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Foreword

Over the past decades, large amounts of biomedical data have become available, 
resulting in part from the “omics” revolution, that is, from the availability of high-
throughput methods for analyzing biological structures (e.g., DNA and protein 
sequencing), as well as for running experiments (e.g., microarray technology for 
analyzing gene expression). Other large (and ever expanding) datasets include bio-
medical literature, available through PubMed/MEDLINE and, increasingly, through 
publicly available archives of full-text articles, such as PubMedCentral. Large clini-
cal datasets extracted from electronic health records maintained by hospitals or the 
patient themselves are also available to researchers within the limits imposed by 
privacy regulations.

As is the case in other domains (e.g., fi nance or physics), data mining techniques 
have been developed or customized for exploiting the typically high-dimensional 
datasets of biomedicine. One prototypical example is the analysis and visualization 
of gene patterns in gene expression data, identifi ed through clustering techniques, 
whose dendrograms and heat maps have become ubiquitous in the biomedical 
literature.

The availability of such datasets and tools for exploiting them has fostered 
the development of data-driven research, as opposed to the traditional hypothesis-
driven research. Instead of collecting and analyzing data in an attempt to prove a 
hypothesis established beforehand, data-driven research focuses on the identifi ca-
tion of patterns in datasets. Such patterns (and possible deviations from) can then 
suggest hypotheses and support knowledge discovery.

Biomedical ontologies, terminologies, and knowledge bases are artifacts cre-
ated for representing biomedical entities (e.g., anatomical structures, genes), their 
names (e.g., basal ganglia, dystrophin), and knowledge about them (e.g., “the liver 
is contained in the abdominal cavity,” “cystic fi brosis is caused by a mutation of 
the CFTR gene located on chromosome 7”). Uses of biomedical ontologies and 
related artifacts include knowledge management, data integration, and decision 
support. More generally, biomedical ontologies represent a valuable source of sym-
bolic knowledge.

In several domains, the use of both symbolic knowledge and statistical knowl-
edge has improved the performance of applications. This is the case, for example, 
in natural language processing. In biomedicine, ontologies are used increasingly in 
conjunction with data mining techniques, supporting data aggregation and semantic 
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normalization, as well as providing a source of domain knowledge. Here again, the 
analysis of gene expression data provides a typical example. In the traditional ap-
proach to analyzing microarray data, ontologies such as the Gene Ontology were 
used to make biological sense of the gene clusters obtained. More recent algorithms 
take advantage of ontologies as a source of prior knowledge, allowing this knowl-
edge to infl uence the clustering process, together with the expression data.

The editors of this book have recognized the importance of combining data 
mining and ontologies for the analysis of biomedical datasets in applications, in-
cluding the prediction of functional annotations, the creation of biological net-
works, and biomedical text mining. This book presents a wide collection of such 
applications, along with related algorithms and ontologies. Several applications 
illustrating the benefi t of reasoning with biomedical ontologies are presented as 
well, making this book a rich resource for both computer scientists and biomedi-
cal researchers. The ontologist will see in this book the embodiment of biomedical 
ontology in action.

Olivier Bodenreider, Ph.D.
 National Library of Medicine

August 2009
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Preface

It has become almost a stereotype to start any biomedical data mining book with a 
statement related to the large amount of data generated in the last two decades as a 
motivation for the various solutions presented by the work in question. However, it 
is also important to note that the existing amount of biomedical data is still insuf-
fi cient when describing the complex phenomena of life. From a technical perspec-
tive, we are dealing with a moving target. While we are adding multiple data points 
in a hypothetical feature space we are substantially increasing its dimension and 
making the problem less tractable. We believe that the main characteristic of the 
current biomedical data is, in fact, its diversity. There are not only many types of 
sequencers, microarrays, and spectrographs, but also many medical tests and imag-
ing modalities that are used in studying life. All of these instruments produce huge 
amounts of very heterogeneous data. As a result, the real problem consists in inte-
grating all of these data sets in order to obtain a deeper understanding of the object 
of study. In the meantime, traditional approaches where each data set was studied 
in its “silo” have substantial limitations. In this context, the use of ontologies has 
emerged as a possible solution for bridging the gap between silos.

An ontology is a set of vocabulary terms whose meanings and relations with 
other terms are explicitly stated. These controlled vocabulary terms act as adaptors 
to mitigate and integrate the heterogeneous data. A growing number of ontologies 
are being built and used for annotating data in biomedical research. Ontologies are 
frequently used in numerous ways including connecting different databases, refi ned 
searching, interpreting experimental/clinical data, and inferring knowledge. 

The goal of this edited book is to introduce emerging developments and ap-
plications of bio-ontologies in data mining. The focus of this book is on the al-
gorithms and methodologies rather than on the application domains themselves. 
This book explores not only how ontologies are employed in conjunction with 
traditional algorithms, but also how they transform the algorithms themselves. In 
this book, we denote the algorithms transformed by including an ontology com-
ponent as ontological (e.g., ontological self-organizing maps). We tried to include 
examples of ontological algorithms as diversely as possible, covering description 
logic, probability, and fuzzy logic, hoping that interested researchers and gradu-
ate students will be able to fi nd viable solutions for their problems. This book 
also attempts to cover major data-mining approaches: unsupervised learning (e.g., 
clustering and self-organizing maps), classifi cation, and rule mining. However, we 
acknowledge that we left out many other related methods. Since this is a rapidly 
developing fi eld that encompasses a very wide range of research topics, it is diffi cult 
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for any individual to write a comprehensive monograph on this subject. We are 
fortunate to be able to assemble a team of experts, who are actively doing research 
in bio-ontologies in data mining, to write this book. 

Each chapter in this book is a self-contained review of a specifi c topic. Hence, 
a reader does not need to read through the chapters sequentially. However, readers 
not familiar with ontologies are suggested to read Chapter 1 fi rst. In addition, for a 
better understanding of the probabilistic and fuzzy methods (Chapters 3, 5, 6, 7, 8, 
and 10) a previous reading of Chapter 2 is also advised. Cross-references are placed 
among chapters that, although not vital for understanding, may increase reader’s 
awareness of the subject. Each chapter is designed to cover the following materials: 
the problem defi nition and a historical perspective; mathematical or computational 
formulation of the problem; computational methods and algorithms; performance 
results; and the strengths, pitfalls, challenges, and future research directions. 

A brief description of each chapter is given below.
Chapter 1 (Introduction to Ontologies) provides defi nition, classifi cation, and 

a historical perspective on ontologies. A review of some applications, tools, and a 
description of most used ontologies, GO and UMLS, are also included.

Chapter 2 (Ontological Similarity Measures) presents an introduction together 
with a historic perspective on object similarity. Various measures of ontology term 
similarity (information content, path based, depth based, etc.), together with most 
used object-similarity measures (linear order statistics, fuzzy measures, etc.) are 
described. Some of these measures are used in the approximate reasoning examples 
presented in the following chapters.

Chapter 3 (Clustering with Ontologies) introduces several relational clustering 
algorithms that act on dissimilarity matrices such as non-Euclidean relational fuzzy 
C-means and correlation cluster validity. An ontological version of self-organizing 
maps is also described. Examples of applications of these algorithms on some test 
data sets are also included.

Chapter 4 (Analyzing and Classifying Protein Family Data Using OWL 
Reasoning) describes a method for protein classifi cation that uses ontologies in a 
description logic framework. The approach is an example of emerging algorithms 
that combine database technology with description logic reasoning.

Chapter 5 (GO-based Gene Function and Network Characterization) describes 
a GO-based probabilistic framework for gene function inference and regulatory 
network characterization. Aside from using ontologies, the framework is also rel-
evant for its integration approach to heterogeneous data in general.

Chapter 6 (Mapping Genes to Biological Pathways Using Ontological Fuzzy 
Rule Systems) provides an introduction to ontological fuzzy rule systems. A brief 
introduction to fuzzy rule systems is included. An application of ontological fuzzy 
rule systems to mapping genes to biological pathways is also discussed.

Chapter 7 (Extracting Biological Knowledge by Fuzzy Association Rule Min-
ing) describes a fuzzy ontological extension of association rule mining, which is 
possibly the most popular data-mining algorithm. The algorithm is applied to ex-
tracting knowledge from multiple microarray data sources.

Chapter 8 (Data Summarization Using Ontologies) presents another ap-
proach to approximate reasoning using ontologies. The approach is used for creat-
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ing conceptual summaries using a connectivity clustering method based on term 
similarity. 

Chapter 9 (Reasoning over Anatomical Ontologies) presents an ample review 
of reasoning with ontologies in bioinformatics. An example of ontological reason-
ing applied to maize tassel is included. 

Chapter 10 (Ontology Application in Text Mining) presents an ontological 
extension of the well-known Swanson’s Undiscovered Public Knowledge method. 
Each document is represented as a graph (network) of ontology terms. A method 
for clustering scale-free networks nodes is also described.

We have selected these topics carefully so that the book would be useful to a 
broad readership, including students, postdoctoral fellows, professional practition-
ers, as well as bioinformatics/medical informatics experts. We expect that the book 
can be used as a textbook for upper undergraduate-level or beginning graduate-
level bioinformatics/medical informatics courses.

Mihail Popescu 
Assistant professor of medical informatics, 

University of Missouri

Dong Xu
Professor and chair, Department of Computer Science, 

University of Missouri
August 2009





1

C H A P T E R  1

Introduction to Ontologies
Andrew Gibson and Robert Stevens

There have been many attempts to provide an accurate and useful defi nition for the 
term ontology, but it remains diffi cult to converge on one that covers all of the mod-
ern uses of the term. So, when fi rst attempting to understand modern ontologies, a 
key thing to remember is to expect diversity and no simple answers. This chapter 
aims to give a broad overview of the different perspectives that give rise to the di-
versity of ontologies, with emphasis on the different problems to which ontologies 
have been applied in biomedicine.

1.1 Introduction

We say that we know things all the time. I know that this is a book chapter, and 
that chapters are part of books. I know that the book will contain other chapters, 
because I have never seen a book with only one chapter. I do know, though, that it 
is possible to have books without a chapter structure. I know that books are found 
in libraries and that they can be used to communicate teaching material.

I can say all of the things above without actually having to observe specifi c 
books, because I am able to make abstractions about the world. As we observe the 
world, we start to make generalizations that allow us to refer to types of things that 
we have observed. Perhaps what I wrote above seems obvious, but that is because 
we share a view of the world in which these concepts hold a common meaning. 
This shared view allows me to communicate without direct reference to any spe-
cifi c book, library, or teaching and learning process. I am also able to communicate 
these concepts effectively, because I know the terms with which to refer to the con-
cepts that you, the reader, and I, the writer, both use in the English language.

Collectively, concepts, how they are related, and their terms of reference form 
knowledge. Knowledge can be expressed in many ways, but usually in natural lan-
guage in the form of speech or text. Natural language is versatile and expressive, 
and these qualities often make it ambiguous, as there are many ways of communi-
cating the same knowledge. Sometimes there are many terms that have the same or 
similar meanings, and sometimes one term can have multiple meanings that need to 
be clarifi ed through the context of their use. Natural language is the standard form 
of communicating about biology.
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Ontologies are a way of representing knowledge in the age of modern comput-
ing [1]. In an ontology, a vocabulary of terms is combined with statements about 
the relationships among the entities to which the vocabulary refers. The ambigu-
ous structure of natural language is replaced by a structure from which the same 
meaning can be consistently accessed computationally. Ontologies are particularly 
useful for representing knowledge in domains in which specialist vocabularies exist 
as extensions to the common vocabulary of a language.

Modern biomedicine incorporates knowledge from a diverse set of fi elds, in-
cluding chemistry, physics, mathematics, engineering, informatics, statistics, and 
of course, biology and its various subdisciplines. Each one of these disciplines has 
a large amount of specialist knowledge. No one person can have the expertise to 
know it all, and so we turn to computers to make it easier to specify, integrate, and 
structure our knowledge with ontologies.

1.2 History of Ontologies in Biomedicine

In recent years, ontologies have become more visible within bioinformatics [1], and 
this often leads to the assumption that such knowledge representation is a recent 
development. In fact, there is a large corpus of knowledge-representation experi-
ence, especially in the medical domain, and much of it is still relevant today. In this 
section, we give an overview of the most prominent historical aspects of ontologies 
and the underlying developments in knowledge representation, with a specifi c focus 
on biomedicine.

1.2.1 The Philosophical Connection

Like biology, the word ontology is conventionally an uncountable noun that rep-
resents the fi eld of ontology. The term an ontology, using the indefi nite article and 
suggesting that more than one ontology exists, is a recent usage of the word that 
is now relatively common in informatics disciplines. This form has not entered 
mainstream language and is not yet recognized by most English dictionaries. Stan-
dard reference defi nitions refl ect this: “Ontology. Noun: Philosophy: The branch of 
metaphysics concerned with the nature of being” [2].

The philosophical fi eld of ontology can be traced back to the ancient Greek phi-
losophers [3], and it concerns the categorization of existence at a very fundamental 
and abstract level. As we will see, the process of building ontologies also involves 
categorization. The terminological connection between ontology and ontologies 
has produced a strong link between the specifi cation of knowledge-representation 
schemes for information systems and the philosophical exercise of partitioning 
existence.

1.2.2 Recent Defi nition in Computer Science

The modern use of the term ontology emerged in the early 1990s from research into 
the specifi cation of knowledge as a distinct component of knowledge-based systems 
in the fi eld of artifi cial intelligence (AI). Earlier attempts at applying AI techniques 
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in medicine can be found in expert systems in the 1970s and 1980s [4]. The idea of 
these systems was that a medical expert could feed information on a specifi c medi-
cal case into a computer programmed with detailed background medical knowledge 
and then receive advice from the computer on the most likely course of action. One 
major problem was that the specifi cation of expert knowledge for an AI system 
represents a signifi cant investment in time and effort, yet the knowledge was not 
specifi ed in a way that could be easily reused or connected across systems.

The requirement for explicit ontologies emerged from the conclusion that 
knowledge should be specifi ed independently from a specifi c AI application. In this 
way, knowledge of a domain could be explicitly stated and shared across different 
computer applications. The fi rst use of the term in the literature often is attributed 
to Thomas Gruber [5], who provides a description of ontologies as components 
of knowledge bases: “Vocabularies or representational terms—classes, relations, 
functions, object constants—with agreed-upon defi nitions, in the form of human 
readable text and machine enforceable, declarative constraints on their well formed 
use” [5].

This description by Gruber remains a good description of what constitutes an 
ontology in AI, although, as we will see, some of the requirements in this defi nition 
have been relaxed as the term has been reused in other domains. Gruber’s most-
cited article [6] goes on to abridge the description into the most commonly quoted 
concise defi nition of an ontology: “An ontology is an explicit specifi cation of a 
conceptualization.”

Outside of the context of this article, this defi nition is not very informative and 
assumes an understanding of the context and defi nition of both specifi cation and 
conceptualization. Many also fi nd this short defi nition too abstract, as it is unclear 
what someone means when he or she says, “I have built an ontology.” In many 
cases, it simply means an encoding of knowledge for computational purposes. Defi -
nition aside, what Gruber had identifi ed was a clear challenge for the engineering 
of AI applications. Interestingly, Gruber also denied the connection between ontol-
ogy in informatics and ontology in philosophy, though, in practice, the former is at 
least often informed by the latter.

1.2.3 Origins of Bio-Ontologies

The term ontology appears early on in the publication history of bioinformatics. 
The use of an ontology as a means to give a high-fi delity schema of the E. coli ge-
nome and metabolism was a primary motivation for its use in the EcoCyc database 
[7, 8]. Systems such as TAMBIS [9] also used an ontology as a schema (see Section 
1.6.6). Karp [10] advocated ontologies as means of addressing the severe heteroge-
neity of description in biology and bioinformatics and the ontology for molecular 
biology [11] was an early attempt in this direction. This early use of ontologies 
within bioinformatics was also driven from a computer-science perspective.

The widespread use of the term ontology in biomedicine really began in the 
2000, when a consortium of groups from three major model-organism databases 
announced the release of the Gene Ontology (GO) database [12]. Since then, GO 
has been highly successful and has prompted many more bio-ontologies to follow 
the aim of unifying the vocabularies of over 60 distinct domains of biology, such 
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as cell types, phenotypic and anatomical descriptions of various organisms, and 
biological sequence features. These vocabularies are all developed in coordination 
under the umbrella organization of the Open Biomedical Ontologies (OBO) Con-
sortium [13]. GO is discussed in more detail in Section 1.5.1.

This controlled-vocabulary form of ontology evolved independently of research 
from the idea of ontologies in the AI domain. As a result, there are differences in 
the way in which the two forms are developed, applied, and evaluated. Bio-ontolo-
gies have broadened the original meaning of ontology from Gruber’s description to 
cover knowledge artifacts that have the primary function of a controlled structured 
vocabulary or terminology. Most bio-ontologies are for the annotation of data and 
are largely intended for human interpretation, rather than computational inference 
[1], meaning that most of the effort goes into the consistent development of an 
agreed-upon terminology. Such ontologies do not necessarily have the “machine 
enforceable, declarative constraints” of Gruber’s description of the ontology that 
would be essential for an AI system.

1.2.4 Clinical and Medical Terminologies

The broadening of the meaning of ontology has resulted in the frequent and some-
times controversial inclusion of medical terminologies as ontologies. Medicine has 
had the problem of integrating and annotating data for centuries [1], and controlled 
vocabularies can be dated back to the 17th century in the London Bills of Mortality 
[60]. One of the major medical terminologies of today is the International Clas-
sifi cation of Diseases (ICD) [61], which is used to classify mortality statistics from 
around the world. The fi rst version of the ICD dates back to the 1880s, long before 
any computational challenges existed. The advancement and expansion of clini-
cal knowledge predates the challenges addressed by the OBO consortium by some 
time, but the principles were the same. As a result, a diverse set of terminologies 
were developed that describe particular aspects of medicine, including anatomy, 
physiology, diseases and disorders, symptoms, diagnostics, treatments, and pro-
tocols. Most of these have appeared over the last 30 years, as digital information 
systems have become more ubiquitous in healthcare environments. Unlike the OBO 
vocabularies, however, many medical terminologies have been developed without 
any coordination with other terminologies. The result is a lot of redundancy and 
inconsistency across vocabularies [14]. One of the major challenges in this fi eld 
today is the harmonization of terminologies [15].

1.2.5 Recent Advances in Computer Science

Through the 1990s, foundational research on ontologies in AI became more promi-
nent, and several different languages for expressing ontologies appeared, based on 
several different knowledge-representation paradigms [16]. In 2001, a vision for an 
extension to the Web—the Semantic Web—was laid out to capture computer-inter-
pretable data, as well as content for humans [17, 18]. Included in this vision was the 
need for an ontology language for the Web. A group was set up by the World Wide 
Web Consortium (W3C) that would build on and extend some of the earlier ontol-
ogy languages to produce an internationally recognized language standard. The 
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knowledge-representation paradigm chosen for this language was description logics 
(DL) [19]. The fi rst iteration of this standard—the Web Ontology Language (OWL) 
[20]—was offi cially released in 2004. Very recently, a second iteration (OWL2) was 
released to extend the original specifi cation with more features derived from experi-
ences in using OWL and advances in automated reasoning.

Today, OWL and the Resource Description Framework (RDF), another W3C 
Semantic Web standard, present a means to achieve integration and perform com-
putational inferencing over data. Of particular interest to biomedicine, the ability 
of Web ontologies to specify a global schema for data supports the challenge of 
data integration, which remains one of the primary challenges in biomedical infor-
matics. Also appealing to biomedicine is the idea that, given an axiomatically rich 
ontology describing a particular domain combined with a particular set of facts, a 
DL reasoner is capable of fi lling in important facts that may have been overlooked 
or omitted by a researcher, and it may even generate a totally new discovery or 
hypothesis [21].

1.3 Form and Function of Ontologies

This section aims to briefl y introduce some important distinctions in the content of 
ontologies. We make a distinction between the form and function of an ontology. 
In computer fi les, the various components of ontologies need to be specifi ed by a 
syntax, and this is their form. The function of an ontology depends on two aspects: 
the combination of ontology components used to express the encoded knowledge 
in the ontology, and the style of representation of the knowledge. Different ontolo-
gies have different goals, which in turn, require particular combinations of ontology 
components. The resulting function adds a layer of meaning onto the form that al-
lows it to be interpreted by humans and/or computers.

1.3.1  Basic Components of Ontologies

All ontologies have two necessary components: entities and relationships [22]. 
These are the main components that are necessarily expressed in the form of the 
ontology, with the relationships between the entities providing the structure for the 
ontology.

The entities that form the nodes of an ontology are most commonly referred to 
as concepts or classes. Less common terms for these are universals, kinds, types, or 
categories, although their use in the context of ontologies is discouraged because 
of connotations from other classifi cation systems. The relationships in an ontol-
ogy are most commonly known as properties, relations, or roles. They are also 
sometimes referred to as attributes, but this term has meaning in other knowledge-
representation systems, and it is discouraged. Relationships are used to make state-
ments that specify associations between entities in the ontology. In the form of the 
ontology, it is usually important that each of the entities and relationships have a 
unique identifi er.

Most generally, a combination of entities and relationships (nodes and edges) 
can be considered as a directed acyclic graph; however, the overall structure of an 
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ontology is usually presented as a hierarchy that is established by linking classes 
with relationships, going from more general to more specifi c. Every class in the 
hierarchy of an ontology will be related to at least one other class with one of 
these relationships. This structure provides some general root or top classes (e.g., 
cell) and some more specifi c classes that appear further down the hierarchy (e.g., 
tracheal epithelial cell). The relations used in the hierarchy are dependant on the 
function of the ontology. The most common hierarchy-forming relationship is the 
is a relationship (e.g., tracheal epithelial cell is an epithelial cell). Another common 
hierarchy-forming relationship is part of, and ontologies that only use part of in the 
hierarchy are referred to as partonomies. In biomedicine, partonomies are usually 
associated with ontologies of anatomical features, where a general node would be 
human body, with more specifi c classes, such as arm, hand, fi nger, and so on.

1.3.2 Components for Humans, Components for Computers

The form of the ontology exists primarily so that the components can be compu-
tationally identifi ed and processed. Ontologies, however, need to have some sort 
of meaning [23]. In addition to the core components, there are various additional 
components that can contribute to the function of an ontology.

First, to help understand what makes something understandable to a computer, 
consider the following comparison with programming languages. A precise syntax 
specifi cation allows the computer, through the use of a compiler program, to cor-
rectly interpret the intended function of the code. The syntax enables the program 
to be parsed and the components determined. The semantics of the language allow 
those components to be interpreted correctly by the compiler; that is, what the 
statements mean. As in programming, there are constructs available, which can be 
applied to entities in an ontology, that allow additional meaning to be structured 
in a way that the computer can interpret. In addition, a feature of good computer 
code will be in-line comments from the programmer. These are “commented out” 
and are ignored by the computer when the program is compiled, but are considered 
essential for the future interpretation of the code by a programmer.

Ontologies also need to make sense to humans, so that the meaning encoded 
in the ontology can be communicated. To the computer, the terms used to refer to 
classes mean nothing at all, and so they can be regarded as for human benefi t and 
reference. Sometimes this is not enough to guarantee human comprehension, and 
more components can be added that annotate entities to further illustrate their 
meaning and context, such as comments or defi nitions. These annotations are ex-
pressed in natural language, so they also have no meaning for the computer. Ontol-
ogies can also have metadata components associated with them, as it is important 
to understand who wrote the ontology, who made changes, and why.

State-of-the-art logic-based languages from the fi eld of AI provide powerful 
components for ontologies that add computational meaning (semantics) to encod-
ed knowledge [23]. These components build on the classes and relationships in an 
ontology to more explicitly state what is known in a computationally accessible 
way. Instead of a compiler, ontologies are interpreted by computers through the use 
of a reasoner [19]. The reasoner can be used to check that the asserted facts in the 
ontology do not contradict one another (the ontology is consistent), and it can use 
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the encoded meaning in the ontology to identify facts that were not explicitly stated 
in the original ontology (computational inferences). An ontology designer has to 
be familiar with the implications of applying these sorts of components if they are 
to make the most of computational reasoning, which requires some expertise and 
appreciation for the underlying logical principles.

1.3.3 Ontology Engineering

The function of an ontology always requires that the knowledge is expressed in 
a sensible way, whether that function is for humans to be able to understand the 
terminology of a domain or for computers to make inferences about a certain kind 
of data. The wider understanding of such stylistic ontology engineering as a general 
art is at an early stage, but most descriptions draw an analogy with software engi-
neering [24]. Where community development is carried out, it has been necessary to 
have clear guidelines and strategies for the naming of entities (see, for instance, the 
GO style guide at http://www.geneontology.org) [25]. Where logical formalisms are 
involved for computer interpretation of the ontology, raw expert knowledge some-
times needs to be processed into a representation of the knowledge that suits the 
particular language, as most have limitations on what sort of facts can be accurately 
expressed computationally. Ontologies are also infl uenced often by philosophical 
considerations, which can provide extra criteria for the way in which knowledge is 
encoded in an ontology. This introduction is not the place for a review of ontology-
building methodologies, but Corcho, et al., [16] provides a good summary of ap-
proaches. The experiences of the GO are also illuminating [25].

1.4 Encoding Ontologies

The process of ontology building includes many steps, from scoping to evaluation 
and publishing, but a central step is encoding the ontology itself. OWL and the 
OBO format are two key knowledge-representation styles that are relevant to this 
book. As it is crucial for the development and deployment of ontologies that effec-
tive tool support is also provided, we will also review aspects of the most prominent 
open-source tools.

1.4.1 The OBO Format and the OBO Consortium

Most of the bio-ontologies developed under the OBO consortium are developed and 
deployed in OBO format. The format has several primary aims, the most important 
being human readability and ease of parsing. Standard data formats, such as XML, 
were not designed to be read by humans, but in the bioinformatics domain, this 
is often deemed necessary. Also in bioinformatics, such fi les are commonly parsed 
with custom scripts and regular expressions. XML format would make this dif-
fi cult, even though parsers are automatically generated from XML schema. OBO 
format also has the stated aims of extensibility and minimal redundancy. The key 
structure in an OBO fi le is the stanza. These structures represent the components of 
the OBO fi le. Here is an example of a term stanza from the cell-type ontology:
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[Term]
id: CL:0000058
name: chondroblast
is _ a: CL:0000055 ! non-terminally differentiated cell
is _ a: CL:0000548 ! animal cell
relationship: develops _ from CL:0000134 ! mesenchymal cell
relationship: develops _ from CL:0000222 ! mesodermal cell

Each OBO term stanza begins with an identifi er tag that uniquely identifi es the 
term and a name for that term. Both of these are required tags for any stanza in 
the OBO format specifi cation. Following that are additional lines in the stanza that 
further specify the features of the term and relate the current term to other terms in 
the ontology through various relationships. The full specifi cation of the OBO syn-
tax is available from the Gene Ontology Web site (http://www.geneontology.org/).

One of the strongest points about OBO ontologies is their coordinated and 
community-driven approach. OBO ontologies produced by following the OBO 
consortium guidelines try to guarantee the uniqueness of terms across the ontolo-
gies. Each term is assigned a unique identifi er, and each ontology is assigned a 
unique namespace. Efforts to reduce the redundancy of terms across all of the on-
tologies are ongoing [13]. Identifi ers are guaranteed to persist over time, through a 
system of deprecation that manages changes in the ontology as knowledge evolves. 
This means that if a particular term is superseded, then that term will persist in the 
ontology, but will be fl agged as obsolete. The OBO process properly captures the 
notion of separation between the concept (class, category, or type) and the label or 
term used in its rendering. It would be possible to change glucose metabolic process 
to metabolism of glucose without changing the underlying conceptualization; thus 
in this case, the identifi er (GO:0006006) stays the same. Only when the underlying 
defi nition or conceptualization changes are new identifi ers introduced for existing 
concepts. Many ontologies operate naming conventions through the use of singular 
nouns for class names; use of all lower case or initial capitals; avoidance of acro-
nyms; avoidance of characters, such as -, /, !, and avoidance of with, of, and, and 
or.

Such stylistic conventions are a necessary parts of ontology construction; 
however, for concept labels, all the semantics or meaning is bound up within the 
natural-language string. As mentioned earlier in Section 1.3.2, this is less computa-
tionally accessible to a reasoner, although it is possible to extract some amount of 
meaning from consistently structured terms.

Recently, a lot of attention has been focussed on understanding how the state-
ments in OBO ontologies relate to OWL. A mapping has been produced, so that the 
OBO format can be considered as an OWL syntax [26, 27]. It is worth noting that 
each OBO term is (philosophically) considered to be a class, the instances of which 
are entities in the real world. As such, the mapping to OWL specifi es that OBO 
terms are equivalent to OWL classes (though an OWL class would not have the 
stricture of corresponding to a real-world entity, but to merely have instances).
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1.4.2 OBO-Edit—The Open Biomedical Ontologies Editor

The main editor used for OBO is OBO-Edit [28]. This is an open source tool, and 
it has been designed to support the construction and maintenance of bio-ontologies 
in the OBO format. OBO-Edit has evolved along with the format to match the 
needs of those building and maintaining OBO, and it has benefi ted from the direct 
feedback of the community of OBO developers.

The user interface of OBO-Edit features an ontology editor panel that contains 
hierarchies of both the classes, relations, and obsolete terms in the ontology, which 
can be browsed with simple navigation. The hierarchy of classes supports the use of 
multiple relationships to create the backbone of the hierarchy. For example, the re-
lation develops from can be used to create a visual step in the hierarchy, and where 
it is used, it will be indicated with a specifi c symbol. This is a convenient visual 
representation of the relationships in the ontology, and it helps with browsing.

The interface is also strongly oriented toward the tasks of search and annota-
tion. OBO, like GO, are large, and fi nding terms is essential for the task of an-
notating genes. Many classes include a natural-language defi nition, comments, 
synonyms, and cross-references to other databases, and features for editing these 
fi elds are prominent in the interface. While an OBO mapping to OWL is available, 
by contrast the OBO-Edit interface has limited support for the specifi cation of 
computer-interpretable ontology components.

1.4.3 OWL and RDF/XML

Web Ontology Language [20] is a state-of-the-art ontology language that includes 
a set of components that allow specifi c statements about classes and relations to be 
expressed in ontologies. These components have a well-defi ned (computer-inter-
pretable) semantics, and therefore, the function of OWL can be strongly oriented 
toward computer-based interpretation of ontologies. A subset of OWL has been 
specifi ed (OWL-DL) that includes only ontology statements that are interpretable 
by a DL reasoner. As described previously, this means the ontology can be checked 
for consistency, and computational inferences can be made from the asserted facts. 
OWL is fl exible, and it is possible to represent artifacts, such as controlled vocabu-
laries, complete with human-readable components, such as comments and annota-
tions. Another often-cited advantage of OWL is its interoperability, because it can 
also be used as a data-exchange format.

In its form, OWL can be encoded in a number of recognized syntaxes, the most 
common being RDF/XML. This format is not meant to be human readable, but the 
Manchester syntax has been designed to be more human readable to address this is-
sue [29]. As OWL is designed for the Web, any OWL ontology or component of an 
OWL ontology is assigned a Unique Resource Identifi er (URI). It is not possible to 
adequately describe the sorts of statements that OWL-DL supports in this chapter. 
To support this topic, we recommend working through the “pizza tutorial” that 
has been designed for this purpose, as real understanding comes through experi-
ence, rather than a brief explanation (see http://www.co-ode.org) [30].

In terms of development, it is important to identify the intended function of an 
OWL ontology. For ontologies that do not require much of the expressive power 
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of OWL, the main difference is in the tool support for this task. When, however, 
OWL ontology development starts to include many of the more specialized fea-
tures of OWL to make use of computational reasoning, then development starts 
to require more specialized developers who understand both the semantics of the 
language and the knowledge from the domain that they are encoding. When medi-
cal expert systems were being developed, a person in this role was known as a 
knowledge engineer, a role which is also relevant today. Community maintenance 
of a highly expressive ontology is more challenging than community development 
of controlled vocabularies, as the community has to both understand and agree on 
the logical meaning, as well as on the terms and natural-language defi nitions being 
used. In this sense, OWL ontology development has no clear community of practice 
in biomedicine, as the OBO community does.

1.4.4 Protégé—An OWL Ontology Editor

There are a number of editors and browsers available for OWL ontologies. Here, 
we focus on the Protégé ontology editor, as it is freely available, open source, and 
the focus of important OWL tutorial material.

OWL ontologies can become very large and complicated knowledge represen-
tations. As OWL became the de facto standard for ontology representation on 
the Web, the Protégé OWL ontology editor was adapted from earlier knowledge-
representation languages to provide support for the development of such ontolo-
gies. The focus in development has been to provide the user with access to all of the 
components of OWL that make it possible to specify computationally interpretable 
ontologies. The user interface focuses heavily on the specifi cation of such OWL 
components. The user will benefi t most from this if he or she has or expects to 
gain a good working knowledge of the implications of the logical statements made 
in the ontology. Of course, the user does not have to use all of the expressivity of 
OWL, and the Protégé interface is also well suited to the development of simpler 
class hierarchies. The interface does not cater to the specifi c needs of any particular 
subcommunity of ontology developers; however, the most recent implementation 
of Protégé (Protégé 4—http://protege.stanford.edu) features a fully customizable 
interface that can be tailored to the preferences of the user and that is also designed 
so that plug-in modules can be developed easily for specifi c needs. Protégé 4 also 
allows OBO ontologies to be opened and saved directly, and it supports a number 
of other syntaxes. Importantly, recent versions of Protégé include fully integrated 
access to OWL DL reasoners, which means users can now easily benefi t from com-
putational inference.

1.5 Spotlight on GO and UMLS

Within the domain of biology and medicine, the two resources of GO and UMLS 
have arguably had the greatest impact [31]. As an introduction to where they are 
referenced in the other chapters in this book, we put a spotlight on the key aspects 
of these resources.
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1.5.1 The Gene Ontology

At the time of its conception, the need for GO was powerful and straightforward: 
different molecular-biology databases were using different terms to describe im-
portant information about gene products. This heterogeneity was a barrier to the 
integration of the data held in these databases. The desire for such integration was 
driven by the advent of the fi rst model organism genome sequences, which provided 
the possibility of performing large-scale comparative genomic studies. GO was rev-
olutionary within bioinformatics because it provided a controlled vocabulary that 
could be used to annotate database entries. After a signifi cant amount of investment 
and success, GO is now widely used. The usage of GO has expanded since its use 
for the three original genome database members of the consortium, and it has now 
been adopted by over 40 species-specifi c databases. Of particular note is the Gene 
Ontology Annotation (GOA) Project, which aims to ensure widespread annotation 
of UniProtKB entries with GO annotations [32]. This resource currently contains 
over 32 million GO annotations to more than 4.3 million proteins, through a com-
bination of manual and automatic annotation methods.

GO is actually a set of three distinct vocabularies containing terms that describe 
three important aspects of gene products. The molecular function vocabulary in-
cludes terms that are used to describe the various elemental activities of a gene 
product. The biological process vocabulary includes terms that are used to describe 
the broader biological processes in which gene products can be involved and that 
are usually achieved through a combination of molecular functions. Finally, the 
cellular component vocabulary contains terms that describe the various locations 
in a cell with which gene products may be associated. For example, a gene product 
that acts as a transcription factor involved in cell cycle regulation may be annotated 
with the molecular functions of DNA binding and transcription factor activity, the 
biological processes of transcription and G1/S transition of mitotic cell cycle, and 
the cellular location of nucleus. In this case, these terms are independent of species, 
and so gene products annotated with these terms could be extracted from many 
different species-specifi c databases to facilitate comparative analysis in an investi-
gation into cell cycle regulation. GO does contain terms that are not applicable to 
all species, but these are derived from the need for terms that describe aspects that 
are particular to some organisms; for example, no human gene products would be 
annotated with cell wall.

The process of annotating a gene product is the specifi cation of an assertion 
about that gene product. Because of this, GO annotations cannot be made with-
out some sort of evidence as to the source of the assertion. For this, GO also has 
evidence codes that can be associated with any annotation. There are two broad 
categories of evidence codes that distinguish between whether the annotation was 
made based on evidence that was derived from direct experimentation, such as a 
laboratory assay, or whether it was from indirect evidence, such as a computational 
experiment or a statement by an author in which the evidence is unclear. Annota-
tions should always include citations of their sources. When annotations are being 
used for data mining, the type of evidence can be an important discriminatory 
factor.
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As of March 2009, the GO Web site states that GO includes more than 16,000 
biological process terms, over 2,300 cellular component terms, and over 8,500 
molecular function terms. The curation (i.e., term validation) process means that 
almost all of these terms have a human-readable defi nition, which is important for 
getting more accurate annotations from the process. These terms may also have 
other relevant information, such as synonymous terms and cross references to oth-
er databases.

As the number of databases and data from different species and biological 
domains increases, so does the demand for more specifi c terms with which gene 
products can be annotated. The GO consortium organizes interest groups for spe-
cifi c domains that are intended to extend and improve the terms in the ontology. 
The terms in the ontologies are curated by a dedicated team, but requests for modi-
fi cations and improvements can be requested by anybody, and so there is a strong 
sense of community development. The style of terms in the gene ontology is highly 
consistent [33]. Nearly all of the terms in the GO biological process to do with me-
tabolism of chemicals follow the structure “<chemical> metabolism | biosynthesis 
| catabolism.” Such a structure aids both the readability and the computational 
manipulation of the set of labels in the ontology [33, 34].

In data mining, GO is now widely used in a variety of ways to provide a func-
tional perspective on the analysis of molecular biological data. The analysis of 
microarray results through analyzing the over-representation of GO terms within 
the differentially represented genes (e.g., [35, 36]) is a common usage. Other im-
portant examples include the functional interpretation of gene expression data and 
the prediction of gene function through similarity. The controlled vocabulary speci-
fi ed by GO also has useful applications in text mining. Specifi c examples of these 
and other uses are detailed in Chapters 5, 6, and 7.

1.5.2 The Unifi ed Medical Language System

As mentioned previously, many biomedical vocabularies have evolved independently 
and have had virtually no coordinated development. This has led to much overlap 
and incompatibility between them, and integrating them is a signifi cant challenge. 
The Unifi ed Medical Language System (UMLS) addresses this challenge, and has 
been a repository of biomedical vocabularies developed by the U.S. National Li-
brary of Medicine for over 20 years [37, 38]. UMLS comprises three knowledge 
sources: the UMLS Metathesaurus, the Semantic Network, and the SPECIALIST 
Lexicon. Together, they seek to provide a set of resources that can aid in the analy-
sis of text in the biomedical domain, from health records to research papers. By 
coordinating a wide range of vocabularies with lexical information, UMLS seeks to 
provide a language-oriented knowledge resource.

The Metathesaurus integrates over 100 vocabularies from a diverse set of bi-
omedical fi elds, including diagnoses, procedures, clinical observations, signs and 
symptoms, drugs, diseases, anatomy, and genes. Notable resources include SNOM-
ed-CT, GO, MeSH, NCI Thesaurus, OMIM, HL7, and ICD. The Metathesaurus is 
a set of biomedical and health-related concepts that are referred to by this diverse 
set of vocabularies, using different terms. A UMLS concept is something in bio-
medicine that has common meaning [39]. UMLS does not seek to develop its own 
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ontology that covers the domain of biomedicine, but instead provides a mapping 
between existing ontologies and terminologies. The result is an extensive set of 
more than 1 million concepts and 4 million terms for those concepts.

Each concept in the Metathesaurus is associated with a number of synonymous 
terms collected from the integrated vocabularies and has its own concept identifi er 
that is unique in the Metathesaurus. The UMLS has a system for specifying infor-
mation about the terms that it integrates, which provides other identifi ers for atoms 
(for each term from each vocabulary), strings (for the precise lexical structure of a 
term, such as the part of speech, singular, and plural forms of a term), and terms 
(for integrating lexical variants of a term, such as haemoglobin and hemoglobin). 
Concepts integrate terms, strings, and atoms, so that as much of the information 
about the original terminology is preserved as possible. The SPECIALIST Lexicon 
stores more information on parts of speech and spelling variants for terms within 
UMLS, as well as common English words and other terminology found within 
medical literature.

Concepts in the Metathesaurus are linked to each other by relationships that 
either have been generated from the source vocabularies or have been specifi ed dur-
ing curation. Every concept in the Metathesaurus is also linked to the third major 
component of UMLS—the Semantic Network. This is essentially a general ontol-
ogy for biomedicine that contains 135 semantic, hierarchically organized types and 
54 types of relationships that can exist between these types [40]. Every concept in 
the Metathesaurus is assigned at least one semantic type.

As the UMLS is an integration of knowledge from many different resources, 
it inherits the gaps and shortcomings of the vocabularies that it integrates. This 
has not, however, prevented the extensive application of the UMLS, in particular, 
within text mining [41]. The Metathesaurus, Semantic Network, and SPECIAL-
IST Lexicon together form a powerful set of resources for manipulating text. For 
example, there are several programs available within UMLS for marking up text, 
such as abstracts, with terms found from within UMLS (MetaMap, a tool for pro-
viding spelling variants for terms found within a text that facilitates parsing (lvg)), 
and customizing UMLS to provide the vocabularies needed for a particular task 
(MetamorphoSys). There are many examples of UMLS being used in text mining 
within bioinformatics. Some examples are the annotation of enzyme classes [42], 
the study of single nucleotide polymorphisms [43], and the annotation of transcrip-
tion factors [44].

1.6 Types and Examples of Ontologies

In this chapter, we have looked at the historical development of ontologies, their 
components, representations, and engineering. Their uses have been illustrated 
along the way, but in this section, we will take a longer look at the different types of 
knowledge artifacts that are referred to as ontologies. Ideally, it would be simple to 
accurately classify the types of ontologies featured in this section. It can be surpris-
ing that in a fi eld that is concerned with the classifi cation of things, that there is no 
agreed-upon classifi cation of ontologies themselves, even though there are clear dif-
ferences. Part of the reason for this is simply a lack of a suffi ciently rich vocabulary 
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for talking about ontologies. There are, however, some broad classifi cations of on-
tologies that have diverse uses, and any one ontology or ontologylike artifact can 
fall into one or more of the categories described below. This list is not exhaustive, 
but the most prominent examples are highlighted.

1.6.1 Upper Ontologies

Upper ontologies are often referred to as top ontologies or foundational ontologies. 
They strongly refl ect the philosophical roots of ontological classifi cation. They do 
not cover any specifi c domain or application, and instead make very broad distinc-
tions about existence. An upper ontology would allow a distinction like continuant 
(things that exist, such as objects) versus occurrent (things that happen, such as 
processes), and hence, provide a way of being more specifi c about the fundamental 
differences between the two classes. By functioning in this way, upper ontologies 
have been proposed as a tool to conceptually unify ontologies that cover a number 
of different, more specifi c domains.

Examples of prominent upper ontologies include: The Basic Formal Ontol-
ogy (BFO) [45], the General Formal Ontology (GFO) [46], the Suggested Upper 
Merged Ontology (SUMO) [47], and the Descriptive Ontology for Linguistic and 
Cognitive Engineering (DOLCE) [48]. One of the reasons for this diversity and one 
of the drawbacks of upper ontologies is that each one represents a particular world 
view derived from a particular branch of philosophical thinking. While the philo-
sophical branch of ontology is a few thousand years old, there are plenty of world 
views that have not been resolved in that time, and are unlikely to be resolved in 
the near future.

One of the major claims of upper ontologies is that their use leads to better 
ontological modeling; that is, the knowledge in the ontology is more consistently 
represented with respect to the distinctions that characterize entities. While under-
standing how to make fundamental distinctions can be benefi cial, there is no way 
to measure the ontological consistency of the conceptual modeling in a particular 
ontology, and so the advantage is unproven. The distinctions in upper ontologies 
are diffi cult things to master, and there are a lot of notions that are unfamiliar to 
a domain expert attempting to build an ontology. A biomedical researcher in the 
process of making useful representations of his or her domain may not need to 
spend research time learning how to make more accurate high-level distinctions 
when lower-level distinctions may suffi ce.

1.6.2 Domain Ontologies

Domain ontologies contain subject matter from a particular domain of interest, for 
example, biology, physics, or astronomy. Most domain ontologies have a fi ner gran-
ularity than these examples because of the sheer scope of these domains. In biology, 
for example, we fi nd molecular function, biological process, cellular component 
(GO), cells [49], biological sequences (Sequence Ontology [50]), and anatomies of 
various species [51]. When building an ontology to represent the knowledge in a 
specifi c domain, it is inevitable that, at the top, there will be some of the most gen-
eral concepts. For example, a biological ontology may contain the classes organism 
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and reaction at the top of the hierarchy. In the domain, there are no more general 
concepts that could be used to structure these classes. For this reason, many domain 
ontologies are aligned with an upper ontology, so that more fundamental distinc-
tions can be made, for which general classes from the domain are placed under-
neath the appropriate upper-level class. For example, organism might be mapped 
to some kind of upper-level class, such as continuant, and glucose metabolism, in 
contrast, might be mapped to occurrant (a process).

1.6.3 Formal Ontologies

Formality is a much over-used term. It has two meanings in the ontology world. A 
formal ontology, on the one hand, is one that consistently makes stylistic ontologi-
cal distinctions based on a philosophical world view, usually with respect to a par-
ticular upper-level ontology. On the other hand, formal means to encode meaning 
with logic-based semantic strictness in the underlying representation in which the 
ontology is captured [23], thereby allowing computational inferences to be made 
through the use of automated reasoning. In this case, a formal language is one that 
allows formal ontologies to be specifi ed, because it has precise semantics. Encoding 
an ontology in a formal language, however, is not enough to make a formal ontol-
ogy. For example, it is a common misconception that an ontology encoded in OWL 
will automatically benefi t from computer-based reasoning. It is possible to assert a 
simple taxonomy in OWL, but without a reasonable usage of a combination of the 
expressive features provided by OWL, a DL reasoner is unable to make inferences. 
It is also a common misconception that the use of a DL reasoner will make an ontol-
ogy better. Description logic can help with the structure, maintenance, and use of 
the ontology, but it cannot prevent biological nonsense from being asserted (as long 
as it is logically consistent nonsense).

1.6.4 Informal Ontologies

These are the counterparts of formal ontologies, and informal implies that either no 
ontological distinctions are made and/or a representation with no precise semantics 
has been used. Often, the two go together. The lack of ontological formality, or 
semantic weakness, is not necessarily a bad thing, provided that this is compatible 
with the intended function of the ontology. Many of the ontologies in this category 
are what we have already called structured controlled vocabularies.

The goal of these ontologies is to specify a reference set of terms with which 
the same terms can be used to refer to the same things. The structure in these 
resources provides a notion of relationships between the terms, most commonly 
broaderThan, narrowerThan, and relatedTo. Computationally, the relation-
ship amounts to a thing that has something to do with another thing. A semanti-
cally strict language might state, for example, that each and every instance of this 
class must have this relationship with at least one instance of this other class and 
only instances of this class [23]. Sometimes informal ontologies also have more 
standard relationships, such as is a and part of relationships [52]. In semantically 
weak languages, no distinction typically is made between class and instance.
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In the context of modern information systems in biomedicine, informal on-
tologies are frequently applied to the linking, browsing, searching, and mining of 
information. Controlled vocabularies such as MeSH [53] are semantically weak 
and make no formal ontological distinctions about the world. They are simply 
used for indexing and navigating about an information space [37], often a litera-
ture database. The actions of searching, browsing, and retrieving information from 
many different resources are typical of biomedical researchers’ practices. Indeed, 
for the task for which they are intended, the needs of navigation and indexing often 
contradict strict ontological formality. Thus such so-called ontologies will often be 
criticized by formal ontologists. This is a mistake, as the intended purpose is differ-
ent from that of ontologically formal resources.

1.6.5 Reference Ontologies

A distinction can be made between reference and application ontologies [54]. Ref-
erence ontologies attempt to be defi nitive representations of a domain, and are 
usually developed without any particular application in mind. Reference ontologies 
will often use an upper-level ontology to make formal (philosophical) ontological 
distinctions about the domain. They also usually describe one aspect of a domain. 
The Foundational Model of Anatomy (FMA) [55] is a prime example of a refer-
ence ontology for human anatomy. A reference ontology should be well defi ned, in 
that each term in the ontology has a defi nition that should enable instances of that 
class to be unambiguously identifi ed. Such defi nitions must at least be in natural 
language, but can also be made explicit in a semantically strict (computational) 
representation. As the name suggests, reference ontologies have a primary use as a 
reference, though they also can be used in an application setting.

1.6.6 Application Ontologies

While reference ontologies are an attempt at a defi nitive representation of one as-
pect of a domain, an application domain typically uses portions of several reference 
ontologies in order to address a particular application scenario. Also, it is often the 
case that additional information will have to be added to the ontology in order to 
make the application work. For example, an ontology for describing and analyz-
ing mouse phenotypes might contain a mouse ontology, relevant portions of an 
ontology describing phenotypes or qualities that can describe phenotypes [56], and 
an ontology describing assays and other aspects of biomedical investigations [57]. 
It may also contain aspects of the actual data being represented, the databases in 
which that data is held, an explanation of what to do with cross-references in the 
data, and the formats that the data exists in. This particular ontology would most 
likely contain instance data about individual mice and their measurements, as well 
as class-level assertions about them. Such a combination of classes and individuals 
in an ontology is often referred to as a knowledge base.

The Transparent Access to Multiple Bioinformatics Information Sources 
(TAMBIS) project [9] used an application ontology as a global schema to drive the 
integration of a series of distributed bioinformatics databases and tools. TAMBIS 
used an ontology (the TaO) represented in the description logic (DL) GRAIL [58]. 
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The use of a DL allowed automated reasoning to be used, both to help manage the 
construction of the TaO and to facilitate its use within the TAMBIS application. 
With a DL and an associated reasoner, axioms within the ontology could be com-
bined to create new descriptions of classes of instances. These descriptions were 
constructed according to the constraints within the ontology, then classifi ed within 
the ontology by the reasoner. A class describes a set of instances, and by describing 
a set of bioinformatics instances in the ontology, a question is being asked. The 
resources, both tools and databases, underlying TAMBIS were mapped to the TaO, 
and the conceptual query generated in the TAMBIS user interface was translated to 
a query against those underlying resources. The larger version of the TaO covered 
proteins and nucleic acids and their regions, structure, function, and processes. It 
also included cellular components, species, and publications. A smaller version of 
the TaO, covering only the protein aspect of the larger ontology, was used in the 
functioning version of TAMBIS.

1.6.7 Bio-Ontologies

Any one bio-ontology can fall into one or more of the above categories, except the 
more generic, upper-level ontology. Data integration is a perennial problem in bio-
informatics [59]. Bio-ontologies provide descriptions of biological things, and so, 
when the biological entities referred to in the data are mapped to ontologies that de-
scribe the features of those entities, their potential role in data integration becomes 
obvious. Indeed, the majority of bio-ontologies are used at some level to describe 
biological data. This is the principle success of the GO, but the use of ontologies as 
drivers for integration at either the level of schema or the level of the values in the 
schema are long-standing within bioinformatics and computer science [10]. TAM-
BIS and EcoCyc (mentioned in Section 1.6.6) were early examples. Once data is de-
scribed, it can be queried and analyzed in terms of its biological meaning, providing 
new aspects for looking into the data. As biology is often portrayed as a descriptive 
science, the role of ontologies in bioinformatics will undoubtedly continue.

1.7 Conclusion

The development and use of bio-ontologies has become an increasingly prominent 
activity over the past decade, but their main use within bioinformatics so far has 
been as controlled vocabularies. Terms from these ontologies are used to describe 
data across many resources, thereby allowing querying and analysis across those 
resources. Ontologies that harness the power of AI research have been used to start 
building more intelligent systems that can process data with encoded knowledge 
and start to support the data-mining process in new ways.

