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Preface

Data mining is an automated process of discovering knowledge 
from databases. There are various kinds of data mining methods aiming to 
search for different kinds of knowledge. Genetic Programming (GP) and 
Inductive Logic Programming (ILP) are two of the approaches for data 
mining. GP is a method of automatically inducing S-expressions in Lisp to 
perform specified tasks while ILP involves the construction of logic 
programs from examples and background knowledge. 

Since their formalisms are very different, these two approaches 
cannot be integrated easily although their properties and goals are similar. 
If they can be combined in a common framework, then their techniques 
and theories can be shared and their problem solving power can be 
enhanced.

This book describes a framework, called GGP (Generic Genetic 
Programming), that integrates GP and ILP based on a formalism of logic 
grammars. A system in this framework called LOGENPRO (The LOgic 
grammar based GENetic PROgramming system) is developed. This 
system has been tested on many problems in knowledge discovery from 
databases. These experiments demonstrate that the proposed framework is 
powerful, flexible, and general. 

Experiments are performed to illustrate that knowledge in 
different kinds of knowledge representation such as logic programs and 
production rules can be induced by LOGENPRO. The problem of 
inducing knowledge can be formulated as a search for a highly fit piece of 
knowledge in the space of all possible pieces of knowledge. We show that 
the search space can be specified declaratively by the user in the 
framework. Moreover, the formalism is powerful enough to represent 
context-sensitive information and domain-dependent knowledge. This 
knowledge can be used to accelerate the learning speed and/or improve 
the quality of the knowledge induced. 

Automatic discovery of problem representation primitives is one 
of the most challenging research areas in GP. We have illustrated how to 
apply LOGENPRO to emulate Automatically Defined Functions (ADFs) 
proposed by Koza (1992; 1994). We have demonstrated that, by 
employing various knowledge about the problem being solved, 
LOGENPRO can find a solution much faster than ADFs and the 
computation required by LOGENPRO is much smaller than that of ADFs. 



xiv Preface

LOGENPRO can emulate the effects of Strongly Type Genetic 
Programming (STGP) and ADFs simultaneously and effortlessly 
(Montana 1995). 

Data mining systems induce knowledge from datasets which are 
huge, noisy (incorrect), incomplete, inconsistent, imprecise (fuzzy), and 
uncertain. The problem is that existing systems use a limiting attribute-
value language for representing the training examples and induced 
knowledge. Furthermore, some important patterns are ignored because 
they are statistically insignificant. LOGENPRO is employed to induce 
knowledge from noisy training examples, The knowledge is represented in 
first-order logic programs. The performance of LOGENPRO is evaluated 
on the chess endgame domain. Detailed comparisons with other ILP 
systems are performed. It is found that LOGENPRO outperforms these 
ILP systems significantly at most noise levels. This experiment indicates 
that the Darwinian principle of natural selection is a plausible noise 
handling method which can avoid overfitting and identify important 
patterns at the same time. 

We apply the system to two real-life medical databases for limb 
fracture and scoliosis. The knowledge discovered provides insights to the 
clinicians and allows them to have a better understanding of these two 
medical domains. 



Chapter 1 

INTRODUCTION

Databases are valuable treasures. A database not only stores and 
provides data but also contains hidden precious knowledge, which can be 
very important. It can be a new law in science, a new insight for curing a 
disease or a new market trend that can make millions of dollars. 
Conventionally, the data are analyzed manually. Many hidden and 
potentially useful relationships may not be recognized by the analyst. 
Nowadays, many organizations are capable of generating and collecting a 
huge amount of data. The size of data available now is beyond the 
capability of our mind to analyze. It requires the power of computers to 
handle it. Data mining, or knowledge discovery in database, is the 
automated process of sifting the data to get the gold buried in the 
database.

In this chapter, section 1.1 is a brief introduction of the definition 
and the objectives of data mining. Section 1.2 states the research 
motivations of the topics of this book. Section 1.3 lists the contributions of 
this book. The organization of this book is sketched in section 1.4. 

1.1. Data Mining 

The two terms Data Mining and Knowledge Discovery in 
Database have similar meanings. Knowledge Discovery in Database 
(KDD) can be defined as the nontrivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns in data (Fayyad 
et al. 1996). The data are records in a database. The knowledge discovered 
from the KDD process should not be obtainable from straightforward 
computation. The knowledge should be novel and beneficial to the user. It 
should be able to be applied to new data with some degree of certainty. 
Finally the knowledge should be human understandable. On the other 
hand, the term Data Mining is commonly used to denote the finding of 
useful patterns in data. It consists of applying data analysis and discovery 
algorithms to produce patterns or models from the data. 
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KDD is an interactive and iterative process with several steps. In
Fayyad et al. (1996), KDD is divided into several steps. Data Mining can
be considered as one of the steps in the KDD process. It is the core of the 
KDD process, and thus the two terms are often used interchangeably. The 
whole process of KDD consists of five steps:

1. Selection extracts relevant data sets from the database. 

2. Preprocessing removes the noise and handles missing data
fields.

3. Transformation (or data reduction) is performed to reduce the
number of variables under consideration.

4. A suitable data mining algorithm of the selected model is
employed on the prepared data. 

5. Finally, the result of data mining is interpreted and evaluated.

If the discovered knowledge is not satisfactory, these steps will be
iterated. The discovered knowledge can then be applied in decision
making.

Different data mining algorithms aim to find different kinds of
knowledge. Chen et al. (1996) grouped the techniques for knowledge
discovery into six categories. 

1. Mining of association rules finds rules in the form of “A1 ^ . . .
^ Am B1 ^ . . . ^ Bn”, where Ai and Bj are attributes values. 
This association rule tries to capture the association between
the attributes. The rule means that if A 1 and . . . and Am appear
in a record, then B1 and . . . and Bn will usually appear. 

2. Data generalization and summarization summarize the 
general characteristics of a group of target class and present 
the data in a high-level view. 

3. Classification formulates a classification model based on the 
data. The model can be used to classify an unseen data item 
into one of the predefined classes based on the attribute 
values.

4. Data clustering identifies a finite set of clusters or categories 
to describe the data. Similar data items are grouped into a 
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cluster such that the interclass similarity is minimized and the 
intraclass similarity is maximized. The common
characteristics of the cluster are analyzed and presented.

5. Pattern based similarity search tries to search for a pattern in
temporal or spatial-temporal data, such as financial databases 
or multimedia databases. 

6, Mining path traversal patterns tries to capture user access 
patterns in an information providing system, such as World 
Wide Web. 

Machine learning (Michalski et al. 1983) and data mining share a 
similar objective. Machine learning learns a computer model from a set of 
training examples. Many machine learning algorithms can be applied to 
databases. Rather than learning on a set of instances, machine learning is 
performed on data in a file or records from a database (Frawley et al. 
1991). However, databases are designed to meet the needs of real world 
applications. They are often dynamic, incomplete, noisy and much larger 
than typical machine learning data sets. These issues cause difficulties in 
direct application of machine learning methods. Some of the data mining 
and knowledge discovery techniques related to this book are covered in 
chapter 2. 

1.2. Motivation 

Data mining has recently become a popular research topic. The 
increasing use of computers result in an explosion of information. These 
data can be best used if the knowledge hidden can be uncovered. Thus 
there is a need for a way to automatically discover knowledge from data. 
The research in this area can be useful for a lot of real world problems. 
For example, the medical domain is a major area for applying data 
mining. With the computerization in hospitals, a huge amount of data has 
been collected. It is beneficial if these data can be analyzed automatically. 

Most data mining techniques employ search methods to find 
novel, useful, and interesting knowledge. Search methods in Artificial 
Intelligence can be classified into weak and strong methods. Weak 
methods encode search strategies that are task independent and 
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consequently less efficient. Strong methods are rich in task-specific
knowledge that is placed explicitly into the search mechanism by 
programmers or knowledge engineers. Strong methods tend to be 
narrowly focused but fairly efficient in their abilities to identify domain-
specific solutions. Strong methods often use one or more weak methods 
working underneath the task-specific knowledge. Since the knowledge to 
solve the problem is usually represented explicitly within the problem 
solver's knowledge base as search strategies and heuristics, there is a 
direct relation between the quality of knowledge and the performances of 
strong methods (Angeline 1993; 1994). 

Different strong methods have been introduced to guide the search 
for the desired programs. However, these strong methods may not always 
work because they may be trapped in local maxima. In order to overcome 
this problem, weak methods or backtracking can be invoked if the systems 
find that they encounter troubles in the process of searching for 
satisfactory solutions. The problem is that these approaches are very 
inefficient.

The alternatives are evolutionary algorithms, a kind of weak 
methods, which conducts parallel searches. Evolutionary algorithms 
perform both exploitation of the most promising solutions and exploration 
of the search space. It is featured to tackle hard search problems and thus 
it is applicable to data mining. Although there are a lot of researches on 
evolutionary algorithms, there is not much study of representing domain-
specific knowledge for evolutionary algorithms to produce evolutionary 
strong methods for the problems of data mining. 

Moreover, existing data mining systems are limited by the 
knowledge representation in which the induced knowledge is expressed. 
For example, Genetic Programming (GP) systems can only induce 
knowledge represented as S-expressions in Lisp (Koza 1992; 1994). 
Inductive Logic Programming (ILP) systems can only produce logic 
programs (Muggletion 1992). Since the formalisms of these two 
approaches are so different, these two approaches cannot be integrated 
easily although their properties and goals are similar. If they can be 
combined in a common framework, then many of the techniques and 
theories obtained in one approach can be applied in the other one. The 
combination can greatly enhance the overall problem solving power and 
the information exchange between these fields. 

These observations lead us to propose and develop a framework 
combining GP and ILP that employs evolutionary algorithms to induce 
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programs. The framework is driven by logic grammars which are 
powerful enough to represent context-sensitive information and domain-
specific knowledge that can accelerate the learning of programs. It is also 
very flexible and knowledge in various knowledge representations such as 
production rules, decision trees, Lisp, and Prolog can be induced. 

1.3. Contributions of the Book 

The contributions of the research are listed here in the order that 
they appear in the book: 

We propose a novel, flexible, and general framework called
Generic Genetic Programming (GGP), which is based on a 
formalism of logic grammars. A system in this framework 
called LOGENPRO (The LOgic grammar based GENetic 
PROgramming system) is developed. It is a novel system 
developed to combine the implicitly parallel search power of 
GP and the knowledge representation power of first-order
logic. It takes the advantages of existing ILP and GP systems 
while avoids their disadvantages. It is found that knowledge 
in different representations can be expressed as derivation 
trees. The framework facilitates the generation of the initial 
population of individuals and the operations of various
genetic operators such as crossover and mutation. We 
introduce two effective and efficient genetic operators which 
guarantee only valid offspring are produced. . We have demonstrated that LOGENPRO can emulate
traditional GP (Koza 1992) easily. Traditional GP has a 
limitation that all the variables, constants, arguments for 
functions, and values returned by functions must be of the 
same data type. This limitation leads to the difficulty of 
inducing even some rather simple and straightforward 
functional programs. It is found that knowledge of data type 
can be represented easily in LOGENPRO to alleviate the 
above problem. An experiment has been performed to show 
that LOGENPRO can find a solution much faster than GP and 
the computation required by LOGENPRO is much smaller 
than that of GP. Another advantage of LOGENPRO is that it 
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can emulate the effect of Strongly Type Genetic Programming 
(STGP) effortlessly (Montana 1995). 

Automatic discovery of problem representation primitives is 
one of the most challenging research areas in GP. We have 
illustrated how to apply LOGENPRO to emulate 
Automatically Defined Functions (ADFs) proposed by Koza. 
ADFs is one of the approaches that have been proposed to 
acquire problem representation primitives automatically 
(Koza 1992; 1994). We have performed an experiment to 
demonstrate that, by employing various knowledge about the 
problem being solved, LOGENPRO can find a solution much 
faster than ADFs and the computation required by 
LOGENPRO is much smaller than that of ADFs. This 
experiment also shows that LOGENPRO can emulate the 
effects of STGP and ADFs simultaneously and effortlessly. . Knowledge discovery systems induce knowledge from 
datasets which are frequently noisy (incorrect), incomplete, 
inconsistent, imprecise (fuzzy) and uncertain (Leung and 
Wong 1991a; 1991b; 1991c). We have employed 
LOGENPRO to combine evolutionary algorithms and a 
variation of FOIL, BEAM-FOIL, in learning logic programs 
from noisy datasets. Detailed comparisons between 
LOGENPRO and other ILP systems have been conducted 
using the chess endgame problem. It is found that 
LOGENPRO outperforms these ILP systems significantly at 
most noise levels. 

An approach for rule learning has been developed. This 
approach uses LOGENPRO as the learning algorithm. We 
have designed a suitable grammar to represent rules, and we 
have investigated how the grammar can be modified in order 
to learn rules with different formats. New techniques have 
been employed in LOGENPRO to facilitate the learning: 
seeds are used to generate better rules, and the operator 
‘dropping condition’ is used to generalize rules. The 
evaluation function is designed to measure both the accuracy 
and significance of the rule, so that interesting rules can be 
learned.

The technique token competition has been employed to learn 
multiple rules simultaneously. This technique effectively 
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maintains groups of individuals in the population, with 
different groups evolving different rules. .We have applied the data mining system to two real-life
medical databases. We have consulted domain experts to 
understand the domains, so as to pre-process the data and 
construuct suitable grammars for rule learning. The learning 
results have been fed back to the domain experts. Interesting 
knowledge are discovered, which can help clinicians to get a 
deeper understanding of the domains. 

1.4. Outline of the Book 

Chapter 2 is an overview on the different approaches of data 
mining related to this book. The approaches are grouped into decision tree 
approach, classification rule learning, association rule mining, statistical 
approach and Bayesian network learning. Representative algorithms in 
each group will be introduced. 

In chapter 3, we will first introduce a class of weak methods 
called evolutionary algorithms. Subsequently, four kinds of these 
algorithms, namely, Genetic Algorithms (GAs), Genetic Programming 
(GP), Evolution Strategies (ES), and Evolutionary Programming (EP), 
will be discussed in turn. 

We will describe another approach of data mining, Inductive 
Logic Programming (ILP), that investigates the construction of logic 
programs from training examples and background knowledge in chapter 4. 
A brief introduction to inductive concept learning will be presented first. 
Then, two approaches of the ILP problem will be discussed followed by 
an introduction to the techniques and the methods of ILP. 

A novel, flexible and, general framework, called GGP (Generic 
Genetic Programming), that can combine GP and ILP will be described in 
chapter 5. A high-level description of LOGENPRO (The LOgic grammar 
based GENetic PROgramming system), a system of the framework, will 
be presented. We will also discuss the representation method of 
individuals, the crossover operator, and the mutation operator. 

Three applications of LOGENPRO in acquiring knowledge from 
databases will be discussed in chapter 6. The knowledge acquired can be 
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expressed in different knowledge representations such as decision tree, 
decision list, production rule, and first-order logic. We will illustrate how 
to apply LOGENPRO to emulate GP in the first application. In the second 
application, LOGENPRO is used to induce knowledge represented in 
decision trees from a real-world database. In the third application, we 
apply LOGENPRO to combine genetic search methods and a variation of 
FOIL to induce knowledge from noisy datasets. The acquired knowledge 
is represented as a logic program. The performance of LOGENPRO has 
been evaluated on the chess endgame problem and detailed comparisons 
to other ILP systems will be given. 

Chapter 7 will discuss how evolutionary computation can be 
applied to discover rules from databases. We will focus on how to model 
the problem of rule learning such that LOGENPRO can be applied as the 
learning algorithm. The representation of rules, the genetic operators for 
evolving new rules, and the evaluation function will be introduced in this 
chapter. We will also describe how to learn a set of rules. The technique 
token competition is employed to solve this problem. A rule learning 
system will be introduced, and the experiment results on two machine 
learning databases will be presented in this chapter. 

The data mining system has been used to analyze real-life medical 
databases for limb fracture and scoliosis. The applications of this system 
and the learning results will be presented in chapter 8. 

Chapter 9 is a conclusion of this book. The research work will be 
summarized, and some suggestions for future research will be given. 
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AN OVERVIEW OF DATA MINING 

There are a large variety of data mining approaches 
(Ramakrishnan and Grama 1999, Ganti et al. 1999, Han et al. 1999, 
Hellerstein et al. 1999, Chakrabarti et al. 1999, Karypis et al. 1999, 
Cherkassky and Mulier 1998, Bergadano and Gunetti 1995), with different 
search methods aiming at searching for different kinds of knowledge. This 
chapter reviews some of the data mining approaches related to this book. 
Decision tree approach, classification rule learning, association rule 
mining, statistical approach, and Bayesian network learning are reviewed 
in the following sections. 

2.1. Decision Tree Approach 

A decision tree is a tree like structure that represents the 
knowledge for classification. Internal nodes in a decision tree are labeled 
with attributes, the edges are labeled with attribute values and the leaves 
are labeled with classes. An example of a decision tree is shown in figure 
2.1. This tree is for classifying whether the weather of a Saturday morning 
is good or not. It can classify the weather into the class P (positive) or N
(negative). For a given record, the classification process starts from the 
root node. The attribute in the node is tested, and the value determines 
which edge is to be taken. This process is repeated until a leaf is reached. 
The record is then classified as the class of the leaf. Decision tree is a 
simple knowledge representation for a classification model, but the tree 
can be very complicate and difficult to interpret. The following two 
learning algorithms, ID3 and C4.5, are commonly used for mining 
knowledge represented in decision trees. 
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2.1.1. ID3 

ID3 (Quinlan 1986) is a simple algorithm to construct a decision 
tree from a set of training objects. It performs a heuristic top-down
irrevocable search. Initially the tree contains only a root node and all the 
training cases are placed in the root node. ID3 uses information as a 
criterion for selecting the branching attribute of a node. Let the node 
contains a set T of cases, with |Cj| of the cases belonging to one of the pre- 
defined class Cj. The information needed for classification in the current 
node is 

(2.1)

This value measures the average amount of information needed to identify 
the class of a case. Assume that using attribute Xas the branching attribute 
will divide the cases into n subsets. Let Ti denotes the set of cases in 
subset i. The information required for the subset i is info(Ti ). Thus the 
expected information required after choosing attribute X as the branching 
attribute is the weighted average of the subtree information: 

Thus the information gain will be 

gain(X ) = info(T) - infox (T)

(2.2)

(2.3)
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As a smaller value in the information corresponds to a better 
classification, the attribute X with the maximum information gain is 
selected for the branching of the node. 

After the branching attribute is selected, the training cases are 
divided by the different values of the branching attribute. If all examples 
in one branch belong to the same class, then this branch becomes a leaf 
labeled with that class. If all branches are labeled with a class, the 
algorithm terminates. Otherwise the process is recursively applied on each 
branch.

ID3 uses the chi-square test to avoid over-fitting due to the noise. 
In a set T of cases, let o cj,xi denote the number of records in class Cj with
X= xi. If attribute Xis irrelevant for classification, the expected number of 
cases belonging to class Cj with X= xi is

The value of chi-square is approximately 

(2.4)

(2.5)

In choosing the branching attribute for the decision tree, if x2 is lower 
than a threshold, then the attribute will not be used. This can avoid 
creating unnecessary branches that make the constructed tree complicate. 

2.1.2. C4.5 

C4.5 (Quinlan 1992) is the successor of ID3. The use of 
information gain in ID3 has a serious deficiency that favors tests with 
many outcomes. C4.5 improves this by using a gain ratio as the criterion 
for selecting the branching attribute. A value split infox(T) is defined with 
a similar definition of infox(T)

(2.6)
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This value represents the potential information generated by dividing T 
into n subsets. The gain ratio is used as the new criterion 

gain ratio(X) = gain(X) / split infox (T) (2.7)

The attribute with the maximum value on gain ratio(X) is selected as the
branching attribute. 

C4.5 abandoned the chi-square test for avoiding over-fitting.
Rather, C4.5 allows the tree to grow and prunes the unnecessary branches 
later. The tree pruning step replaces a subtree by a leaf or the most 
frequently used branch. The decision on whether a subtree is pruned 
depends on an estimation of the error rate. Suppose that a leaf gives an 
error of E out of N training cases. For a given confidence level CF, the
upper limit of the error probability for the binomial distribution is written 
as UCF(E, N). The upper limit is used as the pessimistic error rate of the 
leaf. The estimated number of errors for a leaf covering N training cases is 
thus N xUCF(E, N). The estimated number of errors for a subtree is the sum 
of errors of its branches. 

Pruning is performed if replacing a subtree by a leaf or a branch 
can give a lower estimated number of errors. For example, for a subtree 
with three leaves, which respectively covers 6, 9, and 1 training cases 
without errors, the estimated number of mis-classification with the default 
confidence level of 25% is 

6×U25%(0,6)+9× U25%(0, 9)+1× U25%(0,1) = 
6×0.206+9×0. 143+1×0.750=3.273. 

If they are combined to a leaf node, it mis-classifies 1 out of 16 training 
cases. The estimated number of mis-classifications of this leaf is 

1 6x U25%( 1, 1 6)= 1 6×0.157=2.5 12. 

This number is better than that of the original subtree and thus the leaf can 
replace the subtree. 

2.2. Classification Rule 

A rule is a sentence of the form “if antecedents, then consequent’.
Rules are commonly used in expressing knowledge and are easily 
understood by human. Rules are also commonly used in expert systems 
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for decision making. Rule learning is the process of inducing rules from a 
set of training examples. Many algorithms in rule learning try to search for 
rules to classify a case into one of the pre-specified classes. Three 
commonly used classification rule learning algorithms are given as 
follows:

2.2.1. AQ Algorithm 

AQ (Michalski 1969) is a family of algorithms for inductive 
learning. One example is AQ15 (Michalski et al. 1986a). The knowledge 
representation used in AQ is the decision rules. A rule is represented in 
Variable-valued Logic system 1 (VL1). In VL1, a selector relates a 
variable to a value or a disjunction of values, e.g. color = red ^ green. A 
conjunction of selectors forms a complex. A cover is a disjunction of 
complexes describing all positive examples and none of the negative 
examples. A cover defines the antecedents of a decision rule. The original 
AQ can only construct exact rules, i.e. for each class, the decision rule 
must cover only the positive examples and none of the negative examples. 

AQ algorithm is a covering method instead of the divide-and-
conquer method of ID3. The search algorithm is described as follows 
(Michalski 1983): 

1. A positive example, called the seed, is chosen from the 
training examples. 

2. A set of complexes, called a star, that covers the seed is 
generated by the star generating step. Each complex in the 
star must be the most general without covering a negative 
example.

3. The complexes in the star are ordered by the lexicographic 
evaluation function (LEF). A commonly used LEF is to 
maximize the number of positive examples covered. 

4. The examples covered by the best complex is removed from 
the training examples 

5. The best complex in the star is added to the cover. 

6. Steps 1-5 are repeated until the cover can cover all the 
positive examples. 
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The star generating step (step 2) performs a top down irrevocable 

1 Let the partial star be the set containing the empty complex, 
i.e. without any selector. 

2 While the partial star covers negative examples, 
(a) Select a covered negative example. 

(b) Let extension be the set of all selectors that cover the seed 
but not the negative example. 

(c) Update the partial star to be the set {x ^ y | x ε partial
star, y ε extension}.

(d) Remove all complexes in the partial star subsumed by 
other complexes. 

3 Trim the partial star, i.e. retain only the maxstar best
complexes, where maxstar is the beam width for the beam 
search.

In the star generating step, not all the complexes that cover the 
seed are included. The partial star will be trimmed by retaining only 
maxstar best complexes. The heuristics used is to retain the complexes 
that “maximize the sum of positive examples covered and negative 
examples excluded”. 

beam search. This step can be summarized as follows: 

2.2.2. CN2 

CN2 (Clark and Niblett 1989) incorporates ideas from both AQ 
and ID3 algorithms. AQ algorithm cannot handle noisy examples 
properly. CN2 retains the beam search of AQ algorithm but removes its 
dependence on specific training examples (the seeds) during the search. 
CN2 uses a decision list as the knowledge representation. A decision list is 
a list ofpairs (φ 1, C1), (φ 2, C2), . . . , (φ r, Cr), where φ i, is a complex, Ci is a
class, and the last description fr is the constant true. This list means “if φ1 

then C1 else if φ 2 then C2 . . . else Cr”.
Each step of CN2 searches for a complex that covers a large 

number of examples of class C and a small number of other classes. 
Having found a good complex, say φ i the algorithm removes those 
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examples it covers from the training set and adds the rule “if φ i then
predict C’’ to the end of the rule list. This step is repeated until no more 
satisfactory complexes can be found. 

The searching algorithm for a good complex performs a beam 
search. At each stage in the search, CN2 stores a star S of “a set of best 
complexes found so far”. The star is initialized to the empty complex. The 
complexes of the star are then specialized by intersecting with all possible 
selectors. Each specialization is similar to introducing a new branch in 
ID3, All specializations of complexes in the star are examined and ordered 
by the evaluation criteria. Then the star is trimmed to size maxstar by
removing the worst complexes. This search process is iterated until no 
further complexes that exceed the threshold of evaluation criteria can be 
generated.

The evaluation criteria for complexes consist of two tests for 
testing the prediction accuracy and significance of the complex. Let (p1,. . . 
, pn) be the probability of covered examples in class C1,. . . Cn. CN2 uses 
the information theoretic entropy 

(2.8)

to measure the quality of a complex (the lower the entropy, the better the 
quality). The likelihood ratio statistic is used to measure the significance 
of the complex: 

(2.9)

where ( f1, ... ,fn) is the observed frequency distribution and ( e1, ... , en) is 
the expected distribution. A complex with a high value of the ratio means 
the high accuracy is not obtained by chance. 

2.2.3. C4.5RULES 

Other than being able to produce a decision tree as described in 
section 2.1.2, a component of C4.5, C4.5RULES (Quinlan 1992), can 
transform the constructed decision tree into production rules. Each path of 
the decision tree from the root to the leaf equals to a rule. The antecedent 
part of the rule contains all the conditions of the path, and the consequent 
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is the class of the leaf. However this rule can be very complicate and a 
simplification is required. Suppose that the rule gives E errors out of the N
covered cases, and if condition Xis removed from the rule, the rule will 
give Ex- errors out of the Nx- covered cases. If the pessimistic error 
UCF (Ex- , Nx- ) is not greater than the original pessimistic error UCF(E,
N), then it makes sense to delete the condition X. For each rule, the 
pessimistic error for removing each condition is calculated. If the lowest 
pessimistic error is not greater than that of the original rule, then the 
condition that gives the lowest pessimistic error is removed. The 
simplification process is repeated until the pessimistic error of the rule 
cannot be improved. 

After this simplification, the set of rules can be exhaustive and 
redundant. For each class, only a subset of rules is chosen out of the set of 
rules classifying it. The subset is chosen based on the Minimum 
Description Length principle. The principle states that the best rule set 
should be the rule set that required the fewest bits to encode the rules and 
their exceptions. For each class, the encoding length for each possible 
subset of rules is estimated. The subset that gives the smallest encoding 
length is chosen as the rule set of that class. 

2.3. Association Rule Mining 

Association rule mining (Agrawal et al. 1993) focuses on 
discovering knowledge between items in a large database of sales 
transactions. Association rule is a rule of the form “if X then Y”, where X
and Y are items in a transaction. Association rule mining is different from 
classification, as there is no pre-specified classes in the consequent. An 
association rule is valid if it can satisfy the threshold requirement on 
confidence factor and support. The rule is required to have at least c% of
records that satisfy X and Y, where c is the confidence threshold. It is also 
required that the number of records satisfying both X and Y has to be 
larger than s% of the records, where s is the support threshold. 

The problem of mining association rules from a database can be 
solved in two steps. The first step is to find the sets of attributes that have 
enough support. These sets are called large itemsets as ‘large’ is used to 
denote having enough support. The second step is from each large itemset, 
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association rules with confidence larger than the threshold are searched. 
The attributes are divided into antecedents and consequent and the 
confidence is calculated. The main researches (Agrawal et al. 1993, 
Mannila et al. 1994, Agrawal and Srikant 1994, Han and Fu 1995, Park et 
al. 1995) consider Boolean association rules, where each attribute must be 
Boolean (e.g. have or have not bought the item). They focus on 
developing fast algorithms for the first step, as this step is very time 
consuming. They can be efficiently applied to large databases, but the 
requirement of Boolean attributes limited their uses. The following two 
commonly used association rule mining algorithms are given as 
examples:

2.3.1. Apriori 

Apriori (Agrawal and Srikant 1994) is an algorithm for generating 
large itemsets, the sets of attributes that have enough support, in Boolean 
association rule mining (i.e. the first step). The support of an itemset has a 
characteristic that the subsets of a large itemset must be large, and the 
supersets of a small (i.e. not large) itemset cannot be large. Apriori makes 
use of this characteristic to drastically reduce the search space. The outline 
of the Apriori algorithm is listed as follows: 

1

2

3 For ( k=2; k<no_of_attributes; k++)

Count the support of itemsets with 1 element. 

L1= the set of size 1 itemsets that are large. 

(a) generate extensions of each size k-1 large itemset by 

(b) Ck= the set of extensions of size k-1 large itemsets;

(c) for each itemset in Ck, if one of its size k-1 subset is not in

(d) for each itemset in Ck, count the support and check 

(e) Lk = the set of large itemsets in Ck.

adding one more attribute; 

Lk, delete it from Ck;

whether it is large; 

Apriori first searches for large itemsets with one attribute. Then 
other large itemsets are searched from the itemsets known to be large. The 
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large itemsets are extended by adding one attribute. If one subset of the 
extended itemset is not known to be large, this itemset is removed because 
the subset of a large itemset must be large. The supports of these extended 
itemsets are counted to check whether they are still large. Once a large
itemset is found to be not large, further extension of it is no longer 
necessary because its superset must be small. 

2.3.2. Quantitative Association Rule Mining 

Quantitative association rules do not restrict the attributes to be 
Boolean. Quantitative or categorical attributes are allowed. in Srikant and 
Agrawal (1 996), the problem of mining quantitative association rules is 
mapped into a Boolean association rule problem. Intervals are made for 
each quantitative attribute. A new Boolean attribute is created for each 
interval or category. This attribute is set to 1 if the original attribute is in 
that interval or category. For example, a record with age equals 23 will 
have 1’s in the new interval attributes ‘Age:(20-29)’ and ‘Age:(15-30)’, 
and have 0’s in the new interval attribute ‘Age:(30-39)’. However, this 
mapping will face two new problems: 

. Execution Time: The number of attributes is hugely
increased, and greatly affects the execution time. . Many Rules: If an interval of a quantitative attribute has
minimum support, any range containing this interval will also 
has minimum support. Thus the number of rules increase 
greatly. Many of them just differ in the ranges of the 
quantitative attributes and in fact refer to the same 
association.

To tackle the first problem, a “maximum support” parameter is 
required from the user. The new Boolean attributes are not created for all 
possible intervals. If the support of an interval exceeds the maximum 
support, it will not be considered as the rule will be too general and should 
already be covered by other rules having a smaller interval, To tackle the 
second problem, an “interesting level” parameter is required from the 
user. An interesting measure is defined to measure how much the support 
and/or the confidence of a rule are greater than expected. Those rules with 
interest measures lower than the user requirement are pruned. 
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2.4. Statistical Approach 

Statistics and data mining both try to search knowledge from data. 
Statistical approach focuses more on quantitative analysis. A statistical 
perspective on knowledge discovery has been given in Elder IV and 
Pregibon (1996). Statisticians usually assume a model for the data and 
then look for the best parameters for the model. They interpret the models 
based on the data. They may sacrifice some performance to be able to 
extract the meaning from the model. However, in recent years statisticians 
have also moved the objective to the selection of a suitable model. 
Moreover, they emphasize on estimating or explaining the model 
uncertainty by summarizing the randomness to a distribution. The 
uncertainties are captured in the standard error of the estimation. Some of 
the typical statistical approaches are briefly described below. 

2.4.1. Bayesian Classifier 

The Bayesian probability theorem can be used to classify an 
object into one of the classes {c1, c2, ... , cm}. Let the object be described 
by a feature vector F which consists of attributes { f1, f2,. .. , fl}. The 
probability of this object belonging to class Ci is given by 

(2.10)

The use of this theorem can provide probabilistic knowledge for 
classifications of unseen objects. The object with a feature vector F can be 
classified into the class ci which gives the maximum value on this 
probability. Since the denominator p(F) appears in every probability, it is 
actually a normalizing factor and can be ignored in the calculation. The 
probability p(ci) can be estimated as the occurrence of ci over the total 
number of existing objects. Thus the main concern is on how to estimate 
p(F| ci)
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This probability can be estimated by making assumptions. The 
simplest assumption is that each feature in F is statistical independence, 
that is 

(2.1 1) 

the value p(fk|ci) can be estimated as the occurrence of objects in class ci
having fk over the occurrence of objects in class Ci. Another assumption 
given in Wu et al. (1991) is that the probability can be under a normal 
distribution, that is 

where Ci is the covariance matrix and MI is the mean vector over n unseen
cases. Thus the problem is reduced to the measurement of the two 
parameters Ci and Mi.

2.4.2. FORTY-NINER

FORTY-NINER (Zykow and Baker 1991) is a system for 
discovering regularities in a database. It searches for significant 
regularities compared to the null distribution hypothesis. The search is 
divided into two phases. The first phase is a search for two-dimensional
regularities (i.e. regularities between two variables). The second phase 
generalizes the two-dimensional regularities to more dimensions. Either 
phase can be repeated many times with human interventions. 

In the first phase, each attribute is transformed by using 
aggregation, slicing, and projection. The search is performed on partitions 
of the database. The user can reduce the search space by limiting the 
number of independent variables and the depth of partitioning, The 
regularity is represented in a contingency table and in the best linear fit. 
An example of a contingency table is shown in table 2.1, where oc1,a1 is
the actual number of occurrence of C=c1 and A=a1. This value is 

compared with - - (where N is the total number of 

records), and χ2 is calculated to measure the significance of the
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regularity. The best liner fit between C and A is a linear regularity 
C=mA+b obtained by using the least squares method, where m is the slope 
and b is the intercept. A value r2 measures the significance of the linear 
regularity. It is calculated over all data points ( Xi, Yi) using the formula: 

(2.13)

where Y is the average value of Y over the n data points, and Yi is the 
value of Yi predicated by the linear regularity. 

In the second phase, the user selects the 2-D regularities for 
expansions. The regularity expansion module adds one dimension at a 
time and the multi-dimension regularity is formed. This module can be 
applied recursively. Since the search space would be exponential if all 
possible multi-dimensional regularities are considered, user intervention is 
required to guide the search. 

2.4.3. EXPLORA 

EXPLORA (Hoschka and Klosgen 1991) is an integrated system 
for helping the user to search for interesting relationships in the data. A 
statement is an interesting relationship between a value of a dependent 
variable and values of several independent variables. Various statement 
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types are included in EXPLORA, e.g., rules, changes and trend analyses. 
The value of the dependent variable is called the target group and the 
combination of values of independent variables is called the subgroup. For
example, the sufficient rule pattern 

48% of the population are CLERICAL.
However, 92% of AGE > 40,
SALARY < 10260 are CLERICAL

is a relationship between the target group CLERICAL and the 
independent variables AGE and SALARY. The user selects one statement 
type, identifies the target group and the independent variables, and inputs 
the suitable parameters. EXPLORA calculates the statistical significance 
of all possible statements and outputs the statements with significance 
above the threshold. 

The search algorithm in EXPLORA performs a graph search. 
Given a target group, EXPLORA search for the subgroup for regularities. 
It first uses values from one variable, then combinations of values from 
two variables, and then combination of values from three variables, and so 
on until the whole search space is exhaustively explored. The search space 
can be reduced by limiting the number of combinations of independent 
variables and by the use of redundancy filters. Depending on the type of 
the statements, different redundancy filters can be used. For example, for 
the sufficient rule pattern “if subgroup then target group”, the redundancy 
filter is “if a statement is true for a subgroup a, then all statements for the 
subgroup a ^ other values are not interesting”. For the necessary rule 
pattern “if target group then subgroup”, the redundancy filter is “if a 
statement is true for subgroup a ^ b, then the statement for subgroup a is
true”.

