

DATA MINING USING GRAMMAR
BASED GENETIC PROGRAMMING

AND APPLICATIONS

GENETIC PROGRAMMING SERIES

Series Editor

JohnKoza
Stanford University

Also in the series:

GENETIC PROGRAMMING AND DATA STRUCTURES: Genetic
Programming + Data Structures = Automatic Programming! William B.
Langdon; ISBN: 0-7923-8135-1

AUTOMATIC RE-ENGINEERING OF SOFTWARE USING
GENETIC PROGRAMMING, Conor Ryan; ISBN: 0-7923-8653- 1

The cover image was generated using Genetic Programming and interactive
selection. Anargyros Sarafopoulos created the image, and the GP interactive
selection software.

DATA MINING USING GRAMMAR
BASED GENETIC PROGRAMMING

AND APPLICATIONS

by

Man Leung Wong
Lingnan University, Hong Kong

Kwong Sak Leung
The Chinese University of Hong Kong

KLUWER ACADEMIC PUBLISHERS
NEW YORK / BOSTON / DORDRECHT / LONDON / MOSCOW

eBook ISBN: 0-306-47012-8
Print ISBN: 0-792-37746-X

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://www.kluweronline.com
and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com

Contents

LIST OF FIGURES .. ix

LIST OF TABLES .. xi

PREFACE .. xiii

CHAPTER 1 INTRODUCTION ... 1

1.1. DATA MINING ... 1
1.2. MOTIVATION ... 3
1.3. CONTRIBUTIONS OF THE BOOK ... 5
1.4. OUTLINE OF THE BOOK ... 7

CHAPTER 2 AN OVERVIEW OF DATA MINING 9

DECISION TREE APPROACH ... 92.1.

2.2.1. AQ Algorithm .. 13

2.2.3. C4.5RULES .. 15
2.3. ASSOCIATION RULE ... 16

2.3.1. Apriori .. 17
2.3.2. Quantitative Association Rule Mining ... 18

2.4.1. Bayesian Classifier .. 19
2.4.2. FORTY-NINER .. 20
2.4.3. EXPLORA .. 21

2.6. OTHER APPROACHES .. 25

CHAPTER 3 AN OVERVIEW ON EVOLUTIONARY ALGORITHMS .. 27

3.1. EVOLUTIONARY ALGORITHMS .. 27
3.2. GENETIC ALGORITHMS (GAs) .. 29

The Canonical Genetic Algorithm .. 303.2.1.
3.2.1.1. Selection Methods ... 34
3.2.1.2. Recombination Methods ... 36
3.2.1.3. Inversion and Reordering .. 39

3.2.2. Steady State Genetic Alg .. 40
3.2.3. Hybrid Algorithms ... 41

GENETIC PROGRAMMING (GP) ... 41
3.3.1. Introduction to the Traditional GP .. 42
3.3.2. Strongly Typed Genetic Programming (STGP) 47

3.3.

2.1.1. ID3 ... 10
2.1.2. C4.5 .. 11

2.2. CLASSIFICATION RULE .. 12

2.2.2. CN2 ... 14

2.4 STATISTICAL APPROACH ... 19

2.5 BAYESIAN NETWORK LEARNING ... 22

vi Contents

EVOLUTION STRATEGIES (ES) .. 48
EVOLUTIONARY PROGRAMMING (EP)... 53

CHAPTER 4 INDUCTIVE LOGIC PROGRAMMING 57

INDUCTIVE CONCEPT LEARNING... 57
INDUCTIVE LOGIC PROGRAMMING (ILP) .. 59

4.2.1. Interactive ILP ... 61
4.2.2. Empirical ILP ... 62

TECHNIQUES ANDMETHODSOFILP... 64
4.3.1. Bottom-up ILP Systems .. 64
4.3.2. Top-down ILP Systems ... 65

4.3.2.1. FOIL .. 65
4.3.2.2. mFOIL ... 68

3.4.
3.5.

4.1.
4.2.

4.3.

CHAPTER 5 THE LOGIC GRAMMARS BASED GENETIC
PROGRAMMING SYSTEM (LOGENPRO).. 71

5.1. LOGIC GRAMMARS ... 72
5.2. REPRESENTATIONS OF PROGRAMS .. 74
5.3. CROSSOVER OF PROGRAMS ... 81
5.4. MUTATION OF PROGRAMS ... 94
5.5. THE EVOLUTION PROCESS OF LOGENPRO ... 97
5.6. DISCUSSION .. 99

CHAPTER 6 DATA MINING APPLICATIONS USING LOGENPRO ... 101

6.1. LEARNING FUNCTIONAL PROGRAMS ... 101
6.1.1. Learning S-expressions Using LOGENPRO 102
6.1.2. The DOT PRODUCT Problem .. 104
6.1.3. Learning Sub-functions Using Explicit Knowledge 110

INDUCING DECISION TREES USING LOGENPRO 115
6.2.1. Representing Decision Trees as S-expressions 115
6.2.2.
6.2.3. The Experiment ... 119

LEARNING LOGIC PROGRAM FROM IMPERFECT DATA 125
6.3.1. The Chess Endgame Problem .. 127
6.3.2. The Setup of Experiments .. 128
6.3.3. Comparison of LOGENPRO With FOIL 131
6.3.4. Comparison of LOGENPRO With BEAM-FOIL 133
6.3.5. Comparison of LOGENPRO With mFOIL1 133
6.3.6. Comparison of LOGENPRO With mFOIL2 134
6.3.7. Comparison of LOGENPRO With mFOIL3 135
6.3.8. Comparison of LOGENPRO With mFOIL4 135
6.3.9. Discussion .. 136

CHAPTER 7 APPLYING LOGENPRO FOR RULE LEARNING 137

7.1. GRAMMAR .. 137
7.2. GENETIC OPERATORS.. 141

6.2.

The Credit Screening Problem ... 117

6.3.

vii

EVALUATION OF RULES .. 143
LEARNING MULTIPLE RULES FROM DATA .. 145

7.4.1.1. Pre-selection .. 146

7.3.
7.4.

7.4.1. Previous Approaches .. 146

7.4.1.2. Crowding .. 146

7.4.1.4. Fitness Sharing .. 147
7.4.1.3. Deterministic Crowding .. 147

7.4.2. Token Competition ... 148
7.4.3. The Complete Rule Learning Approach 150
7.4.4. Experiments With Machine Learning Databases 152

7.4.4.1. Experimental Results on the Iris Plant Database 153
7.4.4.2. Experimental Results on the Monk Database 156

CHAPTER 8 MEDICAL DATA MINING ... 161

8.1.
8.2.

A CASE STUDY ON THE FRACTURE DATABASE 161
A CASE STUDY ON THE SCOLIOSIS DATABASE 164

Rules for Scoliosis Classification ... 165
Rules About Treatment ... 166

CHAPTER 9 CONCLUSION AND FUTURE WORK 169

9.1. CONCLUSION ... 169
9.2. FUTURE WORK .. 172

APPENDIX A THE RULE SETS DISCOVERED 177

THE BEST RULE SET LEARNED FROM THE IRIS DATABASE 177
THE BEST RULE SET LEARNED FROM THE MONK DATABASE 178

A.2.1. Monk1 .. 178
A.2.2. Monk2 ... 179
A.2.3. Monk3 ... 182

A.3. THE BEST RULE SET LEARNED FROM THE FRACTURE DATABASE 183
A.3.1. Type I Rules: About Diagnosis ... 183
A.3.2. Type II Rules: About Operation/Surgeon .. 184
A.3.3. Type III Rules: About Stay ... 186

THE BEST RULE SET LEARNED FROM THE SCOLIOSIS DATABASE 189
A.4.1. Rules for Classification .. 189

8.2.1.
8.2.2.

A.1.
A.2.

A.4.

A.4.1.3. King-III ... 191

A.4.1.6. TL ... 192
A.4.1.7. L ... 193

A.4.1.1. King-I ... 189
A.4.1.2. King-II .. 190

A.4.1.4. King-IV .. 191
A.4.1.5. King-V ... 192

A.4.2. Rules for Treatment ... 194
A.4.2.1. Observation ... 194
A.4.2.2. Bracing .. 194

viii Contents

APPENDIX B THE GRAMMAR USED FOR THE FRACTURE AND
SCOLIOSIS DATABASES .. 197

THE GRAMMAR FOR THE FRACTURE DATABASE 197
THE GRAMMAR FOR THE SCOLIOSIS DATABASE 198

REFERENCES ... 199

INDEX .. 211

B.1.
B.2.

List of figures

FIGURE 2.1:

FIGURE 2.2:

FIGURE 3.1 :

A DECISION TREE .. 10

A BAYESIAN NETWORK EXAMPLE ... 23

CROSSOVER OF CGA. A ONE-POINT CROSSOVER OPERATION IS

PERFORMED ON TWO PARENT, 1100110011 AND 0101010101, AT THE FIFTH

CROSSOVER LOCATION. TWO OFFSPRING, 1100110101 AND 0101010011 ARE

PRODUCED .. 32

MUTATION OF CGA. A MUTATION OPERATION IS PERFORMED ON A

PARENT 1100110101 AT THE FIRST AND THE LAST BITS. THE OFFSPRING

0100110100 IS PRODUCED .. 33

THE EFFECTS OF A TWO-POINT (MULTI-POINT) CROSSOVER. A TWO-

POINT CROSSOVER OPERATION IS PERFORMED ON TWO PARENT, 11001100

AND 01010101, BETWEEN THE SECOND AND THE SIXTH LOCATIONS. TWO

OFFSPRING, 11010100 AND 01001101, ARE PRODUCED 37

OPERATION IS PERFORMED ON TWO PARENST, 1100110011 AND 0101010101,

AND TWO OFFSPRING WILL BE GENERATED. THIS FIGURE ONLY SHOWS ONE OF

THEM (1101110001). .. 38

THE EFFECTS OF AN INVERSION OPERATION. AN INVERSION

OPERATION IS PERFORMED ON THE PARENT, 1100110101, BETWEEN THE

SECOND AND THE SIXTH LOCATIONS. AN OFFSPRING, 1111000101, IS

FIGURE3.6: A PARSE TREE OF THE PROGRAM (* (+ X (/ Y 1.5)) (-

FIGURE 3.2:

FIGURE 3.3:

FIGURE 3.4: THE EFFECTS OF A UNIFORM CROSSOVER. A UNIFORM CROSSOVER

FIGURE 3.5:

PRODUCED. ... 40

z 0.3)).. 43

FIGURE 3.7: THE EFFECTS OF CROSSOVER OPERATION. A CROSSOVER

OPERATION IS PERFORMED ON TWO PARENTAL PROGRAMS,

(* (* 0.5 X) (+ X Y) AND (/ (+ X Y) (* (-X Z) X)).
THE SHADED AREAS ARE EXCHANGED AND TWO OFFSPRING GENERATED ARE:

(* (-X Z) (t X Y)) AND (/ (+ X Y) (* (* 0.5 X) X))
.. 46

FIGURE 3.8: THE EFFECTS OF A MUTATION OPERATION. A MUTATION OPERATION

IS PERFORMED ON THE PROGRAM (* (* 0.5 X) (+ X Y)). THE

SHADED AREA OF THE PARENTAL PROGRAM IS CHANGED TO A PROGRAM

FRAGMENT (/ (+ Y 4) Z) AND THE OFFSPRING PROGRAM

(* (/ (+ Y 4) Z) (+ X Y)) IS PRODUCED. 47

(* (/W1.5) (/W1.5) (/W1.5)) .. 75

FIGURE 5.1 : A DERIVATION TREE OF THE S-EXPRESSION IN LISP

FIGURE 5.2: ANOTHER DERIVATION TREE OF THE S-EXPRESSION

THE DERIVATIONS TREE OF THE PRIMARY PARENTAL PROGRAM

THE DERIVATIONS TREE OF THE SECONDARY PARENTAL PROGRAM

(* (/W1.5) (/W1.5) (/W1.5)) .. 80

FIGURE 5.3 :

FIGURE 5.4:

(+ (-Z 3.5) (-Z 3.8) (/ Z 1.5))....................................... 87

(* (/ W 1. 5) (+ (-W 11) 12) (-W 3.5))......................... 87

x List of figures

FIGURE 5.5: A DERIVATION TREE OF THE OFFSPRING PRODUCED BY PERFORMING

CROSSOVER BETWEEN THE PRIMARY SUB-TREE 2 OF THE TREE IN FIGURE 5.3
AND THE SECONDARY SUB-TREE 15 OF THE TREE IN FIGURE 5.4 88

A DERIVATION TREE OF THE OFFSPRING PRODUCED BY PERFORMING

CROSSOVER BETWEEN THE PRIMARY SUB-TREE 3 OF THE TREE IN FIGURE 5.3
AND THE SECONDARY SUB-TREE 16 OF THE TREE IN FIGURE 5.4 90

A DERIVATION TREE GENERATED FROM THE NON-TERMINAL

EXP-1(Z .. 96
A DERIVATION TREE OF THE OFFSPRING PRODUCED BY PERFORMING

MUTATION OF THE TREE IN FIGURE 5.3 AT THE SUB-TREE 3 97
THE FITNESS CURVES SHOWING THE BEST FITNESS VALUES FOR THE

DOT PRODUCT PROBLEM. ... 108
THE PERFORMANCE CURVES SHOWING (A) CUMULATIVE

PROBABILITY OF SUCCESS P(M, I) AND (B) I(M, I, z) FOR THE DOT
PRODUCT PROBLEM ... 109

FIGURE 5.6:

FIGURE 5.7:

FIGURE 5.8:

FIGURE 6.1:

FIGURE 6.2:

FIGURE 6.3:

FIGURE 6.4:

THE FITNESS CURVES SHOWING THE BEST FITNESS VALUES FOR THE

THE PERFORMANCE CURVES SHOWING (A) CUMULATIVE

PROBABILITY OF SUCCESS P(M, I) AND (B) I(M, I, Z) FOR THE SUB-FUNCTION

PROBLEM. ... 114
COMPARISON BETWEEN LOGENPRO, FOIL, BEAM-FOIL,

MFOIL1, MFOIL2, MFOIL3 AND MFOIL4. ... 132
THE FLOWCHART OF THE RULE LEARNING PROCESS. 151

SUB-FUNCTION PROBLEM. ... 113

FIGURE 6.5:

FIGURE 7.1:

List of tables

TABLE 2.1 :
TABLE 3.1:
TABLE 3.2:
TABLE 3.3:
TABLE 3.4:
TABLE 3.5:
TABLE 4.1:
TABLE 4.2:
TABLE 5.1:
TABLE 5.2:

A CONTINGENCY TABLE FOR VARIABLE A VS . VARIABLE C 21
THE ELEMENTS OF A GENETIC ALGORITHM 29
THE CANONICAL GENETIC ALGORITHM .. 31
A HIGH-LEVEL DESCRIPTION OF GP .. 44
THE ALGORITHM OF (µ+1)-ES ... 49
A HIGH-LEVEL DESCRIPTION OF EP ... 54

DEFINITION OF EMPIRICAL ILP ... 63
SUPERVISED INDUCTIVE LEARNING OF A SINGLE CONCEPT 59

A LOGIC GRAMMAR .. 73
A LOGIC PROGRAM OBTAINED FROM TRANSLATING THE LOGIC

GRAMMAR PRESENTED IN TABLE 5.1 ... 78

THE ALGORITHM THAT CHECKS WHETHER THE OFFSPRING

PRODUCED BY LOGENPRO IS VALID ... 85
THE ALGORITHM THAT CHECKS WHETHER A CONCLUSION DEDUCED

FROM A RULE IS CONSISTENT WITH THE DIRECT PARENT OF THE PRIMARY SUB-

TABLE 5.3:
TABLE 5.4:

TABLE 5.5:

THE CROSSOVER ALGORITHM OF LOGENPRO 84

TREE .. 86
THE MUTATION ALGORITHM ... 95
A HIGH-LEVEL ALGORITHM OF LOGENPRO 99
A TEMPLATE FOR LEARNING S-EXPRESSIONS USING THE

LOGENPRO ... 103
THE LOGIC GRAMMAR FOR THE DOT PRODUCT PROBLEM 105
THE LOGIC GRAMMAR FOR THE SUB-FUNCTION PROBLEM 112
(A) AN S-EXPRESSION THAT REPRESENTS THE DECISION TREE IN

TABLE 5.6:
TABLE 5.7:
TABLE 6.1:

TABLE 6.2:
TABLE 6.3:
TABLE 6.4:

FIGURE 2.1. (B) THE CLASS DEFINITION OF THE TRAINING AND TESTING

EXAMPLES . (C) A DEFINITION OF THE PRIMITIVE FUNCTION

OUTLOOK-TEST .. 116
THE ATTRIBUTE NAMES, TYPES, AND VALUES ATTRIBUTES OF THE

CREDIT SCREENING PROBLEM ... 118
THE CLASS DEFINITION OF THE TRAINING AND TESTING

EXAMPLES ... 120
LOGIC GRAMMAR FOR THE CREDIT SCREENING PROBLEM 121
RESULTS OF THE DECISION TREES INDUCED BY LOGENPRO FOR

TABLE 6.5:

TABLE 6.6:

TABLE 6.7:
TABLE 6.8:

THE CREDIT SCREENING PROBLEM . THE FIRST COLUMN SHOWS THE

GENERATION IN WHICH THE BEST DECISION TREE IS FOUND . THE SECOND

COLUMN CONTAINS THE CLASSIFICATION ACCURACY OF THE BEST DECISION

TREE ON THE TRAINING EXAMPLES . THE THIRD COLUMN SHOWS THE

ACCURACY ON THE TESTING EXAMPLES .. 123

SCREENING PROBLEM ... 124
TABLE 6.9:

TABLE 6.10:

RESULTS OF VARIOUS LEARNING ALGORITHMS FOR THE CREDIT

THE PARAMETER VALUES OF DIFFERENT INSTANCES OF MFOIL
EXAMINED IN THIS SECTION .. 127

xii List of tables

TABLE 6.11:
TABLE 6.12:

THE LOGIC GRAMMAR FOR THE CHESS ENDGAME PROBLEM 129
THE AVERAGES AND VARIANCES OF ACCURACY OF LOGENPRO,

FOIL, BEAM-FOIL, AND DIFFERENT INSTANCES OF MFOIL AT DIFFERENT

NOISE LEVELS .. 130

BEM-FOIL, AND DIFFERENT INSTANCES OF MFOIL AT DIFFERENT

NOISE LEVELS .. 131
AN EXAMPLE GRAMMAR FOR RULE LEARNING 139
THE IRIS PLANTS DATABASE .. 153
THE GRAMMAR FOR THE IRIS PLANTS DATABASE 154

RESULTS OF DIFFERENT VALUE OF MINIMUM SUPPORT 155

TABLE 6.13: THE SIZES OF LOGIC PROGRAMS INDUCED BY LOGENPRO, FOIL,

TABLE 7.1:
TABLE 7.2:
TABLE 7.3:

TABLE 7.5:
TABLE 7.4: RESULTS OF DIFFERENT VALUE OF W2 ... 154

TABLE 7.6:

TABLE 7.7:
TABLE 7.8:

RESULTS OF DIFFERENT PROBABILITIES FOR THE GENETIC

OPERATORS ... 155
EXPERIMENTAL RESULT ON THE IRIS PLANTS DATABASE 155
THE CLASSIFICATION ACCURACY OF DIFFERENT APPROACHES ON

THE IRIS PLANTS DATABASE ... 156
TABLE7.9:
TABLE 7.10:
TABLE 7.11:
TABLE 7.12:

TABLE 8.1:
TABLE 8.2:
TABLE 8.3:
TABLE 8.4:
TABLE 8.5:

THE MONK DATABASE .. 157
THE GRAMMAR FOR THE MONK DATABASE 158
EXPERIMENTAL RESULT ON THE MONK DATABASE 159
THE CLASSIFICATION ACCURACY OF DIFFERENT APPROACHES ON

THE MONK DATABASE .. 159
ATTRIBUTES IN THE FRACTURE DATABASE 162
SUMMARY OF THE RULES FOR THE FRACTURE DATABASE 162
ATTRIBUTES IN THE SCOLIOSIS DATABASE 164
RESULTS OF THE RULES FOR SCOLIOSIS CLASSIFICATION 166
RESULTS OF THE RULES ABOUT TREATMENT 167

Preface

Data mining is an automated process of discovering knowledge
from databases. There are various kinds of data mining methods aiming to
search for different kinds of knowledge. Genetic Programming (GP) and
Inductive Logic Programming (ILP) are two of the approaches for data
mining. GP is a method of automatically inducing S-expressions in Lisp to
perform specified tasks while ILP involves the construction of logic
programs from examples and background knowledge.

Since their formalisms are very different, these two approaches
cannot be integrated easily although their properties and goals are similar.
If they can be combined in a common framework, then their techniques
and theories can be shared and their problem solving power can be
enhanced.

This book describes a framework, called GGP (Generic Genetic
Programming), that integrates GP and ILP based on a formalism of logic
grammars. A system in this framework called LOGENPRO (The LOgic
grammar based GENetic PROgramming system) is developed. This
system has been tested on many problems in knowledge discovery from
databases. These experiments demonstrate that the proposed framework is
powerful, flexible, and general.

Experiments are performed to illustrate that knowledge in
different kinds of knowledge representation such as logic programs and
production rules can be induced by LOGENPRO. The problem of
inducing knowledge can be formulated as a search for a highly fit piece of
knowledge in the space of all possible pieces of knowledge. We show that
the search space can be specified declaratively by the user in the
framework. Moreover, the formalism is powerful enough to represent
context-sensitive information and domain-dependent knowledge. This
knowledge can be used to accelerate the learning speed and/or improve
the quality of the knowledge induced.

Automatic discovery of problem representation primitives is one
of the most challenging research areas in GP. We have illustrated how to
apply LOGENPRO to emulate Automatically Defined Functions (ADFs)
proposed by Koza (1992; 1994). We have demonstrated that, by
employing various knowledge about the problem being solved,
LOGENPRO can find a solution much faster than ADFs and the
computation required by LOGENPRO is much smaller than that of ADFs.

xiv Preface

LOGENPRO can emulate the effects of Strongly Type Genetic
Programming (STGP) and ADFs simultaneously and effortlessly
(Montana 1995).

Data mining systems induce knowledge from datasets which are
huge, noisy (incorrect), incomplete, inconsistent, imprecise (fuzzy), and
uncertain. The problem is that existing systems use a limiting attribute-
value language for representing the training examples and induced
knowledge. Furthermore, some important patterns are ignored because
they are statistically insignificant. LOGENPRO is employed to induce
knowledge from noisy training examples, The knowledge is represented in
first-order logic programs. The performance of LOGENPRO is evaluated
on the chess endgame domain. Detailed comparisons with other ILP
systems are performed. It is found that LOGENPRO outperforms these
ILP systems significantly at most noise levels. This experiment indicates
that the Darwinian principle of natural selection is a plausible noise
handling method which can avoid overfitting and identify important
patterns at the same time.

We apply the system to two real-life medical databases for limb
fracture and scoliosis. The knowledge discovered provides insights to the
clinicians and allows them to have a better understanding of these two
medical domains.

Chapter 1

INTRODUCTION

Databases are valuable treasures. A database not only stores and
provides data but also contains hidden precious knowledge, which can be
very important. It can be a new law in science, a new insight for curing a
disease or a new market trend that can make millions of dollars.
Conventionally, the data are analyzed manually. Many hidden and
potentially useful relationships may not be recognized by the analyst.
Nowadays, many organizations are capable of generating and collecting a
huge amount of data. The size of data available now is beyond the
capability of our mind to analyze. It requires the power of computers to
handle it. Data mining, or knowledge discovery in database, is the
automated process of sifting the data to get the gold buried in the
database.

In this chapter, section 1.1 is a brief introduction of the definition
and the objectives of data mining. Section 1.2 states the research
motivations of the topics of this book. Section 1.3 lists the contributions of
this book. The organization of this book is sketched in section 1.4.

1.1. Data Mining

The two terms Data Mining and Knowledge Discovery in
Database have similar meanings. Knowledge Discovery in Database
(KDD) can be defined as the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data (Fayyad
et al. 1996). The data are records in a database. The knowledge discovered
from the KDD process should not be obtainable from straightforward
computation. The knowledge should be novel and beneficial to the user. It
should be able to be applied to new data with some degree of certainty.
Finally the knowledge should be human understandable. On the other
hand, the term Data Mining is commonly used to denote the finding of
useful patterns in data. It consists of applying data analysis and discovery
algorithms to produce patterns or models from the data.

2 Chapter 1

KDD is an interactive and iterative process with several steps. In
Fayyad et al. (1996), KDD is divided into several steps. Data Mining can
be considered as one of the steps in the KDD process. It is the core of the
KDD process, and thus the two terms are often used interchangeably. The
whole process of KDD consists of five steps:

1. Selection extracts relevant data sets from the database.

2. Preprocessing removes the noise and handles missing data
fields.

3. Transformation (or data reduction) is performed to reduce the
number of variables under consideration.

4. A suitable data mining algorithm of the selected model is
employed on the prepared data.

5. Finally, the result of data mining is interpreted and evaluated.

If the discovered knowledge is not satisfactory, these steps will be
iterated. The discovered knowledge can then be applied in decision
making.

Different data mining algorithms aim to find different kinds of
knowledge. Chen et al. (1996) grouped the techniques for knowledge
discovery into six categories.

1. Mining of association rules finds rules in the form of “A1 ^ . . .
^ Am B1 ^ . . . ^ Bn”, where Ai and Bj are attributes values.
This association rule tries to capture the association between
the attributes. The rule means that if A 1 and . . . and Am appear
in a record, then B1 and . . . and Bn will usually appear.

2. Data generalization and summarization summarize the
general characteristics of a group of target class and present
the data in a high-level view.

3. Classification formulates a classification model based on the
data. The model can be used to classify an unseen data item
into one of the predefined classes based on the attribute
values.

4. Data clustering identifies a finite set of clusters or categories
to describe the data. Similar data items are grouped into a

INTRODUCTION 3

cluster such that the interclass similarity is minimized and the
intraclass similarity is maximized. The common
characteristics of the cluster are analyzed and presented.

5. Pattern based similarity search tries to search for a pattern in
temporal or spatial-temporal data, such as financial databases
or multimedia databases.

6, Mining path traversal patterns tries to capture user access
patterns in an information providing system, such as World
Wide Web.

Machine learning (Michalski et al. 1983) and data mining share a
similar objective. Machine learning learns a computer model from a set of
training examples. Many machine learning algorithms can be applied to
databases. Rather than learning on a set of instances, machine learning is
performed on data in a file or records from a database (Frawley et al.
1991). However, databases are designed to meet the needs of real world
applications. They are often dynamic, incomplete, noisy and much larger
than typical machine learning data sets. These issues cause difficulties in
direct application of machine learning methods. Some of the data mining
and knowledge discovery techniques related to this book are covered in
chapter 2.

1.2. Motivation

Data mining has recently become a popular research topic. The
increasing use of computers result in an explosion of information. These
data can be best used if the knowledge hidden can be uncovered. Thus
there is a need for a way to automatically discover knowledge from data.
The research in this area can be useful for a lot of real world problems.
For example, the medical domain is a major area for applying data
mining. With the computerization in hospitals, a huge amount of data has
been collected. It is beneficial if these data can be analyzed automatically.

Most data mining techniques employ search methods to find
novel, useful, and interesting knowledge. Search methods in Artificial
Intelligence can be classified into weak and strong methods. Weak
methods encode search strategies that are task independent and

4 Chapter 1

consequently less efficient. Strong methods are rich in task-specific
knowledge that is placed explicitly into the search mechanism by
programmers or knowledge engineers. Strong methods tend to be
narrowly focused but fairly efficient in their abilities to identify domain-
specific solutions. Strong methods often use one or more weak methods
working underneath the task-specific knowledge. Since the knowledge to
solve the problem is usually represented explicitly within the problem
solver's knowledge base as search strategies and heuristics, there is a
direct relation between the quality of knowledge and the performances of
strong methods (Angeline 1993; 1994).

Different strong methods have been introduced to guide the search
for the desired programs. However, these strong methods may not always
work because they may be trapped in local maxima. In order to overcome
this problem, weak methods or backtracking can be invoked if the systems
find that they encounter troubles in the process of searching for
satisfactory solutions. The problem is that these approaches are very
inefficient.

The alternatives are evolutionary algorithms, a kind of weak
methods, which conducts parallel searches. Evolutionary algorithms
perform both exploitation of the most promising solutions and exploration
of the search space. It is featured to tackle hard search problems and thus
it is applicable to data mining. Although there are a lot of researches on
evolutionary algorithms, there is not much study of representing domain-
specific knowledge for evolutionary algorithms to produce evolutionary
strong methods for the problems of data mining.

Moreover, existing data mining systems are limited by the
knowledge representation in which the induced knowledge is expressed.
For example, Genetic Programming (GP) systems can only induce
knowledge represented as S-expressions in Lisp (Koza 1992; 1994).
Inductive Logic Programming (ILP) systems can only produce logic
programs (Muggletion 1992). Since the formalisms of these two
approaches are so different, these two approaches cannot be integrated
easily although their properties and goals are similar. If they can be
combined in a common framework, then many of the techniques and
theories obtained in one approach can be applied in the other one. The
combination can greatly enhance the overall problem solving power and
the information exchange between these fields.

These observations lead us to propose and develop a framework
combining GP and ILP that employs evolutionary algorithms to induce

INTRODUCTION 5

programs. The framework is driven by logic grammars which are
powerful enough to represent context-sensitive information and domain-
specific knowledge that can accelerate the learning of programs. It is also
very flexible and knowledge in various knowledge representations such as
production rules, decision trees, Lisp, and Prolog can be induced.

1.3. Contributions of the Book

The contributions of the research are listed here in the order that
they appear in the book:

We propose a novel, flexible, and general framework called
Generic Genetic Programming (GGP), which is based on a
formalism of logic grammars. A system in this framework
called LOGENPRO (The LOgic grammar based GENetic
PROgramming system) is developed. It is a novel system
developed to combine the implicitly parallel search power of
GP and the knowledge representation power of first-order
logic. It takes the advantages of existing ILP and GP systems
while avoids their disadvantages. It is found that knowledge
in different representations can be expressed as derivation
trees. The framework facilitates the generation of the initial
population of individuals and the operations of various
genetic operators such as crossover and mutation. We
introduce two effective and efficient genetic operators which
guarantee only valid offspring are produced. . We have demonstrated that LOGENPRO can emulate
traditional GP (Koza 1992) easily. Traditional GP has a
limitation that all the variables, constants, arguments for
functions, and values returned by functions must be of the
same data type. This limitation leads to the difficulty of
inducing even some rather simple and straightforward
functional programs. It is found that knowledge of data type
can be represented easily in LOGENPRO to alleviate the
above problem. An experiment has been performed to show
that LOGENPRO can find a solution much faster than GP and
the computation required by LOGENPRO is much smaller
than that of GP. Another advantage of LOGENPRO is that it

6 Chapter 1

can emulate the effect of Strongly Type Genetic Programming
(STGP) effortlessly (Montana 1995).

Automatic discovery of problem representation primitives is
one of the most challenging research areas in GP. We have
illustrated how to apply LOGENPRO to emulate
Automatically Defined Functions (ADFs) proposed by Koza.
ADFs is one of the approaches that have been proposed to
acquire problem representation primitives automatically
(Koza 1992; 1994). We have performed an experiment to
demonstrate that, by employing various knowledge about the
problem being solved, LOGENPRO can find a solution much
faster than ADFs and the computation required by
LOGENPRO is much smaller than that of ADFs. This
experiment also shows that LOGENPRO can emulate the
effects of STGP and ADFs simultaneously and effortlessly. . Knowledge discovery systems induce knowledge from
datasets which are frequently noisy (incorrect), incomplete,
inconsistent, imprecise (fuzzy) and uncertain (Leung and
Wong 1991a; 1991b; 1991c). We have employed
LOGENPRO to combine evolutionary algorithms and a
variation of FOIL, BEAM-FOIL, in learning logic programs
from noisy datasets. Detailed comparisons between
LOGENPRO and other ILP systems have been conducted
using the chess endgame problem. It is found that
LOGENPRO outperforms these ILP systems significantly at
most noise levels.

An approach for rule learning has been developed. This
approach uses LOGENPRO as the learning algorithm. We
have designed a suitable grammar to represent rules, and we
have investigated how the grammar can be modified in order
to learn rules with different formats. New techniques have
been employed in LOGENPRO to facilitate the learning:
seeds are used to generate better rules, and the operator
‘dropping condition’ is used to generalize rules. The
evaluation function is designed to measure both the accuracy
and significance of the rule, so that interesting rules can be
learned.

The technique token competition has been employed to learn
multiple rules simultaneously. This technique effectively

INTRODUCTION 7

maintains groups of individuals in the population, with
different groups evolving different rules. .We have applied the data mining system to two real-life
medical databases. We have consulted domain experts to
understand the domains, so as to pre-process the data and
construuct suitable grammars for rule learning. The learning
results have been fed back to the domain experts. Interesting
knowledge are discovered, which can help clinicians to get a
deeper understanding of the domains.

1.4. Outline of the Book

Chapter 2 is an overview on the different approaches of data
mining related to this book. The approaches are grouped into decision tree
approach, classification rule learning, association rule mining, statistical
approach and Bayesian network learning. Representative algorithms in
each group will be introduced.

In chapter 3, we will first introduce a class of weak methods
called evolutionary algorithms. Subsequently, four kinds of these
algorithms, namely, Genetic Algorithms (GAs), Genetic Programming
(GP), Evolution Strategies (ES), and Evolutionary Programming (EP),
will be discussed in turn.

We will describe another approach of data mining, Inductive
Logic Programming (ILP), that investigates the construction of logic
programs from training examples and background knowledge in chapter 4.
A brief introduction to inductive concept learning will be presented first.
Then, two approaches of the ILP problem will be discussed followed by
an introduction to the techniques and the methods of ILP.

A novel, flexible and, general framework, called GGP (Generic
Genetic Programming), that can combine GP and ILP will be described in
chapter 5. A high-level description of LOGENPRO (The LOgic grammar
based GENetic PROgramming system), a system of the framework, will
be presented. We will also discuss the representation method of
individuals, the crossover operator, and the mutation operator.

Three applications of LOGENPRO in acquiring knowledge from
databases will be discussed in chapter 6. The knowledge acquired can be

8 Chapter 1

expressed in different knowledge representations such as decision tree,
decision list, production rule, and first-order logic. We will illustrate how
to apply LOGENPRO to emulate GP in the first application. In the second
application, LOGENPRO is used to induce knowledge represented in
decision trees from a real-world database. In the third application, we
apply LOGENPRO to combine genetic search methods and a variation of
FOIL to induce knowledge from noisy datasets. The acquired knowledge
is represented as a logic program. The performance of LOGENPRO has
been evaluated on the chess endgame problem and detailed comparisons
to other ILP systems will be given.

Chapter 7 will discuss how evolutionary computation can be
applied to discover rules from databases. We will focus on how to model
the problem of rule learning such that LOGENPRO can be applied as the
learning algorithm. The representation of rules, the genetic operators for
evolving new rules, and the evaluation function will be introduced in this
chapter. We will also describe how to learn a set of rules. The technique
token competition is employed to solve this problem. A rule learning
system will be introduced, and the experiment results on two machine
learning databases will be presented in this chapter.

The data mining system has been used to analyze real-life medical
databases for limb fracture and scoliosis. The applications of this system
and the learning results will be presented in chapter 8.

Chapter 9 is a conclusion of this book. The research work will be
summarized, and some suggestions for future research will be given.

Chapter 2

AN OVERVIEW OF DATA MINING

There are a large variety of data mining approaches
(Ramakrishnan and Grama 1999, Ganti et al. 1999, Han et al. 1999,
Hellerstein et al. 1999, Chakrabarti et al. 1999, Karypis et al. 1999,
Cherkassky and Mulier 1998, Bergadano and Gunetti 1995), with different
search methods aiming at searching for different kinds of knowledge. This
chapter reviews some of the data mining approaches related to this book.
Decision tree approach, classification rule learning, association rule
mining, statistical approach, and Bayesian network learning are reviewed
in the following sections.

2.1. Decision Tree Approach

A decision tree is a tree like structure that represents the
knowledge for classification. Internal nodes in a decision tree are labeled
with attributes, the edges are labeled with attribute values and the leaves
are labeled with classes. An example of a decision tree is shown in figure
2.1. This tree is for classifying whether the weather of a Saturday morning
is good or not. It can classify the weather into the class P (positive) or N
(negative). For a given record, the classification process starts from the
root node. The attribute in the node is tested, and the value determines
which edge is to be taken. This process is repeated until a leaf is reached.
The record is then classified as the class of the leaf. Decision tree is a
simple knowledge representation for a classification model, but the tree
can be very complicate and difficult to interpret. The following two
learning algorithms, ID3 and C4.5, are commonly used for mining
knowledge represented in decision trees.

10 Chapter 2

2.1.1. ID3

ID3 (Quinlan 1986) is a simple algorithm to construct a decision
tree from a set of training objects. It performs a heuristic top-down
irrevocable search. Initially the tree contains only a root node and all the
training cases are placed in the root node. ID3 uses information as a
criterion for selecting the branching attribute of a node. Let the node
contains a set T of cases, with |Cj| of the cases belonging to one of the pre-
defined class Cj. The information needed for classification in the current
node is

(2.1)

This value measures the average amount of information needed to identify
the class of a case. Assume that using attribute Xas the branching attribute
will divide the cases into n subsets. Let Ti denotes the set of cases in
subset i. The information required for the subset i is info(Ti). Thus the
expected information required after choosing attribute X as the branching
attribute is the weighted average of the subtree information:

Thus the information gain will be

gain(X) = info(T) - infox (T)

(2.2)

(2.3)

AN OVERVIEW OF DATA MINING 11

As a smaller value in the information corresponds to a better
classification, the attribute X with the maximum information gain is
selected for the branching of the node.

After the branching attribute is selected, the training cases are
divided by the different values of the branching attribute. If all examples
in one branch belong to the same class, then this branch becomes a leaf
labeled with that class. If all branches are labeled with a class, the
algorithm terminates. Otherwise the process is recursively applied on each
branch.

ID3 uses the chi-square test to avoid over-fitting due to the noise.
In a set T of cases, let o cj,xi denote the number of records in class Cj with
X= xi. If attribute Xis irrelevant for classification, the expected number of
cases belonging to class Cj with X= xi is

The value of chi-square is approximately

(2.4)

(2.5)

In choosing the branching attribute for the decision tree, if x2 is lower
than a threshold, then the attribute will not be used. This can avoid
creating unnecessary branches that make the constructed tree complicate.

2.1.2. C4.5

C4.5 (Quinlan 1992) is the successor of ID3. The use of
information gain in ID3 has a serious deficiency that favors tests with
many outcomes. C4.5 improves this by using a gain ratio as the criterion
for selecting the branching attribute. A value split infox(T) is defined with
a similar definition of infox(T)

(2.6)

12 Chapter 2

This value represents the potential information generated by dividing T
into n subsets. The gain ratio is used as the new criterion

gain ratio(X) = gain(X) / split infox (T) (2.7)

The attribute with the maximum value on gain ratio(X) is selected as the
branching attribute.

C4.5 abandoned the chi-square test for avoiding over-fitting.
Rather, C4.5 allows the tree to grow and prunes the unnecessary branches
later. The tree pruning step replaces a subtree by a leaf or the most
frequently used branch. The decision on whether a subtree is pruned
depends on an estimation of the error rate. Suppose that a leaf gives an
error of E out of N training cases. For a given confidence level CF, the
upper limit of the error probability for the binomial distribution is written
as UCF(E, N). The upper limit is used as the pessimistic error rate of the
leaf. The estimated number of errors for a leaf covering N training cases is
thus N xUCF(E, N). The estimated number of errors for a subtree is the sum
of errors of its branches.

Pruning is performed if replacing a subtree by a leaf or a branch
can give a lower estimated number of errors. For example, for a subtree
with three leaves, which respectively covers 6, 9, and 1 training cases
without errors, the estimated number of mis-classification with the default
confidence level of 25% is

6×U25%(0,6)+9× U25%(0, 9)+1× U25%(0,1) =
6×0.206+9×0. 143+1×0.750=3.273.

If they are combined to a leaf node, it mis-classifies 1 out of 16 training
cases. The estimated number of mis-classifications of this leaf is

1 6x U25%(1, 1 6)= 1 6×0.157=2.5 12.

This number is better than that of the original subtree and thus the leaf can
replace the subtree.

2.2. Classification Rule

A rule is a sentence of the form “if antecedents, then consequent’.
Rules are commonly used in expressing knowledge and are easily
understood by human. Rules are also commonly used in expert systems

AN OVERVIEW OF DATA MINING 13

for decision making. Rule learning is the process of inducing rules from a
set of training examples. Many algorithms in rule learning try to search for
rules to classify a case into one of the pre-specified classes. Three
commonly used classification rule learning algorithms are given as
follows:

2.2.1. AQ Algorithm

AQ (Michalski 1969) is a family of algorithms for inductive
learning. One example is AQ15 (Michalski et al. 1986a). The knowledge
representation used in AQ is the decision rules. A rule is represented in
Variable-valued Logic system 1 (VL1). In VL1, a selector relates a
variable to a value or a disjunction of values, e.g. color = red ^ green. A
conjunction of selectors forms a complex. A cover is a disjunction of
complexes describing all positive examples and none of the negative
examples. A cover defines the antecedents of a decision rule. The original
AQ can only construct exact rules, i.e. for each class, the decision rule
must cover only the positive examples and none of the negative examples.

AQ algorithm is a covering method instead of the divide-and-
conquer method of ID3. The search algorithm is described as follows
(Michalski 1983):

1. A positive example, called the seed, is chosen from the
training examples.

2. A set of complexes, called a star, that covers the seed is
generated by the star generating step. Each complex in the
star must be the most general without covering a negative
example.

3. The complexes in the star are ordered by the lexicographic
evaluation function (LEF). A commonly used LEF is to
maximize the number of positive examples covered.

4. The examples covered by the best complex is removed from
the training examples

5. The best complex in the star is added to the cover.

6. Steps 1-5 are repeated until the cover can cover all the
positive examples.

14 Chapter 2

The star generating step (step 2) performs a top down irrevocable

1 Let the partial star be the set containing the empty complex,
i.e. without any selector.

2 While the partial star covers negative examples,
(a) Select a covered negative example.

(b) Let extension be the set of all selectors that cover the seed
but not the negative example.