Today, the term ontology, itself, includes many forms of structured knowledge 
that are suitable for addressing different challenges, with elements for human in-
terpretation and for computational inferencing. There remains much disagreement 
across the community as to exactly what counts as an ontology, and there is an 
even wider spectrum of opinion about what constitutes a good ontology. Much of 
this disagreement arises from the diversity of the ontologies and their applications 
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outlined in this chapter. Tension also arises from the computer-science use of the 
word and how it differs from the philosophical use.

Whether they are directly describing entities in reality or the information about 
entities, ontologies are resources that contain computationally accessible, struc-
tured knowledge. Such knowledge can be accessed and applied in many research 
scenarios, such as the data-mining applications described in this book. In essence, 
in order to successfully mine data, it is necessary to know what the data represents; 
that is the basic role of ontology within the life sciences. The descriptions that these 
ontologies provide need to be consistent across the many available data sources 
and ideally need to be helpful to both humans and computers. With the vast quan-
tity of data now being generated and mined within biology, the need for ontologies 
has never been greater.
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C H A P T E R  2

Ontological Similarity Measures
Valerie Cross

2.1 Introduction

To introduce the topic of this chapter, its title, “Ontological Similarity Measures,” 
fi rst needs an explanation. In this title, the word measures is modifi ed by the words 
ontological and similarity. Chapter 1 provides an introduction to ontologies. To 
succinctly summarize, an ontology is an explicit specifi cation of a conceptualization 
[19] that formalizes the concepts pertaining to a domain, the properties of these 
concepts, and the relationships that can exist between the concepts. As presented in 
Chapter 1, there are differing levels of complexity, with respect to ontologies, that 
result in different classifi cations, ranging from lightweight ontologies to axiomatic 
ontologies. In deciding to use the word ontological in the title of this chapter, the 
author assumes that the ontology at least has taxonomic relationships between its 
concepts. 

The objective of an ontological similarity measure is to determine the similarity 
between concepts in an ontology. The meaning of the word similarity is ambigu-
ous because of its use in many diverse contexts, such as biological, logical, statisti-
cal, taxonomic, psychological, semantic, and many more contexts. The context 
for this chapter is ontological, but the ontological context also falls under the se-
mantic context. An ontological similarity measure is a special kind of semantic 
similarity measure that uses the structuring relationships between concepts in an 
ontology to determine a degree of similarity between those concepts. There are 
other kinds of semantic similarity measures, such as dictionary-based approaches 
[26, 27] and thesaurus-based approaches [34, 35]. Ontological similarity measures 
evolved from the early semantic similarity measures based on the use of semantic 
networks [40].

Determining the semantic similarity between lexical words has a long history 
in philosophy, psychology, and artifi cial intelligence. Syntactics refers to the char-
acteristics of a sentence, while semantics is the study of the meanings of linguistic 
expressions. A primary motivation for measuring semantic similarity comes from 
natural-language processing (NLP) applications, such as word sense disambigua-
tion, text summarization and annotation, information extraction and retrieval, 
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automatic indexing, and lexical selection [7]. Although NLP applications have 
served as an early motivation for semantic similarity measures, their use has be-
come more widespread because of the need to determine the Semantic Web’s de-
gree of interoperability across ontologies, establishing mappings between ontolo-
gies, and merge and integrate ontologies from various information systems. More 
recently, the important role of semantic similarity to bioinformatics research has 
emerged. Initial experiments [23, 54] and more recent experiments [38, 39] have 
explored the use of semantic similarity between Gene Ontology (GO) annotations 
of gene products to determine the similarity between gene products. This semantic 
similarity assessment between gene products has been compared to the sequence 
similarity between gene products [1].

Now that the context for similarity has been described, the relationship between 
the three different terms similarity, distance, and relatedness must be addressed in 
this context. Sometimes these three terms are used interchangeably in the research 
literature. These terms, however, are not identical. In determining a semantic relat-
edness measure, a variety of relationships between concepts in an ontology may be 
used such as meronymy, synonymy, functionality, associativity, and hyponymy/hy-
pernymy, which is also referred to as subsumption. Semantic similarity is a special 
case of relatedness that typically uses only the synonymy and the subsumption re-
lationships in the calculation. The meronymy relationships have also been included 
with the subsumption relationships in determining semantic similarity measures 
for both WordNet and the Gene Ontology. The relatedness measures, however, 
may use a combination of the relationships existing between concepts, depending 
on the context or their  importance. For example, the terms car and gasoline are 
closely related with respect to a functional relationship, but vehicle and car are 
more similar with respect to the subsumption relationship. Some researchers have 
made a distinction and have referred to measures between ontological concepts as 
relatedness measures instead of similarity measures, to emphasize that all relation-
ships between concepts in an ontology may be considered [7]. All semantic similar-
ity measures are, however, semantic relatedness measures. 

The term semantic distance presents even more diffi culty when trying to deter-
mine its association with the other two. Much of the research literature supports 
the view that distance measures the opposite of similarity. Semantic distance, how-
ever, could be used with respect to distance between related concepts and distance 
between similar concepts. In this chapter, for the most part, similarity is the focus, 
but ontological relatedness and distance measures are discussed when appropriate 
to the overall presentation. 

The remainder of this section fi rst presents an overview of the history behind 
the development of ontological similarity measures and provides an overview of 
Tversky’s parameterized ratio model of similarity developed using a psychological 
view of human similarity judgment. Understanding this model is important, since 
later in the chapter, Tversky’s model of similarity is shown to be the basis of many 
of the ontological similarity measures. The more mathematical presentation of the 
various categories of these measures is given in Section 2.2 and newer proposed 
ontological similarity measures are described in Section 2.3.
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2.1.1 History

Ontological similarity measures had their beginnings in research to determine the 
similarity between concepts in a semantic network and their early evaluation in the 
context of information-retrieval experiments [29, 40]. This initial measure [40] de-
fi ned semantic distance as the distance between the nodes in the semantic network 
that correspond to the two words or concepts being compared. The number of 
edges in the shortest path between the two concepts measures the distance between 
them. The shorter the distance, the more similar the concepts are.

Rada’s approach [40] was based on a hierarchical is-a semantic network. Al-
though this edge-counting approach is intuitive and direct, it is not sensitive to the 
depth of the nodes for which a distance is being calculated. Intuitively, an increase 
in the depth of the nodes should decrease the distance between the two concepts 
that are at similar depths in the hierarchy. This weakness was pointed out in an ex-
ample given in [43]. Figure 2.1, a small example taken from the WordNet ontology 
[33], clearly illustrates the problem. The distance between plant and animal is 2 
since their common parent is living thing. The distance between zebra and horse is 
also 2 since their common parent is equine. Intuitively, one would judge zebra and 
horse as more closely related than plant and animal. Solely counting links between 
nodes is not suffi cient. 

To overcome this limitation of equal-distance edges, numerous researchers pro-
posed various methods to weight each edge. These proposals have resulted in a 
variety of distance-based ontological measures that are described in detail in Sec-
tion 2.2.1.

Instead of focusing on distance approaches with adjusted edge weights, other 
research examined the use of the information content of the concepts in an ontol-
ogy [41]. The information content for a concept is determined relative to a selected 
corpus and uses a probabilistic model based on the frequency of occurrence of the 
concept within the corpus. The similarity between two concepts is then given as a 
function of the information content of the most specifi c parent to both concepts. 
The rationale for this approach is that the similarity between two concepts should 
be based on the degree to which they share common information. But just as there 
were critiques of the fi rst proposed distance-based ontological similarity measure, 
numerous researchers suggested other approaches to using information content for 
ontological similarity. These approaches integrated not only the shared information 

Figure 2.1 Example of WordNet concepts (“...” indicates some concepts are omitted).
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content of the two concepts, but also the unshared information content. Details of 
the information-content approach for ontological similarity are described in Sec-
tion 2.2.2.

An important part of the research history of ontological similarity measures is 
the evaluation of these measures. The major evaluation methods of these measures 
have been mathematical analysis, use in domain-specifi c applications, and com-
parison to human judgments on similarity [7]. Mathematical analysis of a measure 
focuses on investigating its mathematical properties, for example, whether it is a 
true metric. Very little mathematical-analysis research has been done [31, 56], but 
more recently, some of the ontological similarity measures have been mathemati-
cally compared [13], and this comparison is presented in Section 2.2.3. The use 
of domain-specifi c applications for evaluation purposes of ontological similarity 
measures has primarily been in information-retrieval and NLP applications, but 
more recently, there has been an explosion in the use of ontological similarity in 
bioinformatics research. One of the problems in this domain has been how to as-
sess the performance of the various ontological similarity measures. The key ap-
proach has been to correlate the ontological similarity measures with other bio-
logical methods of similarity assessment. In this situation, the overall similarity 
between biological objects, such as gene or gene products, is determined based on 
the ontological similarity of their annotations. The primary correlation has been 
with sequence similarity [32, 38, 39], but others such as protein-interactions simi-
larity [20], Pfam similarity [11], and gene coexpression [48] have been used. Early 
in the research on ontological similarity measures, however, the primary way used 
to compare one measure against another was how well the measure correlates with 
human judgments of similarity.

Various researchers have carried out experiments using the WordNet ontology 
to assess the performance of ontological similarity measures. The basis for most 
of these experiments is a set of 30 noun pairs used in an experiment by Miller and 
Charles [33]. In the Miller and Charles experiment, the similarity of meaning of 
each of these 30 noun pairs was rated by 38 human judges. For each pair, the hu-
man subjects specifi ed a degree of similarity between the words in a range of 0 to 4, 
where 0 means no similarity, and 4 means perfect synonymy. These 30 noun pairs 
were extracted from 65 noun pairs that were used to obtain synonymy judgments 
by 51 human subjects in a previous experiment that used the same instructions 
to the human subjects [46]. The 30 pairs were extracted from the 65 pairs in the 
Rubenstein and Goodenough experiment [46] by selecting 10 pairs with human 
similarity judgment in the lowest range of 0 to 1, 10 pairs from the medium range 
of 1 to 3, and 10 pairs from the high range of 3 to 4.

Resnik’s investigation of an information-content-based ontological similarity 
measure [42] was the fi rst to use the word pairs from the Miller and Charles experi-
ment. (It actually used only 28 of the 30 pairs, due to one noun missing from the 
version of WordNet ontology used in the experiment.) In his experiment, the values 
of various ontological similarity measures were computed for the 28 word pairs, 
and coeffi cients of correlation between the human ratings and the results produced 
by the various measures were reported. Once this approach to evaluation was doc-
umented in the research literature, other researchers followed suit and used these 
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same word pairs and correlation with the human similarity judgments in order to 
compare new ontological similarity measures with existing ones [24, 31].

Only a few experiments using the human judgment evaluation method have 
been performed with a different ontology than WordNet for the calculation of 
the ontological similarity measures. The primary one is the UMLS ontology [9, 
36, 55]. The three source vocabularies from the UMLS Metathesaurus that have 
been used in these evaluation experiments are MeSH (Medical Subject Heading), 
SNMI (Systematized Nomenclature of Medicine, also referred to as SNOMED), 
and the ICD9CM (International Classifi cation of Diseases, Ninth Revision, Clini-
cal Modifi cations).

Before examining the various traditional approaches to ontological similarity 
in Section 2.2, the following section examines a foundation model for similarity 
assessment from the psychology domain because of its importance as the basis for 
the comparison of ontological similarity measures given in Section 2.2.3. 

2.1.2 Tversky’s Parameterized Ratio Model of Similarity

In the psychological literature, two main approaches for assessing similarity are 
content models and distance models. In content models, the characteristics with 
respect to which objects are similar are conceptualized “as more or less discrete and 
common elements” [2]. In distance models, these characteristics are conceptualized 
“as dimensions on which the objects have some degree of proximity.” [2]. Many of 
the proposed set-theoretic measures in the content model category are generalized 
by Tversky’s parameterized ratio model of similarity [53]:

 ( ) ( ) ( ) ( ) ( ),S X Y f X Y f X Y f X Y f Y Xα β⎡ ⎤= ∩ ∩ + − + −⎣ ⎦  (2.1)

In the above model, X and Y represent sets describing respective objects, x and 
y. The function f is an additive function on disjoint sets, for example, set cardinal-
ity. This measure is normalized so that 0 ≤ S(X, Y) ≤ 1. With α = β = 1, S becomes 
the Jaccard index [23].

 ( ) ( ) ( )jaccard ,S X Y f X Y f X Y= ∩ ∪   (2.2)

With α = β = 1/2, S becomes Dice’s coeffi cient of similarity [17]:

 ( ) ( ) ( ) ( )dice , 2S X Y f X Y f X f Y⎡ ⎤= ∩ +⎣ ⎦   (2.3)

With α = 1, β = 0, S becomes the degree of inclusion for X: that is, the propor-
tion of X overlapping with Y. 

 Sinclusion(x,y) = f(x ∩ y)/f(x)  (2.4)

Similarly with α = 0, β = 1, S becomes the degree of inclusion for Y, the proportion 
of Y overlapping with X. This parameterization is not necessary, however, since 
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(2.4) can be formulated as Sinclusion(Y, X). It is obvious that the degree of inclusion 
is not symmetric.

Tversky’s research [53] provides direct evidence that human similarity 
judgments may be directional and therefore, asymmetric. The less salient object 
is considered more similar to the salient one. Salience is determined by an object’s 
goodness of form or complexity. For example, when asked to rate the similarity 
between Red China and North Korea, subjects gave a lower similarity for Red 
China to North Korea, S(Red China, North Korea) than that of North Korea to 
Red China, S(North Korea, Red China). When asked to preference the comparison 
statement, subjects also strongly preferred the comparison order of North Korea to 
China. The asymmetry is possible, using the above model, whenever α > β, because 
the distinctive features of object X receive more weight than the distinctive features 
of Y.

Symmetry is not always desired for all similarity assessments. For example, in 
some cases, a comparison is being made between a subject u and a referent v: “u 
is similar to v.” This kind of similarity assessment is extremely relevant to human 
judgments of similarity. Other psychological research supports asymmetric assess-
ment [6, 22] and justifi es the selection of a referent, even when there is not an ex-
plicit referent. Different methods have been used to implicitly determine the refer-
ent in addition to selecting the object with more salient features [53]. In some cases, 
there may be a natural reference object or indicator [45]. In others, the degree of an 
object’s prototypicality [22] or informativeness [6] may be used to determine which 
object serves as the referent.

2.1.3 Aggregation in Similarity Assessment

The Gene Ontology (GO) is playing a signifi cant role in the evaluation of ontologi-
cal similarity measures. This trend started with the early research found in [32, 54]. 
The evaluation approach is still the same: that is, to determine how well a measure 
of gene product similarity that uses ontological similarity correlates with another 
method of determining similarity, for example, sequence similarity between gene 
products. This approach, however, introduces another operation beside just on-
tological similarity measurement between concepts or word pairs, as found in the 
human-judgment evaluation method. Gene products are annotated with terms or 
concepts taken from the GO. In ontological approaches that determine the similar-
ity between two gene products, fi rst the ontological similarity between all terms an-
notated to the fi rst gene product and all terms annotated to the second gene product 
must be determined. Then, in order to produce an overall semantic assessment of 
the similarity between the two gene products, these term-pair similarities must be 
aggregated. The resulting overall semantic assessment of gene-product similarity 
can then be correlated with the sequence similarity between the gene products. 
Various approaches to aggregation have been proposed. In [13], an experiment us-
ing different aggregation operators with different ontological similarity measures 
examines the combination effects of the two operations, ontological similarity as-
sessment and aggregation.

To make the following examples and discussion of object similarity concrete, 
assume that the two objects for which similarity is being assessed are two gene 
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products, GX and GY, each annotated by a set of terms that exist as concepts in the 
GO. The sets are X = {x1, x2, …xm} for gene GX and Y = {y1, y2, …yn} for gene GY. 
In order to assess how similar GX and GY are, typically two steps are performed: 

Individual ontological similarity assessment on all the pairs of terms 1.   
 simT(xi, yj)

Aggregation of the resulting ontological similarities to produce an overall 2.   
 assessment of the similarity of GX and GY,, simA(X, Y), where the subscript 
 A specifi es the aggregations operator. 

For 1, any of the various ontological similarity measures presented in Section 
2.2 could be substituted for simO. For 2, bioinformatics researchers have applied 
various aggregation operators on the pairwise similarities, simT(xi, yj). For exam-
ple, the simple average [32]

 ( ) ( )1, 1,, ,A PW ave i m j n T i isim X Y sim x y mn= − = =⎡ ⎤= ⎣ ⎦∑ ∑  (2.5)

or the maximum [59]

 ( ) ( )max , max ,A PW ij T i jsim X Y sim x y= −
⎡ ⎤= ⎣ ⎦  (2.6)

has been used as the aggregation operator to produce an overall similarity measure 
between GX and GY. Although these approaches for assessing similarity overcome 
the problem when X∩Y= φ, they also produce unintuitive results. For example, 
intuitively, the similarity measure between GX and GX, in other words, the genes 
described by two identical sets, should produce a similarity value of 1. The similarity 
using the average aggregation operator on the pairwise similarities simA=PWave 
does not produce 1. On the other hand, intuitively, the similarity measure between 
GX and GY described by nonsingleton sets X and Y, having only one element in 
common, should not produce 1. The similarity using the maximum aggregation 
operator on the pairwise similarities simA=PW-max does produce 1. 

A solution to these unintuitive results is the average of the maximum similarity 
method [3], which combines both the maximum and average aggregation over the 
pairwise similarities as follows:

 ( )
( )( )
( )( ) ( )

1, 1,

max

1, 1,

max ,
,

max ,

i m j n T i j

A PW ave

j n i m T i j

sim x y
sim X Y m n

sim x y

= =

= − −

= =

⎡ ⎤+
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑

 (2.7)

This pairwise similarity is subscripted as PW-ave-max, because it sums the 
maximum similarity for each element in X in comparison to the other set Y, and 
vice versa, and then averages the two. 

Other approaches to assessing overall similarity between gene products using 
GO terms have been proposed. Fuzzy-measure-based ontological similarity [39] 
is a blend of numerous concepts used in ontological similarity measures. It enlists 
both the information-content (IC) measure seen in (2.15) and the lowest common 
ancestor for ontology concepts, as described in Section 2.2. This similarity measure, 
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however, is not actually an ontological similarity measure in the traditional sense, 
since it does not assess similarity between concepts in an ontology. Instead, it 
determines overall similarity between objects described by ontological concepts. 
One version of the fuzzy-measure-based ontological similarity, SAFMS, augments 
the sets X and Y with the lowest or nearest common ancestor of every pair (xi, 
yj). For more details on the use of the fuzzy-measure-based approach to assessing 
similarity between gene products, see [60].

Other proposals for overall similarity assessment of gene products are SimUI 
[18] and SimGIC [37]. Both of these measures are Jaccard set similarity measures, 
as given in (2.2). In SimUI, the f function in (2.2) is set cardinality on the sets 
X+ and Y+, which are the set of annotations for the two gene products GX and 
GY, respectively, extended to include not only the original annotations, but also 
all the ancestors of those annotations based on the GO structure. SimGIC simply 
uses the fuzzy-set Jaccard similarity measure, for which instead of weighting each 
annotation term by 1, the information content of each GO term becomes its weight 
in the calculation as:

 ( ) ( ) ( ) ( ) ( ) ( )weighted-jaccard, , IC ICGIC X Y t X Y t X Ysim G G S X Y t t∈ +∩ + ∈ +∪ += + + = ∑ ∑  (2.8)

The Section 2.2 now focuses on traditional ontological similarity measures that 
have been used for the simT(xi, yj) component. This component produces the indi-
vidual pairwise ontological similarities that can then be aggregated to produce an 
overall similarity assessment for two objects, such as gene products GX and GY.

2.2 Traditional Approaches to Ontological Similarity

Although not identical, the terms similarity and relatedness are connected, in that 
similarity is a special case of relatedness. The example in [41] illustrates this re-
lationship using the terms car, gasoline, and bicycle. The terms car and gasoline 
appear to be more closely related than the terms car and bicycle, even though car 
and bicycle are more similar. This one example shows one kind of relatedness based 
on a functional relationship such as “car uses gasoline.” There are numerous other 
kinds of semantic relatedness based on the type of relationship between concepts, 
such as subsumption (e.g., vehicle-car) and meronymy (e.g., car-wheel). The term 
semantic distance presents even more diffi culty when trying to determine its asso-
ciation with the other two. Much of the research literature supports the view that 
distance measures the opposite of similarity. Semantic distance, however, could be 
used with respect to distance between related concepts and distance between similar 
concepts. In this chapter, semantic distance signifi es the opposite of both semantic 
similarity and semantic relatedness. The context should provide the basis for the 
correct interpretation. 

2.2.1 Path-Based Measures

Early research focused on using word ontologies to improve information retrieval. 
One of the most natural approaches [40] to determine semantic similarity in an 
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ontology is to use its graphical representation and measure the distance between 
the nodes corresponding to the words or concepts being compared. The number of 
edges in the shortest path between the two concepts measures the distance between 
them. The shorter the distance, the more similar the concepts are semantically.

One of the major and intuitively obvious arguments against using the edge-
count distance in measuring conceptual distance is the underlying assumption that 
edges or links between concepts represent uniform distances [43]. In most taxo-
nomic ontologies, concepts that are higher in the hierarchy are more general than 
those that are lower in the hierarchy. An edge count of 1 between 2 general con-
cepts naturally implies a larger distance than that between 2 more specifi c concepts. 
For example, the distance between plant and animal is 2 in WordNet, since their 
common parent, is living thing. The distance between zebra and horse is also 2, 
since their common parent is equine. Intuitively, one would judge zebra and horse 
to be more closely related than plant and animal. Solely counting links between 
nodes is not suffi cient.

To overcome the limitation of simple edge counting, the edges were weighted to 
refl ect the difference in edge distances. Earlier approaches [25, 29], hand-weighted 
each edge. Since this approach is not practical for very large ontologies, others 
proposed methods of automatically weighting each link [43]. As a result of the 
earlier criticism of simple edge counting, the automatic process was designed to use 
several pieces of information about the edge in determining its weight: the depth, 
the density of edges at that depth, and the strength of connotation between parent 
and child nodes. The weights were reduced as one goes farther down the network, 
since conceptual distance shrinks. The weight also was reduced in a dense part 
of the network, since edges in a dense part were considered to represent smaller 
conceptual distances. Several measures that improve on the original edge-count ap-
proach were presented.

One of the simplest adjustments made [28] was to scale the minimum edge 
count distance between two concepts, c1 and c2, by the maximum depth D of a 
taxonomic hierarchy; in other words, this approach uses only hyponymy, or is-a 
type links between concepts.

 ( ) ( )( )1, 21, 2 max log min len 1, 2 2LC c csim c c c c D⎡ ⎤⎡ ⎤= − ⎣ ⎦⎣ ⎦  (2.9)

Another proposal for conceptual similarity between a pair of concepts, c1 and 
c2, [58] scaled the similarity based on the depth of the least common superconcept, 
c3, between c1 and c2. Although the word least was used in the description in [58], 
the interpretation has been that least means lowest in the ontology. 

 ( ) ( )1, 2 2 3 1 2 2 3WPsim c c N N N N= + +  (2.10)

where N1 is the length (in number of nodes) of the path from c1 to c3, N2 is 
the length of the path from c2 to c3, and N3 is the length of the path from c3 to the 
root of the hierarchy, or, in other words, the global depth in the hierarchy. Concep-
tual similarity can be converted to conceptual distance as
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 ( ) ( ) ( ) ( )1, 2 1 1, 2 1 2 1 2 2 3WP WPdist c c sim c c N N N N N= − = + + +  (2.11)

In this equation, it is easy to see how an increase of depth decreases the distance 
between the two concepts. 

Another proposal [21] incorporated all relation types in WordNet and, thus, is 
considered a measure of semantic relatedness. It also incorporated the direction of 
the link between the two nodes. The directions of links on the same path may vary 
among horizontal (antonymy), upward (hyponymy and meronymy), and down-
ward (hypernymy and holonymy). Two concepts are semantically related if they are 
connected by a path that is not longer than an arbitrary fi xed constant C and that 
has a direction that does not change too often (where d represents the number of 
changes in path direction and k is another constant.)

 ( ) ( )1, 2 path length 1, 2HSrel c c C c c kd= − −  (2.12)

A more sophisticated modifi cation [51] also employed the different kinds of 
linking relationships within WordNet. Each edge maps to two inverse relations. 
Each type of relation r has a weight range between its own minr and maxr. The 
actual value in that range for r depends on nr (X), the number of relations of type 
r leaving node X. This value, referred to as the type specifi c fanout (TSF) factor, 
incorporates the dilution of the strength of connotation between a source and tar-
get node as a function of the number of like relations that the source node has. 
This factor refl ects that asymmetry might exist between the two nodes so that the 
strength of connotation in one direction differs from that in the other direction. 
The weight for the relation r between nodes X and Y is calculated as

 ( ) ( ) ( )max max minr r r rw XrY n X= − −  (2.13)

and similarly for the inverse relation r′, w(Yr′X). The two weights for an edge are 
averaged. The average is divided by the depth d of the edge, within the overall net-
work, to produce the distance or weight between the concepts X and Y as

 ( ) ( ) ( )( ), 2w X Y w XrY w Yr X d= + ′  (2.14)

The relative scaling by this depth is based on the intuition that siblings deep 
in a network are more closely related than only-siblings higher up. The semantic 
distance between two arbitrary nodes, c1 and c2, is then computed as the sum of 
the distances between the pairs of adjacent nodes along the shortest path connect-
ing c1 and c2.

2.2.2 Information Content Measures

The foundation for this approach is the insight that conceptual similarity between 
two concepts, c1 and c2, may be judged by the degree to which they share informa-
tion [41]. The more information they share, then the more similar they are. In an 
is-a network, this common information is contained in the most specifi c concept 
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that subsumes both of c1 and c2, the  common subsumer, which is also referred to 
as the lowest common ancestor (LCA), c3. For example, Figure 2.2 shows a frag-
ment of the WordNet ontology. 

The most specifi c superclass or the lowest common ancestor for nickel and 
dime is coin, and for nickel and credit card is medium of exchange. The semantic 
similarity between nickel and dime should be determined by the information con-
tent of coin, and that between nickel and credit card should be determined by the 
information content of medium of exchange. According to standard information 
theory [61], the information content of a concept c is based on the probability of 
encountering an instance of concept c in a certain corpus, p(c). As one moves up the 
taxonomy, p(c) is monotonically nondecreasing. The probability is based on using 
the corpus to perform a frequency count of all occurrences of concept c, including 
occurrences of any of its descendents. The information content (IC) of concept c 
using the corpus approach then is quantifi ed as

 ( ) ( )( )corpusIC logc p c= −  (2.15)

Another approach to determine IC was proposed in [47] using WordNet as an 
example. The structure of the ontology itself is used as a statistical resource, with 
no need for external ones, such as corpuses. The assumption is that the ontology 
is organized in a meaningful and structured way, so that concepts with many de-
scendants communicate less information than leaf concepts. The more descendants 
a concept has, the less information it expresses. The IC for a concept c is defi ned 
as

 
( ) ( )( )( ) ( )

( ) ( )( )
log 1 max / log 1 max

1 log 1 log max

ont ont ont

ont

IC c desc c

desc c

= + =

= − +
 (2.16)

where desc(c) is the number of descendants of concept c, and maxont is the maxi-
mum number of concepts in the ontology.

Figure 2.2 A fragment of the WordNet ontology [41].
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Resnik proposed the use of information content [41] to determine the semantic 
similarity between two concepts, c1 and c2, with the lowest common ancestor of 
c3 as

 ( ) ( )corpus1, 2 IC 3Ressim c c c=  (2.17)

Note that this is intuitively satisfying since the higher the position of the c3 in 
the taxonomy, the more abstract c3 is, therefore, the lower the similarity between 
c1 and c2. The lowest common ancestor c3, also referred to as the most specifi c 
subsumer, most informative common ancestor [11], or nearest common ancestor 
[39], is the concept from the set of concepts subsuming both c1 and c2 that has the 
greatest information content. 

While most similarity measures increase with commonality and decrease with 
difference, simRes takes only commonality into account. The semantic similarity 
between two concepts proposed by Lin [31] takes both commonality and differ-
ence into account. It uses the shared information content in the lowest-common-
ancestor concept and normalizes with sum of the unshared information content of 
both concepts c1 and c2, given by

 ( ) ( ) ( ) ( )( )corpus corpus corpus1, 2 2IC 3 IC 1 IC 2Lsim c c c c c= +  (2.18)

Jiang and Conrath [24] began by trying to combine the network distance ap-
proach with the information theoretic approach. They envisioned using corpus 
statistics as a corrective factor to fi x the problems with the weighted-edge-counting 
approaches and developed a general formula for the weight of a link between a 
child concept cc and its parent concept cp in a hierarchy. This formula incorporates 
the ideas of node depth, local density similar to the TSF, and the link type. These 
ideas parallel the approach used in [51].

Jiang and Conrath studied the roles of the density and depth components, con-
cluded that they are not major factors in the overall edge weight, and shifted their 
focus to the link-strength factor. The link-strength factor uses information content, 
but in the form of conditional probability, or in other words, the probability of en-
countering an instance of a child concept c1, given an instance of a parent concept 
c3. If the probabilities are assigned as in Jiang and Conrath [41], then the distance 
between concepts c1 and c2, with concept c3 as the most specifi c concept that sub-
sumes both, is

 ( ) ( ) ( ) ( )(corpus corpus corpus1, 2 2IC 3 IC 1 IC 2JCdist c c c c c= − + +  (2.19)

Note that this measure is but a different arithmetic combination of the same 
term used in the Lin measure given in (2.18). The Lin similarity measure can be 
converted into a dissimilarity measure by subtracting it from 1 since it is a similar-
ity measure in [0,1] and produces

 ( ) ( ) ( ) ( ) ( ) ( )1, 2 IC 1 IC 2 2IC 3 IC 1 IC 2Ldissim c c c c c c c⎡ ⎤ ⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦  (2.20)
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The numerator in (2.20) is Jiang-Conrath’s distance measure given in (2.19). 
Jiang-Conrath’s distance measure is not normalized. If normalized by [IC(c1) + 
IC(c2)], then it is equivalent to the corresponding dissimilarity measure for Lin’s 
similarity measure. 

2.2.3 A Relationship Between Path-Based and Information-Content Measures

Ontological similarity measures have been classifi ed into two primary approaches: 
path-based and information-content based. In this section, Tversky’s parameterized 
ratio model is used to establish a connection between these approaches. The rela-
tionship between two ontological similarity measures found frequently in the re-
search literature is examined. One is taken from the category of distance based 
within a network structure and the other from those in the information-content 
category. The connection between these two measures is established through the 
Tversky’s parameterized ratio model, described previously in Section 2.1.2. The 
following discussion is summarized from [14]. 

For path-based measures, numerous researchers have emphasized that these 
are similarity measures based on distances within a taxonomy; however, in Tver-
sky’s parameterized ratio model, in particular, the Dice version given in (2.3) can be 
used to derive both the Wu-Palmer [58] and Lin [31] semantic similarity measures 
given in (2.10) and (2.18), respectively. Equation (2.21) determines the semantic 
similarity between c1 and c2; c3 represents the lowest common ancestor of c1 and 
c2, and r represents the root, as illustrated by Figure 2.3. 

Let X represent the set of is a links from r to c1 and Y represent the set of is 
a links from r to c2. With f simply the cardinality of the sets, the value of f(X ∩ 
Y) represents the cardinality of the intersection between the is a links on the path 
from the root to c1 and the is a links on the path from the root to c2. This value 
is equivalent to len(r, c3) the path length from the root to c3, the lowest common 
ancestor. The assumption is the weights on the links are 1. The value for f(X) is 
len(c1, c3) + len(r, c3), and the value for f(Y) is len(c2, c3) + len(r, c3), so that the 
Dice formula in (2.3) becomes 

 ( ) ( ) ( ) ( ) ( )( )1 1, 2 2len , 3 len 1, 3 len 2, 3 2len , 3dice wS c c r c c c c c r c= = + +  (2.21)

which is the Wu and Palmer measure given in (2.10). 

Figure 2.3 Concept hierarchy.



36 Ontological Similarity Measures 

The relationship to Lin’s IC semantic similarity measure may be established by 
modifying weights for the is a links from a constant 1 to a weight indicating the 
strength between the parent and child concepts. The weight of the is a links is the 
difference between the information content of the child node c and the information 
content of the parent node parent(c); that is, w = IC(c) − IC(parent(c)). This differ-
ence indicates how much information is gained by moving from the parent to the 
child. The len(r, c3) then becomes Σ (IC(c) − IC(parent(c))) = IC(c3), where c is a 
node in the path from c3 to root r, but it excludes the root, since it does not have a 
parent. Likewise len(c1, c3) becomes IC(c1) – IC(c3) and len(c2, c3) become IC(c2) 
– IC(c3). Substituting these values into (2.21) produces the Lin semantic similarity 
measure in (2.22).

 ( ) ( )( )( ) ( ) ( ) ( )( )IC parent
1, 2 2IC 3 IC 1 IC 2

dice w IC c c
S c c c c c= − = +  (2.22)

Dice’s coeffi cient is the basis for both the Wu-Palmer measure and the Lin 
measure. The Wu-Palmer measure is easily transformed into the Lin measure by 
modifying the is a link weights from 1 to IC(c) – IC(parent(c)).

2.3 New Approaches to Ontological Similarity

The traditional approaches to ontological similarity are limited in that they only 
apply to concepts within the same ontology. Sections 2.3.1 and 2.3.2 describe ap-
proaches for assessing similarity between concepts that are in different ontologies. 
Another limitation is that they only consider the lowest common ancestor. Section 
2.3.3 presents an approach to incorporating more than just the lowest common 
ancestor into the calculation of traditional information content-based ontological 
similarity measures. 

2.3.1 Entity Class Similarity in Ontologies

As shown in Section 2.2.3, Tversky’s parameterized ratio model is important to 
the mathematical comparison of the ontological similarity measures. It also serves 
as the primary model used in comparisons of entity classes from two different 
ontologies [44]. This research proposed an ontological similarity measure between 
entity classes a and b that uses a matching process over synonym sets, semantic 
neighborhoods, and distinguishing features. Distinguishing features are further 
classifi ed into parts, functions, and attributes. The similarity formula used for each 
matching process is the same and is given as 
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where A and B are description sets that correspond to entity classes a and b (i.e., 
synonym sets, sets of distinguishing features, or sets of entity classes in the semantic 
neighborhood). Their only variation from Tversky’s model is the method of setting 
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the α parameter, which weights the relative importance of the noncommon charac-
teristics between the two entities. In their proposal, the α parameter is determined 
simply from the depth of the entities within their respective ontologies and is given 
as
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where entity a belongs to ontology p and entity b to ontology q. This scheme gives 
priority to the more salient entity, or in other words, the one with the greater depth 
in its ontology. The various resulting similarities for each of the three categories of 
synonym sets, sets of distinguishing features, and sets of entity classes in the seman-
tic neighborhood are combined using a weighted aggregation in order to determine 
the overall similarity between entity classes a and b. 

2.3.2 Cross-Ontological Similarity Measures

Traditional ontological similarity measures typically rely only on the hierarchical or 
is a relationships within an ontology. The research in [62] proposes a new method 
for determining the similarity between two genes or gene products, but it uses two 
different kinds of relations between terms in the GO. The fi rst category of relations 
consists of the standard hierarchical is a and part of relations defi ned within GO. 
The second category of relations consists of associative relations created between 
concepts across the three GO subontologies.

In [63], three nonlexical approaches were used to determine association re-
lationships between GO concepts: (1) a vector space model (VSM); (2) statistical 
analysis of the co-occurrence of GO terms in annotation databases; and (3) associa-
tion rule mining. The research in [62] takes advantage of associative relations be-
tween GO concepts in different subontologies and uses these associative relations 
along with hierarchical relationships in order to determine ontological similarity 
between concepts in the different subontologies, that is, the cross-ontological simi-
larity measure. In their research, the VSM, also referred to as the cosine method, 
is used to determine the strength of association between GO concepts existing in 
different GO subontologies. 

The basic idea of the cross-ontological analysis consists of combining each as-
sociative relation across the GO subontologies with a hierarchical relation within 
a single subontology. Figure 2.4 illustrates the motivation for the cross-ontological 
similarity measure. Let two ontologies, O1 and O2, contain concepts c1 and c2, 
respectively, and the objective is to determine the ontological similarity between c1 
and c2. Traditional methods would return 0 since the concepts are in two different 
ontologies. With cross-ontological similarity, however, the associative relationships 
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between c1 in O1 and c4 in O2 and between c2 in O2 and c3 in O1 can be used to 
determine the similarity between c1 and c2. 

The cross-ontological semantic similarity, XOA, between c1 and c2, can be 
determined from the traditional or intraontological similarity between concepts c1 
and c3 and between c2 and c4 and the associative similarities between c1 and c4 
and between c2 and c3 as
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In their research, the three information-content measures, Resnik’s, Lin’s, and 
Jiang and Conrath’s, have been used for the intraontological semantic similarity 
measure, sim, in (2.25). The cos(ci, cj) represents the degree of strength, as deter-
mined by the VSM association relationship between concepts ci and cj, which are 
in different ontologies. Note in (2.25) that cross-ontological similarity is maximiz-
ing the trade-off between the best ontological similarity and the best associative 
similarity within each ontology and then selecting the maximum between the two 
ontologies.

2.3.3 Exploiting Common Disjunctive Ancestors

In the traditional approaches for ontological similarity, the lowest common ancestor 
for both concepts, that is, the one with the greatest information content, is critical 
to both path-based measures and information-content measures. These measures 
select only the one common ancestor. Others [10, 11] have proposed an ontologi-
cal similarity measure they categorize as a graph-based similarity measure (GR-
ASM). Instead of simply using the one common ancestor between c1 and c2 with 
the greatest information content, the information content of all common ancestors 
for c1 and c2 that are not ancestors of any other identifi ed common ancestors are 
averaged and used in place of the single information content of the lowest common 
ancestor. The motivation for this approach is that by using just the most informative 

Figure 2.4 Finding similarities between terms across two different ontologies.
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common ancestor of c1 and c2, other shared information content between the two 
concepts is being ignored. This additional shared information content should be 
considered in assessing the ontological similarity between c1 and c2. 

The description of this approach [10] fi rst fi nds disjunctive ancestors of the 
two concepts for which ontological similarity is being determined. Concepts a1 
and a2 are disjunctive ancestors of c, if there is a path from a1 to c not containing 
a2 and a path from a2 to c not containing a1. Then a common disjunctive ancestor 
for two concepts, c1 and c2, is defi ned as the most informative common ancestor 
of disjunctive ancestors of c1 and c2. In other words, a1 is a common disjunctive 
ancestor of c1 and c2. If, for each ancestor, a2 is more informative than a1, then 
a1 and a2 are disjunctive ancestors of c1 or c2. This description can be simplifi ed 
by ignoring the step of fi nding disjunctive ancestors for each separate concept, c1 
and c2. First, all common ancestors for c1 and c2 are found. A common disjunctive 
ancestor for c1 and c2 is then any common ancestor, ai, of c1 and c2 that is not the 
ancestor of any other common ancestor, aj, of c1 and c2. 

To validate this modifi cation to traditional ontological similarity measures, the 
correlation between ontological similarity assessment of protein families using pro-
tein GO annotations and Pfam similarities was investigated. The Pfam database 
contains the protein families assigned to UniProt proteins [4]. The conclusion of this 
study was that GraSM provided a consistently higher family similarity correlation 
across all GO subontologies than traditional ontological similarity measures. To 
temper this conclusion some, however, the Jiang-Conrath measure was the best 
performing of the evaluated traditional measures with respect to correlation criteria 
in these experiments, but its maximum increased correlation, using all common 
disjunctive ancestors, was only 4% over the three GO subontologies.  This small 
increase in correlation needs to be investigated more in order to determine if 
signifi cant-enough increases in correlation can be consistently obtained to offset 
the increased computation needed to fi nd all the common disjunctive ancestors. 

2.4 Conclusion

Gene annotation at various levels, from DNA to the cells of an organism, is be-
ing accomplished by analyzing and interpreting the data produced by a variety of 
high-throughput experimental technologies, such as DNA chips and microarrays, 
protein-protein interaction technologies, proteomics and metabolic profi ling for 
pathway analysis, and many others. The analysis and interpretation of this ex-
perimental data often presents a bottleneck to the genome annotation process since 
human experts are needed to sort through the research literature where most of the 
experimental results are published. The fi eld of bioinformatics is helping to manage, 
visualize, integrate, analyze, model, and make predictions from this data.

Methods to automate the annotation process have mainly relied on determin-
ing a similarity between a characterized gene or protein and a new one and then 
predicting its annotations based on its degree of similarity to the known gene or 
protein. The features of gene products typically used for determining similarity are 
DNA sequence and expression values. Another more recent approach to assessing 
similarity between gene products has arisen due to the development of standard 
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ontologies for the biological and biomedical domains, such as the Open Biomedi-
cal Ontologies [50], of which the Gene Ontology is one of the more well known.  
This approach uses ontological similarity measures between the terms annotating 
the two gene products to determine their overall similarity. The annotation terms 
are taken from the controlled vocabulary that is structured in an ontology, such as 
the Gene Ontology. 

As presented in this chapter, various ontological similarity measures, also re-
ferred to as semantic similarity measures, were proposed very early on for natu-
ral-language-processing applications. Over the last three years, the fi eld of bioin-
formatics has progressively investigated the use of ontological similarity measures 
in assessing gene product similarity for a variety of purposes, such as predicting 
genetic [30] and protein [59] interaction networks, modeling of regulatory path-
ways [20], validating automatic annotation methods [12], improving the estima-
tion of missing values in microarray data [52], and verifying predictions of protein 
functions [16]. Ontological similarity measures have established their value in the 
fi eld of bioinformatics, and continued research in their application, assessing their 
strengths and weaknesses and developing new approaches to ontological similarity 
is certain to mature and expand. 
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C H A P T E R  3

Clustering with Ontologies
Mihail Popescu, Timothy Havens, James Keller, and James Bezdek

Clustering, the grouping of objects based on a set of features, is the data-mining 
area that is, perhaps, one of the most impacted by the proliferation of ontologies. 
Ontologies have been traditionally used in clustering merely as controlled vocabu-
laries to transform text data in feature vectors in RN. Recently, ontologies have 
started to play a transformational role in many clustering algorithms by adding a 
semantic dimension. As a consequence, many new clustering algorithms have been 
designed for processing ontological information, and many more have been aug-
mented to include it in their formulation. In this section, we describe several clus-
tering algorithms and cluster-validity measures that take advantage of the semantic 
similarity (described in Chapter 2) between ontological concepts.

3.1 Introduction

As a knowledge-discovery method, clustering has been employed for many years for 
exploring datasets for which little information has been available. After the objects 
in the dataset were grouped, the knowledge was gained either by the guilt-by-asso-
ciation approach (the unknown objects must be similar to the known ones from the 
same group) or by a reverse-engineering approach (provoked by the question, Why 
are the objects from this group similar?). Before computers and high-throughput 
biotechnology devices were available, the datasets were limited in size and com-
plexity. In the postgenomic era, the increase in dataset volume and complexity has 
fostered the introduction of new clustering methods that increase the selectivity and 
granularity of the discovered knowledge. 

In comparison to engineering datasets, biomedical ones have three distinct 
characteristics. First, many biomedical objects (genes, patients, etc.) cannot be de-
scribed as independent objects using vectors in RN, but, are better described by 
their relationship to similar objects. The resulting datasets, which we will call in 
this chapter relational (as opposed to object), consist of dissimilarity (or distance) 
matrices. Dissimilarity is the opposite (inverse) of similarity. If there are N objects 
in our dataset, the dissimilarity matrix, D = {dij}, is of size N × N, and dij repre-
sents the dissimilarity between object i and object j. If the data is represented as 
vectors of real numbers, then dij corresponds to the distance between vector i and 
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vector j. The best example that illustrates this data type is the computation of 
the sequence similarity between two DNA fragments. While it is possible to rep-
resent each fragment as a four-dimensional vector that contains the count of the 
{A,C,T,G} nucleotides and use set-based similarity measures (such as Jaccard or 
Dice, mentioned in Chapter 2), most people use BLAST to fi nd the similarity be-
tween the two sequences. Consequently, special relational clustering algorithms are 
needed to process the resulting dissimilarity matrices. The best-known clustering 
approach to process relational data is hierarchical clustering. However, many other 
relational algorithms exist, such as CAST [3], MCL [9], affi nity propagation [10], 
and NERFCM [12]. Among all of the previously mentioned relational clustering 
algorithms, only NERFCM results in fuzzy cluster memberships; that is, objects 
can have nonzero membership in multiple clusters. This property is very important 
in biological problems in which, for example, a gene product may have several 
functions and may belong to different functional groups. Good reviews of fuzzy 
relational clustering algorithms can be found in [6, 33].

The second characteristic of biomedical datasets is that, due to their complex-
ity, they often consist of a mixture of categorical and numerical variables, which 
require specialized dissimilarity measures to compute D. Ontologies have started 
to play an important role in defi ning new dissimilarity measures that emphasize 
the semantic relatedness of categorical variables, such as gene function or patient 
diagnostics. For example, dissimilarity measures based on ontologies, such as Gene 
Ontology (GO) [33, 36, 37, 30], SNOMED [26, 24], and ICD9 [28], have been 
defi ned for computing the dissimilarity between biomedical objects (more exam-
ples are provided in Chapter 2). Other dissimilarity measures have been defi ned 
by combining numerical dimensions (such as gene expression) with ontological 
dimensions, as in [15, 21].

The third distinct factor in biomedical datasets is the limited sample size, due 
to either patient-related issues (such as privacy or disease rarity) or biotechnology 
issues (such as cost or experimental diffi culty). As a result, the datasets tend to 
have several orders of magnitude more dimensions than the number of samples. 
To avoid clustering in a sparsely  populated high-dimensionality space, these data-
sets are, most of the time, processed as relational datasets by computing pairwise 
sample similarities. The typical example for this situation is a microarray dataset 
that might have only 50–1,000 samples, but 10,000–1,000,000 dimensions (gene 
fragments). In this case, ontologies (mainly the Gene Ontology) have played an 
important role in refi ning the functions of newly found genes by enriching the 
clustering process. Many examples of clustering applications that have a Gene On-
tology component are found on the GO Web site (www.geneontology.org), such as 
FunCluster [14], GOToolBox [23], or in the literature [2, 15, 21, 34].

The use of ontologies in data mining had a three-prong effect on the study of 
relational clustering algorithms. First, it stimulated the application of more diverse 
clustering algorithms to relational data. Several variants of Prim’s minimum-span-
ning tree algorithm, such as CAST [3], VAT [5], and a memetic approach [35], have 
been developed and applied to GO-based dissimilarity data. In addition, NERFCM 
[12] has been applied to gene product Gene Ontology dissimilarity matrices [25]. 

Second, ontologies have stimulated the modifi cation of known nonrelational 
clustering algorithms to include ontological dissimilarity data (relational data). In 
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fact, the more general question is whether a nonrelational algorithm (that is, one 
that requires object data) can be made relational (that is, to accept only dissimi-
larity data). One approach to handle strictly relational data is NERFCM [12], a 
relational version of the fuzzy C-means algorithm [4]. A partial transformation of 
self-organizing maps, OSOM [13], has been reported and applied to gene-product 
dissimilarity, based on the sets of annotations from the Gene Ontology. 

The third effect of ontologies on relational clustering has manifested in the area 
of cluster validity measures. A cluster validity measure tries to answer the question, 
“How many clusters are in this dataset?”. The usual procedure consists in running 
the clustering algorithm multiple times, varying the requested number of clusters, 
C. Each time, the distribution of the data into the C clusters is used to calculate 
the degree of goodness of the partition (validity measure). Depending on its defi ni-
tion, the value C that minimizes or maximizes the validity criterion is chosen as the 
correct number of clusters. Some cluster-validity measures used in bioinformatics 
are reviewed in [11]. Other Gene Ontology based cluster-validity techniques can 
be found in [35] and [7]. In addition, a new cluster-validity measure for fuzzy rela-
tional clustering algorithms CCV, was developed in [31]. 

In this chapter, we describe in more detail three of the algorithms mentioned 
above, NERFCM, CCV, and OSOM, and provide examples of their application in 
bioinformatics.

3.2 Relational Fuzzy C-Means (NERFCM)

As with any fuzzy clustering algorithm, NERFCM assigns a set of N objects O = 
{o1, ..., oN} to C clusters by computing a fuzzy partition matrix U = {uij} i ∈ [1,C], j ∈ 

[1,N], U ∈ MfCN. Unlike other fuzzy clustering algorithms, NERFCM relies only on 
the dissimilarities between objects {dij}i, j ∈ [1,N]. The set of fuzzy partition matrices 
of size C × N, MfCN, can be more exactly described as
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The NERFCM algorithm requires that the elements of the dissimilarity ma-
trix (also called the relational matrix) DN = {dij |i,j ∈ [1, N]} satisfy the following 
conditions:

d1.   ii = 0, for all i ∈ [1,N];
d2.   jk ≥ 0, for all j,k ∈ [1,N];
d3.   jk = dkj, for all j,k ∈ [1,N].

If the distance matrix DN were obtained by computing the distance between 
the objects represented in some feature space FS ⊂ Rp, then DN would be called 
Euclidean. In general, if DN were obtained by employing a dissimilarity measure 
between objects, such as computing the sequence dissimilarity using BLAST [1], it 
might not be Euclidean. The NERFCM algorithm was especially designed to han-
dle non-Euclidean relational data.



NERFCM is an iterative algorithm that has three main steps. First, an initial 
guess, U0, for the fuzzy partition matrix U = {uij}i ∈ [1,C], j ∈ [1,N], is used to compute 
C cluster-center vectors, vi, as

 ( ) [ ]1 2
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, , , , 1,
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m m m m
i i i iN ij
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= ∈∑v  (3.2)

where m ∈ (0,∞) is a parameter (or fuzzifi er), usually chosen to be 2. Essentially, vi 
can be interpreted as a virtual object represented as a mixture of the objects oj, j ∈ 
[1,N]. The initial guess, U0, can be obtained by random initialization, with numbers 
in [0,1], followed by column normalization.

Second, the dissimilarities dij, from each object oj to the ith cluster center, are 
computed as
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where DN is the dissimilarity matrix between the N objects considered.
Last, an updated fuzzy membership matrix, { } [1, ], [1, ]ijU u i C j N= ∈ ∈′ ′ , is com-

puted using
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This equation is similar to the related one from FCM [4]. Note, however, that 
since in (3.4) the dissimilarities are already squared, it does not have the usual 2 in 
the 1/(m − 1) exponent. If dij is smaller than a given ε, 0 < ε << 1, uij is set to 1, and 
the rest of the memberships in cluster i are set to 0. 

If DN is non-Euclidean, some of the computed distances from (3.3) may be 
negative, and they could not be used in (3.4). To address this problem, NERFCM 
uses a β-spread transform [12] that increments, at each iteration, the nondiagonal 
elements of DN with a quantity Δβ, given by
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Accordingly, the distances computed with (3.3) are modifi ed using

 [ ] [ ]2
2 , 1, , 1,ij ij i jd d v e i C j Nβ= +Δ − ∈ ∈  (3.6)

The distances dij that are still negative after the above correction are set to 0. 
The summary of NERFCM is given below.

