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Preface

Data mining is the science, art and technology of exploring large and com-
plex bodies of data in order to discover useful patterns. Theoreticians and
practitioners are continually seeking improved techniques to make the pro-
cess more efficient, cost-effective and accurate. One of the most promising
and popular approaches is the use of decision trees. Decision trees are sim-
ple yet successful techniques for predicting and explaining the relationship
between some measurements about an item and its target value. In ad-
dition to their use in data mining, decision trees, which originally derived
from logic, management and statistics, are today highly effective tools in
other areas such as text mining, information extraction, machine learning,
and pattern recognition.

Decision trees offer many benefits:

• Versatility for a wide variety of data mining tasks, such as classifi-
cation, regression, clustering and feature selection
• Self-explanatory and easy to follow (when compacted)
• Flexibility in handling a variety of input data: nominal, numeric

and textual
• Adaptability in processing datasets that may have errors or missing

values
• High predictive performance for a relatively small computational

effort
• Available in many data mining packages over a variety of platforms
• Useful for large datasets (in an ensemble framework)

This is the first comprehensive book about decision trees. Devoted
entirely to the field, it covers almost all aspects of this very important
technique.

vii
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viii Data Mining with Decision Trees: Theory and Applications

The book has twelve chapters, which are divided into three main parts:

• Part I (Chapters 1-3) presents the data mining and decision tree
foundations (including basic rationale, theoretical formulation, and
detailed evaluation).
• Part II (Chapters 4-8) introduces the basic and advanced algo-

rithms for automatically growing decision trees (including splitting
and pruning, decision forests, and incremental learning).
• Part III (Chapters 9-12) presents important extensions for improv-

ing decision tree performance and for accommodating it to certain
circumstances. This part also discusses advanced topics such as fea-
ture selection, fuzzy decision trees, hybrid framework and methods,
and sequence classification (also for text mining).

We have tried to make as complete a presentation of decision trees in
data mining as possible. However new applications are always being intro-
duced. For example, we are now researching the important issue of data
mining privacy, where we use a hybrid method of genetic process with deci-
sion trees to generate the optimal privacy-protecting method. Using the
fundamental techniques presented in this book, we are also extensively in-
volved in researching language-independent text mining (including ontology
generation and automatic taxonomy).

Although we discuss in this book the broad range of decision trees and
their importance, we are certainly aware of related methods, some with
overlapping capabilities. For this reason, we recently published a comple-
mentary book ”Soft Computing for Knowledge Discovery and Data Min-
ing”, which addresses other approaches and methods in data mining, such
as artificial neural networks, fuzzy logic, evolutionary algorithms, agent
technology, swarm intelligence and diffusion methods.

An important principle that guided us while writing this book was the
extensive use of illustrative examples. Accordingly, in addition to decision
tree theory and algorithms, we provide the reader with many applications
from the real-world as well as examples that we have formulated for explain-
ing the theory and algorithms. The applications cover a variety of fields,
such as marketing, manufacturing, and bio-medicine. The data referred to
in this book, as well as most of the Java implementations of the pseudo-
algorithms and programs that we present and discuss, may be obtained via
the Web.

We believe that this book will serve as a vital source of decision tree
techniques for researchers in information systems, engineering, computer
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Preface ix

science, statistics and management. In addition, this book is highly useful
to researchers in the social sciences, psychology, medicine, genetics, busi-
ness intelligence, and other fields characterized by complex data-processing
problems of underlying models.

Since the material in this book formed the basis of undergraduate and
graduates courses at Tel-Aviv University and Ben-Gurion University, it can
also serve as a reference source for graduate/advanced undergraduate level
courses in knowledge discovery, data mining and machine learning. Practi-
tioners among the readers may be particularly interested in the descriptions
of real-world data mining projects performed with decision trees methods.

We would like to acknowledge the contribution to our research and to
the book to many students, but in particular to Dr. Barak Chizi, Dr.
Shahar Cohen, Roni Romano and Reuven Arbel. Many thanks are owed to
Arthur Kemelman. He has been a most helpful assistant in proofreading
and improving the manuscript.

The authors would like to thank Mr. Ian Seldrup, Senior Editor, and
staff members of World Scientific Publishing for their kind cooperation in
connection with writing this book. Thanks also to Prof. H. Bunke and Prof
P.S.P. Wang for including our book in their fascinating series in machine
perception and artificial intelligence.

Last, but not least, we owe our special gratitude to our partners, fami-
lies, and friends for their patience, time, support, and encouragement.

Beer-Sheva, Israel Lior Rokach
Tel-Aviv, Israel Oded Maimon

October 2007
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Chapter 1

Introduction to Decision Trees

1.1 Data Mining and Knowledge Discovery

Data mining, the science and technology of exploring data in order to dis-
cover previously unknown patterns, is a part of the overall process of knowl-
edge discovery in databases (KDD). In today’s computer-driven world,
these databases contain massive quantities of information. The accessi-
bility and abundance of this information makes data mining a matter of
considerable importance and necessity.

Most data mining techniques are based on inductive learning (see
[Mitchell (1997)]), where a model is constructed explicitly or implic-
itly by generalizing from a sufficient number of training examples. The
underlying assumption of the inductive approach is that the trained model
is applicable to future, unseen examples. Strictly speaking, any form
of inference in which the conclusions are not deductively implied by the
premises can be thought of as induction.

Traditionally, data collection was regarded as one of the most important
stages in data analysis. An analyst (e.g., a statistician) would use the
available domain knowledge to select the variables that were to be collected.
The number of variables selected was usually small and the collection of
their values could be done manually (e.g., utilizing hand-written records or
oral interviews). In the case of computer-aided analysis, the analyst had to
enter the collected data into a statistical computer package or an electronic
spreadsheet. Due to the high cost of data collection, people learned to make
decisions based on limited information.

Since the dawn of the Information Age, accumulating data has become
easier and storing it inexpensive. It has been estimated that the amount
of stored information doubles every twenty months [Frawley et al. (1991)].

1
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Unfortunately, as the amount of machine-readable information increases,
the ability to understand and make use of it does not keep pace with its
growth.

Data mining emerged as a means of coping with this exponential growth
of information and data. The term describes the process of sifting through
large databases in search of interesting patterns and relationships. In prac-
tise, data mining provides tools by which large quantities of data can be
automatically analyzed. While some researchers consider the term “data
mining” as misleading and prefer the term “knowledge mining” [Klosgen
and Zytkow (2002)], the former term seems to be the most commonly used,
with 59 million entries on the Internet as opposed to 52 million for knowl-
edge mining.

Data mining can be considered as a central step in the overall KDD
process. Indeed, due to the centrality of data mining in the KDD process,
there are some researchers and practitioners that regard “data mining” and
the complete KDD processas as synonymous.

There are various definintions of KDD. For instance [Fayyad
et al. (1996)] define it as “the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data”. [Fried-
man (1997a)] considers the KDD process as an automatic exploratory data
analysis of large databases. [Hand (1998)] views it as a secondary data anal-
ysis of large databases. The term “secondary” emphasizes the fact that the
primary purpose of the database was not data analysis.

A key element characterizing the KDD process is the way it is divided
into phases with leading researchers such as [Brachman and Anand (1994)],
[Fayyad et al. (1996)], [Maimon and Last (2000)] and [Reinartz (2002)]
proposing different methods. Each method has its advantages and disad-
vantages. In this book, we adopt a hybridization of these proposals and
break the KDD process into eight phases. Note that the process is iterative
and moving back to previous phases may be required.

(1) Developing an understanding of the application domain, the relevant
prior knowledge and the goals of the end-user.

(2) Selecting a dataset on which discovery is to be performed.
(3) Data Preprocessing: This stage includes operations for dimension re-

duction (such as feature selection and sampling); data cleansing (such
as handling missing values, removal of noise or outliers); and data trans-
formation (such as discretization of numerical attributes and attribute
extraction).
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(4) Choosing the appropriate data mining task such as classification, re-
gression, clustering and summarization.

(5) Choosing the data mining algorithm. This stage includes selecting the
specific method to be used for searching patterns.

(6) Employing the data mining algorithm.
(7) Evaluating and interpreting the mined patterns.
(8) The last stage, deployment, may involve using the knowledge directly;

incorporating the knowledge into another system for further action; or
simply documenting the discovered knowledge.

1.2 Taxonomy of Data Mining Methods

It is useful to distinguish between two main types of data min-
ing: verification-oriented (the system verifies the user’s hypothesis) and
discovery-oriented (the system finds new rules and patterns autonomously)
[Fayyad et al. (1996)]. Figure 1.1 illustrates this taxonomy. Each type has
its own methodology.

Discovery methods, which automatically identify patterns in the data,
involve both prediction and description methods. Description meth-
ods focus on understanding the way the underlying data operates while
prediction-oriented methods aim to build a behavioral model for obtaining
new and unseen samples and for predicting values of one or more variables
related to the sample. Some prediction-oriented methods, however, can also
help provide an understanding of the data.

Most of the discovery-oriented techniques are based on inductive learn-
ing [Mitchell (1997)], where a model is constructed explicitly or implic-
itly by generalizing from a sufficient number of training examples . The
underlying assumption of the inductive approach is that the trained model
is applicable to future unseen examples. Strictly speaking, any form of infer-
ence in which the conclusions are not deductively implied by the premises
can be thought of as induction.

Verification methods, on the other hand, evaluate a hypothesis proposed
by an external source (like an expert etc.). These methods include the most
common methods of traditional statistics, like the goodness-of-fit test, the
t-test of means, and analysis of variance. These methods are less associ-
ated with data mining than their discovery-oriented counterparts because
most data mining problems are concerned with selecting a hypothesis (out
of a set of hypotheses) rather than testing a known one. The focus of tra-
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Fig. 1.1 Taxonomy of data mining Methods.

ditional statistical methods is usually on model estimation as opposed to
one of the main objectives of data mining: model identification [Elder and
Pregibon (1996)].

1.3 Supervised Methods

1.3.1 Overview

In the machine learning community, prediction methods are commonly re-
ferred to as supervised learning. Supervised learning stands opposed to un-
supervised learning which refers to modeling the distribution of instances
in a typical, high-dimensional input space.

According to [Kohavi and Provost (1998)], the term “unsupervised
learning” refers to “learning techniques that group instances without a
prespecified dependent attribute”. Thus the term “unsupervised learn-
ing” covers only a portion of the description methods presented in Figure
1.1. For instance the term covers clustering methods but not visualization
methods.

Supervised methods are methods that attempt to discover the relation-
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ship between input attributes (sometimes called independent variables) and
a target attribute (sometimes referred to as a dependent variable). The re-
lationship that is discovered is represented in a structure referred to as a
Model . Usually models describe and explain phenomena, which are hid-
den in the dataset, and which can be used for predicting the value of the
target attribute when the values of the input attributes are known. The
supervised methods can be implemented in a variety of domains such as
marketing, finance and manufacturing.

It is useful to distinguish between two main supervised models: Classi-
fication Models (Classifiers) and Regression Models.Regression models map
the input space into a real-valued domain. For instance, a regressor can
predict the demand for a certain product given its characteristics. On the
other hand, classifiers map the input space into predefined classes. For
instance, classifiers can be used to classify mortgage consumers as good
(full mortgage pay back the on time) and bad (delayed pay back). Among
the many alternatives for representing classifiers, there are, for example,
support vector machines, decision trees, probabilistic summaries, algebraic
function, etc.

This book deals mainly in classification problems. Along with regres-
sion and probability estimation, classification is one of the most studied
approaches, possibly one with the greatest practical relevance. The poten-
tial benefits of progress in classification are immense since the technique
has great impact on other areas, both within data mining and in its appli-
cations.

1.4 Classification Trees

In data mining, a decision tree is a predictive model which can be used to
represent both classifiers and regression models. In operations research, on
the other hand, decision trees refer to a hierarchical model of decisions and
their consequences. The decision maker employs decision trees to identify
the strategy most likely to reach her goal.

When a decision tree is used for classification tasks, it is more appro-
priately referred to as a classification tree. When it is used for regression
tasks, it is called regression tree.

In this book we concentrate mainly on classification trees. Classification
trees are used to classify an object or an instance (such as insurant) to a
predefined set of classes (such as risky/non-risky) based on their attributes
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values (such as age or gender). Classification trees are frequently used in
applied fields such as finance, marketing, engineering and medicine. The
classification tree is useful as an exploratory technique. However it does
not attempt to replace existing traditional statistical methods and there are
many other techniques that can be used classify or predict the membership
of instances to a predefined set of classes, such as artificial neural networks
or support vector machines.

Figure 1.2 presents a typical decision tree classifier. This decision tree
is used to facilitate the underwriting process of mortgage applications of a
certain bank. As part of this process the applicant fills in an application
form that include the following data: number of dependents (DEPEND),
loan-to-value ratio (LTV), marital status (MARST), payment-to-income ra-
tio (PAYINC), interest rate (RATE), years at current address (YRSADD),
and years at current job (YRSJOB).

Based on the above information, the underwriter will decide if the appli-
cation should be approved for a mortgage. More specifically, this decision
tree classifies mortgage applications into one of the following two classes:

• Approved (denoted as “A”) The application should be approved.
• Denied (denoted as “D”) The application should be denied.
• Manual underwriting (denoted as “M”) An underwriter should man-

ually examine the application and decide if it should be approved (in
some cases after requesting additional information from the applicant).
The decision tree is based on the fields that appear in the mortgage
applications forms.

The above example illustrates how a decision tree can be used to repre-
sent a classification model. In fact it can be seen as an expert system, which
partially automates the underwriting process and which was built manually
by a knowledge engineer after interrogating an experienced underwriter in
the company. This sort of expert interrogation is called knowledge elicita-
tion namely obtaining knowledge from a human expert (or human experts)
for use by an intelligent system. Knowledge elicitation is usually difficult
because it is not easy to find an available expert who is able, has the time
and is willing to provide the knowledge engineer with the information he
needs to create a reliable expert system. In fact, the difficulty inherent in
the process is one of the main reasons why companies avoid intelligent sys-
tems. This phenomenon is known as the knowledge elicitation bottleneck.

A decision tree can be also used to analyze the payment ethics of cus-
tomers who received a mortgage. In this case there are two classes:
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Fig. 1.2 Underwriting Decision Tree.

• Paid (denoted as “P”) - the recipient has fully paid off his or her mort-
gage.
• Not Paid (denoted as “N”) - the recipient has not fully paid off his or

her mortgage.

This new decision tree can be used to improve the underwriting decision
model presented in Figure 9.1. It shows that there are relatively many
customers pass the underwriting process but that they have not yet fully
paid back the loan. Note that as opposed to the decision tree presented
in Figure 9.1, this decision tree is constructed according to data that was
accumulated in the database. Thus, there is no need to manually elicit
knowledge. In fact the tree can be grown automatically. Such a kind of
knowledge acquisition is referred to as knowledge discovery from databases.

The use of a decision tree is a very popular technique in data mining.
In the opinion of many researchers, decision trees are popular due to their
simplicity and transparency. Decision trees are self-explanatory; there is
no need to be a data mining expert in order to follow a certain decision
tree. Classification trees are usually represented graphically as hierarchi-
cal structures, making them easier to interpret than other techniques. If
the classification tree becomes complicated (i.e. has many nodes) then
its straightforward, graphical representation become useless. For complex
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Fig. 1.3 Actual behavior of customer.

trees, other graphical procedures should be developed to simplify interpre-
tation.

1.5 Characteristics of Classification Trees

A decision tree is a classifier expressed as a recursive partition of the inst-
ance space. The decision tree consists of nodes that form a rooted tree,
meaning it is a directed tree with a node called a “root” that has no in-
coming edges. All other nodes have exactly one incoming edge. A node
with outgoing edges is referred to as an “internal” or “test” node. All other
nodes are called “leaves” (also known as “terminal” or “decision” nodes).
In the decision tree, each internal node splits the instance space into two or
more sub-spaces according to a certain discrete function of the input attri-
bute values. In the simplest and most frequent case, each test considers
a single attribute, such that the instance space is partitioned according to
the attributes value. In the case of numeric attributes, the condition refers
to a range.

Each leaf is assigned to one class representing the most appropriate tar-
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get value. Alternatively, the leaf may hold a probability vector (affinity
vector) indicating the probability of the target attribute having a certain
value. Figure 1.4 describes another example of a decision tree that reasons
whether or not a potential customer will respond to a direct mailing. Inter-
nal nodes are represented as circles, whereas leaves are denoted as triangles.
Two or more branches may grow from each internal node (i.e. not a leaf).
Each node corresponds with a certain characteristic and the branches cor-
respond with a range of values. These ranges of values must give a partition
of the set of values of the given characteristic.

Instances are classified by navigating them from the root of the tree
down to a leaf, according to the outcome of the tests along the path.
Specifically, we start with a root of a tree; we consider the characteris-
tic that corresponds to a root; and we define to which branch the observed
value of the given characteristic corresponds. Then we consider the node
in which the given branch appears. We repeat the same operations for this
node etc., until we reach a leaf.

Note that this decision tree incorporates both nominal and numeric
attributes. Given this classifier, the analyst can predict the response of a
potential customer (by sorting it down the tree), and understand the behav-
ioral characteristics of the entire potential customer population regarding
direct mailing. Each node is labeled with the attribute it tests, and its
branches are labeled with its corresponding values.

In case of numeric attributes, decision trees can be geometrically inter-
preted as a collection of hyperplanes, each orthogonal to one of the axes.

1.5.1 Tree Size

Naturally, decision makers prefer a decision tree that is not complex since
it is apt to be more comprehensible. Furthermore, according to [Breiman
et al. (1984)], tree complexity has a crucial effect on its accuracy. Usually
the tree complexity is measured by one of the following metrics: the total
number of nodes, total number of leaves, tree depth and number of attri-
butes used. Tree complexity is explicitly controlled by the stopping criteria
and the pruning method that are employed.

1.5.2 The hierarchical nature of decision trees

Another characterstic of decision trees is their hierarchical nature. Imagine
that you want to develop a medical system for diagnosing patients according
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Fig. 1.4 Decision Tree Presenting Response to Direct Mailing.

to the results of several medical tests. Based on the result of one test, the
physician can perform or order additional laboratory tests. Specifically,
Figure 1.5 illustrates the diagnosis process, using decision trees, of patients
that suffer from a certain respiratory problem. The decision tree employs
the following attributes: CT finding (CTF); X-ray finding (XRF); chest
pain type (CPT); and blood test finding (BTF). The physician will order
an X-ray, if chest pain type is “1”. However, if chest pain type is “2”, then
the phsician will not oder a X-ray but will order a blood test. Thus medical
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tests are perfomed just when needed and the total cost of medical tests is
reduced.

CPT

Type 2 Type 1

XRFBTF
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PCTF
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Fig. 1.5 Decision Tree For Medical Applications.

1.6 Relation to Rule Induction

Decision tree induction is closely related to rule induction. Each path from
the root of a decision tree to one of its leaves can be transformed into a rule
simply by conjoining the tests along the path to form the antecedent part,
and taking the leaf’s class prediction as the class value. For example, one
of the paths in Figure 1.4 can be transformed into the rule: “If customer
age is less than or equal to 30, and the gender of the customer is male —
then the customer will respond to the mail”. The resulting rule set can
then be simplified to improve its comprehensibility to a human user, and
possibly its accuracy [Quinlan (1987)].
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Chapter 2

Growing Decision Trees

2.0.1 Training Set

In a typical supervised learning scenario, a training set is given and the
goal is to form a description that can be used to predict previously unseen
examples.

The training set can be described in a variety of ways. Most frequently,
it is described as a bag instance of a certain bag schema. A bag instance
is a collection of tuples (also known as records, rows or instances) that
may contain duplicates. Each tuple is described by a vector of attribute
values. The bag schema provides the description of the attributes and their
domains. In this book, a bag schema is denoted as B(A∪y) where A denotes
the set of input attributes containing n attributes: A = {a1, . . . , ai, . . . , an}
and y represents the class variable or the target attribute.

Attributes (sometimes called field, variable or feature) are typically
one of two types: nominal (values are members of an unordered set), or
numeric (values are real numbers). When the attribute ai, it is useful to
denote its domain values by dom(ai) = {vi,1, vi,2, . . . , vi,|dom(ai)|}, where
|dom(ai)| stands for its finite cardinality. In a similar way, dom(y) =
{c1, . . . , c|dom(y)|} represents the domain of the target attribute. Numeric
attributes have infinite cardinalities.

The instance space (the set of all possible examples) is defined as a
Cartesian product of all the input attributes domains: X = dom(a1) ×
dom(a2) × . . . × dom(an). The universal instance space (or the labeled
instance space) U is defined as a Cartesian product of all input attribute
domains and the target attribute domain, i.e.: U = X × dom(y).

The training set is a bag instance consisting of a set of m tuples. For-
mally the training set is denoted as S(B) = (〈x1, y1〉, . . . , 〈xm, ym〉) where
xq ∈ X and yq ∈ dom(y).

13
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Usually, it is assumed that the training set tuples are generated ran-
domly and independently according to some fixed and unknown joint prob-
ability distribution D over U . Note that this is a generalization of the deter-
ministic case when a supervisor classifies a tuple using a function y = f(x).

This book uses the common notation of bag algebra to present pro-
jection (π) and selection (σ) of tuples ([Grumbach and Milo (1996)].
For example given the dataset S presented in Table 2.1, the expression
πa2,a3σa1=”Y es” AND a4>6S corresponds with the dataset presented in Ta-
ble 2.2.

Table 2.1 Illustration of a dataset S
with five attributes.

a1 a2 a3 a4 y

Yes 17 4 7 0
No 81 1 9 1
Yes 17 4 9 0
No 671 5 2 0
Yes 1 123 2 0
Yes 1 5 22 1
No 6 62 1 1
No 6 58 54 0

No 16 6 3 0

Table 2.2 The result of the expression
πa2,a3σa1=“Y es“ANDa4>6

S based on Ta-

ble 2.1.

a2 a3

17 4
17 4
1 5

2.0.2 Definition of the Classification Problem

The machine learning community was among the first to introduce the
problem of concept learning . Concepts are mental categories for ob-
jects, events, or ideas that have a common set of features. Acco-
rding to [Mitchell (1997)]: “each concept can be viewed as describ-
ing some subset of objects or events defined over a larger set” (e.g.,
the subset of a vehicle that constitues trucks). To learn a concept is
to infer its general definition from a set of examples. This definition
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may be either explicitly formulated or left implicit, but either way it
assigns each possible example to the concept or not. Thus, a concept can be
regarded as a function from the instance space to the Boolean set, namely:
c : X → {−1, 1}. Alternatively one can refer a concept c as a subset of X ,
namely: {x ∈ X : c(x) = 1}. A concept class C is a set of concepts.

To learn a concept is to infer its general definition from a set of examples.
This definition may be either explicitly formulated or left implicit, but
either way it assigns each possible example to the concept or not. Thus, a
concept can be formally regarded as a function from the set of all possible
examples to the Boolean set {True, False}.

Other communities, such as the KDD community prefer to deal with a
straightforward extension of concept learning, known as the classification
problem. In this case we search for a function that maps the set of all
possible examples into a predefined set of class labels which are not limited
to the Boolean set. Most frequently the goal of the classifiers inducers is
formally defined as:

Given a training set S with input attributes set A = {a1, a2, . . . , an}
and a nominal target attribute y from an unknown fixed distribution D

over the labeled instance space, the goal is to induce an optimal classifier
with minimum generalization error.

The generalization error is defined as the misclassification rate over the
distribution D. In case of the nominal attributes it can be expressed as:

ε(DT (S), D) =
∑

〈x,y〉∈U

D(x, y) · L(y, DT (S)(x)) (2.1)

where L(y, DT (S)(x) is the zero one loss function defined as:

L(y, DT (S)(x)) =
{

0 if y = DT (S)(x)
1 if y �= DT (S)(x)

(2.2)

In case of numeric attributes the sum operator is replaced with the
integration operator.

Consider the training set in Table 2.3 containing data about ten cus-
tomers. Each customer is characterized by three attributes: Age, Gender
and Last Reaction (an indication whether the customer has positively re-
sponded to the last previous direct mailing campaign). The last attribute
(“Buy”) describes whether that customer was willing to purchase a prod-
uct in the current campaign. The goal is to induce a classifier that most
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accurately classifies a potential customer to “Buyers” and “Non-Buyers” in
the current campaign, given the attributes: Age, Gender, Last Reaction.

Table 2.3 An Illustration of Direct Mailing Dataset.

Age Gender Last Reaction Buy

35 Male Yes No

26 Female No No

22 Male Yes Yes

63 Male No Yes

47 Female No No

54 Male No No

27 Female Yes Yes

38 Female No Yes

42 Female Yes Yes

19 Male No No

2.0.3 Induction Algorithms

An induction algorithm, or more concisely an inducer (also known as
learner), is an entity that obtains a training set and forms a model that
generalizes the relationship between the input attributes and the target
attribute. For example, an inducer may take as an input specific training
tuples with the corresponding class label, and produce a classifier .

The notation DT represents a decision tree inducer and DT (S) repre-
sents a classification tree which was induced by performing DT on a training
set S. Using DT (S) it is possible to predict the target value of a tuple xq.
This prediction is denoted as DT (S)(xq).

Given the long history and recent growth of the machine learning field,
it is not surprising that several mature approaches to induction are now
available to the practitioner.

2.0.4 Probability Estimation in Decision Trees

The classifier generated by the inducer can be used to classify an unseen
tuple either by explicitly assigning it to a certain class (crisp classifier) or by
providing a vector of probabilities representing the conditional probability
of the given instance to belong to each class (probabilistic classifier). Indu-
cers that can construct probabilistic classifiers are known as probabilistic
inducers. In decision trees, it is possible to estimate the conditional prob-
ability P̂DT (S)(y = cj |ai = xq,i ; i = 1, . . . , n) of an observation xq. Note
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the addition of the “hat” — ˆ — to the conditional probability estimation
is used for distinguishing it from the actual conditional probability.

In classification trees, the probability is estimated for each leaf sepa-
rately by calculating the frequency of the class among the training instances
that belong to the leaf.

Using the frequency vector as is, will typically over-estimate the proba-
bility. This can be problematic especially when a given class never occurs
in a certain leaf. In such cases we are left with a zero probability. There
are two known corrections for the simple probability estimation which avoid
this phenomenon. The following sections describe these corrections.

2.0.4.1 Laplace Correction

According to Laplace’s law of succession [Niblett (1987)], the probability of
the event y = ci where y is a random variable and ci is a possible outcome
of y which has been observed mi times out of m observations is:

mi+kpa

m+k (2.3)

where pa is an a-priori probability estimation of the event and k is the
equivalent sample size that determines the weight of the a-priori estimation
relative to the observed data. According to [Mitchell (1997)] k is called
“equivalent sample size” because it represents an augmentation of the m

actual observations by additional k virtual samples distributed according
to pa. The above ratio can be rewritten as the weighted average of the
a-priori probability and the posteriori probability (denoted as pp):

mi+k·pa

m+k

= mi

m · m
m+k + pa · k

m+k

= pp · m
m+k + pa · k

m+k =
= pp · w1 + pa · w2

(2.4)

In the case discussed here the following correction is used:

P̂Laplace(ai = xq,i |y = cj ) =

∣∣σy=cj AND ai=xq,i S
∣∣+ k · p∣∣σy=cj S

∣∣+ k
(2.5)

In order to use the above correction, the values of p and k should be se-
lected. It is possible to use p = 1/ |dom(y)| and k = |dom(y)|. [Ali and
Pazzani (1996)] suggest using k = 2 and p = 1/2 in any case even if
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|dom(y)| > 2 in order to emphasize the fact that the estimated event is al-
ways compared to the opposite event. [Kohavi et al. (1997)] suggest using
k = |dom(y)| / |S| and p = 1/ |dom(y)|.

2.0.4.2 No Match

According to [Clark and Niblett (1989)] only zero probabilities are corrected
and replaced by the following value: pa/|S|. [Kohavi et al. (1997)] suggest
using pa = 0.5. They also empirically compared the Laplace correction and
the no-match correction and indicate that there is no significant difference
between them. However, both of them are significantly better than not
performing any correction at all.

2.1 Algorithmic Framework for Decision Trees

Decision tree inducers are algorithms that automatically construct a deci-
sion tree from a given dataset. Typically the goal is to find the optimal
decision tree by minimizing the generalization error. However, other target
functions can be also defined, for instance, minimizing the number of nodes
or minimizing the average depth of the tree.

Induction of an optimal decision tree from a given data is considered to
be a difficult task. [Hancock et al. (1996)] have shown that finding a mini-
mal decision tree consistent with the training set is NP-hard while [Hyafil
and Rivest (1976)] have demonstrated that constructing a minimal binary
tree with respect to the expected number of tests required for classifying
an unseen instance is NP-complete. Even finding the minimal equivalent
decision tree for a given decision tree [Zantema and Bodlaender (2000)]
or building the optimal decision tree from decision tables is known to be
NP-hard [Naumov (1991)].

These results indicate that using optimal decision tree algorithms is
feasible only in small problems. Consequently, heuristics methods are re-
quired for solving the problem. Roughly speaking, these methods can be
divided into two groups: top-down and bottom-up with clear preference in
the literature to the first group.

There are various top-down decision trees inducers such as ID3 [Quin-
lan (1986)], C4.5 [Quinlan (1993)], CART [Breiman et al. (1984)]. Some
inducers consist of two conceptual phases: Growing and Pruning (C4.5 and
CART). Other inducers perform only the growing phase.

Figure 2.1 presents a typical pseudo code for a top-down inducing algo-
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rithm of a decision tree using growing and pruning. Note that these algo-
rithms are greedy by nature and construct the decision tree in a top-down,
recursive manner (also known as divide and conquer). In each iteration, the
algorithm considers the partition of the training set using the outcome of
discrete input attributes. The selection of the most appropriate attribute
is made according to some splitting measures. After the selection of an
appropriate split, each node further subdivides the training set into smaller
subsets, until a stopping criterion is satisfied.

2.2 Stopping Criteria

The growing phase continues until a stopping criterion is triggered. The
following conditions are common stopping rules:

(1) All instances in the training set belong to a single value of y.
(2) The maximum tree depth has been reached.
(3) The number of cases in the terminal node is less than the minimum

number of cases for parent nodes.
(4) If the node were split, the number of cases in one or more child nodes

would be less than the minimum number of cases for child nodes.
(5) The best splitting criterion is not greater than a certain threshold.
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TreeGrowing (S,A,y,SplitCriterion,StoppingCriterion)

Where:

S - Training Set

A - Input Feature Set

y - Target Feature

SplitCriterion - the method for evaluating a certain split

StoppingCriterion - the criteria to stop the growing process

Create a new tree T with a single root node.

IF StoppingCriterion(S) THEN

Mark T as a leaf with the most

common value of y in S as a label.

ELSE

∀ai ∈ A find a that obtain the best SplitCriterion(ai, S).
Label t with a

FOR each outcome vi of a:

Set Subtreei= TreeGrowing (σa=viS, A, y).
Connect the root node of tT to Subtreei with

an edge that is labelled as vi

END FOR

END IF

RETURN TreePruning (S,T,y)

TreePruning (S,T,y)

Where:

S - Training Set

y - Target Feature

T - The tree to be pruned

DO

Select a node t in T such that pruning it

maximally improve some evaluation criteria

IF t �= Ø THEN T = pruned(T, t)
UNTIL t = Ø

RETURN T

Fig. 2.1 Top-Down Algorithmic Framework for Decision Trees Induction.
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Chapter 3

Evaluation of Classification Trees

3.1 Overview

An important problem in the KDD process is the development of efficient
indicators for assessing the quality of the analysis results. In this chapter we
introduce the main concepts and quality criteria in decision trees evaluation.

Evaluating the performance of a classification tree is a fundamental as-
pect of machine learning. As stated above, the decision tree inducer receives
a training set as input and constructs a classification tree that can classify
an unseen instance. Both the classification tree and the inducer can be
evaluated using evaluation criteria. The evaluation is important for under-
standing the quality of the classification tree and for refining parameters in
the KDD iterative process

While there are several criteria for evaluating the predictive performance
of classification trees, other criteria such as the computational complexity
or the comprehensibility of the generated classifier can be important as
well.

3.2 Generalization Error

Let DT (S) represent a classification tree trained on dataset S. The gener-
alization error of DT (S) is its probability to misclassify an instance selected
according to the distribution D of the labeled instance space. The classifi-
cation accuracy of a classification tree is one minus the generalization error.
The training error is defined as the percentage of examples in the training
set correctly classified by the classification tree, formally:

21
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ε̂(DT (S), S) =
∑

〈x,y〉∈S

L (y, DT (S)(x)) (3.1)

where L(y, DT (S)(x)) is the zero-one loss function defined in Equation 2.2.
In this book, classification accuracy is the primary evaluation criterion

for experiments.
Although generalization error is a natural criterion, its actual value is

known only in rare cases (mainly synthetic cases). The reason for that is
that the distribution D of the labeled instance space is not known.

One can take the training error as an estimation of the generalization
error. However, using the training error as is will typically provide an
optimistically biased estimate, especially if the inducer over-fits the training
data. There are two main approaches for estimating the generalization
error: Theoretical and Empirical. In this book we utilize both approaches.

3.2.1 Theoretical Estimation of Generalization Error

A low training error does not guarantee low generalization error. There is
often a trade-off between the training error and the confidence assigned to
the training error as a predictor for the generalization error, measured by
the difference between the generalization and training errors. The capacity
of the inducer is a major factor in determining the degree of confidence
in the training error. In general, the capacity of an inducer indicates the
variety of classifiers it can induce. The VC-dimension presented below can
be used as a measure of the inducers capacity.

Decision trees with many nodes, relative to the size of the training
set, are likely to obtain a low training error. On the other hand, they
might just be memorizing or overfitting the patterns and hence exhibit
a poor generalization ability. In such cases, the low error is likely to be
a poor predictor of the higher generalization error. When the opposite
occurs, that is to say, when capacity is too small for the given number of
examples, inducers may underfit the data, and exhibit both poor training
and generalization error.

In “Mathematics of Generalization”, [Wolpert (1995)] discuss four the-
oretical frameworks for estimating the generalization error: PAC, VC and
Bayesian, and statistical physics. All these frameworks combine the training
error (which can be easily calculated) with some penalty function expressing
the capacity of the inducers.
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3.2.2 Empirical Estimation of Generalization Error

Another approach for estimating the generalization error is the holdout
method in which the given dataset is randomly partitioned into two sets:
training and test sets. Usually, two-thirds of the data is considered for the
training set and the remaining data are allocated to the test set. First, the
training set is used by the inducer to construct a suitable classifier and then
we measure the misclassification rate of this classifier on the test set. This
test set error usually provides a better estimation of the generalization error
than the training error. The reason for this is the fact that the training
error usually under-estimates the generalization error (due to the overfitting
phenomena). Nevertheless since only a proportion of the data is used to
derive the model, the estimate of accuracy tends to be pessimistic.

A variation of the holdout method can be used when data is limited. It
is common practice to resample the data, that is, partition the data into
training and test sets in different ways. An inducer is trained and tested for
each partition and the accuracies averaged. By doing this, a more reliable
estimate of the true generalization error of the inducer is provided.

Random subsampling and n-fold cross-validation are two common meth-
ods of resampling. In random subsampling, the data is randomly parti-
tioned several times into disjoint training and test sets. Errors obtained
from each partition are averaged. In n-fold cross-validation, the data is
randomly split into n mutually exclusive subsets of approximately equal
size. An inducer is trained and tested n times; each time it is tested on one
of the k folds and trained using the remaining n− 1 folds.

The cross-validation estimate of the generalization error is the overall
number of misclassifications divided by the number of examples in the data.
The random subsampling method has the advantage that it can be repeated
an indefinite number of times. However, a disadvantage is that the test sets
are not independently drawn with respect to the underlying distribution of
examples. Because of this, using a t-test for paired differences with random
subsampling can lead to an increased chance of type I error, i.e., identifying
a significant difference when one does not actually exist. Using a t-test on
the generalization error produced on each fold lowers the chances of type
I error but may not give a stable estimate of the generalization error. It
is common practice to repeat n-fold cross-validation n times in order to
provide a stable estimate. However, this, of course, renders the test sets
non-independent and increases the chance of type I error. Unfortunately,
there is no satisfactory solution to this problem. Alternative tests suggested
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by [Dietterich (1998)] have a low probability of type I error but a higher
chance of type II error that is, failing to identify a significant difference
when one does actually exist.

Stratification is a process often applied during random subsampling and
n-fold cross-validation. Stratification ensures that the class distribution
from the whole dataset is preserved in the training and test sets. Stratifi-
cation has been shown to help reduce the variance of the estimated error
especially for datasets with many classes.

Another cross-validation variation is the bootstraping method which is
a n-fold cross validation, with n set to the number of initial samples. It
samples the training instances uniformly with replacement and leave-one-
out. In each iteration, the classifier is trained on the set of n − 1 samples
that is randomly selected from the set of initial samples, S. The testing is
performed using the remaining subset.

3.2.3 Alternatives to the Accuracy Measure

Accuracy is not a sufficient measure for evaluating a model with an imbal-
anced distribution of the class. There are cases where the estimation of an
accuracy rate may mislead one about the quality of a derived classifier. In
such circumstances, where the dataset contains significantly more major-
ity class than minority class instances, one can always select the majority
class and obtain good accuracy performance. Therefore, in these cases, the
sensitivity and specificity measures can be used as an alternative to the
accuracy measures [Han and Kamber (2001)].

Sensitivity (also known as recall) assesses how well the classifier can
recognize positive samples and is defined as

Sensitivity =
true positive

positive
(3.2)

where true positive corresponds to the number of the true positive samples
and positive is the number of positive samples.

Specificity measures how well the classifier can recognize negative sam-
ples. It is defined as

Specificity =
true negative

negative
(3.3)
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where true negative corresponds to the number of the true negative exam-
ples and negative the number of samples that is negative.

Another well-known performance measure is precision. Precision mea-
sures how many examples classified as “positive” class are indeed “positive”.
This measure is useful for evaluating crisp classifiers that are used to classify
an entire dataset. Formally:

Precision =
true positive

true positive + false positive
(3.4)

Based on the above definitions the accuracy can be defined as a function
of sensitivity and specificity:

Accuracy = Sensitivity · positive
positive+negative +

Specificity · negative
positive+negative

(3.5)

3.2.4 The F-Measure

Usually there is a tradeoff between the precision and recall measures. Try-
ing to improve one measure often results in a deterioration of the second
measure. Figure 3.1 illustrates a typical precision-recall graph. This two-
dimensional graph is closely related to the well-known receiver operating
characteristics (ROC) graphs in which the true positive rate (recall) is plot-
ted on the Y-axis and the false positive rate is plotted on the X-axis [Ferri
et al. (2002)]. However unlike the precision-recall graph, the ROC diagram
is always convex.

 
Precision 

Recall 

Fig. 3.1 A Typical precision-recall diagram.

Given a probabilistic classifier, this trade-off graph may be obtained by
setting different threshold values. In a binary classification problem, the
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classifier prefers the class “not pass” over the class “pass” if the probability
for “not pass” is at least 0.5. However, by setting a different threshold
value other than 0.5, the trade-off graph can be obtained.

The problem here is described as multi-criteria decision-making
(MCDM). The simplest and the most commonly used method to solve
MCDM is the weighted sum model. This technique combines the crite-
ria into a single value by using appropriate weighting. The basic princi-
ple behind this technique is the additive utility assumption. The criteria
measures must be numerical, comparable and expressed in the same unit.
Nevertheless, in the case discussed here, the arithmetic mean can mislead.
Instead, the harmonic mean provides a better notion of “average”. More
specifically, this measure is defined as [Van Rijsbergen (1979)]:

F =
2 · P ·R
P + R

(3.6)

The intuition behind the F-measure can be explained using Figure 3.2.
Figure 3.2 presents a diagram of a common situation in which the right
ellipsoid represents the set of all defective batches and the left ellipsoid
represents the set of all batches that were classified as defective by a certain
classifier. The intersection of these sets represents the true positive (TP),
while the remaining parts represent false negative (FN) and false positive
(FP). An intuitive way of measuring the adequacy of a certain classifier
is to measure to what extent the two sets match, namely to measure the
size of the unshaded area. Since the absolute size is not meaningful, it
should be normalized by calculating the proportional area. This value is
the F-measure:

Proportion of unshaded area =
2·(True Positive)

False Positive + False Negative + 2·(True Positve) = F
(3.7)

The F-measure can have values between 0 to 1. It obtains its highest
value when the two sets presented in Figure 3.2 are identical and it obtains
its lowest value when the two sets are mutually exclusive. Note that each
point on the precision-recall curve may have a different F-measure. Fur-
thermore, different classifiers have different precision-recall graphs.



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

Evaluation of Classification Trees 27

 

 

 

Fig. 3.2 A graphic explanation of the F-measure.

3.2.5 Confusion Matrix

The confusion matrix is used as an indication of the properties of a classi-
fication (discriminant) rule. It contains the number of elements that have
been correctly or incorrectly classified for each class. We can see on its main
diagonal the number of observations that have been correctly classified for
each class; the off-diagonal elements indicate the number of observations
that have been incorrectly classified. One benefit of a confusion matrix is
that it is easy to see if the system is confusing two classes (i.e. commonly
mislabelling one as an other).

For every instance in the test set, we compare the actual class to the
class that was assigned by the trained classifier. A positive (negative)
example that is correctly classified by the classifier is called a true positive
(true negative); a positive (negative) example that is incorrectly classified
is called a false negative (false positive). These numbers can be organized
in a confusion matrix shown in Table 3.1.

Table 3.1 A confusion matrix

Predicted
negative

Predicted
positive

Negative
Examples

A B

Positive
Examples

C D

Based on the values in Table 3.1, one can calculate all the measures
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defined above:

• Accuracy is: (a+d)/(a+b+c+d)
• Misclassification rate is: (b+c)/(a+b+c+d)
• Precision is: d/(b + d)
• True positive rate (Recall) is: d/(c + d)
• False positive rate is: b/(a + b)
• True negative rate (Specificity) is: a/(a + b)
• False negative rate is: c/(c + d)

3.2.6 Classifier Evaluation under Limited Resources

The above mentioned evaluation measures are insufficient when probabilis-
tic classifiers are used for choosing objects to be included in a limited quota.
This is a common situation that arises in real-life applications due to re-
source limitations that require cost-benefit considerations. Resource limita-
tions prevent the organization from choosing all the instances. For example,
in direct marketing applications, instead of mailing everybody on the list,
the marketing efforts must implement a limited quota, i.e., target the mail-
ing audience with the highest probability of positively responding to the
marketing offer without exceeding the marketing budget.

