usually computed as the MAX of the paired set elements. There is also a
fuzzy complement operation, which is usually computed as 1-x. So if x is
0.5, then “not x” is 0.5. Using fuzzy logic, the glass is half empty and half full!

Western society traditions are steeped in the idea of the yes/no binary logic.
Far Eastern countries, notably Japan and China, do not have this bias. As a re-
sult, fuzzy logic, which was invented by a professor in an American university
30 years ago, is now estimated to be a two billion dollar industry in Japan,
while it is just starting to gain attention in the United States and Europe.

Fuzzy Logic

One of the chief advantages of fuzzy logic is that it maps well to our intuitive
understanding of the world. Let’s go back to the example of tall people.
Instead of a binary rule “IF person > 6 feet THEN person is tall ELSE per-
son is short,” we can use a fuzzy rule as shown in Figure B.2. Also, we can
add modifiers (called linguistic hedges) such as sort-of tall, very tall, and
extremely tall. These modifiers change the membership values of the items
in predictable ways.

A 4-foot person is not tall, and so the member, (tall, 4 feet) = 0. However,
a 7-foot person is clearly tall. A 5-foot, 6-inch person is sort of tall with a
membership value of 0.4. A person 6 feet in height is tall with a membership
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value of 0.8. By changing the shape of the membership functions, we can
map from our linguistic world view to a mathematical functional view using
fuzzy membership functions. There is nothing imprecise or fuzzy about
fuzzy logic. It is mathematics, plain and simple.

Fuzzy or Linguistic Variables

In the previous section, I described the attributes of a fuzzy set called Tall.
In using fuzzy sets for an application, we would typically need to define
something called a fuzzy variable, or a “linguistic” variable. In this case, we
would probably call our variable “Height.” The linguistic variable “Height”
does not just define a number, x inches, or & meters, but instead defines a
concept. “Height” is the degree of tallness (or shortness). We can define a
number of fuzzy sets over the continuum of “Height.” We can have a fuzzy
set called “Short,” a fuzzy set called “Average,” and another fuzzy set called
“Tall.” These fuzzy sets will overlap, since in the real world the words we
use to describe things overlap. There is not some arbitrary cutoff between
short and average, and average and tall. In addition, we can define and use
linguistic hedges to these three fuzzy sets and have quite a lot of descriptive
power, which is very natural for people to use and to understand. Zadah
(1994) points out that this compression of data, from 20 to 100 inches into
3 functions is fundamental to the power of fuzzy systems. Zadeh calls this
granulation. He differentiates this from quantization, or the breaking up of
the domain of a variable into intervals. Granulation with linguistic variables
is more general than quantization, and it matches the way people think
about linguistic values. Furthermore, crossing the boundary between re-
lated linguistic variables is gradual, not abrupt. This leads to greater conti-
nuity and robustness.

Fuzzy Rules

One of the prime success areas of work in artificial intelligence has been
in the form of rule-based expert systems. Expert systems consist of three
parts: a set of if-then rules called the knowledge base; a program called
an inference engine, which processes the rules and external input data;
and a working memory area that is used to store information about the
current state.

Many expert systems have been built for a variety of application areas. One
of the problems associated with rule based systems is that the number of rules
can quickly grow very large. For example, a rule-based configurator for the
IBM 9370 system required over 1500 rules. Rule-based expert systems are
based on binary logic. A rule is either true or false. If it is true, then we perform
the then part. However, what if the rule is only partially true? Researchers in
artificial intelligence tackled this problem by using confidence or certainty
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factors. Thus variables in some expert systems have not only a current value,
but also a corresponding certainty of the correctness of the value.

Fuzzy rule processing is a more natural approach to handling this uncer-
tainty in rule-based systems. A rule is more or less true based on the values
of the linguistic variables and their membership functions. For example, if
we had a fuzzy rule set to control an air conditioner, we might have the fol-
lowing fuzzy rule set (Kosko 1993):

Rule 1. If the temperature is cold then motor speed is stopped.
Rule 2. If the temperature is cool then motor speed is slow.

