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Preface

Inspired by the enormous impact of Genomics and the hopes that came along with it, 
biochemistry and its methods slowly evolved into what is now widely known as Proteomics. 
Scientists dedicated to mass spectrometry and gel-based technologies became aware of the 
powerful tools they hold in hand, dreaming of the quantitative analyses of proteins in cells, 
tissues, and diseases. Thus, Proteomics soon went from a shooting-star in the life science 
field to a must-have in each larger wet-lab group.

Methods and technology developed rapidly, often much faster than the awareness of 
the special needs of the tools in use and even faster than standard protocols and standard 
formats could mature. Soon proteomics techniques created more and more data, while 
meaningful approaches for data handling, interpretation, and exchange sometimes were 
clearly behind, resulting in misinterpreted studies and frustrated colleagues from time to 
time.

However, the know-how generated and experiences made especially in the last several 
years caused a rethinking of strategy design and data interpretation. Moreover, the elabo-
ration of standards by such voluntarily driven groups as Proteomics Standards Initiative 
within the Human Proteome Organisation or the US institutions, Institute of Systems 
Biology (ISB), and National Institute of Standards and Technology (NIST), ushered in a 
new era of understanding and quality, proving how powerful Proteomics is when the tech-
nology can be controlled through data generation, handling, and mining.

This book reflects these new insights within the Proteomics community, taking the 
historical evolution as well as the most important international standardization projects 
into account so that the reader gets a feeling for the dynamism and openness in this field. 
Basic and sophisticated overviews are given in regard to proteomics technologies, stan-
dard data formats, and databases – both local laboratory databases and public repositories. 
There are chapters dealing with detailed information concerning data interpretation strat-
egies, including statistics, spectra interpretation, and analysis environments. Other chap-
ters describe the HUPO initiatives or are about more specialized tasks, such as data 
annotation, peak picking, phosphoproteomics, spectrum libraries, LC/MS imaging, and 
splice isoforms. This volume also includes in-depth description of tools for data mining 
and visualization of Proteomics data, leading to modeling and Systems Biology approaches. 
To look beyond the Proteomics tasks and challenges, some chapters present insights into 
protein interaction network evolution, text mining, and random matrix approaches.

All in all, we believe that this book is a well-balanced compendium for beginners and 
experts, offering a broad scope of data mining topics but always focusing on the current 
state-of-the-art and beyond. Enjoy!

Dortmund, Germany  Michael Hamacher
Bochum, Germany  Martin Eisenacher
Bochum, Germany Christian Stephan
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Chapter 1

Instruments and Methods in Proteomics

Caroline May, Frederic Brosseron, Piotr Chartowski,  
Cornelia Schumbrutzki, Bodo Schoenebeck, and Katrin Marcus 

Abstract

In the past decade, major developments in instrumentation and methodology have been achieved in 
proteomics. For proteome investigations of complex biological samples derived from cell cultures, tis-
sues, or whole organisms, several techniques are state of the art. Especially, many improvements have 
been undertaken to quantify differences in protein expression between samples from, e.g., treated vs. 
untreated cells and healthy vs. control patients. In this review, we give a brief insight into the main tech-
niques, including gel-based protein separation techniques, and the growing field of mass spectrometry.

The proteome describes the quantitative expression of genes 
within, e.g., a cell, a tissue, or body fluid at specific time points 
and under defined circumstances (1). In contrast to the genome, 
the proteome is highly dynamic and the protein expression pat-
tern of cells in an organism varies depending on the physiological 
functions, differentiation status, and environmental factors. In 
addition, alternative splicing of mRNAs and a broad range of 
posttranslational modifications (e.g., phosphorylation, glycosyla-
tion, and ubiquitination) increase proteome complexity (2, 3). 
Transcription analysis also does not allow insight into degradation 
and transport phenomena, alternative splicing, or posttransla-
tional modifications. Furthermore, mRNA and protein levels 
often do not correlate (4, 5). All these influences are unconsid-
ered in genome analysis and underline the importance of pro-
teome analysis to obtain deeper insights into cellular functions.

In general, proteome analysis provides a snap-shot of proteins 
expressed in a cell or tissue at a defined time point (1). Indeed, 
not only qualitative analysis resulting in a defined “protein inventory” 

1. Introduction
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can be obtained, but differential proteome analysis also allows for 
the detection of distinct differences in protein expression. This is 
of implicit interest, e.g., in the fields of fundamental and clinical 
research in order to understand main cellular functions and physi-
ological/pathophysiological processes. For proteome investiga-
tion of complex biological samples derived from cell cultures, 
tissues, or whole organisms, several techniques were developed 
over the last decade, the most important of which are reviewed in 
the following paragraphs. Figure 1 gives a general overview of 
different workflows in proteomics.

Fig. 1. General workflow for proteomics. Several different methods and technologies exist today which can be combined 
in order to achieve best results for a given scientific question. Most commonly used techniques and strategies are pre-
sented in the following chapters. MS mass spectrometry; 1D-PAGE one-dimensional protein separation; 2D-PAGE two-
dimensional protein separation; 2D-DIGE two-dimensional difference in gel electrophoresis.
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Gel-based approaches belong to the most frequently used assays 
in proteomics to separate proteins and to analyze them qualita-
tively and quantitatively. For simple pre-separation of complex 
protein mixtures before mass spectrometric analysis, one-
dimensional polyacrylamide gel electrophoresis (1D-PAGE) is 
often used. Additionally, two-dimensional approaches such as 
two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) 
allow for the separation of up to 10,000 protein species (6), pro-
viding the potential for global differential proteome analysis. 
Different gel-based methods especially differing in their respective 
resolution and application in proteomics are summarized in the 
following sections.

One-dimensional polyacrylamide gel electrophoresis, according 
to Lämmli, with sodium dodecyl sulfate (SDS) as negative-charge 
detergent (7) is widely used for the separation of proteins accord-
ing to their electrophoretic mobility. Due to SDS binding, the 
proteins are denaturated showing identical charge per unit pro-
tein mass which after the application of an electric field results in 
fractionation by size (see Fig. 2). High mass proteins will be 
retained longer by the polyacrylamide network than smaller pro-
teins. After visualization by one of several existing staining meth-
ods, protein identification can easily be performed by mass 
spectrometry (MS) (see Subheading 3). The resolution of 
1D-PAGE in contrast to that of 2D-PAGE is (see Subheading 2.2) 
rather low since the proteins are separated only according to their 
molecular mass. Nevertheless, 1D-PAGE is often used to achieve 
a pre-separation prior to MS or for the detection of proteins by 
subsequent Western blotting.

Two-dimensional polyacrylamide gel electrophoresis was devel-
oped in order to obtain higher resolved protein patterns than 
obtained using 1D-PAGE, offering a huge potential to give a 
comprehensive overview of the proteins present in the examined 
system. 2D-PAGE is a combination of two orthogonal separation 
techniques: in the first dimension, the proteins are separated 
according to their isoelectric point (Isoelectric Focusing: IEF), 
followed by a conventional SDS-PAGE in the second dimension. 
For IEF, two different techniques are described, namely, the car-
rier-ampholyte (CA)-based (8, 9) and immobilized pH gradient 
(IPG) system (10, 11). The spot pattern can be visualized with 
several protein staining methods, which differ in sensitivity and 
dynamic range. For differential proteome analysis, spot patterns 
of related gels are compared with each other and protein species 
can be relatively quantified automatically using one of several 

2. Gel-Based 
Protein Separation 
Techniques  
and Applications

2.1. One-Dimensional 
Protein Separation: 
1D-PAGE

2.2. Two-Dimensional 
Protein Separation: 
2D-PAGE
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available image analysis software tools (12). Differentially 
expressed proteins of interest are subsequently identified by 
MS (see Subheading 3). One drawback of 2D-PAGE is the fact 
that mainly hydrophilic proteins with a molecular weight of 
5–150 kDa in a pH range of 3.5–10 can be analyzed. Especially 
hydrophobic/membrane proteins are underrepresented and 
must be analyzed with alternative gel-based methods such as 
2D-benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS 
(13), 2D-cetyltrimethylammonium bromide (CTAB)/SDS (14, 
15), SDS/SDS (16), and BlueNative-PAGE (17), or MS-based 
strategies (see below). Nevertheless, in combination with image 
analysis and MS, 2D-PAGE is still the method of choice to analyze 
complex protein samples. For more detailed description of 
2D-PAGE, see Marcus et al. (18) and Rabilloud et al. (19).

Fig. 2. 2D-IEF/SDS-PAGE of SH-SY5Ycells. The proteins of an SH-SY5Y cell lysate were 
separated according to their isoelectric point in the first dimension (isoelectric focusing) 
and to their electrophoretic mobility in the second dimension (SDS PAGE). After 2D-PAGE, 
protein spots were visualized with silver staining.
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The invention of two-dimensional difference in-gel electrophoresis 
(2D-DIGE) in 1997 drastically improved the technical reproduc-
ibility of 2D-PAGE and the accurate quantification of different 
proteins in samples with high statistical significance (18, 20). 
Proteins of different samples are covalently labeled with spectrally 
resolvable fluorescent dyes (CyDyes™, GE Healthcare Europe 
GmbH) and afterwards separated simultaneously on the same 
gel. The application of an internal standard, optimally consisting 
of a mixture of all samples included in the study, allows accurate 
matching and normalization of protein spots in all gels, and with 
this highly accurate quantification (21). Two methodologies can 
be distinguished: CyDye™ minimal labeling and CyDye™ satura-
tion labeling. For minimal labeling, dyes react with the e-amino 
group of lysine residues. Three to five percent of all proteins and 
only one lysine per protein on average are labeled. Three different 
dyes are available: Cy™2, Cy™3, and Cy™5. Saturation labeling 
allows for the analysis of scarce protein samples down to an 
amount of 3 mg per gel (15, 22). The label reacts with thiol groups 
of cysteine residues. All cysteine residues of all proteins are labeled. 
In this technique, two different dyes are available, Cy™3 and 
Cy™5.

Protein patterns are digitalized using confocal fluorescent 
imagers, resulting in a gel image at a specific wavelength for each 
dye without any crosstalk. Appropriate analysis software allows 
for automated detection, background subtraction, quantification, 
normalization, and inter-gel matching.

Similar to gel-based protein separation, MS is one of the most 
popular techniques in proteomics (23–25). In MS, the chemical 
compounds of a sample are ionized and the resulting charged 
molecules (ions) are analyzed according to their mass-to-charge 
(m/z) ratios. In proteomics, the molecules of interest are either 
proteins or peptides obtained from enzymatic digestion of pro-
teins. MS can be used for the identification of either the peptides 
or the proteins, as well as for the quantification of the measured 
ion species. Up to date, several different MS setups and assays 
have been developed for use in proteome studies. Each of them 
has its own advantages and disadvantages, and is used for charac-
teristic purposes, comprising identification of proteins from 
2D-gel spots, description of peptides with chemical modifica-
tions, and quantitative MS assays (18, 26–29). The following 
chapters illustrate the most important aspects of MS in proteomics 
and their characteristic applications.

2.2.1. 2D-DIGE:  
A Sophisticated Application

3. Mass 
Spectrometry-
Based Techniques 
and Applications
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In general, a mass spectrometer consists of the following components: 
ion source, mass analyzer, and detector (30). The ion source is 
used to create protein or peptide ions usually by transferring posi-
tive charged protons (H+) onto the molecules. The ionization is 
called “soft” because the chemical structure of the proteins or 
peptides remains unharmed. One or more mass analyzers are used 
to separate the ions by their m/z ratio or to fragment the ions for 
further sequence analysis. At last, the ions are passed to a detector 
connected to a PC with appropriate software for data analysis. 
Modern software tools include control programs for all parts of 
the mass spectrometer setup. Optional to this setup is the use of 
a chromatography system (widely HPLC) upstream of the ion 
source to reduce sample complexity (see Fig. 3). All hardware 
components are described in more detail in the following 
chapters.

Different types of liquid chromatography (LC) are used in pro-
teomics to complement gel-based separation techniques (29). 
The basic principle of LC is to separate solute analytes (e.g., pro-
teins or peptides) in a fluid that flows over solid particles. The 
solution is referred to as the mobile phase, while the particles are 
termed the stationary phase. Depending on their differing chemi-
cal and physical properties, different analyte species will interact 
in different ways with both phases. Usually, the stationary phase 
is packed into a column through which the mobile phase flow is 
led. This way, the analytes separate over time until they elute from 
the column. The time point in which a peptide elutes is called its 
retention time (RT). The amount of analytes eluting over the 
time is usually documented as a chromatogram by UV detectors. 
Different variants of LC systems each make use of special proper-
ties of the analytes of interest, e.g., polarity or chemical functional 
groups. It is common to use LC for protein purification or 

3.1. Setup of a Mass 
Spectrometer

3.1.1. Liquid 
Chromatography 
Techniques for Proteome 
Analysis

Fig. 3. Setup of mass spectrometers. A typical mass spectrometer for proteomic purposes will be set up in the following 
way: high-performance liquid chromatography (HPLC) (optional), ion source, mass analyzer, detector, and personal com-
puter. See the following chapters for details on hardware configuration.
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fractionation as one of the first steps in a proteome study. 
Nevertheless, peptides are more homogenous in size and polarity 
than proteins, and are thus better suited for chromatographic 
separation and analysis. Therefore, LC is a powerful tool to reduce 
the complexity of peptide samples, e.g., digested protein bands 
from 1D-gels or whole cell lysates (31). It is also used for the 
separation of less complex samples, such as 2D-gel spots.

A major advantage of LC is the possibility to automate 
the separation progress. Modern automated systems can cover the 
whole separation progress, beginning with the loading of 
the sample onto the column up to the MS analysis of the 
eluted analytes (mostly peptides). This combination is referred 
to as LC–MS. Automation allows complex and elongated gradi-
ents of mobile phase composition as well as the combination of 
several columns with different stationary phases in one analysis. 
An example for such sophisticated LC systems is the multi-dimen-
sional protein identification technology (MuDPIT) (32). The 
peptide solution is separated first by strong cation exchange (SCX) 
with a pH gradient, followed directly by reversed phase (RP) 
chromatography using hydrophobic C18 material as the station-
ary phase and a polar solution of water with increasing amount of 
organic compounds (33). MuDPIT runs can be prolonged to 12 
or even more hours to increase their separation power.

Another advantage of LC is the possibility of nano-size appli-
cations with increased sensitivity. In nano-high pressure liquid 
chromatography (nano-HPLC), the mobile phase is pumped 
through capillary columns (34). The columns contain porous 
nonpolar particles serving as a hydrophobic solid phase with 
which the peptides can interact. The mobile phase is a polar fluid 
consisting mostly of a mixture of water, organic compounds such 
as acetonitrile, and low amounts of acids. For this reason, this 
type of HPLC is referred to as RP-HPLC. Usually, the amount of 
acetonitrile in the mixture is increased over the time of analysis 
following an automated gradient. As a result, hydrophilic pep-
tides will elute first from the capillary column, followed by other 
peptides depending on their increasing hydrophobicity. Nano-
HPLC is a very common proteomics method because even short 
runs (between 1 and 3 h) can be used to separate complex sam-
ples. Additionally, it is possible to couple the chromatography 
system either directly (“online”) or indirectly (“offline”) with a 
mass spectrometer for subsequent MS analysis of the eluting pep-
tides. In online LC–MS, the nano-HPLC system is connected 
directly with an electrospray ionization (ESI) ion source (see 
Subheading 3.1.2). This is possible because ESI requires liquid 
samples, which means the solution eluting from the nano-HPLC 
can be led directly into the ion source. Offline LC–MS establishes 
the connection between nano-HPLC and matrix-assisted laser 
desorption ionization (MALDI), which is another common 
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ionization technique that requires samples in solid (crystallized) 
state (see Subheading 3.1.2). For this purpose, automated fraction-
ators spot small amounts of liquid eluting from the nano-HPLC 
onto steel plates (“targets”) suitable for MALDI ion sources (31).

One drawback of offline nano-LC–MALDI–MS in compari-
son to online LC–ESI–MS is a longer analysis time. Indeed, spot-
ted samples can be stored for some time, allowing for a 
re-investigation of the samples (for more details, see (29)).

In principle, two main ionization methods are used in proteomics 
today, MALDI and ESI (23). In MALDI, the sample molecules 
are immobilized by co-crystallization in the presence of organic 
compounds such as alpha-cyano-4-hydroxycinnamic acid or 
2,5-dihydroxybenzoic acid on a metal sample target (35). By 
administering laser energy to the samples, the matrix ions par-
tially transfer their charge on the analyte molecules, producing 
mainly single-charged peptide ions. Since the pulsed laser operates 
rather in “shots” than continuously, MALDI is used primarily in 
combination with time of flight (TOF) analyzers (36). This com-
bination is termed as MALDI-TOF, which is used in proteomics 
for analysis of proteins and peptides (37–39).

ESI is another well-suited ionization method for biomole-
cules such as peptides (23). Like MALDI, ESI is a “soft” method 
of ionization producing charged peptides in solution (40). ESI 
requires liquid samples which are delivered either by direct injec-
tion with a syringe or “online” coupled with a (nano)-RP-HPLC 
system. The sample passes a capillary needle on which voltage is 
applied. As a result, charged droplets are generated at the capil-
lary tip. The solvent partially evaporates, resulting in the reduc-
tion of the droplets’ diameter and enhanced density of charges. 
The rising charge density leads to the so-called coulomb explo-
sions which further reduce the diameter of the droplets. Hence, 
the analytes are dispersed as a fine spray (41, 42). Different mech-
anisms have been discussed to describe the ESI process, which all 
end up with the fact that gas-phase ions are generated (43, 44). 
The ions are subsequently detected by the mass analyzer. One of 
the major advantages of ESI for proteomics is the possibility to 
separate highly complex peptide mixtures upstream by nano-
HPLC, e.g., resulting from whole cell lysates.

In general, both ionization techniques described above can 
be combined with different types of mass analyzers. Depending 
on the application desired, each combination is characterized by 
typical features such as enhanced mass accuracy, sensitivity, 
dynamic range, or resolving power. Therefore, for best perfor-
mance, mass spectrometer setups favorable for, e.g., identifica-
tion, quantification, high throughput analyses, or detection of 
modifications should differ from each other (for a comprehensive 
overview, see Domon and Aebersold (36)).

3.1.2. Ionization Methods
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Independent of the ionization technique, the molecular masses of 
free ions are measured in mass analyzers after passing them 
through a vacuum chamber. Different types of analyzers are often 
combined in a so-called hybrid mass spectrometer (24, 36). After 
the ions pass the analysis system, the detector measures the m/z 
ratios of all incoming ions and transfers this information to a 
computer. Most common in proteomics are TOF analyzers, dif-
ferent types of ion traps, and high-resolution analyzers such as 
Fourier transform ion cyclotron resonance (FT-ICR) or the latest 
development, the orbitrap.

In TOF analyzers, ions are accelerated by a potential between 
two electrodes (45). The analyzer itself is merely a vacuum tube. 
Ions with different masses pass the vacuum chamber with differ-
ent velocities. By measuring the time the ions need until they 
reach the detector, the m/z ratio is calculated. TOF analyzers can 
reach resolutions of up to 15,000 full-width half-height maxi-
mum (fwhm) with a mass accuracy of up to 2 ppm (36, 45, 46). 
In Q-Q-TOF instruments, two quadrupoles (Qs) are combined 
with a TOF analyzer. In the MS mode, the quadrupole serves as 
a guide for the ions toward the mass analyzer. In the MS/MS 
mode, where detailed peptide information is gained, the precursor 
ions are selected in the first quadrupole and subsequently frag-
mented in the second quadrupole. This setup results in a high mass 
accuracy and high resolution of selected precursor ions (36).

In a quadrupole (Q) analyzer, ions accelerated by strong elec-
tric fields pass a set of stab electrodes arranged in cylindrical con-
stellation (47, 48). Between the stab electrodes, an alternating 
electric field ensures that only ions of a defined mass can pass. In 
this way, the quadrupole acts as a mass filter. Furthermore, ions 
can be trapped in the electric fields for fragmentation. Quadrupoles 
are most common as parts of hybrid instruments, e.g., for focusing 
of the ion beam emitted from the ion source on the way to another 
mass analyzer with better resolution, like an orbitrap (49, 50). In 
addition, combinations of quadrupoles with TOF analyzers or as 
parts of FT-ICR mass spectrometers occur. Triple quadrupole 
(Q-Q-Q) instruments became more and more important in pro-
teomics research. With the arrangement of three quadrupoles or 
two quadrupoles followed by a linear ion trap (LIT), new scan-
ning methods such as product ion scanning, parent ion scanning 
(51, 52), neutral loss scanning (53, 54), and multiple reaction 
monitoring (55) (see Subheading 3.2) became feasible. All these 
scanning methods commonly use concomitant mass analyzers 
serving as a combination of mass filters and collision cells to 
enhance the sensitivity of a subset of ions one aims to analyze.

In “ion trap” (IT) analyzers, ions are trapped and get accu-
mulated over a given time in a physical device. Nonlinear ITs 
were first described by Paul et al. (56). The IT itself consists of 
two adversely arranged hyperbolic electrodes with a ring electrode 

3.1.3. Types of Mass 
Analyzers and Hybrid Mass 
Spectrometers
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between them. This setup is used to establish dynamic electric 
fields in all three dimensions, which allows focusing of incoming 
ions in the center of the trap. From this point on, the ions can be 
selectively ejected and passed to the detector, or can be fragmented. 
This is usually done by collision-induced dissociation (CID) and/
or electron transfer dissociation (ETD) (see Subheading 3.2), 
combined with the activation of the ions induced by resonance 
to the changing electric fields (57). A detailed description of 
theory, instrumentation, and working modes can be found in 
ref. (58–62).

Linear ion traps function as mass filters and simultaneously 
act as a storage device for specific ions. Ions that possess a defined 
m/z range can be trapped and stored before they are further 
passed through the detector. This is conducted by four electrode 
rods in a quadrupolar orientation describing a combination of 
alternating and co-current flows. Ions that reside within the 
adjusted m/z range oscillate through the drifting channel, 
whereas all other ions describe unstable flight paths and, there-
fore, get stopped by collision with the electrodes. During the 
scanning of the mass field, both co-current (U) and alternating 
current (V) are simultaneously enhanced. With the change of this 
U/V ratio during the scan, the mass range of stable oscillation 
becomes shifted, resulting in a mass separation (49). LITs have 
the advantage of increased ion storage capacity compared to non-
linear ion traps, leading to a higher sensitivity and dynamic range. 
In general, IT technology is characterized by MS/MS capabilities 
with unmatched sensitivity and fast data acquisition. Indeed, lim-
ited resolution, low-ion trapping capacities, and space-charging 
effects result in low accuracy of the mass measurements.

Fourier transform ion cyclotron resonance mass spectrometers 
are ITs with an additional homogeneous magnetic field (63, 64). 
The magnetic field forces ions into a circular path in which they 
cycle with high frequency, the so-called cyclotron circle frequency. 
By adding a changing electric field perpendicular to the magnetic 
field, a resonance between the ion mass and the cyclotron circle 
frequency is built up. In this process, energy is consumed from the 
changing electric field. This energy shift can be measured and 
transformed into m/z ratios by Fourier transformation. FT-ICR 
spectrometers reach high-resolution mass accuracy of up to 
1.0 ppm (65). Nevertheless, FT-ICR spectrometers are less com-
mon than other types because of their high operation expenses.

The last important development in the field of mass analyzers 
was attained by the Orbitrap (66, 67). This type consists of a 
single, spindle-shaped electrode. In this setup, ions move on cir-
cuits around the electrode and oscillate along the axis at the same 
time. The frequency of this oscillation is dependent on the masses 
and charges of the respective ions. On this basis, m/z can be 
calculated by Fourier transformation. Orbitrap analyzers reach 



13Instruments and Methods in Proteomics

resolutions and accuracies similar to those of FT-ICR analyzers 
combined with significantly lower operation expenses. For this 
reason, Orbitrap instruments become increasingly popular in pro-
teome analysis (68).

Mass spectrometry can be used for whole protein mass and pep-
tide mass determination as well as peptide fragmentation analysis. 
Peptide fragmentation analysis became the most popular applica-
tion over the years as it allows obtaining information not only 
about the mass and charge of a protein or peptide ion, but also on 
its chemical composition. Different main scanning methods suit-
able for peptide mass and peptide fragmentation analysis can be 
distinguished, which are peptide mass fingerprinting (PMF) (69), 
post-source decay (PSD) (70), tandem-MS (also called MS/MS 
or MS²), product ion scanning (24, 36, 71), neutral loss (NL) 
scanning (53, 54), precursor ion scanning (PIS) (52, 72, 73), and 
multiple reaction monitoring (MRM) (36, 55, 74).

Peptide mass fingerprinting or peptide mass mapping is based 
on the fact that digestion of a protein by enzymes will result in a 
specific mixture of peptides. When analyzed with a mass spectrom-
eter, the peptide mixture will lead to a characteristic pattern of m/z 
values, the PMF. By comparing the PMF with databases, it is pos-
sible to identify the corresponding protein (75). This makes PMF 
ideally suitable for the identification of proteins from low complex 
mixtures, e.g., 2D gel spots using MALDI-TOF MS (24).

If the number of peptides for PMF analysis is not sufficient or 
the complete genome sequence of the analyzed species is 
unknown, fragmentation analysis can be performed for a more 
detailed and specific analysis.

PSD, tandem-MS (MS/MS, MS2): The fragmentation of the 
peptide can be induced by metastable decay (PSD) (70), CID (76), 
or ETD (57). CID is an older, but still common technique that uses 
neutral gas molecules such as helium, nitrogen, or argon to transfer 
kinetic energy on the peptide ions, leading to fragmentation. In 
ETD, this is achieved by using fluoranthene radicals as electron 
donors that destabilize peptide ions by transferring the electron on 
them. ETD leads to different fragments than CID (see spectra inter-
pretation). While CID is still the state of the art, especially for 
sequencing of peptide ions, ETD and combinations of both meth-
ods have become important when analyzing posttranslational modi-
fications such as phosphorylation or glycosylation (77–80) PSD 
analysis is restricted to MALDI-TOF/(TOF) instruments, whereas 
tandem-MS (MS/MS, MS2) analysis can be done on different types 
of instruments such as ITs, Q-Q-Qs, or Orbitraps. During MS frag-
mentation analysis, peptide ions are automatically selected for 
fragmentation, resulting in predictable breakdown products. These 
fragment ions are recorded by the detector and give rise to the so-
called PSD or tandem-MS (MS/MS, MS2) spectra.

3.2. Identification  
of Proteins by Mass 
Spectrometry: 
Scanning Methods  
and Fragmentation 
Types
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To date, the most common applications in proteomics use 
MS² spectra without further fragmentation for protein identifica-
tion. This is due to the fact that generally samples in proteomics 
are analyzed after digestion of the proteins to peptides, and the 
resulting MS² spectra are sufficient for identification of the pep-
tides. For detailed analyses of fragment ions, especially detection 
of posttranslational modifications, further fragmentations can be 
performed, resulting in MSn spectrometry (81, 82). Basically, the 
next described scanning modes are specialized MS/MS applica-
tions for Q-Q-Q instruments which are used to enhance the selec-
tivity and sensitivity for the measurement of a subset of ions.

Product ion scanning is the most common method for sequenc-
ing peptide ions generally on Q-Q-Q instruments (24, 36, 71). 
This scan determines, in a single experiment, all peptide (parent) 
m/z ratios that react to produce a selected product (daughter) ion 
m/z ratio. In Q-Q-Qs, one peptide of a specified m/z is selected 
in Q1 as a parent ion. In the next step, the parent ion is frag-
mented in Q2. All resulting fragment ions are subsequently 
scanned in Q3. Usually, several parent ions of different m/z ratios 
are sequentially analyzed by stepwise alteration of the quadrupole 
field in Q1 in one MS run in this way. New developments in MS 
instrumentation today allows for product ion scanning with spe-
cialized hybrid-TOF such as Q-TOF or TOF-TOF instruments.

Converse to the product ion scan, the PIS is a scan that deter-
mines, in a single experiment, all the product (daughter) ion m/z 
ratios that are produced by the reaction of a selected peptide 
(parent) ion m/z ratio. Parent ions of the whole mass range are 
transferred through Q1 and fragmented in Q2. Q3 is then fixed 
on a single fragment ion mass, filtering for pre-specified fragment 
ions selectively produced by the parent ions (73). This scanning 
method can be especially useful for the selective detection (and 
quantification) of posttranslational modifications such as glycosy-
lation or phosphorylation (83, 84).

Another selective scanning mode especially useful for the 
detection of protein/peptide phosphorylation or glycosylation is 
NL scanning verifying the loss of a neutral particle from a frag-
mented parent ion (24, 85). Similar to PIS, in NL scanning, par-
ent ions of the whole mass range are transferred through Q1 and 
fragmented in Q2. Q3 is not fixed on a special fragment mass but 
operates synchronously to Q1 scanning for a defined mass shift 
between precursor and fragment ion. In other words, only frag-
ment ions that differ from their parent ion by a characteristic mass 
difference will reach the detector. Because the charge of the pep-
tide ion does not change, this was designated as a neutral loss. NL 
scanning and PIS can be combined with product ion scanning for 
sequencing of the modified peptide ions.

Multiple reaction monitoring is one special application in proteome 
analysis allowing for the targeted detection (and quantification) of 



15Instruments and Methods in Proteomics

pre-selected peptides in a complex peptide mixture. MRM analysis 
can be performed on Q-Q-Qs as well as on Q-hybrids such as 
Q-Q–LIT instruments (74, 86). In MRM (or single/selected 
reaction monitoring, SRM), Q1 serves as a mass filter for the 
selection of ions of a defined m/z ratio (Q1). Selected parent ions 
are fragmented in Q2 and pre-defined fragment ions are specifi-
cally detected in Q3. The combination of pre-defined m/z ratios 
in Q1 and Q3, representing the precursor and a characteristic 
fragment ion, is called an MRM transition. Thus, MRM differs 
from the other scan types in the way that two pre-requisites have 
to be fulfilled in order to produce a signal in the detector: both 
ions, precursor and related fragment ion, need to be specifically 
measured in one scan. This makes the MRM scan highly specific 
even for low abundant peptide ions in complex mixtures. MRM 
can be used for all kinds of hypothesis-driven approaches where a 
specified protein/peptide of interest should be identified or even 
quantified (relatively or absolutely), e.g., in a complex protein 
mixture (87).

All kinds of MS and MS/MS analyses result in the generation of 
the so-called raw data. These raw data containing information 
about the peptide masses and, in case of MS/MS data, also frag-
ment ion masses and their intensities are transformed to a “peak 
list.” Identification of the peptide/protein is performed by using 
a search engine such as MASCOT (88) or Sequest (89) to search 
the peak list against a database of proteins “digested in silico,” 
meaning that the practically obtained MS and MS/MS data are 
directly compared with theoretically generated data from protein 
databases. Knowledge about sample preparation and separation 
conditions, type and mass accuracy of the mass spectrometer, and 
mode of peptide fragmentation (90) allows for a reliable peptide 
assignment (88, 89, 91). Typically, the algorithms give a probabil-
ity value for the correctness of the identification. The peptides 
assigned should be unique for a protein species in order to annotate 
the analyzed spectrum clearly to only one protein. This kind of data 
analysis is possible only in cases where the genome of the investi-
gated organism is sequenced and a database is available. Otherwise, 
de novo sequence analysis needs to be performed entailing manual 
interpretation and annotation of the MS/MS spectra in order to 
obtain sufficient information on the peptides’ sequence.

Due to the described disadvantages of gel-based differential 
proteome analysis (see Subheading 2.2), over the last years 
worldwide efforts have led to the development of MS-based 

3.3. MS-Data 
Interpretation

4. Quantitative 
Mass 
Spectrometry
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quantification methods. The fundamental idea with this was to 
shift the separation as well as quantification problem from protein 
to peptide level as peptides are much easier to handle than pro-
teins due to their physic-chemical characteristics. Today, several 
MS-based quantification methods, including chemical, metabolic, 
enzymatic labeling, and label-free approaches ranging from the 
quantification of single peptides up to the quantification of pro-
teins from whole cell lysates, exist that can be used as an alterna-
tive or complementary setup to 2D-PAGE for analyzing complex 
protein and/or peptide mixtures. They include methods for rela-
tive and absolute quantification such as label-free approaches (see 
Subheading 4.1.1); isotope labeling, e.g., isotope-coded affinity 
tags (ICAT) (92), isotope-coded protein labeling (ICPL) (93), 
isobaric tags for relative and absolute quantification (iTRAQ, 
TMT) (94), enzymatic labeling during protein hydrolysis in the 
presence of heavy (18O-containing) water (95, 96), and stable iso-
tope labeling with amino acids in cell culture (SILAC) (97); and 
absolute quantification of proteins (AQUA) (98, 99). For a gen-
eral overview, see (28, 29, 100, 101). All the listed methods hold 
their advantages and disadvantages. Global internal standard 
(GIST) approaches where proteins are digested to peptides prior 
to labeling hold two major limitations: the high sample complexity 
results in the detection and quantification of only a limited num-
ber of peptides (undersampling of the mass spectrometer), and by 
protein digestion prior to labeling, all information about the origi-
nal belonging to the resulting peptide is lost. For protein-based 
chemical labeling, the main limitation is the incomplete labeling of 
the proteins resulting in falsified results. Today, the most accurate 
results are obtained with SILAC; this method is indeed mainly 
restricted to cells grown in culture and simple organisms.

In the next two chapters, most frequently used methods for 
MS-based relative protein/peptide quantification are described 
shortly.

Labeling of proteins or peptides with isotopes or other kinds of 
reagents distinguishable by MS is the most common strategy for 
gel-free protein quantification in proteomics. It is a universal 
approach as labeling is done after protein extraction. Over the 
years, several strategies have been developed which each suit dif-
ferent needs. Usually, they are used for “shotgun” experiments 
starting directly on peptide level using LC–MS for separation, 
quantification, and sometimes even identification in one step. It is 
to be noted that these parameters depend much on the capabili-
ties of the mass spectrometer used. Disadvantages of isotope 
labeling include cost expensiveness and the possibility of incom-
plete labeling. Most of the state-of-the-art labeling chemistries 
are summarized by Julka and Regnier (100).

4.1. Relative 
Quantification

4.1.1. Isotope Labeling
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As the first method using isotopic labels for quantitative MS, the 
ICAT or cleavable ICAT (cICAT) was invented by Aebersold and 
co-workers in 1999 (92). The reagent with specificity toward side 
chains of cysteinyl residues consists of three elements: first, a reac-
tive group toward thiol groups (cysteines); second, a linker con-
taining either 12C (light ICAT) or 13C(heavy ICAT) atoms; and 
third, a biotin group that can be used for affinity purification 
before MS analysis. To quantify protein expression levels, e.g., of 
two different cell states, the protein mixture of the first cell state is 
labeled with light ICAT and the protein mixture of the second 
is labeled with the heavy ICAT. After pooling of both samples, 
they are enzymatically digested to peptides, separated with HPLC, 
and analyzed via MS. The light or heavy ICAT-modified peptides 
co-elute in HPLC and can be easily distinguished from each other 
by a 9-Da mass shift. The relative quantification is determined by 
the ratio of the peptide pairs (102). The main drawback is that 
ICAT cannot be used to quantify all proteins due to the fact that 
the number of proteins containing cysteines is restricted and only 
limited sequence coverage of the protein can be reached (28). As 
a result, information about protein isoforms, degradation prod-
ucts, or posttranslational modifications, which are not located in 
the cysteine-containing peptide, are lost.

The techniques isobaric tags for relative and absolute quantifi-
cation (iTRAQ) and tandem mass tagging (TMT) were first 
introduced by Ross and Thompson, respectively (94, 103). Either 
protein or peptide labeling can be performed on lysine residues 
and/or the N-terminus. To date, eight different iTRAQ with 
eight different isobaric (same mass) mass tags, and six TMT 
reagents are available, allowing for multiplexing of samples.
Isobaric peptides hold the advantage of identical migration prop-
erties in the HPLC before MS analysis. Quantification is done 
after peptide fragmentation by the generation of label-specific 
low molecular weight reporter ion and signal integration. The 
different tags can be distinguished after peptide fragmentation as 
they result in different mass spectra. Therefore, this method 
allows the simultaneous determination of both identity and rela-
tive abundance of the peptide species (104, 105). iTRAQ and 
TMT can also be used for absolute quantification. Indeed, both 
methods hold the described limitations of GIST approaches. 
Additionally, iTRAQ/TMT quantification cannot be obtained on 
all kinds of mass spectrometers as low molecular mass reporter 
ion region is not accessible in all instruments.

Isotope-coded protein labeling is based on isotopic labeling of 
all free amino groups in proteins (93). Proteins from two differ-
ent samples are extracted, alkylated, and labeled with either the 
isotope-free ICPL (light) or the isotope ICPL tag (heavy). After 
labeling, the protein mixtures are combined, optionally separated, 
e.g., by 1D-PAGE to reduce complexity, enzymatically digested, 

4.1.1.1. Chemical Labeling
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and subsequently analyzed by MS (93). The heavy and light 
peptides differ in mass, and are visible as doublets in the mass 
spectra. Again, the peak intensities reflect relative quantitative 
information of the original proteins. The main advantage of this 
approach is the labeling already on protein level, circumventing 
all described limitations of the GIST approaches, although it 
holds the risk of incomplete protein labeling.

Enzymatic labeling with heavy water (16O/18O method) uses 
the fact that during protein digestion with trypsin, Glu-C or 
Lys-C up to two O atoms are incorporated into the peptide. 
Thus, digestion in the presence of H2

18O results in a peptide mass 
shift of 4 Da compared to that in peptides generated during diges-
tion in the presence of normal H2

16O. In a workflow using the 
16O/18O method, the samples are independently digested in the 
presence of either H2

16O or H2
18O, and the samples are pooled 

and separated by HPLC, followed by peptide quantification and 
identification. This method is relatively simple; indeed, it holds 
the risk of back exchange of the O atoms and does not allow for 
multiplexing.

Stable isotope labeling by amino acids in cell culture (SILAC) is a 
metabolic labeling based on the in vivo incorporation of specific 
amino acids into mammalian proteins (106). For example, mam-
malian cells are grown up in a medium with normal essential 
amino acids (light label) and concomitantly in a medium with 
isotopic modified forms of essential amino acids (heavy label). 
After some proliferation cycles, the isotopic/normal amino acids 
incorporate completely into the cells. Protein extracts can be 
pooled, digested, and analyzed by MS. The heavy and light pep-
tides elute as peak pairs separated by a defined mass difference. 
The ratios of the resulting relative peak intensities reflect the 
abundances of each measured peptide (107). Mainly, the isotopes 
13C, 15N, 2H, and 18O are used for stable isotope labeling. The 
incorporation of the isotopes in proteins can be performed in cell 
culture and even in vivo in simple organisms such as Drosophila 
melanogaster, Caenorhabditis elegans, or mice (107, 108). For 
higher organisms, especially humans, this kind of metabolic label-
ing is technically not feasible or completely impossible due to 
ethical reasons.

To overcome the limitations of incomplete labeling, and also to 
spare costs and to reduce loss of proteins in the cause of sample prepa-
ration, label-free MS approaches have been developed (101, 109). 
One disadvantage of label-free quantification indeed is that this 
technique does not allow multiplexing, and has a slight lack of 
sensitivity compared to labeling assays. Nevertheless, label-free 
approaches offer the opportunity to analyze samples with a 

4.1.1.2. Metabolic Labeling

4.1.2. Label-Free 
Quantification
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protein amount that would be too low for labeling or 2D-DIGE 
strategies, since they omit many preparation steps.

In spectral counting, the number of mass spectra repeatedly 
measured for one protein serves as a value for quantitation of this 
ion (109, 110). It could be shown that this number is propor-
tional to the concentration of a peptide in a sample when ana-
lyzed by nano-LC–MS (111). This is due to the fact that the 
higher the concentrations of a peptide, the longer it will take to 
elute from the HPLC system. Modern mass spectrometers can 
produce several MS² spectra in the time interval the peptides need 
to completely elute and be ionized by ESI. Disadvantages of spec-
tral counting rise from the complexity of biological samples: Even 
with the best available LC system, co-eluting of peptides will still 
occur when analyzing complex mixtures such as cell lysates. Mass 
spectrometers will not be able to identify all co-eluting peptides 
at once. As a consequence, several replicated LC–MS runs will be 
needed to reach maximum identification results from one sample 
(111). This also leads to the second disadvantage of spectral 
counting that quantitative information can be obtained only from 
the peptides chosen as precursors, while information on less 
intensive or unselected peptides will be lost. Nevertheless, spec-
tral counting is a cost-sparing alternative to labeling assays taking 
into account that this approach seems to be accurate, especially 
for high abundance proteins, but is highly sensitive to run-to-run 
variations (normalization is mandatory!).

One of the latest quantitative MS methods that is still under 
development is comparative or differential LC–MS (112). This 
method utilizes the ability of mass spectrometers to record not 
only m/z and the intensity of the MS signal, but also RT. Softwares 
use these data to build contour plots in the form of heat maps, in 
which RT and m/z span up a plane, and MS intensity will be 
displayed in a color code (101). Quantitative information is 
obtained by integration of the volume of the m/z–RT intensity 
peaks. Software calculates the features which are the sum of all 
peaks generated by one peptide as quantitative factors. Special 
algorithms are used for normalization between the LC–MS runs. 
The advantage of this method is that it does not need any MS² 
spectra for quantitation, with the result that all signals recorded in 
one LC–MS run will be quantified. This could become the main 
advantage of comparative LC–MS, as the quantitative informa-
tion should be more extensive than in spectral counting. Indeed, 
spectral counting still has advantages in sensitivity and reproduc-
ibility (109). A major disadvantage of comparative LC–MS is that 
it allows no multiplexing and thus is more sensitive for run-to-run 
variations than labeling methods. Nevertheless, some studies 
report successful use of comparative LC–MS methods (example 
given by Johansson (113)).
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Intensive effort is spent currently to improve label-free 
quantification approaches, especially with respect to reproducibility, 
data analysis, and statistics.

Over the last years, proteome research is more and more focused 
on the Absolute quantification of proteins (AQUA). AQUA per-
mits the direct quantification of differences in proteins and post-
translational modified protein expression levels (98). Therefore, 
chemically synthesized isotope peptides, which are unique for the 
proteins of interest, are used as internal standards by adding a 
known quantity to the analytical sample (114, 115). The ratio of 
synthetic to endogenous peptide is measured and the absolute 
level of the endogenous peptide can be precisely and quantita-
tively calculated and consequently the absolute levels of proteins 
and posttranslational modified proteins are known (98).

Although there are efforts to use MALDI, factors such as 
variable crystallization and laser ablation may lead to poor repro-
ducibility, and thus generally ESI is the method of choice for 
AQUA (114). Before starting the AQUA approach, one has to 
adjust the peptide retention by RP chromatography, ionization 
efficiency, fragmentation via CID, and the amount of added stan-
dards to fit with the dynamic detection range of the mass spec-
trometer (see Gerber et al. for detailed information (98)). In a 
rather complex sample, the detection of the desired peptide likely 
competes with the detection of other isobaric peptides in the 
sample. This can be overcome by the combination of AQUA with 
MRM, allowing for a selective absolute quantification of the tar-
get protein (115). This technique is of considerable benefit for, 
e.g., the absolute quantification of known biomarkers. Other 
available approaches for absolute quantification based on internal 
standards are QConCat (116) and protein standard for absolute 
quantification (PSAQ) (117).

In the past decade, major developments in instrumentation and 
methodology have been achieved in proteomics. Powerful tech-
niques have been established to identify and differentially quan-
tify protein species of complex biological samples. Many proteomic 
laboratories are investigating new techniques to overcome consis-
tent obstacles. Beyond alterations of the genome, the increasing 
advances in proteomics hold great promise for a comprehensive 
description of protein isoforms or even posttranslational modifi-
cations. With the ongoing improvement of sample preparation 
techniques and mass spectrometer sensitivities, the resolution of 
quantifiable compounds will be further improved in proteomics 

4.2. Absolute 
Quantification

5. Summary
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research allowing for the identification and especially reliable 
quantification of, e.g., physiologically relevant biomarkers indicating 
specific disease states.

 1. For the electrophoretic separation of membrane proteins, 
conventional 2D-PAGE is not suitable. For this purpose, the 
application of specialized gel-based gel techniques such as 
CTAB- or BAC-SDS-PAGE, or MS-based methods is highly 
recommended (15, 118, 119).

 2. Whenever a labeling approach is chosen for quantitative pro-
teomics, labeling limitations have to be considered. For 
example, a saturation DIGE approach in 2D-DIGE will 
enhance the sensitivity but only cysteine residues will be 
labeled. Since cysteines are not found in all proteins, informa-
tion about these proteins is lost. Moreover, peptide labeling 
might be more efficient than protein labeling.

 3. In order to rule out labeling preferences, a dye swap should 
be included in 2D-DIGE experiments. This can be performed 
by switching the labeling dyes of samples A and B in two con-
secutive experiments.

 4. Protein differences between samples which have been found 
to be statistically valid in one technique need to be further 
validated by an independent method.

 5. One has to consider that gel-based and MS-based techniques 
generally do not result in identical protein lists. Rather, both 
approaches complement each other. For a detailed and broad 
description of proteins within a sample, one may think about 
combining both approaches.
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Chapter 2

In-Depth Protein Characterization by Mass Spectrometry

Daniel Chamrad, Gerhard Körting, and Martin Blüggel 

Abstract

Within this chapter, various techniques and instructions for characterizing primary structure of proteins 
are presented, whereas the focus lies on obtaining as much complete sequence information of single 
proteins as possible. Especially, in the area of protein production, mass spectrometry-based detailed pro-
tein characterization plays an increasing important role for quality control. In comparison to typical 
proteomics applications, wherein it is mostly sufficient to identify proteins by few peptides, several com-
plementary techniques have to be applied to maximize primary structure information and analysis steps 
have to be specifically adopted. Starting from sample preparation down to mass spectrometry analysis and 
finally to data analysis, some of the techniques typically applied are outlined here in a summarizing 
and introductory manner.

The field of Proteomics has been very successful in identifying the 
quantification of large sets of proteins (protein mixtures), for 
example, from whole organelles or cell lysates. Nowadays, hun-
dreds of proteins within a complex sample can be easily identified 
by mass spectrometry, whereas only few peptides per protein are 
usually detected (1). This allows elucidating the name of the pro-
tein via searching protein sequence databases. In addition to ana-
lyzing complex protein mixtures, at least equally challenging is 
the art of in-depth characterization of individual proteins, or in 
other words, gaining as much primary structure information 
(including posttranslational modifications) as possible from a pro-
tein of interest.

In-depth protein characterization is of great importance, as it 
increases the chance to detect posttranslational modification 
(PTM), which modulates the activity of most eukaryote proteins. 
Also validating and distinguishing protein isoforms within a sample 

1. Introduction

Michael Hamacher et al. (eds.), Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, vol. 696,
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demands detailed elucidation of the protein sequence. Especially, 
therapeutic protein products require thorough characterization, 
for example, during protein engineering, protein production, and 
for first in men studies throughout routine testing.

Mass spectrometry (MS) is an excellent tool for this purpose as it 
allows deducing the primary structure of proteins, including PTM by 
measuring mass per charge ratios (m/z) of peptide ions and corre-
sponding peptide fragment ions in a high-throughput manner (2). 
Especially, the technology advances in recent years, including the 
increase in accuracy (today at ppm for peptides and peptide frag-
ments), sensitivity (femtomol) and acquisition speed (more than 
10,000 spectra/h) has turned MS into the most valuable analysis tool 
for detailed characterization of complex molecules like proteins.

While high-throughput protein identification from peptide 
fragmentation (MS/MS) has become a standard in modern 
MS-based protein analytics, complete primary structure elucida-
tion, including PTM is still a challenge due to various reasons:

 (a) Masses measured by MS are generally not unique, i.e., differ-
ent amino acid sequences, including PTM may have identical 
or similar mass values, making them hard to distinguish.

 (b) Protein and peptide modifications can be induced by sample 
preparation and these must therefore be carefully distin-
guished from original in vivo PTM.

 (c) Some protein sequence segments may be hard to monitor by 
MS, e.g., some peptides are hard to ionize or show poor 
fragmentation.

 (d) Protein modifications may not be homogenous, and due to 
numerous gene products caused by alternative splicing and 
combinations of modifications the protein mixture can be 
very complex.

 (e) Sample preparation methods have to be individually devel-
oped as low protein concentration and interfering small mol-
ecules like salt, detergent, and stabilizers in formulation are 
limiting or even preventing mass spectrometric analysis.

In this chapter, we explore various current methods for comple-
mentary primary structure elucidation via mass spectrometry. 
We also focus on sample preparation as this is an essential prerequisite 
to enable and improve primary structure discovery.

Sample preparation methods for in-depth protein characteriza-
tion by MS have to be developed to fulfill two aspects. On the 
one hand, sample preparation has to be performed to enable mass 

2. Methods

2.1. Sample 
Preparation
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spectrometric analysis. On the other hand, it has to be designed 
in a way to minimize the risk of primary structure change due to 
the sample preparation.

Adjuvants and contaminants, such as salt, detergent, or stabilizers, 
have the potential to prevent or reduce the results of mass spec-
trometric analysis. In case of liquid chromatography coupled to 
electrospray ionization mass spectrometry, salts in millimolar con-
centrations and even low detergent concentrations can be removed 
online within the HPLC setup (e.g., guard column or dedicated 
trapping column). For higher concentrations and for MALDI-MS 
applications, spinning columns (e.g., 3.5-kDa cutoff), dialysis 
(also available as microdialysis) or precipitation are the methods 
which are mostly applied. Additionally, separation techniques with 
high resolving power, such as reverse phase-HPLC or the combi-
nation of SDS-PAGE (1D or 2D) with protein digestion, are also 
well suited to move to an MS compatible buffer, with salts like 
ammonia carbonate, solvents like water, acetonitril, methanol, 
and acids like formic or triflouracetic acid.

Oxidation of, for example, Methionine, deamidation of Asparagine, 
or truncation may occur under conditions of sample preparation. 
Additionally existing modifications (e.g., phosphorylation) may 
be removed (e.g., by contact to iron in not inert HPLC systems).

Therefore, the sample preparation steps have to be limited to 
the minimum steps needed. Harsh conditions have to be avoided 
(e.g., 4 h, 37°C protein digestion method instead of 24 h, 37°C 
to avoid deamidation).

There are no universal protocols as the methods have to be 
adopted and altered to meet several aspects:

 (a) Aim of analysis and intended MS technique.
 (b) Starting protein concentration and nature of buffer content.
 (c) Final protein amount and concentration needed.

Additionally, protein specific aspects like hydrophobicity, tertiary 
structure, or modification often result in a need for protein-
specific method development.

Some general rules provide a guideline to method development:

 (a) Avoid any unnecessary step (e.g., multiple concentration, buf-
fer changes).

 (b) Work at high protein concentrations so that only a minor frac-
tion of the analyzed proteins is lost due to unspecific adsorp-
tion and reduce unfavorable adjuvant to protein ratios.

 (c) Minimize harsh stress conditions like high temperature or RT 
for longer time, freeze/thaw cycle, extreme pH, lyophiliza-
tion steps; oxidative stress.

 (d) Do not introduce any adjuvants where not needed.

2.1.1. Enabling Mass 
Spectrometric Analysis

2.1.2. Minimizing Risk of 
Primary Structure Change
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The primary structure of a biological molecule is the exact 
specification of its atomic composition and the chemical bonds 
connecting those atoms. For a high molecular weight protein like 
an antibody with approximately 20,000 atoms, the information of 
its primary structure is very complex. Fortunately, a good portion 
of this information can be reduced to the amino acid sequence.

However, for proteins the primary structure is not only cov-
ering the exact amino acid sequence, but also cross-links like dis-
ulfide bridges and modifications. Microheterogeneity will add 
another level of complexity into sample characterization as it is 
present in many highly purified recombinant proteins as well.

During the last 20 years, a huge number of mass spectromet-
ric methods were developed to analyze the primary structure in 
detail. A full molecular weight determination by MS can provide 
a good insight for the verification of primary sequence and detec-
tion of modification. MALDI-TOF-MS is robust in sample prep-
aration and salt concentration and can give you accuracy with as 
low as a few Daltons for midsized proteins. With this accuracy, 
information on N-/C-terminal truncation or modifications like 
glycosylation or phosphorylation can be obtained. However, for 
modifications like deamidation, disulfid linkage, or even oxida-
tion a higher accuracy may be needed. The ability of Electro Spray 
Ionization to measure the molecular weight of multiple highly 
charged ions in parallel results in a much better accuracy. For ESI-
FT-MS measurement, these molecular weight determination can 
be in a sub-Dalton range.

For a more detailed primary characterization, the protein has 
to be cleaved into subunits or peptides which are then measured 
by mass spectrometry.

The “MALDI In Source Decay” method fragments a full 
intact protein within the mass spectrometer and enables here a 
direct sequencing of the N- and C-terminal sequence area.

A sample preparation with a highly specific enzymatic diges-
tion (e.g., Trypsin, Glu-C, Asp-N, etc.) will result into peptides 
which can be measured in a mixture (e.g., by MALDI-MS) or 
separated and analyzed by online LC-ESI-MS. With today’s instru-
ments, these peptides can be measured with high sensitivity (fmol) 
and with highest mass accuracy (low to even sub-ppm level). In 
the same experiment, these peptides can be fragmented within the 
mass spectrometer and the resulting peptide fragment pattern will 
be recorded also with highest mass accuracy and sensitivity.

With this ability and lab automation, it is possible to resolve 
also very complex primary structures and microheterogeneity of 
low abundant sequence variants.

However, data analysis becomes increasingly important to 
unravel the full potential and latest improvements of mass 
spectrometry.

2.2. Primary Structure 
Elucidation by Mass 
Spectrometry
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Signal extraction and calibration are the most common first steps 
in the MS data interpretation process. Most software tools for 
MS-based protein analysis accept so-called peak lists, which are a 
collection of signals of a mass spectrum. Peak extraction is a com-
plex task due to signal resolution, noise, signal overlapping, and 
the need for deisotoping.

In case of ESI-MS, peptides and proteins are typically detected 
in various charge states (z), e.g., with z = 1–4 for peptides, 
z = 5–100 for proteins and complexes). In order to determine the 
exact molecular weight of a peptide or protein, the spectrum has 
to be deconvoluted (calculate M or MH + from m/z values). The 
information of the charge state can be derived directly from the 
given isotopic m/z signal pattern using software tools (3, 4). 
However, one should be aware that the applied software may fail 
to assign the correct charge state. In case of proteins, molecular 
mass is derived from m/z mass peaks of multiple charge states of 
the same protein. In case of time of flight (TOF) measurements 
calibration of the spectra is essential to obtain sufficient mass 
accuracy. Calibration can be done internally (e.g., using theoreti-
cal m/z values of known peptides within the dataset, or by inject-
ing substances in the MS instrument with each spectrum (“lock 
mass”)), or externally (using the calibration constants of an earlier 
run, which contains spectra of a known substance).

After calibration, modern MS instruments can achieve a mass 
accuracy of few ppm.

Fragmentation mass spectra of peptides can be correlated to 
protein sequences in a database in an automatic manner (5, 6). 
This can be done by dedicated protein sequence database search 
software (see Table 1). It is advantageous that this method does 
not require any a-priori knowledge about the analyzed proteins, 
and therefore it is often used as an initial step to identify all major 
protein components in a sample.

2.3. Signal Extraction

2.4. Peptide 
Fragmentation 
Fingerprinting

Table 1 
Overview on commonly used peptide fragmentation 
fingerprinting software

Mascot http://www.matrixscience.com/

MS-Seq http://prospector.ucsf.edu/

Phenyx http://www.genebio.com/products/phenyx/

Popitam http://www.expasy.org/tools/popitam/

SEQUEST http://fields.scripps.edu/sequest/

SpectrumMill http://www.home.agilent.com/

X! Tandem http://prowl.rockefeller.edu/prowl/

http://www.matrixscience.com/
http://prospector.ucsf.edu/
http://www.genebio.com/products/phenyx/
http://www.expasy.org/tools/popitam/
http://fields.scripps.edu/sequest/
http://www.home.agilent.com/
http://prowl.rockefeller.edu/prowl/
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Initially, the user has to define various input parameters carefully, 
such as the specificity of the applied proteolysis enzyme, maxi-
mum allowed mass errors for peptide parent ion and fragment 
masses and the protein sequence database to be searched. Then, 
the software generates theoretical spectra by theoretical fragmen-
tation of peptides obtained from in silico digestion of the searched 
database proteins. The obtained theoretical spectra are compared 
to the measured spectra and the result is a list of matching pep-
tides and proteins. Commonly, the reported proteins and pep-
tides are sorted by a specific search score that relates to the 
significance of the found database match.

Protein and peptide modifications can be elucidated with this 
approach to some extent as typical database search engines that 
allow searching up to three different variable modifications (each 
amino acid in question is tested whether it is modified or not) and 
also fixed modifications (every amino acids is treated to be modi-
fied). Also regarding enzyme nonspecificity, missed cleavage sites 
and even peak picking errors (e.g., failure to detect the correct 
monoisotopic peptide signal from overlapping isotopic distribu-
tions) can be searched but generally applying these search strategies 
may lead to a drop in sensitivity. Therefore, it is advisable regarding 
only experimentally induced modifications (e.g., methionine-oxida-
tion) and a maximum of one or two missed cleavages and no unspe-
cific cleavage. In case of in-depth protein characterization, primary 
structure elucidation beyond this scope should be addressed by 
dedicated second round search engines (see below).

Mass accuracy is crucial to obtain unambiguous results. The 
maximum allowed mass error parameters within the search should 
be set to at least two standard deviations (assuming a normal distri-
bution, about 95% of the measurement errors fall in two times 
standard deviation). The standard deviation for mass measurements 
can be determined within routine MS-instrument calibration.

Peptide masses determined by MS are generally not unique 
and each measured mass can randomly match a peptide from a 
sequence database. Therefore, a certain risk to obtain false posi-
tive results remains. Assessing the correctness of a possible identi-
fication is a challenging task. In fact, the probability that the 
match in question is correct cannot be calculated; however, most 
reported search scores relate to the probability that the observed 
peptide match is a pure random event (7, 8). In case of in-depth 
protein characterization, evaluation of sequence database search 
results is frequently not done automatically, but remains the task 
of an expert who manually inspects spectra matching to the pro-
tein of interest.

Usually, the primary structure detectable by a single database 
search is limited and must be extended by further experiments 
such as using a different cleavage enzyme, or using dedicated 
second round search engines.
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Standard database searches which can be seen as “first round” 
searches are limited in the elucidation of posttranslational modifi-
cations, unspecific, and missed cleavages products, sequence 
errors, amino acid substitutions, and unsuspected mass shifts. For 
example, taking more than 200 described posttranslational modi-
fications for all protein sequences of an organism into account 
would lead to an amount of peptides to be tested that impedes a 
brute force approach. Apart from the huge time exposure, simply 
the huge number of possible combinations leads to randomly 
matching sequences. To overcome this problem, second round 
searches have been developed, which work similar to peptide 
fragmentation fingerprinting described above but instead of 
searching a complete protein sequence database, only few selected 
protein sequences are regarded (9).

Typically, protein identification is done in the first step using 
standard search algorithms. Second round searches are then used 
in the second step to elucidate previously unexplained spectra. In 
case of the software tools Mascot and Phenyx, the second round 
search feature is directly integrated, and can be triggered after the 
first round search. There is also a dedicated second round search 
tool named ModiroTM (http://www.modiro.com) available. In 
case of ModiroTM, the user can enter own protein sequences, 
which is of, for example, special interest in case of therapeutic 
protein products from biotechnology. During the second round, 
search batches of unidentified spectra (e.g., whole LC-MS/MS 
runs) are screened in a sequential manner for various different 
posttranslational modifications, unknown mass shifts, unspecific 
cleavages, and sequence errors in one single step. A typical search 
result obtained by using ModiroTM is shown in Fig. 1.

As genome sequencing capabilities have increased dramatically 
during the last decades, many organisms are sequenced today and 
sequences are available to the public community. However, 
genome sequence information is still lacking for many organisms 
at the same time while some of them are of interest in industrial 
or biochemical research.

As MS/MS spectra of peptides are generated by fragmentation 
within the backbone of the peptide, the mass difference between 
two fragment ions directly provide information on the amino acid at 
a given peptide position. As a result, de novo sequencing is feasible 
for a peptide and partly also for proteins. However, each fragmenta-
tion is highly sequence dependent, and the intensity of the different 
ions differs a lot for each fragment ion. Therefore, some positions 
may not be resolved. Additionally, a mass difference may be explained 
by more than one amino acid combination leading to inconclusive 
sequences. As additional fragmentation (e.g., from internal frag-
ments, side cleavage, doubly charged ions) may occure and overlay 
the ion series, the manual interpretation is quite laborious.

2.5. Second Round 
Searches

2.6. De Novo 
Sequencing

http://www.modiro.com
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Several software solutions were developed to perform an 
automated de novo sequencing (e.g., PEAKS (10), PepNovo 
(11), Lutefisk (12)). They provide the best guess of the sequence, 
at least a sequence tag. The accuracy of this prediction highly 
depends on the quality of the fragmentation spectra. Resulting 
peptide candidates can be easily searched for homology against 
sequence databases. MS-BLAST (13) is a dedicated alignment 
tool for this purpose.

Fig. 1. Screenshots of the ModiroTM Software showing search parameter input and the obtained result page, including 
detected protein modifications in MS/MS datasets.
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Additionally, MS instrument providers deliver software packages 
where either a full de novo algorithm is incorporated or sequence tag 
generation is supported by interactive annotation of a resulting MS/
MS spectrum (e.g., BioTools, Bruker Daltonik GmbH).

Although knowing that a given protein is derived from a non-
sequenced organism, its MS/MS data should be analyzed in the 
first round by a search engine (see Subheading 2.4) with no or 
broad taxonomy restriction. For some peptides, the homology 
might be sufficient to pick up the homolog protein from another 
already sequenced organism, which reduces the workload for 
de novo sequencing.

For isolated unknown proteins from an unsequenced organ-
ism internal protein sequence parts are needed, in order to con-
struct nucleotidic degenerative primers for PCR and subsequent 
DNA sequencing. For this purpose, high quality sequence infor-
mation ideally form the C-terminal region and long (minimum 7, 
best 15 amino acids) stretches are best suited.

In-depth characterization of protein requires the identification of 
the complete protein sequence. Usually, within a single MS analy-
sis, some sequence areas are not identified or confirmed, as some 
peptides are outside the mass range detectable with a specific MS 
instrument, or have poor fragmentation. Therefore, it is advisable 
to make several MS runs, using different enzymes (or enzyme com-
binations) for proteolysis, or to apply other sample preparation 
techniques. Ideally, missing sequence areas will be different for 
the different runs and applied techniques, yielding more com-
plete sequence coverage after the combination of the found 

2.7. Combination of 
Results (see Fig. 2)

Fig. 2. Combining search results of MS/MS runs with several cleavage enzymes to get nearly complete sequence 
coverage.
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peptides. Equally, analyzing the sample with differing MS 
instrumentation (e.g., MALDI-MS and LC-ESI-MS/MS) will 
give a complementary dataset.

Dedicated software is required to combine the outcome of 
the database searches, as a combined search with, e.g., different 
cleavage rules or mass spectrometric methods is not possible 
using currently available sequence database search software. In 
ProteinScape (Bruker Daltonik GmbH and Protagen AG), which 
is a Proteomics Bioinformatics Platform (14, 15), an algorithm 
for this task is integrated. Within ProteinScape, a new protein list 
is built, combining all peptides from all searches. Additionally, 
only the best matching sequence for each spectrum is annotated.

For complete protein characterization of therapeutic proteins, it 
is necessary to show that the amino acid sequence, including 
modifications such as glycosylation meets the expected patterns. 
Second round searches with tools like ModiroTM can help to 
analyze existing modifications.

In case of LC-ESI data, the level of a specific modification can 
be validated by the visualization of Extracted Ion Chromatograms 
(EIC) of the modified and unmodified peptide. An EIC shows 
the mass spectrometric signal intensity of a specific m/z value 
over the retention time. With an overlay of two EICs, showing 
the m/z of the modified and the unmodified peptide, the level of 
modification can be detected (Figs. 3 and 4). If both signals are 
visible, there should be a retention time shift between them.

2.8. Differential EIC
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Fig. 3. Overlay of the extracted ion chromatograms of the unmodified and deamidated 
peptide W.LNGKEY.K. The peak at 42.0 min is the unmodified peptide (m/z = 723.3672), 
the peak at 44.5 min the deamidated peptide (m/z = 724.3512). By comparing the peak 
intensities or areas a medium deamidation can be estimated. The lower signal at 
42.0 min is the second isotope of the unmodified peptide which has nearly the same m/z 
as the deamidated peptide.
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Another way of assuring that there are no major signals left 
unexplained can be done by coloring identified peptides in a base 
peak chromatogram (Fig. 5). Ideally, there should be no peaks 
left unexplained. If major signals are still unexplained, the corre-
sponding MS and MS/MS spectra must be analyzed further.

In-depth protein characterization by MS is significantly different 
from the task to identify proteins from simple or complex mixtures. 
The whole analysis process from sample preparation to MS acquisition 

3. Conclusions

Fig. 4. MS spectra of the deamidation of Fig. 3. The first spectrum is the unmodified peptide at 42.0 min, the second 
spectrum the deamidated peptide at 44.5 min.
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Fig. 5. Base peak chromatogram with identified peaks colored. Most of the MS run is 
explained. The remaining peak at 42 min was assigned to a peptide containing glycan, 
but the MS/MS fragmentation was not sufficient for identification.
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and data interpretation has to be specifically adopted to the 
analyzed protein samples in order to increase the amount of elu-
cidatable primary structure information. Therefore, in-depth 
protein characterization is not standardized and remains an expert 
task. The major keys to successful primary structure characterization 
are firstly, sample preparation for the isolation and enrichment of 
the proteins to be analyzed, and secondly, the combination of sev-
eral analysis methods to maximize the protein sequence coverage.

Significantly, more material is needed compared to protein 
identification approaches which require mapping of only a few 
peptides of each identified protein. The focus lies more on the 
enrichment or isolation of structural variants, including product 
impurities which are in low concentration. Chromatographic, 
electrophoretic separations or immunoaffinity purification are 
usable methods to isolate suitable amounts of the protein to be 
analyzed. Often milligrams of proteins are isolated to enable in-
depth protein characterization.

Applying different complementary analysis methods is 
required. An example is increasing sequence coverage by using 
different proteolysis enzymes or combinations to make more pro-
tein sequence segments accessible to the MS measurement. Also 
the combination of various software tools for analyzing mass 
spectrometric data maximizes the primary structure yield con-
tained in the acquired data.

As much as possible MS data has to be collected and must be 
evaluated in a combinatorial approach. However, MS data inter-
pretation can only be partly automated by software. Laborious 
manual evaluation of mass spectra and primary structure assign-
ment is still required.

 1. Due to computational reasons, MS spectrum identification 
via software (Peptide Fragmentation Fingerprinting, De 
Novo Sequencing) works on peak lists rather than the origi-
nally acquired raw spectra. The preceding automatic peak pick-
ing procedures are not flawless and not lossless. Deconvolution 
and deisotoping is not always correct. Additionally, signals with 
low signal to noise ratio may be missed. For that purpose, it can 
be very helpful to validate a critical peptide match in question 
manually, using raw spectra. MS instrument providers usually 
deliver suitable software for manual raw spectrum annotation.

 2. Especially, in the area of quality control for protein produc-
tion, it is very important to elucidate sample preparation and 
MS-induced artifacts which are not related to the production 
process itself. Examples are Na+ adducts, nonspecific proteolysis, 

4. Notes
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skimmer nozzle fragmentation, keratin contaminations, 
pyroglutamate formation from N-Term of internal peptides, 
etc. As long as these spectra remain unexplained, one cannot 
be sure about the purity of the product. Here, second round 
search engines are very helpful as they allow screening a 
wealth of possible modification in parallel, including also 
artificially induced ones.

 3. Characterizing a protein via peptide fragmentation finger-
printing relies on the correctness of the protein sequence 
which is matched to the spectra. In case of, for example, 
sequencing errors, elucidation of corresponding fragmenta-
tion spectra fails. Sequence errors from single amino acid 
exchanges can be elucidated by second round searches. Other 
sequence errors must be elucidated via de novo sequencing.

 4. In case of analyzing a specific peptide via an EIC, there may 
be unrelated signals and other peptides visible in the chro-
matogram with nearly the same m/z. Therefore, correspond-
ing MS and MS/MS spectra have to be checked, too. The 
MS spectrum must show that the signal is a monoisotopic 
peak, and has the correct charge state, the MS/MS spectra 
must match to the peptide sequence.

 5. To cover the whole amino acid sequence of a protein, LC-MS/
MS runs from digests with several enzymes and enzyme com-
binations are necessary. To minimize the laboratory work, use 
software tools and theoretical digests to predict which 
enzymes or enzyme combinations are optimal to get peptides 
within the m/z acquisition range of a mass spectrometer.
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Chapter 3

Analysis of Phosphoproteomics Data

Christoph Schaab 

Abstract

Regulation of protein phosphorylation plays an important role in many cellular processes, particularly in 
signal transduction. Diseases such as cancer and inflammation are often linked to aberrant signaling path-
ways. Mass spectrometry-based methods allow monitoring the phosphorylation status in an unbiased and 
quantitative manner. The analysis of this data requires the application of advanced statistical methods, 
some of which can be borrowed from the gene expression analysis field. Nevertheless, these methods 
have to be enhanced or complemented by new methods. After reviewing the key concepts of phosphop-
roteomics and some major data analysis methods, these tools are applied to a real-world data set.

Protein phosphorylation plays an important role in regulating 
many cellular processes. The phosphorylation status of a protein 
can influence its ability to interact with other proteins, its subcel-
lular localization, and, in case of enzymes, its activity (1, 2). 
Phosphorylation events play a particularly prominent role in signal 
transduction pathways, which transmit signals caused by external 
stimuli from the cell membrane to the nucleus. Here, external stim-
uli activate receptors at the cell membrane that in turn activate a 
cascade of phosphorylation events in the cell membrane and the 
cytoplasm. Finally, the signal arrives at the nucleus and regulates 
gene expression by activating or inhibiting transcription factors. 
Although signal transduction pathways are often visualized as a 
series of steps, the reality is likely to be more complex: many of 
the pathways in general run parallel, they are cross-connected, 
and contain positive and negative feed-back loops.

Discovering signal transduction pathways is particularly 
important for understanding the mechanisms of certain diseases, 
such as cancer, inflammation, and diabetes (3, 4). Knowing the 

1. Introduction

Michael Hamacher et al. (eds.), Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, vol. 696,
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participant signaling pathways and the effect of a drug on these 
pathways will help in understanding the mode of action of 
the drug, to further optimize the drug or its use in combination 
with other drugs and to predict the responsiveness of patients to 
the drug (5–7).

Understanding these mechanisms requires, on the one hand, 
advanced statistical and mathematical tools (computational sys-
tems biology), and on the other hand, experimental data that can 
be modeled by these tools. Experimental methods such as west-
ern-blotting or ELISA-based assays allow monitoring the phos-
phorylation of tens or hundreds of sites. Both methods require 
phospho-specific antibodies and are therefore limited to the 
detection of known phosphorylation sites. Recent advances in 
mass spectrometry, methods for the enrichment of phosphory-
lated proteins or peptides, and software for analyzing the data 
enable the application of mass spectrometry-based proteomics to 
monitor the phosphorylation events in a global and unbiased 
manner. These methods become sufficiently sensitive and robust 
to localize the phosphorylation sites within the peptide sequence 
and to quantify them (8). However, the sheer amount of data 
generated by these methods makes computer-based processing of 
the data and sound statistical methods indispensable. A typical 
mass spectrometry-based experiment generates ~300 GB of raw 
data and can identify ~20,000 phosphorylation sites.

Before further delving into the bioinformatics tools available 
for the analysis of phosphoproteomics data, this chapter briefly 
explains the key aspects of sample preparation, enrichment meth-
ods, and quantification, followed by a review of some of the cur-
rent software tools for processing the raw data generated by mass 
spectrometry-based phosphoproteomics experiments. The core 
of this chapter deals with the major methods that can be applied 
to the downstream analysis of phosphoproteomics data. Although 
most of the methods can also be applied to data obtained by 
ELISA assays, the focus here is on data generated with LC-MS/
MS. These methods are then applied to a case study in which 
phosphoproteomics facilitated the generation of hypotheses about 
the mode of action of sorafenib (Nexavar®, Bayer), a drug 
approved for the treatment of kidney and liver cancer.

Before analyzing phosphoproteomics data, it is helpful to review the 
key aspects of how the samples are prepared, how phosphorylation 
sites are identified, and how they are quantified. The various state-
of-the-art methods differ in these aspects, and it is important to 
account for these differences when analyzing the data. Nevertheless, 

2. Methods

2.1. Sample 
Preparation  
and Detection  
of Phosphorylations
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for the sake of conserving space only a limited overview of the 
methods is presented (see (9) for a comprehensive review).

Figure 1 shows the global quantitative phosphoproteomics 
workflow that was used in (5). After the cells from the samples to 
be processed are lysed, the protein extracts are digested (e.g., by 
trypsin), the resulting peptides are optionally labeled (see below) 
and then enriched. The phosphorylation is stabilized by adding 
phosphatase (e.g., Orthovanadate) and kinase inhibitors (e.g., 
EDTA). The proportion of phosphorylated peptides (phospho-
peptides) is relatively small. Since the likelihood that a specific 
peptide is identified in the LC-MS/MS decreases with increasing 
complexity of the sample, enriching the sample for phosphopep-
tides is essential. The available enrichment methods differ in the 
type of phosphopeptides that is enriched. Metal affinity-based meth-
ods, such as IMAC and TiO2, utilize the affinity of phosphates to 
certain metal ions. These methods have the advantage that they 
are not specific to a certain phosphorylated amino acid and thus 
can be used for a global analysis of the phosphoproteome.

The alternative enrichment method using immunopurifica-
tion with immobilized antiphosphotyrosine antibodies, on the 
other hand, can only enrich peptides with phosphorylated tyrosine 
(10). Tyrosine phosphorylation represents only a small fraction 
(<1%) of the whole phosphoproteome. Nevertheless, it plays an 
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Fig. 1. Global quantitative phosphoproteomics workflow (5). Cells are lysed, proteins extracted and enzymatically cleaved. 
The peptides are enriched for phosphorylated peptides using TiO2 or IMAC combined with strong cation chromatography 
(SCX). Finally, the peptides are identified and quantified by LC-MS/MS, and the raw data is processed with MaxQuant.
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important role in signal transduction cascades, such as the ones 
starting with receptor tyrosine kinases, and is of special interest in 
cancer cells in which these cascades are often mutated. When 
selecting an enrichment method the reduced complexity obtained 
with antiphosphotyrosine antibodies must be balanced with the 
more complete coverage achieved with affinity-based methods.

The obtained phosphopeptides are usually analyzed by 
LC-MS/MS, i.e., by a nano-liquid chromatography (nanoLC) 
combined with a tandem mass spectrometer (for overview please 
also see Schönebeck et al. in this issue). The nanoLC is necessary 
to further reduce the enormous complexity of the sample. The 
first-stage MS detects the ionized peptides and selects them for 
fragmentation. The fragmented peptides are analyzed in the sec-
ond-stage MS. The fragment spectrum allows a unique identifica-
tion of the peptide and, in many cases, a localization of one or 
more phosphorylation sites within the peptide sequence.

However, in most studies the phosphorylation sites have to 
be not only identified, but also quantified and compared between 
different samples (see Notes 1 and 2). Because the peptide ion 
counts can vary significantly from sample to sample and from 
LC-MS/MS run to LC-MS/MS run, the label-free quantifica-
tion using precursor ion counts is usually not sufficiently accurate. 
This is particularly true for phosphoproteomics experiments, since 
the quantification is based on single peptides only. A strategy to 
circumvent these issues is to label the samples such that two or 
more samples can be measured in the same LC-MS/MS run. The 
two most frequently used labeling methods are the metabolic 
method SILAC (11) and the chemical method iTRAQTM (12).

A common aspect of all mass spectrometry-based methods is 
that the selection of the peptides for fragmentation is to a certain 
extent random. The likelihood for selection depends not only on 
the ion count of the respective peptide, but also on the ion counts 
of all other peptides in the same retention time window. Thus, 
the resulting data will contain missing values, and if a peptide is 
missing in a certain sample, it cannot necessarily be concluded 
that its concentration in this sample was low. This is different in 
microarray-based methods for gene expression analysis and has to 
be taken into account later. Please see Note 3 for the possibilities 
to improve the coverage.

After analyzing the samples by LC-MS/MS, the resulting MS and 
MS/MS spectra have to be processed in order to identify the 
phosphopeptides that best match the measured MS/MS spectra 
and, depending on the labeling method used, the corresponding 
quantification information has to be read from the MS or MS/
MS spectra. Both tasks are far from trivial and until recently 
involved a lot of manual work. The identification is usually done 
by searching the measured spectra against theoretical spectra 

2.2. Raw Data 
Processing
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computed from protein sequence databases, such as IPI, UniProt, 
or Entrez. Standard search engines, such as Mascot or Sequest, 
perform well on unmodified peptides. However, the exact localiza-
tion of the phosphorylated amino acids requires the comparison of 
the measured spectra with theoretical spectra where the phos-
phate group is placed on each possible amino acid. Tools such as 
MSQuant (http://msquant.sourceforge.net), SuperHirn (13), or 
MaxQuant (14) implement sophisticated algorithms to improve 
the identification of the peptides and the localization of the phos-
phorylation sites. MSQuant and MaxQuant additionally allow 
the quantification of SILAC-labeled peptides, whereas SuperHirn 
can quantify nonlabeled peptides.

In the following, we illustrate the raw data processing steps 
by using MaxQuant. A detailed description of the steps can be 
found in (15). MaxQuant currently supports raw files produced 
by Thermo LTQ-FT-ICR and LTQ-Orbitrap instruments only. 
After acquisition of the raw data with the vendor’s software, it is 
processed with the “Quant” module in a first step. All LC-MS/
MS runs that belong to one experiment should be processed 
together, since MaxQuant can use the information from all runs 
to improve the peptide identification. Quant performs a 3D peak 
and isotope pattern detection for identifying the peaks that belong 
to isotopic SILAC pairs or triplets and quantifies these. The pro-
duced “msm” files containing processed MS/MS spectra are then 
submitted to the Mascot search engine. It is important that the 
sequence database also contains the reverse protein sequences of 
all database entries, since these are used by the scoring algorithm 
for estimating the false discovery rate. Finally, the raw files, the 
intermediate files from Quant, and the Mascot results are pro-
cessed by the “Identify” module. Identify integrates all the infor-
mation, assigns the identified peptides to proteins, aggregates the 
quantitative information, and performs statistical validation. In 
particular, it uses the identified phosphorylated peptides to deduct 
quantitative information for all identified phosphorylation sites. 
The generated file “Phospho (STY)Sites.txt” is used for further 
analysis. Besides information on the identified phosphorylation 
sites and their quantification in the performed experiments, it 
contains various scores that allow judging the reliability of the 
identification and localization of the phosphorylation sites (please 
see Note 4). Figures 2 and 3 show two examples of MS/MS spec-
tra that allowed a localization of the phosphorylation site with 
high confidence (Fig. 2) and with low confidence (Fig. 3).

A typical phosphoproteomics experiment yields thousands of 
phosphorylation sites (e.g., Olsen et al. identified 6,600 sites (8)). 
This high dimensionality makes further analysis of the data using 
sound statistical methods indispensable. Many of the methods devel-
oped for the analysis of microarray data can be applied here too. 

2.3. Downstream 
Analysis

http://msquant.sourceforge.net


46 Schaab

There is no single method that should be applied to all phospho-
proteomics experiments; rather the questions to be addressed by 
the experiments and the chosen experimental design determine 
which analysis methods are appropriate. Below some of the avail-
able methods are reviewed. How these methods are applied in 
concrete case studies is shown in the next section. All discussed 
procedures are available in Bioconductor (12) within the R plat-
form or in the Statistics toolbox of Matlab (The Mathworks) or 
can easily be implemented therein.

In many experimental setups, two or more conditions are com-
pared and the first question arising is which of the phosphoryla-
tion sites are differentially phosphorylated. For example, the 
conditions could be untreated cells and cells treated with a small 
molecule or cells stimulated by growth factors. Or the experiment 
might compare wild type cells with cells carrying a certain muta-
tion. Unless label-free methods are used, the ratio between the 
phosphorylation degree under condition 2 compared to its degree 
under condition 1 are measured for each phosphorylation site. In 
order to reliably identify differential phosphorylations the experi-
ment has to be repeated several times. The null hypothesis then is 
that the ratio is 1, or 0 if log-ratios are considered. In general, 

2.3.1. Identification  
of Differential 
Phosphorylations

Fig. 2. Example of an MS/MS spectrum that allows the localization of the phosphorylation site with high confidence. 
Because of the identification of both the y5- and the y6-ions, the phosphate group can uniquely be assigned to the 
tyrosine at position 3.
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log-transforming the ratios is preferred since the distribution of 
the transformed ratios is closer to normal.

Many different statistics can be applied to test this null 
hypothesis. If the data is normally distributed, a natural choice is 
the t-statistics. As in the early days of microarrays often only a few 
replicates can be performed. This significantly influences the 
power of the t-test since the variance cannot be reliably estimated. 
Several modifications have been proposed to circumvent this 
issue. One of them, SAM (16) adds a “global” standard deviation 
to the feature-specific standard deviation. The global standard 
deviation is estimated from the whole data set. If the data is not 
normally distributed, one can also use rank (e.g., Mann–Whitney–
Wilcoxon test) or permutation tests (see also Note 5).

After calculating the test statistics, a cut-off has to be defined 
above which the null hypothesis has rejected. Usually, the cut-off 
is defined based on the probability distribution under the null 
hypothesis. Since the question in performing, such experiments is 
usually not whether one specific site is differentially phosphory-
lated but rather which of the many thousand sites is differentially 
phosphorylated, one has to adjust for multiple testing. Otherwise, 
too many false positives will be selected. There are two principal 

Fig. 3. Example of an MS/MS spectrum that does not allow the localization of the phosphorylation site. Since no further 
y-ions could be detected between y6 and y11, the phosphate group could not be assigned to any specific amino acid. 
The four serines between positions 4 and 8 have the same localization probability p = 0.235. With probability p = 0.06, 
one of the other serines is phosphorylated.
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concepts to this. The first concept, the family-wise error rate 
(FWER), controls the probability that the selected list of differen-
tial sites contains at least one false positive. In case of the 
Bonferroni correction, the cut-off p-value is simply divided by the 
number of tests (17). Other corrections are less conservative, but 
still control the FWER (see (18, 19) for example). Often, a few 
false positives can be accepted as long as the proportion of false 
positives in the list of all selected differential sites is not too large. 
This idea is the basis of the second concept, the False Discovery 
Rate (FDR) (20). The FDR level gives the expected number of 
false positives in the selected list. The procedure by Benjamini 
and Hochberg (20) is step-down: the p-values ( )ip  are sorted in 

ascending order. If k  is the largest i for which ( ) £i

i
p q

n , then all 

hypotheses for 1,...,=i k  are rejected. Here, q  is the FDR level 
and n  the number of tests. Modifications of this procedure use 
different methods for estimating the distribution under the null 
hypothesis and for estimating the proportion of true positives. 
Most authors propose permutation-based procedures (21–23).

Depending on the tested conditions, number of replicates, and 
test procedure typically a few hundred or a few thousand sites will 
be identified as differentially phosphorylated. Often, these are too 
many to be individually validated in experiments. One can instead 
try to identify groups of proteins that have a known common 
feature and show similar phosphorylation profiles. Common fea-
tures could be, for example, common gene ontology (GO) terms, 
pathways (like KEGG), or protein domains (e.g., PFAM or 
InterPro). More rigorously speaking, one is interested in sets in 
which differentially phosphorylated sites are overrepresented. 
Since the given groups often represent groups of proteins or 
genes, the phosphorylation sites have to be mapped to proteins. 
A protein is called differentially phosphorylated if it has at least 
one differentially phosphorylated site, where the mapping of sites 
to proteins is not necessarily unique.

A standard method for enrichment analysis is Fisher’s exact 
test (24). The test is implemented in many publicly available tools. 
Most of them are searching for enriched GO terms (e.g., the 
standalone application GoMiner (25) or the Cytoscape-plugin 
BINGO (26)). See Ackermann and Strimmer (27) for a compre-
hensive overview and Goeman et al. (28) for a critical analysis of 
the proposed methods.

Because of the nature of phosphoproteomics experiments, 
the enrichment analysis of two classes of groups is of special inter-
est. Firstly, signal transduction pathways function via the regula-
tion of certain phosphorylation sites of involved kinases and other 
proteins (see Note 6). Secondly, kinases recognize their substrates 

2.3.2. Enrichment Analysis
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through patterns (motifs) in the amino acid sequence around the 
phosphorylation sites (see Note 7).

When more than two biological conditions are tested, many addi-
tional methods can be applied to the data. Again, most of the 
methods used for microarray data can be applied to phosphopro-
teome data as well. The methods can be classified as either super-
vised or unsupervised methods. Supervised methods use the label 
information of the experiment, e.g., whether the sample was 
treated with a compound or not. Unsupervised methods do not 
use the label. Examples of unsupervised methods are clustering 
(hierarchical, k-means, self-organizing-maps …) and principal 
component analysis. Examples of supervised methods are ANOVA, 
partial least square analysis, and classification methods (decision 
trees, linear discriminant analysis, support vector machines …). 
The reader is referred to the extensive literature on these.

Below the methods just discussed are applied to a case study. 
Details about this study can be found in (5). In this study, phos-
phoproteomics was used to investigate the mode of action of 
sorafenib in the prostate cancer cell line PC3. Sorafenib (Nexavar®, 
Bayer) is approved for the treatment of kidney and liver cancer.

Its most prominent target is b-Raf. However, since PC3 cells 
are sensitive to sorafenib, but not to other b-Raf inhibitors (29), 
sorafenib’s mode of action remains unclear in these cells. PC3 
cells were SILAC-labeled, the Arg6/Lys4- and the Arg10/Lys8-
cells were treated with 10 mM sorafenib for 30 and 90 min, 
respectively, and the Arg0/Lys0-cells were used as a control (see 
Fig. 4). The cells were mixed, lysed, and the extracted proteins 
were digested with trypsin. The peptides were enriched for phos-
phorylated peptides using TiO2 and IMAC combined with strong 
cation exchange chromatography (SCX). Finally, the peptides 
were identified and quantified by LC-MS/MS. The experiment 
was repeated three times.

All the raw data was processed with MaxQuant version 1.0.12.28 
(http://www.maxquant.org), and the fragment spectra were 
searched against UniProt human database version 57.4 using the 
Mascot search engine. MaxQuant writes the results to a number 
of tab-delimited text files in a folder named “combined.” The 
most important file for our purposes is called “Phospho (STY)
Sites.txt.” This file contains all identified phosphorylation sites 
together with their scores, localization probabilities, matching 
proteins, and quantification values.

2.3.3. Multiple Conditions

3. Case Study: 
Mode of Action 
Analysis for 
Sorafenib

3.1 Raw Data 
Processing

http://www.maxquant.org
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Table 1 shows the number of identified phosphorylation sites 
and onto how many distinct proteins they map. In total, ~25,000 
phosphorylation sites were identified, of which ~16,000 are class 
I sites. Class I sites are defined as sites with a localization proba-
bility (column “Localization Prob”) of at least 75% and a score 
difference (column “Score Diff”) of at least 5. These phosphory-
lation sites are identified and localized with high confidence. In 
the following analysis steps, all other sites are ignored.