NERFCM Algorithm: Cluster N samples in C clusters.
 Input: DN = an N × N dissimilarity matrix
   C = the number of clusters
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   U0 = an initial guess of the fuzzy membership matrix
   MAXIT = maximum number of iterations
   DEL = desired fuzzy membership matrix precision
 Step 1: Initialize U = U0, it = 0, β = 0, δ = BIG_NUMBER.
 while δ < DEL and it < MAXIT
       Step 2: for i = 1,C
      Compute vi using (3.2) 
  end
       Step 3: for i = 1,C and j = 1,N
      Compute dij using (3.3)
   end
    if any dij < 0 
  compute correction Δβ using (3.5)
  modify distances dij using (3.6)
  if some dij are still < 0, set dij = 0
    end 
       Step 4: recompute fuzzy memberships U′ using (3.4)
    it = it + 1
    δ = ||U′ − U||; U = U′;
 end
 Output: U = a C × N fuzzy membership matrix.

3.3 Correlation Cluster Validity (CCV)

Correlation cluster validity (CCV) [31] is a validity measure for fuzzy clustering of 
relational datasets. Assume we want to estimate the number of clusters for a set of 
N objects O = {o1, ..., oN}, given the dissimilarity matrix DN = {dij} i,j ∈ [1,N] between 
them. For a fi xed value C, let U be the fi nal fuzzy partition matrix obtained, say, 
by running NERFCM on DN. The main idea of CCV is to defi ne a reconstruction 
matrix U* as

 { }( )* 1 maxt tU U U U U= −  (3.7)

The assumption used in CCV to fi nd the estimated number of clusters, C, is that 

the best grouping results in a maximum correlation between U* and DN; that is, 

1 2

*
[ , ]arg max { ( , )}i C C i NC corr U D∈= , where *

iU  denotes the reconstruction matrix gen-

erated by the i × N fuzzy membership matrix obtained by grouping the N objects 

into i clusters. The correlation between the two matrices, *( , )i NU D , is computed 

using the Pearson formula. The summary of the CCV algorithm is given below.

CCV Algorithm: Estimate the number of clusters for N objects.
   Input: DN = an N × N dissimilarity matrix
    m = fuzzifi er value
    [C1,C2] = an interval for searching the number of clusters
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         for i ∈ [C1,C2] do
 Step 1: Compute fuzzy memberships for i number of clusters U =
   NERFCM(DN, m, i)
 Step 2: Compute the reconstruction matrix *

iU  using (3.7)
 Step 3: corr(i) = Pearson( *

iU  ,DN)
         end
   Step 4: 

1 2[ , ]
arg max{ ( )}

i C C
C corr i

∈
= ;

   Output: C = the estimated number of clusters.

3.4 Ontological SOM (OSOM)

One way that researchers have dealt with conventional high-dimensional datasets is 
to employ self-organizing maps (SOM), as initially proposed by [18–20]. The SOM 
allow these types of data to be effectively visualized in two or three dimensions, 
by combining the goals of both projection and clustering algorithms [16]. In [13], 
we described a novel extension to the SOM that allows us to use the SOM with 
ontological data.

The self-organizing map is a two-layer, lateral feedback neural network that 
topologically maps itself to the training data. The network structure is often set to 
a two-dimensional rectangular, toroidal, or hexagonal grid of P nodes, where each 
network node (neuron) ai ∈ R2, i ∈ [1, P], is laterally connected to its neighbors. 
Assume we want to cluster a set of N objects O = {o1, ..., oN} represented by M 
ontology terms. Each object oi is represented as a binary vector xi = (xi1, xi2, ..., 
xiM) with xij ∈ {0,1}, where xij = 1, if the object i is annotated with the jth ontol-
ogy term, and M is the total number of ontology terms available. Each node ai 
is connected to a prototype wi ∈ RM from the feature space. The standard SOM 
network learning algorithm is iterative, and it has two main steps [19]. In the fi rst 
step, the closest SOM prototype, wp, to a randomly drawn sample from the data, 
xd, is updated using
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where ||⋅|| is any distance metric, and ( )old
iw  are the prototype values from the previ-

ous iteration. In the second step, the SOM prototypes for nodes in a neighborhood 
of the node ap connected to wp are updated by
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where ε is the learning rate. In (3.9) above, hip is a neighborhood function defi ned 
as

 ( )

2

2

1
exp

i p

iph
tσ

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟⎝ ⎠

a a

 (3.10)

that is, ai are SOM nodes in a Gaussian-shaped neighborhood of ap (e.g., a square 
or hexagonal grid) with a radius determined by the variance σ2(t).
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This algorithm is repeated until a maximum number of iterations are com-
pleted, or there is no change in the position of the nodes aj, j ∈ [1,P]. Typically, 
the learning rate ε(t) and the radius of the neighborhood function σ2(t) are reduced 
during iteration, with the effect that late iterations are only updating network pro-
totypes local to the winning prototype wp.

The ontological self-organizing map, OSOM, proposed in [13] is an adapta-
tion of the standard SOM to ontological data. First, we construct an ontological 
prototype vector wi ∈ [0,1]M, i ∈ [1,P], for each node in the OSOM grid. Each 
prototype vector element, wij, represents the contribution of the ontology term j to 
the description of the associated node ai. 

Second, we replace the distance metric in step 1 of the SOM (3.8) with an 
ontology-based dissimilarity measure. The measures we may use [13] are vector-
matrix multiplication-based operations that are simple extensions of the measures 
described in Chapter 2. For example, the average dissimilarity is defi ned as
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where DM is the term-dissimilarity matrix computed using one of the methods pre-
sented in Chapter 2 (e.g., an information-content measure) and xj is the jth data 
vector. Note that the presence of the dissimilarity matrix, DM, in (3.11) provides a 
mapping among the dimensions of the prototype vectors wi.

Finally, we replace the prototype-vector update equation in step 2 of the SOM 
with a dissimilarity-based update. In order to create the new update equation, we 
defi ne two axioms that the equation must satisfy:

Axiom 1. The prototype vectors must move closer to the randomly chosen 
training data vector xd, d ∈ [1, N], at each iteration.

Axiom 2. The prototype vectors must also move closer to terms that are similar 
to the terms in xd, d ∈ [1, N].

With these axioms in mind, we created the following update equation:

 
( ) ( ) ( ) ( ) ( )( ),new old old
i i ip M d it h F Dε= + ⋅ ⋅ −w w x w  (3.12)

where p denotes the closest OSOM prototype to the randomly chosen training vec-
tor xd, i denotes the nodes from its neighborhood and F(DM, xd) is an update opera-
tor. The update operator is computed from the columns of the dissimilarity matrix 
that correspond to nonzero elements of the training vector xd. These columns of the 
dissimilarity matrix represent the dissimilarity between the nonzero terms in xd and 
all other terms (e.g., DM,ii because a term is perfectly similar to itself). Hence, the 
update operator F(DM, xd)computes a row aggregation on the dissimilarity matrix 
DM and training vector xd, producing the update step for the OSOM prototypes. 
The operator F can be defi ned using a MAX operator as
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 ( ) ( ) { },, max 1MAX
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where i = {j|j ∈[1, M];xdj =1}, k ∈ [1,M]; that is, we consider not only the terms that 
annotate xd, but also the degree to which the other M terms are similar to them. 
In other words, F(MAX) pushes the OSOM prototypes toward the terms present in 
xd and, additionally, pushes the prototypes toward all the terms represented in DM 
that are similar to any one of the terms in xd. Other aggregation operators can be 
found in [17].

An outline of the OSOM algorithm is given below.

OSOM Algorithm: Visualize the grouping of N objects based on their ontology 
description.
Input: −{xi}, i ∈ [1,N], xi ∈ [0,1]M = a set of N vectors that describe objects using 
M ontology terms.

   - DM = a dissimilarity matrix between the M ontology terms (see Chapter 2)
   - P = the number of nodes in a grid
   - grid topology
   - initial and fi nal learning rate:ε0, εf ; initial and fi nal radius: σ0, σf
   - 0{ }iw  = a random initialization of prototype weight vectors wi ∈ [0,1]M

   - tmax = a maximum number of iterations
   - set 0t ←

while t < tmax do
1. Randomly draw a single training data vector, wi.
2. Find closest prototype, wp = arg mini S(wi, xd) using (3.11).
3. Update prototype vectors with (3.12).
4. Decrease the neighborhood size: max/

0 0( ) ( / )t t
ftσ σ σ σ= .

5. Decrease the learning rate max/
0 0( ) ( / )t t

ftε ε ε ε= .
6. 1t t← +

end
Output: a mapping of the N objects defi ned by the position of the P nodes of the 
grid.

The parameters, such as the learning rate and maximum iterations, are set ac-
cording to the specifi c problem.

3.5 Examples of NERFCM, CCV, and OSOM Applications

3.5.1 Test Dataset

The basis of our illustrative computations is a set of 194 human gene products [30] 
that were clustered into three protein families using Markov clustering (MCL) [9]. 
The gene products (and the related information) were retrieved on December 10, 
2003 using the ENSEMBL browser (http://www.ensembl.org/). In Table 3.1, we 
give a summary of the dataset, called GPD194, containing information on these 
families.
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The GPD194 dataset has several noteworthy characteristics: (1) each group has 
multiple well-characterized genes, many of which are involved in human disor-
ders when mutated, and all of which could be considered very similar in both 
structure and function; (2) several of the genes, especially the receptor precursor 
genes, are characterized by multiple isoforms represented by multiple sequences, 
and thus represent extremely similar gene products; (3) the MCL clustering avail-
able through ENSEMBL pulled together these gene groups, allowing us a cluster 
method by which to compare our results. The myotubularins have protein tyrosine 
phosphatase enzymatic activity, are involved in dephosphorylation, and are ac-
tive in muscle tissue. The receptor precursor proteins are integral to the plasma 
membrane and are involved in the fi broblast growth-factor-signaling pathway in-
fl uencing cell division and cell differentiation. The collagen alpha-chain genes are 
involved in producing the alpha chain of type 1 collagen that adds strength and 
structure to connective tissue found in ligaments, bones, and cartilage.

3.5.2 Clustering of the GPD194 Dataset Using NERFCM

The GPD194 gene products were annotated at the time of retrieval (December 10, 
2003) by a total of 64 GO terms. Each individual gene product was annotated 
by between 2 and 10 GO terms. The purely relational dissimilarity matrix DFSM 
(GPD194) between the 194 gene products from GPD194 computed using the fuzzy 
measure dissimilarity [30] on the set of GO annotations is shown in Figure 3.1. We 
mention that the above similarity could have been computed using any of the GO 
similarity methods described in Chapter 2.

Figure 3.1 shows that the gene products indexed 1 to 21 seem to be strongly 
similar to each other and not to the remaining gene products, indicating that they 
should end up in a single cluster. Similarly, the gene products indexed 22 to 108 and 
109 to 194 show dissimilarity patterns that seem to be related to the ones described 
in Table 3.1. Of course, we have ordered the gene products so that this similarity 
structure is apparent to the reader. In general, this dissimilarity matrix is presented 
to a clustering algorithm in a randomized manner. After running NERFCM with 
C = 3 and m = 2, the cluster memberships shown in Figure 3.2 seem to tell another 
story.

The memberships in cluster 1 are the greatest for gene products with indexes 
from 22 to 108, suggesting that these gene products belong to the same cluster 
(cluster 1, row 2 in Table 3.1); however, gene products indexed 1 to 21 and 154 to 
194 seem to be clustered together (membership in cluster 2 is the greatest for those 
indexes). Moreover, the third group from Table 3.1 (gene products 109 to 194) is 

Table 3.1 Summary of the GPD194 Dataset
ENSEMBL
Family (ENSF)

Fi = Protein 
Family

No. of
Genes

Ni = No.
of Sequences

339 Myotubularin 7 21
73 Receptor 

precursor
7 87

42 Collagen
alpha chain

13 86
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split in two clusters, cluster 2 (indexes 154 to 194) and 3 (indexes 109 to 153). 
These observations suggest that GPD194 does not contain 3 clusters as claimed by 
ENSMBL in 2003, which leads us to the question: How many clusters are in the 
GPD194 dataset?

3.5.3 Determining the Number of Clusters of GPD194 Dataset Using CCV

To estimate the number of clusters present in the GPD194 dataset, we use the CCV 
algorithm described in Section 3.3. The algorithm consists of repeatedly applying a 
fuzzy clustering algorithm (NERFCM, in our case) for different numbers of clusters 
and computing the correlation between each resulting reconstruction matrix (see 
(3.7)) and the original dissimilarity matrix.

The plot of the correlation value at different numbers of clusters for the GPD194 
dataset is shown in Figure 3.3. The maximum correlation, about 0.95, is obtained 
for C = 5, suggesting that GPD194 contains 5 clusters. These clusters from NER-
FCM with C = 5 and m = 2 are shown in Figure 3.4, delimited by a dotted line.

Figure 3.1 The fuzzy measure dissimilarity matrix, DFSM(GPD194), for the GPD194 GO annotation 
dataset.
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With few exceptions, the indexes of the gene products from Figure 3.4 corre-
spond to those in Figure 3.1 (cluster 1 pulled in a few extra gene products). Here, 
CCV found that the third cluster in Figure 3.1 (third row in Table 3.1, represent-
ing the collagen family) contains 3 subclusters. This fi nding has been verifi ed by 

Figure 3.2 The fuzzy memberships for the GPD194 dataset, computed using NERFCM clustering 
algorithm with C = 3 and m = 2.

Figure 3.3 The CCV correlation values versus the number of clusters for the GPD194 dataset obtained using 
NERFCM with m = 2.
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[22]. From the 9 collagen families mentioned by Myllyharju and Kivirikko [22], 
we have in our dataset only 3 collagen subfamilies: fi bril-forming collagens (FFC): 
{COL1A1, COL2A1, COL3A1, COL5A3, COL24A1, COL27A1}, type IV colla-
gens {COL2A1, COL2A2, COL2A3, COL2A6}, and the fi bril-associated collagens 
with interrupted triple helices (FACIT) {COL9A1, COL9A2, COL21A1}, which 
are exactly the 3 subclusters found by CCV [30].

3.5.4 GPD194 Analysis Using OSOM

We apply our ontological self-organizing map (OSOM) to produce cluster visual-
ization and functional summarization of the GPD194 dataset. 

3.5.4.1 GPD194 Visualization Using OSOM

We applied the OSOM algorithm described in Section 3.4 using a toroidal grid-
based network with P = 400 neurons (a 20 × 20 matrix). The learning rates are {ε0 
= 0.5, εf = 0.005}, the radii of the lateral infl uence function in (3.10) are {σ0 = 3.0, 
σf = 0.1}, and the maximum number of iterations is tmax = 10,000.

The visualization method maps the gene-product profi les (the OSOM proto-
types) of the OSOM network to the nodes of the two-dimensional toroidal grid 
(see Figure 3.5).

Figure 3.4 The fi ve clusters identifi ed in the GPD194 dataset from NERCM.
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To show the cluster tendency of gene products, the relations between neighbor-
ing gene -product profi les on the grid are displayed as gray levels—black represent-
ing no relation and white representing highly related.

The visualization method we propose is composed of two distinct steps. (1) the 
gene products are mapped to the trained OSOM network by the nearest prototype 
rule—for each gene product x, fi nd the best match prototype 

[1, ]
arg min{ ( , )}p i

i P
S

∈
=w w x  . 

In this fashion, the node p of the network is associated with the gene product x. 
As a result, similar gene products are mapped to groups of similar nodes in the 
network; (2) the similarity between neighboring OSOM nodes is mapped into a 
grayscale image—white showing high dissimilarity, black showing very low dis-
similarity [16]. Figure 3.6(a) illustrates this mapping using the AVG dissimilarity 
operator (3.11) and MAX update operator (3.13). The white regions correspond 
to groups of similar gene product, while the black regions show the boundaries 
between groups that are dissimilar. Please note that, due to the toroidal topology of 
the OSOM network, the top and bottom, as well as the sides, wrap around.

The dissimilarity between nodes is then calculated by an average operator

 ( ) ( ) 2,
t
i M jOSOM

i j

D
S

M
=

w w
w w  (3.14)

And this dissimilarity is calculated between each node of the OSOM net-
work in the up-down, left-right, and four diagonal directions. Thus, each pro-
totype node has eight surrounding pixels that correspond to its dissimilarity to 
neighboring nodes. The grayscale color map is set such that white corresponds 
to ( )

,max [ ( , )]OSOM
i j i jS∀ ∀ w w  and black corresponds to ( )

,min [ ( , )]OSOM
i j i jS∀ ∀ w w  for a 

given network, where i ∈ [1,NH], j ∈ [1,NV], and NH, NV are the horizontal and 

Figure 3.5 The toroidal grid used in the GPD194 OSOM representation.
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vertical dimensions of the grid, respectively (in our case, NH = 20, NV = 20). The 
color at the node location is interpolated from the eight surrounding pixels.

As a result of this coloring method, regions that are lightly colored represent 
groups of similar gene products, while darker regions signify outliers or gene prod-
ucts that are dissimilar to the surrounding groups. In addition, the degree of dis-
similarity can be seen in the intensity of the regions. For example, in Figure 3.6(a), 
the light region on the right is a highly similar group, while the more gray regions 
signify dissimilarity to a lesser degree, and the black regions denote boundaries be-
tween dissimilar groups of gene products. In contrast to OSOM, in Figure 3.6(b), 
we show the same map obtained using the regular SOM, that is, the SOM where 
no ontological similarity was used. 

The three GPD194 families can be seen in Figure 3.6(a) as light-colored islands. 
The collagen alpha chains are located in the top-left and bottom-left (recall that the 
grid is toroidal; hence, these two regions are actually connected). The myotubular-
ins are located at the top-right and bottom-right. Lastly, the receptor precursors, 
which are the most tightly grouped gene products (they are mapped to a bright 
region), are located at the right-middle of the image. We note that the TEK gene 
was mapped into 2 nodes (10, 3) and (19, 10). This was due to the fact that, in 
this version of GO annotations, the gene product mapped to the node (10, 3) had 
the wrong annotation. In contrast, each family is broken in 2–4 pieces in the SOM 
map, as shown in Figure 3.6(b).

3.5.4.2 Functional Summarization of Gene Product Clusters

Functional summarization of the gene-product profi les is achieved by examining the 
OSOM prototype weight vectors. The ontological content of each OSOM prototype 
is represented by a vector, as discussed in Section 3.4. Each element of the prototype 
vector can be viewed as the infl uence of a specifi c GO annotation in defi ning the 
profi le of its associated OSOM node. Thus, high values in a prototype vector signify 
a high likelihood that the gene products mapped to that location in the OSOM are 
annotated by that specifi c term or by a term that is very similar, according to the 
specifi ed term-based dissimilarity measure. We defi ne the most representative term 
(MRT) of a gene-product profi le as the term that has the highest associated weight 
in the OSOM prototype vector.

The strength of the OSOM visualization method is that it shows the overall 
dissimilarity of the genes as seen by the three distinct islands, which represent the 
three families. However, groups are mapped to different locations due to minor dif-
ferences in their ontological data. In Table 3.2, we present the MRTs for the entire 
trained OSOM network, as shown in Figure 3.6(a).

The terms from the Table 3.2 represent a functional summarization of all the 
gene-product groups present in the GPD194 dataset. The dataset has been sum-
marized using the following eight GO terms: protein amino acid dephosphoryla-
tion, extracellular matrix structural constituent, kinase activity, receptor activity, 
protein-tyrosine kinase activity, ATP binding, cell adhesion, and collagen type IV. 
The gene summarization was performed using only 8 of the 64 GO terms used in 
the annotation of the GPD194 dataset.
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3.6 Conclusion

In this chapter, we presented several algorithms that use ontologies. NERFCM, a 
fuzzy relational clustering algorithm, can be used to cluster objects described by 
ontology terms. The dissimilarity between objects can be computed as in Chapter 
2, but also with other distance measures that can deal with multiple variable types 

Figure 3.6 The OSOFM map (a) and standard SOM map (b) for the GPD194 dataset.
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(see examples in [8, 38]). The resulting fuzzy cluster memberships can be used in 
automatic ontology annotation based on the guilt-by-association paradigm or in 
data summarization (see [27, 29] and Chapter 8 for more examples). Related to 
NERFCM, we presented CCV, a cluster-validity measure for relational datasets. It, 
too, can be used in data summarization.

Last, we presented OSOM, a version of the well-known self-organizing maps 
(SOM) algorithm, that was modifi ed to include Gene Ontology term-dissimilarity 
information. 

We believe that the inclusion of ontological information in existent clustering 
algorithms can lead to new knowledge-discovery tools that are able to reveal new 
facets of the represented objects.
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C H A P T E R  4

Analyzing and Classifying Protein Family 
Data Using OWL Reasoning

Katy Wolstencroft, Rachel Brenchley, Lydia Tabernero, and Robert Stevens

4.1 Introduction

The classifi cation of the genes and proteins expressed by an organism is an im-
portant step in understanding its molecular biology. Much of this process can be 
automated by applying bioinformatics tools to the sequence data. Genes can be pre-
dicted, and the functions of the resulting proteins can be characterized by similarity 
searching and domain-architecture analysis. These analyses, however, describe the 
sequence features of proteins, but they do not classify them. This is often where the 
automation stops. Expert curators perform the fi nal step of classifi cation. Scientifi c 
curators can recognize the functional properties that are suffi cient to place an indi-
vidual gene product into a particular protein family group. Automating this fi nal 
classifi cation step would be advantageous in order to manage the growing number 
of genomes and the rapid changes in knowledge about protein families. 

This chapter describes the use of description-logic reasoning over an OWL on-
tology to automate the classifi cation of proteins into family and subfamily groups. 
The ontology captures the domain-architecture properties of the different members 
of a protein family. Protein instances can be analyzed using standard sequence-
analysis tools, and a description-logic reasoner can classify them as instances of 
particular classes by the combinations of domains they contain.

This is a novel approach for applying ontology reasoning to biological data. 
Instead of using the ontology simply as a static vocabulary for annotation, we use 
the formal class descriptions in OWL to classify and catalog data in an analysis 
pipeline. 

We demonstrate the automated classifi cation system using a large protein fam-
ily, the protein phosphatases. Studies of the human and Aspergillus fumigatus 
genomes found that our knowledge-based, automatic classifi cation matches, and 
sometimes surpasses, that of the human curators. We have made the classifi cation 
process fast and reproducible, and where appropriate knowledge is available, the 
method can be generalized for use with any protein family. This methodology does 
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not use any new bioinformatics techniques or algorithms for detecting sequence 
features. Instead, it augments existing tools by providing a novel method for inter-
preting the results of these techniques and algorithms to perform automatic protein 
classifi cation. 

The fi nal part of the chapter describes the use of this classifi cation system 
for a comparative study of the protein phosphatases from three parasite species, 
Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. This study is 
the fi rst application of the ontology classifi cation method in the fi eld, illustrating 
the advantages of such an approach. The work described in this chapter has been 
published in [1–3].

4.1.1 Analyzing Sequence Data

This method focuses on classifying proteins into families and subfamilies. A protein 
family is a group of proteins, descended from a common ancestor, typically sharing 
similar functions and three-dimensional structures, as well as sequence similarity. 

In order to classify proteins in this way, we need to fi rst analyze the raw se-
quence data to identify which sequences are protein phosphatases, and within those 
sequences, which phosphatase family and subfamily groups they belong to.

There are several methodologies which could be employed to discover and 
extract protein phosphatase sequences using bioinformatics tools. For instance, 
similarity searching with a tool such as BLAST [4] could be used to identify all 
sequences over a certain similarity threshold, but this alone does not determine the 
differences between subfamily members. The demarcation between closely-related 
subfamilies would remain ambiguous. An additional approach would be to analyze 
the domain architecture of each protein.

Many proteins are assemblies of functional domains and/or motifs (hereaf-
ter referred to as p-domains for protein domains). Each p-domain might have a 
separate function within the protein, such as catalysis or regulation, but it is the 
composition of the different p-domains that gives each protein its specifi c function. 
Performing this type of analysis would enable small functional differences to be 
determined, but these tools simply report the presence of domains, not the conse-
quences of the p-domain combinations for classifi cation. 

There are many tools dedicated to discovering functional p-domains in pro-
teins, for example, PROSITE [5], SMART [6], and Pfam [7]. Each tool employs 
different methods. PROSITE uses pattern matching to detect single motifs and 
domains, whereas Pfam uses hidden Markov models (HMMs). The InterProScan 
tool [8] provides an integrated view of these and many other functional domain 
resources. InterProScan combines all of the different techniques, allowing all to be 
accessed from a single query.  

In certain cases, the presence of a p-domain is diagnostic for membership in a 
particular protein family, for example, the protein tyrosine kinase’s catalytic do-
main is diagnostic of the tyrosine kinases. Classifi cation at a fi ne-grained level, 
into subfamilies, however, is not usually possible without further analysis. For 
automated classifi cation methods, this need for extra human intervention limits 
performance. Ontologies provide a technology for capturing and using this human 
understanding of an area of research within computer applications.
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4.1.2 The Protein Phosphatase Family 

Protein phosphatases, in conjunction with protein kinases, are involved in the con-
trol and regulation of numerous biological processes and cellular pathways. For 
example, cell signaling cascades, cell cycle regulation, homeostasis, and cell growth 
and differentiation [9, 10]. It is estimated that in a eukaryotic genome, approxi-
mately 3% of expressed genes encode protein kinases or protein phosphatases [11], 
and that, at any one time, one-third of proteins in eukaryotic cells are phospho-
rylated [12], demonstrating the importance and abundance of these molecules in 
cellular function.

The implication of phosphatases in human diseases, such as diabetes, cancer, 
and neurodegenerative conditions [13–15], makes the protein phosphatase family 
an interesting target for medical and pharmaceutical research. The size of the fam-
ily means that classifi cation at a detailed level is vital for understanding the biologi-
cal role of individual proteins and for comparative genomic studies. Phosphoryla-
tion events have also been found to be important for controlling the life cycle of 
parasites, which was the motivation for applying this analysis method to the study 
of phosphatases in the three newly sequenced parasite genomes.

The phosphatase group of enzymes are divided into four distinct gene families, 
PPP and PPM [16], which are both serine/threonine phosphatase families, PTP [17, 
18], which are protein tyrosine phosphatases and protein histidine phosphatases 
[19]. Additionally, the lipid phosphatases [20] are often included as part of the PTP 
gene superfamily. In vivo, their physiological substrates are phosphoinositides, but 
they have been shown to exhibit poor catalytic activity with protein substrates in 
vitro, and there is a distinct evolutionary relationship with the PTP family [21]. 
Dual specifi city phosphatases (DUSP) are also included in the PTP superfamily, 
and they can dephopsphorylate both phosphotyrosine and phosphoserine/threo-
nine residues [18].

Recent reviews on the protein phosphatase family [17, 18, 22, 23] focus on 
either tyrosine phosphatases or serine/threonine phosphatases. There have been 
extensive studies into the characterization of each in the human genome. Although 
each type of phosphatase performs the same chemical reaction in the cell, the re-
moval of a phosphate group, there are distinct differences in their biological roles 
and catalytic specifi city [16]. 

Most serine/threonine phosphatases are multisubunit complexes, combining a 
catalytic subunit with regulatory and targeting subunits. The fi nal combination of 
subunits produces the resulting number of each serine/threonine phosphatase in a 
given organism. For example, the protein phosphatase 1 catalytic subunit binds to 
different regulatory subunits. Approximately 100 of these regulatory subunits have 
been identifi ed to date [24], providing differences in substrate specifi city, subcel-
lular localization, and enzymatic activity. 

The tyrosine phosphatase family presents a less-complicated picture. Instead 
of protein complexes, they are single polypeptides with different noncatalytic do-
mains providing differences in specifi city or subcellular and tissue location. The 
necessity for fi ne-grained classifi cation is, however, increased with the subtlety of 
the differences between closely related proteins performing different functions. 
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4.2 Methods

4.2.1 The Phosphatase Classifi cation Pipeline

Membership of the PPP, PPM, PTP, and the lipid phosphatases can be determined 
by the presence of phosphatase catalytic domains. This enabled the optimization of 
the steps involved in gathering and annotating the raw data. Analyzing a protein us-
ing InterProScan can take several minutes, but since we were only interested in pro-
teins with a phosphatase catalytic domain, we could use other screening methods 
to fi lter these before proceeding with InterProScan. The whole process was further 
optimized by designing a Taverna workfl ow [25] to automate the orchestration be-
tween the prescreening fi lter, the InterProScan analysis, and the loading of the raw 
data into the ontology reasoning system. Taverna is a workfl ow-management sys-
tem, which allows the interconnection of distributed services and data resources.

The following steps describe the workfl ow of bioinformatics processes per-
formed in this application: 

Prescreen for protein phosphatase sequences from among all protein1.   
 sequences, using the Web-service interface to the EMBOSS program, 
 patmatdb [26]; 

InterProScan on each protein phosphatase to determine its domain 2.   
 composition, using the InterProScan Web service available from the EBI;1

Transformation of the XML output from the InterProScan analysis into 3.   
 protein instances for the OWL ontology, using a Web-service wrapper of a
 bespoke local Java script;

Reasoning over the phosphatase ontology to infer to which class of protein 4.   
 phosphatase each protein instance belongs.

The fi nal step in this process usually requires human analysis, but in this meth-
od, it can be supported computationally by the use of an ontology. A protein phos-
phatase ontology, expressed in OWL, captures the necessary and suffi cient prop-
erties for membership in each protein phosphatase subfamily. The reasoner can 
compare these properties with the domain-architecture properties of each protein 
phosphatase instance, as determined by the preceding data analysis steps.

4.2.2 The Datasets

The human protein phosphatases have been extensively studied and classifi ed by 
experts in the fi eld. The domain architectures of each phosphatase family and sub-
family have been well characterized, and the differences between them have been 
described (see Figure 4.1) [18]. The availability of detailed knowledge makes this 
group of proteins a suitable test case for the ontology reasoning methodology. 
Demonstrating that reasoning over the ontology can classify the human proteins 
in the same way as human experts validates the methodology. To demonstrate the 
generic applicability of this method, we also used it to analyze proteins from Asper-
gillus fumigatus. At the time of the study, the A. fumigatus genome had recently 

1. http://www.ebi.ac.uk/Tools/webservices/services/InterProScan
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been sequenced and the data pertaining to protein sequences had been analyzed 
only by automated-sequence analysis methods, with very little curation. Therefore, 
this data enabled a comparison of the automated classifi cation with that of simple 
automated-sequence analysis. Finally, the ontology method was used to analyze 
three closely-related protozoan parasite genomes: Trypanosoma brucei, Trypano-
soma cruzi, and Leishmania major. These were new datasets on which no previous 
analysis had been performed. In this case, the objective was to identify, catalog, 
and compare the protein phosphatases from each organism for studies into cell 
signaling, which has been found to play a part in infection by these parasites. It was 
expected that the three parasite genomes would have similar numbers and types of 
phosphatises, due to their close evolutionary relationships, and that we would see a 
more divergent picture between the human, Aspergillus, and parasite data.

4.2.3 The Phosphatase Ontology

The ontology is a representation of expert knowledge in the area of protein phos-
phatases. It is a model that describes the properties of each family and subfamily 
and the physical p-domain features required for inclusion in each family and sub-
family. It contains descriptions of each major protein phosphatase family, the PTP, 
PPM, PPP, and lipid phosphatases, with a set of necessary and suffi cient proper-
ties (conditions) for membership in each. These major families are further divided 
into subfamilies, and additional properties for each subsequent subfamily are also 

Figure 4.1 Relationships between the different family and subfamily groups in the protein phos-
phatase family.
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described. This creates a hierarchy with any subfamily group inheriting properties 
from the more general family classes. The open-world assumption, which underpins 
the OWL language, is essential for the classifi cation to work correctly. The same is 
true for the use of disjoint axioms and also qualifi ed cardinality.

For example, a tyrosine phosphatase must contain a tyrosine phosphatase 
catalytic domain, and a serine/threonine phosphatase must contain a serine/threo-
nine catalytic domain. Not only must the domains be present, but their presence is 
enough to recognize any given protein as a member of the class in question. These 
are the necessary and suffi cient conditions for membership in one of the main fam-
ily groups. A protein is an instance of the tyrosine phosphatase family if it contains 
at least one PTP catalytic domain. This is the diagnostic property for this protein 
family.

The OWL axioms say what must be present, but do not indicate that these 
domains are the only ones present; there may be others. It simply has not, as yet, 
been stated. If there are other domains present, they may enable further classifi ca-
tion into subfamilies, or they may simply be other properties of a protein sequence 
that do not feature in the classifi cation. The open-world assumption allows for this 
style of description. A class defi nition is constructed from a collection of properties 
and axioms that are necessary and suffi cient to distinguish it from other classes, 
but an individual may have more properties besides these, providing it has these as 
a minimum.

Disjoint axioms are equally useful for classifi cation and distinguishing close-
ly related individuals. For example, the defi ned classes tyrosine phosphatase and 
serine/threonine phosphatase are sibling classes and are disjoint. This means that 
protein sequences can satisfy only one of these sets of properties and be placed as 
an individual in only one of these classes. Disjointness does not need to be asserted 
between defi ned classes, as the necessary and suffi cient criteria enable the reasoner 
to work out to which classes any instance belongs, or which defi ned class might 
subsume another. Disjointness can also be asserted between primitive classes. Such 
axioms help describe to which classes an instance belongs.

The segregation of the protein phosphatases at the level of tyrosine verses ser-
ine/threonine refl ects the current knowledge of the domain. There are currently no 
examples of phosphatases that contain both catalytic domains. If we were to fi nd 
data to suggest otherwise, we would have to refi ne the ontology model. 

The same disjoint axiom pattern is used throughout the ontology, allowing the 
reasoner to differentiate and classify instances between sibling class assignments. 
Qualifi ed cardinality restrictions are applied in areas in which two sibling class def-
initions contain the same combination of p-domains, but in different quantities.

Figure 4.2 illustrates the p-domain architectures of the PTP family, demonstrat-
ing that each can be differentiated by cataloging and counting the presence and 
absence of p-domains. Figures 4.3(a) and 4.3(b) provide examples of class defi ni-
tions from the ontology. 

The full protein phosphatase ontology is available at: http://www.bioinf.man-
chester.ac.uk/phosphabase/links.html. The ontology describes classes of phos-
phatases, but not individual proteins. An Instance Store [27] was used in order 
to reason over the descriptions of individual proteins and to enable the storage of 
those descriptions. Instances can be asserted and stored in OWL ontologies (i.e., 
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inside Protégé2), but at the start of this work there was a potential problem with 
scalability. Adding more than approximately 1,000 instances affected the perform-
ance of reasoning over the data. It was not expected that individual genomes would 
typically contain more than this number of phosphatases, but to make use of such 
a technology in comparative studies, it was a consideration.

2. http://www.co-ode.org/downloads/protege-x/

Figure 4.2 The differences in domain architecture of the receptor tyrosine phosphatase subfamily. 
White oval = phosphatase catalytic domain. Vertical bar = transmembrane region, white triangle = 
immunoglobulin domain, black hexagon = fi bronectin domain, black diamond = MAM domain, 
black rectangle = carbonic anhydrase domain, grey oval = adhesion recognition site, white square = 
glycosylation, and black oval = cadherinlike domain 

Figure 4.3 (a) Necessary and suffi cient properties for membership in the protein tyrosine phos-
phatase family and (b) necessary and suffi cient properties for membership in the receptor tyrosine 
phosphatase 2A subfamily. R2A is a subclass of tyrosine phosphatase, so the R2A defi nition, therefore, 
also fulfi lls the conditions for membership in the tyrosine phosphatase family.
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These problems have now been overcome with a combination of improvements 
in description-logic reasoners, such as Pellet,3 and improvements in ontology-ed-
iting tools, such as Protégé. Protégé 4 is more scalable, so the use of the Instance 
Store may no longer be required for this methodology.

The Instance Store combines a description-logic reasoner with a relational da-
tabase. The OWL ontology is loaded into the Instance Store, and the reasoner uses 
this to perform the task of classifi cation; that is, from the OWL instance descrip-
tions given, it determines the appropriate ontology class for an instance description. 
The relational database provides the stability, scalability, and persistence necessary 
for this work. The Instance Store itself provides a relatively simple programmatic 
interface, allowing the assertion of descriptions and queries against the set of in-
stances. It uses highly optimized algorithms to denormalize datasets as they are 
asserted and later determine whether the information in the database is suffi cient 
to answer queries, or whether reasoning is required. 

4.3 Results 

4.3.1 Protein Phosphatases in Humans

The human phosphatase classifi cation results validated the ontology model and the 
methodology. The ontology classifi cation matched that of the human experts for 
each of the 118 proteins analyzed. A detailed comparison of the automatic classifi -
cation and the human expert classifi cation can be found in [2]. 

There were additional benefi ts from using the new method. The results provid-
ed an opportunity to refi ne the classifi cation further. In two of the dual-specifi city 
phosphatases, the study identifi ed additional functional domains [2].

In [18], Alonso et al., describe the atypical dual-specifi city phosphatases as 
being divided into seven subtypes. The largest of these have the same domain 
architecture; they contain tyrosine phosphatase and dual-specifi city catalytic do-
mains. However, several proteins have additional functional domains that have 
been shown to confer functional specifi city [28]. Classifying the proteins using the 
ontology highlighted more of these extra domains. 

The protein DUSC contains a zinc-fi nger domain (IPR007087). This protein 
has been characterized not only in the human genome [29], but in many other 
species [30]. In the classifi cation presented by Alonso et al. in [18], the protein is 
present, but is wrongly annotated as containing a FYVE domain. FYVE domains 
are different types of zinc-fi nger domains that occur in the myotubularin proteins, 
MTMR3 and MTMR4. Earlier reviews of the tyrosine phosphatase family, how-
ever, do include the zinc-fi nger domain in the protein [31]. These results illustrate 
an inconsistency in the accepted protein phosphatase community knowledge and 
highlight a possible disadvantage of human-expert annotation, namely, human 
error. 

The dual-specifi city phosphatase 10 protein (DUSP10) contains a disintegrin 
domain. Its UniProt record refl ects this,4 but the domain does not appear in any 

3. http://clarkparsia.com/pellet/

4. http://www.uniprot.org/uniprot/Q9Y6W6
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phosphatase characterization or classifi cation study. The domain architecture of 
DUSP10 is conserved in other species, which suggests a specifi c function for the 
domain, but currently available experimental evidence does not explain what this 
might be. 

4.3.2 Results from the Analysis of A. Fumigatus

In contrast to the human proteins, the phosphatases from Aspergillus fumigatus are 
not well characterized. At the time of the study, the genome sequence had only been 
available for a short period of time, and classifi cation and annotation were under-
way through the Central Aspergillus Data Repository (CADRE).5 

The function of some proteins had been determined by experimental methods, 
but most were simply predicted from in silico methods, by which functions were 
inferred using automated similarity searches. The annotations of the proteins with 
inferred functions refl ected this, with terms such as hypothetical and putative as 
part of the description. Therefore, in this case, the ontology method was being used 
as a primary method of classifi cation. The results were compared to those obtained 
using automated similarity searches, and it was found that the ontology method 
provided more detailed classifi cation.

The analysis results also provided a foundation for studying the differences 
between the protein phosphatases expressed in humans and in A. fumigatus. Fig-
ure 4.4 shows the comparative abundance of the family and subfamilies of phos-
phatases in A. fumigatus and human genomes.

The protein serine/threonine phosphatase composition remains relatively un-
changed, but there are radical differences between the tyrosine and dual-specifi ci-
ty subfamilies. Firstly, the number of proteins in A. fumigatus is greatly reduced. 
Where the human genome contains 16 myotubularin proteins and 11 MAP kinase 
phosphatase proteins, A. fumigatus contains only one of each. The number of clas-
sical protein tyrosine phosphatases is also reduced. There are no incidences of non-
receptor tyrosine phosphatases and only three receptor tyrosine phosphatases. 

When analyzing these results, the complexity of the two organisms must be 
taken into account. A. fumigatus is a pathogenic mold, and as such, protein phos-
phatases with tissue-specifi c expression in humans [32], for example, would not be 
expected to be conserved. 

The ontology classifi cation uncovered an A. fumigatus protein phosphatase 
with a novel domain architecture that was not present in the human phosphatases. 
Protein Afu5g09360 is a calcineurin protein (PP2B) that contains an extra home-
obox domain. The homeobox domain binds to DNA using a helix-turn-helix struc-
tural motif. It is found in a variety of DNA-binding proteins, many of which are 
transcription factors. 

PP2B is well conserved throughout evolution. Performing BLAST analyses on 
Afu5g09360 (data not shown) and InterProScans of the proteins exhibiting the 
most similarity revealed that the homeobox domain in PP2B was present in other 
Aspergillus species and closely related fungi, but was not present in any other taxo-
nomic group. This conservation strongly suggests a specifi c function for this extra 

5. http://www.cadre-genomes.org.uk/
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domain. Previous studies have identifi ed a divergence in the mechanisms of action 
of calcineurin in pathogenic fungi [33] and have also demonstrated that this is 
critical for virulence. Other studies on one function of calcineurin in Arabidopsis, 
Na+ ion homeostasis, [34] have revealed that a homeobox protein, Athb-12, is 
also involved. This study raises the possibility of a similar regulatory role for the 
homeobox domain in the A. fumigatus protein, but laboratory experimentation is 
required to investigate this possibility.

4.3.3 Ontology System Versus A. Fumigatus Automated Annotation Pipeline

Comparing the ontology classifi cation method with that of automated similarity 
search prediction methods yielded promising results. In many cases, the automated 
prediction approach underperformed when compared to the ontology system. The 
ontology classifi cation placed proteins into more specifi c classes. For example, the 
ontology classifi ed the protein Afu1g05640 as a myotubularin, a specifi c subclass 
of the dual-specifi city phosphatases, which is a lipid phosphatase. The annotation 
from the A. fumigatus sequencing consortium simply stated that it was a protein 
phosphatase (Table 4.1). 

There was one case in which the automated similarity search appeared to pro-
vide a more detailed classifi cation than the ontology, but with further investigation, 
this was proven false. The protein Afu2g11990 was annotated as a Pten phos-
phatase, whereas the ontology simply classifi ed it as a dual-specifi city phosphatase 
(the parent class of Pten). On closer inspection, however, the protein did not contain 

Figure 4.4 The numbers and subfamily types of protein phosphatases in human and A. fumigatus 
species. Human data is shown in gray and A. fumigatus in black.
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domains indicative of Pten proteins (18). A sequence similarity search revealed par-
tial similarity to the Pten protein from Dictyostelium discoideum, but this was in 
the region of the dual-specifi city phosphatase domain, so there does not appear to 
be suffi cient evidence to place this protein in the Pten phosphatase class.6

Overclassifi cation is as much of a problem as underclassifi cation. In time, the 
A. fumigatus data will be compared to related genomes, or inferences will be made 
about these proteins based on potentially misleading annotations. 

This demonstrates a clear advantage of the ontology approach. The ontology 
classifi cation is based on physical evidence from analyzing the sequence data. If 
functional domains are not detected, they cannot form part of the classifi cation, 
and the protein becomes an instance of a less-specifi c class.

A detailed description of the A. fumigatus phosphatase classifi cation, before 
and after ontology classifi cation, can be found in Wolstencroft et al. [1, 2], but 
Table 4.1 provides a summary.

4.4 Ontology Classifi cation in the Comparative Analysis of Three 
Protozoan Parasites—A Case Study

As unicellular organisms, kinetoplastid parasites have little in common with hu-
mans and other metazoans, except for essential eukaryotic cell processes preserved 
through evolution. To further determine the applicability of the ontology method 

6. Since this work, the PTEN protein subfamily has been studied in more detail and clearer diagnostic domains 
have been identifi ed. Under this classifi cation, there is more evidence that the protein in question is a PTEN 
protein.

Table 4.1 A Comparison of the Differences in Classifi cation Between the Automated Annotations 
Assigned to Phosphatases by the A. Fumigatus Sequencing Project and Classifi cation by the Ontol-
ogy Method

A. Fumigatus Annotation Ontology Classifi cation

Afu1g03540 Hypothetical protein Dual-specifi city phosphatase

Afu1g05640 Protein phosphatase Myotubularin

Afu5g11690 Related to protein tyrosine phosphatase PPS1 Dual-specifi city phosphatase

Afu4g07080 Putative dual-specifi city phosphatase Dual-specifi city phosphatase

Afu4g07000 Tyrosine phosphatase Tyrosine phosphatase

Afu4g04710 Putative tyrosine phosphatase MAP kinase phosphatase (MKP)

Afu6g06650 Conserved hypothetical protein Tyrosine phosphatase

Afu2g11990 Pten-3-phosphoinisitide phosphatase Dual-specifi city phosphatase

Afu3g12250 Putative protein tyrosine phosphatase Dual-specifi city phosphatase

Afu2g02760 Putative protein tyrosine phosphatase Dual-specifi city phosphatase

Afu3g10970 Protein tyrosine phosphatase Protein tyrosine phosphatase

Afu1g04950 Serine/threonine protein phosphatase 1 Classical serine/threonine phosphatase

Afu1g09280 Protein phosphatase 2C putative Protein phosphatase 2C

Afu1g15800 Protein phosphatase 2C putative Protein phosphatase 2C
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for protein phosphatase classifi cation across all organisms, three protozoan para-
sites were analysed, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania ma-
jor. The results from this analysis were also biologically useful in their own right. 
The similarities and differences in cellular signaling mechanisms between these or-
ganisms are important in the study of the human diseases for which they are respon-
sible (the Tritryps diseases).

An important reason for choosing these organisms was the fact that their pro-
tein kinases (kinomes) had also been analyzed using domain architecture and evo-
lutionary analyses [35], which allows more insight to be gained into the overall 
signaling processes of lesser-studied lower eukaryotes, for both phosphorylation 
and dephosphorylation. The protein phosphatase analysis was, therefore, essential 
to fully understand cell signaling.

4.4.1 TriTryps Diseases

T. brucei, T. cruzi, and L. major are the causative agents of three human diseases 
endemic in many third-world countries: African sleeping sickness, Chagas’ disease, 
and cutaneous Leishmaniasis, respectively. These are vector-borne diseases, trans-
mitted to humans, and sometimes to animals, by the bite of an infected Tsetse fl y, 
assassin bug, or sand fl y. The genome sequences for these three organisms have 
been published [36–38], and they have collectively become known as the TriTryps. 
Recently, two other Leishmania species, Leishmania braziliensis and Leishmania 
infantum [39], have also been sequenced, and their genomes are available at the 
GeneDB database (http://www.genedb.org).

Millions of people are at risk from African sleeping sickness, Chagas’ disease, 
and cutaneous Leishmaniasis, and several factors prevent an easy eradication. 
There is limited access to healthcare for large numbers of people, as it is often re-
mote, poor areas where the diseases are prevalent. In addition, T. brucei infects cat-
tle, which has a huge impact on rural communities and implications for struggling 
third-world economies (http://www.who.int/mediacentre/factsheets/fs259/en/). 
Drugs are available to treat sleeping sickness and Chagas’ disease, but for sleeping 
sickness, this depends on diagnosis at an early stage. Even then, some drugs have 
serious and often toxic side effects. It is thought unlikely that a vaccine can be syn-
thesised for Chagas’ disease as T. cruzi has been found to initiate an autoimmune 
response [40]. A vaccine against cutaneous Leishmaniasis, sandfl y saliva proteins, 
and others from Leishmania species has been found to be potentially useful [41].

4.4.2 TriTryps Protein Phosphatases

Phosphorylation events have been found to be important for controlling the life cycle 
of these parasites. The T. brucei protein TbPTP1 is a protein tyrosine phosphatase 
and a master regulator of life-cycle differentiation in the parasite [42]. Efforts to 
synthesize effective vaccines and therapies depend on a detailed understanding of 
the signaling pathways of kinetoplastid parasites, which are modifi ed throughout 
different stages of their life cycles. Protein phosphatases are an important part of 
this mechanism, and it is important to know when different phosphatases are ac-
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tive, how they are regulated, and what their substrates are to be able to develop 
useful antiparasitic drugs.

4.4.3 Methods for the Protozoan Parasites

The method for this investigation was identical to the human and Aspergillus stud-
ies, except that the prescreening stage was omitted. All proteins were analyzed us-
ing InterProScan, and protein phosphatases were identifi ed from the InterProScan 
results. InterProScan is much more sensitive than a simple pattern-matching search, 
and this precaution was taken to ensure that no potential phosphatases were missed 
from the analysis. There is no evidence from the human and A.fumigatus studies 
that this would happen, but in those studies we had the expert-curated sequences 
and automated annotation for comparison. For the parasite genomes, we had no 
such data available. Omitting the prescreening step also demonstrated the exten-
sibility of the method. It is not necessary to confi ne studies to narrowly defi ned 
groups of uniform proteins if the initial results from InterProScan can discriminate 
between the higher levels of protein families.

The prescreening stage was originally included as a measure for reducing com-
putational time. Therefore, the main disadvantage of omitting this step is the in-
crease in computational time required for the InterProScan analysis of thousands or 
tens of thousands of sequences, rather than a few hundred. Approximately 40,000 
sequences in total were submitted to InterProScan for the three genomes. The re-
sults of this analysis (i.e., the protein instances) were classifi ed using the ontology. 

4.4.4 Sequence Analysis Results from the TriTryps Phosphatome Study

In total, 250 proteins with phosphatase catalytic domains were extracted and classi-
fi ed from the three organisms [3]. Through detailed examination of these sequences, 
domain architectures, key conserved sequence motifs, and evolutionary relation-
ships were determined. Comparisons between the three species and also with hu-
mans provided interesting results.

At the time of the investigation, there had been no comprehensive analysis of 
protein phosphatases in these parasitic organisms. Numerous experimental stud-
ies had identifi ed a few important tyrosine phosphatases, but most work had been 
done on the PPP type of serine/threonine phosphatases. These include PP1 and 
PP2A [43] and PP5 [44] in T. brucei, PP1 in T. cruzi [45], and PP7/PPEF in all three 
[46]. 

The ontology classifi cation results showed that more than one-third of the total 
protein phosphatases are atypical phosphatases in these kinetoplastids [3]. Atypical 
refers to those sequences in which any of the following apply: 

The domain organization is novel;1.   
There is no homologue in higher eukaryotes;2.   
Motifs usually conserved in eukaryotic catalytic domains are not present 3.   

 or contain signifi cant differences that may affect the structure and function 
 of the protein.



76 Analyzing and Classifying Protein Family Data Using OWL Reasoning

The high number of atypical phosphatases suggests that the original model 
was highly biased towards the higher eukaryotes. Upon inspection of InterPro, it 
was found that some domains and motifs had not been updated recently, and so 
they did not include sequences from more recently analyzed genomes. For exam-
ple, the domain for cdc25 DSPs, IPR000751 (not used in this analysis), is partly 
based on a fi ngerprint (PR00716) from the PRINTS database [47], and this entry 
was last updated in 1999. It was generated using only mammalian, fruit fl y (Dro-
sophila melanogaster), pig (Sus scrofa), and African clawed frog (Xenopus laevis) 
sequences. This can create bias toward the identifi cation of phosphatases from the 
higher eukaryotes and limit the use of the pattern in fi nding sequences in more dis-
tantly related species. If more organisms were represented in the InterPro domain 
models, this would improve the effi ciency of phosphatase identifi cation for lower 
eukaryotes.

Atypical dual-specifi city phosphatases (DSPs) form a large proportion of the 
total number of atypical proteins in the TriTryps. There are three cdc14 sequences 
that are truly similar to higher eukaryotes; the remainder have unusual, unique do-
main combinations or simply lack any great similarity to metazoan phosphatases. 
Figure 4.5 shows the relative abundance of atypical and eukaryoticlike phos-
phatases in each of the three organisms.