Rule 3. If the temperature is just right then motor speed is medium.
Rule 4. If the temperature is warm then motor speed is fast.

Rule 5. If the temperature is hot then motor speed is cookin’.

This example has two linguistic or fuzzy variables, temperature and mo-
tor speed. For each fuzzy variable, we define one or more fuzzy sets. For
example, five fuzzy sets on temperature are cold, cool, just right, warm, and
hot. In order to map from these linguistic fuzzy rules into mathematics, we
need to define the membership functions for each of the fuzzy sets we use.

Figure B.3 shows a diagram of the fuzzy membership functions defined
for the temperature variable fuzzy sets. They are shaped either as triangles
or as half triangles. Any functional form with an output range of 0 to 1 can
be used. Triangles or trapezoids are most common.

In practical implementations, a fuzzy rule set is usually processed using
the following three steps:

1. Fuzzification of the inputs. The raw input values (temperature) are
mapped onto a range of 0.0 to 1.0 using the fuzzy membership functions.

2. All of the rules are fired in parallel. This results in a set of “truth” val-
ues for each rule in the rule set. The OR operation is usually taken on

Q
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>

Just
Cool Right Warm

45 50 55 60 65 70 75 80 85 90 95
Temperature

Figure B.3 [uzzy sets for fan motor control.
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these “truth” values and a single fuzzy output value (ranging from 0.0
to 1.0) is computed.

3. The output value is defuzzified, converted into a crisp numeric value
(the process is called defuzzification). In our air conditioner example
above, a fuzzy output value of 0.5 say, must be translated back into a
voltage for the fan motor.

Linguistic variables and fuzzy sets provide an intuitive framework for do-
main experts to represent their knowledge. This expressiveness has allowed
fuzzy rule systems to quickly develop commercially and compete with tradi-
tional Boolean logic-based expert systems. While expressing knowledge in
fuzzy if-then format is easy, the mapping of the fuzzy sets onto membership
functions is usually the hardest part of developing working fuzzy rule sys-
tems. Researchers have turned to neural networks to learn the appropriate
membership functions.

Fuzzy Logic Meets Neural Networks

Fuzzy sets are functions that transform input values into a 0.0 to 1.0 out-
put value. Neural processing elements transform a collection of inputs
into a 0.0 to 1.0 output value. This correspondence has led many re-
searchers to explore mappings from fuzzy logic to neural networks, and
visa versa. Fuzzy neural networks are multilayer feedforward networks
that use fuzzy logic in the processing units or the connection weight rep-
resentations (Buckley and Hayashi 1994). The marriage of neural net-
works with fuzzy logic serves to produce a synergy that overcomes
weaknesses in each of the respective technologies. By using intuitive
fuzzy rules to represent knowledge and converting them into feedfor-
ward neural networks, we have a way of imparting explicit domain knowl-
edge to neural networks, without the need for training (Okada et. al.
1992). This technique allows starting training of a neural network, which
already has some degree of competence at the problem it is asked to
learn. This results not only in better initial performance by the neural
network, but also in faster learning.

The advantage from a fuzzy systems point of view is that by casting fuzzy
rules into feedforward neural networks, we can use their learning ability to
adjust and fine-tune the fuzzy membership functions (Ishibuchi, Fujioka,
and Tanaka 1993). This solves the difficult and time-consuming process of
defining the fuzzy sets by hand. Once the optimal fuzzy set definitions are
learned by the neural network, they can be cast back into explicit fuzzy rule
form. This turns out to be another advantage for neural networks because
it solves the “black box” problem.
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Summary

Fuzzy logic is a mathematical approach to dealing with the imprecise nature
of everyday language and of the world around us. Fuzzy set theory extends
the concepts of set membership from the binary all-or-nothing view of tradi-
tional logic to a more natural one, where items can have degrees of member-
ship ranging from 0.0 to 1.0. The basic set operations of union, intersection,
and complement have been redefined to work on fuzzy sets.