The next step is to identify all phosphorylation sites that signifi-
cantly differ between treated and untreated cells. Since two time 
points are not sufficient to perform any sensible time-series analy-
sis, we simply take the more extreme average log-ratio for each 
phospho-site. Here, the average is taken over the three replicates. 
To be more precise: if ( )

, /
j

i M Lr  ( ( )
, /

j
i H Lr ) is the log-ratio of phospho-

site i  in replicate j  between cells treated for 30 min (90 min) 
and untreated cell, and then the average ratio

3.2. Differentially 
Phosphorylated Sites
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isotopologues of 
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Fig. 4. Global quantitative phosphoproteomics workflow. PC3 cells are SILAC-labeled, the Arg6/Lys4- and the Arg10/Lys8-
cells are treated with 1 mM sorafenib for 30 and 90 min, respectively, the Arg0/Lys0-cells are used as control. Afterward 
the global quantitative phosphoproteomics workflow is applied (see Fig. 1).
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is taken for further analysis.
Because of the low number of replicates, estimating the ratio 

variance will be very imprecise. Rather than applying a t-test or 
derivations thereof, we apply the global rank test as mentioned in 
Note 5. We use the nonparametric estimate of the expected 
number 0 ( )α T  of top-T  sites under the null hypothesis (see (30) 
for more details). The parameter T  is determined such that the 
resulting FDR is below 5%. In total, 1,012 sites are significantly 
differentially regulated. Table 1 gives more details onto how many 
proteins and kinases these sites map.

It would be an overwhelming task to investigate any single 
differentially phosphorylated site, to review the literature on this 
protein or this site, and to finally decide whether this differential 
phosphorylated site is of interest or not. Additionally, one has to 
keep in mind that many of the differential sites are not directly 
connected to the mode of action of the substance but rather are 
due to secondary effects.

If the investigated substance inhibits a certain signal trans-
duction pathway, many of the participating proteins will show 
differentially phosphorylated sites. Contrariwise, if many of the 
differential sites belong to members of a certain pathway, it is 
likely that this pathway is affected by the substance. Thus, it makes 

3.3. Pathway Mapping

Table 1 
Number of identified phosphorylation sites. Class I sites  
are sites with a localization probability of at least 75% 
and a score difference of at least 5. For definition of 
“regulation,” see text

All proteins Kinases

No. of detected phosphorylation sites 24,543 1,407

No. of detected phosphorylation sites (class I) 15,825 961

No. of detected proteins with phosphorylations 
(class I)

3,931 228

No. of regulated sites (class I) 1,012 68

No. of proteins with regulated phosphorylations 
(class I)

605 40
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a lot of sense to identify the pathways with overrepresented 
differential sites. We use the known human signal transduction 
pathways from KEGG (31) and apply the Fisher’s exact test to 
test whether proteins with differential sites are significantly 
enriched in any of these pathways. The list of the pathways with a 
p-value below 5% is given in Table 2.

The list contains pathways that are expected (e.g., MAPK sig-
naling), some pathways that are likely due to secondary effects 
(e.g., axon guidance), and some more surprising pathways, such 
as the mTOR signaling pathway. The map kinase signaling path-
ways are expected to be inhibited since many of sorafenib’s tar-
gets are involved in these pathways, e.g., b-RAF, p38a, MEKK1. 
Figure 5 shows the KEGG MAPK pathway diagram annotated by 
the information whether the particular protein has phosphoryla-
tion sites that are downregulated after the treatment with 
sorafenib. If a protein has more than one detected phosphoryla-
tion site, the one with the most extreme average ratio is shown. 
In general, the pathway is covered by many proteins with detected 
phosphorylations. Furthermore, many of these phosphorylations 
go down after the treatment with sorafenib, whereas only a few 
go up. This confirms the expected inhibition of map signaling 
pathways.

Obviously, for many proteins more than one phosphorylation 
site is detected and often these sites behave differently. For exam-
ple, eight class I phosphorylation sites were identified for the 

Table 2 
KEGG signal transduction pathways for which proteins with 
differentially phosphorylated sites are significantly  
overrepresented as determined by Fisher’s exact test

KEGG pathway
Proteins with 
detected P-sites

Proteins with 
regulated P-sites p-value

Insulin signaling  
pathway

52 19 0.0002

MAPK signaling  
pathway

74 21 0.004

mTOR signaling  
pathway

22  9 0.005

ErbB signaling  
pathway

40 13 0.007

Axon guidance 34 10 0.04

Prostate cancer 21  7 0.04

Nonsmall cell lung  
cancer

17  6 0.04
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ribosomal protein S6 (UniProt id P62753). Whereas five of them, 
all between amino acid position 235 and 242, are downregulated, 
two of them, at 244 and 246, are upregulated. Furthermore, 
KEGG, like other publicly available pathway resources, cover the 
pathways not in all details. In case of the mTOR pathway, we 
therefore draw the essential parts of the pathway based on the 
current literature (e.g., (32) using Inkscape http://www.inkscape.
org, see Fig. 6). The identified phosphorylation sites can then be 
added to the protein nodes as small ellipses labeled by the posi-
tion and colored by regulation factor. This allows capturing all 
details of the regulated pathway and supports the understanding 
of the mode of action of the substance. Mapping of the regulated 
phosphorylation sites to signal transduction pathways reveals that 
sorafenib treatment leads to severe downregulation of the MAP 
kinase pathway in PC3 cells. In addition, several other pathways 
are deregulated. In particular, the mTOR pathway is significantly 
affected by sorafenib in PC3 cells. Obviously, these hypotheses 
have to be validated with independent technologies that confirm 
the downstream effect on transcription or translation.

Fig. 5. KEGG MAPK signaling pathway (31). Proteins with detected phosphorylation sites are colored dark gray, if they are 
downregulated after the treatment with sorafenib, and light gray if they are not regulated at all. See the online version of 
this chapter for a colored figure.

http://www.inkscape.org
http://www.inkscape.org
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The analysis of global phosphoproteomes is a relatively new field 
within bioinformatics. In the last few years, technical advances 
have led to a steady increase in the number of detectable phos-
phorylation sites. It has recently become possible to detect and 
quantify 6,600 sites (8) or even 16,000 sites (5) in a single experi-
ment. The processing of phosphoproteomics raw data requires 
software that combines standard search engines, such as Mascot 
and Sequest, with specialized algorithms for the identification of 
phosphorylated peptides, the localization of the phosphorylation 
sites, and their quantification. Examples of such software are 
MSQuant, SuperHirn, and MaxQuant.

We have seen that many of the methods that have been devel-
oped for gene expression analysis can also be applied to the down-
stream analysis of phosphoproteomics data. Additional methods 
that take the particular nature of the data into account have been 
developed, e.g., the enrichment of kinase motifs in the set of dif-
ferential phosphorylated sites.

Unlike genetic mutational analysis or gene expression analysis 
that measure surrogates only, phosphoproteome analysis directly 
measures the signaling activity in the cell. Therefore, phosphop-
roteome analysis will be a valuable tool whenever effects on 

4. Conclusion

Fig. 6. mTOR pathway with identified phosphorylation sites. Sites, that are downregulated after the treatment with 
sorafenib, depicted as ellipses, upregulated sites as rectangles. See the online version of this chapter for a colored 
figure.
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cellular signaling activity are studied. For example, such an analysis 
may reveal the mode of action of drugs that inhibit certain kinases. 
Or, more visionary, such an analysis may discover biomarker sig-
natures that allow to predict the optimal targeted therapy for a 
patient (personalized medicine, see (6)).

 1. The peptide ion counts depend not only on the peptide 
concentration but on a number of additional parameters, 
such as the ionization efficiency, the elution behavior in the 
nanoLC, and the enrichment efficiency. These parameters 
differ for different peptides. Thus, two different peptides with 
identical concentration in the sample may have very different 
ion counts in the MS. On the other hand, these parameters 
do not differ for chemically identical peptides of different iso-
tope composition. Thus, labeling methods, such as SILAC or 
iTRAQTM, allow the relative quantification of a peptide in dif-
ferent samples, whereas absolute quantification is impossible 
in principle (see however Note 2). The situation is analogous 
to the situation with microarray-based gene expression data, 
where due to the differences in the hybridization efficiency 
only comparisons between samples rather than between fea-
tures are possible.

 2. If defined amounts of synthetically produced, isotopically 
labeled peptides are spiked into the samples, absolute quanti-
fication of the corresponding natural peptides is possible 
(33).

 3. If only a certain set of phosphopeptides is to be analyzed, one 
can use so-called targeted approaches to improve the cover-
age of this set. This includes the use of inclusion lists (34) or 
MRM-based methods (35).

 4. Depending on the quality of the MS/MS spectra, it is not 
always possible to assign the phosphorylation to a specific 
amino acid. MaxQuant calculates the localization probability 
that the given amino acid is indeed the one that is phospho-
rylated. It often makes sense to restrict oneself to phosphory-
lation sites that are identified and localized with high 
confidence. Therefore, so-called class I sites are defined as the 
ones that have a localization probability of at least 75% and a 
score difference of at least 5 (8).

 5. A very different approach has been taken by Zhou et al. (30) 
who proposed a “global rank test” for microarray data. Here, 
the sites are ranked by ratios within each replicate. Sites that 
are consistently ranked top or bottom T  are identified as 

5. Notes
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differentially phosphorylated sites. The parameter T  is fixed 
by an appropriate FDR that is estimated parametrically or 
based on permutations. A nice feature of this test procedure 
is that the FDR actually decreases with the number of tested 
sites. Standard FDR procedures show the opposite behavior.

 6. There are a number of databases containing signal transduc-
tion pathways, including KEGG (http://www.genome.jp/
kegg/pathway.html), BioCarta (http://www.biocarta.com/), 
and PANTHER (http://www.pantherdb.org/pathway/). By 
identifying pathways in which differentially phosphorylated 
proteins are overrepresented, one can expect that the corre-
sponding biological processes differentially respond to the 
tested conditions.

 7. Many motifs are known and the above approach can be used 
to identify motifs for which differential phosphorylation sites 
are overrepresented. Another approach is to de novo identify 
motifs from all differentially phosphorylated sites (36).
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Chapter 4

The Origin and Early Reception of Sequence Databases

Joel B. Hagen 

Abstract

Emerging areas of scientific research never arise in a social or intellectual vacuum, but must establish 
themselves in relation to well-established disciplines. This necessity poses challenges for scientists who 
must not only create a new disciplinary identity, but must also defend their research from criticism and 
even condescension from other scientists. The early use of sequence databases provides an excellent case 
study for examining the challenges facing novel sciences. The need for sequence databases grew out of 
protein sequencing in biochemistry beginning in the late 1950s. The rapid increase in the number of 
sequences made databases an attractive resource, but protein biochemists often considered building, 
managing, and doing research with databases a “second-rate” science. Similarly, computational biologists 
who used databases and digital computers to study evolutionary phenomena faced criticism from more 
traditional evolutionary biologists. In retrospect, one can see this early computational biology as laying 
important foundations for the bioinformatics, molecular evolution, and molecular systematics of today. 
However, within the context of the 1960s, establishing a scientific identity posed serious challenges for 
Margaret Dayhoff, Walter Fitch, and Russell Doolittle and other computational biologists who used 
computers and databases to investigate evolutionary problems.

“Changes in technology in the past decade have had such an 
impact on the way that molecular evolution research is done that 
it is difficult now to imagine a world without genomics or the 
internet”(1).

“The Internet has become so commonplace that it is hard to 
imagine that we were living in a world without it only 10 years 
ago”(2).

Scientists have done an admirable job of documenting the 
recent histories of new fields, such as bioinformatics, genomics, and 
proteomics (1–3). Written by participants in emerging areas of 
research, these histories highlight the rapid technical advances that 
are dramatically reshaping our understanding of the living world. 

1. Introduction

Michael Hamacher et al. (eds.), Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, vol. 696,
DOI 10.1007/978-1-60761-987-1_4, © Springer Science+Business Media, LLC 2011
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They also document the ways that various groups of scientists 
define novel areas of research to form new disciplinary identities.

Despite the usefulness of participant histories, these accounts 
leave much unsaid about the origins of the fields they describe. As 
the above quotations suggest, it is often difficult for scientists to 
take a longer view of history and see important connections with 
scientific developments that took place long before the advent of 
large molecular databases, powerful desktop computers, and the 
internet. Today, some biologists are able to do all of their research 
on computers using publicly accessible databases (1). How did 
this computational approach to biological research originate? 
What opportunities and challenges did the earliest pioneers face 
in this new area of research?

It may be useful to consider how sequence databases arose in 
the first place, and how scientists mined these new collections of 
data using early mainframe computers. Several decades before the 
advent of the internet and personal computers, an earlier genera-
tion of scientists used the burgeoning collections of protein 
sequence data to lay the preliminary foundations for the sciences 
of today. Looking back half a century, we can see that the chal-
lenges these scientists faced were not simply technical, but also 
involved institutional, disciplinary, and other important social fac-
tors. A new area of science never emerges in an intellectual or 
social vacuum, and so it must differentiate itself both from older 
practices and from existing disciplines. The early history of com-
putational biology provides a particularly rich case study for 
examining the difficult challenges of discipline formation. In a 
shifting disciplinary landscape, individual scientists – particularly 
younger scientists – faced both opportunities and serious challenges 
because they often had to choose between staying with a well-
established field, or moving to an emerging area of research that 
was viewed with skepticism or condescension by other scientists.

The need for sequence databases became obvious soon after 
Frederick Sanger reported the complete primary structure of 
insulin in a series of articles in the 1950s (4–8). During this path-
breaking research, Sanger and his colleagues discovered that there 
were minor differences in the amino acid sequences of insulin 
drawn from cows, pigs, sheep, horses, and whales. Sanger believed 
that these differences held the key to explaining how insulin func-
tioned as a hormone (4, 5). Assuming that the “active center” of 
the hormone must remain invariant, perhaps he could identify 
this critical part of the protein by disregarding those regions that 
varied from species to species. Ultimately, this next step in Sanger’s 
research program was not as fruitful as he had hoped, and he 

2. The First 
Molecular 
Databases
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turned his attention to devising methods for sequencing nucleic 
acids (for which he won a second Nobel Prize). Nonetheless, 
Sanger’s comparative approach marked the beginning of molecu-
lar databases as other protein biochemists began informally col-
lecting amino acid sequences as a means for studying molecular 
structure and function (8). Although sequences were important, 
Sanger probably would not have considered collecting them to be 
a serious scientific activity (9). For him, science meant experimen-
tation at the bench. Ironically, although his research was the point 
of departure for larger, more comprehensive sequence databases, 
Sanger’s philosophy of science minimized the scientific status of 
collecting sequences and managing databases (8–10).

During the late 1950s and early 1960s, several laboratories 
worked to determine the amino acid sequences of other proteins, 
notably glucagon, ribonuclease, cytochrome c, and hemoglobin. 
Looking back, Emil Smith (57) described the two decades fol-
lowing World War II as the “heroic period” of protein chemistry. 
Sanger’s work epitomized this image of a master chemist deci-
phering the primary structure of a complex molecule. However, 
the Edman degradation reaction quickly replaced Sanger’s less 
elegant methods, and the entire sequencing process became fully 
automated by 1970. At the same time, research on DNA was 
eclipsing protein studies – both in prestige and funding (12). As 
Smith ruefully acknowledged, sequencing proteins, which a 
decade earlier was worthy of a Nobel Prize, had become a routine 
task suitable for a competent laboratory technician. By today’s 
standards, the number of known protein sequences was miniscule 
in 1970. However, keeping track of slightly more than 1,000 
sequences was a serious challenge that posed both technical and 
vexing social problems for scientists who tried to create and man-
age the first comprehensive molecular databases.

Together with her colleagues at the National Biomedical 
Research Foundation (NBRF), Margaret Dayhoff gathered all of 
the known protein sequences in a book published in 1965: The 
Atlas of Protein Sequence and Structure (53). The collection, which 
can be viewed as the first attempt to create a comprehensive 
molecular database, included the amino acid sequences of about 
70 proteins from various species; mostly variants of hemoglobin, 
cytochrome c, and fibrinopeptides. Dayhoff’s small team laboriously 
collected these sequences from the published literature, although 
Dayhoff also encouraged biochemists to submit unpublished 
sequences. Finding sequences was not easy. Indeed, one of the 
justifications for creating the Atlas was the troublesome and time-
consuming literature searches that individual scientists had to 
undertake to find sequences for their research. Although Dayhoff’s 
team used the newly computerized Medical Literature Analysis 
and Retrieval System (MEDLARS) established in 1964 at the 
National Institutes of Health, they complained about the difficulty 
of locating all of the relevant literature (13). For example, the 
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term “sequence” was not widely used as a keyword during the 
mid-1960s. Managing the collection was also a time-consuming 
task. Dayhoff’s team used computers to store the molecular data, 
but they had to manually type and proofread each sequence. 
There was no efficient way of sharing data, although later editions 
of the Atlas were available on magnetic tape. Thus, from the very 
beginning, database managers faced familiar problems: how to 
organize, catalog, and distribute overwhelmingly large amounts 
of data (8, 9). When the second edition of the Atlas doubled in 
size in 1966, the editors described the influx of new sequences as 
an “information explosion” (13). Subsequent editions continued 
to grow rapidly. Still, by the end of the decade the collection con-
tained only about 1,000 sequences.1

The NBRF, which published the Atlas, was on the cutting 
edge of using computers in biology and medicine. The director, 
Robert Ledley, was a leading advocate for computational biology 
and was writing a general survey, Use of Computers in Biology and 
Medicine (56). Dayhoff’s career spanned the transition from an 
older tradition of electrical and mechanical calculators to the early 
mainframe computers. During the late 1940s, before digital com-
puters were available, she had used IBM punched card business 
machines to calculate the resonance energies of polycyclic organic 
molecules for her Ph.D. dissertation in quantum chemistry at 
Columbia University (14, 15). After fellowships at Rockefeller 
University and the University of Maryland, Dayhoff was hired by 
Ledley to write FORTRAN programs for mainframe computers 
to aid in determining the amino acid sequences of protein mole-
cules. This work led directly to collecting sequences and using 
them for evolutionary research.2 Thus, although the NBRF was a 
biomedical center and Dayhoff used the potential medical bene-
fits of her research as a justification for publishing the Atlas, most 
of her research with protein sequences dealt with evolutionary 
questions that had no immediate medical applications.

Despite its small size, the Atlas proved to be more than a col-
lection of data. Dayhoff and her colleagues at the NBRF also used 
the book as a vehicle for reporting their diverse research using 
computers to study proteins. For Dayhoff, computer program-
ming went hand-in-hand with building databases. Her early work 
with the Atlas marked two important transitions in computational 
biology. First, the growing number of sequences allowed a more 
comprehensive comparative analysis of proteins than had been 
possible for Sanger and other biochemists with the handful of 
sequences available just a few years earlier. For example, the small 
electron transport protein cytochrome c turned out to be rela-
tively easy to sequence (16) and the second edition of the Atlas 
listed the sequences from eighteen species, including bacteria, 
fungi, plants, and a wide variety of animals. This growing collec-
tion of data allowed Dayhoff to explore methods of aligning 
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sequences, developing statistical models for amino acid substitutions, 
and building phylogenetic trees showing evolutionary relation-
ships among the proteins and species that contained them. The 
second important transition was from hand calculations to computer-
assisted analysis. Even before complete sequences were available, 
biochemists had used similarities and differences in amino acid 
sequences to align homologous proteins and infer phylogenetic 
relationships (17–19). These early phylogenetic trees were intui-
tively constructed on the basis of hypothetical stepwise substitu-
tions of one amino acid for another. Usually, no attempt was 
made to weight substitutions based on the number of mutations 
or frequency with which they occurred. Using the data from the 
Atlas and the calculating power of a mainframe computer, Dayhoff 
and her colleagues were able to develop probabilistic models of 
amino acid substitutions. This approach eventually led Dayhoff to 
develop what she referred to as the Point Accepted Mutation 
(PAM) matrix, an innovation that formed an early foundation for 
later approaches for aligning sequences and searching for homol-
ogies among proteins. But even in 1966, Dayhoff and her col-
league Richard Eck used their earliest substitution models to 
contruct phylogenetic trees based on cytochrome c (13, 20). 
Their computational technique also allowed inferences about 
ancestral sequences at the nodes of the tree and estimations of the 
times of divergence.

Although biochemists recognized that Dayhoff’s Atlas of 
Protein Sequence and Structure was an important innovation, its 
scientific status remained ambiguous. From the perspective of 
experimental biochemists, collecting sequences that other scien-
tists had discovered was not fundamental research, but was more 
akin to natural history collecting or editorial work (8–10). The 
fact that Dayhoff and most of her colleagues were women 
undoubtedly contributed to the perception that building sequence 
databases was not science.3 Using computers to generate phylo-
genetic trees based on amino acid sequences was a novelty that 
fell outside mainstream biochemistry and traditional evolutionary 
biology (21). Although Dayhoff predicted that this new type of 
research would have practical benefits for biomedical sciences, she 
could provide few concrete examples of what such an evolution-
ary medicine might contribute to society. The novelty and ambi-
guity of this new computational research also led some biochemists 
to question the importance of Dayhoff’s work (8, 9). The prob-
lem of establishing a scientific niche for databases also had impor-
tant consequences for funding the Atlas. Collecting the sequences 
was originally supported as part of a grant to Dayhoff from NIH 
to develop computational methods for sequence analysis. Other 
agencies also indirectly supported the database through grants for 
Dayhoff’s studies on molecular evolution. However, as the num-
ber of new sequences rapidly increased, the cost of collecting, 
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proofreading, and entering the sequences to the database escalated. 
NIH became increasingly unwilling to support this part of 
Dayhoff’s work and repeatedly threatened to terminate the 
project.

This funding problem was compounded by Dayhoff’s expec-
tation that biochemists would submit unpublished sequences to 
the Atlas. At first, she used a reward system where contributors 
received free copies of the Atlas in exchange for submitting 
sequences. However, because of lack of financial support from 
funding agencies Dayhoff had to sell later editions of the book. 
Dayhoff’s attitude toward sequences was reminiscent of the natu-
ral history tradition of collecting specimens, but it violated well-
entrenched attitudes toward privacy, priority, and intellectual 
property typical of the experimental sciences (9, 10). For bio-
chemists, a sequence was private property until it was published 
and priority was assigned to the discoverer. Critics charged that 
Dayhoff was making unfair use of unpublished sequence data for 
her own research, while at the same time selling the Atlas as a 
commercial venture (8, 9, 22).

David Lipman, Director of the National Center for Biotechnology 
Information, has famously described Dayhoff as both “the mother 
and father of bioinformatics” (23). However, in the 1960s bioin-
formatics did not yet exist, and using computational methods to 
investigate evolutionary questions lay at the fringes of other well-
established disciplines. Indeed, the use of computers and data-
bases for evolutionary research was not even discussed in general 
surveys of computational biology, such as Ledley’s Use of 
Computers in Biology and Medicine – this despite the fact that 
Ledley was the director of the NBRF where Dayhoff worked. 
Combining perspectives from evolutionary biology, protein bio-
chemistry, and the biomedical sciences would eventually grow 
into successful lines of research that we now identify as bioinfor-
matics and molecular evolution, but both historians and partici-
pants have documented the difficulty of forging these disciplinary 
identities (22, 24). In order to do so, scientists needed not only 
large databases and powerful computers, but also a compelling 
intellectual rationale that would set the new computational biol-
ogy apart from well-established disciplines, such as comparative 
biochemistry and traditional evolutionary biology.

Shortly after publishing the structure of DNA, Francis Crick 
provided an early justification for studying the evolutionary impli-
cations of protein sequences. Reflecting on Sanger’s successful 
sequencing of insulin, Crick wrote: “Biologists should realize that 

3. The Problems  
of Establishing a 
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before long we shall have a subject which might be called “protein 
taxonomy,” the study of the amino acid sequences of proteins of 
an organism and the comparison of them between species. It can 
be argued that these sequences are the most delicate expression 
possible of the phenotype of an organism and that vast amounts 
of evolutionary information may be hidden away within them” 
(25). Historians have documented how Crick and other molecu-
lar biologists used the idea of “information” to distance their new 
science from the traditional practices of biochemistry (4). 
However, Crick’s remarks also highlighted a division between a 
new molecular approach to studying evolution and the organis-
mal approaches to evolutionary biology that were part of the 
naturalist tradition. During the 1960s, interactions between 
organismal and molecular evolutionists were often contentious 
(21, 26–29). Less obvious is the fact that sequence analysis also 
had to compete with a number of other experimental techniques 
for studying molecular evolution (30). Thus, Dayhoff and other 
computational scientists faced serious challenges when they tried 
to carve out a disciplinary niche in an already crowded field.

Among those who were most interested in creating a new 
discipline combining biomedical, evolutionary, and computa-
tional perspectives were Linus Pauling and Emile Zuckerkandl. In 
a series of influential articles, they outlined a new field that they 
dubbed “chemical paleogenetics” (19, 31, 32). Like Crick’s idea 
of “protein taxonomy,” chemical paleogenetics was a conscious 
attempt to molecularize areas of biology that were part of the 
natural history tradition (21). Indeed, Dayhoff, Zuckerkandl, and 
Pauling used the rhetoric of objectivity and ties to experimental 
laboratory science to argue that their new sequence-based 
approaches would revolutionize the study of phylogeny – and 
perhaps replace natural history (20, 31). Although the primary 
focus of this new science was to be the evolution of proteins such 
as hemoglobin and the species that contained them, biomedical 
issues also influenced the thinking of chemical paleogeneticists 
(28). Pauling’s interest in hemoglobin arose within the context of 
studying the molecular basis of sickle cell anemia. He was commit-
ted to the belief that understanding the structure of proteins 
would provide the key to a new “molecular medicine” (33). 
During the 1960s, Pauling became particularly interested in evo-
lution because of his concerns about the mutagenic effects of radi-
ation and his strong, public opposition to atomic weapons (28).

Neither protein taxonomy nor chemical paleogenetics became 
recognizable scientific disciplines, and these nascent fields were 
quickly absorbed by a more encompassing molecular evolution. 
Nonetheless, Zuckerkandl and Pauling’s articles from the early 1960s 
provided a compelling rationale for using computational approaches 
to studying molecular evolution and disease (21, 24, 28). From 
this perspective, proteins and nucleic acids were “documents of 
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evolutionary history” that contained all of the information needed 
to detect homology, reconstruct phylogeny, date important evo-
lutionary events, and reconstruct ancestral macromolecules from 
the deep past. By focusing attention on the genetic information 
contained in a linear sequence of amino acids, Zuckerkandl and 
Pauling not only highlighted a particular subset of evolutionary 
problems for future study, but they also purposely circumscribed 
what would become central to molecular evolution (28). For 
example, despite some early interest in studying evolutionary ques-
tions about protein structure and function, this potentially fruitful 
area of research became marginalized in the molecular evolution 
that emerged during the late 1960s. As we shall see, this process of 
defining which problems were central and which were peripheral 
had a significant impact on the career trajectories of the early 
molecular evolutionists who used databases for their research.

Today, biologists take the idea of genetic information for 
granted, but Sanger and the other biochemists who first sequenced 
proteins were working from quite a different perspective that 
emphasized protein structure rather than genetic information 
(4, 8). This difference in perspective was a source of considerable 
tension between experimental biochemists, and the newer molec-
ular evolutionists who thoroughly implemented the idea of 
molecular information in their work. From the perspective of 
molecular evolution, understanding how the history of proteins 
was caused by evolutionary mechanisms became more important 
than understanding the chemical mechanisms by which a protein 
contributed to cellular function. For example, comparing myo-
globin and the various amino acid sequences making up the 
oxygen-carrying protein hemoglobin, molecular evolutionists 
demonstrated how all of the various globin polypeptides had 
descended from a common ancestral molecule through a process 
of gene duplication, mutation, and natural selection (18, 19). 
However, although these scientists were interested in the bio-
chemistry of the globins, sequence comparisons were of limited 
value for understanding protein function.

Assuming that mutations occurred at a relatively constant 
rate, Zuckerkandl and Pauling also claimed that they could use 
sequence differences as a molecular clock to date when various 
globins had diverged. The molecular clock quickly became one of 
the most important concepts in molecular evolution, even though 
the details of how the clock worked remained controversial (28, 
34, 35). For example, Zuckerkandl and Pauling assumed that 
natural selection was the basic mechanism for molecular evolu-
tion, but the molecular clock soon became closely associated with 
the neutral theory of molecular evolution as developed by Motoo 
Kimura, Thomas Jukes, and Jack King (27, 34, 36, 37). Sequence 
data from Dayhoff ’s Atlas played an important role in the 
development of the neutral theory and served as an important 
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link between the new molecular evolution and classical population 
genetics (36).

Thinking in terms of macromolecular information also pro-
vided an important conceptual link between studying sequences 
and using computers. Not surprisingly, Dayhoff and other com-
putational biologists were strongly attracted to the ideas of 
Zuckerkandl and Pauling (20, 38). If proteins were truly “docu-
ments of evolutionary history,” computers quickly became neces-
sary tools for deciphering them. The idea that proteins carry a 
record of evolutionary history also complemented a new empha-
sis on hypothesis testing in evolutionary biology and systematics 
(39, 40). When scientists compared sequences of a protein such 
as cytochrome c from several species, an enormous number of 
possible phylogenetic trees could be generated. If these trees were 
thought of as alternative phylogenetic hypotheses, then comput-
ers were required for evaluating the thousands or millions of 
alternatives and identifying the most likely possibility. Developing 
programs to infer phylogenies from sequence data soon became a 
primary focus – and often a source of controversy – in molecular 
evolution and systematics (39, 41).

Despite its appeal to Dayhoff and other computational biolo-
gists, Zuckerkandl and Pauling’s new perspective faced criticism 
from many evolutionary biologists and experimental biochemists. 
Traditional evolutionary biologists found the idea of a molecular 
clock simplistic, and they questioned the validity of phylogenetic 
conclusions based on comparisons of amino acid sequences 
(21, 26–29, 34). Some experimental biochemists were equally 
critical of molecular evolution. Comparing sequences to answer 
evolutionary questions was a major departure from the way that 
Frederick Sanger and other experimental biochemists studied 
protein function in a mechanistic and largely nonevolutionary 
context. From this perspective, the new molecular evolution 
seemed to hark back to a nonexperimental natural history tradi-
tion. Perhaps not surprisingly, Zuckerkandl and Pauling (31) 
complained that their research faced skepticism not only from 
traditional evolutionary biologists who doubted that sequences 
could be used to answer important evolutionary questions, but 
also from experimental biochemists who considered evolutionary 
studies to be “second-rate” science.

The tensions among traditional evolutionary biologists, experi-
mental biochemists, and the new computational biologists had 
important consequences for young scientists who entered the 
field during the 1960s. For example, Walter Fitch established his 

4. The Challenges 
of Using Computers 
in Molecular 
Evolution
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early scientific reputation by writing a computer program to 
reconstruct the phylogeny of various plants, animals, and fungi 
using amino acid sequences of cytochrome c (42). Although pub-
lished after Dayhoff’s similar attempt to reconstruct phylogeny 
using cytochrome c, the article became a citation classic (43). 
Publishing the work in the high-profile journal Science, ensured 
that Fitch’s computational approach would reach a very broad 
audience. The study quickly became a textbook example of how 
to deduce evolutionary history using amino acid sequences, and 
it propelled Fitch on a career path that relied heavily on compu-
tational methods to solve evolutionary problems (43, 44).

Fitch had earned his Ph.D. in comparative biochemistry and 
was an assistant professor in physiological chemistry at the 
University of Wisconsin when he began collaborating with 
Emanuel Margoliash on the cytochrome c project. Margoliash 
was one of the pioneers of protein sequencing and had elucidated 
the first cytochrome c sequence from horses. By the time he met 
Fitch in 1966, Margoliash had an informal collection of twenty 
cytochrome c variants available for the phylogenetic analysis – 
including ten unpublished sequences (43). Fitch described this 
new data set as a “windfall” for his plan to use a computer to 
generate phylogenetic trees.

Margoliash had very broad biochemical interests, and he was 
pursuing an ambitious research program on the structure, func-
tion, and evolution of cytochrome c. Also collaborating with 
Margoliash was Richard Dickerson, who had just completed a 
low resolution X-ray diffraction analysis of cytochrome c. 
Margoliash, Fitch, and Dickerson (45) were confident that their 
combined evolutionary perspectives could unify traditional bio-
chemistry and the new information-based approach championed 
by Zuckerkandl and Pauling: “Molecular evolution is thus likely 
both to bridge the gulf between the informational and structural 
areas of knowledge and to provide a fascinating frontier.” Yet, 
when the three scientists attempted to use sequence data to 
understand three-dimensional structure and function, they 
encountered a paradox. Cytochrome c from different species var-
ied considerably in primary structure, yet molecules from fungi, 
plants, and invertebrates reacted identically with mammalian 
cytochrome oxidase in vitro. All of the various sequences appar-
ently folded into precisely the same three-dimensional conforma-
tion. Although comparisons of cytochrome sequences from 
different species provided important hints about the structure and 
function of the molecule, Dickerson needed models of both the 
oxidized and reduced forms of cytochrome c to understand how 
this “molecular machine” worked (46). The collaboration between 
Dickerson and Fitch was short-lived, and by 1970 Fitch moved 
decisively toward computational studies of evolutionary mecha-
nisms that largely ignored questions of structure and function.
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The abortive partnership of Margoliash, Fitch, and Dickerson 
highlights the difficulties of bridging the differences between a 
well-established experimental biochemistry and a new molecular 
evolution based heavily on the idea of molecular information. By 
the end of the 1960s, sequencing proteins was relatively easy and 
sequence databases were growing rapidly, but X-ray diffraction 
studies remained arduous and time consuming. Thus, although 
scientists like Dickerson were confident that there was direct 
causal chain linking primary structure with the three dimensional 
shape and function of a protein, technical limitations prevented 
this from becoming a central focus of research using sequence 
databases. At the same time, molecular evolution was coalescing 
around a core of problems that were readily amenable to study 
using the growing body of amino acid sequences and digital com-
puters. For molecular evolutionists, “molecular information” 
increasingly meant information about how proteins evolved, not 
how they worked within the cell. Thus, establishing a new disci-
plinary identity for molecular evolution meant emphasizing the 
differences between informational and structural approaches.

Given the success of his first attempt to use a computer to 
reconstruct phylogenies based on amino acid sequences of cyto-
chrome c, it is perhaps not surprising that Fitch continued this 
fruitful line of research. However, moving from biochemistry to 
molecular evolution and systematics had important consequences 
for his career. Traditional evolutionary biologists had their own 
approaches to reconstructing phylogeny. Indeed, the 1960s was a 
decade of extreme ferment in systematic biology pitting rival 
schools of evolutionary taxonomists, numerical taxonomists, and 
cladists (24, 47). Because his research forced him to interact 
closely with these competing groups, Fitch had to worry about 
evolutionary concepts and methods that were of little concern to 
biochemists like Margoliash or Dickerson. For Margoliash (38), 
the differences between different algorithms for constructing 
phylogenetic trees were not crucial because they all produced the 
same general results, but Fitch soon learned that there were 
important philosophical implications of different computational 
approaches. For example, although many biochemists used homol-
ogy as a synonym for similarity of amino acid sequences, evolution-
ary biologists (particularly cladists) defined homology as descent 
from a common ancestor. Because he began publishing articles in 
Systematic Zoology and other journals read by evolutionary biolo-
gists and systematists, Fitch had to take this distinction seriously. 
He significantly modified his tree-building algorithms to recon-
struct ancestral sequences at the nodes of the tree (41). Detecting 
molecular homologies became not only an interesting computa-
tional problem for Fitch, but also one with important conceptual 
and philosophical implications that he could not ignore if his work 
was to be taken seriously by other systematists (43, 44, 48).
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Russell Doolittle was another biochemist whose reputation 
became closely linked with the use of computers and sequence 
databases. However, his experiences during the 1960s were dif-
ferent from Fitch’s in a number of important ways. Doolittle 
became interested in evolution while he was completing his Ph.D. 
in biochemistry at Harvard University (22, 49). His dissertation 
research involved comparisons of the blood-clotting mechanism 
in various vertebrates (50). Using thrombin from lampreys, 
Doolittle compared its effect on clotting rates when combined 
with fibrinogen from cows and lampreys. Thrombin removes a 
piece of the fibrinogen molecule to produce the active clotting 
protein, fibrin. Doolittle used paper electrophoresis to separate 
the small fibrinopeptides that were removed from fibrinogen dur-
ing this process. Although he did not determine the amino acid 
sequences of the fibrinopeptides, Doolittle was able to estimate 
the amino acid composition of the molecules.

While on a postdoctoral fellowship in the laboratory of Birger 
Blombäck at the Karolinksa Institute in Stockholm, Doolittle 
learned how to use the Edman degradation reaction to sequence 
fibrinopeptides. Doolittle and Blombäck quickly built up an infor-
mal database of fibrinopeptide sequences from a variety of mam-
mals. Sequences from different species varied in length, but 
Doolittle and Blombäck used invariant amino acids as “alignment 
markers” to identify regions of the molecules resulting from inser-
tions or deletions (17). Comparing the aligned peptides, Doolittle 
and Blombäck proposed a stepwise evolutionary process leading 
to a branching phylogenetic tree. Constructed intuitively and 
without the use of a computer, Doolittle and Blombäck followed 
an informal method of tree building used earlier by Vernon 
Ingram (18) and Zuckerkandl and Pauling (19) to reconstruct 
the evolution of the various globin polypeptides. Doolittle and 
Blombäck used their sequences to hypothesize the evolutionary 
relationships among several cloven-hoofed mammals (artiodac-
tyls) from which they sampled the fibrinopeptides. The results, 
some of which contradicted well-established phylogenetic rela-
tionships, were controversial. For example, the simplest phylo-
genetic tree based on fibrinopeptides suggested that goats and 
sheep were more closely related to reindeer than to cows. 
George Gaylord Simpson, a leading evolutionary biologist and 
the foremost expert on mammalian paleontology and taxon-
omy, was highly critical of this evolutionary claim. In their arti-
cle, Doolittle and Blombäck (17) acknowledged that their 
simplest fibrinopeptide tree was contradicted by “a very large 
body of biological evidence,” and they cited personal commu-
nication with Simpson. Simpson’s letter to Doolittle provides a 
detailed critique of the biochemists’ evolutionary and taxo-
nomic claims and of the use of fibrinopeptides for phylogenetic 
reconstruction, more generally.
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The disagreement between Simpson and Doolittle involved 
an empirical question open to testing and refutation. However, in 
the context of the 1960s, the hypothesis-testing was embedded in 
a broader debate among evolutionary biologists about the valid-
ity of new molecular techniques (21, 27). Simpson actively 
engaged molecular evolutionists at meetings and in publications 
in a critique that he characterized as a “clarifying confrontation.” 
This confrontation involved philosophical commitments as well 
as purely scientific issues. Molecular evolutionists who viewed 
proteins as “documents of evolutionary history” often argued 
that protein sequences had a privileged status that set them apart 
from other biological characteristics (25, 31, 32). Because fibrin-
opeptides accumulated mutations quite rapidly, Doolittle and 
Blombäck were confident that their method could accurately 
reconstruct the phylogenetic history of a group of very closely 
related mammals. Conversely, Simpson and other organismal 
evolutionists argued that molecular data should carry no more 
weight than paleontological, morphological, and other forms of 
evidence. Because he believed that the bulk of the evidence con-
tradicted some of Doolittle and Blombäck’s hypotheses, Simpson 
rejected their claims and called into question the usefulness of 
fibrinopeptides for phylogenetic studies of artiodactyls. Thus, 
although the phylogenetic relationships among artiodactyls were 
an empirical question, resolving discrepancies partly depended 
upon competing philosophies of science. As a biochemist, 
Doolittle had little knowledge of the rich fossil record of artio-
dactyls. Therefore, he was arguing with experts in another disci-
pline who not only disagreed with his specific claims, but who 
were also highly skeptical about the methodology that he 
employed. This had important practical implications because 
when Doolittle submitted two grant proposals to the National 
Science Foundation, Simpson was one of the reviewers. The criti-
cal reviews (held in the Simpson archives) reflect Simpson’s deep 
skepticism toward molecular evolution and the use of fibrinopep-
tide sequences as a method for understanding mammalian 
phylogeny.

After learning of the computational methods that Fitch had 
developed for reconstructing phylogenies using cytochrome c, 
Doolittle began using mainframe computers in his research dur-
ing the late 1960s (22). Although he continued to use fibrino-
peptides for phylogenetic analysis of the artiodactyls, Doolittle 
did not interact with systematists and organismal biologists to the 
extent that Fitch did. Doolittle did not publish his later phyloge-
netic articles in Systematic Zoology, but in biomedical journals that 
systematists or mammalogists would not have routinely read. 
Important as it was, Doolittle’s phylogenetic research was only a 
small part of his broader program to understand the molecular 
basis of blood clotting in mammals. To this end, he continued to 
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see himself as a traditional experimental biochemist – albeit one 
with a strong interest in using computers (22). This disciplinary 
identification contrasts with Fitch, who moved further away from 
his biochemical roots as he became increasingly involved with 
molecular evolution and systematics. The difference is highlighted 
by the way that the two scientists’ approached a common interest 
in molecular homology. Both Fitch and Doolittle used computers 
and sequence databases extensively to study homology, and 
Doolittle was later lionized for discovering unsuspected evolu-
tionary relationships among seemingly unrelated proteins (11, 
22, 51). However, because he was not interacting closely with 
organismal evolutionary biologists, Doolittle was less concerned 
than Fitch with precisely defining the concept and exploring the 
philosophical implications of homology.

The experiences of Dayhoff, Fitch, and Doolittle during the 
1960s illustrate both the opportunities and the challenges that 
scientists confronted with the advent of protein sequence data-
bases and mainframe computers. None of these scientists was 
trained in traditional evolutionary biology, but the availability of 
protein sequences propelled them on career trajectories that were 
strongly influenced by evolution. The variation in sequences 
raised compelling evolutionary questions and provided a means 
for investigating them. Although aligning sequences, searching 
for homologies, dating evolutionary events, and constructing 
phylogenetic trees had been done to a limited extent without 
computers, Dayhoff, Fitch, and Doolittle were at the forefront of 
efforts to develop a new computational biology. They did this 
without the benefit of formal training in computer programming, 
being largely self-taught. Noting the difficulty of getting com-
puter scientists interested in his evolutionary research, Doolittle 
later described his early computer programming efforts as a 
“hobby” (22). Without the interactivity provided by the internet 
and personal computers, Dayhoff, Fitch, and Doolittle used main-
frame computers located in centralized computing centers to lay 
important groundwork for what would become bioinformatics. 
Yet, even late in his career, Doolittle denied that he was ever a 
“bioinformatician” (22).

Disciplinary identity in an emerging area of research posed 
significant challenges for early computational biologists, as the 
careers of Dayhoff, Fitch, and Doolittle illustrate. Using novel 
techniques to study evolutionary questions at the fringes of well-
established fields opened them to criticism for doing second-rate 

5. Conclusions
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science or for applying inappropriate methods to study evolutionary 
questions. Eventually, the computational methods that Dayhoff, 
Fitch, and Doolittle pioneered became mainstream tools in 
molecular evolution, but in the 1960s molecular evolution was 
just beginning to take form. Computers only gradually became 
recognized as credible scientific instruments by biologists. Even 
in the late 1970s, computational biologists sometimes faced 
condescension from laboratory scientists who considered them 
“failed researchers” playing with computers (52). Today, online 
databases and powerful computers are such an integral part of 
modern biology that it is difficult to imagine doing research 
without the internet. However, this cutting-edge research rests 
on a foundation that extends back to the very beginning of the 
computer age.

 1. The Atlas was published at irregular intervals between 1965 
and 1978. It gave rise to the online database, The Protein 
Information Resource (PIR), established by the National 
Biomedical Research Foundation in 1984 at Georgetown 
University (8, 14, 15).

 2. Dayhoff’s research interests spanned a very wide range of 
evolutionary questions, including the evolution and classifica-
tion of proteins, the origins of life, and the thermodynamics 
and evolution of atmospheres on other planets (14, 15).

 3. Dayhoff was acutely aware of the challenges facing women in 
science. After her death in 1983, the Biophysical Society (of 
which she was the first female president) established an award 
in her name to given annually to an outstanding woman at 
the beginning of her research career (8, 14, 15).

 4. Correspondence between Simpson and Doolittle, as well as 
Simpson’s reviews of grant proposals written by Doolittle, are 
part of the George Gaylord Simpson Papers at the American 
Philosophical Society library.

 5. Both scientists and historians have emphasized the controver-
sies and conflicts between traditional evolutionary biologists 
and molecular evolutionists. Real as these controversies were, 
it is equally important to note that many molecular evolu-
tionists deeply respected the expertise of Simpson, Ernst 
Mayr, and other organismal biologists. An extensive corre-
spondence with numerous molecular evolutionists can be 
found in the Simpson papers (21).

6. Notes
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Chapter 5

Laboratory Data and Sample Management for Proteomics

Jari Häkkinen and Fredrik Levander 

Abstract

Proteomic experiments can be difficult to handle because of the large amount of data in different formats 
that is generated. Samples need to be managed and generated, data needs to be integrated with samples 
and annotation information. A laboratory information management system (LIMS) can be used to 
overcome some of the data handling problems. In this chapter, we discuss the role of a LIMS in the 
proteomics laboratory, and show two step-by-step examples of usage of the Proteios Software Environment 
(ProSE) to handle two different proteomics workflows.

The data management problem in proteomics is significant 
because of several factors; (i) proteomics methods are evolving 
rapidly with new workflows, (ii) proteomics experiments and 
analysis involves many steps that generate large amounts of data, 
and (iii) instruments produce data in different formats (1). 
Consequently, a major task for the proteomics researcher is to 
merge heterogeneous data into meaningful information and to 
collect meta-data for critical evaluation of results.

A Laboratory Information Management System (LIMS) is a 
software used in the laboratory for the management of samples, 
users, instruments, protocols, data analysis, and work flow auto-
mation. The goal of a lims is to create an environment where all 
laboratory and analysis information is tracked from biosources to 
final results (2). A LIMS can be a key element in an enterprise 
setting with connections to other information systems for 
streamlining production, yield, and enforce regulatory restric-
tion, but here we restrict the discussion of LIMS to a laboratory 
setting. A LIMS should support:

1. Introduction

Michael Hamacher et al. (eds.), Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, vol. 696,
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Instrument integration – Information from the instrument ●●

should be useful for the LIMS, and the LIMS should generate 
information for instruments, such as inclusion lists for targeted 
tandem mass spectrometry (MS).
Analysis tools – Users perform calculations, document, and ●●

review results using information from instruments, reference 
databases, and Web-based services.
Information sharing and searching – A research group needs ●●

to share data, external partners need access to data, some 
users should be able to monitor progress, review results, and 
other documentation. Users search for samples, proteins, and 
other relevant information, and display sample relationships 
based on analysis results.
Tracking – The information flow and data generation ●●

throughout experiments must be tracked and researchers data 
tracking work should be supported by the LIMS.
Standards adoptions – For proteomics data, there are open ●●

XML file formats developed for sharing and publication of 
information (http://www.psidev.info). A LIMS system 
should support such open standards but also be able to store 
files in other commonly used data formats, such as comma/
tab-separated (csv/tsv/txt), word processor (doc/odt), PDF 
and Postscript, and spreadsheet (xls/ods) formats.

The foremost advantage of using a LIMS is that the automation 
of experiments and data analysis can dramatically increase a labora-
tory’s productivity. Accessibility to data is significantly improved, 
particularly if a Web-based interface allows access from remote loca-
tions. In addition, traditional laboratory notebooks are not compat-
ible with a multiuser, multitask environment, so an electronic means 
of storing and sharing data is an attractive option.

Which LIMS to choose depends on laboratory requirements, 
system capabilities, integration and data needs, flexibility, standard 
compliance, and security requirements on the LIMS. How to 
choose the proper application is out of scope for this chapter, and 
we choose to describe how to use Proteios Software Environment 
(ProSE, (3)) as a LIMS. There are many other applications that 
perform similar services, see (2, 4) for more information about 
other LIMSs. ProSE is built around a Web-based local data reposi-
tory for proteomics experiments and features many of the require-
ments on a LIMS. A feature of the system apart from pure 
information tracking are analysis possibilities like the combination 
of search results from different search engines, which are inte-
grated into different proteomic workflows. Using two example 
scenarios, 2D gel and LC-MS-based experiments, we describe our 
best practices on solving issues related to information tracking 
from sample to results to public data repository submission.

http://www.psidev.info
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To make the most of the remainder of this chapter you need 
access to a ProSE server. This document is based on ProSE ver-
sion 2.8.0 but is kept at a general level, so later versions of ProSE 
should also work. Either follow the installation outlined in the 
Note 1 or use the demo server available through the ProSE Web 
site http://www.proteios.org. However, the demo server does 
not support protein identification searching directly from the 
application, but you can run searches outside ProSE and upload 
result files. The data used in the examples is also available at 
http://www.proteios.org (see Note 2).

We assume that you have access to an account on a ProSE 
server with a set of plug-ins available for your use (as outlined in 
Note 1). Throughout the examples below we show one way to 
perform actions, but there are usually several ways to achieve the 
same effect.

To get the most of a LIMS, not only the laboratory practice must 
be adapted to the tool, but also the LIMS need to be adapted to 
support laboratory practices. These adaptations are mostly related 
to tracking issues and rise because there is no standard for per-
forming tracking in the laboratory. For example, by using file 
naming conventions, information usable for tracking can be 
added to the file name, even if the information is not present in 
the file itself (see Note 5).

ProSE spans the whole proteomics experiment, from hypoth-
esis to actual protein identifications. ProSE manages sample infor-
mation, raw data, images, analysis results, as well as connectivity 
to protein identification, data viewing, and analysis tools. The 
organisation and interface of ProSE is designed to closely follow 
the natural workflow of the proteomics researcher, and is compat-
ible with both liquid chromatography (LC)–tandem MS and 
two-dimensional (2D)-gel experiments (see Note 1).

The ProSE data model is designed to map the steps of a pro-
teomics experiment. The ProSE development team has specifi-
cally considered the fact that some parts of data in an experiment 
are generated automatically, whereas other data is collected man-
ually. Also, we take into account that experiment steps occur at 
different points in time and different locations, which corresponds 
to a typical researcher’s work situation.

Here, we describe in a step-by-step fashion and the usage of 
ProSE in two different workflows. Parts which require more 

2. Materials

3. Methods

http://www.proteios.org
http://www.proteios.org
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attention, like sample annotations, are discussed further in 
Subheading 4 below.

For detailed description of the proteomics approaches, please 
refer to Chap. 1 (Schönebeck et al.).

Our sample is a complex protein mixture extracted from human 
tissue. The sample is run on a 2D gel to separate proteins into 
distinct spots. The gel is scanned and passed through image 
analysis for the detection of spots, and a gel picking robot is set 
up to pick spots chosen for identification. The robot digests the 
proteins and extracts the peptides into wells on microtiter 
plates. The digests were in this study analyzed using LC-MS/
MS in a quadrupole time-of-flight (Q-TOF) instrument. The 
resulting spectra are subjected to database searching to identify 
proteins.

Throughout the laboratory work a lot of data is generated of 
which most information is stored in data files: spot picking and 
digestion logs, mass spectrum files, and protein identification 
search results files. ProSE supports upload/import of result files 
from several search engines, but we recommend running identifi-
cation directly from ProSE if you have access to local search 
engines. The generated files and other relevant information 
should be collected for upload into ProSE.

The first steps in a new project (experiment) should start by doing 
some preparation steps in ProSE. ProSE does not enforce specific 
routes of data upload, but in some instances, some data objects 
must be in place before new data can be added. We do not care 
about such constraints here but rather work through data upload 
in a sequence. ProSE provides a gel project-biased wizard that 
guides the user though from creating a project for the presenta-
tion of identification results. However, we do not cover the wiz-
ard here but rather work through using other actions available 
through the menu and buttons.

 1. Log in and create a new project (File → New → Project). 
Name the project GelProject and save. You are presented 
with a new page among other things a “Members” tab. This 
tab allows you to add other users on the server as project 
members. The information in the project is available for the 
members with privileges defined by the project owner. We do 
not share data in this example but more information on shar-
ing information is available in the ProSE user guide found at 
the ProSE web site.

 2. Make sure that the GelProject is active. When the project is 
created it automatically becomes the active project but if you 

3.1. 2D-Gel 
Electrophoresis Case 
Study

3.1.1. Laboratory Work

3.1.2. ProSE Work
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later log out and in again, you must select the project as the 
active project (File → Select Project → GelProject). The active 
project will be listed on the menu bar. The GelProject menu 
item has many different actions of which several will be cov-
ered throughout this tutorial.

 3. Add a new sample (GelProject → LIMS → Samples, and click 
the “New sample” button). Fill the fields, name it 
“GelSample”, “external id” is an external identifier use 
“ExtGelSample”, and the original field is the amount of sam-
ple (in this example use 100, the unit is predefined in ProSE 
and shown for the fields). Finalize by clicking “save”. The 
biomaterial LIMS optionally keeps track of storage location 
of material and tracks amounts of material. Material is auto-
matically decreased when new events are created that affect 
the material. For samples, we create an extract in the next 
step, this action is an event in ProSE, and all biomaterial 
events are stored in ProSE. Further information about the 
sample can be entered as annotations, see Note 3.

 4. Select the GelSample and click on the “Make Extract” button 
to create a new extract. Fill the fields, name it “GelSample.e1”, 
enter an external id, enter the amount of sample used (use 10), 
and the amount of extract produced (use 35). Click “Save”. 
Return to the GelSample and note that the remaining amount 
of sample is decreased with the used amount. Clicking on the 
“Event” tab will show the events associated with the sample, 
and clicking on the creation event will display details about 
the event.

 5. Now, we add the first dimension separation event for the extract. 
Click “Next” (or GelProject → LIMS → Extracts), select the 
“Event” tab, and click on the “New separation event” button. 
Select the separation technique (here: IPG), click next.

 6. The second dimension separation is done similarly to IPG. 
Select the “Event” tab and click on the “New separation 
event” button. Select the separation technique 
(GelElectrophoresis), click next. There is no gel readily avail-
able yet, so we need to create one following the wizard. Fill 
the two forms appropriately (use “pool_test” as the External 
ID, this is important since the sample data file set expects that 
for tracking as outlined in Note 5 below). ProSE will report 
“Gel saved”, then finalize by adding the date of the event in 
the laboratory, while the used quantity should be set to zero, 
since no more extract was used for this step. Click “Save”.

 7. Connect the IPG separation to the “pool_test” gel by select-
ing the gel (GelProject → LIMS → Gels), on the right hand 
side of the gel information display click on “Add previous 
separation dimension” and select the IPG event from step 5.
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 8. Create a staining event by clicking “New Staining Event” on 
the gel information page.

 9. Create a scan event by clicking on the “New Gel Scanning 
Event” on the gel information page, and select the new scan-
ning event in the list. In GelScanEvent display, click 
“SelectImageFile” to add a gel scan image to the event. 
Locate the image file in the directory listing, click on “next” 
and “next” to get back to the GelScanEvent display page. 
Now, you can view the image by clicking “view image file”. 
This finalizes most of the manual creation of information. 
Now, we import all mass spectrometer data.

 10. Select GelProject → Hits Import → Gel Based. Enter the gel 
id “pool_test” in the Gel field. Click on “Next – Select Robot 
Result File[s]”, and in the file listing select the “spot_pick2.
xml” file and click on “Import” to import spots. A job listing 
is presented, click on the “Update” button (bottom left on 
screen) to update the display. When the 
“GelSpotPlatePosToHitPlugin” gets the status “Done” the 
job is finished and the spots are imported.

 11. The next step is to register all the peak lists generated by MS. 
Select GelProject → Hits Import → Gel Based a second time. 
The files provided in the example data all come from one 
microtiter plate, with the ID 181150420000TEST, and are 
in mzData format (see Note 4 about peak list file formats). 
Select Plate external ID 181150420000TEST in the selec-
tion box, and click on “Next – Select PeakList File[s]”. Select 
all files that begins with a string 181150420000TEST_ and 
click “Import”. You will be taken to the job listing display; 
peak list import is done when all jobs with names like 
PeakListToHitPlugin File: 181150420000TEST_E2.xml get 
status “Done”.

 12. Set up search parameters to run search engines from ProSE. 
Note that the ProSE installation needs to be configured to 
access search engines first (see Note 1), in case you do not 
have access to a ProSE installation with search engine access, 
you can proceed by uploading the search results supplied and 
continue at step 15. Search engine parameters are edited by 
selecting View → Search Setup. Mascot and X!Tandem should 
be generated, and for this sample data a tolerance of 100 ppm 
on both precursor and fragment level, and a human database 
with a decoy section should be used (see Note 6 about com-
bination of search results regarding the choice of database).

 13. Run X!Tandem. Select GelProject → Files. Select the files 
starting with a string “181150420000TEST_” and click on 
“Extensions”. In the pop-up, select “Use spectrum file(s) for 
X!Tandem search”, then the X!Tandem parameter file, and 
“Next – Create search job[s]” to start an X!Tandem search. 
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You will again end up in the job listing; wait until the job 
finishes. When jobs are finished, the search results file will be 
found in the project top directory.

 14. Redo the above with Mascot. Select GelProject → Files. Select 
the files starting with a string “181150420000TEST_” and 
click on “Extensions”. In the pop-up, select “Use spectrum 
file(s) for Mascot search”, enter your name and email address 
for the Mascot server, select Mascot parameter file, and “Next 
– Create search job[s]” to start a Mascot search.

 15. Now, the search results need to be imported into the database. 
So far, the files have been automatically (or manually) uploaded. 
Select GelProject → Hits Import → Gel Based to import the 
X!Tandem and Mascot results by clicking on “Next – Select 
Search Result File[s]”, select the files with file type “Tandem 
result” and “Mascot result”, and click import. When the 
imports finalize, you can select GelProject → Result → Hits to 
get a listing of your search results, which can be examined 
more closely by filtering and clicking.

 16. Select GelProject → Result → Combined Hits to create com-
bined identification reports (see Note 6 for details). Select an 
acceptable false discovery rate (FDR), typically 0.05 or 0.01 
(Fig. 1). Since proteins have been separated by 2D gel, the 
search results combination can be done using protein scores 

Fig. 1. Form for combining searches in ProSE. The gel or sample is selected in the select 
boxes. The random hits prefix needs to be adjusted to whatever prefix is used for ran-
dom hits in the database used for the searches. Search engines to include can also be 
selected.
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at the protein level (peptide level check box not checked). Set 
the result file name and click “Next” to start the job. Also see 
Note 6 about combining search results. When the job has 
finished, a text report will have been generated, and also the 
Hits table will be updated with combined FDRs for the 
identifications.

 17. The reports will now contain gel spot identifiers and spot 
coordinates on the 2D gel as well as the associated identifica-
tions. To visualize the gel spots on the gel, move to the hits 
report (GelProject → Result → Hits) and select view gels. All 
spots that are active using the current filter will be visible on 
the gel. For example, if “45” is entered in the Spot ID filter, 
only spot 45 will be shown on the gel. To show all spots 
where the protein Actin was found, the filter “ = *actin*” in 
the description column can be used. This can also be com-
bined with a combined FDR filter, for example “<0.05”.

 18. Now, the complete experiment is saved in ProSE. Many files 
will probably be found in the project main directory, and it is 
therefore advisable to create subdirectories and move files 
there. Separate directories can be made for reports, search 
results, peak lists etc.

 19. Hopefully, the results are worth sharing with the rest of the 
world. Then, uploading to PRIDE (5) is recommended (also 
see Note 7 about publication of data). To generate files in 
PRIDE formatted XML, the built in PRIDE XML export can 
be reached from the Hits report.

In this second example workflow, the protein levels of four differ-
ent cell states are compared. For this analysis, the samples were 
reduced and alkylated using iodoacetamide, digested with trypsin 
and labeled using the isobaric label TMT (6). The labeled pep-
tides were loaded onto a nano LC system and analyzed online by 
LTQ-Orbitrap. To get many peptide identifications, CID frag-
mentation and analysis in the linear trap was used. However, the 
reporter ions are not visible in most of the spectra, since they are 
found at lower masses than what can be analyzed in the ion trap 
using CID fragmentation. To overcome this, each MS/MS scan 
in the linear trap was followed by an MS/MS scan in the Orbitrap 
of the same precursor ion using high-energy collision-induced 
dissociation (HCD) fragmentation.

The major reason for using ProSE, in this project, was to get a 
large number of confident peptide identifications at a controlled 
error rate, and to automatically get the reporter ion ratios included 
in the report. Currently, there is no other software that takes the 
reporter ion quantities from adjacent scans if they are not present 
in the spectrum used for identification. Here, we have chosen not 

3.2. Quantitative 
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Labels Case Study
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to enter the sample information into ProSE, but rather to 
generate a report as quickly as possible. The following steps are 
then used:

 1. Generation of the project in ProSE (File → New → Project). 
Select nongel project as type.

 2. The sample data, consisting of raw data from LC-MS/MS of 
two SCX fractions is first converted to the standard format 
mzData and uploaded to ProSE (see Note 4 about file for-
mats). We have used Proteome Discoverer (Thermo Scientific) 
for the conversion, and the centroid mzData spectra (peak 
lists) are uploaded.

 3. Set up the search parameters in ProSE. Activate the project in 
ProSE, and select View → Search Setup and generate the 
search parameter files for Mascot and X!Tandem if these are 
not available. It is important to select the same database for 
all search engines, and it needs to contain a decoy part, since 
the decoy database part is used to estimate the false discovery 
rate (see Note 6 about combining search results). If the 
X!Tandem installation has the k-score plug-in installed, it 
could be considered as a separate search engine when this 
scoring is enabled. For X!Tandem, TMT 6-plex was at the 
time of writing not found as a selectable modification. Instead, 
the following needed to be entered as fixed modification: 
57.021464@C, 229.162932@K. The cleavage N-terminal 
mass change was 230.1708.

 4. Perform the protein identification searches from ProSE. Go 
to the project_name → files and check the boxes at the files. 
Then, choose extensions → Use spectrum files(s) for 
X!Tandem/Mascot search and select the parameter file from 
step 3. The search jobs will be added to the job queue, and 
the search results uploaded when ready.

 5. Now, the report generation can begin. First, the peak list files 
need to be registered. To do this, select project_name → Hits 
Import → Nongel based. Enter a local sample id for step 1, 
for example “pool”. Then, Press “Next → Select peak list 
files” and check the check boxes in front of the peak list files 
in the next step, and “import”.

 6. When the jobs have finished you can check the results by 
looking in project_name → Reports → Hits. It should now 
just contain the two peak list files, but no identifications.

 7. The next step is to import the search results. This is done in 
the second step in the NonGel-Based hits import. Just check 
the check boxes in front of the search results files and select 
“import”. Note that the search results files were generated in 
step 4. The import step serves to get the results into the data-
base tables.
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 8. When the jobs have finished, Reports → Hits will contain a lot 
of results, which can be navigated and filtered. However, 
there is still no validation and consensus usage of the search 
results from different search engines.

 9. Combination of the search results from different search 
engines is performed by selecting Reports → Combined Hits 
(Fig. 1). Select the local sample Id that you used in step 5, 
and make sure that combination is performed on the peptide 
level. If combination is performed on the Protein level, no 
peptide score cut off will be used, which is dangerous in 
experiments with complex peptide mixtures. A peptide report 
will now be built up, where the false discovery rate for pep-
tides will be calculated. Also see the note about combination 
of search results (see Note 6).

 10. Generation of the protein report, including reporter ratios. 
This is done by selecting Reports → Protein Assembly. Select 
the local sample ID and select TMT label. The generated 
report will contain a list of protein groups that include the 
identified peptides that pass the FDR cut-off. The ratios of 
the reporter ions will be displayed for all peptides, and an 
average will be calculated for the protein group. The gener-
ated list can now be analyzed to see if it gains any insight into 
the biological problem under investigation.

 11. Export the identifications and peak lists in PRIDE format 
(http://www.ebi.ac.uk/pride) for submission to the PRIDE 
database (5). This is done directly from the Hits table in ProSE. 
An option is to submit the files for biological annotation using 
PIKE (http://proteo.cnb.uam.es:8080/pike), which can be 
performed directly from ProSE (see also Note 7).

 1. Getting Started with ProSE
  To get a flavor of how to get started with ProSE, we include 

a short outline of how to install and set up ProSE to work as 
described in this chapter. The installation procedure is 
straightforward for an experienced computer user and the 
procedure is described in detail online at http://www.pro-
teios.org/. The requirements to get ProSE running is a con-
temporary computer with the following software running: a 
database management system (MySQL, http://www.mysql.
com/), Java version 6 or later (http://java.sun.com/), and 
Apache Tomcat (http://tomcat.apache.org/).

Make sure that the above requirements are fulfilled.●●

Download and uncompress the latest ProSE distribution.●●

4. Notes

http://www.ebi.ac.uk/pride
http://proteo.cnb.uam.es:8080/pike
http://www.proteios.org/
http://www.proteios.org/
http://www.mysql.com/
http://www.mysql.com/
http://java.sun.com/
http://tomcat.apache.org/
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Run the interactive installation script from a command ●●

prompt. You may need administrator privileges to create 
new directories for ProSE use and deploying the applica-
tion in Tomcat.
Start Tomcat. ProSE is now available by directing your ●●

Web browser to http://localhost:8080/proteios/app. 
8080 is a logical port number and may differ depending 
on how Tomcat is set up. Replace localhost with the com-
puter name or IP-number if you use a Web browser on 
another machine.

  ProSE is now ready for use and some ProSE administration 
should be done before sharing it to your users, http://www.
proteios.org/trac/wiki/ServerAdministration:

Create user accounts●●

Set up search engines; Mascot, X!Tandem, OMSSA...●●

Set up links to external information sources; PIKE...●●

Start the ftp service●●

 2. Obtaining the Sample Data
  The data files used in the examples, in this chapter, can be 

downloaded as archives from the http://www.proteios.org/ 
site. The data can be uploaded to your local Proteios server 
using ftp. For FTP upload of files, an FTP client is needed, 
for Mozilla Firefox users, the free plug-in FireFTP (http://
fireftp.mozdev.org/) is a convenient ftp client, and another 
(browser independent) free ftp client is FileZilla (http://
filezilla-project.org/).

 3. Sample Handling and Annotations
  An important role of the LIMS is to keep track of samples and 

in which analyses the samples have been used. The LIMS 
should thus be able to tell which sample has been used for a 
certain result, and ideally also be able to group and analyze 
results according to sample categories. The LIMS can also 
keep track of where to find all the test tubes originating from 
a certain sample.

   To categorize samples, annotations are needed. Depending on 
sample types, samples could be annotated with age, sex, dis-
ease state, etc. for clinical studies, or substrate, time point etc., 
for physiological cell experiments. No matter what type of 
experiment, a controlled vocabulary is needed for automated 
analysis. Both the annotation types and values need to be con-
sistent for proper interpretation. “Age” and “AGE” could be 
different things for a computer, as are “11” and “eleven”. To 
some extent, this can be managed by the LIMS system, in that 
addition of sample annotation types can be limited to certain 
users, to avoid the duplication of annotation types.

http://localhost:8080/proteios/.8080
http://www.proteios.org/trac/wiki/ServerAdministration
http://www.proteios.org/trac/wiki/ServerAdministration
http://www.proteios.org/site
http://fireftp.mozdev.org/
http://fireftp.mozdev.org/
http://filezilla-project.org/
http://filezilla-project.org/
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   A policy for sample annotations should be decided at the 
local laboratory, and then the ProSE permission system allows 
tuning so that some or all users can administrate annotation 
types. The laboratory can build their own ontology or use 
terms from existing ontologies. Once such a system is in 
place, the advantage of entering all samples into the LIMS 
soon becomes obvious.

 4. Peak List File Formats
  Basic peak list file formats like DTA and PKL do not contain 

stable spectrum identifiers, and no annotations about where 
and how the spectra were acquired. The Mascot Generic File 
format (MGF) allows for some annotation and spectrum 
titles, but it does not use unique stable spectrum identifiers. 
It is therefore recommended to use an open peak list file for-
mat, which contains information for sample tracking and 
information about the instrument and data processing. Stable 
spectrum identifiers are essential to track search results back 
to spectra. The preferred peak list format in ProSE has been 
mzData (http://www.psidev.info), and standard formats 
developed by the Proteomics Standards Initiative (PSI) of the 
Human Proteome Organisation (HUPO) (7). The mzML 
file format (http://www.psidev.info/index.php?q=node/257) 
(8) is replacing mzData as the preferred spectrum format, 
and we expect that the common practice will be that files 
should be converted to mzML instead of mzData when this 
chapter is published. ProteoWizard (9) or instrument manu-
facturer software perform the file conversion to mzML.

 5. File Names
  In some cases, files do not contain information that is needed 

for sample tracking (see Note 4). Furthermore, files can be 
difficult to find if they are named randomly. A file naming 
convention usually helps the laboratory work. ProSE parses 
some information from file names in certain workflows. In 
cases where microtiter or target plates have been used as 
source files for MS, the plate position is parsed from the file 
name since the plate position is not automatically included in 
the peak list files. A convention can be to include the acquisi-
tion date and initials of the experimenter in the file name, and 
if the sample was found in a microtiter plate, the position, A1 
or similar is kept last in the file name, before file type suffixes. 
For example, AA_20090601_plate1_A12.mzData, would 
indicate that the MS file was acquired by AA from a sample 
found in plate1 at position A12 on the 1st of June 2009. 
Similarly, fraction number or gel slice number can be included 
in the file name. ProSE allows users to enter regular expres-
sions to parse out some information from file names.

http://www.psidev.info
http://www.psidev.info/index.php?q=node/257
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 6. Combining Search Results
  Several publications have shown the complementarity of 

search engines for peptide identification, and it has become a 
standard practice to use more than one search engine. 
However, it is not straightforward to combine the scores 
from different search engines. In ProSE, a variant of the 
target-decoy strategy (10) is used to combine search results 
from more than one search engine (3, 11). The idea is that if 
the same decoy database is used for more than one search 
engine, it is possible to estimate the frequency of common 
random hits. In this way, it is possible to calculate score cut-
offs for hits where more than one search engine returns a 
score. However, to perform such search engine result combi-
nation, it is critical that the same decoy database was used for 
all search engines. If a separate random database was used for 
each search engine, almost no common hits would be found, 
and the false discovery rate calculations would fail. In the 
header of the text report generated by ProSE, there will be a 
warning message if the sizes of the databases used differ 
between the search results. In some set ups, using different 
decoy databases may be okay, but only in scenarios where the 
decoy database is kept and extended with new versions of the 
target database. Conservation and extension of decoy entries 
upon database updating can be accomplished by at least one 
decoy database builder tool (12).

 7. Publication of Data
  The LIMS system should optimally help users with format-

ting of data for publication. Some pieces of information for 
the methods section of manuscript, like protocols used, are 
kept track of by the LIMS. Tables containing data about indi-
vidual peptide and protein identifications, can be generated 
from the LIMS, if enough data is stored in the system. The 
journal guidelines (13) and the MIAPE guidelines (14) 
impose reporting of many parameters, and here a LIMS can 
take care of much of the work. Furthermore, deposition of 
the data in public repositories is recommended, and will prob-
ably become required for publication in major journals. To 
allow for such deposition of data, best practice is to convert 
data into a standard format at an early stage, and make sure 
that it is properly annotated. After conversion to mzData or 
mzML (see Note 4 about peak list file formats), the files can 
be annotated with contact details and sample information, if 
this was not done by the file converter. ProSE contains exten-
sions for annotating the peak list files in batch. The PRIDE 
repository (http://www.ebi.ac.uk/pride, (5)) uses sample 
information embedded in the mzData files, why it is advisable 
to annotate the mzData files properly. The ProSE PRIDE 

http://www.ebi.ac.uk/pride
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XML exporter allows for the addition of experimental proto-
col information to the PRIDE submission, by selection from 
protocols present in the ProSE installation.
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Chapter 6

PRIDE and “Database on Demand” as Valuable Tools  
for Computational Proteomics

Juan Antonio Vizcaíno, Florian Reisinger, Richard Côté,  
and Lennart Martens 

Abstract

The Proteomics Identifications Database (PRIDE, http://www.ebi.ac.uk/pride) provides users with the 
ability to explore and compare mass spectrometry-based proteomics experiments that reveal details of the 
protein expression found in a broad range of taxonomic groups, tissues, and disease states. A PRIDE 
experiment typically includes identifications of proteins, peptides, and protein modifications. Additionally, 
many of the submitted experiments also include the mass spectra that provide the evidence for these 
identifications. Finally, one of the strongest advantages of PRIDE in comparison with other proteomics 
repositories is the amount of metadata it contains, a key point to put the above-mentioned data in bio-
logical and/or technical context. Several informatics tools have been developed in support of the PRIDE 
database. The most recent one is called “Database on Demand” (DoD), which allows custom sequence 
databases to be built in order to optimize the results from search engines. We describe the use of DoD in 
this chapter. Additionally, in order to show the potential of PRIDE as a source for data mining, we also 
explore complex queries using federated BioMart queries to integrate PRIDE data with other resources, 
such as Ensembl, Reactome, or UniProt.

The Proteomics Identifications Database (http://www.ebi.ac.uk/
pride) is a repository for the results of mass-spectrometry-based 
proteomics experiments, which makes use of public data stan-
dards, allowing data from a vast range of approaches, instruments, 
and analysis platforms to be submitted (1–3).

PRIDE stores three different kinds of information: peptide 
and protein identifications derived from MS or MS/MS experi-
ments, MS and MS/MS mass spectra as peak lists, and any and all 
associated metadata. Experiments constitute the basic unit of 
information and at the time of writing, PRIDE holds around 

1. Introduction

Michael Hamacher et al. (eds.), Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, vol. 696,
DOI 10.1007/978-1-60761-987-1_6, © Springer Science+Business Media, LLC 2011
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11,200 experiments, containing more than 2.9 million protein 
identifications supported by 13.2 million peptides, based on more 
than 78 million mass spectra.

Several proteomics MS data repositories have been established 
to date, with GPMDB (4), PRIDE, PeptideAtlas (5), and 
Proteinpedia (6) among the most prominent ones at present. 
Additionally, the NCBI recently launched their Peptidome 
(http://www.ncbi.nlm.nih.gov/projects/peptidome) system as a 
centralized, public proteomics repository not dissimilar from 
PRIDE. The Tranche (http://tranche.proteomecommons.org) 
system is used in the field as well, and essentially presents a data 
transfer layer relying on peer-to-peer internet protocol technology. 
Apart from these large-scale efforts, there are also smaller, more 
specialized repositories. For an up to date review covering the capa-
bilities of these different proteomic MS repositories, see (7).

Together with the newly released NCBI Peptidome, the 
established PRIDE database occupies a special place in the list of 
proteomics resources, in that it constitutes an actual structured 
data repository, and does not assume editorial control over sub-
mitted data. Because data in PRIDE is not reprocessed or altered 
in any way after submission, and because PRIDE allows data to 
remain private while anonymously sharing it with journal editors 
and reviewers, PRIDE is now the recommended submission point 
for several journals, such as Nature Biotechnology (8), Nature 
Methods (9), and Proteomics (http://www3.interscience.wiley.
com/cgi-bin/jabout/76510741/2120_instruc.pdf).

Apart from PRIDE itself, several highly influential informatics 
tools have been developed in support of the PRIDE database: the 
Ontology Lookup Service (OLS, http://www.ebi.ac.uk/ols) (10, 
11), the Protein Identifier Cross-Referencing system (PICR, 
http://www.ebi.ac.uk/Tools/picr) (12), and more recently, 
Database on Demand (DoD, http://www.ebi.ac.uk/pride/dod). 
Additionally, several data submission tools are available for 
PRIDE, including the powerful and popular PRIDE Converter 
(http://code.google.com/p/pride-converter). OLS and PICR, 
and the navigation through the PRIDE Web interface have already 
been described before (13, 14).

At present, the PRIDE database has developed from its original 
role as a repository of proteomics identifications arising from mass 
spectrometry, to a database providing tools for complex queries and 
data retrieval, data set comparison and access to additional auto-
mated annotation of submitted data sets. In this chapter, we first 
describe the use of DoD, the most recent PRIDE-related tool. We 
then concentrate on the PRIDE BioMart interface in the BioMart 
Central Portal (15). The easy-to-use and highly configurable 
BioMart Web interface provides Wet lab researchers with a conve-
nient tool to efficiently retrieve relevant data, but the feature we 
specifically highlight here is the ability to perform powerful across-
resource queries with other relevant bioinformatics databases.

http://www.ncbi.nlm.nih.gov/projects/peptidome
http://tranche.proteomecommons.org
http://www3.interscience.wiley.com/cgi-bin/jabout/76510741/2120_instruc.pdf
http://www3.interscience.wiley.com/cgi-bin/jabout/76510741/2120_instruc.pdf
http://www.ebi.ac.uk/ols
http://www.ebi.ac.uk/Tools/picr
http://www.ebi.ac.uk/pride/dod
http://code.google.com/p/pride-converter
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In mass spectrometry, most conventional software algorithms for 
the identification of recorded mass spectra (also called search 
engines) are based on searching spectral data against sequence 
databases. As a result, these sequence databases play an important 
role in the identification process, and incomplete extraction of 
information from these databases (e.g, known amino- or carboxy-
terminal protein maturation sites) can lead to an inefficient iden-
tification process. DoD was built to ensure that the desired 
information can be easily extracted from the UniProt and IPI 
sequence databases. DoD, using the existing stand-alone 
DBToolkit (16) application for its database processing back-end, 
is implemented as a Web application that creates customized 
search databases in FASTA format, allowing detailed control over 
the search space. The user can apply one or more preprocessing 
steps to the UniProtKB/Swiss-Prot, UniProtKB/TrEMBL and 
IPI database, and these databases can be combined into a single 
output database as well. In specific cases, the impact of using such 
specialized databases can be quite dramatic, increasing the num-
ber of peptide identifications by up to 50% (17, 18). DoD can be 
accessed directly at http://www.ebi.ac.uk/pride/dod.

BioMart is a query-oriented data management system that does 
not require any programming knowledge to interrogate, yet allows 
for very powerful data retrieval (19). The BioMart interface allows 
you to build simple or complex queries, with total control over 
both how the data is filtered (to restrict which records are 
included) and also which attributes (equivalent to columns in a 
spreadsheet) are included in the results. A salient point here is 
that the core BioMart interface does not change between differ-
ent resources, which means that an understanding of the BioMart 
interface in any one system automatically allows the user to under-
stand any other BioMart as well. The existence of BioMarts for 
many different resources, together with the ability to combine 
two BioMarts in a single query, enables the integration of infor-
mation across several types of biological data through across-Mart 
queries. The BioMart Web interface currently allows no more 
than two resources to be combined in a single query. The PRIDE 
BioMart interface is accessible at http://www.ebi.ac.uk/pride/
prideMart.do. At present, it is possible not only to retrieve data 
from PRIDE individually, but also to integrate information from 
PRIDE with Reactome (20), a resource that contains curated 
information about pathways. Additionally, the PRIDE BioMart is 
also available via the BioMart Central Portal at http://www.
biomart.org/biomart/martview/, where connections with sev-
eral other resources can be made as well.

2. Materials

2.1. Database  
on Demand

2.2. PRIDE BioMart 
Interface

http://www.ebi.ac.uk/pride/dod
http://www.ebi.ac.uk/pride/prideMart.do
http://www.ebi.ac.uk/pride/prideMart.do
http://www.biomart.org/biomart/martview/
http://www.biomart.org/biomart/martview/
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The DoD Web interface is accessible at http://www.ebi.ac.uk/
pride/dod. For more details about how to use DoD, press on the 
“User Manual” link at the top left block of the page.
As an example query to show the potential of DoD, we are going to 
create a custom database in FASTA format combining all human 
sequences from the UNIPROT and IPI databases. The database 
will be digested in silico by trypsin, allowing two missed cleavage 
sites, and finally only resulting peptides between 600 and 5,000 Da 
will be selected.
Step 1. Direct your Web browser to the DoD Web interface: http://
www.ebi.ac.uk/pride/dod. The first step of the process is the data-
base selection. Go to the menu, “Choose a database” at the top of 
the page, and select one or more databases if you need them to be 
combined. Once you have selected the first database, click on “Add 
as source”. Once the database is selected, different filters can be 
added depending on each particular database. For instance, for 
SwissProt and TrEMBL filters can be selected based on “protein 
accession,” “Uniprot keyword,” “NCBI tax ID,” and “Maturation” 
(see Note 1). Then, press the “+” button at the right (Fig. 1). 
Several databases can be added repeating the same process.

For the sample query (human proteins from UniProt and IPI), 
you need to select the databases in three steps. First, choose “SwissProt” 
and add a filter for human (NCBI Tax ID = 9606). Do the same for 
TrEMBL, first click on “add as Source”, and then choose the same 
filter (see Note 2). Finally, add “IPI_Human” as the third data-
base. For each selected database, you can visualize the corresponding 
selected filters by going to the “Details” column and clicking on 
“Show”. The filters can be edited at that point as well.
Step 2. The second step of the process is the enzyme selection. 
This is done in the “PROCESSING” area of the Web interface. 
You can select an enzyme in the “Choose an enzyme menu”. The 
ones that are available by default are trypsin, Arg-C, Lys-N, Lys-
C, and chymotrypsin (see Note 3). When an enzyme is selected, 
the user can visualize the target cleavage site and if there is any 
restriction, and if the enzyme cleaves N- or C-terminally of the 
cleavable residue/s. The number of allowed missed cleavages can 
also be selected (the default is one).

3. Methods

3.1. Database on 
Demand

Fig. 1. Screenshot that shows how the filters for the databases can be selected, as specified in Subheading 3.1, step 1.

http://www.ebi.ac.uk/pride/dod
http://www.ebi.ac.uk/pride/dod
http://www.ebi.ac.uk/pride/dod
http://www.ebi.ac.uk/pride/dod
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If the desired enzyme is not included in the list, the user can 
specify the restriction site using a regular expression. To that end, 
use the “regex” option (see Note 4). Finally, the user can decide 
to perform a ragging of the database (see Note 5). Once all the 
options have been selected, it is necessary to press the “+” button 
at the right (Fig. 2). More enzymes can be added, following the 
same protocol (see Note 6).

For the sample query, select trypsin as the enzyme and increase 
the number of allowed missed cleavages to “two.”
Step 3. The third step is the selection of the output. At this point, 
the user can choose to restrict the results (once you have selected 
the database/s and the enzyme/s) using a sequence filter (see 
Note 7) or by specifying mass limits peptides.

For the sample query, we are choosing the default option of select-
ing peptides between 600 and 5,000 Da (Fig. 3).
Step 4. At the bottom of the Web interface, press on “GENERATE 
WORKFLOW”. This will pop up a menu with some info and 
warning messages. If the decision is to go ahead, click on 
“Generate anyway”.
Step 5. In a last step, the user is asked to provide an e-mail address. 
This e-mail address is used to mail a link to the resulting database. 

Fig. 2. Screenshot that shows how processing steps (e.g., enzymatic digestion) can be added, as specified in 
Subheading 3.1, step 2.

Fig. 3. Screenshot that shows how the appearance of the Web after all the relevant parameters have been specified, 
according to Subheading 3.1.
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Click on “Generate database” and the creation of the custom data-
base will start. The user will first receive an e-mail confirming that 
the process has started, which includes a unique process ID. When 
the database is generated, a second e-mail will be sent with the URL 
where the database can be downloaded from. This e-mail will also 
contain a description of the user-configured workflow that was used 
to create the database, for future reference.

For the sample query, at the time of writing, the size of the gen-
erated file in FASTA format is 757 MB, and contains 3,483,739 
unique entries. It took less than 1 h to generate the file.

The PRIDE BioMart is available via the BioMart Central Portal 
at http://www.biomart.org/biomart/martview/. As mentioned 
before, PRIDE can be combined with resources, such as Ensembl, 
Protein Data Bank in Europe (PDBe), Reactome, or UniProt.

As an example query to show the potential of the BioMart cross-
resource queries, we are going to search for all peptide sequences 
corresponding to proteins identified in PRIDE, found in cerebrospi-
nal fluid (CSF) that are present in UniProt. We further require 
these proteins to have a size between 300 and 500 amino acids. We 
also retrieve some extra information about the proteins identified: 
accession number, definition, gene name, UniProt protein evidence 
code, and EC number.

The Web interface is used to build your query. There are 
three main steps involved in query building: the creation of filters 
to restrict the data included in your results, the selections of attri-
butes (i.e., the selection of columns of data to include), and finally 
the selection of a format for the results (i.e., HTML table, tab 
separated values file, comma separated values file, or a Microsoft 
Excel spreadsheet). You have to do the first two steps once per 
selected resource, whereas the last step is implicitly shared.
Step 1. Direct your Web browser to the BioMart central portal 
server: http://www.biomart.org/biomart/martview. Select the 
“UNIPROT (EBI UK)” BioMart Database from the “Database” 
or “CHOOSE DATABASE” drop-down on the right hand panel 
of the interface (see Note 8).
Step 2. Create a “filter” to restrict the results returned to you from 
the BioMart from UniProt, by clicking on the “Filters” heading 
on the top left panel of the BioMart MartView window. In the 
UniProt BioMart, results can be filtered based on four groups of 
criteria: “Species,” “Protein,” “Database IDs,” and “Others.” 
Each of these headings is adjacent to a + symbol. Click on the + 
symbol to expand the section and view the available filters.

For our example query, click on “Species” and once the different 
options are displayed, click on “Complete proteome” and select 
“Homo sapiens” in the menu. Then, click on “Protein” and click on 

3.2. Cross-Resource 
BioMart Queries in the 
BioMart Central Portal

http://www.biomart.org/biomart/martview/
http://www.biomart.org/biomart/martview
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“Sequence length,” and provide values for “Length >” and “Length <” 
(300 and 500, respectively) (Fig. 4).
Step 3. Select the “Attributes” (data columns) from UniProt that 
you wish to include in your search results by clicking on the 
“Attributes” heading on the top left panel of the top BioMart 
MartView window.

A large number of data columns can be selected from UniProt. 
There are four groups of data: “Protein attributes,” “Gene ontol-
ogy (GO),” “Database cross references,” and “Others.” By 
default accession number, entry name, protein name and gene 
name are selected. Check (click) all of the attributes you wish to 
include in your query results.

In this particular example, we are also going to get the “Protein 
existence” (first click on “Protein attributes” to select it) and “EC 
number” (select “Others,” and click it).
Step 4. Click on the bottom “DataSet” field in the left block and 
select the “PRIDE (EBI UK)” BioMart Database from the 
“CHOOSE ADDITIONAL DATASET” drop-down on the right 
hand panel of the interface.
Step 5. Create a second “filter” to restrict the results returned to 
you from the PRIDE BioMart by Clicking on the “Filters” heading 
on the bottom left panel of the BioMart MartView window.

On the right hand panel, six filter sections will be displayed: 
“Filter by Experiment,” “Filter by Sample Details,” “Filter by 
Protein Identification,” “Filter by Mapped Protein Database 
Identifiers,” “Filter by Peptide Identification,” and “Filter by 

Fig. 4. Screenshot that shows how the selection of attributes to be retrieved from UniProt is performed, as specified in 
Subheading 3.2.
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Protein Modification.” Again, each of these headings is adjacent 
to a + symbol. Click on the + symbol to expand the section and 
view the available filters.