Another example deals with a security officer in an air terminal. Follow-
ing September 11, the security officer needs to search all passengers who
may be carrying dangerous instruments (such as scissors, penknives and
shaving blades). For this purpose the officer is using a classifier that is ca-
pable of classifying each passenger either as class A, which means, “Carry
dangerous instruments” or as class B, “Safe”.

Suppose that searching a passenger is a time-consuming task and that
the security officer is capable of checking only 20 passengers prior to each
flight. If the classifier has labeled exactly 20 passengers as class A, then the
officer will check all these passengers. However if the classifier has labeled
more than 20 passengers as class A, then the officer is required to decide
which class A passenger should be ignored. On the other hand, if less than
20 people were classified as A, the officer, who must work constantly, has
to decide who to check from those classified as B after he has finished with
the class A passengers.

There also cases in which a quota limitation is known to exist but its
size is not known in advance. Nevertheless, the decision maker would like
to evaluate the expected performance of the classifier. Such cases occur,
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for example, in some countries regarding the number of undergraduate stu-
dents that can be accepted to a certain department in a state university.
The actual quota for a given year is set according to different parameters
including governmental budget. In this case, the decision maker would like
to evaluate several classifiers for selecting the applicants while not knowing
the actual quota size. Finding the most appropriate classifier in advance
is important because the chosen classifier can dictate what the important
attributes are, i.e. the information that the applicant should provide the
registration and admission unit.

In probabilistic classifiers, the above mentioned definitions of precision
and recall can be extended and defined as a function of a probability thresh-
old τ . If we evaluate a classifier based on a given a test set which consists
of n instances denoted as (< x1, y1 >, ..., < xn, yn >) such that xi repre-
sents the input features vector of instance i and yi represents its true class
(“positive” or “negative”), then:

Precision (τ) =

∣∣∣{< xi, yi >: P̂DT (pos |xi ) > τ, yi = pos}
∣∣∣∣∣∣{< xi, yi >: P̂DT (pos |xi ) > τ

∣∣∣ (3.8)

Recall (τ) =

∣∣∣{< xi, yi >: P̂DT (pos |xi ) > τ, yi = pos}
∣∣∣

|{< xi, yi >: yi = pos}| (3.9)

where DT represents a probabilistic classifier that is used to estimate the
conditional likelihood of an observation xi to “positive” which is denoted as
P̂DT (pos |xi ). The typical threshold value of 0.5 means that the predicted
probability of “positive” must be higher than 0.5 for the instance to be
predicted as “positive”. By changing the value of τ,one can control the
number of instances that are classified as “positive”. Thus, the τ value can
be tuned to the required quota size. Nevertheless because there might be
several instances with the same conditional probability, the quota size is
not necessarily incremented by one.

The above discussion is based on the assumption that the classifica-
tion problem is binary. In cases where there are more than two classes,
adaptation could be easily made by comparing one class to all the others.
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3.2.6.1 ROC Curves

Another measure is the receiver operating characteristic (ROC) curves
which illustrate the tradeoff between true positive to false positive rates
[Provost and Fawcett (1998)]. Figure 3.3 illustrates a ROC curve in which
the X-axis represents a false positive rate and the Y-axis represents a true
positive rate. The ideal point on the ROC curve would be (0,100), that is,
all positive examples are classified correctly and no negative examples are
misclassified as positive.
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Fig. 3.3 A Typical ROC curve.

The ROC convex hull can also be used as a robust method of identi-
fying potentially optimal classifiers [Provost and Fawcett (2001)]. Given
a family of ROC curves, the ROC convex hull can include points that are
more towards the north-west frontier of the ROC space. If a line passes
through a point on the convex hull, then there is no other line with the same
slope passing through another point with a larger true positive (TP) inter-
cept. Thus, the classifier at that point is optimal under any distribution
assumptions in tandem with that slope.

3.2.6.2 Hit Rate Curve

The hit rate curve presents the hit ratio as a function of the quota size[An
and Wang (2001)]. Hit rate is calculated by counting the actual positive
labeled instances inside a determined quota. More precisely for a quota of
size j and a ranked set of instances, hit rate is defined as:
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HitRate(j) =

j∑
k=1

t[k]

j
(3.10)

where t[k] represents the truly expected outcome of the instance located in
the k’th position when the instances are sorted according to their condi-
tional probability for “positive” by descending order. Note that if the k’th
position can be uniquely defined (i.e. there is exactly one instance that can
be located in this position) then t[k] is either 0 or 1 depending on the actual
outcome of this specific instance. Nevertheless if the k’th position is not
uniquely defined and there are mk,1 instances that can be located in this
position, and mk,2 of which are truly positive, then:

t[k] = mk,2/mk,1
(3.11)

The sum of t[k] over the entire test set is equal to the number of instances
that are labeled “positive”. Moreover Hit − Rate(j) ≈ Precision(p[j])
where p[j] denotes the j’th order of P̂I(pos |x1 ), ..., P̂I(pos |xm ). The values
are strictly equal when the value of j ’th is uniquely defined.

It should be noted that the hit rate measure was originally defined with-
out any reference to the uniqueness of a certain position. However, there
are some classifiers that tend to provide the same conditional probability
to several different instances. For instance, in a decision tree, any instances
in the test set that belongs to the same leaf get the same conditional prob-
ability. Thus, the proposed correction is required in those cases. Figure 3.4
illustrates a hit-curve.
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Fig. 3.4 A typical hit curve.
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3.2.6.3 Qrecall (Quota Recall)

The hit-rate measure, presented above, is the “precision” equivalent for
quota-limited problems. Similarly, we suggest the Qrecall (for quota recall)
to be the “recall” equivalent for quota-limited problems. The Qrecall for
a certain position in a ranked list is calculated by dividing the number of
positive instances, from the head of the list until that position, by the total
positive instances in the entire dataset. Thus, the Qrecall for a quota of j

is defined as:

Qrecall(j) =

j∑
k=1

t[k]

n+
(3.12)

The denominator stands for the total number of instances that are clas-
sified as positive in the entire dataset. Formally it can be calculated as:

n+ = |{< xi, yi >: yi = pos}| (3.13)

3.2.6.4 Lift Curve

A popular method of evaluating probabilistic models is lift [Coppock
(2002)]. After a ranked test set is divided into several portions (usually
deciles), lift is calculated as follows: the ratio of really positive instances in
a specific decile is divided by the average ratio of really positive instances in
the population. Regardless of how the test set is divided, a good model is
achieved if the lift decreases when proceeding to the bottom of the scoring
list. A good model would present a lift greater than 1 in the top deciles and
a lift smaller than 1 in the last deciles. Figure 3.5 illustrates a lift chart for
a typical model prediction. A comparison between models can be done by
comparing the lift of the top portions, depending on the resources available
and cost/benefit considerations.

3.2.6.5 Pearson Correlation Coefficient

There are also some statistical measures that may be used as performance
evaluators of models. These measures are well-known and can be found
in many statistical books. In this section we examine the Pearson correla-
tion coefficient. This measure can be used to find the correlation between
the ordered estimated conditional probability (p[k]) and the ordered actual
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Fig. 3.5 A typical lift chart.

expected outcome (t[k]). A Pearson correlation coefficient can have any
value between -1 and 1 where the value 1 represents the strongest positive
correlation. It should be noticed that this measure take into account not
only the ordinal place of an instance but also its value (i.e. the estimated
probability attached to it). The Pearson correlation coefficient for two ran-
dom variables is calculated by dividing the co-variance by the product of
both standard deviations. In this case, the standard deviations of the two
variables assuming a quota size of j are:

σp(j) =

√√√√1
j

j∑
i=1

(
p[i] − p̄(j)

)
; σt(j) =

√√√√1
j

j∑
i=1

(
t[i] − t̄(j)

)
(3.14)

where p̄(j), t̄(j) represent the average of p[i]’s and t[i]’s respectively:

p̄(j) =

j∑
i=1

p[i]

j
; t̄(j) =

j∑
i=1

t[i]

j
= HitRate(j) (3.15)

The co-variance is calculated as follows:

Covp,t(j) =
1
j

j∑
i−1

(
p[i] − p̄(j)

)(
t[i] − t̄(j)

)
(3.16)

Thus, the Pearson correlation coefficient for a quota j, is:
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ρp,t(j) =
Covp,t(j)

σp(j) · σt(j)
(3.17)

3.2.6.6 Area Under Curve (AUC)

Evaluating a probabilistic model without using a specific fixed quota is not
a trivial task. Using continuous measures like hit curves, ROC curves and
lift charts, mentioned previously, is problematic. Such measures can give
a definite answer to the question “Which is the best model?” only if one
model dominates in the curve space, meaning that the curves of all the
other model are beneath it or equal to it over the entire chart space. If a
dominating model does not exist, then there is no answer to that question,
using only the continuous measures mentioned above.. Complete order
demands no intersections of the curves. Of course, in practice there is
almost never one dominating model. The best answer that can be obtained
is in regard to which areas one model outperforms the others. As shown in
Figure 3.6, every model gets different values in different areas. If a complete
order of model performance is needed, another measure should be used.
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Fig. 3.6 Areas of dominancy. A ROC curve is an example of a measure that gives
areas of dominancy and not a complete order of the models. In this example the equally

dashed line model is the best for f.p (false positive) < 0.2. The full line model is the
best for 0.2 < f.p <0.4. The dotted line model is best for 0.4 < f.p < 0.9 and from 0.9
to 1 again the dashed line model is the best.

Area under the ROC curve (AUC) is a useful metric for classifier per-
formance since it is independent of the decision criterion selected and prior
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probabilities. The AUC comparison can establish a dominance relationship
between classifiers. If the ROC curves are intersecting, the total AUC is
an average comparison between models [Lee (2000)]. The bigger it is, the
better the model is. As opposed to other measures, the area under the
ROC curve (AUC) does not depend on the imbalance of the training set
[Kolcz (2003)]. Thus, the comparison of the AUC of two classifiers is fairer
and more informative than comparing their misclassification rates.

3.2.6.7 Average Hit Rate

The average hit rate is a weighted average of all hit-rate values. If the
model is optimal, then all the really positive instances are located in the
head of the ranked list, and the value of the average hit rate is 1. The use of
this measure fits an organization that needs to minimize type II statistical
error (namely, to include a certain object in the quota although in fact this
object will be labeled as “negative”). Formally the Average Hit Rate for
binary classification problems is defined as:

AverageHitRate =

n∑
j=1

t[j] ·HitRate(j)

n+
(3.18)

where t[j] is defined as in Equation 4 and is used as a weighting factor. Note
that the average hit rate ignores all hit rate values on unique positions that
are actually labeled as “negative” class (because t[j]=0 in these cases).

3.2.6.8 Average Qrecall

Average Qrecall is the average of all the Qrecalls which extends from the
position that is equal to the number of positive instances in the test set
to the bottom of the list. Average Qrecall fits an organization that needs
to minimize type I statistical error (namely, not including a certain object
in the quota although in fact this object will be labeled as “positive”).
Formally, average Qrecall is defined as:

n∑
j=n+

Qrecall(j)

n− (n+ − 1)
(3.19)

where n is the total number of instances and n+ is defined in Equa-
tion (3.13).
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Table 3.2 illustrates the calculation of average Qrecall and average hit-
rate for a dataset of ten instances. The table presents a list of instances
in descending order according to their predicted conditional probability to
be classified as “positive”. Because all probabilities are unique, the third
column (t[k]) indicates the actual class (“1” represent “positive” and “0”
represents “negative”). The average values are simple algebraic averages of
the highlighted cells.

Table 3.2 An example for calculating Average Qrecall and Average
Hit-rate

Place in
list (j)

Positive
proba-
bility

t[k] Qrecall Hit rate

1 0.45 1 0.25 1

2 0.34 0 0.25 0.5

3 0.32 1 0.5 0.667

4 0.26 1 0.75 0.75

5 0.15 0 0.75 0.6

6 0.14 0 0.75 0.5

7 0.09 1 1 0.571

8 0.07 0 1 0.5

9 0.06 0 1 0.444

10 0.03 0 1 0.4

Average: 0.893 0.747

Note that both average Qrecall and average hit rate get the value 1 in
an optimum classification, where all the positive instances are located at
the head of the list. This case is illustrated in Table 3.3. A summary of
the key differences are provided in Table 3.4.

3.2.6.9 Potential Extract Measure (PEM)

To better understand the behavior of Qrecall curves, consider the cases of
random prediction and optimum prediction.

Suppose no learning process was applied on the data and the list pro-
duced as a prediction would be the test set in its original (random) order.
On the assumption that positive instances are distributed uniformly in the
population, then a quota of random size contains a number of positive inst-
ances that are proportional to the a-priori proportion of positive instances
in the population. Thus, a Qrecall curve that describes a uniform distribu-



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

Evaluation of Classification Trees 37

Table 3.3 Qrecall and Hit-rate in an optimum prediction

Place in
list (j)

Positive
proba-
bility

t[k] Qrecall Hit rate

1 0.45 1 0.25 1

2 0.34 1 0. 5 1

3 0.32 1 0.75 1

4 0.26 1 1 1

5 0.15 0 1 0.8

6 0.14 0 1 0.667

7 0.09 0 1 0.571

8 0.07 0 1 0.5

9 0.06 0 1 0.444

10 0.03 0 1 0.4

Average: 1 1

Table 3.4 Characteristics of Qrecall and Hit-rate

Parameter Hit-rate Qrecall

Function increas-
ing/decreasing

Non monotonic Monotonically in-
creasing

End point Proportion of posi-
tive samples in the
set

1

Sensitivity of the
measures value to
positive instances

Very sensitive to
positive instances
at the top of the
list. Less sensitive
on going down to
the bottom of the
list.

Same sensitivity to
positive instances
in all places in the
list.

Effect of negative
class on the mea-
sure

A neg-
ative instance af-
fects the measure

and cause its value
to decrease.

A negative inst-
ance does not af-
fect the measure.

Range 0≤ Hit-rate ≤1 0≤ Qrecall ≤1

tion (which can be considered as a model that predicts as well as a random
guess, without any learning) is a linear line (or semi-linear because values
are discrete) which starts at 0 (for zero quota size) and ends in 1.

Suppose now that a model gave an optimum prediction, meaning that
all positive instances are located at the head of the list and below them, all
the negative instances. In this case, the Qrecall curve climbs linearly until



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

38 Data Mining with Decision Trees: Theory and Applications

a value of 1 is achieved at point n+ (n+ = number of positive samples).
From that point any quota that has a size bigger than n+, fully extracts
test set potential and the value 1 is kept until the end of the list.

Note that a “good model”, which outperforms random classification,
though not an optimum one, will fall “on average” between these two curves.
It may drop sometimes below the random curve but generally, more area is
delineated between the “good model” curve and the random curve, above
the latter than below it. If the opposite is true then the model is a “bad
model” that does worse than a random guess.

The last observation leads us to consider a measure that evaluates the
performance of a model by summing the areas delineated between the Qre-
call curve of the examined model and the Qrecall curve of a random model
(which is linear). Areas above the linear curve are added and areas be-
low the linear curve are subtracted. The areas themselves are calculated
by subtracting the Qrecall of a random classification from the Qrecall of
the model’s classification in every point as shown in Figure 3.7. The ar-
eas where the model performed better than a random guess increase the
measure’s value while the areas where the model performed worse than a
random guess decrease it. If the last total computed area is divided in the
area delineated between the optimum model Qrecall curve and the random
model (linear) Qrecall curve, then it reaches the extent to which the poten-
tial is extracted, independently of the number of instances in the dataset.

Formally, the PEM measure is calculated as:

PEM =
S1 − S2

S3
(3.20)

where S1 is the area delimited by the Qrecall curve of the examined model
above the Qrecall curve of a random model; S2 is the area delimited by the
Qrecall curve of the examined model under the Qrecall curve of a random
model; and S3 is the area delimited by the optimal Qrecall curve and the
curve of the random model. The division in S3 is required in order to
normalize the measure, thus datasets of different size can be compared. In
this way, if the model is optimal, then PEM gets the value 1. If the model
is as good as a random choice, then the PEM gets the value 0. If it gives
the worst possible result (that is to say, it puts the positive samples at the
bottom of the list), then its PEM is -1. Based on the notations defined
above, the PEM can be formulated as:
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Fig. 3.7 A qualitative representation of PEM.

PEM =
S1 − S2

S3
=

n∑
j=1

(
qrecall(j)− j

n

)
n+∑
j=1

(
j

n+

)
+ n− −

n∑
j=1

(
j
n

) (3.21)

=

n∑
j=1

(qrecall(j))− (n+1)
2

(n++1)
2 + n− − (n+1)

2

=

n∑
j=1

(qrecall(j))− (n+1)
2

n−
2

(3.22)

where n− denotes the number of instances that are actually classified as
“negative”. Table 3.5 illustrates the calculation of PEM for the instances
in Table 3.2. Note that the random Qrecall does not represent a certain
realization but the expected values. The optimal qrecall is calculated as if
the “positive” instances have been located in the top of the list.

Note that the PEM somewhat resembles the Gini index produced from
Lorentz curves which appear in economics when dealing with the distribu-
tion of income. Indeed, this measure indicates the difference between the
distribution of positive samples in a prediction and the uniform distribu-
tion. Note also that this measure gives an indication of the total lift of
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Table 3.5 An example for calculating PEM for instances of Table 3.2.

Place
in
list

Success
probability

t[k] Model
Qrecall

Random
Qrecall

Optimal
Qrecall

S1 S2 S3

1 0.45 1 0.25 0.1 0.25 0.15 0 0.15

2 0.34 0 0.25 0.2 0.5 0.05 0 0.3

3 0.32 1 0.5 0.3 0.75 0.2 0 0.45

4 0.26 1 0.75 0.4 1 0.35 0 0.6

5 0.15 0 0.75 0.5 1 0.25 0 0.5

6 0.14 0 0.75 0.6 1 0.15 0 0.4

7 0.09 1 1 0.7 1 0.3 0 0.3

8 0.07 0 1 0.8 1 0.2 0 0.2

9 0.06 0 1 0.9 1 0.1 0 0.1

10 0.03 0 1 1 1 0 0 0

Total 1.75 0 3

the model at every point. In every quota size, the difference between the
Qrecall of the model and the Qrecall of a random model expresses the lift
in extracting the potential of the test set due to the use in the model (for
good or for bad).

3.2.7 Which Decision Tree Classifier is Better?

Below we discuss some of the most common statistical methods proposed
[Dietterich (1998)] for answering the following question: Given two indu-
cers A and B and a dataset S, which inducer will produce more accurate
classifiers when trained on datasets of the same size?

3.2.7.1 McNemar’s Test

Let S be the available set of data, which is divided into a training set R

and a test set T . Then we consider two inducers A and B trained on the
training set and the result is two classifiers. These classifiers are tested on
T and for each example x ∈ T we record how it was classified. Thus, the
contingency table presented in Table 3.6 is constructed.

Table 3.6 McNemar’s test: contingency table

Number of examples misclassified Number of examples misclassified by

by both classifiers (n00) f̂A but not by f̂B(n01)

Number of examples misclassified Number of examples misclassified

by f̂B but not by f̂A(n10) neither by f̂A nor by f̂B(n11)
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The two inducers should have the same error rate under the null hy-
pothesis H0. McNemar’s test is based on a χ2 test for goodness-of-fit that
compares the distribution of counts expected under null hypothesis to the
observed counts. The expected counts under Ho are presented in Table 3.7.

Table 3.7 Expected counts under Ho

n00 (n01 + n10)/2)

(n01 + n10)/2) n11)

The following statistic, s, is distributed as χ2 with 1 degree of freedom.
It incorporates a “continuity correction” term (of -1 in the numerator) to
account for the fact that the statistic is discrete while the χ2 distribution
is continuous:

s =
(|n10 − n01| − 1)2

n10 + n01
(3.23)

According to the probabilistic theory [Athanasopoulos, 1991], if the null
hypothesis is correct, the probability that the value of the statistic, s, is
greater than χ2

1,0.95 is less than 0.05, i.e. P (|s| > χ2
1,0.95) < 0.05. Then, to

compare the inducers A and B, the induced classifiers f̂A and f̂B are tested
on T and the value of s is estimated as described above. Then if |s| > χ2

1,0.95,
the null hypothesis could be rejected in favor of the hypothesis that the two
inducers have different performance when trained on the particular training
set R.

The shortcomings of this test are:

(1) It does not directly measure variability due to the choice of the train-
ing set or the internal randomness of the inducer. The inducers are
compared using a single training set R. Thus McNemar’s test should
be only applied if we consider that the sources of variability are small.

(2) It compares the performance of the inducers on training sets, which
are substantially smaller than the size of the whole dataset. Hence we
must assume that the relative difference observed on training sets will
still hold for training sets of size equal to the whole dataset.

3.2.7.2 A Test for the Difference of Two Proportions

This statistical test is based on measuring the difference between the error
rates of algorithms A and B [Snedecor and Cochran (1989)]. More specifi-
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cally, let pA = (n00 +n01)/n be the proportion of test examples incorrectly
classified by algorithm A and let pB = (n00 + n10)/n be the proportion
of test examples incorrectly classified by algorithm B. The assumption un-
derlying this statistical test is that when algorithm A classifies an example
x from the test set T, the probability of misclassification is pA. Then the
number of misclassifications of n test examples is a binomial random vari-
able with mean npA and variance pA(1− pA)n.

The binomial distribution can be well approximated by a normal distri-
bution for reasonable values of n. The difference between two independent
normally distributed random variables is itself normally distributed. Thus,
the quantity pA − pB can be viewed as normally distributed if we assume
that the measured error rates pA and pB are independent. Under the null
hypothesis, Ho, the quantity pA − pB has a mean of zero and a standard
deviation error of

se =

√
2p ·

(
1− pA + pB

2

)
/n (3.24)

where n is the number of test examples.
Based on the above analysis, we obtain the statistic:

z =
pA − pB√
2p(1− p)/n

(3.25)

which has a standard normal distribution. According to the probabilistic
theory, if the z value is greater than Z0.975, the probability of incorrectly
rejecting the null hypothesis is less than 0.05. Thus, if |z| > Z0.975 = 1.96,
the null hypothesis could be rejected in favor of the hypothesis that the
two algorithms have different performances. Two of the most important
problems with this statistic are:

(1) The probabilities pA and pB are measured on the same test set and
thus they are not independent.

(2) The test does not measure variation due to the choice of the training
set or the internal variation of the learning algorithm. Also it measures
the performance of the algorithms on training sets of a size significantly
smaller than the whole dataset.
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3.2.7.3 The Resampled Paired t Test

The resampled paired t test is the most popular in machine learning. Usu-
ally, there are a series of 30 trials in the test. In each trial, the available
sample S is randomly divided into a training set R (it is typically two thirds
of the data) and a test set T . The algorithms A and B are both trained
on R and the resulting classifiers are tested on T . Let p

(i)
A and p

(i)
B be

the observed proportions of test examples misclassified by algorithm A and
B respectively during the i-th trial. If we assume that the 30 differences
p(i) = p

(i)
A −p

(i)
B were drawn independently from a normal distribution, then

we can apply Student’s t test by computing the statistic:

t =
p̄ · √n√∑
n
i=1(p

(i)−p̄)2

n−1

(3.26)

where p̄ = 1
n ·
∑n

i=1 p(i). Under the null hypothesis, this statistic has a
t distribution with n − 1 degrees of freedom. Then for 30 trials, the null
hypothesis could be rejected if |t| > t29,0.975 = 2.045. The main drawbacks
of this approach are:

(1) Since p
(i)
A and p

(i)
B are not independent, the difference p(i) will not have

a normal distribution.
(2) The p(i)’s are not independent, because the test and training sets in

the trials overlap.

3.2.7.4 The k-fold Cross-validated Paired t Test

This approach is similar to the resampled paired t test except that instead of
constructing each pair of training and test sets by randomly dividing S, the
dataset is randomly divided into k disjoint sets of equal size, T1, T2, . . . , Tk.
Then k trials are conducted. In each trial, the test set is Ti and the training
set is the union of all of the others Tj, j �= i. The t statistic is computed as
described in Section 3.2.7.3. The advantage of this approach is that each
test set is independent of the others. However, there is the problem that
the training sets overlap. This overlap may prevent this statistical test
from obtaining a good estimation of the amount of variation that would
be observed if each training set were completely independent of the others
training sets.
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3.3 Computational Complexity

Another useful criterion for comparing inducers and classifiers is their com-
putational complexity. Strictly speaking computational complexity is the
amount of CPU consumed by each inducer. It is convenient to differentiate
between three metrics of computational complexity:

• Computational complexity for generating a new classifier: This is the
most important metric, especially when there is a need to scale the
data mining algorithm to massive datasets. Because most of the algo-
rithms have computational complexity, which is worse than linear in
the numbers of tuples, mining massive datasets might be prohibitively
expensive.
• Computational complexity for updating a classifier: Given new data,

what is the computational complexity required for updating the current
classifier such that the new classifier reflects the new data?
• Computational complexity for classifying a new instance: Generally

this type of metric is neglected because it is relatively small. However,
in certain methods (like k-nearest neighborhood) or in certain real-time
applications (like anti-missiles applications), this type can be critical.

3.4 Comprehensibility

Comprehensibility criterion (also known as interpretability) refers to how
well humans grasp the induced classifier. While the generalization error
measures how the classifier fits the data, comprehensibility measures the
“mental fit” of that classifier.

Many techniques, like neural networks or support vector machines
(SVM), are designed solely to achieve accuracy. However, as their classifiers
are represented using large assemblages of real valued parameters, they are
also difficult to understand and are referred to as black-box models.

However it is often important for the researcher to be able to inspect
an induced classifier. For such domains as medical diagnosis, users must
understand how the system makes its decisions in order to be confident of
the outcome. Since data mining can also play an important role in the
process of scientific discovery, a system may discover salient features in the
input data whose importance was not previously recognized. If the repre-
sentations formed by the inducer are comprehensible, then these discoveries
can be made accessible to human review [Hunter and Klein (1993)].
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Comprehensibility can vary between different classifiers created by the
same inducer. For instance, in the case of decision trees, the size (number
of nodes) of the induced trees is also important. Smaller trees are preferred
because they are easier to interpret. There also other reasons for preferring
smaller decision trees. According to a fundamental principle in science,
known as the Occam’s razor, when searching for the explanation of any
phenomenon, one should make as few assumptions as possible, and elim-
inating those that make no difference in the observable predictions of the
explanatory hypothesis. The implication in regard to decision trees is that
the tree which can be defined as the smallest decision tree that is consistent
with the training set is the one that is most likely to classify unseen inst-
ances correctly. However, this is only a rule of thumb; in some pathologic
cases a large and unbalanced tree can still be easily interpreted [Buja and
Lee (2001)]. Moreover the problem of finding the smallest consistent tree
is known to be NP-complete [Murphy and McCraw (1991)].

As the reader can see, the accuracy and complexity factors can be quan-
titatively estimated; the comprehensibility is more subjective.

3.5 Scalability to Large Datasets

Scalability refers to the ability of the method to construct the classification
model efficiently given large amounts of data. Classical induction algo-
rithms have been applied with practical success in many relatively simple
and small-scale problems. However, trying to discover knowledge in real
life and large databases introduces time and memory problems.

As large databases have become the norm in many fields (including
astronomy, molecular biology, finance, marketing, health care, and many
others), the use of data mining to discover patterns in them has become
a potentially very productive enterprise. Many companies are staking a
large part of their future on these “data mining” applications, and looking
to the research community for solutions to the fundamental problems they
encounter.

While a very large amount of available data used to be a dream of any
data analyst, nowadays the synonym for “very large” has become “ter-
abyte”, a hardly imaginable volume of information. Information-intensive
organizations (like telecom companies and banks) are supposed to accumu-
late several terabytes of raw data every one to two years.

However, the availability of an electronic data repository (in its en-
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hanced form known as a “data warehouse”) has caused a number of pre-
viously unknown problems, which, if ignored, may turn the task of effi-
cient data mining into mission impossible. Managing and analyzing huge
data warehouses requires special and very expensive hardware and soft-
ware, which often causes a company to exploit only a small part of the
stored data.

According to [Fayyad et al. (1996)] the explicit challenges for the data
mining research community is to develop methods that facilitate the use of
data mining algorithms for real-world databases. One of the characteristics
of a real-world databases is high volume data.

Huge databases pose several challenges:

• Computing complexity: Since most induction algorithms have a com-
putational complexity that is greater than linear in the number of attri-
butes or tuples, the execution time needed to process such databases
might become an important issue.
• Poor classification accuracy due to difficulties in finding the correct

classifier. Large databases increase the size of the search space, and
thus it increases the chance that the inducer will select an over fitted
classifier that is not valid in general.
• Storage problems: In most machine learning algorithms, the entire

training set should be read from the secondary storage (such as mag-
netic storage) into the computer’s primary storage (main memory) be-
fore the induction process begins. This causes problems since the main
memory’s capability is much smaller than the capability of magnetic
disks.

The difficulties in implementing classification algorithms as-is on high vol-
ume databases derives from the increase in the number of records/instances
in the database and from the increase in the number of attributes/features
in each instance (high dimensionality).

Approaches for dealing with a high number of records include:

• Sampling methods — statisticians are selecting records from a popula-
tion by different sampling techniques.
• Aggregation — reduces the number of records either by treating a group

of records as one, or by ignoring subsets of “unimportant” records.
• Massively parallel processing — exploiting parallel technology — to

simultaneously solve various aspects of the problem.
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• Efficient storage methods — enabling the algorithm to handle many
records. For instance [Shafer et al. (1996)] presented the SPRINT which
constructs an attribute list data structure.
• Reducing the algorithm’s search space — For instance the PUBLIC

algorithm [Rastogi and Shim (2000)] integrates the growing and prun-
ing of decision trees by using MDL (Minimum Description Length)
approach in order to reduce the computational complexity.

3.6 Robustness

The ability of the model to handle noise or data with missing values and
make correct predictions is called robustness. Different decision trees algo-
rithms have different robustness levels. In order to estimate the robustness
of a classification tree, it is common to train the tree on a clean training set
and then train a different tree on a noisy training set. The noisy training
set is usually the clean training set to which some artificial noisy instances
have been added. The robustness level is measured as the difference in the
accuracy of these two situations.

3.7 Stability

Formally, stability of a classification algorithm is defined as the degree to
which an algorithm generates repeatable results, given different batches
of data from the same process. In mathematical terms, stability is the
expected agreement between two models on a random sample of the origi-
nal data, where agreement on a specific example means that both models
assign it to the same class. The instability problem raises questions about
the validity of a particular tree provided as an output of a decision-tree
algorithm. The users view the learning algorithm as an oracle. Obviously,
it is difficult to trust an oracle that says something radically different each
time you make a slight change in the data.

Existing methods of constructing decision trees from data suffer from
a major problem of instability. The symptoms of instability include varia-
tions in the predictive accuracy of the model and in the model’s topology.
Instability can be revealed not only by using disjoint sets of data, but even
by replacing a small portion of training cases, like in the cross-validation
procedure. If an algorithm is unstable, the cross-validation results become
estimators with high variance which means that an algorithm fails to make
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a clear distinction between persistent and random patterns in the data. As
we will see below, certain type of decision trees can be used to solve the
instability problem [Last et al. (2002)].

3.8 Interestingness Measures

The number of classification patterns generated could be very large and it
is possible that different approaches result in different sets of patterns. The
patterns extracted during the classification process could be represented in
the form of rules, known as classification rules. It is important to evalu-
ate the discovered patterns identifying the ones that are valid and provide
new knowledge. Techniques that aim at this goal are broadly referred to
as interestingness measures and the interestingness of the patterns that are
discovered by a classification approach may also be considered as another
quality criterion. Some representative measures [Hilderman and Hamilton,
1999] for ranking the usefulness and utility of discovered classification pat-
terns (each path from the root to the leaf represents a different pattern)
are:

• Rule-Interest Function. Piatetsky-Shapiro introduced the rule-interest
[Piatetsky-Shapiro, (1991)] that is used to quantify the correlation
between attributes in a classification rule. It is suitable only for single
classification rules, i.e. rules where both the left- and right-hand sides
correspond to a single attribute.
• Smyth and Goodman’s J-Measure. The J-measure [Smyth and Good-

man (1991)] is a measure for probabilistic classification rules and is
used to find the best rules relating discrete-valued attributes. A prob-
abilistic classification rule is a logical implication, X → Y , satisfied
with some probability p. The left- and right-hand sides of this implica-
tion correspond to a single attribute. The right-hand side is restricted
to simple single-valued assignment expressions while the left-hand-side
may be a conjunction of simple expressions.
• General Impressions. In [Liu et al., 1997] general impression is proposed

as an approach for evaluating the importance of classification rules. It
compares discovered rules to an approximate or vague description of
what is considered to be interesting. Thus a general impression can be
considered as a kind of specification language.
• Gago and Bento’s Distance Metric. The distance metric [Gago and

Bentos, 1998] measures the distance between classification rules and is
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used to determine the rules that provide the highest coverage for the
given data. The rules with the highest average distance to the other
rules are considered to be most interesting.

3.9 Overfitting and Underfitting

The concept of overfitting is very important in data mining. It refers to
the situation in which the induction algorithm generates a classifier which
perfectly fits the training data but has lost the capability of generalizing to
instances not presented during training. In other words, instead of learning,
the classifier just memorizes the training instances. Overfitting is generally
recognized to be a violation of the principle of Occams razor presented in
Section 3.4.

In decision trees overfitting usually occurs when the tree has too many
nodes relative to the amount of training data available. By increasing the
number of nodes, the training error usually decreases while at some point
the generalization error becomes worse.

Figure 3.8 illustrates the overfitting process. The figure presents the
training error and the generalization error of a decision tree as a function
of the number of nodes for a fixed training set. The training error continues
to decline as the tree become bigger. On the other hand, the generalization
error declines at first then at some point starts to increase due to overfitting.
The optimal point for the generalization error is obtained for a tree with
130 nodes. In bigger trees the classifier is overfitted. In smaller trees the
classifier is underfitted.

Another aspect of overfitting is presented in Figure 3.9. This graph
presents the generalization error for increasing training set sizes. The gen-
eralization error decreases with the training set size. This can be explained
by the fact that for a small training set, it is relatively hard to generalize,
and the classifier memorizes all instances.

It was found that overfitting decreases prediction accuracy in decision
trees either in the presence of significant noise or when the input attributes
are irrelevant to the classification problem [Schaffer (1991)].

In order to avoid overfitting, it is necessary to estimate when further
training will not result in a better generalization. In decision trees there
are two mechanisms that help to avoid overfitting. The first is to avoid
splitting the tree if the split is not useful (for instance by approving only
statistically significant splits). The second approach is to use pruning; after
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Fig. 3.8 Overfitting in Decision Trees.

growing the tree, we prune unnecessary nodes.

3.10 “No Free Lunch” Theorem

Empirical comparison of the performance of different approaches and their
variants in a wide range of application domains has shown that each per-
forms best in some, but not all, domains. This has been termed the selective
superiority problem [Brodley (1995)].

It is well known that no induction algorithm can be the best in all
possible domains; each algorithm contains an explicit or implicit bias
[Mitchell (1980)] that leads it to prefer certain generalizations over others.
The algorithm will be successful only insofar as this bias matches the char-
acteristics of the application domain [Brazdil et al. (1994)]. Furthermore,
other results have demonstrated the existence and correctness of the “con-
servation law” [Schaffer (1994)] or “no free lunch theorem” [Wolpert (1996)]:
if one inducer is better than another in some domains, then there are nec-
essarily other domains in which this relationship is reversed.

The “no free lunch theorem” implies that for a given problem, a cer-
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tain approach can yield more information from the same data than other
approaches.

A distinction should be made between all the mathematically possible
domains, which are simply a product of the representation languages used,
and the domains that occur in the real world, and are therefore the ones
of primary interest [Rao et al. (1995)]. Without doubt there are many
domains in the former set that are not in the latter, and average accuracy
in the realworld domains can be increased at the expense of accuracy in the
domains that never occur in practice. Indeed, achieving this is the goal of
inductive learning research. It is still true that some algorithms will match
certain classes of naturallyoccurring domains better than other algorithms,
and so achieve higher accuracy than these algorithms. While this may
be reversed in other realworld domains, it does not preclude an improved
algorithm from being as accurate as the best in each of the domain classes.

Indeed, in many application domains, the generalization error of even
the best methods is far above 0%, and the question of whether it can
be improved, and if so how, is an open and important one. One aspect
in answering this question is determining the minimum error achievable
by any classifier in the application domain (known as the optimal Bayes
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error). If existing classifiers do not reach this level, new approaches are
needed. Although this problem has received considerable attention (see for
instance [Tumer and Ghosh (1996)]), no generally reliable method has so
far been demonstrated.

The “no free lunch” concept presents a dilemma to the analyst ap-
proaching a new task: Which inducer should be used?

If the analyst is looking for accuracy only, one solution is to try each one
in turn, and by estimating the generalization error, to choose the one that
appears to perform best [Schaffer (1994)]. Another approach, known as
multistrategy learning [Michalski and Tecuci (1994)], attempts to combine
two or more different paradigms in a single algorithm. Most research in
this area has been concerned with combining empirical approaches with
analytical methods (see for instance [Towell and Shavlik (1994)]. Ideally, a
multistrategy learning algorithm would always perform as well as the best
of its “parents” obviating the need to try each one and simplifying the
knowledge acquisition task. Even more ambitiously, there is hope that this
combination of paradigms might produce synergistic effects (for instance
by allowing different types of frontiers between classes in different regions
of the example space), leading to levels of accuracy that neither atomic
approach by itself would be able to achieve.

Unfortunately, this approach has often been used with only moderate
success. Although it is true that in some industrial applications (like in
the case of demand planning) this strategy proved to boost the error per-
formance, in many other cases the resulting algorithms are prone to be
cumbersome, and often achieve an error that lies between those of their
parents, instead of matching the lowest.

The dilemma of what method to choose becomes even greater, if other
factors such as comprehensibility are taken into consideration. For instance,
for a specific domain, a neural network may outperform decision trees in
accuracy. However, from the comprehensibility aspect, decision trees are
considered better. In other words, even if the researcher knows that neural
network is more accurate, he still has a dilemma what method to use.
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Chapter 4

Splitting Criteria

4.1 Univariate Splitting Criteria

4.1.1 Overview

In most decision trees inducers discrete splitting functions are univariate,
i.e., an internal node is split according to the value of a single attribute.
Consequently, the inducer searches for the best attribute upon which to
perform the split. There are various univariate criteria which can be char-
acterized in different ways, such as:

• according to the origin of the measure: Information Theory, Depen-
dence, and Distance.
• according to the measure structure: Impurity Based criteria, Normal-

ized Impurity Based criteria and Binary criteria.

The following section describes the most common criteria appearing in
the literature.

4.1.2 Impurity based Criteria

Given a random variable x with k discrete values, distributed according to
P = (p1, p2, . . . , pk), an impurity measure is a function φ:[0, 1]k → R that
satisfies the following conditions:

• φ (P)≥0
• φ (P) is minimum if ∃i such that component pi = 1.
• φ (P) is maximum if ∀i, 1 ≤ i ≤ k, pi = 1/k.
• φ (P) is symmetric with respect to components of P .
• φ (P) is smooth (differentiable everywhere) in its range.

53
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It should be noted that if the probability vector has a component of 1
(the variable x gets only one value), then the variable is defined as pure.
On the other hand, if all components are equal the level of impurity reaches
maximum.

Given a training set S the probability vector of the target attribute y

is defined as:

Py(S) =

(
|σy=c1S|
|S| , . . . ,

∣∣σy=c|dom(y)|S
∣∣

|S|

)
(4.1)

The goodness-of-split due to discrete attribute ai is defined as reduction
in impurity of the target attribute after partitioning S according to the
values vi,j ∈ dom(ai):

∆Φ(ai, S) = φ(Py(S))−
|dom(ai)|∑

j=1

|σai=vi,j S|
|S| · φ(Py(σai=vi,j S)) (4.2)

4.1.3 Information Gain

Information Gain is an impurity-based criteria that uses the entropy mea-
sure (originating from information theory) as the impurity measure [Quin-
lan (1987)].

InformationGain(ai, S) =

Entropy(y, S)− ∑
vi,j∈dom(ai)

|σai=vi,j
S|

|S| ·Entropy(y, σai=vi,j S) (4.3)

where:

Entropy(y, S) =
∑

cj∈dom(y)

−
∣∣σy=cj S

∣∣
|S| · log2

∣∣σy=cj S
∣∣

|S| (4.4)

Information gain is closely related to the Maximum likelihood esti-
mation (MLE), which is a popular statistical method used to make in-
ferences about parameters of the underlying probability distribution from
a given data set.
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4.1.4 Gini Index

The Gini index is an impurity-based criteria that measures the divergences
between the probability distributions of the target attributes values. The
Gini index has been used in various works such as [Breiman et al. (1984)]
and [Gelfand et al. (1991)] and it is defined as:

Gini(y, S) = 1−
∑

cj∈dom(y)

(∣∣σy=cj S
∣∣

|S|

)2

(4.5)

Consequently the evaluation criterion for selecting the attribute ai is
defined as:

GiniGain(ai, S) = Gini(y, S)−∑
vi,j∈dom(ai)

|σai=vi,j
S|

|S| ·Gini(y, σai=vi,j S) (4.6)

4.1.5 Likelihood Ratio Chi-squared Statistics

The likelihood-ratio is defined as [Attneave (1959)]

G2(ai, S) = 2 · ln(2) · |S| · InformationGain(ai, S) (4.7)

This ratio is useful for measuring the statistical significance of the
information gain criterion. The zero hypothesis (H0) is that both the
input and target attributes are conditionally independent. If H0 holds,
the test statistic is distributed as χ2 with degrees of freedom equal to:
(dom(ai)− 1) · (dom(y)− 1).