Fuzzy rule systems are a hybrid technology that combines the well-
known if-then knowledge representation of traditional expert systems with
the concepts of linguistic variables and fuzzy logic inferencing. Fuzzy rules
can be used to represent initial knowledge, which can then be converted
into neural network form. This technique can take advantage of neural net-
work learning to fine-tune the fuzzy membership functions used in the
rules, or as a method of initializing the neural networks with some minimal
level of competency for a task.

The mixture of fuzzy logic, neural networks, and genetic algorithms (see
appendix C) constitutes a powerful framework for solving difficult real-
world problems.
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Appendix

Genetic Algorithms

Vi _have called the principle, by which each
slight variation, if useful, is preserved by the
term of Natural Selection.”  CHARLES DARWIN

While neural networks are proposed as a model for the massively parallel,
adaptive capabilities of the human brain, genetic algorithms are used as a
metaphor for the powerful biological optimization process driven through
genetics. Genetic algorithms can be used to simulate the process of natural
selection in species. There are some interesting parallels with neural net-
works. Genetic algorithms also exhibit a natural emergence phenomena,
where through wholly local actions, a global goal is approached or optimized.

Basics

Genetic algorithms are used to find solutions to problems that are encoded
asa string of values or chromosomes (Holland 1975). A population of strings
is created where each string represents a possible solution to the problem.
A fitness function is defined to evaluate each string to determine its “fit-
ness” or “goodness” as a solution to the problem. Based on their relative fit-
ness scores, the population strings are used to create a new generation
through the application of a set of genetic operations on the strings. These
operators include crossover, which takes two parent strings to create a new
child string, and mutation, which causes a random change in the genetic ma-
terial of a single string. This new generation is then evaluated and the least
fit individual strings “die.” In this way, through the survival of the fittest,
each generation of strings represents a better solution to the problem.
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A set of control parameters is used to limit the size of the population, the
probabilities of the various operators being used, and the chance that any
individual string is selected for modification by an operator. These settings
can have a profound effect on the quality of the solution prod}lced by a ge-
netic algorithm. In essence, genetic algorithms are performing g parallel
search of the solution space of the problem. Two somewhat.opposmg goals
must be pursued through the genetic process. The population needs to be
diverse, so as to thoroughly search the solution space and find the true op-
timum solution to the problem. While at the same time, ‘ th_e populathn
needs to be somewhat uniform so it can perform local optimization or hill
climbing around a certain point in the solution space. Thfese two goals must
be balanced through appropriate control parameter settings t‘o ensure that
a good solution is found. The following sections explore the issues related
to the key steps in the use of genetic algorithms.

Encoding ‘
The most fundamental part of using genetic algorithms to solve an optimiza-
tion or search problem is to encode the problem asa string. In most cases, the
string is a binary string of 1s and Os. Representing the probl‘em as a binary
string makes the application of the genetic operators very straightforward us-
ing bit manipulation operations. However, a large number of problems have
real-valued continuous variables, which must be represented ‘by 2 f%xed—
length binary string. While this coding of real values keeps t.hg stru}g in binary
form, it introduces a lot of overhead in the evaluation function, since every-
thing has to be converted back from binary codes to re?.l numbers. When ge-
netic algorithms are applied to neural networks, the stupg usually repres_ents
the connection weights, which are all real values. In this case, a more direct
representation, first proposed by Montana and Davis (198§), is to encode the
connection weights as a string of real values as illustrated in Figure C.1.

Figure C.1 Genetic algorithm
encoding of a neural network.

encoding (.2, -4, 12, 6, -3, -\ -7, -6.3)
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Fitness or evaluation function

Once a problem is encoded as a string so that it can be modified with the de-
fined genetic operators, a fitness or evaluation function must also be de-
rived. This function serves as the basis for the selection process and so
must accurately measure the goodness of the individual string. In most
cases, this function is exactly the same as the objective function for the
problem we are trying to optimize. The string is converted into a set of pa-
rameters for the function, and the function is evaluated. The answer is used
as the fitness and as the basis for comparison with the other individuals in
the population.