(c) Update the partial star to be the set {x ^ y | x ε partial
star, y ε extension}.

(d) Remove all complexes in the partial star subsumed by
other complexes.

3 Trim the partial star, i.e. retain only the maxstar best
complexes, where maxstar is the beam width for the beam
search.

In the star generating step, not all the complexes that cover the
seed are included. The partial star will be trimmed by retaining only
maxstar best complexes. The heuristics used is to retain the complexes
that “maximize the sum of positive examples covered and negative
examples excluded”.

beam search. This step can be summarized as follows:

2.2.2. CN2

CN2 (Clark and Niblett 1989) incorporates ideas from both AQ
and ID3 algorithms. AQ algorithm cannot handle noisy examples
properly. CN2 retains the beam search of AQ algorithm but removes its
dependence on specific training examples (the seeds) during the search.
CN2 uses a decision list as the knowledge representation. A decision list is
a list ofpairs (φ 1, C1), (φ 2, C2), . . . , (φ r, Cr), where φ i, is a complex, Ci is a
class, and the last description fr is the constant true. This list means “if φ1

then C1 else if φ 2 then C2 . . . else Cr”.
Each step of CN2 searches for a complex that covers a large

number of examples of class C and a small number of other classes.
Having found a good complex, say φ i the algorithm removes those

AN OVERVIEW OFDATAMINING 15

examples it covers from the training set and adds the rule “if φ i then
predict C’’ to the end of the rule list. This step is repeated until no more
satisfactory complexes can be found.

The searching algorithm for a good complex performs a beam
search. At each stage in the search, CN2 stores a star S of “a set of best
complexes found so far”. The star is initialized to the empty complex. The
complexes of the star are then specialized by intersecting with all possible
selectors. Each specialization is similar to introducing a new branch in
ID3, All specializations of complexes in the star are examined and ordered
by the evaluation criteria. Then the star is trimmed to size maxstar by
removing the worst complexes. This search process is iterated until no
further complexes that exceed the threshold of evaluation criteria can be
generated.

The evaluation criteria for complexes consist of two tests for
testing the prediction accuracy and significance of the complex. Let (p1,. . .
, pn) be the probability of covered examples in class C1,. . . Cn. CN2 uses
the information theoretic entropy

(2.8)

to measure the quality of a complex (the lower the entropy, the better the
quality). The likelihood ratio statistic is used to measure the significance
of the complex:

(2.9)

where (f1, ... ,fn) is the observed frequency distribution and (e1, ... , en) is
the expected distribution. A complex with a high value of the ratio means
the high accuracy is not obtained by chance.

2.2.3. C4.5RULES

Other than being able to produce a decision tree as described in
section 2.1.2, a component of C4.5, C4.5RULES (Quinlan 1992), can
transform the constructed decision tree into production rules. Each path of
the decision tree from the root to the leaf equals to a rule. The antecedent
part of the rule contains all the conditions of the path, and the consequent

16 Chapter 2

is the class of the leaf. However this rule can be very complicate and a
simplification is required. Suppose that the rule gives E errors out of the N
covered cases, and if condition Xis removed from the rule, the rule will
give Ex- errors out of the Nx- covered cases. If the pessimistic error
UCF (Ex- , Nx-) is not greater than the original pessimistic error UCF(E,
N), then it makes sense to delete the condition X. For each rule, the
pessimistic error for removing each condition is calculated. If the lowest
pessimistic error is not greater than that of the original rule, then the
condition that gives the lowest pessimistic error is removed. The
simplification process is repeated until the pessimistic error of the rule
cannot be improved.

After this simplification, the set of rules can be exhaustive and
redundant. For each class, only a subset of rules is chosen out of the set of
rules classifying it. The subset is chosen based on the Minimum
Description Length principle. The principle states that the best rule set
should be the rule set that required the fewest bits to encode the rules and
their exceptions. For each class, the encoding length for each possible
subset of rules is estimated. The subset that gives the smallest encoding
length is chosen as the rule set of that class.

2.3. Association Rule Mining

Association rule mining (Agrawal et al. 1993) focuses on
discovering knowledge between items in a large database of sales
transactions. Association rule is a rule of the form “if X then Y”, where X
and Y are items in a transaction. Association rule mining is different from
classification, as there is no pre-specified classes in the consequent. An
association rule is valid if it can satisfy the threshold requirement on
confidence factor and support. The rule is required to have at least c% of
records that satisfy X and Y, where c is the confidence threshold. It is also
required that the number of records satisfying both X and Y has to be
larger than s% of the records, where s is the support threshold.

The problem of mining association rules from a database can be
solved in two steps. The first step is to find the sets of attributes that have
enough support. These sets are called large itemsets as ‘large’ is used to
denote having enough support. The second step is from each large itemset,

AN OVERVIEW OF DATA MINING 17

association rules with confidence larger than the threshold are searched.
The attributes are divided into antecedents and consequent and the
confidence is calculated. The main researches (Agrawal et al. 1993,
Mannila et al. 1994, Agrawal and Srikant 1994, Han and Fu 1995, Park et
al. 1995) consider Boolean association rules, where each attribute must be
Boolean (e.g. have or have not bought the item). They focus on
developing fast algorithms for the first step, as this step is very time
consuming. They can be efficiently applied to large databases, but the
requirement of Boolean attributes limited their uses. The following two
commonly used association rule mining algorithms are given as
examples:

2.3.1. Apriori

Apriori (Agrawal and Srikant 1994) is an algorithm for generating
large itemsets, the sets of attributes that have enough support, in Boolean
association rule mining (i.e. the first step). The support of an itemset has a
characteristic that the subsets of a large itemset must be large, and the
supersets of a small (i.e. not large) itemset cannot be large. Apriori makes
use of this characteristic to drastically reduce the search space. The outline
of the Apriori algorithm is listed as follows:

1

2

3 For (k=2; k<no_of_attributes; k++)

Count the support of itemsets with 1 element.

L1= the set of size 1 itemsets that are large.

(a) generate extensions of each size k-1 large itemset by

(b) Ck= the set of extensions of size k-1 large itemsets;

(c) for each itemset in Ck, if one of its size k-1 subset is not in

(d) for each itemset in Ck, count the support and check

(e) Lk = the set of large itemsets in Ck.

adding one more attribute;

Lk, delete it from Ck;

whether it is large;

Apriori first searches for large itemsets with one attribute. Then
other large itemsets are searched from the itemsets known to be large. The

18 Chapter 2

large itemsets are extended by adding one attribute. If one subset of the
extended itemset is not known to be large, this itemset is removed because
the subset of a large itemset must be large. The supports of these extended
itemsets are counted to check whether they are still large. Once a large
itemset is found to be not large, further extension of it is no longer
necessary because its superset must be small.

2.3.2. Quantitative Association Rule Mining

Quantitative association rules do not restrict the attributes to be
Boolean. Quantitative or categorical attributes are allowed. in Srikant and
Agrawal (1 996), the problem of mining quantitative association rules is
mapped into a Boolean association rule problem. Intervals are made for
each quantitative attribute. A new Boolean attribute is created for each
interval or category. This attribute is set to 1 if the original attribute is in
that interval or category. For example, a record with age equals 23 will
have 1’s in the new interval attributes ‘Age:(20-29)’ and ‘Age:(15-30)’,
and have 0’s in the new interval attribute ‘Age:(30-39)’. However, this
mapping will face two new problems:

. Execution Time: The number of attributes is hugely
increased, and greatly affects the execution time. . Many Rules: If an interval of a quantitative attribute has
minimum support, any range containing this interval will also
has minimum support. Thus the number of rules increase
greatly. Many of them just differ in the ranges of the
quantitative attributes and in fact refer to the same
association.

To tackle the first problem, a “maximum support” parameter is
required from the user. The new Boolean attributes are not created for all
possible intervals. If the support of an interval exceeds the maximum
support, it will not be considered as the rule will be too general and should
already be covered by other rules having a smaller interval, To tackle the
second problem, an “interesting level” parameter is required from the
user. An interesting measure is defined to measure how much the support
and/or the confidence of a rule are greater than expected. Those rules with
interest measures lower than the user requirement are pruned.

AN OVERVIEW OF DATA MINING 19

2.4. Statistical Approach

Statistics and data mining both try to search knowledge from data.
Statistical approach focuses more on quantitative analysis. A statistical
perspective on knowledge discovery has been given in Elder IV and
Pregibon (1996). Statisticians usually assume a model for the data and
then look for the best parameters for the model. They interpret the models
based on the data. They may sacrifice some performance to be able to
extract the meaning from the model. However, in recent years statisticians
have also moved the objective to the selection of a suitable model.
Moreover, they emphasize on estimating or explaining the model
uncertainty by summarizing the randomness to a distribution. The
uncertainties are captured in the standard error of the estimation. Some of
the typical statistical approaches are briefly described below.

2.4.1. Bayesian Classifier

The Bayesian probability theorem can be used to classify an
object into one of the classes {c1, c2, ... , cm}. Let the object be described
by a feature vector F which consists of attributes { f1, f2,. .. , fl}. The
probability of this object belonging to class Ci is given by

(2.10)

The use of this theorem can provide probabilistic knowledge for
classifications of unseen objects. The object with a feature vector F can be
classified into the class ci which gives the maximum value on this
probability. Since the denominator p(F) appears in every probability, it is
actually a normalizing factor and can be ignored in the calculation. The
probability p(ci) can be estimated as the occurrence of ci over the total
number of existing objects. Thus the main concern is on how to estimate
p(F| ci)

20 Chapter 2

This probability can be estimated by making assumptions. The
simplest assumption is that each feature in F is statistical independence,
that is

(2.1 1)

the value p(fk|ci) can be estimated as the occurrence of objects in class ci
having fk over the occurrence of objects in class Ci. Another assumption
given in Wu et al. (1991) is that the probability can be under a normal
distribution, that is

where Ci is the covariance matrix and MI is the mean vector over n unseen
cases. Thus the problem is reduced to the measurement of the two
parameters Ci and Mi.

2.4.2. FORTY-NINER

FORTY-NINER (Zykow and Baker 1991) is a system for
discovering regularities in a database. It searches for significant
regularities compared to the null distribution hypothesis. The search is
divided into two phases. The first phase is a search for two-dimensional
regularities (i.e. regularities between two variables). The second phase
generalizes the two-dimensional regularities to more dimensions. Either
phase can be repeated many times with human interventions.

In the first phase, each attribute is transformed by using
aggregation, slicing, and projection. The search is performed on partitions
of the database. The user can reduce the search space by limiting the
number of independent variables and the depth of partitioning, The
regularity is represented in a contingency table and in the best linear fit.
An example of a contingency table is shown in table 2.1, where oc1,a1 is
the actual number of occurrence of C=c1 and A=a1. This value is

compared with - - (where N is the total number of

records), and χ2 is calculated to measure the significance of the

AN OVERVIEW OF DATA MINING 21

regularity. The best liner fit between C and A is a linear regularity
C=mA+b obtained by using the least squares method, where m is the slope
and b is the intercept. A value r2 measures the significance of the linear
regularity. It is calculated over all data points (Xi, Yi) using the formula:

(2.13)

where Y is the average value of Y over the n data points, and Yi is the
value of Yi predicated by the linear regularity.

In the second phase, the user selects the 2-D regularities for
expansions. The regularity expansion module adds one dimension at a
time and the multi-dimension regularity is formed. This module can be
applied recursively. Since the search space would be exponential if all
possible multi-dimensional regularities are considered, user intervention is
required to guide the search.

2.4.3. EXPLORA

EXPLORA (Hoschka and Klosgen 1991) is an integrated system
for helping the user to search for interesting relationships in the data. A
statement is an interesting relationship between a value of a dependent
variable and values of several independent variables. Various statement

22 Chapter 2

types are included in EXPLORA, e.g., rules, changes and trend analyses.
The value of the dependent variable is called the target group and the
combination of values of independent variables is called the subgroup. For
example, the sufficient rule pattern

48% of the population are CLERICAL.
However, 92% of AGE > 40,
SALARY < 10260 are CLERICAL

is a relationship between the target group CLERICAL and the
independent variables AGE and SALARY. The user selects one statement
type, identifies the target group and the independent variables, and inputs
the suitable parameters. EXPLORA calculates the statistical significance
of all possible statements and outputs the statements with significance
above the threshold.

The search algorithm in EXPLORA performs a graph search.
Given a target group, EXPLORA search for the subgroup for regularities.
It first uses values from one variable, then combinations of values from
two variables, and then combination of values from three variables, and so
on until the whole search space is exhaustively explored. The search space
can be reduced by limiting the number of combinations of independent
variables and by the use of redundancy filters. Depending on the type of
the statements, different redundancy filters can be used. For example, for
the sufficient rule pattern “if subgroup then target group”, the redundancy
filter is “if a statement is true for a subgroup a, then all statements for the
subgroup a ^ other values are not interesting”. For the necessary rule
pattern “if target group then subgroup”, the redundancy filter is “if a
statement is true for subgroup a ^ b, then the statement for subgroup a is
true”.

2.5. Bayesian Network Learning

Bayesian network (Charniak 1991) is a formal knowledge
representation supported by the well-developed Bayesian probability
theory. A Bayesian network captures the conditional probabilities between
attributes. It can be used to perform reasoning under uncertainty. A
Bayesian network is a directed acyclic graph. Each node represents a
domain variable, and each edge represents a dependency between two
nodes. An edge from node A to node B can represent a causality, with A

AN OVERVIEW OF DATA MINING 23

being the cause and B being the effect. The value of each variable should
be discrete. Each node is associated with a set of parameters. Let Ni

denote a node and Π Ni denote the set of parents of Ni. The parameters of
Ni are conditional probability distributions in the form of P(Ni |Π Ni), with
one distribution for each possible instance of Π Ni. Figure 2.2 is an
example Bayesian network given in Charniak (1991). This network shows
the relationships between whether the family is out of the house (fo),
whether the outdoor light is turned on (lo), whether the dog has bowel
problem (bp), whether the dog is in the backyard (do), and whether the
dog barking is heard (hb).

Since a Bayesian network can represent the probabilistic
relationships among variables, one possible approach of data mining is to
learn a Bayesian network from the data (Heckerman 1996; 1997). The
main task of learning a Bayesian network is to automatically find directed
edges between the nodes, such that the network can best describe the
causalities. Once the network structure is constructed, the conditional
probabilities are calculated based on the data. It has been shown that the
problem of Bayesian network learning is believed to be computationally
intractable (Chickering et al. 1995). However, Bayesian networks learning
can be implemented by imposing limitations and assumptions. For
instance, the algorithms of Chow and Liu (1968) and Rebane and Pearl

24 Chapter 2

(1987) can learn networks with tree structures, while the algorithms of
Herskovits and Cooper (1990), Cooper and Herskovits (1992), and
Bouckaert (1994) require the variables to have a total ordering. More
general algorithms include Heckerman et al. (1995), Spirtes et al. (1993)
and Singh and Valtorta (1993). More recently, evolutionary algorithms
have been used to induce Bayesian networks from databases (Larranaga et
al. 1996a; 1996b, Wong et al. 1999).

One approach for Bayesian network learning is to apply the
Minimum Description Length (MDL) principle (Lam and Bacchus 1994,
Lam 1998). In general there is a trade-off between accuracy and
usefulness in the construction of a Bayesian network. A more complex
network is more accurate, but computationally and conceptually more
difficult to use. Nevertheless, a complex network is only accurate for the
training data, but may not be able to uncover the true probability
distribution. Thus it is reasonable to prefer a model that is more useful.
The MDL principle (Rissanen 1978) is applied to make this trade-off. This
principle states that the best model of a collection of data is the one that
minimizes the sum of the encoding lengths of the data and the model
itself. The MDL metric measures the total description length DL of a
network structure G. A better network has a smaller value on this metric.
A heuristic search can be performed to search for a network that has a low
value on this metric.

Let U={X1, ... , Xn} denote the set of nodes in the network (and
thus the set of variables, since each node represents a variable), Π Xi,
denote the set of parents of node Xi, and D denote the training data. The
total description length of a network is the sum of description lengths of
each node:

(2.14)

This length is based on two components, the network description length
DLnet and the data description length DLdata:

(2.15)

(2.16)

The formula for the network description length is

AN OVERVIEW OF DATA MINING 25

where ki is the number of parents of variable Xi, si is the number of values
Xi, can take on, sj is the number of values a particular variable in Π Xi, can
take on, and d is the number of bits required to store a numerical value.
This is the description length for encoding the network structure. The first
part is the length for encoding the parents, while the second part is the
length for encoding the probability parameters. This length can measure
the simplicity of the network.

The formula for the data description length is

(2.17)

where M(.) is the number of cases that match a particular instantiation in
the database. This is the description length for encoding the data. A
Huffman code is used to encode the data using the probability measures
defined by the network. This length can measure the accuracy of the
network.

2.6. Other Approaches

Some other data mining approaches (such as regression methods
for predicting continuous variables, unsupervised and supervised
clustering, fuzzy systems, neural networks, nonlinear integral networks
(Leung et al. 1998), and semantic networks) are not covered here since
they are less relevant to the main themes of this book. However, the
inductive logic programming approach to be integrated with genetic
programming in the following chapters is detailed separately in chapter 4.
Genetic programming is introduced in the next chapter, which is one of
the four types of evolutionary algorithms.

This page intentionally left blank.

Chapter 3

AN OVERVIEW ON EVOLUTIONARY
ALGORITHMS

The problem of data mining can be formulated as conducting a
search for novel, useful, and interesting knowledge. The search can be
accomplished by various techniques including general weak methods and
domain-specified strong methods. In this chapter, we first introduce a
class of general weak methods called evolutionary algorithms.
Subsequently, four kinds of evolutionary algorithms, namely, Genetic
Algorithms (GAs), Genetic Programming (GP), Evolution Strategies (ES),
and Evolutionary Programming (EP), are discussed in turn.

3.1. Evolutionary Algorithms

Evolutionary algorithms are weak search and optimization
techniques inspired by natural evolution (Angeline 1993; 1994). Weak
methods are a category of problem solving methods studied in the field of
Artificial Intelligence (AI). In contrast to strong methods, weak methods
are more general and widely applicable in different domains (Nilson 1980,
Newell and Simon 1972). Weak methods do not employ problem-
dependent search operators and make no commitment to specific credit
assignment methods.

Problem solving methods conduct their tasks by traversing the
search space of the problem. They should identify blame and/or credit
(credit assignment) on the components of each search point encountered
in the search space (Minsky 1963). This information evaluates the
qualities of all components of a search point, their interaction, and their
impact on the overall quality of the search point. Problem solving methods
apply this information to determine how to combine and manipulate
different components from the current and previous search points to
produce the next search point. Thus, good credit assignment methods
direct the future search towards promising regions (Angeline 1993; 1994).
An efficient problem solving method has an excellent credit assignment

28 Chapter 3

method for the problem and manipulates components of various search
points to traverse the search space. However, it is often difficult to design
an appropriate credit assignment method for a particular problem.

Nevertheless, strong methods employ domain-dependent credit
assignment techniques, search strategies, and heuristics to strengthen the
efficiency and ability of problem solving. They contain a significant
amount of domain-specific knowledge. This knowledge can be
represented procedurally or declaratively. A procedural problem solver
finds an analytic solution for a problem by executing a sequence of hard-
wired instructions. Thus, its knowledge is represented procedurally. A
knowledge-based system (Buchanan and Shortliffe 1984) solves a
problem by performing inferences. The inferences are carried out by the
inference engine of the system according to the knowledge stored
declaratively in the knowledge base of the system. The knowledge usually
takes the forms of heuristic rules, frames, semantic nets and first-order
logic (Leung and Wong 1990). This specific knowledge allows the
problem solvers to find accurate solutions quickly.

Traditional weak methods are inspired by observations of human
performance (Newell and Simon 1972, Pearl 1984). They include depth-
first search, breadth-first search, best-first search, generate and test, hill
climbing, mean-ends analysis, constraint satisfaction, and problem
reduction.

On the other hand, evolutionary algorithms are inspired from the
idea of achieving intelligent behavior of humans through a search and
learning method (Angeline 1993; 1994). They employ the principle of
natural selection and evolution to achieve the goals of function
optimization and machine learning. In general, evolutionary algorithms
include all population-based algorithms that use selection and
recombination operators to generate new search points in a search space.
They include genetic algorithms (Holland 1992, Goldberg 1989, Davis
199 1 , Michalewicz 1996, Mitchell 1996), genetic programming (Koza
1992; 1994, Koza et al. 1999, Kinnear 1994, Angeline and Kinnear 1996,
Banzhaf et al. 1998, Langdon 1998), evolutionary programming (Fogel et
al. 1966, Fogel 1992; 1999), and evolution strategies (Schewefel 198 1,
Bäck et al. 1991, Bäck 1996).

The various kinds of evolutionary algorithms differ mainly in the
evolution models applied, the evolutionary operators employed, the
selection methods and the fitness functions used (Fogel 1994). Genetic
Algorithms (GAs) and Genetic Programming (GP) model evolution at the

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 29

level of genetic. They emphasize the acquisition of genetic structures at
the symbolic level and regularities of the solutions. On the other hand, the
idea of optimization is used in Evolution Strategies (ES) and the structures
being optimized are the individuals of the population. Various behavioral
properties of the individuals are parametrized and their values evolved as
an optimization process. Evolutionary Programming (EP) uses the highest
level of abstraction by emphasizing the adaptation of behavioral properties
of various species. The following sections describe the four kinds of
evolutionary algorithms .

3.2. Genetic Algorithms (GAs)

Genetic algorithms (GAs) are general search methods that use the
analogies from natural selection and evolution. These algorithms encode a
potential solution to a specific problem in a simple string of alphabets
called a chromosome and apply reproduction and recombination operators
to these chromosomes to create new chromosomes. The applications of
GAs include function optimization, problem solving, and machine
learning (Goldberg 1989). The elements of a genetic algorithm are listed
in table 3.1.

. an encoding mechanism for solutions to the
problem,. a population of chromosomes representing the
solutions , . a mechanism to generate the initial
population of solutions,. an evaluation function that evaluates the
fitness values of the solutions, . a probabilistic selection mechanism that
models Darwin's survival of the fittest
principle,. genetic operators, such as crossover and
mutation, that modify the composition of the
offspring during reproduction, and . parameter values such as the population size,
and the probabilities of applying genetic
operators that control a GA.

The elements of a genetic algorithm. Table 3.1:

30 Chapter 3

3.2.1. The Canonical Genetic Algorithm

Consider a parameter optimization problem where we must
optimize a set of variables either to maximize some targets such as profits,
or to minimize costs or some measures of errors. The goal is to maximize
or minimize some functions, say F(X1 , X2, ..., Xn), by varying the
parameters. In genetic algorithms, the encoding mechanism is essential
because it determines the means of representing the variables of the
optimization problem. In the Canonical Genetic Algorithm (CGA), binary
bit strings are used to represent values of various parameter variables
being optimized. Thus, the variables are discretized and the range of the
discretization corresponds to some power of 2. The discretization should
have enough resolution to represent the solution precisely. The binary
codes of all variables are concatenated to form a binary string. This binary
string is also called the chromosome or the genotype while the set of
encoded parameters is called the phenotype of the individual.

The CGA for solving optimization problems is shown in table 3.2.
The algorithm starts with an initial population Pop(0). Each chromosome
of the population is a binary string of length L (Holland 1992, Schaffer
1987). The initial population is usually generated randomly using a
uniform distribution.

Each chromosome in Pop(0) is then evaluated and assigned a
fitness value by a fitness function. The fitness function is sometimes
called the evaluation function or the objective function. It provides a
measure of performance (fitness value) of a chromosome by evaluating
the set of parameters represented in the chromosome. The fitness function
first decodes the parameter values encoded in the chromosome to form the
phenotype of the individual. The problem-dependent phenotype is then
evaluated by the fitness function to determine the fitness value of the
corresponding chromosome. In the CGA, relative fitness is defined as
fi / f where fi is the fitness value associated with chromosome i and f--

is the average fitness of all the chromosomes in the population.

Each generation of the CGA is a three stage process which starts
with the current population Pop(t). Selection is applied to the current
population to create an intermediate population Pop(t'). Recombination
(crossover) is then applied to the Pop(t') to create another intermediate

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 31

population Pop(t"). Then mutation is employed to create the next
population Pop(t+1) from the intermediate population P(t"). The process
starting from the current population Pop(t) to the next population Pop(t+1)
establishes one generation in the execution of the genetic algorithm. This
basic implementation of genetic algorithms is also referred to as a Simple
Genetic Algorithm (SGA) by Goldberg (1989). For the first generation,
the current population Pop(t) is also the initial population Pop(0). It
produces the next population Pop(1) and the execution proceeds to the
next generation. This process iterates until the termination function is
satisfied. During each generation, the relative fitness values fi / f of all
chromosomes are first evaluated, and then selection is carried out.

. Assign 0 to generation t.. Initialize a population of chromosomes

. Evaluate the fitness of each chromosome in

. While the termination function is not true do. Select chromosomes from Pop(t) and

Pop(t).

the Pop(t).

store them into Pop(t') according to a
scheme based on the fitness values.
and store the produced offspring into

. Recombine the chromosomes in Pop (t')

Pop(t").. Perform simple mutation to the
chromosomes in Pop(t") and store the
mutated chromosomes into Pop(t+1).. Evaluate the fitness of each individual
in the next population P(t+1) . Increase the generation t by 1.. Return an individual as the answer. Usually,

the best individual will be returned.
Table 3.2: The canonical genetic algorithm.

The selection process models Darwin's survival of the fittest
principle. In the CGA, a fitter chromosome reproduces a higher number of
offspring and thus has a higher chance of propagating its genetic materials
to the subsequent generation. In fitness proportionate selection, a
chromosome with a relative fitness value fi / f is allocated fi / f
offspring. Thus a chromosome with a fitness value higher than the average

32 Chapter 3

is allocated more than one offspring, while a chromosome with a fitness
value smaller than the average is allocated less than one offspring. The
relative fitness value represents the expected number of offspring of a
chromosome. Since it is impossible to produce fractional numbers of
offspring, some chromosomes have to produce a higher number of
offspring than their relative fitness values and some less than their relative
fitness values. The current population Pop(t) can be viewed as a mapping
onto a roulette wheel, where each chromosome is represented by a slice of
the roulette wheel that corresponds proportionally to its relative fitness
value. By repeatedly spinning the roulette wheel, chromosomes are chosen
using stochastic sample with replacement to fill the intermediate
population Pop(t'). The spinning process iterates until it has generated the
entire Pop(t'). Thus, fitness proportionate selection is also called the
roulette wheel selection. This method generates a large sampling error
because the final number of offspring allocated to a chromosome may
vary significantly from its relative fitness. The allocated number of
offspring approaches the expected number only if the population size is
very large.

After selection has been carried out, the construction of the
intermediate population Pop(t') is completed and recombination can occur.
This can be viewed as generating another intermediate population Pop(t")
form Pop(t'). Crossover is applied to randomly paired chromosomes with
a crossover probability denoted as pc.

Consider the two chromosomes 1100110011 and 0101010101.
For one-point crossover, a single crossover location is selected randoraly.
Since the length L of the chromosomes in this example is 10, a crossover

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 33

location can assume values in the range between 1 to 9 (L-1 locations in
total). Assume the fifth location of chromosomes is chosen as the
crossover location. By swapping the fragments between the two parents,
the crossover operator produces the two offspring 1100 1 : 10 10 1 and
01010: 1001 1 where the symbol ":" is used here to denote the crossover
location (figure 3.1).

After recombination is performed, other genetic operations are
applied to the intermediate population Pop(t") to generate the next
population Pop(t+1). In the CGA, only simple mutation can be applied.
For each bit of each chromosome in the Pop(t"), it is mutated with some
low probability pm. There are two different implementations of mutation.
The first mutation flips the bit value from 1 to 0 or vice versa, while the
second one randomly selects a value from 0 and 1 to fill the mutated bit.
Thus, for the latter one, there is only 0.5 probability that the bit value is
really modified even if it has been selected for mutation. The mutated
chromosome is then placed in the Pop(t+1). Figure 3.2 depicts that the
chromosome 1100110101 is modified to 0100110100 by flipping the first
and the last bits.

The about evolution process iterates until a fixed number of
generations are attempted, the available computational resources are
consumed, or satisfactory solutions are found.

GAs can be viewed as performing both exploration of new
regions in the search space and exploitation of already sampled regions.
The question is then on the balance between these two competing
methods. The performance of GAs is significantly affected by the choice
of different parameter values such as the crossover and mutation
probabilities and the population size. The optimal choice of parameter
values was investigated extensively using empirical and analytical
techniques. Grefenstette (1986), DeJong and Spears (1990) respectively

34 Chapter 3

proposed two different sets of parameter values that are competent in
general.

In addition to fitness proportionate selection, one-point crossover,
and simple mutation described above, other techniques have been
investigated in other genetic algorithms. The following sub-sections
present these techniques.

3.2.1.1. Selection Methods

Because the expected number of offspring is usually not an
integer, but only integer numbers of offspring can be allocated in fitness
proportionate selection, there is an intrinsic discrepancy between the
allocated and the expected number of offspring. The remainder stochastic
sampling method was proposed to achieve a distribution of offspring very
close to the corresponding expected number of offspring.

Remainder Stochastic Sampling Method
In the remainder stochastic sampling method, the relative fitness

value fi /f of each chromosome i is evaluated first. If this value is
greater than 1.0, the integer portion of this number indicates how many
copies of that chromosome are directly placed in the intermediate
population Pop(t'). All chromosomes (including those with relative fitness
less then 1.0) then place additional copies of themselves in the
intermediate population Pop(t') with a probability corresponding to the
fractional portion of their relative fitness values. This selection method is
unbiased and is efficiently implemented using a technique known as
Stochastic Universal Sampling (Baker 1987).

Fitness proportionate selection has other problems. In the first few
generations, the population typically has a low average fitness value, but it
is common to have a few extraordinary chromosomes. Fitness
proportionate selection allocates a large number of offspring to these
chromosomes. These dominant chromosomes cause premature
convergence. A different situation appears in the later stages when the
population average fitness value is close to the best fitness value. There
may be significant diversity within the population, but approximately
equal numbers of offspring are allocated to all chromosomes because the
variance in their fitness values is very small. Fitness scaling techniques,

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 35

rank-based selection, and tournament selection can overcome these
problems.

Fitness Scaling Techniques
Fitness scaling techniques readjust fitness values of chromosomes

(Grefenstette 1986, Goldberg 1989). Forrest (1990) presented a survey of
current scaling techniques including linear scaling, sigma truncation, and
power law scaling.

Linear scaling computes the scaled fitness value as fi’= afi + b
where fi is the fitness value of the ith chromosome, fi’ is the scaled
value, and a and b are appropriate constants. In each generation, a and b
are calculated to ensure that the maximum value of the scaled fitness
values is a small number, say 1.5 or 2.0 times of the average fitness value
of the population. Sometimes the scaled fitness values may become
negative for chromosomes that have fitness values far smaller than the
average fitness value of the population. In this case, a and b must be
recomputed to avoid negative fitness values.

Sigma truncation calculates the scaled fitness value as
fi‘= f1 - (fi - cσ) where f is the average fitness value of the
population, s is the standard derivation of the fitness values in the
population, and c is a small constant typically ranging from 1 to 3.
Chromosomes whose fitness values are less than c standard deviations
from the f are discarded.

Power law scaling finds some specified power of the fitness fi .
The scaled fitness is fi’= fi

k The k value is in general problem-
dependent and may be modified during a run to stretch or shrink the range
of fitness values.

Rank Based Selection
Baker (1985) proposed rank-based selection that is non-

parametric. In this method, the chromosomes of a population are sorted
according to their fitness values. Each chromosome is allocated the
number of offspring that is a function of its rank. Usually, the number of
offspring varies linearly with the rank of a chromosome. Whitley (1989)
showed that significant improvements could be obtained with the selection
method.

36 Chapter 3

Tournament Selection
Tournament selection approximates the behavior of ranking. In an

m-ary tournament, m chromosomes are selected randomly using a uniform
distribution from the current population after evaluation. The best of the m
chromosomes is then placed in the intermediate Pop(t'). This process is
repeated until Pop(t') is filled. Goldberg and Deb (1991) showed
analytically that 2-ary tournament selection is the same in expectation as
ranking using a linear 2.0 bias. If a winner is chosen probabilistically from
a tournament of 2, then the ranking is linear and the bias is proportional to
the probability with which the best chromosome is selected.

3.2.1.2. Recombination Methods

Two-point and Multi-point Crossovers
The CGA uses one-point crossover. However, many other

crossover mechanisms have been devised, often involving more than one
crossover location. In two-point crossover and multi-point crossover,
chromosomes are regarded as rings formed by joining the two ends
together. To exchange a segment from one ring with that from another one
requires the selection of two or multiple crossover locations as depicted in
figure 3.3.

One-point crossover can be viewed as two-point crossover with
one of the crossover locations fixed at the beginning of the chromosome.
Hence two-point crossover is more general than one-point crossover.
Researchers now agree that two-point crossover is generally better than
one-point crossover.

Uniform Crossover
Uniform crossover exchanges bits of a chromosome rather than

fragments. A crossover mask is first randomly generated. At each position
in the offspring, the genetic material is obtained from either one of the
parents. If there is a 1 in the crossover mask, the genetic material is copied
from the first parent, otherwise it is obtained from the second parent. The
process is repeated with the parents exchanged to produce the second
offspring (figure 3.4).

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 37

38 Chapter 3

An extensive comparison of different crossover methods was
performed (Eshelman et al. 1989). One-point, two-point, multi-point, and
uniform crossover were theoretically analyzed in terms of positional and
distributional bias, and empirically evaluated on several problems. A
crossover method has positional bias if the probability that a bit is
swapped depends on its position in the chromosome. The crossover
method has distributional bias if the distribution of the number of bits
exchanged by the method is non-uniform. One-point crossover exhibits
the maximum positional bias and the least distributional bias. At the other
extreme, uniform crossover has the least positional bias and the maximum
distributional bias. The empirical experiments showed that there was no
more than about 20% difference in performances among the methods.

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS

Order-based Crossover Operators
In an order-based problem, such as the traveling salesman

problem, gene values are fixed and the fitness value depends on the order
in which gene values appear. The above crossover techniques cannot be
used because they will produce invalid offspring. Goldberg (1 989)
described Partially Matched crossover (PMX) for this kind of problems.
In PMX, it is the orders in which gene values appear are exchanged.
Offspring have genes which inherit ordering information from each
parent. This avoids the generation of offspring that violate problem
constraints. Syswerda (199 1 b) and Davis (1 99 1) described other order-
based operators including enhanced edge recombination, order crossover,
cycle crossover, and position-based crossover. Starkweather et al. (1 99 1)
compared these operators using the traveling salesman problem and the
job shop scheduling problem. They found that the effectiveness of
different operators is problem-dependent.

Many other techniques have also been suggested. Several methods
use the idea of biasing the crossover locations at some more probable
chromosome positions (Schaffer and Morishma 1987, Holland 1987,
Davidor 1991, Levenick 1991, Louis and Rawlins 1991). The GAs learn
which sites should be favored for crossover. The information is stored in a
punctuation string as part of the chromosome, which is crossed over and
propagated to offspring. Thus, good punctuation strings that lead to fit
offspring will be propagated through the population.

39

3.2.1.3. Inversion and Reordering

The purpose of reordering is to attempt to find gene orderings
which have better evolutionary potential (Goldberg 1989). Inversion
(Holland 1992) works by reversing the order of genes between two
randomly selected positions in a chromosome. The operation of an
inversion is illustrated in figure 3.5.

Goldberg and Bridges (1990) analyzed a reordering operator on a
very small task and showed that it has advantages. Reordering also greatly
expands the search space because GAs must also find good gene
orderings. Thus, much more time is required for finding the solutions of
the problem.

40 Chapter 3

Meta-GAs (Grefenstette 1986) can be used to learn gene
orderings. A meta-GA has a population where each member is a GA. Each
individual GA is configured to solve the same problem, but using different
gene orderings. The fitness of each individual is determined by running
the GA, and examining the time required to converge. Meta-GAs are very
computationally expensive to run and are worthwhile only if the results
obtained can be reused many times.

3.2.2. Steady State Genetic Algorithms

A steady state genetic algorithm selects two parents for
recombination and produces only one offspring at a time. The offspring is
then placed immediately back into the population. Moreover, offspring
replaces some relatively less fit members of the population rather than its
parents. Steady state genetic algorithms are more susceptible to sampling
error and genetic drift. The advantage is that the best chromosomes found
in the search space are maintained in the population. The search
conducted by these algorithms is more aggressive and effective (Syswerda
1989; 1991a, Holland 1992).

Genitor (Whitley 1989) is an implementation of a steady state
genetic algorithm. In Genitor, the worst chromosome in the population is
replaced by the offspring just created. The accumulation of improved
chromosomes in the population is thus monotonic. Goldberg and Deb
(1991) showed that the method of replacing the worst member in the
population resulted in a much higher selective pressure than the method of
random replacement. Genitor applies rank-based selection rather than

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 41

fitness proportionate selection. The advantage of rank-based selection is
that it maintains a stable selective pressure over the course of search.

3.2.3. Hybrid Algorithms

Although genetic algorithms are robust and general problem
solving methods, they are usually not the most effective ones on any
particular domain (Davis 199 1). Therefore, combining genetic algorithms
and other problem-specific strong methods may result in some general,
robust, and effective problem solving systems. Many researchers use non-
binary encoding and problem-specific recombination operators to
strengthen the capability of traditional genetic algorithms (Davis 199 1,
Michalewicz 1996). Muhlenbein (1991; 1992) described a parallel genetic
algorithm that employed local hill-climbing techniques to speed up the
search.

A hybrid genetic algorithm typically performs well on
optimization and other search problems because it is performing local hill-
climbing from multiple points in the search space. Unless the problem to
be solved is highly irregular or the function to be optimized is severely
multi-modal, it is likely that some points are in the basin of attraction of
the global solution. In this case, hill-climbing is a fast and effective form
of search. In general, the local search methods can find a number of
significant improvements of a point without dramatically modify its
structure. Thus, a hybrid algorithm takes the benefits of both the problem-
specific search methods and the implicit parallelism of genetic algorithms.

3.3. Genetic Programming (GP)

Genetic Programming (GP) is an extension of GAs (Koza 1992;
1994, Koza et al. 1999). The main difference between them is the
representation of the structure they manipulate and the meanings of the
representation. GAs usually operate on a population of fixed-length binary
strings. GP typically operate on a population of parse trees which usually
represent computer programs. A parse tree is represented as a rooted,

42 Chapter 3

point-labeled tree. Since GP concerns with the behavior of computer
programs, the definition of phenotype in GP is more abstract than that in
GASs

3.3.1. Introduction to the Traditional GP

Most computer programs can be easily understood as performing
a sequence of functions to the arguments. Most language compilers first
translate a given program into a parse tree and then generate a sequence of
machine instructions that can be executed on a computer (Aho and Ullman
1977). Thus, parse trees are natural representations of computer programs
and GP induces Lisp programs represented as parse trees (Koza 1992).

In Lisp, a program is also called an S-expression and all its
operations are implemented as function calls. A function call consists of a
list of elements enclosed by parentheses. The first element within the list
is the name of the function and the other elements are arguments to the
function. To represent a function call as a parse tree, the function name is
the root of the parse tree while the arguments are the children at the next
level down the parse tree. The arguments may be variables, constants, or
other function calls. In the latter case, these function calls are again
represented as parse trees and they form sub-trees of the parental parse
tree. For example, the program (* (+ X (/ Y 1.5)) (-

There are two sets of nodes in a parse tree. The internal nodes are
called primitive functions while the leaf nodes are called terminals. In
figure 3.6, the sets of primitive functions and terminals are {+, -, *, /}

and {X, Y, Z, 1.5, 0.3}, respectively. The terminals can be viewed as
the inputs to the program being induced. They might include the
independent variables and the set of constants. The primitive functions are
combined with the terminals or simpler function calls to form more
complex function calls. The above procedure of combination iterates to
produce a program. The arity of a function f arity(f), is its number of
arguments.

Z 0 .3)) can be represented as the parse tree in figure 3.6.

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 43

The set of primitive functions might include arithmetic operators
and transcendental functions. In fact, there is no limit to the complexity of
the primitive functions used. Koza (1992; 1994) also used iteration,
functions with side-effect, and a wide variety of problem-specific
functions. It is important that the function set has the closure property.
That is, each primitive function should be able to accept any terminal or
the output from any function as inputs. To apply GP to a problem, the user
must determine:

the set of primitive functions F,

the set of terminals T,
the fitness function,

the parameters for controlling the run,

the method for designating a result, and

44 Chapter 3

• the termination function.

• Assign 0 to generation t.
• Initialize a population Pop(t) of programs

composed of the primitive functions and
terminals.. Evaluate the fitness of each program in the

• While the termination function is not
Pop(t).
satisfieddo. Create a new population Pop(t+1) of

programs by employing the selection,
crossover, mutation, and other genetic
operations.. Evaluate the fitness of each individual
in the next population P(t+1) . Increase the generation t by 1..Return the program that is identified by the

method of result designation as the solution
of the run

Table 3.3: A high-level description of GP.

The fitness function, the controlling parameters, the method for
designating a result, and the termination function are similar to those of
GAs. GP usually generates an initial population of programs randomly.
Programs in the population are then manipulated by various genetic
operators to produce a new population of programs. These operations
include crossover, mutation, permutation, editing, encapsulation, and
decimation (Koza 1992). The whole process of proceeding from one
population to the next population is called a generation. A high level
description of the algorithm of GP is given in table 3.3.

The creation of an initial random population is a random search of
the search space for computer programs. A parse tree is generated
randomly by first selecting a function from F to be the label for the root of
the tree. Whenever a node of a tree is labeled with a function f from F,
arity(f) nodes are generated as the children of that node and an element
from F ∪ T is randomly selected to be the label for each child. If a
function is selected, the above process continues recursively. Otherwise,
the generation process is terminated for that node because it is a leaf node
of the tree.

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 45

Each program in the population is evaluated in terms of how well
it performs in the particular problem. In GP, three measures of fitness are
used as follows:

The raw fitness is the measurement of fitness that is stated in the
natural semantics of the program. For example, raw fitness in a
classification program can be either the number of examples that are
classified correctly or the number of mis-classified examples. Which one
should be used depends on the nature of the problem (Koza 1992). Raw
fitness is usually evaluated over a set of fitness cases. They provide a
basis for evaluating the performance of a program over a number of
representative cases.