4.1.6 DKM Criterion

The DKM criterion is an impurity-based splitting criteria designed for
binary class attributes [Dietterich et al. (1996)] and [Kearns and Man-
sour (1999)]. The impurity-based function is defined as:

DKM(y, S) = 2 ·
√( |σy=c1S|

|S|
)
·
( |σy=c2S|

|S|
)

(4.8)
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It has been theoretically proved that this criterion requires smaller trees
for obtaining a certain error than other impurity-based criteria (information
gain and Gini index).

4.1.7 Normalized Impurity-based Criteria

The impurity-based criterion described above is biased towards attributes
with larger domain values. Namely, it prefers input attributes with many
values over those with less values [Quinlan (1986)]. For instance, an input
attribute that represents the national security number will probably get
the highest information gain. However, adding this attribute to a decision
tree will result in a poor generalized accuracy. For that reason, it is useful
to “normalize” the impurity-based measures, as described in the following
sections.

4.1.8 Gain Ratio

The gain ratio normalizes the information gain as follows [Quinlan (1993)]:

GainRatio(ai, S) =
InformationGain(ai, S)

Entropy(ai, S)
(4.9)

Note that this ratio is not defined when the denominator is zero. Fur-
thermore, the ratio may tend to favor attributes for which the denominator
is very small. Accordingly it is suggested that the ratio be carried out in
two stages. First the information gain is calculated for all attributes. As a
consequence of considering only attributes that have performed at least as
well as the average information gain, the attribute that has obtained the
best ratio gain is selected. [Quinlan (1988)] has shown that the gain ratio
tends to outperform simple information gain criteria, both in accuracy and
in terms of classifier complexity. A penalty is assessed for the information
gain of a continuous attribute with many potential splits.

4.1.9 Distance Measure

The Distance Measure, like the Gain Ratio, normalizes the impurity mea-
sure. However, it suggests normalizing it in a different way [Lopez de
Mantras (1991)]:
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∆Φ(ai, S)

− ∑
vi,j∈dom(ai)

∑
ck∈dom(y)

|σai=vi,j AND y=ck
S|

|S| · log2

|σai=vi,j AND y=ck
S|

|S|
(4.10)

4.1.10 Binary Criteria

The binary criteria are used for creating binary decision trees. These mea-
sures are based on division of the input attribute domain into two subdo-
mains.

Let β(ai, dom1(ai), dom2(ai), S) denote the binary criterion value for
attribute ai over sample S when dom1(ai) and dom2(ai) are its correspond-
ing subdomains. The value obtained for the optimal division of the attribute
domain into two mutually exclusive and exhaustive subdomains is used for
comparing attributes, namely:

β∗(ai, S) = max
∀dom1(ai); dom2(ai)

β(ai, dom1(ai), dom2(ai), S) (4.11)

4.1.11 Twoing Criterion

The Gini index may encounter problems when the domain of the target
attribute is relatively wide [Breiman et al. (1984)]. In such cases it is
possible to employ binary criterion called twoing criterion. This criterion
is defined as:

twoing(ai, dom1(ai), dom2(ai), S) =

0.25 · |σai∈dom1(ai)S|
|S| · |σai∈dom2(ai)S|

|S| ·( ∑
ci∈dom(y)

∣∣∣∣ |σai∈dom1(ai) AND y=ci
S|

|σai∈dom1(ai)S| − |σai∈dom2(ai) AND y=ci
S|

|σai∈dom2(ai)S|
∣∣∣∣
)2 (4.12)

When the target attribute is binary the Gini and twoing criteria are
equivalent. For multi-class problems the twoing criteria prefers attributes
with evenly divided splits.
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4.1.12 Orthogonal Criterion

The ORT criterion was presented by [Fayyad and Irani (1992)]. This binary
criterion is defined as:

ORT (ai, dom1(ai), dom2(ai), S) = 1− cosθ(Py,1, Py,2) (4.13)

where θ(Py,1, Py,2) is the angle between two vectors Py,1 and Py,2. These
vectors represent the probability distribution of the target attribute in the
partitions σai∈dom1(ai)S and σai∈dom2(ai)S respectively.

It has been shown that this criterion performs better than the informa-
tion gain and the Gini index for specific constellations of problems.

4.1.13 Kolmogorov–Smirnov Criterion

A binary criterion that uses Kolmogorov–Smirnov distance has been pro-
posed by [Friedman (1977)] and [Rounds (1980)]. Assuming a binary target
attribute, namely dom(y) = {c1, c2}, the criterion is defined as:

KS(ai, dom1(ai), dom2(ai), S) =∣∣∣∣ |σai∈dom1(ai) AND y=c1S|
|σy=c1S| − |σai∈dom1(ai) AND y=c2S|

|σy=c2 S|
∣∣∣∣ (4.14)

This measure was extended by [Utgoff and Clouse (1996)] to handle
target attribute with multiple classes and missing data values. Their results
indicate that the suggested method outperforms the gain ratio criteria.

4.1.14 AUC Splitting Criteria

The idea of using the AUC metric as a splitting criterion was recently
proposed by [Ferri et al. (2002)]. The attribute that obtains the maximal
area under the convex hull of the ROC curve is selected. It has been shown
that the AUC-based splitting criterion outperforms other splitting criteria
both with respect to classification accuracy and area under the ROC curve.
It is important to note that unlike impurity criteria, this criterion does not
perform a comparison between the impurity of the parent node with the
weighted impurity of the children after splitting.
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4.1.15 Other Univariate Splitting Criteria

Additional univariate splitting criteria can be found in the literature, such
as permutation statistic [Li and Dubes (1986)]; mean posterior improvement
[Taylor and Silverman (1993)]; and hypergeometric distribution measure
[Martin (1997)].

4.1.16 Comparison of Univariate Splitting Criteria

Over the past 30 years, several researchers have conducted comparative
studies of splitting criteria both those described above and others. Among
these researchers are: [Breiman (1996)]; [Baker and Jain (1976)]; [Ben-
Bassat (1978)]; [Mingers (1989)]; [Fayyad and Irani (1992)]; [Buntine and
Niblett (1992)]; [Loh and Shih (1997)]; [Loh and Shih (1999)]; and [Lim
et al. (2000)]. The majority of the comparisons are based on empirical
results, although there are some theoretical conclusions.

Most of the researchers point out that in nearly all of the cases the choice
of splitting criteria will not make much difference on the tree performance.
As the no-free lunch theorem suggests, each criterion is superior in some
cases and inferior in others.

4.2 Handling Missing Values

Missing values are a common experience in real-world datasets. This situa-
tion can complicate both induction (a training set where some of its values
are missing) as well as classification of a new instance that is missing certain
values.

The problem of missing values has been addressed by several researchers
such as [Friedman (1977)], [Breiman et al. (1984)] and [Quinlan (1989)].
[Friedman (1977)] suggests handling missing values in the training set in
the following way. Let σai=?S indicate the subset of instances in S whose ai

values are missing. When calculating the splitting criteria using attribute
ai, simply ignore all instances whose values in attribute ai are unknown.
Instead of using the splitting criteria ∆Φ(ai, S) we use ∆Φ(ai, S−σai=?S).

On the other hand, [Quinlan (1989)] argues that in case of missing
values, the splitting criteria should be reduced proportionally as nothing
has been learned from these instances. In other words, instead of using the
splitting criteria ∆Φ(ai, S), we use the following correction:
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|S − σai=?S|
|S| ∆Φ(ai, S − σai=?S). (4.15)

In cases where the criterion value is normalized (as in the case of gain
ratio), the denominator should be calculated as if the missing values rep-
resent an additional value in the attribute domain. For instance, the gain
ratio with missing values should be calculated as follows:

GainRatio(ai, S) =
|S−σai=?S|

|S| InformationGain(ai,S−σai=?S)

− |σai=?S|
|S| log(

|σai=?S|
|S| )− ∑

vi,j∈dom(ai)

|σai=vi,j
S|

|S| log(
|σai=vi,j

S|
|S| )

(4.16)

Once a node is split, [Quinlan (1989)] suggests adding σai=?S to
each one of the outgoing edges with the following corresponding weight:∣∣σai=vi,j S

∣∣/|S − σai=?S|.
The same idea is used for classifying a new instance with missing attri-

bute values. When an instance encounters a node where its splitting criteria
can be evaluated due to a missing value, it is passed through to all outgoing
edges. The predicted class will be the class with the highest probability in
the weighted union of all the leaf nodes at which this instance ends up.

Another approach known as surrogate splits was presented by [Breiman
et al. (1984)] and is implemented in the CART algorithm. The idea is to
find for each split in the tree a surrogate split which uses a different input
attribute and which most resembles the original split. If the value of the
input attribute used in the original split is missing, then it is possible to
use the surrogate split. The resemblance between two binary splits over
sample S is formally defined as:

res(ai, dom1(ai), dom2(ai), aj , dom1(aj), dom2(aj), S) =∣∣∣σai∈dom1(ai) AND aj∈dom1(aj) S
∣∣∣

|S| +

∣∣∣σai∈dom2(ai) AND aj∈dom2(aj) S
∣∣∣

|S|
(4.17)

where the first split refers to attribute ai and it splits dom(ai) into dom1(ai)
and dom2(ai). The alternative split refers to attribute aj and splits its
domain to dom1(aj) and dom2(aj).

The missing value can be estimated based on other instances [Loh and
Shih (1997)]. On the learning phase, if the value of a nominal attribute
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ai in tuple q is missing, then it is estimated by its mode over all instances
having the same target attribute value. Formally,

estimate(ai, yq, S) = argmax
vi,j∈dom(ai)

∣∣σai=vi,j AND y=yq S
∣∣ (4.18)

where yq denotes the value of the target attribute in the tuple q. If the
missing attribute ai is numeric, then, instead of using mode of ai, it is
more appropriate to use its mean.
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Chapter 5

Pruning Trees

5.1 Stopping Criteria

The growing phase continues until a stopping criterion is triggered. The
following conditions are common stopping rules:

(1) All instances in the training set belong to a single value of y.
(2) The maximum tree depth has been reached.
(3) The number of cases in the terminal node is less than the minimum

number of cases for parent nodes.
(4) If the node were split, the number of cases in one or more child nodes

would be less than the minimum number of cases for child nodes.
(5) The best splitting criteria is not greater than a certain threshold.

5.2 Heuristic Pruning

5.2.1 Overview

Employing tight stopping criteria tends to create small and underfitted
decision trees. On the other hand, using loose stopping criteria tends to
generate large decision trees that are overfitted to the training set. To solve
this dilemma, [Breiman et al. (1984)] developed a pruning methodology
based on a loose stopping criterion and allowing the decision tree to overfit
the training set. Then the overfitted tree is cut back into a smaller tree
by removing sub-branches that are not contributing to the generalization
accuracy. It has been shown in various studies that pruning methods can
improve the generalization performance of a decision tree, especially in
noisy domains.

Another key motivation of pruning is “trading accuracy for simplicity”

63
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as presented by [Bratko and Bohanec (1994)]. When the goal is to produce a
sufficiently accurate, compact concept description, pruning is highly useful.
Since within this process the initial decision tree is seen as a completely
accurate one, the accuracy of a pruned decision tree indicates how close it
is to the initial tree.

There are various techniques for pruning decision trees. Most perform
top down or bottom up traversal of the nodes. A node is pruned if this
operation improves a certain criteria. The following subsections describe
the most popular techniques.

5.2.2 Cost Complexity Pruning

Cost complexity pruning (also known as weakest link pruning or error com-
plexity pruning) proceeds in two stages [Breiman et al. (1984)]. In the first
stage, a sequence of trees T0, T1, . . . , Tk is built on the training data where
T0 is the original tree before pruning and Tk is the root tree.

In the second stage, one of these trees is chosen as the pruned tree,
based on its generalization error estimation.

The tree Ti+1 is obtained by replacing one or more of the sub-trees in
the predecessor tree Ti with suitable leaves. The sub-trees that are pruned
are those that obtain the lowest increase in apparent error rate per pruned
leaf:

α =
ε(pruned(T, t), S)− ε(T, S)

|leaves(T )| − |leaves(pruned(T, t))| (5.1)

where ε(T, S) indicates the error rate of the tree T over the sample S and
|leaves(T )| denotes the number of leaves in T . pruned(T, t) denotes the
tree obtained by replacing the node t in T with a suitable leaf.

In the second phase, the generalization error of each pruned tree
T0, T1, . . . , Tk is estimated. The best pruned tree is then selected. If the
given dataset is large enough, the authors suggest breaking it into a training
set and a pruning set. The trees are constructed using the training set and
evaluated on the pruning set. On the other hand, if the given dataset is
not large enough, they propose using cross-validation methodology, despite
the computational complexity implications.
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5.2.3 Reduced Error Pruning

A simple procedure for pruning decision trees, known as Reduced Error
Pruning, has been suggested by [Quinlan (1987)]. While traversing over
the internal nodes from the bottom to the top, the procedure checks each
internal node to determine whether replacing it with the most frequent
class does not reduce the trees accuracy. The node is pruned if accuracy
is not reduced. The procedure continues until any further pruning would
decrease the accuracy.

In order to estimate the accuracy [Quinlan (1987)] proposes using a
pruning set. It can be shown that this procedure ends with the smallest
accurate sub-tree with respect to a given pruning set.

5.2.4 Minimum Error Pruning (MEP)

Minimum error pruning, proposed by [Niblett and Bratko (1986)], involves
bottom-up traversal of the internal nodes. This technique compares, in each
node, the l-probability error rate estimation with and without pruning.

The l-probability error rate estimation is a correction to the simple
probability estimation using frequencies. If St denotes the instances that
have reached a leaf t, then the expected error rate in this leaf is:

ε′(t) = 1− max
ci∈dom(y)

|σy=ciSt|+ l · papr(y = ci)
|St|+ l

(5.2)

where papr(y = ci) is the a-priori probability of y getting the value ci, and
l denotes the weight given to the a-priori probability.

The error rate of an internal node is the weighted average of the error
rate of its branches. The weight is determined according to the proportion
of instances along each branch. The calculation is performed recursively up
to the leaves.

If an internal node is pruned, then it becomes a leaf and its error rate is
calculated directly using the last equation. Consequently, we can compare
the error rate before and after pruning a certain internal node. If pruning
this node does not increase the error rate, the pruning should be accepted.

5.2.5 Pessimistic Pruning

Pessimistic pruning avoids the need of a pruning set or cross validation and
uses the pessimistic statistical correlation test instead [Quinlan (1993)].
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The basic idea is that the error ratio that was estimated using the
training set is not reliable enough. Instead, a more realistic measure, known
as the continuity correction for binomial distribution, should be used:

ε′(T, S) = ε(T, S) +
|leaves(T )|

2 · |S| (5.3)

However, this correction still produces an optimistic error rate. Con-
sequently, [Quinlan (1993)] suggests pruning an internal node t if its error
rate is within one standard error from a reference tree, namely:

ε′(pruned(T, t), S) ≤ ε′(T, S) +

√
ε′(T, S) · (1− ε′(T, S))

|S| (5.4)

The last condition is based on the statistical confidence interval for
proportions. Usually the last condition is used such that T refers to a sub-
tree whose root is the internal node t and S denotes the portion of the
training set that refers to the node t.

The pessimistic pruning procedure performs top-down traversal over the
internal nodes. If an internal node is pruned, then all its descendants are
removed from the pruning process, resulting in a relatively fast pruning.

5.2.6 Error-Based Pruning (EBP)

Error-based pruning is an evolution of the pessimistic pruning. It is imple-
mented in the well-known C4.5 algorithm.

As in pessimistic pruning, the error rate is estimated using the upper
bound of the statistical confidence interval for proportions.

εUB(T, S) = ε(T, S) + Zα ·
√

ε(T, S) · (1 − ε(T, S))
|S| (5.5)

where ε(T, S) denotes the misclassification rate of the tree T on the training
set S; Z is the inverse of the standard normal cumulative distribution; and
α is the desired significance level.

Let subtree(T, t) denote the subtree rooted by the node t. Let
maxchild(T, t) denote the most frequent child node of t (namely most of
the instances in S reach this particular child) and let St denote all instances
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in S that reach the node t. The procedure traverses bottom-up all nodes
and compares the following values:

(1) εUB(subtree(T, t), St)
(2) εUB(pruned(subtree(T, t), t), St)
(3) εUB(subtree(T, maxchild(T, t)), Smaxchild(T,t))

According to the lowest value, the procedure either leaves the tree as
is; prune the node t; or replaces the node t with the subtree rooted by
maxchild(T, t).

5.2.7 Minimum Description Length (MDL) Pruning

The Minimum Description Length can be used for evaluating the gener-
alized accuracy of a node [Rissanen (1989)], [Quinlan and Rivest (1989)]
and [Mehta et al. (1995)]. This method measures the size of a decision tree
by means of the number of bits required to encode the tree. The MDL
method prefers decision trees that can be encoded with fewer bits. [Mehta
et al. (1995)] indicate that the cost of a split at a leaf t can be estimated
as:

Cost(t) =
∑

ci∈dom(y)

|σy=ciSt| · ln |St|
|σy=ci

St| +
|dom(y)|−1

2 ln |St|
2 +

ln π
|dom(y)|

2

Γ( |dom(y)|
2 )

(5.6)

where St denotes the instances that have reached node t. The splitting
cost of an internal node is calculated based on the cost aggregation of its
children.

5.2.8 Other Pruning Methods

There are other pruning methods reported in the literature. [Wallace
and Patrick (1993)] proposed a Minimum Message Length (MML) pruning
method while [Kearns and Mansour (1998)] provide a theoretically-justified
pruning algorithm. [Mingers (1989)] proposed the Critical Value Pruning
(CVP). This method, which prunes an internal node if its splitting criterion
is not greater than a certain threshold, is similar to a stopping criterion.
However, contrary to a stopping criterion, a node is not pruned if at least
one of its children does not fulfill the pruning criterion.
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5.2.9 Comparison of Pruning Methods

Several studies compare the performance of different pruning techniques:
([Quinlan (1987)], [Mingers (1989)] and [Esposito et al. (1997)]). The results
indicate that some methods (such as Cost-Complexity Pruning, Reduced
Error Pruning) tend to over-pruning, i.e. creating smaller but less accurate
decision trees. Other methods (like error-based pruning, pessimistic error
pruning and minimum error pruning) bias toward under-pruning. Most
of the comparisons concluded that the no free lunch theorem also applies
to pruning, namely, there is no pruning method that outperforms other
pruning methods.

5.3 Optimal Pruning

The issue of finding the optimal pruning method has been studied by
[Bratko and Bohanec (1994)] and [Almuallim (1996)]. [Bratko and Bo-
hanec (1994)] introduce an algorithm which guarantees optimality, knows
as OPT. This algorithm finds the optimal pruning technique based on dy-
namic programming, with the complexity of Θ(|leaves(T )|2), where T is
the initial decision tree. [Almuallim (1996)] introduced an improvement
of OPT called OPT-2, which also performs optimal pruning using dynamic
programming. However, the time and space complexities of OPT-2 are both
Θ(|leaves(T ∗)|·|internal(T )|), where T ∗ is the target (pruned) decision tree
and T is the initial decision tree.

Since the pruned tree is habitually much smaller than the initial tree and
the number of internal nodes is smaller than the number of leaves, OPT-2
is usually more efficient than OPT in terms of computational complexity.

According to Almuallim, when pruning a given decision tree (DT ) with
s leaves, it is common to progressively replace various sub-trees of DT
by leaves, thus leading to a sequence of pruned decision trees, DT s−1,
DT s−2,. . . , DT i,. . . ,DT 1, such that each DT i has at most i leaves. When
seeing the error as the difference from the original tree (DT), the trees in
the sequence are of increasing error. The goal in choosing the best tree
from the above sequence of pruned trees, according to some appropriate
criteria, is to achieve a good balance between the trees size and accuracy.

In their paper, [Bratko and Bohanec (1994)] address the following prob-
lem: “Given a completely accurate but complex definition of a concept,
simplify the definition, possibly at the expanse of accuracy, so that the
simplified definition still corresponds to the concept ‘sufficiently’ well”. In
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this context “concepts” are represented by decision trees and the method
of simplification is tree pruning. Therefore, the problem can be stated as:
“Given a decision tree that accurately specifies a concept, the problem is to
find the smallest pruned tree that still represents the concept within some
specified accuracy”.

In (Almuallim, 1996) a new algorithm, OPT-2, which also performs
optimal pruning, is introduced. The problem of optimal pruning is formally
presented in this paper as follows: “Given a decision tree DT and a positive
integer C, find a pruned decision tree DT ’ from DT such that s(DT

′
) ≤ C

and error(DT
′
) is minimized.” where s(DT ’) is the size of DT

′
(number of

leaves in DT
′
) and error(DT

′
) is the proportion of cases that are incorrectly

handled by DT ’.
The OPT-2 algorithm is based on dynamic programming. In its most

basic form, the time and space complexities of OPT-2 are both Θ(nC),
where nis the number of internal nodes in the initial decision tree and C

is the number of leaves in the target (pruned) decision tree. This is an im-
provement of the OPT algorithm presented by Bohanec and Bratko (1994).
One important characteristic of the OPT-2 algorithm is its significant flex-
ibility. The OPT-2 works sequentially, generating the trees of the sequence
one after the other in increasing order of the number of leaves (that is in
the order DT 1, DT 2, DT 3,. . . .). This differs from OPT which simultane-
ously generates the whole sequence of pruned trees. Sequence generation in
OPT-2 can be terminated once a tree with adequate predetermined criteria
is found.

Given that trees DT 1, DT 2,. . . ,DT i−1 have already been generated,
OPT-2 finds DT i in time Θ(n), where n is the number of the internal
nodes of the initial decision tree. Thus if the number of leaves of the target
tree is C, the total running time of OPT-2 will be Θ(nC). Since the goal
is to prune the tree, C is habitually much smaller then s. Additionally, n

is smaller than s, specifically in the case of attributes with many values.
Hence, OPT-2 is usually more efficient than OPT in terms of execution
time.

Although both OPT and OPT-2 are based on dynamic programming
the two algorithms differ substantially in the way the problem is divided
into sub-problems. The approach adopted in OPT is usually viewed as
a “bottom-up” approach, where the idea is to compute solutions for the
sub-trees rooted at the lowest level of the tree. These solutions are then
used to compute the nodes of the next upper level. This process is repeated
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until the root of the initial tree is reached. A basic characteristic of this
“bottom-up” approach is that the trees DT i of the pruning sequence are
simultaneously computed as we advance towards the root. These pruned
trees are not final unless we reach the root. However, once it is reached,
the whole sequence becomes available at once.

The OPT-2 produces the pruned trees one after the other using an
algorithm derivative of a dynamic programming method given by Johnson
& Niemi (1983). Unlike the bottom-up approach of OPT, processing in
OPT-2 is done in a left to right fashion: Given that we have already com-
puted trees DT 1, DT 2,. . . ,DT i−1 and that necessary intermediate results
for these computations are kept in memory the OPT-2 algorithm finds DT i

from these through a linear ‘left to right’ pass over the tree.
In optimal pruning the error of each DT i in the sequence should be a

minimum over all pruned trees of i (or less) leaves. To date, the only two
works that address optimal pruning are Bohanec and Bratko’s paper (1994)
and Almuallim’s paper (1996).
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Advanced Decision Trees

6.1 Survey of Common Algorithms for Decision Tree In-
duction

6.1.1 ID3

The ID3 algorithm is considered to be a very simple decision tree algorithm
[Quinlan (1986)]. Using information gain as splitting criteria, the ID3 ceases
to grow when all instances belong to a single value of a target feature or
when best information gain is not greater than zero. ID3 does not apply any
pruning procedure nordoes it handle numeric attributes or missing values.

6.1.2 C4.5

C4.5, an evolution of ID3, presented by the same author [Quinlan (1993)],
uses gain ratio as splitting criteria. The splitting ceases when the number
of instances to be split is below a certain threshold. Error-based pruning
is performed after the growing phase. C4.5 can handle numeric attributes.
It can also induce from a training set that incorporates missing values by
using corrected gain ratio criteria as presented above.

6.1.3 CART

CART stands for Classification and Regression Trees. It was developed by
[Breiman et al. (1984)] and is characterized by the fact that it constructs
binary trees, namely each internal node has exactly two outgoing edges.
The splits are selected using the Twoing Criteria and the obtained tree is
pruned by Cost-Complexity Pruning. When provided, CART can consider
misclassification costs in the tree induction. It also enables users to provide

71
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prior probability distribution.
An important feature of CART is its ability to generate regression trees.

In regression trees, the leafs predict a real number and not a class. In case
of regression, CART looks for splits that minimize the prediction squared
error (the least-squared deviation). The prediction in each leaf is based on
the weighted mean for node.

6.1.4 CHAID

Starting from the early Seventies, researchers in applied statistics deve-
loped procedures for generating decision trees, such as: AID [Sonquist
et al. (1971)]; MAID [Gillo (1972)]; THAID [Morgan and Messenger (1973)];
and CHAID [Kass (1980)]. CHIAD (Chi-squared-Automatic-Interaction-
Detection) was originally designed to handle nominal attributes only. For
each input attribute ai, CHAID finds the pair of values in Vi that is least
significantly different with respect to the target attribute. The significant
difference is measured by the p value obtained from a statistical test. The
statistical test used depends on the type of target attribute. An F test is
used if the target attribute is continuous; a Pearson chi-squared test if it is
nominal; and a likelihood ratio test if it is ordinal.

For each selected pair of values, CHAID checks if the p value obtained is
greater than a certain merge threshold. If the answer is positive, it merges
the values and searches for an additional potential pair to be merged. The
process is repeated until no significant pairs are found.

The best input attribute to be used for splitting the current node is
then selected, such that each child node is made of a group of homogeneous
values of the selected attribute. Note that no split is performed if the
adjusted p value of the best input attribute is not less than a certain split
threshold. This procedure stops also when one of the following conditions
is fulfilled:

(1) Maximum tree depth is reached.
(2) Minimum number of cases in a node for being a parent is reached, so

it can not be split any further.
(3) Minimum number of cases in a node for being a child node is reached.

CHAID handles missing values by treating them all as a single valid cate-
gory. CHAID does not perform pruning.
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6.1.5 QUEST

The QUEST (Quick, Unbiased, Efficient Statistical Tree) algorithm sup-
ports univariate and linear combination splits [Loh and Shih (1997)]. For
each split, the association between each input attribute and the target attri-
bute is computed using the ANOVA F-test or Levene’s test (for ordinal and
continuous attributes) or Pearson’s chi-square (for nominal attributes). An
ANOVA F-statistic is computed for each attribute. If the largest F-statistic
exceeds a predefined threshold value, the attribute with the largest F-value
is selected to split the node. Otherwise, Levene’s test for unequal variances
is computed for every attribute. If the largest Levene is greater than a
predefined threshold value, the attribute with the largest Levene value is
used to split the node. If no attribute exceeded either threshold, the node
is split using the attribute with the largest ANOVA F-value.

If the target attribute is multinomial, two-means clustering is used to
create two super-classes. The attribute that obtains the highest association
with the target attribute is selected for splitting. Quadratic Discriminant
Analysis (QDA) is applied to find the optimal splitting point for the input
attribute. QUEST has negligible bias and yields a binary decision tree.
Ten-fold cross-validation is used to prune the trees.

6.1.6 Reference to Other Algorithms

Table 6.1 describes other decision tree algorithms available in the literature.
Although there are many other algorithms which are not included in this
table, nevertheless, most are a variation of the algorithmic framework pre-
sented above. A profound comparison of the above algorithms and many
others has been conducted in [Lim et al. (2000)].

6.1.7 Advantages and Disadvantages of Decision Trees

Several advantages of the decision tree as a classification tool appear in the
literature:

(1) Decision trees are self-explanatory and when compacted they are also
easy to follow. That is to say, if the decision tree has a reasonable
number of leaves it can be grasped by non-professional users. Further-
more, since decision trees can be converted to a set of rules, this sort
of representation is considered as comprehensible.

(2) Decision trees can handle both nominal and numeric input attributes.
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Table 6.1 Additional Decision Tree Inducers.

Algorithm Description Reference

CAL5 Designed specifically for numerical-
valued attributes

[Muller and Wysotzki (1994)]

FACT An earlier version of QUEST. Uses
statistical tests to select an attribute
for splitting each node and then uses
discriminant analysis to find the split
point.

[Loh and Vanichsetakul (1988)]

LMDT Constructs a decision tree based on
multivariate tests which are linear com-
binations of the attributes.

[Brodley and Utgoff (1995)]

T1 A one-level decision tree that classi-
fies instances using only one attribute.
Missing values are treated as a “spe-
cial value”. Support both continuous
an nominal attributes.

[Holte (1993)]

PUBLIC Integrates the growing and pruning by
using MDL cost in order to reduce the
computational complexity.

[Rastogi and Shim (2000)]

MARS A multiple regression function is ap-
proximated using linear splines and
their tensor products.

[Friedman (1991)]

(3) Decision tree representation is rich enough to represent any discrete-
value classifier.

(4) Decision trees can handle datasets that may have errors.
(5) Decision trees can deal with handle datasets that may have missing

values.
(6) Decision trees are considered to be a nonparametric method, i.e., deci-

sions tress do not include any assumptions about the space distribution
and on the classifier structure.

(7) When classification cost is high, decision trees may be attractive in that
they ask only for the values of the features along a single path from the
root to a leaf.

Among the disadvantages of decision trees are:

(1) Most of the algorithms (like ID3 and C4.5) require that the target
attribute will have only discrete values.
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(2) As decision trees use the “divide and conquer” method, they tend to
perform well if a few highly relevant attributes exist, but less so if
many complex interactions are present. One of the reasons for this
happening is that other classifiers can compactly describe a classifier
that would be very challenging to represent using a decision tree. A
simple illustration of this phenomenon is the replication problem of
decision trees [Pagallo and Huassler (1990)]. Since most decision trees
divide the instance space into mutually exclusive regions to represent
a concept, in some cases the tree should contain several duplications of
the same subtree in order to represent the classifier. The replication
problem forces duplication of subtrees into disjunctive concepts For
instance, if the concept follows the following binary function: y = (A1∩
A2)∪(A3∩A4) then the minimal univariate decision tree that represents
this function is illustrated in Figure 6.1. Note that the tree contains
two copies of the same subtree.

(3) The greedy characteristic of decision trees leads to another disadvantage
that should be pointed out. The over-sensitivity to the training set, to
irrelevant attributes and to noise [Quinlan (1993)] make decision trees
especially unstable: a minor change in one split close to the root will
change the whole subtree below. Due to small variations in the training
set, the algorithm may choose an attribute which is not truly the best
one.

(4) The fragmentation problem causes partitioning of the data into smaller
fragments. This usually happens if many features are tested along the
path. If the data splits approximately equally on every split, then a uni-
variate decision tree cannot test more than O(logn) features. This puts
decision trees at a disadvantage for tasks with many relevant features.
Note that replication always implies fragmentation, but fragmentation
may happen without any replication

(5) Another problem refers to the effort needed to deal with missing values
[Friedman et al. (1996)]. While the ability to handle missing values
is considered to be advantage, the extreme effort which is required to
achieve it is considered a drawback. The correct branch to take is un-
known if a feature tested is missing, and the algorithm must employ
special mechanisms to handle missing values. In order to reduce the oc-
currences of tests on missing values, C4.5 penalizes the information gain
by the proportion of unknown instances and then splits these instances
into subtrees. CART uses a much more complex scheme of surrogate
features.
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(6) The myopic nature of most of the decision tree induction algorithms
is reflected by the fact that the inducers look only one level ahead.
Specifically, the splitting criterion ranks possible attributes based on
their immediate descendants. Such strategy prefers tests that score high
in isolation and may overlook combinations of attributes. Using deeper
lookahead strategies is considered to be computationally expensive and
has not proven useful.

Fig. 6.1 Illustration of Decision Tree with Replication.

6.1.8 Oblivious Decision Trees

Oblivious decision trees are those in which all nodes at the same level test
the same feature. Despite its restriction, oblivious decision trees are ef-
fective for feature selection. [Almuallim and Dietterich (1994)] as well as
[Schlimmer (1993)] have proposed a forward feature selection procedure by
constructing oblivious decision trees, whereas [Langley and Sage (1994)]
suggested backward selection using the same means. [Kohavi and Sommer-
field (1998)] have shown that oblivious decision trees can be converted to a
decision table. Recently [Maimon and Last (2000)] suggested a new algo-
rithm IFN (Information Fuzzy Network) for constructing oblivious decision
trees. Based on information theory, the main advantage of IFN is it com-
pactness. In regular decision trees, like CART the height of a decision tree
may exceed the number of input attributes. In IFN the height of a decision
tree will never exceed the number of input attributes.
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Figure 6.2 illustrates a typical oblivious decision tree with four input
features: Glucose level (G), Age (A), Hypertension (H) and Pregnant (P)
and the Boolean target feature representing whether that patient suffers
from diabetes. Each layer is uniquely associated with an input feature by
representing the interaction of that feature and the input features of the
previous layers. The number that appears in the terminal nodes indicates
the number of instances that fit this path. For example, regarding patients
whose glucose level is less than 107 and whose age is greater than 50, ten
are positively diagnosed with diabetes while two are not diagnosed with
diabetes.

The principal difference between the oblivious decision tree and a reg-
ular decision tree structure is the constant ordering of input attributes at
every terminal node of the oblivious decision tree. This latter property is
necessary for minimizing the overall subset of input attributes (resulting in
dimensionality reduction). The arcs that connect the terminal nodes and
the nodes of the target layer are labelled with the number of records that
fit this path.

An oblivious decision tree is usually built by a greedy algorithm, which
tries to maximize the mutual information measure in every layer. The
recursive search for explaining attributes is terminated when there is no
attribute that explains the target with statistical significance.

Fig. 6.2 Illustration of Oblivious Decision Tree.
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6.1.9 Decision Trees Inducers for Large Datasets

With the recent growth in the amount of data collected by information
systems there is a need for decision trees that can handle large datasets.
[Catlett (1991)] has examined two methods for efficiently growing deci-
sion trees from a large database by reducing the computation complex-
ity required for induction. However, the Catlett method requires that all
data will be loaded into the main memory before induction. Namely, the
largest dataset that can be induced is bounded by the memory size. [Fi-
field (1992)] suggests parallel implementation of the ID3 algorithm. How-
ever, like Catlett it assumes that all dataset can fit in the main memory.
[Chan and Stolfo (1997)] suggest partioning the datasets into several dis-
jointed datasets so that each dataset is loaded separately into the memory
and used to induce a decision tree. The decision trees are then combined
to create a single classifier. However, the experimental results indicate that
partition may reduce the classification performance. This means that the
classification accuracy of the combined decision trees is not as good as the
accuracy of a single decision tree induced from the entire dataset.

The SLIQ algorithm [Mehta et al. (1996)] does not require loading the
entire dataset into the main memory. Instead it uses a secondary memory
(disk). In other words, a certain instance is not necessarily resident in
the main memory all the time. While SLIQ creates a single decision tree
from the entire dataset, this method also has an upper limit for the largest
dataset that can be processed. Because it uses a data structure that scales
with the dataset size, this data structure must be resident in the main
memory all the time.

The SPRINT algorithm uses a similar approach [Shafer et al. (1996)].
This algorithm induces decision trees relatively quickly and removes all of
the memory restrictions from decision tree induction. SPRINT scales any
impurity-based split criteria for large datasets.

Gehrke et al.(2000) [Gehrke et al. (2000)] introduced RainForest; a uni-
fying framework for decision tree classifiers that are capable of scaling any
specific algorithms from the literature (including C4.5, CART and CHAID).
In addition to its generality, RainForest improves SPRINT by a factor of
three. However, in contrast to SPRINT, RainForest requires a certain min-
imum amount of main memory proportional to the set of distinct values
in a column of the input relation. This requirement, though, is considered
modest and reasonable.

Other decision tree inducers for large datasets can be found in the
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works of [Alsabti et al. (1998)], [Freitas and Lavington (1998)] and [Gehrke
et al. (1999)].

6.1.10 Online Adaptive Decision Trees

A classification scheme called online adaptive decision trees (OADT) was
proposed by [Basak (2004)]. As with the decision trees, OADT is a tree-
structured network which is capable of online learning like neural networks.
This leads to better generalization scores.

The fact that OADT can only handle two-class classification tasks
with a given structure is a major drawback. The ExOADT algorithm
[Basak (2006)] can handle multiclass classification tasks and is able to per-
form function approximation. ExOADT is structurally similar to OADT
extended with a regression layer.

6.1.11 Lazy Tree

In lazy tree algorithms learning is delayed until the query point is ob-
served [Friedman et al. (1996)]. An ad hoc decision tree (actually a rule)
is constructed just to classify a certain instance. The LazyDT algorithm
constructs the best decision tree for each test instance. In practice, only a
path needs to be constructed. A caching scheme makes the algorithm run
fast.

With the LazyDT algorithm, a single decision tree built from the train-
ing set offers a compromise: the test at the root of each subtree is chosen
to be the best split on average. This “average” approach can lead to many
irrelevant splits for a given test instance, thus fragmenting the data un-
necessarily. Such fragmentation reduces the significance of tests at lower
levels since they are based on fewer instances. Classification paths, built
for a specific instance may be much shorter and hence may provide a better
explanation.

A generic pseudo-code of the LazyDT algorithm is described in Figure
6.3. The lazy decision tree algorithm, which gets the test instance as part
of the input, follows a separate-and-classify methodology: a test is selected
and the sub-problem containing the instances with the same test outcome
as the given instance is then solved recursively.
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Require: x (an unlabelled instance I to classify), S (training set)
Ensure: A label for instance x

1: If all instances in S have label l, then return l.
2: if all instances in S have the same feature values, return the majority

class in S .
3: select a test A and let v be the value of the test on the instance x.

recursively apply the algorithm to the set of instances in S with A = v.

Fig. 6.3 The LazyDT Algorithm.

6.1.12 Option Tree

Regular decision trees make a single test at each node and trace a single path
corresponding to test outcomes until a leaf is reached and a prediction is
made. Option decision trees (also known as and-or trees), first introduced
by [Buntine (1992)], generalize regular decision trees by allowing option
nodes in addition to decision nodes; such nodes make it possible to conduct
several possible tests instead of the commonly used single test. Classifi-
cation is similar to regular decision trees, except that a rule is applied to
option nodes to combine the predictions of the children nodes.

There are several reasons for using option trees. Option decision trees
can reduce the error of decision trees in handling real-world problems by
combining multiple options. This is similar to what we find when imple-
menting ensemble methods that learn multiple models and combine the
predictions. However, unlike ensemble methods, an option decision tree
yields a single tree, which is a compact representation of many possible
trees and which can be easily interpreted by humans. The myopic nature
of top-down classification tree inducers and the stability of the classifiers are
the reasons for the option decision trees improved performance compared
to regular decision trees.

Figure 6.4 illustrates an option tree. Recall that the task is to clas-
sify mortgage applications into: approved (“A”), denied (“D”) or manual
underwriting (“M”). The tree looks like any other decision tree with a sup-
plement of an option node, which is denoted as a rectangle. If years at
current job (YRSJOB) is greater than or equals two years, then there are
two options to choose from. Each option leads to a different subtree that
separately solve the problem and make a classification.

In order to classify a new instance with an option tree, it is required to
weight the labels predicted by all children of the option node. For example,
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Fig. 6.4 Illustration of Option Tree.

in order to classify an instance with YRSJOB=3, MARST=“Married” and
DEPEND=3, we need to combine the fifth leaf and the sixth leaf (from left
to right), resulting in the class “A” (since both are associated with class
“A”). On the other hand, in order to classify an instance with YRSJOB=3,
MARST=“Single” and DEPEND=3, then we need to combine the fourth
leaf and sixth leaf, resulting in either class “A” or “D”. Since in simple
majority voting, the final class is selected arbitrarily, it never makes sense
to create an option node with two children; Consequently the minimum
number of choices for an option node is three. Nevertheless, assuming
that a probability vector is associated with each leaf, it is possible to use
a Bayesian combination to obtain a non-arbitrary selection. In fact the
model presented in Figure 6.4 can be seen as combining the two regular
decision trees presented in Figure 6.5.

TDDTOP is a Top-Down Decision-Tree (TDDT) inducer which is quite
similar to C4.5 but with the additional ability to create option nodes [Ko-
havi and Kunz (1997)]. The principal modication to the basic TDDT algo-
rithm is that instead of always selecting a single test, when several tests
evaluate close to the best test, the TDDTOP algorithm creates an option
node. All the data is sent to each child of an option node, which then splits
the data according to its predetermined test. As for the pruning phase, the
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Fig. 6.5 Illustration of two Regular Trees which are equivalent to the Option Tree
presented in Figure 6.4.

C4.5 pruning algorithm was modified so that the pessimistic error of an
option node was the average of the pessimistic errors of its children.

6.2 Lookahead

The splitting criteria in regular top-down decision tree inducers is usually
greedy and local. Fixed-depth lookahead search is a standard technique
for improving greedy algorithms. More extensive search quickly leads to
intolerable time consumption. Moreover, limited lookahead search does not
produce significantly better decision trees [Murthy and Salzberg (1995)].
On average, it produces trees with approximately the same generalization



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

Advanced Decision Trees 83

error and size as greedy induction. In fact pruning methods are usually at
least as beneficial as limited lookahead.

Figure 6.6 specifies an algorithm of lookahead splitting criterion by
wrapping a regular splitting criterion (denoted as SimpleSplitCriterion).
Note that the proposed algorithm performs a lookahead of Depth levels.

Require: S - training set, f(a) - a function of the input attributes val-
ues, SimpleSplitCriterion - a splitting criterion function, Depth - the
lookahead depth.

Ensure: The lookahead criterion value
1: if Depth = 1 then
2: return SimpleSplitCriterion(S,f(A))
3: end if
4: Split S into subsets S1,...,Sk according to the values of f(A).
5: for all subset Si do
6: Find a function g(A) of the input attributes values which gets the best

value vi of LookAhead(Si, g(A), SimpleSplitCriterion, Depth− 1)
7: end for
8: Return weighted average of vi

Fig. 6.6 Algorithm for calculating lookahead splitting criterion.