For the example query, click on “Filter by Sample Details” and 
once the different options are displayed, first click on “Filter by 
Species” and click on “Homo sapiens (Human)” from the right 
menu. Then, click on “Filter by Tissue” and select “cerebrospinal 
fluid” from the right menu.
Step 6. Select the “Attributes” (data columns) from PRIDE that 
you wish to include in your search results by clicking on the 
“Attributes” heading on the bottom of the left panel on the 
BioMart MartView window.

On the right hand panel, a large number of individual data items 
will be listed, each adjacent to a check box. These items are orga-
nized into six sections: “Experiment Attributes,” “Sample Attributes,” 
“Protein Identification Attributes,” “Active Protein Identification 
Database Cross References,” “Peptide Identification Attributes,” 
and “Protein Modification (PTM) Attributes.” Again, check (click) 
all of the attributes that you wish to include in your query results.

For our example query, we will select “PRIDE Experiment 
Accession,” “Experiment Title” (both in “Experiment Attributes”), 
“Submitted Protein accession” (in “Protein Identification 
Attributes”), and “Peptide sequence” (at the bottom at “Peptide 
Identification Attributes”) (Fig. 5).
Step 7. Click on the “Count” button at the top left of the BioMart 
MartView interface. Note that this is not necessarily the same as 

Fig. 5. Screenshot that shows how the selection of attributes to be retrieved from PRIDE is performed, as specified in 
Subheading 3.2.
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the number of records/rows that are returned by your query, as 
the count is based on the number of unique Experiments (PRIDE) 
or proteins (UniProt) returned.
Step 8. Click on the “Results” button at the top left of the 
BioMart MartView interface (Fig. 6). This will return a preview 
of the results comprising only the first ten rows of data (by 
default). At this point, you should examine the data returned and 
make any required modifications to your selection of filters and 
attributes if required.
Step 9. Select how you would like the results delivered from the 
drop-down in the right hand panel, labeled “Export all results 
to”. The options for results delivery are “File”, “Compressed File 
(.gz)”, and “Compressed Web File” with the additional function-
ality of sending an e-mail notification when the results file has 
been built. This e-mail notification includes a link to the com-
pressed result file and is especially useful for very large data sets 
(see Note 9).
Step 10. Select the format of the results from the drop-down in 
the right hand panel. Available options include: HTML (tabu-
lated results), CSV (comma-separated values in a plain text file), 
TSV (tab-separated values in a plain text file), and XLS (Microsoft 
Excel spreadsheet).
Step 11. Click the check box labeled “Unique results only” to 
reduce possible redundancy in the results table.
Step 12. Click on the “Go” button in the right hand panel to 
retrieve the complete, formatted results.

Fig. 6. Screenshot that shows how the final results retrieved using BioMart look like, as specified in Subheading 3.2.
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 1. Each database can also be subjected to a maturation step, in 
which the complete (precursor) protein sequences are in silico 
matured by removing any pre-, pro-, or signal peptides on 
either terminus based on the annotations in the database.

 2. Since TrEMBL is quite a large database, it is strongly recom-
mended that you use a filter (for example, a species filter for 
human: TaxID “9606”; for mouse: TaxID “10090”; for C. 
elegans: TaxID “6239”; for A. thaliana: TaxID “3702”).

 3. By default a site will not be cleaved if the following residue after 
the cleavage site is proline. However, the user can overcome this 
limitation by selecting from the list the corresponding enzyme 
plus “/P” (e.g. Trypsin/P, Arg-C/P and Lys-C/P).

 4. To create a new enzyme from scratch, simply give it a name, 
specify the regular expression pattern that is to be used to 
determine the cleavage site, optionally specify the restricting 
amino acids (which will prevent cleaving) and choose if you 
want to cleave on the N-terminal or C-terminal side of the 
residue/s defining the cleavage site. The enzyme digestion 
allows a number of missed cleavages, which can be defined for 
both selected and custom-designed enzymes by changing the 
number in the miscleavages selection box.

 5. The optional ability to process the enzymatic products fur-
ther by ragging will transform a single sequence into a set of 
unique sequences, in which each sequence loses a carboxy- 
(C) or amino- (N) terminal residue compared to the previous 
sequence. Ragging is extremely useful if you want to detect 
proteolytic degradation, which results in the formation of a 
novel N-terminus (and/or C-terminus) and you do not a 
priori know where this processing will take place. Both for 
ragging and maturation, customized databases can prove very 
useful for existing N-terminal proteomics approaches (17). If 
ragging is selected, the truncation option allows the user to 
truncate the sequence to the specified number of terminal 
residues before ragging. For instance, in the case of N-terminal 
ragging, setting this to 100 will only include the first 100 
(N-terminal) residues of the sequence for the ragging pro-
cess, disregarding the rest of the sequence. This can be useful 
if you happen to know that the processing you aim to iden-
tify, occurs in the first X residues (e.g., mitochondrial target 
sequences). Note that ragging is applied after enzymatic 
digest, if a digest is requested.

 6. Whenever an enzymatic digestion step is specified, the soft-
ware will also automatically apply a step to clear peptide-level 

4. Notes
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sequence redundancy in the database. This means that each 
peptide sequence will be present only once in the output 
database, thus maximizing the information ratio of the data-
base (which is defined as the number of unique sequences in 
a database, divided by the total number of sequences in the 
database). Whenever a peptide could be derived from more 
than one protein, the accession numbers and peptide loca-
tions for each potential precursor protein are included in the 
peptide sequence header. These alternative precursor proteins 
are annotated at the end of the FASTA header description 
part, and the individual protein accession numbers and loca-
tions are separated by “^A” characters (which is the FASTA 
standard annotation for protein isoforms). For instance, a 
peptide that matches to both P12345 and P54321 will carry 
a header like:

>sw|P12345 (17–25)|RNAS1_ONDZI RecName: Full = Ri-
bonuclease pancreatic; EC = 3.1.27.5; ^Asw|P54321 (18–26)

 7. The first option allows the user to filter sequences by their 
amino acid composition. You can use a simple yet powerful 
query language to define your compositional requirements. 
This language is explained below. Amino acid notation is the 
single-letter notation, extended with “U” for methionine 
without initiator methionine. The format supports boolean 
operators (“AND”, “OR”, and “^” (NOT)) and is vaguely 
reminiscent of regular expressions. It does not have the full 
power of regular expressions however, nor does it have exactly 
the same syntax, but it is simpler and more powerful in speci-
fying compositional requirements. You can specify residues or 
sequence stretches and combine these:

  (K and R) or (S or T) → selects all entries having either a K 
and an R, or that have an S or a T.

  ((K and R) or S) and L → selects all entries carrying an L, as 
well as an S or a K and an R.

  ^R and ^K → selects all entries lacking both R and K.
  Another feature of the language concerns the counting of 

residues:

  2K or 2R or (K and R) → selects all entries having either 
exactly two Rs or two Ks, or that have both R and K.

  Yet another addition of this is logical operations on counts:

  >3K or <5P → selects all entries with strictly more than three 
Ks or strictly less than five Ps.

  >=2K and <=2L → selects all entries with two or more Ks and 
two or fewer Ls.
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 8. In order to combine UniProt and PRIDE, you need to first 
select UniProt (in the top of the BioMart Web interface) and 
then select PRIDE as the second database, at the bottom. So 
these resources can only be combined in one direction, 
whereas in some other cases the order is not important. It 
depends on the way the set up for appropriate pipes in and 
out of each resource was done. At the time of writing, PRIDE 
data can be integrated with other systems in the following 
ways:
(a) With PRIDE as the main dataset (selected at the top of 

the BioMart page), integration with Reactome, MSD 
(protein structures), and the Rat Genome Database 
(RGB) is available.

(b) PRIDE can be chosen as the second dataset (at the bot-
tom of the BioMart dataset section) not only from the 
resources mentioned in (a), but also from the highly 
cross-referenced and information-rich UniProt and 
Ensembl BioMart interfaces.

 9. If there is a long delay after you have clicked GO, this would 
suggest that your query will result in many rows of data being 
returned. This may crash your browser on arrival, so it is rec-
ommended that you click on the back button and modify 
your results request to be sent by e-mail.
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Chapter 7

Analysing Proteomics Identifications in the Context  
of Functional and Structural Protein Annotation: Integrating 
Annotation Using PICR, DAS, and BioMart

Philip Jones 

Abstract

For many species, there is a wealth of detailed annotation of individual proteins available to the proteomics 
researcher. Accessing and making the best use of this annotation can be problematic in the absence of 
suitable bioinformatics support. This chapter explores some of the technologies and tools that allow 
protein annotation to be accessed and collated from multiple sources. The intended audience is the pro-
teomics scientist who has limited or no access to bioinformatics/programming support and wishes to 
make the best use of existing resources to annotate sets of protein identifications derived from mass spec-
trometry and related techniques.

This chapter explores the options available to proteomics researchers 
to enable the analysis of proteomes or lists of identified proteins in 
the context of existing protein and proteome annotation.

This data can be readily accessed using the tools and tech-
niques available to the bioinformatics researcher. Unfortunately, 
in the absence of bioinformatics support, the technical hurdles 
involved in achieving this can be an impediment to the laboratory 
scientist who wishes to collate third party annotation of the pro-
teins that they have identified.

Fortunately, mechanisms for data integration in bioinformat-
ics are reaching maturity. Technologies, such as BioMart and the 
Distributed Annotation System (DAS) allow researchers to for-
mulate complex integrative queries across multiple databases, 
either by writing software to perform the analysis or increasingly 
by making use of existing software tools to do this for them.

1. Introduction

Michael Hamacher et al. (eds.), Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, vol. 696,
DOI 10.1007/978-1-60761-987-1_7, © Springer Science+Business Media, LLC 2011
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There are a large number of problems that need to be over-
come to access and make good use of annotation from disparate 
sources. Inconsistencies in the naming or identification of proteins 
and the manner in which protein features are named or categor-
ised make data comparison across data resources very difficult. In 
the last few years, these two problems have been addressed by the 
bioinformatics community. Robust solutions now exist for map-
ping protein identifiers from one database to another and com-
munity agreement about feature categorisation is being reached 
(at least in the context of DAS server annotation.)

Another issue that the proteomics scientist has to overcome is 
the shear wealth of databases providing annotation. Making 
informed choices about the best resources to use is difficult, with-
out background knowledge of how the resources are built and 
maintained. There is a distinction between databases that provide 
human curated annotation and databases that provide automatic 
annotation based upon predictive models. Clearly, both of these 
types of resource are extremely valuable; however, the appropri-
ate use of the annotation from these two sources may differ.

There are of course many different ways to access protein 
annotation, depending upon the source being queried. Here, we 
focus upon two technologies, BioMart and DAS, that both pro-
vide programmatic access to the data and services provided by a 
resource, known generally as “web services”. Web services allow 
users of software tools to query a resource via the Internet and 
retrieve results in a machine-processable, often simple format that 
the tool they are using can then process. This format typically does 
not include information about how to display the information 
(unlike a “normal” Web page for display in an Internet browser) 
but focuses on transmitting the meaning and structure of the data 
itself. It is then the responsibility of the software tool (or software 
“client”) to analyse and/or display the information for the user.

The next few sections consider solutions to the problems of 
mapping protein accessions from one protein sequence database 
to another, followed by an overview of the use of DAS and 
BioMart to collate third-party annotation.

The sheer number of protein sequence databases, with their dif-
ferent protein identifier systems, can be a significant hurdle to 
collate third-party annotation of proteins. The first step in pro-
teomics data analysis is to select an appropriate protein sequence 
database to search mass spectra against. This selection takes into 
account parameters, such as species specificity, database size, and 
database redundancy. A common choice, for example, is the IPI 

2. Solving the 
Protein Identifier 
Problem – Just 
Too Many 
Databases?
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database, which provides a “minimally redundant yet maximally 
complete set of proteins for featured species” (1).

The researcher may then wish to retrieve a broad range of 
annotation of the identified proteins. This requires that the pro-
tein identifiers from the database used (e.g. IPI numbers) are 
mapped on to the most appropriate species-specific database and/
or high quality human-curated database, such as UniProtKB/
Swiss-Prot (2). Clearly, the most desirable situation is that the 
identified protein accessions can be mapped on to all of the rele-
vant protein sequence databases in one step. This can be achieved 
for the majority of public protein sequence databases using the 
Protein Identifier Cross Reference Service, PICR (http://www.
ebi.ac.uk/Tools/picr/) (3). Following is a step-by-step descrip-
tion of how this can be easily achieved. These instructions assume 
that you have a list of protein identifiers or accessions from the 
search database used for protein identification.

 1. Build a text file (using, for example, Microsoft NotePad) contain-
ing one protein ID on each line. Save this file and note its loca-
tion and name on your computer. If you wish to create this file 
using a spreadsheet application, you should paste the protein IDs 
into the first column and then save the file in “CSV” format.

 2. Visit http://www.ebi.ac.uk/Tools/picr/ in an Internet 
browser (see Fig. 1).

 3. In the centre of the screen, you will see a large text area under 
the heading “Input Data.” Under this text area is a “browse” 
button. Click on this button.

 4. Browse to, then open the text file that you saved earlier. (The 
exact details of the dialogue box used to browse to the file 
will depend upon the operating system and the Internet 
Browser you are using, so are not described here.)

 5. You should now see the path to the file displayed on the Web 
page next to the browse button.

 6. Select a format for the protein identifier mappings. For the 
purpose of using the mappings to query further services, such 
as DAS and BioMart, the CSV format is recommended (plain 
text, comma-separated values file). This format can be used 
for importing the data into any spreadsheet software.

 7. By default, there is no limitation by taxonomy. Mappings for 
all species are returned. You may wish, however, to limit the 
mappings returned to a specific species. There is a pull-down 
list of species located at the top right hand corner of the PICR 
Web form. This includes the species described in the Ensembl 
database. If you are interested in other taxonomic groups, 
type the name of the taxon into the text box below the pull 
down list. Suggested species matching your search will start 
to appear as you type.

http://www.ebi.ac.uk/Tools/picr/
http://www.ebi.ac.uk/Tools/picr/
http://www.ebi.ac.uk/Tools/picr/
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 8. It is recommended that you leave the check box labelled 
“Return only active mappings” in its default state (checked/
ticked). This ensures that only current protein identifiers are 
returned from PICR.

 9. Select the protein sequence database that you wish to map 
your identifiers to. To use the list of identifiers returned from 
PICR in a tool, such as DAS or BioMart, it is recommended 
that you select a single database to map to at a time, to keep 
the results from PICR simple. Please see Note 1 for a discus-
sion of the default settings, SwissProt and TrEMBL.

 10. Click on the red “Search” button which is situated in the 
“Output Parameters” section in the middle of the screen.

 11. The search may take several seconds to perform, or longer if 
you have supplied a long list of protein identifiers. You will 
see a progress bar appear on your browser, which is regularly 
updated. If nothing happens for a long time, click on the 
“Refresh” link.

To use the data returned from PICR, it is important to under-
stand how the mappings are generated. PICR maps to protein 

Fig. 1. The PICR service user interface. See the main text for a step-by-step description of how to use this interface. Note 
that there is also a “web service” interface to PICR for use directly from code.
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accessions that are either assigned to exactly the same sequence or 
have been annotated in UniProtKB/SwissProt as logical cross-
references. PICR is not a BLAST service. If you are interested in 
finding similar protein sequences rather than alternative identifiers 
for the same sequence, PICR is not for you.

In step 6 above, it was recommended that you select the CSV 
format. This format includes four columns of data:

 1. The input protein identifier (the one you searched with).
 2. The name of the database that the input identifier has been 

mapped to.
 3. The mapped protein accessions.
 4. The “status” of the mapping, one of “identical” or “logical.” 

“Identical” indicates that the mapped protein identifier refers to 
exactly the same protein sequence. “Logical” indicates that the 
mapped accession is a cross-reference in UniProtKB/Swiss-Prot.

The Distributed Annotation System (DAS), together with the 
software tools that have been developed to use this service, allows 
the user to retrieve annotation on protein sequences or nucleic 
acid sequences from many physically and geographically separate 
locations in one request. The real power of this system is that the 
separate sources of annotation need not be aware of each other in 
any way, so long as they are using a common naming system and 
coordinate system for the sequences they describe. The software 
tool (DAS “client”) being used by the researcher is able to locate 
these separate sources of annotation using a central registry. The 
tool then requests annotation from all of the registered sources 
and finally collates this annotation for display or analysis.

DAS has been in common use since it was first used for nucleic 
acid sequence annotation in 2001 (4), becoming a widely used 
and stable standard following the release of version 1.53 of the 
specification in 2002 (5). At this point, the focus of the standard 
was on serving sequence information and annotations coordi-
nated on to this sequence. Since then, the scope of the standard 
has been expanded significantly. It is now possible to use DAS to 
retrieve structural information (at the level of atomic coordi-
nates), to perform sequence alignments, and to retrieve interac-
tion data (6). More recently, groups have been working on DAS 
writeback to allow researchers to contribute annotation to a 
remote server. These new facilities have been described in later 
versions of the DAS specification, including DAS 1.53E (7) 
(http://www.dasregistry.org/spec_1.53E.jsp) and the DAS 1.6 
standard (http://www.biodas.org/wiki/DAS1.6).

3. Collating 
Annotation  
from Multiple 
Sources – DAS

http://www.dasregistry.org/spec_1.53E.jsp
http://www.biodas.org/wiki/DAS1.6
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An important concept to understand in DAS is the separation 
of DAS servers into two types: reference servers and annotation 
servers. Reference servers provide sequence and version information. 
More recently, they may also provide structural and alignment 
information. Reference servers are often run by sequence data-
base maintainers, for example, the UniProt consortium provides 
a DAS reference server (http://www.ebi.ac.uk/das-srv/uniprot/
das) which is kept up-to-date with the UniProt Knowledge Base. 
Whenever a DAS client requests information for a single protein, 
it will query one DAS reference server for the sequence. It will 
also (usually in parallel) query any number of DAS annotation 
servers for annotation on that sequence. The annotation servers 
will also reply with version information for the sequence they are 
annotating, so if there is any version conflict between the refer-
ence and annotation server, it can be highlighted by the client 
(see Fig. 2).

The DAS Registration Server (http://www.dasregistry.org/) (8), 
provides a centralised repository describing public DAS servers 
around the world. It can be browsed using an Internet browser, 

4. The DAS 
Registry

Fig. 2. A DAS client is able to retrieve annotation of a protein (or nucleic acid) sequence 
from many separate sources and integrate this annotation into a single view. This is a 
two step process: the client first of all requests the locations of relevant DAS servers 
from the DAS Registration Server. It then requests sequence information from a single 
DAS reference server and annotation from any number of DAS annotation servers.

http://www.ebi.ac.uk/das-srv/uniprot/das
http://www.ebi.ac.uk/das-srv/uniprot/das
http://www.dasregistry.org/
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or more usually it is used directly by DAS clients to retrieve 
information about available DAS sources. Generally, it is not nec-
essary for a researcher using a DAS client to visit the DAS 
Registration Server manually, as the necessary information is 
automatically retrieved from the registry by the DAS client itself.

However, if you wish to learn more detail about a specific 
DAS server, or wish to troubleshoot a problem with a particular 
server, it may be useful to visit the DAS Registration Server 
directly. The set of steps that follows describes how to manually 
query the DAS Registration Server for details of a specific DAS 
service and how to test that the service is operating as expected.

 1. Visit http://www.dasregistry.org/ using an Internet Browser.
 2. First, find details of all of the DAS servers that are able to 

serve features using the protein identifiers that you are using 
(e.g. UniProtKB protein accessions). Hover over the “list” 
menu item at the top of the screen. A short menu will appear. 
Click on “list sources.”

 3. To restrict the list to DAS servers that provide annotation for 
(for example) UniProtKB protein accessions, click on the pull 
down list labelled “authority.” Select “UniProt” from the list. 
(See Note 2 for further filtering options.)

 4. Click on the “display” button on the right.
 5. You will now be presented with a list of DAS servers that you 

can explore. The DAS Registration Server uses a “traffic light” 
system to indicate which capabilities the DAS servers posses. 
To find out the meaning of each “light,” hover over it.

 6. To examine details and documentation of a specific DAS 
server, click on the blue “i” icon on the left hand side. This 
will open a new page, “DAS Source Details,” documenting 
the DAS service.

 7. Finally, to validate that the server is operating correctly, click 
on the green tick at the bottom of the “DAS Source Details” 
page. This will open a new page “Validate DAS/1 Source.” 
Click on the “Validate” button to test the capabilities of the 
server, or if you think the server may be failing.

The Dasty2 DAS client (http://www.ebi.ac.uk/dasty/) (9) is a 
rich and flexible DAS client that runs in an internet browser. It is 
used to query a single protein at a time and has been developed 
for use with DAS servers that provide and annotate protein 
sequence. By default it is configured for query using UniProtKB 
protein accessions.

5. Dasty2:  
A Powerful  
Web-Based  
Client

http://www.dasregistry.org/
http://www.ebi.ac.uk/dasty/
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The design of the DAS system has largely focused on devel-
oping standardised XML formats for data exchange (from servers 
to clients). For example, individual annotations (“features”) 
include a feature type, feature id, a label, and the start and stop 
coordinates of the feature and a score, together with other 
optional fields. Standardising this format is obviously essential to 
allow clients to be able to query multiple DAS servers; however, 
it does not solve the problem that separate organisations will use 
different terminology to describe different feature types. This 
makes it very difficult to perform a comparative analysis of the 
feature types served from different institutions. Fortunately, this 
problem has been recognised and has been addressed through the 
development of the Protein Feature Ontology (10), by the 
BioSapiens Network of Excellence (11) and through the use of 
the Evidence Codes Ontology. See Note 3 for a very brief expla-
nation of ontologies. The DAS servers provided by members of 
the BioSapiens Network are among the first to take advantage of 
this standardisation of terminology.

The Dasty2 DAS client (also funded by the BioSapiens Network) 
incorporates the use of these ontologies in the interface, providing 
links to term definitions and allowing filtering, sorting, and order-
ing by both feature type and evidence code ontology terms.

Following is a description of how to query Dasty2 for a specific 
protein and how to manipulate the user interface to focus upon 
annotations of interest to the researcher.

Note that by default, Dasty2 retrieves annotation from DAS 
servers that are registered as being associated with the BioSapiens 
Network. It is possible to extend your search to include DAS 
servers from outside this network, so long as they accept 
UniProtKB protein accessions. If you use non-BioSapiens DAS 
servers, there is no guarantee that the DAS server will make use 
of the Protein Feature Ontology or the Evidence Codes Ontology 
for feature annotation.

 1. Visit http://www.ebi.ac.uk/dasty/ using an Internet browser 
(see Fig. 3).

 2. Enter the UniProtKB protein accession that you are inter-
ested in into the “Protein ID” text field and click “GO.” 
Note that there are several example accessions given below 
the text field.

 3. The Dasty2 client will immediately start to query all of the 
available DAS servers with the protein accession that you have 
entered. This is done in parallel with results from each server 
being displayed as soon as they arrive. Some of the registered 
DAS servers may include no annotation of the protein 
requested or may be inactive for another reason (maintenance 
down-time for example). This does not impede Dasty2 in any 
way; however, if you are expecting or looking for annotation 

http://www.ebi.ac.uk/dasty/
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from a specific DAS server, it is wise to check that the service 
is responding correctly (see Note 4).

 4. Scroll down to the section “Positional Features.” This section 
displays all of the feature annotations that have been loaded 
in the previous step. Features of the same type may be grouped 
together on to one row, either using information from the 
server or according to the configuration of Dasty2. This table 
includes the columns:
(a) “Feature Type”, which displays (where provided) the 

Protein Feature ontology term categorising the features 
displayed on that row.

(b) “Labels” provides a simple, non-standardised label for 
the feature type.

(c) “Feature Annotations” displays the position of the fea-
ture relative to the sequence. This is an interactive display 
with the ability to zoom (grab and slide the red “han-
dles” at the top of the “Positional Features” section and 
then click the grey “Zoom” button). You can also hover 
over, or click any of the features displayed for more 
complete information about the feature. If you click on a 

Fig. 3. The Dasty2 DAS client in action. This view shows part of the Dasty2 user interface displaying the DAS tracks from 
ten different DAS annotation servers for a single protein. In this case, Dasty2 has requested annotation from a total of 33 
separate DAS servers.
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feature, you can view details of the sequence in this region 
at the bottom of the Dasty2 interface.

(d) “Server Name” indicates which DAS server the annota-
tion has been retrieved from.

(e) “Evidence (Category)” displays the Evidence Codes 
Ontology term that the features on that row are anno-
tated with, typically differentiating between annotations 
for which there is direct experimental evidence from 
annotations that have been inferred by a human curator 
or annotations that have been derived by automatic 
means, for example, pattern matching or the use of 
Hidden Markov models.

Note that it is possible to add additional columns (including 
“Score” and “Feature ID”) or remove columns by expanding the 
“Manipulation Options (Positional Features)” section.

 5. For some highly annotated proteins, there may be many rows 
of annotation displayed, much of which may be irrelevant to 
the research problem being addressed. The Dasty2 interface 
provides several mechanisms to allow you to manage this:
(a) You may reorder the DAS tracks on the screen by holding 

down the primary mouse button1 on a DAS track that 
you wish to relocate and drag it up or down to a new posi-
tion. This is useful for viewing a selection of DAS tracks 
next to each other that you wish to compare directly.

(b) You can filter the DAS tracks displayed. Scroll up to the 
“Filtering By” section and expand the section by clicking 
on the heading. In this section, you can filter by feature 
types, DAS server name and evidence code. (The feature 
type and evidence code filters make use of the Protein 
Feature Ontology and Evidence Code Ontology 
respectively.)

(c) You may modify the order of the DAS tracks by clicking 
on one of the column headings. Repeatedly clicking a 
heading reverses the sort order.

 6. Some annotations may refer to the entire molecule rather 
than just a section of the sequence, for example, the list of 
literature citations associated with the molecule. These fea-
tures can be viewed on Dasty2 by expanding the “Non 
Positional Features” section. If the DAS server has provided 
one or more hyperlinks to external sources, these are repre-
sented by a purple “i” icon, to the right of the notes section.

1Left mouse button on a Microsoft Windows or Linux PC.
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Here, some features of the Dasty2 DAS client have been 
described. Its capabilities extend beyond those described here, 
including for example the ability to display the protein structure, 
employing the structure extensions to DAS. As well as Dasty2, 
other high quality DAS clients exist, including the DAS client 
built into Ensembl (http://www.ensembl.org/) and the powerful 
Spice DAS client (http://www.efamily.org.uk/software/dasclients/
spice/) (8), which provides a sophisticated protein structure 
viewer on to which DAS annotation can be projected.

DAS provides a very powerful way of accessing integrated 
data from many disparate sources. It has the restriction, however, 
that the available clients all focus on one protein at a time. If the 
researcher wishes to collate annotation for large sets of proteins in 
a single step for further analysis, BioMart may offer a more suit-
able alternative as described below.

BioMart is a powerful query optimised database system that can 
be used with any kind of data. Individual BioMarts are built and 
maintained by separate groups around the world, including for 
example:

the Ensembl project (●● http://www.ensembl.org/biomart/
martview) (12)
the UniProt Consortium (●● http://www.ebi.ac.uk/uniprot/
biomart/martview)
the InterPro database of protein families, domains, regions, ●●

repeats, and sites (http://www.ebi.ac.uk/interpro/biomart/
martview) (13)
the PRIDE Proteomics Identifications Database (●● http://
www.ebi.ac.uk/pride/prideMart.do) (14)
the Reactome curated knowledge-base of biological pathways ●●

(http://www.reactome.org/cgi-bin/mart) (15).

A full list of publicly available BioMart implementations can 
be found on the BioMart home page at http://www.biomart.org. 
BioMart provides several benefits that are beyond the scope of 
this chapter, which can be explored on the documentation page 
on the biomart.org Web site. Two important features of BioMart 
are its ability to quickly deliver very large datasets in response to 
queries and the “federation” (linking together) of physically sepa-
rate BioMarts so that users can build complex queries across two 
BioMarts at the same time. It should be noted that the federation 
of BioMarts is a quite different concept to DAS. DAS servers 

6. Retrieving 
Sequence 
Annotation Using 
BioMart

http://www.ensembl.org/
http://www.efamily.org.uk/software/dasclients/spice/
http://www.efamily.org.uk/software/dasclients/spice/
http://www.ensembl.org/biomart/martview
http://www.ensembl.org/biomart/martview
http://www.ebi.ac.uk/uniprot/biomart/martview
http://www.ebi.ac.uk/uniprot/biomart/martview
http://www.ebi.ac.uk/interpro/biomart/martview
http://www.ebi.ac.uk/interpro/biomart/martview
http://www.ebi.ac.uk/pride/prideMart.do
http://www.ebi.ac.uk/pride/prideMart.do
http://www.reactome.org/cgi-bin/mart
http://www.biomart.org
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need not be aware of each other in any way, it is the DAS client 
that is responsible for collating data from separate DAS servers. 
Federated BioMarts, however, need to be configured and linked 
by the mart maintainers.

The real power of BioMart for the biological researcher is its 
ability to handle queries that return large volumes of data. It is 
possible, for example, to submit a long list of protein accessions 
to a BioMart and retrieve information relating to all of the pro-
teins in one query.

BioMart differs from DAS in that it does not define a stan-
dard data structure. Each BioMart is structured differently, and 
so the precise instructions for using any two BioMarts will differ. 
There are, however, generally applicable techniques to building 
BioMart queries, which is illustrated in the example below.

This example makes use of the InterPro BioMart to retrieve 
automatic annotation of protein sequences.

 1. Visit http://www.ebi.ac.uk/interpro/biomart/martview in 
an Internet browser.

 2. Click on the “- CHOOSE DATABASE -” pull-down list. You 
will see three BioMarts listed here. This is a consequence of 
the fact that the InterPro BioMart has been federated (linked) 
to both the PRIDE and the Reactome BioMarts. Select the 
“InterPro BioMart” item.

 3. A new pull-down list will appear labelled “- CHOOSE 
DATASET -”. Most BioMarts are organised into several sets 
of data. The InterPro BioMart is organised into three: a pro-
tein-centric dataset “Protein Matches” an InterPro Entry 
centric dataset and a dataset of annotation on UniParc pro-
tein sequences. Select “Protein Matches” from this list.

 4. On the left of the screen, two headings will appear, “Filters” 
and “Attributes.”

 5. Click on the “Filters” heading. This is where you restrict or 
“filter” the rows of data returned from the BioMart. In this 
example, the filter will be a list of UniProtKB protein acces-
sions, such as that generated using the PICR service as 
described earlier in this chapter.

 6. Click on the “Protein Filters” heading on the right hand 
side.

 7. You will now see a large number of different filters that are 
available to you, including filters by protein accession, 
sequence length and taxonomy. Find the filter at the top of 
this page labelled “UniProtKB Protein Accession.”

 8. At this point, you can either cut and paste a list of UniProt 
KB protein accessions into the adjacent text area on the right 
of the screen, or if you have already prepared a text file con-
taining the list, you can browse to this file by clicking on the 

http://www.ebi.ac.uk/interpro/biomart/martview
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“Choose File” button, situated below the text area. Note that 
the format of the file or the pasted text is flexible, you can 
either separate the protein accessions by placing one on each 
line, or you can separate them using commas.

 9. Now you have restricted the BioMart to return information 
about the list of proteins you are interested in, you need to 
select the data fields that you are interested in. The results will 
be returned in a table, so you are effectively selecting the col-
umns of this table. Click on the “Attributes” heading on the 
left of the screen.

 10. The right hand side of the screen will now change to display 
a list of column headings, each with a check box to allow you 
to select the heading. You can select any data you are inter-
ested in from this list; however, if you have filtered by a list of 
protein accessions, you should include the “UniProtKB 
Protein Accession” attribute, so you know which protein is 
being described on each line of the results. For the purposes 
of this example, click the following attributes:
(a) UniProtKB Protein Accession
(b) Signature ID (Name)
(c) Start Position
(d) Stop Position

 11. Now that you have built a filter to restrict the rows of data, 
and selected the columns of information that you wish to 
receive, click on the “Results” button at the top of the page. 
After a short delay, you will see the first ten rows of results 
displayed. At this point, you may click on the “Filters” or 
“Attributes” heading on the left to modify the query if it is 
not quite what you require.

 12. Once you are happy with the query, you should now select a 
format for the full set of results. Find the select pull-down at 
the top of the page labelled “Export all results to.” By default 
this will be set to “File.” A useful feature is to request that the 
BioMart system sends you an email when the complete set of 
results is ready to download. This is especially useful if you are 
expecting a very large set of results, for example, if you have 
queried the BioMart for the details of several thousand pro-
teins. Next to this select pull-down is a second select pull-
down defaulting to “TSV” (tab-separated values file). You 
may select alternative formats from this pull-down, including 
“HTML” (for viewing in an Internet browser), “CSV” 
(comma-separated values file), or “XLS” (Microsoft Excel 
spreadsheet format).

 13. Click on the green “Go” button near the top of the screen to 
retrieve the full set of results in the selected format.
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This is only an introduction to the use of the BioMart interface. 
Following the basic principles of filtering, selecting attributes and 
finally selecting an output format you can build a large range of 
different queries using any BioMart.

 1. “SwissProt” and “TrEMBL” can be considered as a single 
database, being the two components of the UniProt 
Knowledge Base (UniProtKB), so you can safely leave both 
of these ticked. It should be taken into account, however, 
that these two components of UniProtKB are created sepa-
rately. UniProtKB/SwissProt is human-curated and consid-
ered to contain very high quality annotation. UniProtKB/
TrEMBL comprises automatically predicted annotation.

 2. In addition to the “authority” filter, you can filter the listed 
DAS sources by organism (taxonomy), type (protein or 
nucleic acid sequence), capability, and label. Capability allows 
you to select sources that (for example) provide protein 
sequence, protein structure, or annotation. Label relates to 
the projects that the DAS source are a member of.

 3. An ontology is a sophisticated controlled vocabulary, com-
prising unambiguously defined terms with stable identifiers 
and defining relationships between the terms, for example, 
parent–child relationships and partitive relationships.

 4. To ensure that a specific DAS server has responded success-
fully to a request made in the Dasty2 DAS client, click on the 
heading “System Information” near the top of the Dasty2 
interface, and located in the “Checking” section. This will 
expand a list of all of the DAS servers that have been queried. 
(including 33 separate BioSapiens Network DAS servers at 
the time of writing). Servers that are listed with a comment in 
green or red are active and have returned a valid response to 
Dasty2. Red comments indicate that the DAS server has no 
annotation for the protein accession you have entered. 
Comments in orange indicate that the DAS server is not 
operating correctly.
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Chapter 8

Tranche Distributed Repository and ProteomeCommons.org

Bryan E. Smith, James A. Hill, Mark A. Gjukich, and Philip C. Andrews 

Abstract

Tranche is a distributed repository designed to redundantly store and disseminate data sets for the 
proteomics community. It has several important features for researchers, including support for large data 
files, prepublication access controls, licensing options, and ensuring both data provenance and integrity. 
Tranche tightly integrates with ProteomeCommons.org, an online community resource that offers a 
variety of useful tools for proteomics researchers, including project management and data annotation. In 
this chapter, we discuss the development of Tranche and ProteomeCommons.org, paying particular 
attention to why it is desirable that data be publicly available and unrestricted as well as the challenges 
facing data archiving and open access. We then provide a technical overview of Tranche and 
ProteomeCommons.org as well as step-by-step instructions for using these resources, including the 
graphical user interface (GUI ), command-line tools, and Application Programmer Interface (API). We 
end with a brief discussion of current and future development efforts and collaborations.

ProteomeCommons.org was developed and released in 2004 to 
provide data and software hosting to the proteomics community. 
Its founding goals were to support data and software reuse and 
dissemination as well as integration with other proteomics 
resources (1). Data sets that were hosted on ProteomeCommons.
org were available for download via HTTP. While this was a sim-
ple and immediately valuable service, a more scalable solution was 
needed to handle the raw data that is produced by high-through-
put mass spectrometry instruments. Furthermore, given the 
unpredictable nature of hardware failures, redundancy was neces-
sary for the long-term archiving of the hosted data sets. In response 
to these and other needs, the Tranche-distributed repository proj-
ect was developed in 2005 and publicly released at the 2006 
American Society for Mass Spectrometry (ASMS) conference.

1. Introduction

Michael Hamacher et al. (eds.), Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, vol. 696,
DOI 10.1007/978-1-60761-987-1_8, © Springer Science+Business Media, LLC 2011
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Proteomics data sets tend to be large, expensive to generate, 
and contain information beyond the immediate needs of the 
original investigators. There are many reasons to make data publicly 
available; public access to data sets protects the interests of peer 
review (e.g., critical evaluation and replication of results) as well 
as the future reevaluation of data sets as new analytic tools and 
additional data sets become available. Another important reason 
to make data publicly available is to satisfy dissemination require-
ments for funding agencies.

Recent calls for broader data sharing have cited the genome proj-
ect and other research efforts to share data (2–4). The role of both 
pre- and postpublication data sharing in the genome project was par-
ticularly important in accelerating progress, allowing more rapid 
development of new tools, and providing broad dissemination of 
genome data which increased the impact of the genome project. Pre- 
and postpublication data sharing have different uses and some differ-
ences in data infrastructure, with the former usually requiring some 
degree of security in the form of encryption or limited data access.

The general infrastructure for data sharing has been limited, 
particularly in reducing the barriers for getting data into reposito-
ries and in the dissemination stage (5). The resources available for 
building the infrastructure have been limited and decision mak-
ing has been hampered by economics, the volume of data, and 
the rapidly changing technologies. While there is general consen-
sus that sharing data sets is desirable, the technical and social chal-
lenges are significant and pessimism has been expressed over the 
feasibility (6) or the ultimate usefulness of data sharing in all cases 
(7). As these authors point out, the cost benefit aspects of data 
sharing, the time lag involved in building infrastructure, obsoles-
cence times, intellectual property issues, and many other concerns 
affect the development of an effective data sharing infrastructure. 
Confounding this situation are the unique data features that must 
be accommodated in many fields of research. These concerns are 
being addressed by the proteomics community in several ways 
beyond Tranche and Proteomecommons.org. For example, cen-
tralized resources like Peptideatlas.org (8), TheGPM.org (9), 
PRIDE (10), HPRD (11), and Peptidome (12) all harvest data 
and place various levels of metadata in their databases for easy 
mining and access for investigators. Many of these resources 
download data sets from Tranche, and some of these resources 
run the data through their own data pipelines to allow for 
improved comparisons across data sets.

Currently, some journals recommend public release of pro-
teomics data sets. As of April 2007, Molecular and Cellular 
Proteomics Journal and The Journal of Proteome Research officially 
recommend depositing all mass spectra output data as supple-
mental material associated with protein identifications (13) fol-
lowing the recommendation of a group of leaders in proteomics 
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in March 2005. In an editorial in 2007, Nature Biotechnology 
(14) recommended that all proteomics data associated with 
manuscript submissions be deposited in public repositories, shar-
ing many of the concerns that we outline in this introduction. 
The submission requirements for the journal Proteomics (last 
updated in 2008) state that peak lists should be deposited in a 
public repository and submitted as supplemental material, though 
there is no statement that these peak lists are required or recom-
mended (15). Funding agencies, on the other hand, are begin-
ning to stipulate the submission of data sets to repositories. As of 
October 2003, any investigators receiving NIH funding of 
$500,000 or more within a year are required to provide a data 
sharing plan; if sharing the data is not feasible, the investigator 
must explain why (16).

There are many barriers to the general adoption of data shar-
ing. Foremost, we should consider the motivations of individual 
researchers. For example, researchers might not share data due to 
the understandable perception that ad hoc experimental design 
and the lack of experimental standards might compromise the 
reuse of the data sets (7).This is partly addressed by the proper 
annotation of data sets. While publications provide a depth of 
information about a data set that is difficult to capture by other 
means, they are not ideal as primary annotation sources because 
they are often incomplete, and the annotations are provided in 
natural language, which is a challenge for data mining applica-
tions. This situation is further improved when the experimental 
parameters are properly stored as metadata. Researchers also may 
not be sufficiently motivated to share their data when it is neither 
required nor sufficiently rewarded, which could change if funding 
and career advancement incorporated not only the generation, 
but also the public availability of properly annotated data sets 
(17). Relatively minor shifts in faculty evaluation processes could 
go a long way in enhancing the public availability of scientific 
data. Funding agencies, publishers, and professional societies have 
an opportunity to influence this process through their policies.

Even where there is sufficient motivation to share data, there 
can be additional obstacles. The investigator may not be prepared 
to release the data set until all interpretations have been com-
pletely exhausted, feeling that unanalyzed or underanalyzed data 
remains; this is true despite the likelihood that most data sets will 
not be further analyzed in the original laboratory beyond the pri-
mary goals due to priorities and resource constraints. In the case 
that multiple publications are prepared using the same data set, 
the author might wish to withhold the data set from public release 
beyond the first publication. This situation can arise when fund-
ing or promotion deadlines require early publication or when 
logistics interfere with timely follow-ups to initial publications. 
Some investigators may also have concerns about overlooked 
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knowledge that can be derived from the data sets by other 
investigators with different perspectives or computational algorithms 
that might result in “lost” intellectual property. One response to 
this concern is that this is one of the anticipated and desired out-
comes of data sharing that will result in faster progress in medical 
research and advancements in treatment. This issue is analogous 
to the publication of a manuscript which may contain data sets 
subject to alternative interpretation and is one of the reasons for 
publication. It might also be addressable by more general access 
to computational tools. Uncertainty about the interpretation of 
one’s own data sets can also be an inhibitory factor; however, the 
peer review process exists to help authors confirm that their inter-
pretations are reasonably accurate.

Even when funding sources and publishers do not require that 
data is publicly released, there is considerable value to the broader 
community fully understanding and embracing the value of open 
access to scientific data. This should be particularly clear from the 
field of genomics, considering how the availability of large genome 
databases has led to the development of multiple new fields of 
post-genome research, including proteomics (18, 19).

It is also important to recognize that just because a data set is 
available does not mean it is usable, which generally requires that 
the data set is unrestricted (or minimally restricted) and that it has 
the appropriate metadata so that it is findable and can be placed 
in an interpretable experimental context. This leads to two impor-
tant topics: open data and annotations.

When data sets are unrestricted and freely available, they are 
said to be open. This unambiguously allows anyone to freely use the 
data. Restrictions primarily come in the form of copyright law, 
though other legal or ad hoc restrictions might apply. This is a com-
plicated topic that will change over time as intellectual property 
continues to be defined. What is interpreted as a creative work, and 
hence protected under copyright law, varies by jurisdiction. (For 
example, database structure might be defined as a creative work, 
though the same may not be said of the underlying data; however, 
there is also the database right of the European Union, which is 
similar to copyright law but protects the underlying data.) Attribution 
is a related right, and many available licenses include attribution 
stipulations. In the research community, attribution is a de facto 
requirement, even when data are not legally protected. Since it is 
likely that data sets with the least licensing restrictions will see the 
broadest impact and citation, it is important to retain attribution 
without restricting the data. Because all data on Tranche is digitally 
signed upon upload, Tranche inherently supports provenance.

The uncertainties and difficulties associated with ascertaining 
the appropriate restrictions suggest the value of clearly-defined 
open data. One tool that protects open data is the Creative 
Commons CC0 waiver, which is a “no rights reserved” option 
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that places data in the public domain as completely as is feasible 
(20). CC0 also provides a machine-readable document so that 
automated agents can recognize that the associated data can be 
used without restriction. The association of a machine-readable 
license or waiver is becoming increasingly important as more tools 
are developed to aggregate and analyze data.

The most practical justification for open access to data is for 
the reevaluation of data sets. Without public data sets, there is no 
foundation for a broader bioinformatics community, which has 
the potential to contribute discoveries that require subtle statisti-
cal analysis of many data sets as well as develop improved algo-
rithms. By comparison, consider how public genetic databases 
have provided essential evidence for posttranscriptional gene reg-
ulation as well as for the discovery of coexpressed genes (21). 
Furthermore, the cost of producing high quality data sets can be 
quite high, so encouraging data reuse could prove to be an eco-
nomical choice for limited proteomics research. This is particu-
larly important when considering biological samples that are rare 
or difficult to obtain (such as with wild type gastrointestinal 
stromal tumors (22)) or unique (for example, the tyrannosaurus 
rex collagen protein (23) and hadrosaur proteins (24)). Mining 
these data sets to plan future experiments is another application of 
Tranche that allows investigators to estimate the variance, dynamic 
range, and other parameters important when optimizing experi-
mental design. Additionally, aggregation of data sets from multi-
ple studies can be used to improve statistical models.

The issue of whether data is findable is a key issue most 
directly addressed by providing the appropriate metadata in a 
searchable format, otherwise known as annotating (or curating) 
the data set. Much of the data currently generated in proteomics 
and related fields is not thoroughly annotated, which compro-
mises the value of the data sets; however, as this issue is remedied, 
future experiments can be designed with more insight, meaning 
that researchers can be more productive (17). As we discuss later, 
semantic searches are generally more useful than keyword searches, 
and metadata that is highly structured offers more value, particu-
larly when a controlled vocabulary is used.

Annotations, which provide the context for the data sets and 
hence aid their findability, involve two separate issues. The first is 
the definition of the annotations. The Human Proteome 
Organisation (HUPO) Proteomics Standard Initiative (PSI) has 
developed the Minimum Information about a Proteomics 
Experiment (MIAPE) standard to specify the minimal metadata 
that should accompany proteomics data (25). The second issue is 
compliance: annotations must be completed and accurate for 
maximal impact. Considering the potential size and complexity of 
these annotation standards as well as the long-term collaborative 
nature of proteomics projects, this is not a trivial task. For example, 
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MIAPE offers separate modules for various stages and technologies 
related to a proteomics experiment, such as study design and 
sample generation, mass spectrometry, gel electrophoresis, and 
others (http://www.psidev.info/miape/). Each of these modules 
contains multiple categories of required information, with each 
category containing multiple related fields. Gathering all the 
required information typically requires input from several individu-
als who collaborated in the study. Even in the case that software is 
used to extract as much information as possible from the data files, 
much of the annotation will need to be performed manually.

There are many technical and logistical challenges involved 
with disseminating and archiving large data sets. Foremost, there 
must be sufficient disk space to hold mass spectrometry data sets, 
which can be quite large. Current mass spectrometers can gener-
ate up to 1 GB (or more) per hour of compressed data (26). For 
example, the Thermo Fisher Orbitrap (Thermo Fisher Scientific 
Inc., Waltham, MA, USA) can produce up to 100 MB per hour 
while Bruker Daltonics’ Micro TofQ (Bruker Daltonik GmbH, 
Bremen, Germany) can produce up to 500 MB per hour (27). 
Additionally, server hardware failure, in the absence of redun-
dancy, will generally result in data loss. Multiple disk failures over 
time can wipe out multiple replications; in the absence of a scheme 
to reintroduce redundancy, every data set will eventually be lost.

In addition to maintaining a valid copy of the data, the chal-
lenge of being able to access the data still remains. Changing stor-
age media technologies (e.g., 9.5” floppy, 1.5 MB floppy, zip 
disk, CD, DVD, flash drives, etc.) can make accessing data diffi-
cult that is even only a few years old. Additionally, there is the 
issue of the large and constantly evolving variety of mass spec-
trometer output file formats. Several standard formats (mzXML 
(26), mzData (28) and most recently, mzML (29)) have been 
developed to deal with this problem, though their long-term suc-
cess will likely be determined by their adoption by mass spec-
trometer manufacturers as well as the development of appropriate 
tools to convert from existing native formats. This is not only an 
issue for the long-term archiving of data, but will also present a 
continuing challenge for researchers.

Long-term preservation of data also requires an effective 
infrastructure. This begs the question: who is responsible for pro-
viding that infrastructure? The choices include federal agencies, 
the universities, individual researchers, and private industry. Each 
of these choices has its strengths and weaknesses and no single 
solution is clearly applicable across all fields, applications, or even 
data types. One advantage of distributed storage systems like 
Tranche is that it provides the potential for all of these stakehold-
ers to participate in supporting a common data infrastructure 
through investments in hardware and sharing the ongoing costs 
of maintenance and administration.

http://www.psidev.info/miape/
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These issues, to varying degrees, have directed the development 
of both Tranche and ProteomeCommons.org. Dissemination and 
documentation requirements of data sets are still being defined 
by funding sources as well as journals, and issues like annotation 
standards are attracting the attention of standards organizations 
within the proteomics community, but these issues are far from 
settled. Despite the ongoing developments, the value of these 
resources has already been clearly demonstrated: during the 
6-month period starting in February through the end of July, 
over 3.9 TB of data were downloaded from the ProteomeCommons.
org Tranche repository.

Below, we discuss how Tranche and ProteomeCommons.org 
were developed, including what we have learned during the pro-
cess of hosting and sharing data. We also discuss how to get 
started using Tranche and ProteomeCommons.org. We will con-
clude with planned development efforts that will further address 
the challenges and issues outlined.

Tranche is a distributed repository designed using principles from 
peer-to-peer networking (redundancy and load balancing) com-
bined with client-server architecture (authentication and reliability), 
which can best be described as a distributed server model. Data 
sets are uploaded to and downloaded from our network using 
any of our client tools. Figure 1 shows a screenshot of our 
graphical user interface (GUI) with a list of data sets available 
for download.

Our model is strongly decentralized – in the event that any 
number of servers are offline, the remaining servers can still pro-
vide service (though some data might be temporarily unavail-
able). The network is federated, as every server has its own list of 
trusted users and can be managed separately.

The key to data availability on a Tranche network is redun-
dancy. Like a RAID array, we assume that servers will fail, so every 
chunk of data that is uploaded must be replicated a minimum 
number of times. Choosing the proper number of replications is 
complex and not easily modeled. Hardware failures and server 
downtime are generally unpredictable, with an innumerable set of 
factors, including lightning strikes and rodent damage as well as 
staff turnover and funding. The more servers that are online (to 
accommodate more data), the more redundancy that is required 
to accommodate the additional uncertainty. In other words, total 
number of servers online should be proportional to the number 
of replications. (With our current model, an increase in the num-
ber of servers requires a linear increase in the replications for data 

2. Methods
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to remain available; the network model for the next version of 
Tranche, however, will only require a logarithmic increase in rep-
lications to accommodate additional servers.) In the case that it is 
rare for more than two servers to be offline, then three replications 
should be enough. The ProteomeCommons.org Tranche network 
currently requires three replications when data are uploaded.

Load balancing is another strength of using multiple serv-
ers. This allows multiple servers to share the burden of user 
requests. As a heuristic, during an upload or a download, a cli-
ent will select a server on a moment-by-moment basis based on 
how much outstanding work the server has combined with its 
latency. This is a simple implementation of the “nearest neigh-
bor,” where the cost of using a server is approximated based on 
recent performance.

Tranche does not store intact files on servers. Instead, for 
reasons of performance and scalability, a file is separated into data 
chunks, which have a maximum size of 1 MB. (For example, a 
5.3 MB file would require five 1 MB-data chunks and one 0.3 MB 
data chunk, for a total of six data chunks.) All the data chunks in 
a file are described by a metadata chunk. Given a metadata chunk, 
all data chunks can be downloaded and reassembled into the orig-
inal file.

A data set is any directory and all of its contents; in Tranche, 
there are no structural requirements imposed on a submission. 

Fig. 1. The graphical interface with the projects tab selected. Data sets are listed here for download.
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Figure 2 demonstrates how a data set is stored on Tranche. 
Note that the individual files (each with one metadata chunk and 
associated data chunks) are described by a ProjectFile, which 
points to the metadata chunks for each file as well as describes 
their location relative to the root directory of the data set. Just 
like any other file, the ProjectFile has a metadata chunk and data 
chunks; you can download and view the ProjectFile just like any 
other, though it is intended to be used behind-the-scenes by the 
download tool or for other client applications. (In Fig. 2, the 
ProjectFile and its constituent metadata chunk and data chunks 
have a thick outline.)

Tranche servers store chunks in a b-tree structure (30), mean-
ing that insertions, searches and deletes all run in logarithmic 
time, O(log n). (This means that the worst-case time to perform 
these actions is the logarithmic value of the total number of nodes 
in the collection.) This b-tree structure is made up of hierarchi-
cally-arranged nodes, each containing a maximum of 1,000 
chunks, with 256 nodes branching from each parent node. The 
tree is rebalanced as data is added, which is important since most 
servers will hold millions of chunks. For example, assume the 
average data chunk is 400 KB (which is not too far from what we 
have observed), and that its associated metadata is 4 KB. A 4 TB 
server could then hold, on average, over 21 million chunks. If we 
were to search for a particular chunk, it would take around an 

Fig. 2. A data set is simply a collection of files, and is described by a Project File. Each of 
these (including the ProjectFile) is described by a meta data chunk and is stored as one 
or more data chunks.
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average of four operations to identify the node containing the 
chunk. Though a node holds a maximum of 1,000 chunks, a 
node always branches to 256 new nodes, so the effective seek 
time for a node when n chunks are in the tree is log256 n. At that 
point, a linear search of the header of the node will quickly iden-
tify the chunk.

Each node in the b-tree structure is stored as a separate file. 
One potential source of data loss is the corruption of one of these 
“data block” files, such as might happen if the server is killed in 
the middle of a write operation. Upon starting up, each data 
block file is checked for corruption and repaired using data from 
other servers when possible.

There are other sources of potential data loss. On a large net-
work, disk failures must be continually accommodated. Furthermore, 
chunks can be corrupted during transmission. The redundancy on 
the network is only maintained in the long-run if lost replications 
are repaired or reintroduced. To this end, each server spends time 
downloading desired chunks, deleting unnecessary chunks, and 
searching for corrupted chunks and replacing them.

The first and last activities help mitigate the above sources of 
data loss, though with considerable latency. (We will discuss a 
better solution when we discuss the future of Tranche.) It is worth 
mentioning an additional source of data loss: a malicious attack. 
An attack would probably only impact a single replication of any 
given chunk on a compromised server; but in the worst-case sce-
nario in which an attacker gains authenticated access to the 
Tranche network, the attacker might delete some or all copies of 
a chunk. If this occurs, we have a separate Tranche network with 
different authentication that actively copies over any missing data 
that it has available.

As mentioned above, servers will attempt to download 
“desired” chunks as well as delete “unnecessary” ones. This brings 
us to two very important concepts: the hash and the hash span. 
Every chunk (and indeed every file and every data set) has a hash 
associated with it. These hashes are unique identifiers, and they 
can be recalculated at any time (i.e., they are deterministic). Each 
associated hash is generated by combining the four sources: the 
MD5, SHA-1, and SHA-256 hashes of the chunk along with the 
number of bytes. (Though it is possible that two separate chunks 
might have the same hash, resulting in a collision and hence data 
loss, it is highly unlikely. Since a hash is 76 bytes, the odds of 
randomly generating the same hash is 1 out of 1.06 * 10183.)

Since each chunk has an identifier, it is possible to allow a 
server to accommodate a portion of all the network by assigning 
it a range of desired hashes, which is the server’s hash span. By 
analogy, this is similar to providing multiple lines to pick up 
reserved tickets to a concert based on the first letter of your last 
name. If there are going to be many people, you might want two 
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lines: A–M and N–Z. If there are many reserved tickets, then 
there might need to be several lines with shorter ranges. Hash 
spans not only allow a network to find a chunk more quickly, but 
they also allow each server to accommodate a portion of the net-
work based on available disk space or any other factor. Additionally, 
an administrator can remove a hash span from a particularly trou-
blesome server so that it will not likely receive many more chunks, 
but its current data will continue to be available. (A server can 
also be flagged as “read-only” to entirely prevent any data from 
being stored on it.)

When a server is downloading “desired” chunks, it is down-
loading chunks with hashes within its hash span ranges. If it is 
deleting an “unnecessary” chunk, it is removing a chunk that 
does not belong to its hash span – but only if there are already 
enough copies on the network.

Figure 3 illustrates the storage of data sets and files as data and 
metadata chunks as well as the upload and download process.

The upload tool processes each file in a data set separately. 
The tool must first identify the data chunks, and generate a meta-
data chunk so that the data chunks can be reassembled back into 
the original file upon download. Each chunk is then uploaded to 
three servers in the network. Preferably, the chunks will be put on 
three servers with hash spans that contain the chunk, but if this is 
not possible, then other servers will be heuristically selected for 

Fig. 3. When uploading (left ), every chunk is stored on a minimum of three servers. When downloading (right ), a client 
will download each chunk from the most appropriate server on the network and use all of the chunks to reassemble the 
file. The file exists only as chunks on the Tranche network.
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time efficiency. To complete the upload process, the tool generates 
a ProjectFile, which describes the contents of the data set.

Earlier, we mentioned that each server has a list of trusted 
users. Tranche uses public-key cryptography (using X.509 public 
key infrastructure) so that every chunk that is uploaded to a server 
is authenticated. If a user is not recognized, meaning their certifi-
cate is not signed by one of the appropriate Tranche certificates 
nor has insufficient permissions, the request to store the chunk 
will be denied. The business of certificates is handled by the client 
tool; when the user logs in, a certificate is downloaded from our 
Web server. Note that while authentication is required for uploads, 
it is not required for downloads.

The download tool essentially works in reverse. It starts with 
the hash for a data set, which is used to retrieve the ProjectFile’s 
metadata chunk. From this, the ProjectFile can be downloaded 
and reassembled, which will provide a list of all the metadata 
chunks and the relative path for each file. Each metadata chunk, 
in turn, provides enough information to download and reassem-
ble the individual files. When downloading any given chunk, the 
tool will simultaneously query the entire network with requests to 
determine which servers have the chunk. The first positive 
response will be used to retrieve the chunk, and all other requests 
will be canceled. While quite verbose, this has been experimen-
tally determined to be the fastest method given our current aver-
age network load. Even considering that the client tools are highly 
parallelized, meaning at any given moment there are many 
requests for each client, these requests are quite small – and as 
described previously, searching for chunks on a server is quite fast. 
However, we discuss a better solution when we discuss the future 
developments planned for Tranche.

Tranche offers several features that are useful for researchers:

●● Prepublication encryption: data sets can be optionally AES 
encrypted, and require a passphrase to download and decrypt. 
Upon publication, a user may “release” a data set, which 
means it will become publicly available for download without 
a passphrase.

●● Data pedigree: data sets are signed so that the individual who 
uploaded will always be known.

●● Data integrity: since a hash can always be recalculated, data 
integrity can be verified at any time.

●● Immutability and versioning: since Tranche uses hashes to 
determine data integrity, a data set may not be changed 
(immutable). However, new versions of the data set can be 
uploaded and linked with the previous data set version.

Three main interfaces are available for Tranche: the graphical 
interface, command-line tools, and the Java API. Investigators 
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interested in downloading data sets can use these immediately; 
however, if you wish to upload data, you must register (https://
proteomecommons.org/signup.jsp). (Applications might take 
several days to process.)

The GUI is of most interest to casual users. The GUI is 
launched using Java Web Start, which means that anyone with Java 
5 (or greater) can use the tool simply by clicking on a link (https://
proteomecommons.org/tranche/). No installation is required.

Once the user interface is loaded, it will begin loading infor-
mation about available servers and data sets from the network. 
The full process may require several minutes for completion; you 
do not need to wait for the process to complete, but the process 
will consume a significant amount of your processor’s time.

Figure 4 highlights four areas of the user interface. More 
detailed guides are available online (https://trancheproject.org/
users/). However, this figure covers the majority of tasks users 
perform:

 1. Log in: Use your ProteomeCommons.org username and pass-
phrase. Once logged in, the tool will handle all authentications 
for you, including your public/private key management.

 2. Upload project: A wizard will launch to walk you through the 
process of uploading a data set. You will be asked if you would 
like to encrypt the project, which legal license or waiver you 
would like to use (with the option to provide your own cus-
tom license), as well as several more advanced (and less fre-
quently used) options.

Fig. 4. To launch the ProteomeCommons.org Tranche graphical interface, visit https://tranche.proteomecommons.org and 
click “Launch Tranche” (1). After around 1 min, when the tool is loaded, click “Log In” (2) to enter your username and 
passphrase, upon which you can upload (4). You can download anything without an account or logging in. If you have the 
hash, click “Download by Hash” (3); if you do not have a hash, you can browse and download the available data sets (5).

https://proteomecommons.org/signup.jsp
https://proteomecommons.org/signup.jsp
https://proteomecommons.org/tranche/
https://proteomecommons.org/tranche/
https://trancheproject.org/users/
https://trancheproject.org/users/
https://tranche.proteomecommons.org
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 3. Download by hash: Downloads may be accomplished in 
several ways, but if you have a hash for a data set, then 
you can quickly download the project. This will launch a 
wizard to walk you through the download process, simi-
lar to the upload tool.

 4. Projects: If you do not have a hash or do not know which data 
sets you want, you can browse the list of data sets. By select-
ing the project you want from the list, you can download the 
data set, view its contents, as well as access more advanced 
options.

(Note that ProteomeCommons.org also offers stand-alone 
versions of both the upload and download tools, as well as more 
advanced search and browse tools. The upload tool is offered on 
the member page when a user logs in to ProteomeCommons.org, 
and the download tool is launched when a user attempts to down-
load a data set from the Web site.)

The command-line tools are useful in several circumstances, e.g., 
when working remotely over SSH or in a “headless” environment 
(no windowing environment), or when there is a good deal of work 
to perform and you wish to automate some of the tasks. The upload 
(https://www.proteomecommons.org/tranche/fi les/
CommandLineAddFileTool.zip) and download (https://www. 
proteomecommons.org/tranche/files/CommandLineGetFileTool.zip) 
tools are easy to use, but are heavily parameterized so that users will 
likely want to start by simply noting the required parameters. The first 
thing you will want to do is view the usage. For the upload tool:

 java -jar -Xmx512m Tranche-Uploader.jar 
–help

Similarly, for the download tool:
 java -jar -Xmx512m Tranche-Downloader.jar 
–help

Note that the command sets 512 MB available for heap space. 
You may allocate more memory if it is available, though this 
should be sufficient. Both the upload and download tools provide 
some advanced parameters which could potentially increase the 
speed (such as increasing the number of threads available for cer-
tain tasks, which increases the amount of work that is done in 
parallel). If these parameters are changed, it may be necessary to 
increase available memory. In general, advanced parameters 
should only be used when instructed by a Tranche developer to 
troubleshoot an issue.

Lastly, the API allows the integration of Tranche into soft-
ware or scripts, so long as Java is used or the appropriate language 
bindings have been established. Though the API is quite exten-
sive, performing an upload or a download is simple. Figure 5 
contains code for the simplest use cases.

https://www.proteomecommons.org/tranche/files/CommandLineAddFileTool.zip
https://www.proteomecommons.org/tranche/files/CommandLineAddFileTool.zip
https://www.proteomecommons.org/tranche/files/CommandLineGetFileTool.zip
https://www.proteomecommons.org/tranche/files/CommandLineGetFileTool.zip
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To perform uploads using the API, there must be an account 
registered with ProteomeCommons.org. All data will be signed by 
the associated user, so some care should be taken to select the appro-
priate user name, particularly if it represents a group or organization.

Tranche is used by ProteomeCommons.org to host data sets; 
in fact, it might be useful to think of ProteomeCommons.org as 

Fig. 5. Demonstration of the Tranche Java API. In both these examples, we load the ProteomeCommons.org Tranche 
network and ensure that the servers are identified and available before proceeding. The download method (top) will 
download a data set to a particular directory. The upload method (bottom) will upload a data set and return the hash. Both 
demonstrate how optional encryption works; if an encrypted data set is downloaded but no passphrase is set, the down-
load will fail. Note that the API is subject to change in future versions of Tranche.
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a layer of functionality that is built on top of Tranche. Many 
operations, such as deleting a data set and publishing a passphrase 
(which will allow an encrypted data set to be automatically 
decrypted for all users), can only be performed from 
ProteomeCommons.org, since Tranche users will not have suffi-
cient permissions to do this from other client tools. 
ProteomeCommons.org also provides additional functionality 
that goes far beyond what Tranche alone can offer, including 
project management and annotations, as we discuss shortly.

ProteomeCommons.org is an online community, offering 
public access to user-contributed news, publications, and soft-
ware. Data sets are automatically added following an upload to 
the ProteomeCommons.org Tranche network. Figure 6 features 
a screenshot of the ProteomeCommons.org home page.

Registered users can form groups and projects. Project man-
agement through ProteomeCommons.org allows members to 
share news, publications, tools, messages, and data sets with pri-
vacy restrictions. Any project or group can be public or private, 
and private groups can be hidden from anyone who is not a 
member. Individual members of groups have finely-defined per-
missions so that groups can establish rules for the management of 
all its resources. Subgroups and projects can be added to groups, 
offering additional control.

Fig. 6. The ProteomeCommons.org home page.
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A particularly useful feature of groups is the management of 
annotation duties. Annotations are information that are associ-
ated with a data set describing how that data set was produced, 
processed, and interpreted. The user selects an annotation 
standard, which is a set of categories containing requested fields. 
Generally, an annotation standard is defined by a standards body, 
like the previously mentioned MIAPE standard. Every available 
standard is versioned in the event of new releases. After selecting 
a standard, a user can edit the annotation set from the 
Proteomecommons.org annotation editor, as shown in Fig. 7. 
Progress summaries are shown for individual categories as well as 
for the entire annotation set.

Administrators of groups and projects can assign duties to 
members based on individual annotation categories allowing 
domain experts on the projects to be assigned responsibility for 
each category. This feature is optional and intended to promote 
annotation accuracy and completeness. Although domain experts 
may be assigned responsibility for each annotation category, any 
member with sufficient privileges can edit an annotation category 
field regardless of whether it is assigned to anyone or who it is 
assigned to. When a group member is annotating a particular 

Fig. 7.  The annotation editor. When a user uploads a data set, then she can annotate it after logging in to ProteomeCommons.
org. If a data set is added to a group or project, a data set can be annotated by any group member with sufficient 
privileges.
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annotation category, that category is locked to prevent concurrent 
modifications.

A data set is more findable in ProteomeCommons.org if it is 
accurately and completely annotated. Complete annotation infor-
mation ranging from the nature of the biological sample to the 
mass spectrometer instrumentation that appears on the data page 
is generated by ProteomeCommons.org. This means the data set 
can be found more easily from an external search engine, such as 
Yahoo or Google, which index data set pages. Furthermore, any-
one can search for data sets matching criteria, and only data sets 
with the appropriate annotations will be listed. Other nonbrowser 
interfaces can offer sophisticated semantic searches, which per-
mits more useful bioinformatics applications. For example, the 
annotations manager was recently granted caBIG silver-level 
compliance (https://cabig.nci.nih.gov/), and users of caBIG will 
soon be able to search the annotations for data sets matching 
their criteria. There is also value in recording as much informa-
tion about a data set as possible to provide the experimental con-
text necessary for researchers to reinterpret the data sets and to 
complement the limited annotation often provided in publica-
tions describing the data sets. An archived data set missing basic 
information, such as sample preparation or analysis conditions, 
will have limited use.

To fully appreciate the value of annotations, it might be use-
ful to contrast a semantic search versus a traditional keyword 
search. First, it is much easier to explore data sets when they are 
semantically defined. Though language is ambiguous, the use of 
ontologies not only offers controlled vocabularies, but also allows 
the definition of relations between data. For example, if an inves-
tigator wished to find all Tandem MS data sets involving yeast, a 
keyword search would only produce those that matched the 
descriptive text. The individual who performed the search could 
not be confident that everything was matched, and might per-
form additional searches to determine the relevant data sets. With 
ontologies, not only are the results unambiguous, but they can 
also be further divided by species of yeast or mass spectrometer 
manufacturer. Second, semantic searches offer the possibility of 
new functionality that is not possible with keyword searches. For 
example, assume that a data set has exactly 51,276 files. Human 
memory is rarely that specific, though it might remember that the 
data set had around 50,000 files. Semantically, it would make 
sense to search for data sets between 50,000 and 60,000 files. 
Combined with other information, such as the approximate date 
that the data set was produced, data sets become much more 
findable. At the present, ProteomeCommons.org search provides 
limited semantic search capabilities, particularly regarding data 
set size and dates of uploads; further functionality will depend on 
community standards and the availability of completed annotations, 

https://cabig.nci.nih.gov/
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but will continue to include keyword searches. caBIG searches of 
the ProteomeCommons.org annotations, however, will be entirely 
semantic.

The Tranche and ProteomeCommons.org development team 
is working with the broader proteomics community to adopt 
ontologies and controlled vocabularies. This is a long and difficult 
process, but is important for the development of reliable annota-
tions, particularly considering the findability of data.

There are many more advanced features available with Tranche 
and ProteomeCommons.org, and these are documented on the 
Tranche Project Web site (www.trancheproject.org) and on 
ProteomeCommons.org.

The first version of ProteomeCommons.org was developed and 
released in 2004 as a Web resource and service. Tranche was 
developed the following year and released in 2006 to address the 
specific needs of the proteomics community for storage and dis-
semination of data sets. Since 2006, the development of both 
Tranche and ProteomeCommons.org has been based on the 
feedback from individual users, journals, and funding agencies as 
well as the anticipated needs of the community.

With over 2 years of operational experience and hundreds of 
users, several major changes have been made to Tranche to 
increase system reliability and robustness. We modified the func-
tionality of Tranche to accommodate unforeseen events, includ-
ing a broad range of hardware failures. Much of our error 
detection, such as detecting and repairing corrupted data files and 
chunks helped mitigate these problems. Problems that arose dur-
ing production took longer to solve than it took to initially 
develop and release Tranche and involved extensive testing and 
development. System maintenance is necessarily a major effort 
for dissemination and archiving of data sets in a production 
environment.

We began redesigning ProteomeCommons.org in 2008, and 
the new version was released in February of 2009. Many features 
remain to be added in response to user input. As indicated in the 
methods section, the annotation standards, ontologies, and con-
trolled vocabularies are still being defined, though two releases of 
the MIAPE Mass Spectrometry standard are already available.

We are currently working on the second version of the 
Tranche Distributed Repository, which will address many chal-
lenges related to scalability, performance, and security. One of the 
most significant developments will be the network model, espe-
cially the two specialized roles of Tranche servers: routers and 

3. Notes

http://www.trancheproject.org
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data servers. As shown in Fig. 8, a router will interface with any 
data servers to which it is connected, meaning the user will need 
to be connected to fewer servers. (A client may also make an 
unmediated connection to any data server, as is also shown in the 
diagram.) Furthermore, when uploading data, chunks are repli-
cated by the servers, shifting responsibility from the client, fur-
ther minimizing the number of required connections and 
improving the performance by simplifying the protocol. This will 
require less user bandwidth, which will improve the overall 
performance.

In this new model, servers will have write permissions to 
other servers. This trust offers a particularly beneficial feature: if a 
server does not have a chunk that a client is requesting, that server 
can download the chunk from another trusted server, and then 
store the chunk and return it to the user. Not only will this result 
in a higher hit rate for servers having a requested chunk, thus 
improving the overall performance of the network, but it will also 
help keep the network more fully replicated. This will be particu-
larly valuable for the long-term availability of data sets.

Servers will store a change log of all activities that impacted 
their stored data. In the event that a server is temporarily offline, 
other servers will continue to record changes to the network. 
When the offline server starts up again and before it makes its 
data available to the network, it will request all logged activities 
from other trusted servers on the network. Note that chunks will 

Fig. 8. Diagram of upcoming changes to Tranche network. Data servers can be con-
nected to a routing server or can have an unmediated connection to clients. When a 
client performs an upload, each chunk will be uploaded to a single server and replicated 
across the network to the appropriate servers. When downloading, a server will locate 
the chunk for the user and, if appropriate, add it to its data store for future users.
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always be accepted from trusted servers; however, if other servers 
log deletions, the credentials of the users who requested the 
deletes will be provided so that the querying server can ascertain 
whether it should also delete based on its own managed list of 
trusted certificates. Not only does this help with the overall repli-
cation of data on the network, but this also prevents deleted data 
from being salvaged by offline servers. Following these and other 
planned features, the Tranche network will be able to scale into 
the foreseeable future to accommodate all reasonable growth of 
users and data sets.

Several future developments are planned for Proteome 
Commons.org. Since a good deal of this chapter was devoted to the 
ability of users to find data sets, we plan to add a simple HTTP 
“RESTful” interface for accessing resources on ProteomeCommons.
org, which would permit users to develop more their own data min-
ing applications using our resources. Also, we are aware of the effort 
that annotations require, and wish to lower the barrier to annota-
tion as much as possible. We plan to add functionality to automati-
cally read in as much information from data sets as possible and add 
the metadata parsed from the data files to the associated data sets. 
Additionally, we plan to provide export functionality to formats, 
such as mzML and mzIdentML, so that stored annotations can be 
exported in a useful way from ProteomeCommons.org. Using these 
new tools that read and write tandem mass spectrometry data, we 
provide more semantically useful information and statistics within 
ProteomeCommons.org and Tranche, as well as provide some lim-
ited file conversions. To increase the usefulness of data sets for the 
community, we continue to work with publishers to automatically 
link publications with corresponding data sets in Tranche.

The ProteomeCommons.org Tranche network with PRIDE, 
PeptideAtlas, and Peptidome are founders of the ProteomExchange 
consortium. ProteomExchange allows free exchange of metadata 
between data resources, provides a universal accession number, 
and links to the raw data sets deposited in Tranche. Thus, investi-
gators have to submit data for a study only once, and it is available 
in all participating repositories and databases (31). This collabo-
ration is particularly beneficial for users since individual reposito-
ries may accommodate different types of data, based on their 
intended purpose. The ProteomExchange allows other resources 
to use Tranche to support their work, and in exchange, Tranche 
gains highly structured interfaces to its data.

Tranche and ProteomeCommon.org provide support for and 
maintain collaborations with a number of research entities, includ-
ing Clinical Proteomic Technology Assessment for Cancer 
(CPTAC), the National Cancer Institute (NCI) Mouse Proteomics 
Technologies Initiative (MPTI), as well as with the PRIDE and 
PeptideAtlas repositories. We also have collaborated with Science 
Commons during the development and adoption of CC0, and 
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have a current collaboration with the Personal Genome Project 
(PGP). The Tranche Project is responsive to the needs of the 
community and new collaborations are welcome.
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Chapter 9

Data Standardization by the HUPO-PSI:  
How has the Community Benefitted?

Sandra Orchard and Henning Hermjakob 

Abstract

The groundwork allowing the systematic capture of proteomics data has now largely been completed, 
with the design and publication of exchange formats and interchange standards by the Human Proteome 
Organisation Proteomics Standards Initiative (HUPO-PSI). Our focus can now shift to gathering the 
ever-increasing amounts of generated data, and finding novel ways to catalog and present it so that a 
deeper understanding of basic science, health, and disease can be gained by scientists mining these 
increasingly rich resources.

The Human Proteome Organisation Proteomics Standards 
Initiative (HUPO-PSI) has worked since 2002 to develop data 
standards that enable the collection, storage, and dissemination 
of proteomics data. Prior to the implementation of such stan-
dards, a typical proteomic workflow generated results in a variety 
of alternative formats, which were dependent on the make and 
model of instrumentation involved. Comparison at the raw data 
level, for example of the generated spectra, was impossible if dif-
ferent instrumentation or software had been used, even within 
the same laboratory examining identical samples. This proved 
increasingly problematic, as the generation of increasingly large 
datasets by collaborating laboratories, for example, those involved 
in the various HUPO tissue initiatives (1, 2), required the ability 
to collect, collate, and compare data from participating groups 
with no restriction on the instrumentation used. The main impe-
tus driving these collaborative projects was a desire to leave a 
legacy of data for subsequent groups, for example, comparative 
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datasets from healthy tissue, against which samples from diseased 
patients, closely related species, or other healthy humans could be 
compared. In order to do this, an appropriate data repository, 
PRIDE (PRoteomics IDEntifications database, (http://www.ebi.
ac.uk/pride (3))), was developed, which required the data from 
many laboratories to be submitted in a common format.

In parallel to the work of the mass spectrometry proteomics 
groups, the major interaction databases also realized that com-
mon data standards were required if they were to meet the needs 
of their user community. Interactome and network biologists 
increasingly wished to download and combine the information 
stored in multiple data resources, all of which operated using their 
own database layouts and formats. Again, the need for a common 
format to enable this was identified, requiring the input and coop-
eration of many groups to realize this need.

From the work undertaken to fulfill these comparatively lim-
ited use cases, a set of data standards have been developed which 
has revolutionized the manner in which the proteomic community 
can tailor their data collection, compare test data against that held 
in a number of data resources. Increasingly, the designers and writ-
ers of software and analytical tools required to visualize and analyze 
data that are utilizing the HUPO-PSI data formats, resulting in an 
ever-growing number of products that can be used to analyze the 
contents of an increasing number of database resources.

The following sections describe how a community standard is 
built, and more specifically the design and content of a number of 
standards which relate to proteomics data. Finally, the relation-
ship between the use of these standards and the data publication 
process is discussed.

A standards document, as defined by the HUPO-PSI, actually 
consists of four separate, but interrelated aspects.

 1. A user requirements document – a clearly identified and 
broadly represented user-community is consulted to decide 
the needs and wishes of the workers in that field.

 2. A Minimum Information About a Proteomics Experiment 
(MIAPE ) document – a checklist of required elements which 
should be included in every publication to assist the reader in 
understanding the data presented within it. These have been 
prepared for each domain within the field of proteomics, 
firstly by invited experts, followed by an open community 
review process.

2. What 
Constitutes  
a Community 
Standard?
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 3. An XML interchange format to allow the transfer of data 
from one resource to another. This must be capable of hold-
ing all the information required by the MIAPE document in 
appropriate fields.

 4. A controlled vocabulary (CV) to enable the standardized 
annotation of the information exchanged by the XML format 
(Fig. 1).

All of the above have to be made publicly available for widespread 
feedback from all potential interest parties – data producers, 
instrument manufacturers, software and tool developers, and data 
users – during their development process, to be judged a true 
community standard. The initial MIAPE parent document (4) 
was made available for several rounds of input and comment. This 
included the exposure on both the HUPO-PSI (www.psidev.info) 
and Nature Biotechnology Web sites, before final journal publica-
tion, and all domain specific documents also go through a similar 
process (5). Additionally, all MIAPE documents are registered 
with the MIBBI portal (6) and all CVs with the OBO Foundry (7). 
This ensures that these documents are not only aligned with the 

Fig. 1. Controlled vocabularies have been developed to annotate the various aspects of 
a proteomics experiment.

http://www.psidev.info
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needs of the proteomics community, but also available to a much 
broader group of biologists who may subsequently find these 
appropriate for their workflows and data predication pipelines.

In 2004, the mzData interchange format was published. This 
allowed the storage of proteomic-related mass spectral data, rang-
ing from basic details about the sample, instrument details, and 
data processing steps, through to the actual spectral lists of mass-
to-charge values and intensities, used base64 encoding to repre-
sent the floating point mass-to-charge (m/z) and ion intensity. 
The format was implemented by a number of manufacturers and 
open source applications were made available, such as an Eclipse-
based mzData editor with validation provided by the Leibniz 
Institute of Plant Biochemistry, Bioinformatics and Mass Spec 
Research Group. Additionally, the PRIDE data repository became 
the first PSI-standards compliant relational database to be imple-
mented (3). However, also in 2004, a second open, generic XML 
representation of mass spectrometry data was published by the 
Institute of Systems Biology, mzXML (8). While this was origi-
nally designed to be work-flow specific, other workers began to 
find wider uses for the schema with the result that manufacturers 
were faced with the prospect of having to implement two separate 
open-source formats.

In 2006, the two groups decided to merge the two formats 
into a single, and much improved, XML schema by merging the 
best aspects of both mzData and mzXML, and addressing the 
unmet needs of both, which had been identified by their respec-
tive user groups. By 2008, this work had matured into the cur-
rent mzML (9) format, a final stable format (1.1.0) of which was 
released in 2009. Software incorporating the revised format has 
been released or is soon to be released by Applied Biosystems, 
GeneBio, Insilicos, Matrix Science, and Thermo Electron 
Corporation with other manufacturers in various stages of devel-
opment. A wide range of open source software has also been 
adapted or implemented utilizing mzML (for full list see www.
psidev.info). A number of converters have also been made avail-
able to produce data in this format, such as ReAdW for XCalibur 
(Thermo) .raw files, wolf for MassLynx (Waters) .raw directories, 
mzWiff for Analyst (ABI, Agilent) .wiff files, and Trapper for 
MassHunter (Agilent) .d directories (www.psidev.info). Semantic 
validators are also available to check completed files (9, 29). 
Repositories such as PRIDE and the ISB Peptide Atlas, a publicly 
accessible compendium of peptides identified in a large set of 
tandem mass spectrometry proteomics experiments, are committed 

3. Mass 
Spectrometry  
and Data 
Standardization
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to upgrading their schema to mzML and converting existing data 
to this format.

Once standards are in place, the availability of user-friendly 
software to enable their adoption and use can make the difference 
between community acceptance and rejection. A European 
Commission-funded project, ProDaC (www.fp6-ProDaC.eu), 
lead to the development of a raft of such tools for mzData, initially 
aimed at easing the flow of data into the standards-compliant 
repository, PRIDE (3). For example, PRIDE Wizard converts 
MASCOT files and associated spectra into PRIDE XML (www.
mcisb.org/resources/PrideWizard/), allowing direct submission 
to the repository, while PRIDE Converter creates PRIDE XML 
files from a range of formats (Fig. 2) (10). These tools will be 
updated when appropriate, to reflect the adoption of mzML by 
PRIDE and similar repositories.

Databases utilizing the same interchange format can readily 
exchange data between themselves, and a collaborative network 
of mass spectrometry repositories is currently being planned. 
Meta-data describing each experiment submitted to any one par-
ticipating database will be accessible for all participants; however, 
due to the file size, raw data will remain at the original host and 
accessed from there. The integration of protein identification data 

Fig. 2. PRIDE converter.
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will enable more comprehensive answers to questions posed by 
users to be assembled.

The PSI-MS group has now begun developing a draft specifi-
cation for a standardized format for the exchange and transmis-
sion of transition lists (TraML) for selected reaction monitoring 
(SRM) experiments. A reference implementation is planned for 
2009/2010.

The MIAPE-MS document was published in 2007 and is 
now been achieving community acceptance. To ease the prepara-
tion of MIAPE-compliant report generation, the ProteoRed 
group (www.proteored.org) have implemented a tool to assist in 
their production. The MIAPE generator tools can also serve as a 
MIAPE repository and allow immediate comparison of MIAPE 
documents that have been made publicly available to the 
community.

The HUPO-PSI Proteomics Informatics group exist to provide a 
set of minimum reporting requirements that augment the MIAPE 
reporting guidelines with respect to the analysis of data derived 
from proteomics experiments and to provide vendor-neutral, 
standard formats for representing the results of analyzing and 
processing experimental data. MIAPE-Mass Spectrometry 
Informatics (MIAPE-MSI) was published in 2008 (11) and the 
interchange format for protein identification data, mzIdentML, 
in 2009 (www.psidev.info/index.php?q=node/319). The associ-
ated resources now include semantic validation tools, a specifica-
tion document, tables of conformance to both the MIAPE and 
MCP guidelines and a number of example instance documents. 
Most of the major search engines have already implemented sup-
port for mzIdentML or are expected to do by mid-2010 and a 
number of repositories, such as PRIDE, have also committed to 
supporting this format.

Initially, it was intended that the format would also be capa-
ble of transferring both relative and absolute quantitation data at 
both the protein and peptide level, but this proved a complex task 
and delayed the release of the format. It has now been decided 
that this will be separately catered for with its own schema, 
mzQuantML, with a structure broadly similar to mzIdentML. An 
alpha version will be produced in 2010 with examples for two 
quantitation techniques: experts in particular techniques/
software packages will then be invited to extend the format.

This group has also worked on the development of PEFF, a 
common sequence database format designed to overcome prob-
lems with the interpretation of current fasta formats by search 

4. Proteomics 
Informatics
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engines, with protein identifiers, descriptions, taxonomy, and 
other annotations, such as PTMs and sequence variants as well as 
database descriptors and version numbers contained in the file. It 
has been decided to stay with the relatively straightforward fasta-
like format, with a possible move to an XML format later if this 
becomes a necessity. The format will break current parsers, this is 
due to constraints which enable it to remain compatible with other 
PSI formats. Controlled vocabulary terms have been developed 
and will be added to the PSI-MS CV. Several protein sequence data-
bases, such as UniProtKB (12) and the International Protein Index 
(13) have committed to supporting this format. Converters for 
those sequence databases not willing to accept the new format will 
be made available and maintained on ProteomeCommons.org.

The MIAPE Gel Electrophoresis (MIAPE-GE) guidelines 
specifying the minimum information that should be provided 
when reporting the use of n-dimensional gel electrophoresis in a 
proteomics experiment were published in 2008 (14), and 
MIAPEGelDB has been developed as a public repository and a 
Web-based data entry tool for documents (15). This guides 
authors through the publication of the minimal set of informa-
tion for their proteomics experiments using a simple interface. 
Similarly, MIAPE-GE documents may be stored in the ProteoRed 
database with links to corresponding mass spectrometry protein 
identifications in PRIDE. An interchange format has also been 
developed, GelML, for describing the results of gel electrophore-
sis experiments.

Draft MIAPE documentation also exists for separation by 
column chromatography and capillary electrophoresis, with a 
consensus interchange format to facilitate the development of 
effective search and analysis tools.

The molecular interaction HUPO-PSI workgroup provides an 
example of the enormous community benefits that can accrue 
from the development of common standards and formats. Prior 
to 2004, there were several protein interaction databases in exis-
tence but all used their own database model and data formats, 
preventing merging or the different datasets held in each. The 
first PSI-MI XML interchange format (version 1.0) was released 

5. Protein 
Separations

6. Molecular 
Interactions
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in 2004, enabling the description of protein–protein interaction 
data with a limited amount of accompanying annotation (16). 
The format was immediately adopted by all the major database 
resources with the immediate benefit to the user that separate 
resources could be searched and the results readily combined. It 
soon became apparent, however, that the initial format was too 
restricted and was rapidly expanded to allow interactions between 
all molecule types to be described with full and detailed annota-
tion. Version XML2.5 was released in 2007 and has remained 
stable for several years (17). A controlled vocabulary (MI) which 
describes all aspects of a molecular interaction experiment 
(MIMIx) has been developed and is in active community usage.

To accommodate those users who wished to download inter-
action data in a simpler format, a common tab-lineated file scheme 
was agreed between the participating databases (MITAB2.5). This 
allows a restricted amount of information to be exchanged and 
loaded into applications, such as a spreadsheet. Again, usage has 
proved this format to be both popular and too restrictive so an 
enhanced version (MITAB2.6) was agreed at a recent workshop.

This global adoption of a standard has proved to be of enor-
mous benefit to the interaction community. With a stable, com-
mon format to work with, tool development has been both rapid 
and largely open-source. Visualization software, such as Cytoscape 
(18), now uses the PSI-MI format to import network informa-
tion into the viewer, and it is currently possible to query selected 
resources, such as the IntAct molecular interaction, from within 
Cytoscape to further extend an existing network. The recent 
development of the PSICQUIC – PSI Common QUery InterfaCe, 
a SOAP or REST-based Web service (http://groups.google.com/
group/psicquic), will allow the accessing of all participating data-
bases from a resource, such as Cytoscape with a single query. 
RpsiXML, a Bioconductor package, allows the conversion of PSI-MI 
XML2.5 files into R graph objects; the user can then use R methods 
to determine cohesive subgraphs, compute summary statistics, fit 
mathematical models to the data or render graphical layouts (19).