For neural networks, the fitness function would typically be the same
measure used during the training process. For example, evaluating a string
representing a back propagation network would involve doing a complete
epoch of forward passes through the network, computing the root mean
squared error, and using that as the fitness value. The lower the error, the
“better” the neural network represented by the string. If the search space is
the architecture of the network, then each string represents a different
neural network. Each string is used to construct a neural network, which is
then trained for some fixed number of epochs. Depending on the function
being performed, their RMS error or the number of correct classifications
would be used as their fitness.

Selection

The output of the fitness function is used as the basis for selecting which in-
dividuals get to procreate and contribute their genetic material to the next
generation. There are several selection schemes that are widely used in the
genetic algorithm literature (Srinivas and Patnaik 1994). In the proportion-
ate selection scheme, each strings fitness value is normalized by dividing by
the average fitness of the entire population. This number represents the
number of expected offspring of the string. Another selection scheme is the
roulette wheel approach. Each string is given a slot on a roulette wheel, with
the size of the slot determined by the normalized fitness of the string. A ran-
dom number js used to pick a slot on the wheel. The winner string is repro-
duced. This process continues until the entire next generation is created.

Genetic operators

Genetic operators are used to combine or modify individuals in the current
population to create members of the next generation. The major operators
are crossover and mutation. Depending on the encoding of the problem,
problem-specific operators might also need to be defined.

Crossover. Crossover is a sexual operation where a pair of strings or parents
are selected from the population to share their genetic material. A random
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Figure C.2 Genetic operators: crossover and mutation.

point is selected as the crossover point where material from the first parent
is replaced with material from the second parent (see Figure C.2). Because
all strings are the same length, this is a simple operation. A control param-
eter, called the crossover rate, is used to determine whether the two strings
selected actually produce a child or not. Since crossover controls the cre-
ation of entirely new individuals, the crossover rate parameter essentially
controls the breadth of the search.

Mutation. Mutation is an asexual modification of a string where a single bit
or string value is modified. A mutation rate is used to control the probabil-
ity that an individual is changed. Since mutation will only slightly modify an
individual, the mutation rate is in some sense a measure of the amount of lo-
cal search that takes place. Figure C.2 shows an example of a mutation of a

parent string.

The generation cycle

There are several alternate strategies used to create succeeding popula-
tions of individuals (Srinivas and Patnaik 1994). In one approach, all mem-
bers of a population die and only live on through genetic contributions to
the next generation. In another approach, a fit individual can live on anfl on
through successive generations. Holland et. al. (1986) used this techmqu‘e
when applying genetic algorithms to the evolution of if-then rules in their
classifier systems.

Applications to Neural Networks

There are several uses of genetic algorithms with regard to neu.ral net-
works. They are used to search the connection or weight space, using evo-
lution rather than training to adjust the neural network weights. Genetic
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algorithms are used to explore the architecture space of neural networks to
find the optimal number of hidden layers and hidden units. Genetic algo-
rithms also can be used to find the best neural network model to solve a
particular problem.

Finding network weights

While back propagation is the most popular learning algorithm used to train
neural networks, it has the disadvantage of being slow to converge and some-
what sensitive to the settings of the learn rate and momentum parameters.
One of the first applications of genetic algorithms to neural networks was to
use them to search the weight space (Davis 1991). Thus the initial popula-
tion contains a set of neural networks with identical architectures, but with
different random initial weights. The genetic operators combine the genetic
material (the connection weights) from various members of the population.
Rather than moving single weights, special crossover operators are used to
move coherent sets of weights, such as those weights leading into a single
processing unit, between the neural networks. As the genetic algorithm
evolves, the weights from the neural networks with the lowest prediction er-
ror would be propagated and shared with the new generation. This approach
to training a neural network amounts to doing parallel, but directed, sto-
chastic search. One group in IBM used genetic algorithms to train neural net-
works for use with the Neural Network Utility and reported excellent results,
both in decreased training times compared to back propagation, and in the
generalization abilities of the resulting neural network.