2.5. Bayesian Network Learning 

Bayesian network (Charniak 1991) is a formal knowledge 
representation supported by the well-developed Bayesian probability 
theory. A Bayesian network captures the conditional probabilities between 
attributes. It can be used to perform reasoning under uncertainty. A 
Bayesian network is a directed acyclic graph. Each node represents a 
domain variable, and each edge represents a dependency between two 
nodes. An edge from node A to node B can represent a causality, with A
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being the cause and B being the effect. The value of each variable should 
be discrete. Each node is associated with a set of parameters. Let Ni

denote a node and Π Ni denote the set of parents of Ni. The parameters of 
Ni are conditional probability distributions in the form of P(Ni |Π Ni ), with
one distribution for each possible instance of Π Ni. Figure 2.2 is an
example Bayesian network given in Charniak (1991). This network shows 
the relationships between whether the family is out of the house ( fo),
whether the outdoor light is turned on ( lo), whether the dog has bowel 
problem ( bp), whether the dog is in the backyard ( do), and whether the 
dog barking is heard ( hb).

Since a Bayesian network can represent the probabilistic 
relationships among variables, one possible approach of data mining is to 
learn a Bayesian network from the data (Heckerman 1996; 1997). The 
main task of learning a Bayesian network is to automatically find directed 
edges between the nodes, such that the network can best describe the 
causalities. Once the network structure is constructed, the conditional 
probabilities are calculated based on the data. It has been shown that the 
problem of Bayesian network learning is believed to be computationally 
intractable (Chickering et al. 1995). However, Bayesian networks learning 
can be implemented by imposing limitations and assumptions. For 
instance, the algorithms of Chow and Liu (1968) and Rebane and Pearl 
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(1987) can learn networks with tree structures, while the algorithms of 
Herskovits and Cooper (1990), Cooper and Herskovits (1992), and 
Bouckaert (1994) require the variables to have a total ordering. More 
general algorithms include Heckerman et al. (1995), Spirtes et al. (1993) 
and Singh and Valtorta (1993). More recently, evolutionary algorithms 
have been used to induce Bayesian networks from databases (Larranaga et 
al. 1996a; 1996b, Wong et al. 1999). 

One approach for Bayesian network learning is to apply the 
Minimum Description Length (MDL) principle (Lam and Bacchus 1994, 
Lam 1998). In general there is a trade-off between accuracy and 
usefulness in the construction of a Bayesian network. A more complex 
network is more accurate, but computationally and conceptually more 
difficult to use. Nevertheless, a complex network is only accurate for the 
training data, but may not be able to uncover the true probability 
distribution. Thus it is reasonable to prefer a model that is more useful. 
The MDL principle (Rissanen 1978) is applied to make this trade-off. This 
principle states that the best model of a collection of data is the one that 
minimizes the sum of the encoding lengths of the data and the model 
itself. The MDL metric measures the total description length DL of a 
network structure G. A better network has a smaller value on this metric. 
A heuristic search can be performed to search for a network that has a low 
value on this metric. 

Let U={X1, ... , Xn} denote the set of nodes in the network (and 
thus the set of variables, since each node represents a variable), Π Xi,
denote the set of parents of node Xi, and D denote the training data. The 
total description length of a network is the sum of description lengths of 
each node: 

(2.14)

This length is based on two components, the network description length 
DLnet and the data description length DLdata:

(2.15)

(2.16)

The formula for the network description length is 
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where ki is the number of parents of variable Xi, si is the number of values
Xi, can take on, sj is the number of values a particular variable in Π Xi, can
take on, and d is the number of bits required to store a numerical value. 
This is the description length for encoding the network structure. The first 
part is the length for encoding the parents, while the second part is the 
length for encoding the probability parameters. This length can measure 
the simplicity of the network. 

The formula for the data description length is 

(2.17)

where M(.) is the number of cases that match a particular instantiation in 
the database. This is the description length for encoding the data. A 
Huffman code is used to encode the data using the probability measures 
defined by the network. This length can measure the accuracy of the 
network.

2.6. Other Approaches 

Some other data mining approaches (such as regression methods 
for predicting continuous variables, unsupervised and supervised 
clustering, fuzzy systems, neural networks, nonlinear integral networks 
(Leung et al. 1998), and semantic networks) are not covered here since 
they are less relevant to the main themes of this book. However, the 
inductive logic programming approach to be integrated with genetic 
programming in the following chapters is detailed separately in chapter 4. 
Genetic programming is introduced in the next chapter, which is one of 
the four types of evolutionary algorithms. 
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Chapter 3 

AN OVERVIEW ON EVOLUTIONARY 
ALGORITHMS

The problem of data mining can be formulated as conducting a 
search for novel, useful, and interesting knowledge. The search can be 
accomplished by various techniques including general weak methods and 
domain-specified strong methods. In this chapter, we first introduce a 
class of general weak methods called evolutionary algorithms. 
Subsequently, four kinds of evolutionary algorithms, namely, Genetic 
Algorithms (GAs), Genetic Programming (GP), Evolution Strategies (ES), 
and Evolutionary Programming (EP), are discussed in turn. 

3.1. Evolutionary Algorithms 

Evolutionary algorithms are weak search and optimization 
techniques inspired by natural evolution (Angeline 1993; 1994). Weak 
methods are a category of problem solving methods studied in the field of 
Artificial Intelligence (AI). In contrast to strong methods, weak methods 
are more general and widely applicable in different domains (Nilson 1980, 
Newell and Simon 1972). Weak methods do not employ problem-
dependent search operators and make no commitment to specific credit
assignment methods. 

Problem solving methods conduct their tasks by traversing the 
search space of the problem. They should identify blame and/or credit 
(credit assignment) on the components of each search point encountered 
in the search space (Minsky 1963). This information evaluates the 
qualities of all components of a search point, their interaction, and their 
impact on the overall quality of the search point. Problem solving methods 
apply this information to determine how to combine and manipulate 
different components from the current and previous search points to 
produce the next search point. Thus, good credit assignment methods 
direct the future search towards promising regions (Angeline 1993; 1994). 
An efficient problem solving method has an excellent credit assignment 
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method for the problem and manipulates components of various search 
points to traverse the search space. However, it is often difficult to design 
an appropriate credit assignment method for a particular problem. 

Nevertheless, strong methods employ domain-dependent credit 
assignment techniques, search strategies, and heuristics to strengthen the 
efficiency and ability of problem solving. They contain a significant 
amount of domain-specific knowledge. This knowledge can be 
represented procedurally or declaratively. A procedural problem solver 
finds an analytic solution for a problem by executing a sequence of hard-
wired instructions. Thus, its knowledge is represented procedurally. A 
knowledge-based system (Buchanan and Shortliffe 1984) solves a 
problem by performing inferences. The inferences are carried out by the 
inference engine of the system according to the knowledge stored 
declaratively in the knowledge base of the system. The knowledge usually 
takes the forms of heuristic rules, frames, semantic nets and first-order
logic (Leung and Wong 1990). This specific knowledge allows the 
problem solvers to find accurate solutions quickly. 

Traditional weak methods are inspired by observations of human 
performance (Newell and Simon 1972, Pearl 1984). They include depth-
first search, breadth-first search, best-first search, generate and test, hill 
climbing, mean-ends analysis, constraint satisfaction, and problem 
reduction.

On the other hand, evolutionary algorithms are inspired from the 
idea of achieving intelligent behavior of humans through a search and 
learning method (Angeline 1993; 1994). They employ the principle of 
natural selection and evolution to achieve the goals of function 
optimization and machine learning. In general, evolutionary algorithms 
include all population-based algorithms that use selection and 
recombination operators to generate new search points in a search space. 
They include genetic algorithms (Holland 1992, Goldberg 1989, Davis 
199 1 , Michalewicz 1996, Mitchell 1996), genetic programming (Koza 
1992; 1994, Koza et al. 1999, Kinnear 1994, Angeline and Kinnear 1996, 
Banzhaf et al. 1998, Langdon 1998), evolutionary programming (Fogel et 
al. 1966, Fogel 1992; 1999), and evolution strategies (Schewefel 198 1, 
Bäck et al. 1991, Bäck 1996). 

The various kinds of evolutionary algorithms differ mainly in the 
evolution models applied, the evolutionary operators employed, the 
selection methods and the fitness functions used (Fogel 1994). Genetic 
Algorithms (GAs) and Genetic Programming (GP) model evolution at the 
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level of genetic. They emphasize the acquisition of genetic structures at 
the symbolic level and regularities of the solutions. On the other hand, the 
idea of optimization is used in Evolution Strategies (ES) and the structures 
being optimized are the individuals of the population. Various behavioral 
properties of the individuals are parametrized and their values evolved as 
an optimization process. Evolutionary Programming (EP) uses the highest 
level of abstraction by emphasizing the adaptation of behavioral properties 
of various species. The following sections describe the four kinds of 
evolutionary algorithms .

3.2. Genetic Algorithms (GAs) 

Genetic algorithms (GAs) are general search methods that use the 
analogies from natural selection and evolution. These algorithms encode a 
potential solution to a specific problem in a simple string of alphabets 
called a chromosome and apply reproduction and recombination operators 
to these chromosomes to create new chromosomes. The applications of 
GAs include function optimization, problem solving, and machine 
learning (Goldberg 1989). The elements of a genetic algorithm are listed 
in table 3.1. 

. an encoding mechanism for solutions to the
problem,. a population of chromosomes representing the
solutions , . a mechanism to generate the initial
population of solutions,. an evaluation function that evaluates the
fitness values of the solutions, . a probabilistic selection mechanism that
models Darwin's survival of the fittest 
principle,. genetic operators, such as crossover and
mutation, that modify the composition of the 
offspring during reproduction, and . parameter values such as the population size,
and the probabilities of applying genetic 
operators that control a GA. 

The elements of a genetic algorithm. Table 3.1: 
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3.2.1. The Canonical Genetic Algorithm 

Consider a parameter optimization problem where we must 
optimize a set of variables either to maximize some targets such as profits, 
or to minimize costs or some measures of errors. The goal is to maximize 
or minimize some functions, say F(X1 , X2, ..., Xn), by varying the
parameters. In genetic algorithms, the encoding mechanism is essential 
because it determines the means of representing the variables of the 
optimization problem. In the Canonical Genetic Algorithm (CGA), binary 
bit strings are used to represent values of various parameter variables 
being optimized. Thus, the variables are discretized and the range of the 
discretization corresponds to some power of 2. The discretization should 
have enough resolution to represent the solution precisely. The binary 
codes of all variables are concatenated to form a binary string. This binary 
string is also called the chromosome or the genotype while the set of 
encoded parameters is called the phenotype of the individual. 

The CGA for solving optimization problems is shown in table 3.2. 
The algorithm starts with an initial population Pop(0). Each chromosome 
of the population is a binary string of length L (Holland 1992, Schaffer 
1987). The initial population is usually generated randomly using a 
uniform distribution. 

Each chromosome in Pop(0) is then evaluated and assigned a 
fitness value by a fitness function. The fitness function is sometimes 
called the evaluation function or the objective function. It provides a 
measure of performance (fitness value) of a chromosome by evaluating 
the set of parameters represented in the chromosome. The fitness function 
first decodes the parameter values encoded in the chromosome to form the 
phenotype of the individual. The problem-dependent phenotype is then 
evaluated by the fitness function to determine the fitness value of the 
corresponding chromosome. In the CGA, relative fitness is defined as 
fi / f where fi is the fitness value associated with chromosome i and f--

is the average fitness of all the chromosomes in the population. 

Each generation of the CGA is a three stage process which starts 
with the current population Pop(t). Selection is applied to the current 
population to create an intermediate population Pop(t'). Recombination 
(crossover) is then applied to the Pop(t') to create another intermediate 
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population Pop(t"). Then mutation is employed to create the next 
population Pop(t+1) from the intermediate population P(t"). The process 
starting from the current population Pop(t) to the next population Pop(t+1) 
establishes one generation in the execution of the genetic algorithm. This 
basic implementation of genetic algorithms is also referred to as a Simple 
Genetic Algorithm (SGA) by Goldberg (1989). For the first generation, 
the current population Pop(t) is also the initial population Pop(0). It 
produces the next population Pop(1) and the execution proceeds to the 
next generation. This process iterates until the termination function is 
satisfied. During each generation, the relative fitness values fi / f of all 
chromosomes are first evaluated, and then selection is carried out. 

. Assign 0 to generation t.. Initialize a population of chromosomes

. Evaluate the fitness of each chromosome in

. While the termination function is not true do. Select chromosomes from Pop(t) and

Pop(t).

the Pop(t). 

store them into Pop(t') according to a 
scheme based on the fitness values.
and store the produced offspring into

. Recombine the chromosomes in Pop (t') 

Pop(t").. Perform simple mutation to the
chromosomes in Pop(t") and store the 
mutated chromosomes into Pop(t+1).. Evaluate the fitness of each individual
in the next population P(t+1) . Increase the generation t by 1.. Return an individual as the answer. Usually,

the best individual will be returned. 
Table 3.2: The canonical genetic algorithm. 

The selection process models Darwin's survival of the fittest 
principle. In the CGA, a fitter chromosome reproduces a higher number of 
offspring and thus has a higher chance of propagating its genetic materials 
to the subsequent generation. In fitness proportionate selection, a
chromosome with a relative fitness value fi / f is allocated fi / f
offspring. Thus a chromosome with a fitness value higher than the average 
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is allocated more than one offspring, while a chromosome with a fitness 
value smaller than the average is allocated less than one offspring. The 
relative fitness value represents the expected number of offspring of a 
chromosome. Since it is impossible to produce fractional numbers of 
offspring, some chromosomes have to produce a higher number of 
offspring than their relative fitness values and some less than their relative 
fitness values. The current population Pop(t) can be viewed as a mapping 
onto a roulette wheel, where each chromosome is represented by a slice of 
the roulette wheel that corresponds proportionally to its relative fitness 
value. By repeatedly spinning the roulette wheel, chromosomes are chosen 
using stochastic sample with replacement to fill the intermediate 
population Pop(t'). The spinning process iterates until it has generated the 
entire Pop(t'). Thus, fitness proportionate selection is also called the 
roulette wheel selection. This method generates a large sampling error 
because the final number of offspring allocated to a chromosome may 
vary significantly from its relative fitness. The allocated number of 
offspring approaches the expected number only if the population size is 
very large. 

After selection has been carried out, the construction of the 
intermediate population Pop(t') is completed and recombination can occur. 
This can be viewed as generating another intermediate population Pop(t")
form Pop(t'). Crossover is applied to randomly paired chromosomes with 
a crossover probability denoted as pc.

Consider the two chromosomes 1100110011 and 0101010101. 
For one-point crossover, a single crossover location is selected randoraly. 
Since the length L of the chromosomes in this example is 10, a crossover 
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location can assume values in the range between 1 to 9 (L-1 locations in 
total). Assume the fifth location of chromosomes is chosen as the 
crossover location. By swapping the fragments between the two parents, 
the crossover operator produces the two offspring 1100 1 : 10 10 1 and 
01010: 1001 1 where the symbol ":" is used here to denote the crossover 
location (figure 3.1). 

After recombination is performed, other genetic operations are 
applied to the intermediate population Pop(t") to generate the next 
population Pop(t+1). In the CGA, only simple mutation can be applied. 
For each bit of each chromosome in the Pop(t"), it is mutated with some 
low probability pm. There are two different implementations of mutation. 
The first mutation flips the bit value from 1 to 0 or vice versa, while the 
second one randomly selects a value from 0 and 1 to fill the mutated bit. 
Thus, for the latter one, there is only 0.5 probability that the bit value is 
really modified even if it has been selected for mutation. The mutated 
chromosome is then placed in the Pop(t+1). Figure 3.2 depicts that the 
chromosome 1100110101 is modified to 0100110100 by flipping the first 
and the last bits. 

The about evolution process iterates until a fixed number of 
generations are attempted, the available computational resources are 
consumed, or satisfactory solutions are found. 

GAs can be viewed as performing both exploration of new 
regions in the search space and exploitation of already sampled regions. 
The question is then on the balance between these two competing 
methods. The performance of GAs is significantly affected by the choice 
of different parameter values such as the crossover and mutation 
probabilities and the population size. The optimal choice of parameter 
values was investigated extensively using empirical and analytical 
techniques. Grefenstette (1986), DeJong and Spears (1990) respectively 
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proposed two different sets of parameter values that are competent in 
general.

In addition to fitness proportionate selection, one-point crossover, 
and simple mutation described above, other techniques have been 
investigated in other genetic algorithms. The following sub-sections
present these techniques. 

3.2.1.1. Selection Methods 

Because the expected number of offspring is usually not an 
integer, but only integer numbers of offspring can be allocated in fitness 
proportionate selection, there is an intrinsic discrepancy between the 
allocated and the expected number of offspring. The remainder stochastic 
sampling method was proposed to achieve a distribution of offspring very 
close to the corresponding expected number of offspring. 

Remainder Stochastic Sampling Method
In the remainder stochastic sampling method, the relative fitness 

value fi /f of each chromosome i is evaluated first. If this value is 
greater than 1.0, the integer portion of this number indicates how many 
copies of that chromosome are directly placed in the intermediate 
population Pop(t'). All chromosomes (including those with relative fitness 
less then 1.0) then place additional copies of themselves in the 
intermediate population Pop(t') with a probability corresponding to the 
fractional portion of their relative fitness values. This selection method is 
unbiased and is efficiently implemented using a technique known as 
Stochastic Universal Sampling (Baker 1987). 

Fitness proportionate selection has other problems. In the first few 
generations, the population typically has a low average fitness value, but it 
is common to have a few extraordinary chromosomes. Fitness 
proportionate selection allocates a large number of offspring to these 
chromosomes. These dominant chromosomes cause premature 
convergence. A different situation appears in the later stages when the 
population average fitness value is close to the best fitness value. There 
may be significant diversity within the population, but approximately 
equal numbers of offspring are allocated to all chromosomes because the 
variance in their fitness values is very small. Fitness scaling techniques, 
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rank-based selection, and tournament selection can overcome these 
problems.

Fitness Scaling Techniques 
Fitness scaling techniques readjust fitness values of chromosomes 

(Grefenstette 1986, Goldberg 1989). Forrest (1990) presented a survey of 
current scaling techniques including linear scaling, sigma truncation, and 
power law scaling. 

Linear scaling computes the scaled fitness value as fi’= afi + b
where fi is the fitness value of the ith chromosome, fi’ is the scaled 
value, and a and b are appropriate constants. In each generation, a and b
are calculated to ensure that the maximum value of the scaled fitness 
values is a small number, say 1.5 or 2.0 times of the average fitness value 
of the population. Sometimes the scaled fitness values may become 
negative for chromosomes that have fitness values far smaller than the 
average fitness value of the population. In this case, a and b must be 
recomputed to avoid negative fitness values. 

Sigma truncation calculates the scaled fitness value as 
fi‘= f1 - (fi - cσ ) where f is the average fitness value of the
population, s is the standard derivation of the fitness values in the 
population, and c is a small constant typically ranging from 1 to 3. 
Chromosomes whose fitness values are less than c standard deviations 
from the f are discarded. 

Power law scaling finds some specified power of the fitness fi .
The scaled fitness is fi’= fi

k The k value is in general problem-
dependent and may be modified during a run to stretch or shrink the range 
of fitness values. 

Rank Based Selection
Baker (1985) proposed rank-based selection that is non-

parametric. In this method, the chromosomes of a population are sorted 
according to their fitness values. Each chromosome is allocated the 
number of offspring that is a function of its rank. Usually, the number of 
offspring varies linearly with the rank of a chromosome. Whitley (1989) 
showed that significant improvements could be obtained with the selection 
method.
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Tournament Selection 
Tournament selection approximates the behavior of ranking. In an 

m-ary tournament, m chromosomes are selected randomly using a uniform 
distribution from the current population after evaluation. The best of the m
chromosomes is then placed in the intermediate Pop(t'). This process is 
repeated until Pop(t') is filled. Goldberg and Deb (1991) showed 
analytically that 2-ary tournament selection is the same in expectation as 
ranking using a linear 2.0 bias. If a winner is chosen probabilistically from 
a tournament of 2, then the ranking is linear and the bias is proportional to 
the probability with which the best chromosome is selected. 

3.2.1.2. Recombination Methods 

Two-point and Multi-point Crossovers 
The CGA uses one-point crossover. However, many other 

crossover mechanisms have been devised, often involving more than one 
crossover location. In two-point crossover and multi-point crossover, 
chromosomes are regarded as rings formed by joining the two ends 
together. To exchange a segment from one ring with that from another one 
requires the selection of two or multiple crossover locations as depicted in 
figure 3.3. 

One-point crossover can be viewed as two-point crossover with 
one of the crossover locations fixed at the beginning of the chromosome. 
Hence two-point crossover is more general than one-point crossover. 
Researchers now agree that two-point crossover is generally better than 
one-point crossover. 

Uniform Crossover 
Uniform crossover exchanges bits of a chromosome rather than 

fragments. A crossover mask is first randomly generated. At each position 
in the offspring, the genetic material is obtained from either one of the 
parents. If there is a 1 in the crossover mask, the genetic material is copied 
from the first parent, otherwise it is obtained from the second parent. The 
process is repeated with the parents exchanged to produce the second 
offspring (figure 3.4). 
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An extensive comparison of different crossover methods was 
performed (Eshelman et al. 1989). One-point, two-point, multi-point, and 
uniform crossover were theoretically analyzed in terms of positional and 
distributional bias, and empirically evaluated on several problems. A 
crossover method has positional bias if the probability that a bit is 
swapped depends on its position in the chromosome. The crossover 
method has distributional bias if the distribution of the number of bits 
exchanged by the method is non-uniform. One-point crossover exhibits 
the maximum positional bias and the least distributional bias. At the other 
extreme, uniform crossover has the least positional bias and the maximum 
distributional bias. The empirical experiments showed that there was no 
more than about 20% difference in performances among the methods. 
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Order-based Crossover Operators 
In an order-based problem, such as the traveling salesman 

problem, gene values are fixed and the fitness value depends on the order 
in which gene values appear. The above crossover techniques cannot be 
used because they will produce invalid offspring. Goldberg (1 989) 
described Partially Matched crossover (PMX) for this kind of problems. 
In PMX, it is the orders in which gene values appear are exchanged. 
Offspring have genes which inherit ordering information from each 
parent. This avoids the generation of offspring that violate problem 
constraints. Syswerda (199 1 b) and Davis (1 99 1) described other order-
based operators including enhanced edge recombination, order crossover, 
cycle crossover, and position-based crossover. Starkweather et al. (1 99 1) 
compared these operators using the traveling salesman problem and the 
job shop scheduling problem. They found that the effectiveness of 
different operators is problem-dependent.

Many other techniques have also been suggested. Several methods 
use the idea of biasing the crossover locations at some more probable 
chromosome positions (Schaffer and Morishma 1987, Holland 1987, 
Davidor 1991, Levenick 1991, Louis and Rawlins 1991). The GAs learn 
which sites should be favored for crossover. The information is stored in a 
punctuation string as part of the chromosome, which is crossed over and 
propagated to offspring. Thus, good punctuation strings that lead to fit 
offspring will be propagated through the population. 

39

3.2.1.3. Inversion and Reordering 

The purpose of reordering is to attempt to find gene orderings 
which have better evolutionary potential (Goldberg 1989). Inversion 
(Holland 1992) works by reversing the order of genes between two 
randomly selected positions in a chromosome. The operation of an 
inversion is illustrated in figure 3.5. 

Goldberg and Bridges (1990) analyzed a reordering operator on a 
very small task and showed that it has advantages. Reordering also greatly 
expands the search space because GAs must also find good gene 
orderings. Thus, much more time is required for finding the solutions of 
the problem. 
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Meta-GAs (Grefenstette 1986) can be used to learn gene 
orderings. A meta-GA has a population where each member is a GA. Each 
individual GA is configured to solve the same problem, but using different 
gene orderings. The fitness of each individual is determined by running 
the GA, and examining the time required to converge. Meta-GAs are very 
computationally expensive to run and are worthwhile only if the results 
obtained can be reused many times. 

3.2.2. Steady State Genetic Algorithms 

A steady state genetic algorithm selects two parents for 
recombination and produces only one offspring at a time. The offspring is 
then placed immediately back into the population. Moreover, offspring 
replaces some relatively less fit members of the population rather than its 
parents. Steady state genetic algorithms are more susceptible to sampling 
error and genetic drift. The advantage is that the best chromosomes found 
in the search space are maintained in the population. The search 
conducted by these algorithms is more aggressive and effective (Syswerda 
1989; 1991a, Holland 1992). 

Genitor (Whitley 1989) is an implementation of a steady state 
genetic algorithm. In Genitor, the worst chromosome in the population is 
replaced by the offspring just created. The accumulation of improved 
chromosomes in the population is thus monotonic. Goldberg and Deb 
(1991) showed that the method of replacing the worst member in the 
population resulted in a much higher selective pressure than the method of 
random replacement. Genitor applies rank-based selection rather than 
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fitness proportionate selection. The advantage of rank-based selection is 
that it maintains a stable selective pressure over the course of search. 

3.2.3. Hybrid Algorithms 

Although genetic algorithms are robust and general problem 
solving methods, they are usually not the most effective ones on any 
particular domain (Davis 199 1). Therefore, combining genetic algorithms 
and other problem-specific strong methods may result in some general, 
robust, and effective problem solving systems. Many researchers use non-
binary encoding and problem-specific recombination operators to 
strengthen the capability of traditional genetic algorithms (Davis 199 1, 
Michalewicz 1996). Muhlenbein (1991; 1992) described a parallel genetic 
algorithm that employed local hill-climbing techniques to speed up the 
search.

A hybrid genetic algorithm typically performs well on 
optimization and other search problems because it is performing local hill-
climbing from multiple points in the search space. Unless the problem to 
be solved is highly irregular or the function to be optimized is severely 
multi-modal, it is likely that some points are in the basin of attraction of 
the global solution. In this case, hill-climbing is a fast and effective form 
of search. In general, the local search methods can find a number of 
significant improvements of a point without dramatically modify its 
structure. Thus, a hybrid algorithm takes the benefits of both the problem-
specific search methods and the implicit parallelism of genetic algorithms. 

3.3. Genetic Programming (GP) 

Genetic Programming (GP) is an extension of GAs (Koza 1992; 
1994, Koza et al. 1999). The main difference between them is the 
representation of the structure they manipulate and the meanings of the 
representation. GAs usually operate on a population of fixed-length binary 
strings. GP typically operate on a population of parse trees which usually 
represent computer programs. A parse tree is represented as a rooted, 
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point-labeled tree. Since GP concerns with the behavior of computer 
programs, the definition of phenotype in GP is more abstract than that in 
GASs

3.3.1. Introduction to the Traditional GP 

Most computer programs can be easily understood as performing 
a sequence of functions to the arguments. Most language compilers first 
translate a given program into a parse tree and then generate a sequence of 
machine instructions that can be executed on a computer (Aho and Ullman 
1977). Thus, parse trees are natural representations of computer programs 
and GP induces Lisp programs represented as parse trees (Koza 1992). 

In Lisp, a program is also called an S-expression and all its 
operations are implemented as function calls. A function call consists of a 
list of elements enclosed by parentheses. The first element within the list 
is the name of the function and the other elements are arguments to the 
function. To represent a function call as a parse tree, the function name is 
the root of the parse tree while the arguments are the children at the next 
level down the parse tree. The arguments may be variables, constants, or 
other function calls. In the latter case, these function calls are again 
represented as parse trees and they form sub-trees of the parental parse 
tree. For example, the program (* (+ X (/ Y 1.5) ) (-

There are two sets of nodes in a parse tree. The internal nodes are
called primitive functions while the leaf nodes are called terminals. In 
figure 3.6, the sets of primitive functions and terminals are {+, -, *, /} 

and {X, Y, Z, 1.5, 0.3}, respectively. The terminals can be viewed as 
the inputs to the program being induced. They might include the 
independent variables and the set of constants. The primitive functions are 
combined with the terminals or simpler function calls to form more 
complex function calls. The above procedure of combination iterates to 
produce a program. The arity of a function f arity(f), is its number of 
arguments.

Z 0 .3) ) can be represented as the parse tree in figure 3.6. 
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The set of primitive functions might include arithmetic operators 
and transcendental functions. In fact, there is no limit to the complexity of 
the primitive functions used. Koza (1992; 1994) also used iteration, 
functions with side-effect, and a wide variety of problem-specific
functions. It is important that the function set has the closure property. 
That is, each primitive function should be able to accept any terminal or 
the output from any function as inputs. To apply GP to a problem, the user 
must determine: 

the set of primitive functions F,

the set of terminals T,
the fitness function, 

the parameters for controlling the run, 

the method for designating a result, and 
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• the termination function.

• Assign 0 to generation t.
• Initialize a population Pop(t) of programs

composed of the primitive functions and 
terminals.. Evaluate the fitness of each program in the

• While the termination function is not
Pop(t).
satisfieddo. Create a new population Pop(t+1) of

programs by employing the selection, 
crossover, mutation, and other genetic 
operations.. Evaluate the fitness of each individual
in the next population P(t+1) . Increase the generation t by 1..Return the program that is identified by the

method of result designation as the solution 
of the run 

Table 3.3: A high-level description of GP. 

The fitness function, the controlling parameters, the method for 
designating a result, and the termination function are similar to those of 
GAs. GP usually generates an initial population of programs randomly. 
Programs in the population are then manipulated by various genetic 
operators to produce a new population of programs. These operations 
include crossover, mutation, permutation, editing, encapsulation, and 
decimation (Koza 1992). The whole process of proceeding from one 
population to the next population is called a generation. A high level 
description of the algorithm of GP is given in table 3.3. 

The creation of an initial random population is a random search of 
the search space for computer programs. A parse tree is generated 
randomly by first selecting a function from F to be the label for the root of
the tree. Whenever a node of a tree is labeled with a function f from F,
arity(f) nodes are generated as the children of that node and an element 
from F ∪ T is randomly selected to be the label for each child. If a
function is selected, the above process continues recursively. Otherwise, 
the generation process is terminated for that node because it is a leaf node 
of the tree. 
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Each program in the population is evaluated in terms of how well 
it performs in the particular problem. In GP, three measures of fitness are 
used as follows: 

The raw fitness is the measurement of fitness that is stated in the 
natural semantics of the program. For example, raw fitness in a 
classification program can be either the number of examples that are 
classified correctly or the number of mis-classified examples. Which one 
should be used depends on the nature of the problem (Koza 1992). Raw 
fitness is usually evaluated over a set of fitness cases. They provide a 
basis for evaluating the performance of a program over a number of 
representative cases. 

The standardized fitness transforms the raw fitness so that smaller 
value is always a better value. Transformation can be achieved by 
different methods. Since the standardized fitness may not lie between 0 
and 1, adjustment is performed to converse it into the adjusted fitness in
the desired range. 

The adjusted fitness is obtained by ai = 1/(1+ si ) where si is the 
standardized fitness of the program i and ai is the corresponding adjusted 
fitness. The adjusted fitness has the benefit of strengthening the selective 
pressure when the population converges. The same effects can be 
achieved by using tournament and rank-based selection methods. Hence, 
the adjusted fitness is not used for these methods. 

The evolution process of GP is similar to that of GAs. Another 
key difference between them is the details of the genetic operations 
because the GP operations must now manipulate parse trees rather than 
fixed-length strings in GAs. Crossover of two parental trees in GP is 
achieved by creating two duplications of the trees first to form two 
intermediate offspring. Then two crossover points are selected randomly 
from the two intermediate offspring, respectively. The final offspring are 
obtained by exchanging sub-trees under the selected crossover points at 
the intermediate sub-trees. The produced offspring are usually different in 
sizes and shapes from their parents and from one another. The effects of 
the crossover operation are depicted in figure 3.7. 

The syntactic correctness of the offspring is guaranteed because of 
the closure property of the set of primitives. However, the generated 
programs may be meaningless because they may perform invalid (such as 
division by zero), redundant, or useless operations. The semantics of the 
primitives is redefined to avoid the problem of executing invalid 
operation. For example, the primitive, protected division % , normally 
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returns the quotient. However, if division by zero is attempted, the 
function returns 1 .0. 

In GP, mutation is considered to be of relatively less important 
operation. First, a copy of a single parental tree is made. Then a mutation 
point is randomly selected from the copy, which will be either a leaf node 
or a sub-tree. The leaf node or sub-tree at the mutation point is replaced by 
a new leaf node or sub-tree generated randomly. The effects of the 
mutation operation are depicted in figure 3.8. 
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3.3.2. Strongly Typed Genetic Programming (STGP) 

One limitation of GP is the requirement of the closure property of 
the set of primitive functions. In Strongly Typed Genetic Programming 
(STGP), all the variables, constants, arguments, and returned values can 
be of any data type provided that these data types have been defined by 
the user (Montana 1995). One of its applications is to generate a program 
that uses both scalars and vectors. 

STGP requires the output from each function or terminal to be 
given a data type and the inputs of each function to take certain types. The 
implementation differences between GP and STGP are the generation 
methods of the initial population and the crossover operators. In STGP, 
the generation method of the initial population must comply to the type 
restrictions and the crossover operator must occur between functions 
and/or terminals of the same type. 

Programs in the initial population are generated in such a way that 
the arguments of each function in each tree have the required data types. 
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Crossover is implemented by randomly selecting a node from one parental 
tree and then randomly selecting node from the second parental tree until 
it is of the same type as the first selected node. 

An extension to STGP that makes it easier to use is the concept of 
generic functions, which are not true strongly typed functions, but rather 
templates for classes of functions. A template of a function can take a 
variety of different data types and return values of a variety of different 
types. The only constraint is that for any particular set of argument types, 
a generic function must return a value of a well-defined type. A generic 
function is instantiated to a particular instance of function by specifying a 
set of input argument types. 

3.4. Evolution Strategies (ES) 

In Evolution Strategies (ES), the individual model of evolution is 
typified (Rechenberg 1973, Schwefel 1981, Bäck et al. 1991, Bäck 1996). 
In these techniques, the emphasis is on the improvement of a behavior that 
is rated well by the fitness function rather than on the acquisition of 
building blocks with high fitness values. By concentrating on optimizing 
the behavior, the representation and reproduction heuristics must create 
objects that are behaviorally similar to their parents but not necessarily 
structurally similar. However, the acquisition of an appropriate behavior 
should be easier since the effects on behavior have been modeled in the 
reproduction operators. 

ES consider an individual to be composed of a set of features. The 
interaction among the features is typically unknown. ES use fixed-length,
real-valued strings to represent individuals. Each position marks a 
separate behavioral trait. The adherence to fixed-length strings eases the 
problem of how to manipulate the structure in order to preserve behavioral 
similarity between offspring and their parents. Different operators have 
been defined to manipulate the contents of strings to create offspring that 
are behaviorally similar (Bäck et al. 1991). 

ES originate from Germany for applications in real-valued
function optimization (Rechenberg 1973, Schwefel 198 1). The problem is 
defined as finding the real-valued vector X with L numbers that minimizes 
or maximizes an objective function F(X): RL→ R. There are various
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evolution strategies that are different in their models of evolution. The one 
called ( µ+1)-ES is presented in table 3.4. 

1. An initial population Pop(0) of µ members is created. Each 
member ei , 1 i µ, is an ordered pair ( Xi,σ i,) where Xi is
a real-valued vector storing the object variables xi,j, 1 <j < L, 

for the objective function F, σ i, is also a real-valued vector 
containing L independent strategy variables σ i,j , 1 <j < L. The 
value of each object variable xij,) is selected randomly from a 

feasible range. The values of σ i,j, 1 <j < L are usually equal 
for all elements ei , 1 < i < µ.

Create an intermediate population Pop(t') with µ+1 elements. 
The first µ elements are obtained from Pop(t). 
Create a new offspring e’µ+1 using a recombination operator r 
on Pop(t), i.e. = r(Pop(t)).
Create an offspring using a mutation operator m on ,

i.e.

2. Set t to 0. 
3.

4.

5.