The standardized fitness transforms the raw fitness so that smaller
value is always a better value. Transformation can be achieved by
different methods. Since the standardized fitness may not lie between 0
and 1, adjustment is performed to converse it into the adjusted fitness in
the desired range.

The adjusted fitness is obtained by ai = 1/(1+ si) where si is the
standardized fitness of the program i and ai is the corresponding adjusted
fitness. The adjusted fitness has the benefit of strengthening the selective
pressure when the population converges. The same effects can be
achieved by using tournament and rank-based selection methods. Hence,
the adjusted fitness is not used for these methods.

The evolution process of GP is similar to that of GAs. Another
key difference between them is the details of the genetic operations
because the GP operations must now manipulate parse trees rather than
fixed-length strings in GAs. Crossover of two parental trees in GP is
achieved by creating two duplications of the trees first to form two
intermediate offspring. Then two crossover points are selected randomly
from the two intermediate offspring, respectively. The final offspring are
obtained by exchanging sub-trees under the selected crossover points at
the intermediate sub-trees. The produced offspring are usually different in
sizes and shapes from their parents and from one another. The effects of
the crossover operation are depicted in figure 3.7.

The syntactic correctness of the offspring is guaranteed because of
the closure property of the set of primitives. However, the generated
programs may be meaningless because they may perform invalid (such as
division by zero), redundant, or useless operations. The semantics of the
primitives is redefined to avoid the problem of executing invalid
operation. For example, the primitive, protected division % , normally

46 Chapter 3

returns the quotient. However, if division by zero is attempted, the
function returns 1 .0.

In GP, mutation is considered to be of relatively less important
operation. First, a copy of a single parental tree is made. Then a mutation
point is randomly selected from the copy, which will be either a leaf node
or a sub-tree. The leaf node or sub-tree at the mutation point is replaced by
a new leaf node or sub-tree generated randomly. The effects of the
mutation operation are depicted in figure 3.8.

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 47

3.3.2. Strongly Typed Genetic Programming (STGP)

One limitation of GP is the requirement of the closure property of
the set of primitive functions. In Strongly Typed Genetic Programming
(STGP), all the variables, constants, arguments, and returned values can
be of any data type provided that these data types have been defined by
the user (Montana 1995). One of its applications is to generate a program
that uses both scalars and vectors.

STGP requires the output from each function or terminal to be
given a data type and the inputs of each function to take certain types. The
implementation differences between GP and STGP are the generation
methods of the initial population and the crossover operators. In STGP,
the generation method of the initial population must comply to the type
restrictions and the crossover operator must occur between functions
and/or terminals of the same type.

Programs in the initial population are generated in such a way that
the arguments of each function in each tree have the required data types.

48 Chapter 3

Crossover is implemented by randomly selecting a node from one parental
tree and then randomly selecting node from the second parental tree until
it is of the same type as the first selected node.

An extension to STGP that makes it easier to use is the concept of
generic functions, which are not true strongly typed functions, but rather
templates for classes of functions. A template of a function can take a
variety of different data types and return values of a variety of different
types. The only constraint is that for any particular set of argument types,
a generic function must return a value of a well-defined type. A generic
function is instantiated to a particular instance of function by specifying a
set of input argument types.

3.4. Evolution Strategies (ES)

In Evolution Strategies (ES), the individual model of evolution is
typified (Rechenberg 1973, Schwefel 1981, Bäck et al. 1991, Bäck 1996).
In these techniques, the emphasis is on the improvement of a behavior that
is rated well by the fitness function rather than on the acquisition of
building blocks with high fitness values. By concentrating on optimizing
the behavior, the representation and reproduction heuristics must create
objects that are behaviorally similar to their parents but not necessarily
structurally similar. However, the acquisition of an appropriate behavior
should be easier since the effects on behavior have been modeled in the
reproduction operators.

ES consider an individual to be composed of a set of features. The
interaction among the features is typically unknown. ES use fixed-length,
real-valued strings to represent individuals. Each position marks a
separate behavioral trait. The adherence to fixed-length strings eases the
problem of how to manipulate the structure in order to preserve behavioral
similarity between offspring and their parents. Different operators have
been defined to manipulate the contents of strings to create offspring that
are behaviorally similar (Bäck et al. 1991).

ES originate from Germany for applications in real-valued
function optimization (Rechenberg 1973, Schwefel 198 1). The problem is
defined as finding the real-valued vector X with L numbers that minimizes
or maximizes an objective function F(X): RL→ R. There are various

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 49

evolution strategies that are different in their models of evolution. The one
called (µ+1)-ES is presented in table 3.4.

1. An initial population Pop(0) of µ members is created. Each
member ei , 1 i µ, is an ordered pair (Xi,σ i,) where Xi is
a real-valued vector storing the object variables xi,j, 1 <j < L,

for the objective function F, σ i, is also a real-valued vector
containing L independent strategy variables σ i,j , 1 <j < L. The
value of each object variable xij,) is selected randomly from a

feasible range. The values of σ i,j, 1 <j < L are usually equal
for all elements ei , 1 < i < µ.

Create an intermediate population Pop(t') with µ+1 elements.
The first µ elements are obtained from Pop(t).
Create a new offspring e’µ+1 using a recombination operator r
on Pop(t), i.e. = r(Pop(t)).
Create an offspring using a mutation operator m on ,

i.e.

2. Set t to 0.
3.

4.

5.

6. Store to Pop(t').
7. Select the best µ elements from Pop(t') using the selection

operator s and store them to the new population Pop(t+1). Thus
it contains only µ elements.

If the termination function is not true, goto step 3.
Return an element of the last population as the result of the run.

The algorithm of (µ+1)-ES.

8. Increase t by 1.
9.
10.

Table 3.4:

Different recombination methods have been proposed (Schewefel
1981). They can be classified into non-global and global. In the former
class, two elements ea = (Xα,σ a) and eb = (Xb,σ b) are selected from the
current population Pop(t) using a uniform distribution. For the simplest
recombination, no actual crossover will be performed. In other words,
X'µ+1 = Xa and σ 'µ+1 = σ a.

50 Chapter 3

For the discrete recombination operator, a number of uniform
random values U j, 1 <j < L are generated and is obtained according
to the following equations:

where1 j L.

For the intermediate recombination operator, is obtained
according to the following equations:

where1 j L.

In the global recombination operators, L pairs of elements
(eaj ,ebj) , 1 ≤ j ≤ L are selected randomly using a uniform distribution.

For the global discrete recombination operator, a number of uniform
random value values Uj, 1 ≤ j ≤ L are created and is obtained
according to the following equations.

where1 ≤ j ≤ L.

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 51

For the global intermediate recombination, is obtained
according to the following equations:

where1 I j L.

The mating parents for the global recombination of component
and are chosen anew from the population. Thus, it causes a

high mixing of the genetic materials of the whole population. Global
recombination operators address the difficulty of pre-mature convergence
in ES systems.

According to the biological observation that offspring are similar
to their parents and that smaller modifications occur more often than
larger ones. To achieve the similar effects in ES, the element

obtained by applying mutation operation on element is specified as:

where N(0, σ) is a Gaussian random number with a mean of zero and a
standard deviation σ, cd and ci are constants, and r is the ratio of
successful mutations to all mutation. A mutation is successful if the
mutated offspring performs better than its parent. The idea here is to
change the strategy variables dynamically until r is 1/5.

Rechenberg (1973) calculated the convergence rate of an ES
system for some model functions and found that the convergence rate is
optimized if r is equal to 1/5. Thus, he suggested the 1/5 rule: The ratio of

52 Chapter 3

successful mutations to all mutation should be 1/5. If it is greater than 1/5
then increase σ by multiplying a constant c,. If it is less than 1/5 then
decrease σ by multiplying a constant cd. When this rule decreases the
standard deviation, the search becomes more focused, and the offspring
are generally closer to their parents. When the standard deviation is
increased, the search is broadened so that the offspring are further from
their parents. Schewefel (1981) suggested that cd and ci should be 0.82 and
1/0.82, respectively.

The selection operator selects the best µ elements from µ+1
elements according to the objective function F. The termination function
determines whether the optimization has been found or the computational
resources are consumed. Different domain-dependent methods can be
used to implement the termination function.

(1+1)-ES is the simplest and oldest ES model. The difference
between it and (µ+1)-ES is that the population Pop(t) contains only one
element and only recombination will be performed. It can be designated as
a kind of probabilistic gradient search technique. There are two main
drawbacks of (1+1)-ES: The convergence rate is slow because the
standard deviations are equal in each dimension; the procedure is
susceptible to stagnation at local minima because of the brittleness of the
gradient search.

In the (µ+ λ) -ES, the population size is still µ, but λ offspring are
created at each generation from µ parents. All µ+ λ elements compete for
survival, with the best µ elements selected to survive in the next
generation. Consequently, step 3 in table 3.4 is changed to:

3'. Create an intermediate population Pop(t') with
µ+λ elements. The first µ elements are obtained from

In the (µ, λ)-ES, only the λ offspring compete for survival, and
the µ parents are replaced in every generation. In other words, each
element survives for only a generation. Thus, step 3 in table 3.4 is
changed to:

3". Create an intermediate population Pop(t') with A

Because of the nature of this model, λ must be greater than or
equal to µ In the (µ+l)-ES and (µ, λ)-ES, steps 4 through 6 in table 3.4
are repeated for λ times to create λ offspring. The mutation operator is

Pop(t).

elements.

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 53

also extended to allow for meta-control over the evolution process. Let
be the offspring generated by the recombination

operator. The mutation operator creates the offspring
according to the following equations:

where ∆ σ is a meta-control parameter. It allows the user to control the
distribution of trials. It should be emphasized that in all models other than
(1+1)-ES, more than one parent are participated in the recombination.
Since the strategy variables σ i,j , 1 ≤ j ≤ L are all stored in each element
ei, 1 ≤ i ≤ µ these strategy variables are also involved in the
recombination and evolution. These models allow strategy variables to
adapt to the landscape of the objective function and thus trials can be
distributed in an appropriate way.

3.5. Evolutionary Programming (EP)

Evolutionary Programming (EP) is a stochastic optimization
strategy similar to GAs (Fogel et al. 1966, Fogel 1994; 1999). It
emphasizes the behavioral linkage between parents and their offspring
rather than emulating some genetic operators found in nature. Differing
from GAs, EP does not require any specific genotype in the individual. EP
employs a model of evolution at a higher abstraction. Mutation is the only
operator used for evolution.

A typical process of EP is outlined in table 3.5. A set of
individuals is randomly created to make up the initial population. Each
individual is evaluated by the fitness function. Then each individual
produces a child by mutation. There is a distribution of different types of
mutation, ranging from minor to extreme. Minor modifications in the
behavior of the offspring occur more frequently and substantial
modifications occur less frequently. The offspring is evaluated by fitness
function. Then, tournaments are performed to select the individuals for the

54 Chapter 3

next generation. For each individual, a number of rivals are selected
among the parents and offspring. The tournament score of the individual
is the number of rivals with lower fitness scores than itself. Individuals
with higher tournament scores are selected as the population of next
generation. There is no requirement that the population size is held
constant. The process is iterated until the termination criterion is satisfied.

Initialize the generation, t, to be 0.
• Initialize a population of individual,

• Evaluate the fitness of all individual in

• While the termination criteria is not

Pop(t) .

Pop(t) .
satisfied

• Produce one or more offspring from each

• Evaluate the fitness of each offspring.
• Perform a tournament for each

• Put the individuals with high

• Increase the generation t by 1.

individual by mutation.

individual.

tournament scores into Pop(t+1).

• Return the individual with the highest
fitness value.

Table 3.5: A high-level description of EP.

EP has two characteristics. First, there is no constraint on the
representation. Mutation operator does not demand a particular genotype.
The representation can follow from the problem. For example, a Bayesian
network can be represented in the same manner as it is implemented
(Wong et al. 1999).

Second, mutations in EP attempt to preserve behavioral similarity
between offspring and their parents. An offspring is generally similar to
its parent at the behavioral level with slight variations. EP assumes that
the distribution of potential offspring is under a normal distribution
around the parent. Thus, the severity of mutations follows a statistical
distribution.

AN OVERVIEW ON EVOLUTIONARY ALGORITHMS 55

ES and EP both use a statistical distribution of mutations.
However, ES typically uses deterministic selection that the worst
individuals are eliminated, while EP typically uses a stochastic
tournament selection. EP is an abstraction of evolution at the level of
species and thus no recombination is used because recombination does not
occur between species. In contrast, ES is an abstraction of evolution at the
level of individual behavior and hence recombination is reasonable.

This page intentionally left blank.

Chapter 4

INDUCTIVE LOGIC PROGRAMMING

In the previous chapter, we have presented an overview on
evolutionary algorithms. Another approach of data mining is Inductive
Logic Programming (ILP) that investigates the construction of logic
programs from training examples and background knowledge. ILP is a
new research field that combines the techniques and theories from
inductive concept learning and logic programming. ILP systems are more
powerful than traditional attribute-value based learning systems because
the former systems use an expressive first-order logic framework to
represent the concepts acquired and employ background knowledge to
facilitate the learning. ILP has strong theoretical foundation from
computational learning theory and logic programming. It has very
impressive applications in scientific discovery, knowledge acquisition
and, logic program synthesis (Muggletion 1994, Bratko and King 1994).
In this chapter, we present a brief introduction to inductive concept
learning first. Two approaches for ILP are discussed in section 4.2
followed by an introduction to the techniques and the methods of ILP.

4.1. Inductive Concept Learning

The goal of machine learning is to develop techniques and tools
for building intelligent learning machines. In other words, learning
machines can improve themselves to perform more efficiently and/or
more accurately. They can also increase their abilities to process more
problems. Symbol-level learning refers to the kind of learning that
increases the efficiency of the system while knowledge-level learning
improves the accuracy and/or coverage of the system (Dietterich 1986).
Machine learning paradigms include inductive, deductive, genetic-based
and connectionist learning (Michalski et al. 1983; 1986b, Kodratoff and
Michalski 1990, Shavlik and Dietterich 1990, Carbonell 1990).
Multistrategy learning integrates several learning paradigms (Michalski
and Tecuci 1994). This chapter focuses on supervised, inductive learning
of a single concept. If U is a universal set of observations, a concept C is

58 Chapter 4

formalized as a subset of observations in U. Inductive concept learning
finds descriptions for various target concepts from positive and negative
training instances of these concepts. In single concept learning, a target
concept description is induced from training instances labeled positive or
negative. In multiple concept learning, more than one target concept are
being learned simultaneously, training examples are labeled by various
concept names representing their categories.

In machine learning, formal languages for describing observations
and concepts are called object and concept description languages,
respectively. Typically, object description languages are attribute-value
pair descriptions and first-order languages of Horn clauses. Concepts can
be described extensionally or intensionally. A concept is described
extensionally by listing the descriptions of all of its instances
(observations). Thus extensional concepts are represented in the object
description language. On the other hand, intensional concepts are
expressed in a separate concept description language that permits compact
and concise concept descriptions. Typical concept description languages
are decision trees, decision lists, production rules, and first-order logic.

Inductive concept learning can be viewed as searching the space
of hypotheses. A bias is a mechanism employed by a learning system to
constrain the search for target hypotheses. A search bias determines how
to conduct the search in the hypothesis space while a language bias
determines the size and structure of the hypothesis space.

A strong search bias, such as the hill-climbing search strategy,
employs existing knowledge about the size and the structure of the
hypothesis space to exploit promising solutions so that it can find the
target concept quickly. However, it may be trapped in a local maximum.
A weak search bias, such as depth-first and breath-first search, explores
the space completely; the learner is guaranteed to find the target concept
that can be represented by the concept description language. Nevertheless,
a weak bias is very inefficient. In other words, the search bias introduces
the efficiency/completeness tradeoff into a learning system.

A strong language bias defines a less expressive description
language such as the propositional logic. The hypothesis space created by
the bias is comparatively smaller and the learning can be performed more
efficiently. Nonetheless, the learner may fail to find the target concept that
is not contained in the small hypothesis space. A weak bias defines a
larger space and thus the target concept is more likely to be expressible in
the space. The disadvantage is that the learner is less efficient. The

INDUCTIVE LOGIC PROGRAMMING 59

language bias introduces the efficiency/expressiveness tradeoff into a
learning system.

Background knowledge B is a prior knowledge that can be used
by either the search bias to direct the search more efficient, or the
languages bias to express the hypothesis space in a more natural and
concise way. If a learning system is not provided with some a prior
knowledge about the learning problem, it must learn exclusively from
training examples. However, difficult learning problems typically require
a lot of knowledge. The task of supervised inductive learning of a single
concept C is formulated in table 4.1.

Given :
-A set E of positive E+ and negative E- examples
-Concept description language L.
-Search and language bias.
-Background knowledge B.
A complete and consistent hypothesis H
represented in the language L.
A hypothesis H is complete if every positive
example e ∈ E+ is covered by it with respect
to B.
A hypothesis H is consistent if no negative
example e ∈ E- is covered by it with respect to
B.

of a concept C.

Find:

Table 4. I: Supervised inductive learning of a single concept.

4.2. Inductive Logic Programming (ILP)

Relational concept learning induces a new relation for the target
concept (i.e., the target predicate) from training examples and known
relations from the background knowledge. An ILP system is a relational
concept learner. The training examples, the hypothesis space, and the
background knowledge are represented in first-order Horn clause

60 Chapter 4

languages (Muggleton and Feng 1990). Tradeoffs between expressiveness
and efficiency are introduced by some additional restrictions on these
languages. This section describes two approaches of ILP, interactive and
empirical ILP. Muggletion and De Raedt (1994) presented a
comprehensive introduction of theory and methods of ILP. Before
presenting these approaches, the terminology of logic programming is
described first (Lloyd 1987).

The alphabet of a first-order language contains predicate symbols,
function symbols, and variables. A predicate symbol is a lower case letter
followed by a string of lower case letters and/or digits. A function symbol
is a lower case letter followed by a string of lower case letters and/or
digits. A variable is an upper case letter followed by a string of lower case
letters and/or digits.

A term is a variable or a function. A function is a function symbol
immediately followed by a sequence of terms enclosed in a pair of
parentheses. The number of terms in the sequence is the arity of the
function. For example, f (g, h (X, Y) , X) is a function of arity 3
where f, g, and h are function symbols; and X and Y are variables. A
constant is a function of arity 0. Thus g is a constant.

An atomic formula, or atom, is a predicate symbol immediately
followed by a sequence of terms enclosed in a pair of parentheses. The
number of terms in the sequence is the arity of the atomic formula. For
example, mother (X, Y) is an atom of arity 2 where mother is a
predicate symbol and X and Y are variables.

A literal can be classified as either a positive literal or a negative
literal. A positive literal L is an atomic formula while a negative literal ¬L
is the symbol¬ followed by an atomic formula. A clause is a formula of
the form ∀ X1,X2 ,... ,Xm(L1 ∨ L2 ∨... ∨ Ln) where Li, 1 ≤ i ≤ n are
literals, and X1,X2, ..., X m are variables occurring in the clause. A clause
∀ X1, , X2, ,..., Xm (L1 ∨ L2 ∨... ∨ Li ∨ ¬ Li +1 ∨ ¬Li +2 ∨... ∨ ¬Ln,) can be

represented as L1 ∨ L2 ∨... ∨ Li ← L i+1 ∧ Li +2 ∧...∨ Ln, . This clause can
be written as L1,L2,...,Li ← Li+ 1,Li + 2,...,L n where commas on the left-
hand side of ← denote disjunctions while commas on the right-hand side
represent conjunctions.

A definite program is a set of definite program clause. A definite
program clause, ∀ X1,X 2,...,Xm(Τ∨ ¬L1 ∨ ¬L2 ∨...∨ ¬Ln), is a clause
that contains exactly one positive literal. It can be represented as the form

INDUCTIVE LOGIC PROGRAMMING 61

T ← L1,L2,...,Ln , where T and L i, 1 i n are atomic formulae. The
positive literal T in a definite program clause is called the head or goal of
the clause. The sequence of literals L i, 1 i n is called the body of the
clause. A Horn clause is a clause that contains at most one positive literal.
Thus a Horn clause can be either a definite program clause or a definite
goal: a clause with no positive literal. A definite goal can be represented
as the form ← L1,L2, ..., L n where L i, 1 i n are atomic formulae. A
positive unit clause is a definite program clause with an empty body. It is
called a fact in Prolog and is denoted simply as T.

A normal program is a set of program clauses. A program clause
is a clause of the form T ← L1,L2,...,Ln where T is an atom and L i, 1 i

n are positive or negative literals. In the programming language Prolog,
literals of the form not L are allowed in the body of a clause, where L is
an atom and not is interpreted under the negation-as-failure rule (Clark
1978).

A predicate definition is a set of program clauses with the same
predicate symbol (and arity) in their heads. A set of clauses is called a
theory and represents the conjunction of the clauses. A well-formed
formula is a literal, a clause, and a theory. A well-formed formula or term
is ground if and only if there is no variable in the formula or term.

4.2.1. Interactive ILP

Interactive ILP is often used in incremental and interactive theory
revision (De Raedt 1992). An interactive ILP system is provided with six
inputs: 1) a set of correct examples E that has been examined before, 2)
correct background knowledge B, 3) an incorrect theory T, 4) a concept
description language L, 5) a new positive or negative training example e,
and 6) a teacher that can answer questions generated by the system. The
system modifies the definition of T and creates a new theory T' such that
it is complete and consistent with respect to all examples seen (i.e. E ∪
{e}) and the background knowledge B.

Shapiro (1983) introduced the idea of refinement operators in the
MIS system that is used to structure the search space of program clauses.
The system searches the space in a breadth-first top-down manner. CLINT

62 Chapter 4

(De Raedt 1992, De Raedt and Bruynooghe 1989; 1992) generates its own
learning examples and asks questions about their classifications. It is
featured with the applications of integrity constraints and its ability in
changing concept description language dynamically.

Most interactive ILP systems are based on special forms of the
general theory of inverse resolution introduced in CIGOL (Muggleton and
Buntine 1988, Muggleton 1992). The three operators of CIGOL are
absorption, intraconstruction and truncation. Absorption generalizes
program clauses, intraconstruction learns definitions of new predicates
and truncation generalizes unit clauses. The concept of absorption was
first introduced by Sammut and Baneji (1986) in their MARVIN system.
Wirth (1989) suggested two operators that are similar to absorption and
intraconstruction. Rouveirol (1 991 ; 1992) introduced a saturation
procedure that overcomes some problems of absorption and truncation.

4.2.2. Empirical ILP

The task of empirical ILP is usually concerned with learning a
single target concept from a given set of training examples and
background knowledge. The task of empirical ILP is formulated in table
4.2.

The background knowledge B provides definitions of known
predicates q i that can be used in the definition of the target predicate p. It
also provides additional information to ease the search of the definition of
p. This information includes argument types, symmetry of predicates in
pairs of arguments, input/output modes, rule models, predicate sets,
parametrized languages, integrity constraints, determinations, and any
knowledge that can modify the operations of the search and language
biases (Lavrac and Dzeroski 1994).

In the definition, a training example is covered by H given
background knowledge B if e is a logical consequence of B ∪ H. This
notion of coverage is called intensional coverage (Lavrac and Dzeroski
1994). It allows the background knowledge B to include normal clauses
and ground facts. For a particular concept description language L, an
appropriate proof procedure must be used to check whether an example is
entailed by B ∪ H. The SLD-resolution proof procedure with bounded or
unbounded depth is usually employed to determine whether a training

INDUCTIVE LOGIC PROGRAMMING 63

example is entailed (Lloyd 1987). In depth-bounded SLD-resolution,
unresolved goals in the SLD-proof tree at depth h are not expanded and
are treated as failed. MIS (Shapiro 1983) and CIGOL (Muggleton and
Buntine 1988) use this proof procedure to prevent infinite loops.

Given:
-A set E of positive E+ and negative E- training
examples of the target predicate p. Training
examples are represented as ground atoms

-A concept description language L
-Search and language bias.
-Background knowledge B

Find :
A definition H for the target predicate p
expressible in L such that H is complete and
consistent with respect to (w.r.t.) the training
examples E and the background knowledge B

H is complete if every positive example e+ in E+

is covered by H w.r.t. the background knowledge
B. i.e. B ∪ H |= e+

H is consistent if no negative example e- in E-

is covered by H w.r.t. the background knowledge
B. i.e. B ∪ H | ≠ e-

Table 4.2: Definition of Empirical ILP.

On the other hand, extensional coverage can also be used. In this
case, extensional background knowledge B containing only ground facts
must be employed to determine whether an example e is covered (Shapiro
1983). A hypothesis H extensionally covers an example e with respect to
an extensional background knowledge B if there exists a clause
T ← L1, L2, ..., Ln in H and a substitution θ such that Tθ = e and

If the background knowledge B provided by the
users contains non-ground clauses, the empirical ILP systems have to
transform it into a ground model of the background knowledge. The
model contains all true ground facts that can be derived from the

64 Chapter 4

background knowledge by a SLD-proof tree of depth less than the depth-
bound h (Shapiro 1983).

Empirical ILP systems include FOIL (Quinlan 1990; 1991),
GOLEM (Muggleton and Feng 1990), LINUS (Lavrac and Dzeroski
1994), mFOIL (Lavrac and Dzeroski 1994), RX (Tangkitvanich and
Shimura 1992), MOBAL (Morik et al. 1993), and ML-SMART
(Bergadano et al. 1991). FOCL (Pazzani and Kibler 1992) is an extension
of FOIL that combines ILP and explanation based learning. CHAM
(Kijsirikul et al. 1992a) is an improvement of FOIL by applying a better
search heuristics. CHAMP (Kijsirikul et al. 1992b) is an extension of
CHAM that can invent useful predicates in learning relations. CHILLIN
(Zelle et al. 1994) combines learning methods of GOLEM, FOIL, and
CHAMP.

4.3. Techniques and Methods of ILP

An empirical ILP system can be classified into either a bottom-up
or a top-down learner.

4.3.1. Bottom-up ILP Systems

Bottom-up systems search for program clauses by considering
generalizations. They start from the most specific clause that covers a
positive training example and then generalizes the clause until it cannot be
further generalized without covering some negative examples. Two
common generalization techniques are relative least general
generalization (rlgg) introduced by Plotkin (1970) and inverse resolution
proposed by Muggletion and Buntine (1988). Muggletion (1992)
introduced a unifying framework covering both relative least general
generalization and inverse resolution, based on the notion of a most
specific inverse resolvent.

A successful representative of this class is GOLEM (Muggletion
and Feng 1990). GOLEM is based on the construction of relative least-
general generalizations that forces the background knowledge to be

INDUCTIVE LOGIC PROGRAMMING 65

expressed extensionally as a set of ground facts. This ground model of
background knowledge can be excessively large, and the clauses
constructed from such models can grow explosively. To tackle this
problem, Muggleton and Feng (1990) introduced the notion of ij-
determination and employed the language bias of inducing only ij-

determinate clauses. GOLEM is also sensitive to the distribution of
training examples. If only a random sample of positive training examples
is presented, the induced hypothesis of the target predicate is incomplete.
Thus, GOLEM may fail to produce general and accurate hypotheses.

4.3.2. Top-down ILP Systems

Top-down methods apply specialization operators to learn
program clauses by searching from general to specific. A specialization
operator s produces a set of clauses C' permitted by the language bias
from a clause c. It typically computes only the set of most general
specialization of a clause c under θ -subsumption (Plotkin 1970). Most
general specialization can be obtained by performing syntactic and/or
semantic operations on the clause c (Shapiro 1983). Two basic syntactic
operations on a clause are:

• applying a substitution θ to the clause, and

adding a literal to the body of the clause.

4.3.2.1. FOIL

One of the most famous empirical top-down ILP system is FOIL
(Quinlan 1990; 1991, Cameron-Jones and Quinlan 1993; 1994). It
employs the techniques and methods applied in traditional attribute-value
based learning systems. It also borrows the idea of specialization operators
from MIS (Shapiro 1983) and the method of determining coverage of
examples from ML-SMART (Bergadano et al. 1991).

FOIL is restricted to learning function-free program clauses. In
other words, constants and functions cannot appear in the induced clauses.
The body of a clause is a conjunction of positive or negative literals.

66 Chapter 4

Literals in the body have either a predicate symbol qi from the background
knowledge B, or the target predicate symbol p. This implies that recursive
clauses can be learned. When learning clauses with recursive literals, care
must be taken to avoid infinite recursion. FOIL deals with this issue by
attempting to establish an ordering on the arguments that may appear in a
literal. Many sophisticated methods of finding an ordering on the
arguments have been proposed (Cameron-Jones and Quinlan 1993; 1994).
For each literal in the body of a clause, one or more of the variables in the
arguments of the literal must appear in the head of the clause or in one of
the literals to its left.

Training examples are function-free ground facts represented as a
set of constant tuples. Background knowledge B consists of extensional
predicate definitions. Each extensional predicate definition is a finite set
of constant tuples representing the concept of the predicate. FOIL uses
extensional background knowledge for efficiency reasons. Top-down
algorithms can easily use intensionally defined background predicates to
evaluate various competing hypotheses. An extension of FOIL, FOCL
(Pazzani and Kibler 1992), allows background knowledge to be
represented intensionally.

The FOIL algorithm is composed of three main phases. In the first
phase, FOIL generates negative examples by applying the closed-world
assumption if no negative example is provided. The second phase is the
example covering loop. It implements the covering algorithm of AQ and
INDUCE (Michalski 1983). The loop constructs a hypothesis by
repeatedly performing the following operations:

• construct a clause,

• refine the clause by removing irrelevant literals from the

add the refined clause to the hypothesis H, and

remove the positive examples covered by the clause from

clause,
•

•
the set of positive training examples

until all the positive examples are covered or no more clause can be
constructed. The last phase further refines the induced hypothesis H by
eliminating irrelevant clauses from the hypothesis. The definitions of
irrelevant literal and irrelevant clause are presented in Quinlan (1990).

The procedure that constructs a clause is the most important one
in the FOIL algorithm. It starts from the most general clause and

INDUCTIVE LOGIC PROGRAMMING 67

repeatedly specializes it by adding a literal to the body of the clause. The
clause construction loop continues until a consistent clause covering at
least one remaining positive example is found or no more specialization
can be performed. During each iteration of the loop, a clause c can be
refined by appending different literals to it. FOIL determines which one to
be used by employing an information-based heuristics.

If the training examples are imperfect, FOIL may fail to find a
consistent clause that covers some positive examples or it may find an
overfitting clause that covers only a very few number of positive
examples. Usually, these overfitting clauses cannot characterize the
regularities in the training examples.

In FOIL, the noise handling mechanism is the encoding length
restriction. The idea is that the number of bits required to encode the
clause should never exceed the total number of bits needed to indicate
explicitly the positive training examples covered by the clause. Thus, a
clause covers r positive examples out of n examples in the training set.

The number of bits available to encode the clause is log2(n) + log2() .

If there is no bit available for adding another literal, but the clause is more
than 85% accurate, it is retained in the induced set of clauses, otherwise
the clause is deleted. In the latter case, the clause construction procedure
fails to produce a clause and it causes the termination of the FOIL
algorithm. This heuristics avoids overfitting the training examples because
insignificant literals are excluded from clauses of the inducing hypothesis.
The obtained hypothesis is usually smaller, simpler, more accurate, and
more comprehensible. Dzeroski and Lavrac (1993) argued that the
encoding length restriction has two deficiencies. In exact domains, it
sometimes prevents FOIL from learning complete description. In noisy
domains, it allows very specific clauses.

FOIL has been extended to allow literals that bind a variable to a
constant to appear in the body of a clause (Quinlan 1991, Cameron-Jones
and Quinlan 1993; 1994). Other improvements include determinate
literals, types and mode declarations of predicates, and advanced post-
processing methods.

A fundamental weakness of FOIL is that recursive hypotheses are
evaluated by employing the positive training examples as a model of the
target predicate being learned. When the examples are incomplete over the
domain of interest, they provide an incorrect model and FOIL has
difficulty in learning even simple recursive concepts (Cohen 1993).

68 Chapter 4

4.3.2.2. mFOIL

mFOIL (Lavrac and Dzeroski 1994) is largely based on the FOIL
algorithm. The main difference is that mFOIL uses a different search
heuristics and an improved noise-handling mechanism. Another major
difference is the beam search strategy used in mFOIL as opposed to the
hill-climbing search used in FOIL. To reduce its search space, mFOIL
uses some additional information, such as the symmetry and different
constraints on variables. Several parameters are used in mFOIL, which
determine the search heuristics used, the width of the beam in the beam
search, and the level of significance applied to the induced clauses.

mFOIL employs an accuracy estimate as its search heuristics. The
accuracy estimate may be the Laplace estimate or the more sophisticated
m-estimate (Cestnik 1990). Both estimates have been found to be useful in
improving noise-handling abilities of attribute-value learning systems
(Cestnik and Bratko 1991, Clark and Boswell 1991). If a clause c covers
n(c) training examples, out of which n+(c) are positive, its expected
accuracy can be estimated by either the Laplace estimate

or the m-estimate

where a-prior-prob+ is the a prior probability of the positive class and is
estimated by the relative frequency of positive examples in the whole
training set.

It uses a beam search method to find a significant clause. The
clause construction procedure starts with a clause having an empty body.
During the search, the best clause and a small set of promising clauses are
stored in the beam. At each iteration of the clause construction loop, the
significant refinements of each clause c in the beam are evaluated using
their expected accuracy. The best of their significant improvements
constitute the new beam. A significant improvement of a clause c is a
refinement c' of the clause c such that A(c') > A(c) and c' passes the

INDUCTIVE LOGIC PROGRAMMING 69

significance test. The search for a clause terminates when the new beam
becomes empty. The best clause found so far is retained in the hypothesis
if its expected accuracy is better than the default accuracy. The default
accuracy, estimated from the entire training set by the relative frequency
estimate, is the probability of the more frequent of the positive or negative
classes.

The significance test used in mFOIL is based on the likelihood
ratio statistic (Kalbfleish 1979). Assume that the training set has n+

positive examples and n- negative examples. If a clause c covers n(c)
examples, n+(c) of which are positive, the value of the statistic can be
calculated as follows:

where

This statistic is distributed approximately as a χ2 distribution with one
degree of freedom. If its value is above a specified significance threshold,
the clause is significant.

The covering algorithm of AQ and INDUCE (Michalski 1983) is
used in mFOIL. Program clauses are constructed repetitively. The
stopping criteria of the example covering loop terminate the search for
clauses when too few positive examples are left for generating a
significant clause or no significant clause can be found with expected
accuracy greater than the default accuracy.

This page intentionally left blank.

Chapter 5

THE LOGIC GRAMMARS BASED GENETIC
PROGRAMMING SYSTEM (LOGENPRO)

As discussed in chapters 3 and 4, Inductive Logic Programming
(ILP) and Genetic Programming (GP) are two of the approaches in data
mining. It was demonstrated that ILP can be used to induce knowledge
represented as logic programs (Dzeroski and Lavrac 1993, Dzeroski 1996,
Dehaspe and Toivonen, 1999, Srinivasan and King 1999, Blockeel et al.
1999, Srinivasan 1999). GP (Koza 1992; 1994, Koza et al. 1999, Kinnear
1994) extends traditional Genetic Algorithms (Holland 1992, Goldberg
1989, Davis 1987; 1991) to induce automatically S-expressions in Lisp. It
performs both exploitation of the most promising solutions and
exploration of the search space. It is featured to tackle hard search
problems and thus applicable to program induction and data mining.

In this chapter, we present a framework, called Generic Genetic
Programming (GGP), that can combine GP and ILP to induce knowledge
from databases. We can also specify the search space declaratively. This
framework is based on a formalism of logic grammars and is implemented
as a data mining system called LOGENPRO (The LOgic grammar based
GENetic PROgramming system). The formalism is powerful enough to
represent context-sensitive information and domain-dependent knowledge
which can be used to accelerate the learning of knowledge. It is also very
flexible and the knowledge acquired can be represented in different
knowledge representations such as logic programs and production rules
(Wong and Leung 1994a; 1994b; 1995a; 1995b; 1997, Wong 1998).

This chapter is organized as follows. The first section is an
introduction to logic grammars. Section 5.2 presents a representation
method of programs and a description of the mechanism used to generate
the initial population of programs. One of the genetic operators, crossover,
is detailed in section 5.3. Another genetic operator, mutation, is presented
in the subsequent section. In section 5.5, we present a high-level
description of LOGENPRO. The last section is a discussion.

72 Chapter 5

5.1. Logic Grammars

The LOgic grammars based GENetic PROgramming system
(LOGENPRO) can induce programs in various programming languages
such as Lisp, C, and Prolog. Thus, LOGENPRO must be able to accept
grammars of different languages and produce programs in them. Most
modern programming languages are specified in the notation of BNF
(Backus-Naur form) which is a kind of context-free grammars (CFGs).
However, LOGENPRO is based on logic grammars because CFGs
(Hopcroft and Ullman 1979, Lewis and Rapadimitrion 1981) are not
expressive enough to represent context-sensitive information of some
languages and domain-dependent knowledge of the target program being
induced. The idea of using formal grammars to direct search for programs
in the hypothesis space or to reduce the size of the space has also been
independently studied by other researcher recently (Cohen 1992, Gruau
1996, Whigham 1996). This section introduces the formalism of logic
grammars.

Logic grammars are the generalizations of CFGs. Their
expressivenesses are much more powerful than those of CFGs, but equally
amenable to efficient execution. In this book, logic grammars are
described in a notation similar to that of definite clause grammars (Pereira
and Warren 1980, Pereira and Shieber 1987, Sterling and Shapiro 1986).
The logic grammar for some simple S-expressions in table 5.1 will be
used throughout this chapter. Grammars for some logic programming
languages can be found in the next chapter.

A logic grammar differs from a CFG in that the logic grammar
symbols, whether terminal or non-terminal, may include arguments. The
arguments can be any term in the grammar. A term is either a logic
variable, a function, or a constant. A variable is represented by a question
mark ? followed by a string of letters and/or digits. A function is a
grammar symbol followed by a bracketed n-tuple of terms and a constant
is simply a 0-arity function. Arguments can be used in a logic grammar to
enforce context-dependency. Thus, the permissible forms for a constituent
may depend on the context in which that constituent occurs in the
program. Another application of arguments is to construct tree structures
in the course of parsing, such tree structures can provide a representation
of the semantics of the program.

The terminal symbols, which are enclosed in square brackets,
correspond to the set of words of the language specified. For example, the

LOGENPRO 73

terminal [(- ?x ?y)] creates the constituent (- 1 . 0 2 . 0) of a
program if ?x and ?y are instantiated respectively to 1.0 and 2.0. Non-
terminal symbols are similar to literals in Prolog, exp-1 (?x) in table
5.1 is an example of non-terminal symbol. Commas denote concatenation
and each grammar rule ends with a full stop.

1: start -> [(*], exp(W), exp(W), exp(W),
[)] .

2: start -> {member(?x, [W, 2]) }, [(*] ,
exp-1 (?x) , exp-1 (?x) ,
exp-1(?x), [)] .

3: start -> {member (?x, [W, 2]) 1} [(+] ,
exp-1 (?x) , exp-1 (?x) ,
exp-1(?x), [)].

4: exp (?x) -> [(/ ?x 1.5)].
5: exp-1(?x) -> {random(1,2,?y) }, [(/ ?x ?y)].
6: exp-1(?x) -> {random(3,4,?y)}, [(-?x ?y)].
7: exp-1(W) -> [(+ (-w 11) 12)].
Table 5.1: A logic grammar.

The right-hand side of a grammar rule may contain logic goals
and grammar symbols. The goals are pure logical predicates for which
logical definitions have been given. They specify the conditions that must
be satisfied before the rule can be applied. For example, the goal
member (?x, [W, Z]) in table 5.1 instantiates the variable ?x to
either W or Z if ?x has not been instantiated, otherwise it checks whether
the value of ?x is either W or Z. If the variable ?y has not been bound,
the goal random (1 , 2, ?y) instantiates ?y to a random floating
point number between 1 and 2. Otherwise, the goal checks whether the
value of ?y is between 1 and 2.

Domain-dependent knowledge can be represented in logic goals.
For example, consider the following grammar rule:

a-useful-program-> first-component(?X),
{ is-useful (?X,
second-component (?Y) .

?Y) } I

This rule states that a useful program is composed of two components.
The first component is generated from the non-terminal first-

74 Chapter 5

component (?X) . The logic variable ?X is used to store semantic
information about the first component produced. The logic goal then
determines whether the first component is useful according to the
semantic information stored in ? X. Domain-dependent knowledge about
which program fragments are useful is represented in the logical definition
of this predicate. If the first component is useful, the logic goal is-
useful (?X, ?Y) is satisfied and some semantic information is stored
into the logic variable ?Y. This information will be used in the non-
terminal second-component (?Y) to guide the search for a good
program fragment as the second component of a useful program.

The special non-terminal start corresponds to a program of the
language. In table 5.1, some grammar symbols are shown in bold-face to
identify the constituents that cannot be manipulated by genetic operators.
For example, the last terminal symbol [)] of the second rule is revealed
in bold-face because every S-expression must be ended with a ')'. The
number before each rule is a label for later discussions. It is not part of the
grammar.

5.2. Representations of Programs

One of the fundamental contributions of our framework is in the
representations of programs in different programming languages
appropriately so that initial population can be generated easily and the
genetic operators such as reproduction, mutation, and crossover can be
performed effectively. A program can be represented as a derivation tree
that shows how the program has been derived from the logic grammar.
LOGENPRO applies deduction to randomly generate programs and their
derivation trees in the language declared by the given grammar. These
programs form the initial population. For example, the program
(* (/ w 1.5) (/ W 1.5) (/ W 1.5)) can be generated by

LOGENPRO given the logic grammar in table 5.1. It is derived from the
following sequence of derivations:

start => [(*] exp(W) exp(W) exp(W) [)]
=> [(*] [(/ W 1.5)] exp(W) exp(W) [)]

LOGENPRO 75

=> [(*] [(/ W 1.5)] [(/ W 1.5)] exp(W)
[)]

=> [(*] [(/ W 1.5)] [(/ W 1.5)]
[(/ W 1.5)] [)]

=> [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))]
This sequence of derivations can be represented as the derivation tree
depicted in figure 5.1.

In literature, the terms of derivation trees and parse trees are
usually used interchangeably. However, we will use the term derivation
trees to refer to the tree structures in our framework and the term parse
trees to refer to those in GP. The bindings of logic variables are shown in
italic font and enclosed in a pair of braces. The sub-trees enclosed in a
dashed rectangular are frozen. In other words, they are generated by bold-
faced grammar symbols and they cannot be modified by genetic operators.