LSID3 [Esmeir and Markovitch (2004)], a variation of the well known
ID3 algorithm, invests more resources for making better split decisions. For
every possible candidate split, LSID3 estimates the size of the resulting sub-
tree, and prefers the one with the smallest expected size. For this purpose
it uses a sample of the space of trees rooted at the evaluated attribute. The
sample is obtained by selecting attributes with a probability proportional
to its information gain.

6.3 Oblique Decision Trees

Regular top-down decision trees inducers, such as C4.5, use only a single
attribute in each node. Consequently these algorithms are partitioning
the instance space using only axis-parallel separating surfaces (typically,
hyperplanes). Several cases presented in the literature use multivariate
splitting criteria.

In multivariate splitting criteria, several attributes may participate in
a single node split test. Obviously, finding the best multivariate criteria



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

84 Data Mining with Decision Trees: Theory and Applications

is more complicated than finding the best univariate split. Furthermore,
although this type of criteria may dramatically improve the trees perfor-
mance, these criteria are much less popular than the univariate criteria.

Figure 6.7 presents a typical algorithmic framework for top-down in-
ducing of oblique decision trees. Note that this algorithm is very similar to
that presented in Figure 2.1. But, instead of looking for a split with a sin-
gle attribute, it looks for the best function of the input attributes. In each
iteration, the algorithm considers the partition of the training set using the
outcome of a discrete function of the input attributes. The selection of the
most appropriate function is made according to some splitting measures.
After the selection of an appropriate split, each node further subdivides
the training set into smaller subsets, until no split gains sufficient split-
ting measures or a stopping criterion is satisfied. Because there are endless
functions, the main challenge is to decide on which functions the algorithm
should concentrate.

Most of the Multivariate Splitting Criteria are based on the linear combi-
nation of the input attributes. In this case the algorithm constructs hyper-
planes that are oblique, that is, not parallel to a coordinate axis. Figure 6.8
illustrates an Oblique Decision Tree. The left node in the second level tests a
linear combination of the two input attributes 3·Y RSJOB−2·DEPEND.
It is reasonable to assume that oblique decision trees would require several
less planes then a regular decision tree, resulting in a smaller tree.

Finding the best linear combination can be performed using greedy
search ([Breiman et al. (1984)], [Murthy (1998)]); linear programming
([Duda and Hart (1973)], [Bennett and Mangasarian (1994)]); linear dis-
criminant analysis ([Duda and Hart (1973)], [Friedman (1977)], [Sklansky
and Wassel (1981)], [Lin and Fu (1983)],[Loh and Vanichsetakul (1988)],
[John (1996)] and others ([Utgoff (1989a)], [Lubinsky (1993)], [Sethi and
Yoo (1994)]).

Growing of oblique decision trees was first proposed as a linear combi-
nation extension to the CART algorithm. This extension is known as the
CART-LC [Biermann et al. (1982)]. OC1 (oblique classifier 1) is an inducer
of oblique decision trees designed for training sets with numeric instances
[Murthy et al. (1994)]. OC1 builds the oblique hyperplanes by using a lin-
ear combinations of one or more numeric attributes at each internal node;
these trees then partition the space of examples with both oblique and
axis-parallel hyperplanes.
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TreeGrowing (S,A,y) Where: S - Training Set

A - Input Feature Set y - Target Feature

Create a new tree T with a single root node.

IF One of the Stopping Criteria is fulfilled THEN

Mark T as a leaf with the most

common value of y in S as a label.

ELSE

Find a discrete function f(A) of the input

attributes values such that splitting S

according to f(A)’s outcomes (v1, . . . , vn) gains

the best splitting metric.

IF best splitting metric > threshold THEN

Label t with f(A)
FOR each outcome vi of f(A):

Set Subtreei= TreeGrowing (σf(A)=vi
S, A, y).

Connect the root node of tT to Subtreei with

an edge that is labelled as vi

END FOR

ELSE

Mark the root node in T as a leaf with the most

common value of y in S as a label.

END IF

END IF RETURN T

Fig. 6.7 Top-Down Algorithmic Framework for Oblique Decision Trees Induction.
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Fig. 6.8 Illustration of Oblique Decision Tree.
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Chapter 7

Decision Forests

7.1 Overview

Ensemble methodology, which builds a predictive model by integrating mul-
tiple models, can be used for improving prediction performance and resea-
rchers from various disciplines such as statistics, machine learning, pattern
recognition, and data mining have seriously explored the use of ensem-
ble methodology. This chapter presents an updated survey of ensemble
methods in classification tasks, describing the various combining methods,
ensemble diversity generators and ensemble size determination.

7.2 Introduction

Supervised methods are methods that attempt to discover relationships
between the input attributes and the target attribute. The relationship
discovered is represented in a structure referred to as a model. Usually
models can be used for predicting the value of the target attribute knowing
the values of the input attributes. It is useful to distinguish between two
main supervised models: classification models (classifiers) and regression
models.

Regression models map the input space into a real-valued domain,
whereas classifiers map the input space into predefined classes. For inst-
ance, classifiers can be used to classify mortgage consumers into good (fully
payback the mortgage on time) and bad (delayed payback).

In a typical supervised learning problem, a training set of labeled ex-
amples is given and the goal is to form a description that can be used to
predict previously unseen examples.

The main idea of an ensemble methodology is to combine a set of mod-

87
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els, each of which solves the same original task, in order to obtain a better
composite global model, with more accurate and reliable estimates or deci-
sions than can be obtained from using a single model. The idea of building
a predictive model by integrating multiple models has been under investi-
gation for a long time.

The history of ensemble methods starts as early as 1977 with Tukeys
twicing, an ensemble of two linear regression models [Buhlmann and Yu
(2003)]. Ensemble methods can be also used for improving the quality and
robustness of clustering algorithms [Dimitriadou et al. (2003)]. Neverthe-
less, in this chapter we focus on classifier ensembles.

In the past few years, experimental studies conducted by the machine
learning community show that combining the outputs of multiple classifiers
reduces the generalization error [Domingos (1996); Quinlan (1996); Bauer
and Kohavi (1999); Opitz and Maclin (1999)]. Ensemble methods are very
effective, mainly due to the phenomenon that various types of classifiers
have different “inductive biases” [Geman et al. (1995); Mitchell (1997)].
Indeed, ensemble methods can effectively make use of such diversity to
reduce the variance-error [Tumer and Ghosh (1999); Ali and Pazzani (1996)]
without increasing the bias-error. In certain situations, an ensemble can
also reduce bias-error, as shown by the theory of large margin classifiers
[Bartlett and Shawe-Taylor (1998)].

The ensemble methodology is applicable in many fields such as: fi-
nance [Leigh et al. (2002)]; bioinformatics [Tan et al. (2003)]; medicine
[Mangiameli et al. (2004); Park and Cho (2003); Walsh et al. (2004)];
cheminformatics [Merkwirth et al. (2004)]; manufacturing [Maimon and
Rokach (2004)]; geography [Bruzzone et al. (2004)] and pattern recognition
[Pang et al. (2003)].

Given the potential usefulness of ensemble methods, it is not surprising
that a vast number of methods is now available to researchers and practi-
tioners. Several surveys on ensemble are available in the literature, such
as [Clemen (1989)] for forecasting methods or [Dietterich (2000b)] for ma-
chine learning. Nevertheless, this survey proposes an updated and profound
description of issues related to ensemble of classifiers. This chapter aims to
organize all significant methods developed in this field into a coherent and
unified catalog.

A typical ensemble framework for classification tasks contains the fol-
lowing building blocks:

(1) Training set - A labeled dataset used for ensemble training. In semi-
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supervised methods of ensemble generation, such as ASSEMBLE [Ben-
nett et al. (2002)], unlabeled instances can be also used for the creation
of the ensemble.

(2) Inducer – The inducer is an induction algorithm that obtains a training
set and forms a classifier that represents the generalized relationship
between the input attributes and the target attribute.

(3) Ensemble generator – This component is responsible for generating the
diverse classifiers.

(4) Combiner - The combiner is responsible for combining the classifications
of the various classifiers.

We use the notation Mi = I(Si) for representing a classifier Mi which
was induced by inducer I on a training set Si. The notation of Mt, αt; t =
1, . . . , T represents an ensemble of T classifiers.

The nature of each building block and the relation between them char-
acterizes the ensemble framework design. The following list describes the
main properties.

(1) Classifier dependency — During the classifier training how does each
classifier affect the other classifiers? Classifiers may be dependent or
independent.

(2) Diversity generator — In order to make the ensemble more effec-
tive, there should be some sort of diversity between the classifiers
[Kuncheva (2005)]. Diversity may be obtained through different pre-
sentations of the input data, as in bagging, variations in learner design,
or by adding a penalty to the outputs to encourage diversity.

(3) Ensemble size — The number of classifiers in the ensemble and how
the undesirable classifiers are removed from the ensemble.

(4) Inducer usage — This property indicates the relation between the en-
semble generator and the inducer used. Some ensemble have been
specifically designed for a certain inducer and can not been used for
other inducers.

(5) Combiner usage — This property specifies the relation between the
ensemble generator and the combiner.

(6) Training data overlap — This property indicates which portion of the
input data, used to induce a certain classifier, was also used to train
other classifiers.

The issues of classifier dependency and diversity are very closely linked.
More specifically, it can be argued that any effective method for generating
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diversity results in dependent classifiers (otherwise obtaining diversity is
just luck). Nevertheless, as we will explain later one can independently
create the classifiers and then, as a post-processing step, select the most
diverse classifiers. Naturally there might be other properties which can be
used to differentiate an ensemble scheme. We begin by surveying various
combination methods. Following that we discuss and describe each one of
the above mentioned properties in details.

7.3 Combination Methods

There are two main methods for combining classifiers: weighting methods
and meta-learning. The weighting methods are best suited for problems
where the individual classifiers perform the same task and have comparable
success or when we would like to avoid problems associated with added
learning (such as overfitting or long training time).

7.3.1 Weighting Methods

When combining classifiers with weights, a classifier’s classification has a
strength proportional to its assigned weight. The assigned weight can be
fixed or dynamically determined for the specific instance to be classified.

7.3.1.1 Majority Voting

In this combining scheme, a classification of an unlabeled instance is per-
formed according to the class that obtains the highest number of votes (the
most frequent vote). This method is also known as the plurality vote (PV)
or the basic ensemble method (BEM). This approach has frequently been
used as a combining method for comparing newly proposed methods.

Mathematically it can be written as:

class(x) = argmax
ci∈dom(y)

(∑
k

g (yk(x), ci)

)
(7.1)

where yk(x) is the classification of the k’th classifier and g(y, c) is an indi-
cator function defined as:
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g (y, c) =
{

1 y = c

0 y �= c
(7.2)

Note that in case of a probabilistic classifier, the crisp classification
yk(x) is usually obtained as follows:

yk(x) = argmax
ci∈dom(y)

P̂Mk
(y = ci |x) (7.3)

where Mk denotes classifier k and P̂Mk
(y = c |x ) denotes the probability of

y obtaining the value c given an instance x.

7.3.1.2 Performance Weighting

The weight of each classifier can be set proportional to its accuracy perfor-
mance on a validation set [Opitz and Shavlik (1996)]:

αi =
(1 − Ei)

T∑
j=1

(1 − Ej)
(7.4)

where Ei is a normalization factor which is based on the performance eval-
uation of classifier i on a validation set.

7.3.1.3 Distribution Summation

The idea of the distribution summation combining method is to sum up
the conditional probability vector obtained from each classifier [Clark and
Boswell (1991)]. The selected class is chosen according to the highest value
in the total vector. Mathematically, it can be written as:

Class(x) = argmax
ci∈dom(y)

∑
k

P̂Mk
(y = ci |x ) (7.5)

7.3.1.4 Bayesian Combination

In the Bayesian combination method the weight associated with each clas-
sifier is the posterior probability of the classifier given the training set [Bun-
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tine (1990)].

Class(x) = argmax
ci∈dom(y)

∑
k

P (Mk |S ) · P̂Mk
(y = ci |x) (7.6)

where P (Mk |S ) denotes the probability that the classifier Mk is correct
given the training set S. The estimation of P (Mk |S ) depends on the
classifier’s representation. To estimate this value for decision trees the
reader is referred to [Buntine (1990)].

7.3.1.5 Dempster–Shafer

The idea of using the Dempster–Shafer theory of evidence [Buchanan
and Shortliffe (1984)] for combining classifiers has been suggested in
[Shilen (1990)]. This method uses the notion of basic probability assign-
ment defined for a certain class ci given the instance x:

bpa(ci, x) = 1−
∏
k

(
1− P̂Mk

(y = ci |x )
)

(7.7)

Consequently, the selected class is the one that maximizes the value of the
belief function:

Bel(ci, x) =
1
A
· bpa(ci, x)
1− bpa(ci, x)

(7.8)

where A is a normalization factor defined as:

A =
∑

∀ci∈dom(y)

bpa(ci, x)
1− bpa(ci, x)

+ 1 (7.9)

7.3.1.6 Vogging

The idea behind the vogging approach (Variance Optimized Bagging) is to
optimize a linear combination of base-classifiers so as to aggressively re-
duce variance while attempting to preserve a prescribed accuracy [Derbeko
et al. (2002)]. For this purpose, Derbeko et al.implemented the Markowitz
Mean-Variance Portfolio Theory that is used for generating low variance
portfolios of financial assets.
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7.3.1.7 Näıve Bayes

Using Bayes’ rule, one can extend the näıve Bayes idea for combining var-
ious classifiers:

Class(x) = argmax
cj ∈ dom(y)
P̂ (y = cj) > 0

P̂ (y = cj) ·
∏
k=1

P̂Mk
(y = cj |x )

P̂ (y = cj)
(7.10)

7.3.1.8 Entropy Weighting

The idea in this combining method is to give each classifier a weight that
is inversely proportional to the entropy of its classification vector.

Class(x) = argmax
ci∈dom(y)

∑
k:ci=argmax

cj∈dom(y)
P̂Mk

(y=cj|x )

E(Mk, x) (7.11)

where:

E(Mk, x) = −
∑
cj

P̂Mk
(y = cj |x) log

(
P̂Mk

(y = cj |x)
)

(7.12)

7.3.1.9 Density-based Weighting

If the various classifiers were trained using datasets obtained from different
regions of the instance space, it might be useful to weight the classifiers
according to the probability of sampling x by classifier Mk, namely:

Class(x) = argmax
ci∈dom(y)

∑
k:ci=argmax

cj∈dom(y)
P̂Mk

(y=cj|x )

P̂Mk
(x) (7.13)

The estimation of P̂Mk
(x) depends on the classifier representation and can

not always be estimated.

7.3.1.10 DEA Weighting Method

Recently there has been attempt to use the data envelop analysis (DEA)
methodology [Charnes et al. (1978)] in order to assign weights to different
classifiers [Sohn and Choi (2001)]. These researchers argue that the weights
should not be specified according to a single performance measure, but
should be based on several performance measures. Because there is a trade-
off among the various performance measures, the DEA is employed in order
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to figure out the set of efficient classifiers. In addition, DEA provides
inefficient classifiers with the benchmarking point.

7.3.1.11 Logarithmic Opinion Pool

According to the logarithmic opinion pool [Hansen (2000)], the selection of
the preferred class is performed according to:

Class(x) = argmax
cj∈dom(y)

e

∑
k

αk·log(P̂Mk
(y=cj|x ))

(7.14)

where αk denotes the weight of the k-th classifier, such that:

αk ≥ 0;
∑

αk = 1 (7.15)

7.3.1.12 Gating Network

Figure 7.1 illustrates an n-expert structure. Each expert outputs the condi-
tional probability of the target attribute given the input instance. A gating
network is responsible for combining the various experts by assigning a
weight to each network. These weights are not constant but are functions
of the input instance x. The gating network selects one or a few experts
(classifiers) which appear to have the most appropriate class distribution
for the example. In fact each expert specializes on a small portion of the
input space.

An extension to the basic mixture of experts, known as hierarchical mix-
tures of experts (HME), has been proposed in [Jordan and Jacobs (1994)].
This extension decomposes the space into sub-spaces, and then recursively
decomposes each sub-space into sub-spaces.

Variations of the basic mixture of experts methods have been deve-
loped to accommodate specific domain problems. A specialized modular
networks called the Meta-pi network has been used to solve the vowel-
speaker problem [Hampshire and Waibel (1992); Peng et al. (1996)]. There
have been other extensions, such as nonlinear gated experts for time-series
[Weigend et al. (1995)]; revised modular network for predicting the survival
of AIDS patients [Ohno-Machado and Musen (1997)]; and a new approach
for combining multiple experts for improving handwritten numeral recog-
nition [Rahman and Fairhurst (1997)].
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Fig. 7.1 Illustration of n-Expert Structure.

7.3.1.13 Order Statistics

Order statistics can be used to combine classifiers [Tumer and
Ghosh (2000)]. These combiners offer the simplicity of a simple weighted
combination method together with the generality of meta-combination
methods (see the following section). The robustness of this method is help-
ful when there are significant variations among classifiers in some part of
the instance space.

7.3.2 Meta-combination Methods

Meta-learning means learning from the classifiers produced by the inducers
and from the classifications of these classifiers on training data. The fol-
lowing sections describe the most well-known meta-combination methods.

7.3.2.1 Stacking

Stacking is a technique for achieving the highest generalization accuracy
[Wolpert (1992)]. By using a meta-learner, this method tries to induce
which classifiers are reliable and which are not. Stacking is usually em-
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ployed to combine models built by different inducers. The idea is to create
a meta-dataset containing a tuple for each tuple in the original dataset.
However, instead of using the original input attributes, it uses the pre-
dicted classifications by the classifiers as the input attributes. The target
attribute remains as in the original training set. A test instance is first
classified by each of the base classifiers. These classifications are fed into
a meta-level training set from which a meta-classifier is produced. This
classifier combines the different predictions into a final one.

It is recommended that the original dataset should be partitioned into
two subsets. The first subset is reserved to form the meta-dataset and
the second subset is used to build the base-level classifiers. Consequently,
the meta-classifier predications reflect the true performance of base-level
learning algorithms.

Stacking performance can be improved by using output probabilities for
every class label from the base-level classifiers. In such cases, the number of
input attributes in the meta-dataset is multiplied by the number of classes.

It has been shown that with stacking the ensemble performs (at best)
comparably to selecting the best classifier from the ensemble by cross-
validation [Džeroski and Ženko (2004)]. In order to improve the existing
stacking approach, they employed a new multi-response model tree to learn
at the meta-level and empirically showed that it performs better than ex-
isting stacking approaches and better than selecting the best classifier by
cross-validation.

The SCANN (for Stacking, Correspondence Analysis and Nearest
Neighbor) combining method [Merz (1999)] uses the strategies of stack-
ing and correspondence analysis. Correspondence analysis is a method for
geometrically modelling the relationship between the rows and columns of a
matrix whose entries are categorical. In this context Correspondence Anal-
ysis is used to explore the relationship between the training examples and
their classification by a collection of classifiers.

A nearest neighbor method is then applied to classify unseen examples.
Here, each possible class is assigned coordinates in the space derived by
correspondence analysis. Unclassified examples are mapped into the new
space, and the class label corresponding to the closest class point is assigned
to the example.
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7.3.2.2 Arbiter Trees

According to Chan and Stolfo’s approach [Chan and Stolfo (1993)], an
arbiter tree is built in a bottom-up fashion. Initially, the training set is
randomly partitioned into k disjoint subsets. The arbiter is induced from a
pair of classifiers and recursively a new arbiter is induced from the output
of two arbiters. Consequently for k classifiers, there are log2(k) levels in
the generated arbiter tree.

The creation of the arbiter is performed as follows. For each pair of
classifiers, the union of their training dataset is classified by the two classi-
fiers. A selection rule compares the classifications of the two classifiers and
selects instances from the union set to form the training set for the arbiter.
The arbiter is induced from this set with the same learning algorithm used
in the base level. The purpose of the arbiter is to provide an alternate
classification when the base classifiers present diverse classifications. This
arbiter, together with an arbitration rule, decides on a final classification
outcome, based upon the base predictions. Figure 7.2 shows how the final
classification is selected based on the classification of two base classifiers
and a single arbiter.

Fig. 7.2 A Prediction from Two Base Classifiers and a Single Arbiter.

The process of forming the union of data subsets; classifying it using
a pair of arbiter trees; comparing the classifications; forming a training
set; training the arbiter; and picking one of the predictions, is recursively
performed until the root arbiter is formed. Figure 7.3 illustrate an arbiter
tree created for k = 4. T1 − T4 are the initial four training datasets from
which four classifiers M1−M4 are generated concurrently. T12 and T34 are
the training sets generated by the rule selection from which arbiters are
produced. A12 and A34 are the two arbiters. Similarly, T14 and A14 (root
arbiter) are generated and the arbiter tree is completed.

There are several schemes for arbiter trees; each is characterized by a
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Fig. 7.3 Sample Arbiter Tree.

different selection rule. Here are three versions of selection rules:

• Only instances with classifications that disagree are chosen (group 1).
• Like group 1 defined above, plus instances where their classifications

agree but are incorrect (group 2).
• Like groups 1 and 2 defined above, plus instances that have the same

correct classifications (group 3).

Of the two versions of arbitration rules that have been implemented, each
corresponds to the selection rule used for generating the training data at
that level:

• For selection rule 1 and 2, a final classification is made by a majority
vote of the classifications of the two lower levels and the arbiter’s own
classification, with preference given to the latter.

• For selection rule 3, if the classifications of the two lower levels are not
equal, the classification made by the sub-arbiter based on the first group
is chosen. In case this is not true and the classification of the sub-arbiter
constructed on the third group equals those of the lower levels, then
this is the chosen classification. In any other case, the classification of
the sub-arbiter constructed on the second group is chosen. In fact it is
possible to achieve the same accuracy level as in the single mode applied
to the entire dataset but with less time and memory requirements [Chan
and Stolfo (1993)]. More specifically it has been shown that this meta-
learning strategy required only around 30% of the memory used by
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the single model case. This last fact, combined with the independent
nature of the various learning processes, make this method robust and
effective for massive amounts of data. Nevertheless, the accuracy level
depends on several factors such as the distribution of the data among
the subsets and the pairing scheme of learned classifiers and arbiters
in each level. The decision regarding any of these issues may influence
performance, but the optimal decisions are not necessarily known in
advance, nor initially set by the algorithm.

7.3.2.3 Combiner Trees

The way combiner trees are generated is very similar to arbiter trees. Both
are trained bottom-up. However, a combiner, instead of an arbiter, is placed
in each non-leaf node of a combiner tree [Chan and Stolfo (1997)]. In the
combiner strategy, the classifications of the learned base classifiers form the
basis of the meta-learner’s training set. A composition rule determines the
content of training examples from which a combiner (meta-classifier) will
be generated. In classifying an instance, the base classifiers first generate
their classifications and based on the composition rule, a new instance is
generated. The aim of this strategy is to combine the classifications from
the base classifiers by learning the relationship between these classifications
and the correct classification. Figure 7.4 illustrates the result obtained from
two base classifiers and a single combiner.

Fig. 7.4 A Prediction from Two Base Classifiers and a Single Combiner.

Two schemes for composition rules were proposed. The first one is
the stacking scheme. The second is like stacking with the addition of the
instance input attributes. It has been shown that the stacking scheme per
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se does not perform as well as the second scheme [Chan and Stolfo (1995)].
Although there is information loss due to data partitioning, combiner trees
can sustain the accuracy level achieved by a single classifier. In a few cases,
the single classifier’s accuracy was consistently exceeded.

7.3.2.4 Grading

This technique uses “graded” classifications as meta-level classes [Seewald
and Furnkranz (2001)]. The term ”graded” is used in the sense of classifica-
tions that have been marked as correct or incorrect. The method transforms
the classification made by the k different classifiers into k training sets by
using the instances k times and attaching them to a new binary class in
each occurrence. This class indicates whether the k–th classifier yielded a
correct or incorrect classification, compared to the real class of the instance.

For each base classifier, one meta-classifier is learned whose task is to
classify when the base classifier will misclassify. At classification time, each
base classifier classifies the unlabeled instance. The final classification is
derived from the classifications of those base classifiers that are classified to
be correct by the meta-classification schemes. In case several base classifiers
with different classification results are classified as correct, voting, or a
combination considering the confidence estimates of the base classifiers,
is performed. Grading may be considered as a generalization of cross-
validation selection [Schaffer (1993)], which divides the training data into k

subsets, builds k − 1 classifiers by dropping one subset at a time and then
uses it to find a misclassification rate. Finally, the procedure simply chooses
the classifier corresponding to the subset with the smallest misclassification.
Grading tries to make this decision separately for each and every instance
by using only those classifiers that are predicted to classify that instance
correctly. The main difference between grading and combiners (or stacking)
is that the former does not change the instance attributes by replacing them
with class predictions or class probabilities (or adding them to it). Instead
it modifies the class values. Furthermore, in grading several sets of meta-
data are created, one for each base classifier. Several meta-level classifiers
are learned from those sets.

The main difference between grading and arbiters is that arbiters use
information about the disagreements of classifiers for selecting a training
set; grading uses disagreement with the target function to produce a new
training set.
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7.4 Classifier Dependency

This property indicates whether the various classifiers are dependent or
independent. In a dependent framework the outcome of a certain clas-
sifier affects the creation of the next classifier. Alternatively each classi-
fier is built independently and their results are combined in some fashion.
Some researchers refer to this property as “the relationship between mod-
ules” and distinguish between three different types: successive, cooperative
and supervisory [Sharkey (1996)]. Roughly speaking, “successive” refers to
“dependent” while “cooperative” refers to “independent”. The last type
applies to those cases in which one model controls the other model.

7.4.1 Dependent Methods

In dependent approaches for learning ensembles, there is an interaction bet-
ween the learning runs. Thus it is possible to take advantage of knowledge
generated in previous iterations to guide the learning in the next iterations.
We distinguish between two main approaches for dependent learning, as de-
scribed in the following sections [Provost and Kolluri (1997)].

7.4.1.1 Model-guided Instance Selection

In this dependent approach, the classifiers that were constructed in previous
iterations are used for manipulating the training set for the following itera-
tion (see Figure 7.5). One can embed this process within the basic learning
algorithm. These methods usually ignore all data instances on which their
initial classifier is correct and only learn from misclassified instances.

The most well known model-guided instance selection is boosting.
Boosting (also known as arcing adaptive resampling and combining) is
a general method for improving the performance of a weak learner (such
as classification rules or decision trees). The method works by repeatedly
running a weak learner (such as classification rules or decision trees), on
various distributed training data. The classifiers produced by the weak
learners are then combined into a single composite strong classifier in order
to achieve a higher accuracy than the weak learners classifiers would have
had.

Freund and Schapire (1996) introduced the AdaBoost algorithm. The
main idea of this algorithm is to assign a weight in each example in the
training set. In the beginning, all weights are equal, but in every round,
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Fig. 7.5 Model–guided Instance Selection Diagram.

the weights of all misclassified instances are increased while the weights of
correctly classified instances are decreased. As a consequence, the weak
learner is forced to focus on the difficult instances of the training set. This
procedure provides a series of classifiers that complement one another.

The pseudo-code of the AdaBoost algorithm is described in Figure 7.6.
The algorithm assumes that the training set consists of m instances, labeled
as -1 or +1. The classification of a new instance is made by voting on all
classifiers {Mt}, each having a weight of αt. Mathematically, it can be
written as:

H(x) = sign(
T∑

t=1

αt ·Mt(x)) (7.16)

For using the boosting algorithm with decision trees, the decision tree
inducer should be able to handle weighted instances. Some decision trees
inducers (such as C4.5) can provide different treatments to different inst-
ances. This is performed by weighting the contribution of each instance in
the analysis according to a provided weight (between 0 and 1). If weighted
instances are used, then one may obtain probability vectors in the leaf nodes
that consist of irrational numbers. This can be explained by the fact that



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

Decision Forests 103

Require: I (a weak inducer), T (the number of iterations), S (training
set)

Ensure: Mt, αt; t = 1, . . . , T

1: t←1
2: D1(i)← 1/m; i = 1, . . ., m

3: repeat
4: Build Classifier Mt using I and distribution Dt

5: εt ←
∑

i:Mt(xi) �=yi

Dt(i)

6: if εt > 0.5 then
7: T ← t− 1
8: exit Loop.
9: end if

10: αt ← 1
2 ln(1−εt

εt
)

11: Dt+1(i) = Dt(i) · e−αtytMt(xi)

12: Normalize Dt+1 to be a proper distribution.
13: t + +
14: until t > T

Fig. 7.6 The AdaBoost Algorithm

counting weighted instances is not necessarily summed up with an integer
number.

The basic AdaBoost algorithm, described in Figure 7.6, deals with
binary classification. Freund and Schapire (1996) describe two versions of
the AdaBoost algorithm (AdaBoost.M1, AdaBoost.M2), which are equiva-
lent for binary classification and differ in their handling of multiclass clas-
sification problems. Figure 7.7 describes the pseudo-code of AdaBoost.M1.
The classification of a new instance is performed according to the following
equation:

H(x) = argmax
y∈dom(y)

(
∑

t:Mt(x)=y

log
1
βt

) (7.17)

where βt is defined in Figure 7.7.
All boosting algorithms presented here assume that the weak inducers

which are provided can cope with weighted instances. If this is not the case,
an unweighted dataset is generated from the weighted data by a resampling
technique. Namely, instances are chosen with a probability according to
their weights (until the dataset becomes as large as the original training set).



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

104 Data Mining with Decision Trees: Theory and Applications

Require: I (a weak inducer), T (the number of iterations), S (the training
set)

Ensure: Mt, βt; t = 1, . . . , T

1: t← 1
2: D1(i)← 1/m; i = 1, . . ., m

3: repeat
4: Build Classifier Mt using I and distribution Dt

5: εt ←
∑

i:Mt(xi) �=yi

Dt(i)

6: if εt > 0.5 then
7: T ← t− 1
8: exit Loop.
9: end if

10: βt ← εt

1−εt

11: Dt+1(i) = Dt(i) ·
{

βt

1
Mt(xi) = yi

Otherwise
12: Normalize Dt+1 to be a proper distribution.
13: t + +
14: until t > T

Fig. 7.7 The AdaBoost.M.1 Algorithm.

Boosting seems to improve performance for two main reasons:

(1) It generates a final classifier whose error on the training set is small by
combining many hypotheses whose error may be large.

(2) It produces a combined classifier whose variance is significantly lower
than those produced by the weak learner.

On the other hand, boosting sometimes leads to a deterioration in gener-
alization performance. According to Quinlan (1996), the main reason for
boosting’s failure is overfitting. The objective of boosting is to construct
a composite classifier that performs well on the data, but a large number
of iterations may create a very complex composite classifier, that is sig-
nificantly less accurate than a single classifier. A possible way to avoid
overfitting is by keeping the number of iterations as small as possible. It
has been shown that boosting approximates a large margin classifier such
as the SVM [Rudin et al. (2004)].

Another important drawback of boosting is that it is difficult to under-
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stand. The resulting ensemble is considered to be less comprehensible since
the user is required to capture several classifiers instead of a single classifier.
Despite the above drawbacks, Breiman (1996) refers to the boosting idea
as the most significant development in classifier design of the Nineties.

7.4.1.2 Incremental Batch Learning

In this method the classification produced in one iteration is given as “prior
knowledge” to the learning algorithm in the following iteration. The learn-
ing algorithm uses the current training set together with the classification
of the former classifier for building the next classifier. The classifier con-
structed at the last iteration is chosen as the final classifier.

7.4.2 Independent Methods

In independent ensemble methodology, the original dataset is partitioned
into several subsets from which multiple classifiers are induced. (Please
see Figure 7.8). The subsets created from the original training set may be
disjointed (mutually exclusive) or overlapping. A combination procedure is
then applied in order to produce a single classification for a given instance.
Since the method for combining the results of induced classifiers is usually
independent of the induction algorithms, it can be used with different indu-
cers at each subset. Moreover, this methodology can be easily parallelized.
These independent methods aim either at improving the predictive power
of classifiers or decreasing the total execution time. The following sections
describe several algorithms that implement this methodology.

7.4.2.1 Bagging

The most well-known independent method is bagging (bootstrap aggre-
gating). The method aims to increase accuracy by creating an improved
composite classifier, I∗, by amalgamating the various outputs of learned
classifiers into a single prediction.

Figure 7.9 presents the pseudo-code of the bagging algorithm
[Breiman (1996)]. Each classifier is trained on a sample of instances taken
with a replacement from the training set. Usually each sample size is equal
to the size of the original training set.

Note that since sampling with replacement is used, some of the original
instances of S may appear more than once in St and some may not be
included at all. To classify a new instance, each classifier returns the class
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Fig. 7.8 Independent methods.

Require: I (an inducer), T (the number of iterations), S (the training
set), µ (the subsample size).

Ensure: Mt; t = 1, . . . , T

1: t← 1
2: repeat
3: St ← Sample µ instances from S with replacement.
4: Build classifier Mt using I on St

5: t + +
6: until t > T

Fig. 7.9 The bagging algorithm.

prediction for the unknown instance. The composite bagged classifier, I∗,
returns the class that has been predicted most often (voting method). The
result is that bagging produces a combined model that often performs better
than the single model built from the original single data. Breiman (1996)
notes that this is true especially for unstable inducers because bagging
can eliminate their instability. In this context, an inducer is considered
unstable if perturbing the learning set can cause significant changes in the
constructed classifier.
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Bagging, like boosting, is a technique for improving the accuracy of a
classifier by producing different classifiers and combining multiple models.
They both use a kind of voting for classification in order to combine the
outputs of the different classifiers of the same type. In boosting, unlike
bagging, each classifier is influenced by the performance of those built before
with the new classifier trying to pay more attention to errors that were made
in the previous ones and to their performances. In bagging, each instance
is chosen with equal probability, while in boosting, instances are chosen
with a probability proportional to their weight. Furthermore, according
to Quinlan (1996), as mentioned above, bagging requires that the learning
system should not be stable, where boosting does not preclude the use of
unstable learning systems, provided that their error rate can be kept below
0.5.

7.4.2.2 Wagging

Wagging is a variant of bagging [Bauer and Kohavi (1999)] in which each
classifier is trained on the entire training set, but each instance is stochasti-
cally assigned a weight. Figure 7.10 presents the pseudo-code of the wagging
algorithm.

In fact bagging can be considered to be wagging with allocation of
weights from the Poisson distribution (each instance is represented in the
sample a discrete number of times). Alternatively, it is possible to allocate
the weights from the exponential distribution, because the exponential dis-
tribution is the continuous valued counterpart to the Poisson distribution
[Webb (2000)].

Require: I (an inducer), T (the number of iterations), S (the training
set), d (weighting distribution).

Ensure: Mt; t = 1, . . . , T

1: t← 1
2: repeat
3: St ← S with random weights drawn from d.
4: Build classifier Mt using I on St

5: t + +
6: until t > T

Fig. 7.10 The Wagging Algorithm.
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7.4.2.3 Random Forest

A random forest ensemble (also known as random subspace) [Breiman
(2001)] uses a large number of individual, unpruned decision trees which
are created by randomizing the split at each node of the decision tree. Each
tree is likely to be less accurate than a tree created with the exact splits.
But, by combining several of these ”approximate” trees in an ensemble, we
can improve the accuracy, often doing better than a single tree with exact
splits.

The individual trees are constructed using the algorithm presented in
Figure 7.11. The input parameter N represents the number of input vari-
ables that will be used to determine the decision at a node of the tree. This
number should be much less than the number of attributes in the training
set. Note that bagging can be thought of as a special case of random forests
obtained when N is set to the number of attributes in the original train-
ing set. The IDT in Figure 7.11 represents any top-down decision tree
induction algorithm with the following modification: the decision tree is
not pruned and at each node, rather than choosing the best split among all
attributes, the IDT randomly samples N of the attributes and chooses the
best split from among those variables. The classification of an unlabeled
instance is performed using majority vote.

Require: IDT (a decision tree inducer), T (the number of iterations), S

(the training set), µ (the subsample size). N (number of attributes
used in each node)

Ensure: Mt; t = 1, . . . , T

1: t← 1
2: repeat
3: St ← Sample µ instances from S with replacement.
4: Build classifier Mt using IDT (N) on St

5: t + +
6: until t > T

Fig. 7.11 The random forest algorithm.

There are other ways to obtain random forests. For example, instead
of using all the instances to determine the best split point for each feature,
a sub-sample of the instances is used [Kamath and Cantu-Paz (2001)].
This sub-sample varies with the feature. The feature and split value that
optimize the splitting criterion are chosen as the decision at that node.
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Since the split made at a node is likely to vary with the sample selected,
this technique results in different trees which can be combined in ensembles.

Another method for randomization of the decision tree through his-
tograms was proposed by [Kamath et al. (2002)]. The use of histograms
has long been suggested as a way of of making the features discrete, while
reducing the time to handle very large datasets. Typically, a histogram
is created for each feature, and the bin boundaries used as potential split
points. The randomization in this process is expressed by selecting the split
point randomly in an interval around the best bin boundary.

Although the random forest was defined for decision trees, this approach
is applicable to all types of classifiers. One important advantage of the
random forest method is its ability to handle a very large number of input
attributes [Skurichina and Duin (2002)]. Another important feature of the
random forest is that it is fast.

7.4.2.4 Cross-validated Committees

This procedure creates k classifiers by partitioning the training set into
k-equal-sized sets and training, in turn, on all but the i-th set. This
method, first used by Gams (1989), employed 10-fold partitioning. Par-
manto et al. (1996) have also used this idea for creating an ensemble of neu-
ral networks. Domingos (1996) used cross-validated committees to speed up
his own rule induction algorithm RISE, whose complexity is O(n2), making
it unsuitable for processing large databases. In this case, partitioning is
applied by predetermining a maximum number of examples to which the
algorithm can be applied at once. The full training set is randomly divided
into approximately equal-sized partitions. RISE is then run on each parti-
tion separately. Each set of rules grown from the examples in partition p

is tested on the examples in partition p + 1, in order to reduce overfitting
and to improve accuracy.

7.5 Ensemble Diversity

In an ensemble, the combination of the output of several classifiers is only
useful if they disagree about some inputs [Tumer and Ghosh (1996)].

Creating an ensemble in which each classifier is as different as possible
while still being consistent with the training set is theoretically known to be
an important feature for obtaining improved ensemble performance [Krogh
and Vedelsby (1995)]. According to [Hu (2001)], diversified classifiers lead
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to uncorrelated errors, which in turn improve classification accuracy.
In the regression context, the bias-variance-covariance decomposition

has been suggested to explain why and how diversity between individual
models contribute toward overall ensemble accuracy. Nevertheless, in the
classification context, there is no complete and agreed upon theory [Brown
et al. (2005)]. More specifically, there is no simple analogue of variance-
covariance decomposition for the zero-one loss function. Instead, there are
several ways to define this decomposition. Each way has its own assump-
tions.

Sharkey [Sharkey (1999)] suggested a taxonomy of methods for creating
diversity in ensembles of neural networks. More specifically, Sharkey’s tax-
onomy refers to four different aspects: the initial weights; the training data
used; the architecture of the networks; and the training algorithm used.

Brown et al. [Brown et al. (2005)] suggest a different taxonomy which
consists of the following branches: varying the starting points within the
hypothesis space; varying the set of hypotheses that are accessible by the
ensemble members (for instance by manipulating the training set); and
varying the way each member traverses the space.

In this paper we suggest the following taxonomy. Note however that
the components of this taxonomy are not mutually exclusive, namely, there
are a few algorithms which combine two of them.

(1) Manipulating the Inducer – We manipulate the way in which the base
inducer is used. More specifically each ensemble member is trained
with an inducer that is differently manipulated.

(2) Manipulating the Training Sample – We vary the input that is used
by the inducer for training. Each member is trained from a different
training set.

(3) Changing the target attribute representation – Each classifier in the
ensemble solve a different target concept.

(4) Partitioning the search space – Each member is trained on a different
search subspace.

(5) Hybridization – Diversity is obtained by using various base inducers or
ensemble strategies.

7.5.1 Manipulating the Inducer

A simple method for gaining diversity is to manipulate the inducer used
for creating the classifiers. Below we survey several strategies to gain this
diversity.
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7.5.1.1 Manipulation of the Inducer’s Parameters

The base inducer usually can be controlled by a set of parameters. For
example, the well known decision tree inducer C4.5 has the confidence level
parameter that greatly affect learning.

In the neural network community, there were several attempts to gain
diversity by using different number of nodes. Nevertheless, these researches
concludes that variation in numbers of hidden nodes is not effective method
of creating diversity in neural network ensembles. Nevertheless the CNNE
algorithm which simultaneously determines the ensemble size along with
the number of hidden nodes in individual NNs, has shown encouraging
results.

Another effective approach for ANNs is to use several network topolo-
gies. For instance the Addemup algorithm [Opitz and Shavlik (1996)] uses
genetic algorithm to select the network topologies composing the ensem-
ble. Addemup trains with standard backpropagation, then selects groups
of networks with a good error diversity according to the measurement of
diversity.

7.5.1.2 Starting Point in Hypothesis Space

Some inducers can gain diversity by starting the search in the Hypothesis
Space from different points. For example the simplest way to manipulate
the back-propagation inducer is to assign different initial weights to the
network [Kolen and Pollack (1991)]. Experimental study indicate that the
resulting networks differed in the number of cycles in which they took to
converge upon a solution, and in whether they converged at all. While it
is very simple way to gain diversity, it is now generally accepted that it is
not sufficient for achieving good diversity [Brown et al. (2005)].

7.5.1.3 Hypothesis Space Traversal

These techniques alter the way the inducer traverses the space, thereby
leading different classifiers to converge to different hypotheses [Brown
et al. (2005)]. We differentiate between two techniques for manipulating the
space traversal for gaining diversity: Random and Collective-Performance.

Random-based strategy
The idea in this case is to ”inject randomness” into the inducers in order

to increase the independence among the ensemble’s members. Ali and Paz-
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zani [Ali and Pazzani (1996)] propose to change the rule learning HYDRA
algorithm in the following way: Instead of selecting the best literal at each
stage (using, for instance, an information gain measure), the literal is se-
lected randomly such that its probability of being selected is proportional to
its measured value. A similar idea has been implemented for C4.5 decision
trees [Dietterich (2000a)]. Instead of selecting the best attribute in each
stage, it selects randomly (with equal probability) an attribute from the
set of the best 20 attributes. MCMC (Markov Chain Monte Carlo) meth-
ods can also be used for introducing randomness in the induction process
[Neal (1993)].