6. Store to Pop(t'). 
7. Select the best µ elements from Pop(t') using the selection 

operator s and store them to the new population Pop(t+1). Thus 
it contains only µ elements.

If the termination function is not true, goto step 3. 
Return an element of the last population as the result of the run. 

The algorithm of (µ+1)-ES. 

8. Increase t by 1. 
9.
10.

Table 3.4: 

Different recombination methods have been proposed (Schewefel 
1981). They can be classified into non-global and global. In the former 
class, two elements ea = ( Xα,σ a) and eb = ( Xb,σ b) are selected from the 
current population Pop(t) using a uniform distribution. For the simplest 
recombination, no actual crossover will be performed. In other words, 
X'µ+1 = Xa and σ 'µ+1 = σ a.
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For the discrete recombination operator, a number of uniform 
random values U j, 1 <j < L are generated and is obtained according 
to the following equations: 

where1 j L.

For the intermediate recombination operator, is obtained 
according to the following equations: 

where1 j L.

In the global recombination operators, L pairs of elements 
(eaj ,ebj) , 1 ≤ j ≤ L are selected randomly using a uniform distribution. 

For the global discrete recombination operator, a number of uniform 
random value values Uj, 1 ≤ j ≤ L are created and is obtained
according to the following equations. 

where1 ≤ j ≤ L.
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For the global intermediate recombination, is obtained 
according to the following equations: 

where1 I j L.

The mating parents for the global recombination of component 
and are chosen anew from the population. Thus, it causes a 

high mixing of the genetic materials of the whole population. Global 
recombination operators address the difficulty of pre-mature convergence 
in ES systems. 

According to the biological observation that offspring are similar 
to their parents and that smaller modifications occur more often than 
larger ones. To achieve the similar effects in ES, the element 

obtained by applying mutation operation on element is specified as: 

where N(0, σ ) is a Gaussian random number with a mean of zero and a 
standard deviation σ, cd and ci are constants, and r is the ratio of 
successful mutations to all mutation. A mutation is successful if the 
mutated offspring performs better than its parent. The idea here is to 
change the strategy variables dynamically until r is 1/5. 

Rechenberg (1973) calculated the convergence rate of an ES 
system for some model functions and found that the convergence rate is 
optimized if r is equal to 1/5. Thus, he suggested the 1/5 rule: The ratio of 
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successful mutations to all mutation should be 1/5. If it is greater than 1/5 
then increase σ by multiplying a constant c,. If it is less than 1/5 then 
decrease σ by multiplying a constant cd. When this rule decreases the 
standard deviation, the search becomes more focused, and the offspring 
are generally closer to their parents. When the standard deviation is 
increased, the search is broadened so that the offspring are further from 
their parents. Schewefel (1981) suggested that cd and ci should be 0.82 and 
1/0.82, respectively. 

The selection operator selects the best µ elements from µ+1
elements according to the objective function F. The termination function 
determines whether the optimization has been found or the computational 
resources are consumed. Different domain-dependent methods can be 
used to implement the termination function. 

(1+1)-ES is the simplest and oldest ES model. The difference 
between it and ( µ+1)-ES is that the population Pop(t) contains only one 
element and only recombination will be performed. It can be designated as 
a kind of probabilistic gradient search technique. There are two main 
drawbacks of (1+1)-ES: The convergence rate is slow because the 
standard deviations are equal in each dimension; the procedure is 
susceptible to stagnation at local minima because of the brittleness of the 
gradient search. 

In the (µ+ λ) -ES, the population size is still µ, but λ offspring are 
created at each generation from µ parents. All µ+ λ elements compete for 
survival, with the best µ elements selected to survive in the next 
generation. Consequently, step 3 in table 3.4 is changed to: 

3'. Create an intermediate population Pop(t') with 
µ+λ elements. The first µ elements are obtained from 

In the (µ, λ )-ES, only the λ offspring compete for survival, and 
the µ parents are replaced in every generation. In other words, each 
element survives for only a generation. Thus, step 3 in table 3.4 is 
changed to: 

3". Create an intermediate population Pop(t') with A 

Because of the nature of this model, λ must be greater than or 
equal to µ In the (µ+l)-ES and (µ, λ )-ES, steps 4 through 6 in table 3.4 
are repeated for λ times to create λ offspring. The mutation operator is 

Pop(t).

elements.
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also extended to allow for meta-control over the evolution process. Let 
be the offspring generated by the recombination 

operator. The mutation operator creates the offspring 
according to the following equations: 

where ∆ σ is a meta-control parameter. It allows the user to control the 
distribution of trials. It should be emphasized that in all models other than 
(1+1)-ES, more than one parent are participated in the recombination. 
Since the strategy variables σ i,j , 1 ≤ j ≤ L are all stored in each element
ei, 1 ≤ i ≤ µ these strategy variables are also involved in the
recombination and evolution. These models allow strategy variables to 
adapt to the landscape of the objective function and thus trials can be 
distributed in an appropriate way. 

3.5. Evolutionary Programming (EP) 

Evolutionary Programming (EP) is a stochastic optimization 
strategy similar to GAs (Fogel et al. 1966, Fogel 1994; 1999). It 
emphasizes the behavioral linkage between parents and their offspring 
rather than emulating some genetic operators found in nature. Differing 
from GAs, EP does not require any specific genotype in the individual. EP 
employs a model of evolution at a higher abstraction. Mutation is the only 
operator used for evolution. 

A typical process of EP is outlined in table 3.5. A set of 
individuals is randomly created to make up the initial population. Each 
individual is evaluated by the fitness function. Then each individual 
produces a child by mutation. There is a distribution of different types of 
mutation, ranging from minor to extreme. Minor modifications in the 
behavior of the offspring occur more frequently and substantial 
modifications occur less frequently. The offspring is evaluated by fitness 
function. Then, tournaments are performed to select the individuals for the 
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next generation. For each individual, a number of rivals are selected 
among the parents and offspring. The tournament score of the individual 
is the number of rivals with lower fitness scores than itself. Individuals 
with higher tournament scores are selected as the population of next 
generation. There is no requirement that the population size is held 
constant. The process is iterated until the termination criterion is satisfied. 

Initialize the generation, t, to be 0. 
• Initialize a population of individual,

• Evaluate the fitness of all individual in

• While the termination criteria is not

Pop(t) . 

Pop(t) . 
satisfied

• Produce one or more offspring from each

• Evaluate the fitness of each offspring.
• Perform a tournament for each

• Put the individuals with high

• Increase the generation t by 1.

individual by mutation. 

individual.

tournament scores into Pop(t+1). 

• Return the individual with the highest
fitness value. 

Table 3.5: A high-level description of EP. 

EP has two characteristics. First, there is no constraint on the 
representation. Mutation operator does not demand a particular genotype. 
The representation can follow from the problem. For example, a Bayesian 
network can be represented in the same manner as it is implemented 
(Wong et al. 1999). 

Second, mutations in EP attempt to preserve behavioral similarity 
between offspring and their parents. An offspring is generally similar to 
its parent at the behavioral level with slight variations. EP assumes that 
the distribution of potential offspring is under a normal distribution 
around the parent. Thus, the severity of mutations follows a statistical 
distribution.
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ES and EP both use a statistical distribution of mutations. 
However, ES typically uses deterministic selection that the worst 
individuals are eliminated, while EP typically uses a stochastic 
tournament selection. EP is an abstraction of evolution at the level of 
species and thus no recombination is used because recombination does not 
occur between species. In contrast, ES is an abstraction of evolution at the 
level of individual behavior and hence recombination is reasonable. 
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Chapter 4

INDUCTIVE LOGIC PROGRAMMING

In the previous chapter, we have presented an overview on 
evolutionary algorithms. Another approach of data mining is Inductive 
Logic Programming (ILP) that investigates the construction of logic 
programs from training examples and background knowledge. ILP is a 
new research field that combines the techniques and theories from 
inductive concept learning and logic programming. ILP systems are more 
powerful than traditional attribute-value based learning systems because 
the former systems use an expressive first-order logic framework to 
represent the concepts acquired and employ background knowledge to 
facilitate the learning. ILP has strong theoretical foundation from 
computational learning theory and logic programming. It has very 
impressive applications in scientific discovery, knowledge acquisition 
and, logic program synthesis (Muggletion 1994, Bratko and King 1994). 
In this chapter, we present a brief introduction to inductive concept 
learning first. Two approaches for ILP are discussed in section 4.2 
followed by an introduction to the techniques and the methods of ILP. 

4.1. Inductive Concept Learning 

The goal of machine learning is to develop techniques and tools 
for building intelligent learning machines. In other words, learning 
machines can improve themselves to perform more efficiently and/or 
more accurately. They can also increase their abilities to process more 
problems. Symbol-level learning refers to the kind of learning that 
increases the efficiency of the system while knowledge-level learning 
improves the accuracy and/or coverage of the system (Dietterich 1986). 
Machine learning paradigms include inductive, deductive, genetic-based
and connectionist learning (Michalski et al. 1983; 1986b, Kodratoff and 
Michalski 1990, Shavlik and Dietterich 1990, Carbonell 1990). 
Multistrategy learning integrates several learning paradigms (Michalski 
and Tecuci 1994). This chapter focuses on supervised, inductive learning 
of a single concept. If U is a universal set of observations, a concept C is
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formalized as a subset of observations in U. Inductive concept learning 
finds descriptions for various target concepts from positive and negative 
training instances of these concepts. In single concept learning, a target 
concept description is induced from training instances labeled positive or 
negative. In multiple concept learning, more than one target concept are 
being learned simultaneously, training examples are labeled by various 
concept names representing their categories. 

In machine learning, formal languages for describing observations 
and concepts are called object and concept description languages, 
respectively. Typically, object description languages are attribute-value
pair descriptions and first-order languages of Horn clauses. Concepts can 
be described extensionally or intensionally. A concept is described 
extensionally by listing the descriptions of all of its instances 
(observations). Thus extensional concepts are represented in the object 
description language. On the other hand, intensional concepts are
expressed in a separate concept description language that permits compact 
and concise concept descriptions. Typical concept description languages
are decision trees, decision lists, production rules, and first-order logic. 

Inductive concept learning can be viewed as searching the space 
of hypotheses. A bias is a mechanism employed by a learning system to 
constrain the search for target hypotheses. A search bias determines how 
to conduct the search in the hypothesis space while a language bias 
determines the size and structure of the hypothesis space. 

A strong search bias, such as the hill-climbing search strategy, 
employs existing knowledge about the size and the structure of the 
hypothesis space to exploit promising solutions so that it can find the 
target concept quickly. However, it may be trapped in a local maximum. 
A weak search bias, such as depth-first and breath-first search, explores 
the space completely; the learner is guaranteed to find the target concept 
that can be represented by the concept description language. Nevertheless, 
a weak bias is very inefficient. In other words, the search bias introduces 
the efficiency/completeness tradeoff into a learning system. 

A strong language bias defines a less expressive description 
language such as the propositional logic. The hypothesis space created by 
the bias is comparatively smaller and the learning can be performed more 
efficiently. Nonetheless, the learner may fail to find the target concept that 
is not contained in the small hypothesis space. A weak bias defines a 
larger space and thus the target concept is more likely to be expressible in 
the space. The disadvantage is that the learner is less efficient. The 
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language bias introduces the efficiency/expressiveness tradeoff into a 
learning system. 

Background knowledge B is a prior knowledge that can be used 
by either the search bias to direct the search more efficient, or the 
languages bias to express the hypothesis space in a more natural and 
concise way. If a learning system is not provided with some a prior 
knowledge about the learning problem, it must learn exclusively from 
training examples. However, difficult learning problems typically require 
a lot of knowledge. The task of supervised inductive learning of a single 
concept C is formulated in table 4.1. 

Given : 
-A set E of positive E+ and negative E- examples
-Concept description language L.
-Search and language bias. 
-Background knowledge B.
A complete and consistent hypothesis H
represented in the language L.
A hypothesis H is complete if every positive 
example e ∈ E+ is covered by it with respect
to B.
A hypothesis H is consistent if no negative 
example e ∈ E- is covered by it with respect to
B.

of a concept C.

Find:

Table 4. I: Supervised inductive learning of a single concept. 

4.2. Inductive Logic Programming (ILP) 

Relational concept learning induces a new relation for the target 
concept (i.e., the target predicate) from training examples and known 
relations from the background knowledge. An ILP system is a relational 
concept learner. The training examples, the hypothesis space, and the 
background knowledge are represented in first-order Horn clause 
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languages (Muggleton and Feng 1990). Tradeoffs between expressiveness 
and efficiency are introduced by some additional restrictions on these 
languages. This section describes two approaches of ILP, interactive and 
empirical ILP. Muggletion and De Raedt (1994) presented a 
comprehensive introduction of theory and methods of ILP. Before 
presenting these approaches, the terminology of logic programming is 
described first (Lloyd 1987). 

The alphabet of a first-order language contains predicate symbols, 
function symbols, and variables. A predicate symbol is a lower case letter 
followed by a string of lower case letters and/or digits. A function symbol 
is a lower case letter followed by a string of lower case letters and/or 
digits. A variable is an upper case letter followed by a string of lower case 
letters and/or digits. 

A term is a variable or a function. A function is a function symbol 
immediately followed by a sequence of terms enclosed in a pair of 
parentheses. The number of terms in the sequence is the arity of the 
function. For example, f (g, h (X, Y) , X) is a function of arity 3 
where f, g, and h are function symbols; and X and Y are variables. A 
constant is a function of arity 0. Thus g is a constant. 

An atomic formula, or atom, is a predicate symbol immediately 
followed by a sequence of terms enclosed in a pair of parentheses. The 
number of terms in the sequence is the arity of the atomic formula. For 
example, mother (X, Y) is an atom of arity 2 where mother is a 
predicate symbol and X and Y are variables. 

A literal can be classified as either a positive literal or a negative
literal. A positive literal L is an atomic formula while a negative literal ¬L 
is the symbol¬ followed by an atomic formula. A clause is a formula of 
the form ∀ X1,X2 ,... ,Xm( L1 ∨ L2 ∨... ∨ Ln) where Li, 1 ≤ i ≤ n are
literals, and X1,X2, ..., X m are variables occurring in the clause. A clause 
∀ X1, , X2, ,..., Xm (L1 ∨ L2 ∨... ∨ Li ∨ ¬ Li +1 ∨ ¬Li +2 ∨... ∨ ¬Ln,) can be

represented as L1 ∨ L2 ∨... ∨ Li ← L i+1 ∧ Li +2 ∧...∨ Ln, . This clause can 
be written as L1,L2,...,Li ← Li+ 1,Li + 2,...,L n where commas on the left-
hand side of ← denote disjunctions while commas on the right-hand side 
represent conjunctions. 

A definite program is a set of definite program clause. A definite
program clause, ∀ X1,X 2,...,Xm(Τ∨ ¬L1 ∨ ¬L2 ∨...∨ ¬Ln), is a clause 
that contains exactly one positive literal. It can be represented as the form 
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T ← L1,L2,...,Ln , where T and L i, 1 i n are atomic formulae. The 
positive literal T in a definite program clause is called the head or goal of 
the clause. The sequence of literals L i, 1 i n is called the body of the 
clause. A Horn clause is a clause that contains at most one positive literal. 
Thus a Horn clause can be either a definite program clause or a definite
goal: a clause with no positive literal. A definite goal can be represented 
as the form ← L1,L2, ..., L n where L i, 1 i n are atomic formulae. A 
positive unit clause is a definite program clause with an empty body. It is 
called a fact in Prolog and is denoted simply as T. 

A normal program is a set of program clauses. A program clause 
is a clause of the form T ← L1,L2,...,Ln where T is an atom and L i, 1 i

n are positive or negative literals. In the programming language Prolog, 
literals of the form not L are allowed in the body of a clause, where L is 
an atom and not is interpreted under the negation-as-failure rule (Clark 
1978).

A predicate definition is a set of program clauses with the same 
predicate symbol (and arity) in their heads. A set of clauses is called a 
theory and represents the conjunction of the clauses. A well-formed
formula is a literal, a clause, and a theory. A well-formed formula or term 
is ground if and only if there is no variable in the formula or term. 

4.2.1. Interactive ILP 

Interactive ILP is often used in incremental and interactive theory 
revision (De Raedt 1992). An interactive ILP system is provided with six 
inputs: 1) a set of correct examples E that has been examined before, 2) 
correct background knowledge B, 3) an incorrect theory T, 4) a concept 
description language L, 5) a new positive or negative training example e, 
and 6) a teacher that can answer questions generated by the system. The 
system modifies the definition of T and creates a new theory T' such that 
it is complete and consistent with respect to all examples seen (i.e. E ∪
{e}) and the background knowledge B.

Shapiro (1983) introduced the idea of refinement operators in the 
MIS system that is used to structure the search space of program clauses. 
The system searches the space in a breadth-first top-down manner. CLINT 
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(De Raedt 1992, De Raedt and Bruynooghe 1989; 1992) generates its own 
learning examples and asks questions about their classifications. It is 
featured with the applications of integrity constraints and its ability in 
changing concept description language dynamically. 

Most interactive ILP systems are based on special forms of the 
general theory of inverse resolution introduced in CIGOL (Muggleton and 
Buntine 1988, Muggleton 1992). The three operators of CIGOL are 
absorption, intraconstruction and truncation. Absorption generalizes
program clauses, intraconstruction learns definitions of new predicates 
and truncation generalizes unit clauses. The concept of absorption was 
first introduced by Sammut and Baneji (1986) in their MARVIN system. 
Wirth (1989) suggested two operators that are similar to absorption and 
intraconstruction. Rouveirol (1 991 ; 1992) introduced a saturation
procedure that overcomes some problems of absorption and truncation. 

4.2.2. Empirical ILP 

The task of empirical ILP is usually concerned with learning a 
single target concept from a given set of training examples and 
background knowledge. The task of empirical ILP is formulated in table 
4.2.

The background knowledge B provides definitions of known 
predicates q i that can be used in the definition of the target predicate p. It 
also provides additional information to ease the search of the definition of 
p. This information includes argument types, symmetry of predicates in 
pairs of arguments, input/output modes, rule models, predicate sets, 
parametrized languages, integrity constraints, determinations, and any 
knowledge that can modify the operations of the search and language 
biases (Lavrac and Dzeroski 1994). 

In the definition, a training example is covered by H given
background knowledge B if e is a logical consequence of B ∪ H. This
notion of coverage is called intensional coverage (Lavrac and Dzeroski 
1994). It allows the background knowledge B to include normal clauses 
and ground facts. For a particular concept description language L, an
appropriate proof procedure must be used to check whether an example is 
entailed by B ∪ H. The SLD-resolution proof procedure with bounded or 
unbounded depth is usually employed to determine whether a training 
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example is entailed (Lloyd 1987). In depth-bounded SLD-resolution,
unresolved goals in the SLD-proof tree at depth h are not expanded and 
are treated as failed. MIS (Shapiro 1983) and CIGOL (Muggleton and 
Buntine 1988) use this proof procedure to prevent infinite loops. 

Given:
-A set E of positive E+ and negative E- training
examples of the target predicate p. Training 
examples are represented as ground atoms 

-A concept description language L
-Search and language bias. 
-Background knowledge B

Find : 
A definition H for the target predicate p 
expressible in L such that H is complete and 
consistent with respect to (w.r.t.) the training 
examples E and the background knowledge B

H is complete if every positive example e+ in E+

is covered by H w.r.t. the background knowledge 
B. i.e. B ∪ H |= e+

H is consistent if no negative example e- in E-

is covered by H w.r.t. the background knowledge 
B. i.e. B ∪ H | ≠ e-

Table 4.2: Definition of Empirical ILP. 

On the other hand, extensional coverage can also be used. In this 
case, extensional background knowledge B containing only ground facts 
must be employed to determine whether an example e is covered (Shapiro 
1983). A hypothesis H extensionally covers an example e with respect to 
an extensional background knowledge B if there exists a clause 
T ← L1, L2, ..., Ln in H and a substitution θ such that Tθ = e and

If the background knowledge B provided by the 
users contains non-ground clauses, the empirical ILP systems have to 
transform it into a ground model of the background knowledge. The 
model contains all true ground facts that can be derived from the 
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background knowledge by a SLD-proof tree of depth less than the depth-
bound h (Shapiro 1983). 

Empirical ILP systems include FOIL (Quinlan 1990; 1991), 
GOLEM (Muggleton and Feng 1990), LINUS (Lavrac and Dzeroski 
1994), mFOIL (Lavrac and Dzeroski 1994), RX (Tangkitvanich and 
Shimura 1992), MOBAL (Morik et al. 1993), and ML-SMART
(Bergadano et al. 1991). FOCL (Pazzani and Kibler 1992) is an extension 
of FOIL that combines ILP and explanation based learning. CHAM 
(Kijsirikul et al. 1992a) is an improvement of FOIL by applying a better 
search heuristics. CHAMP (Kijsirikul et al. 1992b) is an extension of 
CHAM that can invent useful predicates in learning relations. CHILLIN 
(Zelle et al. 1994) combines learning methods of GOLEM, FOIL, and 
CHAMP.

4.3. Techniques and Methods of ILP 

An empirical ILP system can be classified into either a bottom-up
or a top-down learner. 

4.3.1. Bottom-up ILP Systems 

Bottom-up systems search for program clauses by considering 
generalizations. They start from the most specific clause that covers a 
positive training example and then generalizes the clause until it cannot be 
further generalized without covering some negative examples. Two 
common generalization techniques are relative least general 
generalization (rlgg) introduced by Plotkin (1970) and inverse resolution
proposed by Muggletion and Buntine (1988). Muggletion (1992) 
introduced a unifying framework covering both relative least general 
generalization and inverse resolution, based on the notion of a most
specific inverse resolvent. 

A successful representative of this class is GOLEM (Muggletion 
and Feng 1990). GOLEM is based on the construction of relative least-
general generalizations that forces the background knowledge to be 
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expressed extensionally as a set of ground facts. This ground model of 
background knowledge can be excessively large, and the clauses 
constructed from such models can grow explosively. To tackle this 
problem, Muggleton and Feng (1990) introduced the notion of ij-
determination and employed the language bias of inducing only ij-

determinate clauses. GOLEM is also sensitive to the distribution of 
training examples. If only a random sample of positive training examples 
is presented, the induced hypothesis of the target predicate is incomplete. 
Thus, GOLEM may fail to produce general and accurate hypotheses. 

4.3.2. Top-down ILP Systems 

Top-down methods apply specialization operators to learn 
program clauses by searching from general to specific. A specialization
operator s produces a set of clauses C' permitted by the language bias 
from a clause c. It typically computes only the set of most general 
specialization of a clause c under θ -subsumption (Plotkin 1970). Most 
general specialization can be obtained by performing syntactic and/or 
semantic operations on the clause c (Shapiro 1983). Two basic syntactic 
operations on a clause are: 

• applying a substitution θ to the clause, and 

adding a literal to the body of the clause. 

4.3.2.1. FOIL 

One of the most famous empirical top-down ILP system is FOIL 
(Quinlan 1990; 1991, Cameron-Jones and Quinlan 1993; 1994). It 
employs the techniques and methods applied in traditional attribute-value
based learning systems. It also borrows the idea of specialization operators 
from MIS (Shapiro 1983) and the method of determining coverage of
examples from ML-SMART (Bergadano et al. 1991). 

FOIL is restricted to learning function-free program clauses. In 
other words, constants and functions cannot appear in the induced clauses. 
The body of a clause is a conjunction of positive or negative literals. 
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Literals in the body have either a predicate symbol qi from the background 
knowledge B, or the target predicate symbol p. This implies that recursive 
clauses can be learned. When learning clauses with recursive literals, care 
must be taken to avoid infinite recursion. FOIL deals with this issue by 
attempting to establish an ordering on the arguments that may appear in a 
literal. Many sophisticated methods of finding an ordering on the 
arguments have been proposed (Cameron-Jones and Quinlan 1993; 1994). 
For each literal in the body of a clause, one or more of the variables in the 
arguments of the literal must appear in the head of the clause or in one of 
the literals to its left. 

Training examples are function-free ground facts represented as a 
set of constant tuples. Background knowledge B consists of extensional 
predicate definitions. Each extensional predicate definition is a finite set 
of constant tuples representing the concept of the predicate. FOIL uses 
extensional background knowledge for efficiency reasons. Top-down
algorithms can easily use intensionally defined background predicates to 
evaluate various competing hypotheses. An extension of FOIL, FOCL 
(Pazzani and Kibler 1992), allows background knowledge to be 
represented intensionally. 

The FOIL algorithm is composed of three main phases. In the first 
phase, FOIL generates negative examples by applying the closed-world
assumption if no negative example is provided. The second phase is the 
example covering loop. It implements the covering algorithm of AQ and 
INDUCE (Michalski 1983). The loop constructs a hypothesis by 
repeatedly performing the following operations: 

• construct a clause, 

• refine the clause by removing irrelevant literals from the 

add the refined clause to the hypothesis H, and

remove the positive examples covered by the clause from 

clause,
•

•
the set of positive training examples 

until all the positive examples are covered or no more clause can be 
constructed. The last phase further refines the induced hypothesis H by
eliminating irrelevant clauses from the hypothesis. The definitions of 
irrelevant literal and irrelevant clause are presented in Quinlan (1990). 

The procedure that constructs a clause is the most important one 
in the FOIL algorithm. It starts from the most general clause and 
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repeatedly specializes it by adding a literal to the body of the clause. The 
clause construction loop continues until a consistent clause covering at 
least one remaining positive example is found or no more specialization 
can be performed. During each iteration of the loop, a clause c can be 
refined by appending different literals to it. FOIL determines which one to 
be used by employing an information-based heuristics. 

If the training examples are imperfect, FOIL may fail to find a 
consistent clause that covers some positive examples or it may find an 
overfitting clause that covers only a very few number of positive 
examples. Usually, these overfitting clauses cannot characterize the 
regularities in the training examples. 

In FOIL, the noise handling mechanism is the encoding length 
restriction. The idea is that the number of bits required to encode the 
clause should never exceed the total number of bits needed to indicate 
explicitly the positive training examples covered by the clause. Thus, a 
clause covers r positive examples out of n examples in the training set. 

The number of bits available to encode the clause is log2(n) + log2( ) . 

If there is no bit available for adding another literal, but the clause is more 
than 85% accurate, it is retained in the induced set of clauses, otherwise 
the clause is deleted. In the latter case, the clause construction procedure 
fails to produce a clause and it causes the termination of the FOIL 
algorithm. This heuristics avoids overfitting the training examples because 
insignificant literals are excluded from clauses of the inducing hypothesis. 
The obtained hypothesis is usually smaller, simpler, more accurate, and 
more comprehensible. Dzeroski and Lavrac (1993) argued that the 
encoding length restriction has two deficiencies. In exact domains, it 
sometimes prevents FOIL from learning complete description. In noisy 
domains, it allows very specific clauses. 

FOIL has been extended to allow literals that bind a variable to a 
constant to appear in the body of a clause (Quinlan 1991, Cameron-Jones
and Quinlan 1993; 1994). Other improvements include determinate 
literals, types and mode declarations of predicates, and advanced post-
processing methods. 

A fundamental weakness of FOIL is that recursive hypotheses are 
evaluated by employing the positive training examples as a model of the 
target predicate being learned. When the examples are incomplete over the 
domain of interest, they provide an incorrect model and FOIL has 
difficulty in learning even simple recursive concepts (Cohen 1993). 
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4.3.2.2. mFOIL

mFOIL (Lavrac and Dzeroski 1994) is largely based on the FOIL 
algorithm. The main difference is that mFOIL uses a different search 
heuristics and an improved noise-handling mechanism. Another major 
difference is the beam search strategy used in mFOIL as opposed to the 
hill-climbing search used in FOIL. To reduce its search space, mFOIL 
uses some additional information, such as the symmetry and different 
constraints on variables. Several parameters are used in mFOIL, which 
determine the search heuristics used, the width of the beam in the beam 
search, and the level of significance applied to the induced clauses. 

mFOIL employs an accuracy estimate as its search heuristics. The 
accuracy estimate may be the Laplace estimate or the more sophisticated 
m-estimate (Cestnik 1990). Both estimates have been found to be useful in 
improving noise-handling abilities of attribute-value learning systems 
(Cestnik and Bratko 1991, Clark and Boswell 1991). If a clause c covers 
n(c) training examples, out of which n+(c) are positive, its expected 
accuracy can be estimated by either the Laplace estimate 

or the m-estimate

where a-prior-prob+ is the a prior probability of the positive class and is 
estimated by the relative frequency of positive examples in the whole 
training set. 

It uses a beam search method to find a significant clause. The 
clause construction procedure starts with a clause having an empty body. 
During the search, the best clause and a small set of promising clauses are 
stored in the beam. At each iteration of the clause construction loop, the 
significant refinements of each clause c in the beam are evaluated using 
their expected accuracy. The best of their significant improvements 
constitute the new beam. A significant improvement of a clause c is a 
refinement c' of the clause c such that A(c') > A(c) and c' passes the 
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significance test. The search for a clause terminates when the new beam 
becomes empty. The best clause found so far is retained in the hypothesis 
if its expected accuracy is better than the default accuracy. The default 
accuracy, estimated from the entire training set by the relative frequency 
estimate, is the probability of the more frequent of the positive or negative 
classes.

The significance test used in mFOIL is based on the likelihood
ratio statistic (Kalbfleish 1979). Assume that the training set has n+

positive examples and n- negative examples. If a clause c covers n(c)
examples, n+(c) of which are positive, the value of the statistic can be 
calculated as follows: 

where

This statistic is distributed approximately as a χ2 distribution with one 
degree of freedom. If its value is above a specified significance threshold, 
the clause is significant. 

The covering algorithm of AQ and INDUCE (Michalski 1983) is 
used in mFOIL. Program clauses are constructed repetitively. The 
stopping criteria of the example covering loop terminate the search for 
clauses when too few positive examples are left for generating a 
significant clause or no significant clause can be found with expected 
accuracy greater than the default accuracy. 
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Chapter 5 

THE LOGIC GRAMMARS BASED GENETIC 
PROGRAMMING SYSTEM (LOGENPRO) 

As discussed in chapters 3 and 4, Inductive Logic Programming 
(ILP) and Genetic Programming (GP) are two of the approaches in data 
mining. It was demonstrated that ILP can be used to induce knowledge 
represented as logic programs (Dzeroski and Lavrac 1993, Dzeroski 1996, 
Dehaspe and Toivonen, 1999, Srinivasan and King 1999, Blockeel et al. 
1999, Srinivasan 1999). GP (Koza 1992; 1994, Koza et al. 1999, Kinnear 
1994) extends traditional Genetic Algorithms (Holland 1992, Goldberg 
1989, Davis 1987; 1991) to induce automatically S-expressions in Lisp. It 
performs both exploitation of the most promising solutions and 
exploration of the search space. It is featured to tackle hard search 
problems and thus applicable to program induction and data mining. 

In this chapter, we present a framework, called Generic Genetic 
Programming (GGP), that can combine GP and ILP to induce knowledge 
from databases. We can also specify the search space declaratively. This 
framework is based on a formalism of logic grammars and is implemented 
as a data mining system called LOGENPRO (The LOgic grammar based 
GENetic PROgramming system). The formalism is powerful enough to 
represent context-sensitive information and domain-dependent knowledge 
which can be used to accelerate the learning of knowledge. It is also very 
flexible and the knowledge acquired can be represented in different 
knowledge representations such as logic programs and production rules 
(Wong and Leung 1994a; 1994b; 1995a; 1995b; 1997, Wong 1998). 

This chapter is organized as follows. The first section is an 
introduction to logic grammars. Section 5.2 presents a representation 
method of programs and a description of the mechanism used to generate 
the initial population of programs. One of the genetic operators, crossover, 
is detailed in section 5.3. Another genetic operator, mutation, is presented 
in the subsequent section. In section 5.5, we present a high-level
description of LOGENPRO. The last section is a discussion. 
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5.1. Logic Grammars 

The LOgic grammars based GENetic PROgramming system 
(LOGENPRO) can induce programs in various programming languages 
such as Lisp, C, and Prolog. Thus, LOGENPRO must be able to accept 
grammars of different languages and produce programs in them. Most 
modern programming languages are specified in the notation of BNF 
(Backus-Naur form) which is a kind of context-free grammars (CFGs). 
However, LOGENPRO is based on logic grammars because CFGs 
(Hopcroft and Ullman 1979, Lewis and Rapadimitrion 1981) are not 
expressive enough to represent context-sensitive information of some 
languages and domain-dependent knowledge of the target program being 
induced. The idea of using formal grammars to direct search for programs 
in the hypothesis space or to reduce the size of the space has also been 
independently studied by other researcher recently (Cohen 1992, Gruau 
1996, Whigham 1996). This section introduces the formalism of logic 
grammars.

Logic grammars are the generalizations of CFGs. Their 
expressivenesses are much more powerful than those of CFGs, but equally 
amenable to efficient execution. In this book, logic grammars are 
described in a notation similar to that of definite clause grammars (Pereira 
and Warren 1980, Pereira and Shieber 1987, Sterling and Shapiro 1986). 
The logic grammar for some simple S-expressions in table 5.1 will be 
used throughout this chapter. Grammars for some logic programming 
languages can be found in the next chapter. 

A logic grammar differs from a CFG in that the logic grammar 
symbols, whether terminal or non-terminal, may include arguments. The 
arguments can be any term in the grammar. A term is either a logic 
variable, a function, or a constant. A variable is represented by a question 
mark ? followed by a string of letters and/or digits. A function is a 
grammar symbol followed by a bracketed n-tuple of terms and a constant
is simply a 0-arity function. Arguments can be used in a logic grammar to 
enforce context-dependency. Thus, the permissible forms for a constituent 
may depend on the context in which that constituent occurs in the 
program. Another application of arguments is to construct tree structures 
in the course of parsing, such tree structures can provide a representation 
of the semantics of the program. 

The terminal symbols, which are enclosed in square brackets, 
correspond to the set of words of the language specified. For example, the 
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terminal [ ( - ?x ?y) ] creates the constituent (- 1 . 0 2 . 0 ) of a 
program if ?x and ?y are instantiated respectively to 1.0 and 2.0. Non-
terminal symbols are similar to literals in Prolog, exp-1 ( ?x) in table 
5.1 is an example of non-terminal symbol. Commas denote concatenation 
and each grammar rule ends with a full stop. 

1: start -> [(*], exp(W), exp(W), exp(W),
[)] .

2: start -> {member(?x, [W, 2]) }, [(*] , 
exp-1 (?x) , exp-1 ( ?x) , 
exp-1(?x), [)] .

3: start -> {member (?x, [W, 2] ) 1} [ (+] , 
exp-1 (?x) , exp-1 (?x) , 
exp-1(?x), [)]. 

4: exp (?x) -> [(/ ?x 1.5)]. 
5: exp-1(?x) -> {random(1,2,?y) }, [ (/ ?x ?y) ]. 
6: exp-1(?x) -> {random(3,4,?y)}, [(-?x ?y)].
7: exp-1(W) -> [(+ (-w 11) 12)].
Table 5.1: A logic grammar. 

The right-hand side of a grammar rule may contain logic goals 
and grammar symbols. The goals are pure logical predicates for which 
logical definitions have been given. They specify the conditions that must 
be satisfied before the rule can be applied. For example, the goal 
member (?x, [ W, Z] ) in table 5.1 instantiates the variable ?x to
either W or Z if ?x has not been instantiated, otherwise it checks whether 
the value of ?x is either W or Z. If the variable ?y has not been bound, 
the goal random ( 1 , 2, ?y) instantiates ?y to a random floating 
point number between 1 and 2. Otherwise, the goal checks whether the 
value of ?y is between 1 and 2. 

Domain-dependent knowledge can be represented in logic goals. 
For example, consider the following grammar rule: 

a-useful-program-> first-component(?X),
{ is-useful (?X, 
second-component (?Y) . 