One advantage of logic grammars is that they specify what is a
legal program without any explicit reference to the process of program
generation and parsing. Furthermore, a logic grammar can be translated
into an efficient logic program that can generate and parse the programs in
the language declared by the logic grammar (Pereira and Warren 1980,

76 Chapter 5

Pereira and Shieber 1987, Abramson and Dahl 1989). In other words, the
process of program generation and parsing can be achieved by performing
deduction using the produced logic program. Consequently, the program
generation and analysis mechanisms of LOGENPRO can be implemented
using a deduction mechanism based on the logic programs translated from
the grammars. In the following paragraphs, we discuss the method of
implementing LOGENPRO using a Prolog-like logic programming
language.

The differences between the logic programming language used
and Prolog are listed as follows:

A variable is represented by a question mark ? followed
by a string of letters and/or digits.

or spaces. For example, [a b c] and [a, b, c] are
equivalent.

symbol. For example, the symbol [)] in the second rule
of the grammar in table 5.1 is translated into |)|.

appearing in a logic grammar.

goal G, the ordering of evaluating these clauses is
determined randomly.

• The elements of a list can be separated by either commas

A pair of ‘ | ’ is used to represent a frozen terminal

A pair of braces encloses a sequence of logic goals

If there are a number of clauses C1, C2, ..., Cn that match a

•

•

•

Using the difference list approach (Sterling and Shapiro 1986), a
grammar rule of the form:

A0 -> A1, A2, ..., An.
is translated into a logic program clause of the form:

A0' -> A1 / A2 , . . ., An'.
in the logic programming language. Here, if Ai, for some i between 0 and
n, is a non-terminal with M arguments, then Ai' is a literal with M+3
arguments. The predicate symbols of Ai and Ai’ are the same. For
example, A1 is translated into exp (?X, ?Tree, ?Sj, ? Sj+1), for
some j, if Ai is exp (?X) . The literal
exp (?X, ?Tree, ?Sj, ?Sj+1) states that the sequence of symbols
between ?Sj and ?Sj+1 is a sentence of the category represented by the

LOGENPRO 77

non-terminal symbol exp (?X) . The derivation tree of the sentence is
stored in the logic variable ?Tree.

A terminal symbol such as [a b c] is translated to a literal with
3 arguments: connect ([a b c] , ?Sj, ?Sj+1), for some j. The
predicate connect is defined as:

connect (?A, ?SO, ?S1) : -
append(?A, ?S1, ?S0).

This predicate declares that the list of symbols stored in the logic variable
?A can be found in the sequence of symbols between ? S 0 and ? S 1.

IfAk, for some k between 1 and n, is a pair of braces enclosing a
sequence of pure logic goals, i.e., Ak has the form of {Go, G1, ,
Gm} , then Ak' is obtained from Ak by removing the pair of braces.

This method of translating a logic grammar into a logic program
is common in the field of natural language processing (Pereira and Warren
1980, Pereira and Shieber 1987, Abramson and Dahl 1989). The original
idea of this approach is to rephrase the special purpose formalism of CFGs
into a general purpose first-order predicate logic (Kowalski 1979,
Colmerauer 1978, Pereira and Warren 1980). This approach is further
refined and generalized to Definite Clause Grammars (DCGs) which can
handle the properties of context-dependency of natural languages
effectively.

Since DCGs, a kind of logic grammars, can be translated into
efficient logic programs automatically, parsers and generators for the
corresponding natural languages can be obtained easily. In other words,
researchers in the field of natural language processing only declare the
grammar for a particular natural language, and the translation process will
produce the corresponding parser and generator for them. Moreover, for
some cases, the same logic program can be used as both a parser and
generator at the same time. For example, the grammar depicted in table
5.1 can be translated into the logic program presented in table 5.2.

78 Chapter 5

1' : start (tree(start, [(*] , ?E1, ?E2, frozen(?E3) ,
|)|) , ?S0, ?S5)
:- connect ([(*1 , ?SO, ?S1) ,

exp(W, ?El, ?S1, ?S2) ,
exp(W, ?E2, ?S2, ?S3) ,
exp (W, ?E3, ?S3, ?S4) ,
connect ([)] , ?S4, ?S5).

2': start(tree(start, {member(?x, [W, Z])}, [(*],
?El, ?E2, frozen(?E3), I) I) , ?SO, ?S5)
:- member(?x, [W, Z]),

connect ([(*] , ?SO, ?S1) ,
exp-1 (?x, ?El, ?S1, ?S2) ,
exp-1 (?x, ?E2, ?S2, ?S3) ,
exp-1 (?x, ?E3, ?S3, ?S4) ,
connect([)], ?S4, ?S5).

3': start(tree(start, {member(?x, [W, Z]) }, [(t],
?E1, ?E2, frozen(?E3) , I) I) ,?SO, ?S5)

member (?x, [W, Z]) ,
connect ([(+] , ?SO, ?S1),
exp-1 (?x, ?E1, ?S1, ?S2) ,
exp-1 (?x, ?E2, ?S2, ?S3) ,
exp-1 (?x, ?E3, ?S3, ?S4) ,
connect ([) 3 , ?S4, ?S5) .

.-

4': exp(?x, tree(exp(?x), [(/ ?x 1.5)1),?SO, ?S1)
:– connect([(/ ?x 1.5)], ?SO,

?Sl).
5': exp-1(?x, tree(exp-1(?x), Irandom(1,2,?y) },

[(/ ?x ?y) 1) / ?SO, ?S1)
:– random(1, 2, ?y),

connect ([(/ ?x ?y)] , ?SO ,
?S1).

exp-1(?x, tree(exp-1(?x), {random(3,4,?y)},6 ' :
[(-?x ?y)3)/?SO, ?S1)
:- random(3, 4, ?y),

connect([(-?x ?y)], ?SO,
?S1).

7': exp-1(W, tree(exp-1(W), [(t (-W 11)12)]),?S0,
?S1)
:- connect([(+ (- W 11) 12)],

A logic program obtained from translating the logic grammar
presented in table 5. I.

?S0, ?S1).
Table 5.2:

LOGENPRO 79

In the clause 1' of the logic program shown in table 5.2, the
compound term
tree(start, [(*], ?El, ?E2, frozen(?E3), |)|)
indicates that it is a tree with a root labeled as start . The children of the
root include the terminal symbol [(*] , a tree created from the non-
terminal exp (W) , another tree created from the non-terminal exp (W) , a
frozen tree generated from the non-terminal exp (W) , and the frozen
terminal|)|.

Thus, a derivation tree can be generated randomly by issuing the
following query:

?- start(?T, ?S, []).
This goal can be satisfied by deducing a sentence that is in the language
specified by the grammar. One solution is:

?S = [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))]
and the corresponding derivation tree is:

?T = tree(start, [(*],
tree(exp(W), [(/ W 1.5)]),
tree(exp(W), [(/ W 1.5)]),

[(/ W 1.5)])),
frozen (tree (exp (W) ,

|) |)
This is exactly a representation of the derivation tree shown in

figure 5.1. In fact, the bindings of all logic variables and other information
are also maintained in the derivation trees to facilitate the genetic
operations that will be performed on the derivation trees.

Alternatively, initial programs can be induced by other learning
systems such as FOIL (Quinlan 1990; 1991) or given by the user.
LOGENPRO analyzes each program and creates the corresponding
derivation tree. If the language is ambiguous, multiple derivation trees can
be generated. LOGENPRO produces only one tree randomly. For
example, the program (* (/ W 1.5) (/ W 1.5) (/ w 1.5))
can also be derived from the following sequence of derivations:

start => {member (?x, [W, Z]) } [(*]
exp-1 (?x) exp-1 (?x) exp-1 (?x) [)]

[)]
=> [(*I exp-1 (W) exp-1 (W) exp-1 (w)

80 Chapter 5

=> [(*] (random(1, 2, ?y)}

=> [(*] [(/ W 1.5)] exp-1(W)

=> [(*] [(/ W 1.59)]

[(/ W ?y)] exp-1 (W) exp-1 (W) [)]

exp-1(W) [) 1

{random (1, 2, ?y) } [(/ W ?y)]
exp-1(W) [)]

exp-1 (W) [) 1

random(1, 2, ?Y)} [(/ w ?y)l [)]

[(/ W 1.511 [)]

=> [(*I [(/ W 1.5)1 [(/ W 1.5)]

=> [(*I [(/ W 1.5)l [(/ W 1.5)]

=> [(*I [(/ W 1.5)] [(/ W 1.5)]

=> [(* (/ W 1.5) (/ W 1.5) (/ W 1.5))]

The derivation tree of this sequence of derivations is depicted in figure
5.2. The ?y1, ?y2, and ?y3 in the figure are different instances of the logic
variable ?y appearing in the same or different rules in the grammar.

LOGENPRO 81

Using the logic program in table 5.2, a given program such as
(* (/ w 1.5) (/ W 1.5) (/ W 1.5)) can be analyzed using

the following query:
?-start (?T,

[(* (/ W 1.5) (/ W 1.5) (/ W 1.5))], []).
The given program is correct if the above goal can be satisfied and the
corresponding derivation tree will be bound to the logic variable ?T. As
demonstrated previously, the logic grammar in table 5.1 is ambiguous and
thus the corresponding logic program may produce multiple derivation
trees for a given program. Since the search strategy of the underlying
deduction mechanism selects randomly one clause to explore with
backtracking from all unifiable clauses, the sequence of generating the
derivation trees of a particular program is also random. Consequently,
LOGENPRO takes the first tree returned from the query to represent the
given program.

5.3. Crossover of Programs

The crossover is a sexual operation that starts with two parental
programs and the corresponding derivation trees. One program is
designated as the primary parent and the other one as the secondary
parent. The derivation trees of the primary and secondary parents are
called the primary and secondary derivation trees respectively. The
algorithm in table 5.3 is used to produce an offspring program.

Consider two parental programs generated randomly from the
grammar in table 5.1. The primary parent is (+ (- Z 3 .5) (-
Z 3.8) (/ Z 1.5)) and the secondary parent is
(* (/ W 1.5) (+ (-W 11) 12) (-W 3.5)). The

corresponding derivation trees are depicted in figures 5.3 and 5.4
respectively. In the figures, the plain numbers identify sub-trees of these
derivation trees, while the underlined numbers indicate the grammar rules
used in deducing the corresponding sub-trees.

In step 1 of the crossover algorithm, the global variable
PRIMARY-SUB-TREES contains the sub-trees 2, 3, 5, 6, and 8. The
primary derivation tree (i.e. the sub-tree 0), the sub-trees 1, 4, 7, and 10
that contain logic goals, and the frozen sub-trees 9, 10, 11, and 12 are

82 Chapter 5

excluded. The whole primary derivation tree cannot be mated because it
must be generated from the grammar symbol start. If the symbol
start is not recursive (i.e. start does not appear on the right hand side
of a rule), the whole secondary derivation tree must be chosen for
crossover. Thus, the offspring program must be a copy of the secondary
parental program. In fact, the same effect can be obtained by reproducing
the secondary parental program.

The sub-trees containing logic goals are eliminated for two
reasons. Firstly, the crossover algorithm can be greatly simplified if logic
goals are prevented from performing crossover. Secondly, logic goals
specific the conditions that must be satisfied before the rule can be applied
and/or the computations that should be done. Hence, from the viewpoint
of natural selection and reproduction, the interpretation of crossover
between logic goals is unclear and unnatural. Thus this kind of operations
is avoided.

Similarly, the sub-trees 13, 15, 16, 18, 19, and 20 are assigned to
the global variable SECONDARY-SUB-TREES in step 2. In the next
step, a sub-tree in the variable PRIMARY-SUB-TREES is selected
randomly using a uniform distribution because the variable is not empty.
Assume that the sub-tree 2, the SEL-PRIMARY-SUB-TREE, is selected.
Thus, it is removed from the variable PRIMARY-SUB-TREES in step 4.
A copy of the variable SECONDARY-SUB-TREES is made and stored
into the global variable TEMP-SECONDARY-SUB-TREES in step 5.

Steps 6 to 8 form a loop that finds an appropriate sub-tree from
the variable TEMP-SECONDARY-SUB-TREES. A sub-tree, SEL-
SECONDARY-SUB-TREE, is appropriate if a valid offspring can be
obtained by executing crossover between the SEL-PRIMARY-SUB-
TREE and the SEL-SECONDARY-SUB-TREE. If no appropriate sub-
tree can be found in this loop, the algorithm returns back to step 3 to find
another SEL-PRIMARY-SUB-TREE. Assume that the sub-tree 15 is
chosen as the SEL-SECONDARY-SUB-TREE. Step 8 determines
whether a valid offspring can be obtained. It is the most complicate
procedure in this algorithm and it is delineated in table 5.4 and explained
in the following paragraphs.

In step 11 of the algorithm shown in table 5.4, the sub-trees 1, 3,
6, 9, and 12 are found to be the siblings of the SEL-PRIMARY-SUB-
TREE 2 and stored into the global variable SIBLINGS. The SIBLINGS
can be thought as the context around the PRIMARY-CROSSOVER-
POINT and the context’s consistency has to be checked and computed.

LOGENPRO 83

The purpose of step 12 is to remove the bindings established solely by the
SEL-PRIMARY-SUB-TREE which will be deleted by the crossover
operation. To achieve this goal, the bindings of each sub-tree in the
variable SIBLINGS is modified so that only the bindings established by
itself is retained. The bindings instantiated by a sub-tree can be found
easily using the techniques of explanation-based learning (DeJong 1993,
Mitchell et al. 1986, DeJong and Mooney 1986). For example, the
bindings { ?x / Z } of the sub-tree 1 needs not be modified because the
logic variable ?x is instantiated to the value Z by the logic goal
member (?x, [W, Z]). The bindings {?x/Z} of the sub-tree 3 is
changed to an empty list because the logic variable ?x is bound to the
value Z by the sub-tree 1. Similarly, the bindings { ?x/Z } of the sub-
trees 6 and 9 are changed to empty lists. The bindings of the sub-tree 12 is
not changed because it is already empty.

In step 13, the bindings of the SEL-SECONDARY-SUB-TREE is
modified so that only the bindings established by itself is retained. The
purpose is to identify the effect of the sub-tree on the logic variables. In
this example, since the grammar symbol of the SEL-SECONDARY-SUB-
TREE 15 has no argument, its bindings is empty. In fact, the primary and
secondary derivation trees are pre-processed by LOGENPRO using an
algorithm based on the techniques of Explanation-Based Learning (EBL).
The algorithm finds the bindings established solely by the corresponding
sub-trees of the derivation trees. The results are stored in the sub-trees so
that they can be retrieved in constant time Cr. Thus the time complexity of
step 12 is O(n) where n is the number of sub-trees in the global variable
SIBLINGS. Similarly, the time complexity of step 13 is O(1).

In step 14, the second grammar rule is satisfied by the sub-trees in
SIBLINGS and the SEL-SECONDARY-SUB-TREE. Moreover, this rule
reaches the conclusion start which is consistent with the requirement of
the parent, the sub-tree 0, of the SEL-PRIMARY-SUB-TREE. Thus, the
offspring generated is valid. The procedure that checks whether a
conclusion is consistent is presented in table 5.5.

84 Chapter 5

Input:
P: The primary derivation tree.
S: The secondary derivation tree.

output :
Return a new derivation tree if a valid offspring can be obtained
by performing crossover, otherwise return false.

Function crossover (P, S)
{

1. Find all sub-trees of the primary derivation tree P
and store them into a global variable PRIMARY-SUB-
TREES, excluding the primary derivation tree, all
logic goals, and frozen sub-trees.

2. Find all sub-trees of the secondary derivation tree S
and store them into a global variable SECONDARY-SUB-
TREES, excluding all logic goals and frozen sub-
trees.

3. If the variable PRIMARY-SUB-TREES is not ampty,
select randomly a sub-tree from it using a uniform
distribution. Otherwise, terminate the algorithm
without generating any offspring program.

4. Designate the sub-tree selected as the SEL-PRIMARY-
SUB-TREE and the root of it as the PRIMARY-CROSSOVER-
POINT. Remove the SEL-PRIMARY-SUB-TREE from the
variable PRIMARY-SUB-TREES.

5. Copy the variable SECONDARY-SUB-TREES to the
temporary variable TEMP-SECONDARY-SUB-TREES.

6 If the variable TEMP-SECONDARY-SUB-TREES is not
empty, select randomly a sub-tree from it using a
uniform distribution. Otherwise, go to step 3.

7. Designate the sub-tree selected in step 6 as the SEL-
SECONDARY-SUB-TREE. Remove it from the variable TEMP-

8. If the offspring produced by performing crossover
between the SEL-PRIMARY-SUB-TREE and the SEL-
SECONDARY-SUB-TREE is invalid according to the
grammar, go to step 6. The validity of the offspring
generated can be checked by the procedure is-valid(P,

9. Copy the genetic materials of the primary parent P to
the offspring, remove the SEL-PRIMARY-SUB-TREE from
it and then impregnating a copy of the SEL-SECONDARY-
SUB-TREE at the PRIMARY-CROSSOVER-POINT.

10. Perform some house-keeping tasks and return the
offspring program.

SECONDARY-SUB-TREES.

SEL-PRIMARY-SUB-TREE, SEL-SECONDARY-SUB-TREE).

}

Table 5.3: The crossover algorithm of LOGENPR0.

LOGENPRO 85

Input:
P: The primary derivation tree
P-sub-tree: The sub-tree in the primary derivation tree

S-sub-tree: The sub-tree in the secondary derivation tree
that is selected to be crossed over.

that is selected to be crossed over.

output:
Return true if the offspring generated is valid, otherwise return
false.

Function is-valid(P, P-sub-tree, S-sub-tree)

11. Find all siblings of the P-sub-tree in P and store

12. For each sub-tree in the variable SIBLINGS, perform

l Store the bindings of the sub-tree to the
global variable BINDINGS.

l For each logic variable in the variable
BINDINGS that is not instantiated by the sub-
tree, remove it from the variable BINDINGS.

{
them into the global variable SIBLINGS.

the following sub-steps:

l Modify the bindings of the sub-tree.
13. Modify the bindings of the S-sub-tree. A logic

variable is retained only if it is instantiated in
the S-sub-tree.

14. If there is a rule in the grammar such that:
l it is satisfied by the sub-trees in the

variable SIBLINGS and the S-sub-tree,
l the sub-trees in the variable SIBLINGS and the

S-sub-tree are used exactly once,
l the sub-trees are applied in the same order as

that in the original rule of the primary
derivation tree, and

l a consistent conclusion C is deduced from the
rule. The conclusion is consistent if the
function is-consistent (P, PARENT, C) returns
true where PARENT is the parent of the P-sub-
tree. The function is-consistent is presented
in table 5.5.

then the offspring generated will be valid.
Otherwise, the offspring will be invalid.

}

Table 5.4: The algorithm that checks whether the offspring produced by
LOGENPRO is valid.

86 Chapter 5

Input:
P: The primary derivation tree.
PARENT: The parent of the primary sub-tree.
C: The conclusion.

Return true if the conclusion C is consistent, otherwise return
false.

This operation can be viewed as performing a tentative crossover
between PARENT and C and then determining whether the tentative
offspring produced is valid. Here, PARENT is treated as the
primary sub-tree while C is treated as the secondary sub-tree of
the tentative crossover operation. The main difference between
this algorithm and that in table 5.4 is that all rule
applications in all ancestors of PARENT must be maintained.

output:

Comment :

Function is-consistent (P, PARENT, C)

15. If PARENT is the root of P then {
if C is labeled with the symbol start then

else false.
return true

16. Find all siblings of PARENT in P and store them into

17. For each sub-tree in the variable SIBLINGS, perform

Store the bindings of the sub-tree to the
global variable BINDINGS.
For each logic variable in the variable
BINDINGS that is not instantiated by the sub-
tree, remove it from the variable BINDINGS.

the global variable SIBLINGS.

the following sub-steps:

Modify the bindings of the sub-tree.
18. Let the grammar rule applied in the parent node of

PARENT as RULE.
If the following conditions are satisfied:

RULE is satisfied by the sub-trees in the
variable SIBLINGS and C,
the sub-trees in SIBLINGS and C are used
exactly once and the ordering of applications
is maintained, and
a consistent conclusion C ' is deduced from
RULE. The conclusion is consistent if the
function is-consistent(P, GRANDPARENT, C ’)
returns true where GRANDPARENT is the parent
node of PARENT.

return true

return false.

then

else

}
Table 5.5: The algorithm that checks whether a conclusion deduced from a rule is

consistent with the direct parent of the primary sub-tree.

LOGENPRO 87

88 Chapter 5

In step 9 of the crossover algorithm in table 5.3, the offspring is
generated. In the next step, it is returned as the solution after some house-
keeping tasks have been performed. The house-keeping tasks update the
bindings and the rule numbers of the sub-trees of the offspring. The
offspring program of this example is (* (-z 3.5) (-

(/ Z 1 .5)) and its derivation tree is shown in figure 5.5. It
is interesting to find that the sub-tree 25 has the rule number 2. This
indicates that the sub-tree is generated by the second grammar rule rather
than the third rule applied to the primary parent. The second rule must be
used because the terminal symbol [(+] is changed to [(*] and only the
second rule can create the terminal [(*] . In fact, this situation is
identified in step 14 of the function is-valid and a record is
maintained so that the rule number can be changed to 2 by the house-
keeping procedure.

Z 3 . 8)

LOGENPRO 89

In another example, the same primary and secondary parents are
used. Assume that the SEL-PRIMARY-SUB-TREE 3 is selected in step 3
and the SEL-SECONDARY-SUB-TREE 16 is chosen in step 7 of the
crossover algorithm. Now, the siblings of the SEL-PRIMARY-SUB-
TREE 3 are the sub-trees 1, 2, 6, 9, and 12. Although the SEL-
PRIMARY-SUB-TREE has the bindings { ? x / Z } , the instantiation of the
logic variable ?x to value Z is done by the sub-tree 1. In other words, the
SEL-PRIMARY-SUB-TREE has not established any binding. In step 12
of the function is-valid, the bindings { ?x/Z } of the sub-tree 1 is not
modified because the logic variable ?x is instantiated to the value Z by
the logic goal member (?x,[w, Z]). The bindings of the sub-trees 2
and 12 are not changed because they are already empty. The bindings
{ ?x/Z } of the sub-trees 6 is changed to an empty list because the logic
variable ?x is bound to the value Z by the sub-tree 1. Similarly, the
bindings { ?x/ Z } of the sub-tree 9 is changed to an empty list.

The SEL-SECONDARY-SUB-TREE has the bindings { ?x/W} ,
but the instantiation of ?x is performed by the sub-tree 14. Thus, the
bindings of the SEL-SECONDARY-SUB-TREE is changed in step 13 to
an empty list (i.e. the logic variable ?x is not instantiated). In step 14,
since the third rule satisfies all requirements, a valid offspring can be
created.

The offspring program is (+ (/ Z 1.5) (-
Z 3 . 8) (/ Z 1 .5)) and its derivation tree is depicted in figure 5.6.

It should be emphasized that the constituent from the secondary parent is
changed from (/ W 1 .5) to (/ Z 1.5) in the offspring. This must
be modified because the logic variable ?x in the sub-tree 41 is instantiated
to Z in the sub-tree 39. The house-keeping procedure modifies the
bindings of 41 in order to achieve this effect. This example demonstrates
the use of logic grammars to enforce contextual-dependency between
different constituents of a program.

As a further example, the same primary and secondary parents are
used. Assume that the SEL-PRIMARY-SUB-TREE 6 is selected in step 3
of the crossover algorithm and the SEL-SECONDARY-SUB-TREE 19 is
chosen in step 7. The variable SIBLINGS contains the sub-trees 1, 2, 3, 9,
and 12. In step 12 of the function is-valid, the bindings { ?x/Z} of
the sub-tree 1 is not modified. The bindings of the sub-trees 2 and 12 are
not modified because they are already empty. The bindings { ?x / Z } of
the sub-trees 3 and 9 are changed to empty lists because the logic variable
?x is bound to the value Z by the sub-tree 1.

90 Chapter 5

The SEL-SECONDARY-SUB-TREE 19 has the bindings
{ ? x /W } . This sub-tree is generated from the rule 7 and the application of
this rule will instantiate the logic variable ?x to the value W. In other
words, the SEL-SECONDARY-SUB-TREE performs the instantiation of
?x to W. Thus, the bindings of the SEL-SECONDARY-SUB-TREE is not
changed in step 13. It must be mentioned that the sub-tree 14 also
instantiates ?x to W. Since the two sub-trees bind ?x to the same value W,
this situation is valid. In step 14, no rule can be satisfied by the sub-trees
in the variable SIBLINGS and the SEL-SECONDARY-SUB-TREE.
Thus, the two sub-trees 6 and 19 cannot be mated. The reason is that the
same logic variable ?x must be instantiated to different values Z and W:
the sub-tree 19 requires the variable ?x to be instantiated to W while ?x
must be instantiated to Z in the context of the primary parent. The
function is-valid in table 5.4 can determine this situation and avoid
the crossover algorithm from generating an offspring by exchanging the

LOGENPRO 91

two sub-trees. Thus, only valid offspring can be produced and this
operation can be achieved effectively.

In the following paragraphs, we estimate the time complexity of
the crossover algorithm. Let the numbers of sub-trees in the primary and
secondary derivation trees are respectively Np and Ns. The numbers of
sub-trees in the global variables PRIMARY-SUB-TREES and
SECONDARY-SUB-TREES are respectively N'p and N's . Assume that
the depth of the primary derivation tree is Dp (Depth starts from 0). Hence
there are Dp rule applications along the longest path from the root to the
leaf node. Let R be the grammar rule having the largest number of
symbols on its right hand side. Then S is the number of symbols on the
right hand side of R.

Since the most time-consuming operation of the crossover
algorithm is step 8 which calls the function is-valid. We concentrate
on the time complexity of this step first. In the worst case, this step will
calls is-valid for N'p * N's times. In each execution of the function
is-valid, the purpose of steps 11 to 13 is to find the bindings
established solely by the SEL-SECONDARY-SUB-TREE and the
siblings of the SEL-PRIMARY-SUB-TREE. Since the total number of
sub-trees to be examined must be equal to or smaller than S, the steps can
be completed in S*Cr time, where Cr is the constant time to retrieve the
bindings established solely by a particular sub-tree of the sub-trees being
examined.

Step 14 is a loop that finds a grammar rule that can be satisfied.
Suppose that the parent of the SEL-PRIMARY-SUB-TREE generates
program fragments belonging to the category CAT. The loop examines all
grammar rules for the category CAT. If there are Nr rules for CAT, step 14
repeats for Nr times.

In each iteration of step 14, the first three operations check
whether the rule is satisfiable. These operations can be viewed as
determining whether the SEL-SECONDARY-SUB-TREE and the sub-
trees in the global variable SIBLINGS are unificable according to the rule
(Mooney 1989). Since an efficient, linear time algorithm exists for
unification (Paterson and Wegman 1978). These operations can be
completed in O(S) time (Mooney 1989).

The last operation of step 14 applies the function is-
consistent whose time complexity depends on the depth Dc of the

92 Chapter 5

PRIMARY-CROSSOVER-POINT, where Dc Dp. There are three cases
to be considered. Firstly, Dc cannot be equal to zero because the whole
primary derivation tree cannot be crossed over with the SEL-
SECONDARY-SUB-TREE. Secondly, if Dc is equal to 1, the function
is-consistent can be completed in constant time C1 because step 15
will be executed. Lastly, if Dc is greater than or equal to 2, the function
is-consistent will recursively check the rules from the grandparent
of the SEL-PRIMARY-SUB-TREE to the root of the primary derivation
tree, to determine whether the rules are satisfied. As described previously,
steps 16 and 17 can be completed in S*Cr time and each rule can be
checked in O(S) time. In the worst case, the recursive process iterates for
D, times. Hence the function is-consistent can be completed in
[(Dc – 1) * (O(S) + S * Cr) + C1] time.

In summary, each execution of the function is -valid requires
Tis-valid time which is presented in follows:

Tis-valid = S*Cr+Nr*[O(S)+((Dc – 1)*(O(S)+S*Cr)+C1)]

In the worst case, the depth Dc of the PRIMARY-CROSSOVER-
POINT is equal to Dp. Then the worst case time complexity of the
function is-valid is:

Tis-valid = S * Cr + Nr * [O(S) + ((Dp – 1) * (O(S) + S * Cr) + C1)]

and the worst case time complexity of the crossover algorithm is:

Tcrossover = N'p * N's *Tis-valid + T1 + T2 + T3 + T4

where T1 is the time used to perform steps 1 and 2, T2 is the time
employed to execute steps 3 and 4, T3 is the execution time for steps 5 to
7, and T4 is the time consumed by steps 9 and 10.

Obviously, T1 depends on the sizes of the primary and secondary
derivation trees, thus its complexity is O(Np + Ns). If the sub-trees in the
variable PRIMARY-SUB-TREES are permuted randomly using an
O(Np) algorithm (Cormen et al. 1990) before executing steps 3 and 4,

these steps can be completed in T2 = O(N'p) time. Similarly, steps 5, 6,

and 7 can be completed in T3 = O(N'p * N's) time. T4 depends on the sizes
of the primary and secondary derivation trees, thus its complexity is O(Np

+ Ns).

LOGENPRO 93

Assume that the first term of the above equation is much larger
than the other terms, then the worst case time complexity is approximated
by the following equation:

Tcrossover ≅ O(N'p * N's *Dp *S * Nr).

If the primary derivation tree is a complete m-ary tree, then

= Np. In other words, Dp is of the order of log m(Np).

Furthermore, S and Nr are fixed for a given grammar. Thus, the worst case
time complexity of the crossover algorithm is:

m(Dp +1) -1

m-1

Tcrossover ≅ O(N'p * N's *logm(Np)).

Since the computation time consumed by performing crossover is
insignificant when compare with the time used in evaluating the fitness of
each program in the population. The issue of computational complexities
of various crossover algorithms has not been addressed by other
researchers in the field of Genetic Programming. In fact, it is easy to
calculate that the worst case time complexity of the structure-preserving
crossover algorithm of ADF (Koza 1994) is O(Np 1 * Np

2
), where Np1 and

Np 2
are respectively the sizes of the parental parse trees. Similarly, the

crossover algorithm of STGP (Montana 1995) has the same complexity.
Although the crossover algorithm of LOGENPRO is slightly slower than
other algorithms by O(logm(Np)), it is much more general and powerful
than other algorithms.

94 Chapter 5

5.4. Mutation of programs

The mutation operation in LOGENPRO introduces random
modifications to programs in the population. Mutation is asexual and
operates on only one program each time. A program in the population is
selected as the parental program. The selection is based on various
methods such as fitness proportionate and tournament selections. The
algorithm in table 5.6 is used to produce an offspring program by
mutation.

For example, assume that the program being mutated is (+ (-
Z 3.5) (-Z 3.8) (/ Z 1.5)) and the corresponding

derivation tree is depicted in figure 5.3. In step 1 of the mutation
algorithm, the global variable SUB-TREES contains the sub-trees 0, 3,
and 6. The frozen sub-trees 9, 10, 11, and 12 are excluded. The sub-trees
1, 4, and 7 are also excluded because they contain logic goals of the
grammar and thus should not be modified by genetic operations. The sub-
trees 2, 5, and 8 containing terminal symbols are eliminated for two
reasons. First, the mutation algorithm is significantly simplified if terminal
symbol need not be modified. Second, the effect of mutating terminal
symbols can be emulated by the crossover operation. Recalling the
example described in the previous section, the primary sub-tree 2 are
crossed with the secondary sub-tree 15 to generate the offspring (* (-
Z 3.5) (-Z 3.8) (/ Z 1.5)). This offspring can be seen as

the result of mutating the terminal symbol [(+] to the [(*] .
In step 2, a sub-tree in the variable SUB-TREES is selected

randomly using a uniform distribution if the SUB-TREES is not empty.
Otherwise, the mutation algorithm terminates without generating any
modified program because no valid mutation can be found. In normal
situation, this should not occur because it is almost always possible to
select the whole derivation tree as the one to be mutated. The whole tree
cannot be chosen only if it is frozen. The effect of mutating the whole
tree, the sub-tree 0 in this example, is equivalent to generating a new
program from scratch. A new program can be created successfully if the
language specified by the grammar contains at least one program (this
must be true for a grammar to be useful) and enough computational
resources such as computer memory are available. Thus, the algorithm
will fail to find a mutation only if the whole derivation tree is frozen or
not enough computational resources are available.

LOGENPRO 95

Input:
P: The derivation tree of the parental program

output :
Return a new derivation tree if a valid offspring can be obtained
by performing mutation, otherwise return false.

Function mutation(P)

1. Find all sub-trees of the derivation tree P of the
parental program and store them into a global
variable SUB-TREES, excluding all frozen sub-trees,
logic goals, and terminal symbols

2. If SUB-TREES is not empty, select randomly a sub-tree
from the SUB-TREES using a uniform distribution.
Otherwise, terminate the algorithm without generating
any offspring.

3. Designate the sub-tree selected as MUTATED-SUB-TREE.
The root of the MUTATED-SUB-TREE is called the
MUTATE-POINT. Remove the MUTATED-SUB-TREE from the
variable SUB-TREES. The MUTATED-SUB-TREE must be
generated from a non-terminal symbol of the grammar.
Designate this non-terminal symbol as NON-TERMINAL.
The NON-TERMINAL may have a list of arguments called
ARGS .

4. For each argument in the ARGS, if it contains some
logic variables, determine whether these variables
are instantiated by other constituent of the
derivation tree. If they are, bind the instantiated
value to the variable. Otherwise, the variable is
unbounded. Store the modified bindings to a global
variable NEW-BINDINGS.

5. Create a new non-terminal symbol NEW-NON-TERMINAL
from the NON-TERMINAL and the bindings in the
variable NEW-BINDINGS.

6. Try to generate a new derivation tree NEW-SUB-TREE
from the NEW-NON-TERMINAL using the deduction
mechanism provided by LOGENPRO.

7. If a new derivation tree can be successfully created,
the offspring is obtained by deleting the MUTATED-
SUB-TREE from a copy of the parental derivation tree
P and then impregnating the NEW-SUB-TREE at the
MUTATE-POINT. Otherwise, go to step 3.

{

}
Table 5.6: The mutation algorithm.

Assume that the sub-tree 3 is selected as the MUTATED-SUB-
TREE in step 2. In the next step, the sub-tree 3 is removed from the
variable SUB-TREES. The NON-TERMINAL and the ARGS are exp-

96 Chapter 5

1 (?x) and { ?x} respectively. Since the logic variable ?x is instantiated
to Z in the sub-tree 1 by the logic goal member (?x , [W , Z]) , the
bindings { ?x/Z } is stored into the variable NEW-BINDINGS in step 4.

In step 5, the new non-terminal NEW-NON-TERMINAL exp-
1 (Z) is created. Using this mechanism, contextual-dependent
information can be transmitted between different parts of a program. In
step 6, a new derivation tree for the S-expression (/ Z 1.9) can be
obtained from the non-terminal symbol exp-1 (Z) using the fifth rule of
the grammar. This derivation tree is displayed in figure 5.7.

Since the NEW-SUB-TREE can be found, a new offspring is
obtained by duplicating the genetic materials of its parental derivation
tree, followed by deleting the MUTATED-SUB-TREE from the
duplication, and then pasting the NEW-SUB-TREE at the MUTATE-
POINT. The derivation tree of the offspring (+ (/ Z 1.9) (–

LOGENPRO has an efficient implementation of the mutation
algorithm. Moreover, an inference engine has been developed for
deducing derivation trees (or programs) from a logic grammar given.
Thus, only valid mutations can be performed and this operation can be
achieved effectively and efficiently.

Z 3.8) (/ Z 1.5)) can be found in figure 5.8.

LOGENPRO 97

5.5. The Evolution Process of LOGENPRO

The problem of inducing S-expressions or logic programs can be
formulated as a search for a highly fit program in the space of all possible
programs (Mitchell 1982). In GP, this space is determined by the syntax
of S-expressions in Lisp and the sets of terminals and functions. The
search space of ILP is determined by the syntax of logic programs and the
background knowledge. Thus, the search space is fixed once these
elements are decided. On the other hand, the search space can be specified
declaratively under the framework proposed because the space is
determined by the logic grammar given.

LOGENPRO starts with an initial population of programs
generated randomly, induced by other learning systems, or provided by
the user. Logic grammars provide declarative descriptions of the valid
programs that can appear in the initial population. A fitness function must
be defined by the user to evaluate the fitness values of the programs.

98 Chapter 5

Typically, each program is run over a set of fitness cases and the fitness
function estimates its fitness by performing some statistical operations
(e.g. average) to the values returned by this program.

Since each program generated in the evolution process must be
executed. A compiler or an interpreter for the corresponding programming
language must be available. This compiler or interpreter is called by the
fitness function to compile or interpret the created programs. LOGENPRO
can guarantee only that valid programs in the language specified by the
logic grammar will be generated. However, it cannot ensure that the
produced programs can be successfully compiled or interpreted if the
appropriate compiler/interpreter is not provided by the user. Thus, the user
must be very careful in designing the logic grammar and the fitness
function. A high-level algorithm of LOGENPRO is presented in table 5.7.

The initial programs in generation 0 normally have poor
performances. However, some programs in the population will be fitter
than the others. Fitness of each program in the generation is estimated and
the following process is iterated over many generations until the
termination criterion is satisfied. The reproduction, sexual crossover, and
asexual mutation are used to create new generation of programs from the
current one. The reproduction involves selecting a program from the
current generation and allowing it to survive by copying it into the next
generation. Either fitness proportionate or tournament selection can be
used.

The crossover is used to create a single offspring program from
two parental programs selected. Mutation creates a modified offspring
program from a parental program selected. Unlike crossover, the offspring
program is usually similar to the parent program. Logic grammars are
used to constraint the offspring programs that can be produced by these
genetic operations.

This algorithm will produce populations of programs which tend
to exhibit increasing average of fitness. LOGENPRO returns the best
program found in any generation of a run as the result.

LOGENPRO 99

Input:
Grammar: It is a logic grammar that specifies the search space
t The termination function.
f The fitness function.

of programs.

output:
A logic program induced by LOGENPRO.

Function LOGENPRO(Grammar, t, f)
{

Translate the Grammar to a logic program.
generation := 0.
Initialize a population Pop(generation) of programs. They are
generated by issuing the query ?-start(?Tree, ?S , []),
provided from the user, or generated by other learning
systems. If a program, Prog, is provide by the user or
generated by other learning systems, the program is
translated to a derivation tree using the query
?-start(?Tree, ?P, []) where ?P contains the program Prog.
Execute each program in the Pop(generation) and assign it a
fitness value according to the fitness function f.
While the termination function t is not satisfied do

Create a new population Pop(generation+1) of programs
by employing the reproduction, the crossover and the
mutation. The operations are applied to programs
chosen by either the fitness proportionate or
tournament selections.
population Pop(generation+1)
Evaluate the fitness of each individual in the next
generation := generation + 1.

Return the best program found in any generation of the run.
}

Table 5.7: A high-level algorithm of LOGENPRO.

5.6. Discussion

We have proposed a framework for combining GP and ILP. This
framework is based on a formalism of logic grammars. The formalism can
represent context-sensitive information and domain-dependent
knowledge. It is also very flexible and programs in various programming
languages such as Lisp, Prolog, and C can be induced.

100 Chapter 5

Since the framework is very flexible, different representations
employed in other inductive learning systems can be specified easily. It
facilitates the integration of LOGENPRO with other learning systems.
One approach is to incorporate the learning techniques of other systems
into LOGENPRO. These techniques include information guided hill-
climbing (Quinlan 1990; 199 1), explanation-based generalization (DeJong
and Mooney 1986, Mitchell et al. 1986, Ellman 1989), explanation-based
specialization (Minton 1989) and inverse resolution (Muggleton 1992).
LOGENPRO can also invoke these systems as front-ends to generate the
initial population. The advantage is that they can quickly find important
and meaningful components (genetic materials) and embody these
components into the initial population. The following chapters will
illustrate some of these points clearly.

Chapter 6

DATA MINING APPLICATIONS USING
LOGENPRO

The knowledge acquired by a data mining system can be
expressed in different knowledge representations such as functional
programs, decision trees, decision lists, production rules, and first-order
logic programs. In the first section, we employ LOGENPRO to discover
knowledge represented as functional programs. In the next section,
LOGENPRO is used to induce knowledge represented in decision trees
from a real-world database. Data mining systems induce knowledge from
datasets which are frequently noisy (incorrect), incomplete, inconsistent,
imprecise (fuzzy), and uncertain (Leung and Wong 199 1 a; 199 1 b; 199 1 c).
In section 6.3, we employ LOGENPRO to combine evolutionary
algorithms and a variation of FOIL (Quinlan 1990) to induce knowledge
represented as logic programs from noisy datasets.

6.1. Learning Functional Programs

It seems that the framework proposed in the previous chapter is
rather complicated but powerful. Consequently, the question of whether
this framework can be applied easily arises. In the first sub-section, we
show that this framework can emulate GP (Koza 1992; 1994, Koza et al.
1999) easily in learning S-expressions. A template is provided to facilitate
the application of the framework. It must be emphasized that the example
used in the first sub-section is deliberately constructed as simple as
possible to illustrate the point. More realistic applications can be found in
the following sub-sections.

102 Chapter 6

6.1.1. Learning S-expressions Using LOGENPRO

A logic grammar template for learning S-expressions using the
framework is depicted in table 6.1. To apply the template for a particular
problem, various sets of terminals and primitive functions will substitute
for the identifiers in italics.

Consider the problem of learning S-expressions such as (-
(* Z X) (+ Y Z)) . Using the terminology of GP, the set of

primitive functions for this problem contains arithmetic operators +, -,
and *. Each of them takes two arguments as inputs. The terminal set is
{X, Y, Z} . The terminals can be treated as input arguments of the
S-expression being learned.

It is observed that an S-expression is either a terminal or a
function invocation. Thus an S-expression can be specified by the
grammar rules 11 and 12 of the template in table 6.1, A function call
consists of a list of elements enclosed by a pair of parentheses. The first
element of the list is the name of the function and the other elements are
arguments of the function. These arguments are also S-expressions. Since
the primitives of a problem may have different numbers of arguments,
there are a variety of function invocations. This fact can be specified by
the grammar rules 13a, 13b, ..., 13n, and 14a, 14b, ..., 14n.