The domain-specific MIAPE document detailing the mini-
mum information required to describe an MIMIx was published 
in 2007 (20) and was prepared by a mixed community of data 
produces, data providers, and data users. During this process, the 
discussions lead to the formation of the international molecular 
exchange (IMEx) consortium, dedicated to the eventual sharing 
of all curated molecular interaction data such that the users need 
only to visit a single repository to access all available information 
(http://www.imexconsortium.org, (21)). As part of this process, 
common curation standards have been developed by the partici-
pating databases (IntAct (22), DIP (23), MINT (24), MatrixDB 
(25), MPIDB (26), MPact (27)), and an interchange mechanism 
is now in place, funded by a recent EC grant.

http://groups.google.com/group/psicquic
http://groups.google.com/group/psicquic
http://imex.sf.net
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The most effective way of collecting data, is by direct submission 
by authors as an integral part of the publication process. To this 
end, a series of meetings (28) and consultations have been held 
with domain specific editors during both the preparation and 
implementation phases of standard development. The long-term 
goal is that appropriate journals will adopt these guidelines as a 
part of their instructions to authors, although journals may choose 
to supplement these with their own guidelines, particularly with 
regard to data quality. These discussions are active, and ongoing, 
and the journal editors have made valuable contributions to the 
final content of these documents and formats (28).

The initial work of writing and finalizing a range of standards, 
exchange formats and CVs for the collation, annotation, and 
exchange of proteomics data is largely complete, although work 
will remain ongoing to respond to new technologies and tech-
niques. The initial benefits are already being realized, with the 
establishment of repositories to hold this information and an 
increasing range of analytical tools to evaluate the sets of results. 
Increasing interoperability has lead to the success of collabora-
tion, such as the HUPO tissues initiative, and has encouraged the 
development of many new tools – now written to query multiple 
resources rather than specifically designed to serve a single data 
source. The driving need now is to ensure that these standards are 
adopted by data producers and used to directly submit datasets to 
the data repositories, to ensure that valuable, and expensive to 
produce, information is not lost in supplementary materials and 
user-maintained Excel sheets. The development of improved sub-
mission tools to ease the data flow is seen as an essential part of 
the process, and is actively being addressed, as is the participation 
of the journals in this process, but it is ultimately the bench scien-
tist who needs to commit to this process and add to the publicly 
available pool of data.

 1. All controlled vocabularies registered at the Open Biological 
and Biomedical foundry (www.obofoundry.org/), including all 
of those produced by the HUPO-PSI, can be viewed using the 
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Ontology-Lookup Service (www.ebi.ac.uk/ontology-lookup/) 
which supplies a centralized query interface for ontology and 
controlled vocabulary lookup. The service also provides a 
Web service interface to query multiple ontologies from a 
single location with a unified output format.

 2. All of the public domain databases described above actively 
encourage direct deposition of data, and this is now being 
encouraged or mandated by the domain journals. Data pro-
ducers are encouraged to contact the databases early in the 
submission process as they employ dedicated curators who 
can assist in the data preparation and deposition process.

 3. All work described in this article has been undertaken by 
members of the community contributing on a voluntary basis. 
If any reader should wish to contribute to these efforts, or 
simply stay abreast of developments, should visit http://
psidev.sf.net/ to review our activities, join the discussion 
groups listed, and contribute to the further development of 
community standards for proteomics data.
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Chapter 10

mzIdentML: An Open Community-Built Standard Format  
for the Results of Proteomics Spectrum Identification 
Algorithms

Martin Eisenacher 

Abstract

To deal with the data flood of current mass spectrometry methods, standard data formats are needed. 
The Proteomics Standards Initiative (PSI) of the Human Proteome Organisation (HUPO) develops 
open storage and transfer standards for and with the community. The Proteomics Informatics work 
group of the PSI has recently released an XML-based format to store the parameters and results of spec-
trum identification algorithms (the so-called search engines), which identify peptides and/or proteins 
from mass spectra. Here, this format called “mzIdentML” is described by giving principle design concepts 
and presenting examples of important use cases.

Proteomics research naturally creates large data sets of mass spectra. 
In the last years, the amount of data produced for one experiment 
increased dramatically. The need to establish an efficient data 
management is obvious. In parallel, it became apparent that data 
sets of one experiment alone may not lead to an overall under-
standing of the complex processes in a cell or during emergence 
of a disease. Therefore, the Proteomics community came to the 
conclusion – and step by step to the agreement – that data sets 
and results should be stored in central public repositories like 
those of the ProteomeExchange consortium (http://www.
proteomexchange.org/index.php). Large consortia such as the 
ProDaC project (1) supported these efforts (http://www. 
fp6-prodac.eu). Efficient data management and storage in public 
databases have been complicated – if not prohibited – by hetero-
geneous data formats and different storage concepts of mass 
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spectrometer and analysis software vendors. Meanwhile the 
insight that the possibility to export a standardized format for 
long-time data storage is indispensible has been accepted. Such a 
format should not only allow storage of data (here: results), but 
also storage of information on how these data or results were 
produced. Thus standard formats allow the examination of data 
by a reviewer or the one-to-one reproduction of analyses.

In the following, the process of standard creation of the 
Proteomics Standards Initiative (PSI) (2) (PSI, website: http://
www.psidev.info) of the Human Proteome Organisation (HUPO, 
http://www.hupo.org) is shortly sketched (see previous chapters 
for a more detailed explanation); and the standard format for 
storing Proteomics results (mzIdentML) is presented.

The PSI defines standards for data representation in Proteomics 
to support data comparison, data exchange, and result verifica-
tion. This definition normally covers both a document defining 
“minimal information” necessary for the unambiguous descrip-
tion of an experiment from a specific Proteomics domain (e.g., 
MIAPE principles (3), MIAPE-MS (4) for spectra, and MIAPE-PI 
(5) for results) and the definition of a (usually XML-based) 
storage format.

The PSI work group for Proteomics results is called “Proteomics 
Informatics (PI)” (see Note 1). It assembles standard formats for 
describing the results of identification and quantitation analyses, 
including workflows for proteins, peptides, and protein modifica-
tions based on mass spectrometry. It uses the “Psidev-pi-dev” 
mailing list (https://lists.sourceforge.net/lists/listinfo/psidev-
pi-dev) and the development-supporting Googlecode site http://
code.google.com/p/psi-pi/.

An XML-based format for peptide/protein identification 
analyses has been released recently (specification: http://www.
psidev.info/index.php?q=node/403). It was developed using 
various appellations, where “AnalysisXML” with file extension 
“.axml” was the penultimate one (see Note 2). It was displaced by 
“mzIdentML” with extension “.mzid,” as soon as it was decided 
to split the standard into one format for peptide and protein iden-
tification results and one for quantification results, the develop-
ment of which is in its infancy (current name: “mzQuantML”).

mzIdentML has been designed to support a set of principle tasks, 
for example, “discovery of relevant results,” “sharing of best prac-
tice,” “evaluation of results,” “sharing of data sets,” and “cre-
ation of a format for input to analysis software.”

2. mzIdentML: A 
Standard Format 
for Proteomics 
Results

2.1. Design Principles 
and Use Cases

http://www.psidev.info
http://www.psidev.info
http://www.hupo.org
https://lists.sourceforge.net/lists/listinfo/psidev-pi-dev
https://lists.sourceforge.net/lists/listinfo/psidev-pi-dev
http://code.google.com/p/psi-pi/.
http://code.google.com/p/psi-pi/.
http://www.psidev.info/index.php?q=node/403
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In the Proteomics field, there exist several rather different 
approaches to identify peptides/proteins from mass spectra. At 
some point in the discussion (see Note 3), it became obvious that 
the subset of use cases had to be defined and the standard format 
should at least be able to cover and – unfortunately – exclude 
other use cases.

Use cases considered (see Note 4) are defined in the speci-
fication document (http://code.google.com/p/psi-pi/source/
browse/#svn/trunk/specification_document) and include, for 
example, the following:

Examination of results from an MS, MS/MS, or MSn run ●●

with sufficient information for a “viewing” tool to create out-
put conforming to the requirements made by MIAPE guide-
lines or by journals for publishing manuscripts.
Documentation of enough information to re-run the analysis ●●

(software parameters, sequence database, and spectra).
Storage of the results of a decoy database search (together ●●

with results from the original sequences). Investigation of the 
effect of changing, for example, the threshold on the false-
discovery rate.
It should be possible to save the results from an analysis of ●●

a metabolic labeling experiment (e.g., for a 14N/15N 
experiment).
It should be possible to derive the spectrum in which a spe-●●

cific peptide or protein was identified (for example, in order 
to derive the retention time of a peptide in an LC–MS/MS 
run). When an mzML file was the input for the analysis, the 
unique “id” of the spectrum should be referenced in the mzI-
dentML file.

Other use cases are, for example, spectral library searches, top 
down searches, storage of fragmentation information, searches 
against nucleic acid databases, and combination of the results 
from multiple peptide searches into one set of protein results 
(see Note 5).

The previously defined design concepts directly follows that a 
storage model for the specific use cases needs to store (i) the 
identity and configuration (parameters) of the software used 
to perform the analysis; (ii) the protocol used to apply this 
software such as input data (e.g., spectra and search data-
bases) or date of search; and (iii) the output data such as result 
molecules (peptides with modifications, and amino acid 
sequences) with their scores. In the schema (see Fig. 1), these 
correspond to the elements (i) <AnalysisSoftwareList> 
together with <AnalysisProtocolCollection>; (ii) <Inputs>; 
and (iii) <AnalysisData> together with <SequenceCollection>. 

2.2. Ideas  
and Concepts of  
the mzIdentML 
Schema (Release 
1.0.0)

http://code.google.com/p/psi-pi/source/browse/#svn/trunk/specification_document
http://code.google.com/p/psi-pi/source/browse/#svn/trunk/specification_document
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The actual application of the analyses and their connection 
with parameters, inputs, and outputs are described in 
<AnalysisCollection>. In <cvList>, the controlled vocabularies 
(see next section) used in the mzIdentML file are characterized, 
and <Provider> together with <AuditCollection> describes per-
sons or institutions providing the mzIdentML file and the soft-
ware used. <AnalysisSampleCollection> allows a simple description 
of the sample used in the Proteomics experiment.

Nearly all elements below the above-mentioned “parent ele-
ments” have an “id” attribute. The schema contains rules to 
ensure the uniqueness of an “id” value within its respective sub-
tree. Additionally, it contains <keyref> elements for referencing 
attributes like “Peptide_ref” to ensure that the reference points to 
an element in the correct sub-tree.

One mzIdentML file is meant to store the final results of one 
analysis workflow, and not intermediate results, from which fur-
ther processing with other parameters might be possible. If, for 
example, a set of proteins is reported, only the peptides necessary 
to justify these proteins are to be reported. To fulfil one of the 
design principles, a small exception from this concept is the pos-
sibility to define a threshold for a peptide or protein result value 
and flag the peptides/proteins that pass this threshold. This 
allows, for example, a protein list with decoy entries, where the 
false-discovery rate threshold may be changed later.

A mzIdentML file is meant to store at most one set of proteins, 
more exactly the results of one protein detection analysis (possibly a 
combination of the results of several peptide identification runs). 

Fig. 1. The high-level elements of an mzIdentML file (grid view )
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It is possible to store more than one peptide result sets without 
having a protein detection analysis, but that should be avoided.

In the future, there is hope that all result-producing tools – 
especially all search engines – will be able to export mzIdentML 
files directly. Until this goal is reached, mzIdentML files are con-
verted from existing result files. Therefore, a <SourceFile> ele-
ment (child of <Inputs>) describes the file from which the 
mzIdentML file has been produced.

The <SpectraData> element describes the spectra data set 
used as input (using <cvParam> elements). Especially the file for-
mat, e.g., MS:1000774 : “multiple peak list nativeID format” 
(e.g., for MGF spectra files) or MS:1000775: “single peak list 
nativeID format” (e.g., for DTA files), and the type of identifier 
used to reference a certain spectrum within this spectra data set, 
e.g., “index = xsd:nonNegativeInteger” (e.g., for MGFs) or 
“file = xsd:IDREF” (e.g., for DTAs), are specified. Defining an 
identifier is necessary, because spectra are referenced from results 
of a peptide identification run.

A “controlled vocabulary” generally contains pre-defined terms to 
avoid spelling or case ambiguities (see Note 6). The PSI CVs (e.g., 
the PSI-MOD CV – http://psidev.cvs.sourceforge.net/psidev/
psi/mod/data/PSI-MOD.obo, or the PSI–MS CV – http://
psidev.cvs.sourceforge.net/*checkout*/psidev/psi/psi-ms/
mzML/controlledVocabulary/psi-ms.obo), are hierarchies of 
controlled terms (“ontologies”) (see Note 7) having, for example, 
“is_a” or “has_a” relationships to one or many “parent terms.” 
Each term has a unique accession number and can have a value 
(e.g., MS:1001191, “p-value,” value = 0.05) and a unit for this 
value (e.g., MS:1001117, “theoretical mass,” unit = dalton) (see 
Note 8). In the mzIdentML file, <cvParam> elements are used to 
describe further details of a modeled object. Thus, most of the 
search engine-specific result values are annotated using CV terms, 
e.g., <cvParam accession=“MS:1001171” name=“mascot:score” 
cvRef=“PSI-MS” value=“13.21”/>, as annotation of a peptide 
identification. In the CV hierarchy, this term “is_a” “search-engine 
specific score,” which itself “is_a” “spectrum identification result 
detail.” The position within the hierarchy can be used to check the 
correct use of the CV terms (see next section).

Other ontologies or controlled vocabularies may also be suit-
able or required for some elements of mzIdentML, for example, 
Unit Ontology (http://www.obofoundry.org/cgi-bin/detail.
cgi?id=unit), ChEBI (http://www.ebi.ac.uk/chebi/), OBI 
(Ontology of Biological Investigations – http://obi.sourceforge.
net/), PSI Protein modifications CV (http://psidev.sourceforge.
net/mod/data/PSI-MOD.obo), and Unimod modifications 
database (http://www.unimod.org/obo/unimod.obo).

2.3. The PSI–MS 
Controlled Vocabulary

http://psidev.cvs.sourceforge.net/psidev/psi/mod/data/PSI-MOD.obo
http://psidev.cvs.sourceforge.net/psidev/psi/mod/data/PSI-MOD.obo
http://psidev.cvs.sourceforge.net/*checkout*/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo
http://psidev.cvs.sourceforge.net/*checkout*/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo
http://psidev.cvs.sourceforge.net/*checkout*/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo
http://www.obofoundry.org/cgi-bin/detail.cgi?id=unit
http://www.obofoundry.org/cgi-bin/detail.cgi?id=unit
http://www.ebi.ac.uk/chebi/
http://obi.sourceforge.net/
http://obi.sourceforge.net/
http://psidev.sourceforge.net/mod/data/PSI-MOD.obo
http://psidev.sourceforge.net/mod/data/PSI-MOD.obo
http://www.unimod.org/obo/unimod.obo
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XML schema validation checks the syntax of an mzIdentML file. 
Whether or not CV terms are used at correct locations cannot be 
judged by a syntax check. This requires a semantic check: The 
correct use of CV terms within an mzIdentML file is controlled 
via a mapping file defining each XML location (XPath notation) 
where <cvParam> elements can be used, and the terms allowed 
for that location. The mapping file is interpreted by validation 
software, which then evaluates that the data annotation in the 
mzIdentML file is consistent. An example validation tool has 
been implemented as part of the OpenMS software suite: http://
www.psidev.info/validator.

Other semantic checks beyond CV validation are imaginable, 
e.g., whether “start/end” attributes of peptides are correct within 
the protein sequence.

An mzIdentML file can be syntactically correct without confor-
mance to MIAPE guidelines. Or it can conform to MIAPE with-
out fulfilling the journal guidelines (e.g., Molecular and Cellular 
Proteomics guidelines – http://www.mcponline.org/misc/
ParisReport_Final.dtl). Elements and attributes that must be 
filled correctly to let the mzIdentML file conform are listed at 
http://www.psidev.info/index.php?q=node/386 (mzIdentML 
Conformance to MIAPE) and at http://www.psidev.info/index.
php?q=node/406 (mzIdentML Conformance to MCP Guidelines). 
mzIdentML files submitted to public repositories or cited in jour-
nal articles should at least conform to MIAPE .

Together with the release of schema, specification document, and 
mapping file, several example files have been released as reference 
for further developments and discussions. In the following, excerpts 
of these files exemplify some mzIdentML concepts (see Note 9).

In the following example, two search engines (Mascot and 
Sequest) have been used for peptide identification on one spectra 
data set. The identified peptides have been assembled to proteins 
by ProteinExtractor, a protein assembly algorithm within the 
ProteinScape LIMS (6) (Bruker Daltonik GmbH, Bremen, 
Germany). The search database used was a decoy database con-
taining shuffled sequences for each target entry (created with the 
Decoy Database Builder tool (7), http://www.medizinisches-
proteom-center.de/). The reported protein list contains target 
and decoy entries, where only target entries with a false-discovery 
rate above 0.05 are marked as final results of the overall analysis.

2.4. Semantic 
Validation and 
Mapping Files

2.5. Conformance to 
MIAPE and Journal 
Guidelines

2.6. mzIdentML 
Examples

3. Examples

3.1. Example 1: 
Multiple Search 
Engines, Combination 
of Peptides, and Decoy 
Approach

http://www.psidev.info/validator
http://www.psidev.info/validator
http://www.mcponline.org/misc/ParisReport_Final.dtl
http://www.mcponline.org/misc/ParisReport_Final.dtl
http://www.psidev.info/index.php?q=node/386
http://www.psidev.info/index.php?q=node/406
http://www.psidev.info/index.php?q=node/406
http://www.medizinisches-proteom-center.de/
http://www.medizinisches-proteom-center.de/
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The parameters of the search engine runs are defined in two 
<SpectrumIdentificationProtocol> elements (see Fig. 2 for the 
Sequest parameters), referencing the respective <AnalysisSoftware> 
elements (see Fig. 3) and defining the type of search (MS/MS), 
the mass types (monoisotopic parent and fragment masses), the 
modifications (oxidation as variable modification), the digestion 
enzyme (Trypsin) and the mass tolerances for parent and frag-
ment masses (0.9 Da and 75 ppm, respectively). Further search 
engine-specific parameters can be reported as <cvParam> children 
of <AdditionalSearchParams>.

The same <SpectraData> and <SearchDatabase> are used for 
both search engine runs. They are specified within the <Inputs> 
element (see Fig. 4), a child of <AnalysisData>. The source of the 

Fig. 2. Sequest parameters defined within the <SpectrumIdentificationProtocol> element.
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Fig. 3. The <AnalysisSoftware> element describes the software used.

Fig. 4. The <Inputs> element specifying source file, search database, and spectra data (grid view ).
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mzIdentML file itself is specified using the <SourceFile> element. 
In this example, source file and spectra data are data sets stored in 
a database, the ProteinScape LIMS. The search database is a 
human IPI database (version 3.15). The process of generating 
decoy entries is described in <cvParam> elements of 
<SearchDatabase> (e.g., the regular expression for identifying 
decoy entries is “^SHD”).

All specified parameters, input data, and a reference to the result 
data (“SpectrumIdentificationList_ref” attribute) are assembled in a 
<SpectrumIdentification> element, describing the actual runs of the 
analysis (see Fig. 5); therefore, an “activityDate” attribute can be 
given.

The results of a <SpectrumIdentification> analysis are 
stored within a <SpectrumIdentificationList> element (see 
Fig. 6); more exactly, this element contains all peptides of all 
spectra. Its child element <SpectrumIdentificationResult> con-
tains all peptides identified in one spectrum, which itself is 
specified using the attributes “SpectraData_ref” and “spectru-
mID.” The <SpectrumIdentificationItem> element as child of 
<SpectrumIdentificationResult> contains the information of 
one identified peptide. The <...Item> elements have a “rank” 

Fig. 5. The three actual analyses with specified protocol parameters, input, and output data.
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attribute to rank multiple identifications in one spectrum. In 
this example, only one peptide is reported per spectrum. The 
“Peptide_ref” attribute links this spectrum/peptide pair 
with a peptide stored in the <SequenceCollection> of the 
mzIdentML file (here, “prot1_pep1” is the amino acid sequence 
“AGTQIENIDEDFR” without modifications). This avoids 
redundant repetition of sequences. “chargeState,” “calculated-
MassToCharge,” and “experimentalMassToCharge” are the most 
prominent characteristics of peptide identification from mass 
spectra and are, therefore, reported as attributes. Other result val-
ues like search engine scores are reported as <cvParam> elements. 
Here, only the ProteinScape-specific result values Intensity 
Coverage (the intensity of covered peaks) and SequestMetaScore 
(a combination of the original Sequest scores) are reported.

At first glance, the <PeptideEvidence> element seems to be 
misplaced in the peptide result part of mzIdentML, as it links the 
identified peptide with a protein sequence. But it is a very efficient 
possibility to specify, in which protein (or proteins) a peptide 
occurs, whether these proteins are decoy sequences, or which 
reading frame and translation table is applied in case of a nucle-
otide search database. This information can be very important, 
although no protein detection has been performed. On the con-
trary, if one has been performed, the <PeptideEvidence> elements 
can be very efficiently referenced from the results of a protein 
detection analysis (see below).

The parameters of the protein detection step are described in 
the <ProteinDetectionProtocol> element (see Fig. 7). In this 
example, there are several parameters of the ProteinExtractor 
algorithm reported as <cvParam> elements. Most interesting is 
the <Threshold> element specifying a threshold of 0.05 (or 5%) 

Fig. 6. The beginning of a <SpectrumIdentificationList>, showing the identified peptides of two spectra.
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for the false-discovery rate on the sorted protein list. Instead of 
spectra data sets, the <ProteinDetection> element – describing 
the actual analysis – references peptide sets as input data using 
“SpectrumIdentificationList_ref” attributes (see Fig. 5). The 
result of a protein detection (stored in one <ProteinDetectionList> 
element, see Fig. 8) is a set of <ProteinAmbiguityGroup> ele-
ments. This reflects the fact that a set of identified peptides can be 
part of more than one protein (e.g., in case of homologs or iso-
forms) and it may not unambiguously be decided which protein 
was part of the sample. The <ProteinDetectionHypothesis> 
describes the proteins within an ambiguity group (in this exam-
ple, each group contains only one possible protein). The 
“passThreshold” attribute expresses whether the reported pro-
tein passed the defined threshold, which is true for proteins 1 + 2. 
Only these two proteins pass the threshold in this example, as the 
third is a decoy protein and thus the false-discovery rate is 
exceeded for proteins 3–7. The “DBSequence_ref” attribute ref-
erences the protein sequence within the <SequenceCollection> 
element. It is optional, as the <PeptideEvidence> element 

Fig. 7. ProteinExtractor parameters and Threshold defined within the <ProteinDetectionProtocol> element (grid view ).
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referenced in the following <PeptideHypothesis> section already 
references a protein sequence. As for the peptide results, 
<cvParam> elements are used to state the scores and other char-
acteristics of the protein result.

The most important differences between an LC–MS/MS run, 
as described in the previous example, and a run of mixed 
samples labeled with 14N/15N isotopes (8) (http://code.
google.com/p/psi-pi/source/browse/trunk/examples/
Mascot_N15_example.mzid) are the use of two mass tables, 
defined in <SpectrumIdentificationProtocol> (see Fig. 9), and 
the mechanism of referencing them (using “MassTable_ref” 
attributes of <SpectrumIdentificationItem> elements). With 
mzIdentML, only the results of the identification part of the 
14N/15N experiment can be described, and not that of the 
quantitation part.

Fragmentation information (example: http://code.google.
com/p/psi-pi/source/browse/trunk/examples/Mascot_
MSMS_example.mzid) is given in a <Fragmentation> element 
(see Fig. 10) of <SpectrumIdentificationItem>. The ion type, 
charge state, and – using a <FragmentationTable> element (see 

3.2. Example 2: 
14N/15N

3.3. Example 3: 
Fragmentation 
Information

Fig. 8. Results of a protein detection analysis stored in a <ProteinDetectionList> (grid view ).

http://code.google.com/p/psi-pi/source/browse/trunk/examples/Mascot_N15_example.mzid
http://code.google.com/p/psi-pi/source/browse/trunk/examples/Mascot_N15_example.mzid
http://code.google.com/p/psi-pi/source/browse/trunk/examples/Mascot_N15_example.mzid
http://code.google.com/p/psi-pi/source/browse/trunk/examples/Mascot_MSMS_example.mzid
http://code.google.com/p/psi-pi/source/browse/trunk/examples/Mascot_MSMS_example.mzid
http://code.google.com/p/psi-pi/source/browse/trunk/examples/Mascot_MSMS_example.mzid
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Fig. 11) – previously defined characteristics, like at least m/z, 
together with, for example, intensity and error, of the identified 
ions are specified in the <Fragmentation> element.

As the next step after the release of the standard, a publication 
was drafted and is in submission. Tool and search engine devel-
opers are going to finish their implementations, which were 
already begun (see list on http://www.psidev.info/index.
php?q=node/408). In parallel, the definition of mzQuantML 
will go on with the help of the Proteomics community.

4. Outlook

Fig. 9. Definition of two mass tables for a 14N/15N analysis (grid view ).

http://www.psidev.info/index.php?q=node/408
http://www.psidev.info/index.php?q=node/408
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Fig. 11. The <FragmentationTable>, defining characteristics reported in the fragmenta-
tion table (grid view ).

Fig. 10. The <Fragmentation> element of a <SpectrumIdentificationItem> (excerpt ).
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 1. Although PSI work groups are open for everyone, often there 
crystallizes a core group, which changes over time. At the 
time of writing, the core PI group consisted of Andrew Jones 
(University of Liverpool, UK), David Creasy (MatrixScience, 
London, UK), Andreas Bertsch (Eberhard Karls-Universitaet 
Tuebingen, Germany), Jenny Siepen (University of 
Manchester, UK), Phil Jones (European Bioinformatics 
Institute, Hinxton, UK), and Martin Eisenacher (Medizinisches 
Proteom-Center, Ruhr-Universitaet Bochum, Germany).

 2. Predecessors of mzIdentML appellations: mzAnalysis, mzPro-
tID, mzIdent, and AnalysisXML; suggestions: piaML (pro-
teomics informatic analysis ML), paML or even piML, 
analysisML, suggestions for extensions: .AML, .AnaML, .
AnML, .PIML, .aML, .anaML, .anML, .AXML, .AnaXML, .
AnXML, .PIXML, .aXML, .anaXML, .anXML.

 3. The decision to restrict mzIdentML to a subset of the origi-
nally formulated set of use cases was not easy. After more or 
less fruitful discussions and years of development, finally, at 
the PSI spring meeting in Toledo 2008, there was consensus 
for this restriction. Most painful was the decision to drop the 
quantification use case from milestone 1 release of the stan-
dard, as it was reflected to be an essential part of a Proteomics 
results standard. During the PSI spring meeting in Turku 
2009, the first summary of the most common quantification 
use cases was assembled and a sketch of their essential charac-
teristics was contemplated. It turned out that for all of them, 
it would be possible to have a separate schema for quantifica-
tion results, which reference into one or more mzIdentML 
file(s).

 4. The previous mzIdentML format allowed rather complex 
workflows, such as more than one protein detection and 
further types of analysis, for example, quality estimation anal-
yses. Therefore, the standard was heavily based on FuGE, 
which is naturally designed to model complex workflows. 
Additionally, the design process was based on designing the 
model using an UML (Unified Modeling Language) tool and 
to export the schema from that tool. To ease the develop-
ment process, the UML modeling was replaced by the “tradi-
tional” schema modeling; the remaining necessary FuGE 
elements or types (e.g., <Provider> or ProtocolType) are now 
incorporated by referencing a schema called “FuGElight,” 
including only the necessary FuGE elements and types.

 5. De novo peptide sequencing results are supported but pro-
duce extremely large files (later versions should improve that). 

5. Notes
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Use cases not supported in release 1.0.0 of mzIdentML 
(although it was planned in the past) are storage of relative 
and absolute quantitation information, support for biomarker 
discovery, and support for “sequence tagged searches.”

 6. There is no way to define an objective rule to judge whether a 
result characteristic should be an attribute or should be speci-
fied by a <cvParam> element. So this decision was discussed for 
each characteristic and then decided by community consensus.

 7. The CV term hierarchies (ontologies) are stored in the OBO 
file format (9) (http://www.geneontology.org/GO.format.
obo-1_2.shtml).

 8. The PSI–MS controlled vocabulary (http://psidev.cvs.source-
forge.net/*checkout*/psidev/psi/psi-ms/mzML/con-
trolledVocabulary/psi-ms.obo) contains annotations for 
mzML and mzIdentML files. The terms that require a value 
are denoted by having a “value-type” xref entry in the OBO 
file in the form “xref: value-type:xsd\:string.” Units for values 
are denoted by having a “has_units” relationship (“relation-
ship: has_units: UO:0000221 ! dalton”). As recommended 
by the PSI CV guidelines, psi-ms.obo should be dynamically 
maintained via the psidev-ms-vocab@lists.sourceforge.net 
mailing list on which any user can request new terms.

 9. Some of the released examples have been produced by first 
conversion or export scripts (such as the Mascot and OMSSA 
examples) and some have been only handcrafted at the 
moment using fantasy values for some elements or attributes 
(like the “MPC example” presented here as example 1).
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Chapter 11

Spectra, Chromatograms, Metadata: mzML-The Standard 
Data Format for Mass Spectrometer Output

Michael Turewicz and Eric W. Deutsch 

Abstract

This chapter describes Mass Spectrometry Markup Language (mzML), an XML-based and vendor-neutral 
standard data format for storage and exchange of mass spectrometer output like raw spectra and peak 
lists. It is intended to replace its two precursor data formats (mzData and mzXML), which had been 
developed independently a few years earlier. Hence, with the release of mzML, the problem of having 
two different formats for the same purposes is solved, and with it the duplicated effort of maintaining and 
supporting two data formats. The new format has been developed by a broad-based consortium of major 
instrument vendors, software vendors, and academic researchers under the aegis of the Human Proteome 
Organisation (HUPO), Proteomics Standards Initiative (PSI), with full participation of the main devel-
opers of the precursor formats. This comprehensive approach helped mzML to become a generally 
accepted standard. Furthermore, the collaborative development insured that mzML has adopted the best 
features of its precursor formats. In this chapter, we discuss mzML’s development history, its design 
principles and use cases, as well as its main building components. We also present the available documen-
tation, an example file, and validation software for mzML.

Mass spectrometry produces a huge amount of raw data that is 
not manageable without computerized automation. Hence, 
computer-aided data management and data analysis are indispens-
able for the efficient scientific work. The basic challenge for a 
computer-aided workflow is to ensure storage and exchange of all 
important data concerning mass spectrometry experiments in a suit-
able, efficient, and generally accepted and supported data format. 
The need for a generally accepted data format was large because 
each instrument vendor had his own proprietary output format. 

1. Introduction

1.1. Motivation for  
a New File Format

179
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Having many different and proprietary formats severely inhibited 
data exchange. In addition to the recorded mass spectra, which 
are usually acquired to perform the identification and quantita-
tion of the analyzed (bio-) molecules, further information about 
the experiment, the so called metadata, is equally essential, since 
it is usually required for the result interpretation as well as for the 
identification- and quantitation-related calculations. Typical 
metadata, which may vary, are information about the respective 
instrument, experimental conditions and the software (including 
its settings) which led to the acquired and/or preprocessed data. 
Therefore, a suitable data format for mass spectrometry should 
store both the spectra and their corresponding metadata. 
Transforming mass spectrometer data into pure text-based peak 
lists is not a desirable method, since peak list transformation 
means data reduction (by discarding metadata and peak cen-
troiding or isotoping), and important data and metadata are lost 
during this procedure. Thus, another approach has been pro-
posed: the design of an XML-based data format. XML is designed 
to describe hierarchically structured data in a textual data format. 
It was designed to facilitate simplicity, generality, and usability for 
electronic data exchange. It is easily parsed by software and easy 
to read. Hence, XML appears to be the natural choice for the 
purposes discussed above.

To address this, two different institutions independently pro-
posed two different XML data formats during 2003–2005. On 
the one hand, Human Proteome Organisation Proteomics 
Standards Initiative (HUPO-PSI, (1, 2)) developed the mzData 
format (3). The other data format was mzXML, developed at the 
Institute for Systems Biology (ISB, (4)). Although both approaches 
were XML-based and were designed to be vendor-neutral mass 
spectrometer raw output formats, they aimed at different use 
cases and followed different design philosophies concerning the 
flexibility regarding new kinds of important information. mzData 
was designed primarily as a universally applicable data exchange 
and archive format and was approved by the PSI as an official 
standard. Its design philosophy was characterized by its relative 
flexibility due to its controlled vocabulary approach, which kept 
the XML schema quite stable. It allowed for the introduction of 
innovations via a controlled vocabulary update. The disadvantage 
of this approach was the spread of different dialects.

On the other hand, mzXML was designed as an intermediate 
format for the needs of ISB’s software pipeline, the Trans-
Proteomic Pipeline (TPP) software suite (5). Its design philoso-
phy relied on a rigid schema, where most metadata was stored in 
enumerated attributes. This made document validation and soft-
ware development easy, since there was only one way to represent 
an annotation. But there was also a tremendous disadvantage: the 
addition of new metadata options required a schema update with 



181Spectra, Chromatograms, Metadata: mzML-The Standard Data Format 

a new version number. Software developers had to deal with the 
problem of a spreading number of possibly very similar mzXML 
versions. However, both were used widely as de facto standards.

Nevertheless, the community was dissatisfied, since there 
were two different formats for the same kind of data. Vendors and 
programers had to provide support for two different data for-
mats. Data exchange, tool development, and data storage were 
still handicapped by this inconclusive state. The coexistence of 
two data standards was a suboptimal situation. The solution was 
to create a new data format merging together the best aspects of 
mzData and mzXML: mzML.

The history of the file format began with a PSI workshop in San 
Francisco (CA, USA) on April 21–23, 2006, (6–8) where a com-
parative analysis of mzXML and mzData was performed and the 
possibility of merging them into a single data format was dis-
cussed. On this occasion, the participants, (representatives of 
instrument vendors, the PSI, the ISB, software developers, and 
end users), reached an agreement toward the unification of 
mzXML and mzData and a roadmap to the new file format was 
determined (7, 9). As early as the follow-up PSI workshop (PSI 
Fall workshop, September 25–27, 2006, Washington DC, USA, 
(10)) concrete progress (contrasting of both schemas and analysis 
of mzData and mzXML features which were to be kept and/or 
enhanced in the new format) toward unification could be made. 
During the next years, a group of designers met regularly at work-
shops under the aegis of HUPO-PSI and advanced the project (9, 
11–13). Finally, mzML 1.0.0 was released at the American Society 
for Mass Spectrometry (ASMS) conference in Denver (14), CO, 
USA, on June 1, 2008, and it was rapidly accepted as the new 
general standard. Although it was hoped that the first schema 
would remain stable as long as possible, it remained valid merely 
for a year, when mzML 1.1.0 was released on June 1, 2009. This 
update was caused by several deficiencies in mzML 1.0, which 
became evident during the implementation of different software 
projects for mzML 1.0 in early 2009. The differences between 
mzML 1.0.0 and mzML 1.1.0 (a complete listing of differences 
can be found in the specification document of mzML 1.1.0 (15)) 
make them incompatible. Hence, all software implemented so far 
had to be updated. However, the PSI Mass Spectrometry 
Standards working group will continue to support mzML, 
including documentation, controlled vocabulary maintenance 
and deployment of up-to-date semantic validators. News on the 
file format can be tracked on the regularly updated web page 
about mzML (16, see Note 2).

The PSI defines standards for data representation in Proteomics 
to support data comparison, data exchange, and result verification. 

1.2. History of mzML

1.3. The Creation  
of PSI Standards
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This definition normally covers both a document defining “minimal 
information” necessary for the unambiguous description of an 
experiment from a specific Proteomics domain (e.g., MIAPE-MS 
(17)) as well as the definition of a (usually XML-based) storage 
format.

Work on standards and documents is done at PSI spring 
meetings (6, 7, 12, 13, 18–20) – where interested scientists from 
all over the world can join – and in between these meetings, by 
the use of mailing lists and development-supporting sites, such as 
SourceForge ((21)) or Google Code ((22)).

PSI standard formats are developed within the PSI work 
groups called “Protein Separation (PS, (23)),” “Mass Spectrometry 
(MS, (24)),” “Molecular Interactions (MI, (25)),” “Protein 
Modifications (MOD, (26)),” and “Proteomics Informatics 
(PI, (27)).” One work group may work on more than one stan-
dard (e.g., the MS work group is developing both mzML and 
TraML, (16, 24, 28)). Activities spanning all of the work groups 
include the editing of controlled vocabularies and “Minimal 
Information” (i.e., MIAPE) documents.

Once a standard format or document is near maturity, it 
enters the “PSI document process,” a defined workflow contain-
ing phases of internal review (PSI editors and steering group) and 
then external review (specific reviewers and public review). 
Additionally, a journal publication might be initiated. Comments 
and suggestions regarding corrections are then built into the 
standard, and finally it gets released. Finalized standards can be 
found at http://psidev.info/index.php?q=node/100.

The design of mzML has benefited tremendously from the initial 
experience obtained during the design and maintenance of 
mzXML and mzData. The advantages and disadvantages of both 
implementations were known. Therefore, the yardstick of perfor-
mance was to merge the best aspects from precursors and to 
implement the lessons learned from experience with them.

mzML has been designed to store and describe mass spec-
trometry data output and its experimental context (metadata) as 
well as to support long-term data storage and data sharing, rather 
than short-range data management (although it is flexible con-
cerning this matter). A corresponding set of principle tasks was 
formulated in the specification document (15) as follows:

– “Discovery of relevant results”: All relevant data sets in data-
bases or data repositories acquired by diverse acquisition tech-
niques or combinations of diverse acquisition techniques 
should be identifiable and reviewable.

2. Design of mzML
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– “Sharing of best practice”: Methods that have been successful 
at identifying low abundance peptides or proteins should be 
reviewable for sharing of best practice.

– “Evaluation of results”: Sufficient additional information about 
a particular acquisition method should be provided to allow 
critical evaluation of the acquired data.

– “Sharing of data sets”: Public repositories should be able to 
import or export the data, multisite projects should be able to 
share the results to support integrated analysis and meta-analysis 
of previously published data should be possible.

– “Most comprehensive support of the instruments output”: Data 
should be ascertainable in all relevant forms of mass spectrome-
try representation, especially in centroid mode and profile 
mode.

Furthermore, an agreement concerning the compatibility of these 
principle tasks with the two precursor philosophies had to be 
reached among the designers. The outcome of this discussion was 
a set of design principles formulated as follows:

– Simplicity: Although the introduction of new features was dis-
cussed, the designers decided to abandon most extensions pro-
posed during the design process. Finally, the conviction 
prevailed, that a simple, but robust, implementation would be 
a better basis for the new format.

– Uniqueness: The same information should always be encoded 
in a unique way. The designers preferred inflexible unambigu-
ousness to inappropriate flexibility.

– Stability: The data format should be as stable as possible and 
the expected frequency of software updates should be limited. 
This is ensured by the concept of controlled vocabularies. 
Nevertheless, it was obvious that some kind of flexibility for 
encoding new important information must be incorporated. 
This is provided for by the concept of the <userParam> ele-
ment (see Subheading 4.2).

– Preservation of functionality: All features of the precursor 
formats should be supported. However, coevally the designers 
decided to refrain from introducing new features in 
mzML 1.0.

– Rapid development: The designers recognized the duality of 
mzData and mzXML as the main problem for the commu-
nity and the primary target for their efforts. Therefore, they 
decided to spend all resources to release a new standard data 
format and make its precursors obsolete. The rapid develop-
ment of version 1.0 had higher priority than supporting new 
features. Support for new features has been halted until the 
release of version 2.0.
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– Validity: The designers decided to validate mzML first by 
implementing software to read and write the new format before 
its release.

Finally, we want to outline the application field of mzML by list-
ing several of its essential use cases. The example files referred to 
in the following can be found on the mzML web page (16). These 
essential use cases include the following:

– The ability of encoding both possible ways for spectrum rep-
resentation: profile mass spectra and centroid mass spectra.

– Information about all current mass spectrometers (e.g., 
LTQ-FT mass spectrometers) and their settings as well as their 
experimental output should be encodeable and their (proprie-
tary) mass spectrometer output should be convertible into 
mzML in an easy way. Example files: small.pwiz.1.1.mzML, 
small_miape.pwiz.1.1.mzML, and small_zlib.pwiz.1.1.mzML 
(generated via conversion with the msconvert tool from 
ProteoWizard (29) of a Thermo RAW file from an LTQ FT 
instrument).

– Possibility to convert not only a single source file into a single 
mzML file, but also sets of files into a single mzML file. Example 
file: dta_example_1.1.0.mzML (folder of DTA files generated 
by Proteios Software Environment (30) and converted into a 
single mzML file).

– Possibility to convert an arbitrary common peak list file into 
mzML format. Example file: plgs_example_1.1.0.mzML (gen-
erated by conversion of a Protein Lynx Global SERVER (31) 
XML peak list which was generated by Proteios).

– Provision of full support for different data and metadata from 
different spectrum types, such as the neutral loss spectrum, 
which is achieved by neutral loss scans. Example file: neutral_
loss_example_1.1.0.mzML (hand crafted).

– Another important spectrum type is the precursor spectrum. 
Spectra acquired by precursor scans should be supported. 
Example file: precursor_spectrum_example_1.1.0.mzML (hand 
crafted).

– Storage of quantitation-related data and metadata should be 
possible. All important modes of scanning and acquiring data, 
e.g., Selected Reaction Monitoring (SRM), Total Ion Current 
(TIC), and Selected Ion Monitoring (SIM), should be sup-
ported. Example file: MRM_example_1.1.0.mzML (hand 
crafted).

– Another type of important instrument metadata is the informa-
tion about the used detector type. It should also be possible to 
support all the common and different types of detectors like 
photodiode array (PDA) detectors, position and time-resolved 
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ion collector (PATRIC) detectors, Faraday cups (or cages), 
electron multipliers (EMs) or microchannel plate (MCP) detec-
tors. Example file: The “PDA example file” (hand crafted).

– Finally, encoding the same information in mzML as in mzData 
and mzXML should be possible. Three example files contain-
ing the same information in mzML, mzData, and mzXML 
have been uploaded on the mzML web page to demonstrate 
this: tiny1.mzML1.1.0.mzML, tiny1.mzData1.05.xml, and 
tiny1.mzXML3.0.mzXML.

A “controlled vocabulary” generally contains predefined terms to 
avoid spelling or case ambiguities. The PSI controlled vocabularies 
are hierarchies of controlled terms (“ontologies”) having for exam-
ple “is_a” or “has_a” relationships to one or many “parent terms.” 
Each term has a unique accession number and can have a value 
(e.g., MS:1000031, “instrument model”) and a unit for this value 
(e.g., MS:1001117, “theoretical mass”, unit = dalton). In an 
mzML file, <cvParam> elements are used to describe further details 
of a modeled object. Thus, most of the data concerning a mass 
spectrometry experiment are annotated using controlled vocabu-
lary terms, e.g.,: <cvParam cvRef=“MS” accession=“MS:1000285” 
name=“total ion current” value=“16675500”/>, stating the sum 
of all the separate ion currents carried by the ions of different m/z 
contributing to a complete mass spectrum or to a specified m/z 
range of a mass spectrum. In the controlled vocabulary hierarchy, 
this term “is_a” “spectrum attribute,” which itself “is_a” “object 
attribute” and has a “part_of” relationship to “spectrum.” The 
position within the hierarchy can be used to check the correct use 
of controlled vocabulary terms (important for file validation). If a 
new important term should be added to the PSI-MS controlled 
vocabulary, the PSI-PI workgroup must be informed (see Note 4).

The following ontologies or controlled vocabularies may also 
be suitable or required for some elements of mzML:

Unit Ontology (http://www.obofoundry.org/cgi-bin/detail.●●

cgi?id=unit)
ChEBI (http://www.ebi.ac.uk/chebi/)●●

OBI (Ontology of Biological Investigations – http://obi.●●

sourceforge.net/)
PSI Protein modifications CV (http://psidev.sourceforge.●●

net/mod/data/PSI-MOD.obo)
Unimod modifications database (http://www.unimod.org/●●

obo/unimod.obo)

3. The PSI-MS 
Controlled 
Vocabulary
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The schema of mzML is a well-defined order of nested XML-
elements and subelements with different appropriate attributes 
that may be optional or mandatory. They are designed to contain 
all the information for a single MS run, including metadata about 
the spectra and all the spectra themselves. Extensible Markup 
Language (XML) is a markup language for the description of 
hierarchically structured data in a textual data format. It was 
designed to facilitate simplicity, generality, and usability for elec-
tronic data exchange between computer systems, especially via 
the internet. The so-called XML specification defines a 
meta-language for the description of application-specific lan-
guages by different constraints. These constraints are described 
by the so-called schema languages, such as DTD or XML schema. 
There is always a schema language document to describe an appli-
cation-specific language. In XML schema, these documents are 
called “XML schema documents” (XSD) and are tagged with the 
extension “.xsd”. An XSD file defines a set of rules a document 
must conform in order to be considered as “valid” against that 
schema. It constrains, which set of elements may be used in a 
document, which attributes containing which data types (e.g., 
xsd:string or xsd:integer) may be applied to them, the order in 
which they must appear and the allowable parent–child 
relationships. Hence, the mzML syntax is mainly defined by its 
XSD file – mzML1.1.0.xsd (see Note 1).

In this subsection, we discuss element structures in mzML that 
recur repeatedly forming its syntactical backbone. Hence, we 
want to term them mzML’s key components.

The three parameter-elements <cvParam>, <userParam>, and 
<referenceableParamGroup> are key components in mzML, 
hence they represent the key concepts of stability (ensured by 
controlled “CV terms”), generic structure (ensured by free “user 
terms”), and space efficiency (ensured by the possibility to refer 
to repetitive groups of parameter elements). All of them have 
been designed to store additional data or comments. However, it 
is intended to principally use CV terms to describe this kind of 
data – corresponding to one of mzML’s design principles (stabil-
ity). Hence, the most important parameter-element is <cvParam> 
(see Fig. 1), which is designed to contain comments or ancillary 
data by referring to a controlled vocabulary term and specifying 
its “value” attribute. There are seven attributes for <cvParam>. 
Three of them (“accession”, “cvRef”, and “name”) are manda-
tory, and they may be considered as key attributes for its function-
ality. “accession” holds the accession number of the controlled 

4. The mzML 
Schema (Release 
1.1.0)

4.1. The XML 
Backbone in mzML

4.2. Parameter- and 
List-Elements: mzML’s 
Key Components

4.2.1. The Parameter 
Elements
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term (e.g., “MS:000020” for “scanning method”), “cvRef” 
points to the “id” attribute of one <cv> element in <cvList> 
defining the corresponding controlled vocabulary, and “name” 
states the current name of the CV term (note that the accession 
number is the important attribute and refers to an abstract 

Fig. 1. The <cvParam> element.
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concept, whose name may change (e.g., “multiple reaction 
monitoring” to “selected reaction monitoring”); so the name 
attribute is just used for human readability). Four other attri-
butes (“unitAccession”, “unitCvRef”, “unitName”, and 
“value”) are optional. The attribute “value” is intended to hold 
a potential value of the parameter. All legal values for a parameter 
are defined in the ontology (e.g., “xref: value-type:xsd\:float” is 
the ontology entry for “scan start time”). In case of specifying a 
parameter value, the other optional attributes may hold informa-
tion about the unit of this parameter. For example, “unitAcces-
sion” may hold a controlled vocabulary accession number (e.g., 
“MS:0000040” for “m/z” or “UO:0000021” for “gram”); 
“unitName” then contains a – human-readable – name for the 
unit accession number (e.g., “gram” for “UO:0000021” or 
“m/z” for “MS:0000040”); and “unitCvRef” then points to a 
controlled vocabulary’s “id” in <cvList>. It has to be stressed that 
“unitCvRef” loses its “optional” status, if a unit is specified.

Fig. 2. The <userParam> element.



189Spectra, Chromatograms, Metadata: mzML-The Standard Data Format 

The second parameter-element is <userParam> (see Fig. 2). It 
provides an opportunity to describe parameters without corre-
sponding controlled vocabulary term. If there is an evident need 
for an additional controlled vocabulary term, PSI should be 
informed (see Note 4), so it is recommended to use this element 
extremely reservedly in exceptional cases only (e.g., when it is not 
possible to wait for a controlled vocabulary update). A spreading 
use of uncontrolled terms would lead to uncontrolled dialects 
and contradict the fundamentals of mzML’s design philosophy. 
Hence, it should be used in cases of emergency only. Besides this 
general remarks, <userParam> is very comparable to <cvParam>. 
They share almost the same attributes except for “cvRef” and 
“accession” of cause. Its only attribute not occurring in <cvParam> 
is “type”, which is optional and is intended to contain informa-
tion about the data type of the uncontrolled parameter 
(e.g., xsd:integer or xsd:date).

The last parameter-element is <referenceableParamGroupRef> 
(see Fig. 3). It has been designed to point to a reusable container 
for a set of <cvParam> and/or <userParam> elements. This is a 
comfortable feature to handle frequently repetitive sets of param-
eters and keep the file simpler. Its sole attribute “ref” is intended 
to point to the “id” attribute in a <referenceableParamGroup> 
element, which is that reusable container of <cvParam> and 
<userParam> elements. As a result of this relationship, reference-
able parameter groups can be referenced from elsewhere in an 
mzML document.

The other class of key building components is the class of list ele-
ments. All list structures share the same basic concept. It can be 
formulated as follows: The whole list structure is delimited by a 

4.2.2. The List Elements

Fig. 3. The <referenceableParamGroupRef> element.



190 Turewicz and Deutsch

root element. Its name is usually tagged with “List”, e.g., <soft-
wareList>. The root element contains at least the mandatory 
“count” attribute, which is indicating the number of listed sub-
elements (thus, it is an integer attribute). Furthermore, the root 
element includes always a sequence of listed subelements, all of 
which are named with the same name like the root, but without 

Table 1 
List elements in mzML

Root element
“Count” 
attribute

Other 
attributes Listed subelement

Number of listed 
subelements

Other 
subelements

<binaryDataArrayList> Yes No <binaryDataArray> 2 – ∞ No

<chromatogramList> Yes Yes <chromatogram> 1 – ∞ No

<componentList> Yes No <source>, 
<analyzer>,  
<detector>

1 – ∞ each No

<cvList> Yes No <cv> 1 – ∞ No

<dataProcessingList> Yes No <dataProcessing> 1 – ∞ No

<instrumentConfigura-
tionList>

Yes No <instrumentCon-
figuration>

1 – ∞ No

<precursorList> Yes No <precursor> 1 – ∞ No

<productList> Yes No <product> 1 – ∞ No

<referenceableParam-
GroupList>

Yes No <referenceable-
ParamGroup>

1 – ∞ No

<sampleList> Yes No <sample> 1 – ∞ No

<scanList> Yes No <scan> 1 – ∞ Yes

<scanSettingsList> Yes No <scanSettings> 1 – ∞ No

<scanWindowList> Yes No <scanWindow> 1 – ∞ No

<selectedIonList> Yes No <selectedIon> 1 – ∞ No

<softwareList> Yes No <software> 1 – ∞ No

<sourceFileList> Yes No <sourceFile> 1 – ∞ No

<sourceFileRefList> Yes No <sourceFileRef> 0 – ∞ No

<spectrumList> Yes Yes <spectrum> 0 – ∞ No

<targetList> Yes No <target> 1 – ∞ No

This comparison of all list elements illustrates, that all of them contain a “count” attribute (see column “‘count’ attri-
bute”) and usually one listed subelement (see column “listed subelement”), whose name is derived from the root 
element and whose cardinality is normally “1 – ∞” (see column “number of listed subelements”). They contain usually 
no other attributes besides the “count” attribute (see column “other attributes”) and no other subelements besides 
the listed one (see column “other subelements”)
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“List”, e.g., <software>. There must be at least one of them. 
Table 1 gives an overview of all list structures in mzML and dem-
onstrates their common basic concept.

This is the root element of each mzML file (see Fig. 4). Thus, it 
has to contain all the information mzML is intended to store. 
It is designed to serve as a container for its top level elements. 
First of all, there is an element for storing information about all 
the controlled vocabularies used at different positions through 
the entire file (<cvList>, see Fig. 5). The second element, the 
<fileDescription> (see Fig. 6) element, stores information about 
the kind of spectra that the file contains. As mentioned above, the 
optional <referenceableParamGroupList> (see Fig. 7) element is 
intended to hold a list of referenceable parameters used in the file. 

4.3. Top Level 
Elements

4.3.1. The 
<mzML>Element

Fig. 4. The <mzML> element.
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The next element is <sampleList>. It has been designed for stor-
ing information about the samples used to generate the data set. 
There is also an element for storing information about the soft-
ware used in the referenced experiment (<softwareList>). Another 
metadata element is <scanSettingsList> (see Fig. 8). It is intended 
to store information about the scanner settings prior to the data 
acquisition process. It is followed by the <instrumentConfigura-
tionList> element (see Fig. 9), which has been designed to store 
information about the instrument configurations. The penulti-
mate element (<dataProcessingList>, see Fig. 10) is a container 
for the information about data processing applied to the stored 
data. Finally, there is an element for storing information about each 

Fig. 5. The <cvList> element. This list element lists the controlled vocabularies used in 
this document and refers to them via its sole subelement <cv>. For each controlled 
vocabulary used in this document, a <cv> subelement has to be included to the list and 
its attributes specified. It has four attributes: “URI”, “fullName”, “id”, and “version”. All 
of them besides “version” are mandatory. By specifying the URI of the source (via the 
“URI” attribute), its ordinary name (via the “fullName” attribute) and an ID for it (via the 
“id” attribute) a particular controlled vocabulary is defined, and it is possible to refer to 
it via the reference tag “id” from anywhere in the file.
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scan performed on an instrument (<run>, see Figs. 11–13). In its 
highly branched subtree structure among other things the 
recorded spectra are stored. Besides its subelements, the <mzML> 
element contains three attributes, namely, “accession”, “id”, and 
“version”. “accession” is an optional attribute used, e.g., for data 
sets from public repositories like PRIDE (32). The second attri-
bute “id” is also optional. It is intended for referencing this docu-
ment from external files. However, “version”, is mandatory, so a 
version number for an mzML document has always to be 
specified.

Fig. 6. The <   fileDescription > element. Here, different information according to the entire mzML file is stored. 
<  fileDescription  > has three subelements. The mandatory subelement <  fileContent  > for instance has to be used to list 
and describe the different spectra the mzML file contains via its parameter subelements. The second subelement in 
<  fileDescription  >, <   sourceFileList  >, is an optional list element and should be used to list all the source files the mzML 
file was generated, converted or derived from. < sourceFileList  >’s third and last subelement, <contact  >, is also optional 
and is designed to store contact information in its parameter subelements.
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Fig. 7. The <referenceableParamGroupList> element. The optional <mzML> subelement <referenceableParamGroupList> 
has been designed to list user-defined sets of referenceable controlled vocabulary elements and/or uncontrolled vocabu-
lary elements. For each set, the <referenceableParamGroup> subelement has to be listed. Its parameter subelements, 
<cvParam> and <userParam>, are both optional (a group may be declared without being implemented).

Fig. 8. The <scanSettingsList> element. This is an optional list element for descriptions of the scan settings that have 
been set for the acquisition of the data archived in this file. Its listed element <scanSettings> is thought to contain the
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Fig. 8. (continued) description of the instrument settings before the start of the run in its parameter subelements. 
Alternatively, these scan settings may be described by two list structures which are nested in the <scanSettings> ele-
ment (additionally to its parameter subelements): on the one hand, <sourceFileRefList> is intended to list source files 
with the corresponding acquisition settings and on the other hand, <targetList> is designed to list the targets that have 
been used for this run.

Fig. 9. The <instrumentConfigurationList> element. This list element is mandatory. Its listed element, <instrumentCon-
figuration>, is designed to describe a particular configuration of a mass spectrometer device (at least one). It may also 
be specified that the instrument is unknown, if necessary. In this case, the controlled term “instrument model” (its con-
trolled vocabulary id: MS:1000031) should be used via the <cvParam> subelement of <instrumentConfiguration> to 
indicate that the instrument is unknown (value=”unknown”). Besides its parameter subelements, <instrumentConfiguration> 
contains an optional nested list structure (<componentList> for important component descriptions) and an additional 
optional subelement (<softwareRef> to reference to a previously defined software element), which may occur 
only once.
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Due to the design principle of preserving stability, one of mzXML’s 
features, a mechanism for a random access index was also built 
into mzML. The advantage of this feature is a speedup of data 
access, e.g., when a data processing or data management software 
needs to find an arbitrary spectrum. With the aid of such an index, 
it is possible to perform more efficient searches for that spectrum 
in a file rather than by reading it sequentially. However, some 
designers were convinced that disadvantages regarding a broken 
index prevail over the advantages of this approach. The compro-
mise is that mzML provides both ways. On the one hand, it has 
been designed as a stand-alone data format, which does not con-
tain any index. On the other hand, an mzML document can be 
enclosed in a wrapper schema that provides an index (see Fig. 14). 
Both ways of usage are separated structurally, since there is a sepa-

4.4. Indexing in mzML

Fig. 10. The <dataProcessingList> element. The mandatory list element <dataProcessingList> lists and describes the 
data processing procedures, which have been applied to the data stored in this mzML file. Its list element is <dataPro-
cessing>. It describes the way in which particular software (that is listed in <softwareList>) was used, and it holds a 
sequence of its sole and mandatory subelement, the <processingMethod> element, which is used to describe the default 
processing method. The settings described in a <processingMethod> element are the default settings, except they are 
supplemented and potentially overwritten by settings of a <scanSettingsList>-element (where data processing methods 
are described, which vary between scans).



197Spectra, Chromatograms, Metadata: mzML-The Standard Data Format 

Fig. 11. The <run> element. The mandatory <run> element has been designed to store the information about a particular 
mass spectrometer run (a single, successive, and coherent set of scans performed by a particular instrument). Since 
there should be one mzML file per run, there is only one <run> element in each mzML file. Its attributes refer to corre-
sponding elements, which contain the corresponding metadata recorded for this run. An optional sequence of param 
elements has been designed for further metadata description. Finally, there are two extremely nested list structures, 
which are designed to describe and store the recorded binary data in the <run> element: <spectrumList> (see Fig. 12) 
for successively recorded spectra (at least one) and <chromatogramList> (see Fig. 13) for all chromatograms for this 
particular run.
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Fig. 12. The <spectrumList> element. This list structure stores all mass spectra in a 
binary data list and all the underlying data ( list of scans, list of precursors and list of 
products ) in convenient list elements. A sequence of param elements makes the 
<spectrum> element quite flexible.
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rate XSD file for index support (mzML1.1.0_idx.xsd, (16)). So a 
particular mzML file may contain an mzML document with or 
without index support. Software supporting mzML must be 
designed to support both ways.

Fig. 13. The <chromatogramList> element. List structure that is designed to store and describe all chromatograms for a 
particular run. The recorded chromatograms are stored in a binary array list, and there is a list element for underlying 
data as well as an optional sequence of param elements in the <chromatogram> subelement.
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As mentioned above, experience with mzData revealed a serious 
disadvantage of the controlled vocabulary approach, namely, 
the propagation of several different dialects of the file format. 
This phenomenon was caused by inconsistently used controlled 
vocabulary terms and no universal mechanism to ensure that 
terms were used correctly. The same information was often 
encoded in slightly different ways. Finally, mzData has taught its 
designers the lesson that an uninhibited spread of such different 
dialects can cause serious difficulties in developing and maintain-
ing software. To address this problem for mzML, a semantic vali-
dator has been released together with the data format. This 

5. Semantic 
Validation

Fig. 14. An indexed example file. View on the top level elements of an indexed mzML example (tiny.pwiz.1.1.mzML, which 
can be found on the mzML web page (16)) with index-relevant parts in the two boxes. This example shows an ordinary 
mzML document, which is enclosed by the index container element <indexedmzML>. The indices by itself (offsets in 
bytes for random data access for the entity the index points to) are listed in the list element <indexList>. Besides this, 
there is an element <indexListOffset> containing a file pointer offset (in bytes) for the <indexList> element and an ele-
ment (<fileChecksum>) holding an SHA-1 checksum from the beginning of the file to the end of the <fileChecksum> 
open tag in the container structure.
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semantic validator is available as a web application, to which an 
unvalidated file can be uploaded, or as a stand-alone tool, which 
can be downloaded to validate local files offline. However, the 
semantic validator has to enforce a set of rules, which has been 
defined to ensure the semantic validity of an mzML document. 
It has to be stressed that an ordinary XML schema validation 
checking the syntax only is not able to decide whether the con-
trolled terms are used correctly. Instead compliance with seman-
tic rules has to be checked. These semantic rules are encoded in 
one or more (e.g., for different compliance levels) mapping files. 
However, the semantic validator has to ensure that CV terms are 
used in the correct location in the document (defined via XPath 
notation in the mapping file) and the mandatory terms are pres-
ent the correct number of times. Thus, only files which have been 
validated by the official semantic validator are considered to be 
valid. Therefore, this approach implies the demand on the com-
munity to be disciplined and to validate every single new or 
updated mzML document in this way (see Note 3). A spin-off of 
this approach is the necessity for updating also the semantic vali-
dator (by a mapping file update) every time the controlled vocab-
ulary is adjusted to new technologies or new important information. 
However, its main advantage is that mzML has adopted schema 
stability from mzData without adopting its difficulties caused by 
spreading a number of data format dialects. Besides this, there is 
also an advantage concerning document compliance with publica-
tion guidelines. The semantic validator can be configured with 
different rules mapping files so that different levels of compliance 
can be defined. Thus, it is possible to configure it to check com-
pliance with MIAPE-MS guidelines ((17)). Generally, an mzML 
file can be syntactically correct without being MIAPE conform. 
On the other hand, it can be MIAPE conform without fulfilling 
journal guidelines, e.g., Molecular and Cellular Proteomics guide-
lines ((33)). So this kind of flexibility may be helpful to generate 
custom-made files, which fulfill different levels of compliance. 
However, there is another advantage. Since it is possible to adjust 
the metadata regulations in the mapping file for different types of 
data, the file format can be fitted to encode other types of spectra 
than mass spectra (e.g., PDA spectra). In summary, it can be said 
that mzML’s semantic validator seems to be a valuable improve-
ment of mzData’s controlled vocabulary approach.

 1. The best way to study mzML’s schema is to load its latest 
XSD file in a XML editor with XSD graphical browsing func-
tionality (e.g., XMLSpy®, (34)). Then, one can easily browse 

6. Notes
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through its elements and attributes and read the correspond-
ing annotations. However, this is a more pleasant way than 
reading the XSD code itself. There is also a very similar way 
to study the latest controlled vocabulary OBO file. Instead of 
opening it with a text editor one can use OBO-Edit, a free 
editor for OBO files, which contains graphical browsing func-
tionality and may be downloaded on the mzML web page 
(16). Alternatively, one can browse through the latest 
controlled vocabulary file via the NCBO BioPortal web page 
for the mass spectrometry ontology (35) and an ordinary web 
browser.

 2. It is always valuable to know which software provides mzML, 
what is it good for and which vendors are going to add mzML 
support to their next release. Therefore, one should regularly 
visit the mzML web page (16). There is a clearly structured 
and consistently updated table outlining software providing 
current or future mzML support.

 3. There are two comfortable ways to validate a mzML file (13, 
20). One can use the ProDaC (Proteomics Data Collection, 
(36)) online validator (http://eddie.thep.lu.se/prodac_ 
validator/validator.pl) or the online validator that has been 
developed by Marc Sturm within the OpenMS project ((37), 
http://www-bs2.informatik.uni-tuebingen.de/services/
OpenMS/mzML/).

 4. If there is a need to add a new term to the PSI-MS controlled 
vocabulary, one should send a request to the PSI-PI work-
group by filling out an online form (http://www.psidev.info/
index.php?q=node/440). The request will be sent to the 
PSI-PI workgroup mailing list and discussed within the 
group. Usually, decisions are made contemporary.
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Abstract

Imaging mass spectrometry is the method of scanning a sample of interest and generating an “image” of 
the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra 
which are usually acquired with identical settings. Existing data formats are not sufficient to describe an 
MS imaging experiment completely. The data format imzML was developed to allow the flexible and 
efficient exchange of MS imaging data between different instruments and data analysis software.

For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is 
stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample 
details) are stored in an XML file which is based on the standard data format mzML developed by 
HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of 
imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) 
are connected by offset values in the XML file and are unambiguously linked by a universally unique 
identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file 
allows flexible handling of large datasets.

Several imaging MS software tools already support imzML. This allows choosing from a (growing) 
number of processing tools. One is no longer limited to proprietary software, but is able to use the pro-
cessing software which is best suited for a specific question or application. On the other hand, measure-
ments from different instruments can be compared within one software application using identical 
settings for data processing. All necessary information for evaluating and implementing imzML can be 
found at http://www.imzML.org.

Imaging mass spectrometry is the method of scanning a sample of 
interest and generating an “image” of the intensity distribution 
of a specific analyte. The principle of this method is shown  
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in Fig. 1. The application of MS imaging is rapidly growing with a 
constantly increasing number of different instrumental systems 
and software tools. An overview of methods and applications of 
mass spectrometry imaging has been recently published (1). This 
method results in a large number of spectra which are typically 
acquired with identical measurement parameters. The data for-
mat described in this chapter was developed within the EU-funded 
project COMPUTIS (2). The goal of this project was to develop 
new and improved technologies for molecular imaging mass spec-
trometry. An important task was the comparison of images gener-
ated by diverse types of mass spectrometers. Therefore a standard 
format for the exchange of MS imaging data was needed. Both 
the DICOM standard for in-vivo imaging data (3) and the mzML 
standard (4) by HUPO-PSI (5, 6) are not able to completely 
represent an imaging MS experiment. Therefore a standardized 
data format was developed to simplify the exchange of imaging 
MS data between different instrument and data analysis software. 
The following institutions were involved in the development of 
imzML: Justus Liebig University (JLU), Giessen, Germany; FOM 
Institute for Atomic and Molecular Physics (FOM), Amsterdam, 
The Netherlands; Commissariat à l’Énergie Atomique (CEA), 
Saclay, France; and Novartis Institutes for BioMedical Research 
(Novartis), Basel, Switzerland.

Several data formats for MS imaging utilize two separate files: 
a small file (ini or XML) for the metadata and a larger (binary) file 
for the mass spectral data (e.g., Biomap (7) and internal data for-
mats at FOM and JLU). This structure proved to be very useful 
for flexible and fast handling of the imaging MS data and it was 
decided to follow this approach for the new data format. In order 
to keep as close as possible to existing formats, we decided that 
the (small) metadata file should be based on the mass spectrom-
etry standard mzML developed by HUPO-PSI (8). A more 
detailed discussion on why mzML was not fully implemented and 
about the relation between the two data formats (mzML and 
imzML) is found in Note 1. A new controlled vocabulary was 

Fig. 1. Schematic process of scanning microprobe MALDI-MS. A desorption laser scans the surface of the target (e.g., a 
cell or tissue). The intensity of a selected peak in the resulting mass spectrum is transformed into a pixel of a grayscale 
image.
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compiled for imzML to include parameters that are specific for 
imaging experiments (see Subheading 2.1.2). All relevant infor-
mation about imzML including specifications and example files 
can be found at http://www.imzML.org.

The following section describes the design philosophy of 
imzML. The data structure is discussed in more detail in 
Subheading 2. Properties and possibilities of imzML files are dis-
cussed in Subheading 4. Available software applications including 
an example for a file converter are presented in Subheading 5.

The fundamental goal while developing imzML was to design a 
data format for the efficient exchange of mass spectrometry imag-
ing data. At the same time, the format should be easily inter-
changeable with mzML.

The main goals can be summarized as

 1. Ensure complete description of imaging MS experiments
 2. Minimize file size
 3. Ensure fast and flexible data handling
 4. Keep the (XML part of) imzML as close as possible to mzML

imzML consists of two separate files: one for the metadata and 
one for the mass spectral data. The metadata is saved in an XML 
file (*.imzML). The mass spectral data is saved in a binary file 
(*.ibd). A schematic representation of the imzML file structure is 
shown in Fig. 2. The connection between the two files is made via 

2. imzML Data 
Format

2.1. Data Structure

Fig. 2. Data structure of imzML.
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links in the XML file which contain the offset positions of the 
mass spectra in the binary file. It is important to keep in mind that 
the information is only valid if both files are available. Therefore 
the user should be very careful when copying or moving those 
files; inaccurate file handling can result in data loss. It is recom-
mended to keep both files in the same folder and to use the same 
names for the .imzML part and the .ibd part.

Corresponding XML and binary files contain the same 
universally unique identifier (UUID) (9) in order to link them 
unequivocally. The UUID is a controlled vocabulary entry in the 
<fileContent> tag of the XML file and is also stored at the begin-
ning of the binary file. Comparing both UUIDs allows finding 
out if the two files belong to the same measurement/data set. 
More details on the implementation of UUIDs are discussed in 
Note 2.

The XML file holds the metadata of a MS imaging experiment 
which is described by the mzML-based XML structure and the 
controlled vocabulary. The XML model of imzML is the same as 
for mzML (see the mzML version 1.1.0 documentation for fur-
ther details) (8). The controlled vocabulary was extended in order 
to include additional parameters which are needed to describe an 
MS imaging experiment (see Subheading 2.1.2). Most of the 
changes in the XML part are related to cvParam mapping rules 
for the newly introduced parameters of the imaging controlled 
vocabulary. One of the most important changes compared to 
mzML is the function of the <binary> element which not contain 
base64-encoded binary data anymore. It stays empty, which is 
compatible to mzML 1.1.0. This results in predefined values for 
“encoded length” and “array length” of zero in the parent tags 
<spectrum> and <binaryDataArray>. The XML part of imzML 
passes mzML validators without errors (only warning messages 
for unknown cv entries are displayed). An example of XML code 
is given in Fig. 3. Modifications (compared to mzML) are printed 
bold and will be discussed in more detail in the following 
section.

The controlled vocabulary is used to unequivocally describe the 
information in the XML file. The additional imzML CV terms are 
stored in an open biomedical ontology ((10, 11)) – the imag-
ingMS.obo file (12). They complement the mass spectrometry 
parameters of the MS controlled vocabulary provided by HUPO-
PSI (13) in order to allow a complete description of MS imaging 
experiments. An overview of CV entries concerning imaging-spe-
cific parameters and image properties is given in Table 1. These 
parameters include information about the image itself and acqui-
sition parameters. For example: How many pixels does the 
image contain in the x and y dimension? Which position in 

2.1.1. XML

2.1.2. Controlled 
Vocabulary
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the image belongs to which spectrum? In which pattern was the 
image scanned? Which Matrix was used in which concentration? 
It is also necessary to give information about the instrumentation 
used. In addition to the mass spectrometer, the ablation laser type 
and parameters have to be documented such as wavelength, 
energy, and impact angle. The sample stage also plays an essential 
role when generating an image: step size and position accuracy. 
The parameters concerning the scanning process are explained in 
more detail in Subheading “Image Orientation”.

Additional entries were included, which are necessary for han-
dling the external binary file. Four parameters were introduced 

Fig. 3. XML code new CV entries are printed bold.
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Table 1 
Additional parameters of the controlled vocabulary

ibd file:
External binary uri Location as an URI where to find the ibd file.

ibd checksum:
ibd MD5 MD5 (Message-Digest algorithm 5) is a cryptographic hash 

function with a 128-bit hash value used to check the integrity of 
files.

ibd SHA-1 SHA-1 (Secure Hash Algorithm-1) is a cryptographic hash function 
designed by the National Security Agency (NSA) and published 
by the NIST as a U. S. government standard. It is also used to 
verify file integrity.

ibd binary type:
Continuous Way of saving spectra in an imzML binary data file (ibd). The m/z 

values for all spectra are saved at the beginning of the ibd file. 
Then the spectral values follow.

Processed Way of saving spectra in an imzML binary data file (ibd). Every 
spectrum is saved with its own m/z and intensity values.

ibd identification:
Universally unique identifier Universally unique identifier is unique throughout the world and 

allows to doubtlessly identify the ibd file.

ibd offset handle:
External array length Describes how many fields the external data array contains.
External data Shows that there is no data in the <binary> section of the file but 

saved in an external file.
External encoded length Describes the length of the written data stream in byte.
External offset The position in byte where the data of the data array of a mass 

spectrum begins.

Image:
Absolute position offset x Describes the position at the x-axis of the upper left point of the 

image on the target.
Absolute position offset y Describes the position at the y-axis of the upper left point of the 

image on the target.
Max count of pixels x Maximum number of pixels of the x-axis of the image.
Max count of pixels y Maximum number of pixels of the y-axis of the image.
Max dimension x Maximum length of the image in x-axis.
Max dimension y Maximum length of the image in y-axis.
Pixel size x Describes the length in x-direction of the pixels.
Pixel size y Describes the length in y-direction of the pixels.
Image shape Describes the shape of the image.

Laser shot mode:
Pixel mode The laser keeps the position while firing at the same spot one or 

several times.
Raster mode The laser is moved while continuously firing at the sample.
Stigmatic mode The laser is moved around one point firing until moved to the next 

position (pixel).

(continued)
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Table 1 
(continued)

Spectrum position:
Position x Attribute to describe the position of a spectrum in the direction of 

the x-axis in the image.
Position y Attribute to describe the position of a spectrum in the direction of 

the y-axis in the image.
Position z Attribute to describe the position of a spectrum in the direction of 

the z-axis in the image.
Subimage position x Describes the position of a subimage in the direction of the x-axis of 

the complete image.
Subimage position y Describes the position of a subimage in the direction of the y-axis of 

the complete image.
Subimage position z Describes the position of a subimage in the direction of the z-axis of 

the complete image.

Sample stage:
Target material Describes the material the target is made of.
Linescan sequence:
Bottom up The starting point is at the bottom of the sample and the sequence 

of the linescans is in up direction (parallel to the y-axis).

Top down The starting point is at the top of the sample and the sequence of 
the linescans is in bottom direction (parallel to the y-axis).

Left right The starting point is at the left of the sample and the sequence of 
the linescans is in right direction (parallel to the x-axis).

Right left The starting point is at the right of the sample and the sequence of 
the linescans is in left direction. (parallel to the x-axis).

No direction The linescans are performed randomly on the sample without any 
sequence.

Scan pattern:
Meandering The scanning happens in non-stop way. As soon as the end of the 

sample is reached, the scanning direction will be switched and the 
scanning is continued. There is no new positioning necessary.

Flyback The scanning always happens in the same direction. As soon as the 
end of the sample is reached, the stage is positioned at the 
starting edge to begin the next run.

Random access The scanning points are randomly chosen and do not follow a 
pattern.

Scan type:
Horizontal linescan The scanning line is a horizontal one.
Vertical linescan The scanning line is a vertical one.

Linescan direction:

Linescan bottom up The starting point is at the bottom of the sample and the scanning 
happens in up direction (parallel to the y-axis).

Linescan left right The starting point is at the left of the sample and the scanning 
happens in right direction (parallel to the x-axis).

Linescan right left The starting point is at the right of the sample and the scanning 
happens in left direction. (parallel to the x-axis).

Linescan top down The starting point is at the top of the sample and the scanning 
happens in bottom direction (parallel to the y-axis).
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into the controlled vocabulary to describe the position and length 
of the data in the binary file. The “external data” parameter indi-
cates that the mass spectral data is stored in a binary file. The 
parameter “external offset” holds the information at which byte 
in the binary file the data of the corresponding array starts. If one 
adds the value of the “external encoded length” to the value of 
the “external offset” the result has to be equal to the “external 
offset” of the following binary data array. The parameter “exter-
nal encoded length” describes the byte length, which has to be 
read to obtain all the data of the array completely. The parameter 
“external array length” indicates the number of values of the 
array.

A separate checksum for the binary file was added in order to 
find out if the external file has been manipulated or corrupted. It 
can be either a SHA-1 (Secure Hash Algorithm) or a MD-5 
(Message-Digest Algorithm) hash.

Ensuring the integrity and authenticity of digital data is of 
growing importance in today’s information management systems 
especially for companies who have to operate in accordance with 
GLP regulations (14). Therefore imzML contains a mechanism 
to monitor (intentional or accidental) modifications of the data. 
This feature is based on asymmetric cryptosystems, also known as 
public key systems and hash functions. The checksum of the 
binary file is encrypted with a personal key. A public key is needed 
in order to verify the integrity of the checksum (and therefore the 
data). This feature (in its basic version) only requires three addi-
tional CV entries in the XML file and can thus be easily added to 
existing imzML files. This modular setup also allows for changing 
the used encryption procedure, e.g., when one method turns out 
not to be secure anymore. The encryption is an additional optional 
feature. This means the data is still readable without the public 
key, but authenticity cannot be tested in this case. This will pro-
tect data against loss (e.g., when one of the keys is lost) and also 
ensures readability of the data with (older) software that does not 
include the encryption feature.

The pixel in the upper left corner of the MS image is defined as 
position 1/1 (Fig. 4). This way every application should generate 
images of identical orientation. This particular orientation was 
chosen because it is used for image acquisition in several MS 
imaging systems. The information of x and y position is part of 
the CV parameters in the <spectrum> tag of each mass spectrum 
(see also Fig. 3).

Information about the pattern and sequence in which an image 
was acquired is not necessary for generating an image from the 
imzML file (because x and y position are specified for each indi-
vidual spectrum). But these parameters can be very important for 

2.1.2.1. Image Orientation

2.1.2.2. Scan Pattern
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data analysis and interpretation and are therefore part of the 
imzML controlled vocabulary. The scan process is unambiguously 
described by four parameters. The different scan parameters are 
illustrated by examples in Fig. 5. The parameter scan pattern 
gives information if the sample was scanned in fly-back or mean-
dering mode. Fly-back means that the linescans always occur in 
the same direction. Meandering indicates that the linescans occur 
in alternating direction. The scan type defines horizontal or ver-
tical linescans. The linescan direction defines the direction of 
the (first) linescan(s). The linescan sequence specifies the chron-
ological order of the linescans.

Fig. 4. sample orientation.

Fig. 5. Examples of scan patterns.
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The imaging binary data file (*.ibd) contains the mass spectral 
data of the MS imaging measurement. The first 16 bytes of the 
binary file are reserved for the UUID. This identifier is also saved 
in the corresponding XML file so that a correct assignment of ibd 
and XML file is possible even if the names of both files are differ-
ent. In order to ensure efficient storage, two different binary 
modes are defined: continuous and processed. Schematic exam-
ples of these two data types are shown in Fig. 6. “Continuous” 
means that an intensity value is stored for each m/z bin even if 
there is no signal (resulting in an intensity of zero). As a result, 
the m/z axis is identical for all spectra of one image (if the mass 
range and bin size is not changed). Therefore it is sufficient to 
store the m/z array only once in the binary file (directly behind 
the UUID). For each of the spectra only the corresponding inten-
sity values are stored. This structure can reduce the file size sig-
nificantly (see Subheading 3).

On the other hand mass spectra are often processed before they 
are stored, e.g., for noise-reduction, peak-picking, deisotoping. 
This results in discontinuous and non-constant m/z arrays. In this 
case, the m/z array has to be stored for each spectrum separately. 
These data are stored as alternating m/z and intensity arrays in 
the binary file of imzML. The different storage types are illus-
trated in Fig. 7. More information on choosing the right binary 
mode is given in Note 3.

The second parameter influencing the file size is the binary 
data type, which is used to store the values of the spectra. The 
imzML binary format allows the storage of values in the following 
signed integer types: 8 bit, 16 bit, and 32 bit. The values can also 
be saved in floating point data types (IEEE 754): 32 bit (single 
precision) or 64 bit (double precision). The byte order of mass 
spectral data in imzML is little endian (see also Note 2). One 
value saved in the 32 bit integer type needs four bytes of disk space. 
The disk space needed by all values of all spectra determines the 

2.1.3. Binary Data File

Fig. 6. Data types.
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overall file size. Therefore the choice of the data types for intensity 
and m/z values directly influences the file size of the binary file. 
The data type is specified for each binary data array separately by 
CV parameters. More details can be found in Note 4.

The efficient data storage of the imzML format is demonstrated 
by an example file consisting of 7,000 spectra (Fig. 8). This file 
represents a measurement on a linear ion trap mass spectrometer 
(LTQ, Thermo Scientific GmbH, Bremen) (linear ion trap) of 50 
by 35 pixel with four spectra (profile mode) acquired for each 
pixel. The original raw data in the proprietary LTQ format has a 
file size of 215 MB. The imzML files were saved with the follow-
ing settings: m/z values were stored as 32 bit float and intensity 
values as 32 bit integer. Conversion of this data to an mzML file 
results in a file size of 577 MB. The imzML files are 430 MB and 
217 MB for the processed and continuous mode, respectively. 
The smaller size of the processed imzML file compared to the 
mzML file is mainly due to base64 encoding of the mass spectral 

3. imzML File 
Properties

Fig. 7. Binary data formats.
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data in the mzML file. The even smaller file size of the continuous 
imzML file is due to the fact that the m/z array (which is identical 
for all mass spectra) is stored only once at the beginning of the 
binary file (see Subheading 2.1.3 for more details). The continu-
ous imzML file is slightly larger (2 MB) than the original raw file.

In addition to the smaller overall size of the imzML files, the 
small XML file (several MB) can be used to distribute metadata 
over the network. This information can be used to select interest-
ing measurements for which the (large) binary files are down-
loaded selectively (as opposed to downloading the complete 
dataset for all samples).

imzML is already implemented in a number of software tools 
(some of them are available on http://www.imzML.org). Several 
vendors of mass spectrometry imaging instrumentation support 
the format (e.g., through export filters). Please check the imzML 
website (http://www.imzML.org) for updated information on 
supported vendor platforms and available tools.

There are numerous ways to display and analyze MS imaging data 
and no single software application can combine all features. 
Therefore it is a big advantage if one can freely choose the most 

4. Implementation

4.1. Displaying Tools

Fig. 8. File size comparison.
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appropriate software and is not limited by (proprietary) data 
formats anymore. Examples of software tools that support imzML 
to display and analyze MS imaging data are shown in the follow-
ing. A standard sample (peptide solution on a stainless steel tar-
get) was used for a round-robin experiment in order to compare 
different mass spectrometry imaging systems. The images below 
show the analysis of this particular measurement on a linear ion 
trap mass spectrometer with different software tools. The selected 
ion image of m/z 573 is shown for each tool in order to verify 
that the data is read and displayed correctly. The specific advan-
tages of each software are illustrated with selected examples.

Biomap by Novartis (Fig. 9) is one of the most widely used 
software tools for mass spectrometry imaging. It allows browsing 
through selected ion images as well as coregistration of images 
and includes a large number of additional analysis tools.

The Datacube Explorer tool by FOM allows dynamic scroll-
ing through masses in a dataset for fast and easy screening of a 

Fig. 9. BioMap (Novartis).
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dataset (Fig. 10). It also allows spectral analysis of regions of interest 
and contains advanced analysis features such as self-organizing 
maps for image classification. This tool is available for free on 
http://www.imzML.org.

The fxSpectViewer by CEA is especially suited for handling 
very large data files without the need of binning (Fig. 11). It also 

Fig. 10. Datacube Explorer (AMOLF).

Fig. 11. fxSpectViewer (CEA).
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includes automatic segmentation of images. This software runs 
under Linux and Windows.

Mirion by JLU was especially developed for analyzing high 
mass resolution images (Fig. 12). It allows a bin width of 0.001 
mass units. This is necessary to take full advantage of the highly 
accurate mass data from FTMS instruments. It also allows over-
laying different MS images as well as optical images. Individual 
mass spectra are directly accessible from the image.

Several converters for imzML are currently developed and some 
are already available on the imzML website (http://www.imzML.
org). An example and general considerations for the conversion of 
proprietary data to the imzML format is discussed in the following. 
The example shows a software that converts LTQ-based *.RAW 
files (proprietary format of Thermo Scientific GmbH, Bremen).

The “Conversion” tab contains details about the input RAW 
file. The “Imaging” tab (Fig. 13) includes the information that is 
essential to generate a valid imzML file – and therefore an unam-
biguous image. “Binary Mode” determines in which way the data 

4.2. Converters

Fig. 12. Mirion (Justus Liebig University).
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Fig. 13. imzML converter: User interface for imaging details.

is stored in the binary file. This option can have significant 
influence on the size of the resulting imzML file (see also Fig. 8). 
A discussion on which binary mode to use (processed or continu-
ous) can be found in Note 3.

The second property that influences the file size is the data 
type which is used to store the values of the m/z and intensity 
arrays. This information is included in the “Data Type Details.” 
Considerations for choosing the appropriate parameters are given 
in Note 4.

The original file might not contain all necessary information 
to generate a valid imzML file. This implies that the user has to 
add these details manually, for example, the entries on the right 
side (“Image Details”). The first four properties specify the char-
acteristics of the scanning procedure which was used when the 
image was acquired (see Subheading “Scan Pattern”).

Further information to be put in manually is included in the 
“Experiment” tab (Fig. 14). The parameters on the left describe 
the laser which was used in the MALDI imaging experiment. On 
the right side, the properties of the sample are listed. These 
parameters can be included, but they are not required to create a 
valid imzML file

When programming such a converter it is important to keep 
in mind that redundant information should be avoided if possible 
(for the sake of small data files). Some information might be 
stored redundantly in XML part of imzML. If for example data is 
acquired within an imaging experiment, all the measurements are 
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usually acquired with the same instrumental settings and mea-
surement conditions. Therefore it is sufficient to store this 
information only once per experiment and not for each spectrum 
separately. This redundant kind of information can nicely be 
merged into referenceable parameter groups (8). The file size can 
be reduced further by omitting CV param values that can be 
retrieved from the mass spectral data (e.g., base peak intensity).

 1.  Why not use mzML?
 First of all mzML was not available at the beginning of the 

COMPUTIS project (2006). At later stages we evaluated 
mzML with respect to imaging MS data. The main concern 
was the file size of converted data sets. Storing the MS data 
in a separate binary file is crucial for handling the very large 
imaging MS data sets. After it became clear that our main 
requirement (a separate binary file) was not possible in 
mzML, we decided to continue with our own format. 
However, we decided to store our metadata in the mzML 
format in order to be able to easily convert between the two 
formats. During the last years we stayed in contact with 
HUPO-PSI at various occasions. The result of these discus-
sions was that we call our format imzML (for imaging mzML) 
and that it will exist in parallel to mzML for specific use cases 

5. Notes

Fig. 14. imzML converter: User interface for experimental details.
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(e.g., large data sets). The structure of the XML metadata file 
in imzML will remain compatible with mzML. The imaging 
specific CV parameters will be kept in a separate imagingMS 
obo file. A number of entries from this file (which were of 
general importance) have already been included in the 
PSI-MS OBO file.
 imzML files can easily be converted to mzML files (with 
the consequence of increased file size and limited metadata) 
in order to use mzML-based tools.

 2.  Byte order of UUID
  Binary data can be stored in “little endian” or “big endian” 

(net standard) byte order. Mass spectral data in imzML binary 
files is stored in little endian byte order. The universally 
unique identifier (UUID), however, is stored in big endian 
according to the RFC 4122 specifications (cf.).