?Y) } I 

This rule states that a useful program is composed of two components. 
The first component is generated from the non-terminal first-
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component (?X) . The logic variable ?X is used to store semantic 
information about the first component produced. The logic goal then 
determines whether the first component is useful according to the 
semantic information stored in ? X. Domain-dependent knowledge about 
which program fragments are useful is represented in the logical definition 
of this predicate. If the first component is useful, the logic goal is-
useful (?X, ?Y) is satisfied and some semantic information is stored 
into the logic variable ?Y. This information will be used in the non-
terminal second-component (?Y) to guide the search for a good 
program fragment as the second component of a useful program. 

The special non-terminal start corresponds to a program of the 
language. In table 5.1, some grammar symbols are shown in bold-face to 
identify the constituents that cannot be manipulated by genetic operators. 
For example, the last terminal symbol [ )] of the second rule is revealed 
in bold-face because every S-expression must be ended with a ')'. The 
number before each rule is a label for later discussions. It is not part of the 
grammar.

5.2. Representations of Programs 

One of the fundamental contributions of our framework is in the 
representations of programs in different programming languages 
appropriately so that initial population can be generated easily and the 
genetic operators such as reproduction, mutation, and crossover can be 
performed effectively. A program can be represented as a derivation tree 
that shows how the program has been derived from the logic grammar. 
LOGENPRO applies deduction to randomly generate programs and their 
derivation trees in the language declared by the given grammar. These 
programs form the initial population. For example, the program 
(* (/ w 1.5) (/ W 1.5) (/ W 1.5)) can be generated by 

LOGENPRO given the logic grammar in table 5.1. It is derived from the 
following sequence of derivations: 

start => [(*] exp(W) exp(W) exp(W) [)]
=> [(*] [(/ W 1.5)] exp(W) exp(W) [)]
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=> [(*] [(/ W 1.5)] [(/ W 1.5)] exp(W) 
[)]

=> [(*] [(/ W 1.5)] [(/ W 1.5)]
[(/ W 1.5)] [)] 

=> [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 
This sequence of derivations can be represented as the derivation tree
depicted in figure 5.1. 

In literature, the terms of derivation trees and parse trees are 
usually used interchangeably. However, we will use the term derivation 
trees to refer to the tree structures in our framework and the term parse 
trees to refer to those in GP. The bindings of logic variables are shown in 
italic font and enclosed in a pair of braces. The sub-trees enclosed in a 
dashed rectangular are frozen. In other words, they are generated by bold-
faced grammar symbols and they cannot be modified by genetic operators. 

One advantage of logic grammars is that they specify what is a 
legal program without any explicit reference to the process of program 
generation and parsing. Furthermore, a logic grammar can be translated 
into an efficient logic program that can generate and parse the programs in 
the language declared by the logic grammar (Pereira and Warren 1980, 
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Pereira and Shieber 1987, Abramson and Dahl 1989). In other words, the 
process of program generation and parsing can be achieved by performing 
deduction using the produced logic program. Consequently, the program 
generation and analysis mechanisms of LOGENPRO can be implemented 
using a deduction mechanism based on the logic programs translated from 
the grammars. In the following paragraphs, we discuss the method of 
implementing LOGENPRO using a Prolog-like logic programming 
language.

The differences between the logic programming language used 
and Prolog are listed as follows: 

A variable is represented by a question mark ? followed
by a string of letters and/or digits. 

or spaces. For example, [a b c] and [a, b, c] are
equivalent.

symbol. For example, the symbol [)] in the second rule 
of the grammar in table 5.1 is translated into |)|.

appearing in a logic grammar. 

goal G, the ordering of evaluating these clauses is 
determined randomly. 

• The elements of a list can be separated by either commas 

A pair of ‘ | ’ is used to represent a frozen terminal

A pair of braces encloses a sequence of logic goals 

If there are a number of clauses C1, C2, ..., Cn that match a 

•

•

•

Using the difference list approach (Sterling and Shapiro 1986), a 
grammar rule of the form: 

A0 -> A1, A2, ..., An.
is translated into a logic program clause of the form: 

A0' -> A1 / A2 , . . ., An'.
in the logic programming language. Here, if Ai, for some i between 0 and 
n, is a non-terminal with M arguments, then Ai' is a literal with M+3
arguments. The predicate symbols of Ai and Ai’ are the same. For 
example, A1 is translated into exp (?X, ?Tree, ?Sj, ? Sj+1), for
some j, if Ai is exp (?X) . The literal 
exp (?X, ?Tree, ?Sj, ?Sj+1) states that the sequence of symbols 
between ?Sj and ?Sj+1 is a sentence of the category represented by the 
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non-terminal symbol exp ( ?X) . The derivation tree of the sentence is 
stored in the logic variable ?Tree.

A terminal symbol such as [a b c] is translated to a literal with 
3 arguments: connect ( [a b c] , ?Sj, ?Sj+1), for some j. The
predicate connect is defined as: 

connect (?A, ?SO, ?S1) : -
append(?A, ?S1, ?S0). 

This predicate declares that the list of symbols stored in the logic variable 
?A can be found in the sequence of symbols between ? S 0 and ? S 1. 

IfAk, for some k between 1 and n, is a pair of braces enclosing a
sequence of pure logic goals, i.e., Ak has the form of {Go, G1, . . . . , 
Gm} , then Ak' is obtained from Ak by removing the pair of braces.

This method of translating a logic grammar into a logic program 
is common in the field of natural language processing (Pereira and Warren 
1980, Pereira and Shieber 1987, Abramson and Dahl 1989). The original 
idea of this approach is to rephrase the special purpose formalism of CFGs 
into a general purpose first-order predicate logic (Kowalski 1979, 
Colmerauer 1978, Pereira and Warren 1980). This approach is further 
refined and generalized to Definite Clause Grammars (DCGs) which can 
handle the properties of context-dependency of natural languages 
effectively.

Since DCGs, a kind of logic grammars, can be translated into 
efficient logic programs automatically, parsers and generators for the 
corresponding natural languages can be obtained easily. In other words, 
researchers in the field of natural language processing only declare the 
grammar for a particular natural language, and the translation process will 
produce the corresponding parser and generator for them. Moreover, for 
some cases, the same logic program can be used as both a parser and 
generator at the same time. For example, the grammar depicted in table 
5.1 can be translated into the logic program presented in table 5.2. 
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1' : start (tree(start, [ (*] , ?E1, ?E2, frozen(?E3) , 
|)|) , ?S0, ?S5)
:- connect ( [ (*1 , ?SO, ?S1) , 

exp(W, ?El, ?S1, ?S2) , 
exp(W, ?E2, ?S2, ?S3) , 
exp (W, ?E3, ?S3, ?S4) , 
connect ([) ] , ?S4, ?S5). 

2': start(tree(start, {member(?x, [W, Z])}, [(*], 
?El, ?E2, frozen(?E3), I ) I ) , ?SO, ?S5) 
:- member(?x, [W, Z]), 

connect ( [ (*] , ?SO, ?S1) , 
exp-1 (?x, ?El, ?S1, ?S2) , 
exp-1 (?x, ?E2, ?S2, ?S3) , 
exp-1 (?x, ?E3, ?S3, ?S4) , 
connect([)], ?S4, ?S5). 

3': start(tree(start, {member(?x, [W, Z]) }, [ (t], 
?E1, ?E2, frozen(?E3) , I ) I ) ,?SO, ?S5) 

member (?x, [W, Z] ) , 
connect ( [ (+] , ?SO, ?S1), 
exp-1 (?x, ?E1, ?S1, ?S2) , 
exp-1 (?x, ?E2, ?S2, ?S3) , 
exp-1 (?x, ?E3, ?S3, ?S4) , 
connect ( [) 3 , ?S4, ?S5) . 

.-

4': exp(?x, tree(exp(?x), [ (/ ?x 1.5)1),?SO, ?S1) 
:– connect([(/ ?x 1.5)], ?SO, 

?Sl).
5': exp-1(?x, tree(exp-1(?x), Irandom(1,2,?y) }, 

[ (/ ?x ?y) 1) / ?SO, ?S1) 
:– random(1, 2, ?y), 

connect ( [ (/ ?x ?y) ] , ?SO , 
?S1).

exp-1(?x, tree(exp-1(?x), {random(3,4,?y)},6 ' : 
[(-?x ?y)3)/?SO, ?S1)
:- random(3, 4, ?y), 

connect( [ (-?x ?y)], ?SO,
?S1).

7': exp-1(W, tree(exp-1(W), [(t (-W 11)12)]),?S0,
?S1)
:- connect([(+ (- W 11) 12)],

A logic program obtained from translating the logic grammar 
presented in table 5. I. 

?S0, ?S1). 
Table 5.2: 
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In the clause 1' of the logic program shown in table 5.2, the 
compound term 
tree(start, [(*], ?El, ?E2, frozen(?E3), |)|)
indicates that it is a tree with a root labeled as start . The children of the 
root include the terminal symbol [ (*] , a tree created from the non-
terminal exp (W) , another tree created from the non-terminal exp (W) , a 
frozen tree generated from the non-terminal exp (W) , and the frozen 
terminal|)|.

Thus, a derivation tree can be generated randomly by issuing the 
following query: 

?- start(?T, ?S, []).
This goal can be satisfied by deducing a sentence that is in the language 
specified by the grammar. One solution is: 

?S = [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 
and the corresponding derivation tree is: 

?T = tree(start, [ (*], 
tree(exp(W), [(/ W 1.5)]), 
tree(exp(W), [(/ W 1.5)]), 

[(/ W 1.5)])), 
frozen (tree (exp (W) , 

|) |) 
This is exactly a representation of the derivation tree shown in 

figure 5.1. In fact, the bindings of all logic variables and other information 
are also maintained in the derivation trees to facilitate the genetic 
operations that will be performed on the derivation trees. 

Alternatively, initial programs can be induced by other learning 
systems such as FOIL (Quinlan 1990; 1991) or given by the user. 
LOGENPRO analyzes each program and creates the corresponding 
derivation tree. If the language is ambiguous, multiple derivation trees can 
be generated. LOGENPRO produces only one tree randomly. For 
example, the program (* (/ W 1.5) (/ W 1.5) (/ w 1.5))
can also be derived from the following sequence of derivations: 

start => {member (?x, [W, Z] ) } [ (*] 
exp-1 (?x) exp-1 (?x) exp-1 (?x) [) ] 

[) ] 
=> [ (*I exp-1 (W) exp-1 (W) exp-1 (w) 
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=> [(*] (random(1, 2, ?y)} 

=> [(*] [(/ W 1.5)] exp-1(W) 

=> [(*] [(/ W 1.59)] 

[ (/ W ?y) ] exp-1 (W) exp-1 (W) [ ) ] 

exp-1(W) [ ) 1 

{random (1, 2, ?y) } [(/ W ?y)] 
exp-1(W) [ )] 

exp-1 (W) [ ) 1 

random(1, 2, ?Y)} [(/ w ?y)l [)] 

[(/ W 1.511 [)] 

=> [(*I [(/ W 1.5)1 [(/ W 1.5)] 

=> [(*I [(/ W 1.5)l [(/ W 1.5)] 

=> [(*I [(/ W 1.5)] [(/ W 1.5)] 

=> [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))] 

The derivation tree of this sequence of derivations is depicted in figure 
5.2. The ?y1, ?y2, and ?y3 in the figure are different instances of the logic 
variable ?y appearing in the same or different rules in the grammar. 



LOGENPRO 81 

Using the logic program in table 5.2, a given program such as 
(* (/ w 1.5) (/ W 1.5) (/ W 1.5)) can be analyzed using 

the following query: 
?-start (?T, 

[(* (/ W 1.5) (/ W 1.5) (/ W 1.5))], [ ]). 
The given program is correct if the above goal can be satisfied and the 
corresponding derivation tree will be bound to the logic variable ?T. As
demonstrated previously, the logic grammar in table 5.1 is ambiguous and 
thus the corresponding logic program may produce multiple derivation 
trees for a given program. Since the search strategy of the underlying 
deduction mechanism selects randomly one clause to explore with 
backtracking from all unifiable clauses, the sequence of generating the 
derivation trees of a particular program is also random. Consequently, 
LOGENPRO takes the first tree returned from the query to represent the 
given program. 

5.3. Crossover of Programs 

The crossover is a sexual operation that starts with two parental 
programs and the corresponding derivation trees. One program is 
designated as the primary parent and the other one as the secondary 
parent. The derivation trees of the primary and secondary parents are 
called the primary and secondary derivation trees respectively. The 
algorithm in table 5.3 is used to produce an offspring program. 

Consider two parental programs generated randomly from the 
grammar in table 5.1. The primary parent is (+ ( - Z 3 .5 ) ( -
Z 3.8) (/ Z 1.5) ) and the secondary parent is 
(* (/ W 1.5) (+ (-W 11) 12) (-W 3.5)). The

corresponding derivation trees are depicted in figures 5.3 and 5.4 
respectively. In the figures, the plain numbers identify sub-trees of these 
derivation trees, while the underlined numbers indicate the grammar rules 
used in deducing the corresponding sub-trees.

In step 1 of the crossover algorithm, the global variable 
PRIMARY-SUB-TREES contains the sub-trees 2, 3, 5, 6, and 8. The
primary derivation tree (i.e. the sub-tree 0), the sub-trees 1, 4, 7, and 10
that contain logic goals, and the frozen sub-trees 9, 10, 11, and 12 are



82 Chapter 5 

excluded. The whole primary derivation tree cannot be mated because it 
must be generated from the grammar symbol start. If the symbol 
start is not recursive (i.e. start does not appear on the right hand side 
of a rule), the whole secondary derivation tree must be chosen for 
crossover. Thus, the offspring program must be a copy of the secondary 
parental program. In fact, the same effect can be obtained by reproducing 
the secondary parental program. 

The sub-trees containing logic goals are eliminated for two 
reasons. Firstly, the crossover algorithm can be greatly simplified if logic 
goals are prevented from performing crossover. Secondly, logic goals 
specific the conditions that must be satisfied before the rule can be applied 
and/or the computations that should be done. Hence, from the viewpoint 
of natural selection and reproduction, the interpretation of crossover 
between logic goals is unclear and unnatural. Thus this kind of operations 
is avoided. 

Similarly, the sub-trees 13, 15, 16, 18, 19, and 20 are assigned to 
the global variable SECONDARY-SUB-TREES in step 2. In the next 
step, a sub-tree in the variable PRIMARY-SUB-TREES is selected 
randomly using a uniform distribution because the variable is not empty. 
Assume that the sub-tree 2, the SEL-PRIMARY-SUB-TREE, is selected. 
Thus, it is removed from the variable PRIMARY-SUB-TREES in step 4. 
A copy of the variable SECONDARY-SUB-TREES is made and stored 
into the global variable TEMP-SECONDARY-SUB-TREES in step 5.

Steps 6 to 8 form a loop that finds an appropriate sub-tree from 
the variable TEMP-SECONDARY-SUB-TREES. A sub-tree, SEL-
SECONDARY-SUB-TREE, is appropriate if a valid offspring can be 
obtained by executing crossover between the SEL-PRIMARY-SUB-
TREE and the SEL-SECONDARY-SUB-TREE. If no appropriate sub-
tree can be found in this loop, the algorithm returns back to step 3 to find
another SEL-PRIMARY-SUB-TREE. Assume that the sub-tree 15 is
chosen as the SEL-SECONDARY-SUB-TREE. Step 8 determines 
whether a valid offspring can be obtained. It is the most complicate 
procedure in this algorithm and it is delineated in table 5.4 and explained 
in the following paragraphs. 

In step 11 of the algorithm shown in table 5.4, the sub-trees 1, 3, 
6, 9, and 12 are found to be the siblings of the SEL-PRIMARY-SUB-
TREE 2 and stored into the global variable SIBLINGS. The SIBLINGS 
can be thought as the context around the PRIMARY-CROSSOVER-
POINT and the context’s consistency has to be checked and computed. 
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The purpose of step 12 is to remove the bindings established solely by the 
SEL-PRIMARY-SUB-TREE which will be deleted by the crossover 
operation. To achieve this goal, the bindings of each sub-tree in the 
variable SIBLINGS is modified so that only the bindings established by 
itself is retained. The bindings instantiated by a sub-tree can be found 
easily using the techniques of explanation-based learning (DeJong 1993, 
Mitchell et al. 1986, DeJong and Mooney 1986). For example, the 
bindings { ?x / Z } of the sub-tree 1 needs not be modified because the 
logic variable ?x is instantiated to the value Z by the logic goal 
member (?x, [W, Z] ). The bindings {?x/Z} of the sub-tree 3 is 
changed to an empty list because the logic variable ?x is bound to the 
value Z by the sub-tree 1. Similarly, the bindings { ?x/Z } of the sub-
trees 6 and 9 are changed to empty lists. The bindings of the sub-tree 12 is
not changed because it is already empty. 

In step 13, the bindings of the SEL-SECONDARY-SUB-TREE is 
modified so that only the bindings established by itself is retained. The 
purpose is to identify the effect of the sub-tree on the logic variables. In 
this example, since the grammar symbol of the SEL-SECONDARY-SUB-
TREE 15 has no argument, its bindings is empty. In fact, the primary and 
secondary derivation trees are pre-processed by LOGENPRO using an 
algorithm based on the techniques of Explanation-Based Learning (EBL). 
The algorithm finds the bindings established solely by the corresponding 
sub-trees of the derivation trees. The results are stored in the sub-trees so 
that they can be retrieved in constant time Cr. Thus the time complexity of 
step 12 is O(n) where n is the number of sub-trees in the global variable 
SIBLINGS. Similarly, the time complexity of step 13 is O(1).

In step 14, the second grammar rule is satisfied by the sub-trees in 
SIBLINGS and the SEL-SECONDARY-SUB-TREE. Moreover, this rule 
reaches the conclusion start which is consistent with the requirement of 
the parent, the sub-tree 0, of the SEL-PRIMARY-SUB-TREE. Thus, the 
offspring generated is valid. The procedure that checks whether a 
conclusion is consistent is presented in table 5.5. 
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Input:
P: The primary derivation tree. 
S: The secondary derivation tree. 

output : 
Return a new derivation tree if a valid offspring can be obtained 
by performing crossover, otherwise return false. 

Function crossover (P, S) 
{

1. Find all sub-trees of the primary derivation tree P
and store them into a global variable PRIMARY-SUB-
TREES, excluding the primary derivation tree, all 
logic goals, and frozen sub-trees.

2. Find all sub-trees of the secondary derivation tree S 
and store them into a global variable SECONDARY-SUB-
TREES, excluding all logic goals and frozen sub- 
trees.

3. If the variable PRIMARY-SUB-TREES is not ampty, 
select randomly a sub-tree from it using a uniform 
distribution. Otherwise, terminate the algorithm 
without generating any offspring program. 

4. Designate the sub-tree selected as the SEL-PRIMARY-
SUB-TREE and the root of it as the PRIMARY-CROSSOVER-
POINT. Remove the SEL-PRIMARY-SUB-TREE from the
variable PRIMARY-SUB-TREES.

5. Copy the variable SECONDARY-SUB-TREES to the 
temporary variable TEMP-SECONDARY-SUB-TREES.

6 If the variable TEMP-SECONDARY-SUB-TREES is not 
empty, select randomly a sub-tree from it using a 
uniform distribution. Otherwise, go to step 3. 

7. Designate the sub-tree selected in step 6 as the SEL-
SECONDARY-SUB-TREE. Remove it from the variable TEMP- 

8. If the offspring produced by performing crossover 
between the SEL-PRIMARY-SUB-TREE and the SEL-
SECONDARY-SUB-TREE is invalid according to the 
grammar, go to step 6. The validity of the offspring 
generated can be checked by the procedure is-valid(P, 

9. Copy the genetic materials of the primary parent P to 
the offspring, remove the SEL-PRIMARY-SUB-TREE from 
it and then impregnating a copy of the SEL-SECONDARY-
SUB-TREE at the PRIMARY-CROSSOVER-POINT.

10. Perform some house-keeping tasks and return the
offspring program. 

SECONDARY-SUB-TREES.

SEL-PRIMARY-SUB-TREE, SEL-SECONDARY-SUB-TREE).

}

Table 5.3: The crossover algorithm of LOGENPR0. 
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Input:
P: The primary derivation tree 
P-sub-tree: The sub-tree in the primary derivation tree 

S-sub-tree: The sub-tree in the secondary derivation tree 
that is selected to be crossed over. 

that is selected to be crossed over. 

output:
Return true if the offspring generated is valid, otherwise return 
false.

Function is-valid(P, P-sub-tree, S-sub-tree)

11. Find all siblings of the P-sub-tree in P and store 

12. For each sub-tree in the variable SIBLINGS, perform 

l Store the bindings of the sub-tree to the 
global variable BINDINGS. 

l For each logic variable in the variable 
BINDINGS that is not instantiated by the sub-
tree, remove it from the variable BINDINGS. 

{
them into the global variable SIBLINGS. 

the following sub-steps:

l Modify the bindings of the sub-tree.
13. Modify the bindings of the S-sub-tree. A logic 

variable is retained only if it is instantiated in 
the S-sub-tree.

14. If there is a rule in the grammar such that: 
l it is satisfied by the sub-trees in the 

variable SIBLINGS and the S-sub-tree,
l the sub-trees in the variable SIBLINGS and the 

S-sub-tree are used exactly once, 
l the sub-trees are applied in the same order as 

that in the original rule of the primary 
derivation tree, and 

l a consistent conclusion C is deduced from the 
rule. The conclusion is consistent if the 
function is-consistent (P, PARENT, C) returns 
true where PARENT is the parent of the P-sub-
tree. The function is-consistent is presented 
in table 5.5. 

then the offspring generated will be valid. 
Otherwise, the offspring will be invalid. 

}

Table 5.4: The algorithm that checks whether the offspring produced by 
LOGENPRO is valid. 
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Input:
P: The primary derivation tree. 
PARENT: The parent of the primary sub-tree.
C: The conclusion. 

Return true if the conclusion C is consistent, otherwise return 
false.

This operation can be viewed as performing a tentative crossover 
between PARENT and C and then determining whether the tentative 
offspring produced is valid. Here, PARENT is treated as the 
primary sub-tree while C is treated as the secondary sub-tree of 
the tentative crossover operation. The main difference between 
this algorithm and that in table 5.4 is that all rule 
applications in all ancestors of PARENT must be maintained. 

output:

Comment : 

Function is-consistent (P, PARENT, C) 

15. If PARENT is the root of P then {
if C is labeled with the symbol start then

else false. 
return true 

16. Find all siblings of PARENT in P and store them into 

17. For each sub-tree in the variable SIBLINGS, perform 

Store the bindings of the sub-tree to the 
global variable BINDINGS. 
For each logic variable in the variable 
BINDINGS that is not instantiated by the sub-
tree, remove it from the variable BINDINGS. 

the global variable SIBLINGS. 

the following sub-steps:

Modify the bindings of the sub-tree.
18. Let the grammar rule applied in the parent node of 

PARENT as RULE. 
If the following conditions are satisfied: 

RULE is satisfied by the sub-trees in the 
variable SIBLINGS and C, 
the sub-trees in SIBLINGS and C are used 
exactly once and the ordering of applications 
is maintained, and 
a consistent conclusion C ' is deduced from 
RULE. The conclusion is consistent if the 
function is-consistent(P, GRANDPARENT, C ’) 
returns true where GRANDPARENT is the parent 
node of PARENT. 

return true 

return false. 

then

else

}
Table 5.5: The algorithm that checks whether a conclusion deduced from a rule is 

consistent with the direct parent of the primary sub-tree.
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In step 9 of the crossover algorithm in table 5.3, the offspring is 
generated. In the next step, it is returned as the solution after some house-
keeping tasks have been performed. The house-keeping tasks update the 
bindings and the rule numbers of the sub-trees of the offspring. The 
offspring program of this example is (* (-z 3.5) (-

( / Z 1 .5 ) ) and its derivation tree is shown in figure 5.5. It 
is interesting to find that the sub-tree 25 has the rule number 2. This 
indicates that the sub-tree is generated by the second grammar rule rather 
than the third rule applied to the primary parent. The second rule must be 
used because the terminal symbol [ (+] is changed to [ ( * ] and only the 
second rule can create the terminal [ (*] . In fact, this situation is 
identified in step 14 of the function is-valid and a record is 
maintained so that the rule number can be changed to 2 by the house-
keeping procedure. 

Z 3 . 8 )
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In another example, the same primary and secondary parents are 
used. Assume that the SEL-PRIMARY-SUB-TREE 3 is selected in step 3 
and the SEL-SECONDARY-SUB-TREE 16 is chosen in step 7 of the 
crossover algorithm. Now, the siblings of the SEL-PRIMARY-SUB-
TREE 3 are the sub-trees 1, 2, 6, 9, and 12. Although the SEL-
PRIMARY-SUB-TREE has the bindings { ? x / Z } , the instantiation of the 
logic variable ?x to value Z is done by the sub-tree 1. In other words, the 
SEL-PRIMARY-SUB-TREE has not established any binding. In step 12 
of the function is-valid, the bindings { ?x/Z } of the sub-tree 1 is not 
modified because the logic variable ?x is instantiated to the value Z by 
the logic goal member (?x,[w, Z]). The bindings of the sub-trees 2
and 12 are not changed because they are already empty. The bindings 
{ ?x/Z } of the sub-trees 6 is changed to an empty list because the logic 
variable ?x is bound to the value Z by the sub-tree 1. Similarly, the 
bindings { ?x/ Z } of the sub-tree 9 is changed to an empty list. 

The SEL-SECONDARY-SUB-TREE has the bindings { ?x/W} ,
but the instantiation of ?x is performed by the sub-tree 14. Thus, the 
bindings of the SEL-SECONDARY-SUB-TREE is changed in step 13 to 
an empty list (i.e. the logic variable ?x is not instantiated). In step 14, 
since the third rule satisfies all requirements, a valid offspring can be 
created.

The offspring program is (+ (/ Z 1.5) (-
Z 3 . 8 ) ( / Z 1 .5) ) and its derivation tree is depicted in figure 5.6. 

It should be emphasized that the constituent from the secondary parent is 
changed from (/ W 1 .5) to (/ Z 1.5) in the offspring. This must 
be modified because the logic variable ?x in the sub-tree 41 is instantiated 
to Z in the sub-tree 39. The house-keeping procedure modifies the 
bindings of 41 in order to achieve this effect. This example demonstrates 
the use of logic grammars to enforce contextual-dependency between 
different constituents of a program. 

As a further example, the same primary and secondary parents are 
used. Assume that the SEL-PRIMARY-SUB-TREE 6 is selected in step 3 
of the crossover algorithm and the SEL-SECONDARY-SUB-TREE 19 is
chosen in step 7. The variable SIBLINGS contains the sub-trees 1, 2, 3, 9, 
and 12. In step 12 of the function is-valid, the bindings { ?x/Z} of
the sub-tree 1 is not modified. The bindings of the sub-trees 2 and 12 are
not modified because they are already empty. The bindings { ?x / Z } of
the sub-trees 3 and 9 are changed to empty lists because the logic variable 
?x is bound to the value Z by the sub-tree 1.
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The SEL-SECONDARY-SUB-TREE 19 has the bindings 
{ ? x /W } . This sub-tree is generated from the rule 7 and the application of 
this rule will instantiate the logic variable ?x to the value W. In other 
words, the SEL-SECONDARY-SUB-TREE performs the instantiation of 
?x to W. Thus, the bindings of the SEL-SECONDARY-SUB-TREE is not 
changed in step 13. It must be mentioned that the sub-tree 14 also
instantiates ?x to W. Since the two sub-trees bind ?x to the same value W,
this situation is valid. In step 14, no rule can be satisfied by the sub-trees
in the variable SIBLINGS and the SEL-SECONDARY-SUB-TREE.
Thus, the two sub-trees 6 and 19 cannot be mated. The reason is that the 
same logic variable ?x must be instantiated to different values Z and W:
the sub-tree 19 requires the variable ?x to be instantiated to W while ?x
must be instantiated to Z in the context of the primary parent. The 
function is-valid in table 5.4 can determine this situation and avoid 
the crossover algorithm from generating an offspring by exchanging the 
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two sub-trees. Thus, only valid offspring can be produced and this 
operation can be achieved effectively. 

In the following paragraphs, we estimate the time complexity of 
the crossover algorithm. Let the numbers of sub-trees in the primary and 
secondary derivation trees are respectively Np and Ns. The numbers of 
sub-trees in the global variables PRIMARY-SUB-TREES and 
SECONDARY-SUB-TREES are respectively N'p and N's . Assume that 
the depth of the primary derivation tree is Dp (Depth starts from 0). Hence 
there are Dp rule applications along the longest path from the root to the 
leaf node. Let R be the grammar rule having the largest number of 
symbols on its right hand side. Then S is the number of symbols on the 
right hand side of R.

Since the most time-consuming operation of the crossover 
algorithm is step 8 which calls the function is-valid. We concentrate 
on the time complexity of this step first. In the worst case, this step will 
calls is-valid for N'p * N's times. In each execution of the function 
is-valid, the purpose of steps 11 to 13 is to find the bindings 
established solely by the SEL-SECONDARY-SUB-TREE and the 
siblings of the SEL-PRIMARY-SUB-TREE. Since the total number of 
sub-trees to be examined must be equal to or smaller than S, the steps can 
be completed in S*Cr time, where Cr is the constant time to retrieve the 
bindings established solely by a particular sub-tree of the sub-trees being 
examined.

Step 14 is a loop that finds a grammar rule that can be satisfied. 
Suppose that the parent of the SEL-PRIMARY-SUB-TREE generates 
program fragments belonging to the category CAT. The loop examines all 
grammar rules for the category CAT. If there are Nr rules for CAT, step 14 
repeats for Nr times.

In each iteration of step 14, the first three operations check 
whether the rule is satisfiable. These operations can be viewed as 
determining whether the SEL-SECONDARY-SUB-TREE and the sub-
trees in the global variable SIBLINGS are unificable according to the rule 
(Mooney 1989). Since an efficient, linear time algorithm exists for 
unification (Paterson and Wegman 1978). These operations can be 
completed in O(S) time (Mooney 1989). 

The last operation of step 14 applies the function is-
consistent whose time complexity depends on the depth Dc of the 
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PRIMARY-CROSSOVER-POINT, where Dc Dp. There are three cases 
to be considered. Firstly, Dc cannot be equal to zero because the whole 
primary derivation tree cannot be crossed over with the SEL-
SECONDARY-SUB-TREE. Secondly, if Dc is equal to 1, the function 
is-consistent can be completed in constant time C1 because step 15 
will be executed. Lastly, if Dc is greater than or equal to 2, the function 
is-consistent will recursively check the rules from the grandparent 
of the SEL-PRIMARY-SUB-TREE to the root of the primary derivation 
tree, to determine whether the rules are satisfied. As described previously, 
steps 16 and 17 can be completed in S*Cr time and each rule can be 
checked in O(S) time. In the worst case, the recursive process iterates for 
D, times. Hence the function is-consistent can be completed in 
[(Dc – 1) * ( O(S) + S * Cr) + C1 ] time. 

In summary, each execution of the function is -valid requires
Tis-valid time which is presented in follows: 

Tis-valid = S*Cr+Nr*[ O( S)+((Dc – 1)*(O(S )+S*Cr)+C1)]

In the worst case, the depth Dc of the PRIMARY-CROSSOVER- 
POINT is equal to Dp. Then the worst case time complexity of the 
function is-valid is:

Tis-valid = S * Cr + Nr * [ O(S) + (( Dp – 1) * ( O(S) + S * Cr) + C1)]

and the worst case time complexity of the crossover algorithm is: 

Tcrossover = N'p * N's *Tis-valid + T1 + T2 + T3 + T4

where T1 is the time used to perform steps 1 and 2, T2 is the time 
employed to execute steps 3 and 4, T3 is the execution time for steps 5 to 
7, and T4 is the time consumed by steps 9 and 10. 

Obviously, T1 depends on the sizes of the primary and secondary 
derivation trees, thus its complexity is O(Np + Ns). If the sub-trees in the 
variable PRIMARY-SUB-TREES are permuted randomly using an 
O( Np) algorithm (Cormen et al. 1990) before executing steps 3 and 4, 

these steps can be completed in T2 = O( N'p ) time. Similarly, steps 5, 6, 

and 7 can be completed in T3 = O( N'p * N's ) time. T4 depends on the sizes 
of the primary and secondary derivation trees, thus its complexity is O(Np

+ Ns).
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Assume that the first term of the above equation is much larger 
than the other terms, then the worst case time complexity is approximated 
by the following equation: 

Tcrossover ≅ O( N'p * N's *Dp *S * Nr).

If the primary derivation tree is a complete m-ary tree, then 

= Np. In other words, Dp is of the order of log m(Np).

Furthermore, S and Nr are fixed for a given grammar. Thus, the worst case 
time complexity of the crossover algorithm is: 

m(Dp +1) -1

m-1

Tcrossover ≅ O(N'p * N's *logm(Np )).

Since the computation time consumed by performing crossover is 
insignificant when compare with the time used in evaluating the fitness of 
each program in the population. The issue of computational complexities 
of various crossover algorithms has not been addressed by other 
researchers in the field of Genetic Programming. In fact, it is easy to 
calculate that the worst case time complexity of the structure-preserving
crossover algorithm of ADF (Koza 1994) is O( Np 1 * Np

2
), where Np1 and

Np 2
are respectively the sizes of the parental parse trees. Similarly, the 

crossover algorithm of STGP (Montana 1995) has the same complexity. 
Although the crossover algorithm of LOGENPRO is slightly slower than 
other algorithms by O(logm(Np)), it is much more general and powerful 
than other algorithms. 
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5.4. Mutation of programs 

The mutation operation in LOGENPRO introduces random 
modifications to programs in the population. Mutation is asexual and 
operates on only one program each time. A program in the population is 
selected as the parental program. The selection is based on various 
methods such as fitness proportionate and tournament selections. The 
algorithm in table 5.6 is used to produce an offspring program by 
mutation.

For example, assume that the program being mutated is (+ (-
Z 3.5) (-Z 3.8) (/ Z 1.5)) and the corresponding 

derivation tree is depicted in figure 5.3. In step 1 of the mutation 
algorithm, the global variable SUB-TREES contains the sub-trees 0, 3, 
and 6. The frozen sub-trees 9, 10, 11, and 12 are excluded. The sub-trees
1, 4, and 7 are also excluded because they contain logic goals of the 
grammar and thus should not be modified by genetic operations. The sub-
trees 2, 5, and 8 containing terminal symbols are eliminated for two 
reasons. First, the mutation algorithm is significantly simplified if terminal 
symbol need not be modified. Second, the effect of mutating terminal 
symbols can be emulated by the crossover operation. Recalling the 
example described in the previous section, the primary sub-tree 2 are
crossed with the secondary sub-tree 15 to generate the offspring (* (-
Z 3.5) (-Z 3.8) (/ Z 1.5)). This offspring can be seen as

the result of mutating the terminal symbol [ (+ ] to the [ ( * ] . 
In step 2, a sub-tree in the variable SUB-TREES is selected 

randomly using a uniform distribution if the SUB-TREES is not empty. 
Otherwise, the mutation algorithm terminates without generating any 
modified program because no valid mutation can be found. In normal 
situation, this should not occur because it is almost always possible to 
select the whole derivation tree as the one to be mutated. The whole tree 
cannot be chosen only if it is frozen. The effect of mutating the whole 
tree, the sub-tree 0 in this example, is equivalent to generating a new 
program from scratch. A new program can be created successfully if the 
language specified by the grammar contains at least one program (this 
must be true for a grammar to be useful) and enough computational 
resources such as computer memory are available. Thus, the algorithm 
will fail to find a mutation only if the whole derivation tree is frozen or 
not enough computational resources are available. 
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Input:
P: The derivation tree of the parental program 

output : 
Return a new derivation tree if a valid offspring can be obtained 
by performing mutation, otherwise return false. 

Function mutation(P) 

1. Find all sub-trees of the derivation tree P of the 
parental program and store them into a global 
variable SUB-TREES, excluding all frozen sub-trees,
logic goals, and terminal symbols 

2. If SUB-TREES is not empty, select randomly a sub-tree
from the SUB-TREES using a uniform distribution. 
Otherwise, terminate the algorithm without generating 
any offspring. 