Since an S-expression containing only a terminal is usually
excluded from consideration as a solution. This fact is declared by the
grammar rule 10 which specifies that the target solution must be a
function invocation. The non-terminal symbol term specifies the
terminal set of the problem domain. For the problem studied in this sub-
section, the terminal set is represented as:

term -> { member(?w, [X, Y, Z]) }, [?w].
where the goal member (?w, [X, Y, Z]) instantiates the logic
variable ?x to one of the values in the list [x, Y, Z] . This grammar
rule is obtained from rule 15 in the template by replacing the identifier
<TERMINAL SET> with [X, Y, Z].

DATA MINING APPLICATIONS USING LOGENPRO 103

10: start -> function.
11: s-exp -> term.
12: s-exp -> function.
13a: function -> function-0.
13b: function -> function-1.
13c: function -> function-2.

...

...
13n: function -> function-n.
14a: function-O -> [(], op-0, [)].
14b: function-1 -> [(], op-1, s-exp, [)].
14c: function-2 -> [(], op-2, s-exp, s-exp, [)].

...

...
14n: function-n -> [(], op-n, s-exp, ...,

s-exp,[)].
15: term -> {member (?w, <TERMINAL SET,) } , [?w] .
16a: op-0 -> {member (?w, <FUNCTION SET-0>) } , [?w].
16b: op-1 -> {member(?w,<FUNCTIONSET-1,)}, [?w].
16c: op-2 -> {member (?w,<FUNCTION SET-2,) } , [?w].

...

...
16n: op-n -> {member (?w, <FUNCTION SET-n>) } , [?w] .
Table 6.1: A template for learning S-expressions using the LOGENPRO.

The non-terminal symbols op-0, op-1, ..., op-n in the
template specify primitive functions with different numbers of arguments,
They represent the primitive functions of the problem domain. For the
above problem, all primitives have two arguments, thus only op-2will
be used. It is represented by the following rule:

op-2 -> { member(?w, [+, -, *]) }, [?w] .
This rule is obtained from the grammar rule 16c in the template by
replacing the identifier <FUNCTION SET-2> with [+ -,*] . Other
non-terminal symbols such as op-0, op-1, op-3,..., op-nwill be

104 Chapter 6

used if the problem domain requires primitives with the corresponding
numbers of arguments. In summary, the logic grammar for the example is:

start -> function.
s-exp -> term.
s-exp -> function.
function -> function-2.
function-2 -> [(], op-2, s-exp, s-exp, [)].
term -> { member(?w, [X, Y, Z]) }, [?w].
op-2 -> { member(?w, [+, -, *]) }, [?w].

6.1.2. The DOT PRODUCT Problem

In this sub-section, we describe how to use LOGENPRO to
emulate traditional GP (Koza 1992). GP has the limitation that all the
variables, constants, arguments for functions, and values returned from
functions must be of the same data type. This limitation leads to the
difficulty of inducing even some rather simple and straightforward
functional programs. For example, one of these programs calculates the
dot product of two given numeric vectors of the same size. Let X and Y be
the two input vectors; then the dot product is obtained by the following
S-expression:

(apply (function +)
(mapcar (function *) X Y))

Let us use this example for illustrative comparisons below. To
induce a functional program using LOGENPRO, we have to determine the
logic grammar, fitness cases, fitness function, and termination criterion.
The logic grammar for learning functional programs is given in table 6.2.
In this grammar, we employ the argument of the grammar symbol
s-expr to designate the data type of the result returned by the
S-expression generated from the grammar symbol. For example,

(mapcar (function +) X
(mapcar (function *) X Y))

is generated from the grammar symbol
s-expr ([list, number, n]) because it returns a numeric vector
of size n. Similarly, the symbol s-expr (number) can produce
(apply (function *) X) that returns a number.

DATA MINING APPLICATIONS USING LOGENPRO 105

The terminal symbols [+] , [-], and [*] represent functions
that perform ordinary addition, subtraction, and multiplication,
respectively. The symbol [%] represents a function that normally returns
the quotient. However, if division by zero is attempted, the function
returns 1 .O. The symbol [pro t e c t ed-1 o g] is a function that calculates
the logarithm of the input argument x if x is larger than zero, otherwise it
returns 1.0. The logic goal random (-10, 10, ?a) generates a
random floating point number between -10 and 10 and instantiates ?a to
the random number generated.

20 : start -> s-expr (number) .
21:s-expr([list, number, ?n])

->[(mapcar (function], op2, [)] ,
s-expr ([list, number, ?n]) ,
s-expr([list, number, ?n]) , [)].

-> [(mapcar (function], opl, [)] ,
s-expr([list, number, ?n]) , [)].

22 : s-expr ([list , number, ?n])

23 : s-expr ([list , number, ?n])
24 : s-expr (number) -> term (number) .
25:s-expr(number) ->[(apply (function], op2,[)] ,

s-expr([list, number, ?n]), [)].
26:s-expr(number) ->[(], op2, s-expr(number),

s-expr (number) , [)].
27:s-expr(number) ->[(], opl, s-expr(number),

[)].
28 : op2 -> [+].
29:op2 -> [-].
30 : op2 -> [*].
31: op2 -> [% 3.
32 : op1 -> [protected-log].
33:term([list, number, n]) -> [X].
34:term([list, number, nl) -> [Y 1.
35:term(number) -> { random(-10, 10, ?a) }, [?a 3.
Table 6.2:

-> term([list, number, ?n]) .

The logic grammar for the DOT PRODUCTproblem.

Ten random fitness cases are used for training. Each case is a
3-tuples 〈 X i, Yi, Zi,〉, where 1 ≤ i ≤ 10, Xi and Yi are vectors of size 3, and Zi

is the corresponding dot product. The fitness function calculates the sum,

106 Chapter 6

taken over the ten fitness cases, of the absolute values of the difference
between Z i and the value returned by the S-expression for Xi and Yi. Let S
be an S-expression and S(Xi, Yi) be the value returned by the S-expression
for Xi and Yi. The fitness function Val is defined as follows:

A fitness case is said to be covered by an S-expression if the value
returned by it is within 0.01 of the desired value. An S-expression that
covers all training cases is further evaluated on a testing set containing
1000 random fitness cases. LOGENPRO will stop if the maximum
number of generations of 100 is reached or an S-expression that covers all
testing fitness cases is found.

For traditional GP, the terminal set T is { X , Y, R } where R is
the ephemeral random floating point constant. R takes on a different
random floating point value between -10.0 and 10.0 whenever it appears
in an individual program in the initial population (Koza 1992). The
function set F is {protected+, protected-, protected*,
protected%, protected-log, vectort, vector-,
vector*, vector%, vector-log, apply+, apply-,
apply*, apply%}, taking 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, and 1
arguments, respectively.

The primitive functions protected+, protected-, and
prot e c t e d*, respectively, perform addition, subtraction, and
multiplication if the two input arguments X and Y are both numbers.
Otherwise, they return 0. The function protected% returns the quotient.
However, if division by zero is attempted or the two arguments are not
numbers, protected% returns 1.0. The function protected-log
finds the logarithm of the argument X if X is a number larger than zero.
Otherwise, protected-logreturns 1.0.

The functions vector+, vector-, vector",andvector%,
respectively, perform vector addition, subtract, multiplication, and
division if the two input arguments X and Y are numeric vectors with the
same size; otherwise they return zero. The primitive function
vector-logperforms the following S-expression:

(mapcar (function protected-log) X),

DATA MINING APPLICATIONS USING LOGENPRO 107

if the input argument X is a numeric vector; otherwise, it returns zero. The
functions apply+, apply-, apply*, and apply%, respectively,
perform the following S-expressions if the input argument X is a numeric
vector:

(apply (function protected+) X) ,
(apply (function protected-) X) ,
(apply (function protected*) X) , and
(apply (function protected%) X) ,

otherwise they return zero.

It should be emphasized that the primitive functions vector+,
vector-, vector*, and vector% can be emulated by using the
grammar rules 21, 28, 29, 30, and 31. The primitive function vector-
log can be emulated by using the grammar rules 22 and 32. The primitive
functions apply+, apply-, apply*, and apply% can be emulated
by using the grammar rules 25, 28, 29, 30, and 31. Thus, the set of
effective functions represented by the grammar in table 6.2 is equivalent
to the set used in traditional GP. The functions mapcar and apply
cannot be used in traditional GP because the first argument of these
functions must be a valid operators such as +, -, *, or %. But traditional
GP cannot enforce this constraint; thus, we have to create some special
functions such as vector+ and apply+, to handle this problem.

The fitness cases, the fitness function, and the termination
criterion are the same as those used by LOGENPRO. Three experiments
have been performed. The first one evaluates the performance of
LOGENPRO using a population of 100 programs. The other two
experiments evaluate the performance of GP using, respectively,
populations of 100 and 1000 programs. In each experiment, over sixty
trials have been attempted and the results are summarized in figure 6.1.
The figure delineates the best standardized fitness values for increasing
generations for the three experiments. From the curves in figures 6.1, the
lower values are better, thus, LOGENPRO has a performance superior to
that of GP.

The curves in figure 6.2(a) show the experimentally observed
cumulative probability of success P(M, i) of solving the problem by
generation i using a population of M programs (Koza 1992). The curves in
figure 6.2(b) show the number of programs I(M, i, z) that must be
processed to produce a solution by generation i with a probability z (Koza
1992). Throughout this chapter, the probability z is set to 0.99. The curve

108 Chapter 6

for GP with a population of 100 programs is not depicted because the
values are extremely large. For LOGENPRO curve, I(M, i, z) reaches a
minimum value of 8800 at generation 21. On the other hand, the
minimum value of I(M, i, z) for GP with population size of 1000 is 66000
at generation 1. LOGENPRO can find a solution much faster than GP, and
the computation (i.e. I(M, i, z)) required by LOGENPRO is much smaller
than that of GP.

The performance of LOGENPRO is better because knowledge of
data type has been encoded in the grammar. Consequent, invalid programs
such as

(+ (apply (function +) 9) 9)
cannot be produced. On the other hand, traditional GP may create the
equivalent invalid program (+ (apply+ 9) 9) . In other words, the
search space of traditional GP is larger than that of LOGENPRO. But, the
former contains many invalid programs.

DATA MINING APPLICATIONS USING LOGENPRO 109

110 Chapter 6

The idea of applying knowledge of data type to accelerate
learning has been investigated independently by Montana (1995) in his
Strongly Typed Genetic Programming (STGP). He presents many
examples involving vector and matrix manipulation to illustrate the
operation of STGP. However, he has not compared the performance
between traditional GP and STGP. Although it is commonly believed that
knowledge can accelerate the speed of learning, Pazzani and Kibler (1 992)
showed that inappropriate and/or redundant knowledge can sometimes
degrade the performance of a learning system. We show that knowledge
of data type can be represented in a logic grammar and thus LOGENPRO
can emulate the effect of STGP easily. Moreover, more natural primitive
functions such as mapcar and apply, can be used in LOGENPRO,
rather than using some special primitive functions such as vector+ and
apply+, found in traditional GP.

6.1.3. Learning Sub-functions Using Explicit Knowledge

Automatic discovery of problem representation primitives is
certainly one of the most challenging research areas in GP. GP with
Automatically Defined Functions (ADFs) is one of the approaches that
have been proposed to acquire problem representation primitives
automatically (Koza 1992; 1994). In this approach, each program in the
population contains an expression, called the result-producing branch, and
definitions of one or more sub-functions which may be invoked by the
result-producing branch. The result-producing branch is evaluated to
produce the fitness of the program. A constrained syntactic structure and
some special genetic operators are required for the evolution of the
programs. To employ GP with ADFs, the user must provide explicit
knowledge about the number of automatically defined sub-functions, the
number of arguments of each sub-functions, and the allowable terminal
and function sets for each sub-function.

In this section, we demonstrate how to use LOGENPRO to
emulate GP with ADFs. LOGENPRO is employed to learn a sub-function
that calculates dot product and employ this sub-function in the main
program. In other words, it is expected to induce the following S-
expression:

DATA MINING APPLICATIONS USING LOGENPRO 111

(progn
(defun ADF0 (arg0 argl)

(apply (function +)

(+ (ADF0 X Y) (ADF0 Y Z)))
(mapcar (function *) arg0 argl)))

The logic grammar for this problem is depicted in table 6.3. In the
grammar, we employ the argument of the grammar symbol s-exprto
designate the data type of the result returned by the S-expression
generated from the grammar symbol. The terminal symbols [+], [-],
and [*] represent functions that perform ordinary addition, subtraction,
and multiplication, respectively.

Ten random fitness cases are used for training. Each case is a
4-tuples 〈 Xi, Yi, Zi, Ri〉 where 1 ≤ i ≤ 10, Xi, Yi, and Zi, are vectors of size 3,
and Ri is the corresponding desired result. The fitness function calculates
the sum, taken over the ten fitness cases, of the absolute values of the
difference between Ri and the value returned by the S-expression for Xi,
Yi, and Zi. LetSbe an S-expression and S(Xi, Yi, Zi,) be the value returned
by the S-expression for Xi, Yi, andZi. The fitness function Val is defined
as follows:

A fitness case is said to be covered by an S-expression if the value
returned by it is within 0.01 of the desired value. An S-expression that
covers all training cases is further evaluated on a testing set containing
1000 random fitness cases. LOGENPRO will stop if the maximum
number of generations of 50 is reached or an S-expression that covers all
testing fitness cases is found.

For GP with ADFs (with the modified genetic operator), the
terminal set T0 for the automatically defined function (ADFO) is { arg0 ,
argl} and the function set F0 is {protected+, protected-,
protected*, vector+, vector-, vector*, apply+,
apply-, apply*}, taking 2, 2, 2, 2, 2, 2, 1, 1, and 1 arguments,
respectively. The terminal set Tr for the result producing branch is {X,
Y, Z} and the function set Fr is {protected+, protected-,
protected*, vector+, vector-, vector*, apply+,
apply-, apply*, ADFO}, taking 2, 2, 2, 2, 2, 2, 1, 1, 1, and 2
arguments, respectively. The primitive functions were defined in the

112 Chapter 6

previous sub-section. The fitness cases, the fitness function, and the
termination criterion are the same as the ones used by LOGENPRO. We
evaluate the performance of LOGENPRO and the ADFs using populations
of 100 and 1000 programs, respectively.

start -> [(progn (defun ADF0],
[(arg0 arg1)],
s-expr2(number), [)],
s-expr(number), [)].

s-expr([list, number,?n]) -> [(mapcar(function], op2,
[)],
s-expr([list, number, ?n]),
s-expr([list, number, ?n]), [)].

s-expr([list, number, ?n]) -> term([list, number, ?n]).
s-expr(number) -> [(apply (function], op2,

[)],
s-expr([list, number, ?n]), [)].

s-expr(number), [)].

s-expr ([list, number, ?n]),
s-expr([list, number, ?n]), [)] .

s-expr(number) -> [(], op2, s-expr (number),

s-expr(number) -> [(ADF0],

term([list, number, n]) -> [x].
term([list, number, n]) -> [Y].
term([list, number, n]) -> [z].
s-expr2([list,number,?n]) -> [(mapcar(function],op2,

[)],
s-expr2([list, number, ?n]),
s-expr2([list, number, ?n]), [)].

s-expr2([list, number, ?n]) -> term2([list, number, ?n]).
s-expr2(number) -> [(apply(function],op2,

[)],
s-expr2([list, number, ?n]), [)].

s-expr2(number), [)].
s-expr2(number) -> [(], op2, s-expr2(number),

term2 ([list, number, n]) -> [arg0] .
term2 ([list, number, n]) -> [arg1] .
op2 -> [+].
OP2 -> [-].
op2 -> [*].

Table 6.3: The logic grammar for the sub-function problem.

Thirty trials have been attempted and the results are summarized
in figures 6.3 and 6.4. Figure 6.3 shows, by generation, the fitness (error)
of the best program in a population. These curves are found by averaging
the results obtained in thirty different runs using various random number
seeds and fitness cases. From these curves, LOGENPRO has performance

DATA MINING APPLICATIONS USING LOGENPRO 113

superior to that of GP with ADFs. The curves in figure 6.4(a) show the
experimentally observed cumulative probability of success P(M, i) of
solving the problem by generation i using a population of M programs.
The curves in figure 6.4(b) show the number of programs I(M, i, z) that
must be processed to produce a solution by generation i with a probability
z of 0.99. The curve for LOGENPRO reaches a minimum value of 4900
at generation 6. On the other hand, the minimum value of I(M, i, z) for
GP with ADFs is 5712000 at generation 41. This experiment clearly
shows the advantage of LOGENPRO. By employing various knowledge
about the problem being solved, LOGENPRO can find a solution much
faster than GP with ADFs and the computation (i.e. I(M, i, z)) required by
LOGENPRO is much smaller than that of GP with ADFs.

This experiment demonstrates that LOGENPRO can emulate GP
with ADFs and represent easily the knowledge needed for using GP with
ADFs. Moreover, LOGENPRO can employ other knowledge such as
argument types in a unified framework. It has performance superior to that
of GP with ADFs when more domain-dependent knowledge is available.
One advantage of LOGENPRO is that it can emulate the effects of STGP
and GP with ADFs simultaneously and easily.

114 Chapter 6

DATA MINING APPLICATIONS USING LOGENPRO 115

6.2. Inducing Decision Trees Using LOGENPRO

In this section, we illustrate the application of LOGENPRO in
inducing decision trees. We describe how to represent decision trees as S-
expressions in sub-section 6.2.1. The credit screening problem used in the
experiment is explained in the subsequent sub-section. We then present
the results of the experiment in sub-section 6.2.3.

6.2.1. Representing Decision Trees as S-expressions

Koza (1 992) presented a method to represent decision trees as S-
expressions. For example, the decision tree in figure 2.1 is represented as
the S-expression in table 6.4(a).

In the S-expression, the constants such as positive and
negative representing the class names in this problem. These constants
form the set of terminals in GP. On the other hand, the attribute-testing
functions such as outlook-test and windy-test are obtained by
transforming each of the attributes in the problem into a function. Thus,
there are as many attribute-testing functions as there are attributes. These
functions form the set of primitive functions in GP.

Consider the attribute outlook, it can assume one of three possible
values. Therefore, the function out1ook-test has three arguments and
operates in the following way:

if the value of the attribute outlook of the current example
is sunny, the function returns its first argument as its
return value;

is overcast, the function returns its second argument as its
return value;

is rainy, the function returns its third argument as its
return value;

if the value of the attribute outlook of the current example

if the value of the attribute outlook of the current example

116 Chapter 6

The implementation of the function out look-test is depicted in table
6.4(c). In this implementation, X is a global variable that stores the current
example being evaluated. Since an example belongs to the class
EXAMPLES depicted in table 6.4(b), the S-expression (outlook X)
returns the value of the attribute outlook of the example stored in X. The
constants sunny and overcast represent the attribute values of the
attribute outlook.

(outlook-test
(humidity-test 'negative 'positive)
'positive
(windy-test 'negative 'positive))

(a)

(defclass EXAMPLES ()
((temperature :accessor temperature)
;; The value of the attribute temperature can be
;; either hot, mild, or cool.
(humidity :accessor humidity)
;; The value of the attribute humidity can be
;; either high, or normal.
(outlook :accessor outlook)
;; The value of the attribute outlook can be either
; ; sunny, overcast, or rain.
(windy :accessor windy)))
;; The value of the attribute windy can be either
;; true, or false.

(b)

(defun outlook-test (argl arg2 arg3)
(cond ((equal (outlook X) 'sunny) argl)

(equal (outlook X) 'overcast) arg2)
(t arg3)))

(c)

Table 6.4: (a) An S-expression that represents the decision tree in figure 2.1. (b)
The class definition of the training and testing examples. (c) A
definition of the primitive function outlook-test.

DATA MINING APPLICATIONS USING LOGENPRO 117

To classify a new example, it is first stored into the global
variable X. It is then presented to an S-expression representing a decision
tree. The outermost function tests the designated attribute of the example
and then executes the particular argument designated by the outcome of
the test. If the designated argument is a constant, the function returns the
corresponding class names (i.e. positive or negative). If the
designated argument is another function, the above process is repeated
until a constant is returned. In summary, the S-expression is a
representation of a decision tree that classifies an example into one of the
classes.

6.2.2. The Credit Screening Problem

The aim of this problem is to induce decision trees or rules for
assessing applications for credit cards. This problem was studied by
Quinlan in his ID3 and C4.5 systems (Quinlan 1987; 1992). The original
dataset of this problem was provided by Quinlan and stored in the UCI
Repository of Machine Learning Databases and Domain Theories. The
dataset was modified in the Statlog project (Michie et al. 1994) so that one
of the 15 attributes was removed. The modified dataset has a good mix of
attributes of different types. There are 690 instances, 14 attributes and two
class names. There are 307 positive instances (44.5%) and 383 negative
instances (55.5%).

All attribute names, class names, and attribute values were
changed to meaningless symbols to protect confidentiality of the data.
Thus, interpretations of the induced decision trees or rules are relatively
difficult. This dataset is interesting because there is a good mix of attribute
types: linear, nominal with small numbers of values, and nominal with
larger numbers of values. The attribute names, types, and values are
depicted in table 6.5.

118 Chapter 6

Attribute name Attribute type Attribute values
A1 nominal {a, b}

A3
A4 nominal {g, P, gg}
A5 nominal { c ,d , c c , i, j , k,

A6 nomina1 {v, h, bb, j , n, z ,

A2 linear 13.75 - 80.25
linear 0 - 28

m, r , g, w, x, e, aa,
f f }

dd, ff, 01
AI linear 0 - 28.5
A8 nominal { t ,f }
A9 nominal It,f }

linear 0 - 67A10
A1 1 nomina1 { t , f }
A12 nominal {g, PI s }
A13 linear 0 - 2000
A14 linear 0 - 100001
class nominal {positive, negative}

Table 6.5: The attribute names, types, and values attributes of the credit
screening problem.

There are 37 instances (5%) having one or more missing attribute
values. The frequencies of missing values from different attributes are
summarized as follows:

Attribute name Frequency
A1 12
A2 12
A4 6
A5 9
A6 9
A13 13

For our purposes, we replaced the missing values by the overall medians
or means.

DATA MINING APPLICATIONS USING LOGENPRO 119

6.2.3. The Experiment

In this sub-section, we describe how to use LOGENPRO to
induce decision trees for the credit screening problem. The representation
scheme described in sub-section 6.2.1 is not used directly because it can
only express decisions on nominal attributes. To handle linear attributes
using the representation, we must first transform these attributes into
nominal attributes by assigning disjoint intervals of values to various
symbols. Thus, the sizes and the number of intervals must be determined
before applying the representation scheme to the credit screening problem.

For example, the range of the values of the attribute A2 is
between 13.75 and 80.25. By examining the distribution of the attribute
values, the range may be divided into two mutual exclusive intervals:
from inclusive 13.75 to exclusive 40; from inclusive 40 to inclusive 80.25.
The transformed attribute can be represented as the following attribute-
testing function A2-test:

(defun A2-test (argl arg2)
(if (>= (A2 X) 40)
arg2
arg1))

In this function, X is a global variable that stores the current example
being evaluated. Since an example belongs to the class EXAMPLES
depicted in table 6.6, the S-expression (A2 X) returns the value of the
attribute A2 of the example stored in X. The function A2-tes t has two
arguments and operates in the following way:

• if the value of the attribute A2 is greater than or equal to
40, the function returns its second argument as its return
value;

return value;
• Otherwise, the function returns its first argument as its

The major problem of this representation is that one or more
intervals must be determined before performing induction. If the sizes and
the number of intervals are inappropriate, they will greatly reduce the
performance of the learning system. In order to tackle this problem, we
decide that the number of intervals of all linear attributes is fixed to two,

120 Chapter 6

and allow the sizes of these intervals to adjust dynamically during the
evolution process.

(defclass EXAMPLES ()
((A1 :accessorA1)
(A2 :accessorA2)
(A3 :accessorA3)
(A4 :accessorA4)
(A5 :accessorA5)
(A6 :accessorA6)
(A7 :accessorA7)
(A8 :accessorA8)
(A9 :accessorA9)
(A10 :accessorA10)
(All :accessorAll)
(A12 :accessorA12)
(A13 :accessorA13)
(A14 :accessorA14)))

Table 6.6: The class definition of the training and testing examples.

Thus, the following attribute-testing function A2-test is used
in our representation:

(defun A2-test (exp argl arg2)
(if (>= (A2 X) exp)
arg2
arg1))

This function has three arguments and operates in the following way:

if the value of the attribute A2 is greater than or equal to
the value of the first argument, the function returns its
third argument as its return value;

return value;
Otherwise, the function returns its second argument as its

From this function, we can observe that the first argument exp must
return a numerical value while the other two arguments, argl and arg2,
must return a class name. In other words, data types must be used to
guarantee only appropriate S-expressions can appear as a particular
argument of a particular primitive function.

DATA MINING APPLICATIONS USING LOGENPRO 121

To induce a functional program using LOGENPRO, We have to
determine the logic grammar, fitness cases, fitness functions, and
termination criterion. The logic grammar for the credit screening problem
is given in table 6.7. In this grammar, we employ the grammar symbol
exp to designate the S-expression that returns a numerical value and the
grammar symbol node to designate the S-expression that returns a class
name.

start -> node.
node -> [(A1I], node, node, [)].
node -> [(A2], exp, node, node, [)].
node -> [(A3 3, exp, node, node, [)].
node -> [(A4 3, node, node, node [)].
node -> [(A5], node, node, node, node,

node, node, node, node, node,
node, node, node, node, node, [)].

node, node, node, node, node, [)].
node -> [(A6], node, node, node, node,

node -> [(A7 , exp, node, node, [)].
node -> [(A8], node, node, [)].
node -> [(A9], node, node, [)].
node -> [(A10], exp, node, node, [)].
node -> [(All 3, node, node, [)].
node -> [(A12 3, node, node, node, [)].
node -> [(A13], exp, node, node, [)].
node -> [(A14], exp, node, node, [)].
node -> [positive].
node -> [negative 3
exp -> [(], op, exp, exp, [)].
op -> [+].
op -> [-].
op -> [*].
op -> [%].
exp -> { random(-10, 10, ?a) }, [?a].

Table 6.7: Logic grammar for the credit screening problem.

The terminal symbols [+] , [-] , and [*] represent functions
that perform ordinary addition, subtraction, and multiplication,
respectively. The symbol [%] represents function that normally returns
the quotient. However, if division by zero is attempted, the function
returns 1.0. The logic goal random (-10, 10, ?a) generates a

122 Chapter 6

random floating point number between -10 and 10 and instantiates ?a to
the random number generated.

A 1 0-fold cross-validation procedure is employed in this
problem. In a general n-fold cross-validation procedure, the examples are
randomly divided into n mutually exclusive test partitions of
approximately equal size. The examples not found in a particular test
partition are used for training, and the resulting decision tree is tested on
the corresponding test partition. The above train and test procedure is
repeated n times until all test partitions are examined. The average
classification accuracy over all n test partitions is the cross-validated
classification accuracy. Breiman et al. (1 984) evaluated their CART
system extensively with vary numbers of partitions, and IO-fold cross-
validation seemed to be adequate and accurate.

Since there are 690 examples in the credit screening dataset, each
test partition contains 69 examples and the other 621 examples form the
training set. In other words, 10 independent experiments have been
attempted. In each experiment, LOGENPRO induces a decision tree using
621 examples as the fitness cases and we estimate the classification
accuracy of the induced decision tree using the remaining testing
examples.

The fitness function measures how well a genetically evolved
decision tree classifies the fitness cases. When an evolved decision tree in
the population is tested against a particular fitness case, the outcome can
be either a true positive, a true negative, a false positive, or a false
negative.

The correlation coefficient (Matthews 1975) indicates the
classification performance of a decision tree. A correlation coefficient C
of 1.0 indicates perfect agreement between the decision tree and the
fitness cases; a coefficient of -1.0 indicates total disagreement; a
coefficient of 0.0 indicates that the decision tree is not better than a
random classifier. For a two-classes classification problem, the correlation
coefficient can be computed as:

DATA MINING APPLICATIONS USING LOGENPRO 123

where Ntp is the number of true positives, Ntn is the number of true

negatives, N
fp is the number of false positives, and N

fn is the number of
false negatives. The coefficient is set to 0 if the denominator is 0.

Since C ranges between -1.0 and 1.0, standardized fitness is

defined as Thus, a standardized fitness value ranges between 0.0

and 1.0. A standardized fitness value of 0 indicates perfect agreement
between the decision tree and the training examples. On the other hand, a
value of 1.0 indicates total disagreement. A value of 0.5 shows that the
decision tree is not better than a random classifier (Koza 1992).

In each of the ten experiments, LOGENPRO induces a decision
tree using a population size of 300. LOGENPRO will terminate if the
maximum number of generations of 50 is reached or a decision tree that
has a standardized fitness below 0.01 is found. The decision tree evolved
in any generation that has the smallest standardized fitness value is
returned as the result of the run. The best decision tree induced by
LOGENPRO is further evaluated on the training examples and the testing
examples to obtain the corresponding classification accuracy. The results
of the ten experiments are summarized in table 6.8.

Generation Accuracy (train) Accuracy (test)

0 0.857 0.870
14 0.850 0.928
26 0.873 0.754
32 0.862 0.884
45 0.860 0.870
2 0.849 0.928
25 0.868 0.797
4 0.858 0.826
28 0.852 0.913
22 0.863 0.812

Average 0.859 0.858
Table 6.8: Results of the decision trees induced by LOGENPRO for the credit

screening problem. The first column shows the generation in which the
best decision tree is found. The second column contains the
classification accuracy of the best decision tree on the training
examples. The third column shows the accuracy on the testing
examples.

124 Chapter 6

Michie et al. (1994) performed a series of experiments in the
Statlog project. In these experiments, they compared the performances of
different learning systems for the credit screening problem. The results are
summarized in table 6.9.

Algorithm Accuracy (train) Accuracy (test)
Ca15 0.868 0.869
ITrule 0.838 0.863
Discrim 0.861 0.859
Logdisc 0.875 0.859
DIPOL92 0.861 0.859

0.859 0.858
CART 0.855 0.855
RB F 0.893 0.855

CASTLE 0.856 0.852
NaiveBay 0.864 0.849

0.919 0.848 I n dCART
Back-propagation 0.913 0.846

C4.5 0.901 0.845
SMART 0.910 0.842
Baytree 1.000 0.829
k-NN 1.000 0.819
NewID 1.000 0.819
AC2 1.000 0.819
LVQ 0.935 0.803

ALLOC8 0 0.806 0.799
CN2 0.999 0.796

Quadi s c 0.815 0.793

LOGENPRO

Table 6.9: Results of various learning algorithms for the credit screening
problem.

By comparing the results in table 6.8 and those in table 6.9, we
find that Ca15, ITrule, Discrim, Logdisc, and DIPOL92 perform better
than LOGENPRO. Ca15 and ITrule learns decision trees/rules and their
classification accuracy is over 86%. The classification accuracy of
Discrim, Logdisc, and DIPOL92 is all 85.9%, The differences in accuracy

DATA MINING APPLICATIONS USING LOGENPRO 125

between them and LOGENPRO are only 0.1%. Since the detailed
information of the accuracy of these systems is not available, it cannot be
concluded that whether the differences in accuracy are significant.

On the other hand, LOGENPRO performs better than CART,
RBF, CASTLE, NaiveBay, IndCART, Back-propagation, C4.5, SMART,
Baytree, k-NN, NewID, AC2, LVQ, ALLOC80, CN2, and Quadisc for the
credit screening problem. Interestingly, LOGENPRO is better than C4.5
and CN2, two systems that were reported in the literature (Quinlan 1992,
Clark and Niblett 1989) about their outstanding performances in inducing
decision trees/rules. The difference is 1.3% for C4.5 and is 6.2% for CN2.

6.3. Learning Logic Program From Imperfect Data

The problem of learning knowledge from huge, incomplete, and
imperfect datasets is very important in data mining (Fayyad et al. 1996,
Frawley et al. 1991, Piatetsky-Shapiro and Frawley 1991). The various
kinds of imperfections in data are listed as follows:

random noise in training examples and background
knowledge;

the number of training examples is too small;

the distribution of training examples fails to reflect the

an inappropriate example description language is used:

underlying distribution of instances of the concept being
learned;

some important characteristics of examples are not
represented, and/or irrelevant properties of examples are
provided;

does not contain an exact description of the target
concept; and

an inappropriate concept description language is used: it

there are missing values in the training examples.

Existing inductive learning systems employ noise-handling
mechanisms to cope with the first five kinds of data imperfections.
Missing values are usually handled by a separate mechanism. These noise-

126 Chapter 6

handling mechanisms are designed to prevent the induced concept from
overfitting the imperfect training examples by excluding insignificant
patterns (Lavrac and Dzeroski 1994). They include tree pruning in CART
(Breiman et al. 1984), rule truncation in AQl5 (Michalski et al. 1986a)
and significant test in CN2 (Clark and Niblett 1989). However, these
mechanisms may ignore some important patterns because they are
statistically insignificant.

Moreover, these learning systems use a limiting attribute-value
language for representing the training examples and induced knowledge.
This representation limits them to learn only propositional descriptions in
which concepts are described in terms of values of a fixed number of
attributes. Currently, only a few relation learning systems such as FOIL
and mFOIL address the issue of learning knowledge represented as logic
programs from imperfect data.

In this section, we describe the application of LOGENPRO to
learn logic programs from noisy and imperfect training examples.
Empirical comparisons of LOGENPRO with FOIL (the publicly available
version of FOIL, version 6.0 , is used in this experiment) and with mFOIL
(Lavrac and Dzeroski 1994) in the domain of learning illegal chess
endgame positions from noisy examples are presented.

As described in sub-section 4.3.2.2, mFOIL is based on FOIL that
has adapted several features from CN2 (Clark and Niblett 1989), such as
the use of the Laplace and m-estimate as its search heuristics and the use
of significance testing as its stopping criterion. Moreover, mFOIL uses
beam search and can apply mode and type information to reduce the
search space. The parameters that can be set by a user are: 1) the beam
width, 2) the search heuristics, 3) the value of m if m-estimate is used as
the search heuristics, and 4) the significance threshold used in the
significance test. A number of different instances of mFOIL have been
tested on the chess endgame problem. Their parameter values are
summarized in table 6.10.

In this section, LOGENPRO employs a variation of FOIL to find
the initial population of logic programs. Thus, it uses the same noise-
handling mechanism of FOIL. The variation is called BEAM-FOIL
because it uses a beam search method rather than the greedy search
strategy of FOIL. BEAM-FOIL produces a number of different logic
programs when it terminates and the best program among them is the
solution of the problem. The logic programs created by BEAM-FOIL are
used by LOGENPRO to initialize the first generation. In order to study the

DATA MINING APPLICATIONS USING LOGENPRO 127

effects of the genetic operations performed by LOGENPRO on the initial
programs provided by BEAM-FOIL, a comparison between them is also
discussed.

beam width heuristics m significance
threshold

mFOIL1 5 m-estimate 0.01 0
mFOIL2 10 m-estimate 0.01 0
mFOIL3 5 m-estimate 0.01 6.35
mFOIL4 10 m-estimate 32 0

Table 6.10: The parameter values of different instances of mFOIL examined in this
section.

The chess endgame problem is presented in the following sub-
section. The experimental setup is detailed in sub-section 6.3.2. We
compare LOGENPRO with other learning systems in the subsequent sub-
sections.

6.3.1. The Chess Endgame Problem

The chess endgame problem is a benchmark problem in the field
of data mining for evaluating performance of data mining systems
(Dzeroski and Lavrac 1993). In the problem, the setup is white king and
rook versus black king (Quinlan 1990). The target concept illegal(WKf,
WKr, WRf, WRr, BKf, BKr) states whether the positions where the white
king at (WKf, WKr), the white rook at (WRf WRf), and the black king at
(BKf, BKr) are not a legal white-to-move position.

The background knowledge is represented by two predicates,
adjacent(X, Y) and less_than(W, Z), indicating that rank/file X is adjacent
to rank/file Y and rank/file W is less than rank/file Z, respectively.

There are 11000 examples in the dataset (3576 positive and 7424
negative examples). Muggleton et al. (1989) used smaller datasets to
evaluate the performances of CIGOL and DUCE for the chess endgame
problem. There were five small sets of 100 examples each and five large
sets of 1000 examples each. In other words, there were 5500 examples in

128 Chapter 6

total. Each of the sets was used as a training set. The induced programs
obtained from a small training set was tested on the 5000 examples from
the large sets, the programs obtained from each large training set was
tested on the remaining 4500 examples.

6.3.2. The Setup of Experiments

In each experiment of the ten experiments performed, the training
set contains 1000 examples (336 positive and 664 negative examples) and
the disjoint testing set has 10000 examples (3240 positive and 6760
negative examples). These training and testing sets are selected from the
dataset using different seeds for the random number generator.

Different amounts of noise are introduced into the training
examples in order to study the performances of different systems in
learning logic programs from noisy environment. To introduce n% of
noise into argument X of the training examples, the value of argument X
is replaced by a random value of the same type from a uniform
distribution, independent to noise in other arguments. For the class
variable, n% positive examples are labeled as negative ones while n%
negatives examples are labeled as positive ones. Noise in an argument is
not necessarily incorrect because it is chosen randomly, it is possible that
the correct argument value is selected. In contrast, noise in classification
implies that this example is incorrect. Thus, the probability for an example

to be incorrect is 1 - {[(1 - n%) + n% * * (1 - n%)} . For each

experiment, the percentages of introduced noise are 5%, 1 0%, 15%, 20%,
30%, and 40%. Thus, the probabilities for an example to be noisy are
respectively 27.36%, 48.04%, 63.46%, 74.78%, 88.74% and 95.47%.
Background knowledge and testing examples are not corrupted with noise.

A chosen level of noise is first introduced in the training set.
Logic programs are then induced from the training set using LOGENPRO,
FOIL, different instances of mFOIL, and BEAM-FOIL. Finally, the
classification accuracy of the learned logic programs is estimated on the
testing set. For BEAM-FOIL, the size of beam is ten and thus ten logic
programs are returned. The best one among the programs returned is
designated as the solution of BEAM-FOIL.

1_

8
]

6

DATA MINING APPLICATIONS USING LOGENPRO 129

LOGENPRO uses the logic grammar in table 6.11 to solve the
problem. In the grammar, [a d j a c e n t (? x , ? y) and
[l e s s - t h a n(? x , ?y)] are terminal symbols. The logic goal
member(? x , [WKf, WKr, WRf, WRr, BKf, BKr]) will
instantiate logic variable ? x of the grammar to either WKf, WKr, WRf,
WRr, BKf, or BKr, the logic variables ofthe target logic program.

start -> clauses.
clauses -> clauses, clauses.
clauses -> clause.
clause -> consq, [:-], antes, [.].
consq -> [illegal(WKf,WKr,WRf,WRf,BKf,BKr)].
antes -> antes, [,], antes.
antes -> ante.
ante -> {member (?x,

{member(?y,
literal (?x, ?y).

literal(?x, ?y) -> [?x = ?y].

[WKf, WKr, WRf, WRf, BKf, BKr])},
[WKf, WKr, WRf, WRf, BKf, BKr]) },

literal(?x, ?y) -> [not ?x = ?y].
literal (?x, ?y) -> [adjacent(?x, ?y)].
literal(?x, ?y) -> [not adjacent (?x, ?y)].
literal(?x, ?y) -> [less-than(?x, ?y) 3.
literal(?x, ?y) -> [not less -than (?x, ?y) 3.
Table 6.11: The logic grammar for the chess endgame problem.

The population size for LOGENPRO is 10 and the maximum
number of generations is 50. In fact, different population sizes have been
tried and the results are still satisfactory even for a very small population.
This observation is interesting and it demonstrates the advantage of
combining inductive logic programming and evolutionary algorithms
using the proposed framework.

For concept learning (DeJong et al. 1993, Janikow 1993, Greene
and Smith 1993), each individual logic program in the population can be
evaluated in terms of how well it covers positive examples and excludes
negative examples. Thus, the fitness functions for concept learning
problems calculate this measurement. Typically, each logic program is run
over a number of training examples so that its fitness is measured as the

130 Chapter 6

total number of misclassified positive and negative examples. Sometimes,
if the distribution of positive and negative examples is extremely uneven,
this method of estimating fitness is not good enough to focus the search.
For example, assume that there are 2 positive and 10000 negative
examples, if the number of misclassified examples is used as the fitness
value, a logic program that deduces everything are negative will have very
good fitness. Thus, in this case, the fitness function should find a weighted
sum of the total numbers of misclassified positive and negative examples.

In this problem, the fitness function of LOGENPRO evaluates the
number of training examples misclassified by each individual in the
population. Since LOGENPRO is a probabilistic system, five runs of each
experiment have been performed and the average of the classification
accuracy of these five runs is returned as the classification accuracy of
LOGENPRO for the particular experiment. In other words, fifty runs of
LOGENPRO have been performed in total. The average execution time of
LOGENPRO is 1 hour 43 minutes on a Sun Sparc Workstation. The
results of these systems are summarized in table 6.12. The performances
of these systems are compared using the one-tailed paired t-test with
0.05% level of significance. The sizes of logic programs induced by these
learning systems are summarized in table 6.13.

Noise Level

0.00 0.05 0.10 0.15 0.20 0.30 0.40

LOGENPRO (Average) 0.996 0.983 0.960 0.938 0.855 0.733 0.670
Variance 0.00E+00 7.743-06 2.963-04 7.853-04 2.573-03 2.473-03 1.443-04

FOIL (Average) 0.996 0.898 0.819 0.761 0.693 0.596 0.529
variance 0.00E6+00 5.073-04 6.563-04 5.153-04 5.303-04 3.353-04 3.11E-04

BEAM-FOIL (Average) 0.996 0.802 0.757 0.744 0.724 0.685 0.674
Variance 0.003+00 7.073-04 1.623-04 1.883-04 2.003-04 1.403-04 1.043-04

mFOIL1 (Average) 0.985 0.883 0.845 0.815 0.785 0.719 0.685
variance 0.00E+00 5.153-05 7.293-05 3.123-04 2.153-04 1.393-04 1.303-04

mFOIL2 (Average) 0.985 0.932 0.888 0.842 0.798 0.713 0.680
Variance 0.003+00 7.47E-05 9.16E-05 9.26E-04 3.093-04 1.41E-04 3.05E-04

mFOIL3 (Average) 0.896 0.836 0.805 0.771 0.723 0.677 0.676
Variance 1.97E-16 7.83E-04 i.05E-04 1.89E-04 9.81E-04 7.74E-06 0.00E+00

mFOIL4 (Average) 0.985 0.985 0.880 0.806 0.740 0.692 0.668
Variance 0.00E+00 4.053-06 7.85E-03 5.143-03 2.14E-03 3.723-04 2.86E-04

Table 6.12: The averages and variances of accuracy of LOGENPRO, FOIL,
BEAM-FOIL, and different instances of mFOIL at different noise
levels.