   Intel processors and clones use little endian, therefore 
integers in the computer memory are also little endian num-
bers. Depending on the programming language which is 
used, byte order may be automatically “corrected” when 
reading big endian UUIDs. But some widely used program-
ming languages have no such automatic correction. So the 
programmer has to take care of this.

   In the imzML binary file the first 16 bytes are the binary 
representation of the UUID. A hexadecimal viewer can be 
used to examine these bytes, for example: 52 33 F9 E6 09 B9 
4A 00 AB 01 AF 5D F4 BE 38 15.

   In the corresponding imzML file the textual version of the 
UUID which consists of 5 blocks delimited by a “-”-char is: 
{5233F9E6-09B9-4A00-AB01-AF5DF4BE3815}. Be aware 
that in a correct implementation, both representations should 
have the same sequence of hexadecimal numerals.

   When implementing imzML on a Microsoft operating 
system, one will usually use the Microsoft implementation of 
UUID: GUID (general unique identifier). Its memory rep-
resentation is defined by:

 TGUID = structure

Data1 : 4 byte unsigned integer;
Data2 : 2 byte unsigned integer;
Data3 : 2 byte unsigned integer;
Data4 : array of 8 bytes;

end structure;
   In this structure, Data1, Data2, and Data3 are numbers 

and therefore subject to byte order, whereas Data4 is just an 
array of 8 bytes (and thus independent of byte order). That 
means when dumping this memory representation on a little 
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endian computer into a binary file Data1, Data2 and Data3 
are inverted whereas Data4 is not inverted.

 3. Continuous or processed format
  The binary mode (continuous or processed), which is used in 

the binary file has significant influence on the overall size of 
imzML files and is therefore an important parameter. Data 
with a continuous mass axis is often generated by time-of-
flight instruments. Discontinuous data can be the result of 
data processing. In some cases the appropriate (most effec-
tive) data format can vary for one instrument depending on 
the settings and mode of operation. For example, LTQ-based 
instruments can generate profile or continuous data in the 
linear ion trap mode. Measurements performed in the cen-
troid mode always have to be saved as “processed” due to the 
discontinuous mass axis. When the acquisition is set to pro-
file mode the data format depends on the mass analyzer used 
for the acquisition. Data from Fourier transform analyzers 
(ICR or Orbitrap) is always modified before storage and thus 
has to be stored as “processed” (because of on-the-fly data-
processing). If the linear ion trap analyzer is used for detec-
tion the data can be saved in continuous mode.

   It is possible to convert continuous into processed data. 
The m/z values of the first spectrum simply have to be saved 
for every spectrum. After conversion, all advantages of the 
processed mode are usable: for example, skipping zero inten-
sity values.

   A special case is the storage of data acquired by secondary 
ion mass spectrometry (SIMS). This data is typically stored in 
an “event-based” format due to the much lower number of 
ions detected in this ionization mode. A data point consists 
of three values: x, y coordinates, and m/z (or time-of-flight) 
value. This data has to be converted in order be stored in the 
binary file. For each pixel the events are sorted by increasing 
m/z values (after conversion from time-of-flight, if neces-
sary). These data have to be binned in order to be stored as 
mass spectra: events within a defined mass bin (e.g., 1 u) are 
summed up. The binned data can be stored in the binary file 
of the imzML format (usually in the “processed mode”).

   It has to be stressed again that the most efficient data for-
mat strongly depends on the type of data and has to be evalu-
ated for each set of experiments.

 4. How to choose the appropriate binary data type?
  As already mentioned above the size of the binary file is 

dependent on the applied data. Choosing an unsuitable data 
type either results in loss of information or unnecessarily large 
data files. Some considerations on deciding which data type 
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to use for m/z and intensity values, respectively, are given 
below. If the data of a mass spectrometry imaging experi-
ment was acquired by a very accurate mass spectrometer 
(e.g., FT-ICR), the accuracy of the measured m/z values 
(up to eight significant digits) should be taken into account 
by choosing the “64 bit float” (double precision) data type 
(up to 15 significant digits). Storing the data in “32 bit float” 
(single precision) would only allow seven significant digits, 
resulting in a loss of precision.

   Intensity values of acquired spectra can be of integer or 
floating point data type. This depends on the way the ions 
are detected and on the digitizer of the used mass spectrom-
eter. The best data type for integer values can be estimated by 
taking a look at the maximum intensity value of all spectra. If 
for example, the maximum intensity value is 125 then a data 
type of 8-bit integer will be sufficient to store these values. 
The usage of a data type with a range too small for all the 
values of a mass spectrometry imaging experiment will result 
in a loss of information. The same applies for the usage of an 
integer data type for floating point values, because the deci-
mals of the numbers will be cut off by rounding.
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Chapter 13

Tandem Mass Spectrometry Spectral Libraries  
and Library Searching

Eric W. Deutsch 

Abstract

Spectral library searching in the field of proteomics has been gaining visibility and use in the last few 
years, primarily due to the expansion of public proteomics data repositories and the large spectral libraries 
that can be generated from them. Spectral library searching has several advantages over conventional 
sequence searching: it is generally much faster, and has higher specificity and sensitivity. The speed 
increase is primarily, due to having a smaller, fully indexable search space of real spectra that are known 
to be observable. The increase in specificity and sensitivity is primarily due to the ability of a search engine 
to utilize the known intensities of the fragment ions, rather than just comparing with theoretical spectra 
as is done with sequence searching. The main disadvantage of spectral library searching is that one can 
only identify peptide ions that have been seen before and are stored in the spectral library. In this chapter, 
an overview of spectral library searching and the libraries currently available are presented.

Proteomics via mass spectrometry has become an important tool 
in our understanding of how complex biological systems function 
at all levels. At a more basic level, mass spectrometry-based pro-
teomics provides a tool to better annotate our still basic under-
standing of genomes and the ability to characterize medically 
important subproteomes – or indeed our whole proteome.

By far the most prevalent tool for such work is tandem mass 
spectrometry (MS/MS), also called the “shotgun” method, as 
the technique involves: breaking intact proteins into smaller pep-
tides; sequencing those peptides; and coalescing the results into 
protein identifications in a manner reminiscent of genomic 
shotgun sequencing. One challenge of shotgun proteomics is the 
formidable informatics analysis that must be applied to the raw 
data to achieve reliable results (1).

1. Introduction
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The main informatic challenge comes in determining which 
peptide is represented by each mass spectrum. Most spectra are of 
insufficient quality to allow a direct reading of the sequence from 
the spectrum peaks, and therefore the usual approach is to generate 
theoretical spectra from a subset of possible peptides selected from 
a reference set of proteins and then to choose the peptide whose 
theoretical spectrum most closely matches the observed spectrum. 
In such a way, the search engine returns an answer for every spec-
trum, and the resulting additional challenge is to separate the cor-
rect from the incorrect answers as best as possible and determine 
the false discovery rate amongst the chosen positive population.

There are two stark shortcomings in the sequence searching 
technique. First, there is currently no good model for reliably 
predicting the relative intensities of the peaks in a theoretically 
generated spectrum, and therefore when comparing real to theo-
retical spectra, only the m/z values are compared and relative 
intensity information is ignored. Second, every search is per-
formed from scratch without considering whether the current 
peptide may have been seen before.

A relatively new technique called spectral library searching 
addresses these two shortcomings. Spectra previously identified 
with high confidence are assembled into a library and new data 
are searched against the library. Since the reference spectra are 
real spectra, the relative intensity information in each spectrum 
may be leveraged to its full potential. The technique has recently 
gained considerable interest and use due to the emerging availabil-
ity of high quality spectral libraries. The current state of libraries 
and searching software will be described in this chapter.

The basic technique of spectral library searching (sometimes also 
called spectrum matching) is briefly described as follows. For each 
spectrum in a list of new input spectra, a set of possible matches 
is selected from a reference spectrum library based on similar pre-
cursor m/z. Each of these possible matches is compared to the 
real spectrum using a technique such as a dot product, which 
includes the relative intensities of the peaks. The best match is (or 
top N matches are) reported in the same way as sequence searching 
and most downstream processing is then similar.

The most obvious shortcoming of this approach is that only 
peptides which have been previously observed can be identified. 
A high quality spectrum of a novel peptide will not be correctly assigned. 
This is a serious issue for discovery experiments, but is not serious for 
a time course experiment where all the peptides are known and the 
requirement is merely to find and quantify them in each time point.

2. Spectral Library 
Searching
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Three clear advantages of spectral library searching are significantly 
improved speed, specificity, and sensitivity. Speed is increased pri-
marily for two reasons. First, there is no need to exhaustively 
search an entire protein sequence reference list for peptides of 
m/z similar to the input spectrum and no theoretical spectra need 
to be generated for comparison. Rather, a simple indexing scheme 
can quickly pull only the candidate spectra from the library for 
immediate comparison with the input spectrum. Second, the over-
all search space is usually reduced because spectrum libraries only 
contain spectra that have been previously observed and do not 
contain the many peptides that have not been previously observed 
and indeed are not likely to be observed in any experiment.

Specificity is significantly improved because a library spec-
trum will be a much closer match to a new spectrum than its cor-
responding theoretical one (Fig. 1). Consider a spectrum that can 
be readily identified via sequence searching with a certain confi-
dence. Its match to the spectrum library entry will be significantly 
more confident because peak intensity information is used to 
better discriminate from the population of incorrect matches.

Finally, sensitivity is markedly improved. Many additional low 
signal-to-noise spectra can be identified because the intensity infor-
mation is available to the search engine. Consider a low signal-to-
noise spectrum where only a handful of the most intense peaks are 
discernable. In a sequence search, the confidences of the matches 
of those peaks do not significantly rise above the noise of other pos-
sible matches. However, for a spectral library search if those few 
peaks are known to be the most intense peaks in the match, then 
the resulting score can be sufficiently distinguished from the noise 
of random matches to yield a reasonably confident identification.

2.1. Performance

Fig. 1. Comparison of sequence searching and spectral library searching vs. real spectra. Left panel: a real query spectrum 
(bottom) compared with a simulated theoretical spectrum typically generated by sequence search engines. Major peaks 
are present, but it is difficult to see the comparison; yet sequence search engines perform reasonably well. Right panel: 
a spectral library entry compared with another real query spectrum (from the same peptide as the left panel, but of 
significantly lower signal-to-noise ratio).
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The significant advantages afforded by spectral library searching 
make it a desirable addition to any analysis plan. If the missing of 
identifications of peptides that are not in the spectrum library is a 
serious concern, then an iterative or parallel approach where the 
dataset is searched against both the spectrum library and a pro-
tein sequence list and the results combined is an attractive alter-
native. Since spectral library search is so fast, it rarely increases the 
total search time over sequence searching alone.

Spectral library searching was initially proposed a decade ago (2), 
but the lack of freely available software, inability to easily create 
libraries, and lack of any public libraries caused this technique to see 
little use. Then in 2006, there was a resurgence of interest in this 
approach with three articles published in close succession (3–5).

The X!Hunter program (4), part of the GPM suite of tools 
(6), is very fast and works with the comprehensive libraries dis-
tributed by the GPMdb project. The program does not work with 
other formats.

The Bibliospec suite of tools (5, 7) from the MacCoss lab at 
the University of Washington provide a library creation program 
(BlibBuild), a library filtering program (BlibFilter), and a library 
searching program (BlibSearch) as well as some additional tools 
all made available at http://proteome.gs.washington.edu/software/
bibliospec/documentation/index.html.

The SpectraST program (3) from the Institute for Systems 
Biology is a comprehensive program that enables both the building 
of one’s own spectral libraries and the searching of new data with 
those or publicly available libraries. SpectraST can convert most 
of the known library formats (described below) into its own 
indexed binary format. SpectraST is included as part of the Trans-
Proteomic Pipeline (TPP) software suite (8, 9), which allows it to 
be easily installed on several platforms, makes it compatible with 
the other popular downstream processing tools of the TPP such 
as PeptideProphet (10), and ensures compatibility with the popular 
pepXML format (8, 11).

The Bonanza program (11) from the Andrews Lab at the 
University of Michigan takes a somewhat different approach of 
clustering all input spectra together first and then trying to iden-
tify those clusters rather than the individual spectra. Although the 
Bonanza algorithm is described (11), the original software is not 
available, but rather integrated into the commercial software 
Cluster (http://www.singleorganism.com/).

The National Institute of Standards and Technology (NIST) 
also distributes (http://chemdata.nist.gov/mass-spc/Srch_v1.7/
index.html) a spectral library search program with its very high 
quality libraries (described below). This is a Windows program 
generally optimized for low-throughput manual exploration of 
the libraries and potential matches of new spectra. This algorithm 

2.2. Software
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has also been integrated into soon-to-be-released versions of the 
Open Mass Spectrometry Search Algorithm ((12); OMSSA) 
sequence search engine, creating a hybrid engine.

Spectral library searching approaches can only be as good as the 
spectral library used for processing a dataset. Lack of good libraries 
is the primary reason that it took so long for spectral library 
searching to catch on. It was the advent of public data reposito-
ries that spurred the release of raw spectra to public and enabled 
the creation of large spectral libraries. Several resources provide 
libraries for some major species, as is described below. If there is 
no adequate library for the species of interest, then one must 
create a spectrum library first, and there are now some good tools 
to do this.

The problem of false positives is important when using the 
spectral library searching approach. Errors in the library can easily 
be propagated to new datasets with apparent low error. Consider 
the case where a multiply observed spectrum with a high quality 
consensus spectrum is misidentified because the true sequence is 
not present in the protein list and incorrectly inserted into the 
library. Subsequent spectral library searching may match a new 
input spectrum to the library entry with a very high score with an 
apparent very low chance of being wrong, but the identification 
will be wrong because the library entry is wrong. One technique 
to mitigate this is to assign a probability that each identification is 
correct in the library and then cap the probability of any matches 
to that of the library entry (13). Thus, if the peptide assigned to 
the spectrum in the library is only 90% likely to be correct (i.e., 
P = 0.9), then even a very high score match to this spectrum may 
not be assigned a probability >0.9.

At the PeptideAtlas web site there is a “Spectrum Libraries 
Central” page (http://www.peptideatlas.org/speclib/) that will 
be maintained in the future (Fig. 2) furnishing all the libraries 
generated at NIST, as well as libraries created at ISB, and links to 
additional spectrum library searching resources. As new resources 
become available subsequent to the writing of this chapter, they 
will be listed at this PeptideAtlas page.

NIST has systematically collected raw data from many different 
repositories and via private communication and used all these 
data to build very high quality spectrum libraries for several dif-
ferent species and samples. The libraries are distributed in MSP 
format both at NIST and ISB. The format is compatible with 
SpectraST and the NIST MS Search software.

3. Spectral 
Libraries

3.1. Availability
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The MacCoss lab at the University of Washington has com-
piled libraries for seven different species based on data collected 
in that lab, and makes the libraries available at their web site 
(http://proteome.gs.washington.edu/software/bibliospec/
documentation/libs.html). They are distributed in the binary 
format for their BiblioSpec tool.

The GPM provides a set of libraries in their HLF format for 
use with X!Hunter at ftp://ftp.thegpm.org/projects/xhunter/
libs/. The SpectraST software can convert this format to its own 
native format for use by SpectraST. One notable variation with the 
GPM libraries is that each spectrum only retains the top 20 peaks. 
This makes the libraries very small and the searching very fast, 
although it appears that retaining only the top 20 peaks leads to 
inferior specificity and sensitivity (13).

There are no official standard formats for encoding spectrum 
libraries. Each independent group has created their own format. 
The Proteomics Standards Initiative (PSI) has not yet, as of this 
writing, developed a standard file format for spectrum libraries to 
complement its formats for mass spectrometer output files (mzML 
(14)) and search engine output (mzIdentML (15)), although the 
latter might be used for spectrum libraries at some point in the 
future. NIST distributes their libraries in their MSP format. GPM 
distributes libraries in their HLF format. ISB distributes libraries 
in their SpectraST format. The SpectraST software is capable of 

3.2. Formats

Fig. 2. PeptideAtlas “Spectrum Libraries Central” page providing the most up-to-date list of spectral library searching 
projects and software as well as lists of downloadable spectrum libraries generated at ISB and also by NIST.
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reading most of these formats, but can only convert these other 
formats to its splib indexed binary format and its sptxt plain-text 
format similar to the MSP format.

If none of the currently available spectrum libraries suits the needs 
of a certain analysis problem (e.g., if the data are from a species 
for which there are no libraries) then a custom library must be 
created. Any data that is processed with the TPP’s PeptideProphet 
can be converted into a spectrum library using the SpectraST 
software. The BlibBuild software can create a spectrum library 
from input data that are in the MS2 format.

Spectral library searching is a powerful technique that enjoys 
speed, sensitivity, and specificity advantages over sequence searching. 
However, it is in many ways less flexible and therefore cannot be 
an alternative for some kinds of analysis. However, for many anal-
yses it does provide a significant advantage and can also be com-
plementary to conventional search strategies in a way that 
significantly increases the total number of identified spectra. As 
the libraries become more comprehensive and combining multiple 
searches into a single result becomes more prevalent, spectral 
library searching will become recognized as a crucial element to 
many analyses.
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Chapter 14

Inter-Lab Proteomics: Data Mining in Collaborative Projects 
on the Basis of the HUPO Brain Proteome Project’s Pilot 
Studies

Michael Hamacher, Bernd Gröttrup, Martin Eisenacher, Katrin Marcus,  
Young Mok Park, Helmut E. Meyer, Kyung-Hoon Kwon, and Christian Stephan 

Abstract

Several projects were initiated by the Human Proteome Organisation (HUPO) focusing on the proteome 
analysis of distinct human organs. The initiative dedicated to the brain, its development and correlated 
diseases is the HUPO Brain Proteome Project (HUPO BPP). An objective data submission, storage, and 
reprocessing strategy have been established with the help of the results gained in a pilot study phase 
and within subsequent studies. The bioinformatic relevance of the data is drawn from the inter-
laboratory comparisons as well as from the recalculation of all data sets submitted by the different groups. 
In the following, results of the single groups as well as the centralised reprocessing effort are summarised, 
demonstrating the added-value of this concerted work.

Due to the need for an international proteomic forum to improve 
understanding of human diseases, the Human Proteome 
Organisation (HUPO) was launched in February 2001 (1). 
Several initiatives are focused on the study of human organs and 
their specific diseases, especially by proteomic means. The initia-
tive dealing with the brain is the Brain Proteome Project (HUPO 
BPP) (2–4), founded in 2003 and chaired by Young Mok Park, 
KBSI, and Helmut E. Meyer, MPC.

The brain is of highest interest in medical research and in 
pharmaceutical industry because of the increasing social impact of 
the neurological diseases, such as Alzheimer’s disease, Parkinson’s 
disease, Multiple Sclerosis, etc. The prevalence of some of these 
diseases is increasing within the last decades, e.g. every fifth person 
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over 80 years in industrial countries is suffering from Alzheimer’s 
disease (5). The most promising current approach to help under-
standing the developmental and neurodegenerative changes in 
the brain is proteomics in combination with other well-established 
methods of molecular biology and human genetics. In order to 
reach understanding neurodegenerative diseases and ageing, it is 
necessary to coordinate neuroproteomic activities worldwide and 
to enable every participant and active member of the HUPO BPP 
to access all data and new technologies obtained through these 
studies (for an activity overview see Table 1). Unfortunately, the 
exchange of raw data between several groups is often hampered 
by incompatible data formats and the lack of common software. 
The HUPO BPP recognised the need for guidelines from the 
very beginning and declared the elaboration of standards and the 
bioinformatics infrastructure as one of the primary goals. This is 
consistent with the general effort to shape a new, reliable pro-
teomics codex (6, 7). In order to evaluate existing approaches in 
brain proteomics as well as to establish a standardised data repro-
cessing pipeline, pilot studies had been initiated in 2004, including 
both mouse and human brain samples (8). Participating groups 
were free to analyse these samples according to their own 
approaches. Data generated was collected and centrally analysed. 
The comparison between the distinct group and the centrally 
gained results gave new insights into inter-lab projects and led 
to a new code of conduct in proteomics bioinformatics (9, 10), 
e.g. also visible in the work of the EU project Proteomics Data 
Collection ProDaC (11–13). The data flow and the quintessence 
of the pilot studies is presented in the following (for a deeper 
insight please refer to the PROTEOMICS special edition The 
Human Brain Proteome Project – Concerted Proteome Analysis of 
the Brain, 2006), including an update of HUPO BPP´s recent 
work.

In the mouse pilot study, brain tissue from normal mice of three 
developmental stages had to be analysed by quantitative proteom-
ics, while in the human pilot study, two human brain tissue sam-
ples from an autopsy and a biopsy, respectively, had to be analysed 
by quantitative/qualitative proteomics techniques.

Samples were sent out to several groups that could use their 
own standard analysis protocols. Data had to be submitted to a 
Data Collection Center (DCC, data file storage solution at the 
Medizinisches Proteom-Center, Bochum, www.medizinisches-
proteom-center.de) for central reprocessing and were submitted 
to the PRIDE database (http://www.ebi.ac.uk/pride, experiment 

2. Materials  
and Methods
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Table 1 
Workshops, meetings and achievements 2002–2010

Timeline Meeting

November 21–24, 2002 1st HUPO World Congress, Versailles, France Meyer and Klose offered 
to chair the brain initiative

January 15, 2003 PepTalk, San Diego, presenting of the HUPO BPP

April 28, 2003 Kick-off Meeting in Frankfurt/Main, Germany with 25 participants, 
announcement of project

May 2003 HUPO BPP homepage www.hbpp.org minutes and updates can be 
found here

July 10, 2003 Planning Committee Meeting in Frankfurt/Main, Germany updates 
and decision of first steps

September 5/6, 2003 1st HUPO BPP Workshop at Castle Mickeln, Germany with 50 
participants establishing of committees (Steering, Specimen, 
Technology and Standardisation, Bioinformatics, Training) idea of 
pilot studies and master plan

October 8–10, 2003 Neuroproteomics Session at the 2nd HUPO World Congress in 
Montreal

January 20, 2004 1st Steering Committee Meeting at the ESPCI in Paris, France 
organised by Jean Rossier; preparation of 2nd HUPO BPP 
Workshop

April 23/24, 2004 2nd HUPO BPP Workshop at the ESPCI in Paris, France, organised by 
Jean Rossier; official begin of pilot study and fixing of master plan 
(75 participants)

April 26/27, 2004 1st HUPO BPP ProteinScape Training Course for Pilot Study 
Participants at the MPC, Bochum, Germany

July 29, 2004 1st HUPO BPP Bioinformatics Meeting at the EBI in Hinxton, UK, 
organised by Rolf Apweiler; elaboration of a Data Collection 
Concepta time line for reprocessing and publishing, implementation 
of ProteinScape as general analysis software

July 2004 Internet forum forum.hbpp.org with several discussion forums 
announcements and downloads

September 30, 2004 2nd Steering Committee Meeting in Frankfurt/Main, Germany 
updates and agreement of Data Collection Concept

October 15, 2004 2nd HUPO BPP ProteinScape Training Course for Pilot Study 
Participants at Protagen, Dortmund, Germany

October 23, 2004 Neuroproteomics Session and HUPO BPP Workshop at the 3rd 
HUPO World Congress in Beijing presentation of project (e.g. pilot 
studies) and discussions, intensification of exchange/contact with 
other HUPO projects and international societies

End of 2004 Implementation of Data Collection Center at the MPC, Bochum, 
Germany

(continued)
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Table 1 
(continued)

Timeline Meeting

November 5, 2004 2nd HUPO BPP Bioinformatics Meeting at the EBI in Hinxton, UK 
organised by Rolf Apweiler

December 15/16, 2004 3rd HUPO BPP Workshop at Castle Rauischholzhausen, Germany

December 17, 2004 3rd HUPO BPP ProteinScape Training Course for Pilot Study 
Participants at the MPC, Bochum, Germany

January 28, 2005 3rd HUPO BPP Bioinformatics Meeting at Protagen, Dortmund, 
Germany

April 8, 2005 4th HUPO BPP Bioinformatics Meeting at the EBI in Hinxton, UK

June 1, 2005 “HUPO BPP International Workshop on Mouse Models for 
Neurodegeneration” in Doorwerth, The Netherlands

July 7, 2005 5th HUPO BPP Bioinformatics Meeting at the EBI in Hinxton, UK

August 27, 2005 4th HUPO BPP Workshop in Munich, Germany during the 4th 
HUPO World Congress

January 9–11, 2006 Jamboree of the HUPO BPP Bioinformatics Committee at the EBI in 
Hinxton, U.K.

February 15–16, 2006 5th HUPO BPP Workshop ““Bridging Proteomics and Medical 
Science” at the UCD, Dublin

September 4–7, 2006 Preliminary: Neuroproteomics Session at the 7th Siena Meeting

October 27–November 1, 
2006

6th HUPO BPP Workshop at the 5th HUPO World Congress in Long 
Beach, USA

March 7–9, 2007 7th HUPO BPP Workshop “High Performance Proteomics in the 
HUPO BPP” at the EBI in Hinxton, UK

October 7 2007 8th HUPO BPP Workshop “Applications in Brain Proteomics” at the 
6th HUPO World Congress in Seoul, Korea

January 9–10, 2008 9th HUPO BPP Workshop “The HUPO BPP Roadmap” Barbados

August 16, 2008 10th HUPO BPP Workshop “New Concepts for Neurodegenerative 
Diseases” at the 7th HUPO World Congress in Amsterdam, 
Netherlands

March 3, 2009 11th HUPO BPP Workshop in Kolymbari, Greece

September 26, 2009 12th HUPO BPP Workshop at the 8th HUPO World Congress in 
Toronto, Canada

To come in 2010:

March 30–31, 2010 13th HUPO BPP Workshop in Ochang, Korea

September 18, 2010 14th HUPO BPP Workshop at the 9th HUPO World Congress in 
Sydney, Australia
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accessions 1669–1750) serving as reference data for future analysis 
(14, 15). In the course of these studies and the subsequent cen-
tral reprocessing, a data collection, submission and storage pipe-
line has been established, a bioinformatics identification strategy 
has been elaborated and very interesting insights into today’s pro-
teomics approaches could be gained.

Participating laboratories used their own protocols that had to be 
annotated (see Notes 1). Pooling of the samples was not allowed. 
Data had to be submitted to the DCC for a central reprocessing, 
preferably using ProteinScape™ (Bruker Daltonics, Bremen) for 
data collection and submission. In addition, data had to be made 
publicly accessible at the PRIDE database as mentioned above.

Not surprisingly, heterogeneity of the data had been very high 
because of the diverse analytical strategies. Therefore, it was of 
greatest interest to show if a central data reprocessing would 
lead to additional as well as more reliable protein identifications. 
To reach this goal, a Data Collection Center and a central data 
reprocessing workflow were elaborated. A common, powerful 
and automated data analysis strategy was elaborated to collect, 
to analyse and to reprocess these heterogeneous data sets (also 
see (16)).

The Data Collection Center was localised at the MPC, 
Bochum, Germany. The groups were asked to use ProteinScape™ 
software (Bruker Daltonics, Bremen, Germany) to allow han-
dling, storage, and standardised re-analysis of the submitted data. 
In order to give some standardised basics, a specified analysis 
guideline was provided elaborated within the Bioinformatics 
Committee [International Protein Index (IPI) database release 
April 2005 to search against, minimal two identified peptides per 
protein, etc.; full guideline available at www.hbpp.org)]. Moreover, 
the false discovery rate of proteins should be lower than 5%. This 
criterion has been used in several other studies, most notably by 
the HUPO Plasma Proteome Project (HUPO PPP) (17).

The database integration of the submitted several gigabytes 
of data, including peak lists, gel images, and sample descriptions, 
was finished at the end of April 2005. Re-analysis of the data sets 
according to the re-analysis criteria was done in several iterative 
steps resulting in data sets containing non-evaluated peptide lists. 
Different search engines were employed at the PAULA cluster, 
MPC, Bochum (Proteomics Cluster under Linux Architecture) 
to broaden the number of identified proteins, including Sequest 
(Thermo Finnigan, Waltham, MA, USA – cluster licence already 
existing) for MS/MS data, ProteinSolver (Bruker Daltonics, 
Bremen, Germany) for MS/MS data, Mascot (temporary free 
cluster licences by Matrix Science, London, UK) for MS/MS and 

2.1. Methods

2.2. Data Collection 
Center and 
Bioinformatics
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MS data, as well as ProFound (Rockefeller University, New York, 
USA) for MS data.

All MS data sets were searched against a specially prepared 
decoy protein database of the International Protein Index (IPI 
3.05) databases for each analysed species. A decoy protein for 
each protein in the original database was added shuffling all amino 
acids of this protein.

MS spectra were sent to Mascot and ProFound as described in 
the data reprocessing guideline (see www.hbpp.org). Protein 
results with a Metascore higher than 90 were labelled as 
identified.

The MS/MS data from the distinct separation types (spot/
band/fraction) were sent independently to Mascot, ProteinSolver, 
and SEQUEST. The search parameters were evaluated for each 
search engine separately prior to their use for the automated 
approach to estimate the best peptide threshold score, generating 
a pool of peptides used for assembly of the proteins. This enhances 
the maximum of identified proteins by a defined false positive rate 
of 5%. The evaluation of parameters was calculated by analysing a 
subset of 12,000 spectra. ProteinExtractor had been used for 
assembling the different protein lists from MS/MS data and for 
removing redundancies. ProteinExtractor generates a protein list 
containing a minimal set of proteins with those isoforms that can 
be distinguished by MS/MS data. This strategy comprises an 
iterative approach: First, select the most likely protein candidate 
(highest summed peptide score), write this protein into the result 
list. Second, mark all spectra explainable by this protein as “used”, 
then select the most probable next protein candidate from the 
still unused spectra, and repeat this, until all spectra are marked as 
“used”. The algorithm is following rules elaborated by MS/MS 
experts for those proteins that should appear in a minimal protein 
list. In this approach, the number of matched peptides for the 
identified proteins in any of the search engines has been used 
rather than the sum of the peptide scores. The resulting merged 
protein list has been sorted by the sum of the individual sum 
scores of the algorithms, and proteins were marked identified 
until the list contained 5% decoy proteins. Up to 3% of peptides 
corresponded to a decoy entry on the peptide level in a list con-
taining less than 5% false positive proteins. The overlap of the 
search engines was 80–90%, therefore 10–20% more proteins can 
be found using this approach.

The HUPO BPP was one of the first coordinated initiatives 
supporting mzData standard format of the HUPO Proteomics 
Standards Initiative (PSI). This standard format is now succeeded 
by mzML (http://www.psidev.info/index.php?q=node/80). 
As mentioned above, collected data were submitted to the PRIDE 
database for public access.
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Nine independent laboratories analysed the samples according to 
their own approach in these pilot studies. The amount of the total 
MS spectra was 1.350 (0.2%) and of MS/MS spectra 740.000 
(99.8%). Approximately 80% of the spectra belonged to the 
human samples and approximately 20% to the mouse samples. 
Half of the spectra originated from gel-based or LC-based 
approaches each.

The spectra can be classified in different ways to observe the 
diversity of experimental setups. Prior to the MS analysis, differ-
ent separation techniques were applied: 32% of the spectra were 
acquired after 1D PAGE separation, 22% after 2D PAGE (PAGE 
approaches are not discussed here) and 46% after liquid 
chromatography.

Central data reprocessing of such huge amount of data is very 
time- and resource-consuming. To maximise the statistical reli-
ability of the results, an automated workflow was elaborated (16) 
in an iterative way. It proved to be very useful that data sets were 
collected using a common software (ProteinScape and other algo-
rithms therein) supporting the new standard format mzDATA. 
Though not all groups adhered to the default settings, the con-
version into the common standards (e.g. to the right IPI version 
3.05) turned out to be relatively easy.

The adaptation and implementation of additional algorithms, 
such as ProteinExtractor, as well as the determination of the 
parameters for the different search engines took several rounds. 
Now completed, this pipeline allows an easy, objective (in the 
meaning of the strict use of the parameters), comprehensive, and 
fast way for reprocessing of MS/MS spectra. It assures a highly 
reliable list of identified proteins in combination with the use of a 
decoy database to determine a false discovery rate below 5%. The 
use of different search engines results in more proteins than the 
single searches alone (see also Notes 2). Each search engine finds 
a subset of the overall protein lists due to the different algorithms; 
the combination of all leads to a higher number of identified pro-
teins. In addition, proteins, corresponding gels, and differential 
expression level alterations can easily be correlated even after sub-
mission to the DCC, as this information is represented in the 
ProteinScape database structure.

A total of nine participating labs analysed human and mouse brain 
samples, respectively, using a variety of different techniques. 37 
different analytical approaches were accomplished, 17 of these 
analyses were done differentially, i.e., the protein expression pat-
terns of the different samples (human or mouse) were compared.

3. Results

3.1. Centralised 
Analysis Strategy

3.2. Single Compared 
to Centralised 
Approaches
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The participating groups identified over 1,200 redundant 
proteins in sum. The comparison of these data had been severely 
limited due to the different used parameter sets including differ-
ent protein databases, identification criteria, etc. By applying the 
described bioinformatics workflow, it was possible to reprocess all 
available data sets with a fixed parameter set, in a reasonable time 
frame, with a suitable amount of manpower and with a known 
quality threshold (false discovery rate). By considering all spectra, 
the amount of proteins increased fourfold to over 5,400 (redun-
dant), mainly because of the previously non-analysed data. In some 
data sets, more proteins could be identified (up to over 90%), 
while others tend to lose identified proteins (up to 35%), proba-
bly due to the use of other, more stringent parameters. After 
removing redundancies by using the software ProteinExtractor, 
1,832 were identified in the human brain sample and 792 pro-
teins in the mouse brain samples. Thus, the combination of all 
(normalised) data allowed the HUPO BPP bioinformatics team 
to generate a comprehensive, but still extended lists of proteins 
with an objective quality standard, thus making the best of reli-
ability and effectiveness (see also Notes 3).

The overlap of identified proteins between the different partici-
pants is very low, e.g. no protein had been named by all groups in 
the mouse study performing quantitative 2D PAGE analyses. 
Nearly, 80% of all proteins were listed by just one group and are 
uniquely identified, while only a subset of proteins were detected 
by several groups. Of course, the very different amount of pro-
teins identified by the different groups reduced the possibility of 
a big overlap. However, this distribution can be found in several 
big studies (see e.g. (18)) and reflects the different features of the 
approaches used and the subsequent sources of variation under 
these conditions in different laboratories. In general, the data 
reprocessing might be an additional reason for the small overlap, 
e.g. because of the application of distinct protein assembly 
algorithms.

In addition, most proteins are very low abundant, while 
the detection by recent methods is not sufficient for reproducible 
detection throughout different laboratories. This also means that 
a weighting or valuation of the techniques is not meaningful as 
long as the approaches are not accurately standardised. The inter-
nal laboratory reproducibility has to be proved by all means.

Data mining has been one of the main goals of the pilot studies. 
Mueller and his colleagues from the European Bioinformatics 
Institute (EBI) in Hinxton, UK, elaborated a workflow for anno-
tating identified proteins, including sequence features, genomic 
context, GO annotation, protein–protein interactions and disease 
association (19). In general, the results obtained reflect roughly 

3.3. Technology 
Platforms

3.4. Data Mining
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the protein composition one would expect when analysing the 
brain. Mueller et al. reported an enrichment of genes correspond-
ing to the identified proteins that are encoded on Chromosome 1. 
Moreover, they reported many detected proteins being involved 
in energy metabolism (mitochondrial electron transport, hydro-
lases) or in transport mechanisms (cytoskeleton associated pro-
teins), as the biological context “brain” would predict. However, 
transmembrane proteins are underrepresented, probably due to 
the used sample preparation and/or analysis procedures. This 
extended data mining workflow allows a fast and automated anal-
ysis of protein lists

Interestingly, a high number of proteins identified in this pilot 
study are not named in other extensive proteome studies. This 
phenomenon has been described by Martens et al. (20) report-
ing, e.g. that the overlap between the HUPO BPP and the HUPO 
PPP (21) human is slightly above 15%, while nearly 50% between 
the HUPO BPP and the platelet proteome data set (22) are iden-
tical (after normalisation to a common IPI version). Most over-
lapping proteins belong to housekeeping genes. The higher 
percentage overlap between brain and platelets could be due to 
the many shared functions and proteins that are found in both 
tissues. Omenn and colleagues could show, e.g. that serotonin 
can be removed by reuptake into serotonergic neurons as well as 
into platelets (23). Martens also compared the strategies of the 
HUPO BPP and the HUPO PPP pilot studies. While the HUPO 
BPP used peak lists for the central reprocessing, the HUPO PPP 
initially relied solely on peptide sequences as units and gathered 
identifications in a centralised database, leaving the classification 
into low and high confident to the submitting laboratory. The 
number of peptides per protein reported is similar for both HUPO 
initiatives, reaching more than eight peptides (human), while the 
overlap of peptides identified does not exceed 5% between the 
two data sets. In summary, the authors come to the conclusion 
that the organisation of data management and the synergistic 
effects of a consortium of collaborators are of outstanding 
importance.

Although the Pilot Studies of the HUPO BPP were performed 
on a voluntary basis, the acceptance and the engagement of the 
participating laboratories were very impressive leading to the sub-
mission of enormous data sets to the Data Collection Center.

One of the severe problems on the bioinformatics site was the 
heterogeneous data handling within the different groups (data 
format, data collection, and data interpretation). To avoid possible 

4. Discussion
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obstacles, it was agreed upon using a common data handling 
concept and to support the mzDATA standard from the HUPO 
Proteome Standards Initiative. By implementing the ProteinScape 
software at most participating laboratories, it was possible to 
assure correct data exchange and storage between the groups and 
the DCC. Incompatible data formats and long unmanageable 
Excel list could be bypassed with this approach. The bioinformat-
ics committee of the HUPO BPP made great efforts to elaborate 
a bioinformatics workflow for the “objective” reprocessing of the 
heterogeneous data sets. By combining existing software solu-
tions, by adapting the search parameters to the existing data, and 
by applying the decoy database the committee succeeded in elab-
orating a fast, reliable (FDR <5%), and automated data reprocessing 
pipeline. Once defined, this workflow can be applied fast 
(processing the data set generated in these studies now takes 
approximately 2 weeks) and is easy to use.

It became clear that the analysis of the same sample could 
result in different sets of proteins when using different protein 
separation systems (e.g. by using Klose or IPG gels). This could 
be due to the different nature of the used systems and the differ-
ent resulting separation properties thereof. The same is true for 
the different approaches used by the groups, namely, gel-based 
vs. non-gel-based analyses. Even within similar approaches, 
slightly variable handling or parameters lead to changed protein 
sets detected, especially when analysing low abundant proteins. 
This could explain the small overlap between the proteins named 
by the different groups, leaving the single sets unique, but not 
(necessarily) wrong.

Concerning the main phase of HUPO BPP, the results of the 
pilot studies influenced the ongoing strategies. Since then, under-
standing the pathogenesis of neurodegenerative diseases has 
improved, but both AD and PD can neither be cured nor be 
detected in a pre-stadium by prognostic biomarkers. Therefore, 
an urgent requirement for advanced comprehension of the mech-
anisms causing neurodegenerative diseases still exists. Several 
HUPO BPP workshops have taken place since the pilot phase to 
face these challenges (for an overview, please see Table 1). 
Workshops being held around the annual HUPO world congress 
in autumn focus more on techniques applied in proteomics like 
membrane proteomics, general challenges in proteome analysis of 
brain samples. The spring workshops, nowadays, deal more with 
clinical issues, such as discussing the neuropathological aspects of 
neurodegenerative diseases like Alzheimer’s and Parkinson’s disease. 

5. Outlook
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From the clinical point of view, general accessibility and the quality 
of human brain samples collected from autopsies and clinico-
patholigical series as well as perspectives for diagnostic and prog-
nostic biomarkers of dementias have been discussed recently (24).

Most recently, a creation of a Human Brain Proteome Map 
(or Atlas) using Brodmann’s Area is discussed to foster detecting 
and curing neurodegenerative diseases in a preclinical stadium. 
Whether or not this map will be developed and used in future 
strategies are discussed in the upcoming workshops in Ochang 
and Sydney (see Table 1).

 1. Annotations concerning sample handling, preparation, sepa-
ration, and identification are mandatory so that discrepancies 
and differences can be traced back. This will become manda-
tory as the journals already recognised the need for reliable 
data sets (6, 7).

 2. Different approaches and search engines have to be seen as 
complementary. The combination of the generated output 
results in added-value, as on the one hand identified proteins 
can be approved, while on the other hand new proteins can 
be detected by the combination of the peptides identified by 
different groups. The separation features of the different 
techniques do overlap and can be applied successively.

 3. Every study has to show the reproducibility of its data. As the 
overlap of the identified proteins in regard to the different lab-
oratories is not optimal, it is extremely important that the own 
data is handled very critically and that internal SOPs per group 
(NOT necessarily between the laboratories) are essential. This 
includes, e.g. independent analyses of the biological samples 
with an appropriate statistical number of repeats (more than 
five, no pooling) and taking into account the limitations of the 
used technique. Only confident protein lists resulting from 
stringent criteria also benchmarking of MS/MS search algo-
rithms by Kapp and colleagues (25) are of advantage to the 
scientific community and will lead to biomarkers.
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Chapter 15

Data Management and Data Integration in the HUPO Plasma 
Proteome Project

Gilbert S. Omenn 

Abstract

The Human Plasma Proteome Project (HPPP) is an international collaboration coordinated by the 
Human Proteome Organisation (HUPO). Its Pilot Phase generated the 2005 Proteomics special issue 
“Exploring the Human Plasma Proteome” (Omenn et al. Proteomics 5:3226–3245, 2005) and a book 
with the same title (Omenn GS (ed) (2006) Exploring the human plasma proteome. Wiley-Liss, 
Weinheim, pp 372). Data management for that Pilot Phase included collection, integration, analysis, and 
dissemination of findings from participating laboratories and data repositories. Many investigators face 
the same challenges of integration of data from complex, dynamic serum, and plasma specimens. The 
PPP workflow assembled a representative Core Dataset of 3,020 protein identifications, overcoming 
ambiguity and redundancy in the heterogeneous contributed identifications and redundancy and updates 
in the protein sequence databases. The results were made available with alternative thresholds from the 
University of Michigan, yielding a range of numbers of protein identifications. Data were submitted to 
EBI/PRIDE and to ISB/PeptideAtlas. The current phase of the PPP employs Proteome Xchange to link 
submission of well-annotated primary datasets to EBI/PRIDE, distributed file sharing by Tranche/
Proteome Commons.org, and reanalysis from the primary raw spectra at ISB/PeptideAtlas. Such human 
plasma proteome datasets are available for data mining comparisons with the proteomes of other organs 
and biofluids in health and disease.

The database of 3,020 protein identifications from the large 
collaborative Human Plasma Proteome Project (HPPP)(1, 2), 
organized as the first initiative of the Human Proteome Organisation 
(HUPO) in 2002, has been widely utilized and has been cited 252 
times as of 21 January 2010. Thus, it is desirable for users to under-
stand its organization and especially the data management and data 
integration features that are critical to cross-comparison of findings 
from different studies. The challenges of data management and 

1. Introduction
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data integration across dozens of participating laboratories remain 
highly relevant in the field, especially the objective of obtaining 
full annotation of samples. The HUPO Protein Standards 
Initiative (PSI) has addressed many aspects of standardization of 
data formats and data submission (psidev.sf.net).

Compromises typically must be accepted on the level of detail 
of experimental methodology, starting with the protocol and 
variation in collection and processing of blood specimens; the 
choices of reference specimens; the capture of information that is 
embedded in free text; the uncertainty of identifications when 
laboratories are mandated to push the limitation of detectability; 
the parameters used by various mass spectrometry instruments; 
the design of data storage systems; and the choice of sequence 
database (and version) used for analysis (see Note 1).

This chapter describes the guidelines for data submission, the 
creation of the data repository, the array of specially prepared ref-
erence specimens, the handling of MS/MS data, the data integra-
tion workflow algorithm, and the consolidation and annotation 
of datasets from 18 laboratories that submitted MS/MS findings 
on the HUPO PPP reference specimens. Results from these and 
other platforms were published in (1).

The HPPP adopted a data model (3) focused on identifications of 
whole proteins with a high-level, concise description of experi-
mental results and a minimum of data input, transmission, and 
reformatting for the collaborating submitters. Guidance specified 
protein accession numbers and names, binary description of the 
confidence of the protein identification (with common parame-
ters), lists of identified peptides, and free text descriptions of 
experimental protocols, estimates of relative abundance, and any 
information about posttranslational modifications (see Note 2). 
Identification datasets were stored as peptide lists, reflecting the 
fact that many laboratories applied intact protein fractionation 
before tryptic digestion and mass spectrometry. During the PPP 
Pilot Phase, we later requested peak lists and raw spectra in the 
instrument native format. Participating laboratories used differ-
ent search databases and different algorithms to assemble protein 
identifications from the search output. The guidance anticipated 
the guidelines subsequently mandated by Molecular and Cellular 
Proteomics (4) and other journals, and the publication ((3), 
Table 1) explicitly compared the PPP data model with the Carr 
et al. guidelines (4). Laboratories received two distinct identifiers: 
a numeric public identifier used for interactions with the submis-
sion centers and other laboratories, and a three-character private 

2. Methods

2.1. Creating a Data 
Repository
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code known only to the laboratory and the central data analysis 
group, used to create data surveys without disclosing the identity 
of submitters ((1), Tables 1 and 2).

The data repository was built with a Structured Query 
Language (SQL) relational database server, an intermediate struc-
ture presenting an exact copy of the data submitted, and the main 
data structure designed to hold the integrated project data. The 
database captured three sets of protein identifiers from the same 
experiment: (1) protein IDs made by data producers, in the entity 
identification; (2) results of peptide list searches performed by 
the data integration center, in the entity ProteinByPeptides; 
and (3) analyses by others, through the MsRun branch of the 
database. The entire repository structure is available in Fig. 1 of 
Adamski et al. (3). Data were transmitted primarily as Excel or 
Word documents, even though assistance was available and 
promoted to prepare XML schema-based file formats.

The investigators collectively decided to have a range of reference 
specimens to be able to address alternatives in anti-coagulation, 
compare plasma versus serum, and obtain preliminary results on 
ethnic group differences. BD Diagnostics prepared the requested 
specimens from pairs of donors of Caucasian–American (BD1), 
African–American (BD2), and Asian–American (BD3) back-
grounds, after informed consent (1). Sets of four specimens were 

2.2. PPP Reference 
Specimens

Fig. 1. Distribution of MSMS and FTICR/MS protein identifications as a function of the number of peptides detected per 
protein (from Fig. 4 from ref. (3)). The dark portion of each bar represents the percentage confirmed in at least one 
additional laboratory.
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prepared: serum, EDTA-plasma, heparin-plasma, and citrate-plasma 
(making 12, see Note 3). A similar set of four specimens was 
prepared by the Chinese Academy of Medical Sciences (CAMS). 
Finally, the UK National Institute of Biological Standards and 
Control made available a lyophilized citrated plasma prepared 
from a pool of 25 human donors (NIBSC). Of 55 laboratories 
that originally committed to participate, 41 requested and received 
the BD1 specimens, 27 the BD2 and BD3 sets, 15 the CAMS set, 
and 45 the NIBSC sample. Laboratories varied markedly on how 
many of the specimens they actually analyzed, and how exten-
sively they fractionated and analyzed each specimen.

MS/MS spectra yield sequence information for peptides, primar-
ily but not only tryptic peptides, to be matched against protein 
databases. Often the search returns a cluster of proteins, all of 
which contain the same set of matching peptides. For a uni-
formly collected dataset, probabilities are readily applied with 
PeptideProphet/ProteinProphet (5). However, the extremely 
heterogeneous, collaborative nature of this dataset, with various 
instruments and various search engines (6), required an alterna-
tive, which is shown in Subheading 2.4. The concept of this work-
flow algorithm is that proteins most likely truly present are more 
likely to be detected across independent experiments and to have 
been annotated more extensively. The outcome is the choice of 
one protein as the representative entry from several overlapping 
clusters of equivalent protein identifications. As discussed later, we 
retained the full list to permit comparisons with proteins identified 
by others using different integration strategies (or none at all).

 1. Assemble peptide sequence lists retaining all source information
 2. Search the peptide lists against the IPI v2.21 database (peri-

odically updated). Require 100% identity between the 
sequences; disregard flanking residues.

 3. Select one representative protein from each cluster of equiva-
lent protein matches, or intersection of several clusters.

 4. Each protein entry in the reference database receives three 
integer scores:
(a) Number of labs reporting a peptide sequence list con-

taining a sequence which maps to a cluster, including this 
protein

(b) Number of distinct experiments (labs x specimens x pro-
tocols) reporting a peptide list with this protein

(c) Number of identifications (labs x specimens x protocols x 
clusters) for clusters, including this protein. Choose clus-
ter member with largest value of (a). In case of tie scores, 
proceed to (b), (c), and (d) to (h).

2.3. Inference from 
Peptides to Proteins

2.4. HPPP Data 
Integration Workflow 
Algorithm from 
Adamski et al. (3)
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(d) Prefer proteins that are products of a well-described gene 
(not “hypothetical,” “similar to,” etc.) from EnsEMBL.

(e) Well-described protein-product of any gene
(f) Well-described protein not assigned to any gene
(g) Protein not assigned to any gene, described only as a 

fragment or similar to, etc.
(h) Select the protein having the lower IPI number (in IPI 

v2.21).

Score (a) counts each laboratory only once, no matter from 
how many specimens or with how many different peptide sequence 
lists the laboratory identified this protein. Next in importance, 
score (b) counts the number of independent experiments in which 
the protein was identified. Score (c) counts all reported peptide 
sequence lists, even if several results are from the same experiment. 
Criteria (d-g) indicate the level of annotation for each database 
entry, facilitating the selection of the best-described proteins.

The 18 laboratories that contributed MS/MS data (MALDI, 
LC-ESI, and FT-ICR-MS) submitted a total of 12,667 distinct 
protein accession numbers, using the IPI, SwissProt, and NCBInr 
databases, with IPI version 2.21 (5) the standard we chose for 
this project. Over time, new versions of IPI appeared, a problem 
for any longitudinal study or even a snapshot study with several to 
many months from data collection to publication. We locked in 
and referred back to v2.21. After integration, we had 9,504 
unique proteins of ³6 amino acids in length based on spectra for 
one or more peptides, and 3,020 proteins based on two or more 
peptides (see Note 4). The article (3) described in great detail the 
thresholds individual scientists might apply to the publicly avail-
able primary datasets. In the course of the project, we held a 
Jamboree Workshop (June 2004) at which participating scientists 
and teams from the various laboratories and informatics spe-
cialists worked together on the primary data. Several labs agreed 
to standardize their LCQ-MSMS SEQUEST searches to use 
Xcorr ³1.9, 2.2, 3.75 for 1+, 2+, and 3+ ions, respectively, plus 
deltaCn ³0.1 and Rsp £4 as the threshold for “high confidence” 
sequences of tryptic peptides. Note that delta Cn and Rsp are not 
always employed; they increase stringency and confidence of pro-
tein identifications. The number of lab-reported high-confidence 
identifications ranged from 21 to 789.

We gave emphasis to cross-laboratory confirmation of identi-
fications (see refs. (1–3) for many details). Figure 1 shows the 
numbers of protein identifications according to the number of 
peptides per protein detected across experiments and laborato-
ries; the dark subset in each bar represents the proportion con-
firmed in a second lab.

2.5. Summary  
of Collaborative Data
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We presented a schema in Fig. 2 in the form of a diamond-
shaped parallelogram with sets of proteins. The entire post-
integration list of 9,504 (“all identifications”) was divided into 
two more stringent categories, identifications called “high confi-
dence” by the participating investigators (2,857 proteins) and 
3,020 proteins for which two or more distinct peptides were 
reported across all 18 laboratories reporting MSMS results, fol-
lowing integration. The final point in the diamond represents 
“high-confidence multi-peptide identifications” with 1,555 pro-
teins. This latter set was used for comparison with the number of 
identifications in the HUPO Human Brain Proteome report (7).

We also published an even more restricted set of 889 proteins 
(8) in which we applied the Bonferroni adjustment for multiple 
statistical comparisons of the protein match with p > 0.95 among 
43,730 IPI entries, as well as an adjustment for protein length to 
account for more opportunities for matching peptides the longer 
the protein sequence. The Bonferroni is a very common adjust-
ment in large-scale transcriptomics analyses, but it is seldom uti-
lized in proteomics. Given the many families of proteins, it is 
likely that this analysis, treating each protein as an independent 
observation, is overly stringent.

False-positive (FP) identifications are a widely acknowledged 
problem. A standard solution is to match the peptide sequences 
against a reversed sequence version of the protein database, such 
that each “reverse hit” would be a representation for a FP. In our 
HPPP analysis, we were dealing, as noted, with highly heteroge-
neous datasets and a variety of search engines (9) and database 
matches, so we applied a different concept. We posited that FP 

2.6. False-Positive 
Identifications

Fig. 2. Alternative protein identification lists with different inclusion criteria from the 
HUPO Plasma Proteome Project (from Fig. 5 of ref. (3)).



253Data Management and Data Integration in the HUPO Plasma Proteome Project

and true-positive identifications would show opposite behavior as 
one accumulates large numbers of peptide IDs. FPs would be 
expected to accumulate roughly proportional to the total peptide 
IDs, without two or more FP peptide IDs coinciding on the same 
database entry at any rate greater than random. In contrast, for a 
protein which is truly present at a detectable concentration in the 
specimen, increased sampling should identify the same peptides 
mapping to the same correct database entry, as described in 
ref. (1). The actual criteria varied across the 18 laboratories.

The HPPP had a specific subproject on quantitative estimates of 
protein concentrations, utilizing immunoassays from several lab-
oratories (see also Note 5). This topic received a lot of attention 
at the Jamboree Workshop and in the subsequent publication by 
Haab et al. (10). The peptide counting method, the average 
number of different peptides found for that IPI number across 
the labs reporting that IPI identification, may be regarded as a 
precursor to the now-popular label-free spectral counting 
approach. A major challenge is figuring out what epitopes account 
for the immunoassay results and which of multiple proteins in a 
family or cluster may cross-react with the antibody, or not do so. 
The conclusion, with appropriate caveats, was that we obtained a 
log-linear relationship between immunoassay-based concentra-
tions and number of peptides detected for a wide concentration 
range of proteins (see Fig. 6b in (1)). The correlation coefficient 
(of the log-linear relationship) for the total number of peptides 
matching that protein, based on quantitative immunoassays of 49 
proteins among the 3,020 protein dataset, was r = 0.86 (1). These 
proteins cover quite a range of eight orders of magnitude in 
concentration.

In the overview paper for the Plasma Proteome Project, we com-
pared the protein identifications of the HPPP with those of sev-
eral other authors ((1), Table 4). The amount of overlap between 
and among these reports was not high, reflecting especially 
incomplete detection of low abundance proteins, as well as uncer-
tain numbers of false positives. An important methodological 
point in these comparisons is the fact that different investigators 
use different methods for integration of multiple matches or clus-
ters, if they do integration at all. We found it necessary to go back 
to our larger datasets, both the unintegrated list of 5,102 proteins 
for the 3,020 core dataset and the 9,504 integrated IDs, 
including single peptide hits, to pick up additional matches with 
these datasets from different sources. Many biologically signifi-
cant annotations can be generated with data mining of the HPPP 
(see refs (1, 2)) for numerous examples).

Comparisons of other organ proteomes with the plasma (or 
serum) proteome remain to be pursued. Such comparisons have 

2.7. Correlating 
Immunoassay 
Quantitation  
of Proteins  
with Estimates  
of Abundance Based 
on Number of Peptides

2.8. Comparisons  
of Protein 
Identifications Across 
Different Studies



254 Omenn

been frequent statements of intent across the HUPO Initiatives, 
including liver, brain, kidney/urine, and cardiovascular. As noted, 
there has been a comparison of plasma and brain (7) and a com-
parison of plasma and the salivary fluid proteome (11), using the 
HUPO PPP for the plasma comparisons.

The PPP is a major component of the Human Plasma 
PeptideAtlas (12, 13). It is now desirable to utilize the entire 
complement of studies in the PeptideAtlas, which has the very 
special advantage that all of these datasets have been re-analyzed 
from the raw spectra at the Institute for Systems Biology with the 
TransProteomicPipeline, eliminating numerous sources of varia-
tion due to instrument settings, search engine parameters, and 
database matching and integration. Deutsch et al. published their 
first Human Plasma PeptideAtlas as part of the HPPP Pilot Phase 
publication; they identified 960 proteins from datasets that par-
tially overlapped the datasets contributed to the HPPP (14).

In an update of the Human Plasma PeptideAtlas, Farrah et al. 
have reanalyzed the data from 14 of the reporting laboratories in 
the Pilot Phase of the HPPP using the latest TPP pipeline and the 
SpectraST spectral library searching tool (15) searched against 
the latest NIST human library (version 3.0; available at http://
www.peptideatlas.org/speclib/). Applying extremely stringent 
PeptideProphet FDR thresholds, they identified 10,893 unique 
peptides and inferred 1,186 proteins at a 5% decoy-estimated 
protein false-discovery rate, and 9, 807 peptides and 930 proteins 
at a 1% protein FDR; the entire Human Plasma PeptideAtlas, 
including additional HPPP current phase submissions, has 2,249 
proteins at 1% FDR as of January, 2010 [data provided by 
Drs. Terry Farrah and Eric Deutsch].

Under current cochairs Ruedi Aebersold, Mark Baker (succeed-
ing Young-Ki Paik), and Gil Omenn, the HUPO HPPP contin-
ues with the intent to collect large, well-annotated datasets on 
human plasma in normal individuals and as part of disease-
oriented studies with both organ and plasma specimen analyses 
(16, 17) (also see Note 6). The aims of the PPP-2 are (1) to 
stimulate submission of high-quality, large datasets of human 
plasma proteome findings with advanced technology platforms; 
(2) to establish a robust, value-added informatics scheme invol-
ving EBI/PRIDE, University of Michigan/ProteomeCommons/
Tranche, and Institute for Systems Biology/PeptideAtlas; and (3) 
to collaborate with other HUPO organ-based and disease-related 
initiatives to make plasma the common pathway for biomarker 
development and application.

The initial datasets and the PRIDE Web site were demon-
strated at the HPPP Workshop at the Amsterdam HUPO Congress 
(18). The data processing and data mining scheme calls for use of 
the Proteome Xchange (Fig. 3): submission of the fully annotated 

2.9. The Next Phase, 
now Current Phase,  
of the HUPO HPPP
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experimental datasets with the investigator’s interpretations to 
EBI/PRIDE; automatic transfer to Tranche/ProteomeCommons.
org for distributed file sharing globally; and automatic transfer to 
PeptideAtlas for full reanalysis from the raw spectra across all sub-
missions to the new HPPP. A major element is the development of 
heavy-labeled proteotypic peptides based on N-glycosite peptide 
isolation, which will be a major resource for many kinds of pro-
teomics studies, including high-throughput-targeted proteomics. 
We plan on consolidated analyses with other plasma proteome 
datasets already in the PeptideAtlas or received subsequently. 
Tranche will also contribute these datasets to the Peptidome at 
NIH/NCBI and to the GPMdb in Canada, and to any scientists 
requesting such resources. It is expected that all HUPO initiatives 
will contribute to the large-scale Gene-Centric Human Proteome 
Project now under discussion (19).

 1. Highly collaborative studies utilizing a range of technology 
platforms and a variety of specimens are hard to fit into a tight 
uniform protocol. Dealing with heterogeneous datasets 
requires special procedures and cross-checking, which can be 
enhanced by targeted data mining and data integration. Some 
of these features are well demonstrated in the HUPO HPPP.

3. Notes

Fig. 3. Scheme for Proteome Xchange, involving EBI/PRIDE, UM Tranche/ProteomeCommons.org, and ISB/PeptideAtlas, 
with further distribution of dataset files to the interested proteomics and bioinformatics community.
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 2. Gaining sufficient annotation of preanalytical variables (20), 
fractionation of specimens, MSMS analytical and search 
engine variables, and database matching procedures is another 
major challenge, with the content often less than desired.

 3. Based on the results of the HPPP Pilot Phase, we prefer and 
recommend the use of plasma over serum for proteomics 
analyses and the use of EDTA-plasma among the plasma 
options (1, 21).

 4. Protein lists from the HPPP are available at: www.ebi.ac.uk/
PRIDE for HUPO HPPP and individual lab submissions; 
http://www.bioinformatics.med.umich.edu/hupo/ppp 
includes protein lists for the 3,020 protein core dataset and 
its peptides, plus its corresponding 5,102 protein matches 
before integration. The 9,504 and 889 protein lists are also 
posted in this site; and embedded in www.peptideatlas.org, 
human plasma proteome datasets from multiple sources (not 
all of the HPPP datasets were included, see (14)).

 5. One of the many interesting side analyses was the matching of 
our peak lists for six small datasets against microbial genomes 
in the NCBI Microbial (nonhuman) GenBank (June 2004 
release), using X!Tandem for RefSeq protein sequence iden-
tification. We found notable bacterial and mycobacterial 
matches (1), a clue to the usefulness of this approach for the 
now very popular work on metagenomics of the huge micro-
bial populations who share our bodies and influence many 
physiological functions.

 6. Ensuring intended comparisons of results across pairs or mul-
tiples of large complex experimental projects has been frus-
trating and remains an important goal. Analysis for differences 
requires replicates to demonstrate the extent of congruence 
of findings upon repeat analysis of the same specimen.
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Chapter 16

Statistics in Experimental Design, Preprocessing,  
and Analysis of Proteomics Data

Klaus Jung 

Abstract

High-throughput experiments in proteomics, such as 2-dimensional gel electrophoresis (2-DE) and mass 
spectrometry (MS), yield usually high-dimensional data sets of expression values for hundreds or thou-
sands of proteins which are, however, observed on only a relatively small number of biological samples. 
Statistical methods for the planning and analysis of experiments are important to avoid false conclusions 
and to receive tenable results. In this chapter, the most frequent experimental designs for proteomics 
experiments are illustrated. In particular, focus is put on studies for the detection of differentially regu-
lated proteins. Furthermore, issues of sample size planning, statistical analysis of expression levels as well 
as methods for data preprocessing are covered.

Sometimes, today’s bioanalytical research is accompanied by the 
phantasm that the more data is recorded within an experiment 
the bigger will the cognition drawn from this experiment be. This 
phantasm is stimulated by the new technological possibilities of 
measuring simultaneously the expression levels of thousands of 
molecules as well as by the opulent information stored in data-
bases. The good intentions behind high-throughput experiments 
are, however, opposed by the fact that the probability of wrong 
conclusions increases with the number of hypothesis stated in the 
context of an experiment. Patterson (1) consequently named data 
analysis the “Achilles heel of proteomics.” Preconditions for tenable 
inferences are well-defined study problems, adequate experimental 
designs and the correct statistical methods for data analysis.

One of the challenges for the analysis of data from high-
throughput experiments is their high-dimensionality, i.e., many 

1. Introduction
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features are observed on only a small number of biological samples 
or individuals. Historically, statistical methods for the analysis of 
high-dimensional data were refined or even newly developed for 
gene expression data from DNA microarrays. Because studied 
problems in proteomics are often very similar to those in genomics, 
many of these statistical methods can easily be employed for 
protein expression data, too. An essential difference between 
gene and protein expression data, however, results from the dif-
ferent bioanalytical technologies which are used for measuring 
expression levels. Therefore, different ways of data preprocessing 
are necessary.

A particular question of proteomics is the comparison of 
expression levels between different types of biological samples, 
for example, between samples of mucosa and tumor tissue.  
In Subheading 2, experimental designs for such problems as well 
as issues of sample size planning are detailed. The presented 
designs are applicable when comparing two or more independent 
or dependent categories of biological samples. An example for 
dependent categories are repeated measurements of the same 
samples at different points in time. Furthermore, models which 
include more than one experimental factor are illustrated. 
Subheading 3 presents necessary steps for the preprocessing 
of expression levels recorded by mass spectrometry (MS) of 
2-dimensional gel electrophoresis (2-DE). Preprocessing is nec-
essary for making the recording of different biological samples 
comparable. In Subheading 4, the statistical concepts of hypoth-
esis testing and of p-value adjustment for multiple testing are 
detailed, as well as the quantification of expression ratios.

A classical laboratory experiment consists of measuring a depen-
dent (or endogenous) variable under the influence of other inde-
pendent (or exogenous) experimental factors. In proteomics 
experiments, the dependent variable is usually the expression level 
of a protein (i.e., a metric variable), whereas the independent 
variables may be either categorical (e.g., group membership or 
disease state) or also metric (e.g., age). In the following, we regard 
different experimental designs, starting with the most simple one, 
which is given by studying one experimental factor with two cat-
egories, and turn then toward several further aspects of experi-
ment planning, such as sample size calculation and randomization. 
We regard especially experimental designs for 2-D DIGE gels. 
Further designs for experiments with this particular type of gels 
also are presented in (2, 3).

2. Designs  
and Planning  
of Experiments
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One of the most frequent problems in proteomics is the comparison 
of expression levels from two distinct types of biological samples, 
for example, cell lines under two different experimental condi-
tions or tissue samples from diseased and healthy individuals. 
These experiments have thus only one categorical experimental 
factor with two categories. In the just mentioned examples, all 
samples are independent from each other. One can, however, also 
consider the case of dependent biological samples, for example, 
tumor tissue and mucosa from the same individual or a cell line 
sample measured at two different points in time. The goal of such 
experiments is to find those proteins which are significantly up- or 
downregulated in the one category of samples compared to the 
other one. The preprocessing and analysis of the resulting data is 
described in Subheadings 3 and 4. In the following, the concrete 
handling of these designs within 2-DE and MS experiments is 
given.

In a classical 2-DE approach, simply one gel is prepared per 
sample. When using the so called DIGE approach (4) instead 
(where two or more samples, labeled by different fluorescent 
dyes, can be studied on the same gel), the experimentator has to 
distinguish between experiments with independent and those 
with dependent samples. In the latter case, i.e., when two samples 
per experimental unit (individual) are studied, both samples can 
be prepared onto the same gel, and the ratios of expression levels 
are used for statistical analysis. When regarding independent sam-
ples instead, an internal standard (comprised of a mixture of all 
samples included in the experiment) is additionally incorporated, 
and the ratios of expression levels from the true samples to those 
from the standard are analyzed. In the case of independent sam-
ples, two types of experimental settings can be considered when 
using DIGE gels. In the first setting, each sample is prepared 
together with the internal standard on one gel. This design is 
especially recommended when samples sizes are very different for 
the two categories of the experimental factor. Particularly, when 
samples sizes are equal, it is also possible to put two samples – 
each representing one of the two categories of the experimental 
factor – together with the internal standard onto one gel (three 
different fluorescent dyes are used, here). This second setting 
needs less gels than the first one; it is, however, necessary that the 
two different samples for each gel are assigned together randomly. 
Procedures for randomization are described below in this section.

MS experiments are performed very similar. In classic 
approaches, each sample is recorded in one MS run. Newer approaches 
which incorporate an isotope-labeling can analyze two samples – 
labeled by masses of different weight – in one run (5, 6). When 
studying dependent samples using such isotope-labeling 
approaches, again ratios of observed intensities are taken for 
analysis. When having samples from two independent groups, 

2.1. One Experimental 
Factor with Two 
Categories
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it is again necessary to match two samples – one of each group – 
randomly for one MS run.

In some experiments which study the influence of one experi-
mental factor, more than two categories are studied. Stühler et al. 
(7), for example, compared expression levels in brains of mice at 
different developmental stages, embryonic, juvenile, and adult. 
When using DIGE gels, it is recommended to put always only 
one sample together with an internal standard onto one gel. Only 
if combinations of categories are assigned randomly to a gel, it is 
also possible to put more than one sample onto the same gel.

Let us next regard experiments, where two categorical experi-
mental factors are to be studied. It is then necessary to distinguish 
between designs with a cross-classification and those with hierar-
chical classification.

In a cross-classified experiment, each category of the one 
factor is combined with each category of the other factor. Assume, 
for example, that it is desired to observe the effect of two differ-
ent treatments A and B on the expression levels in samples from a 
certain cell line. We have thus two experimental factors, A and B, 
each with two categories, treated and not treated. One can then 
prepare the samples under four different conditions: (1) not 
treated, (2) only treated with A, (3) only treated with B, and (4) 
treated with A and B.

In a hierarchical design, not each combination of categories 
from the two factors is studied. Let us consider a study with two 
cohorts of patients, where each cohort is treated with a different 
therapy (thus, factor A has two categories: therapy one and two). 
As second factor B, consider “diabetes mellitus status,” with the 
two categories “present” and “not present.” It is obvious, that a 
patient can neither be studied under each category of factor A nor 
under each category of factor B, here.

One can consider course experimental designs with even 
more than two experimental factors, also in cross-classified and 
hierarchical settings, however, these designs are seldom studied in 
proteomics.

A special type of experiments is when expression levels are studied 
multiple times on the same sample, but under different condi-
tions. These designs are called repeated measures designs. 
Basically, the above detailed design with one experimental factor 
of two categories is a repeated measures design if the samples 
from the two categories are dependent, for example, if expression 
levels are studied in tumor and mucosa of the same patients. 
A frequently used repeated measures design is usually given if one 
experimental factor is the time, where the categories of this factor 
are different points in time. Sitek et al. (8) studied, for example, 

2.2. One Experimental 
Factor with More than 
Two Categories

2.3. Two or More 
Experimental Factors

2.4. Repeated 
Measures Designs
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cell lines at several hours after the treatment. The dependence 
structure of such measurements has to be taken into account in 
the analysis of such experiments.

In all of the above-described experiments, the experimenter is 
usually only interested in the effects of the intentionally incorpo-
rated factors. It can, however, happen that a studied factor is 
overlapping with another uninteresting one. Assume, for example, 
that protein expression in the liver of mice from a treatment group 
is compared with that of an untreated control group. And sud-
denly, the experimentator (after he has spent a lot of time with 
collecting and preparing samples) gets aware that all treated mice 
were male and all untreated individuals were female. Is the experi-
mentator then studying the effect of treatment or of that of 
gender? (Yes, such disasters happen!)

How can such mistakes be avoided in the planning of an 
experiment? Particularly, when studying treatment effects, the 
probability of incorporating undesired overlapping effects can be 
diminished by assigning the samples to the different categories of 
the treatment factor randomly (by the way: “randomly” is not the 
same as “arbitrarily”!). An example is given in the notes section.

Because sample and gel preparation is expensive and time con-
suming, an important question when planning a proteomics 
experiment is how many samples are needed for a particular exper-
iment. This question can be stated more precisely by the question 
“How many samples are needed to detect an effect of a certain 
size?” Consider, for example, a design for comparing two catego-
ries of samples and a very small expression change of a particular 
protein between the two categories is supposed to cause overall 
strong changes within the studied biological system. A consider-
able larger number of samples is then necessary to detect this 
small effect than for detecting a very obvious and big effect. 
Besides the size of the effect that is to be detected, the variance of 
the expression levels influences the number of samples, too. 
The higher the variance, the harder it becomes to detect an effect. 
Both, the influence of the effect size and that of the variance onto 
the necessary sample size are exemplified in Fig. 1.

When calculating the appropriate sample size for an experi-
ment, it is therefore necessary a) to specify the size of effect that 
is desired to be detected and b) to know something about the 
variance of expression levels. Knowledge about the variance can 
only be earned from earlier studies or, for example, from a small 
pilot experiment. With this information, one can calculate the so 
called power, which is the probability that a truly existing effect is 
detected by a statistical test (see Subheading 4). Let us regard the 
example in Fig. 2, where power curves are plotted under the 
assumption that the variance of the log-transformed expression 

2.5. Randomization

2.6. Sample Size 
Calculations
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levels is 1.2 and for two different samples sizes, n = 10 and n = 20 
per group. In this setting, a true 3-fold expression change can be 
detected with a probability of 0.42 when using 10 samples per 
group and with a probability of 0.71 when using 20 samples 
per group. For practical aspects of power calculation, see the 
notes section.

Another way of determining an appropriate sample size is to 
control a prespecified false discovery rate (9).

Fig. 1. A small sample size per group is sufficient to detect a big group effect when expression levels scatter very little 
(left ), while larger sample sizes are necessary to detect a very small effect or when expression levels scatter very much 
(right ).

Fig. 2. Theoretical power curves for two different samples sizes n per group. The power 
is the probability that a particular true fold change is detected by a statistical test.
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Before starting with the concrete statistical analysis, electrophoretic 
and mass spectrometric recordings must be preprocessed. The 
raw results of 2-DE experiments are digital images which contain 
protein spots and the raw result of a mass spectrometric experi-
ment is a mass spectrum with the m/z ratio on the abscissa and 
the intensity on the ordinate. For the former type of experiment, 
preprocessing starts with a specified automatic spot detection 
algorithm and by summarizing the pixel values within a spot 
boundary as a measure of abundance. For the latter one, a peak 
detection algorithm is carried out first and then the intensity values 
within the start and end point of a peak are summarized as a mea-
sure of abundance (10, 11). The thus obtained expression levels 
have to be further transformed by several steps as described in the 
following.

In nearly all proteomic experiments, it can be observed that the 
variance of expression values that have been recorded for a pro-
tein depends on the average of these values. In , highly expressed 
proteins have a higher variance than low expressed proteins. It is 
therefore a common usage to apply a variance stabilizing transfor-
mation to the recorded expression levels. Most common transforma-
tion functions are the logarithm or the arsinh function. While the 
logarithm can, however, produce extreme and negative values for 
very low expressed proteins, the arsinh is positive and more flat in 
the lower region.

Normalization is a further necessary transformation of expression 
levels to make the measurements of several gels or MS runs com-
parable. Particularly, in experiments where the samples of different 
categories are prepared by different labels (e.g., different fluores-
cent dyes or mass tags), normalization can also be used to remove 
labeling-biases and make the different channels comparable.

The two most frequent used normalization methods for pro-
teomics data are quantile normalization (12) and the vsn normal-
ization (13, 14). Quantile normalization shifts the expression 
levels of all gels or MS runs to have the same quantiles (see notes 
section). The vsn method uses affine linear mappings for trans-
forming the expression levels. The latter method directly applies 
the arsinh function for variance stabilization as described above.

Another method for making several gels comparable is the incor-
poration of an internal standard. This method can only be 
applied for techniques in which different labels are used and two 
or more samples are prepared on the same gel or run within the 
same MS run. One channel is then usually used for the internal 

3. Data 
Preprocessing

3.1. Variance 
Stabilization

3.2. Normalization

3.3. Standardization
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standard – mostly a mixture of all samples studied within an 
experiment. Expression values from the true samples are then 
divided by those of the internal standard. An internal standard 
is redundant if depended samples are directly compared to 
each other.

Particularly, in 2-DE experiments, resulting data matrixes contain 
a considerable number of missing values because the number of 
detected spots or of identified proteins is different from gel to gel 
(15, 16). Most of the classical statistical methods that were 
invented in the first half of the twentieth century are, however, 
designed for complete data matrixes, especially the methods for 
multivariate data. There are a number of ways missing data can be 
handled. Perhaps the simplest one is to omit all data rows or col-
umns with missing values. That means, however, a loss of statistical 
power or a loss of information about certain proteins. Another 
possibility is to impute missing values and to obtain thus a com-
plete data matrix. Several methods for missing values imputation 
are possible, e.g., the k nearest neighbor method (see notes sec-
tion) or principal component regression. More sophisticated 
methods make imputations repeatedly several times and take the 
mean of all imputations (17).

Let us throw again a glance upon the above-described study 
problems for comparing samples from two different categories of 
tissues. The goal of such experiments is the detection of differen-
tially regulated proteins. An easy strategy to find those proteins 
would be to simply compare the average expression level in both 
categories of samples, separately for each protein. However, 
because expression levels are measured on a continuous metric 
scale, a nonzero difference between the average level in both cat-
egories can be expected for almost every protein, even for those 
which are not differentially regulated. How can the analyst now 
decide, which of the differences are big enough to call the protein 
differentially regulated, or how can he distinguish those proteins 
for which the difference is nonzero just by chance from those for 
which the difference deviates significantly from zero? This deci-
sion can be made by performing a statistical test. For performing 
a statistical test, first a null hypothesis is stated (e.g., “Protein x is 
not deregulated”) as well as the complementary alternative 
hypothesis (e.g., “Protein x is deregulated”). Based on the mea-
sured values and eventually some assumptions about their under-
lying probability distribution either the null hypothesis is 
maintained or it is rejected in favor of the alternative hypothesis. 

3.4. Missing Values 
Imputation

4. Statistical 
Analysis

4.1. Statistical 
Hypothesis Testing
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Because a test decision is generally based on samples that are 
taken from a bigger population and because the measured quan-
tity has usually a nonzero variance, the decision may fail to hit the 
unknown reality. In particular, a false positive or a false negative 
decision is possible (Table 1). Unfortunately, the probability a for 
a false negative decision and the probability b for a false negative 
decision are interdependent, and can thus not be decreased simul-
taneously. The solution is therefore to predefine a tolerable a 
(also called level of significance) and to control b by calculating 
the necessary sample size. A quantity that is usually derived by a 
test is the so called p-value. If this value is smaller than a, the null 
hypothesis is rejected.

In the most frequent problem in proteomics, that is comparing 
expression levels between two different categories of biological 
samples, one test is performed for each protein. If one can assume 
that expression levels are normally distributed, the so called t-test 
can be used. If expression levels are assumed to be non-normally 
distributed, e.g., if they show a very skewed distribution, one 
should rather use the nonparametric Mann-Whitney-U test 
(MWU). Both, t-test and MWU test offer versions for dependent 
and independent categories.

When performing thousands of statistical tests simultaneously 
(i.e., for thousands of proteins), there will usually be a high 
number of positive test decisions which are made just by chance, 
though the true situation is not positive. Naturally, these test 
decisions are false positive ones. How can the number of false 
positives be diminished? One solution to this problem is to be 
more conservative when testing. For that purpose, p-values can 
be adjusted in the sense of certain error rates (18), for example, 
the family-wise error rate (FWER) or the false discovery rate 
(FDR). The FWER is defined as the probability of having at least 
one false positive test decision among all test decisions. The FDR, 

4.2. Comparing Two 
Groups

4.3. Multiple 
Hypothesis Testing

Table 1 
Comparison of test decision based on experiment and unknown reality

Unknown reality

Protein is not deregulated Protein is deregulated

Test decision Protein is not deregulated True negative decision False negative decision

Protein is deregulated False positive decision True positive decision
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on the other hand, is the portion of false positives among all positives. 
An algorithm for adjusting p-values with regard to the FWER was 
given by Bonferroni. For controlling the less strict FDR, there are 
two different algorithms. One of them assumes that all hypothesis 
are independent (19) and a more liberal one puts no assumption 
onto the correlation structure of the hypothesis (20). Adjusted 
p-values from a cell line study of adenocarcinoma (21) are plotted 
versus the raw p-values in Fig. 3. While there seemed to be many 
significantly regulated proteins when using the unadjusted 
p-values, the FWER- and FDR-adjustments dramatically reduced 
the set of significant features and thus the number of false positive 
findings. Formulas for adjusting p-values are given in the notes 
section.

In Subheading 2, we have mentioned experimental designs in 
which a factor can have more than two levels or in which more 
than one factor is included. Data from such experiments can sta-
tistically be evaluated by analysis of variance (ANOVA) methods 
or by analysis of covariance (ANCOVA). In both methods, a 
dependent metric variable (here, these are the expression levels) is 
related to one or several independent experimental factors. If all 
independent variables are categorical (e.g., group membership, 
gender), ANOVA is used. If there is also one or more indepen-
dent metric variables, ANCOVA is used instead. For each of the 
independent variables, one statistical test is performed, i.e., one 
p-value is produced. If that p-value is smaller than the significance 
level, the associated variable is supposed to have a significant 
influence onto the dependent variable. Besides the main effect 

4.4. Analysis  
of Variance  
or Covariance

Fig. 3. Relation between unadjusted and adjusted p-values.
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given by the independent variables, it is also possible to study 
interactions between these effects. Assume, for example, that 
there are two independent categorical factors included in the 
experiment, each on two levels: group (healthy, diseased) and 
gender (male, female). A significant interaction between group 
and gender indicates that the strength of a significant group effect 
is different within the two levels of gender. In extreme situations, 
an interaction between two independent variables can mean that 
the effect of factor A is inverse between the two levels of factor B.

Particular analysis of variance methods for repeated measures 
designs are, for example, detailed in (22) in the case of a normal 
distributed dependent variable. Because protein expression levels 
are often not assumed to be normally distributed, one should also 
consider nonparametric methods as detailed in (23). The most 
difficult problem in the analysis of repeated measures designs is to 
set the correct assumption of the correlation matrix. Different 
forms for this matrix can be considered. Let us take again the 
example that protein expression is repeatedly measured at several 
subsequent points in time. A simple assumption for the correla-
tion structure between the studied points in time is that there is 
an equal correlation between each of two points in time (this 
structure is called compound symmetry). More realistic, is how-
ever, that points in time that are more distant from each other 
have a smaller correlation than those that are less distant (autore-
gressive structure). In some situations, an unstructured correla-
tion matrix is assumed.

Using statistical tests, it is possible to conclude that a protein is 
significantly up- or downregulated. One goal of proteomics is 
furthermore to quantify the strength of regulation, which is usually 
done by a ratio estimate, for example, the fold change. The fold 
change is defined as the ratio of the average expression between 
two categories of an experimental factor. Because expression lev-
els are usually log-transformed, the ratio becomes than a differ-
ence. In the context of the fold change, it is important to report 
this quantity always in combination with a confidence interval 
(21). A confidence interval covers the true expression change 
with a probability of (1−a). Using a confidence interval, one can 
compare the importance of proteins with the same fold change. 
Assume that protein X and protein Y both have a fold change of 
2. For protein X, however, the confidence interval is given by 
[0.6, 2.8] while the confidence interval for protein Y is given by 
[1.7, 2.2], i.e., the latter confidence interval is much smaller but 
with the same level of confidence than the former one. For pro-
tein X, it is then not really possible to conclude that it is truly up 
regulated because the lower bound of the interval is smaller than 
1. For protein Y instead, it seems very likely that is up regulated 
with a high confidence.

4.5. Fold Change and 
Confidence Intervals
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In order to avoid the overlapping of effects from the studied 
experimental factors with other uninteresting effects, a random 
assignment of experimental units to the study groups is impor-
tant. Assume, for example, that the effect of one treatment is to 
be studied on the expression levels in a cell line. Five samples are 
to be assigned to each group, the treatment and the control 
group. For random assignment, follow the next steps:

 1. Generate a list of ten random numbers (e.g., from a standard 
normal distribution) and assign ranks 1–10 to these 
numbers.

 2. All samples with rank 1–5 are treated and all with ranks 6–10 
are not treated (Table 2).

When testing for differential expression between two groups, a 
t-test is usually carried out for each protein. The power of the 
t-test is the probability that the test detects a certain log(fold 
change) under a fix sample size and with a given variance of the 
expression levels. For determining an appropriate sample size, 
proceed as follows:

 1. For each protein in the data from a pilot sample, calculate the 
variance of its preprocessed expression levels. Power can, for 
example, be calculated for the minimum, median, or maximum 
of all variances.

 2. Calculate the power for different sample sizes and for different 
log(fold changes) using the variance estimates from the pilot 
sample. It is recommended to use a statistical software tool 
for calculating the power (e.g., the free software R from 
www.r-project.org).

 3. Choose that sample size for your experiment which yield the 
desired power.

5. Notes

5.1. Randomization

5.2. Sample Size 
Calculations

Table 2 
Random assignment of treatment or nontreatment to ten samples of a cell line for 
avoiding undesired overlapping effects

Sample 1 2 3 4 5 6 7 8 9 10

Random Number 1.92 0.15 −0.64 −1.00 −0.83 1.02 0.16 0.54 −0.19 0.34

Rank 10 5 3 1 2 9 6 8 4 7

Treatment No Yes Yes Yes Yes No No No Yes No



271Statistics in Experimental Design, Preprocessing, and Analysis of Proteomics Data

Assume that your data matrix A consists of m columns (representing 
gels) and n rows (representing proteins). For making gels compa-
rable, the following steps of quantile normalization can be applied 
(directly cited from (12)):

 1. Sort each column of A, yielding a new matrix Asort.
 2. Calculate the means across rows and assign this mean vector 

to each column of Asort, yielding the matrix M.
 3. Rearrange M to have the same ordering as A, yielding the 

normalized matrix Anorm.

This algorithm is also implemented in the “limma”package 
for the software R (available from www.bioconductor.org).

Especially, 2-DE produces data matrixes with many empty entries. 
To impute these missing values, one can use the k-nearest 
neighbor method:

 1. Calculate the correlation or distance between the expression 
levels of each pair of proteins by using the available values.

 2. Assume that the expression level of protein i in gel j is missing. 
Determine the k nearest proteins (neighbors) to protein i 
(according the distance or the correlation). Calculate the 
mean of the expression levels of these k neighbors in gel j and 
use it to fill the gap. A k between 10 and 20 has been recom-
mended by Jung et al. (16).

When searching for differentially regulated proteins, p-values 
should be adjusted to avoid a too high number of false positives. 
Assume that the raw p-values for n proteins are p1, …, pn. A very 
strict adjustment is given by the Bonferroni method to control 
the FWER:

 (adjusted) min{1, }( 1, , ).= = ¼i ip n p i n  

A less strict method is the FDR-procedure of Benjamini and 
Hochberg (19).

 1. Take the n ordered p-values: p(1) £ p(2) £ … £ p(n).
 2. The FDR-adjusted p-values are given by p(i)(adjusted) = 
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 (i = 1, …, n). 

Other adjustment procedures are implemented in the p.adjust 
method of the R-package “stats.”

5.3. Quantile 
Normalization

5.4. Missing Values 
Imputation

5.5. Adjusting  
of p-Values
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Chapter 17

The Evolution of Protein Interaction Networks

Andreas Schüler and Erich Bornberg-Bauer 

Abstract

The availability of high-throughput methods to detect protein interactions made construction of 
comprehensive protein interaction networks for several important model organisms possible. Many studies 
have since focused on uncovering the structural principles of these networks and relating these structures 
to biological processes. On a global scale, there are striking similarities in the structure of different protein 
interaction networks, even when distantly related species, such as the yeast Saccharomyces cerevisiae and 
the fruit fly Drosophila melanogaster, are compared. However, there is also considerable variance in 
network structures caused by the gain and loss of genes and mutations which alter the interaction behavior 
of the encoded proteins. Here, we focus on the current state of knowledge on the structure of protein 
interaction networks and the evolutionary processes that shaped these structures.

In his Nobel lecture in 1968, Jaques Monod pointed out the 
importance of interactions in biological systems: “… any phe-
nomenon, any event, or for that matter, any ‘knowledge,’ any 
transfer of information implies an interaction” (1). Today, more 
than 40 years later, it has indeed become obvious that biological 
phenomena can only rarely be attributed to a single-molecule spe-
cies, like the transport of oxygen by four units of hemoglobin. 
Instead, cellular processes are most often carried out by “mod-
ules” formed by the interactions between genes, proteins, and 
small molecules (2). With the availability of completely sequenced 
genomes and high-throughput methods to detect protein interac-
tions, we now have the opportunity to study the cellular complex-
ity in a more holistic way and uncover the organizing principles 
underlying the network formed by proteins, and their interactions 
with each other. This approach to understand cellular complexity, 
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which is sometimes referred to as “Network Biology” (3), has 
already yielded exciting insights. It is now known, for example, 
that protein interaction networks are characterized by the pres-
ence of highly interconnected subnetworks and that a few num-
ber of proteins with a very high number of interactions dominate 
the large-scale structure of these networks (4), (Fig. 1). Biomedical 
research has also been fueled by these advances as protein interac-
tion data have been proven to be useful for the prediction of 
potential drug targets (5). However, our knowledge about the 
evolutionary processes that shaped the structure of protein inter-
action networks is still limited, especially because comprehensive 
interaction data are only available for a few distantly related model 
organisms (6), (Table 1).