Finding the neural network architecture

Once a specific neural network model is selected for a problem, there are
still the issues of how many hidden layers there should be and how many
hidden units should be in each hidden layer. Since these are the most dif-
ficult design decisions to make when developing neural networks, ge-
netic algorithms are often used to solve these problems. The initial
population is chosen to include neural networks with a wide range of hid-
den layers and hidden units. The neural network-specific genetic opera-
tors must be able to deal with encoded strings of different lengths (i.e.,
networks with more hidden units will have more connection weights and
s0 have longer strings). Another option is to have all members of the pop-
ulation coded as the largest possible network and to use zero weight val-
ues to indicate networks with fewer processing units. As the genetic
algorithm evolves toward a solution, those neural networks that have the
lowest average prediction errors will reproduce, and the population will
converge to the optimum network architecture for the problem. Care
must be taken, however, because if we do not use the testing data in the
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evaluation function, the genetic algorithm will optimize for the training
data only. This could result in overtraining of the neural network and
poor generalization ability.

Selecting the neural network model

In chapter 4, I described the most popular neural network models and their
functions. Often, it is not apparent from the data whether one type of su-
pervised neural network should be used or another (for example, back
propagation versus recurrent back propagation). Genetic algorithms can be
used to search through the available neural network models by using sev-
eral types of networks in the initial population. This heterogeneous popula-
tion might contain several back propagation networks, radial basis function
networks, recurrent back propagation networks, and others, all with the
same number of hidden units. As the successive generations are produced,
the neural network model that best applies to the problem will have more
members in the population. Those that are not suited will die off or have
only a few instances. At the end of the genetic algorithm run, the neural
network with the best fitness function is the best neural network model for
the job.

Summary

Genetic algorithms provide a way to find solutions to difficult optimization
problems. The first step in using genetic algorithms is to encode the prob-
lem into a binary or real-valued string. Each string represents a single solu-
tion to the problem. Using the biological notion of the process of natural
selection, an initial population of candidate solutions is generated (as en-
coded strings). Genetic operators, crossover, and mutation are probabilisti-
cally applied to members of the population, mixing the genetic material
(partial solutions to the problem) and generating new members from the
most “fit” members in the current population. As the population evolves,
the encoded strings compete with each other, so that at the end of the run,
the best solutions are left.

Genetic algorithms have been applied to neural networks in several
ways. They are used to train neural networks by adjusting the connection
weights. They are used to explore the architecture space to find the best
number of hidden units for a particular problem. And they have even
been used to select which type of neural network model should be used.
The powerful optimization capabilities of genetic algorithms can be ap-
plied naturally to these common neural network development issues to
provide a better fit between the application problem and the neural net-
work solution.
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Glossary

activation The current output value of a neural processing unit. Usually ranges
from 0.0 to 1.0.

activation function A function used by the neural processing unit to compute the
output or activation of the unit. Common activation functions include sigmoid, hy-
perbolic tangent, signum, and Gaussian.

adaptive resonance theory (ART) A recurrent neural network that has input and
output layers joined by two sets of connection weights. ART uses an unsupervised
training algorithm to adjust the weights to cluster input patterns based on their de-
gree of similarity.

back propagation The most popular form of neural network. Back propagation
networks are feedforward multilayer networks that use a supervised training algo-
rithm (backward propagation of errors) to adjust the connection weights.

binary code A binary data representation for discrete data where each distinct cat-
egory is assigned an integer value and coded as a standard binary string.

classification The process of learning to distinguish and discriminate between dif-
ferent input patterns using a supervised training algorithm.

clustering The process of grouping similar input patterns together using an unsu-
pervised training algorithm.

connection weights Real-valued parameters that modify the signals flowing be-
tween neural processing units in neural networks.

crossover A genetic operator used to combine two parents to produce a new child.

data cleansing A processing step where missing or inaccurate data is replaced
with valid values.

data mining The efficient discovery of nonobvious, valuable information from a
large collection of data. The data mining process consists of data preparation, use of
a data mining algorithm, and analysis of the mining output or results.

data preparation The first step of the data mining process, which includes data se-
lection, data cleansing, data preprocessing, and data representation.
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data preprocessing A processing step where data is combined to create new
fields, or is otherwise transformed before it is input to the data mining algorithm.