DATA MINING APPLICATIONS USING LOGENPRO 131

Noise Level

0.00 0.05 0.10 0.15 0.20 0.30 0.40

LOGENPRO (#clauses) 4.000 9.540 8.960 8.620 6.680 4.220 2.540

#literals/clause 1.50 2.56 2.94 3.20 3.40 4.39 4.98

FOIL (#clauses) 4.000 35.100 45.000 48.700 56.200 59.800 71.300

#literals/clause 1.50 3.65 4.44 4.73 5.06 5.23 5.40

BEAM-FOIL (#clauses) 4.000 5.000 4.400 4.200 4.000 3.500 2.800

#literals/clause 1.50 3.75 3.93 4.17 4.63 5.25 6.07

mFOIL1 (#clauses) 3.000 31.900 35.700 31.100 28.300 18.100 15.700

##literals/clause 2.00 3.07 3.20 3.18 3.42 3.34 3.57

mFOIL2 (#clause) 3.000 48.800 50.600 48.200 44.500 41.400 34.900

##literals/clause 1.67 3.18 3.33 3.44 3.57 3.62 3.70

mFOIL3 (#clause) 2.00 12.400 10.400 7.300 3.300 0.100 0.000

##literals/clause 1.50 2.68 3.10 3.02 3.46 4.00 0.00

#literals/clause 1.67 1.73 1.80 2.15 2.00 1.46 3.55

mFoil4 (#clause) 3.000 3.000 2.400 1.800 1.200 1.200 11.200

Table 6.13: The sizes of logic programs induced by LOGENPRO, FOIL, BEAM-
FOIL, and different instances of mFOIL at different noise levels.

6.3.3. Comparison of LOGENPRO With FOIL

The classification accuracy of both systems degrades seriously as
the noise level increases (figure 6.5). The classification accuracy of
LOGENPRO decreases smoothly when the noise level is on or below
0.15. It reduces from 0.996 to 0.938, a 5.8% decrement. There are sudden
drops of accuracy when the noise level is between 0.15 and 0.40. It falls
from 0.938 to 0.670, a 28.5% reduction. The accuracy of FOIL decreases
rapidly when the noise level is on or below 0.20. It drops from 0.996 to
0.693, a 30.4% reduction. The decrease slightly slows down between the
noise levels of 0.20 and 0.40. It drops from 0.693 to 0.529, a 23.7%
reduction.

The results are statistically evaluated using the one-tailed paired t-
test. For each noise level, the classification accuracy is compared to test
the null hypothesis against the alternative hypothesis. The null hypothesis
states that the difference in accuracy is zero at the 0.05% level of
significance. On the other hand, the alternative hypothesis declares that
the difference is greater than zero at the 0.05% level of significance. The
t-statistics are listed as follows:

132 Chapter 6

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics NA 12.59 17.78 19.33 14.17 8.07 26.82

The t-statistics at the 0.00 noise level is not available because the
variances are very small (near zero). The t-statistics at the 0.05 noise level
is 12.59 which is greater than the critical value of 4.78. Thus, we can
reject the null hypothesis and assert that the classification accuracy of
LOGENPRO is higher than that of FOIL. Similarly, the classification
accuracy of LOGENPRO at the noise levels between 0.05 and 0.40 is
significantly higher than that of FOIL. The largest difference reaches
0.177 at the 0.15 noise level. The average number of induced clauses and
the average number of literals per clause show that LOGENPRO
generates compact and comprehensive logic programs even at the high
noise levels. On the other hand, the complexity of the logic programs
learned by FOIL increases when the noise level increase. In other words,
FOIL overfits noise in the dataset.

DATA MINING APPLICATIONS USING LOGENPRO 133

6.3.4. Comparison of LOGENPRO With BEAM-FOIL

The classification accuracy of BEAM-FOIL degrades seriously as
the noise level increases (figure 6.5). There is a significant fall in accuracy
of BEAM-FOIL when the noise level is increased from 0.0 to 0.05. It
reduces from 0.996 to 0.802, a more than 19.4% of decrement. It falls
from 0.802 to 0.757 between the noise levels of 0.05 and 0.10, a smaller
reduction (5.6%) is encountered in this interval. The decrease slows down
between the noise levels of 0.10 and 0.40. The accuracy drops from 0.757
to 0.674 in this interval. The reduction is about 11%. The results of the
one-tailed paired t-test are listed as follows:

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics NA 22.20 33.82 21.91 9.19 3.26 -0.81

The t-statistics at the 0.00 noise level is not available because the
variances are very small (near zero). The classification accuracy of
LOGENPRO at the noise levels between 0.05 and 0.20 is significantly
higher than that of BEAM-FOIL. At the noise level of 0.30, the accuracy
of LOGENPRO is higher than that of BEAM-FOIL, but the difference is
not significant. On the other hand, the accuracy of BEAM-FOIL at the
noise level of 0.40 is higher than that of LOGENPRO, but the difference
is insignificant. This comparison indicates that the genetic operations of
LOGENPRO can actually improve the logic programs generated by other
learning systems such as BEAM-FOIL. The sizes of logic programs
induced by BEAM-FOIL show that BEAM-FOIL over-generalizes at the
high noise levels.

6.3.5. Comparison of LOGENPRO With mFOIL1

We compare LOGENPRO with mFOIL1 to mFOIL4 one by one
in this and the following sub-sections. The parameters of this instance are
presented in table 6.10. Lavrac and Dzeroski (1994) compare the
performances of mFOIL1 with FOIL2.0, a version of FOIL, for the chess
endgame problem using the smaller dataset described in sub-section 6.3.1.

134 Chapter 6

They find that mFOIL1 outperforms FOIL2.0 at all noise levels. Our
results depicted in figure 6.5 are inconsistent with those obtained by
Lavrac and Dzeroski. We find that FOIL outperforms mFOIL1 at the
noise levels of 0.0 and 0.05. On the other hand, mFOIL1 has better
performance when the noise level is on or over 0.1. The inconsistency
may be explained because we employ an improved version of FOIL,
FOIL6.0, and larger sets of training and testing examples. The results of
the one-tailed paired t-test between LOGENPRO and mFOIL1 are listed
as follows:

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics 3.03E+08 35.38 17.29 14.98 5.15 1.11 -3.37

The classification accuracy of LOGENPRO at the noise levels
between 0.0 and 0.20 is significantly higher than that of mFOIL1. At the
noise level of 0.30, the accuracy of LOGENPRO is higher than that of
mFOIL1 by about 0.014, but the difference is not significant. On the other
hand, the accuracy of mFOIL1 at the noise level of 0.40 is higher than that
of LOGENPRO, the difference is insignificant.

6.3.6. Comparison of LOGENPRO With mFOIL2

The results of the one-tailed paired t-test between LOGENPRO
and mFOIL2 are listed as follows:

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics 3.03E+08 21.59 13.05 9.95 4.37 1.23 -1.65

The classification accuracy of LOGENPRO at the noise levels
between 0.0 and 0.15 is significantly higher than that of mFOIL2. At the
noise levels of 0.20 and 0.30, the accuracy of LOGENPRO is higher than
that of mFOIL2, but the differences are not significant. On the other hand,
the accuracy of mFOIL2 at the noise level of 0.40 is higher than that of
LOGENPRO, but the difference is insignificant.

DATA MINING APPLICATIONS USING LOGENPRO 135

6.3.7. Comparison of LOGENPRO With mFOIL3

The accuracy of mFOIL3 at the noise levels of 0.00, 0.30, and
0.40 is not acceptable. By comparing mFOIL3 with mFOIL1 (figure 6.5),
we can conclude that the significance threshold for noise-handling affects
the performance of mFOIL severely (see table 6.10). The results of the
one-tailed paired t-test between LOGENPRO and mFOIL3 are listed as
follows:

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics NA 16.99 22.29 16.44 8.12 3.65 -1.66

The t-statistics at the 0.00 noise level is not available because the
variances are very small (near zero). The classification accuracy of
LOGENPRO at the noise levels between 0.05 and 0.40 is significantly
higher than that of mFOIL3.

6.3.8. Comparison of LOGENPRO With mFOIL4

The results of the one-tailed paired t-test between LOGENPRO
and mFOIL4 are listed as follows:

Noise Level 0.00 0.05 0.10 0.15 0.20 0.30 0.40

t-statistics 2.22E+08 -1.45 2.77 6.37 8.00 2.20 0.24

The classification accuracy of LOGENPRO at the noise levels
0.00, 0.15 and 0.20 is significantly higher than that of mFOIL4. The sizes
of the logic programs learned by mFOIL4 illustrate that mFOIL4 over-
generalizes at the noise levels between 0.10 and 0.30. On the other hand,
mFOIL4 overfits the noise in the dataset at the 0.40 noise level.

136 Chapter 6

6.3.9. Discussion

In this section, we employ LOGENPRO to combine evolutionary
algorithms and BEAM-FOIL, to discover knowledge represented as logic
programs. The performance of LOGENPRO in a noisy domain has been
evaluated by using the chess endgame problem. Detailed comparisons
between LOGENPRO and other ILP systems have been conducted. It is
found that LOGENPRO outperforms these ILP systems significantly at
most noise levels. These results are surprising because the LOGENPRO
uses the same noise-handling mechanism of FOIL by initializing the
population with programs created by BEAM-FOIL.

One possible explanation of the better performance of
LOGENPRO is that the Darwinian principle of survival and reproduction
of the fittest is a good noise handling method. It avoids overfitting noisy
examples, but at the same time, it finds interesting and useful patterns
from these noisy examples.

Chapter 7

APPLYING LOGENPRO FOR RULE
LEARNING

A rule is a statement in the format of “if antecedents then
consequent”, which is commonly used by human to represent knowledge.
Rule learning tries to learn rules from a set of data. It can be modeled as a
search problem of finding the best rules. Because the search space can be
very large, a robust search algorithm is required. Thus, LOGENPRO is
used as a possible approach. This chapter introduces how the problem of
rule learning is modeled such that LOGENPRO can be applied.

To apply LOGENPRO, firstly a suitable representation has to be
designed to encode a rule in an individual. In LOGENPRO, a derivation
tree is used to represent an individual, so a grammar for rules has to be
designed to create the appropriate derivation tree. Secondly, a set of
suitable genetic operators has to be used to evolve new individuals.
Thirdly, we have to design a suitable fitness function to evaluate the
fitness value of an individual. These three issues are discussed in the first
three sections. The detailed techniques for learning a set of rules are
discussed in the last section.

7.1. Grammar

The grammar of LOGENPRO governs the structures to be
evolved. Rule learning can be achieved in LOGENPRO by using a
suitable grammar to compose rules. The grammar should specify the
structure of a rule, which is of the form “if antecedents then consequent”.
The format of rules in each problem can be different. Thus for each
problem, a specific grammar is written so that the format of the rules can
best fit the domain. However, in general, the antecedent part is a
conjunction of attribute descriptors. The consequent part is also an
attribute descriptor. An attribute descriptor characterizes an attribute,
which can be described in many ways, thus there are many different
formats of descriptors. A descriptor can assign a value to a nominal

138 Chapter 7

attribute, a range of values to a continuous attribute, or can be used to
compare attribute values.

LOGENPRO provides a powerful knowledge representation and
allows a great flexibility on the rule format. The representation of rules is
not fixed but depends on the grammar. Most of the rule learning methods
can only learn a particular format of rules, for example, rules with
descriptors that compare the attributes with values. However,
LOGENPRO allows a large variation in the attribute description. Rules
with different formats or the user desired structure can be learned,
provided that the suitable grammar is supplied.

An example is used to illustrate the use of grammar to represent
the suitable rule format. Consider a database with 4 attributes. We want to
learn rules about attr4, which is Boolean. The attribute attrl is
nominal and coded with 0, 1, or 2. The attribute attr2 is continuous
between 0-200 and can be categorized into high, medium, or low. The
domain of at t r 3 is identical to at t r 2 and thus it is possible for the rule
to compare them.

An example of the grammar for this database is given in table 7.1.
The symbols ercl, erc2, erc3, boolean _ erc, and
cat e go r y_e r c in this grammar are ephemeral random constants
(ERCs). Each ERC has its own range for instantiation: ercl is one of the
set { 0 ,1,2},erc2 anderc3 is between 0-200,boolean_erc can only
be T or F, category_erc can be either high, medium, or low. The
symbol ‘any’ serves asa ‘don’t care’ in the rule. An attribute will not be
considered in the rule if its attribute descriptor is 'any’. In this grammar,
each attribute can be described by a descriptor in the rule, or by ‘any’
such that it is ignored by the rule. The attribute at t r 1 has only one form
of descriptor. The attribute att2 can have two forms of descriptors: it
can be described by a range or by the category it belongs to. The attribute
attr3 can be specified by a comparator. Its descriptor can be a
comparison with attr2 or a comparison with a constant. This grammar
allows rules like:

if attrl = 0 and attr2 between 50 180

if attrl = 2 and attr2 i s high and
and any, then attr4 = T.

attr3 ≠ 50, then attr4 = T.

APPLYING LOGENPRO FOR RULE LEARNING 139

if attrl = 1 and any and attr3 >= attr2,
then attr4 = F.

1: start -> [if], antes, [, then], consq, [.].
2: antes -> attr1, [and], attr2, [and], attr3.
3: attr1 -> [any].
4: attr1 -> attr1_descriptor.
5: attr2 -> [any].
6: attr2 -> attr2_descriptor.
7: attr3 -> [any].
8: attr3 -> attr3_descriptor.
9: attr1_descriptor -> [attr1 =], erc1.
10: attr2_descriptor -> [attr2 is], category-erc.
11: attr2_descriptor -> [attr2 between],erc2, erc3.
12: attr3_descriptor -> [attr3], Comparator,

attr3_term.
13 : comparator -> [=] .
14: comparator -> [≠].
15 : comparator -> [<=].
16: comparator -> [>=].
17 : comparator -> [<].
18 : comparator -> [>].
19: attr3_term -> attr2.
20: attr3_term -> erc3.
21: consq -> attr4_descriptor.
22: attr4_descriptor -> [attr4 =], boolean_erc.
23: erc1 -> (member (?a, [0, 1,2]) } , [?a] .
24: erc2 -> (random(0, 200, ?a) }, [?a].
25: erc3 -> (random(0, 200, ?a) }, [?a].
26: category-erc-> {member (?a, [high, medium, low]) },
21 : boolean_erc -> (member (?a, [T, F]) }, [?a] .
Table 7.1: An example grammar for rule learning.

[?a].

The grammars for other problems are similar to the grammar in
table 7.1. According to the type of attribute, a descriptor similar to
attrl descriptor, attr2 descriptor or
at t r3_de s cr ip t or can be used. The following list illustrates how the
grammar is written for each situation.

140 Chapter 7

• The attribute is nominal.

The attribute can be described by its value. The descriptor
similar to attr1_descriptor or attr4 _ descriptor
can be used.

• The attribute is continuous.

The attribute can be described by a range. The descriptor
similar to attr2 _ descriptor can be used.

The attribute can be compared with other attributes in the
rule.

In many cases, describing an attribute by a value is not
powerful enough to represent the knowledge. If a comparison
between variables is needed, the descriptor similar to
attr3 _ descriptor can be used.

The attribute has more than one kind of descriptions.

In some cases, an attribute can be described by more than one
way. An example is at t r 2 in the previous example. Using a
grammar, we do not need to restrict the rule to use either one
descriptor. Another example is that an address is described by
the city, the state, and the country. This can be achieved by
writing the grammar as follows:

address_descriptor -> [address between] ,

address_descriptor -> [address between] ,

•

•

city_erc, city_erc.

stat e_e r c ,
state_erc.
count ry_erc ,
country_erc.

address_descriptor -> [address between],

• The antecedent part has more than one format.

The use of grammar allows the antecedents to have more than
one format. For example, the user may want that if at t r 1 is
included in the antecedent, then at t r 3 and at t r 4 should
also be included. Otherwise, if attr2 is used instead of
attrl, then attr5 and attr6 should be included in the
rule. This can be done by replacing the grammar rule 2 of
table 7.1 with the following grammar rules:

APPLYING LOGENPRO FOR RULE LEARNING 141

antes -> attrl, [and], attr3, [and], attr4.
antes -> attr2, [and], attr5, [and], attr6.

There are more than one target variable and thus more than
one kind of rules.

Usually data mining is not restricted to one target variable.
The user may want to find knowledge describing all the
dependent variables. Thus this leads to more than one kind of
rules. Different kinds of rules can be searched by replacing
the grammar rule 1 of table 7.1 with the following grammar
rules:

start -> [if], antesl, [, then], consql.
start -> [if], antes2, [, then], consq2.

•

7.2. Genetic Operators

In rule learning using LOGENPRO, the search space is explored
by generating new rules using three genetic operators: crossover, mutation
and dropping condition. A rule is composed of attribute descriptors. The
genetic operators try to change the descriptors in order to search for better
rules.

As described in section 5.3, crossover is a sexual operation that
produces one child from two parents. One parent is designated as the
primary parent and the other one as the secondary parent. A part of the
primary parent is selected and replaced by another part from the secondary
parent. Suppose that the following primary and secondary parents are
selected:

if attr1=0 and attr2 between 100 150 and attr3 ≠ 50,

if attr1=1 and any and attr3 >= attr2, then attr4=F.
then attr4=T.

The underlined parts are selected for crossover. The offspring will be
if attr1=0 and attr2 between 100 150 and

In LOGENPRO, each individual is represented by a derivation
tree. The replaced part is actually a subtree selected randomly from the
derivation tree of the primary parent (see section 5.3). The subtree may
represent different structures in the rule, hence the genetic change may

attr3 >= attr2, then attr4=T.

142 Chapter 7

occur on the whole rule, several descriptors, or just one descriptor. The
replacing part is also selected randomly from the derivation tree of the
secondary parent, but under the constraint that the offspring produced
must be valid according to the grammar. If a conjunction of descriptors is
selected in the primary parent, it will be replaced by another conjunction
of descriptors, but never by a single descriptor. If a descriptor is selected
in the primary parent, then it can only be replaced by another descriptor of
the same attribute. This can maintain the validity of the rule.

Mutation is an asexual operation. A part in the parental rule is
selected and replaced by a randomly generated part (see section 5.4).
Similar to crossover, the selected part is a subtree of the derivation tree.
The genetic change may occur on the whole rule, several descriptors, one
descriptor, or the constants in the rule. The new part is generated by the
same derivation mechanism as in the population creation. Because the
offspring have to be valid according to the grammar, a selected part can
only mutate to another part with a compatible structure. For example, the
parent

if attr1=0 and attr2 between 100 150 and attr3 ≠ 50,
then attr4=T.

may mutate to
if attr1=0 and attr2 between 100 150 and

attr3 >= attr2, then attr4=T.
Dropping condition is an genetic operator tailor-made for rule

learning using LOGENPRO. Due to the probabilistic nature of GP,
redundant constraints may be generated in the rule. For example, suppose
that the actual knowledge is ‘if A<20 then X=T’. We may learn rules like
‘if A<20 and B<10 then X=T’. This rule is, of course, correct; but it does
not concisely represent the actual knowledge. It is just a subsumed rule of
the actual rule. Dropping condition (Michalski 1983) is incorporated in
LOGENPRO to generalize rules. A rule is generalized if one descriptor in
the antecedent part is dropped. Dropping condition selects randomly one
attribute descriptor, and then turns it into ‘any’. That particular attribute
is no longer considered in the rule, hence the rule can be generalized. For
example, the rule

if attr1=0 and attr2 between 100 150 and attr3 ≠ 50,
then attr4=T.

can be changed to
if attr1=0 and attr2 between 100 150 and any,

then attr4=T.

APPLYING LOGENPRO FOR RULE LEARNING 143

7.3. Evaluation of Rules

An evaluation (fitness) function is needed to evaluate rules. There
are a lot of rule evaluation functions. Piatetsky-Shapiro (1991) stated that
for a rule ‘if A then B’, the function measuring the interest of the rule
should be a function of p(A) (probability of A), p(B), p(A and B), rule
complexity, and possibly other parameters. Let N be the total number of
training examples. Let |A| denotes the number of cases that satisfy
condition A, and |A and B| denotes the number of cases that satisfy
condition ‘A and B’. It is suggested that the rule-interest function RI
should satisfy the following principles:

1. RI = 0 if |A and B| = (|A| * |B|) / N. IfA and B are statistically
independent, the rule is not interesting.

2. RI monotonically increases with |A and B| when other
parameters remain the same.

3. RI monotonically decreases with |A| or |B| when other
parameters remain the same.

For a rule ‘if A then B’, the probability p(B|A)=p (A and B)/p (A) is
the accuracy of the rule. According to the accuracy, a rule can be
categorized as an exact, strong, or weak rule. An exact rule is the rule that
always correct, that is, p(B|A)=1. A strong rule is a rule that almost always
correct, that is, p(B|A)=is high. A weak rule is a rule that the conditional
probability of the consequent under the antecedents is much higher than
the probability of consequent, that is p(B |A) >> p(B). In the real-life
situation, an exact or strong rule may not exist. Thus a useful data mining
system should not just search for exact or strong rules. It should be able to
discover weak rules because the difference from the average may already
provide interesting knowledge. Consequently, accuracy cannot be the sole
metric for rule-interest. Another measurement of rule-interest is the
applicability of the rule to future cases. If the rule can match a larger
number of training cases, it is less likely that the rule is obtained by
chance, and thus the rule should be more applicable to future cases.

An evaluation function based on the support-confidence
framework (Agrawal et al. 1993) is developed as the fitness function in
our rule learning approach. Support measures the coverage of a rule. It is a

144 Chapter 7

ratio of the number of records covered by the rule to the total number of
records. Confidence factor (cf) is the confidence of the consequent to be
true under the antecedents, and is just the same as the rule accuracy. It is
the ratio of the number of records matching both the consequent and the
antecedents to the number of records matching only the antecedents. For a
rule ‘if A then B’and with a training set of N cases, support is |A and B|/N
and confidence factor is |A and B|/|A|.

In the evaluation process, each rule is checked with every record
in the training set. Three statistics are counted. antes_hit is the number of
records matching the antecedents (the ‘if part), consq_hit is the number
of records that match the consequent (the ‘then’ part), and both_hit is the
number of records that match the whole rule (both the ‘if and the ‘then’
parts).

The confidence factor cf is the fraction both_hit/antes_hit. But a
rule with a high confidence factor does not mean that it behaves
significantly different from the average. Therefore we need to consider the
average probability of consequent (prob). The value prob is equal to
consq_hit/total, where total is the total number of records in the training
set. This value measures the confidence for the consequent under no
particular antecedent.

A formula similar to the likelihood ratio used in CN2 (equation
2.9) is used to define the normalized confidence factor normalized_cf:

(7.1)
The log function measures the order of magnitude of the ratio cf/prob. The
normalized value is a product of two factors: cf and log(cf/prob). A high
value of normalized_cf requires simultaneously a high value on the rule
confidence factor (cf) and a high value on the rule confidence factor over
the average probability (cf/prob). The definition of the value in 7.1
matches with the three previously stated principles proposed by Piatetsky-
Shapiro (1991). Using his notation, cf is actually |A and B|/|A|, andprob is
|B|/N. If |A and B|/|A|=|B|/N, cf/prob =1 and normalized_cf =0. The value cf
(and so does normalized-cj) monotonically increases with |A and B| and
monotonically decreases with |A| The value prob monotonically increases
with |B| and thus normalized_cf monotonically decreases with |B|.

Support is another measure that we need to consider. A rule can
have a high accuracy but the rule may be formed by chance and based on
a few training examples. This kind of rules does not have enough support.

APPLYING LOGENPRO FOR RULE LEARNING 145

The value support is defined as both_hit/total. If support is below a user-
defined minimum threshold (min_support), the confidence factor of the
rule should not be considered. This can avoid the waste of effort to evolve
those rules with a high confidence but cannot be generalized.

Finally, We define our fitness function to be:

(7 .2)

where the weights w1 and w2 are user-defined to control the balance
between the confidence and the support in searching. We have set the
values to 1 and 8 respectively so that the confidence of the rule plays a
more important role in the evaluation function.

7.4. Learning Multiple Rules From Data

The knowledge of a data set is unlikely to be sufficiently
described by a single rule. Thus, multiple rules are required to represent
the knowledge. To perform rule learning using evolutionary computation,
a suitable model for an individual must be designed such that a set of rules
can be learned. There are two different approaches. In the Pittsburgh
approach (Smith 1980; 1983), each individual in the population encodes a
whole solution, that is, a set of rules. In the Michigan approach (Holland
and Reitman 1978, Booker et al. 1989), each individual encodes only one
rule. The individuals in the population can be combined together to
provide a rule set. However this approach requires special techniques such
that multiple good individuals can coexist in the population. Our approach
follows the Michigan approach. The structure of an individual can be
simpler because it only represents one rule. Thus the evolution for good
individuals are easier.

This section begins with an review of previous approaches for
maintaining groups of individuals evolving different solutions. Then our
approach, token competition, is presented in section 7.4.2. Section 7.4.3
summarizes the complete approach for rule learning. Experimental results
of rule learning from two machine learning databases are presented in
section 7.4.4.

146 Chapter 7

7.4.1. Previous Approaches

Genetic algorithms and genetic programming are weak search
algorithms to search for a solution that optimize the fitness function.
These algorithms aim to search for a single solution only. Those
individuals with higher fitness scores can survive while those with lower
fitness scores will be extinct. If a part of the search space gives a higher
fitness scores, eventually all the individuals will converge into this part.

However there are many situations that multiple solutions are
required. For example, we may need to search for all the peaks in a
multimodal function. In this case, it is desirable to maintain groups of
individuals, with different groups evolving different solutions. Each group
of individuals is referred to as a sub-population or a species, and the part
of the search space being explored by a species is referred to as a niche.
Maintaining diversity of the population is important for the formulation of
niches. The individuals are not allowed to converge to a single niche and
hence forced to explore different parts of the search space. Several
approaches have been designed in GAs to accomplish this task and they
are reviewed as follows:

7.4.1.1. Pre-selection

Pre-selection (Cavicchio 1970) maintains the diversity by trying
to reduce the existences of similar individuals. It uses the idea that parents
should be among the most similar individuals to the offspring. A new
individual is evolved by using a genetic operator. The offspring can
replace one of the parents if it has a better fitness. Otherwise the parents
survives but not the child.

7.4.1.2. Crowding

In crowding (DeJong 1975), a certain percentage of the
population is selected to produce offspring. The percentage is denoted as

APPLYING LOGENPRO FOR RULE LEARNING 147

the generation gap (G). Offspring are evolved by crossover and mutation
to replace the original individuals in the population. To determine which
individual is replaced, for each offspring several individuals are selected
randomly from the population. The number of individuals selected is
denoted as the crowding factor (CF). The similarities of the selected
individuals with respect to the offspring are computed. Similarity is
defined in turn of bit-wise (i.e. genotypic) matching. The most similar
individual is replaced by the offspring.

7.4.1.3. Deterministic Crowding

Deterministic crowding (Mahfoud 1992) improves pre-selection
and crowding. In each generation, the individuals in the population are
randomly paired without replacement. Each pair evolves two offspring by
crossover. Deterministic crowding uses the idea of pre-selection that the
offspring should be similar to its parent, and uses the idea of crowding
that a similarity measure should used to determine the replacement.
Deterministic crowding uses the phenotypic similarity. The bit strings of
the individuals are decoded and the similarity measure is defined in the
decoded parameters. The offspring is compared only with the two parents
for similarity. There are two possible replacements of two parents by their
two offspring: offspring 1 replaces parent 1 and offspring 2 replaces
parent 2, or offspring 1 replaces parent 2 and offspring 2 replaces parent 1.
The pair of replacements that yields the greater sum of phenotypic
similarities between the offspring and the replaced parents is used. The
parent is replaced by the offspring only if the corresponding offspring has
a better fitness score.

7.4.1.4. Fitness Sharing

Fitness sharing (Goldberg and Richardson 1987) is apparently a
time consuming algorithm which maintains a diversity of individuals by
discouraging individuals to converge into one niche. The fitness of one
individual gained from one niche must be shared by similar individuals. A
distance function d(xi, xj) measures the distance (i.e. dissimilarity)

148 Chapter 7

between two individuals xi and xj. For each individual, the distances with
all other individuals are calculated. A sharing function s defines the
degree of fitness sharing by the similar individuals. The shared fitness fs of
one individual is the un-shared fitness f divided by the accumulated
number of shares:

Thus when more individuals converge to one niche, the fitness is shared
by more individuals. The fitness will decrease to a level such that it is no
longer better than the fitness on other niches. Eventually a distribution of
individuals on different niches can be achieved.

7.4.2. Token Competition

The token competition (Leung et al. 1992) technique is employed
in our rule learning approach to increase the diversity, so that good
individuals in different niches are maintained in the population. The
concept is as follows: In the natural environment, once an individual has
found a good place for living, it will try to exploit this niche and prevent
other newcomers to share the resources, unless the newcomer is stronger
than it is. The other individuals are hence forced to explore and find their
own niches. In this way, the diversity of the population is increased.

Based on this mechanism, we assume each record in the training
set can provide a resource called a token. If a rule can match a record, it
set a flag to indicate the token is seized. Other weaker rules then cannot
get the token. The priority of receiving tokens is determined by the
strength of the rules. A rule with a high score on raw_fitness (equation
7.2) can exploit the niche by seizing as many tokens as it can. The other
rules entering the same niche will have their strength decreased because
they cannot compete with the stronger rule. The fitness score of each
individual is modified based on the token it can seize. The modified
fitness is defined as :

modified_ fitness = raw_ fitness × count / ideal (7.3)

APPLYING LOGENPRO FOR RULE LEARNING 149

where raw_fitness is the fitness score obtained from the evaluation
function, count is the number of tokens that the rule actually seized, ideal
is the total number of tokens that it can seize, which is equal to the
number of records that the rule matches. Token competition is a greedy
operation. It favors strong rules as their chance of survival is maintained,
while their close competitors are weakened as they cannot get the tokens
in the niche.

From another point of view, each rule contributes to the system by
covering several records of the database. If a record has already been
covered by one rule, then another rule covering the same record will make
no contribution to the system. Thus the fitness of the latter rule should be
discounted.

Token competition is a simple method to force the increase of the
diversity of the population. It has an advantage that it does not require a
distance function. In crowding or fitness sharing, it is required to define a
similarity or a distance function, so as to measure the similarity or
dissimilarity between two individuals. However, it may be difficult to
define how one individual is similar to another individual, especially in
Genetic Programming. Genetic Algorithms use a fixed length binary
string as the chromosome. Thus the genotypic difference (i.e. difference in
the bits) can be used as a general similarity measurement. However this is
not valid in the tree structure of Genetic Programming. Moreover, the
similarity in genotype may not truly reflect the similarity of the
individuals. Token competition simplifies the problem by simply
regarding two individuals to be similar if they cover similar sets of
records.

The execution of token competition is faster than that of fitness
sharing. To calculate the fitness score of one individual in fitness sharing,
the similarity scores of all other individuals with respect to this individual
have to be calculated. If a similarity score can be computed in time O(t),
and the population size is p, each individual needs a time O(pt) to
calculate the similarity score, and the time needed to complete fitness
sharing in each generation is O(p2t). On the other hand, calculations of
similarity are not needed in token competition. The required information
of token counting is the list of records that each individual covered. This
information is already stored during the evaluation process. If an
individual covers m records, a time of O(m) is needed to seize the tokens,
and token competition in each generation can be completed in O(mp),
where E is average value of m. This computation is straight forward and
can be faster than fitness sharing if O(m) < O(pt) .

150 Chapter 7

As a result of token competition, there are rules that cannot seize
any token. These rules are redundant as all of its records are already
covered by the stronger rules. They can be replaced by new individuals.
Introducing these new individuals can inject a larger degree of diversity
into the population, and provide extra chances for generating good rules.
To create the new individuals, we can use seeds to generate better rules.
Those records with their tokens not taken are the possible seeds. These
records are not yet covered by any existing rules, and thus introducing
rules covering them can improve the system. To create a new rule, a seed
is selected, and then the rule is generated to cover the seed.

7.4.3. The Complete Rule Learning Approach

Figure 7.1 is the flowchart of the complete process for learning
multiple rules from a set of data using LOGENPRO. A grammar is
provided by the user as a template for rules. A set of rules is derived by
using this grammar and forms the initial population. Then, the main loop
of LOGENPRO is entered. In each generation, individuals are selected
stochastically to evolve offspring by the three genetic operators:
crossover, mutation, and dropping condition. In each generation, the
number of new individuals evolved equals to the population size. Thus at
this stage, the number of individuals in the population is doubled. All
individuals participate in the token competition and the replacement step,
so as to eliminate similar rules and increase the diversity. One half of the
individuals with the higher fitness scores after token competition are
retained and passed to the next generation. The whole process iterated
until the maximum number of generations is reached.

Parents for the genetic operators are selected by the rank selection
method. The probabilities of using crossover, mutation, and dropping
condition in our approach are 0.5, 0.4, and 0.1, respectively. These setting
is chosen because they gave the best results in preliminary executions of
the system.

The data set for learning can be partitioned into a training and a
testing sets. Only the training set is available for the learning process.
After the maximum number of generations is reached, the discovered rules
are further evaluated with the unseen testing set, so as to verify their
accuracy and reject the rules that over-fit the training set.

APPLYING LOGENPRO FOR RULE LEARNING 151

Our system differs from conventional GP in that reproduction
operator is not used, and the parents compete with the offspring for places
in the new generation. In conventional GP, the next generation of
population only consists of the offspring. An individual will be passed to
the next generation of population through the use of the reproduction
operator. Good individuals can export their genes to the new generation
by reproducing more children, and gradually dominate the population.
Thus many individuals contain the good genes, and a good gene has a
high probability of being passed to the offspring. However, in our rule
learning approach, we do not want a good rule to replicate itself and
dominate the population. Rather, we need to find several good rules and

152 Chapter 7

diversify the population. Token competition only allows one copy of each
good individual to be kept in the population. Consequently, the chance of
a good gene being passed to the offspring is much less than conventional
GP, because a good individual may not be selected as the parent.
Therefore we need an explicit way to retain the good genes of the parents.
This is done by keeping the parents as competitors for the new generation.
Good parents can win poor offspring and gain positions in the new
generation.

The execution time can be approximated by assuming that the
evaluation of rules is the most time consuming step. In each generation,
each rule has to be checked with every training case to count the number
of records that match the antecedents or the consequent. Thus we can
roughly estimated that the execution time should be directly proportional
to:

number of database records × population size ×
number of generations

7.4.4. Experiments With Machine Learning Databases

Experiments have been performed to evaluate the rule learning
system. Two databases from the UCI Machine Learning Repository (Merz
and Murphy 1998) are used as the source of data. Using these databases,
our target is to search for knowledge for classification. A useful measure
of the accuracy of the learned knowledge is to apply it to an unseen testing
set. Thus the database is divided into a training and a testing sets. To
measure the accuracy in the testing set, the rules are applied to see
whether each testing case is classified correctly. Since the discovered rules
can overlap, the testing case may match more than one rule. Starting from
the rule with the highest fitness value, the testing case is checked by the
rule. If the antecedent part does not match with the testing case, the next
rule is applied until there is a match or no rule can apply. If no rule can be
applied or the testing case matches the antecedents but not the consequent
part, then the testing case is considered as a miss.

We should note that the aim of our rule learning approach is to
discover knowledge instead of classifying unseen cases. No special
technique is designed to make the rules cover all the cases. Thus the
classification accuracy is only an indirect measurement of our approach.

APPLYING LOGENPRO FOR RULE LEARNING 153

7.4.4.1. Experimental Results on the Iris Plant Database

The first experiment uses the iris plants database as the data set.
This database is one of the most frequently used database in machine
learning. It consists of 150 records with 5 attributes (table 7.2). The task is
to discover knowledge about the three classes. Each class has 50 records
in the database. 100 records are randomly selected as the training set and
the remaining 50 records are used as the testing set.

Table 7.2: The iris plants database.

The grammar in table 7.3 is used for learning rules from this
database. This grammar is very simple. Each of the four continuous
attributes is described by a range in the rule, and the nominal attribute is
described by a value. The population size is 50 and the maximum number
of generations is 50.

Preliminary experiments have been performed to investigate the
effects of different parameter settings. We found that by lowering the
value of w2 in the fitness function (equation 7.2), a higher accuracy on the
testing set can be achieved, as shown in table 7.4. In this database it is
quite easy to find a rule with a high confidence, but the rule may not be
general enough. Since the rule set needs to cover all testing cases, the goal
of the evolution process is not just to evolve rules with high confidence,
but also to evolve rules with high support. A lower value of w2 in the
fitness function can favor more general rules with a better support. We
also found that the classification accuracy on using a lower value of
minimum support is somewhat better, and the result is less sensitive to the
rates of the genetic operators. The results are shown in tables 7.5 and 7.6.

154 Chapter 7

1: start -> [if], antes, [, then], consq, [.].
2: antes -> slength, [and], swidth, [and],

3: s length -> [any].
4: s lengt h -> slength_descriptor.
5: swidth -> [any].
6: swidth -> swidth_descriptor.
7: pl engt h -> [any].
8: plength -> plength_descriptor.
9: pwidth -> [any].
10: pwidth -> pwidth_descriptor.
11: slength_descriptor -> [sepal length is between],

plength, [and], pwidth.

slength_const,
slength_const.

swidth_const, swidth_const.

plength_const,
plength_const.

pwidth_const, pwidth_const.

12: swidth_descriptor -> [sepal width is between] ,

13: plength_descriptor -> [petal length is between],

14: pwidth_descriptor -> [petal width is between],

15: consq -> [class is], class-const.
16: slength_const -> {random(4.3, 7.9, ?a)}, ?a.
11: swidth_const -> {random(2.0, 4.4, ?a) }, ?a.
16: plength_const -> {random(1.0, 6.9, ?a) }, ?a.
17: pwidth_const -> {random(0.1, 2.5, ?a) }, ?a.
18: class-const -> {member (?a, [Iris setosa,

Iris Vericolor,Iris Virginical) },
?a.

Table 7.3: The grammar for the iris plants database.

APPLYING LOGENPRO FOR RULE LEARNING 155

A more complete result was obtained by executing 25 runs using

the best setting that we have tried. The best setting uses a rate of 0.5 for

crossover, 0.4 for mutation, and 0.1 for dropping condition, 0.01 for

minimum support, 1 and 1 respectively for the values of w1 and w2 for the

fitness function. The execution time for each run was about 70 seconds in

a Sun Ultra 1/140. Our system achieved an average classification accuracy

of 91.04%. The results of these runs are shown in table 7.7. The best run

gives an accuracy of 100% and is listed in Appendix A.l

The results of other approaches are quoted from Holte (1993) as

references (table 7.8). It should be notice that these results were obtained

using different number of runs and different setting in the training and

156 Chapter 7

testing sets. The average accuracy of our approach is not as good as the
other approaches. However, the perfect result can be obtained in the best
run. A characteristic of evolutionary algorithms is that they are stochastic.
Thus our approach has larger fluctuations in different runs. In order to get
a better result, the user may execute several trials of the algorithm to get
the result with the best fitness score.

Table 7.8: The classification accuracy of different approaches on the iris plants
database.

7.4.4.2. Experimental Results on the Monk Database

The second experiment has been performed on the Monk database
(Thrun et al. 1991). This database contains attributes for artificial robots,
as shown in table 7.9. There are three data sets. Each data set has a hidden
knowledge on the robots that belong to the class (i.e. class = 1). The
training set contains randomly selected robots while the testing set
contains all the 432 possible robots. The task is to discover the knowledge
on classification.

1. The monk1 data set has 124 examples in the training set,
which contains 62 positive examples (i.e. class=1) and 62
negative examples (i.e. class=2). The testing set contains
216 positive and 216 negative examples. The hidden
knowledge for classification is “(head_shape =
body shape) or (jacket_color = 1)”. There are no
mis-classifications.

2. The monk2 data set has 169 examples in the training set,
which contains 105 positive and 64 negative examples. The
testing set contains 190 positive and 142 negative examples.

APPLYING LOGENPRO FOR RULE LEARNING 157

The knowledge hidden is “exactly two of the six attributes
have the values 1”. For example, a robot with
head _ shape=1, body_ shape=3, i s_smiling=1,
holding=3, holding=2 and j acket_color=2 is
positive. There are no mis-classifications.

The monk3 data set has 122 examples in the training set,
which contains 62 positive and 60 negative examples. The
testing set contains 204 positive and 228 negative examples.
The knowledge hidden is “(holding = 1 and
jacket_color = 3) or (body-shape ≠ 3 and
jacket—color ≠ 4)”. There are 5% mis-classifications in
the training set.

3.

Table 7.9: The monk database.

The knowledge in monk1 is in the standard disjunctive normal
form (DNF). The knowledge in monk2 is similar to a parity problem, and
is difficult to be described in DNF using the given attributes only. The
knowledge in monk3 is again in DNF but under the presence of noise.

The grammar for learning rules from this database is listed in
table 7.10. In this problem, there should be only rules describing
knowledge about positive robots. Thus these rules can only have one
consequent: “positive”. A default rule “if any then negative" is
used to classify a case as negative and the fitness of this default rule is
calculated. A discovered rule will not be used if its fitness is less than that
of the default rule. In this grammar, the attributes head_shape and

158 Chapter 7

body_shape can be described by their values, or a comparison between
them.The other attributes are described by their values. The symbols
erc2, erc3, and erc4 have ranges 1 to 2, 1 to 3, and 1 to 4,
respectively.

1: start -> [if], antes, [, then], consq, [.].
2: antes -> shape, [and], smile, [and], hold,
3: shape -> shape-comparison.
4: shape -> head, [and], body.
5: shape-comparison -> [head_shape] , comparator,

6: head -> [any].
7: head -> head-descriptor.
8: body -> [any].
9: body -> body-descriptor.
10: smile -> [any].
11: smile -> smile_descriptor.
12 : hold -> [any].
13 : hold -> hold_descriptor.
14: jacket -> [any].
15: jacket -> jacket-descriptor.
16: tie -> [any].
17: tie -> tie-descriptor.
18: head-descriptor -> [head-shape], comparator,
19: body-descriptor -> [body-shape] , comparator,
20: smile-descriptor -> [is-smiling] , comparator,
21: hold_descriptor -> [holding], comparator,

22: jacket-descriptor -> [jacket_color] , comparator,
23: tie-descriptor -> [has-tie] , comparator,

[and], jacket, [and], tie.