An exciting discovery in the TriTryp analysis was the existence of three atypi-
cal sequences containing a DSP catalytic domain at the C-terminal, leucine-rich 
repeats (LRR), and two inactive N-terminal protein kinase domains. The presence 
of both a phosphatase catalytic domain and a kinase catalytic domain (active or 
inactive) within the same protein sequence is rare. This type of sequence would 
presumably be very useful, biologically, as substrates could be phosphorylated and 
dephosphorylated by the same protein. For organisms with small genomes, this 
may be an advantage. These unique proteins were named kinatases from kinase 
and phosphatase). There is much evidence that inactive pseudokinases can still 
play important roles in cell signaling [48], and so this could have novel functions 
in protozoa. 

Figure 4.5 The relative abundance of eukaryoticlike and atypical protein phosphatases in three 
protozoan parasites.
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Comparisons between the three protozoans reveal important biological dif-
ferences. T. cruzi and L. major are both intracellular parasites, whereas T. brucei 
resides in the bloodstream. L. major invades macrophages, and T. cruzi will invade 
many different cell types, including macrophages and fi broblasts. There will be im-
portant differences in cell biochemistry, allowing parasites to exist in these different 
environments in the human body. Although they have great similarity, with regard 
to the numbers of sequences in each phosphatase subtype, the classifi cation study 
showed several proteins to be present in the intracellular parasites and not in T. 
brucei. Firstly, T. brucei has no eukaryoticlike PTEN sequence. There are two types 
of PTEN in these parasites. The fi rst is similar to the human sequence, possessing 
a PTEN catalytic domain and a C-terminal lipid-binding domain, which is thought 
to assist the catalytic domain by binding to the cell membrane in a productive lo-
cation [49]. T cruzi and L. major each possess one eukaryoticlike sequence each. 
T. brucei, however, has only the atypical type, which contains a catalytic domain 
alone and no C-terminal region. T. brucei is also missing the serine/threonine phos-
phatase PP6 and does not possess an arsenate reductase sequence with similarity to 
cdc25 DSPs, as do T. cruzi and L. major.

4.4.5 Evaluation of the Ontology Classifi cation Method

In total, the ontology extracted and classifi ed 142 protein phosphatases from the 
three parasite species. For the majority of sequences (approx 78%), the ontology 
classifi cation provided more information than their original annotations, or the 
same level of detail. Therefore, the ontology system again surpassed, or was equal 
to, the automated sequence analysis method in the majority of cases. The remain-
der of the sequences suffered a loss of information, being classifi ed as a member of 
the PTP, PPM, or PPP parent classes, instead of in individual subfamily groups, or 
were false positives (i.e., proteins that did not belong to the protein phosphatase 
family). 

There were 10 false-positive sequences that had been placed as members of the 
general tyrosine phosphatase family (7 sequences) and low molecular weight PTPs 
(LMW-PTPs) (3 sequences). A multiple alignment had to be performed to deter-
mine the lack of conserved motifs in these sequences. For the LMW-PTPs, the In-
terPro domain is not specifi c enough to distinguish between LMW-PTPs and other 
very similar types of enzymes, such as arsenate reductases for the lower eukaryotes 
[50]. If the prescreening method had been employed before this analysis, however, 
these false positives would not have been detected. Again, this problem and the loss 
of information from a small number of sequences can be largely attributed to the 
higher eukaryotic bias in some of the InterPro domains.

The ontology classifi cation method was as good as or better than large-scale au-
tomated sequence annotation methods, supplying a fast analysis of the phosphatase 
gene products and providing a good deal of information that was not previously 
known about kinetoplastid parasite phosphatases. To increase the effi ciency of the 
system, however, we must address the issues of bias towards higher eukaryotes in 
InterPro for some sequences. One way to do this is to combine this analysis with 
other bioinformatics tools before the classifi cation stage. The workfl ow for extract-
ing and initially analyzing data could be extended to accomplish this task.
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4.5 Conclusion

Postgenomic bioinformatics presents new problems for the bioinformatician. The 
scale of data production has increased dramatically, while the pace of data analysis, 
annotation, and curation has not kept pace. Often, compromises on the quality of 
annotation have to be made in order to interpret large datasets quickly. By design-
ing a system that will allow rapid, automated classifi cation to the fi ne-grained, 
subfamily level, the necessity to make such a compromise is avoided. This study 
demonstrates the advantages of combining community knowledge, in an ontology, 
with automated annotation methods. 

Standard automated methods of annotation provide evidence for similarity to 
other known proteins, or provide lists of functional domains within a protein, but 
they do not allow the interpretation of this information. The strength of human-
expert annotation is in this interpretation step. In a novel approach, the interpreta-
tion step was replaced with further automation. Using the technologies of formal 
description logics and ontological reasoning, community knowledge can be cap-
tured and utilized for data analysis. The methodology does, however, hinge on the 
expert knowledge of a domain. If the data does not fi t the current knowledge of 
a particular area, this is also a useful outcome. It informs the scientists that their 
model needs revision or expansion.

The ontology system classifi ed the human protein phosphatases with equal 
competence as human experts, enabling confi dence to be placed in similar studies 
of the protein phosphatases of uncharacterized genomes. This was demonstrated 
by the results from the parasite genome analysis. It was also discovered that the 
ontology system was effi cient at uncovering novel, unexpected functional domains. 
As the ontology classifi ed proteins according to what was already known, proteins 
exhibiting a different composition of domains were easily highlighted, identifying 
new targets for further scientifi c research.

This work focused on classifying proteins into family groups using domain-
architecture analysis. There are many tools that can be employed in such a task, ei-
ther instead of InterProScan, or in addition to it. In order to use more data sources 
and analysis tools in this investigation, we would simply have to extend the work-
fl ow that extracts and analyses the data before the ontology classifi cation. In fact, 
this methodology is applicable in any area of biology in which class membership 
can be defi ned according to a set of properties that can be derived using auto-
mated analysis tools. To date, the use of ontological technology in biology has been 
largely restricted to enhancing browsing and querying over existing data. Harness-
ing the reasoning capabilities of DL ontologies in this way to enable automated 
classifi cation could potentially have a great impact on bioinformatics analyses and 
approaches to automation in the future.

As well as extending the data-collection part of the ontology classifi cation 
process, we can also increase the expressivity of the protein class descriptions. For 
example, for the protein phosphatases, the order of p-domains was not important, 
but simply counting the number of each was suffi cient to distinguish between pro-
teins from different subfamilies. In other protein families, however, the order of 
the p-domains would also need to be specifi ed. If we take the ABC transporters 
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as an example, the ABCD and ABCG subfamilies have exactly the same p-domain 
architecture. The only difference is the orientation of their two p-domains, an ATP-
binding domain and a transmembrane region. ABCG proteins are referred to as re-
verse transporters, as the ATP-binding domain is N-terminal to the transmembrane 
domain, which is the opposite orientation to the ABCD proteins.

Ontology use in the bioinformatics community is continuing to grow, provid-
ing data-management solutions and the ability to defi ne concepts and terms across 
large, disparate research communities. Despite these advances, however, the full 
use of the reasoning capabilities of formal DL ontologies is not being exploited 
in many cases. The automated protein classifi cation using the ontology reasoning 
presented here demonstrates the extra advantages of using these capabilities. It is 
hoped that this system can be employed and exploited in future work, for example, 
in drug-target identifi cation and new genome annotation.
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5.1 Introduction

Despite considerable efforts, a large number of genes in most organisms have not 
been functionally annotated, and a signifi cant number of the current gene annota-
tions contain errors. This fact emphasizes the challenging nature of the problem and 
the need for accurate function prediction. Gene function prediction can be extraor-
dinarily valuable to researchers for functional inference and follow-up experimental 
design [1, 2]. Numerous computational methods have been developed over the past 
years to either use a particular type of data or integrate different data sources for 
characterizing gene-gene associations and predicting gene functions [1, 3–8]. Nev-
ertheless, the state of the art of gene-function prediction has signifi cant room for 
improvement [1]. Hence, gene function prediction is still an active research area. 

Using an ontology is essential for gene-function prediction. The most widely 
used ontology for gene-function prediction is GO (Gene Ontology, see Chapter 1 
for details), which has been broadly recognized as the most comprehensive classifi -
cation system for gene functions in modern biology [9]. GO provides a controlled 
vocabulary to describe gene and gene-product attributes in any organism. It is im-
portant to have an ontology such as GO in order to conduct large-scale biological 
studies in the postgenomic era. Before GO was developed, gene functions were 
annotated using natural language, which may be inconsistent and ambiguous and 
is hard to use in computations. GO provides a resource for handling gene function 
systematically. With GO, it is easy to develop computational methods for gene-
function prediction. 

In this chapter, we will introduce various methods of integrating high-through-
put data for gene-function prediction based on GO. The basic idea for our gene-
prediction approach is to use high-throughput data (sequence, gene expression, 
protein interaction, etc.) to establish a relationship between a query gene and genes 
with known functions. For this purpose, we will fi rst defi ne GO-based measures of 
functional relationships in Section 5.2. Then we will demonstrate how GO-based 
functional relationships among genes can be revealed in high-throughput data in 
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Section 5.3. We will introduce the theories on how to establish functional relation-
ships among genes based on high-throughput data in Section 5.4. Section 5.5 will 
discuss the algorithms of GO-based gene-function prediction, using functional re-
lationships derived from high-throughput data. In Section 5.6, we will show some 
tests and application examples of gene-function predictions. Section 5.7 extends 
gene-function prediction to gene-network studies. Section 5.8 discusses the related 
software that we developed. We will have additional discussions in Section 5.9.

5.2 GO-Based Functional Similarity

Chapter 2 of this book has extensive discussions on ontology-based similarity mea-
sures. Such similarity measures are particularly important for gene-function predic-
tion, as they quantify the functional relationship and provide a basis for inferring 
the function of a query gene according to its relationships to genes of known func-
tions. In this section, we introduce two similarity measures specifi cally related to 
our studies.

5.2.1 GO Index-Based Functional Similarity 

The graph structure of GO can be utilized to compute similarities between two GO 
terms. We used a numerical GO index to represent the structure of each of three 
categories separately. The deepest level in the index is 18. A GO index, as denoted 
by a string of linked numbers, for example, 1-4-2-29, characterizes the GO annota-
tion of every protein. The fi rst number corresponds to the type of ontology annota-
tion category, for example, 1 represents biological process, 2 represents molecular 
function, and 3 represents cellular component. An example of a GO index for the 
cell-growth process and related functions is described below.

1-4 Cell growth and/or maintenance, GO:0008151
1-4-3 Cell cycle, GO:0007049
1-4-3-2 DNA replication and chromosome cycle, GO:0000067
1-4-3-2-4 DNA replication, GO:0006260
1-4-3-2-4-2 DNA dependent DNA replication, GO:0006261
1-4-3-2-4-2-2 DNA ligation, GO:0006266

For example, consider a gene pair, ORF1 and ORF2, both of which are anno-
tated with GO functions. Assume ORF1 has a function represented by GO index 
1-1-3-3-4 and ORF2 has a function represented by 1-1-3-2. When compared with 
each other for the level of matching GO indices, they match through index level 1 
(1-1) and level 2 (1-1-3), and will have functional similarity equal to 2. Functional 
similarity defi ned this way can assume values from 1 to 18.
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5.2.2 GO Semantic Similarity

We can also calculate functional similarity between two GO terms in terms of se-
mantic similarity (see Chapter 2). An example of calculating the semantic similarity 
is shown in Figure 5.1.

To calculate semantic similarity between two genes, the probability of each GO 
term assigned to a gene is derived fi rst. For each gene in an organism, the probabil-
ity is calculated by counting the number of the descendants of an assigned GO term 
plus 1 (the GO term itself), divided by the total number of GO-term annotations in 
the organism. The probability of each node increases as we go toward the root of 
the GO ontology, which is defi ned as biological process (GO:0008150), molecular 
function (GO:0003674), or cellular component (GO:0005575) in the three ontolo-
gies. The semantic similarity between two ontology terms, t1 and t2, is defi ned as

 ( ) ( )1 2 1 2, ln ,msSS t t p t t= −  (5.1)

Figure 5.1 Example of semantic similarity between two GO terms.



86 GO-Based Gene Function and Network Characterization

where Pms(t1,t2) is the relative frequency of the minimum subsumer for terms t1 and 
t2. The minimum subsumer for terms t1 and t2 is defi ned as the common parent of 
the deepest GO-index level shared by t1 and t2.

5.3 Functional Relationship and High-Throughput Data

Several computational methods exist for predicting gene functions using relevant 
high-throughput data [2, 6, 10–20]. However, none of these methods perform 
well enough for broad biological applications. There are various reasons for this. 
Clearly, the algorithms of these methods can be improved. Another potential reason 
is that the underlying relationship between gene-gene functional similarity and vari-
ous kinds of high-throughput data is not well characterized. In this section, we will 
demonstrate some simple relationships between GO-based functional similarity of 
a gene pair and different high-throughput data using the examples of microarray 
data and gene sequence data.

5.3.1 Gene-Gene Relationship Revealed in Microarray Data

One of the classical approaches to exploring the connection between the functional 
similarities of a gene pair and their associated microarray expression profi les in-
cludes calculating the standard Pearson correlation coeffi cient between the profi les. 
Our early studies [10, 11, 14] have shown that at higher correlations, the associated 
two genes tend to have more similarity in terms of their functions. Figure 5.2 shows 
a higher probability of sharing the same function for broader functional categories, 
as expected. It also shows the probability of a gene pair sharing the same level of 

Figure 5.2 Probabilities of gene pairs sharing the same levels of GO indices against Pearson cor-
relation coeffi cient of microarray gene-expression profi les. The Pearson correlation coeffi cient ranges 
from –1 to 1.
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GO-indices increases versus the Pearson correlation coeffi cient of their microarray 
gene-expression profi les. Clearly, there exists a relationship between the correlation 
in microarray gene-expression profi les and similarity in gene function.

5.3.2 The Relation Between Functional and Sequence Similarity

Various sequence-function relationships were identifi ed by measuring the correla-
tion between sequence identity (or expectation value) and GO-index similarity (or 
semantic similarity) within the same genome or across different genomes for the 
three GO categories [21]. Figure 5.3 shows a consistent correlation between the 
functional similarity of the biological-process ontology at different GO-index levels 
and the expectation values (E-values) of sequence alignment using BLAST [22]. 
There is also a higher functional similarity for the lower GO-index levels. This is 
mainly due to the fact that there is a higher chance for two randomly picked genes 
to share the GO index at the lower level. Meanwhile, the functional similarity con-
sistently increases as the E-value decreases, given the same GO-index level.

5.4 Theoretical Basis for Building Relationship Among Genes Through 
Data

Section 5.3 demonstrated that there is rich information contained in high-through-
put data to characterize functional relationships among genes and to predict gene 
function. In this section, we will discuss how to formulate such relationships using 
statistical methods and computational algorithms.

5.4.1 Building the Relationship Among Genes Using One Dataset

We used four different types of high-throughput data and quantifi ed the pairwise 
distance between two genes by using different distance measures for different types 
of data, as shown in Table 5.1.

Figure 5.3 The probability for two similar genes to share the same function at a particular GO index 
versus the negative logarithmic (base 10) E-value of sequence similarity based on BLAST within the 
same genomes using the GO biological-process annotations.
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In the following, we will discuss the method to characterize the gene-gene rela-
tionship from each data type.

5.4.1.1 Gene Expression

Gene expression is recorded as an n × m matrix with n genes, each of which has m 
experimental conditions or time points. We used the Pearson correlation coeffi cient, 
r, as the pairwise measure of the linear relationship between two gene profi les. The 
following equation measures the Pearson correlation between profi les X and Y:

 ( )( )
( ) ( ) ( ) ( )2 22 2

m xy x y
r

m x x m y y

−
=

− −

∑ ∑ ∑

∑ ∑ ∑ ∑
 (5.2)

5.4.1.2 Protein-Protein Interaction

Protein-protein interaction data is recorded as an n × n matrix I for n genes. If two 
proteins, i and j, have an interaction, Iij = 1; otherwise Iij = 0.

5.4.1.3 Phylogenetic Profi les

A phylogenetic profi le [23, 24] is a string that encodes the presence or absence of a 
homologous gene in a set of genomes. It is represented by an n × p matrix, where n 
is the number of homologous genes (orthologs) considered, and p is the number of 
organisms used to generate the profi le. The Pearson correlation coeffi cient is used 
as a distance measure for phylogenetic profi les. 

5.4.1.4 Protein Domains (Pfam and InterPro)

The protein-domain data [25, 26] is represented by an n × d binary matrix, where 
n is the number of genes, and d is the number of domains. We calculated the Mary-
land Bridge distance [27] to characterize the relationship between domain profi les 
as follows:

 1 1
2
ab

ab
aa bb

X
S

X X

⎛ ⎞
= +⎜ ⎟⎝ ⎠

 (5.3)

where Xi represents the binary vectors of gene i corresponding to the ith row of the 
matrix, and Xij = XiXj is the dot product of two vectors.

Table 5.1 High-Throughput Data and Measurement of Gene Relationship

Data Type Method

Gene expression Pearson correlation coeffi cient

Protein-protein interaction Binary (0,1)

Phylogenetic profi le Pearson correlation coeffi cient 

Protein domain Maryland-Bridge coeffi cient
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5.4.2 Meta-Analysis of Microarray Data

Typically, microarray data is noisy and incomplete. Multiple microarray datasets 
can be useful for functional inferences in terms of reducing the noise and resulting 
in a signifi cant addition of sensitivity to extract information from the data. To take 
advantage of rich information in the different datasets, we combine the statistical 
meta-analysis [28–31] with our previous gene-function prediction methods [10–12, 
14, 27, 32], including other methods to predict gene functions by using multiple 
microarray datasets.

Because genes that are involved in the same pathway or are part of the same 
protein complex are often coregulated, a set of genes with similar functions often 
exhibit expression profi les that are correlated under a large number of diverse con-
ditions or time points [13, 33–35]. As our previous studies showed, there is a signifi -
cant relationship between functional similarity and Pearson correlation coeffi cient 
for a given pair of genes. We evaluated the statistical signifi cance of a Pearson 
correlation coeffi cient for two gene-expression profi les in a single dataset, based on 
the standard t-statistics:

 ( )
2

2ˆ ˆ,  where 
1

r n
p value P T t t

r

−
− = > =

−
 (5.4)

where T is a t-random variable with n−2 degrees of freedom, and n is the number 
of conditions of the gene-expression profi les. Note here that we use the right-tailed 
p-value, since our previous study [10, 11, 14] and Lee et al. [16] showed that the 
negative correlation is less likely to be related to functional similarity. A signifi cant 
p-value for the Pearson correlation implies a coexpression relationship between two 
genes, and then the function of a gene is predicted according to its coexpressed gene 
neighbors with known functions. Note that the p-value is monotone with the value 
of the Pearson correlation coeffi cient, namely, a large correlation coeffi cient r im-
plies a small p-value. Therefore, for a single microarray data, choosing coexpressed 
gene neighbors with a p-value below a threshold is the same as choosing those with 
the Pearson correlation coeffi cient above a threshold. 

When we have multiple sets of microarray data, the p-values between two 
genes in single datasets can be combined to obtain the metastatistics, which are 
then used to establish the functional relationship between the two genes. Since 
we assume that the datasets are obtained independently, we apply the inverse chi-
square method and obtain the metachi-square statistics

 ( ) ( ) ( )2
1 22 log 2log 2log nP P Pχ ⎡ ⎤= − − − −⎣ ⎦

   (5.5)

where Pi is the p-value obtained from the ith dataset for a given gene pair. When 
there is no linear correlation between a gene pair in any of the multiple datasets, the 
above chi-square statistic (5.5) 2χ


 follows a central chi-square distribution, with 

degrees of freedom 2n, and hence, the p-value for meta-analysis, called the meta 
p-value, can be obtained by 
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 ( )2 2
2 ˆm np P χ χ= >  (5.6)

where 2
2nχ  is a chi-square random variable with 2n degrees of freedom. For any 

gene pair of interest, we conclude that the gene pair is positively correlated in at 
least one of the multiple datasets at level α if the meta p-value is smaller than α. 
Here, we took a parametric approach to obtain the meta p-value, which is based on 
the assumption that the distribution of t̂  in (5.4) follows a t-distribution with n−2 
degrees of freedom under the null hypothesis of no correlation between the gene 
pair. An examination of the distributions of the observed t̂  for all gene pairs and for 
all datasets showed no obvious departure from this assumption, as shown in Figure 
5.4, which plots kernel density (distribution estimate) of the t̂  statistics along with 
the theoretical null density.

When this parametric assumption is a concern, individual p-values can be ob-
tained by comparing the observed t-statistics to the ones generated by randomly 
permuting the rows within each column Then the meta p-value can be obtained in 
the same permuted manner as done in [17]. The meta p-value and the Pearson cor-
relation coeffi cient will be used as the distance measure to calculate the conditional 
probability that two genes have the same function. This will, in turn, be used for 
gene-function prediction. 

5.4.3 Function Learning from Data

To quantify the gene-function relationship based on a high-throughput data type, 
we apply Bayes’ formula to calculate the conditional probabilities of such gene pairs 
sharing the same function at each GO-index level, given their distance measure 
based on the high-throughput data. Here, we use gene-expression data and GO 
biological-process annotations as an example. For a set of microarray data denoted 
by M, we use the Pearson correlation coeffi cient as the distance measure for a single 
dataset and the meta p-value for multiple datasets [10, 11, 14]. Given a gene pair 
showing coexpression distance M, the posterior probability that two genes share 
the same function at GO-index level S is 

 ( ) ( ) ( )
( )

p M S p S
p S M

p M
=  (5.7)

where p(M|S) is the conditional (a priori) probability that two genes are coexpressed 
in their expression profi les with distance value M, given that two genes have the 
same GO-index level S. The probability p(S) is the relative frequency that a gene 
pair has similar functions at the given level of GO-index level, using the annotation 
data. The probabilities p(M|S) and p(S) are estimated based on the set of genes pres-
ent in the given dataset of a specifi c organism whose functions have been annotated 
with the GO biological processes. The probability p(M) is estimated by the relative 
frequency of coexpression distance M over all gene pairs in the organism, which is 
calculated from the genome-wide gene-expression profi les. This conditional prob-
ability will be used to predict the set of predicted functions for each query gene from 
the union of known functions of the neighboring genes.
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5.4.4 Functional-Linkage Network

As illustrated in Figure 5.5, the high-throughput data can be coded into a graph of 
a functional-linkage n etwork, G = <V, E>, where the vertices V of the graph are 
connected through the edges E. Each vertex represents a protein. The weights of 
the edges refl ect the functional similarities between pairs of the connected proteins. 
Let P1 be the a priori probability of two proteins sharing the same function from 
microarray data, and P2 be the a priori probability from protein-protein interac-
tion data. Then the edge weight is calculated using the negative logarithmic value 
of the combined probability for the two proteins sharing the same function at the 
GO-index level of interest

 ( )( )Weight of edge log 1 1 1 1 2P P⎡ ⎤= − − − −⎣ ⎦  (5.8)

As a special case of functional-linage network, a coexpression-linkage network 
is built only by the coexpression of gene-expression profi les. For a single dataset, 
we rank all the gene pairs using the p-value defi ned in (5.5) and choose a fi xed 
number of gene pairs from the top to produce the coexpression-linkage network. 
For multiple datasets, we rank all gene pairs based on the number of individual 
p-values that are signifi cant at level 0.01 across multiple datasets [16]; for gene 
pairs that have the same number of signifi cant p-values, they are ranked by the cor-
responding metachi-square statistics defi ned in (5.6). Here, we use metachi-square 
instead of meta p-value, since the meta p-value for many gene pairs is very close 
to zero and hard to distinguish computationally (metachi-square, instead of meta 
p-value, should result in the same order when the degrees of freedom for each gene 
pair is the same). Then a number of gene pairs are selected from the top to establish 
the coexpression-linkage network. 

The number of gene pairs used to obtain the coexpression-linkage network can 
be decided in many ways. For instance, the user might simply use the top 200 gene 
pairs for function prediction, or the Bonferroni correction can be used to obtain a 
threshold for the individual p-value for single datasets. Also, the magnitude of the 
Pearson correlation could be considered, combined with the individual p-value, as 

Figure 5.5 Coding high-throughput biological data into a functional-linkage network.
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proposed by Lee et al. [16]. For the multiple datasets, the number of signifi cant 
individual p-values follows a binomial distribution. In other words, p ~binomial 
(n, 0.01), if a gene pair is not correlated in any of the n datasets. Hence, this bino-
mial distribution can be used to obtain a cutoff value for the number of signifi cant 
individual p-values. This threshold, together with the cutoff value for the meta p-
value using the Bonferroni correction, can be used to choose the gene pairs for the 
linkage network. 

5.5 Function-Prediction Algorithms

Based on the relationship between the functional similarity and statistics of high-
throughput data discussed in Sections 5.3 and 5.4, we can predict gene function 
using various data. The statistical neighbors for each query gene can be obtained 
from the functional-linkage network, and the union of all functions from the an-
notated neighbors is assigned to the query gene, each with a likelihood score [14]. 
Two types of algorithms could be used, based on the network topology and data 
availability; these are local prediction and global prediction. 

5.5.1 Local Prediction

In the local prediction of a gene using its immediate neighbors in the network graph, 
we follow the idea of guilt-by-association. In other words, if an interaction partner 
of the studied gene X has a known function, X may share the same function with 
a probability underlying the high-throughput data between X and its partner. We 
identify the possible interacting genes for X in each high-throughput data type: 
protein binary interaction, protein complex interaction (pairwise interaction be-
tween any two proteins in a complex), and coexpression profi les with a certain 
threshold. We assign functions to the unannotated genes on the basis of common 
functions identifi ed among the annotated interaction partners, using the probabili-
ties described in Section 5.4.3. A gene can belong to one or more functional classes, 
depending on its interaction partners and their functions. For example, in Figure 
5.6, gene X interacts with genes A, B, and C. Assuming Fi, i = 1, 2, …, n, represents 
a collection of all the functions that A, B, and C have, a likelihood score function 
for X to have function Fi, G(Fi|X) is defi ned as

 ( ) ( )( ) ( )( ) ( )( )1 1 * 1 * 1l l lG Fi X P S M P S B P S C= − − − −′ ′ ′  (5.9)

where Sl represents the event that two genes have the same function Fi, with GO-
index sharing l levels, l = 1, 2, …, 12. Given Fi, P′(Sl|M), P′(Sl|B), and P′(Sl|C) are 
calculated based on probabilities of interaction pairs having the same function for 
gene-expression correlation coeffi cient ≥ 0.7 (M), protein binary interaction (B), 
and protein complex interaction (C), respectively. In each type of high-throughput 
data, one query gene might have multiple interaction partners with function Fi. 
Suppose that there are nM, nB, and nC interaction partners, with function Fi in the 
three types of high-throughput data, respectively. P′(Sl|M), P′(Sl|B), and P′(Sl|C) in 
(5.9) are calculated as
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 ( ) ( )1 1 , 1,2, ,l j l MP S M P S M j n⎡ ⎤= − − =′ ⎣ ⎦∏   (5.10)

 ( ) ( )1 1 , 1,2, ,l j l BP S B P S B j n⎡ ⎤= − − =′ ⎣ ⎦∏   (5.11)

 ( ) ( )1 1 , 1,2, ,l j l CP S C P S C j n⎡ ⎤= − − =′ ⎣ ⎦∏ 
 (5.12)

Pj(Sl|M), Pj(Sl|B), and Pj(Sl|C) are estimated probabilities retrieved from the 
probability curves defi ned in Section 5.4.3. 

We also defi ned the likelihood score as the reliability score for each function, 
Fi: 

 ( )( ) ( )( ) ( )( )Reliability Score 1 1 * 1 * 1l l lP S M P S B P S C= − − − −′ ′ ′  (5.13)

The fi nal predictions are sorted based on the reliability score for each predicted 
GO index. The reliability score represents the probability that the query gene has 
function Fi, assuming all the evidence from the high-throughput data is independ-
ent and only applicable to immediate neighbors in the network.

Gene-function relationship is also highly correlated with sequence similarity, 
which provides another basis for local prediction using sequence neighbors. With 
complete sequencing of many genomes and effective ways of fi nding sequence simi-
larity, making gene-function predictions based on sequence information is becom-
ing more and more reliable. 

To apply the sequence information, we select a set of genes t whose sequences 
are similar to the query gene i. We apply the hypergeometric model that has the 
probability density function (pdf) to the gene population with GO-j as in (5.14).

 

M N M

x n x
p

N

n

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

=
⎛ ⎞
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 (5.14)

Figure 5.6 Illustration of prediction method. A query gene X has interactions with genes A, B, and 
C, with known functions. The interactions could be correlation in gene expression (M), protein binary 
interaction (B), and protein complex interaction (C).
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where N represents the population of all the genes, M represents the number of 
genes in N that have GO-j, n represents the size of t, and x represents the number 
of genes in t that have GO-j. Afterward, we calculate the p-value of the hypergeo-
metric distribution. The p-value is the probability that the observed value is greater 
than a specifi c variable, refl ecting the concentration of the genes in t that have GO-j. 
The smaller the p-value, the higher the concentration of genes that have GO-j, and 
hence, the greater the confi dence that gene i has the function GO-j. More specifi -
cally, the p-value can be calculated using (5.15).
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When the neighboring genes have different similarities with the query gene, 
their contributions to the prediction should be different. In other words, we add a 
weight for each neighbor.

In Figure 5.7, suppose the similarity for a query gene with neighboring genes, 
N1 to N8 is 10, 25, 12, 8, 5, 20, 8, and 12, respectively. Assuming N2 and N6 
share the same GO. Then their contributions to this GO for the query gene are

 25 20 8*45
8 3.6 instead of 2.

10 25 12 8 5 20 8 12 100
+

× = =
+ + + + + + +

 

5.5.2 Global Prediction Using a Boltzmann Machine

The major limitation of the local-prediction method is that it uses the information 
of only immediate neighbors in a network to predict gene function. In some cases, 
the uncharacterized genes may not have any interacting partner with a known 
function annotation, and their function cannot be predicted based on the local-
prediction method. Therefore, the global properties of the graph are underutilized, 
since this analysis does not include the links among genes of unknown functions. 
The functional annotation of uncharacterized genes should not only be decided 
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by their direct neighbors, but also controlled by the global confi guration of the 
interaction network. Based on such a global-optimization strategy, we developed 
a new approach for predicting gene function. We used the Boltzmann machine to 
characterize the global stochastic behaviors of the network. A gene can be assigned 
to multiple functional classes, each with a certain probability.

We consider a physical system PS = {α} (α is a state of the system, each having 
an energy Hα). In the thermal equilibrium, given a temperature T, each of the pos-
sible states α occurs with probability

 
1

BH K TP e
Z

α
α

−=  (5.17)

where the normalizing factor Z = BH K Te α

α

−∑ , and KB is Boltzmann’s constant. This 
is called the Boltzmann-Gibbs distribution. It is usually derived from very general 
assumptions about microscopic dynamics. In an undirected graphical model with 
binary-valued nodes, each node (gene) i in the network has only one state value Zt (1 
or 0). For the state at time t, node i (Zt ,i) has probability P(Zt , i = 1| Zt−1, j ≠ i) and 
is given as a sigmoid function of the inputs from all the other nodes at time t − 1
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where β is a parameter corresponding to the annealing temperature, and Wij is the 
weight of the edge connecting genes i and j in the interaction graph. Wij is calcu-
lated according to (5.19), by combining the evidence from the gene-expression cor-
relation coeffi cient ≥ 0.7 (M), protein binary interaction (B), and protein complex 
interaction (C)

 ( ) ( )( ) ( )( ) ( )( )( ), 1 1 1 1
k k

ij k l l l
F F

W CG F i j C P S M P S B P S C= = − − − −∑ ∑  (5.19)

Figure 5.7 A graph of a query gene and its neighbors based on sequence similarities.
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where Sk represents the event that two genes i and j have the same function Fk(k = 1, 
2, …, n), whose GO index has l levels, l = 1, 2, …,12. P(Sl|M) , P(Sl|B), and P(Sl|C) 
were estimated probabilities retrieved from the probability curves calculated in Sec-
tion 5.4.3. C is the modifying weight 

 ( )
1 If  annotated proteins

, , 1 otherwisek

j
C

G F i j t

∈⎧⎪= ⎨ −′⎪⎩
 (5.20)

To achieve global optimization, we conducted a simulated annealing technique 
as the following process (Figure 5.8). We set the initial state of all hypothetical 
genes (nodes) randomly to be 0 or 1, the state of any annotated gene is always 1. 
Starting with a high temperature, we picked a node i and computed its value ui, 

Figure 5.8 Illustration of a global method of function prediction through a simulated annealing technique. 
(a) A given interaction network where genes 1 to 5 have a known function and genes 6 to 11 are unanno-
tated. (b) In the initial state, the states of all query genes (nodes) are randomly selected to be 0 or 1, and the 
state of any annotated gene is always 1. State 1 means that the gene is annotated, and state 0 means that 
the gene’s function is unknown. (c) Starting with a high temperature, for each node i, we compute its value 
ui, then update its state. Thus, genes 6, 7, 8, and11 can be assigned functions. (d) With the temperature cool-
ing, we again calculate the value ui of each node i and update its state. All unannotated genes fi nally can be 
assigned functions.
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then updated its state, until all the nodes in the network reached the equilibrium. 
With gradual cooling, the system might resettle in a global optimization of the net-
work confi guration, if the sum of weights associated with the query genes reaches 
the maximum value. 

5.6 Gene Function-Prediction Experiments

5.6.1 Data Processing

This step includes data collection and preprocessing. Once the required data is col-
lected from online resources, it needs to be processed in order to be used appropri-
ately, as our statistical methods, like many others, are sensitive to data quality. Any 
poor-quality data might lead to signifi cant false positives in analysis and prediction. 
For example, in the case of microarray data, normalization and noise removal are 
important; otherwise, the estimation of the Pearson correlation coeffi cient (the most 
commonly used statistic for microarray data) can misrepresent the true correlation 
between gene-expression profi les.

5.6.2 Sequence-Based Prediction

We did multiple simulations with the hypergeometric model introduced in Section 
5.5.1. In each simulation, we randomly selected 100 genes from 5,117 genes with 
known functions and 1,000 GO annotations from 2,859 total GO annotations. 
The simulation applies a different p-value threshold to defi ne the neighbors. We 
compared the gene-function prediction performance between nonweighted p-values 
and weighted p-values. We sort the p-values in descending order and calculate the 
ratio between TP (true-positive) and (TP + FP (false-positive)) versus the p-value 
threshold, as shown in Figure 5.9. It shows that a strict p-value threshold can help 
enhance the prediction. When the p-value threshold increases from e-6 to e-3, pre-
diction accuracy drops down quickly. In addition, the weighted method is consis-
tently better than the nonweighted one.

Figure 5.9 Prediction accuracy versus p-value threshold. The x-axis is the p-value threshold, and 
the y-axis is TP/(TP+FP).



5.6 Gene Function-Prediction Experiments 99

5.6.3 Meta-Analysis of Yeast Microarray Data

We did a pilot study using 7 independent yeast microarray datasets from the GPL90 
platform, including 116 experimental conditions, in total, for all the genes in yeast 
(Table 5.2). We used the microarray data of 5,419 genes from the GPL90 platform, 
among which 4,519 genes have GO annotations, whereas the yeast genome GO an-
notation data was downloaded from the NCBI Gene Expression Omnibus (GEO) 
Web site, http://www.ncbi.nlm.nih.gov/geo/ [36–38]. 

Table 5.2 shows the dataset ID, the number of conditions or time points, and 
the overall experimental condition.

We plotted the conditional probability of the GO functional similarity given an 
individual p-value (on the log scale) for a single dataset or given the meta p-value 
for multiple datasets, as shown in Figure 5.10. Although the curves did not dif-
fer substantially between a single dataset and the multiple datasets combined, the 
curve for the meta p-value is much smoother than the curve for any single data, 
refl ecting better statistics with a much larger sample size in the meta-analysis. We 
also found that there were many more statistically signifi cant pairs using the same 
threshold for the meta p-values of multiple datasets than those for any single da-
taset. This suggests that combining multiple datasets using the meta-analysis leads 
to more discerning power in establishing statistical neighbors for query genes and 
hence, increases the sensitivity for function prediction.

To confi rm this, we applied our function-prediction method to ~10% (500) 
randomly selected query genes from the yeast genome, using either single datasets 
or multiple datasets. We compared the sensitivity-specifi city plot for 1 dataset and 
the one using all 7 datasets from Table 5.2. For this purpose, we selected the top 
200 neighbors for each query gene to generate the coexpression-linkage network, 
using either 1 dataset or 7 datasets. We predicted functions for each query gene, 
one at a time, and then evaluated the sensitivities and specifi cities of the predictions 
of all query genes using the sensitivity-specifi city curve. For each prediction scheme 
that corresponds to a particular functional-linkage network and a specifi c cutoff 
value for the likelihood scores, the sensitivity and specifi city are calculated accord-
ing to the following defi nition. We consider assigning a function to a gene as a 

Table 5.2 Selection of Microarray Datasets for the Yeast Study 

Dataset Columns Experimental Condition

1 GDS 777 24
Nutrient limitation under aerobic and anaerobic condition effect on gene 
expression (growth protocol variation)

2 GDS 772 18
Histone deacetylase RPD3 deletion and histone mutation effect on gene 
regulation (genotype/variation)

3 GDS 344 11 Chitin synthesis (protocol variation)

4 GDS 1205 12
Ssl1 mutant for a subunit of TFIIH response to methyl methanesulfonate 
(genotype/variation)

5 GDS 1103 12 Leu3 mutant expression profi les (genotype/variation)

6 GDS 991 15
Phosphomannose isomerase PMI40 deletion strain response to excess 
mannose (dose variation)

7 GDS1013 24 IFH1 overexpression (time course)
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decision/prediction, which can be verifi ed from the annotation data. There are two 
types of errors we can make: (1) we assign an incorrect function to a gene, which 
is a type I error, or a false positive; and (2) we do not assign a known function to 
a gene, which is a type II error, or false negative. On the other hand, if we assign 
a correct function to a gene, it is a true positive; if a gene does not have a function 
and we do not assign it, it is a true negative. We consider all query genes and all 
available GO IDs in the annotation data and summarize the results in the format 
of Table 5.3.

Figure 5.10 Conditional probability of functional similarity given an individual p-value (on log 
scale) for a single dataset (from fi ve datasets) and given the meta p-value for multiple datasets from 
yeast.
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By changing the number of predictions selected for each query gene based on 
the likelihood scores for a fi xed coexpression-linkage network, we can obtain a 
sensitivity-specifi city plot, where
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where K is the number of query genes, TPi is the number of correctly predicted 
functions for gene i, FNi is the number of known functions that are not predicted 
for gene i, FPi  is the number of incorrectly assigned functions for gene i, and  TNi 
is the number of functions among all available GO IDs that are neither known nor 
predicted for gene i. 

We applied our method to the yeast data. Figure 5.11 shows that the meta-
analysis using all 7 datasets signifi cantly improved the prediction accuracy over any 
1 dataset (4 were chosen as examples). The result suggests that the proposed meth-
od of combining multiple microarray datasets using meta-analysis works well.

5.6.4 Case Study: Sin1 and PCBP2 Interactions

When SIN1 (MAPKAP1) was used as the bait in a two-hybrid screen of a human 
bone marrow cDNA library, its most frequent partner was poly(rC) binding protein 
2 (PCBP2/hnRNP-E2). PCBP2 associates with the N-terminal domain of SIN1 and 
the cytoplasmic domain of the IFN receptor IFNAR2. SIN1, but not PCBP2, also 
associates with the receptors that bind TNF. PCBP2 is known to bind to pyrimidi-
nerich repeats within the 3′ UTR of mRNAs and has been implicated in the control 
of RNA stability and translation and selective capindependent transcription. RNAi 
silencing of either SIN1 or PCBP2 renders cells sensitive to basal and stress-induced 
apoptosis. Stress in the form of TNF and H2O2 treatments rapidly raises the cell 
content of SIN1 and PCBP2, an effect reversible by inhibiting MAPK14. 

Human microarray data from the NCBI Gene Expression Omnibus (GEO, 
www.ncbi.nlm. nih.gov/geo/) SOFT (Simple Omnibus in Text Format) were ana-
lyzed to determine the datasets in which SIN1 and PCBP2 showed a signifi cant 

Table 5.3 Decision Table for Function Prediction

Prediction: GO ID Not Assigned Prediction: GO ID Assigned

Known: GO ID not assigned True negative (TN) False positive (FP)

Known: GO ID assigned False negative (FN) True positive (TP)
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(up or down) change in expression level. Then, the meta-analysis [39] was per-
formed on these datasets to determine which genes were coexpressed with SIN1. 
The analysis created a statistical neighboring linkage network based on functional 
similarity score and its signifi cance level [17]. Close neighbors (i.e., genes that are 
coexpressed with SIN1 over time or in response to treatments) were assumed to 
have related functions of SIN1. Here, the meta-analysis was confi ned to 1 data-
set microarray platform, GPL96 (i.e., an Affymetrix Gene-Chip Human Genome 
U133 Array Set HG-U133A) and used 13 curated microarray datasets, each of 
which had between 50 and 154 arrays. The data was preprocessed and analyzed to 
provide 2 separate neighbor lists for SIN1 and PCBP2, respectively. The genes in 
common to each list with a signifi cance level of P < 0.01 were then identifi ed and 
ranked, based on associated confi dence scores. The annotations of these identifi ed 
genes are shown in Figure 5.12.

The meta-analysis of human microarray data supports the hypothesis that 
SIN1 plays a central, directive role in controlling apoptosis [40]. With few excep-
tions, genes and pathways regulated in concert with SIN1 are involved in reacting 

Figure 5.11 Performance comparison between single datasets versus meta-analysis in yeast. In 
each plot, various cutoff values for the likelihood scores of the prediction functions for the query 
genes are used to generate different points in the sensitivity-specifi city curve. In particular, the 7 
points correspond to using the top 50, 100, 200, 400, 800, 1,600, and 3200 predictions for each 
query gene.
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to various forms of stress. SIN1 appears to occupy an important node in a network 
of pathways that safeguard cells against environmental affronts and subsequently 
allow the cells either to die or to recover from damage. PCBP2, which is as vital as 
SIN1 in shielding against apoptosis, is also expressed coordinately with genes that 
encode large numbers of cell-survival, as well as cell-death, factors.

5.7 Transcription Network Feature Analysis

Gene ontology can also be used for GO-enrichment analysis to identify various 
network features in different networks, such as a relevance network, an associ-
ate network, or a regulatory network [8, 41–48]. Here, we take the example of a 
regulatory network to show the application of ontology to the analysis of regulons. 
A regulon is a set of genes that are regulated by the same transcription factor. The 
function of any regulon on a subnetwork can be summarized by fi nding signifi cant 
enriched GO terms. We conducted GO enrichment within the Arabidopsis network, 
reconstructed using a meta-analysis of microarray data.

Figure 5.12 Classes of annotated genes that demonstrate expression profi les similar to both SIN1 
and PCBP2. GO biological processes were used to identify functional classes of the 984 annotated 
coexpressed genes.
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5.7.1 Time Delay in Transcriptional Regulation

Having a successful application in constructing a functional-linkage network, we 
applied meta-analysis for studying the regulatory relationship between a transcrip-
tion factor and its targets. It has been shown that the activation of a regulator under 
stress conditions usually occurs earlier than the activation of its targets [49, 50]. A 
noticeable time difference exists among changes in concentrations of the regulator 
mRNA, the regulator protein, and the mRNAs of its targets. Therefore, in order 
to infer a regulatory relationship from the microarray data, we develop a chemical 
kinetic model to theoretically fi t the time lag between these events (Figure 5.13) 
[51]. 

5.7.2 Kinetic Model for Time Series Microarray

The regulator-protein concentration can be modeled by the following chemical ki-
netic equation, without considering posttranslational regulation:

 p
tran m p p

dR
K R K R

dt
= −  (5.22)

where Rp is the regulator-protein concentration, Rm is the regulator-mRNA con-
centration, Ktran is the apparent rate of mRNA translation, and Kp is the turnover 
rate of the regulator protein. Accordingly, the time course of the target mRNA 
concentration can be modeled as

Figure 5.13 Schematics of the transcriptional regulation process. (a) Steps of chemical reactions considered 
in the kinetic model and (b) schematics of the temporal curves of the regulator protein and target mRNA in 
response to regulator mRNA changes.
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 ( )m
t p t m
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where Tm is the concentration of the target mRNA, Bt is the basal transcription rate 
of the target gene, Kt is the turnover rate of the target mRNA, and f(Rp) measures 
the regulated transcription rate. For simplicity, f(Rp) takes the following form:

 ( )p act pf R K R=  (5.24)

Usually, what is reported in transcription-profi ling experiments is not the ab-
solute concentration of mRNA, but rather a fold change, compared to the basal 
transcription level of that gene. Thus, we defi ne relative changes of Rm and Tm as 
Rm′ and Tm′, 
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where Tmbasal and Rmbasal are the basal concentrations of the regulator protein and 
target mRNA, respectively. Combining the above equations leads to the following 
second-order ordinary differential equation:
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To predict the target of a specifi c regulator, we can solve (5.27) to obtain the 
theoretical target-behavior curve, and then fi nd the genes with mRNA levels similar 
to those of the theoretical curve, which will be identifi ed as the potential targets of 
that regulator.

5.7.3 Regulatory Network Reconstruction

The kinetic model for the time-lag problem, along with the meta-analysis technique 
to combine inferences from different microarray datasets, provided basic elements 
for constructing gene regulatory subnetworks around transcription factors. We 
evaluated our method on an Arabidopsis gene expression dataset containing 497 
arrays measuring responses to various stress conditions [19, 50, 52] and compared 
with the online available database AgrisDB [53, 54]. In this experiment, wild-type 
Arabidopsis plants were subjected to stress treatments for various periods (1, 2, 5, 
10, and 24 hours), and extracted mRNA samples were hybridized to a cDNA mi-
croarray. For meta-analysis, we used 9 separate tissue-specifi c microarray datasets, 
as gene expression is typically tissue-specifi c. That is, each tissue typically has its 
own set of genes expressed, although there are overlaps among tissues. Tissuewise 
partitioning of microarray data and combining it using meta-analysis shows ~7 
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times improvement in the network over the one from using the causal-regression 
model [19], as shown in Table 5.4. This indicates that consistent relationships be-
tween a transcription factor and a target, across most tissues, indicate a more ro-
bust prediction for gene regulation. 

In Table 5.4, the fi rst column shows the method used to build the network, the 
second column shows the network size (number of edges in the network), and the 
last column shows the confi rmed edges from the Agris database.

5.7.4 GO-Enrichment Analysis

Using this global network, we predicted ~179 genes that are signifi cantly regulated 
by the E2F transcription factor in at least 7 out of 9 tissues, as mentioned in Section 
5.7.3, and we identifi ed new candidate genes. This transcription factor provides es-
sential activities for coordinating the control of cellular proliferation and cell fate. 

Figure 5.14 Distribution of putative genes regulated by the E2F transcriptions factor in Arabidopsis. 
The description of these GO terms shows that the major categories of these processes include cell 
cycle, DNA replication, and DNA repair.

Table 5.4 Regulatory Network Construction for 
Arabidopsis, Using Two Different Techniques 

Method Network Size Confi rmed Pairs

Regression ~ 40,000 16

Meta-analysis ~ 12,000 35
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The signifi cantly enriched functional annotation terms across E2F targeted genes 
show that E2F plays a crucial role in the control of cell-cycle progression and regu-
lates the expression of genes required for the G1/S transition. These include genes 
encoding DNA replication proteins, enzymes involved in nucleotide synthesis, and 
components of the origin-recognition complex, as shown in Figure 5.14. 

5.8 Software Implementation 

5.8.1 GENEFAS

We developed a GENE Function Annotation System (GENEFAS), which is com-
putational software with a graphical user interface for gene-function prediction by 
integrating information from protein-protein interactions, protein complexes, mi-
croarray gene-expression profi les, and annotations of known proteins. GENEFAS 
can provide biologists a workspace, for their organisms of interest, to integrate dif-
ferent types of experimental data and annotation information. It is freely available 
for download at http://digbio.missouri.edu/genefas. GENEFAS allows a user to gen-
erate hypotheses and predict functions for their genes of interest and to get a global 
view of the relationship among genes. Users can retrieve information based on a 
search of an open reading frame (ORF) name, gene name, or annotation keyword. 
The software also facilitates sequence-based searches and provides users with the 
option to select different data types and upload both public and private datasets for 
integration in function prediction. Users can get a global understanding of the rela-
tionships among different gene products by viewing the neighboring genes, defi ned 
to be neighbors on the basis of the distance calculated from high-throughput data 
and functional-classifi cation pie charts. GENEFAS provides biologists with testing 
and training capabilities based on different datasets and evaluates the performance 
based on sensitivity and specifi city plots.

5.8.2 Tools for Meta-Analysis

Function-prediction tools using meta-analysis of microarray data are available from 
http://digbio.missouri.edu/meta_analyses/. All programs were written using ANSI C 
language, and they are compatible with both Linux, as well as Windows, operating 
systems.

5.9 Conclusion

This chapter introduced various aspects of GO and its applications in gene function 
and regulatory-network characterization. GO provides a controlled vocabulary to 
map functions of genes into identifi ers in any organism. This notation makes the 
computational method feasible to manipulate gene functions in terms of ontology 
or certain types of mapping. GO tremendously saved the time for other researchers 
to collect up-to-date function annotation from the literature, as it is continuously 
updated, and new versions are made available on a monthly basis. There are also 
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some other types of ontologies, such as the KEGG ontology. KEGG (Kyoto Ency-
clopedia of Genes and Genomes) is a collection of online databases dealing with 
genomes, enzymatic pathways, and biological chemicals. More ontologies are in-
troduced in Chapter 1 of this book.

GO offers the most comprehensive sets of relationships to describe gene/pro-
tein activities. However, GO also has some limitations. For example, some GO 
terms are generic and not informative for biological studies, although GO has been 
improved with more specifi c function details over the years. Furthermore, GO’s 
choice to segregate gene ontology to subdomains of molecular function, biologi-
cal process, and cellular component creates some limitations [55]. With further 
developments of gene ontology to overcome these limitations, new computational 
methods for gene-function prediction will also emerge.
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C H A P T E R  6

Mapping Genes to Biological Pathways 
Using Ontological Fuzzy Rule Systems

Mihail Popescu and Dong Xu

In this chapter, we provide another example of application in which ontologies play 
a transformational role in the underlying algorithms. We show how the ontological 
similarity described in Chapter 2 is employed in a fuzzy rule system, resulting in a 
new type of rule system, called an ontological fuzzy rule system (OFRS). After we 
defi ne the OFRS, we illustrate its application with a bioinformatics example related 
to mapping genes to gene networks.

6.1 Rule-Based Representation in Biomedical Applications

Rule-based knowledge systems have been popular in the medical informatics com-
munity, due to their transparency and their relative ease of development for the 
expert physician. A typical example is MYCIN, an expert system developed in the 
1970s to diagnose and treat infections in humans [4]. An example of a MYCIN rule 
is given below:

IF
 the gram of the organism is “gram negative” AND
 the morphology of the organism is “rod”      AND
 the aerobicity is “anaerobic”
THEN
 the organism is “Bacteroides” with certainty 0.6

The MYCIN expert system operates in a forward-chaining manner. The rules 
are fi red by syntactically matching the values of the input variables (“gram nega-
tive,” “rod,” and “anaerobic,” in the above example) to the variables (gram, mor-
phology, and aerobicity) from the antecedent of the rules. A certainty factor that 
refl ects the physician’s confi dence in the rule is associated with each rule’s output. 
However, the expert-system rules do not fi re for inputs that are semantically related 
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to the value of the variable specifi ed in the rule (for example, if the value of the aer-
obicity input were “aerointolerant”). The semantic imprecision inherent in human 
communication can be externally controlled if the expert system is administered by 
a physician. However, an autonomous agent that acts independently in a Semantic 
Web environment will have diffi culty in dealing with semantic imprecision.