In this chapter, we discuss the basic principles of protein 
interactions, the structure of protein interaction networks, and 
the currently known evolutionary processes that influence this 
structure.

Fig. 1. The protein interaction network formed by human basic helix-loop-helix transcription factors. This well-studied 
subnetwork of the human protein interaction network (64) shows several structural features that are also apparent on a 
global level. The network is dominated by a few highly connected proteins (especially the transcription factor E2-alpha) 
and shows a high degree of modularity. UniProt Ids are used as node labels, and edges that connect a protein with itself 
refer to homodimerizations. Cytoscape (78) has been used for visualization.
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Soon after the first protein complexes had been successfully 
crystallized and structurally resolved using X-ray crystallography, 
numerous studies have been conducted to uncover the biochemical 
and biophysical principles underlying protein–protein interac-
tions. In a pioneering study, Chothia and Janin analyzed the 
binding interfaces of three protein complexes and concluded that 
the formation of unspecific hydrophobic interactions is the most 
important factor in stabilizing protein association (7). Hydrogen 
bonds and van der Waals contacts contribute much less to the 
stability of a protein complex, but they are important for the 

2. Basic Tenets  
of Protein 
Interactions  
and the Structure 
of Protein 
Interaction 
Networks

2.1. Principles  
of Protein–Protein 
Interactions

Table 1 
Databases providing information on protein–protein or domain–domain 
interactions

Databases providing protein–protein interactions based on experimental data
Web server and link Organism Number of interactions 

(as of November 2009)
BIND (82) http://bind.ca No species restriction 67,739
BioGRID (83) http://www.thebiogrid.org No species restriction 169,723
DIP (84) http://dip.doe-mbi.ucla.edu No species restriction 57,683
HPRD (85) http://www.hprd.org Human 38,806
IntAct (86) http://www.ebi.ac.uk/intact/

main.xhtml
No species restriction 202,419

Mint (87) http://mint.bio.uniroma2.it/
mint

No species restriction 83,321

Mips (88) http://mips.helmholtz-muenchen.
de/proj/ppi

Mammals N/A

Databases providing domain–domain interactions
Ipfam (17) http://ipfam.sanger.ac.uk No species restriction 2,733
3did (18) http://gatealoy.pcb.ub.es/3did No species restriction 5,313
Domine (89) http://domine.utdallas.edu/

cgi-bin/Domine
No species restriction 20,513

Databases providing protein–protein interactions based on computational predictions
I2d (90) http://ophid.utoronto.ca/

ophidv2.201
No species restriction 424,066

PRISM (91) http://prism.ccbb.ku.edu.tr/
prism

No species restrictions N/A

PIPS (92) http://www.compbio.dundee.ac.
uk/www-pips

Human 37,606

HPID (93) http://wilab.inha.ac.kr/hpid Human N/A
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specificity of protein interactions because they require comple-
mentarity of the involved binding interfaces. These basic tenets of 
protein interactions have been repeatedly confirmed in analyses of 
more comprehensive data sets (8). However, there are also many 
properties in which protein interactions can differ and which can 
be used to classify them.

One important concept for the classification of protein interac-
tions is the distinction between permanent and transient protein 
associations. Some proteins form very stable interactions and can 
be found only in their complex form in vivo. The interactions that 
stabilize multisubunit enzyme complexes, such as the ATP syn-
thase, are an example for such permanent protein interactions.

But many protein interactions are transient, and the involved 
proteins are in an equilibrium where the interactions are broken 
and re-formed continuously (9). These transient interactions are 
especially important in cellular signaling cascades (10). Obviously, 
there is no clear cut boundary between transient and permanent 
interactions, but trends can be observed. Binding interfaces that 
mediate transient interactions seem to be smaller on average, with 
a surface area of 1,500 Å2 or less, while interfaces that mediate 
strong interactions are usually much larger, reaching a surface 
area of up to 10,000 Å2 (11). Moreover, transient interactions 
contain more polar residues than permanent ones.

Permanent and transient protein interactions seem to impose 
different constraints on protein evolution. For example, proteins 
from Saccharomyces cerevisiae, which participate in permanent pro-
tein interactions, are on average more similar to their orthologs in 
Saccharomyces pombe than proteins that participate in transient pro-
tein interactions, with the average sequence identity being 46 and 
41%, respectively (12). The distinction between transient and per-
manent interactions is important for understanding the evolution 
of protein-binding behavior but is sadly often overlooked (13).

Another concept that is useful for studying the evolution of pro-
tein interactions is based on protein domains. Protein domains 
have originally been defined as parts of proteins that are able to 
fold independently (14). A more recent perspective views domains 
as units of protein function and of protein evolution (15). These 
definitions overlap, protein domains are able to carry out a spe-
cific function because of their specific fold, and because of their 
specific function, natural selection acts to preserve the underlying 
sequence. Different domains are frequently joined in proteins by 
mechanisms such as gene fusion (16), leading to multi-domain 
proteins. The domain composition of a protein is often referred 
to as domain arrangement (15). Protein–protein interactions can 
often be explained by the domain arrangements of the respective 
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proteins because the binding interfaces involved in protein inter-
actions often correspond to protein domains. Databases have 
been established that provide information about known domain–
domain interactions inferred from structural data (17, 18), 
(Table 1) and the binding behavior of proteins can thus be pre-
dicted by annotating protein domains.

Approximately 19% of the known human protein–protein 
interactions can be explained by known domain–domain interac-
tions (19). The remaining 81% likely correspond to domain–
domain interactions that are currently unknown and to interactions 
that are based on the association of a protein domain and a short 
peptide motif, such as the interaction of the SH3 domain with the 
PxxP motif.

It has been observed that the number of protein domains is 
much smaller than the number of proteins, and most domains 
occur in many proteins in many different species (20). The analy-
sis of the human genome, for example, showed that only ~7% of 
known protein domains appear to be specific for vertebrates. Also, 
a trend has been observed toward a higher proportion of multi-
domain proteins in eukaryotic proteins compared to that in 
prokaryotic ones (21). Some protein domains seem to be espe-
cially prone to participate in the formation of new domain 
arrangements. This is referred to as domain promiscuity or versa-
tility (22). Furthermore, it could be shown that domains that 
mediate protein interactions are among the most promiscuous 
classes of protein domains (23). Taken together, the available 
data suggest that the formation of novel domain arrangements is 
a key factor in the evolution of protein interaction networks.

Research on the global properties of protein interaction networks 
has for a long time been hindered by a lack of data. Several 
approaches have been started to remove this handicap. One of 
these approaches is based on extracting knowledge about protein 
interactions from the scientific literature. Many publications dis-
cuss protein interactions detected in small-scale experiments. This 
information can be gathered by text mining and several databases 
have been established that provide these data for the scientific 
community (24).

The development of high-throughput methods to detect 
protein interactions, such as the yeast two-hybrid method (25), 
was also helpful in complementing the small-scale data gathered 
from the scientific literature. Using these techniques, extensive 
protein interaction data have been experimentally determined for 
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several model organisms, including S. cerevisiae (26, 27), Escherichia 
coli (28), Helicobacter pylori (29), Drosophila melanogaster (30), 
Caenorhabditis elegans (31), Plasmodium falciparum (32), 
Campylobacter jejuni (33), and Homo sapiens (34).

Despite these efforts, the available protein interaction data 
are still very incomplete and assumed to include many false posi-
tives (35). Several methods have been established to assess the 
accuracy of protein interaction assays and thus distinguish experi-
mental artifacts from biologically meaningful interactions. Popular 
methods for such an evaluation include the comparison of expres-
sion profiles of proteins that are assumed to interact and the com-
parison of interaction profiles between orthologous proteins (36). 
When these methods are applied to the results of high-through-
put interaction screens, they yield false-positive rates that can be 
as high as 80% (37).

The yeast S. cerevisiae is the best studied model organism in 
terms of protein interactions; all possible protein pairs have been 
screened for possible interactions, many of them multiple times 
(38). The yeast network is, therefore, currently the most suitable 
one for studying the global structure of protein interaction 
networks.

To uncover global properties of protein interaction networks, 
known protein interactions of one species are usually modeled as 
an undirected graph, with nodes representing proteins and edges 
representing protein interactions. This representation is obviously 
very simplified as it ignores all biochemical properties of the inter-
action (e.g., transient and permanent interactions are treated 
identically in such a model), and also does not consider the 
dynamics of protein interaction networks caused by differential 
gene expression and cellular localization of proteins.

In a seminal study by Jeong et al. (4), it was shown that the 
distribution of interaction partners per protein in the yeast pro-
tein interaction network can be well approximated by a power law 
(4). This means that the network is highly inhomogeneous with a 
small number of highly connected proteins in contrast to a major-
ity of proteins with few interactions. Intuitively, proteins with 
many interaction partners (often referred to as “hubs”) should be 
more essential for an organism than other proteins, and it could 
indeed be shown that the loss of a highly connected protein (a 
protein with more than 15 interaction partners) is about three 
times as likely to be lethal than the loss of a protein with fewer 
interactions (4). Subsequent studies based on more comprehen-
sive protein interaction data confirmed the presence of proteins 
with many more interactions than the average protein in the 
respective interaction network (39). However, the correlation 
between connectivity and essentiality could not be verified in 
recent analyses of high-quality protein interaction data sets 
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(see Notes 2 and 3). Instead, a strong correlation between 
connectivity and pleiotropy, the number of phenotypes observed 
as a consequence of gene knockout, could be shown (38).

Protein interaction networks also seem to be characterized by 
a high degree of modularity, which corresponds to the presence 
of highly interconnected subnetworks. The degree of modularity 
for each protein in an interaction network can be quantified with 
the clustering coefficient C, defined as Ci = 2ni/ki(ki-1) for each 
protein i,with ki being the connectivity of this protein and ni the 
number of interactions between all interaction partners of protein 
i. The average clustering coefficient <C> of protein interaction 
networks is several orders of magnitude larger compared to a ran-
dom network of the same size (40). Curiously, most protein hubs 
either have very large or very small values for the clustering coef-
ficient. By integrating protein interaction data with gene expres-
sion and cellular localization data, Han et al. (41) showed that 
these two kinds of protein hubs correspond to proteins that inter-
act with most of their partners simultaneously and hubs that bind 
their different partners at different times or locations (41). The 
hubs that bind most of their partners simultaneously, referred to 
as “party” hubs, are often part of large protein complexes, explain-
ing their high clustering coefficient. Hubs that bind to their part-
ners at different times or locations often correspond to highly 
connected proteins in signaling pathways; these hubs are referred 
to as “date” hubs (41, 42).

Another structural property of protein interaction networks is 
the high abundance of interactions between structurally similar 
proteins. It could be shown that self-interactions and interactions 
between paralogous proteins occur significantly more often in 
protein interaction networks than would be expected by chance 
(43, 44).

Protein interaction networks are constantly rewired in the course 
of protein evolution in order to integrate new proteins into the 
network, to compensate for the loss of a protein, or to evolve 
novel functionalities (Fig. 2). New nodes can be added to a pro-
tein interaction network by means of gene duplication and the 
product of a duplicated gene inherits the binding behavior of its 
ancestor. This principle has been proposed as an explanation for 
the presence of hubs in protein interaction networks. If all genes 
would be equally prone to gene duplication and if their products 
would retain their binding behavior after duplication, proteins 
with a higher than average number of interactions would more 
likely gain a new interaction partner after random duplication events. 
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These growth dynamics are often referred to as “the rich get 
richer” or “preferential attachment.” Mathematical models based 
on this principle can generate networks with the same inhomoge-
neous distribution of interactions per protein. These networks 
contain a small number of proteins with a very high number of 
interactions, even if some degree of divergence in binding behav-
ior after duplication is allowed for in the respective model (45, 
46). Under certain conditions, such duplication–divergence mod-
els can also account for the high degree of modularity observed in 
protein interaction networks (47).

However, whether duplication–divergence models are really 
an adequate explanation for the structure of protein interaction 
networks is controversial (48). If the duplication–divergence 
model is correct, paralogous proteins should share interaction 
partners more often as would be expected by chance. As we have 
pointed out above, this is indeed the case (49). However, despite 
the overrepresentation of interactions between paralogous pro-
teins, the interaction turnover, i.e., rate at which proteins gain 
and lose interactions after duplication, is still considerably high. 
Based on a comparison of protein interaction data from four eukary-
otic species, Beltrao and Serrano estimated a rate of 10−6–10−5 
interaction gains or losses per protein pair per million years 
(50). As the number of protein pairs for eukaryotic species is in 
the order of 107 (S. cerevisiae) to 108, one could expect between 
100 and 1,000 gains and losses of interactions per million years 

Fig. 2. Elementary processes of protein interaction network evolution. (a) Gain and loss 
of protein interactions, which are usually caused by point mutations in binding inter-
faces. (b) Gene duplication, which first yields a protein with identical binding behavior. 
After duplication, the proteins are likely to diverge in their binding behavior. Empirical 
data suggest that gene duplications occur at much lower rates (up to two orders of 
magnitude) than interaction gain and loss events (53).
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per proteome. In comparison, the number of genes that undergo 
duplication has been estimated to be 10−2 per gene per million 
years for S. cerevisiae (51). Since ~90% of single gene duplicates 
become silenced after duplication (52), 10−3 proteins per million 
years can be assumed to be the growth rate for protein interaction 
networks by gene duplications. Because of these differences in esti-
mated rates of gene duplication and interaction turnover, the gain 
and loss of interactions might be the dominating factors in shaping 
structural properties of protein interaction networks (53).

Duplication–divergence is currently the most popular con-
cept for modeling the evolution of protein interaction networks, 
but it is not the only concept that has been proposed to explain 
the structural features of protein interaction networks. Some 
studies propose that protein hubs have certain features that enable 
them to evolve higher than average number of interactions, for 
example, the presence of “sticky” domains (i.e., domains that 
mediate a very diverse set of protein interactions) like the Zinc-
finger domain (54). Another property that could increase the 
interaction propensity of a protein is the presence of intrinsically 
disordered regions. The inherent flexibility of disordered regions 
offers malleable interfaces that can allow binding to several part-
ners or to adopt different conformations, manifested in increased 
binding capability (55). Also, disordered regions are known to 
often contain peptide motifs that act as binding regions, such as 
the canonical SH3-ligand PxxP (56).

The evolutionary rates of protein hubs, measured as the 
dN/dS ratio (the ratio of nonsynonymous to synonymous substi-
tutions, also referred to as Ka/Ks ratio), have been studied inten-
sively, with conflicting results. Some studies presented evidence 
that hubs evolve at slower rates than proteins with few interac-
tions (57, 58), which means that once a protein has gained a high 
number of interaction partners, it is likely to be affected by purify-
ing selection and maintaining its sequence. These results could 
not be reproduced in other studies and it has been proposed that 
the seemingly slow rates of evolution in protein hubs might be 
caused by biased data sets (59, 60). If protein hubs would indeed 
evolve at slower rates, evolutionary models for the growth of pro-
tein interaction networks would have to account for this by 
decreasing the probability for the gain and loss of interactions for 
proteins that already have many interaction partners. The contro-
versy revolving around the evolutionary rates of protein hubs was 
finally resolved by mapping structural data to protein interaction 
networks. Based on structural information, it is possible to divide 
proteins into several classes based on whether they have only one 
or multiple binding interfaces. It was shown that hubs that use 
multiple interfaces to bind to their interaction partners evolve at 
slower rates than average, which is not the case for single-inter-
face hubs (61).
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It is, of course, also possible to invoke natural selection as an 
explanation for the structure of protein interaction networks. 
This would mean that the structure observed in protein interac-
tion networks is not simply the consequence of the duplication 
and divergence processes driving network evolution and the dif-
ferent binding propensities of proteins, but rather the conse-
quence of natural selection acting on the network level (62, 63). 
However, no evidence that supports this hypothesis could be pre-
sented so far. On the contrary, it was shown that the known 
duplication–divergence processes are able to explain at least parts 
of the observed structure of protein interaction networks. For 
example, Amoutzias et al. showed that the interaction network 
formed by the family of basic helix-loop-helix (bHLH) proteins, 
an ancient family of transcription factors, can be elegantly 
explained by single-gene duplication and domain rearrangement 
events (64). Interestingly, the bHLH family can be divided into 
six phylogenetic groups (Fig. 1) with different domain arrange-
ments. Three of the subnetworks formed by the distinct phyloge-
netic groups show a similar hub-based structure, with one highly 
connected and many peripheral proteins. These similar structures 
are probably the result of convergence since phylogenies do not 
support large-scale duplication. A hub-based structure can thus, 
in principle, arise as the consequence of single-gene duplication 
and divergence processes (including domain rearrangements) 
without natural selection acting on the network level. However, 
the picture might be different for other gene families.

So far, we have only discussed gradual changes in the binding 
specificities of existing binding interfaces. This begs the question 
how these interfaces originated in proteins in the first place.

In order to evolve a new interface, mutations must change 
the surface area of a protein in such a way that the association to 
another protein surface leads to the release of sufficient free energy 
to compensate the entropy loss upon association. Single substitu-
tions are unlikely to cause a sufficient increase in the free energy 
upon association to lead to a functional association, and without 
any functional difference which could be selected for, the respec-
tive substitutions are unlikely to be fixed in a population.

One possible explanation for the evolution of novel binding 
interfaces is based on the mass action law, which states that the 
binding affinity between two reactants increases with their local 
concentrations. If the local concentration of proteins is sufficiently 
high, a single substitution can thus indeed lead to significant 
changes in the binding behavior (65). One prominent example 
for this is sickle-cell anemia, a disease caused by a mutation that 
replaces glutamic acid at position six in the b-chain of hemoglo-
bin with valin. In the cytosol of erythrocytes, the concentration of 
hemoglobin is very high (~5 mM (66)) and in individuals with 
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sickle-cell anemia, this leads to the aggregation of hemoglobin 
and thus to the formation of fibrils. Based on this principle, 
Kuriyan and Eisenberg argued that colocalization might be 
important in the evolution of binding interfaces (67).

Colocalization can occur, for example, when two proteins 
bind to adjacent DNA regions, when two proteins bind to the 
plasma membrane, or when two proteins are fused together by 
gene fusion. Under such conditions, single substitutions could 
yield a selectable difference in binding affinity, which makes a 
gradual pathway to a specific interface possible (67). Comparative 
genomics studies have revealed a high abundance of gene fusion 
and fission events (68), and there are thus many possible scenarios 
in which two noninteracting proteins are first joined by gene 
fusion, optimized for a high binding affinity to each other, and 
finally split up to yield two proteins that specifically bind to each 
other.

Another explanation for the evolution of specific binding 
interfaces has been proposed by Bennet and coworkers (69). In 
their studies on diphteria toxin dimers, they observed that these 
proteins dimerize by exchanging domains, a mechanism which 
has been termed domain swapping. Domain swapping works by 
first breaking the intramolecular interactions of a protein domain 
with the rest of the protein in two monomers, the domains are 
then relocated and replace each other in the original monomers, 
leading to dimerization. Wether the resulting dimer is more stable 
than the single monomers depends on several factors. Translational 
and rotational energy is lost upon dimerization, leading to a 
decrease in stability, but this loss could be compensated by inter-
actions between the nonswapped parts of the protein. If the dimer 
has a new useful function or is more efficient in carrying out the 
function of the monomers, then mutations that stabilize the 
dimer would be selected for. Not only dimers but also higher 
oligomers can evolve in such a way. If a homodimerizing protein 
is formed in such a way, gene duplication and diversification can 
lead to families of homo- and heterodimerizing proteins. There 
are many instances where domain swapping has been observed 
(70) and this mechanism might be an explanation for the fact that 
interactions between identical and structurally highly similar pro-
teins are overrepresented in protein interaction networks.

The availability of extensive protein interaction data for several 
model organisms makes it possible to carry out comparative studies 
on protein interaction networks. However, we already mentioned 
that comprehensive protein interaction data are only available for a 
small number of model organisms. Among eukaryotes, these 
include the yeast S. cerevisiae, the fly D. melanogaster, the round-
worm C. elegans, and H. sapiens. It has been estimated that these 
organisms shared a common ancestor ~1.4 billion years ago (71). 
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Because of this large evolutionary distance and the previously 
mentioned high rate at which a protein can gain or lose interac-
tions (50), substantial differences between the protein interaction 
networks of these four organisms can be expected. However, it 
can also be expected that protein interactions which participate in 
biological processes, common to all eukaryotes, are evolutionarily 
conserved, even between distantly related species.

In one of the first attempts to quantify the amount of evolu-
tionarily conserved protein interactions between distantly related 
species, Cesareni et al. showed that 2% of the known protein 
interactions in yeast can be mapped to orthologous proteins in 
the fly, and 8% of the known D. melanogaster protein interactions 
can be mapped to orthologs in S. cerevisiae (72). It is very likely 
that this seemingly low amount of evolutionary conserved pro-
tein interactions is affected by the high amount of false-positive 
interactions in protein interaction data sets (35). This is supported 
by the observation that the fraction of interactions that can be 
mapped between both species increases to 5 and 24%, respec-
tively, when only high-confidence interactions are considered 
(72). Also, it has to be considered that the available protein inter-
action data are incomplete and that some interactions cannot be 
mapped simply because they have not been detected yet. The 
reported fractions of evolutionarily conserved protein interac-
tions between distantly related species can thus be regarded as 
lower bounds.

Mapping conserved protein interactions between species is 
not the only approach that has been made in comparing protein 
interaction networks. Other approaches take the structure of the 
networks into account and search for similarities on the network 
level by employing graph comparison algorithms. Kelley et al. 
introduced such an algorithm called PathBlast, which searches for 
evolutionarily conserved pathways between species (73). The 
algorithm tries to map a pathway from one species to the ortholo-
gous proteins from another species and defines a score for puta-
tive matches. This score is decreased by pathway proteins for 
which no ortholog could be identified and by missing protein 
interactions between the orthologous proteins. Such a scoring 
scheme accounts for evolutionary variations and also for the 
incomplete nature of protein interaction data sets. Evolutionarily 
conserved pathways between S. cerevisiae and the bacterial patho-
gen H. pylori could be identified with this approach (73).

In a later study, this procedure has been generalized to com-
pare more than two species at once and to search not only for 
conserved pathways but also for conserved clusters of highly 
interconnected proteins (74). Comparing the S. cerevisiae, C. 
elegans, and D. melanogaster protein interaction networks with 
this method yielded 71 network regions that are conserved 
between all three species, most of which could be identified as 
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functional modules responsible for central biological processes 
such as protein folding, intracellular transport, and RNA/DNA 
metabolism (74).

Another recent procedure to find subnetworks conserved 
between several species was developed by Gerke et al. (75). Their 
approach called Protein Interaction Network Analysis (PINA) is 
based on identifying topologically interesting subnetworks first, 
like highly clustered regions, and then performing a pair-wise 
sequence comparison of the respective proteins. Using this 
approach, they were able to identify conserved subnetworks, like, 
for example, a cluster of Y-family DNA polymerases that is con-
served between Mus musculus and H. sapiens (75).

Searching for similarities on the network level seems to be a 
much more fruitful approach for comparing protein interaction 
networks than simply counting the number of evolutionarily con-
served protein interactions between two species, especially because 
such methods do not rely on perfect matches, which are unlikely 
to be found due to the incomplete nature of protein interaction 
data sets. Also, similar network structures can often be mapped to 
specific biological processes, which makes such results useful for 
the prediction of protein functions.

Much progress has been made in understanding how protein 
interaction networks evolve. However, research in this area is still 
limited by the available data. Especially the fact that comprehen-
sive protein interaction data are available only for distantly related 
model organisms makes it hard to assess the degree of evolution-
ary conservation in interaction networks. And, as has been men-
tioned above, it is not only the amount but also the quality of the 
available interaction data which is a limiting factor. Especially 
transient protein interactions are still very difficult to detect. For 
transient interactions that have been detected, it is hard to assess 
whether those interactions are not only biophysically possible but 
also biologically relevant (i.e., they do occur in vivo). Fortunately, 
yeast two-hybrid and mass spectrometry-based methods to detect 
protein interactions are constantly refined and improved. Mass 
spectrometry-based methods, for example, have already matured 
to a level where it is possible to detect the precise stoichiometry 
and even dissociation constants of protein complexes (76).

The human protein interaction network is currently a focus of 
research, and community-wide efforts such as the proposed 
“Human Interactome Project” (77) are currently in planning.

A “complete” protein interaction map for humans will cer-
tainly be of great value, especially for biomedical research. Further 

5. Conclusions



286 Schüler and Bornberg-Bauer

advances in understanding the evolution of protein interaction 
networks, however, will depend on the availability of interaction data 
for closely related species, and it is unlikely that such data will be 
available soon.

 1. Several open-source programs are available for common tasks 
in research on protein interaction networks, including net-
work visualization and topological analyses. Cytoscape (78) is 
a very popular program in this context; it provides a basic 
framework for the analysis and visualization of networks that 
can be easily extended by plug-ins.

 2. It is advisable to not rely on a single data set for protein inter-
actions. Several databases are available as a source for experi-
mentally verified and computationally predicted protein 
interactions (see Table 1). Integrating this data into a single 
data set is not straightforward (especially because different 
databases use different protein/gene IDs). However, several 
tools are available that automatize the task of extracting all 
available protein interactions for a given species. Popular tools 
for this task include APID2NET (79) (a plug-in for Cytoscape) 
and PINA (80).

 3. It is possible to filter out low-confidence interactions in a pro-
tein interaction data set to minimize the number of false-pos-
itive interactions. Several approaches have been proposed for 
this task (81). These methods include (a) removal of all inter-
actions that have not been detected at least twice in indepen-
dent experiments, (b) filtering out interactions that are not 
co-expressed, (c) filtering out interactions that do not share 
similar Gene Ontology annotations. Some of these methods 
are available as plug-ins for the Cytoscape program.
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Chapter 18

Cytoscape: Software for Visualization  
and Analysis of Biological Networks

Michael Kohl, Sebastian Wiese, and Bettina Warscheid 

Abstract

Substantial progress has been made in the field of “omics” research (e.g., Genomics, Transcriptomics, 
Proteomics, and Metabolomics), leading to a vast amount of biological data. In order to represent large 
biological data sets in an easily interpretable manner, this information is frequently visualized as graphs, 
i.e., a set of nodes and edges. Nodes are representations of biological molecules and edges connect the 
nodes depicting some kind of relationship.

Obviously, there is a high demand for computer-based assistance for both visualization and analysis 
of biological data, which are often heterogeneous and retrieved from different sources. This chapter 
focuses on software tools that assist in visual exploration and analysis of biological networks. Global 
requirements for such programs are discussed. Utilization of visualization software is exemplified using 
the widely used Cytoscape tool. Additional information about the use of Cytoscape is provided in the 
Notes section. Furthermore, special features of alternative software tools are highlighted in order to assist 
researchers in the choice of an adequate program for their specific requirements.

The advent of several “omics” research fields such as Transcriptomics, 
Proteomics, and Metabolomics has led to substantial progress in 
acquiring knowledge about biological functions on different scales 
ranging from molecular to physiological levels. The ongoing 
accomplishments toward a comprehensive understanding of bio-
logical systems mainly rely on the effectiveness of high-throughput 
techniques. Application of these technologies results in the gen-
eration of huge data sets, and interpretation of this large amount 
of information is a current challenge.

Biological data are often stored in tabular form. However, 
simple lists or matrices that contain the results of experiments are 
often not adequate for tracking interdependencies of biological 
entities. Obviously, there is a need for computer-based assistance 
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for both visualization and analysis of biological data. To this end, 
data visualization software provides important means in order to 
represent data in an easily interpretable manner. An important 
task of data visualization software is, therefore, the presentation 
of biological relationships typically leading to a network represen-
tation of related biological processes (biological pathways). In 
general, pathways are visualized as graphs, i.e., a set of nodes and 
edges. Nodes are representations of biological molecules (e.g., 
different classes of nucleic acids or proteins) or larger entities such 
as molecular machines. Edges connect the nodes, depicting some 
kind of relationship or interaction (e.g., any type of chemical 
modification, inhibition, or activation).

This chapter focuses on softwares that assist in visual explora-
tion and the analysis of biological networks. During the last 
decade, several valuable software tools have been developed vary-
ing in both complexity and the suggested fields of application.

The chapter presented here is structured as follows. First, 
basic requirements for the visualization of biological networks are 
discussed. Second, the application of Cytoscape (1), a widely used 
visualization tool, is described followed by the discussion of spe-
cial features of some alternative software tools. Finally, additional 
information about the use of Cytoscape for processing of pro-
teomic data is provided in the “Notes” section.

In this paragraph, several tasks are discussed that frequently occur 
in the context of software-aided visualization, analysis, and assem-
bly of biological pathway data.

 1. Biological systems are complex. Each constituent of the sys-
tem may be characterized by a set of attributes of interest. 
Adequate software should permit a flexible encoding of such 
attributes with visual features (such as color, size, or the font 
used). For example, pathway proteins with abundance in a 
user-defined range may share the same color.

 2. An increasing amount of biological information is available 
from public repositories. In order to facilitate data integration 
from various sources, a direct database connection including 
both querying and download possibilities is desirable.

 3. State-of-the-art visualization software not only represents 
biological relationships from the interpretation of textual 
notations, but also enables the construction and editing of 
such networks by the user.

 4. In order to relate hypotheses of biological pathways and 
results of experiments, adequate software should support 

2. Basic 
Requirements for 
Computer-Aided 
Visualization  
of Biological 
Pathways
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mapping of experimental data into the displayed biological 
network. Moreover, further information about, for example, 
the subcellular localization of proteins or time course data 
can be related to both nodes and edges. Integration of such 
information may help to overcome the limits of static snap-
shot-like representations (cellular state) and may allow for the 
establishment of a rather dynamic representation of biological 
processes.

 5. Large molecular interaction networks ranging over several 
spatial levels (e.g., networks that include a detailed descrip-
tion of biological processes in different compartments of an 
eukaryotic cell) may comprise thousands of nodes and edges. 
Therefore, a very important feature of an adequate visualiza-
tion tool is an advanced scalability function. This implies a 
comfortable zooming function in order to reduce the degree 
of complexity, for example. Furthermore, scalability opportu-
nities facilitate access to biological information in different 
parts of the network.

 6. Networks with a large number of nodes and edges are often 
difficult to comprehend and the arrangement of pathways is 
generally time consuming. Therefore, an important feature of 
visualization tools is the availability of appropriate layout 
algorithms enabling to organize and align the nodes of a net-
work. Layout generation may also support automatic adjust-
ment of the network size.

 7. Rapid progress in biomolecular research most likely requires 
refinement of the basic features (e.g., analysis, graphical rep-
resentation, and input/output formats) of visualization soft-
ware packages. An opportunity to extend the software with 
new features is thus advisable. Open-source software enables 
the user to adopt the existing functionality quickly. Some 
software tools provide a possibility for the integration of plug-
ins and allow for extensions to access the core features of the 
system.

 8. Sharing of pathway information and further processing using 
other software tools involve encoding and export/import in 
standard data formats. Because visualization tools are used to 
prepare graphical representations of biological information 
for publication, support of different image formats is an 
important feature.

 9. For an adequate representation of large biological networks, 
the application of adequate filtering techniques and thus 
reduction of network complexity are often essential. A further 
requirement is the possibility to select subsets of nodes or 
edges with respect to different criteria, which may likely facili-
tate the discovery of biological mechanisms.
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 10. Specific visualization tools also support statistical analysis in 
order to allow the comparison of different sets of experimen-
tal data mapped onto the biological network.

In this paragraph, computer-aided visualization of biological net-
works is illustrated. Cytoscape (1) is chosen as an adequate exam-
ple, because this software package generally meets the majority of 
the above given basic requirements in subheading 2.

Furthermore, “Cytoscape” has a vivid community (see Note 1) 
and is widely used in both proteomic research and a wide range of 
life sciences applications in general. Currently (December 2009), 
over 487 publications are referencing Shannon et al. (1). The 
software is utilized in several software environments that aim at 
the analysis of biological data. For example, Cytoscape is part of 
the data mining solution GENPAC (http://www.nalapro.com/
index_e.html) and is used as visualization tool in the context of 
type 1 diabetes research projects (http://www.t1dbase.org/
page/Welcome/display).

In order to provide knowledge about alternative software 
solutions, comparable tools are additionally listed and informa-
tion about their distinct capabilities is provided (see 
Subheading 3.2).

The following description refers to Cytoscape version 2.6.3, 
which was installed on a standard PC (Intel Pentium Dual Core, 
2.5 GHz, 4 GB Ram, Windows XP Professional, Service Pack 3). 
Installation was straightforward on this system. Cytoscape is an 
open-source software and released under terms of the GNU 
LESSER GENERAL PUBLIC LICENSE (LGPL) v. 2.1.

Cytoscape is designed for the visualization of biomolecular 
interaction networks and pathways. The software provides the abil-
ity to depict very large networks (100,000+ nodes and edges, see 
Note 2) and to visualize interactions of the constituents of different 
molecular networks (e.g., protein–protein or protein–gene interac-
tions). The software supports the generation of biological networks 
by applying an editor module. Established networks can easily be 
imported and several file formats (.gpml, BioPAX (e.g., .owl files), 
.xml, .rdf, .gml, .xgmml, .sif, .sbml, .txt) are supported. Latest ver-
sions of Cytoscape (version 2.6 and above) act as a web service 
client for public biological databases. It is, therefore, possible to 
import existing networks and/or annotation data from public 
repositories (e.g., PathwayCommons, IntAct, BioMart, NCBI 
Entrez Gene and PICR). Cytoscape equally supports the import of 
experimentally derived data sets (see Note 3 for a quick start).

3. Data 
Visualization 
Software

3.1. Cytoscape

3.1.1. Description of the 
Basic Cytoscape Features 
(Network Establishment, 
Annotation, Analysis,  
and Visualization)

http://www.nalapro.com/index_e.html
http://www.nalapro.com/index_e.html
http://www.t1dbase.org/page/Welcome/display
http://www.t1dbase.org/page/Welcome/display
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The software uses attributes and annotations to include 
additional biological information. The attributes comprise spe-
cific properties of a network constituent (a node or an edge). For 
example, an edge may have an attribute that quantifies the extent 
of the interaction between the associated nodes.

In contrast, annotations refer to an ontology, i.e., a set of 
fixed/controlled terms that are hierarchically structured to reflect 
their semantic relations (e.g., the Gene Ontology database (2, 3)). 
Annotations thus apply to groups of nodes or edges that share the 
same characteristics. Additional information such as experimental 
data obtained from high-throughput experiments can be inte-
grated into a network, thereby permitting advanced data 
analysis.

In addition, Cytoscape enables editing of an existing network 
(e.g., adding or removing nodes or edges from a data set as well 
as modifying both node names and attributes) and combining 
smaller networks to a single, larger network (see Note 4).

A large set of layouts is implemented in the standard installa-
tion of Cytoscape (Fig. 1, see Note 5), facilitating the proper 
organization of networks (see Note 6). In order to establish and 

Fig. 1. Screenshot of several layouts provided by Cytoscape. Layout algorithms are applied to a data-set reported previ-
ously in (31). The screenshots show a selection of this larger network, i.e., the immediate neighbors of TP53 (tumor 
protein 53). Results of applications of different layout algorithms on this small network are shown: (a) yfiles – circular 
layout; (b) Cytoscape layout – Spring embedded; (c) Jgraph – Circle layout; and (d), yfiles – hierarchic.
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comprehend large networks, Cytoscape provides several possibilities 
for data representation. For example, related nodes (i.e., interact-
ing nodes that perform a common function) can be combined 
into a single parent node.

An important feature of any visualization software is the 
graphical representation of information, which is mapped to both 
nodes and edges. To this end, Cytoscape supports the encoding 
of any attribute with a large set of visual properties (e.g., size, 
color, or geometrical shape). A given set of encoded attributes 
can be stored as so-called Visual Styles. This software scheme is 
very powerful and allows the user to change the visual appearance 
of a visualized network easily.

Cytoscape uses three different kinds of mappers to alter note 
and edge properties (Fig. 2). The pass-through mapper may be 
used to label nodes directly with the respective protein name. 
Discrete mappings allow the use of visual properties to reflect 
biological characteristics. For example, the node color is indica-
tive of the cellular location of a given protein. The continuous 

Fig. 2. Visualization of the peroxisomal matrix protein import machinery in the yeast Saccharomyces cerevisiae using 
Cytoscape. The interactions of Pex2p, Pex8p, Pex10p, Pex12p, and Pex14p were analyzed by Agne et al. (32). Interactions 
(edges) and proteins (nodes) investigated in this publication are highlighted compared to further interactions retrieved 
from the Biogrid database. Nodes, representing individual proteins, were arranged manually. Several node and edge 
attributes were used for visualizing different attributes of the interaction network. The node labels were linked using a 
pass-through mapper with the protein names. Node colors were used to visualize the respective protein function. 
Interactions and proteins investigated by Agne et al. (32) were highlighted using edge color, edge line style, edge line 
width, edge opacity, node border opacity, node label opacity, and node opacity, respectively.
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mapper can further be used for the implementation of color 
gradients reflecting different interaction strengths (see Fig. 2 
and Note 7). Such flexible visualization opportunities generally 
facilitate data analysis since functionally related nodes, as well as 
the response of biological processes to experimental perturba-
tions is visualized.

Cytoscape further supports versatile filtering methods (see 
Note 8), which is an important property of pathway analysis. The 
selection of nodes can be performed with respect to the state of 
any arbitrary attribute. For example, nodes that show large differ-
ences in different experiments can be selected. Selected nodes can 
then be combined to subnetworks for further data analysis. A fil-
tering toolbox provides several predefined filters, which further 
facilitate the analysis of the network.

Pathway representations are often used in scientific papers. 
The Cytoscape export function simplifies the creation of such fig-
ures, as high-quality images of the networks ready for publication 
can be stored in common formats (e.g., .pdf, .jpeg, and .png).

This section deals with several techniques used for network gen-
eration and data analysis that require installation of Cytoscape 
extensions. Cytoscape features an advanced plug-in system. 
Available plug-ins can be downloaded from http://chianti.ucsd.
edu/cyto_web/plugins/index.php. On October 14, 2009, 87 
plug-ins were hosted at this website (see Notes 9 and 10). In the 
following, a selection of these plug-ins is described. Furthermore, 
an example for a possible integration of Cytoscape with other 
existing software tools is provided.

Cytoscape provides flexible and advanced text mining capabilities 
(4) by including the Agilent Literature Search plug-in. This feature 
allows for searches in public literature repositories (PubMed – 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed, OMIM – 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim, and USPTO 
– http://patft.uspto.gov) and automatically generates a network 
with respect to the findings in the literature (see Fig. 3). There 
are also possibilities for validating the results. Related sentences 
from the literature can be listed by selecting any node or edge of 
the network. Each sentence is linked to the data source used, 
which allows an easy retrieval and evaluation of the research arti-
cle of interest. Misleading information can be deleted from the 
list, yielding an immediate update of the network diagram.

In this paragraph, network modules are defined as a set of cooper-
ating nodes performing a consolidated function. Molecular com-
plexes are a sub-category of modules: proteins of a complex 
constitute in their entirety a macromolecular machine (e.g., the 
ribosome). The identification of such larger biochemical entities 

3.1.2. Advanced Features 
of the Cytoscape Software

3.1.2.1. Text Mining

3.1.2.2. Identifying 
Network Modules  
and Complexes

http://chianti.ucsd.edu/cyto_web/plugins/index.php
http://chianti.ucsd.edu/cyto_web/plugins/index.php
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed
http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim
http://patft.uspto.gov
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serves as an example for the data analysis capabilities of Cytoscape 
and its plug-ins.

This analysis requires the application of both the MCODE 
(5) and the BiNGO (6) plug-in. It is assumed that clustered nodes 
(i.e., intensively connected parts of the network) indicate molecu-
lar complexes. MCODE implements a graph theoretic clustering 
algorithm that searches for closely connected parts of the net-
work. The algorithm enables investigation of cluster interconnec-
tivity. To this end, the algorithm ranks the proposed complex 
identification. Higher ranks are assigned to the larger and the 
more intensively connected complexes. Results of MCODE can 
then be passed to BiNGO for further processing.

BiNGO detects over- or underrepresentation of Gene 
Ontology (GO) categories within a group of genes or within a 
biological network. It is assumed that proteins comprising a 
specific molecular complex participate in the same biological 

Fig. 3. Screenshot of the Cytoscape GUI. The main canvas shows a detailed view of a network generated with the Agilent 
Literature Search plug-in. Entries of the PubMed database were searched using “P53” and both “Homo sapiens” and 
“human” as search parameters. Analysis of reported associations was restricted to a maximum of 50 articles. The 
smaller window in the upper right part of the figure shows the sentences of the search results that were used to extract 
putative associations for a CASP8 and FADD-like apoptosis regulator (cflar). Note that this protein is selected as indicated 
by the yellow node color. The data panel in the bottom shows aliases of the selected protein. The small panel in the 
bottom left is used for adjusting the view of the central window showing a cut-out of the network.
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processes. BiNGO analysis should, therefore, result in a significant 
enrichment of certain GO terms for nodes that form a network 
module or a molecular complex. If both BiNGO and MCODE 
indicate functional association, there is further evidence that these 
nodes form a unit on a higher biological scale.

Integration of several plug-ins into the Cytoscape core application 
was suggested in order to perform a comprehensive and standard-
ized bioinformatic data analysis workflow (7).

Cytoscape can be combined with other existing popular soft-
ware tools to establish a larger software environment, which aims 
at analyzing proteomic data on a larger scale. This environment is 
named Integrative Proteomics Data Analysis Pipeline (IPDAP 
(8)). It includes software for data conversion, protein identifica-
tion, and quantification as well as a framework of linked tools 
providing capabilities for systems biology analysis. Cytoscape is 
part of this systems biology framework, in which different soft-
ware tools and web resources (e.g., public databases such as 
KEGG (9, 10), STRING (11, 12), and BioCyc (13)) interact via 
the Gaggle software system (14). The core application of Gaggle 
is a server program (“Gaggle Boss”) that facilitates program inter-
action by passing messages between software registered in the 
Gaggle framework. Amongst others, Gaggle links software devel-
oped for microarray analysis (TIGR Multiexperiment Viewer 
(15)), statistics (R/Bioconductor (16, 17)), navigating and plot-
ting of experimental data (DataMatrixViewer), data exchange 
between web resources and Gaggle (Firegoose (18)), and visual-
ization of biomolecular interactions (Cytoscape).

In this paragraph, further visualization software tools are dis-
cussed and their particular strengths and fields of application are 
highlighted.

The software VANTED (19, 20) features dynamic graph lay-
out. This means that the map of the biological network changes 
dynamically with respect to pathway-associated data (e.g., the 
results of time series experiments). Furthermore, VANTED 
includes statistical functionalities enabling the simultaneous com-
parison and analysis of multiple data-sets.

CellDesigner (21, 22) is a valuable tool for researchers with a 
strong interest not only in representation but also in the model-
ing of biological processes. It uses a diagrammatic network edit-
ing software, which supports the graphical notation system 
developed by Kitano (23). Process diagrams generated with 
CellDesigner can be translated into the Systems Biology Markup 
Language (24), a standard format widely used for encoding bio-
logical network models. Because CellDesigner can be connected 
with the Systems Biology Workbench SBW, (25), the software 
provides modeling opportunities using a SBW integrated simulation 

3.1.2.3. Using Cytoscape 
for Performing Advanced 
Bioinformatic Analysis  
with Respect to Molecular 
Interaction Networks

3.2. Special Features 
of Other Data 
Visualization Software
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engine for SBML files such as Jarnac (26). Similar to CellDesigner, 
the MetaReg software (27) also combines visualization and mod-
eling tasks. The software further includes advanced algorithms for 
refinement of the model.

ProViz (28) is potentially a good choice for researchers inter-
ested in the processing of very large networks due to the fact that 
it applies a powerful graph-rendering engine, enabling the han-
dling of millions of nodes and edges.

Biological Networks (29) is a free Systems Biology software 
platform intended for both the analysis and the visualization of 
biological pathways. The software is a user interface built on top 
of PathSys (30). The BiologicalNetworks/PathSys platform 
involves a large number of public biochemical data resources 
(including resources of genomic, transcriptomic, and proteomic 
data). A special feature of the software package is the integration 
of a powerful sql-like query language, which provides a flexible 
opportunity for network analysis.

 1. Cytoscape has a very active community, whose members are 
constantly developing new plug-ins and are also eager to help 
both new and experienced users with any problem they might 
encounter.

 2. Some problems may occur concerning “out of memory” 
errors. Application of Cytoscape to larger networks may 
require adjustment of the maximum memory size. There are 
several options available for allocating additional memory for 
Cytoscape. Detailed description is given in the Cytoscape 
manual, which is available from http://cytoscape.wodaklab.
org/wiki/Cytoscape_User_Manual. However, when dealing 
routinely with larger networks, the use of software startup 
from the command line is not preferable as it does not change 
the default memory size allocated for the software.

 3. For data import, the user should place the interaction source 
(e.g., the bait protein) in one column and the interaction tar-
get (e.g., a co-purified protein) in another column of an MS 
Excel sheet. As edges have a direction in Cytoscape, it is nec-
essary to pay attention to the position of the respective pro-
teins. Next, the user should use File\Import\Network-from-table 
to import the generated file. Edge attributes can be imported 
in parallel by marking the respective column in the Import-
GUI. Node attributes have to be imported separately.

 4. The user should ensure the completeness of the data to be 
visualized prior to changing the layout of the network. 

4. Notes

http://cytoscape.wodaklab.org/wiki/Cytoscape_User_Manual
http://cytoscape.wodaklab.org/wiki/Cytoscape_User_Manual
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While single nodes or edges can be added easily to an existing 
network without altering it, merging two networks will lead 
to a new default network, which automatically replaces the 
previous layout.

 5. The Edge-weighted Spring Embedded Layout is very power-
ful for the unbiased portrayal of networks. Nodes with several 
interconnecting edges are clustered, while Nodes with only a 
single linkage are distributed further apart.

 6. Although Cytoscape is generally able to visualize large net-
works, the use of layout algorithms, and in particular, the use 
of the highly popular spring embedded layout may be ham-
pered due to long processing times. Due to restrictions in 
memory space as stated above, the user may rather focus on 
subsets of a larger network.

 7. The use of the same node/edge property to visualize differ-
ent attributes in two different visual styles is possible but 
should be avoided. Saving and reopening of the document 
may result in the disruption of one of the visual styles. This 
restriction may be overcome in later versions of Cytoscape.

 8. Cytoscape supports the definition of logical combinations 
(using AND, OR, and XOR as logical operators) of existing 
filters, yielding a so-called “Boolean Meta-Filter.” This mod-
ular concept facilitates the application of complex filtering 
methods. Boolean Meta-Filters are efficient tools for the 
advanced analysis of larger biological networks.

 9. A major focus of Cytoscape extensions is the analysis of net-
works (32 plug-ins). A number of plug-ins add features for 
the import of networks and the related annotations (20 plug-
ins). Other extensions mainly enable new layout capabilities 
or provide support for different file formats and connections 
to databases. The list of plug-ins viewed at the Cytoscape 
plug-in page includes a description and information about 
the compatibility with existing Cytoscape versions. The web-
page also includes a tutorial with information about writing 
and the integration of individual plug-in solutions.

   In most cases, installation of plug-ins requires copying of a 
.jar-file into the plug-ins directory, which is located directly 
below the Cytoscape program root. Additional steps may be 
required: Restart of the Cytoscape GUI and choose Plug-ins – 
Manage plug-ins from the menu. This yields a categorized list 
of plug-ins that are prepared for installation. Integration of the 
plug-in of interest into the GUI can then be performed simply 
by selecting the plug-in and clicking the install button.

 10. The plug-in system supports installation of themes, which are 
bundles of related plug-ins. These plug-in combinations are 
designed to solve frequently occurring tasks such as providing 
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access to common public resources of biological network 
data. The themes concept will also lead to customized ver-
sions of Cytoscape tailored to the necessities of specific users. 
However, currently there are only few themes available.
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Chapter 19

Text Mining for Systems Modeling

Axel Kowald and Sebastian Schmeier 

Abstract

The yearly output of scientific papers is constantly rising and makes it often impossible for the individual 
researcher to keep up. Text mining of scientific publications is, therefore, an interesting method to auto-
mate knowledge and data retrieval from the literature. In this chapter, we discuss specific tasks required 
for text mining, including their problems and limitations. The second half of the chapter demonstrates 
the various aspects of text mining using a practical example. Publications are transformed into a vector 
space representation and then support vector machines are used to classify papers depending on their 
content of kinetic parameters, which are required for model building in systems biology.

Since the advent of written language scientific advances are com-
municated in the form of text-based scientific publications. One 
of the major aims of text mining (TM) in the life sciences is to 
transfer the text based information into databases for storage, 
easy accessibility, and further processing. Up to now, this infor-
mation transfer is heavily dependent on human experts who curate 
biological information in the text and further map it onto database 
entities utilizing ontologies or controlled vocabularies. Despite 
the endless number of biological databases, most information is 
still contained within the wealth of scientific publications. The 
sheer volume of the documents makes automated systems for 
searching and indexing the contained information indispensable 
to aid the human curation effort.

Two terms often encountered in TM are “Information 
Retrieval” and “Information Extraction.” Information retrieval 
relates to the task of finding documents with relevance to a pre-
specified search query. The query can be of arbitrary complexity 
(e.g., all documents related to systems biology, all documents 

1. Introduction
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that contain the terms “polymerase” and “DNA,” etc.). As one 
can already deduce, information retrieval has a huge impact on all 
forms of information technology, e.g., search engines for the 
World Wide Web where a document would be considered a web 
page. Information extraction, on the contrary, is a type of infor-
mation retrieval with the task of automatically extracting struc-
tured information from within unstructured documents. The 
structured information to be extracted has a well-defined domain 
(e.g., protein names, gene names, numbers, etc.).

In a perfect world scenario, an automated computerized sys-
tem would combine the concepts of information retrieval and 
information extraction. A collection of scientific documents is 
searched regarding pre-defined criteria (e.g., all documents rele-
vant to systems biology). Each scientific text of the sub-collection 
is parsed by the system and analyzed toward identification of bio-
logical entities (e.g., proteins, genes, chemicals, drugs, species, 
etc.), physicochemical entities (e.g., constants, rates, etc.), numer-
ical entities (e.g., numbers), and relationships between them (e.g., 
reactions, interactions, processes, etc.). The found relationships 
are mapped onto existing database entities and accompanying 
information of the relationships is stored (e.g. binding constants, 
half-life data, reaction velocities, etc.). No human interaction 
would be necessary to extract these relationships and the system 
is able to populate such a database for any volume of documents 
(e.g., the whole of Medline.). Unfortunately, up to now several 
problems influence the quality of a system that would fulfill all 
these requirements without any human interaction. For a better 
understanding of the encountered obstacles, the following sec-
tions contain a closer look at specific tasks that are required for 
the implementation of such a system.

The first problem that one encounters when dealing with text 
documents is the digital format of the text itself. Automated TM 
almost always requires the underlying text to be in ASCII or 
related format (e.g., Unicode for more complex encoding). The 
biggest resource of biological knowledge is scientific publications. 
Full-text articles of these publications are often only distributed 
in PDF format. A straight-forward conversion from PDF to 
ASCII text is currently not possible without the loss of at least 
some information, which could prove critical in the assessment of 
the information contained within the document itself. Research 
in this field is currently conducted outside the field of life sciences 
which is natural, given that the roots of TM lie within the field of 
information technology. Apart from PDF documents, several 

2. Specific Tasks 
Within Text Mining, 
Their Problems, 
and Limitations

2.1. Format Conversion
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projects such as, for example, PubMed Central (http://www.
pubmedcentral.nih.gov) focus on gathering full-text articles that 
do not violate copyright restrictions in XML format. XML format 
is ASCII based and offers on top a simple annotated structure 
within a document that can be easily parsed and further processed 
by a computer program (e.g., specific tags for titles, sections, 
etc.). With more and more publishers (e.g., BioMed Central 
(http://www.biomedcentral.com), Public Library of Science 
(http://www.plos.org), etc.) adopting an open access policy of 
their content, collections of full-text scientific articles, such as 
PubMed Central, are steadily growing, but the mass of informa-
tion is still only available in formats that are not easily translated 
into a machine readable encoding.

Despite the rudimentary structure within the XML formats that 
e.g., PubMed Central offers it is still a challenge for automated 
computerised systems to identify single word and sentence bound-
aries (often denoted to as Tokenization). The former is of impor-
tance while identifying entities of interest within the text, while 
the latter influences more the semantic and syntactic ambiguity 
while establishing relationships between identified entities. For 
example, an interaction of two proteins is most likely but not 
exclusively conveyed within the same sentence:

“ … and it could be shown that protein A and protein B 
interact.”

vs.

“ … as could be shown for protein A. An interacting partner, 
protein B, is similarly …”

Automated part-of-speech (POS) tagging of words in sentences is 
another field of research conducted in information technology. 
Here, the aim is to annotate words in a sentence or phrase with 
its corresponding part of speech (e.g., verb, noun, adjective, etc.). 
This annotation is of help while identifying entities and establish-
ing relationships between them (e.g., identify nouns in the sen-
tence, identify verbs that connect nouns, etc.). Tasks related and 
often processed together with POS tagging are stemming and 
lemmatization. While either are closely related, stemming reduces 
words to their word stem or root (e.g., “interacted” and “interac-
tion” are reduced to “interact”), whereas lemmatization maps words 
to their lemma or base form (e.g., “good” is a lemma of “better”).

The task of identifying entities in text is often denoted to as 
“Named entity recognition” (NER). Word sense disambiguation 
plays an important role in NER. Especially in the life sciences, 
words with several meanings often appear disproportional. 
Examples are words used for genes or proteins that resemble 

2.2. Identification  
of Word and Sentence 
Boundaries

2.3. Part-of-Speech 
Tagging

2.4. Named Entity 
Recognition and Word 
Sense Disambiguation

http://www.pubmedcentral.nih.gov
http://www.pubmedcentral.nih.gov
http://www.biomedcentral.com
http://www.plos.org
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English words in natural speech, such as, for example the 
Drosophila genes “decay,” “off,” “blue,” etc., which might relate 
to a property of the gene but which would not be easily identified 
by an automated system as a gene. Another example would be the 
denomination of a gene that resembles another biological entity, 
e.g., a protein. These problems could be avoided with the estab-
lishing of a formal naming convention for all biological entities. 
Despite efforts in this direction (1, 2), it is still far from being 
complete, commonly accepted, or utilized (3). Automated sys-
tems for word sense disambiguation try to overcome such prob-
lems by taking, for example, POS tags into consideration to 
identify nouns in text, which does not necessarily help in mapping 
the found text entities onto existing database entities.

The aforementioned tasks and their individual limitations influ-
ence the identification of relationships between entities. Automated 
systems still struggle with semantic ambiguity that is often 
encountered in the English language. A sentence read by a human 
reader can have several different meanings, depending on where 
the reader puts the stress within the sentence. Such sentences are 
generally difficult for computer software to analyze. It becomes 
even more difficult when relationships among entities span 
through several sentences. Even trained human curators with a 
sufficient biological background are not able to fulfill the task 
with a 100% accuracy.

Ontologies are foremost conceptual models. They try to establish 
a unifying representation and systematical order for entities, con-
cepts, and relationships between them in a hierarchical manner 
for unambiguous and consistent sharing of knowledge over dif-
ferent domains. The Open Biomedical Ontologies (OBO, www.
obofoundry.org) initiative is a collaborative effort to create guide-
lines for the development of biomedical ontologies. In addition, 
it gives an overview of biomedical ontologies currently under 
development. An example for a biomedical ontology is the well-
known and studied Gene Ontology (2) (GO, www.geneontology.
org). An example of an early TM system that focuses on the GO 
is GoPubMed (4) (www.gopubmed.org), which categorizes 
results of a PubMed (www.ncbi.nlm.gov/pubmed) search based 
on GO terms and concepts, thus letting a possible user navigate 
abstracts through these categories rather than through a list of, 
e.g., authors or publication titles.

One of the main criticisms of ontologies and their application 
in the biomedical domain is that an ontology will always be an 
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unfinished product that can be improved and that they often do 
not follow stringent standards (5, 6). In addition, the creation 
and the research of ontologies were not driven by the need of 
controlled vocabularies with hindsight to biomedical TM. The 
main obstacles for the application of ontologies within the scope 
of biomedical TM are the nonstandardized ontology language, 
the earlier mentioned inconsistency in naming convention for 
biological entities and concepts, and the incompleteness of ontol-
ogies (7). Nevertheless, research into ontologies and their appli-
cation within biomedical TM is currently of a huge interest and 
more and more TM systems are developed that rely on 
ontologies.

TM systems in the biomedical field can be categorized broadly 
into two categories: (1) general TM systems and (2) specialized 
TM systems. The former systems do not focus on a specialized 
field of biology and are capable of retrieving either documents or 
co-occurrences to a variety of biological questions. The main aims 
of a researcher in utilizing such a tool are twofold. First, to filter 
out documents of interest to a particular search question (e.g., 
“Retrieve all documents that contain a particular gene or pro-
tein” “Retrieve all documents where protein A occurs with 
another protein in the same sentence” etc.) and, second to find 
literature evidence for testing a hypothesis (e.g., “Does evidence 
in the scientific literature exist that protein A and protein B inter-
act?” “Does evidence in the literature exist that the drug X is 
related to the disease Y?” etc.). Examples of such tools are mani-
fold. For example, iHOP (8) uses gene/protein names as hyper-
links between sentences and abstracts of the PubMed database. 
The TM system is gene/protein centered, which means that the 
starting point for utilizing the system is a gene/protein name. 
Based on the name, iHOP finds sentences in the literature that 
contain the gene/protein name with other genes/proteins, thus 
creating an easily searchable network around the input gene/pro-
tein linked to the underlying literature. EBIMed (9) also, based 
on PubMed abstracts, has the goal to present information about 
UniProtKB/Swiss-Prot proteins, GO annotations, drugs, and 
species found in the abstracts in the form of an easy accessible 
table. The advantage of this TM system is that the input query 
into the system can be of arbitrary complexity. Standard search 
queries that would be utilized to query PubMed directly can be 
used. The resulting set of abstracts is then analyzed toward 
the former mentioned biological concepts and the results are pre-
sented in the form of a table, where each entry is linked to the 

4. Examples  
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underlying sentence and abstract where the information was 
found, as well as to biological databases for more information on 
the biological entity/concept. This table highlights all co-occur-
rences of biological entities and concepts found in the corpus of 
abstracts that was retrieved by the search query. The table can be 
ordered in manifold ways to satisfy the user needs. Another simi-
lar approach is the TM system AliBaba (10) that also works on 
PubMed abstracts. Based on a protein or disease, it creates a net-
work in the form of a graph, which visualizes interacting concepts 
such as cells, compounds, diseases, drugs, enzymes, proteins, 
genes, species, and tissues mined from the PubMed abstracts. The 
extracted information is again linked to the underlying text 
source, which is made readily accessible to provide the means 
for the user to confirm the accuracy of the extracted associations 
by hand.

All these systems provide in essence a method to query a lit-
erature corpus and retrieve abstracts/sentences that match a pre-
specified search query. The results are presented in different 
formats, while the focus is on different biological entities. It is a 
quick way to find fast information about a biological entity of 
interest. The extracted information is linked to the text source, 
and in most cases, to other biological databases, which enables a 
user to verify by hand how much confidence he gives to certain 
extracted information.

The biggest downside of these TM systems is that they only 
work on PubMed abstracts. The wealth of information buried in 
the full-text articles is thus not considered at all. Many of the 
problems and limitation in TM systems mentioned above play a 
role for disregarding the full-text articles in the first place. The 
main reason for considering only the abstracts is their easy acces-
sibility, which in case of PubMed can be obtained free of charge 
in XML format for public institutions.

After a system for information retrieval or extraction has been 
developed, its performance has to be measured. This can, for 
instance, be done by calculating sensitivity and specificity, while in 
the field of information retrieval, more often recall and precision 
are used. To make things even more confusing, sometimes also 
the positive, and, respectively negative predictive values are used 
to characterize a classifier.

The connection between all these terms is displayed in 
Fig. 1 for a binary classification problem. An example can in 
reality be true or false and the classifier can give a positive or a 
negative result, leading to four possible outcomes. In two cases 
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(true positive and true negative), the prediction was correct, 
whereas in the other two cases (false positive and false negative), 
it was wrong. Sensitivity is now defined as the number of true 
positive predictions divided by all positive examples and specific-
ity is the number of the true negative predictions divided by all 
negative examples. Thus, sensitivity measures how well a classifier 
recognizes true examples and specificity measures how well false 
examples are recognized. The term recall is actually identical to 
sensitivity, while precision is identical to the positive predictive 
value. Thus, precision is the fraction of positive predictions that 
are correct. A noteworthy feature of the sensitivity/specificity sys-
tem is its independence of the ratio of true to false examples. 
Precision, in contrast, does vary with sample composition.

A specific pair of sensitivity and specificity values often depends 
on the discrimination threshold used by the classifier, and thus a 
single classifier can produce a whole range of sensitivity/specific-
ity pairs. Consider, for example, the PSA level that is used in pros-
tate cancer diagnostics. If the threshold level used for positive 
classification is low, the test will generate many positive predic-
tions but with a high error rate, i.e., sensitivity is high, but speci-
ficity is low. If, however, a high threshold is used, there will be 
only few positive predictions but most of them will be correct. 
This means sensitivity is low, but specificity is high. To compare 
classifiers, it is, therefore, not sufficient to compare single sensitivity/
specificity values, but instead the whole range of generated values 
has to be considered. A convenient way to do this is the use of a 
receiver operator curve (ROC), which displays true positive rate 
(sensitivity) as function of the false positive rate (1-specificity). 
The area under the receiver operator curve (AUC) ranges from 0 
to 1 and is a popular measure for the quality of a classifier. For a 
more in-depth discussion on the use of ROCs see (11).

Fig. 1. Possible outcomes of a two-class classification problem. In the different scientific 
communities, different measures for classification success are used. Examples are the 
sensitivity and specificity system or the recall and precision system. For further details, 
see text.
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As a specific example, the problem of finding scientific publica-
tions that contain kinetic parameters is now described. Biochemical 
reaction systems are usually modeled by a set of ordinary differ-
ential equations (ODEs) that describe the changes in the concen-
tration of a biochemical species. The rate of a reaction is a function 
of the concentrations of the substrates, products, and of kinetic 
parameters that are part of the kinetic law. The irreversible 
Michaelis–Menten kinetics is a simple kinetic for the case that one 
substrate, with concentration cS, is irreversibly converted into a 
product:
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=
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S
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Vmax denotes the maximal rate for high substrate concentrations 
and KM is the half-saturation concentration (Michaelis–Menten 
constant). Other, more complicated, kinetic laws exist that depend 
on further parameters such as half-life and activation, respectively, 
inhibition constants. For the quantitative modeling of biochemi-
cal reaction networks, it is important to know the values of the 
various parameters and to know to which kinetic type they belong. 
Whereas most reaction networks are well described qualitatively, 
detailed quantitative values are missing or scattered in various sci-
entific publications.

The aim was, therefore, to build a classifier that could sepa-
rate few publications that contain values for kinetic parameters 
from those that do not (see also (12)). For this purpose, 4,582 
randomly chosen full-text documents were downloaded from 12 
different journals. From the full set, a keyword search generated 
791 candidate articles. The keywords consisted of names and 
identifiers of constants (such as “Michaelis–Menten” or “Km”) 
and words describing functions (such as “degradation,” and “acti-
vation”) or components (“enzyme”). Reading those 791 docu-
ments revealed that only 155 actually contained kinetic parameters, 
corresponding to a precision of 20% of this method. However, 
this first selection step was necessary, because it would have been 
a prohibitive amount of work to read all 4,582 articles.

The representation most often used for the application of certain 
machine learning techniques is the vector space model (VSM) 
(13). This model describes each document as a set of properties 
called features. This leads to a comparable representation of texts, 
regardless of their prior format, size, or structure (book, journal, 
article, and paragraph). It becomes irrelevant whether the infor-
mation is presented in the Results or the Methods section of a 
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research article, or what the exact content is (e.g. differences in 
nomenclature usage or spelling variants). Another advantage is 
the suitability of such vector formats for machine learning tech-
niques, which can easily gather hints on the importance and 
influence of a particular fact (a feature) or certain nonlinear com-
binations of those.

Representing documents using the VSM, a fixed vector of 
features observed in the entire document collection (a feature 
vector) is calculated. Next, for each single document, an instance 
of this feature vector is filled with values describing the relevance 
of each feature for this particular document. Some features or 
properties might be present (to some degree) in one document, 
but absent in others. A single document can contain a certain 
term, with a certain number of occurrences, or not. The corre-
sponding coordinate in the document vector, an instance of the 
feature vector, is assigned a value reflecting this occurrence, that 
is, the term frequency (tf). After tokenization and stemming of 
the texts, a fixed feature vector can be extracted consisting of 
every word stem encountered. Instances of the feature vector are 
then filled with the corresponding occurrences of each term for 
this particular document, resulting in one document vector per 
publication. The underlying approach is called a bag-of-words, as 
all words are represented by their frequency only, regardless of co-
occurrences, collocations, and context. Additionally, one might 
think of different weighting schemes to represent the significance 
of a term for describing a certain document. Most weighting 
schemes (14, 15) comprise a combination of a term’s local weight 
(i.e. within the document) and its global weight (i.e. in the docu-
ment collection). However, in this study, only tf was used to con-
struct the feature vector. Processing of the complete corpus (791 
documents) resulted in approximately 44,000 different features.

The described way to represent documents leads to a very high 
dimensional feature vector. These extreme dimensionalities can 
negatively affect the classification performance. On the contrary, 
one can argue, that the more information is used to describe the 
documents, the better will be the classification model generated 
by the machine learning algorithms. It is, therefore, an important 
step to find an appropriate balance between these opposing 
effects. To pick the most relevant features of a document (or the 
whole document collection), different ideas were applied. In 
every language, there are a lot of so-called stop-words, common 
terms which do not provide any information toward discriminat-
ing documents, as they tend to appear with the same frequency in 
every kind of text (e.g. and, are, it, and with). These words can be 
removed, as well as very rare words, appearing in only a few (or a 
single) documents. A pruning of such words helps to reduce the 
dimensionality of the vector space.

6.2. Feature Ranking 
and Dimensionality 
Reduction



314 Kowald and Schmeier

Furthermore, the remaining features can be ranked according 
to their importance by some appropriate statistical test and then 
only the most important terms are used for the classification algo-
rithm. To calculate such a ranking, the non-parametric Mann–
Whitney test was used, which does not rely on special assumptions 
about the data distribution (such as normality). The test calcu-
lates for each of the approximately 44,000 different features a 
p-value, indicating how important this feature is for separating 
the two classes. Figure 2 shows the p-values for the 2,000 most 
significant features. There are only relatively few features with 
small values, while the large majority of terms seems to be evenly 
distributed between the two classes of documents (resulting in 
large p-values). Although we perform multiple tests (namely, 
44,000), corrections for multiple testing are not required since 
we are only interested in the relative ranking and not the absolute 
significance of each term.

Several classification runs were performed to study the depen-
dency between feature number and classification performance. 
For this purpose, only a certain number of top ranked (Mann–
Whitney) features were included in the support vector used by a 
support vector machine (SVM) (16). Classification was performed 
with RBF (radial basis function) kernel and tenfold cross-validation 
to avoid over-fitting. Figure 3 shows the connection between 
the area under the receiver operator curve (AUC) and the num-
ber of used features. As can be seen, the AUC rapidly increases 

6.3. Classification 
Performance and 
Feature Number

Fig. 2. Sorted results of the nonparametric Mann–Whitney test used to rank all words in 
the feature list obtained from the analysis of the document corpus (796 scientific 
papers). From the 44,000 features, only 532 have a p-value smaller than 0.05.
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with increasing feature number and then approaches a maximum 
at 5,000 features (which was the number of features given as 
input to the SVM). Thus, in this case, already a small number of 
top-ranked features are sufficient to give a good classification per-
formance. Furthermore, the classification ability of the SVM does 
not degrade with feature number (it even seems to increase 
slightly). This confirms the well-known observation that the per-
formance of SVMs is quite robust against a surplus of features.

Finally, the classification performance is examined when using a 
feature vector with 5,000 features, which gave the best AUC 
value of the studied cases. Figure 4 shows the ROC curve for this 
situation with an AUC of 0.90.

Support vector machines can provide a probability estimate 
on how likely it is that an example belongs to one class or the 
other. By using different probabilities as threshold for the classifi-
cation (normally 0.5 is used), different combinations of sensitivity 
(true positive rate) and specificity (1-false positive rate) can be 
obtained. All points on the surface of the ROC can be reached by 
an appropriate choice of the classification threshold.

Another way to visualize this connection is displayed in Fig. 5. 
The diagram shows directly how sensitivity and specificity vary 
with the used threshold. In general, there is a trade-off between 
sensitivity and specificity. However, depending on the problem, it 
might not be necessary to have high values for both measure-
ments. In our case, sensitivity is not as important. Since a potentially 

6.4. Classification 
Performance with 
5,000 Features

Fig. 3. Diagram showing the dependence between the area under the ROC curve (AUC ) 
and the number of best ranked features used for classification. The features were ranked 
using a Mann–Whitney test (see Fig. 2).
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very large number of publications with kinetic parameters does 
exist in the literature, it is not so important if one is not found 
(false negative). But false positives are very costly, because those 
papers have to be inspected manually before the error is detected 
(labor costs). Therefore, a high specificity is desirable. That means 
a large threshold value will be chosen to obtain a high specificity.

Interest and research in biomedical TM has increased greatly over 
the last decade. Currently, information retrieval and extraction 
provide the means to support a variety of biomedical studies. 

7. Conclusions

Fig. 5. Achieved sensitivity and specificity (and geometric mean of both) as a function of the used probability threshold. 
Support vector machines can calculate a probability value indicating how “sure” the classifier is that the example belongs 
to the predicted class. If different probability thresholds are used for classification, different combinations of sensitivity 
and specificity are obtained.

Fig. 4. Receiver operator characteristic (ROC) curve for a support vector machine classification using a feature vector with 
the 5,000 top-ranked features.
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An example study of a TM approach set in the field of systems 
biology has been described. The aim was to train a machine learn-
ing classifier to distinguish relevant from irrelevant scientific pub-
lications. The relevance is defined by their content of kinetic 
parameters that are necessary for the in silico modeling of bio-
logical pathways. Several TM sub-tasks such as format conver-
sion, POS tagging, stemming, feature representation with the 
help of the vector space model approach, and machine learning. 
have been discussed during the analysis. It could be shown that 
with the help of TM techniques it was possible to fulfill the task 
with an acceptable performance. However, several difficulties 
were encountered during the course of the study. The automatic 
conversion from PDF documents to plain ASCII text was imper-
fect. The used software was not able to resolve all words and 
symbols encountered in the PDF documents correctly. Future 
advances in conversion technology and optical character recogni-
tion (OCR) software will definitively improve PDF-based TM. 
Shifting the focus away from PDF documents toward full-text 
publications in HTML or XML format would solve this problem. 
An example of such a format is ePub, which has in 2007 been 
endorsed by the International Digital Publishing Forum (www.
idpf.org) as a new standard for electronic publishing. Furthermore, 
other feature representation schema or machine learning algo-
rithms might lead to improvements as well. However, even 
though the created system for the automatic classification of doc-
uments from a specialized biological domain is not perfect, it 
could be demonstrated that such a system can already now be of 
great value for scientists seeking kinetic information from text 
sources.
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Chapter 20

Identification of Alternatively Spliced Transcripts  
Using a Proteomic Informatics Approach

Rajasree Menon and Gilbert S. Omenn 

Abstract

We present the protocol for the identification of alternatively spliced peptide sequences from tandem 
mass spectrometry datasets searched using X!Tandem against our modified ECgene resource with all 
potential translation products and then matched with the Michigan Peptide to Protein Integration 
(MPPI) scheme. This approach is suitable for human and mouse datasets. Application of the method is 
illustrated with a study of the Kras activation-Ink4/Arf deletion mouse model of human pancreatic duc-
tal adenocarcinoma.

By means of alternative splicing and posttranslational modifications, 
one gene can generate a variety of proteins. Alternative splice 
events that affect the protein coding region of the mRNA will 
give rise to proteins which differ in their sequence and activities. 
Alternative splicing within the noncoding regions of the RNA can 
result in changes in regulatory elements, such as translation 
enhancers or RNA stability domains, which may dramatically 
influence protein expression (1).

Alternative splicing has been associated with such diseases as 
growth hormone deficiency, Fraser syndrome, cystic fibrosis, spinal 
muscular atrophy, and myotonic dystrophy (2, 3). In cancers, 
there are examples of every kind of alternative splicing, including 
alternative individual splice sites, alternative exons, and alterna-
tive introns (4). A number of public alternative splice databases 
have recently become available, including ASD, HOLLYWOOD, 
and ASAP II. Each of these repositories contains transcript 
models that have been constructed from either expression data 
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(ESTs and mRNA) or previous annotations of known proteins. 
The databases vary in their annotation methods and their overall 
size. One of the larger of these databases is the ECgene database 
developed by Kim et al. (5). Entries in the database are scored as 
high, medium, or low confidence reflecting the amount of 
amassed evidence in support of the existence of a particular alter-
natively spliced sequence. Evidence is collected from clustering of 
ESTs, mRNA sequences, and gene model predictions.

We have devised a proteomic informatics approach to identify 
known and novel alternative splice variants. Briefly, we search 
mass spectrometric data against a custom-built, nonredundant 
human or mouse database created with translation products using 
all three reading frames from cDNA sequences taken from ECgene 
and Ensembl databases (6). The peptide sequences identified are 
analyzed using Blast and Blat searches and integrated to distinct 
proteins.

The target alternative splice variant protein database, the modified 
ECgene database, was constructed and can be updated by 
combining the latest Ensembl and ECgene databases for the mouse; 
the analogous combination generates a modified ECgene data-
base for human studies. Taking alternative splicing events into 
specific consideration, ECgene combines genome-based EST 
clustering and the transcript assembly procedure to construct 
gene models that encompass all alternative splicing events (5). 
The reliability of each isoform is assessed from the nature of clus-
ter members and from the minimum number of clones required 
to reconstruct all exons in the transcript.

cDNA sequences from the ECgene database and from the 
Ensembl database were obtained in FASTA format. Each sequence 
set was translated separately in three reading frames and the first 
instance of every protein sequence longer than 14 amino acids 
was recorded. The cDNA sequences are translated in three read-
ing frames instead of the six frames which are used in translation 
of genomic double-stranded DNA; cDNAs are made from single-
stranded mRNA sequences. Following the three-frame transla-
tion, the resulting sequences from each data source were combined 
and then filtered for redundancy. Preference was given to protein 
sequences originating from an Ensembl transcript. A collection of 
common protein contaminant sequences (http://www.thegpm.
org/crap) was added to this set. Lastly, all sequences were reversed 
and appended to the set of forward sequences as an internal con-
trol for false identifications. This last step resulted in doubling the 
total number of entries in the modified ECgene database.

2. Methods

2.1. Database  
of Translated 
Alternatively  
Spliced Sequences: 
The Modified ECgene 
Database

http://www.thegpm.org/crap
http://www.thegpm.org/crap
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For examples, the mouse ECgene database (mm8, build 1) 
contains a total of 417,643 splice variants; the Ensembl version 
40 database (each Ensembl release has an integer version number 
associated with it which is used to identify the correct versions of 
API, Web code and databases for that release) has 21,839 mouse 
genes with 28,110 transcripts, of which there are 10,922 alterna-
tive transcripts derived from 4,651 genes. The modified mouse 
ECgene database contains 10.4 million protein sequences. 
Similarly, the modified human ECgene database which contains 
Ensembl version 53 contains 14.2 million protein entries.

The mzXML files containing the spectral information were 
extracted from mass spectrometric RAW files using ReAdW.exe 
program (http://tools.proteomecenter.org). The mzXML files 
were then searched against the modified ECgene database using 
X!Tandem software (7).

Figure 1 summarizes the analytical work flow of the X!Tandem 
search results. In brief, the peptides are first integrated to a list of 
proteins using the Michigan Peptide to Protein Integration 
(MPPI) approach described below. Thereafter, all peptides identi-
fied from the integrated protein list are searched against the latest 
protein databases. This step is required due to frequent updates 
of protein databases. If a match occurs, the peptide is referred 
to as a known peptide; if not, it is considered as a novel peptide. 

2.2. Searching Mass 
Spectral Data Against 
Alternative Splice 
Database

2.3. Postsearch 
Analyses

Fig. 1. The Flow chart displaying the analytical work flow of the X!Tandem search results for the identification of Alternative 
Splice Variant proteins.

http://tools.proteomecenter.org


322 Menon and Omenn

The protein sequences from which these peptides are identified 
are aligned to the genome to determine the location of the pep-
tides. Next, the known peptides with protein annotations from 
the latest databases and the novel peptides identified from modi-
fied ECgene variants undergo another round of MPPI. A thresh-
old is applied to keep the FDR < 1%. All known protein 
identifications that were derived from genes with multiple tran-
scripts and the novel identifications from ECgene entries are 
retained, and the other proteins are removed. Hence, the final 
integrated protein list contains the known and novel alternative 
splice variants.

The peptide identifications from the X!Tandem searches were 
integrated to a final list of proteins using MPPI. Only the peptide 
identifications within the FDR < 1% limit were used in the MPPI 
analysis. The MMPI algorithm is as follows:

 1. List all peptide matches that fall within an FDR <1% (based 
on X!Tandem expect value).

 2. Order peptides by the number of spectra matching each 
peptide.

 3. Select peptide with the largest number of matching spectra.
 4. List all proteins containing this peptide, ranked by decreasing 

number of total distinct peptides identified, decreasing 
number of total spectra, increasing expect value, and then 
increasing protein length.

 5. Select the highest ranking protein to be included in the final 
integrated protein list; if a tie, give preference to Ensembl 
protein over ECgene protein.

 6. Remove all other peptides contained within this protein from 
the peptide list.

 7. Repeat steps 3–6 until no peptides remain in the peptide list.

The peptide identifications from the proteins after the first MPPI 
analysis were searched against the mouse genome using BLAT (8) 
and against latest Ensembl and NR databases using NCBI blastp 
(9). In the case of a novel peptide, the translated splice variant 
sequence is aligned against the mouse genome. Thus, the loca-
tion of the peptide within the gene is determined. One can deduce 
the splice mechanism which has generated the novel peptide, 
including the deletion or switch of exons, intron retention, alter-
nate splice site, and translation in an alternative reading frame. In 
rare cases, the ECgene variant sequence from which the novel 
peptide was identified matches to a conserved chromosomal 
region with no known genes; if so, the identification is retained 
only if the novel peptide is from multiple good quality spectra.

2.4. Michigan Peptide 
to Protein Integration

2.5. Sequence 
Analyses
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If total mRNA of the sample used in the mass spectrometric study 
is available, an independent validation of the novel splice variant 
peptides by reverse transcription polymerase chain reaction 
(RT-PCR) or quantitative RT-PCR can be performed. Specific 
primers can be designed to amplify precisely the novel peptide 
sequence using free online applications, including Primer3 
(http://frodo.wi.mit.edu/primer3/). In a comparative study, for 
example, of tumor versus normal tissue specimens, the qRT-PCR 
enables assay of differential mRNA expression related to the novel 
peptide and comparison with the evidence of differential expres-
sion at the protein level.

In studies where samples under different conditions are analyzed, 
knowledge of the differential expression of the unique peptides 
by which an alternative splice variant protein is identified would 
be very useful. This information would indicate whether the par-
ticular variant might be functionally involved in the phenotype 
associated with the specimen. If the samples are labeled by heavy 
isotopes or molecular tags, proteomics tools such as LIBRA (10) 
or XPRESS (10, 11), which are embedded in Trans Proteomic 
Pipeline (TPP, Institute for Systems Biology, Seattle) (10, 11), 
can help determine the relative expression of the unique peptide. 
In addition, spectral counting is a label-free method to estimate 
protein quantification using peptide identification results from 
tandem mass spectrometry; no isotopic labeling is required to 
perform spectral counting.

To characterize the novel peptides identified, online tools inclu-
ding InterProScan or Motif Scan can be used. InterProScan 
combines different protein signature recognition methods from 
the InterPro consortium member databases into one resource 
(12). Motif Scan scans a sequence against protein profile data-
bases (http://myhits.isb-sib.ch/cgi-bin/motif_scan). The Berkeley 
Drosophila Genome Project Splice Site Prediction by Neural 
Network (http://www.fruitfly.org/seq_tools/splice.html) can be 
used for predicting alternative splice sites which may have gener-
ated these novel peptides.

The interactions of the alternative splice variants can be 
displayed by the Cytoscape MiMI plugin (13) using parent gene 
symbols as the input genes. Michigan Molecular Interactions 
(MiMI) gathers data from well-known protein interaction 
databases and deep merges the information. Utilizing an identity 
function, molecules that may have different identifiers but 
represent the same real-world object are merged. The Cytoscape 
MiMI plugin enables one to connect to the MiMI database 
and view the interactions (http://portal.ncibi.org/gateway/
mimiplugin.html).

2.6. Validation of Novel 
Peptides

2.7. Differential 
Expression  
of Alternative  
Splice Variants

2.8. Annotation  
of Novel Peptides

http://frodo.wi.mit.edu/primer3/
http://myhits.isb-sib.ch/cgi-bin/motif_scan
http://www.fruitfly.org/seq_tools/splice.html
http://portal.ncibi.org/gateway/mimiplugin.html
http://portal.ncibi.org/gateway/mimiplugin.html
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To assess the potential of tumor-associated alternatively spliced 
gene products as a source of biomarkers in biological fluids, a 
large dataset of mass spectra derived from the plasma proteome 
of a mouse model of human pancreatic ductal adenocarcinoma 
was analyzed (14). MS/MS spectra were interrogated for novel 
splice isoforms using the nonredundant modified ECgene 
database described above. Among 1,278 distinct proteins, this 
integrated analysis identified 420 distinct splice isoforms, of 
which 92 did not match any previously annotated mouse protein 
sequence. Novel variants of muscle pyruvate kinase, malate 
dehydrogenase 1, glyceraldehyde-3-phosphate dehydrogenase, 
proteoglycan 4, minichromosome maintenance complex compo-
nent 9, high mobility group box 2 and hepatocyte growth 
factor activator are of particular interest for pancreatic cancer. 
Isotopic labeling of cysteine-containing peptides from tumor-
bearing mice and wild type controls enabled relative quantification 
of identified proteins having cysteine-labeled peptides. Statistically 
significant differential expression between tumor-bearing and 
control mice was noted for peptides from nine novel alternative 
splice variant proteins. We validated a subset of 7 of the 92 
novel peptide sequences, all of which had multiple spectra, 
with appropriate primers for the corresponding mRNAs, using 
qRT-PCR of the tissues (14).

These results, in this mouse model for pancreatic cancers, 
show that novel and differentially expressed alternative splice iso-
forms are detectable in plasma. Such alternatively spliced protein 
variants may be clues to cancer progression and cancer biology 
and may become a source of candidate biomarkers.

The proteomic informatics approach presented here is intended 
to identify specific alternative splice variants, including novel pro-
teins with differential expression under different conditions. 
Different organs, tissues, and biofluids may have different splicing 
propensities and different responses to external or internal stim-
uli, which will lead to interesting comparative analyses.

A major limitation of the protocol is the large size of the data-
base. Our modified ECgene nonredundant translation product 
database for the human species contains 14.2 million records; the 
corresponding database for the mouse species contains 10.4 mil-
lion records. Searching the mass spectral data against this data-
base takes several days to complete. In addition, when the 
experimental protocol includes deep fractionation of the proteins 
(e.g., 162 fractions in the case of the pancreatic cancer-associated 
plasma sample described above), the computer search time is 

2.9. Alternative Splice 
Variant Analysis of a 
Pancreatic Tumor 
Dataset

3. Notes
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multiplied to weeks. With very large datasets, sufficient memory 
is essential and may become apparent only when the server freezes 
and stops, requiring restart on the search. Dividing the database 
into subgroups and searching the mass spectral data against these 
databases in parallel can reduce the search time appreciably. An 
alternative is to run the forward and reverse sequences 
separately.

Another complication is the frequent updating of the Ensembl 
database. The novel peptide identifications have to be searched 
against the latest protein sequence database in order to be anno-
tated as novel. Of course, as soon as a novel variant is published 
and made available to repository users, the novel variants became 
known splice variants for the next study. We have a series of stud-
ies of mouse and human cancers and cell lines in progress using 
this protocol.

The combined proteomic bioinformatics approach of the modi-
fied ECgene database and X!Tandem-MPPI search tools can 
identify specific known and novel splice variants in tissue and 
plasma specimens. The study of MS/MS data from the mouse 
plasma proteome of pancreatic tumor-bearing mice showed many 
specific known and novel alternative splice variants, some with 
differential expression between tumor-bearing and wild type 
mouse. Differentially-expressed splice variant proteins may influ-
ence many yet-to-be-identified cancer-related mechanisms. The 
data suggest that alternative splice variant proteins are a poten-
tially rich source of candidate biomarkers for cancers and probably 
for other diseases, as well.

References

4. Conclusions

 1. Bracco L, Kearsey J (2003) The relevance of 
alternative RNA splicing to pharmacogenom-
ics. Trends Biotechnol 21:346–353

 2. Faustino NA, Cooper TA (2003) Pre-mRNA 
splicing and human disease. Genes Dev 
17:419–437

 3. Garcia-Blanco MA, Baraniak AP, Lasda EL 
(2004) Alternative splicing in disease and 
therapy. Nat Biotechnol 22:535–546

 4. Venables JP (2004) Aberrant and alternative 
splicing in cancer. Cancer Res 64:7647–7654

 5. Kim N, Shin S, Lee S (2005) ECgene: 
genome-based EST clustering and gene mod-
eling for alternative splicing. Genome Res 
15:566–576

 6. Fermin D, Allen B, Blackwell T, Menon R, 
Adamski M, Xu Y, Ulintz P, Omenn G, States 
D (2006) Novel gene and gene model detec-
tion using a whole genome open reading 
frame analysis in proteomics. Genome Biol 
7:R35

 7. Craig R, Beavis RC (2004) TANDEM: match-
ing proteins with tandem mass spectra. 
Bioinformatics 20:1466–1467

 8. Kent WJ (2002) BLAT – the BLAST-like 
alignment tool. Genome Res 12:656–664

 9. McGinnis S, Madden TL (2004) BLAST: at 
the core of a powerful and diverse set of 
sequence analysis tools. Nucleic Acids Res 
32:W20–W25



326 Menon and Omenn

 10. Pedrioli PG (2009) Trans-proteomic pipeline: 
a pipeline for proteomic analysis. Meth Mol 
Biol 604:213–238

 11. Han DK, Eng J, Zhou H, Aebersold R (2001) 
Quantitative profiling of differentiation-
induced microsomal proteins using isotope-
coded affinity tags and mass spectrometry. 
Nat Biotechnol 19:946–951

 12. Quevillon E, Silventoinen V, Pillai S, Harte N, 
Mulder N, Apweiler R, Lopez R (2005) 
InterProScan: protein domains identifier. 
Nucleic Acids Res 33:W116–W120

 13. Gao J, Ade AS, Tarcea VG et al (2009) 
Integrating and annotating the interactome 
using the MiMI plugin for Cytoscape. 
Bioinformatics 25:137–138

 14. Menon R, Zhang Q, Zhang Y, Fermin D, 
Bardeesy N, DePinho RA, Lu C, Hanash 
SM, Omenn GS, States DJ (2009) 
Identification of novel alternative splice iso-
forms of circulating proteins in a mouse 
model of human pancreatic cancer. Cancer 
Res 69:300–309



Chapter 21

Distributions of Ion Series in ETD and CID Spectra:  
Making a Comparison

Sarah R. Hart, King Wai Lau, Simon J. Gaskell, and Simon J. Hubbard 

Abstract

Databases which capture proteomic data for subsequent interrogation can be extremely useful for our 
understanding of peptide ion behaviour in the mass spectrometer, leading to novel hypotheses and mech-
anistic understanding of the underlying mechanisms determining peptide fragmentation behaviour. 
These, in turn, can be used to improve database searching algorithms for use in automated and unbiased 
interpretation of peptide product ion spectra.