[body_shape .]

erc3.
erc3.
erc2.

erc3.
erc4.

erc2.
24: tie-descriptor -> [=] *
25: tie-descriptor -> [¹].
26: erc2 -> {member(?x, [1, 2])}, ?x.
21: erc3 -> {member(?x, [1, 2, 31) },
?X.
28: erc4 -> {member(?x, [1,2,3,4])},?x.
29: consq -> [positive].

Table 7.10: The grammar for the monk database.

APPLYING LOGENPRO FOR RULE LEARNING 159

For each data set, rule learning has been executed for 25 runs

using the following settings:

•

•

•

• w1 is 1,

• w2 is 8,

•

the population size is 50,

the maximum number of generations is 50,

the minimum support is 0.01,

the rates for crossover, mutation, and dropping condition are

0.5, 0.4, and 0.1, respectively.

The execution time for each run was around 120 seconds. The

result is shown in table 7.11. The results of other approaches are quoted

from Thrun et al. (1991) in table 7.12 as references.

Table 7.12: The classification accuracy of different approaches on the monk
database.

160 Chapter 7

• Monk1 database
For the monk1 database, the hidden knowledge can be
easily reconstructed by the above grammar. Thus we can
obtain classification accuracy of 100% on each run. The
rule set is shown in Appendix A.2.1. If the grammar
does not include a comparison between head_ shape
and body_shape, the perfect rule set can still be found
but at a later generation, and three rules are needed to
represented the concept (head_shape =
body _ shape) using the three possible values.

• Monk2 database
The hidden knowledge is difficult to be represented
using rules. The simple hidden rule must be represented
by a large number of rules. Thus, our system cannot
evolve all of these rules and results in poor classification
accuracy. The best rule set is shown in Appendix A.2.2.

• Monk3 database
Our system can discover knowledge with high
classification accuracy under this noisy environment.
The accuracy is the third best among different
approaches. The best rule set, which is given in
Appendix A.2.3, can classify all testing cases correctly.

From these experiments, we can see that our rule learning
approach can successfully learn rules with high accuracy from the
data, although the perfect rule set may not be discovered in every
run.

Chapter 8

MEDICAL DATA MINING

LOGENPRO has been applied to real-life medical databases
(Ngan et al. 1999). The following two sections are two case studies of
knowledge discovery from a fracture and a scoliosis databases.

8.1. A Case Study on the Fracture Database

The fracture database consists of records of children with limb
fractures, admitted to the Prince of Wales Hospital of Hong Kong in the
period 1984-1996. These data can provide information for the analysis of
children fracture patterns. The database has 6500 records and 8 attributes,
which are listed in table 8.1.

From the database, we expect to learn knowledge about these
attributes. The medical expert provides extra knowledge on how the rules
should be formulated. He suggests that the attributes can be divided into
three time stages: a diagnosis is first given to the patient, then an operation
is performed, and after that the patient stays in the hospital. This
knowledge leads to three kinds of rules. Firstly, sex, age, and admission
date are the possible causes of diagnoses. Secondly, these three attributes
and diagnosis are the possible causes of operations and surgeons. Thirdly,
length of stay has all the other attributes as the possible causes. A
grammar (see Appendix B.l) is written to specify these three kinds of
rules. In this experiment, we have used a population size of 300 to run for
50 generations. The minimum support is 0.01, w1 is 1, w2 is 8, the rates for
crossover, mutation, and dropping condition are 0.5, 0.4, and 0.1,
respectively. The execution time was about 3 hours on a Sun Ultra 1/140
for the 6500 records. The results are summarized in table 8.2. The rules
are listed in Appendix A.3.

162 Chapter 8

Table 8.1: Attributes in the fracture database.

Table 8.2: Summary of the rules for the fracture database.

Two interesting rules about diagnosis have been found. The one

If age is between 2 and 5,
then diagnosis is Humerus. (cf=51.43%)

with the highest confidence factor is:

The confidence factors of the rules about diagnosis are just around 40%-
50%. It is partly because there are actually no strong rules affecting the
value of diagnosis. However the ratio cf/prob shows that the patterns
discovered deviate significantly from the average. LOGENPRO found that
humerus fracture is the most common fracture for children between 2 and

MEDICAL DATA MINING 163

5 years old, while radius fracture is the most common fracture for boys
between 11 and 13.

Nine interesting rules about operation have been found. The one
with the highest confidence factor is presented as follows:

If age is between 0 and 7 and
admission year is between 1988 and 1993
and diagnosis is Radius,

then operation is CR+POP. (cf=74.05%)
These rules suggest that radius and ulna fractures are usually treated with
CR+POP (i.e. plaster). Usually, it is not necessary to perform operation
for tibia fracture. For children older than 11 years old, open reductions are
performed commonly. Usually, it is not necessary to perform operation for
children younger than 7 years old. LOGENPRO did not find any
interesting rules about surgeons, as the surgeons for operation are more or
less randomly distributed in the database.

Thirteen interesting rules about length of stay have been found.
The one with the highest confidence factor is:

If admission year is between 1985 and 1996

then stay is more than 8 days. (cf=81.11%)
and diagnosis is Femur ,

Because Femur and Tibia fractures are serious injuries, these kinds of
patients have to stay longer in hospital. If open reduction is performed, the
patient requires longer time to recover because the wound has been cut
open for operation. If no operation is needed, it is likely that the patient
can return home within one day. Relatively, radius fracture requires a
shorter time for recovery.

The results have been evaluated by the medical expert. The rules
provide interesting patterns that were not recognized before. The analysis
gives an overview of the important epidemiological and demographic data
of the fractures in children. It has clearly demonstrated the treatment
pattern and rules of decision making. It can provide a good monitor of the
change of pattern of management and the epidemiology if the data mining
process is continued longitudinally over the years. It also helps to provide
the information for setting up a knowledge-based instruction system to
help young doctors in training to learn the rules in diagnosis and
treatment.

164 Chapter 8

8.2. A Case Study on the Scoliosis Database

We have also employed LOGENPRO to learn rules from the
database of scoliosis patients. Scoliosis refers to the spinal deformation. A
scoliosis patient has one or more curves in his/her spine. Among them, the
curves with severe deformations are identified as major curves. The
database stores measurements on the patients, such as the number of
curves, the curve locations, degrees, and directions. It also records the
maturity of the patient, the class of scoliosis, and the treatment. The
database has 500 records. According to the domain expert, 20 attributes
are useful and extracted from the database. They are listed in table 8.3.

(Vertebras are coded with T1-T12 or L1-L5)
(Trunk Shift measures the displacement of the curve)
(Risser Sign measures the maturity of the patient)
Attributes in the scoliosis database. Table 8.3:

MEDICAL DATA MINING 165

The medical expert is interested in discovering knowledge about
classification of scoliosis and treatment. Scoliosis can be classified as
Kings, Thoracolumbar(TL), or Lumbar(L), while Kings can be further
subdivided into K-I, II, III, IV, and V. Treatment can be classified as
observation, surgery, or bracing. The domain expert is more interested in
finding relationships among classification of scoliosis and the attributes
1stCurveT1, 1stMCGreater, L4Tilt, 1stMCDeg, 2ndMCDeg,

1 s tMCApex, and 2ndMCApex, and relationships among treatment and
age, laxity, degrees of the curves, maturity of the patient, displacement of
the vertebra, and the class of scoliosis. This domain knowledge can be
easily incorporated into the logic grammar. There are two types of rules,
one for classification of scoliosis and the other for suggesting treatments.
The grammar is outlined in Appendix B.2. The population size is 100 and
the maximum number of generations is 50. The minimum support is 0.01,
w1 is 1, w2 is 8, the rates for crossover, mutation, and dropping condition
are 0.5, 0.4, and 0.1, respectively. The execution time was about one hour
on a Sun Ultra 1/140. The results of rule learning from this database are
listed below.

8.2.1. Rules for Scoliosis Classification

For each class of scoliosis, a number of rules are mined. The
results are summarized in table 8.4. The rules are listed in Appendix
A.4.1. A typical rule of this kind is:

If 1stMCGreater = N and 1stMCApex between T1 and T8
and 2ndMCApex between L3 and L4 ,

then diagnosis is K-I. (cf=100%)
For King-I and II the rules have high confidence and generally match
with the knowledge of medical experts. However the fourth rules of King-
II is an unexpected rule for the classification of King-II. Under the
conditions specified in the antecedents, our system found a rule with a
confidence factor of 52% that the classification is King-II. However, the
domain expert suggests the cIass should be King-V! After an analysis on
the database, we revealed that serious data errors existed in the current
database and that some records contained an incorrect scoliosis
classification.

166 Chapter 8

For King-III and IV the confidence factors of the rules discovered
are just around 20%. According to the domain expert, one common
characteristic for these two classes is that there is only one major curve or
the second major curve is insignificant. However there is no rigid
definition for a ‘major curve’ and the concept of ‘insignificant’ is fuzzy. It
depends on the interpretation of the doctors. Because of the inadequacy of
information from the training data, the system cannot find accurate rules
for these two classes. Another problem is that only a small number of
patients in the database were classified as King-III or IV (see the values of
prob in table 8.4). The database cannot provide a large number of cases
for training.

Similar problems also exist for King-V, TL, and L. For the
classes, the system found rules with confidence factors around 40% to
60%. Nevertheless, the rules for TL and L show something different in
comparison with the rules suggested by the clinicians. According to our
rules, the classification always depends on the location of the first major
curve, while according to the domain expert, the classification always
depends on the larger major curve. After discussion with the domain
expert, it is agreed that the existing rules are not defined clearly enough,
and our rules are more accurate than theirs. Our rules provide hints to the
clinicians to re-formulate their concepts.

8.2.2. Rules About Treatment

The results of rules about treatment are summarized in table 8.5.
The rules are listed in Appendix A.4.2. A typical rule of this kind is:

MEDICAL DATA MINING 167

If age between 2 and 12 and Degl between 20 and 26 and
Deg2 between 24 and 41 and
Deg3 between 21 and 52 and
Deg4 is 0 ,

then treatment is Bracing. (cf=100%)
The rules for observation and bracing have very high confidence

factors. However, the support is not high, showing that the rules only
cover fragments of the cases. Our system prefers accurate rules to general
rules. If the user prefers more general rules, the weights in the fitness
function can be tuned. For surgery, no interesting rule was found because
only 3.65% of the patients were treated with surgery.

The biggest impact on clinicians from the data mining analysis of
the scoliosis database is the fact that many rules set out in the clinical
practice are not clearly defined. The usual clinical interpretation depends
on the subjective experience. Data mining revealed quite a number of
mismatches in the classification on the types of Kings curves. After a
careful review by the senior surgeon it appears that the database entries by
junior surgeons may not be accurate and that the rules discovered are in
fact more accurate! The classification rules must therefore be quantified.
The rules discovered can therefore help in the training of younger doctors
and act as an intelligent means to validate and evaluate the accuracy of the
clinical database. An accurate and validated clinical database is very
important for helping clinicians to make decisions, to assess and evaluate
treatment strategies, to conduct clinical and related basic research, and to
enhance teaching and professional training.

This page intentionally left blank.

Chapter 9

CONCLUSION AND FUTURE WORK

9.1. Conclusion

Data mining is defined as the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in
data stored in databases (Fayyad et al. 1996, Frawley et al. 1991,
Piatetsky-Shapiro and Frawley 1991). The knowledge discovered can be
expressed in different knowledge representations such as logic programs,
decision trees, decision lists, and production rules.

Two of the approaches in data mining are Inductive Logic
Programming (ILP) and Genetic Programming (GP). It was demonstrated
that ILP can be used to induce knowledge represented as logic programs
(Dzeroski and Lavrac 1993, Dzeroski 1996, Dehaspe and Toivonen, 1999,
Srinivasan and King 1999, Blockeel et al. 1999, Srinivasan 1999). GP
(Koza 1992; 1994, Koza et al. 1999 Kinnear 1994) extends traditional
Genetic Algorithms (Holland 1992, Goldberg 1989, Davis 1987; 1991) to
induce automatically S-expressions in Lisp. It performs both exploitation
of the most promising solutions and exploration of the search space. It is
featured to tackle hard search problems and thus applicable to program
induction and data mining.

We have proposed a framework for data mining in chapter 5,
called Generic Genetic Programming (GGP), that combines Genetic
Programming and Inductive Logic Programming. This framework is based
on a formalism of logic grammars. To implement the framework, a data
mining system called LOGENPRO (The LOgic grammar based GENetic
PROgramming system) has been developed. The formalism can represent
context-sensitive information and domain-dependent knowledge. The
formalism is also very flexible and the knowledge learned can be
represented in various knowledge representations such as functional
programs, logic programs, and production rules. LOGENPRO has been
tested on some learning tasks.

An experiment that employs LOGENPRO to induce an
S-expression for calculating dot product has been described in chapter 6.

170 Chapter 9

This experiment illustrated that LOGENPRO, when used with domain
knowledge, accelerates the learning of programs.

Automatic discovery of sub-functions is one of the most important
research areas in genetic programming. In GP with ADFs, the user must
provide explicit knowledge about the number of available sub-functions,
the number of arguments of each sub-function, and the allowable terminal
and function sets for each sub-function. An experiment has been
performed to demonstrate that LOGENPRO can emulate GP with ADFs
and represent the knowledge easily. Moreover, LOGENPRO can employ
other knowledge such as argument types in a unified framework. This
experiment shows that LOGENPRO has superior performance to that of
GP with ADFs when more domain-dependent knowledge is available.

In chapter 6, we have also presented two applications of
LOGENPRO in acquiring knowledge from databases. These applications
have demonstrated the advantages of LOGENPRO over other learning
systems. In the first application, we have employed LOGENPRO to
induce knowledge represented in decision trees from a real-world database
and compared the results obtained by Michie et al, (1994) for the same
problem. We have found that Ca15, ITrule, Discrim, Logdisc and
DIPOL92 perform better than LOGENPRO marginally. Since the detailed
information about the accuracy of the former systems is not available, it
cannot be concluded that whether the differences in accuracy are
significant. On the other hand, LOGENPRO performs better than CART,
RBF, CASTLE, NaiveBay, IndCART, Back-propagation, C4.5, SMART,
Baytree, k-NN, NewID, AC2, LVQ, ALLOC80, CN2, and Quadisc for the
problem. Interestingly, LOGENPRO is better than C4.5 and CN2, two
systems that have been reported in the literature (Quinlan 1992, Clark and
Niblett 1989) about their outstanding performances in inducing decision
trees or rules.

In the second application, we have described how to combine
LOGENPRO and a variation of FOIL, BEAM-FOIL, in learning logic
programs. The initial population of logic programs is provided by
BEAM-FOIL. The performance of LOGENPRO in inducing logic
programs from imperfect training examples is evaluated using the chess
endgame problem. A detailed comparison to FOIL, BEAM-FOIL, and
mFOIL has been conducted. It is found that LOGENPRO outperforms the
other systems significantly in this domain.

CONCLUSION AND FUTURE WORK 171

In chapters 7 and 8, we have employed LOGENPRO for learning
rules from databases. Rules capture the specific relationships between
particular values of the variables.

The grammar used in LOGENPRO can provide a powerful
knowledge representation. It can specify the format of the rules to be
discovered. The format can be changed according to different domains,
and the flexible grammar allows the representation of general concepts.
Moreover, knowledge from domain experts is very useful for data mining.
The use of grammar allows the domain knowledge to be easily and
effectively utilized. Furthermore, the user can specify the desirable rule
format by composing a suitable grammar. This can increase the
understandability and the usefulness of the discovered rules.

In many real-life situations, the available rules are general
guidelines with many exceptional cases. The fitness function in the rule
learning approach has been designed to learn such kind of knowledge. It
compares the confidence factor of the rule with the average probability, so
as to search for the patterns significantly deviated from the normal. Since
one rule is insufficient to represent the complete knowledge, token
competition has been used to learn as many rules as possible. This
technique can effectively and efficiently formulate niches in the
population, such that different rules are evolved in the same population.
This rule learning approach can successfully construct rules from data.
The rules can represent the regularities in the database and provide
interesting knowledge to the users.

The data mining system has been applied to two real-life medical
databases. The results can provide interesting knowledge as well as
suggestion for refinements to the existing knowledge. We also have found
unexpected results that have led to discovery of mistakes in databases. In
the fracture database, the system automatically uncovered knowledge
about the age effect on fracture, the relationship between diagnoses and
operations, and the effect of diagnoses and operations on lengths of
staying in the hospital. In the scoliosis database, we have discovered new
knowledge about the classification of scoliosis and about the treatment.
The discovered knowledge has led to refinements of the existing
knowledge.

These experiments and the results demonstrate that LOGENPRO
is a promising system for inducing knowledge from databases.

172 Chapter 9

9.2. Future Work

In chapter 6, we have shown that LOGENPRO can successfully
induce knowledge represented as logic programs from noisy datasets. We
have also found that the noise handling ability of LOGENPRO is better
than many existing ILP systems. Since training examples stored in
everyday databases are usually imperfect, a very important research area
in data mining is how to improve the noise handling mechanisms of our
system.

One can use LOGENPRO on extracting knowledge from other
datasets of the field. One can also combine LOGENPRO with other
learning systems such as GOLEM (Muggletion and Feng 1990), LINUS
(Lavrac and Dzeroski 1994), and mFOIL (Lavrac and Dzeroski 1994) to
explore the possibility of further improvement on its learning ability.

Since the system is very flexible, different representations
employed by other learning systems can be specified easily. It facilitates
the integration of LOGENPRO with the latter. One approach is to
incorporate the search operators of other systems into LOGENPRO. These
operators include information guided hill-climbing (Quinlan 1990; 199 1),
explanation-based generalization (DeJong and Mooney 1986, Mitchell et
al. 1986, Ellman 1989), explanation-based specialization (Minton 1989)
and inverse resolution (Muggleton 1992). LOGENPRO can also invoke
other learning systems as front-ends to generate the initial population. The
advantage is that we can quickly find important and meaningful
components (genetic materials) and embody these components into the
initial population. Moreover, it has been found that LOGENPRO, when
combined with other learning systems, has superior performance in
learning logic programs from imperfect data as in the chess-endgame
problem. The Darwinian principle of survival and selection of the fittest is
a plausible noise handling method which can avoid overfitting and
identify important patterns simultaneously. This superior noise handling
ability is intrinsically embedded in LOGENPRO because it uses
evolutionary algorithms as its primary learning mechanism.

For almost all applications of LOGENPRO, a huge amount of
computation time is consumed in evaluating the fitness value of each
program in the population since the genetic operators of LOGENPRO can
be performed efficiently. Memory availability is another important
problem of LOGENPRO because the population usually has a large

CONCLUSION AND FUTURE WORK 173

number of programs. Moreover, since programs are represented as
derivation trees of varying sizes, shapes, and structures. This
representation method requires a lot of memory to store programs.

There is a relation between the difficulty of the problem to be
solved and the size of the population. In order to solve substantial and real
world problems, a population size of thousands and a longer evolution
process are usually required. A larger population and a longer evolution
process imply a larger number of fitness evaluations must be conducted
and more memory is required. In other words, a lot of computational
resources are required to solve substantial and practical problems.
Usually, this requirement cannot be fulfilled by normal workstations.

Fortunately, these time-consuming fitness evaluations can be
performed independently for each program in the population and
programs in the population can be distributed among multiple computers.
Thus, we plan to develop a parallel version of LOGENPRO.

Evolutionary algorithms have a high degree of inherent
parallelism which is one of the motivation of studies in this field. In
natural populations, thousands or even millions of individuals exist in
parallel and these individuals operate independently with a little
cooperation and/or competition among them. This suggests a degree of
parallelism that is directly proportional to the population size used in
evolutionary algorithms. There are different ways of exploiting
parallelisms in evolutionary algorithms. We plan to study the possibility
of parallelizing LOGENPRO using four different approaches. They are
master-slave models, improved-slave models, massively parallel
evolutionary algorithms, and island models.

The most direct way to implement a parallel evolutionary
algorithm is to implement a global population in the master processor. The
master sends each individual to a slave processor and let the slave to find
the fitness value of the individual. After the fitness values of all
individuals are obtained, the master processor selects some individuals
from the population using some selection method, performs some genetic
operations, and then creates a new population of offspring. The master
sends each individual in the new population to a slave again and the above
process is iterated until the termination criterion is satisfied.

Master-slave models can be improved easily using the tournament
selection. Another direct way to implement a parallel evolutionary
algorithm is to implement a global population and use the tournament
selection. As described in chapter 3 , the tournament selection

174 Chapter 9

approximates the behavior of ranking. Assume that the population size N
is even and there are more than N/2 processors. N/2 slave processors are
selected and are numbered from 1 to N/2. A processor selected from the
remaining processors maintains the global population and implements an
algorithm that controls the overall evolution process and the other N/2
slave processors. Each slave processor performs two independent m-ary
tournaments. In each tournament, m individuals are sampled randomly
from the global population. These m individuals are evaluated in the slave
processor and the winner is kept. Since there are two tournaments, the two
winners produced can be crossed in the slave processor to generate two
offspring. The slave processor may perform further modifications to the
offspring. The offspring are then sent back to the global population and
the master processor proceeds to the next generation if all offspring are
received from the N/2 slave processors.

Massively parallel evolutionary algorithms explore the computing
power of massively parallel computers. To explore the power of this kind
of computers, one can assign one individual to each processor, and allow
each individual to seek a mate close to it. A global random mating scheme
is inappropriate because of the limitation of the communication abilities of
these computers. Each processor can select probabilistically an individual
in its neighborhood to mate with. The selection is based on the fitness
proportionate selection, the ranking, the tournament selection, or other
selection methods proposed in the literature. Only one offspring is
produced and becomes the new resident at that processor. The common
property of different massively parallel evolutionary algorithms is that
selections and mating are typically restricted to a local neighborhood.

Island models can fully explore the computing power of coarse
grain parallel computers and distributed workstations. Assume that we
have 20 high performance processors, such as the UltraSparc processors,
and have a population of 4000 individuals. We can divide the total
population down into 20 sub-populations (islands or demes) of 200
individuals each. Each processor can then execute a normal evolutionary
algorithm such as LOGENPRO on one of these sub-populations.
Occasionally, the sub-populations would swap a few individuals. The
migration allows sub-populations to share genetic material (Whitley and
Starkweather 1990, Gorges-Schlenter 199 1, Tanese 1989, Starkweather et
al. 1991).

Since there are 20 independent evolutionary searches occur
concurrently, these searches will be different to a certain extent because
the initial subpopulations will impose a certain sampling bias. Moreover,

CONCLUSION AND FUTURE WORK 175

genetic drift will tend to drive these subpopulations in different directions.
By employing migration, island models are able to exploit differences in
the various subpopulations. These differences maintain genetic diversity
of the whole population and thus can prevent the problem of premature
convergence. We plan to exploit a number of variations of island models.
These variations investigate the effects of subpopulations with different
sizes or even dynamic sizes, asynchronous migration, dynamic number of
migrating individuals, subpopulations with different fitness functions,
adaptive migration methods, and cooperative/competitive co-evolution.

This page intentionally left blank.

Appendix A

THE RULE SETS DISCOVERED

A.l. The Best Rule Set Learned from the Iris Database

1. if petal width is between 0.08 and 0.77, then
class is Iris-setosa.
Fitness: 1.50
Confidence: 100%;
Support: 30%;
Probability of consequent: 30%
petal width is between 0.18 and 1.66, then
class is Iris-vericolor.
Fitness: 1.37
Confidence: 100%;
Support: 35%;
Probability of consequent: 35%
class is Iris-virginica.
Fitness: 0.43
Confidence: 49.06%;
Support: 26%;
Probability of consequent: 35%

2. if petal length is between 1.98 and 4.97, and

3. if sepal width is between 2.33 and 3.16, then

4. if any, then class is Iris-virginica.
Fitness: 0.35
Confidence: 35%;
Support: 35%;
Probability of consequent: 35%

178 Appendix A

A.2. The Best Rule Set Learned from the Monk Database

A.2.1. Monk1

1. if jacket_color = 1, then positive.
Fitness: 11.33
Confidence:100%;
Support: 23.39%;
Probability of consequent: 50%
positive.
Fitness: 9.93
Confidence:100%;
Support: 7.26%;
Probability of consequent: 50%
positive.
Fitness: 8.98
Confidence: 100%;
Support: 12.10%;
Probability of consequent: 50%
positive.
Fitness: 8.59
Confidence: 100%;
Support: 13.70%;
Probability of consequent: 50%

2. if head-shape = 1 and body-shape = 1, then

3. if head_shape = 2 and body_shape = 2, then

4. if head shape = 3 and body-shape = 3, then

5. if any, then negative.
Fitness: 0.51
Confidence: 50%;
Support: 50%;
Probability of consequent: 50%

THE RULE SETS DISCOVERED 179

A.2.2. Monk2

1. if head-shape≠ body-shape and is-smiling= 1
and holding ≠ 1 and jacket-color = 2 and
has-tie≠ 1, then positive.
Fitness: 15.59
Confidence: 100%;
Support: 4.73%;
Probability of consequent: 37.87%

2. if head_shape = 2 and body_shape ≠ 1 and
is_smiling ≠ 2 and holding ≠ 1 andjacket-color
≠ 1 and has_tie ≠ 2, then positive.
Fitness: 15.58
Confidence: 100%;
Support: 3.55%;
Probability of consequent: 37.87%

and jacket_color = 1 and has-tie ≠ 1, then
positive.
Fitness: 15.58
Confidence: 100%;
Support: 2.96%;
Probability of consequent: 37.87%

holding = 2 and jacket_color = 1 and has_tie ≠
2, then positive.
Fitness: 15.57
Confidence: 100%;
Support: 2.37%;
Probability of consequent: 37.87%

holding ≠ 1 and jacket_color = 3 and has_tie ≠
1, then positive.
Fitness: 15.56
Confidence: 100%;
Support: 1.78%;
Probability of consequent: 37.87%

3. if head_shape ≠ body-shape and is-smiling≠ 1

4. if body-shape ≠ 1 and is_smiling ≠ 1 and

5. if head_shape = 1 and is_smiling ≠ 2 and

180 Appendix A

6. if body_shape = 1 and is_smiling = 1 and
jacket_color = 3 and has_tie = 2, then
positive.
Fitness: 15.56
Confidence: 100%;
Support: 1.78%;
Probability of consequent: 37.87%

is_smiling ≠ 1 and holding = 3 and jacket_color
= 1, then positive.
Fitness: 15.56
Confidence: 100%;
Support: 1.78%;
Probability of consequent: 37.87%

holding ≠ 1 and jacket_color = 4 and has-tie ≠
1, then positive.
Fitness: 15.56
Confidence: 100%;
Support: 1.18%;
Probability of consequent: 37.87%
if head_shape = 3 and body-shape ≠ 3 and
is_smiling ≠ 2 and jacket_color ≠ 1 and has_tie
= 2, then positive.
Fitness: 5.05
Confidence: 87.50%;
Support: 4.14%;
Probability of consequent: 37.87%

jacket-color = 2 and has_tie = 1, then positive,
Fitness: 3.96
Confidence: 70%;
Support: 4.14%;
Probability of consequent: 37.87%

7. if head_shape ≠ 1 and body_shape ≠ 1 and

8. if head_shape = 1 and is_smiling ≠ 2 and

9.

10. if head-shape ≠ body_shape and holding ≠ 1 and

THE RULE SETS DISCOVERED 181

11. if body-shape ≠ 1 and is-smiling≠ 1 and
holding = 2 and jacket-color ≠ 2 and has-tie ≠
2, then positive.
Fitness: 2.75
Confidence: 75%;
Support: 3.55%;
Probability of consequent: 37.87%
if head_shape ≠ body-shape and is_smiling = 1
and holding ≠ 1 and jacket_color = 2, then
positive.
Fitness: 2.37
Confidence: 91.67%;
Support: 6.50%;
Probability of consequent: 37.87%
if head shape ≠ body_shape and holding ≠ 2 and
jacket_golor = 2 and has_tie = 1, then
positive.
Fitness: 1.35
Confidence: 83.33%;
Support: 2.96%;
Probability of consequent: 37.87%

jacket_color ≠ 1 and has_tie = 2, then
positive.
Fitness: 1.13
Confidence: 50%;
Support: 3.55%;
Probability of consequent: 37.87%

12.

13.

14. if body_shape = 1 and is_smiling ≠ 1 and

15. if any, then negative.
Fitness: 0.63
Confidence: 62.13%;
Support: 62.13%;
Probability of consequent: 62.13%

182 Appendix A

A.2.3. Monk3

1. if body_shape ≠ 3 and is_smiling = 2 and
jacket_color ≠ 4, then positive.
Fitness : 11.4 6
Confidence: 100%;
Support: 22.30%;
Probability of consequent: 49.59%
if head_shape ≠ body_shape and holding = 1 and
jacket _ color = 3, then positive.
Fitness : 6.76
Confidence: 100%;
Support: 4.13%;
Probability of consequent: 49.59%

3. if body shape ≠ 3 and holding ≠ 2 and
jacket-color = 2, then positive.
Fitness : 6.06
Confidence: 100%;
Support: 12.40%;
Probability of consequent: 49.59%

4. if head-shape≠ 1 and holding = 1 and
jacket-color = 3, then positive.
Fitness: 4.51
Confidence: 100%;
Support: 4.13%;
Probability of consequent: 49.59%

positive.
Fitness: 2.68
Confidence: 91.94%;
Support: 47.10%;
Probability of consequent: 49.59%

has_tie ≠ 1, then positive.
Fitness : 1.62
Confidence: 100%;
Support: 11.57%;
Probability of consequent: 49.59%

2.

5. if body-shape ≠ 3 and jacket_color ≠ 4, then

6. if body shape ≠ 3 and jacket color = 2 and__

THE RULE SETS DISCOVERED 183

7. if head_shape ≠ 2 and body_shape ≠ 3 and
holding ≠ 3 and jacket_color = 2, then
positive.
Fitness: 0.87
Confidence: 100%;
Support: 10.74%;
Probability of consequent: 49.59%

8. if any, then negative.
Fitness: 0.51
Confidence: 50.41%;
Support: 50.40%;
Probability of consequent: 50.40%

A.3. The Best Rule Set Learned from the Fracture
Database

A.3.1. Type I Rules: About Diagnosis

1. Humerus
if age is between 2 and 5, then diagnosis is
Humerus.
Fitness: 3.48
Confidence: 39.75%;
Support: 8.42%;
Probability of consequent: 23.43%
if sex is M, and age is between 11 and 13, then
diagnosis is Radius .
Fitness: 3.04
Confidence: 51.43%;
Support: 10.01%;
Probability of consequent: 36.10%

2. Radius

184 Appendix A

A.3.2. Type II Rules: About Operation/Surgeon

1. Radius vs. CR+POP
if age is between 0 and 7, and admission year
between 1988 and 1993, and diagnosis is Radius,
then operation is CR+POP.
Fitness: 8.56
Confidence: 50.61%;
Support: 3.19%;
Probability of consequent: 17.72%
if age is between 1 and 7, and diagnosis is
Tibia, then operation is Null (i.e. no
operation).
Fitness: 7.86
Confidence: 74.05%;
Support: 3.78%;
Probability of consequent: 38.11%

3. Ulna vs. CR+POP
if age is between 1 and 12, and admission year
between 1989 and 1992, and diagnosis is Ulna,
then operation is CR+POP.
Fitness: 7.19
Confidence: 47.37%;
Support: 3.50%;
Probability of consequent: 17.72%
if diagnosis is Ulna, then operation is CR+POP.
Fitness: 4.23
Confidence: 36.17%;
Support: 7.408;
Probability of consequent: 17.72%

2. Tibia vs. No Operation

THE RULE SETS DISCOVERED 185

4. Radius vs. CR+K-Wire
if admission year is between 1992 and 1994, and
diagnosis is Radius, then operation is CR+K-
Wire.
Fitness: 4.10
Confidence: 34.03%;
Support: 3.83%;
Probability of consequent: 16.23%
if diagnosis is Humerus, then operation is
CR+K-Wire.
Fitness: 2.52
Confidence: 27.96%;
Support: 6.06%;
Probability of consequent: 16.23%
if age is between 11 and 15, and diagnosis is
Ulna, then operation is OR.
Fitness: 3.24
Confidence: 33.20%;
Support: 3.25%;
Probability of consequent: 18.26%
if sex is M, and age is between 13 and 17, and
admission year between 1985 and 1989, then
operation is OR.
Fitness: 2.57
Confidence: 30.53%;
Support: 3.22%;
Probability of consequent: 18.26%

8. Age vs. No Operation
if age is between 0 and 7, then operation is
Null (i.e. no operation).
Fitness: 1.08
Confidence: 43.33%;
Support: 16.22%;
Probability of consequent: 38.11%

5. Humerus vs. CR+K-Wire

6. Ulna vs. OR

7. Age vs. OR

186 Appendix A

A.3.3. Type III Rules: About Stay

1. Femur vs. Stay
if admission year between 1985 and 1996, and
diagnosis is Femur , then stay is between 8 and
2000 days. (i.e. stay 8 days or more, since
2000 is the maximum value of stay)
Fitness: 21.99
Confidence: 70.87%;
Support: 3.14%;
Probability of consequent: 10.24%
if diagnosis is Femur , then stay is between 5
and 2000 days. (i.e. stay 5 days or more)
Fitness: 18.70
Confidence: 80.99%;
Support: 3.30%;
Probability of consequent: 19.22%
if age between 5 and 12, and diagnosis is
Tibia, then stay is between 3 and 2000. (i.e.
stay 3 days or more)
Fitness : 8.93
Confidence: 78.92%;
Support: 5.05%;
Probability of consequent: 39.15%

2. Tibia vs. Stay

THE RULE SETS DISCOVERED 187

3. OR vs. Stay
if age between 2 and 14, and diagnosis is
Humerus, and operation is OR, then stay is
between 3 and 25 days.
Fitness: 8.86
Confidence: 75.57%;
Support: 3.52%;
Probability of consequent: 36.51%
if admission is between 1985 and 1987, and
operation is OR, then stay is between 3 and 10
days.
Fitness: 6.99
Confidence: 65.52%;
Support: 3.47%;
Probability of consequent: 33.85%
if operation is OR, then stay is between 3 and
25 days.
Fitness: 6.13
Confidence: 64.90%;
Support: 12.22%;
Probability of consequent: 36.51%

4. No operation vs. Stay
if age is between 10 and 14, and admission year
is between 1987 and 1996, and diagnosis is
Radius, and operation is Null, then stay is
between 0 and 1 day.
Fitness : 9.55
Confidence: 77.00%;
Support: 3.09%;
Probability of consequent: 35.65%
if operation is Null, then stay is between 0
and 1 day.
Fitness: 3.38
Confidence: 52.06%;
Support: 19.62%;
Probability of consequent: 35.65%

188 Appendix A

5. Radius vs. Stay
if age between 6 and 12, and admission year is
between 1989 and 1992, and diagnosis is Radius,
and operation is CR+POP, then stay is between 1
and 2 days.
Fitness: 6.01
Confidence: 81.11%;
Support: 3.22%;
Probability of consequent: 51.29%
if diagnosis is Radius, and operation is
CRtPOP, then stay is between 1 and 2 days.
Fitness: 5.49
Confidence: 78.57%;
Support: 10.22%;
Probability of consequent: 51.29%
if age is between 0 and 8, and diagnosis is
Radius, then stay is between 0 and 3 days.
Fitness: 2.89
Confidence : 8 6.92% ;
Support: 10.19%;
Probability of consequent: 71.30%

6. Humerus vs. Stay
if diagnosis is Humerus, and operation is CR+K-
WIRE, then stay is between 2 and 5 days.
Fitness: 3.90
Confidence: 67.30%;
Support: 4.56%;
Probability of consequent: 47.16%
if admission year is between 1985 and 1987,
then stay is between 3 and 10 days.
Fitness: 2.58
Confidence: 46.98%;
Support: 8.65%;
Probability of consequent: 33.85%

7. Year vs. Stay

THE RULE SETS DISCOVERED 189

A.4. The Best Rule Set Learned from the Scoliosis
Database

A.4.1. Rules for Classification

A.4.1.1. King-I

1. if 1stMCGreater=N and 1stMCApex=T1-T8 and
2ndMCApex=L3-L4, then King-I.
Fitness: 20.20
Confidence: 100%;
Support: 0.86%;
Probability of consequent: 28.33%
1stMCApex =T1-T12 and 2ndMCApex=L2-L3, then
King-I.
Fitness: 19.06
Confidence: 96.67%;
Support : 6.22%;
Probability of consequent: 28.33%

3. if 1stMCGreater=N and L4Tilt=Y and 1stMCApex
=T1-T10 and 2ndMCApex=L2-L5, then King-I.
Fitness: 18.92
Confidence: 96.15%;
Support: 10.13%;
Probability of consequent: 28.33%

2. if 1stMCGreater=N and 1stMCDeg=21-80 and

190 Appendix A

A.4.1.2. King-II

1. if 1stCurveT1=N and 1stMCGreater-Y and
1stMCDeg=16-45 and 2ndMCDeg=28-54 and 1stMCApex
=T4-T11 and 2ndMCApex=L2-L3, then King-II.
Fitness: 16.63
Confidence: 100.00%;
Support: 1.07%;
Probability of consequent: 35.41%

2. if 1stMCGreater=Y and L4Tilt=Y and 1stMCDeg=22-
77 and 2ndMCDeg=19-54 and 1stMCApex =T1-T11 and
2ndMCApex=L2-L2, then King-II.
Fitness: 12.85
Confidence: 87.88%;
Support: 6.22%;
Probability of consequent: 35.41%
1stMCApex=TG-T10 and 2ndMCApex=L2-L5, then
King-II.
Fitness: 10.52
Confidence: 79.76%;
Support: 14.38%;
Probability of consequent: 35.41%
1stMCApex=T3-T11 and 2ndMCApex= T4-T10, then
King-I I .
Fitness: 3.32
Confidence: 52.17%;
Support: 7.73%;
Probability of consequent: 35.41%

3. if 1stMCGreater=Y and L4Tilt=Y and

4. if 1stMajorCurveGreater=Y and 2ndMCDeg=8-95 and

THE RULE SETS DISCOVERED 191

A.4.1.3. King-III

1. if 1stCurveT1=N and L4Tilt=N and 1stMCApex=T1-
T9 and 2ndMCApex=Null, then King-111.
Fitness: 5.87
Confidence: 25.87%;
Support: 0.86%;
Probability of consequent: 7.94%

2. if L4Tilt=N and 1stMCApex=T2-T6 and
2ndMCApex=T2-T11, then King-III.
Fitness: 4.86
Confidence: 25.71%;
Support: 1.93%;
Probability of consequent: 7.94%

A.4.1.4. King-IV

1. if 1stCurveT1=Y and 1stMCGreater=Y and L4Tilt=Y
and 1stMCApex=L5-T10 and 2ndMCApex=T9-L5, then
King-IV.
Fitness: 11.10
Confidence: 29.41%;
Support: 1.07%;
Probability of consequent: 2.79%
1stMCApex=T10-L5 and 2ndMCApex=T5-L4, then
King- IV .
Fitness : 6.02
Confidence: 19.35%;
Support : 1.2 9% ;
Probability of consequent: 2.79%

2. if 1stMCGreater=Y and L4Tilt=Y and

192 Appendix A

A.4.1.5. King-V

1. if 1stMCGreater=Y and L4Tilt=Y and
1stMCApex=T2-T5 and 2ndMCApex=T9-T11 then
King-V.
Fitness: 22.15
Confidence: 62.50%;
Support: 1.07%;
Probability of consequent: 6.44%
1stMCApex=T4-T7 and 2ndMCApex=T2-T11 then
King-V.
Fitness: 19.98
Confidence: 51.14%;
Support: 0.86%;
Probability of consequent: 6.44%
and 1stMCDeg=3-35 and 1stMCApex=T2-T6 and
2ndMCApex=T7-T9, then King-V.
Fitness: 16.42
Confidence: 50.00%;
Support: 0.86%;
Probability of consequent: 6.44%

2. if 1stMCGreater=N and 2ndMCDeg=37-70 and

3. if 1stCurveT1=Y and 1stMCGreater=Y and L4Tilt=Y

A.4.1.6. TL

1. if 1stMCGreater=Y and 1stMCApex=T11-T12 and
2ndMCApex=Null, then TL.
Fitness: 19.49
Confidence: 41.18%;
Support: 1.50%;
Probability of consequent: 2.15%

THE RULE SETS DISCOVERED 193

A.4.1.7. L

1. if 1stMCGreater=Y and L4Tilt=N and
1stMCApex=L2-L5 and 2ndMCApex=Null, then L.
Fitness: 26.32
Confidence: 62.50%;
Support: 1.07%;
Probability of consequent: 4.51%
if 1stCurveT1=N and L4Tilt=N and 2ndMCDeg=Null
and 1stMCApex=L1-L3 and 2ndMCApex=Null, then L.
Fitness: 21.59
Confidence: 54.17%;
Support: 2.79%;
Probability of consequent: 4.51%
2ndMCApex=Null, then L.
Fitness: 16.84
Confidence: 45.45%;
Support: 2.15%;
Probability of consequent: 4.51%

2. if 1stCurveT1=N and 1stMCApex=L2-L5 and

194 Appendix A

A.4.2.Rules for Treatment

A.4.2.1. Observation

1. if Deg1-3-12 and Deg2 =Null and Deg3 = Null and
Deg4 = Null, then Observation.
Fitness: 7.59
Confidence: 100.00%;
Support: 1.93%;
Probability of consequent: 62.45%
if Deg1=5-27 and Deg2 =4-21 and Deg3 = 0-22 and
Deg4 = Null and mens = 99, then Observation.
Fitness: 7.55
Confidence: 100.00%;
Support: 1.07%;
Probability of consequent: 62.45%
Deg4 = Null, then Observation.
Fitness: 6.8
Confidence: 95.55%;
Support: 6.01%;
Probability of consequent: 62.45%

2. if Deg1=4-13 and Deg2 =2-29 and Deg3 = Null and

A.4.2.2. Bracing

1. if age = 2-12 and Deg1=20-26 and Deg2 =24-47
and Deg3 = 27-52 and Deg4 = Null, then Bracing.
Fitness: 22.54
Confidence: 100.00%;
Support: 0.86%;
Probability of consequent: 24.46%

THE RULE SETS DISCOVERED 195

2. if Deg1=21-28 and Deg2 =32-43 and Deg3 = Null
and Deg4 = Null and RI = 3-4, then Bracing.
Fitness: 15.18
Confidence: 80.00%;
Support: 0.86%;
Probability of consequent: 24.46%
and Deg4 = Null and RI = 1-3, then Bracing.
Fitness: 12.26
Confidence: 71.43%;
Support: 1.07%;
Probability of consequent: 24.46%

3. if Deg1=25-39 and Deg2 =21-42 and Deg3 = Null

This page intentionally left blank.