3. Designate the sub-tree selected as MUTATED-SUB-TREE.
The root of the MUTATED-SUB-TREE is called the 
MUTATE-POINT. Remove the MUTATED-SUB-TREE from the 
variable SUB-TREES. The MUTATED-SUB-TREE must be 
generated from a non-terminal symbol of the grammar. 
Designate this non-terminal symbol as NON-TERMINAL.
The NON-TERMINAL may have a list of arguments called 
ARGS . 

4. For each argument in the ARGS, if it contains some 
logic variables, determine whether these variables 
are instantiated by other constituent of the 
derivation tree. If they are, bind the instantiated 
value to the variable. Otherwise, the variable is 
unbounded. Store the modified bindings to a global
variable NEW-BINDINGS.

5. Create a new non-terminal symbol NEW-NON-TERMINAL
from the NON-TERMINAL and the bindings in the
variable NEW-BINDINGS.

6. Try to generate a new derivation tree NEW-SUB-TREE
from the NEW-NON-TERMINAL using the deduction
mechanism provided by LOGENPRO. 

7. If a new derivation tree can be successfully created, 
the offspring is obtained by deleting the MUTATED-
SUB-TREE from a copy of the parental derivation tree 
P and then impregnating the NEW-SUB-TREE at the 
MUTATE-POINT. Otherwise, go to step 3. 

{

}
Table 5.6: The mutation algorithm. 

Assume that the sub-tree 3 is selected as the MUTATED-SUB-
TREE in step 2. In the next step, the sub-tree 3 is removed from the 
variable SUB-TREES. The NON-TERMINAL and the ARGS are exp-
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1 ( ?x) and { ?x} respectively. Since the logic variable ?x is instantiated 
to Z in the sub-tree 1 by the logic goal member ( ?x , [ W , Z] ) , the
bindings { ?x/Z } is stored into the variable NEW-BINDINGS in step 4. 

In step 5, the new non-terminal NEW-NON-TERMINAL exp-
1 ( Z ) is created. Using this mechanism, contextual-dependent
information can be transmitted between different parts of a program. In 
step 6, a new derivation tree for the S-expression (/ Z 1.9) can be 
obtained from the non-terminal symbol exp-1 (Z) using the fifth rule of 
the grammar. This derivation tree is displayed in figure 5.7. 

Since the NEW-SUB-TREE can be found, a new offspring is 
obtained by duplicating the genetic materials of its parental derivation 
tree, followed by deleting the MUTATED-SUB-TREE from the 
duplication, and then pasting the NEW-SUB-TREE at the MUTATE-
POINT. The derivation tree of the offspring (+ (/ Z 1.9) (–

LOGENPRO has an efficient implementation of the mutation 
algorithm. Moreover, an inference engine has been developed for 
deducing derivation trees (or programs) from a logic grammar given. 
Thus, only valid mutations can be performed and this operation can be 
achieved effectively and efficiently. 

Z 3.8) (/ Z 1.5) ) can be found in figure 5.8. 
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5.5. The Evolution Process of LOGENPRO 

The problem of inducing S-expressions or logic programs can be 
formulated as a search for a highly fit program in the space of all possible 
programs (Mitchell 1982). In GP, this space is determined by the syntax 
of S-expressions in Lisp and the sets of terminals and functions. The 
search space of ILP is determined by the syntax of logic programs and the 
background knowledge. Thus, the search space is fixed once these 
elements are decided. On the other hand, the search space can be specified 
declaratively under the framework proposed because the space is 
determined by the logic grammar given. 

LOGENPRO starts with an initial population of programs 
generated randomly, induced by other learning systems, or provided by 
the user. Logic grammars provide declarative descriptions of the valid 
programs that can appear in the initial population. A fitness function must 
be defined by the user to evaluate the fitness values of the programs. 
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Typically, each program is run over a set of fitness cases and the fitness 
function estimates its fitness by performing some statistical operations 
(e.g. average) to the values returned by this program. 

Since each program generated in the evolution process must be 
executed. A compiler or an interpreter for the corresponding programming 
language must be available. This compiler or interpreter is called by the 
fitness function to compile or interpret the created programs. LOGENPRO 
can guarantee only that valid programs in the language specified by the 
logic grammar will be generated. However, it cannot ensure that the 
produced programs can be successfully compiled or interpreted if the 
appropriate compiler/interpreter is not provided by the user. Thus, the user 
must be very careful in designing the logic grammar and the fitness 
function. A high-level algorithm of LOGENPRO is presented in table 5.7. 

The initial programs in generation 0 normally have poor 
performances. However, some programs in the population will be fitter 
than the others. Fitness of each program in the generation is estimated and 
the following process is iterated over many generations until the 
termination criterion is satisfied. The reproduction, sexual crossover, and 
asexual mutation are used to create new generation of programs from the 
current one. The reproduction involves selecting a program from the 
current generation and allowing it to survive by copying it into the next 
generation. Either fitness proportionate or tournament selection can be 
used.

The crossover is used to create a single offspring program from 
two parental programs selected. Mutation creates a modified offspring 
program from a parental program selected. Unlike crossover, the offspring 
program is usually similar to the parent program. Logic grammars are 
used to constraint the offspring programs that can be produced by these 
genetic operations. 

This algorithm will produce populations of programs which tend 
to exhibit increasing average of fitness. LOGENPRO returns the best 
program found in any generation of a run as the result. 
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Input:
Grammar: It is a logic grammar that specifies the search space 
t The termination function. 
f The fitness function. 

of programs. 

output:
A logic program induced by LOGENPRO. 

Function LOGENPRO(Grammar, t, f) 
{

Translate the Grammar to a logic program.
generation := 0. 
Initialize a population Pop(generation) of programs. They are 
generated by issuing the query ?-start(?Tree, ?S , [ ]), 
provided from the user, or generated by other learning 
systems. If a program, Prog, is provide by the user or 
generated by other learning systems, the program is 
translated to a derivation tree using the query 
?-start(?Tree, ?P, [ ]) where ?P contains the program Prog. 
Execute each program in the Pop(generation) and assign it a 
fitness value according to the fitness function f. 
While the termination function t is not satisfied do 

Create a new population Pop(generation+1) of programs 
by employing the reproduction, the crossover and the 
mutation. The operations are applied to programs 
chosen by either the fitness proportionate or
tournament selections. 
population Pop(generation+1) 
Evaluate the fitness of each individual in the next 
generation := generation + 1. 

Return the best program found in any generation of the run. 
}

Table 5.7: A high-level algorithm of LOGENPRO. 

5.6. Discussion 

We have proposed a framework for combining GP and ILP. This 
framework is based on a formalism of logic grammars. The formalism can 
represent context-sensitive information and domain-dependent
knowledge. It is also very flexible and programs in various programming 
languages such as Lisp, Prolog, and C can be induced. 
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Since the framework is very flexible, different representations 
employed in other inductive learning systems can be specified easily. It 
facilitates the integration of LOGENPRO with other learning systems. 
One approach is to incorporate the learning techniques of other systems 
into LOGENPRO. These techniques include information guided hill-
climbing (Quinlan 1990; 199 1), explanation-based generalization (DeJong 
and Mooney 1986, Mitchell et al. 1986, Ellman 1989), explanation-based
specialization (Minton 1989) and inverse resolution (Muggleton 1992). 
LOGENPRO can also invoke these systems as front-ends to generate the 
initial population. The advantage is that they can quickly find important 
and meaningful components (genetic materials) and embody these 
components into the initial population. The following chapters will 
illustrate some of these points clearly. 



Chapter 6 

DATA MINING APPLICATIONS USING 
LOGENPRO

The knowledge acquired by a data mining system can be 
expressed in different knowledge representations such as functional 
programs, decision trees, decision lists, production rules, and first-order
logic programs. In the first section, we employ LOGENPRO to discover 
knowledge represented as functional programs. In the next section, 
LOGENPRO is used to induce knowledge represented in decision trees 
from a real-world database. Data mining systems induce knowledge from 
datasets which are frequently noisy (incorrect), incomplete, inconsistent, 
imprecise (fuzzy), and uncertain (Leung and Wong 199 1 a; 199 1 b; 199 1 c). 
In section 6.3, we employ LOGENPRO to combine evolutionary 
algorithms and a variation of FOIL (Quinlan 1990) to induce knowledge 
represented as logic programs from noisy datasets. 

6.1. Learning Functional Programs 

It seems that the framework proposed in the previous chapter is 
rather complicated but powerful. Consequently, the question of whether 
this framework can be applied easily arises. In the first sub-section, we 
show that this framework can emulate GP (Koza 1992; 1994, Koza et al. 
1999) easily in learning S-expressions. A template is provided to facilitate 
the application of the framework. It must be emphasized that the example 
used in the first sub-section is deliberately constructed as simple as 
possible to illustrate the point. More realistic applications can be found in 
the following sub-sections.
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6.1.1. Learning S-expressions Using LOGENPRO 

A logic grammar template for learning S-expressions using the 
framework is depicted in table 6.1. To apply the template for a particular 
problem, various sets of terminals and primitive functions will substitute 
for the identifiers in italics. 

Consider the problem of learning S-expressions such as (-
( * Z X) (+ Y Z) ) . Using the terminology of GP, the set of 

primitive functions for this problem contains arithmetic operators +, -,
and *. Each of them takes two arguments as inputs. The terminal set is 
{X, Y, Z} . The terminals can be treated as input arguments of the 
S-expression being learned.

It is observed that an S-expression is either a terminal or a 
function invocation. Thus an S-expression can be specified by the 
grammar rules 11 and 12 of the template in table 6.1, A function call 
consists of a list of elements enclosed by a pair of parentheses. The first 
element of the list is the name of the function and the other elements are 
arguments of the function. These arguments are also S-expressions. Since 
the primitives of a problem may have different numbers of arguments, 
there are a variety of function invocations. This fact can be specified by 
the grammar rules 13a, 13b, ..., 13n, and 14a, 14b, ..., 14n. 

Since an S-expression containing only a terminal is usually 
excluded from consideration as a solution. This fact is declared by the 
grammar rule 10 which specifies that the target solution must be a 
function invocation. The non-terminal symbol term specifies the 
terminal set of the problem domain. For the problem studied in this sub-
section, the terminal set is represented as: 

term -> { member(?w, [X, Y, Z]) }, [?w]. 
where the goal member ( ?w, [ X, Y, Z] ) instantiates the logic 
variable ?x to one of the values in the list [x, Y, Z] . This grammar 
rule is obtained from rule 15 in the template by replacing the identifier 
<TERMINAL SET> with [X, Y, Z].
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10: start -> function. 
11: s-exp -> term. 
12: s-exp -> function. 
13a: function -> function-0.
13b: function -> function-1. 
13c: function -> function-2. 

...

...
13n: function -> function-n. 
14a: function-O -> [(], op-0, [)].
14b: function-1 -> [(], op-1, s-exp, [)].
14c: function-2 -> [(], op-2, s-exp, s-exp, [)].

...

...
14n: function-n -> [(], op-n, s-exp, ...,

s-exp,[)].
15: term -> {member (?w, <TERMINAL SET,) } , [?w] . 
16a: op-0 -> {member (?w, <FUNCTION SET-0>) } , [?w].
16b: op-1 -> {member(?w,<FUNCTIONSET-1,)}, [?w].
16c: op-2 -> {member ( ?w,<FUNCTION SET-2,) } , [?w].

...

...
16n: op-n -> {member (?w, <FUNCTION SET-n>) } , [ ?w] .
Table 6.1: A template for learning S-expressions using the LOGENPRO. 

The non-terminal symbols op-0, op-1, ..., op-n in the 
template specify primitive functions with different numbers of arguments, 
They represent the primitive functions of the problem domain. For the 
above problem, all primitives have two arguments, thus only op-2will
be used. It is represented by the following rule: 

op-2 -> { member(?w, [+, -, *] ) }, [?w] .
This rule is obtained from the grammar rule 16c in the template by 
replacing the identifier <FUNCTION SET-2> with [+ -,*] . Other 
non-terminal symbols such as op-0, op-1, op-3,..., op-nwill be 



104 Chapter 6 

used if the problem domain requires primitives with the corresponding 
numbers of arguments. In summary, the logic grammar for the example is: 

start -> function. 
s-exp -> term. 
s-exp -> function. 
function -> function-2.
function-2 -> [(], op-2, s-exp, s-exp, [)].
term -> { member(?w, [X, Y, Z]) }, [?w]. 
op-2 -> { member(?w, [+, -, *]) }, [?w]. 

6.1.2. The DOT PRODUCT Problem 

In this sub-section, we describe how to use LOGENPRO to 
emulate traditional GP (Koza 1992). GP has the limitation that all the 
variables, constants, arguments for functions, and values returned from 
functions must be of the same data type. This limitation leads to the 
difficulty of inducing even some rather simple and straightforward 
functional programs. For example, one of these programs calculates the 
dot product of two given numeric vectors of the same size. Let X and Y be
the two input vectors; then the dot product is obtained by the following 
S-expression:

(apply (function +) 
(mapcar (function *) X Y))

Let us use this example for illustrative comparisons below. To 
induce a functional program using LOGENPRO, we have to determine the 
logic grammar, fitness cases, fitness function, and termination criterion. 
The logic grammar for learning functional programs is given in table 6.2. 
In this grammar, we employ the argument of the grammar symbol 
s-expr to designate the data type of the result returned by the 
S-expression generated from the grammar symbol. For example, 

(mapcar (function +) X 
(mapcar (function *) X Y))

is generated from the grammar symbol 
s-expr ( [list, number, n] ) because it returns a numeric vector 
of size n. Similarly, the symbol s-expr (number) can produce 
(apply (function *) X) that returns a number. 
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The terminal symbols [ +] , [ -], and [ * ] represent functions 
that perform ordinary addition, subtraction, and multiplication, 
respectively. The symbol [ % ] represents a function that normally returns 
the quotient. However, if division by zero is attempted, the function 
returns 1 .O. The symbol [ pro t e c t ed-1 o g ] is a function that calculates 
the logarithm of the input argument x if x is larger than zero, otherwise it 
returns 1.0. The logic goal random (-10, 10, ?a) generates a 
random floating point number between -10 and 10 and instantiates ?a to 
the random number generated. 

20 : start -> s-expr (number) . 
21:s-expr( [list, number, ?n]) 

->[ (mapcar (function ], op2, [ ) ] ,
s-expr ( [list, number, ?n] ) , 
s-expr( [list, number, ?n]) , [ ) ]. 

-> [ (mapcar (function ], opl, [ ) ] ,
s-expr( [list, number, ?n]) , [ ) ]. 

22 : s-expr ( [list , number, ?n] ) 

23 : s-expr ( [list , number, ?n] ) 
24 : s-expr (number) -> term (number) . 
25:s-expr(number) ->[ (apply (function ], op2,[ ) ] ,

s-expr([list, number, ?n]), [ ) ]. 
26:s-expr(number) ->[ ( ], op2, s-expr(number), 

s-expr (number) , [ ) ]. 
27:s-expr(number) ->[ ( ], opl, s-expr(number),

[ ) ]. 
28 : op2 -> [ + ].
29:op2 -> [ - ].
30 : op2 -> [ * ]. 
31: op2 -> [ % 3. 
32 : op1 -> [ protected-log ]. 
33:term( [list, number, n] ) -> [ X ]. 
34:term( [list, number, nl ) -> [ Y 1. 
35:term( number ) -> { random(-10, 10, ?a) }, [ ?a 3. 
Table 6.2: 

-> term( [list, number, ?n] ) .

The logic grammar for the DOT PRODUCTproblem. 

Ten random fitness cases are used for training. Each case is a 
3-tuples 〈 X i, Yi, Zi,〉, where 1 ≤ i ≤ 10, Xi and Yi are vectors of size 3, and Zi

is the corresponding dot product. The fitness function calculates the sum, 
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taken over the ten fitness cases, of the absolute values of the difference 
between Z i and the value returned by the S-expression for Xi and Yi. Let S
be an S-expression and S(Xi, Yi) be the value returned by the S-expression
for Xi and Yi. The fitness function Val is defined as follows: 

A fitness case is said to be covered by an S-expression if the value 
returned by it is within 0.01 of the desired value. An S-expression that 
covers all training cases is further evaluated on a testing set containing 
1000 random fitness cases. LOGENPRO will stop if the maximum 
number of generations of 100 is reached or an S-expression that covers all 
testing fitness cases is found. 

For traditional GP, the terminal set T is { X , Y, R } where R is 
the ephemeral random floating point constant. R takes on a different 
random floating point value between -10.0 and 10.0 whenever it appears 
in an individual program in the initial population (Koza 1992). The 
function set F is {protected+, protected-, protected*, 
protected%, protected-log, vectort, vector-,
vector*, vector%, vector-log, apply+, apply-,
apply*, apply%}, taking 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, and 1 
arguments, respectively. 

The primitive functions protected+, protected-, and
prot e c t e d*, respectively, perform addition, subtraction, and 
multiplication if the two input arguments X and Y are both numbers. 
Otherwise, they return 0. The function protected% returns the quotient. 
However, if division by zero is attempted or the two arguments are not 
numbers, protected% returns 1.0. The function protected-log
finds the logarithm of the argument X if X is a number larger than zero. 
Otherwise, protected-logreturns 1.0. 

The functions vector+, vector-, vector",andvector%,
respectively, perform vector addition, subtract, multiplication, and 
division if the two input arguments X and Y are numeric vectors with the 
same size; otherwise they return zero. The primitive function 
vector-logperforms the following S-expression:

(mapcar (function protected-log) X),
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if the input argument X is a numeric vector; otherwise, it returns zero. The 
functions apply+, apply-, apply*, and apply%, respectively,
perform the following S-expressions if the input argument X is a numeric 
vector:

(apply (function protected+) X) , 
(apply (function protected-) X) , 
(apply (function protected*) X) , and
(apply (function protected%) X) , 

otherwise they return zero. 

It should be emphasized that the primitive functions vector+,
vector-, vector*, and vector% can be emulated by using the 
grammar rules 21, 28, 29, 30, and 31. The primitive function vector-
log can be emulated by using the grammar rules 22 and 32. The primitive 
functions apply+, apply-, apply*, and apply% can be emulated 
by using the grammar rules 25, 28, 29, 30, and 31. Thus, the set of 
effective functions represented by the grammar in table 6.2 is equivalent 
to the set used in traditional GP. The functions mapcar and apply
cannot be used in traditional GP because the first argument of these 
functions must be a valid operators such as +, -, *, or %. But traditional 
GP cannot enforce this constraint; thus, we have to create some special 
functions such as vector+ and apply+, to handle this problem. 

The fitness cases, the fitness function, and the termination 
criterion are the same as those used by LOGENPRO. Three experiments 
have been performed. The first one evaluates the performance of 
LOGENPRO using a population of 100 programs. The other two 
experiments evaluate the performance of GP using, respectively, 
populations of 100 and 1000 programs. In each experiment, over sixty 
trials have been attempted and the results are summarized in figure 6.1. 
The figure delineates the best standardized fitness values for increasing 
generations for the three experiments. From the curves in figures 6.1, the 
lower values are better, thus, LOGENPRO has a performance superior to 
that of GP. 

The curves in figure 6.2(a) show the experimentally observed 
cumulative probability of success P(M, i ) of solving the problem by 
generation i using a population of M programs (Koza 1992). The curves in 
figure 6.2(b) show the number of programs I(M, i, z ) that must be 
processed to produce a solution by generation i with a probability z (Koza 
1992). Throughout this chapter, the probability z is set to 0.99. The curve 
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for GP with a population of 100 programs is not depicted because the 
values are extremely large. For LOGENPRO curve, I(M, i, z ) reaches a 
minimum value of 8800 at generation 21. On the other hand, the 
minimum value of I(M, i, z ) for GP with population size of 1000 is 66000 
at generation 1. LOGENPRO can find a solution much faster than GP, and 
the computation (i.e. I(M, i, z )) required by LOGENPRO is much smaller 
than that of GP. 

The performance of LOGENPRO is better because knowledge of 
data type has been encoded in the grammar. Consequent, invalid programs 
such as 

(+ (apply (function +) 9) 9) 
cannot be produced. On the other hand, traditional GP may create the 
equivalent invalid program (+ (apply+ 9) 9) . In other words, the 
search space of traditional GP is larger than that of LOGENPRO. But, the 
former contains many invalid programs. 
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The idea of applying knowledge of data type to accelerate 
learning has been investigated independently by Montana (1995) in his 
Strongly Typed Genetic Programming (STGP). He presents many 
examples involving vector and matrix manipulation to illustrate the 
operation of STGP. However, he has not compared the performance 
between traditional GP and STGP. Although it is commonly believed that 
knowledge can accelerate the speed of learning, Pazzani and Kibler (1 992) 
showed that inappropriate and/or redundant knowledge can sometimes 
degrade the performance of a learning system. We show that knowledge 
of data type can be represented in a logic grammar and thus LOGENPRO 
can emulate the effect of STGP easily. Moreover, more natural primitive 
functions such as mapcar and apply, can be used in LOGENPRO, 
rather than using some special primitive functions such as vector+ and
apply+, found in traditional GP. 

6.1.3. Learning Sub-functions Using Explicit Knowledge 

Automatic discovery of problem representation primitives is 
certainly one of the most challenging research areas in GP. GP with 
Automatically Defined Functions (ADFs) is one of the approaches that 
have been proposed to acquire problem representation primitives 
automatically (Koza 1992; 1994). In this approach, each program in the 
population contains an expression, called the result-producing branch, and 
definitions of one or more sub-functions which may be invoked by the 
result-producing branch. The result-producing branch is evaluated to 
produce the fitness of the program. A constrained syntactic structure and 
some special genetic operators are required for the evolution of the 
programs. To employ GP with ADFs, the user must provide explicit 
knowledge about the number of automatically defined sub-functions, the 
number of arguments of each sub-functions, and the allowable terminal 
and function sets for each sub-function.

In this section, we demonstrate how to use LOGENPRO to 
emulate GP with ADFs. LOGENPRO is employed to learn a sub-function
that calculates dot product and employ this sub-function in the main 
program. In other words, it is expected to induce the following S-
expression:
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(progn
(defun ADF0 (arg0 argl)

(apply (function +) 

(+ (ADF0 X Y) (ADF0 Y Z)))
(mapcar (function *) arg0 argl) ) )

The logic grammar for this problem is depicted in table 6.3. In the 
grammar, we employ the argument of the grammar symbol s-exprto
designate the data type of the result returned by the S-expression
generated from the grammar symbol. The terminal symbols [+], [ -],
and [ * ] represent functions that perform ordinary addition, subtraction, 
and multiplication, respectively. 

Ten random fitness cases are used for training. Each case is a
4-tuples 〈 Xi, Yi, Zi, Ri〉  where 1 ≤ i ≤ 10, Xi, Yi, and Zi, are vectors of size 3, 
and Ri is the corresponding desired result. The fitness function calculates 
the sum, taken over the ten fitness cases, of the absolute values of the 
difference between Ri and the value returned by the S-expression for Xi,
Yi, and Zi. LetSbe an S-expression and S(Xi, Yi, Zi,) be the value returned 
by the S-expression for Xi, Yi, andZi. The fitness function Val is defined 
as follows: 

A fitness case is said to be covered by an S-expression if the value 
returned by it is within 0.01 of the desired value. An S-expression that 
covers all training cases is further evaluated on a testing set containing 
1000 random fitness cases. LOGENPRO will stop if the maximum 
number of generations of 50 is reached or an S-expression that covers all 
testing fitness cases is found. 

For GP with ADFs (with the modified genetic operator), the 
terminal set T0 for the automatically defined function (ADFO) is { arg0 ,
argl} and the function set F0 is {protected+, protected-,
protected*, vector+, vector-, vector*, apply+,
apply-, apply*}, taking 2, 2, 2, 2, 2, 2, 1, 1, and 1 arguments, 
respectively. The terminal set Tr for the result producing branch is {X,
Y, Z} and the function set Fr is {protected+, protected-,
protected*, vector+, vector-, vector*, apply+,
apply-, apply*, ADFO}, taking 2, 2, 2, 2, 2, 2, 1, 1, 1, and 2 
arguments, respectively. The primitive functions were defined in the 
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previous sub-section. The fitness cases, the fitness function, and the 
termination criterion are the same as the ones used by LOGENPRO. We 
evaluate the performance of LOGENPRO and the ADFs using populations 
of 100 and 1000 programs, respectively. 

start -> [(progn (defun ADF0 ], 
[(arg0 arg1)], 
s-expr2(number), [)],
s-expr(number), [)].

s-expr([list, number,?n]) -> [(mapcar(function], op2,
[)],
s-expr([list, number, ?n]), 
s-expr([list, number, ?n]), [ ) ]. 

s-expr([list, number, ?n]) -> term([list, number, ?n]).
s-expr(number) -> [ (apply (function], op2, 

[)],
s-expr([list, number, ?n]), [ ) ]. 

s-expr(number), [ ) ]. 

s-expr ([list, number, ?n]), 
s-expr([list, number, ?n]), [ ) ] . 

s-expr(number) -> [(], op2, s-expr (number), 

s-expr(number) -> [ (ADF0 ], 

term([list, number, n]) -> [ x ].
term([list, number, n]) -> [ Y ].
term([list, number, n]) -> [ z ].
s-expr2([list,number,?n]) -> [ (mapcar(function],op2,

[)],
s-expr2([list, number, ?n]),
s-expr2([list, number, ?n]), [ ) ]. 

s-expr2([list, number, ?n]) -> term2([list, number, ?n]).
s-expr2(number) -> [(apply(function],op2,

[)],
s-expr2([list, number, ?n]), [ ) ]. 

s-expr2(number), [ ) ]. 
s-expr2(number) -> [(],  op2, s-expr2(number),

term2 ( [list, number, n] ) -> [ arg0 ] . 
term2 ( [list, number, n] ) -> [ arg1 ] . 
op2 -> [ + ]. 
OP2 -> [ -].
op2 -> [ * ]. 

Table 6.3: The logic grammar for the sub-function problem. 

Thirty trials have been attempted and the results are summarized 
in figures 6.3 and 6.4. Figure 6.3 shows, by generation, the fitness (error) 
of the best program in a population. These curves are found by averaging 
the results obtained in thirty different runs using various random number 
seeds and fitness cases. From these curves, LOGENPRO has performance 
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superior to that of GP with ADFs. The curves in figure 6.4(a) show the 
experimentally observed cumulative probability of success P(M, i ) of 
solving the problem by generation i using a population of M programs.
The curves in figure 6.4(b) show the number of programs I(M, i, z ) that 
must be processed to produce a solution by generation i with a probability 
z of 0.99. The curve for LOGENPRO reaches a minimum value of 4900 
at generation 6. On the other hand, the minimum value of I(M, i, z ) for 
GP with ADFs is 5712000 at generation 41. This experiment clearly 
shows the advantage of LOGENPRO. By employing various knowledge 
about the problem being solved, LOGENPRO can find a solution much 
faster than GP with ADFs and the computation (i.e. I(M, i, z )) required by 
LOGENPRO is much smaller than that of GP with ADFs. 

This experiment demonstrates that LOGENPRO can emulate GP 
with ADFs and represent easily the knowledge needed for using GP with 
ADFs. Moreover, LOGENPRO can employ other knowledge such as 
argument types in a unified framework. It has performance superior to that 
of GP with ADFs when more domain-dependent knowledge is available. 
One advantage of LOGENPRO is that it can emulate the effects of STGP 
and GP with ADFs simultaneously and easily. 
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6.2. Inducing Decision Trees Using LOGENPRO 

In this section, we illustrate the application of LOGENPRO in 
inducing decision trees. We describe how to represent decision trees as S-
expressions in sub-section 6.2.1. The credit screening problem used in the 
experiment is explained in the subsequent sub-section. We then present 
the results of the experiment in sub-section 6.2.3. 

6.2.1. Representing Decision Trees as S-expressions

Koza (1 992) presented a method to represent decision trees as S-
expressions. For example, the decision tree in figure 2.1 is represented as 
the S-expression in table 6.4(a). 

In the S-expression, the constants such as positive and
negative representing the class names in this problem. These constants 
form the set of terminals in GP. On the other hand, the attribute-testing
functions such as outlook-test and windy-test are obtained by 
transforming each of the attributes in the problem into a function. Thus, 
there are as many attribute-testing functions as there are attributes. These 
functions form the set of primitive functions in GP. 

Consider the attribute outlook, it can assume one of three possible 
values. Therefore, the function out1ook-test has three arguments and 
operates in the following way: 

if the value of the attribute outlook of the current example 
is sunny, the function returns its first argument as its 
return value; 

is overcast, the function returns its second argument as its 
return value; 

is rainy, the function returns its third argument as its 
return value; 

if the value of the attribute outlook of the current example 

if the value of the attribute outlook of the current example 
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The implementation of the function out look-test is depicted in table 
6.4(c). In this implementation, X is a global variable that stores the current 
example being evaluated. Since an example belongs to the class 
EXAMPLES depicted in table 6.4(b), the S-expression (outlook X)
returns the value of the attribute outlook of the example stored in X. The
constants sunny and overcast represent the attribute values of the 
attribute outlook. 

(outlook-test
(humidity-test 'negative 'positive) 
'positive
(windy-test 'negative 'positive)) 

(a)

(defclass EXAMPLES ( ) 
((temperature :accessor temperature) 
;; The value of the attribute temperature can be 
;; either hot, mild, or cool. 
(humidity :accessor humidity) 
;; The value of the attribute humidity can be 
;; either high, or normal. 
(outlook :accessor outlook) 
;; The value of the attribute outlook can be either 
; ; sunny, overcast, or rain. 
(windy :accessor windy))) 
;; The value of the attribute windy can be either 
;; true, or false. 

(b)

(defun outlook-test (argl arg2 arg3)
(cond ((equal (outlook X) 'sunny) argl) 

(equal (outlook X) 'overcast) arg2)
(t arg3)))

(c)

Table 6.4: (a) An S-expression that represents the decision tree in figure 2.1. (b) 
The class definition of the training and testing examples. (c) A 
definition of the primitive function outlook-test.
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To classify a new example, it is first stored into the global 
variable X. It is then presented to an S-expression representing a decision 
tree. The outermost function tests the designated attribute of the example 
and then executes the particular argument designated by the outcome of 
the test. If the designated argument is a constant, the function returns the 
corresponding class names (i.e. positive or negative). If the 
designated argument is another function, the above process is repeated 
until a constant is returned. In summary, the S-expression is a 
representation of a decision tree that classifies an example into one of the 
classes.

6.2.2. The Credit Screening Problem 

The aim of this problem is to induce decision trees or rules for 
assessing applications for credit cards. This problem was studied by 
Quinlan in his ID3 and C4.5 systems (Quinlan 1987; 1992). The original 
dataset of this problem was provided by Quinlan and stored in the UCI 
Repository of Machine Learning Databases and Domain Theories. The 
dataset was modified in the Statlog project (Michie et al. 1994) so that one 
of the 15 attributes was removed. The modified dataset has a good mix of 
attributes of different types. There are 690 instances, 14 attributes and two 
class names. There are 307 positive instances (44.5%) and 383 negative 
instances (55.5%). 

All attribute names, class names, and attribute values were 
changed to meaningless symbols to protect confidentiality of the data. 
Thus, interpretations of the induced decision trees or rules are relatively 
difficult. This dataset is interesting because there is a good mix of attribute 
types: linear, nominal with small numbers of values, and nominal with 
larger numbers of values. The attribute names, types, and values are 
depicted in table 6.5. 
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Attribute name Attribute type Attribute values 
A1 nominal {a, b}

A3
A4 nominal {g, P, gg}
A5 nominal { c ,d , c c , i, j , k,

A6 nomina1 {v, h, bb, j , n, z ,

A2 linear 13.75 - 80.25
linear 0 - 28

m, r , g, w, x, e, aa,
f f } 

dd, ff, 01
AI linear 0 - 28.5
A8 nominal { t ,f } 
A9 nominal It,f }

linear 0 - 67A10
A1 1 nomina1 { t , f } 
A12 nominal {g, PI s }
A13 linear 0 - 2000
A14 linear 0 - 100001
class nominal {positive, negative}

Table 6.5: The attribute names, types, and values attributes of the credit 
screening problem. 

There are 37 instances (5%) having one or more missing attribute 
values. The frequencies of missing values from different attributes are 
summarized as follows: 

Attribute name Frequency 
A1 12
A2 12
A4 6
A5 9
A6 9
A13 13

For our purposes, we replaced the missing values by the overall medians 
or means. 
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6.2.3. The Experiment

In this sub-section, we describe how to use LOGENPRO to 
induce decision trees for the credit screening problem. The representation 
scheme described in sub-section 6.2.1 is not used directly because it can 
only express decisions on nominal attributes. To handle linear attributes 
using the representation, we must first transform these attributes into 
nominal attributes by assigning disjoint intervals of values to various 
symbols. Thus, the sizes and the number of intervals must be determined 
before applying the representation scheme to the credit screening problem. 

For example, the range of the values of the attribute A2 is 
between 13.75 and 80.25. By examining the distribution of the attribute 
values, the range may be divided into two mutual exclusive intervals: 
from inclusive 13.75 to exclusive 40; from inclusive 40 to inclusive 80.25. 
The transformed attribute can be represented as the following attribute-
testing function A2-test:

(defun A2-test (argl arg2) 
(if (>= (A2 X) 40)
arg2
arg1))

In this function, X is a global variable that stores the current example 
being evaluated. Since an example belongs to the class EXAMPLES
depicted in table 6.6, the S-expression (A2 X) returns the value of the 
attribute A2 of the example stored in X. The function A2-tes t has two 
arguments and operates in the following way: 

• if the value of the attribute A2 is greater than or equal to 
40, the function returns its second argument as its return 
value;

return value; 
• Otherwise, the function returns its first argument as its 

The major problem of this representation is that one or more 
intervals must be determined before performing induction. If the sizes and 
the number of intervals are inappropriate, they will greatly reduce the 
performance of the learning system. In order to tackle this problem, we 
decide that the number of intervals of all linear attributes is fixed to two, 
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and allow the sizes of these intervals to adjust dynamically during the 
evolution process. 

(defclass EXAMPLES ( ) 
((A1 :accessorA1)
(A2 :accessorA2)
(A3 :accessorA3)
(A4 :accessorA4)
(A5 :accessorA5)
(A6 :accessorA6)
(A7 :accessorA7)
(A8 :accessorA8)
(A9 :accessorA9)
(A10 :accessorA10)
(All :accessorAll)
(A12 :accessorA12)
(A13 :accessorA13)
(A14 :accessorA14)))

Table 6.6: The class definition of the training and testing examples. 

Thus, the following attribute-testing function A2-test is used 
in our representation: 

(defun A2-test (exp argl arg2)
(if (>= (A2 X) exp)
arg2
arg1))

This function has three arguments and operates in the following way: 

if the value of the attribute A2 is greater than or equal to 
the value of the first argument, the function returns its 
third argument as its return value; 

return value; 
Otherwise, the function returns its second argument as its 

From this function, we can observe that the first argument exp must
return a numerical value while the other two arguments, argl and arg2,
must return a class name. In other words, data types must be used to 
guarantee only appropriate S-expressions can appear as a particular 
argument of a particular primitive function. 
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To induce a functional program using LOGENPRO, We have to 
determine the logic grammar, fitness cases, fitness functions, and 
termination criterion. The logic grammar for the credit screening problem 
is given in table 6.7. In this grammar, we employ the grammar symbol 
exp to designate the S-expression that returns a numerical value and the 
grammar symbol node to designate the S-expression that returns a class 
name.

start -> node. 
node -> [ (A1I], node, node, [) ].
node -> [ (A2 ], exp, node, node, [ ) ].
node -> [ (A3 3, exp, node, node, [ ) ].
node -> [ (A4 3, node, node, node [ ) ].
node -> [ (A5 ], node, node, node, node, 

node, node, node, node, node, 
node, node, node, node, node, [ ) ].

node, node, node, node, node, [ ) ].
node -> [ (A6 ], node, node, node, node, 

node -> [ (A7 , exp, node, node, [ ) ].
node -> [ (A8 ], node, node, [ ) ].
node -> [ (A9 ], node, node, [ ) ].
node -> [ (A10 ], exp, node, node, [ ) ].
node -> [ (All 3, node, node, [ ) ].
node -> [ (A12 3, node, node, node, [ ) ].
node -> [ (A13 ], exp, node, node, [ ) ].
node -> [ (A14 ], exp, node, node, [ ) ].
node -> [ positive ]. 
node -> [ negative 3 
exp -> [ ( ], op, exp, exp, [ ) ].
op -> [ + ]. 
op -> [ - ].
op -> [ * ]. 
op -> [ % ]. 
exp -> { random(-10, 10, ?a) }, [ ?a ]. 