Collective-Performance-based strategy
In this case the evaluation function used in the induction of each member

is extended to include a penalty term that encourages diversity. The most
studied penalty method is the Negative Correlation Learning [Liu (2005);
Brown and Wyatt (2003); Rosen (1996)]. The idea of negative correlation
learning is to encourage different individual classifiers in the ensemble to
represent different subspaces of the problem. While simultaneously cre-
ating the classifiers, the classifiers may interact with each other in order
to specialize (for instance by using a correlation penalty term in the error
function to encourage such specialization).

7.5.2 Manipulating the Training Samples

In this method, each classifier is trained on a different variation or subset
of the original dataset. This method is useful for inducers whose variance-
error factor is relatively large (such as decision trees and neural networks).
That is to say, small changes in the training set may cause a major change in
the obtained classifier. This category contains procedures such as bagging,
boosting and cross-validated committees.

7.5.2.1 Resampling

The distribution of tuples among the different classifier could be random as
in the bagging algorithm or in the arbiter trees. Other methods distribute
the tuples based on the class distribution such that the class distribution in
each subset is approximately the same as that in the entire dataset. It has
been shown that proportional distribution as used in combiner trees [Chan
and Stolfo (1993)] can achieve higher accuracy than random distribution.
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Instead of perform sampling with replacement, some methods (like Ad-
aBoost or Wagging) manipulate the weights that are attached to each inst-
ance in the training set. The base inducer should be capable to take these
weights into account. Recently a novel framework was proposed in which
each instance contributes to the committee formation with a fixed weight,
while contributing with different individual weights to the derivation of the
different constituent classifiers [Christensen et al. (2004)]. This approach
encourages model diversity without biasing the ensemble inadvertently to-
wards any particular instance.

7.5.2.2 Creation

The DECORATE algorithm [Melville and Mooney (2003)] is a dependent
approach in which the ensemble is generated iteratively, learning a classifier
at each iteration and adding it to the current ensemble. The first member is
created by using the base induction algorithm on the original training set.
The successive classifiers are trained on an artificial set that combines tuples
from the original training set and also on some fabricated tuples. In each
iteration, the input attribute values of the fabricated tuples are generated
according to the original data distribution. On the other hand, the target
values of these tuples are selected so as to differ maximally from the cur-
rent ensemble predictions. Comprehensive experiments have demonstrated
that this technique is consistently more accurate than the base classifier,
Bagging and Random Forests. Decorate also obtains higher accuracy than
boosting on small training sets, and achieves comparable performance on
larger training sets.

7.5.2.3 Partitioning

Some argue that classic ensemble techniques (such as boosting and bag-
ging) have limitations on massive datasets, because the size of the dataset
can become a bottleneck [Chawla et al. (2004)]. Moreover, it is suggested
that partitioning the datasets into random, disjoint partitions will not only
overcome the issue of exceeding memory size, but will also lead to creating
an ensemble of diverse and accurate classifiers, each built from a disjoint
partition but with the aggregate processing all of the data. This can im-
prove performance in a way that might not be possible by subsampling.
In fact, empirical studies have shown that the performance of the multiple
disjoint partition approach is equivalent to the performance obtained by
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popular ensemble techniques such as bagging. More recently a framework
for building thousands of classifiers that are trained from small subsets
of data in a distributed environment was proposed [Chawla et al. (2004)].
It has been empirically shown that this framework is fast, accurate, and
scalable.

Clustering techniques can be used to partitioning the sample. The
CBCD (cluster-based concurrent decomposition) algorithm first clusters
the instance space by using the K-means clustering algorithm. Then, it
creates disjoint sub-samples using the clusters in such a way that each sub-
sample is comprised of tuples from all clusters and hence represents the
entire dataset. An inducer is applied in turn to each sub-sample. A voting
mechanism is used to combine the classifiers classifications. Experimental
study indicates that the CBCD algorithm outperforms the bagging algo-
rithm.

7.5.3 Manipulating the Target Attribute Representation

In methods that manipulate the target attribute, instead of inducing a
single complicated classifier, several classifiers with different and usually
simpler representations of the target attribute are induced. This manipula-
tion can be based on an aggregation of the original target’s values (known
as Concept Aggregation) or more complicated functions (known as Function
Decomposition).

Classical concept aggregation replaces the original target attribute with
a function, such that the domain of the new target attribute is smaller than
the original one.

Concept aggregation has been used to classify free text documents into
predefined topics [Buntine (1996)]. This application suggests breaking the
topics up into groups (co-topics) and then, instead of predicting the doc-
ument’s topic directly, classifying the document into one of the co-topics.
Another model is then used to predict the actual topic in that co-topic.

A general concept aggregation algorithm called Error-Correcting Output
Coding (ECOC) which converts multi-class problems into multiple, two-
class problems has been suggested by [Dietterich and Bakiri (1995)]. A
classifier is built for each possible binary partition of the classes. Expe-
riments show that ECOC improves the accuracy of neural networks and
decision trees on several multi-class problems from the UCI repository.

The idea to convert K class classification problems into K-two class
classification problems has been proposed by [Anand et al. (1995)]. Each



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

Decision Forests 115

problem considers the discrimination of one class to the other classes. Lu
and Ito [Lu and Ito (1999)] extend Anand’s method and propose a new
method for manipulating the data based on the class relations among the
training data. By using this method, they divide a K class classification
problem into a series of K(K−1)/2 two-class problems where each problem
considers the discrimination of one class to each one of the other classes.
The researchers used neural networks to examine this idea.

Function decomposition was originally developed in the Fifties and Six-
ties for designing switching circuits. It was even used as an evaluation
mechanism for checker playing programs [Samuel (1967)]. This approach
was later improved by [Biermann et al. (1982)]. Recently the machine learn-
ing community has adopted this approach. A manual decomposition of the
problem and an expert-assisted selection of examples to construct rules for
the concepts in the hierarchy was studied in [Michie (1995)]. Compared to
standard decision tree induction techniques, structured induction exhibits
about the same degree of classification accuracy with the increased trans-
parency and lower complexity of the developed models. A general-purpose
function decomposition approach for machine learning was proposed in [Zu-
pan et al. (1998)]. According to this approach, attributes are transformed
into new concepts in an iterative manner to create a hierarchy of concepts.
A different function decomposition which can be applied in data mining
is the Bi-Decomposition [Long (2003)]. In this approach the original func-
tion is decomposed into two decomposition functions that are connected
by a two-input operator called a ”gate”. Each of the decomposition func-
tions depends on fewer variables than the original function. Recursive bi-
decomposition represents a function as a structure of interconnected gates.

7.5.4 Partitioning the Search Space

The idea is that each member in the ensemble explores a different part of
the search space. Thus, the original instance space is divided into several
sub-spaces. Each sub-space is considered independently and the total model
is a (possibly soft) union of such simpler models.

When using this approach, one should decide if the subspaces will over-
lap. At one extreme, the original problem is decomposed into several mu-
tually exclusive sub-problems, such that each subproblem is solved using
a dedicated classifier. In such cases, the classifiers may have significant
variations in their overall performance over different parts of the input
space [Tumer and Ghosh (2000)]. At the other extreme, each classifier
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solves the same original task. In such cases, “If the individual classifiers
are then appropriately chosen and trained properly, their performances will
be (relatively) comparable in any region of the problem space. [Tumer and
Ghosh (2000)]”. However, usually the sub-spaces may have soft boundaries,
namely sub-spaces are allowed to overlap.

There are two popular approaches for search space manipulations: di-
vide and conquer approaches and feature subset-based ensemble methods.

7.5.4.1 Divide and Conquer

In the neural-networks community, Nowlan and Hinton [Nowlan and Hin-
ton (1991)] examined the mixture of experts (ME) approach, which parti-
tions the instance space into several subspaces and assigns different experts
(classifiers) to the different subspaces. The subspaces, in ME, have soft
boundaries (i.e., they are allowed to overlap). A gating network then com-
bines the experts’ outputs and produces a composite decision.

Some researchers have used clustering techniques to partition the space.
The basic idea is to partition the instance space into mutually exclusive
subsets using K-means clustering algorithm. An analysis of the results
shows that the proposed method is well suited for datasets of numeric input
attributes and that its performance is influenced by the dataset size and its
homogeneity.

NBTree [Kohavi (1996)] is an instance space decomposition method that
induces a decision tree and a Näıve Bayes hybrid classifier. Näıve Bayes,
which is a classification algorithm based on Bayes’ theorem and a Näıve in-
dependence assumption, is very efficient in terms of its processing time. To
induce an NBTree, the instance space is recursively partitioned according
to attributes values. The result of the recursive partitioning is a decision
tree whose terminal nodes are Näıve Bayes classifiers. Since subjecting a
terminal node to a Näıve Bayes classifier means that the hybrid classifier
may classify two instances from a single hyper-rectangle region into distinct
classes, the NBTree is more flexible than a pure decision tree. In order to de-
cide when to stop the growth of the tree, NBTree compares two alternatives
in terms of error estimation - partitioning into a hyper-rectangle region and
inducing a single Näıve Bayes classifier. The error estimation is calculated
by cross-validation, which significantly increases the overall processing time.
Although NBTree applies a Näıve Bayes classifier to decision tree terminal
nodes, classification algorithms other than Näıve Bayes are also applicable.
However, the cross-validation estimations make the NBTree hybrid com-
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putationally expensive for more time-consuming algorithms such as neural
networks.

More recently Cohen et al. [Cohen et al. (2007)] generalizes the NBTree
idea and examines a decision-tree framework for space decomposition.
According to this framework, the original instance-space is hierarchically
partitioned into multiple subspaces and a distinct classifier (such as neu-
ral network) is assigned to each subspace. Subsequently, an unlabeled,
previously-unseen instance is classified by employing the classifier that was
assigned to the subspace to which the instance belongs.

The divide and conquer approach includes many other specific methods
such as local linear regression, CART/MARS, adaptive subspace models,
etc [Johansen and Foss (1992); Ramamurti and Ghosh (1999); Holmstrom
et al. (1997)].

7.5.4.2 Feature Subset-based Ensemble Methods

Another less common strategy for manipulating the search space is to ma-
nipulate the input attribute set. Feature subset based ensemble methods
are those that manipulate the input feature set for creating the ensemble
members. The idea is to simply give each classifier a different projection of
the training set. Tumer and Oza. Feature subset-based ensembles poten-
tially facilitate the creation of a classifier for high dimensionality data sets
without the feature selection drawbacks mentioned above. Moreover, these
methods can be used to improve the classification performance due to the
reduced correlation among the classifiers. Bryll et al. also indicate that the
reduced size of the dataset implies faster induction of classifiers. Feature
subset avoids the class under-representation which may happen in instance
subsets methods such as bagging. There are three popular strategies for
creating feature subset-based ensembles: random-based, reduct-based and
collective-performance-based strategy.

Random-based strategy
The most straightforward techniques for creating feature subset-based

ensemble are based on random selection. Ho [Ho (1998)] creates a forest
of decision trees. The ensemble is constructed systematically by pseudo-
randomly selecting subsets of features. The training instances are projected
to each subset and a decision tree is constructed using the projected train-
ing samples. The process is repeated several times to create the forest. The
classifications of the individual trees are combined by averaging the condi-
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tional probability of each class at the leaves (distribution summation). Ho
shows that simple random selection of feature subsets may be an effective
technique because the diversity of the ensemble members compensates for
their lack of accuracy.

Bay [Bay (1999)] proposed using simple voting in order to combine
outputs from multiple KNN (K-Nearest Neighbor) classifiers, each having
access only to a random subset of the original features. Each classifier
employs the same number of features. A technique for building ensembles
of simple Bayesian classifiers in random feature subsets was also examined
[Tsymbal and Puuronen (2002)] for improving medical applications.

Reduct-based strategy
A reduct is defined as the smallest feature subset which has the same

predictive power as the whole feature set. By definition, the size of the
ensembles that were created using reducts are limited to the number of
features. There have been several attempts to create classifier ensembles
by combining several reducts. Wu et al. introduce the worst-attribute-
drop-first algorithm to find a set of significant reducts and then combine
them using näıve Bayes.

Collective-Performance-based strategy
Cunningham and Carney [Cunningham and Carney (2000)] introduced

an ensemble feature selection strategy that randomly constructs the ini-
tial ensemble. Then, an iterative refinement is performed based on a hill-
climbing search in order to improve the accuracy and diversity of the base
classifiers. For all the feature subsets, an attempt is made to switch (include
or delete) each feature. If the resulting feature subset produces a better
performance on the validation set, that change is kept. This process is con-
tinued until no further improvements are obtained. Similarly, Zenobi and
Cunningham [Zenobi and Cunningham (2001)] suggest that the search for
the different feature subsets will not be solely guided by the associated error
but also by the disagreement or ambiguity among the ensemble members.

Tsymbal et al. [Tsymbal et al. (2004)] compare several feature selection
methods that incorporate diversity as a component of the fitness function in
the search for the best collection of feature subsets. This study shows that
there are some datasets in which the ensemble feature selection method can
be sensitive to the choice of the diversity measure. Moreover, no particular
measure is superior in all cases.

Gunter and Bunke [Gunter and Bunke (2004)] suggest employing a fea-
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ture subset search algorithm in order to find different subsets of the given
features. The feature subset search algorithm not only takes the perfor-
mance of the ensemble into account, but also directly supports diversity of
subsets of features.

Combining genetic search with ensemble feature selection was also ex-
amined in the literature. Opitz and Shavlik [Opitz and Shavlik (1996)]
applied GAs to ensembles using genetic operators that were designed ex-
plicitly for hidden nodes in knowledge-based neural networks. In a later
research, Opitz [Opitz (1999)] used genetic search for ensemble feature
selection. This genetic ensemble feature selection (GEFS) strategy begins
by creating an initial population of classifiers where each classifier is gen-
erated by randomly selecting a different subset of features. Then, new
candidate classifiers are continually produced by using the genetic opera-
tors of crossover and mutation on the feature subsets. The final ensemble
is composed of the most fitted classifiers.

Feature set partitioning
Feature set partitioning is a particular case of feature subset-based en-

sembles in which the subsets are pairwise disjoint subsets. At the same
time, feature set partitioning generalizes the task of feature selection which
aims to provide a single representative set of features from which a classifier
is constructed. Feature set partitioning, on the other hand, decomposes the
original set of features into several subsets and builds a classifier for each
subset. Thus, a set of classifiers is trained such that each classifier employs
a different subset of the original feature set. Subsequently, an unlabelled
instance is classified by combining the classifications of all classifiers.

Several researchers have shown that the partitioning methodology can
be appropriate for classification tasks with a large number of features [Ku-
siak (2000)]. The search space of a feature subset-based ensemble contains
the search space of feature set partitioning, and the latter contains the
search space of feature selection. Mutually exclusive partitioning has some
important and helpful properties:

(1) There is a greater possibility of achieving reduced execution time com-
pared to non-exclusive approaches. Since most learning algorithms have
computational complexity that is greater than linear in the number of
features or tuples, partitioning the problem dimensionality in a mutu-
ally exclusive manner means a decrease in computational complexity
[Provost and Kolluri (1997)].
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(2) Since mutual exclusiveness entails using smaller datasets, the classi-
fiers obtained for each sub-problem are smaller in size. Without the
mutually exclusive restriction, each classifier can be as complicated as
the classifier obtained for the original problem. Smaller classifiers con-
tribute to comprehensibility and ease in maintaining the solution.

(3) According to Bay [Bay (1999)], mutually exclusive partitioning may
help avoid some error correlation problems that characterize feature
subset based ensembles. However Sharkey [Sharkey (1996)] argues that
mutually exclusive training sets do not necessarily result in low error
correlation. This point is true when each sub-problem is representative.

(4) In feature subset-based ensembles, different classifiers might generate
contradictive classifications using the same features. This inconsistency
in the way a certain feature can affect the final classification may in-
crease mistrust among end-users. We claim that end-users can grasp
mutually exclusive partitioning much easier.

(5) The mutually exclusive approach encourages smaller datasets which are
generally more practicable. Some data mining tools can process only
limited dataset sizes (for instance, when the program requires that
the entire dataset will be stored in the main memory). The mutually
exclusive approach can ensure that data mining tools can be scaled
fairly easily to large data sets [Chan and Stolfo (1997)].

In the literature there are several works that deal with feature set parti-
tioning. In one research, the features are grouped according to the feature
type: nominal value features, numeric value features and text value fea-
tures [Kusiak (2000)]. A similar approach was also used for developing the
linear Bayes classifier [Gama (2000)]. The basic idea consists of aggregating
the features into two subsets: the first subset containing only the nominal
features and the second only the continuous features.

In another research, the feature set was decomposed according to the
target class [Tumer and Ghosh (1996)]. For each class, the features with low
correlation relating to that class were removed. This method was applied
on a feature set of 25 sonar signals where the target was to identify the
meaning of the sound (whale, cracking ice, etc.). Feature set partitioning
has also been used for radar-based volcano recognition [Cherkauer (1996)].
The researcher manually decomposed a feature set of 119 into 8 subsets.
Features that were based on different image processing operations were
grouped together. As a consequence, for each subset, four neural networks
with different sizes were built. A new combining framework for feature



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

Decision Forests 121

set partitioning has been used for text-independent speaker identification
[Chen et al. (1997)]. Other researchers manually decomposed the features
set of a certain truck backer-upper problem and reported that this strategy
has important advantages [Jenkins and Yuhas (1993)].

The feature set decomposition can be obtained by grouping features
based on pairwise mutual information, with statistically similar features
assigned to the same group [Liao and Moody (2000)]. For this purpose one
can use an existing hierarchical clustering algorithm. As a consequence,
several feature subsets are constructed by selecting one feature from each
group. A neural network is subsequently constructed for each subset. All
networks are then combined.

In statistics literature, the well-known feature-oriented ensemble algo-
rithm is the MARS algorithm [Friedman (1991)]. In this algorithm, a mul-
tiple regression function is approximated using linear splines and their ten-
sor products. It has been shown that the algorithm performs an ANOVA
decomposition, namely, the regression function is represented as a grand
total of several sums. The first sum is of all basic functions that involve
only a single attribute. The second sum is of all basic functions that involve
exactly two attributes, representing (if present) two-variable interactions.
Similarly, the third sum represents (if present) the contributions from three-
variable interactions, and so on.

A general framework that searches for helpful feature set partitioning
structures has also been proposed [Rokach and Maimon (2005b)]. This
framework nests many algorithms, two of which are tested empirically over
a set of benchmark datasets. The first algorithm performs a serial search
while using a new Vapnik-Chervonenkis dimension bound for multiple obliv-
ious trees as an evaluating scheme. The second algorithm performs a multi-
search while using a wrapper evaluating scheme. This work indicates that
feature set decomposition can increase the accuracy of decision trees.

7.5.5 Multi-Inducers

In Multi-Inducer strategy, diversity is obtained by using different types of
inducers [Michalski and Tecuci (1994)]. Each inducer contains an explicit or
implicit bias [Mitchell (1980)] that leads it to prefer certain generalizations
over others. Ideally, this multi-inducer strategy would always perform as
well as the best of its ingredients. Even more ambitiously, there is hope that
this combination of paradigms might produce synergistic effects, leading to
levels of accuracy that neither atomic approach by itself would be able to
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achieve.
Most research in this area has been concerned with combining empiri-

cal approaches with analytical methods (see for instance [Towell and Shav-
lik (1994)]. Woods et al. [Woods et al. (1997)] combine four types of base
inducers (decision trees, neural networks, k-nearest neighbor, and quadratic
Bayes). They then estimate local accuracy in the feature space to choose
the appropriate classifier for a given new unlabled instance. Wang et al.
[Wang et al. (2004)] examined the usefulness of adding decision trees to an
ensemble of neural networks. The researchers concluded that adding a few
decision trees (but not too many) usually improved the performance. Lang-
don et al. [Langdon et al. (2002)] proposed using Genetic Programming to
find an appropriate rule for combining decision trees with neural networks.

The model class selection (MCS) system fits different classifiers to dif-
ferent subspaces of the instance space, by employing one of three classifica-
tion methods (a decision-tree, a discriminant function or an instance-based
method). In order to select the classification method, MCS uses the char-
acteristics of the underlined training-set, and a collection of expert rules.
Brodley’s expert-rules were based on empirical comparisons of the methods’
performance (i.e., on prior knowledge).

The NeC4.5 algorithm, which integrates decision tree with neural net-
works [Zhou and Jiang (2004)], first trains a neural network ensemble.
Then, the trained ensemble is employed to generate a new training set
by replacing the desired class labels of the original training examples with
the output from the trained ensemble. Some extra training examples are
also generated from the trained ensemble and added to the new training
set. Finally, a C4.5 decision tree is grown from the new training set. Since
its learning results are decision trees, the comprehensibility of NeC4.5 is
better than that of neural network ensembles.

Using several inducers can solve the dilemma which arises from the “no
free lunch” theorem. This theorem implies that a certain inducer will be
successful only insofar its bias matches the characteristics of the applica-
tion domain [Brazdil et al. (1994)]. Thus, given a certain application, the
practitioner need to decide which inducer should be used. Using the multi-
inducer obviate the need to try each one and simplifying the entire process.

7.5.6 Measuring the Diversity

As stated above, it is usually assumed that increasing diversity may
decrease ensemble error [Zenobi and Cunningham (2001)]. For regres-
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sion problems, variance is usually used to measure diversity [Krogh and
Vedelsby (1995)]. In such cases it can be easily shown that the ensemble
error can be reduced by increasing ensemble diversity while maintaining
the average error of a single model.

In classification problems, a more complicated measure is required to
evaluate the diversity. There have been several attempts to define diversity
measure for classification tasks.

In the neural network literature two measures are presented for exam-
ining diversity:

• Classification coverage: An instance is covered by a classifier, if it yields
a correct classification.
• Coincident errors: A coincident error amongst the classifiers occurs

when more than one member misclassifies a given instance.

Based on these two measures, Sharkey (1997) defined four diversity levels:

• Level 1 - No coincident errors and the classification function is com-
pletely covered by a majority vote of the members.
• Level 2 - Coincident errors may occur, but the classification function is

completely covered by a majority vote.
• Level 3 - A majority vote will not always correctly classify a given

instance, but at least one ensemble member always correctly classifies
it.
• Level 4 - The function is not always covered by the members of the

ensemble.

Brown et al. [Brown et al. (2005)] claim that the above four-level scheme
provides no indication of how typical the error behaviour described by the
assigned diversity level is. This claim, especially, holds when the ensemble
exhibits different diversity levels on different subsets of instance space.

There are other more quantative measures which categorize these mea-
sures into two types [Brown et al. (2005)]: pairwise and non-pairwise. Pair-
wise measures calculate the average of a particular distance metric between
all possible pairings of members in the ensemble, such as Q-statistic [Brown
et al. (2005)] or kappa-statistic [Margineantu and Dietterich (1997)]. The
non-pairwise measures either use the idea of entropy (such as [Cunningham
and Carney (2000)]) or calculate a correlation of each ensemble member
with the averaged output. The comparison of several measures of diversity
has resulted in the conclusion that most of them are correlated [Kuncheva
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and Whitaker (2003)].

7.6 Ensemble Size

7.6.1 Selecting the Ensemble Size

An important aspect of ensemble methods is to define how many component
classifiers should be used. There are several factors that may determine this
size:

• Desired accuracy — In most cases, ensembles containing ten classifiers
are sufficient for reducing the error rate [Hansen (1990)]. Neverthe-
less, there is empirical evidence indicating that: when AdaBoost uses
decision trees, error reduction is observed in even relatively large en-
sembles containing 25 classifiers [Opitz and Maclin (1999)]. In disjoint
partitioning approaches, there may be a trade-off between the number
of subsets and the final accuracy. The size of each subset cannot be
too small because sufficient data must be available for each learning
process to produce an effective classifier.
• Computational cost — Increasing the number of classifiers usually in-

creases computational cost and decreases their comprehensibility. For
that reason, users may set their preferences by predefining the ensemble
size limit.
• The nature of the classification problem - In some ensemble methods,

the nature of the classification problem that is to be solved, determines
the number of classifiers. For instance in the ECOC algorithm the
number of classes determine the ensemble size.
• Number of processors available — In independent methods, the number

of processors available for parallel learning could be put as an upper
bound on the number of classifiers that are treated in paralleled process.

There three methods that are used to determine the ensemble size, as
described by the following subsections.

7.6.2 Pre Selection of the Ensemble Size

This is the most simple way to determine the ensemble size. Many ensemble
algorithms have a controlling parameter such as ”number of iterations”,
which is can be set by the user. Algorithms such as Bagging belong to this
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category. In other cases the nature of the classification problem determine
the number of members (such as in the case of ECOC).

7.6.3 Selection of the Ensemble Size while Training

There are ensemble algorithms that try to determine the best ensemble size
while training. Usually as new classifiers are added to the ensemble these
algorithms check if the contribution of the last classifier to the ensemble
performance is still significant. If it is not, the ensemble algorithm stops.
Usually these algorithms also have a controlling parameter which bounds
the maximum size of the ensemble.

An algorithm that decides when a sufficient number of classification
trees have been created was recently proposed [Banfield et al. (2007)]. The
algorithm uses the out-of-bag error estimate, and is shown to result in an
accurate ensemble for those methods that incorporate bagging into the con-
struction of the ensemble. Specifically, the algorithm works by first smooth-
ing the out-of-bag error graph with a sliding window in order to reduce the
variance. After the smoothing has been completed, the algorithm takes a
larger window on the smoothed data points and determines the maximum
accuracy within that window. It continues to process windows until the
maximum accuracy within a particular window no longer increases. At this
point, the stopping criterion has been reached and the algorithm returns
the ensemble with the maximum raw accuracy from within that window.

7.6.4 Pruning — Post Selection of the Ensemble Size

As in decision tree induction, it is sometimes useful to let the ensemble
grow freely and then prune the ensemble in order to get more effective and
compact ensembles. Post selection of the ensemble size allows ensemble op-
timization for such performance metrics as accuracy, cross entropy, mean
precision, or the ROC area. Empirical examinations indicate that pruned
ensembles may obtain a similar accuracy performance as the original en-
semble [Margineantu and Dietterich (1997)]. In another empirical study
that was conducted in order to understand the affect of ensemble sizes on
ensemble accuracy and diversity, it has been shown that it is feasible to
keep a small ensemble while maintaining accuracy and diversity similar to
those of a full ensemble [Liu et al., 2004].

The pruning methods can be divided into two groups: pre-combining
pruning methods and post-combining pruning methods.
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7.6.4.1 Pre-combining Pruning

Pre-combining pruning is performed before combining the classifiers. Clas-
sifiers that seem to perform well are included in the ensemble. Prodromidis
et al. [Prodromidis et al. (1999)] present three methods for pre-combining
pruning: based on an individual classification performance on a separate
validation set, diversity metrics, the ability of classifiers to classify correctly
specific classes.

In attribute bagging, classification accuracy of randomly selected m-
attribute subsets is evaluated by using the wrapper approach and only
the classifiers constructed on the highest ranking subsets participate in the
ensemble voting.

7.6.4.2 Post-combining Pruning

In post-combining pruning methods, we remove classifiers based on their
contribution to the collective.

Prodromidis examines two methods for post-combining pruning as-
suming that the classifiers are combined using meta-combination method:
Based on decision tree pruning and the correlation of the base classifier to
the unpruned meta-classifier.

A forward stepwise selection procedure can be used in order to select
the most relevant classifiers (that maximize the ensemble’s performance)
among thousands of classifiers [Caruana et al. (2004)]. It has been shown
that for this purpose one can use feature selection algorithms. However,
instead of selecting features one should select the ensemble’s members [Liu
et al., 2004].

One can also rank the classifiers according to their ROC performance.
Then, they suggest to plot a graph where the Y- axis displays a performance
measure of the integrated classification. The X-axis presents the number of
classifiers that participated in the combination. i.e., the first best classifiers
from the list are combined by voting (assuming equal weights for now) with
the rest getting zero weights. The ensemble size is chosen when there are
several sequential points with no improvement.

The GASEN algorithm was developed for selecting the most appropri-
ate classifiers in a given ensemble [Zhou et al. (2002)]. In the initialization
phase, GASEN assigns a random weight to each of the classifiers. Conse-
quently, it uses genetic algorithms to evolve those weights so that they can
characterize to some extent the fitness of the classifiers in joining the en-
semble. Finally, it removes from the ensemble those classifiers whose weight
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is less than a predefined threshold value.
Recently a revised version of the GASEN algorithm called GASEN-b

has been suggested [Zhou and Tang (2003)]. In this algorithm, instead of
assigning a weight to each classifier, a bit is assigned to each classifier in-
dicating whether it will be used in the final ensemble. In an experimental
study the researchers showed that ensembles generated by a selective en-
semble algorithm, which selects some of the trained C4.5 decision trees to
make up an ensemble, may be not only smaller in size but also stronger in
the generalization than ensembles generated by non-selective algorithms.

A comparative study of pre combining and post combining methods
when meta-combining methods are used has been performed in [Prodro-
midis et al. (1999)]. The results indicate that the post-combining pruning
methods tend to perform better in this case.

7.7 Cross-Inducer

This property indicates the relation between the ensemble technique and
the inducer used.

Some implementations are considered as an inducer-dependent type,
namely these ensemble generators which use intrinsic inducer, have been
developed specifically for a certain inducer. They can neither work nor
guarantee effectiveness in any other induction method. For instance, the
works of [Hansen (1990); Lu and Ito (1999); Sharkey (1996)] were developed
specifically for neural networks. The works of [Breiman (2001); Rokach and
Maimon (2005b)] were developed specifically for decision trees.

Other implementations are considered to be the inducer-independent
type. These implementations can be performed on any given inducer and
are not limited to a specific inducer like the inducer-dependent.

7.8 Multistrategy Ensemble Learning

Multistrategy ensemble learning combines several ensemble strategies. It
has been shown that this hybrid approach increases the diversity of ensem-
ble members.

MultiBoosting, an extension to AdaBoost expressed by adding wagging-
like features [Webb (2000)], can harness both AdaBoost’s high bias and
variance reduction with wagging’s superior variance reduction. Using C4.5
as the base learning algorithm, MultiBoosting, significantly more often than
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the reverse, produces decision committees with lower error than either Ad-
aBoost or wagging. It also offers the further advantage over AdaBoost
of suiting parallel execution. MultiBoosting has been further extended by
adding the stochastic attribute selection committee learning strategy to
boosting and wagging [Webb and Zheng (2004)]. The latter’s research has
shown that combining ensemble strategies would increase diversity at the
cost of a small increase in individual test error resulting in a trade-off that
reduced overall ensemble test error.

Another multistrategy method suggests to create the ensemble by de-
composing the original classification problem into several smaller and more
manageable sub-problems. This multistrategy uses an elementary decom-
position framework that consists of five different elementary decomposi-
tions: Concept Aggregation, Function, Sample, Space and Feature Set. The
concept of elementary decomposition can be used to obtain a complicated
decomposition by using the elementary decomposition concept recursively.
Given a certain problem, the procedure selects the most appropriate ele-
mentary decomposition (if any) to that problem. A suitable decomposer
then decomposes the problem and provides a set of sub-problems. A simi-
lar procedure is performed on each sub-problem until no beneficial decom-
position is anticipated. The selection of the best elementary decomposition
for a given problem is performed by using a meta-learning approach.

7.9 Which Ensemble Method Should be Used?

Recent research has experimentally evaluated bagging and seven other
randomization-based approaches for creating an ensemble of decision tree
classifiers [Banfield et al. (2007)]. Statistical tests were performed on exper-
imental results from 57 publicly available datasets. When cross-validation
comparisons were tested for statistical significance, the best method was
statistically more accurate than bagging on only eight of the 57 datasets.
Alternatively, examining the average ranks of the algorithms across the
group of datasets, Banfield found that boosting, random forests, and ran-
domized trees is statistically significantly better than bagging.

7.10 Open Source for Decision Trees Forests

There are two open source software packages which can be used for creating
decision trees forests. Both systems, which are free, are distributed under
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the terms of the GNU General Public License.

• The OpenDT [Banfield (2005)] package has the ability to output trees
very similar to C4.5, but has added functionality for ensemble creation.
In the event that the attribute set randomly chosen provides a nega-
tive information gain, the OpenDT approach is to randomly rechoose
attributes until a positive information gain is obtained, or no further
split is possible. This enables each test to improve the purity of the
resultant leaves. The system is written in Java.
• The Weka package [Frank et. al (2005)] is an organized collection

of state-of-the-art machine learning algorithms and data preprocessing
tools. The basic way of interacting with these methods is by invoking
them from the command line. However, convenient interactive graph-
ical user interfaces are provided for data exploration, for setting up
large-scale experiments on distributed computing platforms, and for
designing configurations for streamed data processing. These inter-
faces constitute an advanced environment for experimental data min-
ing. Weka includes many decision tree learners: decision stumps, ID3,
a C4.5 clone called “J48,” trees generated by reduced error pruning, al-
ternating decision trees, and random trees and forests thereof, including
random forests, bagging, boosting, and stacking.
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Chapter 8

Incremental Learning of
Decision Trees

8.1 Overview

To reflect new data that has become available, most decision trees indu-
cers must be rebuilt from scratch. This is time-consuming and expen-
sive and several researchers have addressed the issue of updating decision
trees incrementally. Utgoff [Utgoff (1989b); Utgoff (1997)], for example,
presents several methods for incrementally updating decision trees while
[Crawford (1989)] describes an extension to the CART algorithm that is
capable of inducing incremental changes.

8.2 The Motives for Incremental Learning

In the ever-changing world of information technology there are two funda-
mental problems to be addressed:

• Vast quantities of digital data continue to grow at staggering rates.
In organizations such as e-commerce sites, large retailers and telecom-
munication corporations, data increases of gigabytes per day are not
uncommon. While this data could be extremely valuable to these or-
ganizations, the tremendous volume makes it virtually impossible to
extract useful information. This is due to the fact that KDD systems
in general, and traditional data mining algorithms in particular, are
limited by several crippling factors. These factors, referred to as com-
putational resources, are the size of the sample to be processed, running
time and memory. As a result, most of the available data is unused
which leads to underfitting. While there is enough data to model a
compound phenomenon, there is no capability for fully utilizing this
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data and unsatisfactorily simple models are produced.
• Most machine learning algorithms, among them those underlying the

data mining process assume that the data, which needs to be learned
(training data), serves as a random sample drawn from a stationary dis-
tribution. (These algorithms include CART (Breiman et al. (1984)),
ID3 (Quinlan, J.R., (1986)), C4.5 (Quinlan, J.R., 1986)), IFN (Mai-
mon and Last (2000)) and very fast decision tree (VFDT) (Domingos
and Hulten (2000).) The assumption is unfortunately violated by the
majority of databases and data streams available for mining today.
These databases accumulate over large periods of time, with the un-
derlying processes generating them changing respectively and at times
quite drastically. This occurrence is known as concept drift. According
to [Domingos and Hulten (2001)] “in many cases... it is more accurate
to assume that data was generated by ... a concept function with time-
varying parameters.” Incorrect models are learned by the traditional
data mining algorithms when these mistakenly assume that the under-
lying concept is stationary, when it is, in fact, drifting. This may serve
to degrade the predictive performance of the models.

A prime example of systems which may have to deal with the afore-
mentioned problems are on-line learning systems, which use continuous
incoming batches of training examples to induce rules for a classification
task. Two instances in which these systems are currently utilized are credit
card fraud detection and real-time monitoring of manufacturing processes.

As a result of the above mentioned problems it is now common prac-
tice to mine a sub-sample of the available data or to mine for a model
drastically simpler than the data could support. Ideally, the KDD systems
will function continuously, constantly processing data received so that po-
tentially valuable information is never lost. In order to achieve this goal,
many methods have been developed. Termed incremental (online) learning
methods, these methods aim to extract patterns from changing streams of
data.

8.3 The Inefficiency Challenge

According to [Domingos and Hulten (2001)], incremental learning algo-
rithms suffer from numerous inadequacies from the KDD point of view.
Whereas some of these algorithms are relatively efficient, they do not guar-
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antee that the model that emerges will be similar to the one obtained by
learning on the same data in the non-incremental (batch) methods. Other
incremental learning algorithms produce the same model as the batch ver-
sion, but at a higher cost in efficiency, which may mean longer training
times.

In order to overcome this trade-off, Domingos and Hulten (2000) pro-
posed VFDT a decision-tree learning method which is aimed at learning
online from high-volume data streams by using sub-sampling of the entire
data stream generated by a stationary process. This method uses constant
time per example and constant memory and can incorporate tens of thou-
sands of examples per second using off-the-shelf hardware. This method
involves learning by seeing each example only once; there is no necessity for
storing them. As a result it is possible to directly mine online data sources.
The sample size is determined in VFDT from distribution-free Hoeffding
bounds to guarantee that its output is asymptotically nearly identical to
that of a conventional learner.

8.4 The Concept Drift Challenge

The second problem, centered around concept drift, is also addressed by in-
cremental learning methods that have been adapted to work effectively with
continuous, time-changing data streams. Black and Hickey (1999) identified
several important sub-tasks involved in handling drift within incremental
learning methods. The two most fundamental sub-tasks are identifying that
drift is occurring and updating classification rules in the light of this drift.

Time-windowing is one of the most known and acceptable approaches
for dealing with these tasks. The basic concept of this approach is the
repeated application of a learning algorithm to a sliding window, which
contains a certain amount (either constant or changing) of examples. As
new examples arrive, they are placed into the beginning of the window. A
corresponding number of examples are removed from the end of the window.
The latest model is the one used for future prediction of incoming instances
until concept drift is detected. At this point the learner is reapplied on the
last window of instances and a new model is built.

FLORA, the time-windowing approach developed by [Widmer and Ku-
bat (1996)] describes a family of incremental algorithms for learning in the
presence of drift. This method uses a currently trusted window of examples
as well as stored, old concept hypothesis description sets which are reacti-
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vated if they seem to be valid again. The first realization of this framework
of this family of incremental algorithms is FLORA2, which maintains a dy-
namically adjustable window of the latest training examples. The method
of adjusting the size of the window is known as WAH (window adjustment
heuristic). Whenever a concept drift is suspected as a result of a drop in
predictive accuracy, the size of the window is decreased by disposing of the
oldest examples. The window size is left unchanged if the concept appears
to be stable. If concept drift remains uncertain, none of the examples are
forgotten, and thus the window size is gradually increased until a stable
concept description can be formed. As long as a relatively low rate of con-
cept drift is preserved this strategy of window adjustment can detect radical
changes in the underlying concept efficiently.

FLORA3 stores concepts for later use and reassesses their utility when
a context change is perceived. FLORA4 is designed to be exceptionally
robust with respect to noise in the training data since it is very difficult in
incremental learning to distinguish between slight irregularities due to noise
and actual concept drift. Both of these algorithms serve as an extension of
FLORA2.

According to [Domingos and Hulten (2001)], as long as the window size
is small relative to the rate of concept drift, the time-windowing procedure
assures availability of a model reflecting the current concept generating the
data. However, if the window is too small, this may result in insufficient
examples to satisfactorily learn the concept. Furthermore, the computa-
tional cost of reapplying a learner may be prohibitively high, especially if
examples arrive at a rapid rate and the concept changes quickly.

To meet these challenges, Domingos and Hulten (2001) proposed an
efficient algorithm for mining decision trees from continuously changing
data streams. Called CVFDT (concept-adapting very fast decision trees
learner), the algorithm is based on the ultra-fast VFDT decision tree
learner. CVFDT, a VFDTn extension, maintains VFDTs speed and ac-
curacy advantages but adds the ability to detect and respond to changes in
the example-generating process.

Like other systems with this capability, CVFDT works by keeping its
model consistent with a sliding window of examples. However, it does not
need to learn a new model from scratch every time a new example arrives;
instead, it updates the sufficient statistics at its nodes by incrementing
the counts corresponding to the new example and by decrementing the
counts corresponding to the oldest example in the window (which now
must be forgotten). This will statistically have no effect if the underlying
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concept is stationary. If the concept is changing, however, some splits
that previously passed the Hoeffding test will no longer do so because an
alternative attribute now has higher gain. In this case, CVFDT begins to
grow an alternative sub-tree with the new best attribute at its root. When
this alternate sub-tree becomes more accurate on new data than the old
one, the new one replaces the old sub-tree. CVFDT learns a model which is
similar in accuracy to the one that would be learned by reapplying VFDT
to a moving window of examples every time a new example arrives, but
with O(1) complexity per example, as opposed to O(w), where w is the size
of the window.

Last (2001) presented an online classification system. The induced con-
cept is represented in the form of an info-fuzzy network (IFN), a tree-like
classification model. The proposed system, called OLIN (on-line informa-
tion network) receives a continuous stream of data and repeatedly con-
structs a new network from a sliding window of the latest examples. Con-
currently, the system dynamically adapts the size of the training window
and the frequency of model re-construction to the current rate of concept
drift. The dynamic adaptation consists of the increase of the update cycle
when the concept appears stable, and the reduction in size of the training
window whenever concept drift is detected. These two qualities work to-
wards conserving computer resources. Once concept drift is detected (by
an unexpected rise in the classification error rate), the size of the training
window is re-calculated by using the principles of information theory and
statistics.

The latest model classifies the examples that arrive before the subse-
quent network reconstruction. Though the cumulative accuracy of models
produced by OLIN may be somewhat lower than the accuracy of an incre-
mental system that does not forget past examples, it still tends to be higher
than the accuracy acquired with a fixed-size sliding window.

Black and Hickey (1999) offer a new approach to handling the aforemen-
tioned sub-tasks dealing with drift within incremental learning methods.
Instead of utilizing the time-windowing approach presented thus far, they
employ a new purging mechanism to remove examples that are no longer
valid while retaining valid examples, regardless of age. As a result, the
example base grows, thus assisting good classification. Black and Hickey
describe an algorithm called CD3, which utilizes ID3 with post-pruning,
based on the time-stamp attribute relevance or TSAR approach.