To answer the terminological imprecision in the Semantic Web context, vari-
ous domain ontologies have been constructed (http://www.obofoundy.org). Many 
description logic rule based engines, such as KAON2, FACT++, or RACER, which 
use rules described by ontological terms, are under development [2]. Their scal-
ability and ability to handle complex problems are continuously improving; how-
ever, their capacity to handle imprecision is limited, since they, too, use a syntactic 
matching of ontology terms.

The imprecision of the system inputs was addressed in a simple fashion in 
engineering by the use of fuzzy rule systems. The variables in the rule antecedents 
(usually referred to as linguistic variables) are fuzzy sets represented by member-
ship functions. For example, the variable stature may have values, such as “short,” 
“average,” and “tall,” that can be represented by the membership functions shown 
in Figure 6.1. 

The variable from the rule consequence may be a fuzzy set (Mamdani fuzzy 
rule systems) or a function (Takagi-Sugeno-Kwang fuzzy rule systems). A typical 
example of a fuzzy rule may be:

IF 
 a person’s stature is “tall”
THEN
 the person’s speed is “fast”

A fuzzy rule such as the one shown above is tolerant to input imprecision: dif-
ferent statures such as 1.75 and 1.80 will not signifi cantly (abruptly) change the 
output of the rule. Fuzzy rules are performing well in the area of control systems 
engineering, in which the inputs are few (typically less than 5) and numeric [6]. 
The greatest limitation of the fuzzy rule systems is that they do not handle symbolic 
information.

Due to its data-intensive nature, bioinformatics has initially favored a data-
driven approach to knowledge representation. Large amounts of data stored in an 

Figure 6.1 Memberships for three values of the variable stature: “short,” “average,” and “tall.”
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ever-increasing number of databases have been used to solve biological problems, 
with a variety of computational intelligence techniques such as data mining, fuzzy 
logic, evolutionary computing, and neural networks. In this case, knowledge was 
typically extracted from the database in the form of association rules (see, for ex-
ample, Chapter 7). The data in bioinformatics often has several characteristics that 
make a rule-based representation challenging: large volume, mixed symbolic and 
numeric variables, and imprecision intrinsic to biological phenomena and labora-
tory techniques [18]. Hence, a bioinformatics rule-based system has to handle both 
numeric and symbolic imprecision and be scalable.

To deal with the above challenges, we proposed [8, 9] the concept of an on-
tological fuzzy rule system (OFRS). An ontological fuzzy rule system can have 
two types of input: numeric (numbers) and symbolic (words). While the numeric 
inputs require that their related linguistic variables be represented as membership 
functions, the symbolic ones require only the defi nition of a natural similarity for 
the construction of a membership function. The main idea of OFRS is to view the 
ontological similarity between concepts (as discussed in Chapter 2) as a fuzzy mem-
bership function, which we will discuss next.

6.2 Ontological Similarity as a Fuzzy Membership

The idea of using word similarities for defi ning fuzzy sets was advanced by Zadeh 
[20] in his “computing with words” paradigm. There, Zadeh stated that most hu-
man concepts have a granular structure in which the knowledge granules are ar-
ranged in taxonomies. Zadeh’s granule is a generic object (or set of objects) that 
may refer to any human perception and knowledge, such as time, space, or, in our 
case, biology. Here, we view the ontology concepts as knowledge granules that may 
contain, for example, several different syntactic variants (strings) of the concept. 
Our granules (genes, pathways, and so on) are contained in taxonomies specifi c to 
biology, such as GO and KEGG. Then, Zadeh mentions that a granule is “a fuzzy 
set drawn together by similarity.” The similarity between concepts can be com-
puted, if the granule taxonomy is known, using similarity measures such as those 
described in Chapter 2. Our concept of a granule is depicted in Figure 6.2. 

Figure 6.2  A granule that represents a concept C (a) contains several terms arranged in a tax-
onomy (b).
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Assume that the two terms, T1 and T2, at the center of the granule in Fig-
ure 6.2, precisely describe the concept C. That is, their concept memberships are 
μ1,2(C) = 1. They may be seen as different string variants (synonyms) that describe 
the concept C. In this case, the semantic similarity between them is 1. On the other 
hand, the similarity between T1 and T3, a more distant term in the taxonomy, can 
be computed using the formulas shown in Chapter 2. Since T4 is even more remote 
in the taxonomy from T1 and T2 than T3, it is expected that its membership in C 
be smaller, that is μ4(C) < μ3(C). Consequently, the circles around T1 and T2 can be 
viewed as isosimilars, the geometric loci of all terms equally similar to T1 and T2.

Andreasen [1] (also see Chapter 8) further refi ned the interpretation of similar-
ity between two ontology terms as a fuzzy membership by observing that, while the 
similarity measure in an ontology is usually symmetrical (that is, s(T1,T2)=s(T2,T1)), 
the related fuzzy memberships might not be. The reason resides in the difference be-
tween generalization (“tyrosine kinases are kynases”) and specialization (“kinases 
are tyrosine kinases”). While the fi rst statement is true (“high” membership value 
of term “tyrosine kinases” in “kinases”), the latter is only partially true (“medium” 
membership value of “kinases” in “tyrosine kinases”).

To answer the above observation, we have to employ a nonsymmetrical simi-
larity measure for computing term similarity. In this chapter, we use a simple path-
based similarity inspired from [1]. The similarity between two terms, T1 and T2, is 
computed as
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where {Pi} is the set of all possible paths connecting T1 and T2 in an ontology, and 
wij is the weight assigned to the arc j from path Pi (see Figure 6.3).

We note that s12 from (6.1) is not a similarity relation, because, in general, it 
is not symmetrical (e.g., in Figure 6.3, s(T1,T3) ≠ s(T3,T1)). We consider only two 
types of weights here: specialization weights (downward from the ancestor node 
to the descendent node) with a value of 0.4 and generalization weights (upward 
from the descendent to the ancestor) with a value of 0.9. The interpretation of the 

Figure 6.3 Example of a path-based computation of the similarity (fuzzy membership) between 
two ontology terms. The thin arcs represent the weight-assignment process, while the thick arcs 
represent the ontological relation is a (has_a relations are ignored). 
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weights is that T1 is T3 to the extent of 0.9, but T3 is T2 only to the extent of 0.4. 
The weight values (0.4 and 0.9) were chosen arbitrarily (as in [1]), but they can be 
learned from a corpus based on term co-occurrences [17].

Example 6.1 Consider the ontology snippet from Figure 6.3 with two terms, T1 
and T2, that have a common parent T3. There are two ways of getting from T1 
to T2, (T1,T3,T2) and (T1,T3,T4,T3,T2), hence the similarity between T1 and T2 
is according to (1) s12=max{w(T1→T3) × w(T3→T2), w(T1→T3) × w(T3→T4) × 
w(T4→T3) × w(T3→T2)} = max{0.9 × 0.4, 0.9 × 0.9 × 0.4 × 0.4}=0.36.

A more general case is when C1 is an object that has some properties described 
by a set of terms (such as T1 and T2). The question is then to compute the similar-
ity, s(C1,C2), of the object C1 to another object C2, described by terms from the 
same ontology. The resulting similarity is interpreted as the object C2 is a C1 to the 
extent of s(C1,C2). One method for computing the similarity between two objects 
C1={T11,..., T1n} and C2={T21, ...,T2m}, described by ontology terms, is the normal-
ized average approach:
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where s(t1i, T2j) is computed using (6.1). The normalization of the average ensures 
that s(C1,C1)=1. Other possible similarity measures are described in Chapter 2.
Example 6.2 Let us compute the similarity between two objects, C1={T1, T2} and 
C2={T3, T4}. First, observe that if we do not consider the ontological relations be-
tween the terms Ti, i∈{1,2,3,4}, the similarity between the two objects is 0. Assume 
that, using some term-similarity measure, such as Formula (1) in some ontology, 
we have: s(T1,T2) = 0.2, s(T1,T3) = 0.3, s(T1,T4) = 0.4, s(T2,T3) = 0.5, s(T2,T4) = 
0.6, s(T3,T4) = 0.7, and s(Ti,Ti) = 1 for any i∈{1,2,3,4}. Then, using (6.2), we ob-
tain sa(C1,C2) = 0.45, sa(C1,C1) = 0.8, sa(C2,C2) = 0.85 and, fi nally, s(C1,C2)=0.45/
max{0.8, 0.85} = 0.53. 

An interesting method for defi ning the distance between entities in fi rst-order 
logic (FOL) was found in [3]. The method was based on comparing the predicates 
used to describe two objects, and it was used in the conceptual clustering system, 
KBG.

6.3 Ontological Fuzzy Rule System (OFRS)

We defi ne an ontological fuzzy rule system (OFRS) by analogy to a Mamdani fuzzy 
rule system (FRS). A typical Mamdani FRS with n inputs and 1 output variable has 
the following form [6]:

 1 11 1 1

1 1

Rule 1:   is   ...   is    is 

Rule m:   is   ...   is    is 
n n

m n mn m

x G x G y P

x G x G y P

IF AND AND THEN

IF AND AND THEN
 (6.3)
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where Gij and Pi, i∈ [1,m], and j∈ [1,n], are fuzzy sets, {xi} is the inputs variable, 
and y is the output variable, respectively. The fuzzy sets Gij are possible values for 
the variable xi, while Pi is a possible value for the output y. Gij and Pi are usually 
represented using membership functions of the type shown in Figure 6.1. A Mam-
dani FRS for m = 2 and n = 2 is shown in Figure 6.4.

The computation of the FRS output, y0 ∈ R, for two inputs x10, x20 ∈ R, is 
performed as follows:

The memberships, wij=Gij(xi0), are computed for each rule i and input j, i,j∈{1,2}. 
Second, the activation, ai, of rule i is computed as ai = wi1⊕wi2, where ⊕ is an AND 
type operator. In most applications ⊕ is minimum (that is, ai = min{wi1,wi2}), but 
other choices are possible (see [6]). It is also possible for the variables in the rule 
antecedent (left-hand side) to be joined by an OR type operator. In this case, the 
typical operator employed is maximum, that is, ai = max{wi1,wi2}. After computing 
the activation, the output of each rule is computed as aiPi, which is the shaded area 
of each output membership Pi shown in Figure 6.4. The fuzzy output of the system, 
Psum, is computed by aggregating the individual rule outputs as Psum = max{a1P1, 
a2P2}. Here, too, more choices of aggregating operators, other than max, are pos-
sible. The fi nal step of the computation is called defuzzifi cation, and it consists of 
reducing the output fuzzy set Psum to a number. Among the most used defuzzifi -
cation procedures are the center of gravity (COG, y0 in Figure 6.4) and mean of 
maximum (MOM, y1 in Figure 6.4). Using the COG procedure, the output of the 
FRS, y0, is computed as the center of the area under the membership function Psum. 
By employing the MOM algorithm, the output y1 is computed as the center of the 
region where the membership Psum is the maximum.

An OFRS is similar to the FRS described above, except

Some/all input fuzzy sets 1.   Gij are replaced by ontology terms or by objects 
 described by ontology terms. The variables related to these terms or objects 
 are called symbolic variables. As opposed to the numeric variables, for 

Figure 6.4 A Mamdani fuzzy rule system with n = 2 rules and m = 2 inputs. The inputs and the 
output of the system are real numbers.
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 which the values are fuzzy sets represented by functions, the symbolic 
 variables have values that consist of ontology terms or objects represented 
 by ontology terms. Similarly, the output fuzzy sets Pi are replaced with 
 terms from the same ontology (output ontology) in order to allow the 
 assessment of relatedness (similarity). The output of the OFRS consists of 
 a term or a set of terms from the output ontology.

The membership, 2.   wij, of the input xi in the Gij is now computed, based on 
 the similarity of the two terms (objects), using (6.1) or (6.2) as wij = s(xi, 
 Gij).

The aggregation of the rule output has to take into account that the fi nal 3.   
 output of the OFRS should be a term or a set of terms. Consequently, the 
 defuzzifi cation procedure has to summarize the output of the set of rules in 
 few terms. Similar to the defuzzifi cation procedures described above for 
 FRS, we mention two summarization procedures. The fi rst procedure, 
 somewhat similar to MOM, chooses as output the term Pk, with the 
 maximum activation, where k is given by

 { }
1,

arg max i
i m

k a
=

=  (6.4)

The wining rule activation ak may be used as the confi dence of the OFRS 
output.

This fi rst case does not use the term similarity as mentioned in item 2. The 
second procedure, denoted here as ontological COG (OCOG), tries to fi nd the 
“center”of all output terms Pi. In this case, the output term Pk is chosen as
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The OCOG procedure has two desired properties. First, the ancestors of a term 
contribute to the term’s importance, and hence, to its chance of winning in (6.5). 
Second, since the similarity relation is nonsymmetrical, that is s(ancestor, child) < 
s(child, ancestor) (as explained in Figure 6.3), the child does not contribute as much 
to its ancestor. Hence, the OCOG procedure tends to choose the more specifi c term 
as the fi nal output. However, the average similarity value in (6.5) has a tendency of 
producing low membership values. A possible solution for this problem is to use 
an OWA-type operator [19], such as summing only the fi rst n’ most similar terms 
where n´ < n.
Example 6.3 Consider the following medical OFRS:

  rule 1: IF x1=“back aches” AND x2=“high fever” THEN P1=“spinal meningitis”
 rule 2: IF x1=“aches” AND x2=“moderate fever” THEN P2=“fl u”

In the above OFRS, x1 is a symbolic variable (a symptom), and x2 is a numeric 
one (the fever in degrees Fahrenheit). Assume, as in Figure 6.3, that s(“back aches,” 
“aches”) = 0.9, s(“aches,” “back aches”) = 0.4, s(“fl u,” “spinal meningitis”) = 0.1, 
s(“spinal meningitis,” “fl u”) = 0.2, and all self-similarities s(Ti, Ti) = 1. Moreover, 



120 Mapping Genes to Biological Pathways Using Ontological Fuzzy Rule Systems

assume that the memberships for fever (“moderate” and “high”) are similar to the 
ones from Figure 6.1, but adapted to the range of the fever. For the purpose of this 
example, we assume the following memberships: w(“moderate,” 100) = 0.9 and 
w(“high,”100) = 0.5.

For an input x = {x1 = “aches,” x2 = 100}, rule 1 will have an activation a1 = 
min{0.9,0.5} = 0.5 and rule 2 will have a2 = min{1,0.9}=0.9. Using (6.4), the output 
of the system is given by argmax{0.5, 0.9} = 2, that is, P2 = “fl u,” with confi dence 
0.9. Note, that the activation of the fi rst rule is also signifi cant (0.5).

If we use (6.5) for the same input, we get argmax{(0.5*1+0.5*0.2)/2, 
(0.9*1+0.9*0.1)/2} = argmax{0.3, 0.49} = 2; hence, the output is P2, with confi -
dence 0.49. Here we see the tendency of the average operator from (6.5) to produce 
low confi dence values (0.49 is much smaller than 0.9, which was obtained in the 
fi rst case.

6.4 Application of OFRSs: Mapping Genes to Biological Pathways

The problem of mapping a set of genes to pathways often arises in microarray ex-
periments in which we would like to know which regulatory networks can explain 
about the observed gene-expression patterns. The majority of gene-mapping ap-
plications [5,15,16] employ statistical algorithms based on syntactically matching 
the gene names in a given pathway. There are two main disadvantages of the name-
matching approach. First, since a given gene may have several names, it might not 
match the (string) variant that appears in the pathway representation. Second, some 
sequences represented on the microarray may belong to an unknown gene, hence 
having no available name for matching. This is often the case when a new organ-
ism is sequenced. One possible solution to the previous problems is to use the Gene 
Ontology (GO) annotation of a gene instead of its name in the pathway search 
process. The GO terms for an annotated gene may be retrieved from http://www.
geneontology.org (see Chapter 1). If the sequence has not been annotated yet, we 
can use an automated gene-function prediction method (see Chapter 5) to compute 
the appropriate GO terms. 

By investigating the biological pathways, the biologists aim at understanding 
the processes that underlay gene expression and, hence, the cause of an abnormal 
cell condition (such as cancer). One of the databases that store the current biolog-
ical-pathway knowledge is KEGG (Kyoto Encyclopedia of Genes and Genomes, 
http://www.genome.jp/kegg). For a certain organism (Homo sapiens or Arabidop-
sis thaliana, in our case), KEGG contains all the related known biological pathways 
and the genes associated with each of them. In addition, KEGG contains the links 
between the genes, a fact that we ignore in the applications described in this chap-
ter. By neglecting the links between genes, the KEGG database can be seen as an 
OFRS, similar to the one shown in (3).

In Sections 6.4.1 and 6.4.2, we will describe two approaches to mapping genes 
to regulatory pathways using OFRSs. In the fi rst approach [9], we employed an 
OFRS that has the terms in the antecedent linked by OR operators (disjunctions). 
In the second approach [8], we used an OFRS that has the terms in the antecedent 
connected by AND operators (conjunctions).
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6.4.1 Mapping Gene to Pathways Using a Disjunctive OFRS

6.4.1.1 Disjunctive OFRS

The disjunctive rules of the OFRS used in [9] have the form

 [ ]1 1Rule :   is   ...   is   1,i in ii x G x G P i m∈IF OR OR THEN  (6.6)

The activation, ai, of each rule for an input x is computed as

 ( ) { }
1,1,

mini ij ijj nj n
a OR w w

==
= =  (6.7)

where OR is a disjunctive operator, and wij is calculated using the ontological simi-
larity between x and Gi, s(x, Gij). In this application, we do not use any rule ag-
gregation, as in (6.4) and (6.5). Instead, we use the activation of each rule ai to 
associate each input gene to an m-dimensional output vector A = (a1, ..., am), A ∈ 
Rm.

For the case of mapping genes to pathways, the input variable of the OFRS is a 
gene annotated with terms from the Gene Ontology (GO), and the output variable 
is a KEGG pathway (http://www.genome.ad.jp/kegg). The concrete form of the 
above OFRS rule is 

 
1  is GENE   ...   is GENE    is PATHi in igene gene pathwayIF OR OR THEN  (6.8)

where GENEij are genes identifi ed by KEGG as being present in pathway PATHi. 
In fact, the OFRS consists in the KEGG pathway database itself. The OFRS has 
just one gene as input variable. The output of the OFRS is the membership of the 
input gene in a pathway PATHi. As mentioned above, the OFRS (6.8) maps each 
gene into an m-dimensional feature vector that represents the membership in each 
pathway. Next, we present an example of computing the activation of a rule (6.8) 
for a given input gene.

Example 6.4 Given the rule “IF gene is BCL2 OR gene is APAF1 THEN path-
way is APOPTOSIS” we compute the rule activation for CASP9. Using the 
GO Web site, http://www.geneontology.org, we obtain the following annota-
tions (only two shown) for each of the three H. sapiens genes mentioned above: 
CASP9={GO:0008632: apoptotic program, GO:0008635: caspase activation via 
cytochrome c}, BCL2={GO:0006916: antiapoptosis, GO:0006959: humoral im-
mune response}, and APAF1={GO:0008635: caspase activation via cytochrome 
c, GO:0042981: regulation of apoptosis}. Using the term-similarity method from 
(6.1) and the GO snippet from Figure 6.5, we obtain the following term-similarity 
matrix inTable 6.1. For example, the similarity between GO terms GO:0008635 
and GO:0008632 is computed as 0.94 × 0.4 = 0.26.

The “relatedness” of the CASP9 to BCL2, w1, is given by their GO similarity 
computed using the normalized pairwise similarity (6.2): w1 = s(CASP9, BCL2) 
= s({GO:0008632, GO:0008635}, {GO:0006919, GO:0006959}) = [(0.11+0.32+ 
0.02+0.001)/4]/ [max{(1+1+0.04+0.02)/4, (1+1+0.03+0.26)/4}] = 0.2. Similarly, 
the membership of CASP9 in APAF1 is w2 = 0.72. The rule activation (6.7) is a = 
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max{w1, w2} = 0.72. The rule activation is high, as it should be, since CASP9 is part 
of the apoptosis pathway.

6.4.1.2 Gene-Mapping Algorithm

The input of the mapping algorithm is a set of GO annotated genes Q = {qi}i = 

[1,N]. The goal of the algorithm is to fi nd the KEGG pathways (their numbers and 
identities) that are involved in the expression of genes from the set Q. The pathway-
prediction algorithm has the following steps:

Compute the activation 1.   aij of each gene qi, i∈[1,N], in pathway j, j∈[1,m], 
 using (6.7). As a result each gene i is described by a pathway activation 
 (feature) vector Ai = (ai1,…,aim)∈Rm.

Compute the gene-similarity matrix, 2.   S = {sij}i,j∈[1,N], as

Table 6.1 GO Term-Similarity Matrix Computed with (6.1) and the GO Snippet from 
Figure 6.5

 GO:0008632 GO:0008635 GO:0006916 GO:0006959 GO:0042981

GO:0008632  1 0.03 0.15 0.04 0.36

GO:0008635  0.26 1 0.11 0.03 0.26

GO:0006916  0.32 0.11 1 0.04 0.32

GO:0006959  0.02 0.001 0.01 1 0.02

GO:0042981  0.36 0.03 0.15 0.04 1

Figure 6.5 Gene Ontology snippet for the terms used in Example 6.4.
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T T
i j

ij
T T
i j

A A
s

A A

⋅
=  (6.9)

where AT denotes that the vector A was thresholded with a threshold T 
(that is, if aij < T, then aij = 0). The thresholding operation was performed 
in order to remove the noise (pathways with residual activation). The best 
threshold was determined experimentally [9] to be T = 0.5.
Use a clustering algorithm, together with a cluster validity measure, to 3.   

 assess the most likely number C of pathways (clusters) present in Q. We 
 used the fuzzy C-means algorithm [10] to cluster the genes represented by 
 the feature vectors {Si}i = 1,N into C clusters, where Si = (si1, …,siN) and the 
 partition coeffi cient [10] to estimate the number of clusters. We found that 
 it is more reliable to cluster the similarity matrix S using fuzzy C-means, 
 rather than the feature vectors {Ai} directly. Another possible approach to 
 clustering a similarity matrix is to use a relational clustering algorithm such 
 as non-Euclidean relational fuzzy C-means [11], together with a relational
 clustering validity measure, such as the correlation cluster validity [12] (as 
 shown in Chapter 3).

Step 44.   . Assume  is the set of indices from cluster c∈[1,C], where 
1

C

k
c

I N
=

=∑
 and |I| denotes the cardinality of I. The pathway that is more likely for the 
 genes in cluster c to be active in is the one for which the sum of the 
 activations in cluster c is maximum. If we denote this pathway by Pk, 
 k∈[1,m], then k is obtained using

 { }
1,

arg max j
j m

k Sum
=

=  (6.10)

where 
k

j ji
i I

Sum a
∈

= ∑  To produce more than one candidate pathway for 

a cluster, we can consider the pathway that has the second highest sum 
activation in the cluster, and so on.
The evaluation of the mapping that was performed using the detection rate 5.   

 (DR, sensitivity) is computed as

 
_ _ _

_ _ _
no pathways correct predicted

DR
total no correct pathways

=  (6.11)

The false prediction rate (FPR) is computed as

 
_ _ _

_ _ _
no pathways erroneously predicted

FPR
total no pathways predicted

=  (6.12)

For example, if the KEGG IDs of the correct pathway are {10, 940, 3050}, and 
our prediction is {10, 940, 3030, 4070}, then DR = 0.66 and FPR = 0.5. We note 
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that, since we ignore that the pathways 3050 and 3030 are strongly related, our 
DR estimate is conservative. 

We also estimate the p-value of our DR prediction by randomly assigning the 
membership of the N genes in C clusters and recomputing the detection rate, DR*. 
We perform the random assignment 1,000 times, resulting in a set of 1,000 random 
detection rates, *

1,1000{ }j jDR = . Then, the p-value is calculated as

 { }* *_ _ ,

1000
j jno of DR DR DR

p value
>

− =  (6.13)

that is, the number of the random detection rates higher than our DR (obtained by 
clustering Si′s) divided by 1,000. The p-value is a measure of the reliability of our 
classifi er. If the p-value is low (e.g., lower than 0.05), a low detection rate might be 
due to a gene set that is hard to predict and not to a bad prediction method.

6.4.1.3 Testing the Mapping Algorithm on 10 H. Sapiens Gene Sets

The algorithm described in Section 6.4.1.2 was used with KEGG pathways for 
Homo sapiens and Arabidopsis thaliana as fuzzy rule system databases. Usually, 
the fuzzy rules are set up by domain experts. In our case, the memberships of genes 
in pathways (the rule base) were determined by biologists and stored in the KEGG 
database. An alternative way of building the OFSR is to employ an item set (asso-
ciation rules) mining method for fi nding the rules.

For testing, we used the July 2006 version of the KEGG pathway database for 
H. sapiens. We tested the algorithm using 10 sets of 15 genes each, randomly select-
ed (without replacement) from KEGG pathways that have more than 50 genes. The 
reason for this condition was that we tried to minimize the impact on the whole 
pathway at the extraction of 5 genes from it. We found 23 such pathways out of 
the m = 181 H. sapiens pathways considered. Each set of genes was extracted from 
three pathways (5 genes per pathway). 

The results obtained on the H. sapiens test set are presented in Table 6.2. The 
prediction was made by considering one candidate pathway (the one that had the 
maximum activation sum) per cluster and using a feature threshold of T = 0.5.

As we can see from Table 6.2, over-clustering (like in the sets numbered 2, 
3, 8, and 10) leads to an increase in false predictions. Sometimes clusters may be 
merged, if they predict the same pathway. However, we leave pruning strategies for 
further research.

We mentioned that predicting the right pathways (as for set 6) does not neces-
sarily mean that we assigned all the genes to the correct pathways in the process. 
For example in set 6, we assigned only 13 out of 15 genes (87%) to the correct 
pathways. In Figure 6.6 we show the gene-similarity matrix computed using (6.9) 
and the pathway features for set 6. 

We see that genes 4 and 12 (circled) exhibit more similarity to the genes from 
pathway 2 (gene index 6–10) than to their own pathways (gene index 1–5, and 
gene index 11–15, respectively). On average, we predicted about 45% of the genes 
in the right pathway.
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6.4.1.4 Predicting the Pathways Involved in an Arabidopsis Thaliana Microarray 
Dataset

The pilot dataset used for further testing of our method consisted of 526 A. thaliana 
genes selected in a microarray experiment. In this experiment, we considered m = 
115 pathways from the July 2006 KEGG version. Out of 526 genes in the input 
set, we found only 438 to be annotated using a GO term. Since we did not use any 
automated annotation software in this work, we removed the 88 unannotated genes 

Table 6.2 Pathway Prediction Results for 10 H. Sapiens 
Test Gene Sets Using One Candidate Pathway per Cluster

Set #

# Pathways
Predicted, 
C,(out of 3) DR FPR

# Genes in the correct 
pathway (out of 15)

1 3 0.67 0.33 9

2 5 0.67 0.60 4

3 5 1.00 0.40 7

4 3 0.67 0.33 10

5 3 0.67 0.33 5

6 3 1.00 0 13

7 3 0.33 0.67 3

8 4 0.33 0.75 2

9 3 0.67 0.33 9

10 4 0.67 0.50 5

Mean 0.66 0.43 6.7

Figure 6.6 Similarity matrix for the 15 genes selected in case 6 from Table 6.2. Genes 4 and 12 
(circled) will be erroneously grouped by fuzzy C-means in pathway 2, (indices 6–10), instead of 
pathways 1 (indices 1–5) and 3 (indices 11–15), respectively.
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from the experiment. To determine the most probable number of clusters, we used 
the partition coeffi cient [10] that resulted in C = 8 group of genes. In Table 6.3, we 
show the KEGG IDs for the three representative pathways found for each of the 8 
clusters.

We see that most of the clusters are coherent; that is, the pathway candidates 
for a cluster are very similar. For example, cluster 1 has 7 genes, and the candidate 
pathways are oxidative phosphorilation (190), ATP synthesis (193), and photo-
synthesys (195) (which are obviously related, since 193 is included in 190, and 
195 and 190 are both related to the energy metabolism). Similarly, cluster 5 has 
25 genes, and the candidates pathways are DNA polymerase (3030), transcription 
factor (3022), and ribosome (3010), which are all involved in the DNA replication 
process. Finally, cluster 8 has 69 genes involved in valine, leucine, and isoleucine 
degradation (280) and biosynthesis (290).

The similarity matrix for the 438 genes is shown in Figure 6.7.
In Figure 6.7, we can distinguish the 8 clusters described in Table 6.3. Further-

more, by inspecting Figure 6.7 more carefully, we observe that the genes (circled) 
from cluster 4 (around index 200) and from cluster 7 (around index 350) seem to 
be highly similar. Table 6.3 confi rms this observation, since they share the second 
pathway candidate: sphingolipid metabolism (KEGG ID 600).

Although this method gave encouraging results for our pilot dataset, it has two 
potential problems that derive from the fact that it maps one gene at a time. First, 
by mapping one gene at a time, it is not considering the dependencies between the 
genes in a pathway. Second, mapping one gene at a time results in a low signal-to-
noise ratio, due to the noise produced by the similarity to various genes other than 
itself. Consequently, a better approach would be to map groups of genes at a time. 
Since it is impossible to know a priori the grouping of the genes, this approach 
relies on an evolutionary strategy for estimating the number of pathways and their 

Figure 6.7 The pathway similarity matrix between the 438 A. thaliana genes. The matrix has been 
rearranged, using the clusters obtained by applying fuzzy C-means on the initial similarity matrix.
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gene memberships. We describe an evolutionary approach for pathway estimation, 
based on an ontological fuzzy rule system, in Section 6.4.2.

6.4.2 Mapping Genes to Pathways Using an OFRS in an Evolutionary 
Framework

6.4.2.1 The OFRS Format

The OFRS used in this application [8] has the following format:

 rule i: [ ] _  is    is 1,i igene group G pathway P i m∈IF THEN

where Gi is a set of genes represented by GO terms, and Pi is the KEGG pathway 
known to be associated with the given group. For example, the rule for the cell 
apoptosis pathway is 

 
{ } _ 2, 1, 9, , ,

 APOPTOSIS

gene group BCL APAF CASP FASL FAS

pathway

=
=

IF

THEN


 (6.14)

More specifi cally, the above rule is used by replacing each gene by its GO rep-
resentation, that is

IF gene_goup={(“mitochondrial outer membrane,” “antiapoptosis,” “regula-
tion of cellular pH,”...)(BCL2),(“regulation of apoptosis,” “nucleotide  bind-
ing,”...)(APAF1), (“enzyme activator activity,” “apoptotic program,”... )(CASP9)...} 
...THEN pathway=APOPTOSIS.

Although not done here, the above rule could be expanded conjunctively, using 
knowledge such as gene-gene interaction:

IF gene_group is Gi1 AND group_interaction is Gi2 THEN pathway is Pi,
the intuition being that the interaction between genes from the same pathway 

is higher than between those from different pathways.

Table 6.3 The KEGG IDs for Three Candidate 
Pathways for Each of the 8 Clusters Found in the A. 
Thaliana Pilot Microarray Dataset

Cluster Size Path 1 ID Path 2 ID Path 3 ID

1 7 190 193 195

2 34 4130 53 3022

3 127 4710 230 280

4 56 940 600 903

5 25 3030 3022 3010

6 59 10 100 130

7 61 632 600 4130

8 69 280 290 770
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The activation of rule i for a group of input (query) genes {qj}j=1,N is computed 
as

 { }( )
( ){ }

1,
1

max ,

,

N

j ik
k n

j
i j i

s q G

a q rule
N

===
∑  (6.15)

where s(qj, Gik) is the similarity between the jth input gene and the kth gene from 
pathway i, calculated using (6.2). When all the genes {qj} are explicitly mentioned 
in a given pathway, the rule activation given by (6.15) is 1. If a gene is not explicitly 
mentioned, however, the rule activation will refl ect the degree of functional simi-
larity between the unknown input gene and the genes from the given pathway. An 
activation lower than 1 also might be obtained if the GO and KEGG annotations 
for a given gene are different.

The input genes {qj} may belong to more than one pathway. Consequently, we 
need to address three problems: (1) fi nd the number of pathways represented in the 
input group; (2) identify those pathways; and (3) assign the genes to the identifi ed 
pathways. We can address all the above problems using an evolutionary C-means 
strategy. Assume that the genes {qi} belong to C pathways, which implies that the 
genes are split in C subgroups (clusters). The evolutionary C-means objective func-
tion J is designed to maximize the average membership of the C gene subgroups in 
pathways:

 ( )
{ }( )

1
i

C

i n
i

a q
J U

C
==
∑  (6.16)

where {ni} is a partition of N and ai is the maximum activation of the ith gene sub-
group, { }

inq , found across all the pathways. The pathways for which the maximum 
is obtained are selected as candidates for the output set. It is obvious that J is 1 
when all C subgroups match perfectly in some pathways.

We can divide the input genes {qj}j=1,N into two groups: one group {qj}found that 
have the name represented in KEGG and another group {qj}not-found that are not 
found in KEGG. In our experience, depending on the organism, the found gene 
category contains anywhere from 30% to 60% of the total number of input genes, 
N.

We can use two approaches to pathways mapping. The fi rst approach consists 
of using only the input genes found in KEGG, {qj}found, to fi nd the related pathways. 
We call this approach crisp, since it does not use the fuzzy gene matching based on 
the GO similarity. In the second approach, we map the input genes using their GO 
representation. As we mentioned earlier, this might require the use of automatic 
annotation software for genes without GO term association. We call this approach 
fuzzy, since the gene matching is based on their GO similarity.



6.4 Application of OFRSs: Mapping Genes to Biological Pathways 129

6.4.2.2 Results

We used the July 2006 version of the KEGG pathway database for H. sapiens as 
our fuzzy rule database (same as in Section 6.4.1.3). Out of the 181 human path-
ways found in KEGG, we selected m = 147 of them that have at least 1 gene that 
is annotated with GO terms. The test dataset consisted of 10 sets of 15 genes each, 
randomly selected from KEGG pathways (3 pathways for each set) that have more 
than 20 genes. 

In the fi rst experiment, we compared the behavior of three gene-mapping 
methods, the crisp, the fuzzy, and the clustering-based method presented in Section 
6.4.1, for a variable number of missing genes (not-found in KEGG) per pathway. 
The experiment consisted of randomly choosing a number of p∈[0,5] genes from 
each gene subgroup (of the 3 existent in each of the 10 gene sets) and removing 
them from the KEGG pathways. This procedure artifi cially created not-found genes 
(with name not matched in KEGG) in the input set. For each gene set (of the total 
of 10), we ran the evolutionary C-means clustering algorithm with the objective 
function given by (6.16), a population of 50, a mutation rate of 0.2, and a number 
of 100 iterations. The pathway detection rate was calculated using (6.11). The re-
sults (the average detection rate for the 10 gene sets) are summarized in Table 6.4.

From Table 6.4, we see that when all genes (in number of 5, last column) in a 
subgroup are not-found, the crisp approach, obviously, cannot retrieve any path-
way. However, if only 2 genes are known in each subgroup, the crisp method iden-
tifi es the correct pathways in 90% of the cases. In addition, we see that the crisp 
approach is more stable in fi nding the right pathways than the fuzzy approach if at 
least 2 genes per pathway can be (crisply) mapped to KEGG.

At the same time, the fuzzy approach is able to identify, on average, 30% of the 
pathways, even in the case in which no gene from the input set could be mapped 
to KEGG (all were not-found). Obviously, the two methods based on ontological 
similarity are the only ones that can be used in such cases. It is also clear from Ta-
ble 6.4 that our clustering approach presented in Section 6.4.1 cannot be used for 
mapping when many input genes are found in KEGG. Since the clustering-based 
method performs best when no information is available (last column in Table 6.4), 
however, it might be suitable for assigning genes to pathways in new genomes.

In conclusion, the crisp approach better identifi es the pathways, while the fuzzy 
approach better maps the genes in the right pathway. This observation leads to a 
combined approach to gene mapping, in which the fi rst step consists in using the 
crisp approach to map the found genes, followed by a second step in which the 

Table 6.4 Average Detection Rate for Three Gene-Mapping 
Methods on the H. Sapiens Pathway Test Set at Different 
Numbers of Missing Genes per Pathway

Missing Genes/ Pathway 0 1 2 3 4 5

Crisp Detection Rate 0.93 0.93 0.9 0.9 0.6 0

Fuzzy Detection Rate 0.93 0.83 0.72 0.5 0.37 0.3

Clustering (Section 
6.4.1) Detection Rate 0.5 0.5 0.57 0.57 0.6 0.63
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remaining (not-found) genes are mapped, employing the fuzzy approach. The re-
sulting OFRS-based algorithm for gene-to-pathway mapping is given in Algorithm 
6.1 below.

Algorithm 6.1

Summary of the OFRS gene-to-pathway mapping algorithm.

Input:
 -{qi}i=1,N
 -KEGG rule base for the desired organism

Output:
 -number C of active pathways
 -the KEGG name of C active pathways
 -a partition 1,

{ } ,
ci i n c

c C
q n N∈ =

∪ =  of the input genes.

Algorithm:
 - fi nd the genes represented in KEGG, {qi}found 

 -C=1
 - WHILE J < 1 (6.17)
        -C=C+1;
        -map the {qi}found  genes to KEGG using the evolutionary C-means 

                      -(ECM) procedure described in Section 6.4.2.1. For ECM we used:
  -population size = 50;
  -10 mutations/iteration;
  -100 iterations;
          - choose the partition {nc} with best J
 -END WHILE
 -map the rest of the genes {qi}not-found one-by-one to the C pathways found        

   above, using the ontological OFRS (6.15) and (6.16) based on their GO 
   annotations (if not annotated, use an  automatic annotation system [15–
   17] to do so.

We note that the evolutionary C-means procedure for mapping known genes to 
pathways, described in Section 6.4.2.1 might seem trivial at fi rst glance. In fact, one 
could just enumerate the pathways in which the known input genes are found. Since 
a gene may appear in multiple pathways, however, for even a moderate number of 
input genes (e.g., 50) we would probably end up with all the pathways from KEGG 
as output. The key point of the evolutionary procedure is that it returns the mini-
mal pathway set. Example 6.5 tries to clarify the problem.

Example 6.5 Consider the following input gene set: {qi}i=1,4={A, B, C, D}. The ques-
tion is to fi nd the minimal pathway set for the input genes, given the following 
pathway database:

 IF {A, B} THEN P1
 IF {C, D} THEN P2
 IF {A, F} THEN P3
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 IF {B, G} THEN P4
The simplistic result for the mapping is {P1, P2, P3, P4}, since the four genes ap-

pear in all the pathway rules. However, the minimal set found by the evolutionary 
algorithm is {P1, P2}, which results in a J = 1 (6.17), C=2 and a partition {{A,B}, 
{C,D}}. Once J = 1 is attained, the search stops in order to prevent the appari-
tion of the less desirable solution obtained for C=3: {{A},{B},{C,D}} that has a J = 
(0.5+0.5+1)/3=0.67.

6.5 Conclusion

In this chapter, we presented a fuzzy rule system that has memberships computed 
using ontological similarity, called the ontological fuzzy rule system (OFRS). The 
rules contained in the OFRS are obtained either from a curated database or by as-
sociation rule mining. We presented an application of the OFRS for mapping genes 
to pathways. We investigated two approaches to the gene-mapping problem: one 
based on a disjunctive OFRS and clustering and the other based on a conjunctive 
OFRS and an evolutionary C-means procedure. The fi rst approach is faster and 
may be suitable for fi nding pathways in new genomes in which little curated gene 
annotation is available. The second approach may work best for mapping new 
genes in well-annotated genomes.
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C H A P T E R  7

Extracting Biological Knowledge by 
Association Rule Mining

F. Javier Lopez, Armando Blanco, Fernando Garcia, and Carlos Cano

The availability of the complete genome from diverse species and the advent of 
high-throughput genomic technologies have generated a great amount of structural 
and functional genomic information, boosting bioinformatics research to develop 
computational techniques that help to analyze such a huge amount of data [1]. In 
this context, association rules have emerged as a powerful tool to analyze biological 
data, due to their ability to manage large datasets, their capacity to treat heteroge-
neous information, and the intuitive interpretation of the results obtained with this 
technique. Thus, association rules have been widely used in bioinformatics, their 
applications spanning from pure data-mining approaches to signaling-pathways 
inference, protein-protein interaction prediction, or regulatory modules discovery 
[2, 3, 4, 5].

The search for a formal methodology to organize, present, and computation-
ally manage biological data has recently given ontologies a major role in bioinfor-
matics. One of the most popular bio-ontologies is the Gene Ontology (GO) [6]. 
The Gene Ontology Project aims to satisfy the need for consistent descriptions of 
gene products in different databases. It has become the de facto standard that pro-
vides a structured, controlled vocabulary for describing the roles of genes and gene 
products in many organisms (Chapter 1). 

This chapter presents methodologies for association analysis based on asso-
ciation rule mining and discusses several applications in bioinformatics, mainly 
focused on GO and microarray analysis. The chapter is organized as follows: Sec-
tion 7.1 overviews the main aspects of association rules and fuzzy association rules. 
Section 7.2 describes some applications of association rules involving the Gene 
Ontology, and Section 7.3 presents a set of applications for microarray analysis.

7.1 Association Rule Mining and Fuzzy Association Rule Mining 
Overview

In 1993, Agrawal proposed an algorithm for extracting association rules from large 
databases [7]. The initial application of association analysis techniques was the 
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study of the hidden relations in market-basket databases. Typically, these databases 
contain information about the products bought by the customers in each purchase. 
Thus, a market-basket database consists of a set of transactions, each of them con-
taining the items acquired in that transaction (Table 7.1). Hence, the main objective 
when an association analysis is carried out over this kind of databases is to obtain 
relations of the form

 { } { }Milk Butter→  

This is basically an association rule, and represents the expression: Those who 
buy milk also buy butter.

This type of information may be of great interest for a supermarket admin-
istrator, since, for example, sales might be increased by placing certain products 
together.

Association rules have also been successfully applied in many other different 
fi elds, including Web mining, advertising, bioinformatics, and so on. Moreover, 
since they were fi rst proposed in 1993, they have become one of the main tech-
niques for knowledge discovery in databases (KDD).

7.1.1 Association Rules: Formal Defi nition

Let I = {x1, x2, …, xn} be a set of attribute-value pairs or items. Let D be a trans-
actional database, in which each transaction is a set of items T ⊆ I. An associa-
tion rule is an expression of the form X → Y, where X and Y are sets of items (or 
itemsets) so that X ∩ Y = ∅. The itemset X is called the antecedent of the rule, while 
Y is called the consequent. An association rule like this indicates that if X occurs, 
then Y is likely to occur. The probability that Y occurs, given that X has occurred 
is called the confi dence of the rule. The probability that both X and Y will occur 
is called the support of the rule. Thus, classical association rule mining algorithms 
aim to extract association rules with support and confi dence greater than some 
user-specifi ed threshold.

A transaction T is said to support an itemset X ⊆ I, if X ⊆ T, or, in other words, 
T contains all the items in X. Thus, the support of an itemset X is the percentage of 
transactions in the database that supports X, or, in other words, the probability of 
fi nding the itemset X in the database. Therefore, the support of a rule X  Y can 
be calculated as

 ( ) ( )Supp X Y Supp X Y→ ∪

Table 7.1 Example of a Market-Basket Database

Transaction Items

1 {Bread, Milk, Butter}

2 {Beer, Eggs, Milk, Butter, Fruit}

3 {Milk, Butter}

… …
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and the confi dence of a rule X  Y can be defi ned as

 ( ) ( ) ( )Conf X Y Supp X Y Supp X→ = →  

Finally, an itemset X is said to be frequent if its support is greater than some 
user-specifi ed threshold.

For example, consider the information in Table 7.2 which contains some struc-
tural data for a set of yeast genes. This table can be easily seen as a transactional 
database, in which each row represents a transaction, and the attributes in each 
column form the items of the transaction. (Table 7.3).

Consider now the itemset Z:

Table 7.2 An Example of a Data Table

Gene Gene Length
Intergenic
Length

Gene
Orientation

YAL002W LARGE LARGE TANDEM

YAL003W SHORT LARGE DIVERGENT

YAL008W SHORT SHORT TANDEM

YAL009W MEDIUM SHORT DIVERGENT

YAL010C MEDIUM SHORT DIVERGENT

YAL011W MEDIUM MEDIUM TANDEM

YAL012W MEDIUM MEDIUM TANDEM

YAL013W MEDIUM MEDIUM DIVERGENT

YAL015C MEDIUM MEDIUM TANDEM

YAL017W LARGE LARGE DIVERGENT

YAL018C MEDIUM LARGE DIVERGENT

YAL019W LARGE SHORT TANDEM

YAL021C LARGE MEDIUM TANDEM

Table 7.3 Table 7.2 Transformed into a Transactional Data Table

Transaction Items

YAL002W
{(Gene length = LARGE), (Intergenic length = LARGE),
(Gene orientation = TANDEM)}

YAL003W
{(Gene length = SHORT), (Intergenic length = LARGE),
(Gene orientation = DIVERGENT)}

YAL008W
{(Gene length = SHORT), (Intergenic length = SHORT),
(Gene orientation = TANDEM)}

… …
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( ) ( )
( )

, ,Gene length MEDIUM Intergenic length MEDIUM
Z

Gene orientation TANDEM

⎧ ⎫= =⎪ ⎪= ⎨ ⎬
=⎪ ⎪⎩ ⎭

This itemset is supported by transactions (genes) YAL011W, YAL012W, and 
YAL015C, and there are 13 transactions in total, therefore Supp(Z)=3/13=0.231. 
Consider now the association rule:

( ) ( ){ }
( ){ }

,R Gene length MEDIUM Intergenic length MEDIUM

Gene orientation TANDEM

= = =

→ =

The support of R is

 ( ) ( ) 0.231Supp R Supp Z= =

and the confi dence of R can be calculated as

 ( ) ( ) ( )
( )

( ) ( )

,

3 13 4 13 0.75

Gene length MEDIUM
Conf R Supp R Supp

Intergenic length MEDIUM

⎛ ⎞⎧ ⎫=⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟=⎪ ⎪⎝ ⎠⎩ ⎭
= =

 

The main drawback of association rule mining techniques is that the number 
of generated rules is often large, many of them providing redundant or nonrelevant 
information. The support/confi dence framework has been proven to be insuffi cient 
to deal with this problem. Therefore, additional strategies and interestingness 
measures have been proposed to enhance the interpretability of the resultant rule 
set. However, pattern interestingness is often confused with pattern accuracy. The 
majority of the literature focuses on maximizing the accuracy of the discovered 
patterns, ignoring other important quality criteria. In fact, the correlation between 
accuracy and interestingness is not so clear. For example, the statement “men do 
not give birth” is highly accurate, but not interesting at all [8]. Hence, there is not a 
widespread agreement on a formal defi nition for the interestingness of a rule. Some 
authors have even defi ned the interestingness of a pattern as a compendium of 
concepts, such as conciseness, coverage, reliability, peculiarity, diversity, novelty, 
surprisingness, utility, and actionability [9]. Thus, many rule interestingness 
measures and rule reduction strategies have been proposed (for a review, see [9, 
10]).

Summarizing, the association rule mining process is generally divided into two 
steps:

Finding the set of frequent itemsets. The majority of association mining 1.   
 research effort has been focused on this step, since it is the most computa-
 tionally expensive phase. 

Deriving association rules with confi dence greater than a user-specifi ed 2.   
 threshold from the frequent itemsets. 
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7.1.2 Association Rule Mining Algorithms

A great number of algorithms have been proposed for association rule mining. So 
far, there is no published implementation that outperforms every other implemen-
tation on every database with every support threshold [11]. Classical association 
rule mining algorithms can be divided into two major categories, which correspond 
to two main strategies for fi nding valid (i.e., frequent) itemsets: candidate genera-
tion and pattern growth algorithms. The majority of the classical algorithms are 
of candidate-generation type [7, 12, 13]. This type of algorithms generates sets of 
candidate itemsets that are then validated following the imposed constraints (e.g., 
support ≥ min support threshold). Furthermore, the generation of candidate item-
sets is based on previously identifi ed valid itemsets. The main algorithms of this 
type are the well-known Apriori and Eclat [7, 12].

Unlike candidate-generation algorithms, pattern-growth methods avoid can-
didate generation by constructing complex data structures that concisely store the 
relevant information in the dataset. So long as the data structure fi ts in memory, no 
more dataset accesses are necessary, once it has been populated. A number of algo-
rithms of this type have been proposed, the most popular one being the Frequent-
Pattern Growth (FP-Growth) algorithm [14, 15].

Further divisions within both classes (candidate generation and pattern growth) 
are based on the strategy to traverse the search space (deep-fi rst or breadth-fi rst), 
and on the different data structures they use (hash-trees, enumeration-set trees, 
prefi x trees, FP-trees, H-struct, and so on).

In addition, another type of algorithm, derived from the fundamental ones, 
has been proposed. The aim of these methods is to generate a condensed rule set 
from which all the rules can be derived, thus optimizing the valid itemset search 
procedure. Moreover, the obtained rule set is smaller than the complete rule set, 
facilitating, in this way, the interpretation of the rules [16–19].

Moreover, it is worth mentioning the effort carried out to develop methodolo-
gies to extract information from transactions where a taxonomy is defi ned on the 
items [20–22]. Figure 7.1 shows an example of a taxonomy. This type of method-
ology may be of special interest in this book, since an ontology can be viewed as a 

Figure 7.1  An example of a taxonomy.
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taxonomy, as it represents a set of concepts hierarchically organized according to 
their specifi city.

In summary, a great number of algorithms have been proposed for association 
rule mining, the main ones being Apriori, Eclat, and FP-growth. In general, many 
implementations are based on Apriori and FP-growth. Apriori is the most popular, 
and it is usually the one chosen when using association rule mining in any applica-
tion. Section 7.1.3 describes in detail the basic Apriori algorithm. Many improve-
ments of this algorithm have been proposed, the most effi cient ones being those 
described in [23, 24]. A more comprehensive listing and description of association 
rule mining algorithms can be found in [10, 25, 26].

7.1.3 Apriori Algorithm

As it was previously stated, Apriori divides the association rule extraction process 
into two well-differentiated steps: (1) Finding the sets of frequent itemsets; and (2) 
deriving the association rules from the frequent itemsets. Let us start by describing 
the fi rst step. Apriori takes advantage of the antimonotone property of the support 
measure to reduce the search space. 

Every subset of items of a frequent itemset is also frequent. That is, given a  •

frequent itemset X, for all Y ⊆ X, Y is also a frequent itemset.

Due to the previous property, if an itemset  • X is not frequent, any other itemset 
containing X cannot be frequent. That is, given a nonfrequent itemset X, for 
all Z ⊇ X, Z is not frequent.