Here, we examine a previously published dataset using our established methods, in order to discover 
differences in the observation of product ions of different types, following ion activation and unimolecu-
lar dissociation either by collisional dissociation or the ion/ion reaction, electron transfer dissociation. 
Using a target-decoy database searching strategy, a large data set of precursor ions, were confidently 
predicted as peptide sequence matches (PSMs) at either a 1% or 5% peptide false discovery rate, as 
reported in our previous study. Using these high quality PSMs, we have conducted a more detailed and 
novel analysis of the global trends in observed product ions present/absent in these spectra, examining 
both CID and ETD data. We uncovered underlying trends for an increased propensity for the observa-
tion of higher members of the ion series in ETD product ion spectra in comparison to their CID coun-
terparts. Such data-mining efforts will prove useful in the generation of new database searching algorithms 
which are well suited to the analysis of ETD product ion spectra.

Tandem mass spectrometry has long been used in the analysis of 
unknown compounds, to enable rapid elucidation of structural 
information, exploiting spectral libraries and our understanding 
of natural isotopic abundances. More recently, collisional disso-
ciation has been routinely applied in the determination of peptide 
primary structure. The use of tandem mass spectrometry in poly-
peptide analysis relies on the reproducible and predictable behav-
iour of peptides following gas-phase collision and subsequent 

1. Introduction
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unimolecular dissociation (1). Peptide bond fragmentation is the 
primary dissociation pathway, and the observed fragments, termed 
b ions if derived from the N-terminus, and y ions if C-terminal in 
origin, are detected, and their masses submitted for unbiased 
database searching (2, 3). While global fragmentation behaviour 
of peptides is relatively predictable, and mechanistic hypotheses 
explaining sequence-specific fragmentation patterns have been 
derived, in part from statistical analyses of large proteomic data-
sets (4), much remains to be understood about the fragmentation 
behaviour of peptides. Specifically, the relative abundance of frag-
ment ions is still poorly predictable, and the presence of addi-
tional non-canonical fragmentation products following cyclisation 
and similar processes remain subjects of active research (5, 6).

More recent arrivals within the tandem mass spectrometry 
field have included the use of ion/electron and ion/ion reactions, 
which also enable structural characterisation of polypeptides in 
vacuo. Following pioneering work by McLuckey’s group in gas-
phase ion/ion reactions (7), and that of McLafferty, Zubarev, 
and colleagues in electron capture dissociation (8), Syka and col-
leagues described the use of cationic species which could act as 
electron donors, effecting electron capture-type dissociation 
within simple ion traps (9). This method, termed electron trans-
fer dissociation (ETD), overcomes some of the difficulties of col-
lisional dissociation, in terms of the ability to observe peptide 
sequence-specific product ions from peptides bearing labile post-
translational modifications, and from larger, highly-charged poly-
peptides bearing many internal degrees of freedom (10, 11). 
While strong evidence exists to indicate a highly similar mecha-
nism for ETD with that of electron capture dissociation (12), 
little work has thus far been performed to investigate the occur-
rence of minor pathways, and dissection of the influence of ion 
heating effects from electron transfer-induced events is in its 
infancy (13).

Similarly, to date, little effort has been made to characterise 
or investigate the global differences between CID spectra and 
their ETD counterparts. This has particular significance in pro-
teomics, where database search algorithms, such as Sequest (14) 
and Mascot (15), are used to make qualitative decisions regarding 
the assignment of product ion spectra to putative sequence coun-
terparts. Principally, these algorithms have been developed using 
sequence-specific rules primarily derived from collisional dissocia-
tion data (16). While several published studies perform compara-
tive assessment of the two dissociation techniques, little or no 
comparison of the global patterns of observed peptide dissocia-
tion properties as characterised by a large data set of peptide 
sequence matches have hitherto been performed (17).

We have previously interrogated peptide product ion data repos-
itories (18, 19) to examine the occurrence of instrument-specific 
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observations in collisional dissociation spectra (20). Our previous 
work focused on the investigation of patterns in the relative sta-
bility of b- and y-type product ions in large, non-redundant data-
sets, selected to avoid any bias from over-representation of 
common peptide sequences identified multiple times in different 
experiments. We revealed disparities between their relative fre-
quencies, and identified global patterns in dissociation trends 
within CID datasets generated using CID via tandem-in-space, 
performed using hybrid QqTof instruments vs. the same species 
subjected to tandem-in-time, resonant excitation CID upon qua-
drupole ion traps (see Fig. 1) (20).

We have also recently published our findings within a large-
scale analysis of an organelle proteome using ETD in addition to 
collisional dissociation (21). This analysis included a brief qualita-
tive investigation of differences in the nature of precursor ions 
which were best suited to each dissociation strategy. We now 
apply a similar interrogation method to that in our tandem-in-
space/tandem-in-time study to investigate our ETD/CID pro-
teomic dataset of high-quality peptide sequence matches. We 
have used this approach to examine underlying patterns and dif-
ferences between data generated for the same precursor ion popu-
lation on the same mass spectrometer, using different ion activation 
methods. To this end, we re-examined data from our previous 
study (21) using custom-written perl scripts, to examine the rela-
tive frequency of observation of N-terminus-derived (b-type for 
CID and c-type for ETD) and C-terminal (y and z-type respec-
tively) product ions. Data interrogation tools such as these can be 
applied to the investigation of multiple hypotheses in datasets. 
Their utility is not limited to the analysis of unmodified peptides; 
indeed investigation of the influence of site-specific post-translational 
modifications or derivatisation chemistries upon peptide dissociation 
are obvious potential applications of our method.

Fig. 1. Comparison of global patterns in CID data generated using quadrupole ion trap (resonant excitation CID)  
vs. quadrupole time-of-flight (transmission CID). Adapted from Ref. (20) with permission.
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Examination of proteomic datasets in this manner enables the 
observation of patterns in terms of fragmentation, and hence will 
aid in the derivation of new information regarding the mecha-
nisms underlying peptide fragmentation and improvements in the 
accuracy and precision of database searching methods.

 1. Extracted flagellar pellets from Trypanosoma brucei (~12 mg) 
were dissolved in 500 mM triethylammonium bicarbonate 
containing 0.1% sodium dodecyl sulphate (w/v) (both 
Sigma, Poole, Dorset), and subjected to reduction and alky-
lation using 1 mM triscarboxyethyl phosphine (Sigma) and 
1 mM methyl methanethiosulfonate (Pierce, Cramlington, 
Northumberland), respectively.

 2. Digestion was performed overnight at room temperature 
using endoproteinase LysC and trypsin at enzyme: substrate 
ratios of 1:100 (w/w) (Sigma).

 3. Peptides were separated by strong cation exchange on a 
2.1 mm id, 20 cm polysulfoethyl A column (Hichrom, Theale, 
Berkshire), using a linear gradient from 0 to 200 mM potas-
sium chloride in 10 mM monobasic potassium phosphate, 
20% acetonitrile (Sigma).

Tandem mass spectrometric data of many types can be examined 
using an approach, such as the one described here, indeed we 
have utilised this general approach previously in the comparison 
of transmission and resonant excitation mode CID data (see 
Fig. 1). This figure is reproduced here for later comparative pur-
poses with ETD-based data. Further, this method is not subject 
to bias in terms of the search algorithm used in the assignment of 
product ion spectra, exemplified by the use of Mascot in our pre-
vious investigations, and Sequest in the examples provided here, 
which both produce the same overall patterns. The examination 
of widespread phenomena in tandem mass spectrometric datasets 
has importance in the development of widespread mechanistic 
understanding of peptide fragmentation in vacuo, and in the 
improvement of interpretation and search algorithms for unbi-
ased assignment of product ion spectra.

 1. SCX fractions were subjected to LC-MS/MS with switching 
between CID and ETD on a linear ion trap instrument 
equipped with an external CI source for fluoranthene anion 
generation (LTQ, Thermo Fisher Scientific, San Jose, CA). 
Xcalibur was used to collect mass spectrometric data (Thermo). 
MS/MS experiments were performed according to the methods 

2. Materials  
and Methods

2.1. Preparation of 
Proteolytic Digests for 
Mass Spectrometry

2.2. Tandem Mass 
Spectrometry
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previously described (21). All selected precursors were 
subjected to both CID and ETD to enable direct comparison 
of product ion spectra (see Fig. 2).

 2. RP-HPLC gradients were run from 0 to 40% acetonitrile, 
0.1% formic acid over 40 min, with the eluent being directly 
connected to the nanoelectrospray source of the mass 
spectrometer.

 1. Product ion spectral data were extracted from raw data files 
using TurboSequest and separated into text files within two 
folders, according to fragmentation method, using a batch 
script.

 2. ETD and CID product ion spectra represented as .dta text 
files were independently subjected to database searching using 
Sequest (14). Search parameters: £2 missed cleavages, fully 
enzymatic products (trypsin), fixed cysteine modification by 
methyl methanethiosulfonate (45.99 Da), variable modifica-
tion of methionine residues by oxidation (15.99 Da), peptide 
mass tolerances 2 Da, product ion tolerance 1 Da. For CID 
data, allowed ion types were b and y, while for ETD data, ion 
types were c and z. Approximately 22,000 product ion spec-
tra per dissociation method were collected, filtered, and sub-
jected to database search against a concatenated target-decoy 
database of proteins translated from the Trypanosoma brucei 
genome, containing 9,210 forward (target) and 9,210 reverse 
(decoy) entries.

 1. Data generated using tandem mass spectrometry, and peak 
extraction and database searching were performed to create a 
list of peptide candidates associated with product ion spectra 
matching to both forward and reversed database entries. 
Reverse entries within the concatenated database were tagged 
by appending “_r” after their accession number, thus facilitat-
ing ready false discovery rate (FDR) estimation.

 2. Product ion identification data were filtered using in-house 
perl scripts (see Note 1), which enable user-defined thresh-
olds to be set in terms of peptide FDR and number of non-
redundant peptides per candidate protein to be imposed for 
inclusion (20). To maximise the number of peptides reported 
while maintaining a given FDR, the correlation between 
experimental and matched theoretical spectra (XCorr) and 
differential between top and next match (DCn) are varied. 
This takes into account the strong qualitative differences 
between ETD and CID data (see Fig. 2, (21)), while main-
taining a similar quality of match. FDR is defined as previ-
ously reported, adapted from (22), where: 

2.3. Data Processing 
and Database 
Searching

2.4. Estimation of 
False Discovery Rates 
and Generation of 
Product Ion Frequency 
Diagrams
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2 False Positives
FDR

(True Positives False Positives)

×=
+  

  Defining True Positives as all forward database PSMs exceeding 
the acceptance criteria in XCorr and DCn, and False Positives 
similarly but with respect to the reverse/decoy database. 
Typical FDR values reported within the general literature are 
between 0.5 and 5%.

 3. Data were compiled using our in-house perl program, which 
supports the setting of a user-defined FDR. In this case, we 
selected a FDR of 0.01 although identical trends were 
observed with FDR = 0.05. Our FDR was based, as before, on 
a combination of Xcorr and DCn scores which yielded the 
maximal number of PSMs for a given FDR with a minimum 
threshold set for each parameter (20).

 4. Data from the candidate peptide sequence identifications 
passing the FDR criteria were processed to assign product ion 
types to individual peaks, based on the Sequest assignment. 
In this case, no further refinement from the Sequest ion 
assignments was undertaken although it is possible that a very 
small number of peaks might be misassigned (see Note 2). 
Output files plotted on similar axes may be compared manu-
ally to identify global differences in patterns of observation, 
for instance, the difference in observation of high members of 
c/z ion series from highly charged peptide precursors (see 
Figs. 3 and 4). Filtering of specific classes of peptides (e.g. 
cysteine-containing peptides or peptides bearing post-translational 
modifications, where included in database searching strate-
gies) could be performed at this stage to examine differences 
between global patterns of observation and those for specific 
classes of analyte.

Electron capture and transfer dissociation methods are renowned 
for generating significantly higher quality product ion spectra 
from large, multiply charged precursor ion signals (8, 9, 11). This 

3. Discussion  
of Results

Fig. 2. Linear ion trap CID and ETD product ion spectra example. A triply charged precursor ion at m/z 705.2 was selected 
and subjected to CID (upper panel ) and ETD (lower panel ). Observed products from primary fragmentation pathways are 
marked on the sequence (b and y products for CID, c and z for ETD), and peaks are annotated upon the spectrum with 
their series name and number (number of residues from terminus). Reprinted from Ref. (21) licence 2284810299358, 
with permission from Elsevier.
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trend is also apparent within our flagellar proteome data, as 
indicated by the number of confidently identified precursor ions 
of each charge state observed for the different dissociation meth-
ods (see Figs. 3 and 4). The number of confidently identified pep-
tide precursors for the same precursor ion pool shows enormous 
variance between the CID data, where the vast majority of identi-
fied precursors are doubly protonated, vs. ETD, where triply- and 
quadruply protonated precursors predominate.

The extended nature of sequence coverage for ETD spectra 
has previously been identified as a specific advantage of the tech-
nique, as has the stochastic, “even” nature of bond cleavage and 
the related lack of specific sites showing high propensity for N-Ca 
bond cleavage (9, 12). This means that for the longer, larger pep-
tides which form prime substrates for ETD analyses, the likeli-
hood of generating extended sequence-related product ion series 
is high, increasing the probability of making a confident and cor-
rect sequence assignment using de novo assignment or database 
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Fig. 3. Patterns of ion observation from CID product ion spectra. Product ion spectral identification data, collected over 
the m/z range between the automated cutoff for the LTQ and 2,000, roughly representing ion series members 1/2–20, 
are filtered according to a 1% peptide FDR, and matched product ions extracted and plotted using custom perl scripts. 
The observation frequency of a particular member of a given ion series (b, y,) is plotted, calculated for both singly and 
doubly charged ions, upto and including the 20th member of an ion series. Data for ion series beyond this are not shown 
as the frequency drops off and becomes noisy, in part due to the decreased data in our dataset and in part owing to the 
cutoff used on our LTQ instrument (<2,000).
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matching software tools. Our ETD data show extended sequence 
coverage for both c- and z-series products over a range of charge 
states, with roughly equivalent frequency of observation for most 
c- and z-series products, while the CID data indicate maximal 
frequency of product ion observation for ~b2–9 and ~y4–8.

Looking at the observation frequency data in more detail, the 
propensity for N- or C-terminal retention of charge (and hence 
observation by MS/MS), influenced by relative stability of  
the product ions thus formed (see our previous study (20) for 
more detail) shows some differences. ETD product ion spectra 
show reduced bias towards C-terminal CID data, where there is a 
strong bias in favour of the formation of C-terminal y-type ions. 
This disparity may partially reflect the inherent charge state distri-
bution of the precursor ions identified by each method, as the 
overall trends for CID data for triply- and higher-order-protonated 
precursors show greater similarity to ETD data than the CID of 
doubly charged precursors. In fact, a mild bias towards N-terminal 
c-type ions is apparent in ETD data for all charge states z > 2, 
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presumably resulting from the presence of additional protonated 
sites within the N-terminal region which stabilise charge, and 
hence, product ions within the mass spectrometer.

 1. Product ion spectra in standard formats (e.g. .dta or .mgf 
standard output formats) are readily amenable to this type of 
interrogation.

 2. We have used the native Sequest and Mascot assignments for 
peaks in our work, as well as assigning b,y and c,z ions our-
selves. We find a very strong agreement in general between 
the various methods with over 90% agreement between any 
two. For the purposes of the data presented here, we have 
retained the native Sequest assignments for simplicity.
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Chapter 22

Evaluation of Peak-Picking Algorithms for Protein  
Mass Spectrometry

Chris Bauer, Rainer Cramer, and Johannes Schuchhardt 

Abstract

Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to 
peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass 
signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian 
template.

Functionality of the three methods is illustrated and discussed in a practical context using a mass 
spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using 
a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods 
is assessed by a perturbation analysis and illustrated using ROC curves.

Peak picking is an early key step in mass spectrometry (MS)-based 
proteomics and is crucial for data analysis. It goes hand in hand 
with smoothing, baseline correction, and peak alignment within a 
general workflow of preprocessing steps that allows for subsequent 
statistical data analysis and biological interpretation (see Note 1). 
Preprocessing of MS data aims at transforming a big amount of 
raw spectral data (usually >30K data points) into a much smaller, 
statistically manageable set of peaks (see Note 3). Subsequent data 
analysis will typically aim at biomarker discovery or sample classifi-
cation. Comprising tens of thousands of data points in each spec-
trum, MS data are inherently noisy. The main sources of noise are 
chemical in nature, such as interference from matrix material and 
sample contamination, or electrical, which is dependent on the 
analytical set-up employed (1). As a result, various algorithms 
differing in principle, implementation, and performance have been 
proposed to address these problems (see Note 4).

1. Introduction
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A typical preprocessing workflow comprises the following 
three steps (see Note 2): (See Fig. 1 for a schematic illustration 
and exemplary visualization of each step)

●● Data smoothing: Smoothing mainly aims at removing high-
frequency noise. Besides traditional signal processing tech-
niques such as Savitzky–Golay filter (2), Mean/Median filter, 
or Gaussian filters, wavelet-based techniques are also employed 
for data smoothing (1, 3)

●● Baseline correction: Baseline correction intends to remove 
low-frequency noise and thus eliminates the correlation of 
nearby features. Typically, methods such as Top Hat filter (4), 
Loess derivative filters (5), or linear splines are applied to esti-
mate the baseline.

●● Peak picking: The number of proposed methods for peak 
detection is immense. Most common algorithms make use of 
signal-to-noise ratio (SNR), continuous wavelet transform 
(CWT) (6, 7), or model functions such as Gaussian function 
used as templates for peak detection (see Subheading 2 for 
more details).

A large variety of software packages implementing the com-
plete workflow is available. Common software tools are R or 
Bioconductor packages msProcess or PROcess (8), Matlab pack-
ages LIMPIC (9) or Cromwell (3), the comprehensive C++ library 
OpenMS (10, 11), and, of course, the proprietary software pack-
ages that come with the analytical equipment (see Note 5).

Fig. 1. The preprocessing workflow is typically composed of the steps: smoothing, baseline correction, and peak picking. 
In the course of preprocessing, a raw spectrum is transformed into a peak list suitable for further statistical analysis.
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In this chapter, we will focus on three different peak-detection 
algorithms (SNR, CWT, and Template-based approach), illus-
trate their principles in an intuitive manner, and compare them in 
terms of sensitivity and specificity using ROC curves. We have 
selected these three algorithms since they are very popular and 
widely used. Furthermore, all three of them are very different and 
derived from distinctive theoretical motivations. Many extensions 
or combinations for these algorithms have emerged over the last 
years. For a more comprehensive overview including different 
techniques for smoothing and baseline correction, see Yang et al. 
(12). While Yang et al. give a comprehensive overview on publicly 
available software by briefly describing the applied methods, our 
interest in this article is rather the demonstration of the working 
principle of the algorithms employed in these public software 
packages. Following up the evaluation of available peak-detection 
algorithms by Yang et al, Liu et al. (13) compared different fea-
ture selection and classification algorithms in a similar way.

To evaluate the different algorithms, we used data obtained by 
MALDI-TOF-MS analysis of 259 blood plasma samples from 56 
different mice taken at five different time points. Plasma MS pro-
files were obtained using an Ultraflex MALDI-TOF/TOF mass 
spectrometer (Bruker Daltonics, Bremen, Germany). Spectra 
were acquired automatically for the m/z range of 700–10,000. 
The amount of plasma obtained for each sample varied between 
0 and 12 ml. Since 5 ml of plasma was needed for each sample 
preparation, it was possible to perform up to two sample prepara-
tions. In a few cases, only one or no sample preparation could be 
performed. From each sample preparation, four replicate MALDI 
spectra were acquired, resulting in a total of up to eight technical 
replicates per sample.

The total number of mass spectra acquired was more than 
2,100. Prior to any data processing described in this article, tech-
nical replications are averaged, reducing the number of spectra to 
258. For averaging multiple spectra, we applied a peak alignment 
strategy (14).

The three common peak-detection algorithms we will focus on are 
SNR, template-based peak detection, and CWT. We have selected 
these three algorithms since they are very popular and widely used. 
For the SNR and template-based approach, we used an in-house 
implementation, while for CWT, we used the R package msProcess.

 1. Signal-to-noise ratio: This is a very general approach. The 
essential part of this algorithm lies in the definition of noise. 

1.1. Data Set

2. Peak Picking

2.1. Algorithms
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In statistics, noise is often defined as variance or median 
absolute deviation (MAD) along different samples. In signal 
processing, noise is often defined as the estimated back-
ground. For instance, in the Bioconductor package PROcess 
(8), MAD of points within a window is used. For this analysis, 
we follow the second approach defining noise as background 
of the spectrum. We estimated the background using Top 
Hat filter (4) with small window size. Having defined the 
noise, we calculated the SNR. Peaks were then identified by 
searching a local maximum of points within a certain neigh-
borhood (e.g., about expected peak width) having an SNR 
bigger than a given threshold.

 2. Template-based peak detection: This algorithm assumes that 
the peaks to be detected are shaped like some model func-
tion, e.g., a Gaussian function. With a running window, the 
algorithm scans along the mass spectra and calculates the cor-
relation (Pearson correlation coefficient) to a template 
Gaussian function with predefined parameters. Thus the mass 
spectrum is transformed into a vector of correlation coeffi-
cients. Peak identification is done by searching for correlation 
values above a certain threshold.

 3. Continuous wavelet transform : CWT (6, 7) is a more sophis-
ticated approach that is used to split the signal into different 
frequency ranges. Regarding the m/z scale as generalized 
time scale, CWT constructs a time–frequency representation 
of the spectrum by mapping it from the time domain to the 
time-scale domain. The essential part of CWT is the mother 
wavelet whose translated and scaled versions are used to gen-
erate daughter wavelets. The mother function we used for 
this evaluation is the second derivative of a Gaussian function 
(Mexican Hat Wavelet). Peak picking typically includes the 
inspection of multiple scales. For peak detection (using R 
package msProcess), the peak candidate has to be clearly dis-
tinguishable from the background (parameter: snr.min) and 
visible across at least seven scale domains (parameter: length.
min) excluding the first three high-frequency wavelet scales 
(parameter: scale.min). Excluding high-frequency wavelets 
acts as a filter for high-frequency noise.

In order to evaluate the peak-picking algorithms, we defined a set 
of reference peaks. A peak-picking algorithm can then be evalu-
ated in terms of sensitivity (how many of the reference peaks are 
found) and specificity (how many of the found peaks are part of 
the reference set). An optimal algorithm has high sensitivity and 
high specificity.

The reference set was created in a semi-automatic process. To 
this end, we initially picked peaks manually and subsequently 

2.2. Reference Peaks
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optimized peak positions automatically. This procedure ensures a 
high-quality reference set containing very prominent peaks as 
well as peaks situated in the rising or falling edge of another peak 
or peaks with poor signal intensities. All in all, the reference set 
contained a total of 381 peaks.

Figure 2 gives a graphical impression of how the different algo-
rithms are working. The first box shows the mean intensity spec-
trum of the complete data set in a mass window of 1,400–1,800 Da. 
The noise level was defined as baseline calculated using Top Hat 
filter (see dashed line). The 33 peaks from the reference set within 
this mass window (see Subheading 2.2) are indicated as vertical 
dashed lines.

The second part of Fig. 2 shows the SNR along the mass 
window of the mean spectrum. The SNR threshold used for peak 
identification was 1.75 and is indicated as a horizontal dashed 
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line. Using SNR, we identified 22 peaks in this mass range, 
whereas we found 69% of our reference peaks (with the SNR 
threshold of 1.75). With this threshold, we did not find any peak 
that was not part of the reference set.

The third part in Fig. 2 visualizes the performance of 
template-based peak detection. The correlation coefficients along 
the spectrum are shown. The correlation threshold of 0.6 is indi-
cated as a horizontal dashed line. All in all, we found 31 of the 33 
reference peaks (94%), indicated as dots above the peaks. We also 
found one peak that is not within the reference set (false positive), 
shown as asterisk above the peak.

The last part of Fig. 2 demonstrates the peak picking using 
wavelet transform. The first seven daughter wavelets are shown. 
Compared to the other two methods, peak picking using wavelet 
transform is complicated by the fact that information from differ-
ent time-scale domains has to be combined (see Chapter 2.1 for 
more details). The reference peaks again are indicated as vertical 
dashed lines and the picked peaks are marked above the peaks. 
Using CWT, we identified 97% of the peaks but also got two 
false-positive hits (marked with asterisks above the peaks).

As already mentioned in Subheading 2.2, the reference peak set 
can be used to calculate values for sensitivity and specificity. These, 
in turn, can be used to generate ROC curves (see Fig. 3). ROC 
curves are calculated by scanning the threshold values of the dif-
ferent algorithms, e.g., changing the correlation threshold in the 
template-based approach (for an illustration of the threshold 
operation, see Fig. 2).

2.4. Evaluating 
Peak-Picking 
Algorithms
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values of the different algorithms.
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While baseline correction removes low frequency noise, smooth-
ing rather aimes at filtering high frequency noise, and hence, 
application of both, baseline correction and smoothing, defines a 
band-pass filter. The combination of smoothing and baseline cor-
rection defines a bandpass filter removing high- and low-frequency 
noise. Parameter tuning of the preprocessing steps affects the 
signal and noise that the peak-picking algorithms have to deal 
with. In order to evaluate the sensitivity to noise, we added differ-
ent quantities of high-frequency noise (white noise). Since the 
observed error behavior for MS spectra indicates a multiplicative 
error behavior on log scale data (not shown), we added a nor-
mally distributed noise with mean = 0 and an error of 2, 4, and 
10%. The performances of the three methods are affected to a 
very different degree (see Fig. 4 for the ROC curves). SNR is very 
sensitive to noise and the ROC curve worsens dramatically. The 
other two algorithms are much more robust. While on perfectly 
smoothed data the template correlation approach seems to be the 
method of choice, for noisy data, the advantage of the template-
based approach decreases and CWT shows the best performance. 
In conclusion, the three presented peak-picking algorithms show 
a different sensitivity to noise and, therefore, to the number of 
spectra and the choice of parameters for preprocessing steps.

In order to get more insight into how noise influences the 
peak detection, Fig. 5 gives a demonstration of the algorithm’s 
performances on noisy data. The first row shows the raw spectra 
and the baseline. SNR is depicted in the second row of Fig. 5. 
Here, the noise is even amplified due to the ratio calculation, lead-
ing to an increased number of false-positive peaks (see the aster-
isks). The template correlation approach is more robust but since 
this method assesses only the shape and not the intensity, even 
small fluctuations may result in high correlation coefficients. Thus 
peaks are not clearly distinguishable from background noise any 
more. For noisy data, CWT outperforms the other methods since 
CWT intrinsically acts like a smoothing filter on the data. Even if 
the first wavelets are noisy, the lower frequency scales are very 
smooth (see lower row of Fig. 5). Hence high-frequency noise 
does not affect the algorithm’s performance strongly as high-
frequency wavelets that include most of the noise are filtered out.

2.4.1. Stability
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The three different peak-picking algorithms investigated here are 
distinct in terms of complexity, performance, and stability. But all 
the three methods have a common parameter: the estimated peak 
width. There are different ways to estimate the optimal peak width. 
For instance, OpenMS (10, 11) as a freely available MS-processing 
library offers the possibility to measure the peak width manually 
using graphical interface, or the peak width can be estimated by 
the CWT algorithm itself.

For an overview of the advantages and disadvantages of the 
algorithms, see Table 1. SNR as a universally used signal-processing 
technique is computationally fast, easy to implement, and shows 
good performance on smoothed data. However, it is not very 

3.  Discussion

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
te

ns
ity

Spectrum
Noise
ref peaks

a

b

c

d

1

2

3

4

5

S
N

R

SNR
Threshold
ref Peaks

−0.5

0.0

0.5

1.0

C
or

re
la

tio
n Correlation

Threshold
ref Peaks

−0.2

0.0

0.2

0.4

0.6

m/z

In
te

ns
ity

Wavelets
ref Peaks

1500 1600 1700 1800

Fig. 5. Comparison of the three different peak-picking algorithms on noisy data for the m/z range of 1,400–1,800.  
High-frequency noise was added to the spectrum as described in the text. (a) Mean spectrum and background (dashed 
line); (b) SNR and threshold used for peak picking (horizontal dashed line); (c) correlation coefficient and threshold  
(horizontal dashed line); (d) first seven wavelets. The vertical dashed lines are reference peaks. Marks above the plot indicate 
peaks identified with the different algorithms (dot, contained in the reference set; asterisk, not in the reference set).



349Evaluation of Peak-Picking Algorithms for Protein Mass Spectrometry

specific for this task as it ignores the shape of the peak. Since the 
noise is an integral part of the algorithm, it is very sensitive to 
noise and, therefore, strongly depends on the quality of the data 
and on the performance of previously performed smoothing and 
baseline correction steps (see Note 6).

The template-based approach is much more specific for the 
peak-picking task assuming peaks to be shaped like a Gaussian 
function. This assumption, however, might often not be exactly 
applicable because peaks may show a considerable asymmetry. 
Depending on the experimental parameters, particularly laser 
energy, significant deviation from a Gaussian peak shape can be 
globally obtained. Although this method has only a few parame-
ters, it appears rather robust for lower levels of noise. However, 
for high levels of noise, the performance decreases (see Note 7).

CWT is like SNR a very universal signal-processing technique 
used for many different tasks. Contrary to SNR, the algorithm is 
complex and computationally expensive. The large number of 
parameters allows for tuning CWT to be very specific for this task 
taking into account the shape of the peak. As smoothing is an 
intrinsic part of the algorithm, CWT is very robust even for sub-
stantial amounts of noise. On the contrary, tuning of the algo-
rithm is difficult due to the large set of parameters (see Note 8).

For perfectly smoothed data, all the three methods show 
good performances but CWT seems to be little worse than the 
other two. For data including a substantial amount of noise, CWT 
clearly outperforms the other methods in terms of sensitivity and 
specificity.

Table 1 
Summary of advantages and disadvantages of the three presented  
peak-picking algorithms

Method PRO CONTRA

SNR Simple – easy to implement Depends on the definition of noise
Fast performance Unstable – very sensitive to noise
Only few parameters Ignoring peak shape

Template correlation Simple – easy to implement Detection favors Gaussian-shaped 
peaksOnly few parameters

Stable for small noise Sensitive to high noise

CWT Stable even for massive noise Complicated algorithm
Internal data smoothing Slow performance
Flexible – tuneable Difficult to tune – high number of 

parameters
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Both the template-based approach and CWT show good 
performances, including a robustness for noise. Figure 6 shows 
two example peaks for the different peak detection using these two 
algorithms. In the upper row, the peak at m/z 1,846 was identified 
only with CWT, while in the lower row, the peak at m/z 4,052 was 
detected only with the template-based method (see Note 9). The 
shortcoming of the template-based approach is clearly visible since 
the peak at m/z 1,846 is not shaped like a Gaussian function, 
resulting in lower correlation coefficients. Hence this peak could 
not be detected using a Gaussian function as template. In contrast, 
the peak at m/z 4,052 shows a good matching Gaussian shape, 
facilitating peak detection by correlation. CWT does not find this 
peak since there are not enough wavelets above threshold (in this 
case, there are only five wavelets above the noise level but the 
algorithm requires at least seven) (see Note  10).

The reference set we used for evaluation was manually cre-
ated assuming the human eye to be a good peak detector. With 
this procedure, we assure that the reference set is constructed 
without giving preference to any algorithm. Looking at the spec-
tra and the visualization of the three algorithms (Fig. 2), we see 

1840 1850

0.06

0.10

0.14

Peak at 1846.58

Mass
1840 1850

Mass
1840 1850

Mass

In
te

ns
ity

−1.0

−0.5

0.0

0.5

1.0
Correlation

C
or

re
la

tio
n

−0.05

0.05

0.10

CWT

W
av

el
et

s
4040 4050 4060

0.15

0.20

0.25

Peak at 4052.05

Mass
4040 4050 4060

Mass
4040 4050 4060

Mass

In
te

ns
ity

−1.0

−0.5

0.0

0.5

1.0
Correlation

C
or

re
la

tio
n

−0.1

0.0

0.1

0.2

0.3

CWT

W
av

el
et

s

Fig. 6. Peaks found with CWT and not with template-based approach (upper part) and vice versa (lower part), first column: 
spectrum, second column: correlation coefficient and correlation threshold, third column: first nine wavelets and noise 
(dashed line).



351Evaluation of Peak-Picking Algorithms for Protein Mass Spectrometry

that there is one peak identified with correlation-based approach 
and CWT (indicated as asterisks), and even with a higher SNR that 
was not classified as a peak using the human eye. However, remark-
ably, the three algorithms differ in exactly this peak, underlining 
that in general peak picking is a non-trivial task (see Note 11).

 1. For MALDI-TOF data, adequate preprocessing is required in 
order to allow subsequent statistical data analysis, such as bio-
marker discovery or sample classification.

 2. Preprocessing workflow typically comprises algorithms for 
data smoothing such as Mean filter or Savitzki–Golay filter, 
baseline correction such as Top Hat filter or Loess derived 
filters, and peak picking such as SNR, CWT, or template-
based approaches.

 3. The main objective is to transform the big amount of raw 
spectral data into a much smaller, statistically manageable set 
of peaks.

 4. The number of algorithms implementing peak picking is 
large. The various algorithms differ in performance, imple-
mentation, and theoretical motivation.

 5. Various common software tools designed to address the pre-
processing workflow are available. They are based on differ-
ent platforms including R and Matlab packages as well as 
stand-alone C++ applications.

 6. Approaches based on SNR are not only simple, easy to use, 
and fast but also sensitive for noise. Moreover, the shape of 
the peak is ignored completely.

 7. Template-based approaches are simple, easy to use, and robust 
to limited noise. But they can only detect peaks shaped like 
the used template function and they are vulnerable to strong 
noise.

 8. CWT shows good performances and is stable even for strong 
noise but more complicated, difficult to tune, and, therefore, 
harder to use and understand.

 9. Every algorithm has pros and cons as it fails in finding certain 
types of peaks.

 10. Template-based approach fails to detect peaks differing in 
shape from those of the used template. CWT tends to miss 
thin peaks surrounded by higher ones.

 11. The definition of the reference peak set is a crucial step for 
evaluating the different algorithms. Neither the human eye 

4. Notes
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nor some automatic peak detection algorithm can guarantee 
to detect all peaks. Still, regarding a sensitivity and specificity 
of 0.9, the majority of the peak show good agreement of the 
used algorithms and the human eye.
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Chapter 23

OpenMS and TOPP: Open Source Software for LC-MS  
Data Analysis

Andreas Bertsch, Clemens Gröpl, Knut Reinert, and Oliver Kohlbacher 

Abstract

Proteomics experiments based on state-of-the-art mass spectrometry produce vast amounts of data, 
which cannot be analyzed manually. Hence, software is needed which is able to analyze the data in an 
automated fashion. The need for robust and reusable software tools triggered the development of librar-
ies implementing different algorithms for the various analysis steps. OpenMS is such a software library 
and provides a wealth of data structures and algorithms for the analysis of mass spectrometric data. For 
users unfamiliar with programming, TOPP (“The OpenMS Proteomics Pipeline”) offers a wide range of 
already implemented tools sharing the same interface and designed for a specific analysis task each. TOPP 
thus makes the sophisticated algorithms of OpenMS accessible to nonprogrammers. The individual 
TOPP tools can be strung together into pipelines for analyzing mass spectrometry-based experiments 
starting from the raw output of the mass spectrometer. These analysis pipelines can be constructed using 
a graphical editor. Even complex analytical workflows can thus be analyzed with ease.

Over the last several decades, mass spectrometry has become a 
key technology in analytical chemistry for the analysis of proteins. 
High-throughput analysis using mass spectrometry-based meth-
ods has led to significant progress in proteomics and, more 
recently, in metabolomics. In addition to the growing amount of 
data, the development of new instruments is a very active field 
resulting in new and improved hardware within short time inter-
vals. The combination of high data volume and new hardware 
leads to a short lifetime of software tools, which are often designed 
in a monolithic fashion combining several analyses in one pro-
gram. Data analysis of high-throughput experiments has thus 
become the major bottleneck. Therefore, it is beneficial to have 
individual software components that are designed for one small, 

1. Introduction
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specific analysis step only. Although such a component is limited 
to one specific task, it can be combined with other light-weight 
tools into powerful analysis workflows.

In this chapter, we first describe the OpenMS framework, its 
design goals, the core functionality, and its use for rapid applica-
tion development. This might be of special interest for software 
developers experienced in implementing applications using C++. 
Second, we address in detail how TOPP can be used to analyze 
data from mass spectrometry-based experiments using workflows, 
e.g., in a scripting language. The third part describes how TOPP 
can be used to conveniently create analysis pipelines and create 
powerful workflows through a graphical user interface, TOPPAS. 
See Fig. 1 for an overview.

OpenMS (1) is a C++ framework for computational mass spec-
trometry. It provides a large collection of data structures and algo-
rithms to process and analyze data from mass spectrometry-based 

2. Materials

2.1. The OpenMS 
Framework

Fig. 1. The whole OpenMS project is subdivided into three main categories. First, there is 
the OpenMS C++ framework. It uses a number of other projects to provide all the func-
tionality implemented in the library. Using the library requires C++ programming knowl-
edge. On top of OpenMS, TOPP was implemented. It consists of different tools, each of 
which implements a specific task, e.g., noise filtering of mass spectrometry datasets. 
Users who are familiar with command line handling are able to use TOPP. The third part 
is TOPPAS, the TOPP pipeline assistant. It provides a graphical user interface and conve-
niently allows the creation of analysis workflows using the TOPP tools. No programming 
skills or command line knowledge is needed to analyze datasets with TOPPAS.
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experiments. The kernel data structures, which implement the 
main functionality regarding the handling of basic mass spec-
trometry data, are built on top of a few common basic data struc-
tures, e.g., classes for mass spectra, chromatograms, and whole 
LC-MS experiments. The chemistry module of the framework 
offers a large functionality like support for empirical formulas, 
amino acids, amino acid modifications, and calculation of isotope 
distributions. Metainformation, such as instrument settings for a 
whole experiment, settings for a specific spectrum, sample pro-
cessing information, contact information, and all other informa-
tion required by the MIAPE guidelines (2) are implemented in 
the metadata module. The described data structures and func-
tionality are also used to implement file format adapters. Most of 
the mass spectrometry data produced today is stored in proprie-
tary file formats that are specific to a vendor or even a specific type 
of instrument. To overcome the disadvantages of proprietary 
file formats, OpenMS implements the file formats developed 
by the HUPO Proteomics Standards Initiative (HUPO-PSI). 
Additionally, the widely used spectral data formats mzML, 
mzXML, and mzData as well as several others are supported.

The framework implements a large number of sophisticated 
algorithms, which can be roughly subdivided into four groups: 
signal processing, map alignment, quantitation, and identification 
algorithms. Signal processing of profile mass spectrometry data 
includes baseline filtering, noise filtering, and centroiding. 
Quantitation algorithms include feature finding and linking of 
features, either based on their label in labeled experiments or 
across different HPLC-runs in label-free experiments.

Another module implements classes for the map simulator 
(3), which allows one to simulate different kinds of experiments. 
This simulator is very helpful, in estimating the performance of 
algorithms, especially when reliable ground truth is hard to 
obtain. Visualization classes implement the basis for viewer appli-
cations and provide visual access to whole HPLC-MS experi-
ments, either in 2D or 3D view, or scanwise as single spectra. 
Also, visualizations for parameter editing and metainformation 
visualization and editing are available.

Robustness, portability, rich functionality, and ease-of-use 
were the key design goals during the development of OpenMS. 
The resulting software framework allows one to prototype most 
applications in computational mass spectrometry with compara-
tive ease and in a short time. A simple example of OpenMS code 
is shown in Fig. 2. The code illustrates how a few lines of C++ 
code allow the signal processing and peak picking on mass spec-
trometric data and introduces some of the core data structures of 
OpenMS.

The OpenMS framework also implements support for 
features only used by a small number of algorithms or tools. 
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For example, several parallelization concepts are readily available 
within the framework. OpenMP (4) was used to parallelize the 
peak picker code and is automatically enabled if the platform sup-
ports it. OpenMP can be used to parallelize existing code with 
minimal effort. Intel Threading Building Blocks (TBB) (5) pro-
vide a sophisticated concept of parallelization of C++ code, how-
ever, requires restructuring of existing algorithms. An even more 
advanced concept is CUDA (6), which allows the execution of 
parallelized code on Nvidia graphics cards. Although CUDA 
requires completely specialized implementations, its usefulness has 
been demonstrated, in particular, by an implementation of the iso-
tope wavelet feature finder using TBB and CUDA, which executes 
about 200 times faster than the single-threaded version (7).

OpenMS also provides support for different statistical mod-
els. It provides different fitters built upon the GSL library (8), 
uses geometric algorithms provided by the CGAL library (9), and 
support vector machine-based machine learning models can also 
be used by including the LIBSVM library (10). Several methods 
have been successfully implemented using the SVM technique  
(3, 11). Sequence-based computations and data structures, such 
as suffix trees and sequence alignments, are provided using the 
SeqAn library (12). Imslib (13), which provides efficient decom-
position of masses and mass differences, has been successfully 
used in CompNovo, a de novo search tool (14). Finally, Boost 
(15) completes the set of external libraries used by OpenMS. The 
libraries are included in the source package as a so-called contrib 
package, and building can be done automatically on the different 
platforms. The graphical user interface, database support, net-
work communication, among others, are implemented using the 
Qt framework (16).

Since OpenMS is meant to be a rich framework for software 
development in mass spectrometry, it does not provide the actual 

Fig. 2. An HPLC-MS dataset is read using the MzMLFile file adapter into a PeakMap object (lines 1–5). Then, in line 7 an 
instance of the peak picker is created. To be able to handover parameters to the peak picker, a Param object is initialized 
in line 8. The peak_with parameter is set to 0.1 Th and in line 10 the parameters are finally assigned to the peak picker. 
By calling the member function pickExperiment in line 12, the peak picker transforms the raw data from the file into 
picked data stored in exp_picked. The complete code example can be found in the OpenMS tutorial.
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executable programs. That is the purpose of TOPP, The OpenMS 
Proteomics Pipeline (17). Writing new programs using OpenMS 
requires C++ programming skills and at least a certain level of 
familiarity with the internal concepts and implementation details. 
For users lacking those skills, most of the functionality of OpenMS 
is readily available as applications in TOPP, which will be described 
in the next section.

Virtually, all complex data processing tasks can be decomposed 
into a series of applications of basic building blocks, such as peak 
picking, map alignment, peptide identification, quantitation, etc. 
Each TOPP tool is designed to solve a single, basic task from such 
a data analysis workflow. It encapsulates a minimal useful set of 
functionality from OpenMS into one program. The idea is to 
have one program for one small task, to maximize the reusability 
of the individual workflow components.

This approach has been shown to be very fruitful since the 
early days of UNIX, and the design goals of TOPP were similar to 
those of the OpenMS framework. TOPP is available on the same 
platforms as OpenMS (Unix/Linux, MacOS X, and Windows); it 
is robust against failures or corrupt data, and easy to use by non-
programmers. Splitting the functionality among different tools 
has some big advantages over monolithic tools: the modular con-
cept is very flexible and can be rearranged to suit novel experi-
mental setups. For example, it might turn out that most of the 
protocol can be realized with standard components of TOPP, and 
only a single piece has to be modified or implemented from 
scratch. On the other hand, steps not needed using a specific 
experimental setup can be easily skipped. In particular, quantita-
tion can be done in various fashions using the same building 
blocks to create many different quantitation protocols.

All TOPP tools share a common interface that is extended by 
the tool-specific options. For example, each TOPP tool can write 
its default parameters by calling it with the -write_ini parameter 
and specifying a file that the options should be written to. Also 
the log file can be specified in each tool using the -log parameter. 
The -threads parameter specifies the number of threads, which 
can be used by the TOPP tool. This can significantly speed up the 
computation if the algorithm implemented in the TOPP tool 
supports the use of more than one CPU. Of course, different 
tools must have different parameters; however, each of the tools 
reads some input and writes some output. Therefore, the -in and 
-out parameters are shared among all the different TOPP tools.

TOPP also provides a convenient visual editor for the param-
eters. Figure 3 shows this graphical user interface, the 
“INIFileEditor”. The parameters have descriptive names, given 
in the first column of the parameter table. By clicking on a line, a 
parameter is highlighted and its descriptive name is complemented 

2.2. TOPP: The 
OpenMS Proteomics 
Pipeline
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by a description shown at the bottom of the parameter editor. 
The second column shows the current value of the parameter. 
The third column gives the type of the parameter, which can be 
an integer value, a floating point value, a string, or a list. The 
fourth column shows restrictions, e.g., whether there is a minimal 
value or a maximal value that must not be exceeded. If only a 
limited list of values is allowed, a drop-down list appears for the 
user to select from.

In order to analyze the results and data visually, TOPP provides 
TOPPView, a graphical viewer for mass spectrometric data. 
TOPPView can display mass spectrometry experiments in many dif-
ferent ways. It allows the user to inspect the data, the results of 
 different algorithms and provides an interface to the metadata and 
annotations of the data.

Figure 4 shows a screenshot of TOPPView in 2D mode. The 
m/z axis is plotted from left to right, the retention time axis is drawn 
from the bottom to top. The peaks are color-coded according to 

Fig. 3. INIFileEditor provides a convenient graphical interface to parameters used by the 
TOPP tools. The parameter ini file can be written from the TOPP tool itself and edited by 
the INIFileEditor. The figure shows several parameters, along with their default values 
and restrictions if available. A description of the selected parameter is shown in the box 
at the bottom of the window.
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their intensities. TOPPView also provides a 3D view (Fig. 5a), 
which allows a rapid inspection of the whole dataset and a 1D 
view (Fig. 5b) suitable for detailed inspection at the level of indi-
vidual spectra. TOPPView was recently described in a separate 
publication (18) and an in-depth tutorial is available as well.

Most of the functionality provided by TOPP is dedicated to 
algorithms for various analysis steps. Database search engines are 
among the key software tools in proteomics. They assign peptide 
sequences to spectra based on a protein sequence database. Both 
commercial and open source tools are currently available for this 
task. Unfortunately, all tools have different interfaces, require dis-
tinct parameter sets, and even require different input and output 
formats. To simplify the use of these tools in the context of larger 
analysis pipelines, TOPP offers several search engine wrappers. 
These wrappers offer a common interface with common input 
and output formats and thus allows the seamless integration of 
the different search engines. The files and parameters are trans-
lated into the native formats of the respective search engines. The 
output is then read and presented to the user in a common for-
mat for different search engines. Wrappers currently available in 

Fig. 4. TOPPView 2D view from the top. An example of HPLC-MS dataset is shown. m/z is from left to right, the retention 
time of the different MS scans are shown from bottom to top. The peaks are color-coded by their respective intensities. 
Circles in the 2D view indicate tandem MS scans.
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TOPP include Mascot (19), Sequest (20), OMSSA (21), 
X!Tandem (22), and InsPecT (23).

The common interface of all TOPP tools makes it easy to 
string together a pipeline of different tools, which are executed 

Fig. 5. Different views to inspect mass spectral datasets. (a) 3D view, which is very use-
ful to get a quick overview of the data. Retention profiles and feature densities can be 
quickly estimated using this view. (b) 1D spectrum viewer, which can be used to inspect 
individual spectra. Either MS spectra or tandem MS spectra can be viewed. The spec-
trum viewer provides several features to annotate or analyze individual spectra.
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sequentially. In most of the cases, output of the preceding tool is 
used as input of the one following. For example, after preparing 
the parameter files for NoiseFilter, BaselineFilter, and PeakPicker 
for a specific instrument, applying these tools to a data file is 
straightforward:

In this example, it is obvious how the output of the first tool 
(NoiseFilter) provides the input for the second tool (BaselineFilter). 
The output of the second tool is then used as input for the third 
tool. If the user wants to apply this pipeline to a number of files, 
a batch script (*.bat) under Microsoft Windows or a shell script 
under GNU/Linux or MacOS X can be used. In this way, one 
can effortlessly construct simple, linear data analysis pipelines.

Constructing workflows in the manner just described is conve-
nient for simple, linear pipelines. Experimental setups, however, 
are becoming increasingly complex and data analysis workflows 
have to keep up with this. For these complex, often nonlinear, 
workflows, we provide a convenient graphical workflow editor, 
TOPPAS, the OpenMS Proteomics Pipeline Assistant.

TOPPAS allows the convenient interactive creation and edit-
ing of complex analytical workflows without any programming 
skills. Workflows can be constructed by dragging analysis compo-
nents on the screen and connecting these components in the 
desired order. The resulting workflows can be stored, including 
all parameters of the individual, and applied to arbitrary datasets. 
Workflows are platform-independent and can thus be transferred 
to other computers. A data analysis pipeline can be developed and 
tested on a laptop and later run on a larger compute cluster in a 
high-throughput setting.

All TOPPAS workflows start with an Input files node. There 
the files, which should be used in the pipeline, are selected. The 
last node of each TOPPAS workflow is an Output files node. It 
defines where the results of the analysis should be stored. In 
between the input and the output node, each TOPP tool can be 

3. Methods

3.1. TOPP Workflows
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used by dragging the tool from the left bar to the workflow screen 
and dropping it there. Parameters of TOPP tools can be edited or 
loaded from files by double-clicking on a node in the workflow. 
Connections between tools are represented by arrows between 
the boxes representing the tools. An arrow between two boxes 
means that the output of the first tool is used as input of the sec-
ond tool. By double-clicking on an arrow, the output and input 
file parameters can be changed. If several arrows leave from a 
tool, the data files are sent to each of the subsequent tools. The 
results of each intermediate step can be viewed in TOPPView 
from the context menu of the node. Once the pipeline has been 
built, it can be executed directly from within TOPPAS. Colored 
icons indicate the state of each tool (yellow: waiting; green: com-
pleted; red: error).

The use of TOPPAS for the creation of complex analysis 
workflows is now illustrated using two examples. The first exam-
ple is an identification pipeline using different search engines and 
combining the result into a list of identified peptides. The second 
example performs a label-free quantitation of several HPLC-MS 
runs and uses the identification results to annotate the quantita-
tive data.

The data files can be found in the examples directory of the 
OpenMS distribution, which is accessible via the Open example 
file menu entry in the File menu of TOPPView. The dataset con-
sists of three test runs of a Bovine Serum Albumin (BSA ) protein 
standard sample, recorded on different days. The datasets were 
generated on a Thermo Orbitrap XL.

The identification pipeline as it is seen in TOPPAS is shown in 
Fig. 6. First, an Input files node must be defined, by dragging it 
from the bar at the left side onto the canvas. By double-clicking 
on the node, the files for the pipeline can be selected. The nodes 
of the different search engines can be added, OMSSA (using 
OMSSAAdapter) and X!Tandem (XTandemAdapter). By adding 
arrows from the input files node to the search engines, TOPPAS 
runs each of the search engines on each input file. Parameters of 
the search engines can be modified by double-clicking the search 
engine nodes. The PeptideIndexer is required to recreate the pro-
tein references from the peptides to the proteins and to add infor-
mation, such as whether a peptide is a decoy peptide. The 
FalseDiscoveryRate nodes then calculate false discovery rates and 
add the scores to the results. Then, the IDFilter can be used to 
cut at a specific false discovery rate (FDR), in our case 5%. The 
merge node merges the output of the two IDFilter nodes into a 
list of files, which is then merged into a single idXML file. The 
ConsensusID node is able to calculate the average FDR for each 
spectrum and accepts only spectrum identifications when both 
search engines agree on the identification. All intermediate steps 

3.2. Example: Peptide 
Identification Pipeline
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are stored, and the consensus identification results in idXML for-
mat will be used later on in the quantitation pipeline.

The quantitation pipeline also starts with an Input files node, as 
shown in Fig. 7. The next step is to detect all features in the dif-
ferent maps. The FeatureFinder, in our case the centroided fea-
ture finder, extracts regions of the measurements that contain 
signals that may be caused by different peptides of our target pro-
tein. To annotate the features with identification information, the 
IDMapper tool is used. The input of this tool, consisting of the 
spectrum data and the identification data, is provided by intro-
ducing an additional Input files node. The last step is to assign 
features present in different maps, but representing the same pep-
tide into a group of features (also called consensus features). In 
our case, this group is distributed among the different measure-
ments. After linking the features into groups, the results can also 
be exported to text-based formats for further analysis, e.g., with a 
spreadsheet application.

The final result of this analysis can be inspected using 
TOPPView. A small region of the dataset is shown in Fig. 8a. It 
contains the tryptic BSA peptide LSSPATLNSR, which was iden-
tified and quantified in each of the samples.

3.3. Example: 
Quantitation Pipeline

Fig. 6. An identification workflow using several search engines and combining the search results at the end. The green 
circle in the upper right corner indicates that the tool has finished. Yellow means that it is currently running and gray 
indicates that it has not started yet.
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OpenMS and TOPPView open source software packages for the 
analysis of high-throughput mass spectrometric datasets. Both are 
freely available on various platforms, including Microsoft 
Windows, MacOS X, and Linux. Binary packages are available for 
convenient installation. Additionally, a platform-independent 
source package is available, which is required to implement one’s 
own code using the OpenMS C++ framework. OpenMS and 
TOPP are distributed under the GNU lesser general public license 
(LGPL).

The documentation of the current release is shipped with the 
binary packages as well as with the source package. Additionally, 

4.  Conclusions

Fig. 7. This figure shows a quantitation workflow using several HPLC-MS experiments. 
The feature finder quantifies the different peptide features in the different HPLC runs. 
The IDMapper maps the identification results from the identification pipeline to the fea-
tures and the feature linker finally links corresponding features to each other. At the end, 
the results are exported into a text-based format for further analysis.
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Fig. 8. A small part of the final results. (a) A 2D plot of the datasets with the features of the peptide LSSPATLNSR. (b) The 
same data as in the 2D plot shown in 3D. The different colors indicate the different measurements. The retention times 
are slightly shifted in the different runs.
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the documentation can be found on our Web site at www.
OpenMS.de. All the pipelines and examples described in this 
chapter as well as other code and pipeline examples are described 
in the tutorials contained in the documentation.

TOPP provides a collection of different tools for specific steps for 
the analysis of mass spectrometry-based proteomics experiments. 
The two analysis workflows described in the methods section are 
of course only examples. Depending on the experimental design, 
instrumentation used, and the desired output, the workflows 
might be very different. For example, labeled experiments can be 
analyzed using a similar workflow, skipping the steps needed to 
map the different HPLC runs onto each other. The provided 
examples just show how one can create analysis pipelines very 
efficiently.
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Chapter 24

LC/MS Data Processing for Label-Free Quantitative Analysis

Patricia M. Palagi, Markus Müller, Daniel Walther,  
and Frédérique Lisacek 

Abstract

In this chapter, we describe the use of SuperHirn and MSight, two complementary tools developed to 
the processing of label-free LC/MS data in view of the quantitation of proteomics samples. While MSight 
is mainly dedicated to the visualisation and navigation into LC/MS data, SuperHirn is specialised in peak 
detection, normalisation and alignment of LC/MS runs. These two tools can be used in a complemen-
tary way and one of the possible usages is described here.

Peak intensities in a mass spectrum are no reliable indicators of 
the amount of a protein in a sample, due to current shortcomings 
of ionisation methods of mass spectrometers. However, variations 
in peak intensity of the same protein in different samples can 
accurately reflect differences in its abundance. MS-based pro-
teomics is thus used to quantify protein relative abundance across 
samples.

MS-based quantitative proteomics relies on differential analysis: 
two or more LC/MS samples are compared; common peptides 
and/or proteins are detected and relatively quantified. Practically, 
differential analysis can be achieved by labelling the sample with a 
stable isotope, which will lead to mass shifts in the produced mass 
spectra. Differentially labelled samples are then mixed together 
and analysed by MS. Differences in peak intensities of the isotope 
pairs may accurately reflect differences in the abundance of the 
corresponding proteins. Some of these labelling techniques 
include ICAT, iTRAQ, TMT, SILAC, etc (1). Alternatively, label-
free quantification that does not include stable isotopes can 
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produce differential results. Both strategies require bioinformatics 
tools for detecting relevant peaks and assessing the significance of 
observed differences.

We focus here on the label-free strategy. There are currently 
two main label-free computational quantitative approaches: one 
measures and compares the MS signal intensity of peptide precur-
sor ions belonging to a specific protein and the other counts and 
compares the MS/MS spectra identifying a specific protein. The 
software described in this chapter belongs to the first category. In 
a typical analytical workflow of this type of label-free procedure, 
the proteins of different samples are digested with an enzyme 
(usually trypsin) and aliquots of individual samples are injected 
into the LC/MS system. The remaining aliquots of the sample 
digests are used to produce replicates as well as LC/MS/MS 
acquisition. The LC/MS data are acquired with a high frequency 
of MS spectra and preferentially with high resolution mass spec-
trometers. The principal computational steps of data processing 
are the detection of peptide peaks, the alignment of the LC/MS 
runs with the retention time values, and the matching across sam-
ples (2, 3). Many different algorithms and software have been 
proposed to tackle these three issues, and they have been exten-
sively reviewed by Muller et al. (4) among others.

In this chapter, we describe two complementary bioinformat-
ics tools to display, process LC/MS data and quantify correspond-
ing proteins. On the one hand, MSight (5), based on the Melanie 
2-D gel image analysis system ((6), www.expasy.org/melanie), is 
specialised in two-dimensional representation, as well as visual 
analysis and comparison of datasets obtained from LC/MS. 
MSight displays and browses, as an image, any portion of the col-
lected mass spectra, without transition from a global overview of 
all spectra to selected isotopic peaks. It is useful for navigating 
through large volumes of data generated by LC/MS runs and 
discriminating peptides or proteins from noise. MSight performs 
the first steps of the differential analysis by detecting peaks, align-
ing and matching sample sets. MSight targets users with little 
background in computer science, and its visualisation functional-
ities are suited to the analysis of low to medium number of LC/
MS runs.

On the other hand, SuperHirn (7) is adapted to high-
throughput runs. SuperHirn does not include an interface and 
thus requires some basic knowledge of Unix/Linux commands. 
It is specialised in the extraction of MS features (the equivalent to 
peak detection, see Note 1), in the alignment and normalisation 
of LC/MS runs. It is based on the detection of the precursor ion 
signal intensities on the MS level, the tracking of corresponding 
isotopic pattern in the retention time level and the reconstruction 
of a chromatographic elution profile of the monoisotopic peptide 
mass in a MasterMap data format. The SuperHirn method is 

http://www.expasy.org/melanie
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better adapted to data acquired on mass spectrometers equipped 
with the new generation of time-of-flight (Tof), Fourier transform-
ion cyclotron resonance (FT-LTQ), or OrbiTrap mass analyzers. 
Optionally, SuperHirn can annotate the extracted features with 
available MS/MS peptide identifications and quantify the protein/
peptide profiles in the generated MasterMaps.

The MSight image analysis application runs on the latest Windows 
operating systems and is freely available at the ExPASy server 
(www.expasy.org/msight). It can be simply downloaded and 
installed on a PC.

The SuperHirn software is programmed in C++, and the 
source code together with detailed documentation material is 
freely available on http://tools.proteomecenter.org/wiki/index.
php?title=Software:SuperHirn. SuperHirn runs on Linux and 
Mac OS X platforms. The compilation procedure is usually 
straightforward and the compilation instructions are detailed in 
the manual given in the Web site above.

MSight accepts LC/MS data generated from the majority of mass 
spectrometers supplied by Applied Biosystems, Bruker, Waters, 
ABI-SCIEX, or ThermoFinnigan, for example, and the mzXML 
format. SuperHirn reads LC/MS runs in mzXML format acquired 
in PROFILE mode and MS2 peptide identifications in pepXML 
format.

MSight benefits from the redundancy in consecutive mass spectra 
to visualise all spectra together in one single image. In an MSight 
image, the vertical dimension (y-axis) represents the retention 
time from LC, while the horizontal dimension (x-axis) represents 
the mass-to-charge (m/z) values from MS. The intensity (grey 
levels) of the images corresponds to the MS signal intensities.

Before displaying the images, you will need to import the 
LC/MS data in MSight.

 1. Open MSight by double-clicking on its icon.
 2. Import the LC/MS runs by choosing File → Import → MS 

Data. Locate the LC/MS runs in your disk and select the 
appropriate file format. Click on the green arrow of the Import 
MS window to start.

2. Materials

2.1. Software  
and Hardware

2.2. Data Format

3. Methods

3.1. Displaying LC/MS 
Images with MSight

http://www.expasy.org/msight
http://tools.proteomecenter.org/wiki/index.php?title=Software:SuperHirn
http://tools.proteomecenter.org/wiki/index.php?title=Software:SuperHirn
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 3. Once MSight has finished importing, you can display the 
LC/MS images, placed automatically by MSight in the 
Image Pool, by clicking in their icons.

 4. Create a new Project by choosing File → New Project and 
give a sounding name (see Note 2). Right click in the name 
of the newly created project, choose Create a MatchSet by 
giving a sounding name (see Note 3).

 5. Drag the imported images from the Image Pool to the newly 
created MatchSet (see Note 4).

Several features of MSight should be modified to improve image 
visibility and help the navigation across images. In MSight, mass 
spectra intensities are represented as grey levels. Frequently, the 
resulting brightness values do not make full use of the available 
dynamic range, especially when only few m/z values have very 
high intensities. Weak intensities are in this case hardly visible, 
and the image is almost completely white. This problem can be 
overcome and faint values accentuated, by stretching the histo-
gram over the available dynamic range.

 1. Choose the menu View → MS-Runs → Adjust contrast.
 2. In the Adjust contrast window, click as many times as neces-

sary in the different big grey squares to adjust the grey level 
mapping for the selected images.

Some other useful tools are available in MSight related to 
data display. For example, MS spectra and chromatograms can be 
displayed in a 1-D view and regions of the 2-D image can be 
viewed in a 3-D landscape view. Data can be shown at various 
resolutions with no information loss using the zoom-in and 
zoom-out feature. For each desired zoom factor, the image is 
recalculated on the fly for an optimal display of the data given the 
available window size. These examples are illustrated in Fig. 1.

A typical workflow to achieve the comparison of MS runs in 
MSight goes necessarily through a matching procedure with the 
following steps:

 1. Right click on a MatchSet and choose Display in the contex-
tual menu to open the MS-Runs.

 2. Click on the menu Edit → Peaks → Detect. A few parameters 
are available to fine tune the detection and the deisotoping 
(see Note 5). To preview the effect of the detection parame-
ters, select a region on the image with the rectangle tool.

 3. In the case the images show large variations in the retention 
time axis, select the Landmark tool, and define a few land-
marks in common peaks to all images. Then, choose 
View → Sheet → Align images (see Note 6).

3.2. Adapting LC/MS 
Image Analysis with 
MSight

3.3. Comparing Data 
with MSight
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 4. Finally, to find the corresponding peaks through the runs, 
click on the menu Edit → Matches → Compute...

The next logical step, following the matching of LC/MS 
runs, is the differential analysis, i.e. visual or automatic compari-
son of the runs to determine the differentially expressed peptides 
and proteins. In the current version of MSight, the variations 
among runs can be explored through histograms, reports, and 
scatter plots. The statistical analyses necessary to validate these 
variations and available within MSight are currently under devel-
opment and testing.

SuperHirn processes the typical computational tasks involved in 
LC/MS data analysis: the detection of peptide features in the 
mass spectra, the alignment of samples by correcting for shifts in 
retention time and normalisation of the data. SuperHirn contains 
some compulsory modules, which include these critical steps, and 
some other optional modules. The compulsory modules have to 
be executed in a specific order:

 1. First, the MS features are extracted from the LC/MS runs 
with the command: SuperHirn –FE (see Note 1).

3.4. Processing LC/MS 
Data with SuperHirn

Fig. 1. Illustration of MSight.
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 2. Then, the available MS/MS peptide identifications are associated 
to the MS extracted features, and the pairwise LC/MS simi-
larity analysis is performed to construct a similarity tree of the 
LC/MS data with the command: SuperHirn-BT.

 3. Based on the extracted features, the input LC/MS runs are 
combined into a MasterMap (see Note 7) by a multidimen-
sional LC/MS alignment process with the command: 
SuperHirn–CM.

 4. And finally, all MS features intensities across all LC/MS runs 
are normalised and stored, in text format, in a normalised 
MasterMap with the command: SuperHirn–IN.

At the end of these steps, SuperHirn creates a file containing 
the normalised MasterMap, i.e. containing the MS feature pro-
files (see Note 8) present in one or more LC/MS runs.

A MasterMap can be subsequently exploited:

 1. by a home-made quantitation tool which will calculate the 
ratios of the matched peptides and will define those differen-
tially expressed;

 2. by continuing the analysis with SuperHirn to cluster profiles 
and find trends in the present proteins. For example, Rinner 
et al. (8) have used the MasterMaps to analyse changes in 
complexes of proteins and find specific partners in networks 
of interactions.

SuperHirn uses the K-means clustering method to group all con-
structed feature profiles. The starting K cluster centres are ran-
domly chosen from the input feature profiles, and the clustering 
cycle is repeated until all cluster centres K reach convergence or a 
maximal number of iterations is achieved (for example, 500 itera-
tions). Each built cluster is stored and subsequently used for tar-
geted profiling analysis.

 1. The unsupervised Kmeans clustering analysis of MS feature 
profiles is performed on the MasterMap with the command: 
SuperHirn–DP (see Note 9).

 2. From the constructed Kmeans clusters, the feature members 
of the closest cluster to a user-defined target profile are 
selected (see Note 10). These features are assembled into 
peptides and proteins and their consensus profile correlation 
to the target profile is evaluated with the command: 
SuperHirn–EME (see Note 11).

 3. The MasterMap can be further updated by MS2 information 
in order to assign peptide identifications to MS1 features 
which have not been annotated in the current LC-MS 
experiment. Additional MS2 peptide identification data, for 

3.5. Clustering Profiles 
with SuperHirn
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example from other MS instruments or from a user-defined 
inclusion list, are integrated into the MasterMap by searching 
for every new MS2 peptide identification its corresponding 
MS1 feature in the MasterMap. This is done with the com-
mand: SuperHirn–ILA.

At the end of each step, SuperHirn produces a text file, that 
contain the obtained results and can be easily read by end-users 
and scripting programmes.

In a label-free proteomics analysis, the ultimate objective is to 
quantify the differentially expressed proteins across multiple LC/
MS runs. The current versions of MSight and SuperHirn do not 
allow performing at once all the necessary steps to reach this 
objective in a simple and fast way. Ideally, the combination of 
these two tools would decrease the number of data processing 
steps, while making the most of the qualities of both tools. For 
example, the features detected by the precise algorithms of 
SuperHirn could be integrated into corresponding MSight images 
to ease the visualisation and analysis of variations among the dif-
ferent runs. Especially in high-throughput settings, quality con-
trol is of paramount importance, and visual inspection remains 
one of the most effective methods. It can only be achieved by a 
tool, such as MSight, capable of rendering aligned features in dif-
ferent LC/MS runs simultaneously. We strongly advocate its use 
to check the quality of the final results and to create visual reports 
with these results. The combination of these two tools is in the 
pipeline of the current developments and will be delivered to the 
proteomics community in the near future.

 1. A feature of SuperHirn is the collection of m/z  peaks that derive 
from the same molecular ion, as a result of 13C isotope distri-
bution and multiple charge states distributed over multiple con-
secutive MS scans as a result of chromatographic elution.

 2. A project allows you to organise your MS-Runs in a logical 
way (a study or research project for example), to specify how 
the MS-Runs are to be matched together, and to define your 
classes (or groups) for statistical analysis. It includes all 
MS-Runs, peaks, matches, annotations, and other informa-
tion produced and analysed during the course of a specific 
LC/MS run study. You can create or add many projects in 
the Workspace.

 3. A project can include one or more match hierarchies, each of 
which contains a Match folder and a Classes folder. The 

3.6. Combining MSight 
and SuperHirn

4. Notes
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Match folder describes how MS-Runs or populations of 
MS-Runs, called match sets, should be matched together. 
The Classes folder is where the biological question is stated, 
through the definition of classes of MS-Runs to be 
compared.

 4. Within each match set, the MS-Run image or match set that 
has a red marker and appears first in the list is used as the ref-
erence in the matching process. To change the match refer-
ence, drag the desired MS-Run image or match set onto the 
name of its parent match set so that it moves into the first 
position. The reference for each match set must be carefully 
chosen. This is because automatic matching compares the 
peaks in the reference to those in the other images. If a peak 
is absent from the reference, it cannot be matched automati-
cally (although it can be matched manually).

 5. The peak detection algorithm looks for areas of high intensity 
peaks to delineate their shapes. The deisotoping step then 
looks for the monoisotopic peaks of the same molecule, links 
them together (dashed lines connect isotopes), and deter-
mines ion charge states.

 6. To align images, the software needs to know which positions 
in the different images correspond to each other, that is, rep-
resent the same peak. This is done by defining landmarks. 
The alignment algorithm then deforms the images to super-
impose the landmarks.

 7. The MasterMap is a proprietary format of SuperHirn which 
contains a consensus of all matched peaks across all LC/MS 
runs. It is formatted as a table with m/z values (in a given 
retention time with a given charge) as rows and the LC/MS 
runs as columns. The intersections of rows and columns are 
the intensity values.

 8. An MS feature profile is a vector containing the intensities of a 
given m/z (in a given retention time with a given charge) in all 
LC/MS where this m/z was detected. For example, the m/z 
402.2348 with retention time 8.52 and charge +1 could have 
this <1927500.38 8734537.00 0 490350.91 4125343.50 
622670.44> as an MS feature profile. It means that it was 
detected in 5 out of 6 LC/MS runs.

 9. A crucial factor in K-means clustering is the number of start 
cluster centres. When the number of differentially expressed 
proteins in the sample is known, which was the case in the 
samples used to describe SuperHirn (7), the number of start 
clusters will be minimum equal or higher than this number, 
and these features are called target profiles. When the number 
of differentially expressed proteins in the sample is not known, 
it has to be estimated or guessed by the user.
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 10. A user-defined target profile is a known protein which would 
typically have different abundances in different LC/MS 
runs.

 11. For the profiles similar to the target profiles, the m/z values 
and retention times of the corresponding features can be 
written into a so-called inclusion list (9), which allows further 
targeted MS2 measurements in order to identify the peptides 
behind these features.
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Chapter 25

Spectral Properties of Correlation Matrices – Towards 
Enhanced Spectral Clustering

Daniel Fulger and Enrico Scalas 

Abstract

This chapter compiles some properties of eigenvalues and eigenvectors of correlation and other matrices 
constructed from uncorrelated as well as systematically correlated Gaussian noise. All results are based on 
simulations. The situations depicted in the settings are found in time series analysis as one extreme variant 
and in gene/protein profile analysis with micro-arrays as the other extreme variant of the possible sce-
narios for correlation analysis and clustering where random matrix theory might contribute. The main 
difference between both is the number of variables versus the number of observations. To what extent 
the results can be transferred is yet unclear. While random matrix theory as such makes statements about 
the statistical properties of eigenvalues and eigenvectors, the expectation is that these statements, if used 
in a proper way, will improve the clustering of genes for the detection of functional groups. In the course 
of the scenarios, the relation and interchangeability between the concepts of time, experiment, and reali-
sations of random variables play an important role. The mapping between a classical random matrix 
ensemble and the micro-array scenario is not yet obvious. In any case, we can make statements about 
pitfalls and sources of false conclusions. We also develop an improved spectral clustering algorithm that 
is based on the properties of eigenvalues and eigenvectors of correlation matrices. We found it necessary 
to rehearse and analyse these properties from the bottom up starting at one extreme end of scenarios and 
moving to the micro-array scenario.

As far as the laws of mathematics refer to reality, they are 
not certain, and as far as they are certain, they do not refer 
to reality.

A. Einstein

In principle, the statements made here on the micro-array data 
scenario and functional gene groups also apply to protein-arrays. 
We generally take a more abstract point of view to separate 
experimental and statistical issues that often get mixed up. 

1. Introduction
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The main two situations treated here are (a) more measurements 
than variables and (b) less measurements than variables. A third 
(nuisance) scenario of missing measurements which appears in 
the context of proteins is treated separately in Ref. (3) since not 
of concern here.

The term spectral indicates the calculation and exploitation of 
matrix spectra, i.e. eigenvalues and eigenvectors. We review spec-
tral properties of correlation-like matrices from a general point of 
view. One question to answer: What meaning do the eigenvalues 
and eigenvectors exactly have, what information can be extracted 
that can be used to improve clustering, for example? The estab-
lished association of the large eigenvalue and respective eigenvec-
tor with some kind of “dominant” mode (4) in the underlying 
data seems to be just half of the story.

From a mathematically abstract point of view, the situation 
and task could be interpreted as the following: We are presented 
with stochastic variables xn, n = 1,..., N. The values taken by these 
variables are indexed by t = 1,..., T by writing xn(t). This allows the 
association with time series while this labelling may refer to the 
experiment number or any other label that expresses meaning-
fully that variables x1 (t),..., xN(t) belong to one measurement or 
experiment. This pedantry is necessary because the interpretation 
and the choice of methods crucially depend on the mappability 
between the mathematical object and the real world. In the for-
mer, there is no concept of time and its introduction must be well 
defined and justified. The entire data can be arranged in a matrix 
M of dimension N × T. Assuming that the average is zero, the 
Pearson estimator for the covariance matrix (Cij) is given by
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The covariances of all pairs can be collected in a symmetric matrix
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The covariance or correlation matrix C is often associated with 
the Wishart matrix for which Marčenko and Pastur derived an 
analytic spectrum in the large size limit if the variables xn(t) are 
independent and identically distributed with the condition of 
finite moments (8). The equivalence between the (realisation of a) 
correlation matrix and the Wishart matrix cannot always be taken 
for granted as we show later.

A typical task is to extract sets of variables that form corre-
lated groups, or rather groups that have something in common. 
The above-mentioned correlation coefficient is just one of many 
possible “linkages” between (real valued) random variables or 
even other random objects. It is to view clustering as a special case 
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of spectral reconstruction (approximation) of matrices or related 
networks (1). The notion of correlation can be extended to any 
coefficient that measures a link between two random objects in 
terms of a real number for which a suitable pair-wise distance can 
be defined. The definition of a correlated group is therefore 
somewhat arbitrary, likewise is the resulting clustering of different 
methods more or less different. In real world data, there is usually 
no correlation in the mathematical sense, but possibly something 
very similar and interpretable as correlation. Many methods act 
on matrix C to extract information. Specialised methods make 
model assumptions on the type of correlation (or link value) and 
are thus empirically optimised to cluster the random variables that 
work best for the given source of the random variables.

Additionally, the mathematically abstract context of realisa-
tions of random variables at equidistant points in time to which 
correlation measurement is often mapped to is not justified in 
some cases. It does not hold, for example, if not all random vari-
ables provide a realised value for each time index. This is the case 
in protein data and also in high-frequency financial data where 
waiting times produce zero increments in the stock value between 
samplings. Neither are the (differential) expression values extracted 
from micro-arrays easily justified to be interpreted as standard ran-
dom variables. For very similar experimental settings, very similar 
values must be expected, up to some noise, while at certain levels 
of cell stress or whatever the index t stands for, jumps may occur.

Consider the situation shown schematically in Fig. 1. The 
time series change only once and the same “time index” in panel 

x(t)a

b

t

t

x(t)

Fig. 1. (Colour online) Schematic time series with straight lines between the data pairs. 
In (a), both time series show a peak at the same time. In (b), the peaks are still identical 
while one time series seemingly fluctuates at random. The correlation coefficients cal-
culated from both situations are identical if the increments lie on the same grid. The 
coefficients are likely to be very similar even with continuous-time random walks and 
meaningful interpolation schemes.
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A. In panel B, time series Red fluctuates a lot and has, by coincidence 
or not, an identical spike together with Blue. A correlation mea-
surement combined with some typical interpolation technique 
would produce identical or at least very similar correlation coef-
ficients for both situations. It depends strongly on the system, 
application, and questions asked if it is appropriate to call either 
situation correlated or not. It is most likely A that depicts a sig-
nificant connection between the two time series. Note that this 
likelihood increases with the total duration or number of data 
points! We must therefore realise that the regions in time having 
zero increments do contain information, in particular if their time 
scale is of the similar order of magnitude as other time scales in 
the respective situation, for example, the total duration of the 
measurement. Ergo:

Any post-processing that only considers the correlation 
coefficients disregards time and produces in such a case a 
joint probability density in the (dis-)similarity matrix that 
does not exhaustively reflect the connection between the 
time series, i.e. looses information.

It is demonstrated later that with time series with behaviour 
as described in Fig. 1, or respective stylised facts, the data should 
not be ignored but used in the reconstruction of “modes” and 
separation of correlated clusters that are otherwise not separable. 
Note, that the term “mode” is not mathematical and mostly intui-
tive if used in real world data measurement.

Clustering with matrices and their eigenvalues and vectors is 
well established in graph theory for a long time under the term 
“spectral clustering”. A good tutorial is Ref. (12). In short, it is 
based on a certain dissimilarity measure matrix L, while defini-
tions sometimes disagree, and it uses the eigenvectors of the 
smallest k eigenvalues. This value has the same meaning as in 
k-means clustering, i.e. the a priori estimate on the number of 
clusters. L is symmetric and called Laplacian and one frequent 
definition is

 = −diag( ) ,idL C  (3)

where C is the unweighted (positive) adjacency matrix. diag(di) is 
the diagonal matrix of vertex degree

 
1

,
N

i ij
j

d C
=

∑  (4)

i.e. the sum over all correlations with node i. Graph theory 
denotes the “objects of interest” with the term nodes. It can 
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be replaced with time series or gene/protein accordingly. One 
can consider L to contain a dissimilarity measure via the 
negated C which in turn is analogous to the absolute value  
| C | sometimes used in a distance measure. For example, the 
comparison of clustering methods in Ref. (9) uses a dissimi-
larity measure that is close to the one used later. In the end, it 
is unlikely that mathematical reasoning leads to the best choice 
of distance measure, as explained above. In the following 
examples and figures, it is demonstrated that with some (dis-)
similarity measure it makes sense to consider also other eigen-
vectors than the large eigenvalues’s eigenvectors. In spectral 
clustering, one is free to choose a suitable clustering method, 
for example k-means, which then performs the clustering 
using these eigenvectors. This also means that the number of 
clusters must be guessed beforehand. The motivation to con-
sider here also a dissimilarity measure is to keep track of what 
type of matrix other non-spectral methods as k-means or PAM 
(9) use. The latter two work directly on the coefficients of the 
matrix.

The improved spectral clustering uses the correlation matrix 
as a similarity measure since it contains no less information than 
any dissimilarity matrix. Moreover, a theory exists on its random 
case spectrum. It seems that the use of the Laplacian matrix L in 
standard spectral clustering is mostly to achieve plausibility since 
it matches with a mathematical construction in graph theory. 
Furthermore, for a “mode” carrying a correlation information, 
we also have small eigenvalues leaking out of the Marčenko–
Pastur law of uncorrelated data (8). This is true for the similarity 
(correlation) matrix and, in an analogous way, also for the dis-
similarity matrix used here and defined later. Since we assume 
that we are faced with a “noisy” situation, we must use all infor-
mation we can extract. Since these small eigenvalues and associ-
ated eigenvectors are likely to contain redundant information 
about the correlated cluster, it is appealing not to ignore this 
information. The naive mapping of a real world situation to 
simultaneous realisations of random variables is often not easy to 
be justified and is mostly argued for because of reasonable results. 
An example is liquid together with illiquid stocks in finance. 
There, the data itself can be used in the reconstruction of the 
correlations.

The following sections construct artificial situations that are 
“extreme” for didactic purposes in the sense that they are not 
realistic but allow to recognise features in the eigenvalue and 
eigenvector spectra that could be used in the better exploitation 
of the information content given in a more noisy and more real-
istic data set.
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The scenario demonstrated here mimics synchronous financial 
data analysis, i.e. at least as many measurements as variables:

•	 T = 200 number of realisations per random variable
•	 N = 200 number of random variables
•	 Nc = 1 number of independently correlated groups of 

variables
•	 N1 = 20 number of correlated variables in group 1 (only 

one here)
•	 xn(t) Gaussian noise data set n where t = 1,..., T.
•	 Type	of	correlation	within	group	i:

 ( ) (1 ) ( )n nt c t cx x= − + Ξ  (5)

X is a prefixed “parent” noise vector specific for the 
correlated group. c ∈[0, 1] is a correlation coefficient.

•	 c = 0.93 (very high correlation)

The choice of Q = T/N = 1 is to avoid any factor Q if it appears in 
some normalisation. The mathematical/numerical construction 
of the artificial correlation is not so relevant since the realistic case 
does not provide a mathematical correlation coefficient either. 
Figure 2 shows the correlation matrix created from the series x1 
to xN. For identification, the first 20 are correlated. Also shown is 
the more realistic disordered situation if the correlated data sets 

2. Scenario 1: 
Correlated Noise 
with Many 
Variables  
and Many 
Measurements per 
Variable

2.1. One Correlated 
Cluster
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Fig. 2. (Colour online) Correlation matrix of uncorrelated noise with one cluster of 20 artificially correlated variables. The 
right panel is reshuffled to imitate the standard disordered situation in reality, where the dark (red) dots of high 
coefficients are randomly distributed.
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are unknown, i.e. shuffled. Figure 3 shows the respective equal-time 
random walks (RWs) xi(t), t ∈ N+ on a regular grid that are cre-
ated from the realisation of the random variables. For the pur-
poses of this chapter, this is entirely sufficient and the data points 
x(t1), x(t2),... are connected with straight lines. In Fig. 3, the cor-
related group is drawn red.

In addition to the correlation matrix C, the following figures 
also show the results using a dissimilarity matrix D. The definition 
of dissimilarity is a bit arbitrary. The measure used here is

 = −1 | | .D C  (6)

Figure 4 shows the main part of the eigenvalue spectra of both 
matrices. The numbering of eigenvalues is by size, i.e.:

 1 ... .Nl l< <  (7)

Some features are outside the plot range. Note that Cl−  denotes 
the lower bound of the Marčenko–Pastur domain which is zero in 
this case with Q = 1. In the finite size situation with low correla-
tion parameter, the classification of eigenvalues as belonging to 
the correlated group is not unique due to the overlap of the dis-
tributions with the informationless bulk of the spectrum. Likewise, 
the expected size of eigenvalues fluctuates. We therefore use the 
order notation with O(·) to indicate that an eigenvalue is expected 
to have the value O(x) or the number of eigenvalues in a distinct 
group is expected to be O(N). This is not to be confused with the 
usual meaning of order notation. For larger values of Q , N and 
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Fig. 3. (Colour online) Random walks created from the noise in vectors x1 to xN. The 
correlated group is marked in grey (red ).
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correlation coefficient the groups of, e.g. zero eigenvalues, can be 
distinguished very well. The histograms in the eigenvalue figures 
are again deliberately not normalised to convey the absolute 
counts. The Laplacian’s L smallest eigenvalue is always 1 0Ll =  by 
construction (1).

Figure 5 shows the eigenvector matrices of the correlation 
matrix as well as of the dissimilarity matrix D. The realistic (shuf-
fled) situation is also shown. Columns are eigenvectors with col-
umn number corresponding to eigenvalue index. The ordering is 
entirely arbitrary as long as the pairs of eigenvalue and eigenvec-
tor are maintained well.

In the situation created here with one correlated cluster, we 
find the following (partly empirical) properties.
A. Properties of the eigenvalues and vectors of similarity (correla-
tion) matrix C:

 1. The spectrum is strictly positive definite with a lower 
Marčenko–Pastur bound Cl− .

 2. Conservation law in the limit of high correlation:

 1 0.C
N Nl − =  (8)

−1 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 10 1 2 3 4
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The spectrum is
positive definite.

The spectrum is
not definite.

DIS−SIMILARITY (1−|C|) MATRIX

O(N1 − 1) small positive

One eigenvalue
λ  = O(N1)

One eigenvalue
λD

D
N

1 = −O(N1)

One  eigenvalue
λ  = O(N  − N1) 

O(N1−1) small eigenvalues
asymptotically close to zero

SIMILARITY (C) MATRIX

eigenvalues λC

C

C
N

l...N1−1 =
O(0) below λ −

Fig. 4. (Colour online) The features of the spectra of the similarity matrix and dissimilarity matrix are similar in their 
content of information on the number of correlated data sets. Due to “conservation of weight”, we have the above 
(approximate) relations for the extreme values and number of eigenvalues that are close to zero. In the limit of high cor-
relation and T N , these become equalities. In this example, we have N1 = 20 correlated among N = 200 random 
variables. For the dissimilarity matrix, we find 186.15D

Nl =  and 1 17.57Dl = −  only approximately correspond to 
200 and 19, respectively. 1 0D D

N Nl l+ − ≈  holds well, however. The histograms are not normalised on purpose to 
convey the absolute counts.
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This not only holds if 11 N N   but as long as N T  
and c » 1.

 3. One large eigenvalue 1( )C
N O Nl = .

 4. The eigenvector VC belonging to the only large eigenvalue C
Nl  

contains N1 relevant large elements in the indices of the cor-
related cluster proportional to their contribution to the 
respective “mode”.

 5. A group of O (N1 − 1) small positive eigenvalues 1
Cl  to 

1 1
C
Nl −  

below Cl− . This group is well distinguishable due to a clear 
gap to the bulk above Cl− .
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Fig. 5. (Colour online) Colour (greyscale) coded eigenvector column matrix of the correlation matrix C and of the dissimi-
larity matrix D. Shown are the magnified left and right corners. The N1 − 1 eigenvectors belonging to the small group of 
eigenvalues evoked by the correlated cluster can be identified as a square of N1 × N1 − 1 strongly fluctuating elements as 
compared to the informationless part of the eigenvectors. Due to the normalisation of length 1, the remaining elements 
in these vectors are close to zero (column of uniform grey/green area). Also note that all other eigenvectors are essentially 
zero in the first N

1 − 1 rows as well. The shuffled situation is also shown below.
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 6. The eigenvectors 
11 1,...,C C

Nv v −  belonging to this group of small 
eigenvalues are well distinguishable by N1 elements of higher 
variance in the element indices that belong to the correlated 
cluster. See Fig. 6. With increasing cluster correlation and 
matrix size, the other elements of these vectors get asymptoti-
cally close to zero.