In this approach, the time-stamp is treated as an attribute, and its
value is added as an additional input attribute to the examples description,
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later to be used in the induction process. Consequently, if the time-stamp
attribute appears in the decision tree, the implication is that it is relevant
to classification. This, in turn, means that drift has occurred. Routes where
the value of the time-stamp attribute refers to the old period (or periods)
represent invalid rules. When the process is stable for a sufficiently long
period, the time-stamp attribute should not appear in any path of the tree.

The CD3 algorithm sustains a set of examples regarded as valid. This
set, referred to as the current example base, must be updated before another
round of learning can take place. Using invalid rules extracted from the CD3
tree, any example whose description matches (i.e. is covered by) that of an
invalid rule can be removed from the current example set. This process of
deletion is referred to as purging the current example set.
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Feature Selection

9.1 Overview

Dimensionality (i.e., the number of dataset attributes or groups of attri-
butes) constitutes a serious obstacle to the efficiency of most induction
algorithms, primarily because induction algorithms are computationally in-
tensive. Feature selection is an effective way to deal with dimensionality.

The objective of feature selection is to identify those features in the
dataset which are important, and discard others as irrelevant and redun-
dant. Since feature selection reduces the dimensionality of the data, data
mining algorithms can be operated faster and more effectively by using
feature selection. The reason for the improved performance is mainly due
to a more compact, easily interpreted representation of the target con-
cept [George and Foster (2000)]. We differentiate between three main
strategies for feature selection: filter, wrapper and embedded [Blum and
Langley (1997)].

9.2 The “Curse of Dimensionality”

High dimensionality of the input (that is, the number of attributes)
increases the size of the search space in an exponential manner and thus
increases the chance that the inducer will find spurious classifiers that are
not valid in general. It is well known that the required number of labeled
samples for supervised classification increases as a function of dimension-
ality [Jimenez and Landgrebe (1998)]. [Fukunaga (1990)] showed that the
required number of training samples is linearly related to the dimensionality
for a linear classifier and to the square of the dimensionality for a quadratic
classifier. In terms of nonparametric classifiers like decision trees, the situ-
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ation is even more severe. It has been estimated that as the number of di-
mensions increases, the sample size needs to increase exponentially in order
to have an effective estimate of multivariate densities ([Hwang et al. (1994)].

This phenomenon is usually referred to as the “curse of dimensional-
ity”. Bellman (1961) was the first to coin this term, while working on
complicated signal processing issues. Techniques like decision trees indu-
cers that are efficient in low dimensions fail to provide meaningful results
when the number of dimensions increases beyond a “modest” size. Further-
more, smaller classifiers, involving fewer features (probably less than 10),
are much more understandable by humans. Smaller classifiers are also more
appropriate for user-driven data mining techniques such as visualization.

Most methods for dealing with high dimensionality focus on Feature
Selection techniques, i.e. selecting a single subset of features upon which
the inducer (induction algorithm) will run, while ignoring the rest. The
selection of the subset can be done manually by using prior knowledge to
identify irrelevant variables or by using proper algorithms.

In the last decade, many researchers have become increasingly inter-
ested in feature selection. Consequently many feature selection algorithms
have been proposed, some of which have reported as displaying remarkable
improvements in accuracy Since the subject is too broad to survey here,
readers seeking further information about recent developments, should see:
[Langley (1994); Liu and Motoda (1998)].

A number of linear dimension reducers have been developed over
the years. The linear methods of dimensionality reduction include pro-
jection pursuit [Friedman and Tukey (1973)]; factor analysis [Kim and
Mueller (1978)]; and principal components analysis [Dunteman (1989)].
These methods are not aimed directly at eliminating irrelevant and re-
dundant features, but are rather concerned with transforming the observed
variables into a small number of “projections” or “dimensions”. The un-
derlying assumptions are that the variables are numeric and the dimensions
can be expressed as linear combinations of the observed variables (and vice
versa). Each discovered dimension is assumed to represent an unobserved
factor and thus provide a new way of understanding the data (similar to
the curve equation in the regression models).

The linear dimension reducers have been enhanced by constructive
induction systems that use a set of existing features and a set of pre-
defined constructive operators to derive new features [Pfahringer (1994);
Ragavan and Rendell (1993)]. These methods are effective for high dimen-
sionality applications only if the original domain size of the input feature
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can be decreased dramatically.
On the one hand, feature selection can be used as a preprocessing step

before building a decision tree. On the other hand, the decision tree can
be used as a feature selector for other induction methods.

At first glance, it seems redundant to use feature selection as a pre-
process phase for the training phase. Decision trees inducers, as opposed
to other induction methods, incorporate in their training phase a built-in
feature selection mechanism. Indeed, all criteria described in Section 4.1
are criteria for feature selection.

Still, it is well known that correlated and irrelevant features may de-
grade the performance of decision trees inducers. This phenomenon can be
explained by the fact that feature selection in decision trees is performed
on one attribute at a time and only at the root node over the entire deci-
sion space. In subsequent nodes, the training set is divided into several
sub-sets and the features are selected according to their local predictive
power [Perner (2001)]. Geometrically it means that the selection of fea-
tures is done in orthogonal decision subspaces, which do not necessarily
represent the distribution of the entire instance space. It has been shown
that the predictive performance of decision trees could be improved with an
appropriate feature pre-selection phase. Moreover using feature selection
can reduce the number of nodes in the tree making it more compact.

Formally, the problem of feature subset selection can be defined as fol-
lows [Jain et al. (1997)]: Let A be the original set of features, with car-
dinality n. Let d represent the desired number of features in the selected
subset B, B ⊆ A. Let the feature selection criterion function for the set B

be represented by J(B). Without any loss of generality, a lower value of J

is considered to be a better feature subset (for instance if J represents the
generalization error). The problem of feature selection is to find an optimal
subset B that solves the following optimization problem:

min J(Z)
s.t.

Z ⊆ A

|Z| = d

(9.1)

An exhaustive search would require examining all n!
d!·(n−d)! possible d-

subsets of the feature set A.
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9.3 Techniques for Feature Selection

Feature selection techniques can be used in many applications from choosing
the most important social-economic parameters for determining whatever
a person can return a bank loan to dealing an with chemical process and
selecting the best set of ingredients.

The filter approach operates independently of the data mining method
employed subsequently - undesirable features are filtered out of the data
before the learning of a filtering threshold begins. These fileterning algo-
rithms use heuristics based on general characteristics of the data to evaluate
the merit of feature subsets. A sub-category of filter methods, refered to as
rankers, includes methods that employ some criterion to score each feature
and provide a ranking. From this ordering, several feature subsets can be
chosen manually.

The wrapper approach [Kohavi and John (1998)] uses a learning algo-
rithm as a black box along with a statistical re-sampling technique such as
cross-validation to select the best feature subset according to some predic-
tive measure.

The embedded approach [Guyon and Elisseeff] is similar to the wrapper
approach in the sense that the features are specifically selected for a certain
learning algorithm. . However, in the embedded approach the features are
selected in the process of learning.

While most of the feature selection methods have been applied to super-
vised methods (such as classification and regression) there are important
works that deals with unsupervised methods [Wolf and Shashua (2005)].

Feature selection algorithms search through the space of feature subsets
in order to find the best subset. This subset search has four major properties
[Langley (1994)]:

• Starting Point - Selecting a point in the feature subset space from which
to begin the search can affect the direction of the search.
• Search Organization - A comprehensive search of the feature subspace

is prohibitive for all but a small initial number of features.
• Evaluation Strategy - How feature subsets are evaluated (filter, wrapper

and ensemble).
• Stopping Criterion - A feature selector must decide when to stop search-

ing through the space of feature subsets.

The next sections provide detailed description of feature selection tech-
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niques for each property described above.

9.3.1 Feature Filters

Filter methods, the earliest approaches for feature selection, use general
properties of the data in order to evaluate the merit of feature subsets.
As a result, filter methods are generally much faster and practical than
wrapper methods, especially for use on data of high dimensionality.

9.3.1.1 FOCUS

The FOCUS algorithm is originally designed for attributes with Boolean
domains [Almuallim and Dietterich (1994)]. FOCUS exhaustively searches
the space of feature subsets until every combination of feature values is
associated with one value of the class. After selecting the subset, it passed
to the ID3 algorithm which constructs a decision tree.

9.3.1.2 LVF

Similar algorithm to FOCUS is the LVF algorithm [Liu and Setiono (1996)].
LVF is consistency-driven and can handle noisy domains if the approximate
noise level is known a-priori. During every round of implemention, LVF
generates a random subset from the feature subset space. If the chosen
subset is smaller than the current best subset, the inconsistency rate of the
dimensionally reduced data described by the subset is compared with the
inconsistency rate of the best subset. If the subset is at least as consistent
as the best subset, the subset replaces the best subset.

9.3.1.3 Using One Learning Algorithm as a Filter for Another

Some works have explored the possibility of using a learning algorithm as
a pre-processor to discover useful feature subsets for a primary learning
algorithm. Cardie (1995) describes the application of decision tree algo-
rithms for selecting feature subsets for use by instance based learners. In
[Provan and Singh (1996)], a greedy oblivious decision tree algorithm is
used to select features to construct a Bayesian network. Holmes and Nevill-
Manning (1995) apply Holte’s (1993) 1R system in order to estimate the
predictive accuracy of individual features. A program for inducing deci-
sion table majority classifiers used for selecting features is presented in
[Pfahringer (1995)].
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DTM (decision table majority) classifiers are restricted to returning
stored instances that are exact matches with the instance to be classified.
When no instances are returned, the most prevalent class in the training
data is used as the predicted class; otherwise, the majority class of all
matching instances is used. In such cases, the minimum description length
principle (MDL) guides the search by estimating the cost of encoding a
decision table and the training examples it misclassifies with respect to a
given feature subset. The features in the final decision table are then used
with other learning algorithms.

9.3.1.4 An Information Theoretic Feature Filter

There are many filters techniques that are based on information theory and
probabilistic reasoning [Koller and Sahami (1996)]. The rationale behind
this approach is that, since the goal of an induction algorithm is to estimate
the probability distributions over the class values, given the original feature
set, feature subset selection should attempt to remain as close to these
original distributions as possible.

9.3.1.5 An Instance Based Approach to Feature Selection – RE-
LIEF

RELIEF [Kira and Rendell (1992)] uses instance based learning to assign
a relevance weight to each feature. The weight for each feature reflects its
ability to single out the class values. The features are ranked by its weights
and chosen by using a user-specified threshold. RELIEF randomly chooses
instances from the training data. For every instance, RELIEF samples the
nearest instance of the same class (nearest hit) and finds the opposite class
(nearest miss). The weight for each feature is updated according to how
well its values differentiate the sampled instance from its nearest hit and
nearest miss. A feature will gain a high weight if it differentiates between
instances from different classes and has the same value for instances of the
same class.

9.3.1.6 Simba and G-flip

The SIMBA (iterative search margin based algorithm) technique introduces
the idea of measuring the quality of a set of features by the margin it
induces. To overcome the drawback of iterative search, a greedy feature
flip algorithm G-flip is used [Gilad-Bachrach et al. (2004)] for maximizing



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

Feature Selection 143

the margin function of a subset. The algorithm constantly iterates over the
feature set and updates the set of chosen features. During each iteration
G-flip decides to eliminate or include the current feature to the selected
subset by evaluating the margin with and without this feature.

9.3.1.7 Contextual Merit Algorithm

The contextual merit (CM) algorithm [Hong (1997)] uses a merit function
based upon weighted distances between examples which takes into account
complete feature correlation’s to the instance class. This approach assumes
that features should be weighted according to their discrimination power
regarding instances that are close to each other (based on the Euclidean
distance) but which are associated with different classes. The CM approach
has been used to select features for decision trees and an experimental
study shows that feature subset selection can help to improve the prediction
accuracy of the induced classifier [Perner (2001)].

The notation di
r,s represents the distance between the value of feature

i in the instances r and s (i.e. the distance between xr,i and xs,i). For
numerical attributes, the distance is min(1,

xr,i−xs,i

ti
) where ti is usually 0.5

of the value range of the attribute i. For nominal attributes, the distance
is 0 if xr,i = xs,i, and 1 otherwise. The contextual merit for attribute
i is calculated as Mi =

∑
m
r=1

∑
s∈{(x,y)∈S|yi �=yr }wi

r,sd
i
r,s where m is the

training set size, {(x, y) ∈ S |yi �= yr } is the set of instances associated with
a different class than the instance r, and wi

r,s is a weighting factor.

9.3.2 Using Traditional Statistics for Filtering

9.3.2.1 Mallows Cp

This method minimizes the mean square error of prediction [Mal-
lows (1973)]:

Cp =
RSSγ

σ̂2
FULL

+ 2qγ − nCp =
RSSγ

σ̂2
FULL

+ 2qγ − n (9.2)

where, RSSγ is the residual sum of squares for the γth model and σ2̂
FULL

is the usual unbiased estimate of σ2 based on the full model.
The goal is to find the subset which has minimum Cp.
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9.3.2.2 AIC, BIC and F-ratio

AIC (Akaike Information Criterion) and BIC (Bayesian Information Cri-
terion) are criteria for choosing a subset of features. Letting l̂γ denote
the maximum log likelihood of the γth model, AIC selects the model
which maximizes (l̂γ − qγ) whereas BIC selects the model which maximizes
(l̂γ − (logn)qγ2).

For the linear model, many of the popular selection criteria are a pe-
nalized sum of squares criterion that can provide a unified framework for
comparisons. This criterion selects the subset model that minimizes:

RSSγ/σ̂2 + Fqγ (9.3)

where F is a preset “dimensionality penalty”. The above penalizes
RSSγ/σ 2 by F times qγ, the dimension of the γth model. AIC and min-
imum Cp are equivalent, corresponding to F = 2, and BIC is obtained by
F = logn. Using a smaller penalty, AIC and minimum Cp will select larger
models than BIC (unless n is very small).

9.3.2.3 Principal Component Analysis (PCA)

Principal component analysis (PCA) is linear dimension reduction tech-
nique [Jackson (1991)]. PCA based on the covariance matrix of the vari-
ables, is a second-order method. PCA seeks to reduce the dimension of
the data by finding a few orthogonal linear combinations (the PCs) of the
original features with the largest variance. The first PC, s1, is the linear
combination with the largest variance. We have s1 = xT w1, where the
p-dimensional coefficient vector w1 = (w1,1 , . . . , w1, p)T solves:

w1 = arg max
‖w=1‖

V ar
{
xT w

}
(9.4)

The second PC is the linear combination with the second largest vari-
ance and orthogonal to the first PC, and so on. There are as many PCs as
the number of original features. For many datasets, the first several PCs
explain most of the variance, so that the rest can be ignored with minimal
loss of information.
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9.3.2.4 Factor Analysis (FA)

Factor analysis (FA), a linear method based on the second-order data sum-
maries, assumes that the measured features depend on some unknown fac-
tors. Typical examples include features defined as various test scores of
individuals that might to be related to a common intelligence factor. The
goal of FA is to find out such relations, and thus it can be used to reduce
the dimension of datasets following the factor model.

9.3.2.5 Projection Pursuit

Projection pursuit (PP) is a linear method which is more computationally
intensive than second-order methods. Given a projection index that defines
the merit of a direction, the algorithm looks for the directions that optimize
that index. As the Gaussian distribution is the least interesting distribu-
tion, projection indices usually measure some aspect of non-Gaussianity.

9.3.3 Wrappers

The wrapper strategy for feature selection uses an induction algorithm to
evaluate feature subsets. The motivation for this strategy is that the in-
duction method that will eventually use the feature subset should provide
a better predictor of accuracy than a separate measure that has an entirely
different inductive bias [Langley (1994)].

Feature wrappers are often better than filters since they are tuned to the
specific interaction between an induction algorithm and its training data.
Nevertheless, they tend to be much slower than feature filters because they
must repeatedly perform the induction algorithm.

9.3.3.1 Wrappers for Decision Tree Learners

The wrapper general framework for feature selection, has two degrees of
feature relevance definitions that are used by the wrapper to discover rel-
evant features [John et al. (1994)]. A feature Xi is said to be strongly
relevant to the target concept(s) if the probability distribution of the class
values, given the full feature set, changes when Xi is eliminated. A feature
Xi is said to be weakly relevant if it is not strongly relevant and the proba-
bility distribution of the class values, given some subset which contains Xi,
changes when Xi is removed. All features that are not strongly or weakly
relevant are irrelevant.
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Vafaie and De Jong (1995) and Cherkauer and Shavlik (1996) have both
applied genetic search strategies in a wrapper framework in order to im-
prove the performance of decision tree learners. Vafaie and De Jong (1995)
present a system that has two genetic algorithm driven modules. The first
performs feature selection while the second module performs constructive
induction, which is the process of creating new attributes by applying log-
ical and mathematical operators to the original features.

9.4 Feature Selection as a Means of Creating Ensembles

The main idea of ensemble methodology is to combine a set of models, each
of which solves the same original task, in order to obtain a better composite
global model, with more accurate and reliable estimates or decisions than
can be obtained from using a single model. Some of the drawbacks of wrap-
pers and filters can be solved by using ensemble. As mentioned above filters
perform less than wrappers. Due to the voting process, noisy results are
filtered. Secondly, the drawback of wrappers which “cost” computing time
is solved by operating a group of filters. The idea of building a predictive
model by integrating multiple models has been under investigation for a
long time.

Ensemble feature selection methods [Opitz (1999)] extend traditional
feature selection methods by looking for a set of feature subsets that will
promote disagreement among the base classifiers. Simple random selection
of feature subsets may be an effective technique for ensemble feature selec-
tion because the lack of accuracy in the ensemble members is compensated
for by their diversity [Ho (1998)]. Tsymbal and Puuronen (2002) presented
a technique for building ensembles of simple Bayes classifiers in random
feature subsets.

The hill climbing ensemble feature selection strategy [Cunningham and
Carney (2000)], randomly constructs the initial ensemble. Then, an it-
erative refinement is performed based on hill-climbing search in order to
improve the accuracy and diversity of the base classifiers. For all the fea-
ture subsets, an attempt is made to switch (include or delete) each feature.
If the resulting feature subset produces better performance on the valida-
tion set, that change is kept. This process is continued until no further
improvements are obtained.

The GEFS (Genetic Ensemble Feature Selection) [Opitz (1999)] uses
genetic search for ensemble feature selection. This strategy begins with cre-
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ating an initial population of classifiers where each classifier is generated by
randomly selecting a different subset of features. Then, new candidate clas-
sifiers are continually produced by using the genetic operators of crossover
and mutation on the feature subsets. The final ensemble is composed of
the most fitted classifiers.

Another method for creating a set of feature selection solutions using a
genetic algorithm was proposed by [Oliveira et al. (2003)]. They create a
Pareto-optimal front in relation to two different objectives: accuracy on a
validation set and number of features. Following that they select the best
feature selection solution.

In the statistics literature, the most well known feature oriented ensem-
ble algorithm is the MARS algorithm [Friedman (1991)]. In this algorithm,
a multiple regression function is approximated using linear splines and their
tensor products.

Tuv and Torkkola (2005) examined the idea of using ensemble of clas-
sifiers such as decision trees in order to create a better feature ranker.
They showed that this ensemble can be very effective in variable ranking
for problems with up to a hundred thousand input attributes. Note that
this approach uses inducers for obtaining the ensemble by concentrating on
wrapper feature selectors.

9.5 Ensemble Methodology as a Means for Improving Fea-
ture Selection

The ensemble methodology can be employed as a filter feature selector.
More specifically, the selected subset is a weighted average of subsets
obtained from various filter methods [Rokach et al. (2007), ].

The problem of feature selection ensemble is that of finding the best
feature subset by combining a given set of feature selectors such that if a
specific inducer is run on it, the generated classifier will have the highest
possible accuracy. Formally the optimal feature subset with respect to a
particular inducer [Kohavi (1996)] is defined as:

Definition 9.1 Given an inducer I, a training set S with input feature
set A = {a1, a2, ..., an} and target feature y from a fixed and unknown
distribution D over the labeled instance space, the subset B ⊆ A is said
to be optimal if the expected generalization error of the induced classifier
I(πB∪yS) will be minimized over the distribution D.
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where πB∪yS represents the corresponding projection of S and I(πB∪yS)
represent a classifier which was induced by activating the induction method
I onto dataset πB∪yS.

Definition 9.2 Given an inducer I, a training set S with input feature
set A = {a1, a2, ..., an} and target feature y from a fixed and unknown
distribution D over the labeled instance space, and an optimal subset B, a
Feature Selector FS is said to be consistent if it selects an attribute ai ∈ B

with probability p > 1/2and it selects an attribute aj /∈ Bwith probability
q < 1/2.

Definition 9.3 Given a set of feature subsets B1, ..., Bω the majority
combination of features subsets is a single feature subset that contains any
attribute ai such that fc(ai, B1, ..., Bω) > ω

2 where fc(ai, B1, ..., Bω) =
ω∑

j=1

g(ai, Bj) and g(ai, Bj) =
{

1 ai ∈ Bj

0 otherwise

The last definition refers to a simple majority voting, in which attribute
ai is included in the combined feature subset if it appears in at least half of
the base feature subsets B1, ..., Bω, where ω is the number of base feature
subsets. Note that fc(ai, B1, . . . , Bω) counts the number of base feature
subsets in which ai is included.

Lemma 9.1 A majority combination of feature subsets obtained from
a given a set of independent and consistent feature selectors FS1, . . . , FSω

(where ω is the number of feature selectors) converges to the optimal feature
subset when ω →∞.

Proof. For ensuring that for attributes for which ai ∈ B are actually
selected we need to show that:

lim
ω→∞,p>1/2

p
(
fc(ai) >

ω

2

)
= 1 (9.5)

We denote by pj,i > 1 the probability of FSj to select ai. We denote
by pi = min(pj,i). Note that pi > 1

2 . Because the feature selectors are
independent we can use approximation binomial distribution, i.e.:

lim
ω→∞ p

(
fc(ai) >

ω

2

)
≤ lim

ω→∞,pi>1/2

ω
2∑

k=0

(
ω

k

)
pk

i (1− pi)ω−k (9.6)
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Due to the fact that ω → ∞ we can use the central limit theorem in
which, µ = ωpi, σ =

√
ωpi(1 − pi):

lim
ω→∞,pi>1/2

p

(
Z >

√
ω(1/2− pi)√
pi(1− pi)

)
= p (Z > −∞) = 1 (9.7)

For ensuring that for attributes for which ai /∈ B are actually selected
we need to show that:

lim
ω→∞ p

(
fc(ai) <

ω

2

)
= 0 (9.8)

We denote by qj,i < 1/2 the probability of FSj to select ai. We denote
by qi = max(qj,i). Note that qi < 1

2 . Because the feature selectors are
independent we can use approximation binomial distribution, i.e.:

lim
ω→∞ p

(
fc(ai) <

ω

2

)
≥ lim

ω→∞,qi<1/2

ω
2∑

k=0

(
ω

k

)
qk
i (1 − qi)ω−k (9.9)

Due to the fact that ω →∞ we can use the central limit theorem again
this time: µ = ωqi, σ =

√
ωqi(1− qi):

lim
ω→∞,qi<1/2

ω
2∑

k=0

(
ω

k

)
qk
i (1− qi)ω−k = lim

ω→∞,qi<1/2
p

(
Z >

ω
2 − qiω√
ωqi(1− qi)

)
=

lim
ω→∞,qi<1/2

p

(
Z >

√
ω(1/2− qi)√
qi(1 − qi)

)
= p (Z >∞) = 0 (9.10)

�

9.5.1 Independent Algorithmic Framework

Roughly speaking, the feature selectors in the ensemble can be created de-
pendently or independently. In the dependent framework, the outcome of
a certain feature selector affects the creation of the next feature selector.
Alternatively, each feature selector is built independently; the resulted fea-
tures subsets are then combined in some fashion. Here we concentrate on
an independent framework. Figure 9.1 presents the proposed algorithmic
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framework. This simple framework receives as an input the following argu-
ments:

(1) A Training set (S) – A labeled dataset used for feature selectors.
(2) A set of feature selection algorithms {FS1, . . . , FSξ} – A feature selec-

tion algorithm is an algorithm that obtains a training set and outputs
a subset of relevant features. Recall that we employ non-wrapper and
non-ranker feature selectors.

(3) Ensemble Size (ω)
(4) Ensemble generator (G) – This component is responsible for generating

a set of ω pairs of feature selection algorithms and their corresponding
training sets. We refer to G as a class that implements a method called
“genrateEnsemble”.

(5) Combiner (C) – The combiner is responsible for creating the subsets
and combining them into a single subset. We refer to C as a class that
implements the method “combine”.

The proposed algorithm simply uses the ensemble generator to create
a set of feature selection algorithm pairs and their corresponding training
sets. Then it calls the combine method in C to execute the feature selection
algorithm on its corresponding dataset. The various feature subsets are
then combined into a single subset.

Require: S, {FS1, . . . , FSξ}, G, C

Ensure: A combined feature subset.
1: (S1, FS1), . . . , (Sω , FSω) =G.genrateEnsemble(S, (FS1, . . . , FSξ), ω)
2: Return C.combine ({(S1, FS1), . . . , (Sω, FSω)})

Fig. 9.1 Pseudo-code of Independent Algorithmic Framework for Feature Selection

9.5.2 Combining Procedure

We begin by describing two implementations for the combiner component.
In the literature there are two ways of combining the results of the en-
semble members: weighting methods and meta-learning methods. Here we
concentrate on weighting methods. The weighting methods are best suited
for problems where the individual members have comparable success or
when we would like to avoid problems associated with added learning (such
as over-fitting or long training time).
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9.5.2.1 Simple Weighted Voting

Figure 9.2 presents an algorithm for selecting a feature subset based on
the weighted voting of feature subsets. As this is an implementation of
the abstract combiner used in Figure 9.1, the input of the algorithm is a
set of pairs; every pair is built from one feature selector and a training
set. After executing the feature selector on its associated training set to
obtain a feature subset, the algorithm employs some weighting method and
attaches a weight to every subset. Finally it uses a weighted voting to decide
which attribute should be included in the final subset. We considered the
following methods for weighting the subsets:

(1) Majority Voting – In this weighting method the same weight is at-
tached to every subset such that the total weights is 1, i.e. if there are
ω subsets then the weight is simply 1/ω. Note that the inclusion of
a certain attribute in the final result requires that this attribute will
appear in at least ω/2 subsets. This method should have a low false
positive rate, because selecting an irrelevant attribute will take place
only if at least ω/2 feature selections methods will decide to select this
attribute.

(2) “Take-It-All” – In this weighting method all subsets obtain a weight
that is greater than 0.5. This leads to the situation in which any attri-
bute that has been in at least one of the subsets will be included in the
final result. This method should have a low false negative rate, because
losing a relevant attribute will take place only if all feature selections
methods will decide to filter out this attribute.

(3) “Smaller is Heavier” – The weight for each selector is defined by
its bias to the smallest subset. Selectors that tend to provide small
subsetss will gain more weight than selectors that tend to provide large
subsets. This approach is inspired by the fact that the precision rate
of selectors tend to decrease as the size of the subset increases. This
approach can be used to avoid noise caused by feature selectors that
tend to select most of the possible attributes. More specifically the
weights are defined as:

wi =
|Bi|

ω∑
j=1

|Bj |

/
ω∑

k=1

|Bk|
ω∑

j=1
|Bj |

(9.11)
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Require: {(S1, FS1), . . . , (Sω, FSω)}
Ensure: A Combined feature subset
1: for all (Si, FSi) ∈ F do
2: Bi = FSi.getSelectedFeatures(Si)
3: end for
4: {w1, . . . , wω} = getWeight ({B1, ..., Bω})
5: B ← ∅
6: for all aj ∈ A do
7: totalWeight=0
8: for i = 1 to ω do
9: if aj ∈ Bi then

10: totalWeight ← totalWeight+Wi

11: end if
12: end for
13: if totalWeight> 0.5 then
14: B ← B ∪ aj

15: end if
16: end for
17: Return B

Fig. 9.2 Pseudo-code of combining procedure

9.5.2.2 Näıve Bayes Weighting using Artificial Contrasts

Using the Bayesian approach a certain attribute should be filtered out
if: P (ai /∈ B |B1, ..., Bω) > 0.5 or P (ai /∈ B |B1, ..., Bω) > P (ai ∈
B |B1, ..., Bω) where B ⊆ A denote the set of relevant features. By using
the Bayes Theorem we obtain:

P (ai /∈ B |B1, ..., Bω) =
P (B1, ..., Bω |ai /∈ B )P (ai /∈ B)

P (B1, ..., Bω)
(9.12)

However, since calculating the above probability as is might be diffi-
cult, we use the naive Bayes combination. This is a well-known combining
method due to its simplicity and its relatively outstanding results. Acco-
rding to the naive Bayes assumption, the results of the feature selectors
are independent given the fact that the attribute ai is not relevant. Thus,
using this assumption we obtain:
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P (B1, ..., Bω |ai /∈ B )P (ai /∈ B)
P (B1, ..., Bω)

=
P (ai /∈ B)

ω∏
j=1

P (Bj |ai /∈ B )

P (B1, ..., Bω)
(9.13)

Using Bayes theorem again:

P (ai /∈B)
ω∏

j=1
P (Bj |ai /∈B )

P (B1,...,Bω) =
P (ai /∈B)

ω∏
j=1

P (ai /∈B|Bj )
P (ai /∈B) P (Bj)

P (B1,...,Bω) =
ω∏

j=1
P (Bj)

ω∏
j=1

P (ai /∈B|Bj )

P (B1,...,Bω)·P ω−1(ai /∈B)

(9.14)

Thus a certain attribute should be filtered out if:

ω∏
j=1

P (Bj)
ω∏

j=1
P (ai /∈B|Bj )

P (B1,...,Bω)·P ω−1(ai /∈B) >

ω∏
j=1

P (Bj)
ω∏

j=1
P (ai∈B|Bj )

P (B1,...,Bω)·P ω−1(ai∈B) (9.15)

or after omitting the common term from both sides:

ω∏
j=1

P (ai /∈B|Bj )

P ω−1(ai /∈B) >

ω∏
j=1

P (ai∈B|Bj )

P ω−1(ai∈B) (9.16)

Assuming that the a-priori probability for ai to be relevant is equal to that
of not being relevant:

ω∏
j=1

P (ai /∈ B |Bj ) >
ω∏

j=1

P (ai ∈ B |Bj ) (9.17)

Using the complete probability theorem:

ω∏
j=1

P (ai /∈ B |Bj ) >

ω∏
j=1

(1− P (ai /∈ B |Bj )) (9.18)

Because we are using non-ranker feature selectors the above probability is
estimated using:
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P (ai /∈ B |Bj ) ≈
{

P (a /∈ B |a ∈ Bj ) if ai ∈ Bj

P (a /∈ B |a /∈ Bj ) if ai /∈ Bj
(9.19)

Note that P (a /∈ B |a ∈ Bj ) does not refer to a specific attribute, but to the
general bias of the feature selector j. In order to estimate the remaining
probabilities, we are adding to the dataset a set of φ contrast attributes
that are known to be truly irrelevant and analyzing the number of artificial
features φj included in the subset Bjobtained by the feature selector j:

P (a ∈ Bj |a /∈ B ) =
φj

φ
; P (a /∈ Bj |a /∈ B ) = 1− φj

φ
(9.20)

The artificial contrast variables are obtained by randomly permuting the
values of the original n attributes across m instances. Generating just ran-
dom attributes from some simple distribution, such as Normal Distribution,
is not sufficient, because the values of original attributes may exhibit some
special structure. Using Bayes theorem:

P (a /∈ B |a ∈ Bj ) =
P (a /∈ B)P (a ∈ Bj |a /∈ B )

P (a ∈ Bj)
=

P (a /∈ B)
P (a ∈ Bj)

φj

φ
(9.21)

P (a /∈ B |a /∈ Bj ) = P (a/∈B)P (a/∈Bj |a/∈B )
P (a/∈Bj)

=
P (a/∈B)

1−P (a∈Bj)
(1− φj

φ )
(9.22)

where P (a ∈ Bj) = |Bj |
n+φ

9.5.3 Feature Ensemble Generator

In order to make the ensemble more effective, there should be some sort of
diversity between the feature subsets. Diversity may be obtained through
different presentations of the input data or variations in feature selector
design. The following sections describe each one of the different approaches.

9.5.3.1 Multiple Feature Selectors

In this approach we simply use a set of different feature selection algorithms.
The basic assumption is that since different algorithms have different in-
ductive biases, they will create different feature subsets.
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The proposed method can be employed with the correlation-based fea-
ture subset selection (CFS) as a subset evaluator [Hall (1999)]. CFS eval-
uates the worth of a subset of attributes by considering the individual pre-
dictive ability of each feature along with the degree of redundancy between
them. Subsets of features that are highly correlated with the class while
having low inter-correlation are preferred.

At the heart of the CFS algorithm is a heuristic for evaluating the
worth or merit of a subset of features. This heuristic takes into account
the usefulness of individual features for predicting the class label along
with the level of inter-correlation among them. The heuristic is based on
the following hypothesis: a good features subset contains features that are
highly correlated with the class, but which are uncorrelated with each other.

Equation 9.23 formalizes the feature selection heuristics:

MB =
krcf√

k + k(k − 1)rff

(9.23)

where MB is the heuristic “merit” of a feature subset B containing k fea-
tures; rcf

is the average feature-class correlation; and rff
is the average

feature-feature correlation.
In order to apply Equation 9.23 to estimate the merit of a feature subset,

it is necessary to compute the correlation (dependence) between attributes.
For discrete class problems, CFS first discretises numeric features then uses
symmetrical uncertainty (a modified information gain measure) to calcu-
lates feature-class and feature-feature correlations:

SU =
InformationGain(ai, aj , S)

Entropy(ai, S) + Entropy(aj , S)
(9.24)

Recall from Section 4.1.3:

InformationGain(ai, aj , S) =

Entropy(aj , S)− ∑
vi,k∈dom(ai)

|σai=vi,k
S|

|S| ·Entropy(aj , σai=vi,k
S) (9.25)

Entropy(ai, S) =
∑

vi,k∈dom(ai)

−
∣∣σai=vi,k

S
∣∣

|S| · log2

∣∣σai=vi,k
S
∣∣

|S| (9.26)
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Symmetrical uncertainty is used (rather than simple gain ratio) because
it is a symmetric measure and can therefore be used to measure feature-
feature correlations where there is no notion of one attribute being the
“class” as such.

As for the search organization the following methods can be used: Best
First Search; Forward Selection Search; Gain Ratio; Chi-Square; OneR
classifier; and Information Gain.

Beside the CFS, other evaluation methods can be considered including,
consistency subset evaluator and the the wrapper subset evaluator with
simple classifiers (K-nearest neighbors, logistic regression and näıve bayes)

9.5.3.2 Bagging

The most well-known independent method is bagging (bootstrap aggregat-
ing). In this case, each feature selector is executed on a sample of instances
taken with replacement from the training set. Usually each sample size
is equal to the size of the original training set. Note that since sampling
with a replacement is used, some of the instances may appear more than
once in the same sample and some may not be included at all. Although
the training samples are different from each other, they are certainly not
independent from a statistical point of view.

9.6 Using Decision Trees for Feature Selection

Using decision trees for feature selection has one important advantage
known as “anytime”. However, for highly dimensional datasets, the fea-
ture selection process becomes computationally intensive.

Decision trees can be used to implement a trade-off between the perfor-
mance of the selected features and the computation time which is required
to find a subset. Top-down inducers of decision trees can be considered as
anytime algorithms for feature selection, because they gradually improve
the performance and can be stopped at any time and provide sub-optimal
feature subsets.

Decision trees have been used as an evaluation means for directing the
feature selection search. For instance, a hybrid learning methodology that
integrates genetic algorithms (GAs) and decision tree inducers in order to
find the best feature subset was proposed in [Bala et al. (1995)]. A GA is
used to search the space of all possible subsets of a large set of candidate
discrimination features. In order to evaluate a certain feature subset, a
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decision tree is trained and its accuracy is used as a measure of fitness for
the given feature set, which, in turn, is used by the GA to evolve better
feature sets.

9.7 Limitation of Feature Selection Methods

Despite its popularity, the usage of feature selection methodologies for over-
coming the obstacles of high dimensionality has several drawbacks:

• The assumption that a large set of input features can be reduced to a
small subset of relevant features is not always true; in some cases the
target feature is actually affected by most of the input features, and
removing features will cause a significant loss of important information.
• The outcome (i.e. the subset) of many algorithms for feature selec-

tion (for example, almost any of the algorithms that are based upon
the wrapper methodology) is strongly dependent on the training set
size. That is, if the training set is small, then the size of the reduced
subset will be small also. Consequently, relevant features might be
lost. Accordingly, the induced classifiers might achieve lower accuracy
compared to classifiers that have access to all relevant features.
• In some cases, even after eliminating a set of irrelevant features, the

researcher is left with relatively large numbers of relevant features.
• The backward elimination strategy, used by some methods, is extremely

inefficient for working with large-scale databases, where the number of
original features is more than 100.

One way to deal with the above mentioned disadvantages is to use a very
large training set (which should increase in an exponential manner as the
number of input features increases). However, the researcher rarely enjoys
this privilege, and even if it does happen, the researcher will probably
encounter the aforementioned difficulties derived from a high number of
instances.

Practically most of the training sets are still considered “small” not be-
cause of their absolute size but rather due to the fact that they contain
too few instances given the nature of the investigated problem, namely the
instance space size, the space distribution and the intrinsic noise. Further-
more, even if a sufficient dataset is available, the researcher will probably
encounter the aforementioned difficulties derived from a high number of
records.
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Chapter 10

Fuzzy Decision Trees

10.1 Overview

There are two main types of uncertainty in supervised learning: statistical
and cognitive. Statistical uncertainty deals with the random behavior of
nature and all techniques described in previous chapters can handle the
uncertainty that arises (or is assumed to arise) in the natural world from
statistical variations or randomness. While these techniques may be appro-
priate for measuring the likelihood of a hypothesis, they say nothing about
the meaning of the hypothesis.

Cognitive uncertainty, on the other hand, deals with human cognition.
Cognitive uncertainty can be further divided into two sub-types: vagueness
and ambiguity. Ambiguity arises in situations with two or more alternatives
such that the choice between them is left unspecified. Vagueness arises when
there is a difficulty in making a precise distinction in the world

Fuzzy set theory, first introduced by Zadeh in 1965, deals with cognitive
uncertainty and seeks to overcome many of the problems found in classical
set theory. For example, a major problem in the early days of control theory
is that a small change in input results in a major change in output. This
throws the whole control system into an unstable state. In addition there
was also the problem that the representation of subjective knowledge was
artificial and inaccurate.

Fuzzy set theory is an attempt to confront these difficulties and in this
chapter we present some of it basic concepts. The main focus, however, is
on those concepts used in the induction process when dealing with fuzzy
decision trees. Since fuzzy set theory and fuzzy logic are much broader than
the narrow perspective presented here, the interested reader is encouraged
to read [Zimmermann (2005)].

159
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10.2 Membership Function

In classical set theory, a certain element either belongs or does not belong to
a set. Fuzzy set theory, on the other hand, permits the gradual assessment
of the membership of elements in relation to a set.

Definition 10.1 Let U be a universe of discourse, representing a col-
lection of objects denoted generically by u. A fuzzy set A in a universe
of discourse U is characterized by a membership function µA which takes
values in the interval [0, 1]. Where µA(u) = 0 means that u is definitely
not a member of A and µA(u) = 1 means that u is definitely a member of
A.

The above definition can be illustrated on a vague set, that we will label
as young. In this case the set U is the set of people. To each person in U , we
define the degree of membership to the fuzzy set young. The membership
function answers the question: “To what degree is person u young?”. The
easiest way to do this is with a membership function based on the person’s
age. For example Figure 10.1 presents the following membership function:

µY oung(u) =




0
1
32−age(u)

16

age(u) > 32
age(u) < 16
otherwise

(10.1)

Given this definition, John, who is 18 years old, has degree of youth of
0.875. Philip, 20 years old, has degree of youth of 0.75. Unlike probability
theory, degrees of membership do not have to add up to 1 across all objects
and therefore either many or few objects in the set may have high mem-
bership. However, an objects membership in a set (such as “young”) and
the sets complement (“not young”) must still sum to 1.

The main difference between classical set theory and fuzzy set theory is
that the latter admits to partial set membership. A classical or crisp set,
then, is a fuzzy set that restricts its membership values to {0, 1}, the end-
points of the unit interval. Membership functions can be used to represent
a crisp set. For example, Figure 10.2 presents a crisp membership function
defined as:

µCrispY oung(u) =
{

0 age(u) > 22
1 age(u) ≤ 22

(10.2)



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

Fuzzy Decision Trees 161

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 15 20 25 30 35

Age

Y
o

u
n

g
 M

em
b

er
sh

ip

Fig. 10.1 Membership function for the young set.

10.3 Fuzzy Classification Problems

All classification problems we have discussed so far in this chapter assume
that each instance takes one value for each attribute and that each inst-
ance is classified into only one of the mutually exclusive classes [Yuan and
Shaw (1995)].

To illustrate the idea, we introduce the problem of modeling the pref-
erences of TV viewers. In this problem there are three input attributes:

A = {Time of Day,Age Group,Mood}

and each attribute has the following values:

• dom(Time of Day) = {Morning,Noon,Evening,Night}
• dom(Age Group) = {Young,Adult}
• dom(Mood) = {Happy,Indifferent,Sad,Sour,Grumpy}

The classification can be the movie genre that the viewer would like to
watch, such as C = {Action,Comedy,Drama}.

All the attributes are vague by definition. For example, peoples feel-
ings of happiness, indifference, sadness, sourness and grumpiness are vague
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Fig. 10.2 Membership function for the crisp young set.

without any crisp boundaries between them. Although the vagueness of
“Age Group” or “Time of Day” can be avoided by indicating the exact age
or exact time, a rule induced with a crisp decision tree may then have an
artificial crisp boundary, such as “IF Age < 16 THEN action movie”. But
how about someone who is 17 years of age? Should this viewer definitely
not watch an action movie? The viewer preferred genre may still be vague.
For example, the viewer may be in a mood for both comedy and drama
movies. Moreover, the association of movies into genres may also be vague.
For instance the movie “Lethal Weapon” (starring Mel Gibson and Danny
Glover) is considered to be both comedy and action movie.