The basic idea is to generate the set of k itemsets (itemsets of k elements), by 
combining the frequent (k−1) itemsets. The fi rst step is to identify frequent items 
by carrying out a fi rst scan of the complete data table to count the number of times 
that each item appears in it. Nonfrequent items are discarded, obtaining a set of 
frequent items (F1). The process continues as follows: those pairs of frequent (k−1) 
itemsets sharing their fi rst k−2 items, but with a different k−1 item (i.e., the last 
item in the itemset), are combined. The result of the combination is a k itemset in 
which the k−2 fi rst items correspond to the k−2 fi rst items of the combined item-
sets, and items k−1 and k are the last items of the combined itemsets (i.e., the k−1 
items of the combined itemsets). A schematic representation of the procedure is 
shown in Figure 7.2. 

Note that to successfully carry out this procedure, it is necessary to have previ-
ously set an order relation between the items. Thus, in the example of Figure 7.2, 
for every itemset containing ItemA and ItemB, ItemA will always appear before 
ItemB when listing the items in the itemset. Similarly, for every itemset containing 
ItemB and ItemC, ItemB will always appear before ItemC when listing the items in 
the itemset, and so on. The order relation between the items is essential to ensure 
that every potential frequent itemset is considered.

Once the set of candidate k itemsets are obtained (candidate since they are not 
necessarily frequent), another scan of the data table is needed to calculate their sup-
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port. Then, the nonfrequent k itemsets are discarded, obtaining the set Fk. Figure 
7.3 shows the pseudocode of the procedure described in this section.

Association rules are derived from each itemset, once the complete set of fre-
quent itemsets is obtained (second phase of the algorithm). This phase is common 
to every association rule mining algorithm, since the variations from one procedure 
to another reside mostly in the way they get the list of frequent itemsets. Given an 
itemset, the idea is to create a consequent for each possible subset of items in the 
itemset. The rest of the items in the itemset that are not in the consequent consti-
tute the antecedent of the rule, and thus, in principle, a rule is generated from each 
subset. Furthermore, the effi ciency of the process can be improved, since it is not 
necessary to consider every possible subset of items. Figure 7.4 shows the proce-
dure to effi ciently derive rules from a given itemset.

Figure 7.2 An example of the combination of two (k-1) itemsets to obtain a k itemset.

Figure 7.3 Procedure for frequent itemset generation. Note that function candidateGeneration(FK-1) 
combines every frequent itemset in Fk-1 to obtain the candidate k- temsets, as described in Section 
7.1.3.
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7.1.4 Fuzzy Association Rules

Classical crisp association rule mining algorithms partition continuous domains to 
deal with continuous attributes. For example, consider the data in Table 7.4. Attri-
butes gene length and intergenic length are continuous; therefore, it is infeasible to 
look directly for frequent itemsets that involve these two attributes. A preprocess-
ing step is needed to discretize both domains, or, in other words, to partition the 
continuous domains in intervals. After the partition is carried out, each continuous 
value is replaced by the interval to which it belongs. Several strategies have been 
proposed for discretizing the continuous domains [27, 28].

Nevertheless, when dividing an attribute into intervals covering certain ranges 
of values, the sharp boundary problem arises. Elements near the boundaries of a 
crisp set (interval) will be either ignored or overemphasized. For example, rules like 
“If the gene length is in the interval [1541, 14733], then the G+C content tends to 
be in the interval [0.26, 0.38],” and “Large genes tend to have low G+C content” 
may all be meaningful depending on different situations. While the former is more 
specifi c and the latter is more general in semantic expressions, however, the former 
presents the previously called sharp boundary problem, or, in other words, genes 
of 1540 bp and with 0.25 of G+C content may not be considered. In contrast, the 
latter is more fl exible and can refl ect these boundary cases [29]. Moreover, fuzzy set 
theory has been proven to be a superior technology to enhance the interpretability 
of these intervals [30]. Hence, in the fuzzy case, continuous domains are fuzzifi ed 
by partitioning them into fuzzy sets (Figure 7.5). Therefore, fuzzy association rules 

Figure 7.4 Procedure for deriving rules from a given itemset. Note that the function 
consequentsGeneration(Hm) combines every consequent of size m to obtain the consequents of size 
m + 1. It does exactly the same as the function candidateGeneration() in Figure 7.2.
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are also expressions of the form: X → Y, but in this case, X and Y are sets of fuzzy 
attribute-value pairs.

The traditional way to determine fuzzy sets is to consult a domain expert who 
defi nes the membership functions. However, this requires access to domain knowl-
edge, which can be diffi cult or even impossible to acquire. Clustering, genetic algo-
rithms, and so fourth, in this case are used for the defi nition of the fuzzy sets. There-
fore, it is the methodology for defi ning the fuzzy sets that is based on clustering, 

Figure 7.5 An example of crisp and fuzzy partitions.

Table 7.4 An Example of a Data Table

Gene
Gene 
Length

Intergenic 
Length

Gene 
Orientation

YAL002W 2217 546 TANDEM

YAL003W 1290 742 DIVERGENT

YAL008W 492 280 TANDEM

YAL009W 4299 188 DIVERGENT

YAL010C 1965 188 DIVERGENT

YAL011W 1107 215 TANDEM

YAL012W 918 268 TANDEM

YAL013W 471 250 DIVERGENT

YAL015C 2634 250 TANDEM

YAL017W 330 149 DIVERGENT

YAL018C 885 683 DIVERGENT

YAL019W 393 683 TANDEM

YAL021C 1215 99 TANDEM
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genetic algorithms, and so fourth, and not the rules. Thus, several approaches have 
been proposed for automatically defi ning fuzzy sets, for example, approaches based 
on clustering [31–33], on genetic algorithms [34], and so on. Although these strate-
gies could be useful in certain cases, however, they should be used carefully, since 
the obtained fuzzy sets could be hard to fi t to meaningful labels.

When assessing a fuzzy association rule, the usual approach consists of using 
the fuzzy counterparts of the support and confi dence measures. Several generaliza-
tions of these two measures have been proposed [35]. The standard approach is 
to replace the set-theoretic operations by their corresponding fuzzy set-theoretic 
operations. Thus, given a transactional database D, the membership degree of a 
transaction t∈D to a fuzzy itemset X is calculated as X(t) = ⊗Xi∈X Xi(t), where ⊗ 
represents a t-norm [36]. A so-called t-norm ⊗ is a generalized logical conjunction, 
or, in other words, a function [0,1] × [0,1]  [0,1] which is associative, commuta-
tive, and monotone increasing, and which satisfi es

 0 0,

1 ,  for all 0 1

a

a a a

⊗ =
⊗ = ≤ ≤

Common examples of t-norms are

 

( ) ( )
( )

( ) ( )

minimum ,  =min , ,

product , ,

Lukasiewicz t-norm , max 1,0

a b a b

a b a b

a b a b

= ⋅

= + −

 

Thus, t-norms are used for defi ning the intersection of fuzzy sets. Given two 
fuzzy sets defi ned over a domain Z and their corresponding membership degree 
functions A:Z → [0,1], B:Z → [0,1], the intersection of the two fuzzy sets, A∩B, is 
defi ned as follows:

 ( )( ) ( ) ( ),  for all A B z A z B z z Z∩ = ⊗ ∈

For example, consider the fuzzy itemset: 

 ( )( ){ }X Gene length LARGE Intergenic length SHORT= = =

and the transaction:

 
( ) ( )
( )

1965 , 188 ,
010

Gene length Intergenic length
YAL C

Gene orientation DIVERGENT

⎧ ⎫= =⎪ ⎪= ⎨ ⎬
=⎪ ⎪⎩ ⎭

Suppose that the membership degree of 1965 to the fuzzy item Gene length = 
LARGE is 0.6, and that the membership degree of 188 to the fuzzy item Intergenic 
length = SHORT is 1. Also consider that the chosen t-norm is the minimum. Then, 
the membership degree of transaction YAL010C to the fuzzy itemset X is given by
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 ( ) ( )010 min 0.6,1 0.6X YAL C = =

Hence, considering all of this, the fuzzy support of an itemset X is usually de-
fi ned as

 ( ) ( )Xi X it D
Supp X X t∈∈

⎡ ⎤= ⊗⎣ ⎦∑

that is, the sum of the membership degrees of the transactions in the database to 
the itemset X. Finally, the fuzzy support and confi dence of a fuzzy association rule 
X  Y is given by

 
( ) ( ) ( )
( ) ( ) ( ) ( )

,
t D

t D t D

Supp X Y X t Y t

Conf X Y X t Y t X t

∈

∈ ∈

→ = ⊗

⎡ ⎤→ = ⊗⎣ ⎦

∑
∑ ∑

 

Even though the majority of fuzzy proposals are based on the fuzzy extensions 
described above, some alternative approaches have been reported [30, 37, 38].

The development of effi cient algorithms for fuzzy association rule mining has 
been paid little attention. This might be explained by the fact that, in general, 
standard crisp algorithms can be adapted for extracting fuzzy association rules 
in a straightforward way [37, 39]. The fi rst proposal for fuzzy association rule 
mining was reported in [40]. The authors presented a straightforward approach 
in which a membership threshold is fi xed for transforming fuzzy transactions into 
crisp ones before running an ordinary association rule mining algorithm. After this, 
some other authors presented algorithms for fuzzy association rule mining such as 
F-APACS and FARM [41, 42], extensions of the Equi-depth (EDP) algorithm [43], 
and other Apriorilike methods [32, 44]. For a more extensive listing, please refer 
to [30]. Finally, the problem of mining association rules in fuzzy taxonomies has 
also been addressed in many papers [45, 46]. A fuzzy taxonomy is a hierarchically 
structured set of items that refl ects partial belongings among items on different 
levels (Figure 7.6).

Figure 7.6 An example of fuzzy taxonomy.



144 Extracting Biological Knowledge by Association Rule Mining

7.2 Using GO in Association Rule Mining

As already mentioned in the introduction of this chapter, association rules have been 
widely applied in bioinformatics. In many of these applications, the Gene Ontol-
ogy (GO) plays a major role. This section reviews some of the strategies proposed 
so far to combine GO and association rule mining, which could be categorized as 
follows:

Works which integrate GO structured information with other data sources 1.   
 in order to obtain rules relating GO terms and the rest of the variables; 

Works which make use of GO annotations to biologically validate the 2.   
 obtained rule sets;

Other joint applications of association rules and GO, such as the develop-3.   
 ment of classifi ers, which aim to automatically annotate genes or gene 
 products based on other features, and so on.

7.2.1 Unveiling Biological Associations by Extracting Rules Involving GO 
Terms

Some authors incorporate GO terms into their datasets to obtain associations that 
relate the terms with their studied variables. Rules involving GO terms are able 
to describe, in an intuitive and concise way, relations between biological concepts 
and the rest of the studied variables. This makes the integration of GO terms with 
other data sources an attractive approach, and thus, several authors have recently 
developed different proposals [2, 3, 47].

In these types of studies, the dataset typically consists of a data table in which 
rows represent genes and columns represent the set of variables of interest (e.g., 
microarrays, annotations from other databases, gene features, and so on). An ex-
ample of this type is the work reported by Carmona-Saez et al. [3]. Thus, the naive 
approach to integrating the GO terms in the analysis consists of directly including 
the GO annotations of each gene in an additional column. For example, in Table 
7.5, an additional column has been added containing the list of GO annotations 
for each gene. Each GO term constitutes an item of the form (GO annotation = 
GO:xxxxxxx). Thus, in running an association rule mining algorithm over this 
data table, associations between the GO terms and the rest of variables might be 
obtained. Since the number of terms is quite high (~6,800 terms related with the 
human genome), and in these types of studies, associations among GO terms are 
not usually of interest, the search space may be substantially pruned by avoiding 
generating itemsets containing more than one GO annotation.

Nevertheless, when using the terms in which the genes are directly annotated, 
some problems might arise: 

Some of these terms may represent very specifi c concepts. This means that 1.   
 only few genes would be annotated in these terms, and thereby, these terms 
 would not form frequent itemsets.

Suppose a set of genes annotated to a term 2.   T and a different set of genes 
 annotated to a term T′, where T′ is an ancestor of T. When counting the 



7.2 Using GO in Association Rule Mining 145

 occurrences of the itemsets containing T′ in the data table, those genes 
 annotated to T would not be taken into account, since only the term T 
 appears in their transactions. Since terms are considered to share the 
 attributes of all the parent nodes, all the genes annotated to term T must 
 also be taken into account when counting the frequency of term T′, 
 otherwise an important loss of information might occur.

Martinez et al. [47] avoided these problems by including in the data table not 
only the terms in which the genes are directly annotated, but also all of their an-
cestors. However, an important drawback arises when using this last strategy: if 
every ancestor is included in the analysis, very general terms (e.g., molecular_func-
tion, biological_process, cellular_component, and so on) may be considered. These 
terms are so general that do not provide any interesting information. Moreover, 
they slow down the mining process and disturb the interpretation of the fi nal rule 
set, since they generate many trivial or uninteresting rules. 

Hence, a possible approach consists of including only terms of a selected GO 
level. Those terms below the selected depth are mapped to the corresponding one 
in that level, and those above are discarded. Some applications (not necessarily as-
sociation rule-based applications), such as FatiGO [48], adopted this methodology, 
and, in principle, it seems that GO level 3 represents a good compromise between 
information quality and the number of annotated genes [49]. Nevertheless, GO 
levels are not homogeneous, or, in other words, the terms representing general 
concepts and others that represent more specifi c concepts might be found in the 
same GO level [50]. Therefore, some information might be lost when using this 
strategy.

Table 7.5 An Example of a Data Table in Which GO Terms Have Been 
Included

Gene
Gene
Length

Intergenic
Length

Gene
Orientation GO Annotations

YAL002W LARGE LARGE TANDEM
GO:0045324,GO:0033263,
GO:0005624,GO:0003674

YAL003W SHORT LARGE DIVERGENT
GO:0006414,GO:0005853,
GO:0005840,GO:0003746

YAL008W SHORT SHORT TANDEM
GO:0008150,GO:0005741,
GO:0005739,GO:0003674

YAL009W MEDIUM SHORT DIVERGENT

GO:0030437,GO:0007126,
GO:0006997,GO:0016021,
GO:0042175,GO:0004721

YAL010C MEDIUM SHORT DIVERGENT

GO:0000002,GO:0000001,
GO:0007005,GO:0006461,
GO:0045040,GO:0000723,
GO:0032865,GO:0005741,
GO:0001401,GO:0003674

… … … … …
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Lopez et al. [2] noticed the previous problems and proposed an alternative 
methodology: consider all the ancestors, calculate the information provided by each 
term, and remove those that are uninformative. By assuming that the more specifi c 
a term is, the more information it gives, the information content (IC) of a term T 
can be computed as IC(T) = −log(P(T))/ −log(P(min)), where P(T) represents the 
probability of fi nding T or a child of T in the ontology. The denominator is used to 
normalize, or, P(min) = 1/Total_number_of_annotations. Note that the deeper the 
GO term is in the ontology, the greater its IC. This is due to the ontological struc-
ture of GO. If the number of annotations decreases, the probability of the terms 
occurring also decreases, and therefore their IC tends to increase (Figure 7.7).

Additionally, if many rules involving GO terms are obtained, these authors 
propose to reduce the resultant rule set by merging subsets of rules containing GO 
terms that may provide similar information. This strategy takes advantage of the 
GO structure to fi lter the rule set. First of all, a scan of the rule set is carried out to 
look for groups of rules involving a GO term and sharing all their items except the 
GO node. For each group, if there is a GO term in it that is a common ancestor for 
the rest of the GO nodes in this rule set, only the rule involving the common ances-
tor is maintained, while the rest of rules in the group are discarded. This strategy 
relies on the idea that each Gene Ontology term shares the attributes of all its par-
ent nodes. Since it is ensured that the terms included in the analysis are informative 

Figure 7.7 A fragment of the ontology molecular function in GO. Each node is labeled with its 
name, the number of annotations in it, and under it (N), the probability derived from the number of 
annotations (P) and its information content (IC). The Total_number_of_annotations used to calculate 
the probabilities corresponds to the number of annotations of the highest node in the ontology, or 
169,524 in this case.
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enough by setting an appropriate IC threshold, the common ancestor represents the 
most intuitive term. See Figure 7.8 for an example.

Regarding the application of fuzzy techniques, to the extent of our knowledge, 
so far only the work by Lopez et al. [2] makes use of fuzzy association rules in its 
study. In this case, the domains of the continuous variables are partitioned into 
three fuzzy sets that represent the linguistic labels HIGH, MEDIUM, and LOW. 
Fuzzy sets are defi ned by using the expert-guided percentiles p20, p40, p60, p80, as 
shown in Figure 7.9, and a fuzzy version of the Top Down FP-Growth algorithm 
[51] is used to mine the data table.

It is worth mentioning the absence of works that, trying to extract useful 
knowledge from the Gene Ontology by association rule mining, consider GO as 
a taxonomy. As previously stated, an ontology can be considered as a taxonomy, 
since it represents a set of concepts hierarchically organized, according to their 
specifi city. Many works have proposed effi cient algorithms for mining association 
rules from taxonomies, and their application in future works may provide higher 
quality rule sets. In addition, the use of algorithms able to mine fuzzy taxonomies 
could also be interesting. However, their application does not make sense as long 
as there is no fuzzy version of the Gene Ontology.

7.2.2 Giving Biological Signifi cance to Rule Sets by Using GO

Association rule discovery is a nonsupervised data-mining technique. This means 
that, in principle, there is no a priori knowledge to compare it with the resultant 
rule set and quantify its goodness, since the objective is to unveil unknown patterns. 

Figure 7.8 This fi gure shows an example in which four rules are merged into only one. (a) shows 
a group of 4 rules sharing all their items except the one involving the GO term. These 4 rules are 
merged into the more general one. (b) shows the distribution of the terms in the ontology. 
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Hence, the user must trust the rule-interestingness measures and rule-reduction 
strategies [9, 10] to get a rule set as reliable as possible. For many applications in 
bioinformatics, however, some a priori knowledge may be obtained from public 
information resources. This information may help to give biological signifi cance to 
the results and, thereby, to support the quality of the rule set. 

One of the most important genomic information resources is the Gene Ontol-
ogy. Thus, many authors have used GO annotations to biologically validate their 
rule sets. For example, consider one studying associations between entities (genes, 
proteins, and so on) annotated in the Gene Ontology: {entityA}  {entityB}, where 
entityA and entityB represent any kind of biological entity with annotations in the 
Gene Ontology (e.g., gene, protein, and so on), or an attribute-value pair contain-
ing a biological entity annotated in GO (e.g., geneA = overexpressed). Ponzoni et 
al. [52] propose to evaluate the biological signifi cance of the association by analyz-
ing the GO terms in which entityA and entityB are annotated. By measuring the 
similarity between the sets of annotations of the items in the antecedent and the 
consequent of a rule (see Chapter 2 for more information about ontological simi-
larity measures), a value indicating the biological signifi cance of the association can 
be obtained. High similarity values between the corresponding sets of annotations 
would help to support the biological signifi cance of the rule. 

Since each of the three ontologies describe different biological aspects (i.e., cel-
lular locations, biological processes, and molecular functions), it might be conven-
ient to consider their annotations separately. It is also worth noting that, as the goal 
is to biologically support the resultant rule set, those unreliable GO annotations 
should be ignored. For example, it is a common practice to discard those GO an-
notations with inferred from electronic annotation (IEA) evidence code. A scheme 
of the procedure is shown in Figure 7.10. For rules involving more than one item 
in the antecedent/consequent, the use of the set operators (e.g., union or intersec-
tion) can be investigated to merge the annotations of all the items in the antecedent/
consequent.

McIntosh et al. [53] applied a variation of the above strategy. In this case, the 
authors propose to get a list of statistically over-represented terms in the annota-
tions of the items of the rule. That is, the list of GO terms in which the items of 

Figure 7.9 This fi gure describes how the membership functions can be defi ned for each fuzzy set 
by using percentiles.
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the rule (e.g., genes, proteins, and so on) are annotated is obtained. Statistically 
over-represented GO terms in this list are identifi ed, and if the items in the an-
tecedent (consequent) share any of these terms with the items in the consequent 
(antecedent), then the rule may be considered biologically meaningful. The set of 
statistically over-represented GO terms can be obtained by using some of the exist-
ing bioinformatic software packages such as GOstat [54]. Although in the work by 
McIntosh et al. only rules with one item in the antecedent are considered (Figure 
7.11), the proposal can be easily extended to take into account rules with more 
than one item in the antecedent.

Combinations of the above strategies may also be useful. For example, if rules 
with several items in the antecedent and the consequent are obtained, one may get 
the set of over-represented terms in the antecedent and the set of over-represented 
terms in the consequent. Then, by using an ontological similarity measure (Chap-
ter 4), these two sets can be compared, and a value of their biological relation is 
obtained.

Another approach using GO similarity measures is that reported by Hoon-Jung 
et al. [55] to validate their results. In this work, the authors aim to discover con-
served domain combinations in S. cerevisae proteins. Thus, they are not interested 
in the association rules themselves, but in the set of itemsets. Nevertheless, they 
generate every possible rule from each itemset to calculate the all-confi dence of the 
itemset. The all-confi dence value is the minimum of the confi dence values of all the 
rules that can be generated from an itemset. Hence, it is a measure of the mutual 
dependency within an itemset. 

In this case, each itemset represents a set of protein domains. Their GO annota-
tions are gathered to biologically assess whether these domains might be function-
ally related. Given an itemset, a set G of GO annotations is obtained, containing 
the terms annotated to each domain in the combination. All possible GO term 
pairs are generated from G, and similarity values are calculated for each pair. The 

Figure 7.10 An example in which the GO annotations of the antecedent and the consequent of a 
rule are compared to evaluate the biological signifi cance of the association.
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similarity values are summed and divided by the number of pairs, thus giving a 
measure of the functional similarity among the domains in the itemset. To calculate 
the similarity value between two GO terms, the authors make use of FuSSiMeG, 
which implements the Jiang and Conrath’s semantic similarity measure [56]. Ob-
viously, this last approach can be generalized for any other situation in which the 
interest is on the set of itemsets, and the items contain a biological entity annotated 
in GO. Figure 7.12 graphically describes the procedure.

Finally, note that the above strategies could be used exactly in the same way to 
validate fuzzy association rules. That is, the applicability of the above strategies is 
affected neither by the fuzzy nature of the itemsets that constitute the fuzzy rule, 
nor by the fuzzy nature of the quality measures (e.g., fuzzy support, fuzzy confi -
dence, and so on) that asses the reliability of the rule.

7.2.3 Other Joint Applications of Association Rules and GO

Association rules and GO have been used together in many other situations in bio-
informatics, with very different purposes. This subsection briefl y reviews some of 
these approaches that comprise applications, such as signaling pathways inference, 
GO annotation prediction, or GO structure analysis.

For example, Bebek et al. [4] integrated gene-expression data, several biologi-
cal databases (e.g., GO or the Kyoto Encyclopedia of Genes and Genomes [57]), 
and association rules to infer signaling pathways between two given proteins. The 
authors fi rst build up a graph in which nodes represent genes, and edges link genes 
that present correlated expression profi les. Given two proteins, the system looks 
for every possible path in this graph that connects the corresponding two genes. In 
order to fi lter the set of possible paths linking the two genes, the search is guided 

Figure 7.11 An example in which the rule involving 4 genes is biologically assessed, following the 
strategy of McIntosh et al. Gene1 shares the term GOterm3 with Gene2 and Gene3. Thereby, it 
should be considered biologically meaningful.
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by a set of rules relating GO terms. These rules represent associations between an-
notations of gene products known to participate in the same pathway. 

Association rules have also been used in some cases to automatically generate 
mappings from different ontologies/databases to GO terms. GO annotation predic-
tion using these mappings may be useful in the manual annotation of genes and 
gene products. For example, Yu et al. [58] describe PIPA, a system for inferring 
protein functions. The software annotates protein functions by combining the re-
sults of multiple programs and databases, such as InterPro, the Conserved Domains 
Database, and so on. In this case, association rule mining is used to automatically 
map the different classifi cation schemes of each program/database into GO. Anoth-
er example of this type is the work by Tveit et al. [59], in which association rules 
are obtained to fi nd associations between MeSH (the Medical Subject Headings 
thesaurus, see http://www.nlm.nih.gov/mesh/) and GO terms. In this case, however, 
another two methodologies are proposed in the same article to obtain the MeSH-
to-GO mapping, and they seem to perform better than the association rule mining 
methodology.

Some authors have studied the GO structure by extracting association rules 
from GO annotations [60–63]. For example, given the annotations of the genes 
and gene products of a given species, association rules that represent co-ocurrences 
and associations among these annotations may unveil implicit associations among 
GO terms. Furthermore, these associations can be used to fi nd inconsistencies and 
to infer missing annotations. Moreover, some authors have even proposed a new 
structure (i.e., a new Gene Ontology layer) capturing biological relations not di-
rectly refl ected in the present Gene Ontology structure [64].

Finally, on some other occasions, the ultimate objective is not the set of associa-
tion rules, but the set of itemsets. For example, in the recently developed tool by 
Carmona-Saez et al. [65], the system aims to obtain statistically over-represented 
itemsets in the set of annotations of a given group of genes. The annotations are 
obtained from several sources, such as GO or the Kyoto Encyclopedia of Genes and 

Figure 7.12 An example in which the biological signifi cance of a domain combination is 
evaluated.
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Genomes (KEGG) [57]. Klema et al. [66] also try to get sets of interesting itemsets 
by integrating text mining, functional similarity from GO annotations, and gene-
expression data. Further information about these works can be found in the cor-
responding references.

7.3 Applications for Extracting Knowledge from Microarray Data

Microarray technology makes use of the sequence resources created by the genome 
projects and other sequencing efforts to monitor the expression of thousands of 
genes in particular cell samples, times, and conditions. Thus, microarray data pro-
vide a global picture of cell activities and open the way to a high-level understand-
ing of its behavior. 

The results of a set of microarray experiments are usually presented as a ma-
trix, with as many rows as genes that are being considered and as many columns as 
experimental conditions that are under study. At this moment, a number of public 
resources exist that allow one to download and study a wide variety of microarray 
experiment results [67]. The usual approach to analyzing gene expression datasets 
consists of applying clustering techniques to obtain groups of correlated genes. 
This approach has been shown to be very useful, and many clustering techniques 
have been successfully applied [68–70]. However, gene groupings/clusters can sig-
nifi cantly vary, depending on the clustering algorithm used, the similarity measure, 
and the noise that affects expression data. In addition, the interpretation of result-
ant clusters is not straightforward, and it  usually requires postprocessing work 
by an expert. Therefore, biological knowledge still needs to be incorporated as a 
subsequent step to the analysis of gene-expression data. 

In this context, association rule mining emerged as an additional tool for ana-
lyzing microarray data. This section reviews some of the strategies proposed thus 
far, focusing on works that jointly use association rules and the Gene Ontology for 
the analysis of microarray data. 

There are two basic approaches to extracting information from microarray 
data by association rule mining:

Obtaining association rules to relate the expression of genes to any type of 1.   
 biological condition/annotation of interest;

Obtaining association rules that describe how the expression of one or 2.   
 more genes is associated with the expression of a set of genes.

Obviously the two approaches might be combined to obtain as much informa-
tion as possible from a given dataset. 

Despite the successful applications of association rules for microarray data 
analysis [2, 3, 71–73], association rule mining for gene-expression data analysis 
is not without problems. The high number of rules still remains a problem. So far, 
the solution depends on the use of rule-interestingness measures, rule-reduction 
techniques [9, 10], and some domain-specifi c strategies, such as those proposed by 
Tuzhilin et al. [74]. Moreover, as stated above, obtaining an association rule does 



7.3 Applications for Extracting Knowledge from Microarray Data 153

not necessarily mean that a cause-and-effect relationship exists. Obviously, deter-
mining the precise nature of an association requires prior biological knowledge and 
deep investigation.

7.3.1 Association Rules That Relate Gene Expression Patterns with Other 
Features

As outlined above, association rules can be used to relate the expression of genes to 
their cellular environment, their functional/structural features, or, in general, to any 
other type of biological condition/annotation of interest. Several authors followed 
this idea, and the work by Creighton and Hanash [73] is one of the most popular 
in this fi eld. 

In this type of approach, GO annotations are especially useful in describing 
molecular functions, biological processes, or cellular locations associated with 
gene-expression patterns. Several methodologies have been proposed to extract as-
sociation rules that relate expression data and GO annotations. Carmona-Saez et 
al. [3] run an association rule mining algorithm over a combined dataset containing 
the expression data and the GO terms generated, as described in Section 7.2.1. The 
columns (which form the items) of the data table consist of the set of microarray 
experiments and the lists of GO terms. The resultant rule set is fi ltered, so that 
rules with only one GO annotation in the antecedent and gene-expression level in 
the consequent are conserved. In addition, a rule X → Y is considered redundant, 
if there is another rule X′→Y′ with equal or higher values of support, confi dence, 
and improvement (another quality measure [9, 10, 25]), and (1) X ⊂ X′ and Y ⊂ Y′; 
(2) X ⊂ X′ and Y = Y′; or (3) Y ⊂ Y′ and X = X′. Redundant rules are also fi ltered 
out.

With this methodology, the authors obtain a set of molecular functions, bio-
logical processes, or cellular components associated with different gene expression 
patterns, such as those in Figure 7.13.

Note that a p-value is given for each rule, in addition to the confi dence and 
support values. This value is given by a χ2-test, under the null hypothesis that the 
antecedent and the consequent are statistically independent (i.e., the authors make 
use of a χ2-test to ensure the correlation of the antecedent and the consequent of 
the rules).

A similar application is that developed by Martinez et al. [47]. In this work, the 
authors describe GenMiner, a tool that facilitates the association rule discovery on 
a data table integrating gene-expression levels, annotations, and any other biologi-
cal condition. Annotations from several databases are included in the data table: 
GO annotations, KEGG annotations, bibliographic annotations, and so on.

GenMiner is based on the support-confi dence framework, and it implements a 
version of the Close algorithm [16]. The authors argue that the type of data Gen-
Miner processes is highly correlated and, therefore, that the Apriori algorithm is 
time and memory-consuming. Moreover, Apriori generates a huge number of rules, 
many of them redundant. They claim Close is an algorithm specifi cally designed to 
deal with these type of data. It limits the search space and reduces the number of 
dataset scans, thus reducing the execution time and memory usage. Furthermore, it 
yields a minimal set of rules, thus simplifying the results interpretation. 
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Finally, unlike the work by Carmona-Saez et al. [3], the authors do not impose 
any rule-template restriction to fi lter the resultant rule set; they allow every rule 
to be generated, regardless of the attributes that appear in the antecedent and the 
consequent, since they argue that every rule yields important information for the 
biologist.

Another recent work in the fi eld is by Lopez et al. [2]. In this case, the authors 
combine biclustering techniques, association rules, and GO to extract information 
from microarrays. It is argued that directly running the association rule mining 
algorithm over the gene-expression matrix generates a large number of itemsets 
and rules involving gene-expression levels. They claim that this fact makes the in-
terpretation of the rule set very diffi cult, since it is hard to identify gene-expression 
profi les and to relate them with the rest of biological features they consider. Hence, 
they fi rst run a biclustering algorithm over the expression matrix. Unlike clustering 
techniques, bicluster methods yield groups (biclusters) of genes that behave similar-
ly under certain conditions (not necessarily all of them), thus avoiding some of the 
drawbacks of clustering algorithms. Moreover, the biclustering algorithms used in 
[2] are nonexclusive, thereby they capture the situations in which genes play more 
than one biological role in conjunction with different groups of genes. In addition, 
several runs of each biclustering algorithm are carried out with different input pa-
rameters to get a broader coverage of the existing gene-expression profi les. Then, 
a column, containing for each gene the bicluster(s) to which the gene belongs, is 
included in the data table. Another column is added with the lists of GO terms, 

Figure 7.13 Some of the rules reported in [3]. The + and − symbols indicate overexpression and 
underexpression respectively. An empty space indicates that the responding time point does not 
appear in the rule.
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which are selected on the basis of their information content, as explained in Section 
7.2.1. The association rule mining algorithm is then run over this data table, and 
only rules with support, confi dence, and certainty factor values [39] greater than 
certain specifi ed thresholds are generated. 

7.3.2 Association Rules to Obtain Relations Between Genes and Their 
Expression Values

Association rules can also be used so that they describe how the expression of one 
or more genes is associated with the expression of a set of genes, and, thereby, they 
are useful in uncovering gene networks. Many works have been developed in this 
sense, and some effi cient algorithms have been specifi cally designed [71–73]. 

This strategy looks for associations of the form {GeneA = expressionA, GeneB 
= expressionB, …}  {GeneC = expression, GeneD = expressionD, …}, where 
expressionA, expressionB, and so on, are discrete expression values that typically 
represent labels such as overexpressed, underexpressed, or not-modifi ed. On other 
occasions the expression-level tendency across samples needs to be captured and 
then expresionA, expressionB, and so on, represent expression increase or decrease 
between samples. This can be achieved by simply substituting the original sample 
values by the differences between samples (see Figure 7.14).

In addition, since rules obtained with this approach relate gene sets, the differ-
ent strategies proposed in Section 7.2.2 may be used to enhance the interpretability 
of the results by using GO terms.

The work by Ponzoni et al. [52] can be framed in this type of approach. The 
authors proposed a machine-learning method based on an optimization procedure 
to discover regulatory association rules from expression data. They obtain a set of 
rules of the form

 { } { }GeneA GeneB= + − → + −

which may represent one of the following three types of association:

Simultaneous1.   : the expression level of GeneB at time point i depends on the 
 expression level of GeneA at that time point.

Time delay2.   : the expression level of GeneB at time point i depends on the 
 expression level of GeneA at time point i-1.

Change-based3.   : when the expression level of GeneA changes its state, then 
 the expression level of GeneB also changes its state.

One of the main interests of the proposed methodology is the calculation of 
adaptive regulation thresholds for the discretization of gene-expression values. The 
authors argue that the gene-expression value required by geneR to activate (inhibit) 
geneT1 is not necessarily the same value required by the same geneR to activate 
(inhibit) geneT2. Hence, they propose a methodology to calculate specifi c regula-
tion thresholds for each pair of genes. 

The biological validation of the results based on the Gene Ontology annotations 
(see Section 7.2.2) indicates that the gene pairs in the proposed new associations 
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seem to be functionally related, according to GO, thereby supporting the hypoth-
esis that these gene pairs may be regulatory related.

A similar work is the one by McIntosh et al. [53]. In this case, the authors pro-
pose an effi cient algorithm to mine association rules from gene-expression data. The 
algorithm makes use of a tree structure that allows the avoidance of any support 
constraint, since it is able to prune the search space by estimating the confi dence 
of the rules that are about to be generated. In this case, they only consider rules of 
the form {GeneA =expressed/not-expressed}  {GeneB = expressed/not-expressed, 
GeneC = expressed/not-expressed, GeneD = expressed/not-expressed …}, that is, 
rules with only one item (gene) in the antecedent and several items (genes) in the 
consequent. Gene Ontology annotations are also used in this case to validate the 
rule set, (see Section 7.2.2 for further details).

To fi nalize, it is worthy to note the lack of works in the literature that make 
use of fuzzy association rules to analyze microarray data and, in general, any other 
type of biological information. In addition to all the previously mentioned advan-
tages that fuzzy sets have over classical crisp sets (see Section 7.1.4), fuzzy sets are 
known to perform better when dealing with imprecise and noisy data. Microarrays 
and, in general, any kind of biological information source, are likely to be impre-
cise and quite noisy. 

Figure 7.14 An example in which the differences between adjacent samples are calculated so that 
the rules can capture associations between expression-level tendencies.
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A straightforward defi nition of the fuzzy concepts overexpressed and under-
expressed could be, for example, that of Figure 7.15, taking into account that it 
is usually accepted that genes that express more than one fold with respect to the 
control sample are overexpressed, and genes that express less than one fold with 
respect to the control sample are underexpressed. By using algorithms such as those 
reviewed in Section 7.1.4 or by adapting any of those specifi cally designed for 
microarray analysis, such as those cited in Section 7.3, fuzzy association analysis 
can be carried out with not much more effort than a crisp analysis. 

Moreover, fuzzy rules are easy to understand, since they are very similar to the 
way a person might express knowledge. This makes them especially suitable for 
their application in this fi eld in which experts must validate the results. Therefore, 
there is much room for improvement regarding the development and application 
of fuzzy techniques, and particularly, fuzzy association rule mining techniques for 
treating biological information.
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C H A P T E R  8

 Text Summarization Using Ontologies 
Henrik Bulskov and Troels Andreasen 

A summary is a comprehensive description that grasps the essence of a subject. 
A text, a collection of text documents, or a query answer can be summarized by 
simple means, such as an automatically generated list of the most frequent words or 
advanced by a meaningful textual description of the subject. Between these two ex-
tremes are summaries by means of selected concepts exploiting background knowl-
edge providing selected key concepts. We address in this chapter an ap proach where 
conceptual summaries are provided through a conceptu alization as given by an 
ontology. The idea is to restrict a background ontology to the set of concepts that 
appears in the text to be summarized and thereby provide a structure, a so-called 
instantiated ontology, that is specific to the domain of the text and can be used to 
condense to a sum mary, not only quantitatively but also conceptually covering the 
subject of the text. The problem of how to derive ontologies from resources, such as 
lexicons, is considered, with focus on a general, as well as the biomedical domain. 

8.1 Introduction 

The purpose of a summary is to provide a simplification to highlight the major 
points from the subject (e.g., a text or a set of texts, such as a query answer). The 
aim is to provide a summary that grasps the essense of the subject. 

Most common are summaries, as those provided manually by readers or au-
thors as a result of intellectual interpretation. However, summeries can also be 
provided automatically. One approach, in the question answering style, such as 
this is investigated in, for instance, the DUC and TREC conferences [5–7], is to 
provide a full natural-language generation, based sum mary construction, while a 
less ambiguous, in the same tradition, is rather to perform a sentence selection from 
the text to be summarized. 

In the other end, the most simple approach is to select a reasonably short list of 
words, among the most frequent and/or the most characteristic words from the set 
of words found in the text to be summarized. So, rather than a coherent text, the 
summary is simple a set of items. 

Summaries in the approach presented here are also sets of items, but they in-
volve improvements over the simple set-of-words approach in two respects. First, 
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we go beyond the level of keywords and aim to provide conceptual descriptions 
from concepts identified and extracted from the text. Second, we involve back-
ground knowledge in the form of an ontology. Strictly, these two aspects are closely 
related—to use the conceptualization in the ontology, we need means to map from 
words and phrases in the text to concepts in the ontology. 

Summarization is a process of transforming sets of similar low-level objects 
into more abstract conceptual representations [19], and more specifically, a sum-
mary for a set of concepts is an easy to grasp and short description—in the form of 
a smaller set of concepts. For instance {car, house} as a summary for {convertible, 
van, cottage, estate} or {dog} as a summary for {poodle, alsatian, golden retriever, 
bulldog}. 

In this chapter we present two different directions to conceptual summaries as 
answers to queries. In both cases, an ontology plays a key role as a reference for the 
conceptualization. The general idea is from a world knowledge ontology to form a 
so-called instantiated ontology by restricting it to a set of instantiated concepts. 

First, we consider a strictly ontology-based approach in which summaries are 
derived solely from the instantiated ontology. Second, we consider conceptual clus-
tering over the instantiated concepts based on a semantic similarity measure such 
as the shortest path [12]. The semantic grouping that results from the clustering 
process is then summarized, using either the least upper bounds of the clusters or 
by the introduction of fuzzy least upper bounds. The advantage of using the latter 
is that they enable summaries that are more accurate and more tolerant with regard 
to noise in clusters. 

The approach presented here can be seen as an approach to conceptual query-
ing, in which a set of concepts can be examined. 

The general idea, in the approach presented here, is to restrict a general world-
knowledge ontology to the given set of concepts, extending this with relations and 
related concepts and, thereby, providing a structure for navigation and further 
investigation of the concepts. A conceptual investigation of a set of documents 
can be performed by extracting the set of concepts appearing in the documents 
and by providing a means for navigation and retrieval within the set of extracted 
concepts. 

This chapter is organized as follows. First, we introduce the general ontology, 
extraction of conceptual descriptions, and the instantiated ontology. Second, we 
describe the various approaches to conceptual summaries, with a special focus on 
the concept of fuzzy least upper bound. Third, the approaches are illustrated using 
WordNet [11] and SemCor [10]. Finally we present a conclusion and give some 
pointers to future research. 

8.2 Representing Background Knowledge—Ontology 

Background knowledge is knowledge that complements the primary target data (the 
text or text collection or database) that is the subject of the summarization with in-
formation that is essential to the understanding of this. Background knowledge can 
take different forms, varying from simple lists of words to formal represen tations. 
To provide, in the question answering style, a full natural language generation-
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based summary, a means for reasoning within the domain, as well as a means  for 
processing language expressions is needed. Therefore, background knowledge 
should include axiomatic formalization of essential domain knowl edge, as well as 
knowledge to guide the natural-language synthesis process. In this context, how-
ever, our goal is conceptual summaries provided as sets of words or concepts, so 
background knowledge to support this can range from unstruc tured lists of words 
to ontologies. 

A simple list of words can be applied as a filter, mapping from a text to the 
subset of the word list that appears in the text. Such a controlled list of key words 
or vocabulary of topics can, by obvious means, be improved to also capture mor-
phology by stemming or inflection patterns. For summary pur poses, however, we 
will have to rely on such course-grained principles as statistics on frequencies to 
reduce the number of items of a list or to obtain an easy-to-grasp summary. What 
is needed to obtain significant improvement is a structure that relates in dividual 
words and thereby supports fusion into commonly related items in the contraction 
toward sufficiently brief summaries. In addition to this, the pres ence of relations 
introduces the element of definition by related items and thus justifies the notion 
as a structure of concepts rather than a list of words. So taxonomies, partonomies, 
semantic networks and ontologies are structures that potentially contribute also 
to knowledge-based summarization. Our main focus here is on ontologies ordered 
around taxonomic relationship. Rather than the common description-logic-based 
approach we choose here a simpler concept, al gebraic approach to ontologies. 

One important rationale for this is that our goal here is not ontological rea-
soning in general, but rather extraction of sets of mapped concepts and manipula-
tion of such sets (e.g., contraction). Another reason is that the concept algebraic 
approach has an inherent and very significant notion of generativity, where the 
ontology also includes compound concepts that can be formed by means of other 
concepts. 

8.2.1 An Algebraic Approach to Ontologies 

Let us consider a basis taxonomy that situates a set of atomic term concepts A in 
a multiple-inheritance hierarchy. Based on this, we define a generative ontology by 
generalization of the hierarchy to a lattice and by introducing a (lattice-algebraic) 
concept language (description language) that defines an extended set of well-formed 
concepts, including both atomic and compound term concepts. 

The concept language used here, ONTOLOG [9], has, as basic elements, con-
cepts and binary relations between concepts. The algebra introduces two closed 
operations sum and product on concept expressions ϕ and ψ, where (ϕ + ψ) denotes 
the concept, being either ϕ or ψ, and (ϕ × ψ) denotes the concept being ϕ and ψ (also 
called join and meet, respectively). 

Relationships r are introduced algebraically, by means of a binary operator (:), 
known as the Peirce product (r : ϕ), which combines a relation r with an expres-
sion ϕ. The Peirce product is used as a factor in conceptual products, as in x ×(r:y), 
which can be rewritten to form the feature structure x[r:y], where [r : y] is an attri-
bution of the concept x. Thus, we can form compound concepts by attri bution. 
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Given a set of atomic concepts A and semantic relations R, the set of well-
formed terms L is

 { } [ ]{ }1 1: , , : , ,n n i iL A x r y r y x A r R y L= ∪ ∈ ∈ ∈  (8.1)

Compound concepts can thus have multiple as well as nested attributions. For 
instance, with R = {WRT, CHR, CBY, TMP, LOC,...}1 and A = {entity, physi cal entity, 
abstract entity, location, town, cathedral, old} we get: 

 

{

[ ]
[ ] }

LOC CHR ,

LOC CHR ,

L
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location, town, cathedral, old,
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=

⎡ ⎤⎣ ⎦





8.2.2 Modeling Ontologies 

Obviously modeling ontologies from scratch is the best way to ensure that the result 
will be correct and consistent. However, for many applications the effort it takes 
is simply not at disposal and manual modeling has to be restricted to narrow and 
specific subdomains, while the major part have to be derived from rel evant sources. 
Sources that may contribute to the modeling of ontologies may have various forms. 
A taxonomy is an obvious choice, and it may be supplemented with, for instance, 
word and term lists as well as dictionaries for the definition of vo cabularies and for 
the handling of morphology. Among the obviously useful resources are the Seman-
tic Network WordNet [11] and the Unified Medical Language Sys tem (UMLS) [4] 
and several other resources in the biomedical science area. 

To go from a resource to an ontology is not necessarily straightforward, but if 
the goal is a generative ontology, and the given resource is a taxonomy, one option 
is to proceed as follows. Given a taxonomy T over the set of atomic concepts A 
and a language L, over A for a given set of relations R, being derived as indicated 
in (8.1). Let T̂  be the transitive closure of T . T̂ can be generalized to an inclusion 
relation ≤ over all well-formed terms of the language L by the following:
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∪ ∈

∪ ∈
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 

 (8.2)

1. For with respect to, characterized by, caused by, temporal, location, respectively.



8.3 Referencing the Background Knowledge—Providing Descriptions  167

where repeated ... denote zero or more attributes of the form ri : wi. 
The general ontology O = (L, ≤, R) thus encompasses a set of well-formed 

expressions L, derived in the concept language from a set of atomic concepts A, 
an inclusion relation generalized from the taxonomy relation in T, and a supple-
mentary set of semantic relations R. For rεR, we obviously have x[r : y] ≤ x, and 
that x[r : y] is in relation r to y. Observe that O is generative and that L therefore 
is potentially infinite. 

An example is given in Figure 8.2 showing a segment of a generative, ontology 
built with WordNet as a resource. 

8.2.3 Deriving Similarity 

An ontology that covers a document collection may provide an excellent means to 
survey and give perspective to the collection, however, as far as access to documents 
is concerned, ontology reasoning is not the most obvious evaluation strategy, as it 
may well entail scaling problems. Applying measures of similarity derived from the 
ontology is a way to replace reasoning with simple computation still influenced by 
the ontology. 

One obvious way to measure similarity in ontologies, given the graphical repre-
sentation, is to evaluate the distance between the concepts being compared, where 
a shorter distance implies higher similarity and vice versa. 

A number of different ontological-similarity measures along this line have been 
proposed over the years. Shortest Path Length [12] forms the basis of a group of 
measures classified as path length approaches. The Weighted Shortest Path [15] 
is a generalization of Shortest Path Length, in which weights are assigned to rela-
tions in the ontology. Two different alternatives are Information Content [16] and 
Weighted Shared Nodes [17], where the former uses the probability of encounter-
ing concepts in a corpus to define the similarity between concepts, and the latter 
uses the density of concepts shared by the concepts being compared to measure the 
similarity. 

8.3 Referencing the Background Knowledge—Providing Descriptions 

As already indicated, the approach involves surveying text through the ontol ogy 
provided and delivering summaries on top of the conceptualization of the ontology. 
For this purpose, we need to provide a description of the text to be sum marized in 
terms of the concepts in the ontology. So words and/or phrases must be extracted 
from the text and mapped into the ontology. This is a knowledge extraction prob-
lem, and obviously such knowledge extraction can span from full, deep, natural 
-language processing (NLP) to simplified shallow processing meth ods. 

Here we will consider the latter, due to the counterbalance between the need 
for a full interpretation and the computational complexity of getting it. A very 
simple solution would match words in text with labels of concepts in the ontology, 
and hence, make a many-to-many relation between words in text and labels in the 
ontology that just accepts the ambiguity of natural language. Improvements can 



168  Text Summarization Using Ontologies 

easily be obtained through pattern-based information extraction/text mining and 
through methods in natural-language processing. 

First, a heuristic part of speech tagging can be performed on the text, and 
provided that word classes are assigned to the concepts given in the ontology, this 
enables a word-class-based disambiguation. 

Second, a stemming or, provided lexical information is available, a transfor-
mation to a standardized inflectional form can significantly improve the match ing. 

Third, given part-of-speech tagged input, simple syntactic natural language 
grammars can be used to chunk words together, forming utterances or phrases 
[3], that can be used as the basis for matching against compound concepts in the 
ontology. Obviously, the matching of chunks from the text and concepts in the on-
tology is, in principle, the same complex NLP problem over again, but the chunks 
identified will often correspond to meaningful concepts and, therefore, lead to a 
more refined and better result of the matching and, in addition, allow for simple 
pattern-based approaches. We refer to [18] and [1] for more refined approaches. 
Here we will cover only a simple pattern-based approach. 

Finally, some kind of word sense disambiguation [20] can be introduced in or-
der to narrow down the possible readings of words, hence, ideally mapping words 
of phrases to exactly one concept in the ontology. 

A very simple approach along these lines is the following. Given a part-of-
speech-tagged and NP-chunked input, a grammar for interpretation of the chunks 
is the following: 

 
Head ::  

 ::  * *  Head   

N

NP A N NP P NP

=
=  (8.3) 

where A, N, and P are placeholders for adjective, noun, and preposition, respec-
tively. A very course-grained mapping strategy on top of this interpretation can 
be formed using the following transition rules, in which premodifying adjectives 
re lates to the head through characterized by (CHR) while premodifying composite 
nouns and prepositions both relate through with respect to (WRT): 
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 (8.4)

To test this approach, we consider the the metathesaurus in the Unified Med-
ical Language System (UMLS) [13] as a resource and build a generative ontology 
from this. For part-of-speech tagging and phrase chunking we use the MetaMap 
application [2]. 
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Consider the following utterance2 as an example: 

[...] the plasma patterns of estrogen and progesterone under gonadotropic
 stimulation simulating early pregnancy [...] 

The first part of the analysis leads to part of speech tagging and phrase recog-
nition as follows: 

Phrase Type Word POS

Noun phrase Det
Mod
Head

The
Plasma
Patterns

Det
Noun
Noun

Preposition Prep
Head

Of
Estrogen

Prep
Noun

Conj And Conj

Noun phrase Head Progesterone Noun

Preposition Prep
Mod
Head

Under
Gonadotropic
Stimulation

Prep
Adj
Noun

Verb Simulating Verb

Noun phrase Mod
Head

Early
Pregnancy

Adj
Noun

By applying the grammar (3), this can be transformed into the following three 
noun phrases: 

plasma/N patterns/N of/P estrogen/N 
progesterone/N under/P gonadotropic/A stimulation/N 
early/A pregnancy/N 

and by using the transition rules (4), we can produce the following compound 
expressions: 

patterns[WRT: plasma, WRT: estrogen] 
progesterone[WRT:stimulation[chr:gonadotropic]] 
pregnancy[CHR:early] 

Then we can attach the mapping from words in these expressions to node iden-
tifiers in the Metathesaurus given by MetaMap: 

patterns{C0449774}
 [WRT: plasma{C0032105, C1546740}, WRT: estrogen{C0014939}] 
progesterone{C0033308}
 [WRT:stimulation{C1948023,C1292856}[chr:gonadotropic{C1708248}]] 
pregnancy{C0425965,C0032961}
 [CHR:early{C1279919}] 

Naturally, since natural language is ambiguous, but also due to the fact that the 
metathesaurus is built by merging different knowledge sources together, MetaMap 

2. This utterance is from a small 50K abstract fraction of MEDLINE [14], having both Hormones and 
 Reproduction as major topic keywords.
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is not able to disambiguate all parts of the expressions. For instance, here plasma, 
stimulation, and pregnancy are all ambiguous. A simple solution to this problem 
is just to accept the ambiguity in the generation of descriptions, hence, produce all 
possible interpretations of the expressions, for instance, the two readings of early 
pregnancy 

pregnancy{C0425965}[CHR:early{C1279919}]
pregnancy{C0032961}[CHR:early{C1279919}] 

More advanced solutions could introduce additional methods for disam-
biguation of descriptions, for instance, try to include context analysis in or der to 
further reduce the ambiguity, see [20] for a survey of word-sense disambiguation 
approaches. An example of the mapping of the concept preg nancy{C0032961}
[CHR:early{C1279919}] into the UMLS is given in Figure 8.1. 