Table 6.7: Logic grammar for the credit screening problem. 

The terminal symbols [ +] , [ -] , and [ * ] represent functions 
that perform ordinary addition, subtraction, and multiplication, 
respectively. The symbol [ % ] represents function that normally returns 
the quotient. However, if division by zero is attempted, the function 
returns 1.0. The logic goal random (-10, 10, ?a) generates a 
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random floating point number between -10 and 10 and instantiates ?a to 
the random number generated. 

A 1 0-fold cross-validation procedure is employed in this 
problem. In a general n-fold cross-validation procedure, the examples are 
randomly divided into n mutually exclusive test partitions of 
approximately equal size. The examples not found in a particular test 
partition are used for training, and the resulting decision tree is tested on 
the corresponding test partition. The above train and test procedure is 
repeated n times until all test partitions are examined. The average 
classification accuracy over all n test partitions is the cross-validated
classification accuracy. Breiman et al. (1 984) evaluated their CART 
system extensively with vary numbers of partitions, and IO-fold cross-
validation seemed to be adequate and accurate. 

Since there are 690 examples in the credit screening dataset, each 
test partition contains 69 examples and the other 621 examples form the 
training set. In other words, 10 independent experiments have been 
attempted. In each experiment, LOGENPRO induces a decision tree using 
621 examples as the fitness cases and we estimate the classification 
accuracy of the induced decision tree using the remaining testing 
examples.

The fitness function measures how well a genetically evolved 
decision tree classifies the fitness cases. When an evolved decision tree in 
the population is tested against a particular fitness case, the outcome can 
be either a true positive, a true negative, a false positive, or a false
negative.

The correlation coefficient (Matthews 1975) indicates the 
classification performance of a decision tree. A correlation coefficient C
of 1.0 indicates perfect agreement between the decision tree and the 
fitness cases; a coefficient of -1.0 indicates total disagreement; a 
coefficient of 0.0 indicates that the decision tree is not better than a 
random classifier. For a two-classes classification problem, the correlation 
coefficient can be computed as: 
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where Ntp is the number of true positives, Ntn is the number of true 

negatives, N
fp is the number of false positives, and N

fn is the number of 
false negatives. The coefficient is set to 0 if the denominator is 0. 

Since C ranges between -1.0 and 1.0, standardized fitness is 

defined as Thus, a standardized fitness value ranges between 0.0 

and 1.0. A standardized fitness value of 0 indicates perfect agreement 
between the decision tree and the training examples. On the other hand, a 
value of 1.0 indicates total disagreement. A value of 0.5 shows that the 
decision tree is not better than a random classifier (Koza 1992). 

In each of the ten experiments, LOGENPRO induces a decision 
tree using a population size of 300. LOGENPRO will terminate if the 
maximum number of generations of 50 is reached or a decision tree that 
has a standardized fitness below 0.01 is found. The decision tree evolved 
in any generation that has the smallest standardized fitness value is 
returned as the result of the run. The best decision tree induced by 
LOGENPRO is further evaluated on the training examples and the testing 
examples to obtain the corresponding classification accuracy. The results 
of the ten experiments are summarized in table 6.8. 

Generation Accuracy (train) Accuracy (test) 

0 0.857 0.870
14 0.850 0.928
26 0.873 0.754
32 0.862 0.884
45 0.860 0.870
2 0.849 0.928
25 0.868 0.797
4 0.858 0.826
28 0.852 0.913
22 0.863 0.812

Average 0.859 0.858
Table 6.8: Results of the decision trees induced by LOGENPRO for the credit 

screening problem. The first column shows the generation in which the 
best decision tree is found. The second column contains the 
classification accuracy of the best decision tree on the training 
examples. The third column shows the accuracy on the testing 
examples.
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Michie et al. (1994) performed a series of experiments in the 
Statlog project. In these experiments, they compared the performances of 
different learning systems for the credit screening problem. The results are 
summarized in table 6.9. 

Algorithm Accuracy (train) Accuracy (test) 
Ca15 0.868 0.869 
ITrule 0.838 0.863 
Discrim 0.861 0.859 
Logdisc 0.875 0.859 
DIPOL92 0.861 0.859 

0.859 0.858 
CART 0.855 0.855
RB F 0.893 0.855

CASTLE 0.856 0.852
NaiveBay 0.864 0.849

0.919 0.848 I n dCART 
Back-propagation 0.913 0.846 

C4.5 0.901 0.845 
SMART 0.910 0.842 
Baytree 1.000 0.829 
k-NN 1.000 0.819 
NewID 1.000 0.819 
AC2 1.000 0.819 
LVQ 0.935 0.803 

ALLOC8 0 0.806 0.799 
CN2 0.999 0.796 

Quadi s c 0.815 0.793 

LOGENPRO

Table 6.9: Results of various learning algorithms for the credit screening 
problem.

By comparing the results in table 6.8 and those in table 6.9, we 
find that Ca15, ITrule, Discrim, Logdisc, and DIPOL92 perform better 
than LOGENPRO. Ca15 and ITrule learns decision trees/rules and their 
classification accuracy is over 86%. The classification accuracy of 
Discrim, Logdisc, and DIPOL92 is all 85.9%, The differences in accuracy 
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between them and LOGENPRO are only 0.1%. Since the detailed 
information of the accuracy of these systems is not available, it cannot be 
concluded that whether the differences in accuracy are significant. 

On the other hand, LOGENPRO performs better than CART, 
RBF, CASTLE, NaiveBay, IndCART, Back-propagation, C4.5, SMART, 
Baytree, k-NN, NewID, AC2, LVQ, ALLOC80, CN2, and Quadisc for the 
credit screening problem. Interestingly, LOGENPRO is better than C4.5 
and CN2, two systems that were reported in the literature (Quinlan 1992, 
Clark and Niblett 1989) about their outstanding performances in inducing 
decision trees/rules. The difference is 1.3% for C4.5 and is 6.2% for CN2. 

6.3. Learning Logic Program From Imperfect Data 

The problem of learning knowledge from huge, incomplete, and 
imperfect datasets is very important in data mining (Fayyad et al. 1996, 
Frawley et al. 1991, Piatetsky-Shapiro and Frawley 1991). The various 
kinds of imperfections in data are listed as follows: 

random noise in training examples and background
knowledge;

the number of training examples is too small; 

the distribution of training examples fails to reflect the 

an inappropriate example description language is used: 

underlying distribution of instances of the concept being 
learned;

some important characteristics of examples are not 
represented, and/or irrelevant properties of examples are 
provided;

does not contain an exact description of the target 
concept; and 

an inappropriate concept description language is used: it 

there are missing values in the training examples. 

Existing inductive learning systems employ noise-handling
mechanisms to cope with the first five kinds of data imperfections. 
Missing values are usually handled by a separate mechanism. These noise-
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handling mechanisms are designed to prevent the induced concept from 
overfitting the imperfect training examples by excluding insignificant 
patterns (Lavrac and Dzeroski 1994). They include tree pruning in CART 
(Breiman et al. 1984), rule truncation in AQl5 (Michalski et al. 1986a) 
and significant test in CN2 (Clark and Niblett 1989). However, these 
mechanisms may ignore some important patterns because they are 
statistically insignificant. 

Moreover, these learning systems use a limiting attribute-value
language for representing the training examples and induced knowledge. 
This representation limits them to learn only propositional descriptions in 
which concepts are described in terms of values of a fixed number of 
attributes. Currently, only a few relation learning systems such as FOIL 
and mFOIL address the issue of learning knowledge represented as logic 
programs from imperfect data. 

In this section, we describe the application of LOGENPRO to 
learn logic programs from noisy and imperfect training examples. 
Empirical comparisons of LOGENPRO with FOIL (the publicly available 
version of FOIL, version 6.0 , is used in this experiment) and with mFOIL 
(Lavrac and Dzeroski 1994) in the domain of learning illegal chess 
endgame positions from noisy examples are presented. 

As described in sub-section 4.3.2.2, mFOIL is based on FOIL that 
has adapted several features from CN2 (Clark and Niblett 1989), such as 
the use of the Laplace and m-estimate as its search heuristics and the use 
of significance testing as its stopping criterion. Moreover, mFOIL uses 
beam search and can apply mode and type information to reduce the 
search space. The parameters that can be set by a user are: 1) the beam 
width, 2) the search heuristics, 3) the value of m if m-estimate is used as 
the search heuristics, and 4) the significance threshold used in the 
significance test. A number of different instances of mFOIL have been 
tested on the chess endgame problem. Their parameter values are 
summarized in table 6.10. 

In this section, LOGENPRO employs a variation of FOIL to find 
the initial population of logic programs. Thus, it uses the same noise-
handling mechanism of FOIL. The variation is called BEAM-FOIL
because it uses a beam search method rather than the greedy search 
strategy of FOIL. BEAM-FOIL produces a number of different logic 
programs when it terminates and the best program among them is the 
solution of the problem. The logic programs created by BEAM-FOIL are 
used by LOGENPRO to initialize the first generation. In order to study the 
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effects of the genetic operations performed by LOGENPRO on the initial
programs provided by BEAM-FOIL, a comparison between them is also
discussed.

beam width heuristics m significance
threshold

mFOIL1 5 m-estimate 0.01 0
mFOIL2 10 m-estimate 0.01 0
mFOIL3 5 m-estimate 0.01 6.35
mFOIL4 10 m-estimate 32 0

Table 6.10: The parameter values of different instances of mFOIL examined in this 
section.

The chess endgame problem is presented in the following sub-
section. The experimental setup is detailed in sub-section 6.3.2. We
compare LOGENPRO with other learning systems in the subsequent sub-
sections.

6.3.1. The Chess Endgame Problem 

The chess endgame problem is a benchmark problem in the field 
of data mining for evaluating performance of data mining systems 
(Dzeroski and Lavrac 1993). In the problem, the setup is white king and 
rook versus black king (Quinlan 1990). The target concept illegal(WKf, 
WKr, WRf, WRr, BKf, BKr) states whether the positions where the white 
king at (WKf, WKr), the white rook at (WRf WRf), and the black king at 
(BKf, BKr) are not a legal white-to-move position. 

The background knowledge is represented by two predicates, 
adjacent(X, Y) and less_than(W, Z), indicating that rank/file X is adjacent 
to rank/file Y and rank/file W is less than rank/file Z, respectively. 

There are 11000 examples in the dataset (3576 positive and 7424 
negative examples). Muggleton et al. (1989) used smaller datasets to 
evaluate the performances of CIGOL and DUCE for the chess endgame 
problem. There were five small sets of 100 examples each and five large 
sets of 1000 examples each. In other words, there were 5500 examples in 
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total. Each of the sets was used as a training set. The induced programs 
obtained from a small training set was tested on the 5000 examples from 
the large sets, the programs obtained from each large training set was 
tested on the remaining 4500 examples. 

6.3.2. The Setup of Experiments 

In each experiment of the ten experiments performed, the training 
set contains 1000 examples (336 positive and 664 negative examples) and 
the disjoint testing set has 10000 examples (3240 positive and 6760 
negative examples). These training and testing sets are selected from the 
dataset using different seeds for the random number generator. 

Different amounts of noise are introduced into the training 
examples in order to study the performances of different systems in 
learning logic programs from noisy environment. To introduce n% of 
noise into argument X of the training examples, the value of argument X 
is replaced by a random value of the same type from a uniform 
distribution, independent to noise in other arguments. For the class 
variable, n% positive examples are labeled as negative ones while n% 
negatives examples are labeled as positive ones. Noise in an argument is 
not necessarily incorrect because it is chosen randomly, it is possible that 
the correct argument value is selected. In contrast, noise in classification 
implies that this example is incorrect. Thus, the probability for an example 

to be incorrect is 1 - {[(1 - n%) + n% * * (1 - n%)} . For each

experiment, the percentages of introduced noise are 5%, 1 0%, 15%, 20%, 
30%, and 40%. Thus, the probabilities for an example to be noisy are 
respectively 27.36%, 48.04%, 63.46%, 74.78%, 88.74% and 95.47%. 
Background knowledge and testing examples are not corrupted with noise. 

A chosen level of noise is first introduced in the training set. 
Logic programs are then induced from the training set using LOGENPRO, 
FOIL, different instances of mFOIL, and BEAM-FOIL. Finally, the 
classification accuracy of the learned logic programs is estimated on the 
testing set. For BEAM-FOIL, the size of beam is ten and thus ten logic 
programs are returned. The best one among the programs returned is 
designated as the solution of BEAM-FOIL.

1_

8
]

6
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LOGENPRO uses the logic grammar in table 6.11 to solve the
problem. In the grammar, [ a d j a c e n t ( ? x , ? y ) and
[l e s s - t h a n( ? x , ?y)] are terminal symbols. The logic goal
member( ? x , [WKf, WKr, WRf, WRr, BKf, BKr]) will
instantiate logic variable ? x of the grammar to either WKf, WKr, WRf,
WRr, BKf, or BKr, the logic variables ofthe target logic program.

start -> clauses.
clauses -> clauses, clauses. 
clauses -> clause.
clause -> consq, [:-], antes, [.].
consq -> [illegal(WKf,WKr,WRf,WRf,BKf,BKr)].
antes -> antes, [,], antes.
antes -> ante.
ante -> {member (?x, 

{member(?y,
literal (?x, ?y).

literal(?x, ?y) -> [?x = ?y].

[WKf, WKr, WRf, WRf, BKf, BKr])}, 
[WKf, WKr, WRf, WRf, BKf, BKr]) },

literal(?x, ?y) -> [ not ?x = ?y].
literal (?x, ?y) -> [adjacent(?x, ?y) ].
literal(?x, ?y) -> [ not adjacent (?x, ?y) ].
literal(?x, ?y) -> [less-than(?x, ?y) 3. 
literal(?x, ?y) -> [ not less -than (?x, ?y) 3.
Table 6.11: The logic grammar for the chess endgame problem. 

The population size for LOGENPRO is 10 and the maximum 
number of generations is 50. In fact, different population sizes have been 
tried and the results are still satisfactory even for a very small population. 
This observation is interesting and it demonstrates the advantage of 
combining inductive logic programming and evolutionary algorithms 
using the proposed framework. 

For concept learning (DeJong et al. 1993, Janikow 1993, Greene 
and Smith 1993), each individual logic program in the population can be 
evaluated in terms of how well it covers positive examples and excludes 
negative examples. Thus, the fitness functions for concept learning 
problems calculate this measurement. Typically, each logic program is run 
over a number of training examples so that its fitness is measured as the 
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total number of misclassified positive and negative examples. Sometimes, 
if the distribution of positive and negative examples is extremely uneven, 
this method of estimating fitness is not good enough to focus the search. 
For example, assume that there are 2 positive and 10000 negative 
examples, if the number of misclassified examples is used as the fitness 
value, a logic program that deduces everything are negative will have very 
good fitness. Thus, in this case, the fitness function should find a weighted 
sum of the total numbers of misclassified positive and negative examples. 

In this problem, the fitness function of LOGENPRO evaluates the 
number of training examples misclassified by each individual in the 
population. Since LOGENPRO is a probabilistic system, five runs of each 
experiment have been performed and the average of the classification 
accuracy of these five runs is returned as the classification accuracy of 
LOGENPRO for the particular experiment. In other words, fifty runs of 
LOGENPRO have been performed in total. The average execution time of 
LOGENPRO is 1 hour 43 minutes on a Sun Sparc Workstation. The 
results of these systems are summarized in table 6.12. The performances 
of these systems are compared using the one-tailed paired t-test with 
0.05% level of significance. The sizes of logic programs induced by these 
learning systems are summarized in table 6.13. 

Noise Level

0.00 0.05 0.10 0.15 0.20 0.30 0.40

LOGENPRO (Average) 0.996 0.983 0.960 0.938 0.855 0.733 0.670
Variance 0.00E+00 7.743-06 2.963-04 7.853-04 2.573-03 2.473-03 1.443-04

FOIL (Average) 0.996 0.898 0.819 0.761 0.693 0.596 0.529
variance 0.00E6+00 5.073-04 6.563-04 5.153-04 5.303-04 3.353-04 3.11E-04

BEAM-FOIL (Average) 0.996 0.802 0.757 0.744 0.724 0.685 0.674
Variance 0.003+00 7.073-04 1.623-04 1.883-04 2.003-04 1.403-04 1.043-04

mFOIL1 (Average) 0.985 0.883 0.845 0.815 0.785 0.719 0.685
variance 0.00E+00 5.153-05 7.293-05 3.123-04 2.153-04 1.393-04 1.303-04

mFOIL2 (Average) 0.985 0.932 0.888 0.842 0.798 0.713 0.680
Variance 0.003+00 7.47E-05 9.16E-05 9.26E-04 3.093-04 1.41E-04 3.05E-04

mFOIL3 (Average) 0.896 0.836 0.805 0.771 0.723 0.677 0.676
Variance 1.97E-16 7.83E-04 i.05E-04 1.89E-04 9.81E-04 7.74E-06 0.00E+00

mFOIL4 (Average) 0.985 0.985 0.880 0.806 0.740 0.692 0.668
Variance 0.00E+00 4.053-06 7.85E-03 5.143-03 2.14E-03 3.723-04 2.86E-04

Table 6.12: The averages and variances of accuracy of LOGENPRO, FOIL, 
BEAM-FOIL, and different instances of mFOIL at different noise 
levels.
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Noise Level 

0.00 0.05 0.10 0.15 0.20 0.30 0.40 

LOGENPRO (#clauses) 4.000 9.540 8.960 8.620 6.680 4.220 2.540

#literals/clause 1.50  2.56  2.94 3.20 3.40 4.39 4.98

FOIL (#clauses) 4.000   35.100   45.000 48.700 56.200 59.800 71.300

#literals/clause 1.50  3.65  4.44 4.73 5.06 5.23 5.40

BEAM-FOIL (#clauses) 4.000 5.000 4.400 4.200  4.000 3.500 2.800

#literals/clause 1.50  3.75 3.93 4.17 4.63 5.25 6.07

mFOIL1 (#clauses) 3.000 31.900 35.700 31.100 28.300 18.100 15.700

##literals/clause 2.00 3.07  3.20 3.18 3.42  3.34 3.57

mFOIL2 (#clause) 3.000 48.800 50.600 48.200 44.500  41.400 34.900

##literals/clause 1.67 3.18 3.33 3.44 3.57 3.62 3.70

mFOIL3 (#clause) 2.00 12.400 10.400 7.300 3.300 0.100 0.000

##literals/clause 1.50 2.68 3.10 3.02 3.46 4.00 0.00

#literals/clause 1.67 1.73 1.80 2.15 2.00 1.46 3.55

mFoil4 (#clause) 3.000 3.000 2.400 1.800  1.200 1.200  11.200

Table 6.13: The sizes of logic programs induced by LOGENPRO, FOIL, BEAM-
FOIL, and different instances of mFOIL at different noise levels. 

6.3.3. Comparison of LOGENPRO With FOIL 

The classification accuracy of both systems degrades seriously as 
the noise level increases (figure 6.5). The classification accuracy of 
LOGENPRO decreases smoothly when the noise level is on or below 
0.15. It reduces from 0.996 to 0.938, a 5.8% decrement. There are sudden 
drops of accuracy when the noise level is between 0.15 and 0.40. It falls 
from 0.938 to 0.670, a 28.5% reduction. The accuracy of FOIL decreases 
rapidly when the noise level is on or below 0.20. It drops from 0.996 to 
0.693, a 30.4% reduction. The decrease slightly slows down between the 
noise levels of 0.20 and 0.40. It drops from 0.693 to 0.529, a 23.7% 
reduction.

The results are statistically evaluated using the one-tailed paired t-
test. For each noise level, the classification accuracy is compared to test 
the null hypothesis against the alternative hypothesis. The null hypothesis 
states that the difference in accuracy is zero at the 0.05% level of 
significance. On the other hand, the alternative hypothesis declares that 
the difference is greater than zero at the 0.05% level of significance. The 
t-statistics are listed as follows: 
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Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40 

t-statistics NA 12.59 17.78 19.33 14.17 8.07 26.82 

The t-statistics at the 0.00 noise level is not available because the 
variances are very small (near zero). The t-statistics at the 0.05 noise level 
is 12.59 which is greater than the critical value of 4.78. Thus, we can 
reject the null hypothesis and assert that the classification accuracy of 
LOGENPRO is higher than that of FOIL. Similarly, the classification 
accuracy of LOGENPRO at the noise levels between 0.05 and 0.40 is 
significantly higher than that of FOIL. The largest difference reaches 
0.177 at the 0.15 noise level. The average number of induced clauses and 
the average number of literals per clause show that LOGENPRO 
generates compact and comprehensive logic programs even at the high 
noise levels. On the other hand, the complexity of the logic programs 
learned by FOIL increases when the noise level increase. In other words, 
FOIL overfits noise in the dataset. 
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6.3.4. Comparison of LOGENPRO With BEAM-FOIL

The classification accuracy of BEAM-FOIL degrades seriously as 
the noise level increases (figure 6.5). There is a significant fall in accuracy 
of BEAM-FOIL when the noise level is increased from 0.0 to 0.05. It 
reduces from 0.996 to 0.802, a more than 19.4% of decrement. It falls 
from 0.802 to 0.757 between the noise levels of 0.05 and 0.10, a smaller 
reduction (5.6%) is encountered in this interval. The decrease slows down 
between the noise levels of 0.10 and 0.40. The accuracy drops from 0.757 
to 0.674 in this interval. The reduction is about 11%. The results of the 
one-tailed paired t-test are listed as follows: 

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics NA 22.20 33.82 21.91 9.19 3.26 -0.81

The t-statistics at the 0.00 noise level is not available because the 
variances are very small (near zero). The classification accuracy of 
LOGENPRO at the noise levels between 0.05 and 0.20 is significantly 
higher than that of BEAM-FOIL. At the noise level of 0.30, the accuracy 
of LOGENPRO is higher than that of BEAM-FOIL, but the difference is 
not significant. On the other hand, the accuracy of BEAM-FOIL at the 
noise level of 0.40 is higher than that of LOGENPRO, but the difference 
is insignificant. This comparison indicates that the genetic operations of 
LOGENPRO can actually improve the logic programs generated by other 
learning systems such as BEAM-FOIL. The sizes of logic programs 
induced by BEAM-FOIL show that BEAM-FOIL over-generalizes at the 
high noise levels. 

6.3.5. Comparison of LOGENPRO With mFOIL1 

We compare LOGENPRO with mFOIL1 to mFOIL4 one by one 
in this and the following sub-sections. The parameters of this instance are 
presented in table 6.10. Lavrac and Dzeroski (1994) compare the
performances of mFOIL1 with FOIL2.0, a version of FOIL, for the chess 
endgame problem using the smaller dataset described in sub-section 6.3.1. 
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They find that mFOIL1 outperforms FOIL2.0 at all noise levels. Our 
results depicted in figure 6.5 are inconsistent with those obtained by 
Lavrac and Dzeroski. We find that FOIL outperforms mFOIL1 at the 
noise levels of 0.0 and 0.05. On the other hand, mFOIL1 has better 
performance when the noise level is on or over 0.1. The inconsistency 
may be explained because we employ an improved version of FOIL, 
FOIL6.0, and larger sets of training and testing examples. The results of 
the one-tailed paired t-test between LOGENPRO and mFOIL1 are listed 
as follows: 

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics 3.03E+08 35.38 17.29 14.98 5.15 1.11 -3.37 

The classification accuracy of LOGENPRO at the noise levels 
between 0.0 and 0.20 is significantly higher than that of mFOIL1. At the 
noise level of 0.30, the accuracy of LOGENPRO is higher than that of 
mFOIL1 by about 0.014, but the difference is not significant. On the other 
hand, the accuracy of mFOIL1 at the noise level of 0.40 is higher than that 
of LOGENPRO, the difference is insignificant. 

6.3.6. Comparison of LOGENPRO With mFOIL2 

The results of the one-tailed paired t-test between LOGENPRO
and mFOIL2 are listed as follows:

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics 3.03E+08 21.59 13.05 9.95 4.37 1.23 -1.65 

The classification accuracy of LOGENPRO at the noise levels 
between 0.0 and 0.15 is significantly higher than that of mFOIL2. At the 
noise levels of 0.20 and 0.30, the accuracy of LOGENPRO is higher than 
that of mFOIL2, but the differences are not significant. On the other hand, 
the accuracy of mFOIL2 at the noise level of 0.40 is higher than that of 
LOGENPRO, but the difference is insignificant. 
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6.3.7. Comparison of LOGENPRO With mFOIL3 

The accuracy of mFOIL3 at the noise levels of 0.00, 0.30, and 
0.40 is not acceptable. By comparing mFOIL3 with mFOIL1 (figure 6.5), 
we can conclude that the significance threshold for noise-handling affects 
the performance of mFOIL severely (see table 6.10). The results of the 
one-tailed paired t-test between LOGENPRO and mFOIL3 are listed as 
follows:

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics NA 16.99 22.29 16.44 8.12 3.65 -1.66

The t-statistics at the 0.00 noise level is not available because the
variances are very small (near zero). The classification accuracy of
LOGENPRO at the noise levels between 0.05 and 0.40 is significantly
higher than that of mFOIL3.

6.3.8. Comparison of LOGENPRO With mFOIL4 

The results of the one-tailed paired t-test between LOGENPRO
and mFOIL4 are listed as follows:

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics 2.22E+08 -1.45 2.77 6.37 8.00 2.20 0.24

The classification accuracy of LOGENPRO at the noise levels 
0.00, 0.15 and 0.20 is significantly higher than that of mFOIL4. The sizes 
of the logic programs learned by mFOIL4 illustrate that mFOIL4 over-
generalizes at the noise levels between 0.10 and 0.30. On the other hand, 
mFOIL4 overfits the noise in the dataset at the 0.40 noise level. 
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6.3.9. Discussion 

In this section, we employ LOGENPRO to combine evolutionary 
algorithms and BEAM-FOIL, to discover knowledge represented as logic 
programs. The performance of LOGENPRO in a noisy domain has been 
evaluated by using the chess endgame problem. Detailed comparisons 
between LOGENPRO and other ILP systems have been conducted. It is 
found that LOGENPRO outperforms these ILP systems significantly at 
most noise levels. These results are surprising because the LOGENPRO 
uses the same noise-handling mechanism of FOIL by initializing the 
population with programs created by BEAM-FOIL.

One possible explanation of the better performance of 
LOGENPRO is that the Darwinian principle of survival and reproduction 
of the fittest is a good noise handling method. It avoids overfitting noisy 
examples, but at the same time, it finds interesting and useful patterns 
from these noisy examples. 
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APPLYING LOGENPRO FOR RULE 
LEARNING

A rule is a statement in the format of “if antecedents then
consequent”, which is commonly used by human to represent knowledge. 
Rule learning tries to learn rules from a set of data. It can be modeled as a 
search problem of finding the best rules. Because the search space can be 
very large, a robust search algorithm is required. Thus, LOGENPRO is 
used as a possible approach. This chapter introduces how the problem of 
rule learning is modeled such that LOGENPRO can be applied. 

To apply LOGENPRO, firstly a suitable representation has to be 
designed to encode a rule in an individual. In LOGENPRO, a derivation 
tree is used to represent an individual, so a grammar for rules has to be 
designed to create the appropriate derivation tree. Secondly, a set of 
suitable genetic operators has to be used to evolve new individuals. 
Thirdly, we have to design a suitable fitness function to evaluate the 
fitness value of an individual. These three issues are discussed in the first 
three sections. The detailed techniques for learning a set of rules are 
discussed in the last section. 

7.1. Grammar 

The grammar of LOGENPRO governs the structures to be 
evolved. Rule learning can be achieved in LOGENPRO by using a 
suitable grammar to compose rules. The grammar should specify the 
structure of a rule, which is of the form “if antecedents then consequent”.
The format of rules in each problem can be different. Thus for each 
problem, a specific grammar is written so that the format of the rules can 
best fit the domain. However, in general, the antecedent part is a 
conjunction of attribute descriptors. The consequent part is also an 
attribute descriptor. An attribute descriptor characterizes an attribute, 
which can be described in many ways, thus there are many different 
formats of descriptors. A descriptor can assign a value to a nominal 
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attribute, a range of values to a continuous attribute, or can be used to 
compare attribute values. 

LOGENPRO provides a powerful knowledge representation and 
allows a great flexibility on the rule format. The representation of rules is 
not fixed but depends on the grammar. Most of the rule learning methods 
can only learn a particular format of rules, for example, rules with 
descriptors that compare the attributes with values. However, 
LOGENPRO allows a large variation in the attribute description. Rules 
with different formats or the user desired structure can be learned, 
provided that the suitable grammar is supplied. 

An example is used to illustrate the use of grammar to represent 
the suitable rule format. Consider a database with 4 attributes. We want to 
learn rules about attr4, which is Boolean. The attribute attrl is
nominal and coded with 0, 1, or 2. The attribute attr2 is continuous 
between 0-200 and can be categorized into high, medium, or low. The 
domain of at t r 3 is identical to at t r 2 and thus it is possible for the rule 
to compare them. 

An example of the grammar for this database is given in table 7.1. 
The symbols ercl, erc2, erc3, boolean _ erc, and
cat e go r y_e r c in this grammar are ephemeral random constants 
(ERCs). Each ERC has its own range for instantiation: ercl is one of the 
set { 0 ,1,2},erc2 anderc3 is between 0-200,boolean_erc can only 
be T or F, category_erc can be either high, medium, or low. The
symbol ‘any’ serves asa ‘don’t care’ in the rule. An attribute will not be 
considered in the rule if its attribute descriptor is 'any’. In this grammar, 
each attribute can be described by a descriptor in the rule, or by ‘any’
such that it is ignored by the rule. The attribute at t r 1 has only one form 
of descriptor. The attribute att2 can have two forms of descriptors: it 
can be described by a range or by the category it belongs to. The attribute 
attr3 can be specified by a comparator. Its descriptor can be a 
comparison with attr2 or a comparison with a constant. This grammar 
allows rules like: 

if attrl = 0 and attr2 between 50 180 

if attrl = 2 and attr2 i s high and 
and any, then attr4 = T.

attr3 ≠ 50, then attr4 = T.
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if attrl = 1 and any and attr3 >= attr2, 
then attr4 = F. 

1: start -> [if], antes, [, then], consq, [.]. 
2: antes -> attr1, [and], attr2, [and], attr3. 
3: attr1 -> [any].
4: attr1 -> attr1_descriptor.
5: attr2 -> [any].
6: attr2 -> attr2_descriptor.
7: attr3 -> [any].
8: attr3 -> attr3_descriptor.
9: attr1_descriptor -> [attr1 =], erc1. 
10: attr2_descriptor -> [attr2 is], category-erc.
11: attr2_descriptor -> [attr2 between],erc2, erc3. 
12: attr3_descriptor -> [attr3], Comparator, 

attr3_term.
13 : comparator -> [=] . 
14: comparator -> [ ≠ ].
15 : comparator -> [<=]. 
16: comparator -> [>=]. 
17 : comparator -> [<]. 
18 : comparator -> [>]. 
19: attr3_term -> attr2. 
20: attr3_term -> erc3. 
21: consq -> attr4_descriptor. 
22: attr4_descriptor -> [attr4 =], boolean_erc. 
23: erc1 -> (member (?a, [0, 1,2] ) } , [?a] . 
24: erc2 -> (random(0, 200, ?a) }, [?a]. 
25: erc3 -> (random(0, 200, ?a) }, [?a]. 
26: category-erc-> {member (?a, [high, medium, low] ) }, 
21 : boolean_erc -> (member (?a, [ T, F]) }, [?a] .
Table 7.1: An example grammar for rule learning. 

[?a].

The grammars for other problems are similar to the grammar in 
table 7.1. According to the type of attribute, a descriptor similar to 
attrl descriptor, attr2 descriptor or
at t r3_de s cr ip t or can be used. The following list illustrates how the 
grammar is written for each situation. 
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• The attribute is nominal. 

The attribute can be described by its value. The descriptor 
similar to attr1_descriptor or attr4 _ descriptor 
can be used. 

• The attribute is continuous. 

The attribute can be described by a range. The descriptor 
similar to attr2 _ descriptor can be used. 

The attribute can be compared with other attributes in the 
rule.

In many cases, describing an attribute by a value is not 
powerful enough to represent the knowledge. If a comparison 
between variables is needed, the descriptor similar to 
attr3 _ descriptor can be used. 

The attribute has more than one kind of descriptions. 

In some cases, an attribute can be described by more than one 
way. An example is at t r 2 in the previous example. Using a 
grammar, we do not need to restrict the rule to use either one 
descriptor. Another example is that an address is described by 
the city, the state, and the country. This can be achieved by 
writing the grammar as follows: 

address_descriptor -> [address between] , 

address_descriptor -> [address between] , 

•

•

city_erc, city_erc. 

stat e_e r c , 
state_erc.
count ry_erc , 
country_erc.

address_descriptor -> [address between], 

• The antecedent part has more than one format. 

The use of grammar allows the antecedents to have more than 
one format. For example, the user may want that if at t r 1 is
included in the antecedent, then at t r 3 and at t r 4 should
also be included. Otherwise, if attr2 is used instead of 
attrl, then attr5 and attr6 should be included in the 
rule. This can be done by replacing the grammar rule 2 of
table 7.1 with the following grammar rules: 
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antes -> attrl, [and], attr3, [and], attr4. 
antes -> attr2, [and], attr5, [and], attr6. 

There are more than one target variable and thus more than 
one kind of rules. 

Usually data mining is not restricted to one target variable. 
The user may want to find knowledge describing all the 
dependent variables. Thus this leads to more than one kind of 
rules. Different kinds of rules can be searched by replacing 
the grammar rule 1 of table 7.1 with the following grammar 
rules:

start -> [if], antesl, [, then], consql.
start -> [if], antes2, [, then], consq2.

•

7.2. Genetic Operators 

In rule learning using LOGENPRO, the search space is explored 
by generating new rules using three genetic operators: crossover, mutation 
and dropping condition. A rule is composed of attribute descriptors. The 
genetic operators try to change the descriptors in order to search for better 
rules.

As described in section 5.3, crossover is a sexual operation that 
produces one child from two parents. One parent is designated as the 
primary parent and the other one as the secondary parent. A part of the 
primary parent is selected and replaced by another part from the secondary 
parent. Suppose that the following primary and secondary parents are 
selected:

if attr1=0 and attr2 between 100 150 and attr3 ≠ 50,

if attr1=1 and any and attr3 >= attr2, then attr4=F. 
then attr4=T. 

The underlined parts are selected for crossover. The offspring will be
if attr1=0 and attr2 between 100 150 and 

In LOGENPRO, each individual is represented by a derivation 
tree. The replaced part is actually a subtree selected randomly from the 
derivation tree of the primary parent (see section 5.3). The subtree may 
represent different structures in the rule, hence the genetic change may 

attr3 >= attr2, then attr4=T. 
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occur on the whole rule, several descriptors, or just one descriptor. The 
replacing part is also selected randomly from the derivation tree of the 
secondary parent, but under the constraint that the offspring produced 
must be valid according to the grammar. If a conjunction of descriptors is 
selected in the primary parent, it will be replaced by another conjunction 
of descriptors, but never by a single descriptor. If a descriptor is selected 
in the primary parent, then it can only be replaced by another descriptor of 
the same attribute. This can maintain the validity of the rule. 