Fuzzy concept can be introduced into a classical problem if at least
one of the input attributes is fuzzy or if the target attribute is fuzzy. In
the example described above, both input and target attributes are fuzzy.
Formally the problem is defined as following[Yuan and Shaw (1995)]:

Each class cj is defined as a fuzzy set on the universe of objects U .
The membership function µcj(u) indicates the degree to which object u

belongs to class cj . Each attribute ai is defined as a linguistic attribute
which takes linguistic values from dom(ai) = {vi,1, vi,2, . . . , vi,|dom(ai)|}.
Each linguistic value vi,k is also a fuzzy set defined on U . The membership
µvi,k

(u) specifies the degree to which object u’s attribute ai is vi,k. Recall
that the membership of a linguistic value can be subjectively assigned or
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transferred from numerical values by a membership function defined on the
range of the numerical value.

10.4 Fuzzy Set Operations

Like classical set theory, fuzzy set theory includes such operations as union,
intersection, complement, and inclusion, but also includes operations that
have no classical counterpart, such as the modifiers concentration and di-
lation, and the connective fuzzy aggregation. Definitions of fuzzy set oper-
ations are provided in this section.

Definition 10.2 The membership function of the union of two fuzzy
sets A and B with membership functions µA and µB respectively is defined
as the maximum of the two individual membership functions µA∪B(u) =
max{µA(u), µB(u)}.

Definition 10.3 The membership function of the intersection of two
fuzzy sets A and B with membership functions µA and µB respectively
is defined as the minimum of the two individual membership functions
µA∩B(u) = min{µA(u), µB(u)}.

Definition 10.4 The membership function of the complement of a fuzzy
set A with membership function µA is defined as the negation of the spec-
ified membership function µA(u) = 1− µA(u).

To illustrate these fuzzy operations, we elaborate on the previous exam-
ple. Recall that John has a degree of youth of 0.875. Additionally John’s
happiness degree is 0.254. Thus, the membership of John in the set Young ∪
Happy would be max(0.875, 0.254) = 0.875, and its membership in Young
∩ Happy would be min(0.875, 0.254) = 0.254.

It is possible to chain operators together, thereby constructing quite
complicated sets. It is also possible to derive many interesting sets from
chains of rules built up from simple operators. For example John’s mem-
bership in the set Y oung ∪ Happy would be max(1− 0.875, 0.254) = 0.254

The usage of the max and min operators for defining fuzzy union and
fuzzy intersection, respectively is very common. However, it is important
to note that these are not the only definitions of union and intersection
suited to fuzzy set theory.
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10.5 Fuzzy Classification Rules

Definition 10.5 The fuzzy subsethood S(A, B) measures the degree to
which A is a subset of B.

S(A, B) =
M(A ∩B)

M(A)
(10.3)

where M(A) is the cardinality measure of a fuzzy set A and is defined as

M(A) =
∑

u∈UµA(u) (10.4)

The subsethood can be used to measure the truth level of the rule of
classification rules. For example given a classification rule such as “IF
Age is Young AND Mood is Happy THEN Comedy” we have to calculate
S(Hot ∩ Sunny, Swimming) in order to measure the truth level of the
classification rule.

10.6 Creating Fuzzy Decision Tree

There are several algorithms for induction of decision trees. In this section
we will focus on the algorithm proposed by [Yuan and Shaw (1995)]. This
algorithm can handle the classification problems with both fuzzy attributes
and fuzzy classes represented in linguistic fuzzy terms. It can also handle
other situations in a uniform way where numerical values can be fuzzified
to fuzzy terms and crisp categories can be treated as a special case of fuzzy
terms with zero fuzziness. The algorithm uses classification ambiguity as
fuzzy entropy. The classification ambiguity, which directly measures the
quality of classification rules at the decision node, can be calculated under
fuzzy partitioning and multiple fuzzy classes.

The fuzzy decision tree induction consists of the following steps:

• Fuzzifying numeric attributes in the training set.
• Inducing a fuzzy decision tree.
• Simplifying the decision tree.
• Applying fuzzy rules for classification.
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10.6.1 Fuzzifying Numeric Attributes

When a certain attribute is numerical, it needs to be fuzzified into linguistic
terms before it can be used in the algorithm. The fuzzification process can
be performed manually by experts or can be derived automatically using
some sort of clustering algorithm. Clustering groups the data instances
into subsets in such a manner that similar instances are grouped together;
different instances belong to different groups. The instances are thereby
organized into an efficient representation that characterizes the population
being sampled.

Yuan and Shaw (1995) suggest a simple algorithm to generate a set of
membership functions on numerical data. Assume attribute ai has numer-
ical value x from the domain X . We can cluster X to k linguistic terms
vi,j , j = 1, . . . , k. The size of k is manually predefined. For the first linguis-
tic term vi,1, the following membership function is used:

µvi,1(x) =




1 x ≤ m1
m2−x

m2−m1
m1 < x < m2

0 x ≥ m2

(10.5)

For each vi,j when j = 2, . . . , k−1 has a triangular membership function
as follows:

µvi,j (x) =




0 x ≤ mj−1
x−mj−1

mj−mj−1
mj−1 < x ≤ mj

mj+1−x
mj+1−mj

mj < x < mj+1

0 x ≥ mj+1

(10.6)

Finally the membership function of the last linguistic term vi,k is:

µvi,k
(x) =




0 x ≤ mk−1
x−mk−1

mk−mk−1
mk−1 < x ≤ mk

1 x ≥ mk

(10.7)

Figure 10.3 illustrates the creation of four groups defined on the age
attribute: “young”, “early adulthood”, “middle-aged” and “old age”. Note
that the first set (“young”) and the last set (“old age”) have a trapezoidal
form which can be uniquely described by the four corners. For example,
the “young” set could be represented as (0, 0, 16, 32). In between, all other
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sets (“early adulthood” and “middle-aged”) have a triangular form which
can be uniquely described by the three corners. For example, the set “early
adulthood” is represented as (16, 32, 48).
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Fig. 10.3 Membership function for various groups in the age attribute.

The only parameters that need to be determined are the set of k cen-
ters M = {m1, . . . , mk}. The centers can be found using the algorithm
presented in Figure 10.4. Note that in order to use the algorithm, a mono-
tonic decreasing learning rate function should be provided.

10.6.2 Inducing of Fuzzy Decision Tree

The induction algorithm of fuzzy decision tree is presented in Figure 10.5.
The algorithm measures the classification ambiguity associated with each
attribute and splits the data using the attribute with the smallest classifica-
tion ambiguity. The classification ambiguity of attribute ai with linguistic
terms vi,j , j = 1, . . . , k on fuzzy evidence S, denoted as G(ai|S), is the
weighted average of classification ambiguity calculated as:

G(ai |S ) =
k∑

j=‘1

w(vi,j |S) ·G(vi,j |S) (10.8)
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Require: X - a set of values, η(t) - some monotonic decreasing scalar
function representing the learning rate.

Ensure: M = {m1, . . . , mk}
1: Initially set mi to be evenly distributed on the range of X .
2: t← 1
3: repeat
4: Randomly draw one sample x from X

5: Find the closest center mc to x.
6: mc ← mc + η(t) · (x−mc)
7: t← t + 1
8: D(X, M)← ∑

x∈X

mini ‖x−mi‖
9: until D(X, M) converges

Fig. 10.4 Algorithm for fuzzifying numeric attributes

where w(vi,j |S) is the weight which represents the relative size of vi,j and
is defined as:

w(vi,j |S) =
M(vi,j |S)∑

k

M(vi,k |S)
(10.9)

The classification ambiguity of vi,j is defined as G(vi,j |S) =
g (�p (C |vi,j )), which is measured based on the possibility distribution vector

�p (C |vi,j ) =
(
p (c1 |vi,j ) , ..., p

(
c|k| |vi,j

))
.

Given vi,j , the possibility of classifying an object to class cl can be
defined as:

p (cl |vi,j ) =
S(vi,j , cl)

max
k

S(vi,j , ck)
(10.10)

where S(A, B) is the fuzzy subsethood that was defined in Definition 10.5.
The function g (�p) is the possibilistic measure of ambiguity or nonspecificity
and is defined as:

g (�p) =
|	p|∑
i=1

(
p∗i − p∗i+1

) · ln(i) (10.11)
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where �p∗ =
(
p∗1, . . . , p

∗
|	p|
)

is the permutation of the possibility distribution
�p sorted such that p∗i ≥ p∗i+1.

All the above calculations are carried out at a predefined significant
level α. An instance will take into consideration of a certain branch vi,j

only if its corresponding membership is greater than α. This parameter is
used to filter out insignificant branches.

After partitioning the data using the attribute with the smallest clas-
sification ambiguity, the algorithm looks for nonempty branches. For each
nonempty branch, the algorithm calculates the truth level of classifying all
instances within the branch into each class. The truth level is calculated
using the fuzzy subsethood measure S(A, B).

If the truth level of one of the classes is above a predefined threshold
β then no additional partitioning is needed and the node become a leaf in
which all instance will be labeled to the class with the highest truth level.
Otherwise the procedure continues in a recursive manner. Note that small
values of β will lead to smaller trees with the risk of underfitting. A higher
β may lead to a larger tree with higher classification accuracy. However, at
a certain point, higher values β may lead to overfitting.

Require: S - Training Set A - Input Feature Set y - Target Feature
Ensure: Fuzzy Decision Tree
1: Create a new fuzzy tree FT with a single root node.
2: if S is empty OR Truth level of one of the classes ≥ β then
3: Mark FT as a leaf with the most common value of y in S as a label.
4: Return FT .
5: end if
6: ∀ai ∈ A find a with the smallest classification ambiguity.
7: for each outcome vi of a do
8: Recursively call procedure with corresponding partition vi.
9: Connect the root node to the returned subtree with an edge that is

labeled as vi.
10: end for
11: Return FT

Fig. 10.5 Fuzzy decision tree induction
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10.7 Simplifying the Decision Tree

Each path of branches from root to leaf can be converted into a rule with
the condition part representing the attributes on the passing branches from
the root to the leaf and the conclusion part representing the class at the leaf
with the highest truth level classification. The corresponding classification
rules can be further simplified by removing one input attribute term at a
time for each rule we try to simplify. Select the term to remove with the
highest truth level of the simplified rule. If the truth level of this new rule
is not lower than the threshold β or the truth level of the original rule,
the simplification is successful. The process will continue until no further
simplification is possible for all the rules.

10.8 Classification of New Instances

In a regular decision tree, only one path (rule) can be applied for every
instance. In a fuzzy decision tree, several paths (rules) can be applied for
one instance. In order to classify an unlabeled instance, the following steps
should be performed [Yuan and Shaw (1995)]:

• Step 1: Calculate the membership of the instance for the condition part
of each path (rule). This membership will be associated with the label
(class) of the path.
• Step 2: For each class calculate the maximum membership obtained

from all applied rules.
• Step 3: An instance may be classified into several classes with different

degrees based on the membership calculated in Step 2.

10.9 Other Fuzzy Decision Tree Inducers

There have been several fuzzy extensions to the ID3 algorithm. The UR-
ID3 algorithm [Maher and Clair (1993)] starts by building a strict decision
tree, and subsequently fuzzifies the conditions of the tree. Tani and Sakoda
(1992) use the ID3 algorithm to select effective numerical attributes. The
obtained splitting intervals are used as fuzzy boundaries. Regression is then
used in each subspace to form fuzzy rules. Cios and Sztandera (1992) use
the ID3 algorithm to convert a decision tree into a layer of a feedforward
neural network. Each neuron is represented as a hyperplane with a fuzzy
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boundary. The nodes within the hidden layer are generated until some
fuzzy entropy is reduced to zero. New hidden layers are generated until
there is only one node at the output layer.

Fuzzy-CART [Jang (1994)] is a method which uses the CART algorithm
to build a tree. However, the tree, which is the first step, is only used to
propose fuzzy sets of the continuous domains (using the generated thresh-
olds). Then, a layered network algorithm is employed to learn fuzzy rules.
This produces more comprehensible fuzzy rules and improves the CART’s
initial results.

Another complete framework for building a fuzzy tree including several
inference procedures based on conflict resolution in rule-based systems and
efficient approximate reasoning methods was presented in [Janikow, 1998].

Olaru and Wehenkel (2003) presented a new type of fuzzy decision trees
called soft decision trees (SDT). This approach combines tree-growing and
pruning, to determine the structure of the soft decision tree. Refitting
and backfitting are ised to improve its generalization capabilities. The
researchers empirically showed that soft decision trees are significantly more
accurate than standard decision trees. Moreover, a global model variance
study shows a much lower variance for soft decision trees than for standard
trees as a direct cause of the improved accuracy.

Peng (2004) has used FDT to improve the performance of the classical
inductive learning approach in manufacturing processes. Peng proposed
using soft discretization of continuous-valued attributes. It has been shown
that FDT can deal with the noise or uncertainties existing in the data
collected in industrial systems.
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Chapter 11

Hybridization of Decision Trees with
other Techniques

11.1 Introduction

Hybridization in artificial intelligence (AI) involves simultaneously using
two or more intelligent techniques in order to handle real world complex
problems, involving imprecision, uncertainty and vagueness. Hybridization
is frequently practiced in machine learning, to make more powerful and
reliable classifiers.

The combination or integration of additional methodologies can be done
in any form: by modularly integrating two or more intelligent method-
ologies, which maintains the identity of each methodology; by fusing one
methodology into another; or by transforming the knowledge representa-
tion in one methodology into another form of representation characteristic
to another methodology.

Hybridization of decision trees with other AI techniques can be per-
formed by using either a decision tree to partition the instance space for
other induction techniques or other AI techniques for obtaining a better
decision tree.

11.2 A Decision Tree Framework for Instance-Space
Decomposition

In the first approach, termed instance-space decomposition (ISD) and in-
volving hybrid decision tree with other inducers, the instance space of the
original problem is partitioned into several subspaces using a decision tree
with a distinct classifier assigned to each subspace. Subsequently, an un-
labeled, previously unseen instance is classified by employing the classifier
that was assigned to the subspace to which the instance belongs.

171
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In an approach, which Cohen et al. (2007) term decision tree ISD, the
partition of the instance-space is attained by a decision tree. Along with
the decision tree, the ISD method employs another classification method,
which classifies the tree’s leaves (the tree’s leaves represent the different
subspaces). Namely, decision tree ISD methods produce decision tree s,
in which the leaves are assigned classifiers rather than simple class labels.
When a non- decision tree method produces the leaves’ classifiers, the com-
posite classifier is sometimes termed a decision tree hybrid classifier.

The term “decision tree hybrid classifier”, however, is also used in a
broader context, such as in cases where a sub-classification method decides
about the growth of the tree and its pruning [Sakar and Mammone (1993)].

There are two basic techniques for implementing decision tree ISD. The
first technique is to use some decision tree method to create the tree and
then, in a post-growing phase, to attach classifiers to the tree’s leaves. The
second technique is to consider the classifiers as part of the tree-growing
procedure. Potentially, the latter technique can achieve more accurate com-
posite classifiers. On the other hand, it usually requires more computation-
ally intensive procedures.

Carvalho and Freitas [Carvalho and Freitas. (2004)] proposed a hybrid
decision tree genetic-algorithm classifier, which grows a decision tree and
assigns some of the leaves with class labels and the others with genetic-
algorithm classifiers. The leaves with the classifiers are those that have a
small number of corresponding instances. A previously unseen instance is
subsequently either directly assigned with a class label or is sub-classified by
a genetic-algorithm classifier (depending on the leaf to which the instance
is sorted). Zhou and Chen [Zhou and Chen (2002)] suggested a method,
called hybrid decision tree (HDT). HDT uses the binary information gain
ratio criterion to grow a binary decision tree in an instance-space that is
defined by the nominal explaining-attributes only. A feed-forward neural
network, subsequently classifies the leaves, whose diversity exceeds a pre-
defined threshold. The network only uses the ordinal explaining-attributes.

In this chapter, we focus on the second decision tree ISD technique,
which considers the classifiers as part of the decision tree’s growth. NBTree
is a method which produces a decision tree naive-Bayes hybrid classifier
[Kohavi (1996)]. In order to decide when to stop the recursive partition of
the instance-space (i.e., stop growing the tree), NBTree compares two alter-
natives: partitioning the instance-space further on (i.e., continue splitting
the tree) versus stopping the partition and producing a single naive Bayes
classifier. The two alternatives are compared in terms of their error esti-
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mations, which are calculated by a cross-validation procedure. Naive Bayes
classification, by itself, is very efficient in terms of its processing time. How-
ever, using cross-validation significantly increases the overall computational
complexity. Although Kohavi has used naive Bayes, to produce the classi-
fiers, other classification methods are also applicable. However, due to the
cross-validation estimations, NBTree becomes computationally expensive
for methods that are more time-consuming than naive Bayes (e.g., neural
networks).

We describe a simple framework for decision tree ISD, termed decision
tree framework for instance space decomposition (DFID). The framework
hierarchically partitions the instance space using a top-down (pruning-free)
decision tree procedure. Although various DFID implementations use dif-
ferent stopping rules, split-validation examinations and splitting rules, in
this chapter we concentrate on a specific DFID method – contrasted popu-
lations miner (CPOM). The splitting rule that this method uses – grouped
gain ratio – combines the well-accepted gain ratio criterion with a heuristic
grouping procedure. CPOM can reduce the processing time while keeping
the composite classifier accurate.

Implementations of DFID consist of a decision-tree (as a wrapper) and
another embedded classification method (this method can, in principle,
also be a decision tree). The embedded classification method generates the
multiple classifiers for the tree’s leaves. The DFID sequence is illustrated
by the pseudo code in Figure 10.1. DFID inputs are: training instances;
a list of attributes (which will be examined as candidates for splitting the
decision tree); a classification method; and, optionally, (depending on the
specific implementation), some additional parameters.

The procedure begins by creating the decision tree’s root node. The
root represents the entire instance space X . When constructed, each node
is attached with a rule which defines the subspace of X that the node
represents. The DFID framework considers rules that can be expressed
in a conjunctive normal form. A rule may be, for example: “(A1 = 3 ∨
A1 = 4)∧A2 = 1”. DFID then checks whether there should be a split from
the root node (i.e., whether X should be partitioned). This check, which
uses some stopping rules, is represented, in Figure 10.1 by the general
function StoppingCriterion. The function receives some inputs (depending
on the specific implementation) and returns a Boolean value that indicates
whether the stopping rules are met. If the stopping rules are met, then
I is trained using all of the training instances. The classifier that results
is attached to the root node and the procedure terminates. If, however,
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the stopping-rules are not met, then DFID searches for a split, according
to some splitting rule, represented in Figure 10.1 by the general function
split.

Splits in DFID are based on the values of a certain candidate attribute.
We assume that there exists at least a single attribute that can create a split
(or otherwise the stopping-rules would have indicated that there should be
no more splits).

The function split receives a training set, a set of candidate attributes
and optionally some additional inputs. It then returns the attribute upon
whose values the split is based and a set of descendents nodes. Recall that
upon its creation, each node is attached with a rule, which defines the sub-
space of X that the node represents. The rules for the descendent nodes
are conjunctions of the root’s rule and restrictions on the values of the
selected attribute. The split that was found may be then subjected to a
validation examination, represented, in Figure 10.1 by the general function
validate. If a split is found to be invalid, then DFID will search for another
split (another attribute). If there are no more candidate attributes, I will
be trained using all the training instances and the classifier that results
will be attached to the root node. As soon as a valid split is found, the
descendent nodes that were created by the split are recursively considered
for further splits. Further splits are achieved by the recurrence of DFID.
In the recurrence, only a subset of the training instances is relevant (the
instances that are actually sorted to the certain descendent node). In addi-
tion, the attribute, which defined the current split, is removed from the list
of candidate attributes. The descendents are finally linked to their parent
(the root). Different DFID implementations may differ in all or some of
the procedures that implement the three main framework components –
stopping-rules (the function StoppingCriterion), splitting rules (the func-
tion split) and split validation examinations (the function validate).

11.2.1 Stopping Rules

Stopping rules are checked by the general function StoppingCriterion (Fig-
ure 10.1). However, it should be noticed that a negative answer by this
function is not the only condition that stops the DFID recurrence; another,
and even more natural, condition, is the lack of any valid split.

According to the simple stopping rule that NBTree uses, no splits are
considered when there are 30 instances or less in the examined node. Split-
ting a node with only a few training instances will hardly affect the final
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accuracy and will lead, on the other hand, to a complex and less comprehen-
sible decision tree (and hence a complex and less comprehensible composite
classifier). Moreover, since the classifiers are required to generalize from the
instances in their subspaces, they must be trained on samples of sufficient
size.

Kohavi’s stopping-rule can be revised into a rule that never considers
further splits in nodes that correspond to β|S| instances or less, where 0 <

β < 1 is a proportion and |S| is the number of instances in original training
set, S. When using this stopping rule (either in Kohavi’s way or in the
revised version), a threshold parameter must be provided to DFID as well as
to the function StoppingCriterion. Another heuristic stopping rule is never
to consider splitting a node, if a single classifier can accurately describe
the node’s subspace (i.e., if a single classifier which was trained by all of
the training instances, and using the classification method appear to be
accurate). Practically, this rule can be checked by comparing an accuracy
estimation of the classifier to a pre-defined threshold (thus, using this rule
requires an additional parameter). The motivation for this stopping rule is
that if a single classifier is good enough, why replace it with a more complex
tree that also has less generalization capabilities? Finally, as mentioned
above, another (inherent) stopping-rule of DFID is the lack of even a single
candidate attribute.

11.2.2 Splitting Rules

The core question of DFID is how to split nodes. The answer to this
question lies in the general function split (Figure 10.1). It should be noted
that any splitting rule that is used to grow a pure decision tree, is also
suitable in DFID.

Kohavi [Kohavi (1996)] has suggested a new splitting rule, which selects
the attribute with the highest value of a measure, which he refers to as the
“utility”. Kohavi defines the utility as the fivefold cross-validation accu-
racy estimation of using a naive-Bayes method for classifying the subspaces
which will be generated by the considered split.

11.2.3 Split Validation Examinations

Since splitting rules, are heuristic, it may be beneficial to regard the splits
they produce as recommendations that should be validated. Kohavi [Ko-
havi (1996)] validated a split by estimating the reduction in error, which is
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gained by the split and comparing it to a predefined threshold of 5% (i.e., if
it is estimated that the split will reduce the overall error rate by only 5% or
less, the split is regarded as invalid). In an NBTree, it is enough to examine
only the first proposed split in order to conclude that there are no valid
splits, if the one examined is invalid. This follows since in an NBTree, the
attribute according to which the split is done is the one that maximizes the
utility measure, which is strictly increasing with the reduction in error. If a
split, in accordance with the selected attribute cannot reduce the accuracy
by more than 5%, then no other split can.

We suggest a new split validation procedure. In very general terms, a
split according to the values of a certain attribute is regarded as invalid if
the subspaces that result from this split are similar enough to be grouped
together.

11.3 The CPOM Algorithm

This section presents the contrasted population miner (CPOM), which
splits nodes according to a novel splitting rule, termed grouped gain ratio.
Generally speaking, this splitting rule is based on the gain ratio criterion
(Quinlan, 1993), followed by a grouping heuristic. The gain ratio crite-
rion selects a single attribute from the set of candidate attributes, and the
grouping heuristic thereafter groups together subspaces which correspond
to different values of the selected attribute.

11.3.1 CPOM Outline

CPOM uses two stopping rules. First, the algorithm compares the number
of training instances to a pre-defined ratio of the number of instances in
the original training set. If the subset is too small, CPOM stops (since
it is undesirable to learn from too small a training subset). Secondly,
CPOM compares the accuracy estimation of a single classifier to a pre-
defined threshold. It stops if the accuracy estimation exceeds the threshold
(if a single classifier is accurate enough, there is no point in splitting further
on). Therefore, in addition to the inputs in Figure 11.1, CPOM must receive
two parameters: β, the minimal ratio of the training instances and acc, the
maximal accuracy estimation that will still result in split considerations.

CPOM’s split validation procedure is directly based on grouped gain
ratio. The novel rule is described in detail, in the following subsection;
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however, in general terms, the rule returns the splitting attribute and a set
of descendent nodes. The nodes represent subspaces of X that are believed
to be different. If the procedure returns just a single descendent node, the
split it has generated is regarded as invalid.

11.3.2 The Grouped Gain Ratio Splitting Rule

Grouped gain ratio is based on the gain ratio criterion followed by a group-
ing heuristic. The gain ratio criterion selects a single attribute from a set of
candidate attributes. The instance subspace, whose partition we are now
considering, may, in principle, be partitioned so that each new sub-subspace
will correspond to a unique value of the selected attribute. Group gain
ratio avoids this alternative, through heuristically grouping sub-subspaces
together. By grouping sub-subspaces together, grouped gain ratio increases
the generalization capabilities, since there are more instances in a group of
sub-subspaces than there are in the individual sub-subspaces.

Clearly, if we separately train I on each subset and obtain the same
exact classifier from each subset, then there is no point in the split, since
using this single classifier for the entire instance space is as accurate as using
the multiple classifiers; it is also much simpler and understandable, and it
can generalize better. The other direction of this argument is slightly less
straightforward. If the classifiers that were trained over the training subsets
are very different from one another, then none of them can classify X as one,
and we can believe that the split is beneficial. Based on this observation,
the grouped gain ratio splitting rule groups together subspaces that have
similar classifiers.

The intuition regarding the classifier comparisons raises questions of
what is similar, what is different and how to compare classifiers? Although
there may be multiple classifiers, all of which must be simultaneously com-
pared to each other, we begin answering these questions with the simpler
case of exactly two classifiers, using a comparison heuristic, which we refer
to as cross-inspection (see Figure 10.2).

Cross-inspection is based on two mutually-exclusive training subsets
and a classification method as inputs. The comparison begins by randomly
partitioning each subset into a training sub-subset and a test sub-subset.
Then, two classifiers are produced, by training the input method, once over
each training sub-subset. After producing the two classifiers, the cross-
inspection heuristic calculates the error rates of each classifier over each of
the test sub-subsets. If the error rate of the first classifier over the first test
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sub-subset is significantly (with confidence level alpha) different from the
error of the first classifier over the second test sub-subset, or vice versa, then
the two classifiers are regarded as different. The errors are compared by
testing the hypothesis that the errors are generated by the same binomial
random variable [Dietterich (1998)].

The cross-inspection heuristic compares only two distinct classifiers.
However, in the DFID framework, more than two classifiers must be com-
pared at a time (if the attribute, which was selected by the gain ratio
criterion, has more than two possible values). For example, if it is believed
that graduate students from different schools behave differently, one may
consider splitting according to the school’s name. The attribute ’school’ can
receive multiple values, all of which will have to be compared simultane-
ously. A successful split will group similar schools together, while different
schools will be in different groups. Since an exhaustive search, over all the
possible groupings, is unacceptable in terms of complexity, grouped gain
ratio (see Figure 10.4) uses a greedy grouping heuristic, which is based on
cross-inspection.

The procedure begins by using cross-inspection, to compare all the dis-
tinct pairs of classifiers (if there are q classifiers, there are q(q-1)/2 com-
parisons). For each instance-subspace, the procedure computes the number
of instances that belong to subspaces that are similar to it (by definition
the similarity by cross-inspection is defined with regard to classifiers rather
than subspaces; each subspace, however, is described by a classifier). The
classifier that represents the subspace with the largest such number is re-
garded as the classifier that covers the maximal number of instances. The
subspaces of all the instances which are covered by this classifier are grouped
together, and the procedure iterates. The heuristic does not explicitly guar-
antee that any two classifiers in a group are equivalent, but equivalence is
assumed to be a transitive relation. The greedy grouping procedure is a
simple clustering method and other clustering methods, like graph coloring
[Zupan et al. (1998)] may also be suitable here. Alternatively one could use
the Warshall algorithm [Warshall (1962)] for finding the transitive closure
of the comparison matrix, which can be used for calculating supj . However,
this form of calculation will not be convenient in this case because it will
tend to group too much as the following example illustrates.

Cohen et al. (2007) demonstrated that CPOM improved the obtained
accuracy compared to the examined embedded methods (naive Bayes, back-
propagation and C4.5). Not only was CPOM more accurate than other
decision tree ISD methods, the grouping heuristic significantly improved
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the accuracy results, compared to a CPOM variation which does not group.
Finally, using three synthetic datasets, CPOM distinguished between dif-
ferent populations in an underlined dataset.

11.4 Induction of Decision Trees by an Evolutionary Algo-
rithm

Evolutionary Algorithms (EAs) are stochastic search algorithms inspired
by the concept of Darwinian evolution. The motivation for applying EAs
to data mining tasks is that they are robust, adaptive search techniques
that perform a global search in the solution space [Freitas (2005)]. Since a
well-designed EA continually considers new solutions, it can be viewed as
an “anytime” learning algorithm capable of quite quickly producing a good-
enough solution. It then continues to search the solution space, reporting
the new “best” solution whenever one is found.

Genetic algorithms (GA), a popular type of evolutionary algorithms,
have been successfully used for feature selection. Figure 10.5 presents a
high level pseudo code of GA adapted from [Freitas (2005)].

Genetic algorithms begin by randomly generating a population of L can-
didate solutions. Given such a population, a genetic algorithm generates a
new candidate solution (population element) by selecting two of the candi-
date solutions as the parent solutions. This process is termed reproduction.
Generally, parents are selected randomly from the population with a bias
toward the better candidate solutions. Given two parents, one or more
new solutions are generated by taking some characteristics of the solution
from the first parent (the “father”) and some from the second parent (the
“mother”). This process is termed “crossover”. For example, in genetic
algorithms that use binary encoding of n bits to represent each possible so-
lution, we might randomly select a crossover bit location denoted as o. Two
descendant solutions could then be generated. The first descendant would
inherit the first o string characteristics from the father and the remaining
n−o characteristics from the mother. The second descendant would inherit
the first o string characteristics from the mother and the remaining n − o

characteristics from the father. This type of crossover is the most common
and it is termed one-point crossover. Crossover is not necessarily applied
to all pairs of individuals selected for mating: a Pcrossover probability is
used in order to decide whether crossover will be applied. If crossover is
not applied, the offspring are simply duplications of the parents.
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Finally, once descendant solutions are generated, genetic algorithms al-
low characteristics of the solutions to be changed randomly in a process
known as mutation. In the binary encoding representation, according to a
certain probability (Pmut), each bit is changed from its current value to the
opposite value. Once a new population has been generated, it is decoded
and evaluated. The process continues until some termination criterion is
satisfied. A GA converges when most of the population is identical, or in
other words, when the diversity is minimal.

Based on the pseudo code, one should provide the following ingredients
when using a GA algorithm for decision trees: crossover operator, mutation
operator, fitness function, a method to create the initial population and a
stopping criterion.

Several GA-based systems, which learn decision trees in the top-down
manner have been proposed, such as BTGA [Chai et al. (1996)], OC1-ES
[Cantu-Paz and Kamath (2003)] and DDT-EA [Krtowski (2004)]. Gener-
ally, they apply an evolutionary approach to the test search, especially in
the form of hyper-planes.

The GDT-EA algorithm [Krtowski and Grze (2005)] that we describe
here searches for the whole tree at once in contrast to greedy, top-down
approaches. The initial population is generated by applying a standard
top-down decision tree inducers but attributes are selected in a dipolar
way. Specifically, two instances from different classes are randomly chosen.
Then an attribute which differentiates between the two instances is selected.

The Fitness function is composed of two terms: the classification accu-
racy on the training set and the tree complexity. Specifically, the fitness
function, which must be maximized, has the following form:

Fitness = Acc− α · S (11.1)

where Acc is the classification quality estimated on the learning set; S is
the size of the tree (number of nodes); and α - is a parameter which indicate
the relative importance of the complexity term. The value of α should be
provided by the user by tuning it to the specific problem that is solved.

The algorithm terminates if the fitness of the best individual in the
population does not improve during the fixed number of generations. This
status indicates, that the algorithm has converged. Additionally, the max-
imum number of generations is specified, which allows limiting the compu-
tation time in case of a slow convergence.

Like many other GAs, the GDT-EA also has two operators: MutateNode
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(for mutation) and CrossTrees (for crossover). The first operator MutateN-
ode, which is applied with the given probability to every node of the tree,
can modify the test or change the node structure. If a non-leaf node is
concerned it can be pruned to a leaf or its test can be altered. Specifically,
there are four modification options in case of non-leaf node:

• A completely new test is applied with another randomly chosen attri-
bute and threshold,
• A new threshold is randomly chosen without changing the attribute

used in the test,
• The current sub-tree is replaced by a sub-tree of an adjacent node.
• The test can be exchanged with another test taken from randomly

chosen descendant-nodes.

If a leaf node is to be mutated, then there are two options:

• The leaf node is replaced with a non-leaf node with a new randomly
chosen test.
• The leaf node is replaced with a sub-tree generated using an appropriate

algorithm.

The CrossTrees operator is equivalent to the standard crossover oper-
ator. It alters two solutions by exchanging certain parts of input trees.
There are three possible exchange types: two types of sub-tree exchanges
and an exchange of only tests. At the beginning, regardless of the type, one
node in each tree is randomly chosen. Then the type of exchange between
trees is decided.

In the first CrossTree variant, the tests that are associated with the
chosen nodes are substituted. This option is valid only when the chosen
nodes have the same number of outgoing branches. In the second CrossTree
variant, we substitute the sub-trees starting from the chosen nodes. The
third CrossTree variant actually combines the first two variants. Branches
which start from the chosen nodes are exchanged in random order.
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DFID (S,A,I)

Where:

S - Training Set

A - Input Feature Set

I - Inducer

Create a tree with a root node;

IF StoppingCriterion(S, A, I) THEN

Attach the classifier I(S, A) to the root;

ELSE

A∗ ← A;

valid← FALSE;

WHILE A∗ �= ∅ and NOT(valid)

(SplitAtt, nodes)← split(S, A∗);
IF validate(nodes, SplitAtt, S) THEN

valid← TRUE;

A← A− SplitAtt;

FOR each node ∈ nodes

Generate classifier DFID(NodeInstances, A, I);
Attach the classifier to node;

Link the node to root;

END FOR

ELSE

A∗ ← A ∗ −SplitAtt;

END WHILE

IF NOT (valid) THEN

Attach the classifier I(S, A) to the root;

END IF

END IF

RETURN tree;

Fig. 11.1 DFID outline: A DFID implementation recursively partitions the instance
space of the training set, according to the values of the candidate attributes. As the
recursive partition ends, classifiers are attached to the leaves by employing the embedded
classification method.
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CrossInspection (S1,S2,I,α)

Where:

S1, S2 - Mutually-exclusive training sets

I - Inducer

α - Confidence level

S11 ← a random sample from S1;

S12 ← S1 − S11;

S21 ← a random sample from S2;

S22 ← S2 − S21;

H1 ← I(S11);
H2 ← I(S21);
FOR i, j ∈{1,2} DO

εi,j ← accuracy estimation of Hi over Sj,2;

END FOR

IF ε1,2 is different from ε1,1 with a confidence level α OR

ε2,1 is different from ε2,2 with a confidence level α THEN

return FALSE;

ELSE

return TRUE;

Fig. 11.2 The cross-inspection procedure outline: Searching for statistical significance,
the procedure compares the accuracy estimations of two distinct classifiers.
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GroupedGainRatio (S, A, I, root, α)

Where:

S - Training Set

A - Input Feature Set

I - Inducer

root - the node from which the split is considered

α - confidence level

Ai ← the attribute from A with the maximal gain ratio;

S1, S2, . . . , Sd(i) ← a partition of S, according to values of Ai;

FOR all j, k ∈ {1,2,... ,d(i)} so that j ≤ k

Ej,k ← CrossInspection(Sj, Sk, I, α)

Ek,j ← Ej,k;

END FOR

FOR all j ∈ {1,2,... ,d(i)}
supj ← the number of instances in the

subsets Sk for which Ej,k=TRUE;

END FOR

L← a list of the subsets indices sorted descending by supj;

nodes← an empty set of nodes

WHILE L is not empty DO

Create a new node;

Attach the rule which is a conjecture of the root’s rule

and a disjoint of the values that correspond to

Sj the first member of L and the members

Sk for which Ej,k=TRUE;

Remove from L any member that is described by the new
node;

Add node to nodes;

END WHILE

RETURN (Ai, nodes)

Fig. 11.3 The grouped gain ratio procedure outline. The procedure groups together sim-
ilar values of a candidate attribute. Similarity is based on the cross-inspection heuristic.
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GA

Create initial population of individuals

(candidate solutions)

Compute the fitness of each individual

REPEAT

Select individuals based on fitness

Apply genetic operators to selected individuals,

creating new individuals

Compute fitness of each of the new individuals

Update the current population

(new individuals replace old individuals)

UNTIL (stopping criterion)

Fig. 11.4 A Pseudo code for GA.
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Chapter 12

Sequence Classification Using
Decision Trees

12.1 Introduction

In this chapter we discuss how decision trees can be used for sequence
classifications. The new method we present, Cascaded Regular Expression
Decision Trees (CREDT), induces a cascaded ensemble of decision trees for
classifying sequences patterns. CREDT consists of four main steps: (1)
sequence representation: a domain specific task designed to represent se-
quences as a string of tokens; (2) pattern discovery: the automatic creation
of a regular expression pattern from each pair of sequences; (3) pattern
selection: applying heuristics to select the best patterns for correct classifi-
cation; (4) classifier training: training a cascaded decision tree classifier to
combine several patterns. The following sections describe each of the above
phases.

12.2 Sequence Representation

This step is domain specific and every application might require different
preprocessing. Generally the sequences are represented as a string of to-
kens. Each token may also include attributes that better characterize it.
For instance, in order to discover interesting patterns in complicated man-
ufacturing processes, each product manufacturing data is represented as a
string of tokens, each token representing a different operation activity. If
the makespan factor is unimportant, then the representation is straightfor-
ward. For instance, the production sequence 1-5-9-3-2 is represented as the
string “B 1 5 9 3 2 F”. If the makespan factor is important, then a more
complicated representation is required. For this purpose we first need to
decide what the desirable time granularity is. Time granularity should be

187
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no more than the minimum operation duration in the database.
After deciding what the desirable time granularity is, we can represent

the manufacturing process of each product instance as a string. Each time
bucket is represented as a single letter. We denote by Σ the alphabet of
the manufacturing process. Each letter in Σrepresents the identification of
the operation performed in this time bucket. Idle time is also represented
by a special letter (for instance “ ”). The size of Σ depends on the number
of operations that must be encoded. For instance, the string “B 1 1

3 3 3 F” represents a manufacturing sequence with the operation “1”
being performed during the first two time buckets. Then, during the four
subsequent time buckets, no operations are performed. Three time buckets
then follow in which operation “3” is performed.

In addition to the string we may keep for each token its attributes.
For instance, we may keep the setting parameters of the machine (such as
speed) that participated in the operation “1”.

12.3 Pattern Discovery

The term sequence pattern usually refers to a set of short sequences that
is precisely specified by some formalism. Following much research that is
being carried out now in bioinformatics, we also adopt regular expressions
in order to represent sequence patterns. A pattern is defined as any string
consisting of a letter of the alphabet Σ and the wild-card character ’.’. The
wild-card (also known as the “don’t care” character) denotes a position that
can be occupied by any letter of the alphabet Σ. For instance, the pattern
“B 1 1 . . 3 . 3” can be matched against the following production
strings “B 1 1 3 3 3”, “B 1 1 2 4 3 1 3”, “1 1 7 3 4 4”, etc.
The pattern element “. ∗ ” denotes an arbitrary string of symbols (possibly
of length 0), “.{3,5}” to denote any string of between 3 and 5 characters.

In this research we examined two approaches for obtaining the regular
expressions: the longest common subsequence and the TEIRESIAS algo-
rithm. Here we describe the first approach, in which we compare any pair of
sequences with the same class label. From each pair, we create the longest
regular expression that fits the two sequences. For instance, assume we are
given the following two sequences:

B 1 8 4 2 3 4 F

B 9 1 4 2 7 F
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Table 12.1 illustrates how the longest regular expression can be ex-
tracted from the two strings. Every line in the table refers to a different part
in the sequences. The first column enumerates the subsequence part. The
following two columns present the subsequences. Note that by concatenat-
ing the subsequences, one can obtain the original complete sequence. The
last column presents the generalized regular expression pattern that covers
these subsequences. For instance, in the first line, since both subsequences
contain the character “B” (Begin), the generalized pattern is also “B”. In
the second line, since the first subsequence is empty (null) and the second
subsequence is “9”, the generalized subsequence is the regular expression
“.{0,1}” meaning that “one or no token” generalized these subsequences.
Note that whenever there was an empty subsequence we added a wild card
expression with a minimum length of 0 and a maximum length of the com-
pared subsequence. On the other hand, whenever there were two unequal
subsequences, we added a wild card expression with the minimum length of
the shortest subsequence and the maximum length of the largest sequence.

Table 12.1 Illustration of Longest Common Subsequence Generation

# Sequence 1 Sequence 2 Pattern

1 B B B

2 9 .{0,1}
3 1 1 1

4 8 .{0,1}
5 4 2 4 2 4 2

6 34 7 .{1,2}
7 F F F

By concatenating the expressions that appear in the pattern column,
we can obtain the following regular expression pattern:

B .{0,1} 1 .{0,1} 4 2 . {1,2} F

In order to find the subsequences in Table 12.1, we use the longest com-
mon subsequence algorithm. One way to solve the problem is to convert
it into the longest path problem based on the lattice graph. The nodes in
the upper horizontal line are labeled with the tokens of the first sequence
while the nodes of the first vertical line are labeled with the tokens of the
second sequence. In this graph, all horizontal and vertical edges are pos-
sible. Additionally, diagonal edges in which the target node has the same
horizontal and vertical label, are also available. If the horizontal and verti-
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cal edges have zero length, and the diagonal edges have length of one, then
the longest common subsequence corresponds to the longest path from the
top left corner to the bottom right corner. This graph is acyclic and is fre-
quently solved using dynamic programming. The highlighted path presents
one of the longest paths. Note that the destination node of the highlighted
diagonal edges (B,1,4,2,F) is used in the regular expression, while the hor-
izontal/vertical edges are converted to the wild-card expression.