 7. Due to conservation of weight and with increasing cluster 
correlation and matrix size all other eigenvectors 

1 1,...,C C
N Nv v −  

are asymptotically close to zero in the indices that do not 
belong to the correlated cluster. These small elements fluctu-
ate below the variance of the random majority of the eigen-
vector matrix. Again see Fig. 6.

 8. The random bulk of the eigenvector matrix may indeed fluc-
tuate beyond the magnitude of the elements in V C. This can 
be observed in Fig. 6.

B. Properties of the eigenvalues and vectors of dissimilarity 
matrix D:

 1. The uncorrelated spectrum is not definite due to one large 
positive eigenvalue. However, all other eigenvalues have a 
strictly negative upper bound 0Dl+ < .

 2. Conservation law in the limit of high correlation:

Fig. 6. (Colour online) Impressionistic view of the eigenvector matrix of the similarity 
matrix C from Fig. 5. This perspective gives an impression of the overall structure and 
magnitude of the eigenvectors. Vector V C can be recognised by the ridge of equally large 
positive elements at the right upper corner.
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 1 0.N Nl l+ − =  (9)

This not only holds if 11 N N   but as long as  N T
and c » 1.

 3. One left large eigenvalue 1 1( )D O Nl = − .
 4. The eigenvector left

DV  belonging to the left large eigenvalue 
1 1( )D O Nl = −  contains N1 large elements in the indices of the 

correlated variables.
 5. A group of O(N1 − 1) small eigenvalues 1

Dl  to 1 1
D
Nl −  asymp-

totically close to zero with increasing cluster correlation. This 
group is well distinguishable in the large size limit due to a 
clear gap to the bulk below Dl− .

 6. The eigenvectors 
11 1,...,D D

Nv v −  belonging to this group of 
small eigenvalues are well distinguishable by elements of high 
variance in the indices that belong to the correlated cluster 
and low variance below the random bulk variance. With 
increasing cluster correlation and matrix size, the other elements 
are asymptotically close to zero. See Fig. 6.

 7. One right large eigenvalue 1( )D
N O N Nl = −

 8. The eigenvector right
DV  belonging to v right large eigenvalue 

1( )λ = −D
N O N N  is (1,...,1) / N  plus some partly systematic 

fluctuation due to finite size.
 9. As opposed to the similarity matrix, the eigenvectors with 

large fluctuations in the group indices are not situated at the 
far left end opposite to the vector right

DV  but a few columns 
closer. This property has no explanation yet.

 10. The gap between the informationless bulk of the eigenvalues 
and the group of small eigenvalues around zero is wider than 
in the spectrum of the similarity matrix. It remains to be seen 
if this property is an advantage.

 11. The random bulk of the eigenvector matrix may indeed fluc-
tuate beyond the magnitude of the elements in VC. This can 
be observed in Fig. 6.

The list of properties is not finished with the above items. Of 
particular interest is the linear combination of RWs created from 
the correlated noise and eigenvector information since the result-
ing “modes” allow recognition of similarities by eye that other-
wise remains hidden in the series of increments. The artificially 
correlated cluster is produced via a fixed set of increments, called 
parent noise, that is reused for the production of all members of 
the cluster by adding more or less noise depending on the corre-
lation parameter c, see Eq. 6. Figure 7 shows in black the RW 
obtained by this “parent” noise that lies within the correlated 
cluster. The following notation, that is maintained later, assumes 
for simplicity’s sake vectors if the entire range t = 1,..., T is referenced, 
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i.e. x = (x(1),...,x(T)). We start with the similarity matrix C and its 
two main objects of interest:

The linear combination of RWs using the (in this case first) ●●

N1 relevant large elements of eigenvector VC as coefficients:

 
1

( )
1

,
N

C
V n n

n

x c V x
=

= ∑  (10)

where ( )
C
nV  denotes vector element n which is also the index of the 

random variable. xn is the RW-vector constructed from the respec-
tive increments:

 
1

( ) ( ).
t

n nx t
t

x t
=

= ∑  (11)
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Fig. 7. (Colour online) From the coefficients of eigenvectors that belong to eigenvalues outside the random bulk of the 
spectrum several “modes” can be reconstructed that are identical up to some statistical fluctuations. The parent mode 
is created with one pre-fixed set of noise used for generation of the correlated bunch (red ), see Eq. 6. The legend gives 
the respective summation formulas. The notation uses the short cut x = (x (1),...,x (T  )) the subscript (i ) denotes the i th 
vector element.
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Even though the sum runs over the first N1 vector elements of VC, 
the correlated mode is reproduced well. Figure 7 shows the curve 
obtained via Eq. 10 as blue circles.

The linear combination of RWs using the ●● N1 relevant ele-
ments of the N1 − 1 eigenvectors C

nv  belonging to the small 

group of eigenvalues:

 
1

( ) 1
1

, 1,. , .. 1C
n

N
C
n i iV

i

x v x n N
=

= = −∑  (12)

This gives N1 − 1 different “modes”. Figure 7 shows that these as 
several blue lines. Even though the sum uses only the first N1 vec-
tor elements and RWs, the modes are reproduced well.

Of possibly greatest interest could be the sum of all modes ●●

according to Eqs. 25.10 and 25.12:

 
1 1

1

blue squares in Fig. 7C
n

N

v
n

x
−

=
∑  (13)

and also the sum Eq. 12 plus Eq. 10:
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1
C C
n

N

v V
n

x x
−

=

+∑  (14)

Finally, it appears that one of the modes ●●
1, 1,...,=C

nv n N  con-
tains the “zero-mode”. Empirical examples indicate that up 
to some fluctuation that is decreasing with increasing T one 
possibly special C

nv  is essentially zero on the entire axis.

The entire exercise on linear combination of modes can be 
repeated with the eigenvectors of the dissimilarity matrix, but this 
has to be skipped for now since a detailed comparison requires 
separate study.

Figures 8 and 9 demonstrate how the situation of two correlated 
clusters is coded in the eigenvectors of the respective correlation 
matrix. With two clusters, an additional feature appears: both 
eigenvectors belonging to the two large eigenvalues code the 
mode within their elements. The clusters are chosen such that the 
first (1–20) and the last (180–200) noise vectors are correlated 
to simplify identification by eye in the eigenvector matrix. First, 
observe the following characteristics of this particular realisation 
of the respective RWs in Fig. 9:

 1. We have two eigenvectors that code the two modes. As expected, 
they are located at the right of the eigenvector matrix because 
they belong to two large eigenvalues of essentially equal value up 
to some noise due to the finite size of the situation.

2.2. Two Correlated 
Clusters
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Fig. 8. (Colour online) Colour (greyscale) coded eigenvector column matrix of the correlation matrix C and of the dissimi-
larity matrix D.

Fig. 9. (Colour online) Colour (greyscale) coded eigenvector matrix of the correlation matrix C. This perspective shows 
that the two eigenvectors belonging to the two large eigenvalues are non-zero in the indices of both correlated random 
variables. The regions at the “other end” of the matrix also “code” the respective modes.
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 2. Both eigenvectors are non-zero in the indices of both of the 
correlated clusters.

 3. The sign of these non-zero elements is either entirely positive or 
entirely negative. The sign depends on the realisation, yet not all 
combinations are possible. Two signs in one group, e.g. 1–20, 
must be equal, the other in 180–200 two are then opposed.

Figure 10 demonstrates in detail which eigenvector matrix 
elements recover the mode. The matrix elements are used for lin-
ear combinations of the corresponding RWs according to Eq. 13 
or Eq. 14. The elements are marked in the schematic overview 
Fig. 11 and can be recognised in Fig. 9 as columns. It is apparent that 
the respective recovered modes are clusterwise numerically identical 
up to an overall factor. The reconstructions approximate the parent 
cluster mode Eq. 6. With correlation coefficient c1 = c2 = 0.8, i.e. 
equal for both clusters, we do not expect a perfect recovery of the 
parent mode.
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Fig. 10. (Colour online) The two “parent” modes used for the construction of two artificial 
clusters and the reconstructed modes are shown as grey and light-grey (red and green ) 
continuous lines. The notation MODE V[i − j, k − l ] denotes the eigenvector matrix ele-
ments used in the mode reconstruction by linear combination of the respective RWs 
according to Eq. 13 or Eq. 14. The factors are empirical. In this example, we have 20 
possibilities to reconstruct exactly the same mode up to a linear factor. These recon-
structions are identical but only approximate the parent mode.
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We make use of the fact that the small eigenvalues belonging to a 
mode also code the mode up to a factor. In contrast to, for exam-
ple, k-means the following procedure has the advantage of estimat-
ing the number of clusters, and it also allows for cluster overlaps.

Algorithm:

1. Decide on the number of significant modes (or clusters) by counting the number 
k of “large” eigenvalues, number of significant eigenvectors, etc. using a criterion 
of choice.

2. Take the corresponding k eigenvectors. For all k vectors do:
3. “Plot” the mode coded in Vk via Eq. 10.
4. Decide for Vk which hk largest elements are significant, e.g. by comparing with 

the Porter-Thomas law or via contribution to the resulting mode, etc.
5. Find among all vectors the corresponding set {vki} of size hk − 1 (region A, B, 

etc.) There are different ways: E.g. try to recover the mode coded in Vk doing 
many fits with linear combinations as in Eq. 12.

6. Test if a different number than hk − 1 gives the best fit by repeating step 5 trying 
an additional *

kiv  (consequently also an additional vector element in all vki as well 
as *

kiv ). Then, hk, the number of significant elements in the large eigenvalue’s 
eigenvector, can be adjusted.

7. Remember these eigenvector element indices as the cluster {Nk}.
8. Repeat step 2.
9. We are left with k sets of numbers. Some may overlap.

3. Improved 
Spectral Clustering

EIGENVECTOR MATRIX

DC
A

cluster 1 

E
cluster 2

F
cluster 1

B
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cluster 2

cluster 1

HG
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cluster 1

Fig. 11. (Colour online) In the case of two correlated clusters of random variables in the 
indices (1–20) and (180–200), the regions in the eigenvector matrix of the correlation 
matrix whose elements code the respective mode are known beforehand up to an arbi-
trary ordering of clusters 1 and 2. All eigenvectors that stem from a large eigenvalue 
contain all modes. In the realistic, or shuffled, situation all rows would be reordered in a 
random way, but the overall order within the columns remains.
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The first, main, improvement is located in steps 5 and 6. We 
use hk eigenvectors to determine the number of correlated ran-
dom variables in cluster k instead of only the one eigenvector Vk 
belonging to the kth-largest eigenvalue. Furthermore, random 
matrix theory suggests a threshold and other criteria above which 
eigenvalues are significant, thus giving an estimate of the con-
tained clusters. Third, the above classification which allows over-
lapping clusters is meaningful.

Remark on step 1. One can also select different complemen-
tary criteria. For example, a measure that tells how significant an 
eigenvector that belongs to a potentially large significant eigen-
value departs from the Porter-Thomas law. Another criterion 
checks for any structure in the eigenvector even though the dis-
tribution of elements is Porter-Thomas. That this criterion is not 
redundant has been stated above. Furthermore, we have seen 
there that within the Marčenko–Pastur bound close to the right 
edge the eigenvectors are not necessarily informationless.

Remark on step 5. There are two pieces of information in the 
eigenvector matrix that help in this task:

 (a) We can use the hk significant elements determined above of 
each vector vki (of which there are hk − 1). Of great help is the 
fact that the relevant elements of all the to-be-found vki are 
located in the same index, i.e. row, of the relevant (=large) 
elements in Vk. This fact can be observed also in reality as 
ridges of high (colour) variance in the reshuffled version of 
the eigenvector matrices in Fig. 5. As shown in examples with 
more clusters, there is no ambiguity. So, in the end, the found 
vki arranged next to each other form a rectangle of size 
hk × (hk − 1) of high (colour) variance. The remainder is made 
up of only small elements.

 (b)  The number hk of relevant (not necessarily large!) elements in 
the regions A, B, E, F, etc. is equal to the number of significant 
vectors hk minus one! The best fit must be in accordance with 
this, otherwise the algorithm has to switch to step 6 again.

Remark on step 6. In other words, try to add an additional 
vector element to the set of relevant vector elements in Vk, and 
then see what happens. This implies that an additional vector *

kiv  
has to be selected as well as an additional relevant vector element 
in all other vki so far selected. (This of course includes the addi-
tional *

kiv ). So we use an increased rectangle A, B, etc. If the fit of 
all coded modes does not improve, then the best clustering will 
be reached. Furthermore, a “quality” value can be chosen that 
associates the best clustering with the smallest overlap between 
the clusters or anything else that is suitable for the application.

With the above procedure, the accidental clustering of the three 
time series in Fig. 1 does not happen. The fluctuating (red) time 
series in panel B is not included in the cluster with the other two.
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Note that in this field the widely used Kernighan-Lin algorithm 
(6) is the best example of a purely empirical clustering method that 
is justified by achieving satisfactory results in practice.

The Marčenko–Pastur theory for uncorrelated independent 
Gaussian noise in the Wishart matrix ensemble was developed for 
T > N in the large size limit, i.e. more realisations per random vari-
able than variables. It has been recognised only recently by Lehmann 
(5) that for T < N the theory persists essentially unchanged.

In particular, for T N  the limiting distribution is the 
Wigner semicircle law. The difference is a shift of variables and a 
delta-contribution of zero eigenvalues. With m = N/T the eigen-
value density can be expressed as

 21
( ) 4 (1 ) ( )(1 ),  ( , ),

2
m m m ml l d l l l l

l − +ρ = − + − + − ∈
π

 (15)

 2(1 ) / .m ml± = ±  (16)

This law is intuitively understandable since the number of non-
zero eigenvalues in the product of two iid random matrices is the 
rank given by min(T, N ). The non-zero eigenvalues resulting 
from the matrix products AT A or AAT with rectangular A made 
of independent random variables are even numerically identical 
up to a global normalisation factor. Eq. 15 contains a delta func-
tion that represents the zero eigenvalues. Since the eigenvalue 
density of a GOE random matrix is independent of the matrix size 
beyond ca. N, T > 50, the matrix products ATA and AAT are 
equivalent in the non-zero part of the spectrum.

Formula 15 is independent of N and T, and in this section we 
deal with T N . To minimise finite size effects in obtaining the 
Marčenko–Pastur density in the non-zero part of the spectrum, N 
has to be chosen quite large to allow T to be sufficiently large to 
achieve T N . Equation 15 can be reconstructed in numerical 
experiments; the spectra are shown in Fig. 12 with T = 3 and 
N = 900. The logarithmic y-scale allows the delta function at l = 0 
to be observable together with the non-zero part of the spec-
trum. In the linear plot, the shape of the Marčenko–Pastur law 
can be recognised, but it lies very far out as compared to the stan-
dard case with T ³ N. In the following, most examples are based 
on the choice m = N/T = 900/3 according to the example pre-
sented in Lehmann (5). Larger values of T are better calculated 
on a parallel machine or with a lot of time because many realisations 
are necessary to obtain a reasonable accuracy in the histograms.

4. Scenario 2: 
Uncorrelated Noise 
with More 
Variables than 
Measurements per 
Variable
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In respective literature, several fundamental results in random 
matrix theory are presented as candidates for a correspondence 
with some real world situation or some mathematical/statistical 
object that cannot easily be calculated. The same is the case with 
the above result by Lehmann. The point of view is simply carried 
over from applications in finance, where the Wishart matrix 
ensemble is considered to be sufficiently close to the respective 
correlation matrix. However,

The matrix of sample correlation coefficients is an inappro-
priate approximation of the Wishart matrix ensemble if T is 
small such that the true and realised mean and variance of 
iid noise differ significantly.

The statement above can be restated as follows: Assume x1 
(t),..., xN(t) to be iid and uncorrected random variables with zero 
mean and standard deviation s = 1 and realisation index t. Then, 
the matrix of sample correlation coefficients

 
( )( )( ) ( )

( 1)sd( )sd( )
t i i j j

ij
i j

t t
C

T

x x x x

x x

Σ − −
=

−
 (17)

with sample standard deviation sd(x) and sample mean ξ  is sig-
nificantly different from the Wishart ensemble

 T1
C MM

T
=  (18)
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Fig. 12. Spectrum averaged from 12,000 Wishart matrices AAT where A is N × T = 900 × 3 with uncorrelated Gaussian 
noise. In the limit N → ∞, the histogram approaches the shifted and rescaled GOE spectral density of 3 × 3 matrices, i.e. 
the Wigner semicircle (continuous line). The single data point at l = 0 marks the delta function in Eq. 15 representing 
many zero eigenvalues.
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according to the definition of M as in Eq. 2. This is simply 
due to the insufficient number of realisations to obtain a good 
estimate of mean and variance. The spectrum produced via the 
sample correlations for the same data as in Fig. 12 is shown in 
Fig. 13. The differences are peculiar:

 1. The approximate middle spectrum is shifted to a higher value 
of l = 300 → l = 450.

 2. The spectrum consists of two disconnected parts.

One can show, at least empirically by analysing the eigenvalues 
directly, that there is no eigenvalue falling into the point region 
between the two supports of the halves in this example.

How can this be explained? We first observe that for N T  
up to N = T the matrix rank of the sample correlation coefficient 
matrix is not full but exactly one less than the number of indepen-
dent rows or columns in the Wishart ensemble. Looking at the 
list of eigenvalues, we discover one numerically zero eigenvalue 
below the (empirical) Marčenko–Pastur spectrum, which is strictly 
positive definite. This is due to the Bessel correction for degrees 
of freedom; (11), appendix 8. This issue becomes noteworthy if 
the number of non-zero eigenvalues is very small, say around five. 
This is a realistic case in the analysis of functional groups.

We can also measure the rank against the number of random 
variable realisations T. See Table 1. The last three rows of the 
table correspond to Figs. 12, 14, and 15. These three spectra 
are calculated for fixed m = N/T = 900/3 = 1,200/4 = 1,500/5. 
The rank of the matrix is reflected in the number of independent 
rows and columns as the QR-decomposition used for these 
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Fig. 13. Non-zero part of the spectrum averaged from 12,000 sample correlation 
coefficient matrices with uncorrelated noise; N = 900, T = 3.
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calculations is numerically able to tell. The output is consistent 
with the observed eigenvalues. With increasing T and constant m 
the number of maxima increases, and we can expect the spectrum 
to converge against the analytic prediction for the Wishart ensem-
ble because the position of the spectrum wanders closer to the 
position of the analytic curve and the number of maxima 
increases.

So far, these are empirical facts that seem to be relevant. An 
intuitive explanation of the overall shift of the spectrum is that the 

Table 1 
(Colour online) With the transition T > N to T £ N, the rank of 
the sample correlation matrix drops earlier and persistently 
by one than the rank of the Wishart matrix

N T
Rank sample correlation 
matrix Rank 

1 TC MM
T

=

900 902 900 900

900 901 900 900

900 900 899 900

900 899 898 899

900 898 897 898

1,500  5  4  5

1,200  4  3  4

900  3  2  3
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Fig. 14. Non-zero part of the spectrum averaged from 6,000 sample correlation coefficient 
matrices with uncorrelated noise; N = 1,200, T = 4.
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normalisation by realised means and variances introduces correla-
tion, on the average, in all pairs of variables.

Whether micro-array experiments with many more genes/
proteins than expression values can benefit from the results of 
random matrix theory has to be seen. Since we have at best a few 
micro-arrays, each giving about ten expression values we get very 
few non-zero eigenvalues for comparison with the null-hypothe-
sis spectrum above. The nuisances of micro-array experiments 
and data analysis is an epic in itself. What can be claimed already 
is that no single experiment with two orders of magnitude more 
genes/proteins than experiments can contain the information to 
separate more than very few functional groups. And even if the 
data was perfect in the sense of no technical and biological vari-
ance and with only three to four functional groups that reveal 
themselves perfectly in significant up (and down?) of the genes/
proteins, which would be biologically quite a luxury, then the 
groups could be identified by eye in the data already.

The time series data from Subheading 2.2 can be used as a start-
ing point for making T smaller than N. The demonstration will 
use T = 100 keeping N = 200. This scenario is still by far not as 
extreme as with micro-array data. We now show the eigenvector 

5. Scenario 3: 
Correlated Noise 
with More 
Variables than 
Measurements  
per Variable
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Fig. 15. Non-zero part of the spectrum averaged from 15,000 sample correlation coef-
ficient matrices with uncorrelated noise; N = 1,500, T = 5. The data points are connected 
with lines to make the series of maxima more apparent.
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matrix of the correlation (similarity) matrix and of the dissimilarity 
matrix D = 1 − |C|, see Fig. 16 showing both from the same 
perspective. First note one eigenvector (1,...,1) / N  in the high-
est index of the dissimilarity matrix. The explanation is analogous 
to why the Laplacian also always has (1,..., 1) as an eigenvector, 
see Ref. (10). At this point, it also becomes apparent that for 
T < N the behaviour of the two matrices departs more significantly 
and the detailed analysis of the vectors is left open for future work.

Whether the equality T = N is a special barrier, at least in the 
Wishart ensemble, depends on the questions asked. We have seen 
in the previous section that sudden changes occur in certain mea-
sures like the matrix rank. The less information with decreasing T, 
the less eigenvalues and eigenvectors are able to capture the 
behaviour. With T N  the data can hardly be distinguished 
from randomness. We saw in Fig. 16 that the “disturbance” of 
randomness caused by correlations spreads out to more eigenvec-
tors than originally contained in the artificial clusters. This can 
also be observed with T = N and more so in the dissimilarity 
matrix: A closer look at the eigenvector matrices in the regions A, 
B, E, and F as defined in Fig. 11 reveals that the fluctuations 
decay slowly towards increasing column index. This is coinciden-
tal misinterpretation by the correlation estimator of a random 
walk as correlated with a cluster or vice versa. Neither are the 
edges of the Marčenko–Pastur spectrum hard. The dissimilarity 
matrix seems less prone to such false-positive and false-negative 
measurement because it disregards information due to the equal 
treatment of correlation and anti-correlation.

Fig. 16. (Colour online) Eigenvector matrices of the similarity (correlation) matrix C (left ) and the dissimilarity matrix 
1 − |C| (right ). With N = 200 and T = 100 the two correlated clusters cannot be easily recovered in the vectors anymore. 
The behaviour of both eigenvectors is rather different, too. In the right picture, the clusters are not even expressed 
symmetrically.
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In the previous sections, the problem of extracting clusters from 
correlation matrices was discussed. In micro-array experiments, it 
is common to deal with values of differential expressions

 red

green

logi

I
x

I

 
=  

 
 (19)

for each gene i. The values I are dye intensities on the array wafer 
that code the number of detected RNA/protein molecules. One 
of the two usually contains the “control experiment” as a refer-
ence base. Any deviation from zero indicates that the gene is dif-
ferentially expressed with respect to the reference value. This is 
the extremely idealised situation that is actually far from reality. 
Such is the point of view of random matrix theory, though. 
Likewise, we assume that the deviations around zero are linear 
and symmetric plus other idealisations.

It is common in practice to work only on a subset of approxi-
mately 300–500 genes that are expected to contain one or more 
functionally related genes that are “provoked” to express differ-
entially, i.e. to change expression levels, under certain possibly 
changing experimental conditions. The term “experiment” is, in 
this case, used on a more general level and can refer to different 
spots on the wafer or different wafers containing replicas or data 
from different biological conditions. In both cases, the types of 
systematic errors are different. Commonly, the number of experi-
ments under different experimental conditions is often restricted 
below ten, mostly due to financial limits. There are three scenar-
ios that can be considered:

 0. The true null-situation. All I, where colour ∈ {red, green}, 
contain the same experimental condition. Any extracted pat-
tern is some systematic error. This test is non-trivial since the 
different dyes behave differently. The house-keeping genes in 
particular, which inadvertently could also be regulated, must 
pass the test.

 1. We are given the values xi(t) where t = 1,..., T indexes the 
experiments with the same experimental condition, i.e. repli-
cas. One may assume that the values fluctuate randomly and 
independently around the same (expectation?) value due to 
technical or biological variance. This scenario can be consid-
ered as a measure to extract at least some possible systematic 
errors that are introduced technically or biologically and 
influence the measurement within the same experiment index 
t. This situation should correspond to the null-hypothesis of 
uncorrelated random variables. A grand unprovable theory of 

6. Genetic Profile 
Scenario of Micro-
array Data on 
Differential 
Expressions
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experimental physics states that in a chain of errors the result-
ing final error is most likely Gaussian. Therefore, we have a 
good chance that this is also the case here, and we get the 
scenario of Bessel-distributed random numbers if X, 
Y ~ N(0,s) and we deal with one of the above null-situations. 
The product of independent Gaussian random numbers is 
distributed according to the Bessel function of the first kind 
index zero.

 2. We are given the values xi(t), where t = 1,..., T indexes the 
experiment with different experimental condition, for exam-
ple, increasing cell stress or anything biologically sensible 
that is hoped to provoke expression changes in functional 
groups. One may assume that the expression values carry 
information if they are biologically expected to do so. The 
abstractional step from micro-arrays to realisations of  random 
variables is debatable in this case. We expect the differential 
expression xi(t) to have a functional relationship with t. If t 
indexes the experiment number with increasing cell stress 
level or any other meaningful condition, then subsequent 
values x(tj), x(tj+1) are highly dependent, probably monotonic 
and possibly even nearly linear in t if the cell stress is increased 
slowly. The latter would implicate that Dx(t) = const, leading 
to scenario 1 after normalisation to ( ) 0〈∆ 〉 =x t . This experi-
mental setting of “small” changes is likely to achieve the 
initial goal of controlled differential expression of the same 
set of functional groups best. Yet since this ideal situation is 
not to be expected, this second scenario is probably still a 
distinct case.

In the light of the previous section by considering scenario 2, 
it can be questioned in how far it might be sensible to normalise 
the variance and the means of the expressions for one gene with 
the sample values or any other value. In addition, it is debatable 
whether to take the increase of the differential expression level as 
the to-be-correlated variable or maybe xi(t) directly. As we have 
seen, the realised variance, mean and probably other statistical 
measures of interest, lose their meaning with extremely small 
number of realisations. The ideal genetic profiling draws no infor-
mation from additional experiments (e.g. increased cell stress) if 
the relation between xi(tj) and xi(tj+1) is (ideally) nearly linear. This 
poses a paradox since the micro-array business considers many 
experiments as beneficial. This line of reasoning however, leads to 
fundamental debates about the current view on micro-array 
experiments and the information they can contain as well as which 
statistical prerequisites/algorithms to use. The information con-
tained in the data set xi(tj = 1,..., T) is then essentially the slope 
independent of T. Thus, the information contained in the data set 
can be coded entirely into one matrix element.
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Random matrix theory only accounts for equal-time or 
“equal-experiment-index” correlation. This statement clearly 
points to the previous section on the reconstruction of modes 
while it is yet unclear how to deal with the situation of reduced 
matrix rank. The following statement may arise from the reason-
ing above:

Scenario 2 provides highly dependent realisations, possibly 
even linear, of variable xi(t) with index tj → tj+1. As opposed 
to time, the difference tj+1 − tj, e.g. coding cell stress level, is 
not meaningless. For such a highly systematic situation, the 
ordering sequence t1,..., tT cannot be disregarded. It would 
be inappropriate for any analysis to ignore this dependency, 
thus to stick to the random matrix point of view alone.

Nevertheless, for the null-situations depicted above, we can 
still perform some sand box simulations with the luxury of nearly 
infinite sand in order to be able to calculate densities for the sam-
ple correlation matrix ensemble. The spectral density for the null-
situation with six experiments is shown in Fig. 17 with unknown 
variances and means, i.e. we are dealing with the sample correla-
tion matrix ensemble. Note that this density is obtained from 
averaging over many histograms. If variances and means are 
known (somehow), we get the Wishart ensemble back. Figure 18 
shows an artificial experiment to create a possible scenario in 
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Fig. 17. Non-zero part of the spectrum averaged from 250,000 sample correlation coef-
ficient matrices with uncorrelated noise; N = 300, T = 6. The normalisation in this picture 
is to the total number of non-zero eigenvalues. Also shown is the scaled and shifted 
analytic prediction for the Wishart ensemble to allow comparison of the shapes.
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micro-array data analysis with differential expression of a subset 
of replicas with high correlation:

•	 T = 6 number of realisations per random variable
•	 N = 300 number of random variables
•	 	Nc = 1 number of independently correlated groups of 

variables
•	 N1 = 20 number of correlated variables
•	 	xn (t) Gaussian noise data set n where t = 1,..., T, 

n = 1,..., N.
•	 	Type	of	correlation	within	the	group:

 ( ) (1 ) ( )ξ ξ= − + Ξn nt c t c  (20)

X is a prefixed “parent” noise vector specific for the 
correlated group. c ∈ [0, 1] is a correlation coefficient. X 
is identical for all realisations!

•	 c = 0.9 (very high correlation)

The correlated cluster induces a bump of eigenvalues on the 
right of the null-hypothesis spectrum. Despite the extremely high 
correlation coefficient, the additional bump does not lie far out-
side the uncorrelated null-spectrum. We conclude from this that 
the correlation measurement, whether via Wishart or sample cor-
relation matrix ensemble, is rather insensitive. In practice, we 
would have only one single eigenvalue that has to be judged by its 
position with respect to the null-spectrum. And since it turned 
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Fig. 18. Non-zero part of the spectrum averaged from 50,000 sample correlation coefficient 
matrices; N = 300, T = 6. The first 20 variables are artificially correlated with each other 
with a coefficient c = 0.9 according to Eq. 25.20. The normalisation in this picture is to the 
total number of non-zero eigenvalues which is the only significant part of the spectrum.
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out to be a non-trivial extension of one correlated cluster 
Fig. 19 shows the following scenario with two independent and 
equally correlated clusters:

•	 	T = 6 number of realisations per random variable
•	 	N = 300 number of random variables
•	 	Nc = 2 number of independently correlated groups of 

variables
•	 	N1 = 20, N2 = 20 numbers of correlated variables in each 

group
•	 	xn (t) Gaussian noise data set n where t = 1,..., T.
•	 	Type	of	correlation	within	the	group	i:

 ( ) (1 ) ( )ξ ξ= − + Ξn n i i it c t c  (21)

Xi is a prefixed “parent” noise vector specific for group  
i and ci ∈ [0,1] is a correlation coefficient. X1 and X2 are 
identical for all realisations!

•	 	c1 = c2 = 0.9 (equal and very high correlation)

In spite of equal number of variables and magnitude of cor-
relation in both groups we get two clearly separable maxima in 
the distribution of eigenvalues that are pushed out of the null-
spectrum. The distance between the maxima is coincidence and 
likely not to be zero since the number of realisations is small. The 
cause of the separation is the mutual correlations between the 
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Fig. 19. Non-zero part of the spectrum averaged from 80,000 sample correlation 
coefficient matrices; N = 300, T = 6. The first 20 and the second 20 variables are artifi-
cially correlated clusters independently of each other with a coefficient c = 0.9 accord-
ing to Eq. 20. The normalisation in this picture is to the total number of non-zero 
eigenvalues which is the only significant part of the spectrum.
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members of the two groups which is very likely to be biased 
(highly non-zero) with such a small number of realisations.

Note again that the histograms are produced by averaging 
over many realisations, thus we cannot compare two curves in the 
application but can do a confidence test using the previously cal-
culated expected hypothesis density. In reality, we only have six 
eigenvalues that have to be judged by their likelihood of appear-
ance with respect to the informationless bulk of the spectrum. 
Furthermore, the data for the above toy examples is perfect in the 
sense that there are

 1. no outliers,
 2. no (systematic) measurement problems,
 3. no technical variance (usually also systematic).

Such errors have to be modelled and obtained from experiments. 
The null-hypothesis requires the a priori calculation of the null-
hypothesis density by averaging over many realisations. The data 
must contain the above error model in a parameterised fashion.

This is not a sort of nit-picking since the impact of some error 
or outlier within the series of only six experiments for a gene on 
the resulting six non-zero eigenvalues is very large. There are 
articles devoted entirely to error modelling and treatment in 
micro-array experiments and data analysis (2).

The creation of the null-hypothesis spectrum would have to 
include these problems under the assumption that they are 
stationary and reproducible during the experiment in a 
parameterisable fashion.

Note that in principle this is the same procedure as in the 
null-hypothesis in financial data analysis that creates uncorrelated 
time series with empirically plausible increments.

We have shown so far to what extent the information content in 
the eigenvalues and eigenvectors of a correlation matrix is redun-
dant as long as we have more measurements than variables. 
Spectral clustering ignores this redundancy which is justified as 
long as the data is perfect. Moreover, clustering methods that 
disregard the data and only consider the correlation matrix make 
errors due to ambiguity. In case of having far less measurements 
than variables, we have demonstrated how the correlation matrix 
spectrum differs to the Wishart ensemble, using either the sample 

7. Summary  
and Conclusion
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mean and covariance or the expectation values. In the scenario of 
micro-arrays, the application of correlation matrix analysis for the 
extraction of functional groups turns out to be questionable. It 
can serve, however, in the analysis and modelling of errors. We 
also conclude that the choice of the correlation coefficient as an 
estimator of “connection” between two genes/proteins is com-
pletely arbitrary and mostly the best guess. The indicator function 
that takes up values −1 and 1 depending on positive or negative 
co-expression is a priori not less suitable.

Despite being a theoretical contribution, we can give practical 
guidelines.

 1. The interpretation of a statistical analysis in the context of 
micro/protein-arrays requires error modelling and a null-
hypothesis test to quantify the information content of the 
results. Note that the random and informationless situation 
produces statistical patterns that can go for significant infor-
mation. The error model must include all effects that also 
produce patterns, in particular the systematic errors.

 2. Missing values as in the context of proteins do not bias the 
estimator only if the values miss in a random and independent 
fashion. This has to be controlled and judged beforehand. See 
Ref. (3) for a very comprehensive study. However, already 
without missing values as in typical micro-array scenarios the 
information content is overcritically low. The limit of mini-
mum information (or maximum percentage of missing val-
ues) can only be found in the context of the questions asked 
and precise error model by creating a suitable null-hypothesis 
test.

 3. The emergence of one clear functional group as the dream 
scenario in cluster analysis is likely to be visible in the direct 
inspection of correlation coefficients.

 4. The emergence of more than one clear functional group with 
similar strengths of co-expression as another dream scenario 
in cluster analysis requires principle component analysis, clus-
tering or other suitable methods to distinguish the clusters.

 5. A large eigenvalue that does not clearly stem from a sub-cluster 
of correlated genes but involves a large majority of all genes 
indicates a co-expression of all genes. This should evoke suspi-
cion towards the experiment.

 6. Only weak but very consistent and reproducible co-expression 
of a particular gene/protein may not show up in the direct 

8. Notes
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inspection of correlation coefficients, it may show up in a 
principle component analysis, and it is likely to show up best 
if using the above-mentioned indicator function.

 7. If the sign of the correlation coefficients for different experi-
ments with sufficiently slowly increasing, e.g. cell stress, is not 
consistent, then this should raise alarm about the experimen-
tal conditions. The cause for suddenly negated/reverted 
expression must then be explained biologically.

 8. In continuation of the above note: The disposal of weak cor-
relation coefficients is not appropriate since a small value is 
not a sign of low information content. This is possibly a 
debatable issue in Ref. (7) where this is practised.
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Chapter 26

Standards, Databases, and Modeling Tools  
in Systems Biology

Michael Kohl 

Abstract

Modeling is a means for integrating the results from Genomics, Transcriptomics, Proteomics, and 
Metabolomics experiments and for gaining insights into the interaction of the constituents of biological 
systems. However, sharing such large amounts of frequently heterogeneous and distributed experimental 
data needs both standard data formats and public repositories. Standardization and a public storage sys-
tem are also important for modeling due to the possibility of sharing models irrespective of the used 
software tools. Furthermore, rapid model development strongly benefits from available software pack-
ages that relieve the modeler of recurring tasks like numerical integration of rate equations or parameter 
estimation.

In this chapter, the most common standard formats used for model encoding and some of the major 
public databases in this scientific field are presented. The main features of currently available modeling 
software are discussed and proposals for the application of such tools are given.

Systems biology is an emerging field of study, which aims on 
quantitative analysis of the interdependencies of components 
within a biological system. Generally, such an approach needs 
acquisition of both temporal and spatial data obtained at high 
resolution. The rise of several “omics” research areas is the basis 
for acquiring such comprehensive data sets. Therefore, mod-
eling is a means for integrating the results from Genomics, 
Transcriptomics, Proteomics, and Metabolomics experiments and 
to gain insight into the interaction of the constituents of a 
biological system.

Data collection for large-scale modeling attempts usually sur-
passes a single laboratory’s forces. Therefore, a joint effort of dif-
ferent institutions is promising. However, sharing such large 

1. Introduction
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amounts of frequently heterogeneous and distributed information 
needs both standard data formats and public repositories. The 
efforts made for the standardization of DNA microarray experi-
ments yielded the Minimal Information About a Microarray 
Experiment (MIAME, (1)) and the MicroArray Gene Expression 
Markup Language (MAGE-ML (2)), which constituted a para-
digm that was applied to other biological techniques. In the field 
of Proteomics, for example, several standard formats are available 
like mzML (3) and mzIdentML (http://www.psidev.info/index.
php?q=node/319), see Subheading 3 of this volume. Public 
repositories like PRIDE (4) and others along with a data submis-
sion pipeline (5), which includes several converters into the stan-
dard data formats, were established in order to facilitate data 
sharing and rapid publication. Standardization is also important 
for ensuring compliance with quality standards. In the field of 
Proteomics, the Minimal Information About a Proteomics 
Experiment (MIAPE, (6)) addresses this issue and aims on speci-
fying the mandatory information needed for the interpretation of 
Proteomics surveys.

However, standardization and a public storage system are not 
only advantageous for the experimental part of systems biology, 
but also for modeling. Standardization enables storing of models 
irrespective of the used software tools.

Concerning this, several standard formats (e.g., Systems 
Biology Markup Language (SBML), http://sbml.org/Main_
Page (7–9); CellML, http://www.cellml.org/ (10–12); BioPAX 
(13); NeuroML (14)) have been designed for model encoding. 
The Minimum Information Requested in the Annotation of bio-
chemical Models (MIRIAM, (15)) is a set of guidelines dealing 
with annotation and curation of computational models in this 
field of research. Finally, public repositories exist in order to store 
and to access quantitative models, which target on the simulation 
of biological processes. In particular, these efforts strongly sup-
port a modular developing concept, where comprehensive mod-
els can be assembled from small reusable software modules.

Furthermore, a modular modeling design benefits from soft-
ware packages that relieve the modeler of recurring tasks like 
numerical integration of rate equations or parameter estimation. 
Such a modeling environment facilitates focusing on the imple-
mentation of the actual biological process.

The following paragraph deals with the XML-based formats 
SBML and CellML, probably the most common standard for-
mats used for model encoding, and presents some of the major 
public databases. Then, the mean features of currently available 
software packages are discussed. Finally, the “notes” paragraph 
deals with the adoption of SBML and CellML and gives some 
suggestion on typical application and the ease of use for the 
reviewed modeling software packages.
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This paragraph compares major features of CellML and SBML, 
the current standard model interchange languages used for the 
 sharing of biochemical models within the community (see Note 1).

SBML is a data format for encoding mathematical models that 
reproduce biological processes. Special focus is given on support-
ing the modeling of biochemical reaction networks, gene regula-
tion, metabolism, and cell signaling pathways.

SBML uses the terms “level” and “version” for denoting 
modifications of the format, where major releases are called levels. 
Versions are utilized to denote the minor modifications of SBML. 
SBML Level 2 Version 4 is the current (June 2010) final release 
of SBML. SBML is well supported within the systems biology 
community. On September first, 2009 the Web site of the SBML 
project listed 171 software tools that use SBML (http://sbml.
org/SBML_Software_Guide/SBML_Software_Matrix). 
Moreover and probably more important, there are hundreds of 
SBML-encoded models available from public repositories. This 
highlights the importance of a standard exchange format for shar-
ing and reusability of biological models.

There are several converters available for SBML including con-
version to CellML, to XPPAUT “.ode” files (see http://www.math.
pitt.edu/~bard/xpp/xpp.html), and to BioPAX (see Note 1).

In comparison with SBML, CellML is designed as a generic 
framework with a broader scope of application. CellML is capable 
of reproducing any kind of mathematical models and represents a 
viewpoint originating from engineering sciences. Consequently, 
the language was used not only for simulation of systems biology 
issues, but also for, e.g., multiscale models in the field of synthetic 
biology (16).

Like other standards, the development of a generic data format 
for systems biology is subject to continuous modification. This 
appraisal is therefore rather temporary and focuses on the main 
differences between the two languages.

There is difference concerning the encoding of biological 
information. SBML uses the annotation tag (<annotation>). In 
CellML, only the structure of the model and the mathematics 
applied is specified in the language elements. For all other rele-
vant information like annotations, CellML uses metadata for stor-
ing. The CellML language applies the Resource Description 

2. Requirements 
for the Exchange  
of Quantitative 
Biological Models

2.1. CellML and SBML: 
Standard Formats  
for the Annotation  
of Biological Models

2.1.1. The Systems Biology 
Markup Language (SBML)

2.1.2. CellML

2.1.3. Comparison  
of SBML and CellML  
(see Notes 2 and 3)
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Framework (RDF, http://www.w3.org/RDF/) for embedding 
metadata (e.g., references to model-related publications or to 
experimental data used for model calibration) in an arbitrary loca-
tion of the CellML document.

In comparison with SBML, CellML has less third-party 
support.

Currently, neither SBML nor CellML support models that 
apply partial differential equations (PDEs) (see Note 4).

The need for model reuse and modular assembly of already 
available submodels, which enables the creation of comprehen-
sive models, requires the definition of a basic quality standard 
for model encoding. Both MIRIAM and SBO address this issue 
and incorporate a semantic domain into the model encoding 
process.

MIRIAM (15, 17) provides a set of guidelines supporting stan-
dardized annotation and curation of models in the field of sys-
tems biology. MIRIAM consists of two parts. The first part of 
MIRIAM proposes a standard for reference correspondence. 
Here, among others both the relation of the model to a single 
reference description and encoding in a public, machine-readable 
 format is a prerequisite for MIRIAM compliance. MIRIAM 
 compliant models must also include all quantitative attributes 
(e.g., initial conditions and parameter values) in order to enable the 
reimplementation of the model in an adequate software environ-
ment. Furthermore, the output of the model must be in agreement 
with the results given in the reference description. The second part 
of MIRIAM relates each model component unambiguously to an 
external bioinformatics data resource by the use of Unique Resource 
Identifiers (URIs). For a comprehensive exemplification of the 
guidelines, please refer to the paper of Le Novere et al. (15).

The SBO (http://www.ebi.ac.uk/sbo/) (17, 18) comprises a set 
of controlled vocabularies (CVs) that organizes systems biology 
related terms in a hierarchical structure. Currently, the SBO con-
sists of six different vocabularies. For example, the branch denoted 
mathematical expressions classifies calculi used in biochemical 
modeling.

Important components of SBO entries are a stable unique 
identifier, a name, a definition, synonyms, one or several com-
ments, and in case of mathematical expressions an equation given 
in both the MathML (http://www.w3.org/Math/) notation and 
as graphical display.

Usage of the controlled vocabularies given by the SBO is an 
important prerequisite for browsing the public repositories of 
biochemical models in an efficient and comprehensive way. 

2.2. Minimum 
Information Requested 
in the Annotation of 
Biochemical Models 
(MIRIAM) and the 
Systems Biology 
Ontology (SBO)

2.2.1. MIRIAM

2.2.2. Systems Biology 
Ontology (SBO)
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Usage of SBO terms is helpful for both understanding and 
evaluating models because of the unambiguous way of model 
description.

This paragraph deals with some important databases for publicly 
available biochemical models. In particular, databases that pro-
vide SBML and CellML-encoded models are considered.

A main resource for annotated published SBML models is the 
BioModels database (http://www.ebi.ac.uk/biomodels-main/) 
(19). The SBML team contributes to the development of this 
database. Therefore, the default data format for storing models is 
SBML. However, the models can be downloaded in other for-
mats as well (CellML, XPPAUT “.ode” files, SciLab (http://
www.scilab.org/)). In the beginning of September, 2009, the 
database contained 231 curated and 198 noncurated models. 
Curated models in the BioModels database are MIRIAM compli-
ant. Furthermore, acceptance in the curated branch additionally 
requires publication of the model in a peer-reviewed scientific 
journal.

JWS online (http://jjj.biochem.sun.ac.za/index.html, (20)) 
is a curated database providing download of kinetic models in 
SBML. Additionally, JWS online includes a simulation tool, 
enabling both simulation and manipulation of the models hosted 
in the database directly within the Web browser. There is strong 
collaboration between the BioModels database and JWS online, 
including model exchange between both initiatives.

Within the Kyoto Encyclopedia of Genes and Genomes 
(KEGG, (21, 22)) resource, the information of various biological 
networks is stored in the KEGG PATHWAY database. KEGG 
pathways integrate the knowledge of several cellular processes like 
molecular interaction or processing of genetic information and 
consider both normal and perturbed cellular stages. Each path-
way can be regarded as a representation of a biological model. As 
a consequence, KEGG pathways can be encoded in SBML via the 
KEGG2SBML tool (http://sbml.org/Software/KEGG2SBML) 
and used for modeling purposes.

A large set of CellML-encoded models are available directly 
from the Website of the CellML project (http://models.cellml.
org/, (23)). This database covers a wide range of biological pro-
cesses, including biochemical processes, physiology, and synthetic 
biology.

There are several databases targeting on special scientific 
domains. The Database of Quantitative Cellular Signaling 
(DOQCS, http://doqcs.ncbs.res.in/) stores mathematical mod-
els of signaling pathways. However, the model description is given 
in the GENESIS scripting language. Usage is therefore limited to 
simulation with Kinetikit/GENESIS (http://www.ncbs.res.in/
index.php?option=com_content&task=view&id=304, (24)).

2.3. Systems Biology-
Related Databases
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ModelDB (http://senselab.med.yale.edu/modeldb/, (25)) 
stores computational models in the field of neurosciences.

The SigPath system (http://www.sigpath.org, (26)) stores 
data related to cell signaling pathways and networks both qualita-
tively and quantitatively. Furthermore, SigPath provides an inter-
esting alternative concept for the sharing of models and public 
management of quantitative data. Within SigPath, users can 
assemble quantitative models using quantitative data stored in a 
so-called information management systems. These models can 
then be exported in several formats, including SBML.

This paragraph deals with available software tools designed for 
the modeling of biochemical networks. Because the number of 
such software packages is growing, a selection was made, includ-
ing both relatively simple modeling tools and comprehensive 
modeling environments (Table 1). Simple tools may be adequate 
for small projects enabling a rapid and intuitive model develop-
ment, where more complex tasks require the usage of a sophisti-
cated modeling environment.

The given selection while intended to cover currently avail-
able software in this field is somewhat subjective and the reader 
should consider available literature (27) for further reading.

In the first part of this paragraph, several requirements fre-
quently involved in the modeling of biochemical networks are 
addressed. Then, basic features of the considered software pack-
ages are discussed. Special attention is given to features that are 
unique for a given software tool.

 1. Systems biology requires mathematical approaches for mod-
eling the dynamics of biological processes. Three major 
approaches may be differentiated. One of those approaches is 
frequently called “stochastic” and tries to simulate the behav-
ior of each existing molecule within the system. This enables 
the consideration of statistical variation. However, such a 
comprehensive technique leads to high computational costs 
especially when performing large-scale projects.

  Another approach is often denoted as “deterministic” and 
assumes that the stochastic variation is negligible due to the 
high amount of molecules in a certain cell compartment. 
Generally, deterministic models apply a set of ordinary or partial 
differential equations. Because analytical solutions are frequently 
not available or limited to specific conditions of the considered 
biological system, numerical algorithms are necessary for inte-
gration. Some software tools employ a “hybrid” strategy where 

3. Software 
Packages for 
Systems Biology

3.1. Basic 
Requirements for 
Modeling Biochemical 
Networks
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both stochastic and deterministic approaches are mixed even 
within a single model.

 2. A deterministic modeling scheme requires the implementa-
tion of numerical algorithms. However, numerical integra-
tion leads to discretization errors and the applied techniques 
vary with respect to runtime, stability, and robustness. 
Therefore, different biological models may need different 
numerical methods. A generic modeling tool benefits from 
the implementation of a multitude of such algorithms.

 3. A cellular system is very complex and often shows a behavior 
that is far from linearity. However, this complexity can be 
attributed to a rather small set of kinetic rate laws. Therefore, 
constructing the model can be eased when the software sup-
ports selection from a library of predefined rate equations.

 4. Eukaryotes are much larger than prokaryotes and exhibit a 
much higher degree of organization: Cellular space is divided 
in several compartments characterized by both different physi-
cochemical properties and biological processes. Considering 
the multicompartmental structure is critical for an advanced 
understanding of the eukaryotic cell’s functioning. Therefore, 
the reproduction of cellular compartments is an important 
feature for a comprehensive cellular modeling software.

 5. Effective sharing of models implicates the need for public 
repositories and usage of widely accepted standard formats 
for model encoding. Therefore, an ideal modeling environ-
ment supports import and export in standard formats and 
permits options for searching public repositories along with a 
download feature of selected models.

 6. Shared model development can be assisted from a Web-based 
software architecture or by the use of a client – server architecture, 
where simulation is carried out on a central server. This supports 
cooperation of researchers working at different locations.

 7. Complex biological models usually comprise a huge number 
of parameters, especially when aiming on a mechanistic math-
ematical description of biochemical processes. However, it is 
often difficult or even impossible to measure all of these 
parameters. Implementation of some kind of parameter esti-
mation is a crucial feature when calibrating such comprehen-
sive biological models. Furthermore, sensitivity analysis is an 
important tool for evaluating the impact of a specific param-
eter or the used initial values of the state variables on changes 
within the considered biological system. Such an analysis 
gives valuable insight whether or not a specific parameter or 
initial value is negligible. Additionally, the results of the sen-
sitivity analysis give useful decision guidance for scheduling of 
further measurement and the experimental design.
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 8. Biological systems frequently show sudden qualitative changes, 
which are caused by small changes of the parameter values. 
For example, such systems may oscillate or show some kind of 
switching or even chaotic behavior. The initial of a changing 
model dynamics in the parameter space is a so-called bifurca-
tion point. Bifurcation analysis searches for these bifurcation 
points and is an important means in order to achieve a better 
understanding of structurally unstable dynamical systems.

 9. In order to evaluate the modeling performance, several statis-
tical tests are needed for calculating the goodness of fit, a 
measure for the discrepancies between observed and simu-
lated values. Though a basic statistical analysis can be per-
formed using standard spread sheet programs (e.g., Excel, 
Microsoft Corp., Redmond, WA, USA) or, e.g., the statistics 
program STATISTICA (StatSoft Europe GmbH, Hamburg, 
Germany), the ability to perform statistics directly within the 
modeling software will greatly enhance usability. Because a 
single statistical criterion may be insufficient, several of these 
tests should be used for a sound modeling evaluation.

 10. Evaluation of simulation results is strongly simplified by 
graphical representation. Therefore, modeling tools need at 
least a basic plotting system.

 11. Larger biological systems comprise processes that run within 
time ranges differing in several orders of magnitude. 
Concurrent integration of very fast and very slow reactions is 
challenging. The ability to cope with this issue is a key feature 
for tools aiming on biological simulation.

We used a standard PC (Intel Pentium Dual Core, 2.5 GHz, 4 
GB RAM, Windows XP Professional, Service Pack 3) for installa-
tion of the discussed software. The installation processes went 
smoothly and quietly for all of the tools. All reviewed software 
tools are freely available, at least for noncommercial use (Table 1). 
However, they vary greatly regarding their complexity and the 
implemented features (Table 2).

For some of the tools (COPASI (28), Dizzy (29), JDesigner/
Jarnac (30, 31) and E-Cell (32–34)), source code is available 
(Table 1, see Note 8).

Each considered software implements both deterministic and 
stochastic algorithms for modeling interpretation. Furthermore, 
all programs provide at least two different numerical techniques 
for solving differential equations. Therefore, providing a set of 
different simulation techniques may be regarded as standard for 
modeling of biochemical networks.

Special feature of COPASI is a multitude of predefined rate 
equations. This facilitates the creation of models for the most 
common biological modeling applications.

3.2. Comparison  
of the Reviewed 
Modeling Tools
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Dizzy and Dynetica (35) are both rather slim solutions for 
modeling issues, providing the core functionality indispensible 
for the simulation of biochemical networks (see Note 5). Dynetica 
also includes a tool for graphical representation of biological pro-
cesses, which can be used for an intuitive creation of the models. 
Dizzy lacks this feature, but in exchange it supports modeling of 
spatial compartments, which is essential when considering large-
scale cellular models of eukaryotic cells.

Both JDesigner and Jarnac are modules of the Systems biol-
ogy workbench (SBW, http://sys-bio.org/). JDesigner enables 
visual assembly of biochemical models. Jarnac comprises both a 
scripting language for building models and a simulation engine. 
Jarnac can be used to run models designed within the JDesigner 
application. Therefore, in combination of both software tools, 
JDesigner can be regarded as frontend and Jarnac as backend (see 
Note 6).

Both CellWare (36, 37) and E-Cell/E-Cell IDE (http://
www.e-cell.org/ecell/, http://www.e-cell.org/ide/) provide good 
tradeoff between ease of use and considerable performance. 
Special feature of both applications is the support of distributed 
computing (see Note 7). Some differences between CellWare and 
E-Cell/E-Cell IDE may be addressed: CellWare offers direct con-
nection to the KEGG database. There is no possibility for a direct 
query of public model repositories from the E-Cell software. In 
contrast to CellWare, E-Cell includes better capabilities for sensi-
tivity analysis.

Only E-Cell and JDesigner/Jarnac support bifurcation 
 analysis. Users that are interested in studying the nonlinear behav-
ior of biological systems may benefit from this opportunity.

The most advanced program reviewed is Virtual Cell (38, 
39). The software is appropriate to model a wide range of bio-
logical tasks, e.g., reactions, membrane transport, and electrical 
potential. Virtual Cell integrates the complex geometries of cel-
lular compartments into the model. Virtual Cell is the only simu-
lator discussed in this chapter that is able to solve PDEs. PDEs 
are utilized in order to represent biological processes where con-
centrations within the compartment are heterogeneously distrib-
uted. Such gradients frequently arise in the vicinity of biological 
membranes, for example caused as a result of the activity of 
membrane-bound ion pumps. Virtual Cell features download 
models from the BioModels database, which offers a large 
resource for curated and annotated biological models. 
Furthermore, the software allows storage of models within a cen-
tralized repository, enabling collaborative work of researchers 
from different locations.
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 1. Although efforts were made for the conversion of SBML and 
CellML ((40); http://www.ebi.ac.uk/compneur-srv/sbml/
convertors/SBMLConvertors.html) currently, only transla-
tions of simple models are available. Therefore, if submission 
to public repositories is intended, at present the supported 
input and output formats is a crucial feature for choosing an 
adequate modeling software.

 2. CellML is characterized by relatively elevated complexity. 
Therefore, the usage of this interchange language requires an 
extended training period in comparison with SBML. The 
SBML development team put much effort on facilitating the 
development of SBML-encoded models. The libSBML library 
(41) liberates the software developer from the necessity to 
care about the adequate release of the language. Furthermore, 
libSBML supports model validation and MIRIAM compliant 
annotations. Several features of libSBML are accessible from 
a comfortable editor software, named SBMLeditor (42). 
Additionally, the SBMLeditor provides connection to the 
SBW, a software framework that supports access to several 
tools designed for quantitative systems biology. Therefore, 
the SBML protects its user from working with too much 
technical details of encoding. There is more time available for 
central issues concerning model development (e.g., determi-
nation of rate equations or constituents of the system).

 3. CellML provides a more generic modeling framework. 
However, enhanced flexibility leads to a more complex struc-
ture of this language in comparison with SBML. Scientists, 
who are interested in modeling at the interface of different 
scientific domains (e.g., systems and synthetic biology) may 
benefit from the flexibility of CellML. Researchers who are 
solely interested in systems biology may prefer SBML, which 
offers a more concise and focused structure.

 4. If a modeling task requires the application of PDEs, con-
straints arise for both selection of the adequate modeling 
software and the appropriate input or output format. 
Hopefully, in the future a linkage between CellML and 
FieldML (43) may allow encoding of PDE models. Therefore, 
this data format will become attractive for researchers who 
use this kind of models.

 5. For educational purposes or to familiarize oneself with basic 
modeling concepts a small tool like Dizzy or Dynetica seems 
preferable. Both tools are shipped with some examples that 
are adequate for introducing basic modeling concepts. 
Dynetica includes a graphical user interface. Such a graphical 

4. Notes
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representation of the model is more intuitive and straightfor-
ward in particular for inexperienced users in comparison with 
the pure textual way of model creation, which is used by 
Dizzy. However, “direct” encoding forces the studying of 
differential equations in detail, which results in thorough 
understanding of the basic concepts involved in systems biol-
ogy. CellWare has also an intuitive and well-structured user 
interface, which qualifies this tool for educational purposes.

 6. Users of JDesigner/Jarnac may benefit from the integration 
of these modules in the SBW. This framework includes a set 
of SBML translators, including Matlab, Fortran, and XPP 
translators. Therefore, interoperability of JDesigner and 
Jarnac is strongly increased. Furthermore, JDesigner and 
Jarnac can cooperate with other SBW modules in order to 
further analyze the model. Several tasks are addressed by such 
modules, e.g., frequency analysis, searching for oscillation 
and switching behavior (bifurcation analysis) or a module 
designed for the visualization of models in 3D.

 7. Several standard modeling tasks (e.g., parameter estimation 
or sensitivity analysis) require multiple runs of the models and 
frequently tie up a lot of computational resources. Therefore, 
both calibration and analysis of model behavior will benefit 
from the implementation of batch processing or distributed 
computing. CellWare and E-Cell seem to be the best choice 
if such features are indispensible.

 8. Special problems require special solutions. Though most soft-
ware environments are capable of modeling most features of 
biochemical networks, there are specific problems possible 
that require customization of the modeling system. Therefore, 
both well-documented open source software and/or a mod-
eling environment that allows the integration of plug-ins is 
sometimes very important in order to adapt existing software 
tools to new arising questions. All tools except for CellWare 
and Virtual Cell are open source.
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Chapter 27

Modeling of Cellular Processes: Methods, Data,  
and Requirements

Thomas Millat, Olaf Wolkenhauer, Ralf-Jörg Fischer, and Hubert Bahl 

Abstract

Systems biology is a comprehensive quantitative analysis how the components of a biological system 
interact over time which requires an interdisciplinary team of investigators. System-theoretic methods are 
applied to investigate the system’s behavior. Using known information about the considered system, a 
conceptual model is defined. It is transferred in a mathematical model that can be simulated (analytically 
or numerically) and analyzed using system-theoretic tools. Finally, simulation results are compared with 
experimental data. However, assumptions, approximations, and requirements to available experimental 
data are crucial ingredients of this systems biology workflow. Consequently, the modeling of cellular 
processes creates special demands on the design of experiments: the quality, the amount, and the com-
pleteness of data. The relation between models and data is discussed in this chapter. Thereby, we focus 
on the requirements on experimental data from the perspective of systems biology projects.

Systems biology is a rapidly growing interdisciplinary field of 
research that focuses on biological systems using system-theoretic 
approaches. It investigates the dynamics of complex interactions 
and networks in and between different levels of biological organi-
zation (1). The considered systems span all levels of biological 
organization from cellular compartments to populations of cells. 
Systems biology integrates the available biological knowledge and 
modeling approaches to understand the complexity of biological 
functions, the fundamental principles of biological construction, 
and the emergent properties of biological systems (2). Toward 
this end, it uses information about the molecular interactions of 
molecules, transcriptomic data, intracellular and extracellular 
concentrations/particle numbers of proteins, and structural infor-
mation. These data represent the temporal and spatial behavior of 
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the considered system. All this information is combined into a 
specific model. Its analysis and simulation helps unraveling 
unknown network connections, and to predict the behavior of 
the investigated system under conditions which were not experi-
mentally measured.

The field of systems biology can reflect upon a history of 
almost 100 years. Beginning with Lottka in 1925 (3), Volterra in 
1926 (4), and later Schrödinger in 1944 (5) this research area was 
initially called mathematical biology. The system-theoretic view 
was introduced by Mesarović (6), Haken (7), and Bertalanffy (8) 
in the late 1960s and the 1970s which eventually introduces the 
name “Systems Biology.” In the wake of sequencing and “omics” 
programs, the increasing amount of experimental data, the 
observed complexity, and ability to quantify cellular processes 
resulted in a strong stimulation for this field over the last decade.

In recent years, the growing interest in the modeling of cel-
lular systems leads to increasing requirements on experimental 
data to be suitable for systems biology projects. Hence, we want 
to discuss the demands on experiments, which experimenters 
should consider to provide the collaborating modeling groups 
with suitable data. Firstly, we discuss what a model is, what one 
can expect from a model and, very important, what one cannot 
expect. We then define what modeling means and the conse-
quences to experiments. This is followed by a section about math-
ematical approaches, which are used in systems biology. Thereby, 
we do not focus on their theoretical derivation but sketch the 
main ideas of the approaches. For more detailed introductions, 
we refer to the literature.

Cellular processes are of the greatest complexity. This complexity 
manifests itself in different features. Cellular systems consist of 
very large numbers of interacting components; the role and func-
tion of the components is often vaguely known and many of them 
have yet to be identified and characterized. Between the compo-
nents a multitude of processes exists by which they interact. Many 
of these interactions are highly nonlinear. Finally, biological sys-
tems consist of highly related organizational levels, e.g., transcrip-
tome, proteome, and metabolome, which to this day have been 
mostly considered in isolation. However, the increasing amount 
of data shows that one has to integrate these levels in order to 
understand the system’s behavior.

Owing to their complexity, we cannot make reliable predic-
tions about biological systems with intuition and data alone. It is 
necessary to create and apply mathematical/computational tools 
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which support us in our efforts (9). These tools must be able to 
deal with many variables, nonlinearities, hierarchies, functional and 
spatial organization as found in biology. Here, modeling and simu-
lation of biological systems open new opportunities to improve our 
knowledge using system-theoretic approaches (9, 10).

Nevertheless, every systems biology project starts with avail-
able biological knowledge and data. Using this information, 
models are established and subsequently analyzed and simulated. 
The results create the demand for new experiments to validate 
and refine the models or to test hypotheses emerging from the 
models. Thus, systems biology projects consist of repeated 
rounds of modeling, model analysis, and experiments, see Fig. 1. 
Additionally, system-theoretic methods can also support the 
experimentalist in experimental design. They provide informa-
tion about which and when components should be measured 
and which perturbation maximizes the amount of gathered 
information.

Fig. 1. The iterative process of modeling in systems biology. Meaningful models result 
from repeated cycles of modeling, model analysis, and experiments. As denoted in the 
figure, the cycles consist of some consecutive steps. In the following course of this 
chapter, we focus on conceptual models, mathematical models, and their simulation. 
Methods for parameter estimation and systems analysis are discussed briefly.
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The modeling of biological systems starts with the definition of a 
conceptual model. As we see in the following course, this is not as 
trivial as it sounds. In fact, it is a crucial step which already signifi-
cantly influences the success of the modeling project. To begin 
with, we have to define the term “model” because it is used with 
different meanings across different disciplines. We understand it 
as a representation of systems components and the processes 
influencing them. These processes could be interactions between 
components in the form of biochemical reactions or changes 
affecting the properties of components such as temperature varia-
tion. Considering the famous enzyme kinetic reaction (11, 12) in 
Fig. 2, the components are substrate S, enzyme E, enzyme–sub-
strate complex C, and product P. They interact via three bio-
chemical reactions. In the course of this biochemical reaction, the 
substrate is bound to the enzyme resulting in an intermediate 
complex. The complex can dissociate either into enzyme and sub-
strate or into product and enzyme.

One should be aware that even at this early stage already 
assumptions were made, which have consequences to the mathe-
matical representation and also the experimental setup generating 
experimental data. Thus, we assume that we can decompose the 
catalytic conversion into independent steps. In our example, the 
enzyme kinetic reaction is separated into three elementary reac-
tions (13, 14):

 1. Bimolecular association of substrate and enzyme.
 2. Unimolecular dissociation of the enzyme–substrate complex 

into substrate and enzyme.
 3. Unimolecular dissociation of the enzyme–substrate complex 

into product and enzyme.

It should be noted, that every individual step directly depends on 
and might be influenced by the considered biosystem under 
investigation. In our example, it is furthermore assumed that the 

3. Conceptual 
Models: The 
Relation Between 
Cellular 
Components and 
Cellular Processes

Fig. 2. Chemical equation of the enzyme-facilitated conversion of substrate S to product 
P. The formation of the enzyme–substrate complex C is assumed to be reversible, 
whereas the dissociation of C into the product is irreversible (11, 12). Every involved 
biochemical reaction is determined by a rate coefficient k which has to be estimated 
from experimental data.
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enzyme acts as an ideal catalyst which remains unchanged over 
the net reaction. Additionally, it is assumed that the enzyme can 
bind immediately to a new substrate molecule after it was 
released from the enzyme–substrate complex. We assume fur-
thermore that the product is moving very fast away from the 
enzyme or that a reaction between enzyme and product is very 
improbable. So we can neglect the reverse reaction between 
enzyme and product.

It is often useful to merge some reaction steps to reduce and 
simplify the model and obtained mathematical expressions. 
Commonly applied techniques include steady-state assumptions 
(11, 12) or power-law representations (15, 16).

A crucial step in establishing a model is to restrict the system. 
In the above considered enzyme kinetic reaction, we assumed an 
isolated system, where no additional processes occur that could 
also change the substrate, enzyme, or product concentration. 
Gene expression and enzyme degradation are, for instance, 
neglected.

Furthermore, we assumed spatial homogeneity for the envi-
ronment, leaving biochemical properties constant over the obser-
vation time. Contrary to this assumption is that physical parameters 
as pH value and temperature affect the kinetic properties. 
Therefore, we extend the enzyme kinetic reaction in Fig. 3 con-
sidering a pH-dependency (17).

As the example illustrates, a model may include different 
aspects. However, the more aspects are considered, the more 
complex the model will be. On the one hand, this complicates 
the later analysis and interpretation. On the other hand, it 
requires more information which has to be gathered in experi-
ments. Using our example of a pH-dependent enzyme kinetic 
reaction, this means that the experimentalist has to measure the 
cellular pH and the corresponding kinetic properties of the 
involved enzymes. As illustrated, every process which is signifi-
cant for the system’s behavior has to be considered in the model 
and should be supported by experimental data. Thus, the experi-
mental design should optimize the controllability of systems 
parameters and systems evolutions with respect to the demands 
of modeling. This depends upon a close collaboration between 
modeler and experimentalist even during the planning phase of 
experiments.

Current and future systems biology projects require the inte-
gration of biological levels, e.g., transcription, protein synthesis, 
and intracellular turnover of substrate or availability of cofactors. 
This data have to be complemented by different other aspects, 
like enzyme activities and regulatory effects like allosteric regula-
tion, or modifications (e.g., phosphorylation state). Generally, no 
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single lab has the portfolio to deliver such a diversity of data. That 
means different specialized labs are necessary to gather the data.

A proper incorporation of experimental data and measured 
parameters gained by different wet labs at different places requires a 
maximized identical experimental setup. Although this could be 
reached by the development of Standard Operation Procedures 
(SOPs), which should be an integral part of experiments and 
although many labs already established protocols, the measurement 
of comparable data using the same experimental setup is to this 
day more the exception rather than the rule.

We illustrate this requirement using the known temperate 
dependence of kinetic parameters as an example. From the sim-
ple Arrhenius equation (13, 14), it follows that kinetic parame-
ters may vary by a factor 2–3 if the temperature varies by 10°C 
(We note that the temperature dependence of enzyme activity is 
much more complex (11, 12).) Even if this sounds not as impor-
tant, in complex systems such differences can change the whole 
systems behavior. However, this simple example illustrates how 
important a common experimental design is for systems biology 
projects.

Fig. 3. pH-dependent enzyme kinetic reaction. The conceptual model, shown in the 
upper right corner, assumes that the enzyme activity is influenced by the hydrons 
bound to the enzyme and the enzyme–substrate complex, respectively. Only the enzyme 
with n bound hydrons converts the  substrate into the product (17). The association/
dissociation of hydrons is assumed to be very fast. Thus, they are determined by their 
dissociation constants K. Further models are discussed in (11). A typical bell-shapep 
pH-dependent limiting rate (solid line) is derived from the model. Its maximum value is 
determined by association and dissociation rates of the hydron and the intermediary 
complex.
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As discussed in previous sections, experimental data are crucial for 
systems biology. First of all, the information gathered is used to 
establish a conceptual model. However, data are also crucial for later 
work steps of the systems biology cycle (Fig. 1) where they are 
required for parameter estimation, model analysis, simulation, and 
prediction. The demands on the quality of data are different for 
these two phases of the workflow. To a first conceptual model, qual-
itative and uncertain data may be sufficient, but later steps require 
quantitative, complete, and significant experimental information.

Quantitative data are necessary for parameter estimation, com-
parison of numerical and experimental data (model validation), and 
to test new hypotheses that emerge from the model. A qualitative 
model analysis is also part of the systems biology cycle, but one 
cannot close the cycle using qualitative information alone.

Temporal complete data allow us to distinguish between 
 different dynamic behaviors and provides enough data points to 
estimate unknown model parameters. Fig. 4a and b show two 

4. Requirements 
on Data: 
Quantitative, 
Complete,  
and Significant 
Information  
is Crucial for 
Systems Biology

Fig. 4. Two examples of temporal incomplete data. In the upper plot (a), two models fit 
the experimental data measured during the initial phase. Alas, the models cannot be 
distinguished due to too short observation time. The lower plot (b) shows an oscillating 
biosystem, where the frequency cannot be uniquely estimated due to insufficient choice 
of time points to measure.
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 different situations where the measured data are insufficient to 
falsify different models.

Furthermore, data have to be structurally complete providing 
information about the time courses of considered cellular compo-
nents, as shown in Fig. 5. As previously discussed, we consider 
cellular systems as network of interacting and regulated compo-
nents. To validate the network structure and to estimate its 
parameters, we rely on time-resolved data of included compo-
nents. Otherwise, any plausible substructure may be applied with-
out validation. However, crucial components and measurement 
strategies can be identified from hypothetical conceptual models. 
Thus, we again emphasize the importance of a joint experimental 
design in systems biology projects.

Last but not least, data should be significant. Thereby, differ-
ent aspects affect the significance of data. First, experimental mea-
surements should be reproducible not only by a single, but also 
by other labs. This demand is strongly related to common SOPs 
and experimental setups. Secondly, experimental data should pro-
vide additional information about the accuracy of measurements. 
It is used to distinguish between different models and/or differ-
ent parameter sets as it is shown in Fig. 6. There, the model rep-
resented by a dashed-dotted line is falsified by the experimental 
data. However, the models shown as a gray solid line and a dashed 
line, respectively, are both supported by the shown data.

In the previous section, we discussed conceptual models repre-
senting the components and interactions of cellular systems. Such 
models present an overview about the ongoing processes. However, 
the prediction of dynamic behavior, steady states, etc. and finally 
the comparison with experimental data require a translation into 
mathematical model which can be simulated and analyzed using 
system-theoretic tools. Later in this section, we discuss briefly 
some commonly used methods for systems analysis. At this point, 

5. Mathematical 
Modeling: 
Approaches  
for Simulation  
and Analysis  
of Cellular 
Systems

Fig. 5. Structurally incomplete data. In a stimulus–response experiment, the intermedi-
ates were not measured. Thus, the system can be only represented as a black box 
model. Detailed information about time courses and regulations of the intermediates 
cannot be drawn from the model.
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we focus on the mathematical approaches to model cellular 
systems and their consequences for experiments. However, we 
give only a very sketchy introduction to this field. This topic fills 
whole lectures series and is thus beyond the scope of this chapter. 
For the interested reader, however, we refer to established text-
books where appropriate.

We should mention that there is no single unified approach to 
model biological systems. Instead, there are many different repre-
sentations with different assumptions and different applications. 
To choose the appropriate approach is a crucial step. The system 
under consideration, available data, and the question to answer 
has naturally a high impact on this decision. Furthermore, per-
sonal preference, available tools, computer costs, and measure-
ment errors play a role.

In the modeling of biochemical systems, two main classes are 
used over the last decades: kinetic equations (often called deter-
ministic or conventional approach) and stochastic approaches.

The conventional approach uses kinetic equations of motion to 
describe the changes in the system as consequence of, e.g., bio-
chemical reactions, transport processes or environmental changes. 
For an introduction to chemical kinetics we refer to (13, 14). 
A very detailed derivation, starting at microscopic, molecular 
properties is presented in (18). In its elementary representation, it 
is derived from microscopic properties of the reacting  molecules. 
Thus, this approach reflects the mechanistic details of the under-
lying biochemical reaction (13, 14, 18). This physical basis is the 

5.1. Kinetic Equations: 
The Conventional 
Approach Using 
Differential Equations

Fig. 6. Comparison of three different models and experimental data. The model repre-
sented as a dashed-dotted line does not fit the data points. The other models, shown by 
gray solid and dashed lines, reproduce the available experimental data within their 
uncertainty. Thus, we cannot conclude from the available time course which model is 
the correct one. We note that the distance to the data points is not a sufficient criterion 
to distinguish between models. Further information is required to elucidate the network 
structure.
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advantage of the approach. However, it makes strong assump-
tions concerning the stochastic nature of biochemical reactions 
and the environmental conditions. It is assumed that the statisti-
cal average or expectation value is an appropriate measure for the 
systems dynamics (18, 19). Fluctuations are assumed to be small 
in comparison to the average and do not cause new behavior. The 
first assumption is usually but not always fulfilled in systems with 
high numbers of particles. If the fluctuations cause new dynamic 
behavior is a non-trivial question which can often answered only 
by a systems analysis.

Finally, the considered system is described as a system of cou-
pled nonlinear differential equations (13, 14). In Fig. 7, the results 
of a numerical simulation are shown using the enzyme kinetic reac-
tion as example. Every component of this biochemical reaction is 
described by a differential equation which determines the corre-
sponding rate of change. 

Fig. 7. Numerical simulation plotted in semilogarithmic scales. Every component is 
described by a differential equation which determines the corresponding rate of change. 
We normalized the time against the time which is needed to establish a quasi-steady 
state due to the saturation of the enzyme. The concentrations are plotted as ratio of the 
initial substrate concentration.

Positive terms are related to processes producing the compo-
nent. Negative terms decreases it. The parameters k1, k2,  and k3 
have to be estimated from experimental data.
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If spatial aspects, e.g., diffusion, can be neglected, the system 
consists of ordinary differential equations (13–15). Biological 
compartments can be considered defining spatially isolated areas 
with specific reactions. Then, additional transport terms describe 
the flow of matter between the compartments (20, 21). The 
resulting differential equations determine the rate of change of 
the systems components. Conventional kinetics (13, 14, 18) 
requires a detailed knowledge of the mechanism and their prop-
erties of biochemical processes and assumes ideal (gaseous) sys-
tems which are often unknown and far away from cellular 
conditions. Hence, approaches were developed which either sim-
plify the system using approximations, e.g., rational reaction rate 
in enzyme kinetics (11, 12), or merging the systems variable into 
net-rates describing parts of the network, e.g., Power-laws (15, 
16) or S-systems (22).

If spatial aspects have to be considered, the system is repre-
sented by a set of coupled partial differential equations describing 
the spatial propagation and the chemical reactions, e.g., reaction–
diffusion equations (23, 24). Because of the complex geometry 
of cellular systems and increased mathematical demands, simplifi-
cations are often used that reduce the systems to ordinary differ-
ential equations, e.g., finite-elements methods (25–27).

For the analysis of coupled systems of differential equations, a 
wide range of well-established analytical and numerical tools was 
developed in mathematics, physics, and engineering covering differ-
ent aspects of dynamical systems theory (28–30). Some of the devel-
oped methods with special interest to systems biology we discuss 
briefly. They are often included in numerical tools for systems biol-
ogy which are introduced in the “Modeling” chapter of this book.

Sensitivity Analysis (31) investigates how sensitive the systems 
state is to changes in parameters, e.g., kinetic coefficients and 
enzyme concentrations. It is used to identify crucial steps in path-
ways which should be measured accurately. On the other hand, 
such steps are candidates for process optimization and medical 
applications. Metabolic control analysis (MCA) is commonly used 
to investigate the dependence of the steady state of metabolic 
pathways to systems parameters (32–34).

Robustness Analysis investigates the ability of a system to 
maintain its function against internal and external perturbations 
(35, 36). In biology, this concept is closely related to “stability” 
and “homoeostasis” (37).

Bifurcation Analysis studies qualitative changes of the behav-
ior of dynamical systems under parameter variation (38, 39). In 
biology, it is expected that, e.g., developmental processes as dif-
ferentiation or apoptosis are governed by multistable networks 
which show a switch-like behavior if the amount of related signal-
ing proteins exceed a critical value. At such critical points, the 
systems change their properties in a reversible or irreversible 
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manner (40). Also bacterial heterogeneity may be explained by 
multistability (41). Furthermore, bifurcations play an important 
role in phase transitions of biochemical networks.

Stability Analysis investigates the stability of steady states with 
respect to perturbations (42). The steady state is stable if the sys-
tem returns to it after a small perturbation (43). If the system 
moves to a neighbored steady state, the initial state was unstable 
or metastable. The stability of steady states can be analyzed by 
linearization around the fix point (28, 43) or by Lyapunov coef-
ficients (28, 44). It is closely related to bifurcation analysis.

Distinguishability (of states) investigates if two states of a 
 system can be distinguished on the basis of input/output experi-
ments (45).

Observability (of systems) analyzes if every two distinct states 
of the system are distinguishable (45). Unobservable systems 
have subsystems that have no influence on the output (46). The 
distinguishability (of states) and the observability (of systems) are 
concepts which can be used to optimize experiments for model 
validation/falsification, parameter identification, and testing 
model predictions.

Parameter estimation (47) is a procedure to determine the 
values of model parameters from experimental data. Starting from 
a randomly distributed set of parameters, the estimator varies the 
parameters in such a way that an optimum is reached. The 
obtained parameter set represents the best fit of the proposed 
model to the experimental data. There are different optimality 
criteria which can be applied. The best known one is the “Least 
Square Method” (Regression) (48) which minimizes the distance 
between experimental data points and a theoretical curve. A suc-
cessful parameter estimation requires a sufficient temporal (spa-
tial) and structural resolution of data. Additionally, the combination 
of measured system components makes a difference. Using the 
enzyme kinetic reaction as example, more accurate information is 
obtained from an experiment measuring substrate and enzyme–
substrate-complex than from the measurement of substrate and 
product. For model identification, some parameters should be 
known from experiments. These known parameters restrict the 
parameters of the still unknown parameters and may discriminate 
different model structures.

The above (incomplete) list of system-theoretic tools sum-
marizes a further advantage of the kinetic approach. The available 
tools are sophisticated and implemented in many numerical pack-
ages (see another chapter of this book).

The randomness of biochemical reactions and biological events 
can be taken into account using stochastic approaches. An intro-
duction to stochastic processes and their mathematical descrip-
tion can be found in (49–51). The fundamentals of the stochastic 
modeling were developed simultaneously to the kinetic approaches 

5.2. Stochastic 
Approaches: 
Fluctuations in 
Cellular Systems
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described above. Due to the mathematical complexity of stochastic 
approaches, in the past, only simple systems were considered. With 
increasing computer power, stochastic simulations became feasible 
for more complex systems. Stochastic approaches should be used if 
one expects that fluctuations are important. This is usually the case 
for systems with low molecule numbers, where the variance (as 
measure of the fluctuations) becomes comparable to the average 
or expectation value (52). In a stochastic representation the enzyme 
kinetic reaction is separated into three reaction channels Ri which 
results in a discrete change of molecule numbers.

Fig. 8. The trajectory from a single stochastic simulation in semilogarithmic scale. We 
normalized the time against the time to reach a quasi-steady state due to the saturation 
of the enzyme.

The occurence of a reaction is determined by a probability 
per time, which depends on the number of participating mole-
cules and kinetic parameters. In Fig. 8, a stochastic trajectory for 
this biochemical reaction is shown.

In systems with small numbers of components even the sto-
chastic and kinetic mean value may differ. In biological systems, 
some stochastic phenomena are caused by a combination of com-
plexity and nonlinearity. Stochastic resonances are used to amplify 
weak signals and to improve the processing of information  
(53, 54). The influence of fluctuations on the mean results also in 
changes in the sensitivity of signaling pathways. So, fluctuations 
can make a gradual response mechanism (using kinetic approaches) 
work like a threshold mechanism (55). Such behavior is called 
stochastic focusing. However, fluctuations may also decrease the 
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sensitivity which is called stochastic defocusing (56). In multistable 
systems, giant fluctuations can populate all existing stable states. 
This leads to a multimodal distribution of states (49). Such behav-
ior cannot be observed in a kinetic description. The occurrence of 
giant fluctuations is estimated from the escape time (49, 50). This 
stochastic switching may cause the development of subpopula-
tions in an initially homogeneous population (56, 57). Further 
phenomena are noise-induced oscillations and noise-induced mul-
tistability, but also the suppression of oscillations or multistability.

Different approaches were developed to simulate the effects 
of fluctuations. In the framework of master equations (49, 50), 
the system’s dynamics are described as discrete changes of the 
systems state. From the knowledge of possible states, transitions, 
and related transition probabilities per time (also called propensi-
ties) one can calculate the temporal evolution of the distribution 
of states. Because the master equation is a mesoscopic representa-
tion, the transition probabilities cannot be derived within this 
framework. Thus, they have to adopt from the kinetic theory. The 
master equation can be solved analytically only for some simple 
systems, which is why approximations like the Fokker-Planck 
equation (49, 50) have been developed.

The Langevin approach (49, 50) combines the kinetic 
approach with an additive stochastic force term, leading to a sto-
chastic differential equation (50, 58).

Recently, a hierarchical approach was developed which uses 
coupled moments of the distribution function to calculate the 
system dynamics. Interestingly, the expressions describing the 
moments can be derived from kinetic theory. The zero-order 
moment corresponds to the mean or expectation value. The first 
moment (variance) is determined by a drift or flux term. Further 
moments can be included to the hierarchy. In its Two-Moment-
Approximation (59, 60), the mean and the linearized variance are 
considered, only. Nevertheless, due to the coupling of both 
moments the consequences of fluctuations can be investigated as 
recently demonstrated on the example of the cell cycle (61).

Much progress has been made in the last decades to develop 
numerical methods that solve stochastic systems. However, the cost 
in computing power can still be quite high. Furthermore, such sys-
tem-theoretic approaches such as sensitivity analysis or bifurcation 
analysis are either not available or not well developed for stochastic 
systems. The estimation of parameter values from experimental data 
in combination with stochastic simulations is also unsolved.

In the 1970s, direct simulation methods were developed to 
simulate the Chemical Master Equation (CME). Using Monte 
Carlo methods, these simulations compute the time of the next 
reaction and which reaction will occur. Subsequently, the system’s 
state is changed according to the computed reaction. Repeating 
this procedure until a stop criterion is reached, a trajectory is 
obtained, see also Fig. 8. To get valuable information from such 
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stochastic simulations, one has to repeat the simulation many 
times to determine the distribution function. Subsequently, mean, 
variance, and further moments of the distribution function can be 
calculated. Hence, this approach is very cost intensive with respect 
to computing power. The results should be compared to the aver-
age of the kinetic approach and experimental data as shown in 
Fig. 9.

The most commonly applied algorithm to simulate biochemi-
cal reaction networks was developed by Gillespie (62). In its orig-
inal formulation, the algorithm considers every possible reaction. 
This can be very time-consuming, especially if reactions with dif-
ferent timescale are present in the system. Hence, the algorithm 
was improved using well-defined jumps, t-leap (63, 64), and 
K-leap (65), with respect to the systems time. Additionally, vary-
ing system’s volume or changes in the system’s temperature can 
be incorporated into the algorithm (66) as well as delays (67).

Scientists interested in systems consisting of many interacting 
parts dreamed for a time to have the opportunity to investigate 
and follow every single component in time and space (68). The 
rapid progress in computing power, especially in parallel comput-
ing and supercomputers, allows the investigation of more and 
more complex systems using such a detailed simulation. 
Nevertheless, the considered biological systems were restricted to 

5.3. Molecular 
Dynamics: The View 
Through the 
Computational 
Microscope

Fig. 9. Stochastic analysis of the enzyme kinetic reaction. The left figure shows a 
comparison between the stochastic mean over 50 simulation runs (solid lines) and the 
kinetic mean (dotted lines). The right figure shows a comparison of a single stochastic 
simulation for high molecule numbers (solid lines) and the kinetic mean (dotted line). In 
our example, stochastic mean and high particle number behavior are appropriately 
described by the kinetic mean. However, we emphasize that this conclusion cannot be 
generalized.
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well-defined subcellular compartments and/or small timescales. 
In the past, molecular dynamics (MD) simulations in biology 
mainly focused on structural, functional, and folding properties 
of proteins, see f.i. (69). Recent projects extend this method to 
biochemical reactions (70), e.g., ligand–receptor signaling (71) 
and the influence of spatial aspects (e.g., cellular architecture and 
diffusion) to signal transduction (72).

Toward this end, MD simulations compute the changes of 
every single component in the system, say atoms and molecules, 
with respect to position, momentum, and state (73). Starting 
from a known system configuration, the next configuration is cal-
culated from the forces resulting from the interactions of the sys-
tem components. Thus, such simulations require sophisticated 
methods in numeric computation and data handling (74–76). An 
introduction to the theoretical and numerical fundamentals of 
MD simulations can be found in (73–75). See Fig. 10.

Even if the approach of MD simulations seems to be deter-
ministic, it inherently contains stochastic features. First, the initial 
state of the system is randomly distributed. Thus, also MD simu-
lations have to be repeated to obtain meaningful data. Second, 
chemical reactions are incorporated in a probabilistic manner 
because of the uncertainty of quantum-mechanical events. Third, 
the approximate solution of the equation motion of the many 
particle system adds artificial noise to the considered biological 
system.

Fig. 10. Schematic drawing of a snapshot from a molecular dynamics (MD) simulation 
of a reversible bimolecular reaction. Every molecule is represented by its position and 
momentum. If two molecules collide with enough energy to reach the reaction cross-
section which is usually much smaller than the collision cross-section (dashed circles), 
they may bind to each other. Additionally, complexes can dissociate during a time step.
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The detailed information of MD simulations with respect to 
time, space, and state of the system allows a direct visualization 
and opens new perspectives for the understanding and represen-
tation of biological systems. Nevertheless, the very high comput-
ing costs restrict the range of applications. Statistical analyzes of 
the data from MD simulations provide trajectories like those from 
stochastic simulations, or means and variances which can be com-
pared to the results from differential equations.

System-theoretic tools are not available for MD simulations. 
Hence, some previous knowledge obtained usually from con-
ventional approaches is required. Parameters used in the simula-
tions have to be transferred from other approaches or 
measurements. Changes in the system conditions require new 
rounds of simulation.

The modeling of cellular systems is a major research activity 
related to systems biology. Different approaches, including con-
ventional kinetic equations or stochastic representations, are used 
to describe the considered system in a mathematical model. Once 
a set of equations has been established, system-theoretic tools are 
used to analyze and simulate the system’s behavior. These inves-
tigations may identify crucial components and biological pro-
cesses, unravel (so far unknown) regulatory structures, or discover 
optimization principles. Furthermore, model predictions enable 
the design of experiments that test hypotheses. This interplay 
between experiment and theory opens new opportunities for the 
life sciences.
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