Mutation is an asexual operation. A part in the parental rule is 
selected and replaced by a randomly generated part (see section 5.4). 
Similar to crossover, the selected part is a subtree of the derivation tree. 
The genetic change may occur on the whole rule, several descriptors, one 
descriptor, or the constants in the rule. The new part is generated by the 
same derivation mechanism as in the population creation. Because the 
offspring have to be valid according to the grammar, a selected part can 
only mutate to another part with a compatible structure. For example, the 
parent

if attr1=0 and attr2 between 100 150 and attr3 ≠ 50,  
then attr4=T. 

may mutate to 
if attr1=0 and attr2 between 100 150 and 

attr3 >= attr2, then attr4=T. 
Dropping condition is an genetic operator tailor-made for rule 

learning using LOGENPRO. Due to the probabilistic nature of GP, 
redundant constraints may be generated in the rule. For example, suppose 
that the actual knowledge is ‘if A<20 then X=T’. We may learn rules like 
‘if A<20 and B<10 then X=T’. This rule is, of course, correct; but it does 
not concisely represent the actual knowledge. It is just a subsumed rule of 
the actual rule. Dropping condition (Michalski 1983) is incorporated in 
LOGENPRO to generalize rules. A rule is generalized if one descriptor in 
the antecedent part is dropped. Dropping condition selects randomly one 
attribute descriptor, and then turns it into ‘any’. That particular attribute 
is no longer considered in the rule, hence the rule can be generalized. For 
example, the rule 

if attr1=0 and attr2 between 100 150 and attr3 ≠ 50,
then attr4=T. 

can be changed to 
if attr1=0 and attr2 between 100 150 and any, 

then attr4=T. 
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7.3. Evaluation of Rules 

An evaluation (fitness) function is needed to evaluate rules. There 
are a lot of rule evaluation functions. Piatetsky-Shapiro (1991) stated that 
for a rule ‘if A then B’, the function measuring the interest of the rule 
should be a function of p(A ) (probability of A), p(B), p(A and B), rule 
complexity, and possibly other parameters. Let N be the total number of 
training examples. Let |A| denotes the number of cases that satisfy 
condition A, and |A and B| denotes the number of cases that satisfy 
condition ‘A and B’. It is suggested that the rule-interest function RI
should satisfy the following principles: 

1. RI = 0 if |A and B| = (|A| * |B|) / N. IfA and B are statistically 
independent, the rule is not interesting. 

2. RI monotonically increases with |A and B| when other 
parameters remain the same. 

3. RI monotonically decreases with |A| or |B| when other 
parameters remain the same. 

For a rule ‘if A then B’, the probability p(B|A )=p (A and B )/p (A ) is 
the accuracy of the rule. According to the accuracy, a rule can be 
categorized as an exact, strong, or weak rule. An exact rule is the rule that 
always correct, that is, p(B|A )=1. A strong rule is a rule that almost always 
correct, that is, p(B|A )=is high. A weak rule is a rule that the conditional 
probability of the consequent under the antecedents is much higher than 
the probability of consequent, that is p(B |A ) >> p(B). In the real-life
situation, an exact or strong rule may not exist. Thus a useful data mining 
system should not just search for exact or strong rules. It should be able to 
discover weak rules because the difference from the average may already 
provide interesting knowledge. Consequently, accuracy cannot be the sole 
metric for rule-interest. Another measurement of rule-interest is the 
applicability of the rule to future cases. If the rule can match a larger 
number of training cases, it is less likely that the rule is obtained by 
chance, and thus the rule should be more applicable to future cases. 

An evaluation function based on the support-confidence
framework (Agrawal et al. 1993) is developed as the fitness function in 
our rule learning approach. Support measures the coverage of a rule. It is a 
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ratio of the number of records covered by the rule to the total number of 
records. Confidence factor (cf) is the confidence of the consequent to be 
true under the antecedents, and is just the same as the rule accuracy. It is 
the ratio of the number of records matching both the consequent and the 
antecedents to the number of records matching only the antecedents. For a 
rule ‘if A then B’and with a training set of N cases, support is |A and B|/N
and confidence factor is |A and B|/|A|.

In the evaluation process, each rule is checked with every record 
in the training set. Three statistics are counted. antes_hit is the number of 
records matching the antecedents (the ‘if part), consq_hit is the number 
of records that match the consequent (the ‘then’ part), and both_hit is the 
number of records that match the whole rule (both the ‘if and the ‘then’ 
parts).

The confidence factor cf is the fraction both_hit/antes_hit. But a 
rule with a high confidence factor does not mean that it behaves 
significantly different from the average. Therefore we need to consider the 
average probability of consequent ( prob). The value prob is equal to 
consq_hit/total, where total is the total number of records in the training 
set. This value measures the confidence for the consequent under no 
particular antecedent. 

A formula similar to the likelihood ratio used in CN2 (equation 
2.9) is used to define the normalized confidence factor normalized_cf:

(7.1)
The log function measures the order of magnitude of the ratio cf/prob. The
normalized value is a product of two factors: cf and log( cf/prob). A high 
value of normalized_cf requires simultaneously a high value on the rule 
confidence factor ( cf) and a high value on the rule confidence factor over 
the average probability ( cf/prob). The definition of the value in 7.1 
matches with the three previously stated principles proposed by Piatetsky-
Shapiro (1991). Using his notation, cf is actually |A and B|/|A|, andprob is 
|B|/N. If |A and B|/|A|=|B|/N, cf/prob =1 and normalized_cf =0. The value cf 
(and so does normalized-cj) monotonically increases with |A and B| and 
monotonically decreases with |A| The value prob monotonically increases 
with |B| and thus normalized_cf monotonically decreases with |B|.

Support is another measure that we need to consider. A rule can 
have a high accuracy but the rule may be formed by chance and based on 
a few training examples. This kind of rules does not have enough support. 
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The value support is defined as both_hit/total. If support is below a user-
defined minimum threshold ( min_support), the confidence factor of the 
rule should not be considered. This can avoid the waste of effort to evolve 
those rules with a high confidence but cannot be generalized. 

Finally, We define our fitness function to be: 

(7 .2) 

where the weights w1 and w2 are user-defined to control the balance 
between the confidence and the support in searching. We have set the 
values to 1 and 8 respectively so that the confidence of the rule plays a 
more important role in the evaluation function. 

7.4. Learning Multiple Rules From Data 

The knowledge of a data set is unlikely to be sufficiently 
described by a single rule. Thus, multiple rules are required to represent 
the knowledge. To perform rule learning using evolutionary computation, 
a suitable model for an individual must be designed such that a set of rules 
can be learned. There are two different approaches. In the Pittsburgh 
approach (Smith 1980; 1983), each individual in the population encodes a 
whole solution, that is, a set of rules. In the Michigan approach (Holland 
and Reitman 1978, Booker et al. 1989), each individual encodes only one 
rule. The individuals in the population can be combined together to 
provide a rule set. However this approach requires special techniques such 
that multiple good individuals can coexist in the population. Our approach 
follows the Michigan approach. The structure of an individual can be 
simpler because it only represents one rule. Thus the evolution for good 
individuals are easier. 

This section begins with an review of previous approaches for 
maintaining groups of individuals evolving different solutions. Then our 
approach, token competition, is presented in section 7.4.2. Section 7.4.3 
summarizes the complete approach for rule learning. Experimental results 
of rule learning from two machine learning databases are presented in 
section 7.4.4. 
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7.4.1. Previous Approaches 

Genetic algorithms and genetic programming are weak search 
algorithms to search for a solution that optimize the fitness function. 
These algorithms aim to search for a single solution only. Those 
individuals with higher fitness scores can survive while those with lower 
fitness scores will be extinct. If a part of the search space gives a higher 
fitness scores, eventually all the individuals will converge into this part. 

However there are many situations that multiple solutions are 
required. For example, we may need to search for all the peaks in a 
multimodal function. In this case, it is desirable to maintain groups of 
individuals, with different groups evolving different solutions. Each group 
of individuals is referred to as a sub-population or a species, and the part 
of the search space being explored by a species is referred to as a niche. 
Maintaining diversity of the population is important for the formulation of 
niches. The individuals are not allowed to converge to a single niche and 
hence forced to explore different parts of the search space. Several 
approaches have been designed in GAs to accomplish this task and they 
are reviewed as follows: 

7.4.1.1. Pre-selection

Pre-selection (Cavicchio 1970) maintains the diversity by trying 
to reduce the existences of similar individuals. It uses the idea that parents 
should be among the most similar individuals to the offspring. A new 
individual is evolved by using a genetic operator. The offspring can 
replace one of the parents if it has a better fitness. Otherwise the parents 
survives but not the child. 

7.4.1.2. Crowding 

In crowding (DeJong 1975), a certain percentage of the 
population is selected to produce offspring. The percentage is denoted as 
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the generation gap ( G). Offspring are evolved by crossover and mutation 
to replace the original individuals in the population. To determine which 
individual is replaced, for each offspring several individuals are selected 
randomly from the population. The number of individuals selected is 
denoted as the crowding factor ( CF). The similarities of the selected 
individuals with respect to the offspring are computed. Similarity is 
defined in turn of bit-wise (i.e. genotypic) matching. The most similar 
individual is replaced by the offspring. 

7.4.1.3. Deterministic Crowding 

Deterministic crowding (Mahfoud 1992) improves pre-selection
and crowding. In each generation, the individuals in the population are 
randomly paired without replacement. Each pair evolves two offspring by 
crossover. Deterministic crowding uses the idea of pre-selection that the 
offspring should be similar to its parent, and uses the idea of crowding 
that a similarity measure should used to determine the replacement. 
Deterministic crowding uses the phenotypic similarity. The bit strings of 
the individuals are decoded and the similarity measure is defined in the 
decoded parameters. The offspring is compared only with the two parents 
for similarity. There are two possible replacements of two parents by their 
two offspring: offspring 1 replaces parent 1 and offspring 2 replaces 
parent 2, or offspring 1 replaces parent 2 and offspring 2 replaces parent 1. 
The pair of replacements that yields the greater sum of phenotypic 
similarities between the offspring and the replaced parents is used. The 
parent is replaced by the offspring only if the corresponding offspring has 
a better fitness score. 

7.4.1.4. Fitness Sharing 

Fitness sharing (Goldberg and Richardson 1987) is apparently a 
time consuming algorithm which maintains a diversity of individuals by 
discouraging individuals to converge into one niche. The fitness of one 
individual gained from one niche must be shared by similar individuals. A 
distance function d(xi, xj) measures the distance (i.e. dissimilarity) 
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between two individuals xi and xj. For each individual, the distances with 
all other individuals are calculated. A sharing function s defines the 
degree of fitness sharing by the similar individuals. The shared fitness fs of
one individual is the un-shared fitness f divided by the accumulated 
number of shares: 

Thus when more individuals converge to one niche, the fitness is shared 
by more individuals. The fitness will decrease to a level such that it is no 
longer better than the fitness on other niches. Eventually a distribution of 
individuals on different niches can be achieved. 

7.4.2. Token Competition 

The token competition (Leung et al. 1992) technique is employed 
in our rule learning approach to increase the diversity, so that good 
individuals in different niches are maintained in the population. The 
concept is as follows: In the natural environment, once an individual has 
found a good place for living, it will try to exploit this niche and prevent 
other newcomers to share the resources, unless the newcomer is stronger 
than it is. The other individuals are hence forced to explore and find their 
own niches. In this way, the diversity of the population is increased. 

Based on this mechanism, we assume each record in the training 
set can provide a resource called a token. If a rule can match a record, it 
set a flag to indicate the token is seized. Other weaker rules then cannot 
get the token. The priority of receiving tokens is determined by the 
strength of the rules. A rule with a high score on raw_fitness (equation
7.2) can exploit the niche by seizing as many tokens as it can. The other 
rules entering the same niche will have their strength decreased because 
they cannot compete with the stronger rule. The fitness score of each 
individual is modified based on the token it can seize. The modified 
fitness is defined as :

modified_ fitness = raw_ fitness × count / ideal (7.3)
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where raw_fitness is the fitness score obtained from the evaluation 
function, count is the number of tokens that the rule actually seized, ideal
is the total number of tokens that it can seize, which is equal to the 
number of records that the rule matches. Token competition is a greedy 
operation. It favors strong rules as their chance of survival is maintained, 
while their close competitors are weakened as they cannot get the tokens 
in the niche. 

From another point of view, each rule contributes to the system by 
covering several records of the database. If a record has already been 
covered by one rule, then another rule covering the same record will make 
no contribution to the system. Thus the fitness of the latter rule should be 
discounted.

Token competition is a simple method to force the increase of the 
diversity of the population. It has an advantage that it does not require a 
distance function. In crowding or fitness sharing, it is required to define a 
similarity or a distance function, so as to measure the similarity or 
dissimilarity between two individuals. However, it may be difficult to 
define how one individual is similar to another individual, especially in 
Genetic Programming. Genetic Algorithms use a fixed length binary 
string as the chromosome. Thus the genotypic difference (i.e. difference in 
the bits) can be used as a general similarity measurement. However this is 
not valid in the tree structure of Genetic Programming. Moreover, the 
similarity in genotype may not truly reflect the similarity of the 
individuals. Token competition simplifies the problem by simply 
regarding two individuals to be similar if they cover similar sets of 
records.

The execution of token competition is faster than that of fitness 
sharing. To calculate the fitness score of one individual in fitness sharing, 
the similarity scores of all other individuals with respect to this individual 
have to be calculated. If a similarity score can be computed in time O(t),
and the population size is p, each individual needs a time O(pt) to 
calculate the similarity score, and the time needed to complete fitness 
sharing in each generation is O(p2t). On the other hand, calculations of 
similarity are not needed in token competition. The required information 
of token counting is the list of records that each individual covered. This 
information is already stored during the evaluation process. If an 
individual covers m records, a time of O(m) is needed to seize the tokens, 
and token competition in each generation can be completed in O(mp),
where E is average value of m. This computation is straight forward and 
can be faster than fitness sharing if O(m) < O(pt) .
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As a result of token competition, there are rules that cannot seize 
any token. These rules are redundant as all of its records are already 
covered by the stronger rules. They can be replaced by new individuals. 
Introducing these new individuals can inject a larger degree of diversity 
into the population, and provide extra chances for generating good rules. 
To create the new individuals, we can use seeds to generate better rules. 
Those records with their tokens not taken are the possible seeds. These 
records are not yet covered by any existing rules, and thus introducing 
rules covering them can improve the system. To create a new rule, a seed 
is selected, and then the rule is generated to cover the seed. 

7.4.3. The Complete Rule Learning Approach 

Figure 7.1 is the flowchart of the complete process for learning 
multiple rules from a set of data using LOGENPRO. A grammar is 
provided by the user as a template for rules. A set of rules is derived by 
using this grammar and forms the initial population. Then, the main loop 
of LOGENPRO is entered. In each generation, individuals are selected 
stochastically to evolve offspring by the three genetic operators: 
crossover, mutation, and dropping condition. In each generation, the 
number of new individuals evolved equals to the population size. Thus at 
this stage, the number of individuals in the population is doubled. All 
individuals participate in the token competition and the replacement step, 
so as to eliminate similar rules and increase the diversity. One half of the 
individuals with the higher fitness scores after token competition are 
retained and passed to the next generation. The whole process iterated 
until the maximum number of generations is reached. 

Parents for the genetic operators are selected by the rank selection 
method. The probabilities of using crossover, mutation, and dropping 
condition in our approach are 0.5, 0.4, and 0.1, respectively. These setting 
is chosen because they gave the best results in preliminary executions of 
the system. 

The data set for learning can be partitioned into a training and a 
testing sets. Only the training set is available for the learning process. 
After the maximum number of generations is reached, the discovered rules 
are further evaluated with the unseen testing set, so as to verify their 
accuracy and reject the rules that over-fit the training set. 
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Our system differs from conventional GP in that reproduction 
operator is not used, and the parents compete with the offspring for places 
in the new generation. In conventional GP, the next generation of 
population only consists of the offspring. An individual will be passed to 
the next generation of population through the use of the reproduction 
operator. Good individuals can export their genes to the new generation 
by reproducing more children, and gradually dominate the population. 
Thus many individuals contain the good genes, and a good gene has a 
high probability of being passed to the offspring. However, in our rule 
learning approach, we do not want a good rule to replicate itself and 
dominate the population. Rather, we need to find several good rules and 
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diversify the population. Token competition only allows one copy of each 
good individual to be kept in the population. Consequently, the chance of 
a good gene being passed to the offspring is much less than conventional 
GP, because a good individual may not be selected as the parent. 
Therefore we need an explicit way to retain the good genes of the parents. 
This is done by keeping the parents as competitors for the new generation. 
Good parents can win poor offspring and gain positions in the new 
generation.

The execution time can be approximated by assuming that the 
evaluation of rules is the most time consuming step. In each generation, 
each rule has to be checked with every training case to count the number 
of records that match the antecedents or the consequent. Thus we can 
roughly estimated that the execution time should be directly proportional 
to:

number of database records × population size × 
number of generations 

7.4.4. Experiments With Machine Learning Databases 

Experiments have been performed to evaluate the rule learning 
system. Two databases from the UCI Machine Learning Repository (Merz 
and Murphy 1998) are used as the source of data. Using these databases, 
our target is to search for knowledge for classification. A useful measure 
of the accuracy of the learned knowledge is to apply it to an unseen testing 
set. Thus the database is divided into a training and a testing sets. To 
measure the accuracy in the testing set, the rules are applied to see 
whether each testing case is classified correctly. Since the discovered rules 
can overlap, the testing case may match more than one rule. Starting from 
the rule with the highest fitness value, the testing case is checked by the 
rule. If the antecedent part does not match with the testing case, the next 
rule is applied until there is a match or no rule can apply. If no rule can be 
applied or the testing case matches the antecedents but not the consequent 
part, then the testing case is considered as a miss. 

We should note that the aim of our rule learning approach is to 
discover knowledge instead of classifying unseen cases. No special 
technique is designed to make the rules cover all the cases. Thus the 
classification accuracy is only an indirect measurement of our approach. 
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7.4.4.1. Experimental Results on the Iris Plant Database 

The first experiment uses the iris plants database as the data set. 
This database is one of the most frequently used database in machine 
learning. It consists of 150 records with 5 attributes (table 7.2). The task is 
to discover knowledge about the three classes. Each class has 50 records 
in the database. 100 records are randomly selected as the training set and 
the remaining 50 records are used as the testing set. 

Table 7.2: The iris plants database. 

The grammar in table 7.3 is used for learning rules from this 
database. This grammar is very simple. Each of the four continuous 
attributes is described by a range in the rule, and the nominal attribute is 
described by a value. The population size is 50 and the maximum number 
of generations is 50. 

Preliminary experiments have been performed to investigate the 
effects of different parameter settings. We found that by lowering the 
value of w2 in the fitness function (equation 7.2), a higher accuracy on the 
testing set can be achieved, as shown in table 7.4. In this database it is 
quite easy to find a rule with a high confidence, but the rule may not be 
general enough. Since the rule set needs to cover all testing cases, the goal 
of the evolution process is not just to evolve rules with high confidence, 
but also to evolve rules with high support. A lower value of w2 in the 
fitness function can favor more general rules with a better support. We 
also found that the classification accuracy on using a lower value of 
minimum support is somewhat better, and the result is less sensitive to the 
rates of the genetic operators. The results are shown in tables 7.5 and 7.6. 
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1: start -> [if], antes, [, then], consq, [.]. 
2: antes -> slength, [and], swidth, [and], 

3: s length -> [any].
4: s lengt h -> slength_descriptor.
5: swidth -> [any].
6: swidth -> swidth_descriptor.
7: pl engt h -> [any].
8: plength -> plength_descriptor.
9: pwidth -> [any].
10: pwidth -> pwidth_descriptor.
11: slength_descriptor -> [sepal length is between], 

plength, [and], pwidth. 

slength_const,
slength_const.

swidth_const, swidth_const. 

plength_const,
plength_const.

pwidth_const, pwidth_const. 

12: swidth_descriptor -> [sepal width is between] , 

13: plength_descriptor -> [petal length is between], 

14: pwidth_descriptor -> [petal width is between], 

15: consq -> [class is], class-const.
16: slength_const -> {random(4.3, 7.9, ?a)}, ?a. 
11: swidth_const -> {random(2.0, 4.4, ?a) }, ?a. 
16: plength_const -> {random(1.0, 6.9, ?a) }, ?a. 
17: pwidth_const -> {random(0.1, 2.5, ?a) }, ?a. 
18: class-const -> {member (?a, [Iris setosa, 

Iris Vericolor,Iris Virginical) }, 
?a.

Table 7.3: The grammar for the iris plants database. 
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A more complete result was obtained by executing 25 runs using 

the best setting that we have tried. The best setting uses a rate of 0.5 for 

crossover, 0.4 for mutation, and 0.1 for dropping condition, 0.01 for 

minimum support, 1 and 1 respectively for the values of w1 and w2 for the 

fitness function. The execution time for each run was about 70 seconds in 

a Sun Ultra 1/140. Our system achieved an average classification accuracy 

of 91.04%. The results of these runs are shown in table 7.7. The best run 

gives an accuracy of 100% and is listed in Appendix A.l 

The results of other approaches are quoted from Holte (1993) as 

references (table 7.8). It should be notice that these results were obtained 

using different number of runs and different setting in the training and 
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testing sets. The average accuracy of our approach is not as good as the 
other approaches. However, the perfect result can be obtained in the best 
run. A characteristic of evolutionary algorithms is that they are stochastic. 
Thus our approach has larger fluctuations in different runs. In order to get 
a better result, the user may execute several trials of the algorithm to get 
the result with the best fitness score. 

Table 7.8: The classification accuracy of different approaches on the iris plants 
database.

7.4.4.2. Experimental Results on the Monk Database 

The second experiment has been performed on the Monk database 
(Thrun et al. 1991). This database contains attributes for artificial robots, 
as shown in table 7.9. There are three data sets. Each data set has a hidden 
knowledge on the robots that belong to the class (i.e. class = 1). The 
training set contains randomly selected robots while the testing set 
contains all the 432 possible robots. The task is to discover the knowledge 
on classification. 

1. The monk1 data set has 124 examples in the training set, 
which contains 62 positive examples (i.e. class=1) and 62 
negative examples (i.e. class=2). The testing set contains 
216 positive and 216 negative examples. The hidden 
knowledge for classification is “(head_shape =
body shape) or (jacket_color = 1)”. There are no 
mis-classifications. 

2. The monk2 data set has 169 examples in the training set, 
which contains 105 positive and 64 negative examples. The 
testing set contains 190 positive and 142 negative examples. 
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The knowledge hidden is “exactly two of the six attributes 
have the values 1”. For example, a robot with 
head _ shape=1, body_ shape=3, i s_smiling=1,
holding=3, holding=2 and j acket_color=2 is 
positive. There are no mis-classifications.

The monk3 data set has 122 examples in the training set, 
which contains 62 positive and 60 negative examples. The 
testing set contains 204 positive and 228 negative examples. 
The knowledge hidden is “(holding = 1 and 
jacket_color = 3) or (body-shape ≠ 3 and
jacket—color ≠ 4)”. There are 5% mis-classifications in
the training set. 

3.

Table 7.9: The monk database. 

The knowledge in monk1 is in the standard disjunctive normal 
form (DNF). The knowledge in monk2 is similar to a parity problem, and 
is difficult to be described in DNF using the given attributes only. The 
knowledge in monk3 is again in DNF but under the presence of noise. 

The grammar for learning rules from this database is listed in 
table 7.10. In this problem, there should be only rules describing 
knowledge about positive robots. Thus these rules can only have one 
consequent: “positive”. A default rule “if any then negative" is
used to classify a case as negative and the fitness of this default rule is 
calculated. A discovered rule will not be used if its fitness is less than that 
of the default rule. In this grammar, the attributes head_shape and
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body_shape can be described by their values, or a comparison between 
them.The other attributes are described by their values. The symbols 
erc2, erc3, and erc4 have ranges 1 to 2, 1 to 3, and 1 to 4, 
respectively.

1: start -> [if], antes, [, then], consq, [.]. 
2: antes -> shape, [and], smile, [and], hold, 
3: shape -> shape-comparison.
4: shape -> head, [and], body. 
5: shape-comparison -> [head_shape] , comparator, 

6: head -> [any].
7: head -> head-descriptor.
8: body -> [any].
9: body -> body-descriptor.
10: smile -> [any].
11: smile -> smile_descriptor.
12 : hold -> [any].
13 : hold -> hold_descriptor.
14: jacket -> [any].
15: jacket -> jacket-descriptor.
16: tie -> [any].
17: tie -> tie-descriptor.
18: head-descriptor -> [head-shape], comparator, 
19: body-descriptor -> [body-shape] , comparator, 
20: smile-descriptor -> [is-smiling] , comparator, 
21: hold_descriptor -> [holding], comparator, 

22: jacket-descriptor -> [ jacket_color] , comparator, 
23: tie-descriptor -> [has-tie] , comparator, 

[and], jacket, [and], tie. 

[ body_shape .] 

erc3.
erc3.
erc2.

erc3.
erc4.

erc2.
24: tie-descriptor -> [=] * 
25: tie-descriptor -> [¹]. 
26: erc2 -> {member(?x, [1, 2])}, ?x.
21: erc3 -> {member(?x, [1, 2, 31 ) }, 
?X.
28: erc4 -> {member(?x, [1,2,3,4])},?x.
29: consq -> [positive]. 

Table 7.10: The grammar for the monk database. 
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For each data set, rule learning has been executed for 25 runs 

using the following settings: 

•

•

•

• w1 is 1,

• w2 is 8,

•

the population size is 50, 

the maximum number of generations is 50, 

the minimum support is 0.01, 

the rates for crossover, mutation, and dropping condition are 

0.5, 0.4, and 0.1, respectively. 

The execution time for each run was around 120 seconds. The 

result is shown in table 7.11. The results of other approaches are quoted 

from Thrun et al. (1991) in table 7.12 as references. 

Table 7.12: The classification accuracy of different approaches on the monk 
database.
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• Monk1 database
For the monk1 database, the hidden knowledge can be 
easily reconstructed by the above grammar. Thus we can 
obtain classification accuracy of 100% on each run. The 
rule set is shown in Appendix A.2.1. If the grammar 
does not include a comparison between head_ shape
and body_shape, the perfect rule set can still be found 
but at a later generation, and three rules are needed to 
represented the concept (head_shape =
body _ shape) using the three possible values. 

• Monk2 database 
The hidden knowledge is difficult to be represented 
using rules. The simple hidden rule must be represented 
by a large number of rules. Thus, our system cannot 
evolve all of these rules and results in poor classification 
accuracy. The best rule set is shown in Appendix A.2.2. 

• Monk3 database
Our system can discover knowledge with high 
classification accuracy under this noisy environment. 
The accuracy is the third best among different 
approaches. The best rule set, which is given in 
Appendix A.2.3, can classify all testing cases correctly. 

From these experiments, we can see that our rule learning 
approach can successfully learn rules with high accuracy from the 
data, although the perfect rule set may not be discovered in every 
run.
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MEDICAL DATA MINING 

LOGENPRO has been applied to real-life medical databases 
(Ngan et al. 1999). The following two sections are two case studies of 
knowledge discovery from a fracture and a scoliosis databases. 

8.1. A Case Study on the Fracture Database 

The fracture database consists of records of children with limb 
fractures, admitted to the Prince of Wales Hospital of Hong Kong in the 
period 1984-1996. These data can provide information for the analysis of 
children fracture patterns. The database has 6500 records and 8 attributes, 
which are listed in table 8.1. 

From the database, we expect to learn knowledge about these 
attributes. The medical expert provides extra knowledge on how the rules 
should be formulated. He suggests that the attributes can be divided into 
three time stages: a diagnosis is first given to the patient, then an operation 
is performed, and after that the patient stays in the hospital. This 
knowledge leads to three kinds of rules. Firstly, sex, age, and admission 
date are the possible causes of diagnoses. Secondly, these three attributes 
and diagnosis are the possible causes of operations and surgeons. Thirdly, 
length of stay has all the other attributes as the possible causes. A 
grammar (see Appendix B.l) is written to specify these three kinds of 
rules. In this experiment, we have used a population size of 300 to run for 
50 generations. The minimum support is 0.01, w1 is 1, w2 is 8, the rates for 
crossover, mutation, and dropping condition are 0.5, 0.4, and 0.1, 
respectively. The execution time was about 3 hours on a Sun Ultra 1/140 
for the 6500 records. The results are summarized in table 8.2. The rules 
are listed in Appendix A.3. 
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Table 8.1: Attributes in the fracture database. 

Table 8.2: Summary of the rules for the fracture database. 

Two interesting rules about diagnosis have been found. The one 

If age is between 2 and 5, 
then diagnosis is Humerus. (cf=51.43%) 

with the highest confidence factor is: 

The confidence factors of the rules about diagnosis are just around 40%-
50%. It is partly because there are actually no strong rules affecting the 
value of diagnosis. However the ratio cf/prob shows that the patterns 
discovered deviate significantly from the average. LOGENPRO found that 
humerus fracture is the most common fracture for children between 2 and
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5 years old, while radius fracture is the most common fracture for boys 
between 11 and 13. 

Nine interesting rules about operation have been found. The one 
with the highest confidence factor is presented as follows: 

If age is between 0 and 7 and 
admission year is between 1988 and 1993 
and diagnosis is Radius, 

then operation is CR+POP. (cf=74.05%) 
These rules suggest that radius and ulna fractures are usually treated with 
CR+POP (i.e. plaster). Usually, it is not necessary to perform operation 
for tibia fracture. For children older than 11 years old, open reductions are 
performed commonly. Usually, it is not necessary to perform operation for 
children younger than 7 years old. LOGENPRO did not find any 
interesting rules about surgeons, as the surgeons for operation are more or 
less randomly distributed in the database. 

Thirteen interesting rules about length of stay have been found. 
The one with the highest confidence factor is: 

If admission year is between 1985 and 1996 

then stay is more than 8 days. (cf=81.11%) 
and diagnosis is Femur ,

Because Femur and Tibia fractures are serious injuries, these kinds of 
patients have to stay longer in hospital. If open reduction is performed, the 
patient requires longer time to recover because the wound has been cut 
open for operation. If no operation is needed, it is likely that the patient 
can return home within one day. Relatively, radius fracture requires a 
shorter time for recovery. 

The results have been evaluated by the medical expert. The rules 
provide interesting patterns that were not recognized before. The analysis 
gives an overview of the important epidemiological and demographic data 
of the fractures in children. It has clearly demonstrated the treatment 
pattern and rules of decision making. It can provide a good monitor of the 
change of pattern of management and the epidemiology if the data mining 
process is continued longitudinally over the years. It also helps to provide 
the information for setting up a knowledge-based instruction system to 
help young doctors in training to learn the rules in diagnosis and 
treatment.



164 Chapter 8 

8.2. A Case Study on the Scoliosis Database 

We have also employed LOGENPRO to learn rules from the 
database of scoliosis patients. Scoliosis refers to the spinal deformation. A 
scoliosis patient has one or more curves in his/her spine. Among them, the 
curves with severe deformations are identified as major curves. The 
database stores measurements on the patients, such as the number of 
curves, the curve locations, degrees, and directions. It also records the 
maturity of the patient, the class of scoliosis, and the treatment. The 
database has 500 records. According to the domain expert, 20 attributes 
are useful and extracted from the database. They are listed in table 8.3. 

(Vertebras are coded with T1-T12 or L1-L5) 
(Trunk Shift measures the displacement of the curve) 
(Risser Sign measures the maturity of the patient) 
Attributes in the scoliosis database. Table 8.3: 
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The medical expert is interested in discovering knowledge about 
classification of scoliosis and treatment. Scoliosis can be classified as 
Kings, Thoracolumbar(TL), or Lumbar(L), while Kings can be further 
subdivided into K-I, II, III, IV, and V. Treatment can be classified as 
observation, surgery, or bracing. The domain expert is more interested in 
finding relationships among classification of scoliosis and the attributes 
1stCurveT1, 1stMCGreater, L4Tilt, 1stMCDeg, 2ndMCDeg,

1 s tMCApex, and 2ndMCApex, and relationships among treatment and 
age, laxity, degrees of the curves, maturity of the patient, displacement of 
the vertebra, and the class of scoliosis. This domain knowledge can be 
easily incorporated into the logic grammar. There are two types of rules, 
one for classification of scoliosis and the other for suggesting treatments. 
The grammar is outlined in Appendix B.2. The population size is 100 and 
the maximum number of generations is 50. The minimum support is 0.01, 
w1 is 1, w2 is 8, the rates for crossover, mutation, and dropping condition 
are 0.5, 0.4, and 0.1, respectively. The execution time was about one hour 
on a Sun Ultra 1/140. The results of rule learning from this database are 
listed below. 

8.2.1. Rules for Scoliosis Classification 

For each class of scoliosis, a number of rules are mined. The 
results are summarized in table 8.4. The rules are listed in Appendix 
A.4.1. A typical rule of this kind is: 

If 1stMCGreater = N and 1stMCApex between T1 and T8 
and 2ndMCApex between L3 and L4 , 

then diagnosis is K-I. (cf=100%) 
For King-I and II the rules have high confidence and generally match 
with the knowledge of medical experts. However the fourth rules of King-
II is an unexpected rule for the classification of King-II. Under the 
conditions specified in the antecedents, our system found a rule with a 
confidence factor of 52% that the classification is King-II. However, the 
domain expert suggests the cIass should be King-V! After an analysis on 
the database, we revealed that serious data errors existed in the current 
database and that some records contained an incorrect scoliosis 
classification.
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For King-III and IV the confidence factors of the rules discovered 
are just around 20%. According to the domain expert, one common 
characteristic for these two classes is that there is only one major curve or 
the second major curve is insignificant. However there is no rigid 
definition for a ‘major curve’ and the concept of ‘insignificant’ is fuzzy. It 
depends on the interpretation of the doctors. Because of the inadequacy of 
information from the training data, the system cannot find accurate rules 
for these two classes. Another problem is that only a small number of 
patients in the database were classified as King-III or IV (see the values of 
prob in table 8.4). The database cannot provide a large number of cases 
for training. 

Similar problems also exist for King-V, TL, and L. For the 
classes, the system found rules with confidence factors around 40% to 
60%. Nevertheless, the rules for TL and L show something different in 
comparison with the rules suggested by the clinicians. According to our 
rules, the classification always depends on the location of the first major 
curve, while according to the domain expert, the classification always 
depends on the larger major curve. After discussion with the domain 
expert, it is agreed that the existing rules are not defined clearly enough, 
and our rules are more accurate than theirs. Our rules provide hints to the 
clinicians to re-formulate their concepts. 

8.2.2. Rules About Treatment 

The results of rules about treatment are summarized in table 8.5. 
The rules are listed in Appendix A.4.2. A typical rule of this kind is: 
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If age between 2 and 12 and Degl between 20 and 26 and 
Deg2 between 24 and 41 and 
Deg3 between 21 and 52 and 
Deg4 is 0 , 

then treatment is Bracing. (cf=100%) 
The rules for observation and bracing have very high confidence 

factors. However, the support is not high, showing that the rules only 
cover fragments of the cases. Our system prefers accurate rules to general 
rules. If the user prefers more general rules, the weights in the fitness 
function can be tuned. For surgery, no interesting rule was found because 
only 3.65% of the patients were treated with surgery. 

The biggest impact on clinicians from the data mining analysis of 
the scoliosis database is the fact that many rules set out in the clinical 
practice are not clearly defined. The usual clinical interpretation depends 
on the subjective experience. Data mining revealed quite a number of 
mismatches in the classification on the types of Kings curves. After a 
careful review by the senior surgeon it appears that the database entries by 
junior surgeons may not be accurate and that the rules discovered are in 
fact more accurate! The classification rules must therefore be quantified. 
The rules discovered can therefore help in the training of younger doctors 
and act as an intelligent means to validate and evaluate the accuracy of the 
clinical database. An accurate and validated clinical database is very 
important for helping clinicians to make decisions, to assess and evaluate 
treatment strategies, to conduct clinical and related basic research, and to 
enhance teaching and professional training. 
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Chapter 9 

CONCLUSION AND FUTURE WORK

9.1. Conclusion 

Data mining is defined as the non-trivial process of identifying 
valid, novel, potentially useful, and ultimately understandable patterns in 
data stored in databases (Fayyad et al. 1996, Frawley et al. 1991, 
Piatetsky-Shapiro and Frawley 1991). The knowledge discovered can be 
expressed in different knowledge representations such as logic programs, 
decision trees, decision lists, and production rules. 