12.4 Pattern Selection

Obviously there are many patterns that can be created via the LCS (each
pair of sequences with the same class label). In fact, initially too many
patterns are created and it is essential to stay within a manageable number
of patterns. For example, a training set of 100 sequences from class “A” and
50 sequences of class “B” yielded 100*99/2 + 50*49/2=6175 patterns. In
this chapter, we suggest using a two-phase pattern reduction as described
in the following sections. In the first phase, we introduce new patterns that
are created by merging existing patterns. In the second phase we reduce
these sets of patterns using correlation-based feature selection.

12.4.1 Heuristics for Pattern Selection

Many of the generated patterns differ only in the distance between the
tokens. Grouping such patterns by smoothing distances eliminates many
patterns. The proposed simple heuristic for pattern reduction is based on
merging two or more patterns into a single pattern. The merging is based
on the specific tokens used in each pattern while ignoring the wild-cards.
For instance, the “specific token” representation of “B 1 2 .{2,7} 3 F” is
“B 1 2 3 F”. All patterns with the same “specific token” representation
are merged by the smoothing wild-card expressions. This is obtained by
taking the minimum and maximum For example, the patterns “B 1 2 .{2,7}
3 F” and “B 1 2 .{3,9} 3 F” and “B 1 .{1,3} 2 .{3,4} 3 F” which all have
the same “specific token” representation of “B 1 2 3 F” are generalized
using the pattern “B 1 .{0,3} 2 .{2,9} 3 F”. Moreover any two or more
patterns whose “specific token” representations are different in one position
(a Hamming distance of one) are generalized by introducing a wild-card into
that position.
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12.4.2 Correlation based Feature Selection

Feature selection is the process of identifying relevant features in the dataset
and discarding everything else as irrelevant and redundant. For this pur-
pose, each “regular expression” pattern represents a different feature. In
this work we use a non-ranker filter feature selection algorithm. Filtering
means that the selection is performed independently of any learning algo-
rithm. Non-ranker means that the algorithm does not score each pattern
but only determines which pattern is relevant and which is not.

In this work we use the correlation-based feature subset selection (CFS)
as a subset evaluator. CFS evaluates the worth of a subset of attributes by
considering the individual predictive ability of each feature along with the
degree of redundancy between them. Subsets of features that are highly
correlated with the class while having low inter-correlation are preferred.
This approach is useful when there are many correlated patterns (for inst-
ance, when one pattern generalizes another pattern).

The CFS algorithm was executed with best-first forward selection. This
search strategy searches the space of attribute subsets by greedy hill-
climbing augmented with a backtracking facility. It starts with the empty
set of attributes and search forward.

12.5 Classifier Training

We are using a decision tree inducer as the base inducer. Using a decision
tree as a classifier in this case has several advantages. (1) The sequence is
not classified based on a single pattern, but on set of patterns, i.e. this clas-
sifier can be used to indicate that a sequence is classified to the label “A”
only if it matched two patterns and does not match a third pattern. This
is more expressive than the classical approach in which the classification is
based on a single pattern. Moreover, in this way, instead of searching for
complicated regular expressions, we can search for simple regular expres-
sions and “rely” on the decision tree to combine them. In fact, in some
cases, it is possible to express a tree path as a single complicated regular
expression; (2) The hierarchical structure of decision tree enforces an or-
der (priority) in the usage of patterns, i.e. given a new sequence, not all
patterns should be matched in advance but one pattern at a time based on
the specific branch. In this way we inherently obtain a conflict resolution
mechanism; (3) As opposed to other classifiers (such as neural networks)
the meaning of the classifier can be explained.
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12.5.1 Adjustment of Decision Trees

Instead of using the C4.5 algorithm as is, we were required to make some
adjustment to the splitting criterion. In the problem solved here, there are
two types of attributes: the regular expressions (binary attributes indicat-
ing if the expression is matched or not) and the attributes that characterize
the tokens. Note that the characterizing attributes of the tokens become
available only when the corresponding token is matched. For instance, if
the token “A” in the sequence has the attribute “var1” then we can use the
attribute “var1” in a certain decision node only if a regular expression with
the token “A” has appeared in one of its ancestor nodes. This suggests for
consideration other criteria than the information gain ratio, such as:

• Select pattern with the largest support – If the support of a pattern
is relatively high, then there are sufficient training instances to grow a
meaningful sub-tree.
• Select the longest pattern – Longest sequence implies that the di-

mensionality (namely, the number of characterizing attributes) of the
matched training instances is large enough to grow a meaningful sub-
tree.

12.5.2 Cascading Decision Trees

Studying the training corpuses, the classification errors and patterns se-
lected by the classifier, we noticed that it is possible to create a more pow-
erful ensemble structure than the structure obtained from such a general-
purpose ensemble method as Adaboost. More specifically, we noticed that:
(1) training set size might be a limiting issue due to the computational
complexity of the machine learning algorithms used; (2) in the training and
test corpuses there are simple sequences versus compound sequences; and
(3) some of the patterns yield very high precision.

These observations, as well as the improvement achieved using the Ad-
aboost method, triggered the idea of constructing a cascade of classifiers.
The idea is to build a cascade of classifiers. The selection of tree cascades is
due to the fact that in this case we assume the class is binary (positive and
negative): The first cascade includes only simple patterns obtained from
the negative class, ensuring high precision (very few positive sequences will
be classified as negative).

The “errors” of the first cascade “Trained classifier 1”, meaning se-
quences from the negative corpus that were not classified as negative by
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“Trained classifier 1”, are taken as the negative training corpus for the
second cascade classifier (positive corpus remains the same as for the first
cascade). The second cascade is of negative patterns (learned from the
original corpus of negative sequences). The third cascade classifier includes
also positive patterns.

12.6 Application of CREDT in Improving of Information
Retrieval of Medical Narrative Reports

In this section, we illustrate how the CREDT algorithm can be used in a real
world application of information retrieval. Information retrieval from free
text is now an established and well known application with vast popularity
among Internet search engines such as Google. The limitations of näıve
keyword-based information retrieval are also well understood and many
research works are focused around this issue.

We illustrate the CREDT in improving the information retrieval from
medical narratives. Medical narratives present some unique problems that
are not normally encountered in other kinds of texts. When a physician
writes an encounter note, a highly telegraphic form of language may be
used. There are often very few (if any) grammatically proper sentences
and acronyms and abbreviations are frequently used. Many of these abbre-
viations and acronyms are highly idiosyncratic and may not be found in a
general dictionary.

Information retrieval from medical narratives has many applications:
enrollment of patients into clinical trials; detecting adverse events; mod-
ern evidence-based practice; and medical research in general. A typical
application scenario may involve a hospital-based medical investigator re-
ceiving from a pharmaceutical company a patient profile for a planned
clinical trial. The profile includes attributes that cannot be used as is in a
structured query of the hospital information systems. Example of such a
patient profile is: “Male and female, 18 years and older; Female must not
be pregnant; Location of pain must be low back area; Pain must be present
for three months or greater; No surgical intervention in the past 12 months
nor plans for surgical intervention for the low back pain during the duration
of the study”.

Most of the data needed for locating patients meeting the above profile is
stored as electronic medical narratives in the hospital information systems.
The medical investigator retrieves such records by a keyword-based search.
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The keywords primarily include: diagnostic names, symptoms, procedures,
medicine, etc. A useful knowledge source designed for resolving medical
terms is the Unified Medical Language System (UMLS) [Lindbergh and
Humphreys (1993)].

The common use-case when searching in discharge summaries is look-
ing for patients with specific symptom, for example, nausea. The issue
of context is very important. Consider the sentence: “He complained at
admission of headache, nausea, vomiting, and neck soreness” versus “The
patient denies any headache, nausea, vomiting, blurring vision and fever”.
Both sentences will match a näıve keyword-based query containing the term
nausea. We assume that the person initiating the query is looking for pa-
tients with a specific symptom (e.g. nausea). For example, the sentence
“The patient states she had fever and chills two nights prior to admission
with a nonproductive cough”, taken from a discharge summary report is
a positive example for fever and chills diagnoses, while another sentence
from a discharge report: “The patient denied any cough, chest pain, urinary
symptoms or bowel symptoms” is a negative example for cough, chest pain,
urinary symptoms and bowel symptoms diagnoses.

A search for patients with a specific symptom or set of findings might
result in numerous records retrieved. The mere presence of a search term in
the text, however, does not imply that retrieved records are indeed relevant
to the query. Depending upon the various contexts that a term might have,
only a portion of the retrieved records may actually be relevant. Therefore,
in addition to excluding negated concepts, there are additional contexts we
opt to exclude. For example: “The patient as well as her daughter were
given very clear instructions to call or return for any nausea, vomiting,
bleeding, or any unusual symptoms.”; and the sentence: “The patient could
not tolerate the nausea and vomiting associated with Carboplatin”; “She is
married, lives with her husband and admits to drinking alcohol excessively
in the remote past.” ; and more.

To cope with the natural ambiguity that these sentences and the various
contexts suggest, we introduce here a new supervised method for inducing
a sequence-aware (or sequence sensitive) classifier. First we automatically
discover a set of sequence patterns that are described as regular expressions.
Then a classifier is induced to classify instances based on their matching
the discovered set of sequence patterns. We show the advantages of the
new method by applying it to a well-known and well-defined problem in
the medical domain. The challenge is to increase information retrieval
accuracy from the common 60% baseline näıve search. This improvement
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is achieved by identifying the context of the query keyword (e.g. medical
diagnosis such as nausea) being searched.

The issues encountered in dealing with this problem constitute a spe-
cial case of context identification in free text, one of the key research
problems in the field of text mining. We compare the results obtained
using our proposed method to previous works which implement two pri-
mary methodologies: knowledge engineering; and machine learning. The
knowledge engineering approach is based on handcrafted patterns for iden-
tifying the negated context. Such methods yield high accuracy but are
labor-intensive, domain specific and tedious to maintain. The more mod-
ern methods are based on machine learning techniques. The bag-of-words
is considered as one of the prominent machine learning techniques for clas-
sification problems. The negative context detection can be formulated as
a text classification problem and solved using bag-of-words. The negation
problem is closely related to the part-of-speech tagging problem, which is
properly solved by frameworks for labeling sequential data, such as hid-
den Markov model (HMM) and conditional random fields (CRF). In this
work we compare our new method to the above mentioned techniques. Our
new method is much faster than manual knowledge engineering techniques
with matching accuracy. We show that our new method achieves higher
accuracy compared to existing methods.

12.6.1 Related Works

The negation problem in medical reports can be solved in various ways.
First, in addition to existing general purpose text classification methods
that can be used. there are several information extraction methods that
can also be implemented. After discussing these methods, we survey specific
works regarding the negation problem in general and in the medical domain
in particular. Finally, we discuss evaluation measures that can be used for
estimating the quality of the solutions.

12.6.1.1 Text Classification

From a comprehensive survey of the methods used for text categorization
and which describes recent research trends we see that the machine learn-
ing paradigm to automatic classifier construction definitely supersedes the
knowledge-engineering approach. Within the machine learning paradigm,
a classifier is built by learning from a set of previously classified documents.
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The advantages of the machine learning approach are its high degree of ef-
fectiveness, a considerable savings in terms of expert manpower, and dom-
ain independence.

Since texts cannot be directly interpreted by a classifier or by a classifier-
building algorithm, it is necessary to uniformly apply a transformation
procedure to the text corpora in order to map a text dj into a compact
representation of its content. In text categorization (TC) a text dj is usually
represented as a vector of term weights dj = (w1j ,. . . ,w |V |j) where V is the
set of terms (sometimes called features) that occur at least once in at least
one document of Tr, and where 0 ≤ wkj ≤ 1 represents, loosely speaking,
how many term tk contributes to the semantics of document dj . Differences
among approaches are accounted for by (1) different ways to understand
what a term is; (2) different ways to compute term weights. A typical
choice for the first alternative is to identify terms with words. Depending
on whether weights are binary or not, this approach is often called either the
“set of words” or the “bag-of- words” approach to document representation.

The following example demonstrates the bag-of-words representation
applied to our domain. Consider the two sentences: (1) The patient
was therefore admitted to the hospital and started on <MEDICINE> as
treatments for <DIAGNOSIS>; and (2) The patient was ruled in for
<DIAGNOSIS> and started <MEDICINE> for <DIAGNOSIS>.

One of the main drawbacks of the bag-of-words representation is in its
destruction of semantic relations between words; the meaning of word com-
binations is lost. This representation loses the meaning of important terms
such as “ruled in”. This bag-of-words limitation is especially important for
the negation detection.

Another popular choice for text representation is to identify terms with
word sequences of length n. This n-gram vector text representation method
is used to classify text documents. One option is to select the normalized
frequency with which the n-gram occurs in the document as the choice of
2-term weight. Each vector identifies a point in a multidimensional space,
and similar documents are expected to have points close to each other.
Then the dot product between two histogram vectors is used as a measure
of their similarity.

Caropreso et al. (2001) experimented with n-grams for text categoriza-
tion on the Reuters dataset. They define an n-gram as an alphabetically
ordered sequence of n stems of consecutive words in a sentence (after stop
words were removed). The authors use both unigrams (bag-of-words) and
bigrams as document features. They extract the top-scored features using
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various feature selection methods including mutual information. Their re-
sults indicate that in general bigrams can better predict categories than
unigrams.

A regular expression is defined as any string that describes or matches
a set of strings according to certain syntax rules. Regular expressions are
usually used to give a concise description of a set without having to list all
elements. The regular expression consists of a letter of the alphabet and
special characters. For example, the set containing the four strings: hat,
hit, hot and hut can be described by the pattern “h.t” (or alternatively, it
is said that the pattern matches each of the four strings). The wild-card
(“.”) denotes a single position that can be occupied by any letter of the
alphabet. The curly brackets are used to indicate a match between min and
max of the preceding characters. For instance the pattern “without .{0,10}
<diagnosis>” can be matched against the following strings “without <

diagnosis >”, “without any < diagnosis >”, “without serious < diagnosis
>”, etc.

Regular expressions are used by many text editors and utilities to search
and manipulate bodies of text based on certain patterns. Many program-
ming languages support regular expressions for string manipulation. For
example, Perl has a powerful regular expression engine built directly into
their syntax. In our work we use the Java regular expression implementa-
tion (package java.util.regex ).

The bag-of-words and n-gram representations are actually a special case
of the regular expression representation proposed in this work. A regular
expression feature such as “.{0,500} started .{0,500}” is actually equiva-
lent to the word feature started in the bag-of-words representation. The
regular expression feature “.{0,500} ruled in .{0,500}” matches the bigram
representation of the two words phrase ruled in. An additional benefit of
our proposed regular expressions compared to bag-of-words is in handling
compound sentences that include both positive and negative findings. For
example, the sentence: “upon admission showed no <diagnosis 1> but did
show extensive <diagnosis 2> and <diagnosis 3> but there were no masses
noted”. The bag-of-words representation of such sentences is problematic
since the same features apply to both negative and positive contexts and
the algorithm cannot learn to distinguish between them. The regular ex-
pressions representation can represent such structural features using the
distance and presence of additional diagnosis.
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12.6.1.2 Part-of-speech Tagging

Part-of-speech tagging (POS tagging) refers to labeling words in a text as
corresponding to a particular part of speech based on both its definition,
as well as its context—i.e., relationship with adjacent and related words
in the text. POS tagging is hard mainly because some words may have
multiple part of speech tags and the correct tag depends on the context.
POS tags indicate the basic syntactic function of that token, such as noun
or verb, as well as other grammatical information, such as number and
tense. POS tagging is a fundamental preprocessing step for many other
NLP (Natural Language Processing) applications (e.g., syntactic parsing).
Typically, POS tags provide general shallow syntactic information to these
downstream applications.

Machine learning methods have been shown to be more effective in
solving POS tagging than classic NLP methods. POS tagging is closely
related to our problem. In fact, the negation detection problem can be
regarded as a special case of POS tagging – we define a polarity tag (possible
values are Negative and Positive) that is applicable to the <diagnosis>
terms only. The following sections present sequences labeling frameworks
that have been successfully used for POS tagging.

12.6.1.3 Frameworks for Information Extraction

A common information extraction (IE) task is to automatically extract
entities and relationships from semi-structured or free text. For example,
in the medical domain, an IE task is to automatically populate a structured
database from a discharge summary report.

Many works in IE propose learning approaches that automatically pro-
cess free text and overcome the knowledge engineering bottleneck. For
example Califf and Moony (1997) proposed the RAPIER system that in-
duces pattern-match rules from rigidly structured text. Such systems focus
on extracting entities and relationships. However there is no emphasis on
special contexts, such as negation that might totally divert the meaning
of the text. Apparently such cases are rare in the corpora used for eval-
uating the above works (which is not true when dealing with discharge
reports where more than 50% of the findings might actually be negated).
More recent IE works are focused on hidden Markov model (HMM)
techniques.
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12.6.1.4 Frameworks for Labeling Sequential Data

The Hidden Markov model (HMM) is a common machine learning tech-
nique with published applications in sequential pattern recognition tasks.
HMMs were successfully applied to related problems such as: IE, POS tag-
ging and many more. Specifically, HMM was successfully applied to POS
tagging of bio-medical texts. Similarly, we can utilize HMM POS taggers
for solving the negation problem. Applying a HMM POS tagger to the
negation detection problem is not a trivial task since there are many pos-
sible approaches for structuring the HMM. The hidden states are the POS
tags (e.g. noun, verb, adjective, etc.) and the arrows represent the possible
transitions between states.

Conditional random fields (CRFs) is a newer framework for labeling se-
quential data. CRFs define a conditional probability over label sequences
given a certain observation sequence. This relaxes the unwarranted in-
dependence assumptions about the sequences which HMMs make. Like
HMMs, CRFs have been successfully used for part-of-speech tagging. A
comparative study showed that CRFs outperform HMMs in this applica-
tion.

12.6.1.5 Identifying Negative Context in Non-domain Specific
Text (General NLP)

Negation is an active linguistic research topic with roots dating back to Aris-
totle. Today this topic is still being widely studied. Negation is considered
difficult in natural language processing due to the overwhelming complexity
of the form and the function of sentences with negation. Negation is one of
the constants of classical logic and has complex and systematic interaction
with the other logical operators, especially quantifiers and modals.

In English grammar, negation is the process that turns a positive state-
ment (“the patient has <diagnosis>”) into its opposite denial (“the patient
does not have <diagnosis>”). Nouns as well as verbs can be negated with
a negative adjective (“There is no <diagnosis>”); a negative pronoun (no
one, nobody, neither, none, nothing); or a negative adverb (“he never was
<diagnosis>”). It is easy to identify specific negation words such as: not,
neither, and never, as well as for Not -negation, e.g., not, n’t, and No-
negation. However, in many cases, these specific words are not presented,
e.g., deny, fail, and lack. Words in this second category are called inher-
ent negatives, i.e., they have a negative meaning but a positive form. An
additional morphological form of negation is the affixal negation. Prefix
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negations un- and in- , may create negation words unhappy, unwise, and
unfit . Negations can also be created with suffixes such as -less, e.g., life-
less. Another complexity arise from double negation, e.g. the sentence “it
is not unlikely”. The neg-raising phenomenon adds additional complexity,
e.g. sentences such as: “I don’t believe he is ill” or “I don’t think he is ill”.

We could not locate any NLP research on identifying negated concepts
in specific non-domain areas. However, some NLP techniques such as syn-
tactic and semantic processing can be applied to a negation identification
framework, especially part of speech tagging and shallow parsing. These
features can be combined into a machine learning classification scheme for
negation identification. The effectiveness of such NLP techniques very much
depends on the quality of the text, particularly its compliance with gram-
matical rules. The language used in medical narratives, however, is often
grammatically ill-formed. For example, the positive finding cough in the
sentence “the patient reported she was not feeling well due to mild cough”.
Thus NLP techniques that rely on grammatical sentences may not be suf-
ficient for identification of negation in medical narratives.

12.6.1.6 Identifying Negative Context in Medical Narratives

Researchers in medical informatics have suggested methods for automat-
ically extracting information contained in narrative reports for decision
support, guideline implementation, and detection and management of epi-
demics. Some of the researches concentrate on methods for improving in-
formation retrieval from narrative reports. A number of investigators have
tried to cope with the problem of a negative context. These works can be
classified into two research domain categories, which are presented in the
following two sections.

12.6.1.7 Works Based on Knowledge Engineering

The knowledge engineering approach is based on human expert writing rules
or patterns. These rules and patterns are designed to capture syntactic and
semantic features of the free text. The methods used are mostly from the
NLP research field utilizing also deep parsing technologies and sometimes
rule engines. These methods are complex and very expensive to develop
and maintain, useful mostly when the target text is written according to
proper language rules.
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12.6.1.8 Works based on Machine Learning

Many of the recent works in the field of text classification are based on the
machine learning approach. Machine learning has proven effective for text
classification. The advantages are that such methods are much faster to
develop than knowledge engineering. In addition they are more effective
when the text is not written according to proper grammar rules.

12.6.2 Using CREDT for Solving the Negation Problem

We now show how the CREDT algorithm can be used to solve the negation
problem. Section 5.6.1 below explains the complete process of training a
regular expression based classifier from an input of training and test cor-
pora. Sections 5.6.2-12.6.2.8 specifiy in detail each of the steps. Finally,
Section 5.6.6 suggests the concept of cascading several classifiers for im-
proving the performance.

12.6.2.1 The Process Overview

We suggest the following process of training a classifier to predict nega-
tion concepts using regular expressions patterns. The process includes four
steps:

Corpus preparation A domain specific task designed to normalize, gen-
eralize and tag the free text so that it can be further processed.

Regular expression patterns learning The automatic creation of a
regular expression patterns from the training set.

Patterns selection Applying heuristics and features selection techniques
to select the best patterns for correct classification of the concept.

Classifier training Training a decision tree classifier.

The following sections describe each of the above steps.

12.6.2.2 Step 1: Corpus Preparation

The objective of the corpus preparation phase is to transform the input
discharge summaries data into a usable corpus for the training and test
phases. The following sections describe each sub-step.
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12.6.2.3 Step 1.1: Tagging

In the first step we parse all the discharge summaries. All known med-
ical terms are tagged using a tagging procedure presented in [Rokach et
al. (2004), ]. Consider for example the following text:

We use the UMLS metathesaurus, for tagging the sentence, i.e. replac-
ing medical terms with their concept type. For example, when the parser
reaches the term coronary it queries the UMLS for terms starting with
“coronary*”. The result set includes several terms starting with coronary.
The parser then uses a sliding window in order to match the longest pos-
sible UMLS term to the given sentence. The UMLS terms relevant for the
above sentence are listed in Table 12.2.

Table 12.2 Tagging using the UMLS

ID Term Type CUI (concept unique
identifier)

1 coronary artery by-
pass graft

Procedure 10010055

2 coronary artery dis-
ease

Diagnosis 10010054

3 hypertension Diagnosis 10020538

4 diabetes mellitus Diagnosis 10011849

5 kidney stones Diagnosis 10022650

Since we are only interested in the generalized form of the sentence (the
specific diagnosis or procedure does not matter), the output text following
the tagging process takes the following form:

12.6.2.4 Step 1.2: Sentence Boundaries

Physicians are trained to convey the salient features of a case concisely and
unambiguously as the cost of miscommunication can be very high. Thus
it is assumed that negations in dictated medical narrative are unlikely to
cross sentence boundaries, and are also likely to be simple in structure.

An additional processing step includes breaking discharge summaries
documents into sentences using a sentence boundary identifier as suggested
by [Averbuch et al. (2005)]. The sentence boundary is identified by search-
ing for terminating signs such as {“.”, “?”, “!”}. This approach is not
sufficient since periods and other signs are frequently appear inside sen-
tences (for instance: “Patient was discharged on Lopressor 25 milligrams
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p.o. b.i.d.1”. We detect such exceptions using regular expressions (an ex-
pression that describes a set of strings) to exclude expressions that might
mistakenly be considered end of sentence (Table 12.3).

Table 12.3 Regular expressions to exclude sentence end

(b|t|q)\.i\.d\.? p\.o\.? \.([0-9]+) cc\.
p\.r\.n q\.d\.? \.of \.,and

q\.h\.s mg\. (Dr\.)(\s?)(\w+) \sq\.

12.6.2.5 Step 1.3: Manual Labeling

This step refers to the creation of the training corpus. Physicians should
review each document and label each medical term, indicating whether
it appears in positive or negative context. Since most sentences include
more than one diagnosis. it is necessary to tag each of them during the
manual tagging process. Consider for instance the compound sentence:
“She denied shortness of breath, but did have fever”. In this case “shortness
of breath” is negative while “fever” is positive. Thus, this sentence will be
represented in the dataset as two different instances – one for each diagnosis
term. Since each instance has one label (positive or negative), each has
exactly one anchor diagnosis term to which the label refers. This anchor
term is tagged as “<DIAGNOSIS>” while any other diagnosis terms in
the sentence will be denoted as “<DIAG>”. Note that we will be able
to obtain different patterns from the same sentence. For instance, in the
example, the pattern “.* denied <DIAGNOSIS> .*” can be learned for
identifying negative context, and the pattern “.* denied <DIAG> but .*
<DIAGNOSIS>” can be learned for identifying positive context.

12.6.2.6 Step 2: Patterns Creation

For the reasons explained below, instead of using a single regular expression
representation for the entire sentence, we use two regular expressions: one
for the string that precedes the targeted medical term (the seed) and one
for the string that follows it. This split may help to resolve some of the
problems that arise in compound sentences that include both positive and
negative contexts in the same sentence. Recall the example “The patient
states she had fever, but denies any chest pain or shortness of breath”.
In this case, the appearance of the verb “denies” after the term “fever”

1From Latin: oral administration two times daily
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indicates that the term “fever” is left in positive context. The appro-
priate regular expression will be in this case as follows: “.{0,200}denies
any.{0,200}<DIAGNOSIS>”, where the distance 200 is arbitrary deter-
mined per the expected sentence length in the domain.

To learn regular expressions, we have adapted two different algorithms
to our task and compared them . The first algorithm, LCS, is commonly
used to compare characters in a word. The second algorithm, Teiresias, was
designed for discovering motifs in biological sequences. We describe how
we adapted these algorithms to the task of learning regular expressions for
negation patterns below.

Learning regular expression patterns using longest common
subsequence algorithm

The basis for discovering a regular expression is a method that compares
two texts with the same context and incorporates the same concept types
(i.e. diagnosis, medication, procedure, etc.). By employing the longest
common subsequence (LCS) algorithm [Myers (1986)] on each part of the
sentence (before the targeted term and after the targeted term) a regular
expression that fits these two sentences is created. The LCS employs a
brute force policy: given a sequence X, determine all possible subsequences
of X, and check to see if each subsequence was a subsequence of Y, keeping
track of the longest subsequence found. For instance, assume we are given
the following two sentences:

The patient was therefore admitted to the hospital and
started on <MEDICINE> as treatments for <DIAGNOSIS>.

The patient was ruled in for <DIAG> and started <MEDICINE>
for <DIAGNOSIS>.

We execute the LCS algorithm on the two normalized sentences as pre-
sented in Table 12.4.

Note that the LCS algorithm was revised to compare tokens as opposed
to comparing characters in its classical implementation. It should also be
noted that whenever there was only insertion (or only deletion) we added
a wild card string with a minimum length of 0 and a maximum length
of the inserted string (including the leading and trailing spaces). On the
other hand, whenever there was simultaneously insertion and deletion, we
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Table 12.4 Longest Common Subsequence Generation for Medical Text

Sentence 1 Sentence 2 Pattern

The patient was The patient was The patient was

therefore admitted to
the hospital

.{24,35}
ruled in for <DIAG>

and started and started and started

on .{0,4}
<MEDICINE> <MEDICINE> <MEDICINE>

as treatments .{0,15}
for <DIAGNOSIS> for <DIAGNOSIS> for <DIAGNOSIS>

added a wild card string with the minimum length of the shortest string
and maximum length of the largest string (without leading and trailing
spaces because they are part of the common substring).

As a result of running the LCS algorithm we obtain the following pat-
tern. This pattern can now be used to classify concept of type medication
appearing in positive contexts.

The patient was .{24,35} and started .{0,4}<MEDICINE>.{0,15}
for <DIAGNOSIS>

Learning regular expression patterns using Teiresias algorithm
The Teiresias algorithm was designed to discover motifs in biological

sequences, an important research problem [Rigoutsos and Floratos (1998)].
The method is combinatorial in nature and able to produce all patterns
that appear in at least a (user-defined) minimum number of sequences,
yet it manages to be very efficient by avoiding the enumeration of the
entire pattern space. Furthermore, the reported patterns are maximal: any
reported pattern cannot be made more specific and still keep on appearing
at the exact same positions within the input sequences.

Teiresias searches for patterns which satisfy certain density constraints,
limiting the number of wild-cards occurring in any stretch of pattern. More
specifically, Teiresias looks for maximal <L,W> patterns with the support
of at least K (i.e. in the corpus there are at least K distinct sequences of
that match this pattern). A pattern P is called <L,W> pattern if every
sub pattern of P with length of at least W words (combination of specific
words and “.” wild-cards) contains at least L specific words.

For example, given the following corpus of six negative sentences:



November 7, 2007 13:10 WSPC/Book Trim Size for 9in x 6in DataMining

206 Data Mining with Decision Trees: Theory and Applications

no further <diagnosis> was noted

no history of <diagnosis>

no intraoperative or immediate <diagnosis> were noted

no other <diagnosis>

past medical history no other <diagnosis>

patient had no further episodes of <diagnosis>

The Teiresias program (L=K=2, W=5) discovers six recurring patterns
shown in the following file:

2 2 no other <diagnosis>

2 2 no further

2 2 of <diagnosis>

3 3 no . <diagnosis>

2 2 <diagnosis> . noted

2 2 no . . . <diagnosis>

The first two columns represent the support of the pattern. The dot
represents a missing word. Note that the program yields also patterns that
do not include the <diagnosis> seed. These patterns are not useful for
our purpose and are filtered out. Next we transform the Teiresias patterns
to regular expression patterns by replacing each dot (missing word) with
a regular expression such as .{0,L}, where L is calculated by counting the
number of dots and multiplying by the average word length (8 characters
as per our corpus).

The resulting regular expression patterns are presented in the following
example:

no other <diagnosis>

of <diagnosis>

no .{0,8} <diagnosis>

<diagnosis> .{0,8} noted

no . {0,24} <diagnosis>

12.6.2.7 Step 3: Patterns Selection

Obviously there are many patterns that can be created via the LCS (each
pair of sentences with the same concept type and context). In fact, initially
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too many patterns are created and it is essential to keep a manageable
number of patterns. For example, a training set of 140 negative sentences
and 140 positive sentences yielded 2*(140*139/2)=19,460 patterns.

Many of the generated patterns differ only in the distance of impor-
tant keywords from the seed concept. Grouping such patterns by smooth-
ing distances eliminates many patterns. For example, the patterns “had
no.{12,27}<diagnosis>” and “had no.{17,32}<diagnosis>” are general-
ized using the pattern “had no.{10,40}<diagnosis>”. Trivial patterns such
as “a.{70,100} <diagnosis>” are omitted. For example from the original
19,460 patterns, 17,235 were identified as redundant and trivial. After
eliminating these patterns, only 2,225 patterns are remained.

Feature selection is the process of identifying relevant features in the
dataset and discarding everything else as irrelevant and redundant. For this
purpose each “regular expression” pattern represents a different feature.

We use a non-ranker filter feature selection algorithm. Filtering means
that the selection is performed independently of any learning algorithm.
Non-ranker means that the algorithm does not score each pattern but only
indicates which pattern is relevant and which is not. The rows are train-
ing sentences (negative and positive); the first K columns are the regular
expression patterns; and the last column is the target class (negative / pos-
itive). The cell value is 1 if the regular expression matches the sentence,
otherwise it is 0. The matrix described above is the input to the features
selection algorithm.

In this work we use the correlation-based feature subset selection (CFS)
as a subset evaluator. CFS evaluates the worth of a subset of attributes
by considering the individual predictive ability of each feature along with
the degree of redundancy among them. Subsets of features that are highly
correlated with the class while having low inter-correlation are preferred.
This approach is suitable to this case, because there are many correlated
patterns (for instance, when one pattern generalized another pattern). For
example the 2,225 remaining patterns create a dataset of 280 instances
with 2,225 input binary attributes (0 if the pattern does not match the
sentence; 1 if pattern matches sentence) and target attribute that represent
the concept classification (“Positive” or “Negative”). The filter further
reduced the set into 35 ‘relevant’ patterns.
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12.6.2.8 Step 4: Classifier Training

The filtered matrix, together with the manual classification of each
concept, is fed into a decision tree induction algorithm which cre-
ates a classification decision tree. An illustrative example of deci-
sion tree generated is presented in Figure 12.1. It describes a classi-
fication decision path where pattern “.{0,200}have.{0,50}<diagnosis>”,
learned from positive examples, indicates a positive context with prob-
ability P5 in case the sentence does not match the three (neg-
ative) patterns: .“{0,200}without.{0,10}<diagnosis>”; “.{0,200}rule
out.{0,10}<diagnosis>”; “.{0,200}had no.{0,10}<diagnosis>” (with
probabilities P1, P2, and P3 for negative) but matches the negative pat-
tern “.{0,200}no.{0,50}<diagnosis>”. Here we denote “negative pattern”
as a pattern learned from negative context examples. This demonstrates
the power of decision based on matching a sentence with multiple regular
expressions.

.{0,200}no.{0,50}<diagnosis> .{0,200}have.{0,50}<diagnosis> 
Match

Match No Match

Positive w/p P4 Positive w/p P5 

Negative w/p P6

.{0,200}had no.{0,50}<diagnosis> Match
Negative w/p P3 

.{0,200}rule out.{0,50}<diagnosis> Match
Negative w/p P2 

.{0,200}without.{0,50}<diagnosis> Match
Negative w/p P1 

No Match

No Match

No Match

No Match

Fig. 12.1 Example decision tree.
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12.6.2.9 Cascade of Three Classifiers

It is well known that the classification accuracy of a single decision tree
can be significantly improved by growing an ensemble of trees and letting
them vote for the most popular class. Analyzing the problem domain, we
brought up the hypothesis that it is possible to create a more powerful
ensemble structure than the structure obtained from such general purpose
ensembles method as Adaboost. Specifically, we noticed that: (1) training
set size is a limiting issue due to the computational complexity of the ma-
chine learning algorithms used; (2) in the corpus, there are simple sentences
versus compound sentences or instructions; (3) Some of the patterns yield
very high precision. This is obvious since for some of the negation terms
attached (anchored) to the seed, mean that the seed is negated. For exam-
ple, in a sentence such as, “. . . denied nausea . . . ” the nausea is negated
with near 100% probability. Thus, it makes sense to train a simple clas-
sifier using only such (anchored) patterns, using it to identify the simple
instances with very high precision. Then, only instances not classified as
negative by the first cascade are used to train a second classifier.

These observations triggered the idea of constructing a cascade of clas-
sifiers. The idea is to build a cascade of classifiers. The selection of tree
cascades is due to the problem characteristics: the first cascade consists of
anchored patterns; the second cascade consists of negative patterns (learned
from negative sentences) and the third cascade classifier also includes pos-
itive patterns.

The first cascade includes only anchored patterns, ensuring high preci-
sion (very few positive sentences will be classified as negative). Anchored
patterns are patterns where the word is anchored (no separating words)
to the seed. For example, the following anchored patterns form the first
cascade classifier:

no <diagnosis>

denied <diagnosis>

denies <diagnosis>

not <diagnosis>

negative for <diagnosis>

without <diagnosis>

ruled out <diagnosis>

The training set of negated instances for the second cascade comprises
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negation patterns that failed to classify as negative by the first cascade
“Trained classifier 1”. The training set of positive instances for the first
cascade is used as is in the second cascade. In the third cascade we learn
patterns from the negative and positive corpora, taking only negative inst-
ances which failed to classify as negative by the first and second cascades.
The third cascade classifier includes also positive patterns (patterns learned
from the positive corpus). In that sense, these patterns are different from
the previous works that rely only on negation patterns.

Figure 12.2 demonstrates how the cascaded classifiers perform the clas-
sification of three unseen sentences. The first sentence “the patient denied
<diagnosis>” is matched by an anchored pattern “denied <diagnosis>”
and is classified negative by “Trained classifier 1”. The second sentence
“the patient did not experience recent <diagnosis>” does not match with
any of the “Trained classifier 1” anchored patterns, therefore it is fed into
“Trained classifier 2” for further classification as negative due to the pat-
terns comprising “Trained classifier 2”. The third sentence is classified as
negative by the “Trained classifier 3”. The last sentence is not classified as
negative by all three cascades and is therefore classified as positive.

An experimental study that was performed provides strong evidence
that in the negation problem, regular expressions are better than bag-of-
words, in both accuracy and compactness (i.e. obtaining smaller models).
In fact, regular expressions can be considered to be a generalization of the
bag-of-words representation or any n-gram representation.

Using a decision tree as a base classifier in this case has several ad-
vantages. (1) The sentence is not classified according to a single regular
expression, but is classified based on a set of regular expressions, i.e. this
classifier can be used to indicate that a sentence is classified to the label
“positive” only if it matched two regular expressions and does not match a
third regular expression. This is more expressive than the classical approach
in which the classification is based on a single regular expression. More-
over, in this way, instead of searching for complicated regular expressions,
we can search for simple regular expressions and “rely” on the decision tree
to combine them. In some cases, it is possible to express a tree path com-
prised of several simple regular expressions as a single complicated regular
expression; (2) The hierarchical structure of a decision tree enforces an or-
der (priority) in the usage of regular expressions, i.e. given a new sentence,
not all regular expressions should be matched in advance but one regular
expression at a time based on the specific branch traversing. In this way,
the desired property of lexical analysis known as un-ambiguity (also known
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Trained

Classifier
2

Trained
Classifier

2

Trained

Classifier
1

1. The patient denied <diagnosis>

2. The patient did not experience 

recent <diagnosis>

3. The patient was given 

instructions to call in case of 

<diagnosis>

Negative

Negative

Negative

4. She experienced <diagnosis> Classifies Sentence 1 as 
negative, all other 

sentences are passed to 

the next classifier

Classifies Sentence 2 as 

negative, Sentences 3 and 

4 are passed on.

Classifies Sentence 3 as 

negative, Sentence 4 as 

positive.

Fig. 12.2 Cascade classifier classification examples.

as conflict resolution in Expert Systems) which is usually resolved by the
longest match and rule priority is inherently resolved here; (3) As opposed
to other classifiers (such as neural networks) the decision tree is a white
box model whose meaning can be easily explained.

The experimental study strengthens the well-known fact that it is possi-
ble to boost the predictive performance by combining several decision trees.
Nevertheless, an important drawback of general-purpose ensemble methods,
such as AdaBoost, is that they are difficult to understand. The resulting
ensemble is considered to be less comprehensible since the user is required to
capture several decision trees instead of a single decision tree. In addition,
the ensemble members might even contradict one another. On the other
hand, in the proposed cascaded design, the classifiers do not compete with
each other and do not contradict one another, but they are complementing
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each other. Specifically, we either make a decision in the current cascade
or postpone the decision to the next cascade. In any case the decision is
made by a single classifier and not by some voting mechanism. Moreover,
the cascade increases precision by adding additional layers of decision tree
classifiers and easily regulates the classifier complexity / precision tradeoff.
In addition, the cascaded design needs only three classifiers, as opposed to
much larger ensemble size in the case of AdaBoost.

Beside the fact that the proposed method has provided a higher accu-
racy than the HMM and the CRF classifiers, it can be easily transformed
into a maintainable source code. Modern programming languages, such as
Java or C#, or script languages such as Perl and Python include inherent
support for regular expressions. Any programmer can manipulate these
models quite easily as opposed to HMM or CRF models which requires
that programmers be familiar with the notion of probability.

As indicated above, feature selection can be used to improve predic-
tive power. The number of regular expressions (pre-feature selection) is
usually greater than linear in the number of instances in the training set.
For instance, if the paired LCS approach is used, then for every pair in
the training set we obtain a regular expression. At first glance, it seems
redundant to use feature selection as a preprocess phase for the training
phase. Decision trees inducers, as opposed to other induction methods,
incorporate in their training phase a built-in feature selection mechanism.
Still, it is well known that correlated and irrelevant features may degrade
the performance of decision trees inducers. Moreover, in the way we cre-
ate regular expressions, there are many features that are correlative. This
phenomenon can be explained by the fact that feature selection in deci-
sion trees is performed on one attribute at a time and only at the root
node over the entire decision space. In subsequent nodes, the training set
is divided into several sub-sets and the features are selected according to
their local predictive power. Geometrically, it means that the selection of
features is done in orthogonal decision subspaces, which do not necessarily
represent the distribution of the entire instance space. It has been shown
that the predictive performance of decision trees could be improved with an
appropriate feature pre-selection phase. Moreover using feature selection
can reduce the number of nodes in the tree, making it more compact.

Another way to avoid the “curse of dimensionality” in this case, is to
merge several expressions into one expression by generalizing them. How-
ever, this increases the risk of over generalization. This is the typical
sensitivity-specificity problem. A criterion for merging regular expressions
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can be based on existing computational learning theoretical bounds (such
as the VC dimension) that trade training accuracy with model complexity.
Merging regular expressions reduces a model’s complexity but at the same
time it might also reduce training accuracy (due to generalization). The
merging can be performed in any stage: pre-training, like feature selection,
during the actual training of decision trees (as an extension to the splitting
criterion), or post growing as an extension to the pruning phase.

Regular expressions seem quite useful for the examined task but they
do have limitations. For instance, because they do not use syntax but only
words and character length gaps, they can make mistakes due to, for ex-
ample, a training set that only showed one adjective modifying a negated
noun (e.g., no persistent cough) but a test set that has multiple adjectives
intervening between the negation phrase and the negated concept. More-
over, in order that a negative modifier will be included in the model, it
should be repeated at least twice in two different instances in the training
set. This is because the regular expressions are created by comparing two
strings and identifying the common substring. If the modifier appears only
once, then it will never be included in any of the regular expressions.
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