Regardless of whether rules to combine into compound concepts are applied or 
not, the result of a mapping from a piece of text T to an ontology O will be a set 
of concepts. This set of concepts dO(T) we call the description of T (with respect 
to O) and the elements of d are called descriptors. dO(T) is, so to say, T viewed 
through the ontology O. The set of concepts dO(T) may be used as the content of 
an ontology-based indexing, for instance on the level of sentences. Here, our main 
focus is on summarization, and thus, we will also be concerned with descriptions 
covering larger texts and collections of texts. So all in all, no matter the size, form, 
or structure of a given text T, the basic description is a set of descriptors. 

8.3.1  Instantiated Ontology 

The description dO(T) of a text T, given the ontology O, comprises a set of con-
cepts in O, and as indicated, the purpose here is to summarize based on relations in 
the ontology. Now given the set of concepts (the description) dO(T), an obviously 
relevant subontology is a subontology that covers all elements of dO(T). Such a 
subontology can be considered an instantiation of the text T (or the set of concepts  
dO(T)). A very simple example on such ontology is the ontology for the concept 
pregnancy[CHR:early] given in Figure 8.1. 

Given an ontology O = (L, ≤, R) and a set of concepts C, we define the instanti-
ated ontology OC = (LC , ≤ C, R) as a restriction of O to cover only the concepts in 
C, that is, C and every concept from L that subsumes concepts in C or attributes 
for concepts in C. LC can be considered an “upper expansion” of C in O. More 
specifically, with C+ being C extended with every concept related by attribution 
from a concept in C: 
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≤ = ∈ ≤
 (8.5) 

Thus OC is not generative. ≤C may be represented by a minimal set ≤
≤ ′C ⊆ ≤C such that ≤C is derivable from ≤ ′C by means of transitivity of ≤ and mo-
notonicity of attribution: 



8.3 Referencing the Background Knowledge—Providing Descriptions  171

 [ ] [ ]
: ,

: : :

transitivity x y y z x z

monotonicity x y z r x z r y

≤ ≤ ⇒ ≤
≤ ⇒ ≤  

Figure 8.1 Mapping of the concept pregnancy{C0032961}[CHR:early{C1279919}] into UMLS (slightly 
modified, i.e., some paths are removed, due to considerations of space).



172  Text Summarization Using Ontologies 

Figure 8.2 shows an example of an instantiated ontology. The general ontology 
is based on (and includes) WordNet and the ontology shown is ”instantiated” wrt. 
the following set of concepts: 

 

[ ]{
[ ]

[ ]}

: : , ,

: , ,

:

C cathedral LOC town CHR old abby

fortification CHR large, CHR : old stockade

fortress CHR big

⎡ ⎤= ⎣ ⎦
 

Figure 8.2 A segment of an ontology based on Wordnet that does also correspond to an instan tiated ontol-
ogy for the set of instantiated concepts {cathedral[LOC: town[CHR: old]], abbey, fortification[CHR: large, CHR: old], 
stockade, fortress[CHR: big]}. 
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8.4 Data Summarization Through Background Knowledge 

The general idea here is to exploit background knowledge through conceptual sum-
maries that are to provide a means to survey textual data, for instance, a query 
result. A set of concepts from the background knowledge is first identified in the 
text and then contracted into a smaller set of, in principle, the most repre sentable 
concepts.

This can be seen as one direction in a more general conceptual querying ap-
proach, in which queries can be posed or answers be presented by means of con-
cepts. For a general discussion on other means, except from conceptual summaries, 
of conceptual querying, where a dedicated language construct is presented for this 
purpose we refer to [8]. Here we discuss summaries only. 

In the approach to summarization described here, we assume the use of an 
ontology to guide the summarization and, for the text to be summarized, an initial 
extrac tion of concepts, as described in Section 8.31. Thus, we can assume an initial 
set of concepts C and we a facing a challenge to provide a smaller set of representa-
tive concepts covering C, that is, an appropriate summary, that grasps what’s most 
characteristic about C. For computation of the summary, we re strict to the subon-
tology OC = (LC , ≤C , R), corresponding to the instantiated ontology for C. 

One reasonable approach to providing summaries, along this line, is thus to 
divide the set of concepts into groups or clusters and to derive for each a repre-
sentative concept—for instance the least upper bound (lub) for the group. 

Throughout this section we will use one common example ontology, depicted 
in Figure 8.3, derived from one paragraph of text found in SEMCOR[10]: 

Greases, stains, and miscellaneous soils are usually sorbed onto the soiled sur-
face. In most cases, these soils are taken up as liquids through cap illary action. In 
an essentially static system, an oil cannot be replaced by water on a surface unless 
the interfacial tensions of the water phase are reduced by a surface-active agent. 

where words in italics indicate the initial set of concepts, in this case nouns that 
are mapped into WordNet[11], from which the instantiated ontology is created3. 
SEMCOR is a subset of the documents in the Brown corpus [21], which has the 
advantage of being semantically tagged with senses from WordNet. 

We introduce two directions for deriving summaries below: one based directly 
on connectivity in the ontology and the other drawing on statistical clustering ap-
plying similarity measures.

8.4.1 Connectivity Clustering 

Connectivity Clustering is clustering based solely on connectivity in an instan tiated 
ontology. More specifically the idea is to cluster a given set of concepts based on 
their connections to common ancestors, for instance grouping two sib lings due to 
their common parent, and in addition to replace the group by the common ancestor. 
Thus rather than, when taking a bottom-up hierarchical clus tering view, moving 

3. Notice that due to the use of SEMCOR, there is no attribution in the initial set of concepts.
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towards a smaller number of larger clusters, connectivity clustering is about moving 
towards a smaller number of  more general concepts. 

For a set of concepts C = {c1, ..., cn} we can consider as generalizing de scription 
a new set of concepts 

1ˆ ˆ( ) { , , }kC c cδ =  , where ˆic  is either a concept generalizing 
concepts in C or an element from C. Each generalizer in δ(C) is a least upper bound 
(lub) of a subset of C, ˆic  = lub(Ci), where {C1, ..., Ck} is a division (clustering) of C. 
Notice that the lub of a singleton set is the single element in this. 

We define the most specific generalizing description δ(C) for a given 

1ˆ ˆ( ) { , , }kc c c=   as a description restricted by the following properties: 

 ( )ˆ ˆ ˆ ˆ: ,c C c C c c C c c c c c cδ∀ ∈ ∈ ∨ ∃ ∈ ∧ ≠ ∧ < ∧ <′ ′′ ′ ′′ ′ ′′  (8.6)

 ( )ˆ ˆ ˆ ˆ, :c c C c cδ∀ ∈′ ′′ ′ ′�  (8.7)

Figure 8.3 An instantiated ontology based on a paragraph from SemCor.
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 ( )ˆ ˆ, , , :Cc c C c C x L c x c x x cδ∀ ∈ ∈ ¬∃ ∈ ≤ ∧ ≤ ∧ ≤′ ′′ ′ ′ ′′ ′  (8.8)

where (8.6) restricts δ(C) to elements that either originate from C or generalize two 
or more concepts from C. Equation (8.7) restricts δ(C) to be without redundance 
(no element of δ(C) may be subsumed by another element), and (8.8) reduces to the 
most specific, in the sense that no subsumer for two elements of C may be subsumed 
by an element of δ(C). 

Observe that δ(C), like C, is a subset of LC, and that we therefore can refer to 
an m’th order summarizer δm(C). Obviously, to obtain an appropriate description 
of C, we will in most cases need to consider higher orders of δ. At some point m, 
we will in most cases, have that δm(C) = Top, where Top is the topmost element in 
the ontology. An exception is when a more specific single summarizer is reached in 
the ontology. 

The most specific generalizing description δ(C) for a given C is obviously not 
unique, and there are several different sequences of most specific generalizing de-
scriptions of C from C toward Top. However, a reasonable approach would be to 
go for the largest possible steps obeying the restrictions for δ above, as done in the 
algorithm below. 

For a poset S, we define min(S) as the subset of minimal elements of S: min(S) 
= {s|s ∈ S, ∀s′ ∈ S : s′ � s} 

ALGORITHM—Connectivity summary.
INPUT: Set of concepts C = {c1, ..., cn}.
OUTPUT: A most specific generalizing description δ(C) for C. 

Let the instantiated ontology for 1.   C be OC = (LC, ≤C , R) 
U2.    = min({u|u ∈LC ∧∃ci, cj ∈ C : ci < u ∧ cj < u}), 
L3.    = {c|c ∈LC ∧∃u ∈ U : c < u}
M4.    = min({m|m ∈LC\L ∧∃c ∈ L : c < m}), 
set 5.   δ(C) = C ∪ U ∪ M/L 

In 2, all of the most specific concepts U that generalize two or more concepts 
from C are derived. Notice that these may include concepts from C when C con-
tains concepts subsuming other concepts. In 3, L defines the set of concepts in C 
that specializes the generalizers in U. In 4 additional parents for (multiple inherit-
ing) concepts covered by generalizations in U are added. 5, derives δ(C) from C by 
adding the most specific generalizers and subtracting concepts specializing these. 

Notice especially that 4, is needed in case of multiple inheritance. If a concept 
C has multiple parents and is replaced by a more general concept due to one of its 
senses (parents) we need to add parents corresponding to the other senses of C—
otherwise, we lose information corresponding to these other senses. For instance, 
in Figure 8.4 we have that δ({a, b}) = {c, d} because a and b will be replaced by c, 
and d will be added to specify the second sense of b. 

As a more elaborate example consider again Figure 8.3. Summarization of C by 
connectivity will proceed as follows. 
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C = {case, system, dirt, phase, capillary action, interfacial tension, grease, oil, 
water, liquid, surface-active agent, surface}

δ1(C) = {abstraction, binary compound, liquid, oil, phase, surface, surface-active 
agent, surface tension}

δ2(C) = {abstraction, compound, liquid, molecule, natural phenomenon, surface, 
surface-active agent}

δ3(C) = {abstraction, molecule, natural phenomenon, substance, surface, surface-
active agent}

δ4(C) = {abstraction, physical entity}

δ5(C) = {entity} 

The chosen approach, taking the largest possible steps in which everything that 
can, will be grouped, is, of course, not the only possible approach. If we, alterna-
tively, want to form only some of the possible clusters complying with the restric-
tions, some kind of priority mechanism for selection is needed. 

Among important properties that might contribute to priority are deepness, 
redundancy, and support. The deepest concepts, those with the largest depth in the 
ontology, are structurally, and thereby often also conceptually, the most specific 
concepts. Thus, collecting these first would probably lead to a better balance with 
regard to how specific the participating concepts are in candi date summaries. Re-
dundancy, where participating concepts include (subsume) others, is avoided as 
regards more general concepts introduced (step 3 in the algorithm). However re-
dundancy in the input set may still survive so priority could also be given to remove 
this first. In addition we could consider support for candidate summarizers. One 
option is simply to measure support in terms of the number of subsumed concepts 
in the input set while more refinement could be obtained by also taking the fre-
quencies of concepts, as well as their distribution in documents4 in the original text 
into consideration. Support may guide the clus tering in several ways. It indicates 
for a concept how much it covers in the input and can thus be considered as an 
importance weight for the concept as summa rizer for the input. High importance 
should probably infer more reluctance, as regards further generalization. 

4. Corresponding to term and document frequencies in information retrieval.

Figure 8.4 Ontology fragment with multiple inheritance. 
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8.4.2 Similarity Clustering 

While we may consider connectivity clustering as ontology-based in a genuine sense 
it is not the only possible direction. Alternatively, cluster applying, given similar-
ity measures, over the set of concepts should also be considered. Obvi ously, if the 
measure is derived from an ontology, and thereby does reflect this, then so will 
the clustering. Below we will assume an ontology-based similarity mea sure sim, as 
briefly touched upon in Section 8.2.3 but, make no further assumptions of the type 
and characteristics of this measure. 

We may expect a pattern similar to connectivity clustering in the derivation of 
summaries in an approach based on similarity, when the similarity measure closely 
reflects connectivity in the ontology, as the simple shortest path measure does. 

Beside the example ontology from Figure 8.3 we will use the following set of 
clusters: 

{C1 = {size, number}
C2 = {government, state, committee}
C3 = {defender, man, servant, woman}
C4 = {cost, bribe, price, fee}
C5 = {fortress, fortifi cation, stockade}} 

where C1,...,C4 are from SemCor and C5 is from the example ontology in Figure  
8.2. The former is created by use of a categorical agglomerative hierarchial cluster-
ing, with the shortest path similarity measure [12] over all documents in SemCor 
containing the word jury. We then picked from one of the levels in the clustering 
some meaningful clusters, and furthermore added a structure cluster (fortress, for-
tifi cation, stockade) from Figure 8.2 to capture another aspect. 

8.4.2.1 A Hierarchical Similarity-Based Approach

With a given path-length depen dent similarity measure derived from the ontology, a 
lub-centered, agglomerative, hierarchical clustering can be performed as follows. 

Initially each cluster corresponds to an individual element of the set to be sum-
marized. At each particular stage, the two clusters that are most similar are joined 
together. This is the principle of conventional hierarchical clustering; however rath-
er than replacing the two joined clusters with their union, as in the conventional 
approach they are replaced by their lub. Thus, given a set of concepts C = {c1, ..., 
cn}, summarizers can be derived as follows. 

ALGORITHM—Hierarchical clustering summary. 
INPUT: Set of concepts C = {c1, ..., cn}.
OUTPUT: Generalizing description δ(C) for C.

Let the instantiated ontology for 1.   C be OC = (LC , ≤C , R)
Let 2.   T = {(x, y)|sim(x, y)= maxz,w∈C (sim(z, w))},
Let 3.   U = min({u|u ∈LC ∧∃x, y ∈LC : x<u ∧ y<u}), 
L4.    = {x|<x, y>∈ T ∨<y, x>∈ T}
set 5.   δ(C)= C ∪ U/L 
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As was also the case with the connectivity clustering, to obtain an appropriate 
description of C we might have to apply δ several times and at some point m we 
have that δm(C) = Top. 

Figure 8.5 illustrates the application of δ for a total of 15 times to the set of 
concepts from the previous example. At each step is shown the lub with which the 
two clusters is replaced. Thus, the first step is to replace cost and price with cost, 
the second to replace government and state with government, and so on. 

8.4.2.2 Simple Least Upper Bound-Based Approach

A straightforward similarity based approach is simply to apply a crisp clustering 
to the set of concepts C = {c1, ..., cn} leading to {C1,...,Ck} and then provide the set 
of 

1ˆ ˆ{ , , }kc c  = {lub(C1), ..., lub(Ck)} for the division of C as summary5 to also take 
into account the importance of clusters in terms of their sizes the summary can be 
modified by the support of the generalizing concepts, support(x, C), that for a given 
concept specifies the fraction of elements from the set C covered: 

 ( ) { },
,

y y C y x
support x C

C

∈ ≤
=  (8.9)

leading to a fuzzyfied (weighted) summary, based on the division (crisp cluster ing) 
of C into {C1,...,Ck}: 

 ( )( ) ( ),i ii
support lub C C lub C∑  (8.10)

5. Observe that we put no restrictions on the clustering here, but, of course, the general idea is that the 
clustering applies a similarity measure that is ontology-based and that the ontology reflected is the 
instantiated ontology over the set of concepts C.

Figure 8.5 An illustration of the hierarchical clustering summary. The merging of two clusters is shown with 
their lub. 
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To illustrate this lub-based approach, consider the set of clusters and their least 
upper bounds in Table 8.1.

From these clusters the fuzzyfied summary {.13/magnitude + .19/organi zation + 
.25/person + .25/cost + .19/defensive structure} can be generated. Obviously, this 
approach to summarization will not be very tolerant as regards noise in the clusters 
given. Consider the following example, in which bribe is replaced by politics and 
stockade by radiator. The least upper bounds of the respective clusters becomes 
more general as illustrated in Table 8.2. 

As a result, the summary becomes {.13/magnitude + .19/organization + .25/per-
son + .25/relation + .19/artifact}. To get around this problem, we can introduce a 
soft definition of lub and combine this again with crisp clusters to get more specific 
cluster-based summaries. Obviously, this approach to summariza tion will not be 
very tolerant as regards noise in the clusters given. The lub for a cluster including 
an outlier may well be the top element or something similarly useless. 

8.4.2.3 A Soft Least Upper Bound Approach

To get around this problem we can introduce a soft definition of lub and combine 
this again with crisp clusters to get more specific cluster-based summaries. 

A soft definition of lub for a (sub)set of concepts C′ should comprise upper 
boundness as well as leastness (or least upperness), expressing, respectively the 
portion of concepts in C′ that are generalized and the degree to which a concept is 
least upper with regard to one or more of the concepts in C′. 

Upper boundness can be expressed for a set of concepts C′ by μub(C′) simply as 
the support as regards C′: 

Table 8.1 A Set of Crisp Clusters and Their Least 
Upper Bounds from WordNet

Cluster Lub

{number, size} Magnitude

{committee, government, state} Organization

{defender, man, servant, woman} Person

{bribe, cost, fee, price} Cost

{fortifi cation, fortress, stockade} Defensive structure

Table 8.2 A Set of Crisp Clusters with Noise and 
Their Least Upper Bounds from WordNet 

Cluster Lub

{number, size} Magnitude

{committee, government, state} Organization

{defender, man, servant, woman} Person

{cost, fee, politics, price} Relation

{fortifi cation, radiator, stockade} Artifact
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 ( ) ( ) ( ),ub C x support x Cμ ′ = ′  (8.11) 

covering all generalizations of one or more concepts in C′ and including all concepts 
that generalize all of C′ (including the topmost concept Top) as full members. 

Leastness can be defined on top of a function that expresses how close a con-
cept is to a set of concepts C′ such as dist(C′ ,y) = minx∈C′ dist(x, y), where dist(x, 
y) expresses the shortest path upwards6 from x to y, as follows: 

 ( ) ( ) ( )
( )

,

1 when 0

,
1 otherwise

1
, 1

lu C

x Top

dist C xx

dist C Top
λ

λ

μ

λ

= ∨ =⎧
⎪⎪ ′= ⎨ −
⎪ + −′⎪⎩

 (8.12)

where 0 ≤ λ ≤ 1 is a leastness parameter, with λ = 1 corresponding to the most re-
strictive version of leastness and with the other extreme λ = 0 corresponding to no 
restriction at all (all upper concepts become full members). 

A simple soft least upper bound fl ub can now be defined as the product be-
tween μlu and μub 

 ( ) ( ) ( ) ( ) ( ) ( )lub , , *f C lu C ub Cx x xλ λμ μ μ′ ′ ′=  (8.13) 

Notice that a lub for C is not necessary a best candidate among the fl ub el-
ements. Thus, again with a division (crisp clustering) of C into {C1,... ,Ck}, the basis 
for the summary here is the set of fuzzy sets {fl ub(C1), ..., fl ub(Ck)}leading to the 
summary 

 { }( ) ( )1
1

, ,
k

k i
i

C C flub Cδ
=

⎛ ⎞
= ⎜ ⎟⎝ ⎠

   (8.14) 

As in the lub-based case the summarizers should, in addition, be weighted by 
support. Thus, we can weight all elements in each {fl ub(C1), ..., fl ub(Ck)} with the 
support of fl ub(Ci) in C: 

 { }( ) ( ) ( )
( )

1
1

, ,
i

k
i

k i
i x flub C

C
C C flub C x

C
δ

= ∈

⎛ ⎞⎛ ⎞
= ⊗ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑   (8.15)

where ⊗ is a t-norm, probably with product as an appropriate choice. Finally this 
set should obviously be restricted by some appropriate threshold α: 

 { }( ) { }( ){ }1 1, , , ,k kC C m x m x C C mαδ δ α= ∈ ∧ >   (8.16) 

6. Upward refers to the idea that only paths consisting soely of edges in the direction of  should be taken 
into account, and it should be strictly emphasized that the graph considered correspoinds to the 
transitively reduced ontology.
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Given the previous example of noisy crisp clustering the use of a fl ub-based 
summary7 will lead to 

{.19/cost + .15/outgo + .15/relation+ 
.15/person + .13/organization + .13/government+ 
.11/fi nacialloss + .11/artifact+ 
.11/defensivestruture + ...} 

while the lub based summary was 

{.13/magnitude + .19/organization+ 
.25/person + .25/relation + .19/artifact} 

In the fl ub based summary, cost has a high degree of membership, due to the 
fact that it is a very good description of three of the four elements in the cluster 
{cost, price, fee, politics}. Thus, the introduction of the fl ub reduces the effect of 
noise caused by the noisy element politics. Also, the degree of membership of ar-
tifact is comparable to the degree of membership of defensive structure, which is 
the immediate generalization of fortress and stockade. Again, the result of using 
a fl ub based summary is that the effect of the noisy element radiator in the cluster 
{fortress, stockade, radiator} is reduced. 

8.5 Conclusion

In this chapter we have considered how to use ontologies to provide data summa-
ries, with a special focus on textual data. Such summaries can be used in a querying 
approach where concepts describing documents, rather than documents directly, 
are retrieved as query answers. The summaries presented are conceptual, due to 
fact that they exploit concepts from the text to be summarized, and ontology-based 
because these concepts are drawn from a reference ontology. 

The principles for conceptual summarization are presented here, as related to 
so-called instantiated ontologies—a conceptual structure reflecting the content of 
a given document collection, and therefore, particularly well suited as a target for 
conceptual querying; however, the summaries introduced are not dependent on this 
notion. 

We have discussed some possible directions and basic principles for sum-
marizations. It is obvious that development of more specific turnkey methods for 
summarization should be guided by profound experiments within a frame work 
that includes a realistic general world knowledge resource. Initial studies have been 
done with a WordNet-based general ontology and SEMCOR as corpus (Informa-
tion base); and preliminary experiments have been done with an UMLS-based gen-
eral ontology and with a selection of abstracts from MedLine [14] as corpus; how-
ever, much more thorough experimental work needs to be done. 

In addition, summary evaluation principles should be taken into account, first 
of all, as complement in guiding the development of summary principles. However, 
specific characteristics encircling good summaries may also be used in solutions to 

7. With λ being 1.
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the stopping problem—on deciding when, in the process of incremental contrac-
tion of (potential summary) sets, the best candidate has been found. 

Initial considerations on the quality of summaries can be found in [19], but the 
issue is also an obvious direction for further work in continuation of what has been 
described here. 
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C H A P T E R  9

Reasoning over Anatomical Ontologies
Toni Kazic, Jennifer L. Leopold, and Anne M. Maglia

9.1 Why Reasoning Matters

Discovering new biological knowledge requires data mining—accessing, integrating, 
and analyzing potentially heterogeneous data. All these steps require the expertise 
and reasoning of trained minds. In principle, all are a continuum of activities, rang-
ing from the fully manual to, one hopes someday, the fully automatic. As the auto-
mation level of data-discovery processes increases, a corresponding sophistication 
of the reasoning that can be conducted may also increase. But today, sophistication 
suddenly implodes at fully automated operations. Moreover, the most sophisticated 
automated operations revolve around sequence and structure, which have received 
the greatest attention of computational biologists in the last 40 years.

For many of the most important biological questions, however, such as spe-
cies identifi cation, ecosystem processes, and epigenesis, molecular sequence and 
structure are only part of the information biologists need for their analyses. While 
our ability to collect, archive, and disseminate various kinds of data has exploded, 
people remain the bottleneck in knowledge discovery: data resources far outnum-
ber the available experts, even as the complexity and urgency of the questions we 
must answer increase.

Accelerating the rate at which we can answer biological questions is no longer 
an abstract academic concern. Consider the crises facing taxonomists, geneticists, 
and developmental biologists. Only about 1.8 million of the estimated 10 million 
species on Earth have been described; nearly 20% of the known species in some 
taxa are headed for extinction, and many unknown species may be extinct before 
they can be described [1]. Unfortunately, the time required to describe species using 
traditional methods precludes the rapid cataloging of biodiversity. The rate at which 
we understand organismal development, especially for the crop plants that sustain 
humans and their domestic animals, may well determine our collective future. En-
vironmental degradation, exploding populations, mushrooming energy demands, 
and the inexorable sprawl of pavement over croplands all intensify the need to bet-
ter understand and manipulate phenotypes, such as yield, environmental impact, 
drought tolerance, disease resistance, and effi ciency of production. Genetics and 
the thoughtful exploitation of genomic and postgenomic information are central to 
the identifi cation of contributing genes and understanding their mechanisms and 
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interactions in producing these complex phenotypes. The best algorithms remain 
only suggestive, however, and biologists still sift data manually, comparing it to the 
literature and thinking through hypotheses and their possible tests.

How can we accelerate discovery? The obvious answer is to represent expert 
knowledge in ways that permit algorithms to emulate expert reasoning. Biodiver-
sity, genetics, and developmental biology require the comparison and analysis of 
phenotypic information from many individuals of different species. Genetics and 
developmental biology also rest on wild-type and mutant phenotypes within a spe-
cies. Variations within species illuminate the mechanisms of variations among spe-
cies when ideas from morphology, genetics, ecology, function, genomics, and phyl-
ogeny are combined. All three fi elds entail very complex, interdisciplinary reasoning 
over huge bodies of richly detailed data. A reasoning system that could automati-
cally identify and describe new species by recognizing, encoding, and comparing 
precisely defi ned phenotypic characteristics of many individuals would accelerate 
and increase the reliability of species identifi cation and generate data for evolution-
ary, phylogenetic, and phylogeographic analyses. Applying the same techniques to 
mutants from a single species would increase the precision of phenotypic descrip-
tions, help organize genes into processes and mechanisms, and help pinpoint the 
effects of developmental mutants. Properly defi ned and rigorously tested on masses 
of real data, automating biological reasoning would open new frontiers.

In this chapter, we explore some of the representational issues that automating 
biological reasoning raises. The wide dissemination of ontologies makes them an 
excellent starting point for discussion for several reasons. First, ontologies have 
become one of the most widely distributed representations of biological knowl-
edge. Second, the choices made by ontology builders highlight some of the pitfalls 
in representing biology for automated reasoning. Third, they are ideal laboratories 
for understanding the needs of reasoning systems aimed at primary biological data. 
After all, in computer science, ontologies were originally conceived as structured 
knowledge represetations for use in reasoning. Finally, ontologies have already been 
used in reasoners, and more examples are sure to come. We focus on anatomical in-
formation from maize and on the ideas about phenotypes, function, development, 
and phylogeny that arise when experts contemplate specimens. This is not to imply 
that all of the issues of reasoning with molecular sequences and structures have 
been solved—far from it! But to create more sophisticated knowledge-discovery 
tools, we must apply them to more diverse, complex biological systems.

We begin by describing the characteristics of different types of data and the rea-
soners that have used it, to date. We then describe anatomical data and explain why 
it is a challenging platform for the development of reasoners. In Section 9.3, we 
describe some of the current practices in building ontologies, the impact they can 
have on representing anatomy, and the issues raised for anatomical reasoning. We 
use the maize tassel as an example, presenting a brief outline of its anatomy, phe-
notypes, and development. In Section 9.4, we describe several possible approaches 
to ameliorating the issues, and conclude with some possible future directions. Our 
subject necessarily involves ideas, literature, and trends from many different areas, 
and we cannot hope to be remotely complete. Thus, the reader will fi nd several 
recent reviews, special journal issues, and the introduction of many research papers 
helpful in forming his or her own picture of this rapidly changing area [2–7].
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9.2 Data, Reasoning, and a New Frontier

9.2.1 A Taxonomy of Data and Reasoning

We begin by considering the types of data available, as a function of their proxim-
ity to experimentation and observation. Not surprisingly, the type of data strongly 
infl uences the type of reasoning one can undertake.

Logicians distinguish between extensional data—data that is explicitly stated 
and forms the axioms of a reasoning system—and intensional data—data that is in-
ferred from extensional data, using logical reasoning [8]. Heuristically, extensional 
data is the totality of biological facts that one couldn’t have imagined prior to their 
discovery, such as the rate of a reaction under particular conditions or the number 
of recombinants in a particular cross. In contrast, intensional data is derived from 
the extensional data—the enzyme’s Km or the map distance between the markers. 
In the taxonomy we next present, which is ordered by the proximity of the data to 
a direct observation, data that is intensional at one level often becomes extensional 
at the next, for reasons of representational or computational convenience.

9.2.1.1 Primary Data

This data arises from direct observation, either in laboratory experiments or in the 
fi eld, clinic, or society. Thus, it is extensional. Examples include raw image data fi les 
collected from CT scans or photographs of organisms; the trace of an automated 
DNA-sequencing machine or gas chromatograph; the count of wild-type and mu-
tant offspring in a genetic cross; or an autoradiograph of a blot. Heuristically, this 
is the data reported in the results sections of papers and the data that one interprets. 
There are many, many programs that reason with primary data, and a short list can 
be only illustrative. Examples include MAPMAKER, which constructs genetic maps 
from cross data; PHRED, which assigns bases in the DNA sequence from the raw 
chromatographic trace; DIRDIF and SOLVE, which solve crystal structures from 
the diffraction data; and software that white-balances, color-corrects, and renders 
images from the digital camera’s detector output, such as the software packaged in 
the camera or Gimp and MeVisLab [9–16].

9.2.1.2 Derived Data

This is the interpretation of primary data—a genetic map, a species, an hypothesis 
about the mechanism of a reaction, the mode of action of a gene, or the outputs 
of qualitative or quantitative models. This is the intensional data usually presented 
in the discussion or conclusions sections of papers. Examples for polymers include 
programs that assemble longer sequences from those of fragments or predict the 
solvent accessibility of proteins [17, 18]. Nonpolymer examples include the work 
of Shortliffe diagnosing bacterial infections from laboratory values of patients [19]; 
Karp emulating Yanofsky’s studies of the trp operon of Escherichia coli [20]; Alt-
man et al. drawing inferences about ribosomal structure and function [21]; and 
Pearl studying the reasoning behind epidemiological studies [22]. Another non-
polymeric example is Lucid3, an expert system that generates taxonomic keys from 
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user-supplied information [23]. All this work draws inferences from primary or 
derived data, or a mix of the two, by emulating biologists’ reasoning. (By permitting 
a bit of elasticity, one can lump primary and derived data together under the term 
of observational data.) It is noteworthy that the interpretations are often unambigu-
ous, become relatively uncontroversial rather rapidly, and are robust to changes in 
conditions or parameters.

Recently, several systems have been built that serve ad hoc biological questions, 
by collecting and analyzing molecular data and results from disparate resources 
over the Web [24–31]. All leverage Semantic Web or Grid technologies [6, 32], 
incorporate some reasoning in query formulation and execution, and are based on 
the idea that a user executes a connected network of tasks and analyses, or work-
fl ow. Several of these also support certain kinds of domain-based reasoning over the 
observational data [24, 25, 29]. The recently inaugurated iPlant project envisions 
the creation of “discovery environments,” each a platform for investigating a set 
of biological questions, though the data will not be just molecular [33]. Discovery 
environments appear to have many ideas in common with workfl ows. All of these 
efforts provide early examples of what possible future reasoners may become for 
nonmolecular data.

9.2.1.3 Amalgamated Data

This is intensional data, which is produced by summarizing, integrating, and com-
paring data from multiple sources to produce a more systematic or comprehensive 
interpretation of natural phenomena. Examples include review articles, databases, 
metabolic and other pathway charts, phylogenetic trees, classifi cations of taxa and 
enzymes, maps of syntenous regions among homologous chromosomes from dif-
ferent organisms, comparisons of mathematical models simulated with different 
sets of parameter values, and ecological food webs [34–46]. Programs that reason 
with such data include any of the sequence or structure similarity and alignment 
programs and the related ones that compile substitution matrices or short motives 
correlated with particular functions; programs that construct phylogenetic trees; 
and programs that detect and align syntenous regions of chromosomes [9, 47–61]. 
Conclusions derived from algorithms can be altered by changing the values of the 
parameters used in the computation; those from human effort can be controversial 
among experts for signifi cant lengths of time.

9.2.1.4 Annotation Data

The last category is the data used to annotate or categorize other types of data in 
compendia, especially databases. The primary examples here are controlled vocab-
ularies, nomenclature, library cataloging systems, and ontologies [39–41, 62–70]. 
All strive to constrain the inventiveness and elasticity of language into a standard-
ized group of unambiguously defi ned words. The use of ontologies to represent 
biological ideas and annotate databases has snowballed in the last 10 years [62, 63, 
67, 71]. Ontology terms are short phrases drawn from the customary biological 
vocabulary that are assumed to directly communicate their sense to a trained biolo-
gist. The Open Biological Ontologies (OBO) Foundry is attempting to standardize 
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the structure and content of the contributed ontologies and to serve as a model for 
best practices in ontology building [67]. Such models and practices are extremely 
valuable, as building expressive and effi cient ontologies remains an art form [7, 
72, 73]. In this chapter, we focus on the representational and technical practices 
common in building ontologies, rather than on the social practices that provide the 
context for building; the latter are described in [2].

For our purposes, we defi ne biological ontologies as collections of controlled 
vocabulary, organized into graphs that denote biological ideas, that often refl ect a 
consensus archetype of one or more species. What distinguishes an ontology from 
a controlled vocabulary or nomenclature is that it organizes its terminology (the 
noun phrases) with a set of operators denoting ideas about biological or logical 
relationships (the verb phrases) of the system, producing a set of structured asser-
tions about the ontology’s subject. In both terminology and topology, ontologies 
refl ect the considered scientifi c opinion of their builders, as they interpret the other 
types of data, and their use by people or algorithms in annotating data in databases 
applies those interpretations. For reasoners, the interpretative step is key; without 
knowing why a particular interpretation is assigned to data, a resonator has no 
substantive way to independently judge the data’s correctness or utility for the 
reasoning task. 

The difference between reasoning over the data on which the interpretations 
are based and the interpretations is like the difference between an analysis of the 
topology of the lunar surface and an analysis of a drawing of a moon crater. That 
said, reasoners that operate with both ontologies and observational data could be 
faster than reasoners that operate only over the observational data. The considered 
abstractions of specialist curators could be used to restrict the search space or re-
cover alternative hypotheses for consideration, along with those induced from the 
observational data.

9.2.2 Contemporary Reasoners

The growth in terminological standardization of anatomy clearly demonstrates 
the interest in using ontologies for data management and “manual” knowledge 
discovery. Not surprisingly, several groups are attempting to develop biological 
reasoners that use ontologies. So far, these have one of two goals: either to check 
the consistency of the terms or to infer additional instances of extensional relation-
ships among them. Several groups have developed reasoners for ontologies, includ-
ing Pellet, Protégé and its plug-ins, Racer, and the OBO-Edit reasoner [74–80]. 
When applied to biological ontologies —for example, the Unifi ed Medical Language 
System (UMLS), the Foundational Model of Anatomy (FMA), and the Gene On-
tology (GO)—these systems are currently limited to checking the integrity of the 
ontologies [63, 66, 71, 81]. Logical operations that accommodate the structure and 
constraints of OBO and its predecessor ontologies have been defi ned [82–84]. This 
work can be seen as part of broader efforts to defi ne reasoners that operate over 
the languages proposed for the Semantic Web, such as Description Logic programs, 
RuleML, SWRL, Datalog, SHOIN, and many others [4, 85]. A core technology of 
the Semantic Web is ontologies, which are intended to provide semantic interop-
erability among disparate resources, so reasoning over such resources is a very 
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active research area [86]. Space prevents us from surveying this area, though we 
try to provide some clues below to sources of information. Somewhat orthogonal 
to work on general reasoning languages are efforts to defi ne representative predi-
cates that permit spatial reasoning for anatomy [87]. The latter has led to a clearer 
understanding of other relations that would enrich and clarify existing anatomical 
ontologies if they were included.

9.2.2.1 Protégé

Protégé is an ontology-construction system [88–90]. It supports ontology main-
tenance by checking set membership (e.g., pepperoni is a part of a pizza and a 
member of the class of sausages); testing for necessity and suffi ciency (e.g., a crust 
is necessary for a pizza); and by detecting instances that violate constraints (e.g., 
that a roulade is not a pizza because it doesn’t have a crust) [92]. It can’t explicitly 
say that “some pizzas have pepperoni.” While true and valuable in some cases, this 
is a statement of modal logic. This shortcoming can be particularly problematic 
for biology, since most individuals do not exactly match an archetype [7]. There 
are currently six plug-in reasoners that can operate on Protégé-built ontologies, in 
either the frame or OWL representation, including Jess and SWRL [85, 92].

9.2.2.2 Racer and Other DL Reasoners

Though Protégé supports most features of the OWL family of languages through 
its plug-in mechanism, the OWL-based reasoner Racer does not. Racer automati-
cally removes OWL-Full’s metaclasses and ranges before reasoning begins [80, 93]. 
Racer can test for class, property, instance, or ontology on small sets, and verify 
arbitrary set-theoretic logical conditions on them (e.g., that the invariant part of an 
inverse of a transitive property is also transitive).

Using Racer over OWL-DL-based ontologies could offer signfi cant benefi ts to 
ontology construction and maintenance [94]. Because Protégé and OWL-DL repre-
sent knowledge differently and support different, not altogether overlapping ideas 
about classes, properties, and ranges, the conversion of Protégé-built ontologies to 
OWL-DL entails signifi cant representational choices [96]. Moreover, Racer can-
not reason over an entire ontology if it is very large; when Racer was applied to 
an OWL-DL conversion of the FMA, it could reason over the ontology only if the 
size and complexity of the data were reduced. The primary reduction chosen to 
facilitate reasoning was to limit the data to particular properties of the classes and 
instances. Racer then performed several logical checks: 

First, that data does not descend from two parents that have logically  •

inconsistent properties (Compartment _ subdivision cannot de-
scend from both Material _ physical _ anatomical _ entity and 
Nonmaterial _ physical _ anatomical _ entity); 

Second, that the value of an instance’s property is consistent with the defi - •

nition of that property (e.g., the value of the property D2D_PART, which 
has the range Nonmaterial _ physical _ anatomical _ entity, for 
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Surface _ of _ wrist is Anatomic _ snuff _ box, which descends from 
Material _ physical _ anatomical _ entity); 

Third, that the application of transitive relations to an object does not result  •

in biologically inconsistent change of the object’s place in the ontology, or 
reclassifi cation (e.g., reasoning that an organ is a subclass of a cell). 

In addition, Racer automatically induced the ontology’s topology from a set of 
conditions manually defi ned as necessary and suffi cient, revealed a number of dis-
crepancies between the manually and automatically constructed topologies. Each 
check revealed inconsistencies in the ontology that had gone undetected, despite 
years of concentrated effort by its very seasoned builders. While the checks also re-
vealed a number of limitations and weaknesses in ontology conversion and Racer’s 
abilities, as would be expected, Zhang et al. persuasively demonstrate that reason-
ing over an ontology can improve its maintenance [94].

Pellet and FaCT++ are reasoners that implement description logics (OWL-DL 
and SHIQ, an early description logic, respectively) [75–79]. Pellet is intended for 
ontology maintenance (cleaning, format-checking, and so on), and it is offered com-
mercially for this purpose. GRAIL, an earlier DL reasoner, supports sanctions—
rules that scope the application of inferences to concepts in the construction of 
composite notions [72, 96]. Different versions of TAMBIS, a semantic mediation 
system for fi ve sequence and function databases that relied on an ontology to pro-
vide a global schema, used GRAIL and FaCT++ [96]. SWRL is a rule language that 
supports OWL-DL, OWL-Lite, and RuleML statements [85].

9.2.2.3 The OBO-Edit Reasoner

The OBO-Edit reasoner goes a step further, by deriving new instances of the rela-
tions in ontologies [77]. It uses very simple production rules, such as genus im-
plications, differentia implications, transitivity, and cross-product implications, to 
generate new instances of existing rules. It then iterates, taking the newly gener-
ated relations into account, and terminates when no new instances are found. For 
example, given relations part _ of(X,Y) and part _ of(Y,Z), where X, Y, and Z 
are all instantiated anatomical structures, the OBO-Edit reasoner should produce 
part _ of(X,Z). Though very useful, the OBO-Edit reasoner can only reason with 
OBO-compliant ontologies, which, for some purposes, may be structurally insuf-
fi cient (see Section 9.3.2). For example, robust data that refl ects phenotypic diver-
sity among clades or individuals can be diffi cult to represent in OBO ontologies. 
Moreover, the OBO-Edit reasoner can only reason over the intensional data of the 
ontology, not over the observational data.

9.2.2.4 Reasoning Languages

A brief consideration of some computational technology is warranted. Many al-
gorithms that exploit sequence, structural, or image data are written in procedural 
or object-oriented languages, such as C, Fortran, and C++, for which excellent 
libraries are available and which permit effi cient memory management. In contrast, 
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declarative languages emphasize the effi cient evaluation of logical predicates, and 
they originally arose from work in artifi cial intelligence, including natural-language 
processing [97, 98]. The ancestor of many is Prolog, a mature, robust, and effi cient 
logic-programming language that implements the fi rst-order predicate calculus as 
Horn clauses (FOPC; see [97]). Prolog is widely used for reasoning systems, and 
several Prolog compilers can natively call code written in C or Fortran for numeri-
cally intensive computations [99]. Several languages that restrict or extend Prolog 
in various ways, and can be used to reason with ontologies, have appeared in the 
last few years. For example, Flora-2 is an object-oriented knowledge-base language 
that relies on a logical inference engine written in XSB, itself a descendant of Prolog 
that implements several extensions of the FOPC over database tables [100–102]. 
F-OWL is a very promising inference engine [103]. Written in Flora-2, it is designed 
to work with ontologies expressed in one of the OWL variants. F-OWL offers 
more logical power than languages in the OWL group [104]. Jess, written in Java 
for the development of expert systems, supports many different types of reasoning 
over Java objects, including rules [92]. Finally, there have been several attempts to 
develop languages that strike different compromises between expressivity and de-
cidability, or that can reason over information in the Semantic Web, or both [4, 85, 
105, 106]. For example, TRIPLE uses layers of Horn clauses and description logics 
to express rules and permit reasoning over RDF and DAML+OIL models [106]. 
Implementation is in Prolog or XSB. 

Several less logically powerful languages have been designed to express and 
reason with ontologies. The archetype of this group is OWL and its ancestors RDF 
and DAML+OIL [82, 83, 107, 108]. All are tripartite languages, in the sense that 
they allow each operator two arguments of the form subject verb object. 
OWL comes in three fl avors with increasing logical power (OWL-Lite, OWL-DL, 
and OWL-Full); nearly all work has been done with the fi rst two, which limit their 
logic to the set operations of the FOPC to preserve decidability. These and other 
limitations sharply restrict the kinds of inferences these languages can draw, com-
pared to Prolog. For example, the difference between OWL-Full and OWL-DL is 
that the former permits classes to be instances of other classes (metaclasses), and 
an element can be an instance, class, or property, without separating these into 
disjoint sets. So OWL-DL reasoning supports consistency checking and classifi ca-
tion (subsumption), but the use of metaclasses in OWL-Full causes rejection of the 
ontology. OWL-DL implements description logic, which characterizes con-
cepts by enumerating members of sets that can be classifi ed as instances of those 
concepts [109]. However, the name description logic is somewhat of a misnomer; 
description logics do not describe entities or phenomena in the sense of specifying 
the properties that something must fulfi ll in order to be a member of a set; rather, 
they enumerate the members of a particular set. Consider the following example 
from plant developmental anatomy. The set of infl orescences (each infl orescence is 
a cluster of fl owers on a stem or branch [110, 111]), might be defi ned by biologi-
cal rules, such as “develops from infl oresence meristem,” “has fl oral parts,” “can 
be monecious,” and “can be dioecious.” These terms might be associated with a 
particular instance of a structure and used to demonstrate if that structure was an 
infl oresence. (Of course, each of these rules would require computational defi ni-
tions of their ideas, such as infl orescence meristem, development, fl oral parts, and 
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so on.) In constrast, a description logic might say, “A tassel is an infl orescence,” 
“a tassel is the male infl orescence in maize,” “structure X is a maize tassel.” In the 
case of biological rules, a reasoner would have to be able to analyze an instance 
of a structure and determine if the rules were true for that instance. In the case of 
description logics, the reasoner need only be able to execute modus ponens: “If a 
maize tassel is an infl orescence, and X is a maize tassel, then X is an infl orescence” 
(and similarly for the infl orescence’s gender) [112].

9.2.3 Anatomy as a New Frontier for Biological Reasoners

9.2.3.1 Rationale

There are several reasons why anatomy from diverse phylogenetic groups is such 
a good test case for biological reasoning. First, anatomical information provides a 
locating framework for the description of phenotypes in many organisms, whether 
these are developmental mutants in a single species, the population variation exhib-
ited by individual members of a species, or the anatomical changes used to differ-
entiate among species. Second, taxa differ in their anatomical descriptions and, for 
large phylogenetic distances, even in their organizing principles. Thus, expressive 
representation and reasoning about the anatomy of wild-type and mutant individu-
als and disparate taxa force one to address biological diversity. Third, reasoning 
about anatomy requires the logical defi nition and software implementation of ideas, 
some of which have been defi ned incongruously heretofore, or have so far escaped 
the attention of computational biologists. Fourth, many anatomical ontologies now 
exist, allowing one to consider their various approaches to knowledge representa-
tion and reasoning. Finally, primary anatomical data in the form of digital images 
are available for some taxa, providing a platform, albeit incomplete, for developing 
and testing reasoners.

Four key principles must be taken into account when developing anatomical 
ontologies with the intention to reason over them. First, as with any knowledge 
representation, the ontology must be appropriately modularized; that is, it must be 
organized in such a way that it both represents biological reality and allows for the 
delineation of knowledge at many levels of granularity. Second, the ontology must 
be organized in an appropriate hierarchy, so that knowledge can be inherited from 
one or more parent classes through a logically consistent fl ow. Third, if the inten-
tion is to reason over multiple anatomy ontologies, there must be a common or at 
the very least, transparent, top-level hierarchy among the ontologies that will allow 
linkage or mapping among them. And fi nally, given that a main intention of ontolo-
gies is to allow for semantic integration of multiple data sources, the ontology must 
be consistent in the way it represents data and avoids duplication.

9.2.3.2 The Digital Age of Morphology

Many systematists now use Morphbank to store their two-dimensional (2D) high-
resolution images and comment on specimens used in identifying and documenting 
species nomenclature [113]. MorphoBank, a comparable resource, offers storage for 
2D images, with its primary focus on creating a collaborative Web workspace for 
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phylogenetic studies [114]. It provides online tools for the development and shar-
ing of character matrices (a character is a phenotype that varies within or among 
species), the association of elements of those matrices with images, and the display 
of labeled images. The construction of matrices, labeling of character names, as-
sociation of characters with images, homology inferences, addition of provenance 
metadata, and access control are all done manually by the contributing scientists. 
The DigiMorph digital library is a large collection of industrial CT scans of various 
taxa, and the MorphologyNet digital library is an online community repository 
for three-dimensional (3D) images of anatomy that have been generated by any 
method (e.g., micro-CT, MRI, histology, and so on; see [115, 116]). The success 
of these projects clearly shows that modern approaches to studying biodiversity 
require digital images and that the morphology community has embraced their use. 
This paradigm shift and the resulting explosion of digital images have opened the 
doors to the development of automated reasoning over primary anatomical data.

9.2.3.3 Documenting Phenotypes

Geneticists commonly photograph organisms or their structures as forms of pri-
mary data, such as images of mutant plants, in situ hybridizations of tissue sections, 
or cytogenetics [117–119]. A large number of phenotype images are available via 
MaizeGDB, and efforts to develop algorithms that automatically recognize and 
classify images of phenotypes are underway [37, 120]. Nonetheless, to the best 
of our knowledge, there are no 3D-image datasets of the sort made in human and 
veterinary clinical practices or those that animal taxonomists now collect increas-
ingly routinely.

9.2.3.4 Anatomical Ontologies

Many OBO Foundry ontologies represent a na tom i cal knowledge. Several ontolo-
gies represent a single model species, such as the C. elegans Gross Anatomy On-
tology, the Mouse Adult Gross Anatomy Ontology, and the human Foundational 
Model of Anatomy [71, 121, 122]. Others refl ect diversity in taxonomic groups, 
including the Teleost Anatomy and Development Ontology (TAO), the Amphibian 
Anatomical Ontology (AAO), and the Plant Structure Ontology (PSO) of the Plant 
Ontology [123–127]. These ontologies often contain robust sets of phenotypic data 
for many species; for example, the AAO, an OBO-based ontology, includes ana-
tomical and developmental information and phenotype annotations, including spe-
cies differentia essential to biodiversity studies [124, 128]. The Common Anatomy 
Reference Ontology (CARO) and the Über Anatomy Ontology (UBERON) are 
upper-level amalgamating ontologies that aim to map structures from one species 
to another [129, 130]. An alternative to manually constructing reference ontolo-
gies is to automatically align the individual ontologies. Several experiments along 
these lines demonstrate that it is possible to align multiple anatomical ontologies 
for a single organism (humans) and across mammalian species (humans and mice), 
though so far, the alignments are not complete [95, 131, 132]. In these experiments, 
both terms and subgraphs of relationships and terms were used to align ontolo-
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gies directly to each other or with respect to a third ontology that served as an in-
termediating reference. 

9.2.3.5 Algorithms and Tools for Systematically Linking or Aligning A na to my 
Ontologies

Several ontological resources (e.g., the UMLS Semantic Network and the Founda-
tional Model of Anatomy) currently are being utilized to support biological text 
mining and to assist in entity-recognition tasks and relation-extraction tasks [133, 
134]. The use of information retrieval and extraction tools to automate the process 
of building an ontology, however, is not yet a common practice; see [135–137] for 
examples of research in that direction.

Similarly, fully automated alignment of ontologies is not yet a well-established 
fi eld. The work in [138] describes several approaches to ontology merging and the 
calculation of differences, functionality that has been implemented in a limited 
form in PROMPT and OntoMerge [139, 140]. Additionally, the authors of [138] 
introduce a practical approach for ontology merging and the calculation of differ-
ence. RDBOM, a relational database ontology-management system, also provides 
for ontology merging and difference calculation [141]; however, the RDBOM im-
plementation is based on a fi nite-state automaton ontology model called an ontol-
ogy abstract machine [142], while the work in [138] is based on description logic 
(DL). 

A software tool for the partially automating alignment of OBO ontologies 
is available (as described in [143]); however, here alignment is not semantically 
equivalent to the functionality considered in [138] and [142]. Rather, it refers to the 
linking of ontologies. A Perl script allows the user to specify cross-reference (OBO 
xref) linkage information in the form of a text prefi x. That information then is 
used to link terms in the designated ontologies that match those text patterns; the 
actual linkage is achieved by automatically adding an intersection _ of entry 
(which contains the cross-reference information) for each matching term in the 
OBO fi le. The OBO-Edit reasoner can be used subsequently to analyze these links 
for consistency in terms of is _ a relationships (i.e., to check if two linked terms 
refer to different kinds of entities, based on the corresponding is _ a relations that 
are defi ned in the original ontologies).