Two of the approaches in data mining are Inductive Logic 
Programming (ILP) and Genetic Programming (GP). It was demonstrated 
that ILP can be used to induce knowledge represented as logic programs 
(Dzeroski and Lavrac 1993, Dzeroski 1996, Dehaspe and Toivonen, 1999, 
Srinivasan and King 1999, Blockeel et al. 1999, Srinivasan 1999). GP 
(Koza 1992; 1994, Koza et al. 1999 Kinnear 1994) extends traditional 
Genetic Algorithms (Holland 1992, Goldberg 1989, Davis 1987; 1991) to 
induce automatically S-expressions in Lisp. It performs both exploitation 
of the most promising solutions and exploration of the search space. It is 
featured to tackle hard search problems and thus applicable to program 
induction and data mining. 

We have proposed a framework for data mining in chapter 5, 
called Generic Genetic Programming (GGP), that combines Genetic 
Programming and Inductive Logic Programming. This framework is based 
on a formalism of logic grammars. To implement the framework, a data 
mining system called LOGENPRO (The LOgic grammar based GENetic 
PROgramming system) has been developed. The formalism can represent 
context-sensitive information and domain-dependent knowledge. The 
formalism is also very flexible and the knowledge learned can be 
represented in various knowledge representations such as functional 
programs, logic programs, and production rules. LOGENPRO has been 
tested on some learning tasks. 

An experiment that employs LOGENPRO to induce an 
S-expression for calculating dot product has been described in chapter 6. 
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This experiment illustrated that LOGENPRO, when used with domain 
knowledge, accelerates the learning of programs. 

Automatic discovery of sub-functions is one of the most important 
research areas in genetic programming. In GP with ADFs, the user must 
provide explicit knowledge about the number of available sub-functions,
the number of arguments of each sub-function, and the allowable terminal 
and function sets for each sub-function. An experiment has been 
performed to demonstrate that LOGENPRO can emulate GP with ADFs 
and represent the knowledge easily. Moreover, LOGENPRO can employ 
other knowledge such as argument types in a unified framework. This 
experiment shows that LOGENPRO has superior performance to that of 
GP with ADFs when more domain-dependent knowledge is available. 

In chapter 6, we have also presented two applications of 
LOGENPRO in acquiring knowledge from databases. These applications 
have demonstrated the advantages of LOGENPRO over other learning 
systems. In the first application, we have employed LOGENPRO to 
induce knowledge represented in decision trees from a real-world database 
and compared the results obtained by Michie et al, (1994) for the same 
problem. We have found that Ca15, ITrule, Discrim, Logdisc and 
DIPOL92 perform better than LOGENPRO marginally. Since the detailed 
information about the accuracy of the former systems is not available, it 
cannot be concluded that whether the differences in accuracy are 
significant. On the other hand, LOGENPRO performs better than CART, 
RBF, CASTLE, NaiveBay, IndCART, Back-propagation, C4.5, SMART, 
Baytree, k-NN, NewID, AC2, LVQ, ALLOC80, CN2, and Quadisc for the 
problem. Interestingly, LOGENPRO is better than C4.5 and CN2, two 
systems that have been reported in the literature (Quinlan 1992, Clark and 
Niblett 1989) about their outstanding performances in inducing decision 
trees or rules. 

In the second application, we have described how to combine 
LOGENPRO and a variation of FOIL, BEAM-FOIL, in learning logic 
programs. The initial population of logic programs is provided by 
BEAM-FOIL. The performance of LOGENPRO in inducing logic 
programs from imperfect training examples is evaluated using the chess 
endgame problem. A detailed comparison to FOIL, BEAM-FOIL, and 
mFOIL has been conducted. It is found that LOGENPRO outperforms the 
other systems significantly in this domain. 
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In chapters 7 and 8, we have employed LOGENPRO for learning 
rules from databases. Rules capture the specific relationships between 
particular values of the variables. 

The grammar used in LOGENPRO can provide a powerful 
knowledge representation. It can specify the format of the rules to be 
discovered. The format can be changed according to different domains, 
and the flexible grammar allows the representation of general concepts. 
Moreover, knowledge from domain experts is very useful for data mining. 
The use of grammar allows the domain knowledge to be easily and 
effectively utilized. Furthermore, the user can specify the desirable rule 
format by composing a suitable grammar. This can increase the 
understandability and the usefulness of the discovered rules. 

In many real-life situations, the available rules are general 
guidelines with many exceptional cases. The fitness function in the rule 
learning approach has been designed to learn such kind of knowledge. It 
compares the confidence factor of the rule with the average probability, so 
as to search for the patterns significantly deviated from the normal. Since 
one rule is insufficient to represent the complete knowledge, token 
competition has been used to learn as many rules as possible. This 
technique can effectively and efficiently formulate niches in the 
population, such that different rules are evolved in the same population. 
This rule learning approach can successfully construct rules from data. 
The rules can represent the regularities in the database and provide 
interesting knowledge to the users. 

The data mining system has been applied to two real-life medical 
databases. The results can provide interesting knowledge as well as 
suggestion for refinements to the existing knowledge. We also have found 
unexpected results that have led to discovery of mistakes in databases. In 
the fracture database, the system automatically uncovered knowledge 
about the age effect on fracture, the relationship between diagnoses and 
operations, and the effect of diagnoses and operations on lengths of 
staying in the hospital. In the scoliosis database, we have discovered new 
knowledge about the classification of scoliosis and about the treatment. 
The discovered knowledge has led to refinements of the existing 
knowledge.

These experiments and the results demonstrate that LOGENPRO 
is a promising system for inducing knowledge from databases. 
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9.2. Future Work 

In chapter 6, we have shown that LOGENPRO can successfully 
induce knowledge represented as logic programs from noisy datasets. We 
have also found that the noise handling ability of LOGENPRO is better 
than many existing ILP systems. Since training examples stored in 
everyday databases are usually imperfect, a very important research area 
in data mining is how to improve the noise handling mechanisms of our 
system.

One can use LOGENPRO on extracting knowledge from other 
datasets of the field. One can also combine LOGENPRO with other 
learning systems such as GOLEM (Muggletion and Feng 1990), LINUS 
(Lavrac and Dzeroski 1994), and mFOIL (Lavrac and Dzeroski 1994) to 
explore the possibility of further improvement on its learning ability. 

Since the system is very flexible, different representations 
employed by other learning systems can be specified easily. It facilitates 
the integration of LOGENPRO with the latter. One approach is to 
incorporate the search operators of other systems into LOGENPRO. These 
operators include information guided hill-climbing (Quinlan 1990; 199 1), 
explanation-based generalization (DeJong and Mooney 1986, Mitchell et 
al. 1986, Ellman 1989), explanation-based specialization (Minton 1989) 
and inverse resolution (Muggleton 1992). LOGENPRO can also invoke 
other learning systems as front-ends to generate the initial population. The 
advantage is that we can quickly find important and meaningful 
components (genetic materials) and embody these components into the 
initial population. Moreover, it has been found that LOGENPRO, when 
combined with other learning systems, has superior performance in 
learning logic programs from imperfect data as in the chess-endgame
problem. The Darwinian principle of survival and selection of the fittest is 
a plausible noise handling method which can avoid overfitting and 
identify important patterns simultaneously. This superior noise handling 
ability is intrinsically embedded in LOGENPRO because it uses 
evolutionary algorithms as its primary learning mechanism. 

For almost all applications of LOGENPRO, a huge amount of 
computation time is consumed in evaluating the fitness value of each 
program in the population since the genetic operators of LOGENPRO can 
be performed efficiently. Memory availability is another important 
problem of LOGENPRO because the population usually has a large 
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number of programs. Moreover, since programs are represented as 
derivation trees of varying sizes, shapes, and structures. This 
representation method requires a lot of memory to store programs. 

There is a relation between the difficulty of the problem to be 
solved and the size of the population. In order to solve substantial and real 
world problems, a population size of thousands and a longer evolution 
process are usually required. A larger population and a longer evolution 
process imply a larger number of fitness evaluations must be conducted 
and more memory is required. In other words, a lot of computational 
resources are required to solve substantial and practical problems. 
Usually, this requirement cannot be fulfilled by normal workstations. 

Fortunately, these time-consuming fitness evaluations can be 
performed independently for each program in the population and 
programs in the population can be distributed among multiple computers. 
Thus, we plan to develop a parallel version of LOGENPRO. 

Evolutionary algorithms have a high degree of inherent 
parallelism which is one of the motivation of studies in this field. In 
natural populations, thousands or even millions of individuals exist in 
parallel and these individuals operate independently with a little 
cooperation and/or competition among them. This suggests a degree of 
parallelism that is directly proportional to the population size used in 
evolutionary algorithms. There are different ways of exploiting 
parallelisms in evolutionary algorithms. We plan to study the possibility 
of parallelizing LOGENPRO using four different approaches. They are 
master-slave models, improved-slave models, massively parallel 
evolutionary algorithms, and island models. 

The most direct way to implement a parallel evolutionary 
algorithm is to implement a global population in the master processor. The 
master sends each individual to a slave processor and let the slave to find 
the fitness value of the individual. After the fitness values of all 
individuals are obtained, the master processor selects some individuals 
from the population using some selection method, performs some genetic 
operations, and then creates a new population of offspring. The master 
sends each individual in the new population to a slave again and the above 
process is iterated until the termination criterion is satisfied. 

Master-slave models can be improved easily using the tournament 
selection. Another direct way to implement a parallel evolutionary 
algorithm is to implement a global population and use the tournament 
selection. As described in chapter 3 , the tournament selection 
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approximates the behavior of ranking. Assume that the population size N
is even and there are more than N/2 processors. N/2 slave processors are 
selected and are numbered from 1 to N/2. A processor selected from the 
remaining processors maintains the global population and implements an 
algorithm that controls the overall evolution process and the other N/2
slave processors. Each slave processor performs two independent m-ary
tournaments. In each tournament, m individuals are sampled randomly 
from the global population. These m individuals are evaluated in the slave 
processor and the winner is kept. Since there are two tournaments, the two 
winners produced can be crossed in the slave processor to generate two 
offspring. The slave processor may perform further modifications to the 
offspring. The offspring are then sent back to the global population and 
the master processor proceeds to the next generation if all offspring are 
received from the N/2 slave processors. 

Massively parallel evolutionary algorithms explore the computing 
power of massively parallel computers. To explore the power of this kind 
of computers, one can assign one individual to each processor, and allow 
each individual to seek a mate close to it. A global random mating scheme 
is inappropriate because of the limitation of the communication abilities of 
these computers. Each processor can select probabilistically an individual 
in its neighborhood to mate with. The selection is based on the fitness 
proportionate selection, the ranking, the tournament selection, or other 
selection methods proposed in the literature. Only one offspring is 
produced and becomes the new resident at that processor. The common 
property of different massively parallel evolutionary algorithms is that 
selections and mating are typically restricted to a local neighborhood. 

Island models can fully explore the computing power of coarse 
grain parallel computers and distributed workstations. Assume that we 
have 20 high performance processors, such as the UltraSparc processors, 
and have a population of 4000 individuals. We can divide the total 
population down into 20 sub-populations (islands or demes) of 200 
individuals each. Each processor can then execute a normal evolutionary 
algorithm such as LOGENPRO on one of these sub-populations. 
Occasionally, the sub-populations would swap a few individuals. The 
migration allows sub-populations to share genetic material (Whitley and 
Starkweather 1990, Gorges-Schlenter 199 1, Tanese 1989, Starkweather et 
al. 1991). 

Since there are 20 independent evolutionary searches occur 
concurrently, these searches will be different to a certain extent because 
the initial subpopulations will impose a certain sampling bias. Moreover, 



CONCLUSION AND FUTURE WORK 175 

genetic drift will tend to drive these subpopulations in different directions. 
By employing migration, island models are able to exploit differences in 
the various subpopulations. These differences maintain genetic diversity 
of the whole population and thus can prevent the problem of premature 
convergence. We plan to exploit a number of variations of island models. 
These variations investigate the effects of subpopulations with different 
sizes or even dynamic sizes, asynchronous migration, dynamic number of 
migrating individuals, subpopulations with different fitness functions, 
adaptive migration methods, and cooperative/competitive co-evolution.
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Appendix A 

THE RULE SETS DISCOVERED 

A.l. The Best Rule Set Learned from the Iris Database 

1. if petal width is between 0.08 and 0.77, then 
class is Iris-setosa.
Fitness: 1.50 
Confidence: 100%; 
Support: 30%; 
Probability of consequent: 30% 
petal width is between 0.18 and 1.66, then 
class is Iris-vericolor.
Fitness: 1.37 
Confidence: 100%; 
Support: 35%; 
Probability of consequent: 35% 
class is Iris-virginica.
Fitness: 0.43 
Confidence: 49.06%; 
Support: 26%; 
Probability of consequent: 35% 

2. if petal length is between 1.98 and 4.97, and 

3. if sepal width is between 2.33 and 3.16, then 

4. if any, then class is Iris-virginica.
Fitness: 0.35 
Confidence: 35%; 
Support: 35%; 
Probability of consequent: 35% 
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A.2. The Best Rule Set Learned from the Monk Database 

A.2.1. Monk1 

1. if jacket_color = 1, then positive. 
Fitness: 11.33 
Confidence:100%;
Support: 23.39%; 
Probability of consequent: 50% 
positive.
Fitness: 9.93 
Confidence:100%;
Support: 7.26%; 
Probability of consequent: 50% 
positive.
Fitness: 8.98 
Confidence: 100%; 
Support: 12.10%; 
Probability of consequent: 50% 
positive.
Fitness: 8.59 
Confidence: 100%; 
Support: 13.70%; 
Probability of consequent: 50% 

2. if head-shape = 1 and body-shape = 1, then 

3. if head_shape = 2 and body_shape = 2, then 

4. if head shape = 3 and body-shape = 3, then 

5. if any, then negative. 
Fitness: 0.51 
Confidence: 50%; 
Support: 50%; 
Probability of consequent: 50% 
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A.2.2. Monk2 

1. if head-shape≠ body-shape and is-smiling= 1
and holding ≠ 1 and jacket-color = 2 and
has-tie≠ 1, then positive.
Fitness: 15.59 
Confidence: 100%; 
Support: 4.73%; 
Probability of consequent: 37.87% 

2. if head_shape = 2 and body_shape ≠ 1 and
is_smiling ≠ 2 and holding ≠ 1 andjacket-color
≠ 1 and has_tie ≠ 2, then positive.
Fitness: 15.58 
Confidence: 100%; 
Support: 3.55%; 
Probability of consequent: 37.87%

and jacket_color = 1 and has-tie ≠ 1, then
positive.
Fitness: 15.58 
Confidence: 100%; 
Support: 2.96%; 
Probability of consequent: 37.87% 

holding = 2 and jacket_color = 1 and has_tie ≠ 
2, then positive. 
Fitness: 15.57 
Confidence: 100%; 
Support: 2.37%; 
Probability of consequent: 37.87% 

holding ≠ 1 and jacket_color = 3 and has_tie ≠ 
1, then positive. 
Fitness: 15.56 
Confidence: 100%; 
Support: 1.78%; 
Probability of consequent: 37.87% 

3. if head_shape ≠ body-shape and is-smiling≠ 1

4. if body-shape ≠ 1 and is_smiling ≠ 1 and

5. if head_shape = 1 and is_smiling ≠ 2 and
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6. if body_shape = 1 and is_smiling = 1 and 
jacket_color = 3 and has_tie = 2, then 
positive.
Fitness: 15.56 
Confidence: 100%; 
Support: 1.78%; 
Probability of consequent: 37.87% 

is_smiling ≠ 1 and holding = 3 and jacket_color
= 1, then positive. 
Fitness: 15.56 
Confidence: 100%; 
Support: 1.78%; 
Probability of consequent: 37.87% 

holding ≠ 1 and jacket_color = 4 and has-tie ≠ 
1, then positive. 
Fitness: 15.56 
Confidence: 100%; 
Support: 1.18%; 
Probability of consequent: 37.87% 
if head_shape = 3 and body-shape ≠ 3 and
is_smiling ≠ 2 and jacket_color ≠ 1 and has_tie
= 2, then positive. 
Fitness: 5.05 
Confidence: 87.50%; 
Support: 4.14%; 
Probability of consequent: 37.87% 

jacket-color = 2 and has_tie = 1, then positive,
Fitness: 3.96 
Confidence: 70%; 
Support: 4.14%; 
Probability of consequent: 37.87% 

7. if head_shape ≠ 1 and body_shape ≠ 1 and

8. if head_shape = 1 and is_smiling ≠ 2 and

9.

10. if head-shape ≠ body_shape and holding ≠ 1 and
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11. if body-shape ≠ 1 and is-smiling≠ 1 and
holding = 2 and jacket-color ≠ 2 and has-tie ≠ 
2, then positive. 
Fitness: 2.75 
Confidence: 75%; 
Support: 3.55%; 
Probability of consequent: 37.87%
if head_shape ≠ body-shape and is_smiling = 1
and holding ≠ 1 and jacket_color = 2, then
positive.
Fitness: 2.37 
Confidence: 91.67%; 
Support: 6.50%; 
Probability of consequent: 37.87% 
if head shape ≠ body_shape and holding ≠ 2 and
jacket_golor = 2 and has_tie = 1, then 
positive.
Fitness: 1.35 
Confidence: 83.33%; 
Support: 2.96%; 
Probability of consequent: 37.87% 

jacket_color ≠ 1 and has_tie = 2, then
positive.
Fitness: 1.13 
Confidence: 50%; 
Support: 3.55%; 
Probability of consequent: 37.87% 

12.

13.

14. if body_shape = 1 and is_smiling ≠ 1 and

15. if any, then negative. 
Fitness: 0.63 
Confidence: 62.13%; 
Support: 62.13%; 
Probability of consequent: 62.13% 
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A.2.3. Monk3 

1. if body_shape ≠ 3 and is_smiling = 2 and
jacket_color ≠ 4, then positive.
Fitness : 11.4 6 
Confidence: 100%; 
Support: 22.30%; 
Probability of consequent: 49.59% 
if head_shape ≠ body_shape and holding = 1 and
jacket _ color = 3, then positive. 
Fitness : 6.76 
Confidence: 100%; 
Support: 4.13%; 
Probability of consequent: 49.59% 

3. if body shape ≠ 3 and holding ≠ 2 and
jacket-color = 2, then positive. 
Fitness : 6.06 
Confidence: 100%; 
Support: 12.40%; 
Probability of consequent: 49.59% 

4. if head-shape≠ 1 and holding = 1 and
jacket-color = 3, then positive. 
Fitness: 4.51 
Confidence: 100%; 
Support: 4.13%; 
Probability of consequent: 49.59%

positive.
Fitness: 2.68 
Confidence: 91.94%; 
Support: 47.10%; 
Probability of consequent: 49.59%

has_tie ≠ 1, then positive.
Fitness : 1.62 
Confidence: 100%; 
Support: 11.57%; 
Probability of consequent: 49.59% 

2.

5. if body-shape ≠ 3 and jacket_color ≠ 4, then

6. if body shape ≠ 3 and jacket color = 2 and__
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7. if head_shape ≠ 2 and body_shape ≠ 3 and
holding ≠ 3 and jacket_color = 2, then
positive.
Fitness: 0.87 
Confidence: 100%; 
Support: 10.74%; 
Probability of consequent: 49.59% 

8. if any, then negative. 
Fitness: 0.51 
Confidence: 50.41%; 
Support: 50.40%; 
Probability of consequent: 50.40% 

A.3. The Best Rule Set Learned from the Fracture 
Database

A.3.1. Type I Rules: About Diagnosis 

1. Humerus 
if age is between 2 and 5, then diagnosis is 
Humerus.
Fitness: 3.48 
Confidence: 39.75%; 
Support: 8.42%; 
Probability of consequent: 23.43% 
if sex is M, and age is between 11 and 13, then 
diagnosis is Radius . 
Fitness: 3.04 
Confidence: 51.43%; 
Support: 10.01%; 
Probability of consequent: 36.10% 

2. Radius 
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A.3.2. Type II Rules: About Operation/Surgeon 

1. Radius vs. CR+POP 
if age is between 0 and 7, and admission year 
between 1988 and 1993, and diagnosis is Radius, 
then operation is CR+POP. 
Fitness: 8.56 
Confidence: 50.61%; 
Support: 3.19%; 
Probability of consequent: 17.72% 
if age is between 1 and 7, and diagnosis is 
Tibia, then operation is Null (i.e. no 
operation).
Fitness: 7.86 
Confidence: 74.05%; 
Support: 3.78%; 
Probability of consequent: 38.11% 

3. Ulna vs. CR+POP 
if age is between 1 and 12, and admission year 
between 1989 and 1992, and diagnosis is Ulna, 
then operation is CR+POP. 
Fitness: 7.19 
Confidence: 47.37%; 
Support: 3.50%; 
Probability of consequent: 17.72% 
if diagnosis is Ulna, then operation is CR+POP. 
Fitness: 4.23 
Confidence: 36.17%; 
Support: 7.408; 
Probability of consequent: 17.72% 

2. Tibia vs. No Operation 
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4. Radius vs. CR+K-Wire
if admission year is between 1992 and 1994, and 
diagnosis is Radius, then operation is CR+K-
Wire.
Fitness: 4.10 
Confidence: 34.03%; 
Support: 3.83%; 
Probability of consequent: 16.23% 
if diagnosis is Humerus, then operation is 
CR+K-Wire.
Fitness: 2.52 
Confidence: 27.96%; 
Support: 6.06%; 
Probability of consequent: 16.23% 
if age is between 11 and 15, and diagnosis is 
Ulna, then operation is OR. 
Fitness: 3.24 
Confidence: 33.20%; 
Support: 3.25%; 
Probability of consequent: 18.26% 
if sex is M, and age is between 13 and 17, and 
admission year between 1985 and 1989, then 
operation is OR. 
Fitness: 2.57 
Confidence: 30.53%; 
Support: 3.22%; 
Probability of consequent: 18.26% 

8. Age vs. No Operation 
if age is between 0 and 7, then operation is 
Null (i.e. no operation). 
Fitness: 1.08 
Confidence: 43.33%; 
Support: 16.22%; 
Probability of consequent: 38.11% 

5. Humerus vs. CR+K-Wire

6. Ulna vs. OR 

7. Age vs. OR
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A.3.3. Type III Rules: About Stay 

1. Femur vs. Stay 
if admission year between 1985 and 1996, and 
diagnosis is Femur , then stay is between 8 and 
2000 days. (i.e. stay 8 days or more, since 
2000 is the maximum value of stay) 
Fitness: 21.99 
Confidence: 70.87%; 
Support: 3.14%; 
Probability of consequent: 10.24% 
if diagnosis is Femur , then stay is between 5 
and 2000 days. (i.e. stay 5 days or more) 
Fitness: 18.70 
Confidence: 80.99%; 
Support: 3.30%; 
Probability of consequent: 19.22% 
if age between 5 and 12, and diagnosis is 
Tibia, then stay is between 3 and 2000. (i.e. 
stay 3 days or more) 
Fitness : 8.93 
Confidence: 78.92%; 
Support: 5.05%; 
Probability of consequent: 39.15% 

2. Tibia vs. Stay 
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3. OR vs. Stay 
if age between 2 and 14, and diagnosis is 
Humerus, and operation is OR, then stay is 
between 3 and 25 days. 
Fitness: 8.86 
Confidence: 75.57%; 
Support: 3.52%; 
Probability of consequent: 36.51% 
if admission is between 1985 and 1987, and 
operation is OR, then stay is between 3 and 10 
days.
Fitness: 6.99 
Confidence: 65.52%; 
Support: 3.47%; 
Probability of consequent: 33.85% 
if operation is OR, then stay is between 3 and 
25 days. 
Fitness: 6.13 
Confidence: 64.90%; 
Support: 12.22%; 
Probability of consequent: 36.51% 

4. No operation vs. Stay 
if age is between 10 and 14, and admission year 
is between 1987 and 1996, and diagnosis is 
Radius, and operation is Null, then stay is 
between 0 and 1 day. 
Fitness : 9.55 
Confidence: 77.00%; 
Support: 3.09%; 
Probability of consequent: 35.65% 
if operation is Null, then stay is between 0 
and 1 day. 
Fitness: 3.38 
Confidence: 52.06%; 
Support: 19.62%; 
Probability of consequent: 35.65% 
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5. Radius vs. Stay 
if age between 6 and 12, and admission year is 
between 1989 and 1992, and diagnosis is Radius, 
and operation is CR+POP, then stay is between 1 
and 2 days. 
Fitness: 6.01 
Confidence: 81.11%; 
Support: 3.22%; 
Probability of consequent: 51.29% 
if diagnosis is Radius, and operation is 
CRtPOP, then stay is between 1 and 2 days. 
Fitness: 5.49 
Confidence: 78.57%; 
Support: 10.22%; 
Probability of consequent: 51.29% 
if age is between 0 and 8, and diagnosis is 
Radius, then stay is between 0 and 3 days. 
Fitness: 2.89 
Confidence : 8 6.92% ; 
Support: 10.19%; 
Probability of consequent: 71.30% 

6. Humerus vs. Stay 
if diagnosis is Humerus, and operation is CR+K-
WIRE, then stay is between 2 and 5 days. 
Fitness: 3.90 
Confidence: 67.30%; 
Support: 4.56%; 
Probability of consequent: 47.16% 
if admission year is between 1985 and 1987, 
then stay is between 3 and 10 days. 
Fitness: 2.58 
Confidence: 46.98%; 
Support: 8.65%; 
Probability of consequent: 33.85% 

7. Year vs. Stay 
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A.4. The Best Rule Set Learned from the Scoliosis 
Database

A.4.1. Rules for Classification 

A.4.1.1. King-I

1. if 1stMCGreater=N and 1stMCApex=T1-T8 and 
2ndMCApex=L3-L4, then King-I.
Fitness: 20.20 
Confidence: 100%; 
Support: 0.86%; 
Probability of consequent: 28.33% 
1stMCApex =T1-T12 and 2ndMCApex=L2-L3, then 
King-I.
Fitness: 19.06 
Confidence: 96.67%; 
Support : 6.22%; 
Probability of consequent: 28.33% 

3. if 1stMCGreater=N and L4Tilt=Y and 1stMCApex 
=T1-T10 and 2ndMCApex=L2-L5, then King-I.
Fitness: 18.92 
Confidence: 96.15%; 
Support: 10.13%; 
Probability of consequent: 28.33% 

2. if 1stMCGreater=N and 1stMCDeg=21-80 and 
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A.4.1.2. King-II

1. if 1stCurveT1=N and 1stMCGreater-Y and 
1stMCDeg=16-45 and 2ndMCDeg=28-54 and 1stMCApex 
=T4-T11 and 2ndMCApex=L2-L3, then King-II. 
Fitness: 16.63 
Confidence: 100.00%; 
Support: 1.07%; 
Probability of consequent: 35.41% 

2. if 1stMCGreater=Y and L4Tilt=Y and 1stMCDeg=22- 
77 and 2ndMCDeg=19-54 and 1stMCApex =T1-T11 and 
2ndMCApex=L2-L2, then King-II. 
Fitness: 12.85 
Confidence: 87.88%; 
Support: 6.22%; 
Probability of consequent: 35.41% 
1stMCApex=TG-T10 and 2ndMCApex=L2-L5, then 
King-II.
Fitness: 10.52 
Confidence: 79.76%; 
Support: 14.38%; 
Probability of consequent: 35.41% 
1stMCApex=T3-T11 and 2ndMCApex= T4-T10, then 
King-I I . 
Fitness: 3.32 
Confidence: 52.17%; 
Support: 7.73%; 
Probability of consequent: 35.41% 

3. if 1stMCGreater=Y and L4Tilt=Y and 

4. if 1stMajorCurveGreater=Y and 2ndMCDeg=8-95 and 
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A.4.1.3. King-III 

1. if 1stCurveT1=N and L4Tilt=N and 1stMCApex=T1- 
T9 and 2ndMCApex=Null, then King-111. 
Fitness: 5.87 
Confidence: 25.87%; 
Support: 0.86%; 
Probability of consequent: 7.94% 

2. if L4Tilt=N and 1stMCApex=T2-T6 and 
2ndMCApex=T2-T11, then King-III.
Fitness: 4.86 
Confidence: 25.71%; 
Support: 1.93%; 
Probability of consequent: 7.94% 

A.4.1.4. King-IV

1. if 1stCurveT1=Y and 1stMCGreater=Y and L4Tilt=Y 
and 1stMCApex=L5-T10 and 2ndMCApex=T9-L5, then 
King-IV. 
Fitness: 11.10
Confidence: 29.41%; 
Support: 1.07%; 
Probability of consequent: 2.79% 
1stMCApex=T10-L5 and 2ndMCApex=T5-L4, then 
King- IV . 
Fitness : 6.02 
Confidence: 19.35%; 
Support : 1.2 9% ; 
Probability of consequent: 2.79% 

2. if 1stMCGreater=Y and L4Tilt=Y and 
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A.4.1.5. King-V

1. if 1stMCGreater=Y and L4Tilt=Y and 
1stMCApex=T2-T5 and 2ndMCApex=T9-T11 then 
King-V. 
Fitness: 22.15 
Confidence: 62.50%; 
Support: 1.07%; 
Probability of consequent: 6.44% 
1stMCApex=T4-T7 and 2ndMCApex=T2-T11 then 
King-V.
Fitness: 19.98 
Confidence: 51.14%; 
Support: 0.86%; 
Probability of consequent: 6.44% 
and 1stMCDeg=3-35 and 1stMCApex=T2-T6 and 
2ndMCApex=T7-T9, then King-V. 
Fitness: 16.42 
Confidence: 50.00%; 
Support: 0.86%; 
Probability of consequent: 6.44% 

2. if 1stMCGreater=N and 2ndMCDeg=37-70 and 

3. if 1stCurveT1=Y and 1stMCGreater=Y and L4Tilt=Y 

A.4.1.6. TL 

1. if 1stMCGreater=Y and 1stMCApex=T11-T12 and 
2ndMCApex=Null, then TL. 
Fitness: 19.49 
Confidence: 41.18%; 
Support: 1.50%; 
Probability of consequent: 2.15% 
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A.4.1.7. L 

1. if 1stMCGreater=Y and L4Tilt=N and 
1stMCApex=L2-L5 and 2ndMCApex=Null, then L. 
Fitness: 26.32 
Confidence: 62.50%; 
Support: 1.07%; 
Probability of consequent: 4.51% 
if 1stCurveT1=N and L4Tilt=N and 2ndMCDeg=Null 
and 1stMCApex=L1-L3 and 2ndMCApex=Null, then L. 
Fitness: 21.59 
Confidence: 54.17%; 
Support: 2.79%; 
Probability of consequent: 4.51% 
2ndMCApex=Null, then L. 
Fitness: 16.84 
Confidence: 45.45%; 
Support: 2.15%; 
Probability of consequent: 4.51% 

2. if 1stCurveT1=N and 1stMCApex=L2-L5 and 
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A.4.2.Rules for Treatment 

A.4.2.1. Observation 

1. if Deg1-3-12 and Deg2 =Null and Deg3 = Null and 
Deg4 = Null, then Observation. 
Fitness: 7.59 
Confidence: 100.00%; 
Support: 1.93%; 
Probability of consequent: 62.45% 
if Deg1=5-27 and Deg2 =4-21 and Deg3 = 0-22 and 
Deg4 = Null and mens = 99, then Observation. 
Fitness: 7.55 
Confidence: 100.00%; 
Support: 1.07%; 
Probability of consequent: 62.45% 
Deg4 = Null, then Observation. 
Fitness: 6.8 
Confidence: 95.55%; 
Support: 6.01%; 
Probability of consequent: 62.45% 

2. if Deg1=4-13 and Deg2 =2-29 and Deg3 = Null and 

A.4.2.2. Bracing 

1. if age = 2-12 and Deg1=20-26 and Deg2 =24-47
and Deg3 = 27-52 and Deg4 = Null, then Bracing. 
Fitness: 22.54 
Confidence: 100.00%; 
Support: 0.86%; 
Probability of consequent: 24.46% 
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2. if Deg1=21-28 and Deg2 =32-43 and Deg3 = Null 
and Deg4 = Null and RI = 3-4, then Bracing. 
Fitness: 15.18 
Confidence: 80.00%; 
Support: 0.86%; 
Probability of consequent: 24.46% 
and Deg4 = Null and RI = 1-3, then Bracing. 
Fitness: 12.26 
Confidence: 71.43%; 
Support: 1.07%; 
Probability of consequent: 24.46% 

3. if Deg1=25-39 and Deg2 =21-42 and Deg3 = Null 
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Appendix B 

THE GRAMMAR USED FOR THE FRACTURE 
AND SCOLIOSIS DATABASES 

B.l. The Grammar for the Fracture Database 

This grammar is not completely listed. The grammar rules for the 
other attribute descriptors are similar to the grammar rules 14 - 25

1: start ->    rulel.
2: start -> rule2.
3: start -> rule3.
4: rule1 -> [if], antesl, [, then], consql, [.]. 
5: rule2 -> [if] ,antes1, [and], antes2, [,then], consq2 [.].
6: rule3 -> [if], antesl, [and], antes2, [and], antes3,

[, then], consq3, [.]. 
7: antesl -> sexl, [and], agel, [and], admdayl.
8: antes2 -> diagnosisl.
9: antes3 -> operationl, [and], surgeonl.
10: consql -> diagnosis_descriptor.
11: consq2 -> operation_descriptor.
12: consq2 -> surgeon_descriptor.
13: consq3 -> stay_descriptor.
15: sex1 -> sex_descriptor.
16: sex-descriptor -> {sex_const (?x) }, [sex = ?X] . 
18: admdayl -> admday_descriptor.

14: sex1 -> [any] .

17: admdayl -> [any].

19: admday-descriptor ->

20: admday-descriptor ->

21: admday-descriptor ->

22: admday-descriptor ->

23: diagnosis1 -> [any].

{day_const (?x)}, {month_const (?y)},
[admission day between ?x and ?y]. 
{month_const (?x)}, {month_const (?y)},
[admission month between ?x and ?y]. 
{yer_const (?x)}, {year_const (?y)},
[admission year between ?x and ?y]. 
{weekday_const (?x)}, {weekday_const (?y)},
[admission weekday between ?x and ?y]. 

24: diagnosis1 -> diagnosis_descriptor.
25: diagnosis_descriptor —>   {disgnosis_const (?x)},

[diagnosisis ?X]. 
...
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B.2. The Grammar for the Scoliosis Database 

This grammar is not completely listed. The grammar rules for the 
other attribute descriptors are similar to the grammar rules 8 - 16.

1: start -> rulel. 
2: start -> rule2. 
3: rule1 -> [if], antesl, [,then], consq1, [.].
4: rule2 -> [if], antes2, [, then], consq2 [.].
5: antes1 -> 1stCurveT1, [and], 1stMCGreater, [andl,

6: antes2 -> age, [and], law, [and], deg1, [and], deg2,
L4Tilt, [and], 1stMCDeg, [and ] 2ndMCDeg,
[and],1stMCApex, [and]2ndMDApex.
[and],deg3, [and],deg4, [and],mens, [and],
ri, [and],tsi, [and],scoliosisType.

7: consql -> scoliosisType_descriptor. 
9: 1stMCGreater -> 1stMCGreater_descriptor. 
10: 1stMCGreater_descriptor -> {boolean_const(?x)], 

[1stMCGreater = ?X]. 
12: 1stMCDeg -> 1stMCDeg_descriptor. 

8: 1stMCGreater -> [any].

11: 1stMCDeg -> [any].

13: 1stMCDeg_descriptor ->

14 : 1stMCApex -> [any].

16: 1stMCApex_descriptor ->

(deg_const(?x)), (deg_const(?y)),
[1stMCDeg between ?x and ?y]. 

15 : 1stMCApex -> 1stMCApex_descriptor. 
{apex_const(?x)}, (apex_const(?y)), 
[1stMCApex between ?x and ?y]. 

......
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