data representation The transformation of the source data into a format accept-
able to the data mining algorithm.

data selection The process where certain records or columns of data are chosen
for processing in a data mining application.

data warehouse A large database where corporate data is kept for long-term on-
line storage.

epoch A single pass through a complete data set while training or testing a neural
network.

expert system A data processing system composed of a knowledge base (rules),
an inference engine, and a working memory.

feedforward A neural network topology consisting of two or more layers of neural
processing units, connected so that inputs flow in one end, flow through the con-
nections and processing units in a single direction, and come out the other end.

fuzzy logic A system of logic based on fuzzy set theory.

fuzzy set A set of items whose degree of membership in the set may range from 0
to 1.

fuzzy systems A set of rules using fuzzy linguistic variables described by fuzzy
sets and processed using fuzzy logic operations.

genetic algorithms A method for solving optimization problems using parallel
search, based on the biological paradigm of natura! selection and “survival of the
fittest.”

genetic operators The operations on population member strings in a genetic al-
gorithm that are used to produce new strings.

intelligent agent A software application that assists a system or user by automat-
ing a task. Intelligent agents must recognize events and use domain knowledge to
take appropriate actions based on those events.

Kohonen feature map A feedforward neural network that uses unsupervised
learning to cluster or segment input data.

modeling The process of training a neural network to model a function or to relate
a set of inputs to one or more outputs.

mutation A genetic operator that modifies a single population member by chang-
ing (mutating) portions of its encoded string.

neural network A computing model based on the architecture of the brain con-
sisting of multiple simple processing units connected by adaptive weights.

neural processing unit A simple processor used in a neural network that takes the
sumn of the input signals coming into it and computes an output value or activation.

one-of-N code A binary data representation for discrete data where each distinct
value is represented by a single 1 digit and the rest are 0 digits.
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probabilistic neural network (PNN) A feedforward neural network trained using
supervised learning that allocates a hidden unit for each input pattern.

radial basis function (RBF) A feedforward neural network trained using super-
vised learning and having a single layer of hidden units that use a Gaussian activa-
tion function.

recurrent A neural network topology where the units are connected so that inputs
signals flow back and forth between the neural processing units until the neural net-
work settles down. The outputs are then read from the output units.

recurrent back propagation A feedforward neural network trained using super-
vised learning and the back propagation learning algorithm. Limited recurrence is
provided by a set of context units that take on the values of either the hidden layer
unit or the output layer units from the prior input pattern.

reinforcement learning A training paradigm where the neural network is pre-
sented with a sequence of input data, followed by a reinforcement signal.

relational database A collection of data arranged in rows and columns and ma-
nipulated using relational algebraic operations.

self-organizing map See Kohonen feature map.

shared-nothing architectures A technique for parallelizing work in a computer
system where multiple processors are connected, each having its own private mem-
ory and disk storage.

supervised learning A training paradigm where the neural network is presented
with an input pattern and a desired output pattern. The desired output is compared
with the neural network output, and the error information is used to adjust the con-
nection weights.

symmetrical multiprocessing (SMP) A technique for parallelizing work in a com-
puter system where a single task runs on multiple processors with shared access to
a common main memory.

testing The process of determining whether the predictive accuracy of the neural
network meets the requirements when the network weights are locked and test data
is presented to the neural network.

thermometer code A binary data representation for symbolic or categorical data
that has an implicit order such as good, better, best.

time-serles forecasting The process of using neural networks to learn to predict
teraporal sequences of patterns so that when given a set of patterns, it can predict a
future value.

training The process of adjusting the connection weights in a neural network un-
der the control of a learning algorithm.

unsupervised learning A training paradigm where the neural network is pre-
sented with input data, and it self-organizes to cluster or segment the data by learn-
ing to recognize statistical similarities between the input patterns.

validation An independent test process whereby the performance of the neural
network is tested against the acceptance requirerents.
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visualization The graphical display of data that helps the user in understanding
the structure and meaning of the information contained in the data.

welght See connection weights.
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