Appendix B

THE GRAMMAR USED FOR THE FRACTURE
AND SCOLIOSIS DATABASES

B.l. The Grammar for the Fracture Database

This grammar is not completely listed. The grammar rules for the
other attribute descriptors are similar to the grammar rules 14 - 25

1: start -> rulel.
2: start -> rule2.
3: start -> rule3.
4: rule1 -> [if], antesl, [, then], consql, [.].
5: rule2 -> [if] ,antes1, [and], antes2, [,then], consq2 [.].
6: rule3 -> [if], antesl, [and], antes2, [and], antes3,

[, then], consq3, [.].
7: antesl -> sexl, [and], agel, [and], admdayl.
8: antes2 -> diagnosisl.
9: antes3 -> operationl, [and], surgeonl.
10: consql -> diagnosis_descriptor.
11: consq2 -> operation_descriptor.
12: consq2 -> surgeon_descriptor.
13: consq3 -> stay_descriptor.
15: sex1 -> sex_descriptor.
16: sex-descriptor -> {sex_const (?x) }, [sex = ?X] .
18: admdayl -> admday_descriptor.

14: sex1 -> [any] .

17: admdayl -> [any].

19: admday-descriptor ->

20: admday-descriptor ->

21: admday-descriptor ->

22: admday-descriptor ->

23: diagnosis1 -> [any].

{day_const (?x)}, {month_const (?y)},
[admission day between ?x and ?y].
{month_const (?x)}, {month_const (?y)},
[admission month between ?x and ?y].
{yer_const (?x)}, {year_const (?y)},
[admission year between ?x and ?y].
{weekday_const (?x)}, {weekday_const (?y)},
[admission weekday between ?x and ?y].

24: diagnosis1 -> diagnosis_descriptor.
25: diagnosis_descriptor —> {disgnosis_const (?x)},

[diagnosisis ?X].
...

198 Appendix B

B.2. The Grammar for the Scoliosis Database

This grammar is not completely listed. The grammar rules for the
other attribute descriptors are similar to the grammar rules 8 - 16.

1: start -> rulel.
2: start -> rule2.
3: rule1 -> [if], antesl, [,then], consq1, [.].
4: rule2 -> [if], antes2, [, then], consq2 [.].
5: antes1 -> 1stCurveT1, [and], 1stMCGreater, [andl,

6: antes2 -> age, [and], law, [and], deg1, [and], deg2,
L4Tilt, [and], 1stMCDeg, [and] 2ndMCDeg,
[and],1stMCApex, [and]2ndMDApex.
[and],deg3, [and],deg4, [and],mens, [and],
ri, [and],tsi, [and],scoliosisType.

7: consql -> scoliosisType_descriptor.
9: 1stMCGreater -> 1stMCGreater_descriptor.
10: 1stMCGreater_descriptor -> {boolean_const(?x)],

[1stMCGreater = ?X].
12: 1stMCDeg -> 1stMCDeg_descriptor.

8: 1stMCGreater -> [any].

11: 1stMCDeg -> [any].

13: 1stMCDeg_descriptor ->

14 : 1stMCApex -> [any].

16: 1stMCApex_descriptor ->

(deg_const(?x)), (deg_const(?y)),
[1stMCDeg between ?x and ?y].

15 : 1stMCApex -> 1stMCApex_descriptor.
{apex_const(?x)}, (apex_const(?y)),
[1stMCApex between ?x and ?y].

......

References

Abramson, H. and Dahl, V. (1989). Logic Grammars. Berlin: Springer-Verlag.

Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association Rules. In
Proceedings of the 20th International Conference on Very Large Databases, pp. 487-499.

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining Association Rules Between
Sets of Items in Large Databases. In Proceedings of the I993 International Conference on
Management of Data (SIGMOD 93), pp. 207-216.

Aho, A. V. and Ullman, J. D. (1977). Principles of Compiler Design. Reading, MA
Addison-Wesley .

Angeline, P. (1994). Genetic Programming and Emergent Intelligent. In K. E. Kinnear, Jr.
(ed.), Advances in Genetic Programming, pp. 75-97. Cambridge, MA: MIT Press.

Angeline, P. (1993). Evolutionary Algorithms and Emergent Intelligence. Ph.D.
Dissertation. The Ohio State University.

Angeline, P. and Kinnear, K. E. Jr., editor (1996). Advances in Genetic Programming II.
Cambridge, MA: MIT Press.

Back, T. (1996). Evolutionary Algorithms in Theory and Practice : Evolution strategies,
Evolutionary Programming, Genetic algorithms. New York, NY: Oxford University Press.

Back, T., Hoffmeister, F., and Schwefel, H. P. (1991). A Survey of Evolution Strategies. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 2-9. San
Mateo, CA: Morgan Kaufmann.

Baker, J. (1987). Reducing Bias and Inefficiency in the Selection Algorithm. In
Proceedings of the Second International Conference on Genetic Algorithms and their
Applications. Hillsdale, NJ: Lawrence Erlbaum.

Baker, J. (1985). Adaptive Selection Methods for Genetic Algorithms. In J. Grefenstette
(ed.), Proceedings of an International Conference on Genetic Algorithms and Their
Applications, pp. 101-1 11. Hillsdale, NJ: Lawrence Erlbaum.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Genetic Programming:
An Introduction on the Automatic Evolution of Computer Programs and its Applications.
San Francisco, CA: Morgan Kaufmann.

Bergadano, F., Giordana, A., and Saitta, L. (1991). Machine Learning: An Integrated
Framework and its Applications. London: Ellis Horwood.

Bergadano, F. and Gunetti, D. (1995). Inductive Logic Programming: From Machine
Learning to Software Engineering. Cambridge, MA: MF Press.

Blockeel, H., De Raedt, L., Jacobs, N., and Demoen, B. (1999). Scaling Up Inductive
Logic Programming by Learning from Interpretations. Data Mining and Knowledge
Discovery, 3, pp. 59-93.

Booker, L., Goldberg, D. E., and Holland, J. (1989). Classifier Systems and Genetic
Algorithms. Artificial Intelligence, 40, pp. 235-282.

200 References

Bouckaert, R. R. (1994). Properties of Belief Belief Networks Learning Algorithms. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 102-109.

Bratko, I. and King, R. (1994). Applications of Inductive Logic Programming. SIGART
Bulletin, 5 (1), pp. 43-49.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and
Regression Trees. Belmont: Wadsworth.

Buchanan, B. G. and Shortliffe, E. H. editors (1984). Rule-based Expert Systems The
MYCIN Experiments of the Stanford Heuristic Programming Project. Reading. Reading,
MA: Addison-Wesley.

Carbonell, J. G. editor (1990). Machine Learning: Paradigms for Machine Learning.
Cambridge, MA: MIT Press.

Cavicchio, D. J. (1970). Adaptive Search Using Simulated Evolution. PhD thesis,
University of Michigan, Ann Arbor.

Cameron-Jones, R. and Quinlan, J. (1994). Efficient Top-down Induction of Logic
Programs. SIGART Bulletin, 5(1), pp. 33-42.

Cameron-Jones, R. and Quinlan, J. (1993). Avoiding Pitfalls when Learning Recursive
Theories. In Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann.

Cestnik, B. (1990). Estimating Probabilities: A Crucial Task in Machine Learning. In
Proceedings of the Ninth European Conference on Artificial Intelligence, pp. 147-149.
London: Pitman.

Cesmik, B. and Bratko, I. (1991). On Estimating Probabilities in Tree Pruning. In Y.
Kodratoff (ed.), Proceedings of the Fifth European Working Session on Learning, pp. 151-
163. Berlin: Springer Verlag.

Chakrabarti, S., Dom, B. E., Kumar, S. R., Raghavan, P., Rajagopalan, S. Tomkins, A.,
Gibson, D., and Kleinberg, J. (1999). Mining the Web's Link Structure. IEEE Computer,

Charniak, E. (1991). Bayesian Networks Without Tears. AI magazine, 12(4), pp. 50-63.

Chen, M. S., Han, J., and Yu., S. (1996). Data Mining: An Overview from Database
Perspective. IEEE Transactions on Knowledge and Data Engineering, 8, pp. 866-883.

Cherkassky, V. and Mulier, F. (1998). Learning from Data: Concepts, Theory, and
Methods. New York, NY: Wiley.

Chickering, D., Geiger, D., and Heckerman, D. (1995). Learning Bayesian Networks:
Search Methods and Experimental Results. In Proceedings of the Fifth Conference on
Artificial Intelligence and Statistics, pp. 1 12- 128.

Chow, C. K. and Liu, C. N. (1968). Approximating Discrete Probability Distributions with
Dependence Trees. IEEE Transactions on Information Theory, 14, pp. 462-467.

Clark, K. (1978). Negation as Failure. In H. Gallaire and J. Minker (eds.), Logic and
Databases, pp. 293-322. NY: Plenum Press.

32(4), pp. 60-67.

20 1

Clark, P. and Boswell, R. (1991). Rule Induction with CN2: Some Recent Improvements.
In Y. Kodratoff (ed.), Proceedings of the Fifth European Working Session on Learning,
pp. 151-163. Berlin: Springer-Verlag.

Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, pp.

Cohen, W. W. (1993). Pac-learning a Restricted Class of Recursive Logic Programs. In
Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 86-92.
Cambridge, MA MF Press.

Cohen, W. (1992). Compiling Prior Knowledge into an Explicit Bias. In Proceedings of
the Ninth International Workshop on Machine Learning, 102-110. San Mateo, CA:
Morgan Kaufmann.

Colmerauer, A. (1978). Metamorphosis Grammars. In L. Bolc (ed.), Natural Language
Communication with Computers. Berlin: Springer-Verlag.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian Method for the Induction of
Probabilistic Networks from Data. Machine Learning, 9, pp. 309-347.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algorithms.
Cambridge, MA MF Press.

Davidor, Y. (1991). A generic Algorithm Applied to Robot Trajectory Generation. In L.
Davis (ed.), Handbook of Genetic Algorithms, pp. 144-165. Van Nostrand Reinhold.

Davis, L. D. editor (1987). Genetic Algorithms and Simulated Annealing. London: Pitman.

Davis, L. D. editor (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold.

Dehaspe, L. and Toivonen, H. (1999). Discovery of Frequent DATALOG Patterns. Data
Mining and Knowledge Discovery, 3, pp. 7-36.

DeJong, G. F., editor (1993). Investigating Explanation-Based Learning. Boston: Kluwer
Academic Publishers.

DeJong, G. F. and Mooney, R. (1986). Explanation-Based Learning: An Alternative View.
Machine Learning, 1, pp. 145-176.

DeJong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, Ann Arbor.

DeJong, K. A. and Spears, W. M. (1990). An Analysis of the Interacting Roles of
Population Size and Crossover in Genetic Algorithms. In Proceedings of the First
Workshop on Parallel Problem Solving from Nature, pp. 38-47. Berlin: Springer-Verlag.

DeJong, K. A., Spears, W. M. and Gordon, D. F. (1993). Using Genetic Algorithms for
Concept Learning. Machine Learning, 13, pp. 161 -1 88.

De Raedt, L. (1992). Interactive Theory Revision: An Inductive Logic Programming
Approach. London: Academic Press.

De Raedt, L. and Bruynooghe, M. (1992). Interactive Concept Learning and Constructive
Induction by Analogy. Machine Learning, 8, pp. 251-269.

261-283.

202 References

De Raedt, L. and Bruynooghe, M. (1989). Towards friendly Concept-learners, In
Proceeding of the Eleventh International Joint Conference on Artificial Intelligence, pp.
849-854. San Mateo, CA: Morgan Kaufmann.

Dietterich, T. G. (1986). Learning at the Knowledge Level. Machine Learning, 1, pp. 287-
316.

Dzeroski, S. (1996). Inductive Logic Programming and Knowledge Discovery in
Databases. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.),
Advances in Knowledge Discovery in Data Mining, pp. 117-152. Menlo Park, CA: AAAI
Press.

Dzeroski, S. and Lavrac, N. (1993). Inductive Learning in Deductive Databases. IEEE
Transactions on Knowledge and Data Engineering, 5, pp. 939-949.

Elder, J. F. IV and Pregibon, D. (1996). A statistical perspective on KDD. In U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.), Advances in
Knowledge Discovery and Data Mining, pp. 83-1 13. Menlo Park, CA: AAAI Press.

Ellman, T. (1989). Explanation-Based Learning: A Survey of Programs and Perspectives.
ACM Computing Surveys, 21, 163-222.

Eshelman, L. J., Caruna, R., and Schaffer, J. D. (1989). Biases in the Crossover Landscape.
In J. D. Schaffer (ed.), Proceedings of the Third International Conference on Genetic
Algorithms, pp. 10-19. San Mateo, CA: Morgan Kaufmann.

Fayyad, U. M., Piatesky-Shapiro, G., and Smyth, P. (1996). From Data Mining to
Knowledge Discovery: An Overview. AI magazine, 17(3), pp. 37-54.

Fogel, D. B. (1999). Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. 2nd Edition. New York, NY: IEEE Press.

Fogel, D. B. (1994). An Introduction to Simulated Evolutionary Optimization. IEEE
Trans. on Neural Network, 5, pp. 3-14

Fogel, D. B. (1992). A Brief History of Simulated Evolution. In Proceedings of the First
Annual Conference on Evolutionary Programming. La Jolla, CA.

Fogel, L., Owens, A., and Walsh, M. (1966). Artificial Intelligence through Simulated
Evolution. New York John Wiley and Sons.

Forrest, S. (1990). A Study of Parallelism in the Classifier System and its Application to
Classification in KL-ONE Semantic Networks. London: Pitmann.

Frawley, W., Piatetsky-Shapiro, G., and Matheus, C. (1991). Knowledge Discovery in
Databases: an Overview. In G. Piatetsky-Shapiro and W. Frawley (eds.), Knowledge
Discovery in Databases, pp. 1-27. Menlo Park, CA: AAAI Press.

Ganti, V., Gehrke, J., and Ramakrishnan, R. (1999). Mining Very Large Databases. IEEE
Computer, 32(4), pp. 38-45.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley.

Goldberg, D. and Bridges, C. L. (1990). An Analysis of a Reordering Operator on a GA-
hard Problem. Biological Cybernetics, 62, pp. 397-405.

203

Goldberg, D. and Deb, K. (1991). A Comparative Analysis of Selective Schemes Used in
Genetic Algorithms. In G. Rawlins (ed.), Foundations of Genetic Algorithms, pp. 69-93.
San Mateo, CA: Morgan Kaufmann.

Goldberg, D. and Richardson, J. (1987). Genetic Algorithms with Sharing for Multi-modal
Function Optimization. In Proceedings of the Second International Conference on Genetic
Algorithms, pp. 41-49.

Gorges-Schleuter, M. (1991). Explicit Parallelism of Genetic Algorithms through
Population Structures. Parallel Problem Solving from Nature, pp. 150-159. Berlin:
Springer-Verlag.

Greene, D. P. and Smith, S. F. (1993). Competition-Based Induction of Decision Models
from Examples. Machine Learning, 13, pp. 229-257.

Grefenstette, J. J. (1986). Optimization of Control Parameters for Genetic Algorithms.
IEEE Trans. Systems, Man, and Cybernetics, 16, pp. 122-128.

Han, J. and Fu, J. (1995). Discovery of Multiple Level Association Rules from Large
Databases. In Proceedings of the 21st International Conference on Very Large Databases.

Han, J., Lakshmanan, V. S., and Ng, T. (1999). Constraint-Based, Multidimensional Data
Mining. IEEE Computer, 32(4), pp, 46-50.

Heckerman, D. (1997). Bayesian Networks for Data Mining. Data Mining and Knowledge
Discovery, 1, pp. 79-1 19.

Heckerman, D. (1996). Bayesian Networks for Knowledge Discovery. In U. M. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.), Advances in Knowledge
Discovery and Data Mining, pp. 273-306. Menlo Park, CA: AAAI Press.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian Networks:
The Combination of Knowledge and Statistical Data. Machine Learning, 20, pp. 197-243.

Hellerstein, J. M., Avnur, R., Chou, A., Hidber, C., Raman, V., Roth, T., and Hass, P. J.
(1999). Interactive Data Analysis: The Control Project. IEEE Computer, 32(4), pp. 51-59.

Herskovits, E. and Cooper, G. (1990). KUTATO: An Entropy-driven System for
Construction of Probabilistic Expert Systems from Databases. Technical Report KSL 90-
22, Knowledge Systems Laboratory, Medical Computer Science, Stanford Universtiy.

Holland, J. (1992). Adaptation in Natural and Artificial Systems. Cambridge, MA MlT
Press.

Holland, J. (1987). Genetic Algorithms and Classifier systems: Foundations and Future
Directions.

Holland, J. and Reitman, J. S. (1978). Cognitive Systems Based on Adaptive Algorithms.
In D. A. Waterman and F. Hayes-Roth (eds.), Pattern-Directed Inference Systems.
London: Academic Press.

Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most Commonly
Used Datasets. Machine Learning, 11, pp. 91-104.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to automata theory, languages, and
computation. Reading, MA: Addison-Wesley.

204 References

Hoschka, P. and Klosgen, W. (1991). A Support System for Interpreting Statistical Data.
In G. Piatetsky-Shapiro and W. Frawley (eds.), Knowledge Discovery in Databases. Menlo
Park, CA: AAAI Press.

Janikow, C. Z. (1993). A Knowledge-Intensive Genetic Algorithm for Supervised
Learning. Machine Learning, 13, pp. 189-228.

Kalbfleish, J. (1979). Probability and Statistical Inference, volume II. New York, NY:
Springer-Verlag.

Karypis, G., Han, E. H., and Kumar, V. (1999). Chameleon: Hierarchical Clustering Using
Dynamic Modeling. IEEE Computer, 32(4), pp. 68-75.

Kijsirikul, B., Numao, M., and Shimura, M. (1992a). Efficient Learning of Logic Programs
with Non-Determinate, Non-Discriminating Literals. In S. Muggleton (ed.), Inductive
Logic Programming, pp. 361-372. London: Academic Press.

Kijsirikul, B., Numao, M., and Shimura, M. (1992b). Discrimination-Based Constructive
Induction of Logic Programs. In Proceedings of the Tenth National Conference on
Artificial Intelligence, pp. 44-49. San Jose, CA. AAAI Press.

Kinnear, K. E. Jr. editor (1994). Advances in Genetic Programming. Cambridge, MA MIT
Press.

Kodratoff, Y. and Michalski, R. editors (1990). Machine Learning: An Artificial
Intelligence Approach, Volume III. San Mateo, CA: Morgan Kaufmann.

Kowalski, R. A. (1979). Logic For Problem Solving. Amsterdam: North-Holland.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, J. R. (1992). Genetic Programming: on the Programming of Computers by Means of
Natural Selection. Cambridge, MA MIT Press.

Koza, J. R., Bennett, F. H. III, Andre, D., and Keane, M. A. (1999). Genetic Programming
III: Darwinian Invention and Problem Solving. San Francisco, CA: Morgan Kaufmann.

Lam, W. (1998). Bayesian Network Refinement Via Machine Learning Approach. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20, pp. 240-252.

Lam, W. and Bacchus, F. (1994). Learning Bayesian Belief Networks: An Approach
Based on the MDL Principle. Computational Intelligence, 10, pp. 269-293.

Langdon, W. B. (1998). Genetic Programming and Data Structures : Genetic
Programming + Data Structures = Automatic Programming. Boston: Kluwer Academic
Publishers .

Larranaga, P., Kuijpers, C., Murga, R., and Yurramendi, Y. (1996a). Learning Bayesian
Network Structures by Searching for the Best Ordering with Genetic Algorithms. IEEE
Transactions on System, Man, and Cybernetics - Part A: Systems and Humans, 26, pp.
487-493.

Larranaga, P., Poza, M., Yurramendi, Y., Murga, R. and Kuijpers, C. (1996b). Structure
Learning of Bayesian Network by Genetic Algorithms: A Performance Analysis of Control
Parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, pp. 912-
926.

205

Lavrac, N. and Dzeroski, S. (1994). Inductive Logic Programming: Techniques and
Applications. London: Ellis Horword.

Leung, K. S., Leung, Y., So, L., and Yam, K. F. (1992). Rule Learning in Expert Systems
Using Genetic Algorithms: 1, concepts. In Proceedings of the 2nd International Conference
on Fuzzy Logic and Neural Networks, pp. 201-204.

Leung, K. S. and Wong, M. H. (1990). An Expert-system Shell Using Structured
Knowledge. IEEE Computer, 23(3), pp. 38-47.

Leung, K. S. and Wong, M. L. (1991a). Inducing and Refining Rule-Based Knowledge
From Inexact Examples. Knowledge Acquisition, 3, pp. 291-315.

Leung, K. S. and Wong, M. L. (1991b). Automatic Refinement of Knowledge Bases With
Fuzzy Rules. Knowledge-Based Systems, 4, pp. 23 1-246.

Leung, K. S. and Wong, M. L. (1991~). AKARS-1: An Automatic Knowledge Acquisition
and Refinement System. In H. Motada, R. Mizoguchi, J. Boose and B. Gaines (eds.),
Knowledge Acquisition for Knowledge-Based Systems. Amsterdam: IOS Press.

Leung, K. S., Wong, M. L., Lam, W., and Wang, Z. Y. (1998). Discovering Nonlinear
Integral Networks From Databases Using Evolutionary Computation and Minimum
Description Length Principle. In Proceedings of IEEE international Conference on
Systems, Man, and Cybernetic, pp.2326-2331.

Levenick, J. (1991). Inserting Introns Improves Genetic Algorithm Success Rate: Taking a
Cue From Biology. In R. K. Belew and L. B. Booker (eds.), Proceeding of the Fourth
International Conference on Genetic Algorithms, pp. 123-127. San Mateo, CA Morgan
Kaufmann .

Lewis, H. R. and Rapadimitrion, C. H. (1981). Elements of the Theory of Computation. NJ:
Prentice Hall.

Lloyd, J. (1987). Foundation of Logic Programming. 2nd edition. Berlin: Springer Verlag.

Louis, S. J. and Rawlins, G. J. E. (1991). Designer Genetic Algorithms: Genetic
Algorithms in Structure Design. In R. K. Belew and L. B. Booker (eds.), Proceeding of the
Fourth International Conference on Genetic Algorithms, pp. 53-60. San Mateo, CA:
Morgan Kaufmann.

Mahfoud, S. W. (1.992). Crowding and Preselection Revisited. Parallel Problem Solving
from Nature 2, pp.27-36. Berlin: Springer-Verlag.

Mannila, H., Toivonen, H., and Verkamo, A. I. (1994). Efficient Algorithms for
Discovering Association Rules. In KDD-94: AAAI Workshop on Knowledge Discovery in
Databases.

Matthews, B. W. (1975). Comparison of the Predicted and Observed Secondary Structure
of T4 Phase Lysozyme. Biochemica et Biophysical Acta, 405, pp. 442-45 1.

Merz, C. J. and Murphy, P. M. (1998). UCI Repository of Machine Learning Databases.
University of California, Irvine, Department of Information and Computer Sciences. URL:
http://www.ics.uci.edu/~mlearn/MLRepository.html

Michalewicz, Z. (1996). Genetic Algorithms Data Structures = Evolutionary Programs.
3rd Edition. New York, NY: Springer-Verlag.

206 References

Michalski, R. J. (1983). A Theory and Methodology of Inductive Learning. In R.
Michalski, J. G. Carbonell and T. M. Mitchell (eds.), Machine Learning: An Artificial
Intelligence Approach, Volume I, pp. 83-134. San Mateo, CA: Morgan Kaufmann.

Michalski, R. S. (1969). On the Quasi-minimal Solution of the General Covering Problem.
In Proceedings of the Fifth International Symposium on Information Processing, pp. 125-
128.

Michalski, R. J., Carbonell, J. G., and Mitchell, T. M., editors (1983). Machine Learning:
An Artificial Intelligence Approach, Volume I. San Mateo, CA: Morgan Kaufmann.

Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N. (1986a). The Multi-Purpose
Incremental Learning System AQl5 and its Testing Application on Three Medical
Domains. In Proceedings of the National Conference on Artificial Intelligence, pp. 1041 -
1045. San Mateo, MA: Morgan Kaufmann.

Michalski, R. J., Carbonell, J. G., and Mitchell, T. M. editors (1986b). Machine Learning:
An Artificial Intelligence Approach, Volume II. San Mateo, CA: Morgan Kaufmann.

Michalski, R. and Tecuci, G., editors (1994). Machine Learning: A Multistrategy
Approach, Volume IV. San Francisco, CA Morgan Kaufmann.

Michie, D. Spiegelhalter, D. J., and Taylor, C. C. editors (1994). Machine Learning,
Neural and Statistical Classification. London: Ellis Horwood.

Minton, S (1989). Learning Search Control Knowledge: An Explanation-Based Approach.
Boston: Kluwer Academic.

Minsky, M. (1963). Steps Towards Artificial Intelligence. In E. Feigenbaum and I.
Feldman (eds.), Computer and Thought. Reading, MA: Addison Wesley.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MlT Press.

Mitchell, T. M. (1982). Generalization as Search. Artificial Intelligence, 18, pp. 203-226.

Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T. (1986). Explanation-Based
Generalization: A Unifying View. Machine Learning, 1, pp. 47-80.

Montana, D. J. (1 995). Strongly Typed Genetic Programming. Evolutionary Computation,

Mooney, R. J. (1989). A General Explanation-Based Learning Mechanism and its
Application to Narrative Understanding. London: Pitman.

Morik, K. Wrobel, S. Kietz, J., and Emde, W. (1993). Knowledge Acquisition and Machine
Learning: Theory, Methods, and Applications. London: Academic Press.

Muggletion, S. (1994). Inductive Logic Programming. SIGART Bulletin, 5 (1), pp. 5-11.

Muggletion, S. (1992). Inductive Logic Programming. In S. Muggletion (ed.), Inductive
Logic Programming, pp. 3-27. London: Academic Press.

Muggleton, S. and Buntine, W. (1988). Machine Invention of First-order Predicates by
Inverting Resolution. In Proceedings of the Fifth International Conference on Machine
Learning, pp. 339-352. San Mateo, CA: Morgan Kaufmann.

Muggletion, S., Bain, M., Hayes-Michie, J., and Michie, D. (1989). An Experimental
Comparison of Human and Machine Learning Formalisms. In Proceedings of the Sixth

3, pp. 199-230.

207

International Workshop on Machine Learning, pp. 113-118. San Mateo, CA: Morgan
Kaufmann.

Muggleton, S. and De Raedt, L. (1994). Inductive Logic Programming: Theory and
Methods. J. Logic Programming, 19-20, pp. 629-679.

Muggletion, S. and Feng, C. (1990). Efficient Induction of Logic Programs. In
Proceedings of the FIrst Conference on Algorithmic Learning Theory, pp. 368-381.
Tokyo: Ohmsha.

Muhlenbein, H. (1992). How Genetic Algorithms Really Work: I. Mutation and
Hillclimbing. In R. Manner and B. Manderick (eds.), Parallel Solving from Nature 2.
North Holland.

Muhlenbein, H. (1991). Evolution in Time and Space - The Parallel Genetic Algorithm. In
G. Rawlins (ed.), Foundations of Genetic Algorithms, pp. 316-337. San Mateo, CA:
Morgan Kaufmann.

Newell, A. and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ:
Prentice Hall.

Ngan, P. S., Wong, M. L., Lam, W., Leung, K. S., and Cheng, J. C. Y. (1999). Medical
Data Mining Using Evolutionary Computation. Artificial Intelligent in Medicine, Special
Issue On Data Mining Techniques and Applications in Medicine. 16, pp. 73-96.

Nilson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto, CA: Tioga.

Park, J. S., Chen, M. S., and Yu, P. S. (1995). An Effective Hash Based Algorithm for
Mining Association Rules. In Proceedings of the ACM-SIGMOD Conference on
Management of Data.

Paterson, M. S. and Wegman, M. N. (1978). Linear Unification. Journal of Computer and
System Sciences, 16, pp. 158-167.

Pazzani, M. and Kibler, D. (1992). The Utility of Knowledge in Inductive Learning.
Machine Learning, 9, pp. 57-94.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Reading, MA: Addison Wesley.

Pereira, F. C. N. and Shieber, S. M. (1987). Prolog and Natural-Language Analysis. CA:
CSLI.

Pereira, F. C. N. and Warren, D. H. D. (1980). Definite Clause Grammars for Language
Analysis - A Survey of the Formalism and a Comparison with Augmented Transition
Networks. Artificial Intelligence, 13, pp. 23 1-278.

Piatetsky-Shapiro, G. (1991). Discovery, Analysis, and Presentation of Strong Rules. In G.
Piatetsky-Shapiro and W. Frawley (eds.), Knowledge Discovery in Databases. Menlo Park,
CA: AAAI Press.

Piatetsky-Shapiro, G. and Frawley, W. J. (1991). Knowledge Discovery in Databases.
Menlo Park, CA: AAAI Press.

Plotkin, G. D. (1970). A Note on Inductive Generalization. In B. Meltzer and D. Michie
(eds.), Machine Intelligence: Volume 5, pp. 153-163. New York: Elsevier North-Holland.

208 References

Quinlan, J. R. (1992). C4.5: Programs for Machine Learning. San Mateo, CA Morgan
Kaufmann.

Quinlan, J. R. (1991). Knowledge Acquisition From Structured Data - Using Determinate
Literals to Assist Search. IEEE Expert, 6, pp. 32-37.

Quinlan, J. R. (1990). Learning Logical Definitions From Relations. Machine Learning, 5,

Quinlan, J. R. (1987). Simplifying Decision Trees. Int. J. Man-Machine Studies, 27, pp.

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1, pp. 81-106.

Ramakrishnan, N. and Grama, A. Y. (1999). Data Mining: From Serendipity to Science.
IEEE Computer, 32(4), pp. 34-37.

Rebane, G. and Pearl, J. (1987). The Recovery of Causal Poly-Trees From Statistical Data.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 222-228.

Rechenberg, I. (1 973). Evolutionsstrategie: Optimienrung Technischer Systeme nach
Prinzipien der Biologischen Evolution. S tuttgart: Frommann-Holzboog Verlag.

Rissanen, J. (1978). Modeling by Shortest Data Description. Automatica, 14, pp. 465-471.

Rouveirol, C. (1992). Extensions of Inversion of Resolution Applied to Theory
Completion. In S. Muggletion (ed.), Inductive Logic Programming, pp. 63-92. London:
Academic Press.

Rouveirol, C. (1991). Completeness for Inductive Procedures. In A. B. Lawrence and G.
C. Collins (eds.), Proceedings of the Eight International Workshop on Machine Learning,
pp. 452-456. San Mateo, CA: Morgan Kaufmann.

Sammut, C. and Baneji, R. (1986). Learning Concepts by Asking Questions. In R.
Michalski, J. G. Carbonell and T. M. Mitchell (eds.), Machine Learning: An Artificial
Intelligence Approach, Volume II, pp. 167-191. San Mateo, CA: Morgan Kaufmann.

Schaffer, J. D. (1987). Some Effects of Selection Procedures on Hyperplane Sampling by
Genetic Algorithms. In L. Davis (ed.), Genetic Algorithms and Simulated Annealing.
London: Pitman.

Schaffer, J. D. and Morishma, A. (1987). An Adaptive Crossover Distribution Mechanism
for Genetic Algorithms. In Proceedings of the Third International Conference on Genetic
Algorithms, pp. 36-40. San Mateo, CA: Morgan Kaufmann.

Schewefel, H. P. (1981). Numerical Optimization of Computer Models. New York, NY:
Wiley.

Shapiro, E. (1983). Algorithmic Program Debugging. Cambridge, MA. MIT Press.

Shavlik, J. W. and Dietterich, T. G. editors (1990). Readings in Machine Learning. San
Mateo, CA Morgan Kaufmann.

Singh, M. and Valtorta, M. (1993). An Algorithm for the Construction of Bayesian
Network Structures From Data. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence, pp. 259-265.

pp. 239-266.

221-234.

209

Smith, S. F. (1983). Flexible Learning of Problem Solving Heuristics Through Adaptive
Search. In Proceedings of the Eighth International Conference on Artificial Intelligence.
San Mateo, CA: Morgan Kaufmann.

Smith, S. F. (1980). A Learning System Based on Genetic Adaptive Algorithms. PhD
thesis, University of Pittsburgh.

Spirtes, P., Glymour, C., and Scheines, R. (1993). Causation, Prediction and Search.
Berlin: Springer-Verlag.

Srikant, R. and Agrawal, R. (1996). Mining Quantitative Association Rules in Large
Relational Tables. In Proceedings of the ACM SIGMOD Conference on Management of
Data.

Srinivasan, A. (1999). A Study of Two Sampling Methods for Analyzing Large Datasets
with JLP. Data Mining and Knowledge Discovery, 3, pp. 95-123.

Srinivasan, A. and King, R. D. (1999). Feature Construction With Inductive Logic
Programming: A Study of Quantitative Predictions of Biological Activity Aided by
Structural Attributes. Data Mining and Knowledge Discovery, 3, pp. 37-57.

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D., and Whitley, C. (1991). A
Comparison of Genetic Sequencing Operators. In Proceedings of the Fourth International
Conference on Genetic Algorithms, pp. 69-76. San Mateo, CA: Morgan Kaufmann.

Sterling, L. and Shapiro, E. (1986). The Art of Prolog. Cambridge, MA: MF Press.

Syswerda, G. (1991a). A Study of Reproduction in Generational and Steady-State Genetic
Algorithms. In G. Rawlins (ed.), Foundations of Genetic Algorithms, pp. 94-101. San
Mateo, CA: Morgan Kaufmann.

Syswerda, G. (1991b). Schedule Optimization Using Genetic Algorithms. In L. Davis
(ed.), Handbook of Genetic Algorithms, pp. 332-349. Van Nostrand Reinhold.

Syswerda, G. (1989). Uniform Crossover in Genetic Algorithms. In Proceedings of the
Third International Conference on Genetic Algorithms, pp. 2-9. San Mateo, CA Morgan
Kaufmann.

Tanese, R. (1989). Distributed Genetic Algorithms. In J. D. Schaffer (ed.), Proceedings of
the Third International Conference on Genetic Algorithms, pp. 434-439. San Mateo, CA:
Morgan Kaufmann.

Tangkitvanich, S. and Shimura, M. (1992). Refining a Relational Theory with Multiple
Faults in the Concept and Subconcepts. In Proceedings of the Ninth International
Conference on Machine Learning, pp. 436-444. San Mateo, CA Morgan Kaufmann.

Thrun, S. B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., DeJong, K.,
Dzeroski, S., Fahlman, S. E., Fisher, D., Hamann, R., Kaufman, K., Keller, S., Kononenko,
I., Kreuziger, J., Michalski, R. S., Mitchell, T., Pachowicz, P., Reich, Y., Vafaie, H., Van
de Welde, W., Wenzel, W., Wnek, J., and Zhang, J. (1991). The MONK’s Problems: A
Performance Comparison of Different Learning Algorithms. Technical Report CMU-CS-
91-197, Carnegie Mellon University.

Whigham, P. A. (1996). Search Bias, Language Bias and Genetic Programming. In
Proceedings of the First Genetic Programming Conference, pp. 230-237. Cambridge, MA:
MIT Press.

210 References

Whitley, D. (1989). The GENITOR Algorithm and Selective Pressure. In Proceedings of
the Third International Conference on Genetic Algorithms, pp. 1 16- 12 1. San Mateo, CA
Morgan Kaufmann.

Whitley, D., Starkweather, T. (1990). Genitor II: a Distributed Genetic Algorithm. Journal
of Experimental and Theoretical Artificial Intelligence, 2, pp. 189-214.

Wirth, R. (1989), Completing Logic Programs by Inverse Resolution. In Proceedings of
the Fourth European Working Session on Learning, pp. 239-250. London: Pitman.

Wong, M. L. (1998). An Adaptive Knowledge Acquisition System Using Generic Genetic
Programming. Expert Systems with Applications, 15(1), pp.47-58.

Wong, M. L., Lam, W., and Leung, K. S. (1999). Using Evolutionary Computation and
Minimum Description Length Principle for Data Mining of Bayesian Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21, pp. 174-178.

Wong, M. L. and Leung, K. S. (1997). Evolutionary Program Induction Directed by Logic
Grammars. Evolutionary Computation, 5, pp. 143-1 80.

Wong, M. L. and Leung, K. S. (1995a). An Adaptive Inductive Logic Programming
system Using Genetic Programming. In Proceedings of the Fourth Annual Conference on
Evolutionary Programming. MA MlT Press.

Wong, M. L. and Leung, K. S. (1995b). Inducing Logic Programs with Genetic
Algorithms: The Genetic Logic Programming System. IEEE Expert, 9(5), pp. 68-76..

Wong, M. L. and Leung, K. S. (1994a). Inductive Logic Programming Using Genetic
Algorithms. In J. W. Brahan and G. E. Lasker (eds.), Advances in Artificial Intelligence -
Theory and Application II, pp. 119-124. I.I.A.S., Ontario.

Wong, M. L. and bung, K. S. (1994b). Learning First-order Relations From Noisy
Databases Using Genetic Algorithms. In Proceedings of the Second Singapore
International Conference on Intelligent Systems, B 159-1 64.

Wu, Q., Suetens, P., and Oosterlinck, A. (1991). Integration of Heuristic and Bayesian
Approaches in a Pattern-Classification System. In G. Piatetsky-Shapiro and W. Frawley
(eds.), Knowledge Discovery in Databases. Menlo Park, CA: AAAI Press.

Zelle, J. M., Mooney, R. J., and Konvisser, J. B. (1994). Combining Top-down and
Bottom-up Techniques in Inductive Logic Programming. Technical Report, Department of
Computer Science, University of Texas.

Zytkow, J. M. and Baker, J. (1991). Interactive Mining of Regularities in Databases. In G.
Piatetsky-Shapiro and W. Frawley (eds.), Knowledge Discovery in Databases. Menlo Park,
CA: AAAI Press.

Deterministic crowding, 147
difference list approach, 76
discrete recombination operator, 50
distributional bias, 38
diversity, 34

Index

(
(1+1)-ES, 52 dot product, 104
(µ,λ)-ES, 52
(µ+1)-ES, 49
(µ+λ)-ES, 52 E

empirical ILP, 62
encoding length restriction, 67
Evolution Strategies, 48
Evolutionary algorithms, 27

exact rule, 143

A
a saturation procedure, 62
Absorption, 62 Evolutionary Programming, 53
adjusted fitness, 45
ARGS, 95 extensional concepts, 58
arity, 60 extensional coverage, 63
atom, 60
atomic formula, 60 F

fact, 61
fitness proportionate selection, 3 1

Background knowledge, 59 Fitness scaling techniques, 35
body, 61 Fitness sharing, 147
Bottom-up ILP systems, 64 frozen sub-trees, 75

function, 60, 72
function symbol, 60

B

C
GCanonical Genetic Algorithm, 30

clause, 60
closure property, 43
concept description languages, 58
Confidence factor, 144
constant, 72 50
credit assignment methods, 27
crossover, 8 1
cross-validation procedure, 122
crowding factor, 147
cumulative probability of success, 107,

generation gap, 147
Genetic algorithms, 29
global discrete recombination operator,

global intermediate recombination, 5 1
global recombination operators, 50
ground formula, 61
ground model, 63
ground term, 61

113

H
Horn clause, 61
hybrid genetic algorithm, 41

D
definite clause grammars, 72,77
definite goal, 61
definite program, 60
definite program clause, 60
derivation tree, 74 ij-determination, 65
determining coverage, 65

I

Inductive concept learning, 58

212 Index

intensional concepts, 58
intensional coverage, 62
Interactive ILP, 61 parse trees, 75
intermediate recombination operator, 50 Partially Matched crossover, 39
intraconstruction, 62 positional bias, 38
inverse resolution, 62,64 positive literal, 60

positive unit clause, 61
Power law scaling, 35
predicate definition, 61
predicate symbol, 60
premature convergence, 34
Pre-selection, 146
primary derivation tree, 8 1
primary parent, 8 1

P

K
knowledge-level learning, 57

L
language bias, 58

likelihood ratio statistic, 69
Linear scaling, 35
literal, 60
logic goals, 73
logic grammar template, 102
logic grammars, 72

Laplace estimate, 68 PRIMARY-SUB-TREES, 8 1

R
rank-based selection, 35
Raw fitness, 45
refinement operators, 61
Relational concept learning, 59
relative fitness, 30
relative least general generalization, 64
remainder stochastic sampling method,

roulette wheel selection, 32

M
m-estimate, 68

most specific inverse resolvent, 64
multiple concept learning, 58
multi-point crossover, 36

MUTATE-POINT, 96 search bias, 58
mutation, 94

Meta-GAs, 40 34

SMUTATED-SUB-TREE, 95

secondary derivation tree, 81
secondary parent, 8 1
SECONDARY-SUB-TREES, 82

N SEL-PRIMARY-SUB-TREE, 82
negation-as-failure, 6 1 SEL-SECONDARY-SUB-TREE, 82
negative literal, 60 SIBLINGS, 82
NEW-BINDINGS, 96 Sigma truncation, 35
NEW-NON-TERMINAL, 96 Similarity, 147
NON-TERMINAL, 95
Non-terminal symbols, 73
normal program, 61
normalized confidence factor, 144
number of programs processed, 107,

Simple Genetic Algorithm, 3 1
single concept learning, 58
SLD-resolution proof procedure, 62
specialization operator, 65
standardized fitness, 45
steady state genetic algorithm, 40
Stochastic Universal Sampling, 34
strong language bias, 58

strong rule, 143
strong search bias, 58

113

O strong methods, 28
object description languages, 58

213

UStrongly Typed Genetic Programming,

SUB-TREES, 94 Uniform crossover, 36
Support, 143
Symbol-level learning, 57

47

V
T variable, 60, 72

WTEMP-SECONDARY-SUB-TREES,
82

term, 60,72
terminal symbols, 72
theory, 61
token competition, 148
Tournament selection, 36
truncation, 62
two-point crossover, 36

weak language bias, 58
Weak methods, 27
weakrule, 143
weak search bias, 58
well-formed formula, 61

θ
θ -subsumption, 65