9.3 Biological Ontologies Today

9.3.1 Current Practices

The current practices for building biological ontologies are rooted in the way on-
tologies were initially developed and used in model organism databases. Indeed, the 
persistence of these practices nearly a decade later, and their widespread adoption 
by biological ontology builders, are a tribute to the perspicacity and tenacity of the 
original developers and their colleagues in the Gene Ontology Consortium (now 
the OBO Foundry) [62]. The Gene Ontology, which is the model for most of the 
biological ontologies in production use today, was developed very rapidly, under 
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enormous pressure, for the annotation of the about-to-be-published Drosophila 
melanogaster genomic sequence [144]. It was so successful that it was only natural 
to hope it would become a tool in unifying biological language, so that databases 
could become semantically interoperable. This is not unreasonable; the Edinburgh 
Mouse Atlas and the Jackson Laboratory’s Mouse Database showed that databases 
built with the same ontology would indeed be semantically interoperable [145, 
146].

The rapid adoption of the Gene Ontology by the mouse, Arabidopsis thaliana, 
and the zebrafi sh database communities clearly indicated its value and greatly ex-
panded its coverage by providing additional seasoned curators to join the open 
process of ontology construction. Each extant ontology is the result of taxing effort 
and careful reasoning over divergent views to arrive at a reasonable terminology. 
Perhaps most importantly, the growth of the Gene Ontology has made many more 
people “representation conscious,” or aware that there are choices to make in rep-
resenting biological information, by stimulating similar efforts for other organisms 
and categories of ideas. Several groups have described or recommended practices 
in ontology construction [7, 67, 131].

The fundamental Gene Ontology model of a forest of related ontologies, each 
a directed acyclic graph and all expressed in a tripartite language, persists today 
because of its success as an annotation tool. Moreover, the Gene Ontology and its 
relatives have been used for many purposes never originally anticipated, for exam-
ple, in automated text processing [7, 147, 148]. When pressed for uses its design-
ers never envisaged, there can be problems, but we know of no model or software 
system that is perfectly forward compatible.

9.3.2 Structural Issues That Limit Reasoning

Given their ubiquity and computational raison d’être, it seems natural to use on-
tologies to automatically discover knowledge by emulating biological reasoning. 
Their usefulness in information organization and in the sharing of information 
among data resources has been amply demonstrated by the adoption of ontologies 
by the biological databases mentioned above and many others [2]. In some cases, 
for example, in TAMBIS, an ontology is used to form a de facto global schema and 
serve queries over multiple databases [96]. In many cases, ontological terminology 
forms the semantic content of automated queries from one portal or database to 
another or guides the incorporation of information from multiple sources into a 
unifi ed presentation (e.g., the databases of the Entrez collection of NCBI and oth-
ers that connect to them). In still other cases, ontologies supply semantic mappings 
in mediation schemes, especially over the Semantic Web [24, 25, 149]. Moreover, 
Chapters 3–8 and 10 in this book amply illustrate the use of ontologies by algo-
rithms to retrieve, annotate, and fi lter data.

Reasoning about anatomy reveals some structural limitations that particularly 
plague anatomical ontologies and that must be addressed before they can be used 
effectively for automated knowledge discovery. By structural, we mean the fun-
damental constraints that some ontology-development tools, such as OBO-Edit, 
impose on the representation of knowledge, not the terminology, relations, or to-
pology of any particular ontology. For example, early versions of OBO-Edit did not 
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include provisions for adding instances or properties, nor did they allow node-to-
node linking beyond the hierarchical is_a and part_of. We emphasize that our in-
terest is the fundamental structural issues of the typical biological ontology, rather 
than the terminological or topological particulars of specifi c ontologies or spatial 
representations [87, 150, 151]. 

9.3.2.1 The Imperative of No Ambiguity

Perhaps the most overriding technical imperative in ontology construction is to 
avoid ambiguity in the semantics of its terms. Biological language is often creatively 
stretched to capture the intrinsic variations of phenomena, but this introduces mul-
tiple, usually related, meanings into the set of defi nitions users associate with the 
terms [152]. Operatively, the semantics of many biological terms depends on their 
biological context, but most software is built to be as context-free as possible. The 
computational need to avoid ambiguity often prevents one from representing con-
cepts in an ontology in the same manner as they are used in biological practice. 

This imperative has produced two signifi cant computational constraints on 
contemporary biological ontologies. First, every term in the ontology is required 
to be unique. Whatever semantic portfolio that term may carry in the minds of 
biologists, it will be represented only once. Second, multiple inheritance (e.g., a 
term inheriting semantic or other attributes from more than one term) is discour-
aged and is not considered a best practice [82]. This preference can be awkward; 
many anatomical entities are nearly always determined by other structures that are 
adjacent to them or that preceed them temporally or mechanistically [153]. Thus, 
contemporary ontologies, such as the Gene Ontology, use it cautiously [66].

9.3.3 A Biological Example: The Maize Tassel

In principle, a reasoner would recognize anatomical, phylogenetic, spatial, or de-
velopmental relationships among phenotypes present in individuals of one or more 
species. How well do current ontological practices permit representation of this 
essential information? To answer this question, we show the representational prob-
lems posed by the anatomy of the maize male infl orescence, or tassel.

9.3.3.1 Anatomical Modularity

Maize is built from a series of repeated modules that differentiate into organs 
throughout the plant’s life [153, 154]. Sets of smaller modules nest inside the larger 
ones to build the organs and their substructures, beginning with the individual gam-
etes of the pollen grains and progressing to the entire tassel. Figure 9.1 illustrates 
this modularity. 

One can divide the tassel into large and small modules; a wild-type tassel can 
have more than 10 large modules and 100 small ones. The large modules are the 
“limbs” of the tassel: an axial, central spike, and its lateral branches [155, 156]. As 
in the tassel in Figure 9.1(a), this spike-branch structure can be repeated in place 
of the lowest branches, with the secondary axis and its branches forming where a 
simple lateral branch would be. Each large module is covered with small spikelet 
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modules, arranged alternately as shown in Figure 9.1(b). Each spikelet bears two 
glumes, again alternating across an imaginary axis. Each glume encloses a fl oret 
with two clamshelllike plates, the palæ and lemma, that shelter the three stamens 
inside until their pairs of anthers dehisce and shed pollen.

Figure 9.1 The nested, modular structure of the maize tassel. (a) shows a tassel with its large mod-
ules (central and branch axes and lateral branches) covered with pairs of glumes (the small modules). 
The arrows mark two subsidiary axes with their own central axes and lateral branches. Many glumes 
have opened, revealing the fl orets and their pairs of anthers (triangle). (b) is a close-up showing the 
alternate arrangement of spikelets and their pairs of glumes. The arrow indicates the group of three 
stamens, each with its pair of anthers, that are the reproductive parts of the male fl oret.
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Changes in Anatomical Parameters During Development Phyllotaxically, maize leaves 
alternate along the central axis of the plant’s stem, and their placement along that 
axis can be described as a helix: 

 ( ) ( ) ( ) ( )cos sinh r r pθ θ θ θ θ= + +i j k  

where r is the radius, p(θ) is the (changing) pitch function of the helix, θ is its curva-
ture (loosely, the angular rate at which the helix turns), and i, j, and k are the usual 
3D unit vectors. (While the developmental context makes it particularly tempting 
to also interpret θ as time, for the moment we eschew that connotation for lack of 
direct evidence.) For simplicity, we call the interval along the helix between two 
successive modules on the helix, the arc interval; and the angle subtended by two 
successive modules, the angular interval. 

This helical pattern of leaf placement on the stem continues on the tassel’s 
central spike, secondary axes, and branches. As the vegetative helix switches to an 
infl orescence helix and proceeds up the tassel, two things can happen. First, the fre-
quency of the placement of branches and spikelets can increase, progressively de-
creasing the arc interval and the angular interval, and breaking the strict 180° phas-
ing of the leaves. In a limited sample of approximately 75 wild-type tassels from 
four different lines of maize, this compression always occurs. Second, a second 
helix can appear, slightly out of phase with the fi rst, resulting in pairs of branches 
very close to each other, on the same side of the axis. The appearance of the second 
helix depends on the genetic background. At present it is unclear whether the angle 
subtended by the branch and the axis (the branch angle) is determined independ-
ently of the helix parameters.

Geneticists commonly measure several parameters in describing tassel mor-
phology [157, 158]. Most of these phenotypes are direct results of the parameters 
described and others are global properties of the tassel, while one is apparently 
independent. The measured phenotypes include the total length of the tassel, the 
average length of three branches drawn from different locations in the tassel, the 
length of the central spike, and the length of the branching zone; the number of 
branches; the number of spikelet pairs in the densest regions of the central spike 
and lowermost primary branch; the average angle between the central axis and the 
branches, projected onto a plane parallel to the length of the tassel; and the tassel’s 
dry weight1.

9.3.4 Representational Issues

With the tassel’s anatomy clear, we now can consider how the current ontological 
practice may obfuscate an accurate representation. We suggest there are three prob-
lems surrounding the representation of anatomy in ontologies and the consequent 
problems they present for reasoning.

1. The standard method of storing a dried, fl attened tassel in a paper bag for later measurement makes it dif-
fi cult to measure θ directly, and collecting the data to estimate the pitch function p(θ) would involve too many 
manual measurements to be practical for thousands of tassels. Quantitative estimates of these patterns for 
large populations, which would facilitate identifi cation of mutants in their production, will require improved 
technology.
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The Multiplicative Crisis The fi rst problem arises from the duplication of anatomi-
cal modules, or serial homology, that is demonstrated by many organisms. Since 
each term in an ontology must be unique, every anatomically identical instance of 
a module must have its own name. Thus, in an effort to distinguish each individual 
anatomical duplication, an ontology may have many names for the same structure, 
and artifi cial distinctions among identical modules may misrepresent an organism’s 
anatomy when viewed through the ontology. 

This gap between terminology and modularity has been called the multiplica-
tive crisis by Elizabeth Kellogg and Lincoln Stein [159]. The degree of the crisis var-
ies by taxonomic group. Since animals have few identical modules, animal anatomy 
ontologies customarily treat each anatomical structure as a distinct entity, avoiding 
anatomical distortion by simply ignoring modularity or naming each module sepa-
rately. In contrast, the extensive modularity of plants makes it infeasible to give 
each module its own name, as our tassel example shows. In practice, the PSO does 
not represent every module, choosing instead to represent characteristic parts of a 
few modules. This decision is perfectly sensible when the goal is to have a basic list 
of anatomical structures, but becomes awkward when the goal shifts to represent-
ing the plant’s anatomy for reasoning. Figure 9.2 shows a portion of the tassel’s 
anatomy roughly corresponding to the large and small modules of our description, 
as represented by the part _ of relations in the PSO. The fi gure was produced 
from data extracted by manual inspection of the fl at-fi le ontology [125]. 

Structures that are the same, in the context of the tassel, but named differ-
ently in the ontology to distinguish between the general type of a structure and 
its organ-specifi c versions, share the same gray color. Thus, the left portion of the 
fi gure shows the relations among the more general terms, such as spikelet, glume, 
fl oret, gynoecium, and androecium, and the right portion shows the tassel-specifi c 
versions (there are parallel ear-specifi c versions for most of these in the PSO). Palæ, 
lemma, stamen, and anther are ambiguous, in the sense that it is not clear whether 
general or tassel-specifi c versions are meant; only a maize biologist would know 
that anthers are found only on tassels because corn is monecious.

We suggest that there are fi ve challenges in representing modularity with cur-
rent ontological practice:

Representing Module Structure1.   —The fi rst challenge is that there is no 
 device to clearly represent the anatomical modules as modules. To indicate 
 that a particular structure occurs in the tassel, one must name both the type 
 of structure, for example, the fl oret, and that structure in the tassel, for 
 example, the tassel fl oret. As Figure 9.1 shows, however, a tassel has many 
 fl orets. By looking at the ontology and a tassel, one can recognize the 
 portions of the small module implied by the tassel fl oret and its children, 
 but a method for explicit representation is missing.

Representing Number2.   —For all tassels, one of the variables in describing 
 their phenotypes is number. All wild-type and nearly all mutants of maize 
 have many, many more than one branch and fl oret, and the phenotypes of 
 some mutants, such as ramosa1, are distinctive, because the numbers of 
 their branches and fl orets are far greater than usual [156]. Moreover, the 
 individual tassels of a particular genotype will exhibit a range of numbers 
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 of branches, fl orets, and fl orets on branches. Yet the ontology says that a 
 tassel has one central spike, one branch, and one fl oret. How one would say 
 how many modules a particular tassel has is unclear.

Representing Positional Information3.   —In wild-type and many mutant 
 tassels, the fl orets in the middle of the central spike develop fi rst, with 
 development proceeding in waves up and down the spike as the fl orets on 
 the branches mature (in approximately the same wave pattern). To describe 
 this process, one must distinguish the central spike from the branch fl orets, 
 the different positions of fl orets on each limb, and the positions of the limbs 

Figure 9.2 Tassel modules as represented by the PSO’s part_of relations. Structures that are identical in the 
tassel but named differently in the ontology share the same color. Notice that the ontology represents only 
one instance of each module, but with the  exceptions of the tassel and its central spike, each entity is present 
many times in any real tassel. The sensu terms have been omitted for clarity.
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 themselves. In principle, some of this information could be conveyed by 
 permitting an instance of a small module to inherit some of its positional 
 information from the subsuming large module and the rest by referring to the 
 positions of its adjacent modules. However, this would result in multiple 
 inheritance, a discouraged practice and one most ontologies try to avoid.

Representing Development4.   —The ontological representation of the 
 developmental progression of structures is limited by the unease with 
 multiple inheritance. Figure 9.3 shows a manually constructed extract, from 
 the PSO, that involves a portion of tassel development. 
  The short tassel branch meristem is a part _ of
  the  central spike of the tassel, the long lateral tassel branch
 meristem, and the long lateral tassel branch. 
 However, in the mature tassel, growth and differentiation of the 
 meristems have ceased. A short tassel branch is not part of a long tassel 
 branch, and the central spike and branches are differentiated structures. If 
 multiple inheritance were freely used, a reasoner could use it to discover 
 these biological inconsistencies. For example, these biological collisions 
 would be signaled by the short tassel branch meristem simultaneously 
 inheriting properties, such as adult structure, developmental precursor, 
 apoptosis, and relative position, from its ontological parents. 

Representing Properties5.   —Finally, there is no mechanism to describe the 
 properties of tassels, either local to a particular region or globally for the 
 entire organ. The tassel’s phyllotaxic and phenotypic parameters are 
 morphological properties just as central to the tassel’s structure as the 
 modules, glumes, and fl orets. Similarly, number, position, and temporal 
 information are all directly relevant to changes in tassel morphology caused 
 by genetic, developmental, and environmental processes. Even if the 
 terminology and representations were supplied by other ontologies, such as 
 those for traits or phenotypes, the structural limitations of the ontologies 
 that preclude accurate representation of the anatomy would prevent their 
 use in describing morphological changes.

9.3.4.1 Term Synthesis

To distinguish connotations, modules, and locations in ontologies, often novel 
terms are synthesized. Nodes of the same color in Figure 9.4 illustrate combinato-
rial neologizing, for example, 

 {lower ∨ upper}
 ∧ {glume ∨ lemma ∨ palae ∨ fl oret ∨ androeium ∨ gynoecium}
  ∧ {sessile ∨ pedicellate} ∧ {spikelet}. 

The extent to which biologists who are not curators use such combinatorial 
terms is unknown, but experience suggests such usage is essentially nil. Ogren et 
al. have provided detailed descriptions of the resulting term compositionality and 
the issues this raises for text-mining applications [160, 161]. While their examples 
are grammatically more complex than ours (e.g., “positive regulation of cell migra-
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tion”), the types of composition they describe for the Gene Ontology also occur in 
the PSO.

This synthesis of “artifi cial” terms often occurs, because most ontologies rely 
on terms that approximately describe a wild-type member of a species. But biodi-
versity, genetics, and developmental biology compare multiple specimens, look-
ing for subtle differences among them. Upper-level ontologies, such as CARO and 
UBERON, seek to provide a unifying framework for mapping among ontologies of 
individual species, but sacrifi ce precision to do so [129, 130]. In addition to creat-
ing artifi cial terms, they often must rely on constructions based on analogy, rather 
than on homology (UBERON); or they must prune data, such as robust taxon-
associated phenotype annotations or character codings.

One way in which terms are synthesized is through the infi x operator sensu. 
Depending on the direction in which it is read, X sensu Y performs different op-
erations. As a postfi x operator for X, it differentiates types of X according to the 
information in Y. As a prefi x operator for Y, it amalgamates all the various types of 
Y into a subsuming entity X: an approximate synonymy. Ontologies often use sen-
su to indirectly denote taxon-specifi c anatomy. Thus, leg sensu Drosophila, 
anther sensu Poaceae, leaving the computer to somehow discern the anatomy 
[125–127].

9.3.4.2 Tripartite Languages

There has been some discussion as to whether tripartite languages permit accurate 
representation of the biology and complex ideas in general [104, 162]. At least two 
counter-arguments have been made: fi rst, that a proof by C. S. Peirce [163] exists 
that shows that languages of this form are suffi cient to represent anything; and sec-
ond, that expression of more complex notions simply entails more predicates, each 
successively unpacking notions that the previous ones had subsumed into a more 
general notion [164].

A look at the helical equation for the tassel’s phyllotaxy might prompt some 
rethinking. The combined equation has one variable (h(θ)) and two parameters (r, 
θ). Rewriting it into its three component equations doesn’t help very much, because 
all three component equations must be simultaneously true—the essence of para-
metric equations. Perhaps judicious lumping might resolve the problem by letting 
the right-hand side be a single entity and then successively lumping and splitting 
each term. It is not clear how software for numerically solving equations could 
solve such a decomposition per se, or whether the effort to write one to handle 
ontological representations would be justifi ed, given that many excellent numeri-
cal languages and packages for mathematical and statistical computations already 
exist [165–170].

9.4 Facilitating Reasoning About Anatomy

The problems described in Section 9.3.2 illustrate the challenges for automated 
reasoners that would exploit ontologies for studying variations within and among 
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species. If all that ontologies could offer reasoners were structural relationships 
among ideas, one might be tempted to use something else.

However, we believe discarding contemporary ontologies for something more 
structurally pure would be a mistake. Contemporary biological ontologies are 
packed with nouns denoting parts, processes, and molecules, and these often are, 
or are derived from, offi cial biological nomenclature. For reasoners, the terminol-
ogy is the proverbial baby. So we suggest combining the terminology in ontologies 
with different software, representational approaches, or computational techniques 
for reasoning.

We now consider add-ons or modifi cations to anatomical ontologies that will 
help in the development of robust reasoning systems for discovering knowledge 
about biodiversity, genetics, and developmental biology. These either circumvent 
the restrictions of anatomical ontologies, by loosely or tightly coupling the ontol-
ogy terms to independent data sources representing biodiversity information, or 
they abandon best ontology practices when developing anatomical ontologies.

9.4.1 Link Different Kinds of Knowledge

One way to reconcile the confl ict between good ontology practices and incorporat-
ing species and phenotypic diversity into anatomy ontologies is the approach taken 
by the Phenoscape group, which uses software tools to loosely couple independent 
data sources representing different kinds of knowledge about biodiversity, such as 
anatomy, taxonomy, and species differentia [171]. Semantic connections between 
the ontology’s concepts and trait information from PATO are represented as OWL 
Entity Quality statements, which are created manually by curators, using soft-
ware such as Phenote [172–174]. The Entity is essentially the anatomical structure 
or process (anything identifi ed with an OBO-family identifi er, such as one from the 
GO), and the Quality is a descriptor drawn from PATO. Some of the structural 
problems described in Section 9.3.2 could be managed by this syntax, which allows 
for numbering in some situations, tags for conditions that trigger phenotypic ex-
pression, and temporal qualifi ers [174]. For others, extensions would be needed.

9.4.2 Layer on Top of the Ontology

An alternative approach is to tightly couple ontologies and other data sources rep-
resenting biodiversity and developmental data into a single, inclusive system. Layer-
ing representations and computations in other languages and systems, such as C, 
Prolog, and relational database management systems, on top of ontologies would 
avoid many of the structural limitations described in Section 9.3.2. Layering has the 
advantages of being compatible with current ontology best practices and facilitating 
reasoning, but it entails mapping some representations in the ontology to the other 
components to permit them to exchange data; resolving syntactic inconsistencies 
among the different components; increasing the complexity of relationships among 
the components; and decreasing ease of expression. One consequence of this ap-
proach would be neologizing to construct terms that combine properties, such as 
modularity, number, position, and so on, when translating to an OBO representa-
tion. Much of this artifi cal terminology could be reduced simply by translating the 
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ontology into OWL-DL, which has ample support for properties and is decidable. 
Losing ease of expression might well prove to be the greatest problem in the long 
run, especially as the biological ideas and their corresponding computations be-
come more complex. 

9.4.3 Change the Representation

Some of the structural gaps in Section 9.3.2 can be managed by linking and layering 
approaches, but an alternative would be to modify current biological ontology-
building practices by changing the representational techniques used. For example, 
switching to OWL-DL en lieu d’OBO would facilitate adding properties, includ-
ing numerical ones, representing biodiversity and anatomical and developmental 
knowledge to the ontology. The logical limitations of OWL-DL and Racer make 
them highly unlikely to support much reasoning over the observational data, even 
if the data could be appropriately represented in those languages. However, using 
them in a layered approach could increase power. The modularity, number, posi-
tion, temporality, and properties of tassels described in Section 9.3.3 might be rep-
resented in OWL-Full, exploiting metaclasses, numbers, and ranges; reasoning over 
this representation would require something more powerful than Racer.

A different alternative direction would exploit logical rules. Contemporary 
ontologies assume all instances of a class are enumerated, but often one wishes 
to recognize whether and how well a biological datum fi ts a pattern or rule. For 
example, when applied to biodiversity and genetics, one could plausibly expect a 
reasoner to classify specimens according to defi ned criteria, recognize anatomical 
structures from CT data, or identify outliers for expert consideration. Logical lan-
guages, such as Prolog, Flora-2, and XSB, surely combined with other languages 
better optimized for numerical computations, would offer some possibilities. One 
could simply reuse the data in existing ontologies and modify their syntax to let 
them serve as extensional data for a reasoner. In addition, moving away from the 
current set of tripartite languages to a more logically powerful language could en-
courage reorganization of the data and ideas in the current ontologies, enhancing 
their usability for reasoning. Compared to a shift in languages, a syntax modifi ca-
tion would be simpler to implement and would preserve reuse of the unmodifi ed 
data for Semantic Web applications, but it would sacrifi ce expressivity. 

Another set of alternatives lies in reasoning approaches beyond the fi rst-order 
predicate calculus or its subsets that might better express the reasoning of actual 
biologists. Heuristics that model intuition, second-order logic, constraint-logic pro-
gramming, case-based reasoning, and modal logic are just a few examples. We 
think it particularly important to include support for temporal reasoning, given 
that genetics, development, and evolution occur over time in an at least partially 
ordered sequence of events.

A less fundamental option would be to use multiple inheritance more freely 
in an ontology that is extensively augmented with properties. While this explicitly 
breaks current ontology best practices [175], it seems less revolutionary than the 
other options discussed. Along with increased power, however, multiple inheritance 
introduces a raft of problems in designing a system to detect and resolve inconsist-
encies among inherited properties in a computationally and biologically reasonable 
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manner [176]. Better use of namespaces and scoping within an ontology would 
also reduce the number of synthesized terms, and these might be part of a rede-
signed ontological structure that enthusiastically exploited multiple inheritance. It 
seems reasonable to expect that knowing the biological context of a property, per-
haps for all the parental nodes, would be helpful (if complicating) in building such 
a resolver. There may be no uniform way to resolve such inconsistencies, but that 
assessment might well be too pessimistic, especially for well-defi ned domains.

9.5 Some Visions for the Future

Reasoners for biological ontologies are still in their infancy. Although many algo-
rithms already reason about observational data, numerical processes are quickly 
becoming distributed over computational grids, and mediation technologies, such 
as the Semantic Web, are increasing, these resources do not automatically a biologi-
cal reasoner make. In an ideal world, reasoners could discover knowledge directly 
from primary data, with little-to-no human intervention required. Making that goal 
a reality can involve any of many possible next steps in reasoner development that 
includes ontologies, as we outline below.

In the penultimate step towards full reasoning over observational data, ontolo-
gies could serve simply to mediate any distributed computations needed, especially 
for very large datasets or numerically intensive computations. An intermediate step 
would accelerate reasoning over observational data by using the ontologies in pre-
liminary reasoning about a problem, reducing the computations over the observa-
tional data by this initial fi ltration. 

Reasoning over primary data could be used to construct or check ontologies. 
It would be ideal if the application of a term to data was accompanied by a report 
that traced the human and algorithmic rationale for, and contributors to, that ap-
plication. Many databases already do something similar, by automatically generat-
ing annotations about sequence features, possible functions, and protein similarity 
matrices from sequence data [58, 177–179]. Finally, reasoners could be used to 
check ontologies for logical and biological consistency, along the lines of Zhang et 
al. [94].

None of these intermediates are trivial; all will require signifi cant creativity and 
consummate attention to detail. Converting the challenge of automated reasoning 
about complex biological phenomena into reality should generate signifi cant ex-
citement in the coming decade.
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Ontology Applications in Text Mining
Illhoi Yoo and Win Phillips

10.1 Introduction

In this chapter, we discuss primarily how ontologies can benefi t text mining. We 
show the application of ontologies to text mining by providing examples of how 
ontologies can be used for clustering documents and for mining hidden links from 
the digital library. 

Our examples make use of biomedical ontologies, such as Medical Subject 
Headings (MeSH) and the Unifi ed Medical Language System (UMLS). This is 
because they are among the most popular and well known. Among ontologies, 
biomedical ontologies have been the most studied and developed. The largest dig-
ital library in the world and the largest biomedical bibliographic text database, 
MEDLINE contains more than 19 million articles (as of May 2009). MeSH and 
UMLS were developed by the National Library of Medicine (NLM) in 1954 and 
1986, respectively. In addition, these resources are open to the public and free of 
charge to use for research purposes; visit the National Center for Biotechnology In-
formation (NCBI), NLM, and National Institutue of Health (NIH) at http://www.
ncbi.nlm.nih.gov for details. For further background on this subject, see [15].

10.1.1 What Is Text Mining?

Digital libraries contain a huge amount of text information. For example, MED-
LINE, as mentioned in Section 10.1, has nearly 19 million articles. Text-mining 
techniques have been developed in order to transform this vast amount of text data 
into machine-understandable information and knowledge. Text mining has been 
defi ned as the nontrivial discovery process for uncovering novel patterns in unstruc-
tured text [2, 6, 8]. Text-mining approaches have been supplemented by techniques 
and methods from information retrieval (IR), natural-language processing (NLP), 
data mining, machine learning, and statistics.
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10.1.2 Ontologies

Ontologies were discussed in Chapter 1. In this chapter, we make use of the MeSH1 

ontology. Readers who are unfamiliar with MeSH may wish to consult Section 
2.2.1 in [15].

10.2 The Importance of Ontology to Text Mining

Traditional text-mining approaches suffer from two serious, fundamental prob-
lems, both of which can be resolved by use of an ontology. The fi rst problem is due 
to the fact that traditional text mining is based on a vector space model,2 in which 
each dimension represents a word or a term. In the vector space model, spatial 
dimensions are independent of one another, so the use of this model as a depiction 
for text implicitly assumes that in the text document all the words or terms are, like-
wise, independent. In a text document, however, not all of the words or terms are 
completely independent; many of the words are about the same topic, so they are 
related to one another to least some degree. For example, consider elements in the 
word set {Vehicle, Car, Motor, Automobile, Auto, Ford}. These words are spelled 
differently, and so a vector space model would treat them as independent, but in 
a document they might be closely related and sometimes even used synonymously. 
Likewise, a vector space model would treat elements of the word set {Cancer, Tu-
mor, Neoplasm, Malignancy} as different terms, even though all these words have 
very similar meanings.

The fi rst fundamental problem, then, is that relying on the vector space model 
for text processing means that relations among semantically related words or terms 
(e.g., synonyms or hyper/hyponyms) are not captured. The use of an ontology can 
alleviate this problem by providing synonym sets of main concepts and by provid-
ing concept hierarchies. Text-mining systems would know, then, that cancer, tu-
mor, and neoplasm have similar meanings and are a sort of disease (these terms are 
classifi ed into Diseases in the MeSH tree, or the MeSH term hierarchy).

The second problem is that traditional text-mining approaches do not consider 
the domain context when processing documents. After converting documents into 
vector representations, traditional text-mining approaches simply rely on machine 
learning or mathematical methods, without taking advantage of domain knowledge 
about the processed text. Because of the complexity of human languages, however, 
domain knowledge about the text is, in fact, required to properly understand or 
process documents for text mining. For example, consider a living-room scenario 
in which one person says to another, “Please turn off the receiver.” In the room 
are a home theater receiver and a wireless mouse receiver. We know the referent of 
the term “receiver” is the home theater receiver because of domain knowledge; we 
know the mouse receiver has no on/off switch. A traditional text mining approach 
does not capture this domain knowledge.

1. http://www.ncbi.nlm.nih.gov/sites/entrez?db=mesh

2. This is because, probably, the vector space model has a strong mathematical background and it has been 
widely used in machine learning and data mining for decades.
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Another example occurs in measuring sentence similarity (one of the most fre-
quently-used techniques in text mining). Consider the following two sentences: 

Melatonin is a safe, effective medicine, not requiring a doctor’s prescription, 
for insomnia.

The sleeping hormone supplement is recommended for people with diffi culty 
falling asleep.

Using the traditional vector space model, the similarity is measured as 0%, 
because the two sentences do not have any signifi cant words in common (is and for 
are in both sentences, but they are treated as stop words and eliminated from vec-
tor dimensions). We appraise these sentences as nearly the same, however, (i.e., the 
similarity is around 100%) if we rely on the following domain knowledge:

Melatonin is a hormone.1.   
Insomnia is a disorder characterized by diffi culty falling asleep 2.   

 (sleeplessness).
Melatonin is sometimes called a sleeping hormone.3.   
A supplement is nonprescription medicine.4.   

In the above example, an ontology can help to measure the similarity between 
the apparently different, but semantically identical sentences by supplying the rel-
evant domain knowledge: concept hierarchy (the fi rst item), concept defi nition (sec-
ond and fourth), and synonym sets (third).

In a domain such as biomedicine, the use of ontologies for text mining is cru-
cial because of high terminological variation (i.e., many synonyms for the same 
concepts) and complex semantic relationships among terms. Using an ontology is 
the only way to handle such complex semantic relationships among words or terms 
in the text, because ontologies supply synonym sets for every concept (e.g., entry 
terms in MeSH) and hierarchically arrange concepts from the most general to the 
most specifi c3. The simple use of ontologies in text mining, thus, allows us to easily 
solve the traditional synonym/hypernym/hyponym problems.4

There are other ways in which ontologies can improve on traditional text-
mining approaches. By tracking concept hierarchies, ontologies show relationships 
among terms, thus allowing the measurement of semantic similarities between two 
different documents. By spanning disparate biomedical information between such 
documents, automatic hypothesis generation is possible. Ontologies enable knowl-
edge induction, the extracting of unknown patterns or rules from particular facts 
or instances in documents, thus linking new discoveries in biomedical literature to 
existing biomedical knowledge and promoting knowledge management and ontol-
ogy learning.

3. The terms in ontologies normally appear in more than one place in the hierarchy, so the terms are actually 
represented in a graph.

4. Information retrieval also has these problems.
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10.3 Semantic Document Clustering and Summarization: Ontology 
Applications in Text Mining

In this section, we provide an example of how a biomedical ontology can be used 
for biomedical-document clustering and summarization. For our examples, we con-
tinue to use MeSH (a biomedical ontology) and MEDLINE articles.

We believe that optimal text mining requires both document clustering and text 
summarization, because they are complementary. Since a set of documents is usu-
ally has multiple topics, text summarization without document clustering will not 
yield a high-quality summary. On the other hand, document clustering will allow 
scant understanding of a set of documents, without an explanation of document 
categorization or a summary for each document cluster. Thus, a coherent approach 
to text mining requires both document clustering and text summarization.

We introduce document clustering in Section 10.3.1. In Sections 10.3.2, 10.3.3, 
and 10.3.4, we discuss a novel graphical representation model, a graph clustering 
for graphical representations, and a text summarization algorithm, respectively. 
These are important components of a semantic document clustering and summa-
rization system. After introducing these components, we discuss how the whole 
system works in Section 10.3.5.

10.3.1 Introduction to Document Clustering

Document clustering is an unsupervised learning process that assumes there is no 
known information about document similarity. In most cases, even the number 
of topical groups or clusters (called k) is unknown. Without any prior informa-
tion about the document set, document clustering groups unlabeled documents into 
meaningful clusters of similar documents. The number of clusters k may be com-
puted using a cluster validity measure, as in Chapter 3. However, in this chapter we 
do not address this problem.

Document clustering may be formally defi ned as follows: Given a set of n docu-
ments called DS, DS is clustered into a user-defi ned number of k document clusters 
DS1, DS2, …, DSk, that is ({DS1, DS2, ..., DSk} = DSU)5 so that the documents in a 
document cluster are similar to one another, while documents in different clusters 
are dissimilar. For purposes of measuring similarities between documents, we use 
the vector space model, a traditional approach6. In this model, each document d 
is represented as a high-dimensional vector of word and term frequencies (as the 
simplest form7), where the dimensionality indicates the vocabulary of DS.8 

There are a number of possible similarity measurements for documents. The 
most widely used similarity method is cosine similarity, which is based purely on 
mathematics. The distance between two vectors is measured by the cosine of the 

5. The number of documents in each document cluster is normally different, depending on the con text of the 
given document set.

6. In this section, we introduce a completely different approach to representing documents, using background 
knowledge in a domain ontology.

7. Many document-clustering approaches have used TF*IDF, where TF is the frequency of the term and IDF is 
the inversed document frequency of the term.

8. The size of the vocabulary is the number of distinct words/terms in the document set.
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angle between the vectors (please recall that documents are represented as vectors). 
For example, suppose documents A and B may be represented as vectors with three 
dimensions (for simplicity of calculation) as A: [1 2 0]; B: [2 2 1]. Using cosine 
similarity, the similarity between A and B is calculated as about 0.89.

 ( ) ( ) ( )
2 22 2 2 2 2 2 22

Cosine Similarity

1 2 2 2 0 1 2 4 0
Cosine 0.89

5 91 2 0 2 2 1

A B
A B

θ

=
× + × + ×⋅ + +

= = = ≈
× ×+ + × + +

Returning to our discussion of document clustering, the grouping of documents 
occurs through an iterative optimization process, based on the chosen cluster-cri-
terion function. The criterion function measures key aspects of intercluster and in-
tracluster similarities. For example, a criterion function could maximize the sum of 
the average, maximum, and minimum pairwise similarities among the documents 
in a cluster. The K-means clustering algorithm, which is widely used in text mining, 
uses a criterion function that maximizes the similarity between the centroid of a 
cluster and each document in the cluster. Other possible clustering algorithms for 
this problem are discussed in Chapter 3, Section 3.2.

10.3.2 The Graphical Representation Model

10.3.2.1 What Are the Advantages of the Graphical Representation Model over the 
Traditional Vector Space Model?

All document-clustering methods must fi rst convert documents into a proper format, 
because none of the methods can directly process free text. Since we can recognize 
documents as a set of concepts that have complex internal semantic relationships, 
we may represent each document as a graph structure, using the MeSH ontology. 

There are a number of good reasons for representing documents graphical-
ly. First, graphical representation is a very natural way of portraying document 
content, because it contains information about the semantic relationships among 
concepts. In contrast, all such information is lost in a vector space representation. 
Second, graphical representation provides document representation independence; 
that is, the graphical representation of a document does not affect other repre-
sentations. In contrast, in a vector space representation, the addition of a single 
document with new terms usually requires changes to every other document rep-
resentation. The number of changes required grows dramatically as documents 
(represented as new vectors) increase. Third, graphical representation guarantees 
better scalability than the vector space model. Because in text processing a docu-
ment representation is an actual data structure, for better scalability its size should 
be as small as possible. As the number of documents to be processed increases, a 
corpus-level graphical representation expands at most linearly and may in fact keep 
its size, with only some changes in edge weights. In contrast, a vector space rep-
resentation (i.e., document*word matrix) grows at least linearly and may even in-
crease by n*t (where n is the number of documents, and t is the number of distinct 
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terms in documents). Table 10.1 summarizes these differences between the vector 
space model and the graphical representation model.

10.3.2.2 How to Create a Graphical Representation of a Set of Documents

We can represent the graph as a triple, G = (V, E, w), where V is a set of vertices 
that represents MeSH descriptors, E is a set of edges that indicates the relation-
ships between vertices, and w is a set of edge weights that is assigned according to 
the strength of the edge relationships. The relationships are derived from both the 
MeSH tree (the concept hierarchy of MeSH terms) and the concept dependencies 
over documents (discussed in Step 3 below).

The procedure of graphical representation follows three steps: (1) concept 
mapping; (2) construction of individual graphical representations, featuring both 
mapped concepts and their corresponding higher-level concepts; and (3) integra-
tion of individual graphical representations. 

Step 1: Concept Mapping Concept mapping is the mapping of terms in each docu-
ment to MeSH concepts. Initially, each document must be searched for terms to 
map, but to reduce unnecessary searches, stop words9 are fi rst removed and selec-
tion is limited to 1- to 3-gram words.10 The result is a list of 1- to 3-gram words that 
are candidates for matching to MeSH entry terms. Matching then produces a list of 
MeSH entry terms. The MeSH entry terms are next replaced with MeSH descrip-
tor terms, to be able to map the synonyms or related terms to MeSH descriptors. 
The result is a list of matched MeSH concepts. Finally, the system fi lters out MeSH 
concepts that in MEDLINE articles are too general (e.g., ENGLISH ABSTRACT) 
or too common (e.g., HUMAN). We assume that, just like stop words, those terms 

9. Stop words (or stopwords) are words such as a or the that frequently occur in text, but do not bear relevant 
linguistic meaning, so they are ignored by text-mining systems and text search engines, such as Google, 
PubMed, and so on. The following sites provide stop-word lists used in PubMed and US Patent DB: http://
www.ncbi.nlm.nih.gov/books/bv.fcgi?highlight=stopwords&rid=helppubmed.table.pubmedhelp.T43  and 
http://www.uspto.gov/patft/help/stopword.htm

10. An n-gram word/term indicates that the term consists of n words. For example, high blood pressure is a 
3-gram word or term.

Table 10.1 Vector Space Model Versus Graphical 
Representation Model

 Vector
 Space
 Model

Graphical 
Representation
Model

Contains Semantic 
Relationship Information 
in Documents  No Yes

Preserves Document 
Representation 
Independence  No Yes

Scalable  No Yes
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do not have useful distinguishing power to cluster documents. Figure 10.1 provides 
a depiction of how concept mapping works.

Step 2: Construction of Individual Graphical Representations The next step is that of 
building individual graphical representations, using concept extension. The mapped 
MeSH concepts (the output of Step 1) are extended by incorporating higher-level 
(i.e., more general) concepts from the MeSH tree. Concept extension can make the 
graphical representation self-contained (or richer) in terms of meaning, which may 
help users of text-mining systems recognize similar topics. For example, a document 
containing the concept MIGRAINE may be represented by the concepts {HEAD-
ACHE DISORDERS, BRAIN DISEASES, CENTRAL NERVOUS SYSTEM DIS-
EASES} through the concept extension of MIGRAINE. These extended concepts 
help text-mining systems fi nd similar documents discussing, for example, headache 
disorders or brain diseases.

In a graphical representation, concept extension creates edges. In the graphi-
cal representation, when tracking a concept to a parent concept in the MeSH tree, 
an edge is drawn between the concept and its higher-level concept. For such new 
edges, weights are assigned based on their extension lengths. As concepts are ex-
tended further, the actual weights assigned to each of the edges decrease in value. 

Figure 10.1 An example of concept mapping. The single strikethrough used in “of” indicates that 
the word is basically regarded as a stop word, but it could be used as a part of some 3-gram words 
(e.g., “lines of evidence”). The words “breast” and “cancer” are faded to gray to indicate that each 
of them is a MeSH term, but because “breast cancer” is also a MeSH term the individual MeSH terms 
have not been chosen.
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This is because increasing generality involves more layers and branches of the con-
cept hierarchy. 

We may formalize the weight of the edge generated by a concept extension as 
follows: suppose α is the parent concept of concept β, and an edge β:α is gener-
ated by the concept extension of β. The weight assigned to the edge β:α is based 

on the absolute locations of concept β and α in the MeSH Tree. This is defi ned as 
child concept

parent concept

β

α
=  where <concept> is the number of the parent concepts of the child 

concept, plus the child concept itself. This formula is equal to α β

α β

∩
∪ , which is the 

similarity of the concepts β and α in the MeSH tree, because α β β β

α β α α

∩
∪ = = . (Recall 

that because α is the parent concept of concept β, all the parents of α are also β’s 
parents).

Figure 10.2 illustrates this second step of constructing graphical representa-
tions using concept extension. Using the MeSH tree, we extend descriptor terms 
(e.g., {B,C,H} of the document D1) to their higher-level concepts (e.g., {A,E,J}). 
Our approach involves higher-level concepts up to the level of (before the) 15 cat-
egory subroots of the MeSH tree. An example of weighting is presented by edge 
B:A, which is calculated as {B,A,E} {A,E} 2

3{B,A,E} {A,E}

∩
∪ = . Some edges, for example A:E (by B and 

C) and Q:S (by O and Q), are weighted multiple times, their fi nal weight being the 
sum of all the assigned weights. This multiple weighting emphasizes the relation-
ships between concepts. Note that, in our graphical representation, the thickness of 
the edge indicates the edge weight: the thicker the line, the heavier the weight.

Step 3: Integration of Individual Graphical Representations Individual graphs gen-
erated from each document in Step 2 (i.e., document representations as graphs) 
can then be merged into a corpus-level graph, which allows co-occurrence concept 
enrichment. Co-occurrence concept enrichment means semantic relationships are 
established by concepts co-occurring, when individual document representations 
are joined in a corpus-level graph. In the corpus-level graph, this creates new edges 
between the co-occurring variables.

The rationale behind co-occurrence concept enrichment is that the co-occurrence 
of concepts implies some semantic associations that are not contained in an ontol-
ogy. We assume that there is a semantic relationship between two concepts if the 
two concepts are frequently found together in documents, even though an ontology 

Figure 10.2 Building individual graphical representations.
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does not capture this semantic relationship between them. For example, hyperten-
sion and diabetes mellitus, two type 2 concepts, frequently co-occur in MEDLINE 
articles (1,850 articles as of 9/14/2008), and there is a semantic relationship be-
tween them, because many patients with type 2 diabetes have hypertension.

Recognition of co-occurrence depends on setting a threshold value of term 
counts at or above which co-occurrence is considered to exist. An issue for co-oc-
currence concept enrichment is how to set the co-occurrence threshold. We develop 
a simple algorithm to detect a reasonable threshold value instead of just setting a 
fi xed threshold value. This algorithm fi nds a bisecting point in one-dimensional 
data (i.e., a list of co-occurrence term counts) as follows. It sorts the data, takes 
the two end objects (i.e., the minimum and the maximum values) as centroids, and 
then successively assigns each remaining object to one of the two centroids, based 
on the distances between each remaining object and each centroid in a way similar 
to the k-mean clustering algorithm. The centroids are then updated after each as-
signment by calculating the mean value of the objects for each cluster. The process 
continues until all objects are assigned to the clusters. The threshold value is then 
determined as the boundary value between the two clusters. 

After obtaining the threshold value, co-occurrence concepts are transformed 
into edges in the graph, and their co-occurrence counts are used as edge weights. In 
the graph integration, edge weights total for identical edges. For example, suppose 
that concepts A and B are co-occurrence terms and their co-occurrence count is 5 
(in other words, the concepts are found together in 5 documents). Then, the edge 
weight between A and B is 5 + (2/3) (see the graph representation of D1 in Figure 
10.2).

Figure 10.3 illustrates this third step of integration of individual graphs. The 
corpus-level graph is created by merging individual graphs and by transforming 
co-occurrence concepts into new edges. Note that the integrated graph in Figure 
10.3 is based on only four documents (D1 to D4) and two co-occurrence concept 
sets ({C,G}, {T,Q}) from the whole document set (D1 to Dn). Additionally, Figure 
10.3 shows one of the advantages of our approach. Documents D1 and D3 do not 
originally share any common concepts (and thus traditional approaches would not 
recognize any similarity between those documents), and the same holds for docu-
ments D2 and D4. But when the documents are represented in integrated graphs, 

Figure 10.3 Integration of individual graphs featuring co-occurrence concept enrichment.
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their graphs can have some common vertices (e.g., {A,E,J} for documents D1 and 
D3, and {L,S,Q} for documents D2 and D4). Thus, documents D1 and D3 can be re-
garded as similar to each other, and likewise for documents D2 and D4. This newly 
found similarity occurs because our document representation method involves us-
ing higher-level concepts to semantically relate similar documents that do not share 
common terms.

10.3.3 Graph Clustering for Graphical Representations

After we construct the corpus-level graph for a set of documents, we use graph clus-
tering to fi nd the most relevant higher-level concepts. Ferrer-Cancho and Solé have 
observed that the corpus-level graph in English follows a scale-free network struc-
ture [3]. In other words, only a few words in documents have relationships with 
the rest of the words, and those words are called hub words. Technically speaking, 
the degree distribution of such a graph decays as a power law, P(k)~k−r, where P(k) 
is the probability that a vertex interacts with k other vertices, and γ is the degree 
exponent [1]. Here, a vertex is a word and a degree is the number of the vertex’s 
relationships with other vertices. In this way, the graphical representation of docu-
ments belongs to a highly heterogeneous family of scale-free networks.

The Scale-Free Graph Clustering (SFGC) algorithm that we propose is a cluster-
ing algorithm that clusters a graph following scale-free networks. In other words, 
the algorithm takes advantage of the existence of a few hub vertices (words or 
terms) in the graphical representation of documents, upon clustering a scale-free 
network. The SFGC algorithm starts detecting k11 hub vertex sets (HVSs) as the 
centroids of k graph clusters and then assigns the remaining vertices to graph clus-
ters, based on the semantic relationships between the remaining objects and k hub 
vertex sets (the centroids of k graph clusters). Note that the graph-clustering algo-
rithm is conducted on a corpus-level graph, rather than on individual graphs.

Before we describe the SFGC algorithm in detail, we defi ne the following 
terms:

Hub vertices:  • In each graph cluster, a set of vertices that are the most heavily-
connected in terms of both the degrees of vertices and the weights of the 
edges connected to vertices (due to the weighted graph). In documents, those 
vertices are terms that have many strong semantic relationships with other 
terms.

Graph cluster:  • A set of vertices that has a stronger relationship with the hub 
vertices of a graph cluster than with the hub vertices of other graph clusters. 
A graph cluster is a set of terms that are semantically related to one another.

Centroid:  • A set of hub vertices, not a single vertex, because we assume a 
single term as a representative of a document cluster may have its own dis-
positions, so that the term may not have strong relationships with other key 
terms of the corresponding cluster. This complies with the scale-free network 
theory, in which centroids are sets of vertices that have high degrees.

11. k is the number of (graph) clusters and a user-defi ned value.
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The SFGC algorithm proceeds by the following two steps.

Step 1: Detecting k Hub Vertex Sets as Cluster Centroids The main process of the 
SFGC is to detect k HVSs as the centroids of k graph clusters. As a cluster centroid, 
an HVS is a set of vertices having high degrees in a scale-free network. In order 
to measure the centrality degree of vertices in a graph, we use the degree ranking 
method. This is because degree ranking is fairly comparable to betweenness cen-
trality (BC), and a recent scale-free network study [14] reports that, in fi nding clus-
ter centroids, betweenness centrality (BC) yields better experimental results than 
random sampling, degree ranking, and the well-known Hypertext Induced Topic 
Search (HITS) (introduced by Kleinberg in 1999 [7]). We considered the complexi-
ties of BC (O(|V|2) and the degree-ranking method (O(|V|) in very large graphs (V 
is a set of vertices in a graph) and selected the degree-ranking method. Unlike other 
researchers [14], however, who consider only the degrees (i.e., counting edges con-
nected to vertices), we use both vertex degrees and the weights of edges connected 
to the vertex in the process of ranking vertices. For this purpose, we introduce 
the salient scores of vertices that are obtained from the sum of the weights of the 
edges connected to vertices. The salience of a vertex is mathematically rendered as 
follows:

 ( ) { } having 
weight of 

j j j i
i je e e v

Salience v e
∈

= ∑  

where v is a vertex, and e is an edge. After scoring every vertex, the algorithm sorts 
the vertices in descending order, based on their salient scores, and the top 2*k ver-
tices become HVS. Within the top n vertices (n > 2*k), SFGC iteratively searches 
vertices that have strong relationships with any vertices in each HVS. The rationale 
behind this iterative search process within a limited scope (i.e., the top n vertices) is 
to gradually expand each HVS, so that majority HVSs do not “eat” minority HVSs 
(this is called the expansion of HVS in a protected mode). If a vertex has multiple 
relationships with more than one HVS, the HVS that has the stronger relationship 
with the vertex is selected. In this way, the top n vertices are assigned to HVSs. 

In many cases, HVSs are semantically similar enough to one another to be 
merged together, because a document set (or a document cluster) may have mul-
tiple, but semantically related, topics. In order to measure the similarity between 
HVSs, we calculate an intraedge weight sum (as a similarity) for each HVS and an 
interedge weight sum for every possible HVS pair. This mechanism is based on the 
fact that a good graph cluster should have both maximum intracluster similarity 
and minimum intercluster similarity. Thus, if an interedge weight sum is equal to 
or bigger than any intraedge weight sum, the corresponding two HVSs are merged 
together. This process continues until there are no HVSs that meet the requirement. 
If the number of HVSs is less than k after the process, SFGC tries to seek a new 
HVS.

Step 2: Assigning Non-HVS Vertices to Graph Clusters Through this step, all the ver-
tices are grouped, and every HVS becomes a graph cluster. Each of the remaining 
vertices (i.e., non-HVS) is (re)assigned to the graph cluster to which the vertex is the 
most similar. The similarity measure used in this step is based on the relationships 
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between the vertex and each of the k HVSs. The degree of strength of the relation-
ships is measured as the sum of the edge weights. In this way, k graph clusters are 
populated with the remaining vertices. 

In order to refi ne the graph clusters, SFGC iteratively reassigns (non-HVS) 
vertices to the most similar clusters and updates their centroids (i.e., k HVSs), 
just like K-means updates k cluster centroids at each iteration to improve cluster 
quality. During the updates of HVSs, it uses a bisecting technique, used for the co-
occurrence threshold, to select new HVSs from the vertices in each graph cluster 
(based on their salient scores) by separating the vertices in each graph cluster into 
two vertex groups (i.e., HVS and non-HVS). Using the new HVSs, the vertices are 
reallocated to the most similar cluster. These iterations continue until no changes 
are made to clusters or it stops at a certain iteration. 

Finally, SFGC generates both graph clusters and HVSs as cluster centroids or 
cluster models. Figure 10.4 shows two sample HVSs or cluster models generated 
from the graph in Figure 10.5. The signifi cant aspects of the use of graphic-docu-
ment cluster models are that (1) each model captures the core semantic relationship 
information about document clusters and displays their intrinsic meaning in simple 
form; and (2) this facilitates the interpretation of each cluster in terms of the key 
descriptors.

10.3.4 Text Summarization

Text summarization condenses information in a set of documents into concise text. 
Various scoring mechanisms have been developed to enable selecting and scoring 
sentences (or phrases), in order to keep some and eliminate others. The key process 
is how the system selects salient sentences as summary elements. We assume that 
summary sentences will have strong semantic relationships with other sentences, 
because summary sentences will cover the main points of a set of documents, and 

Figure 10.4 (a, b) Two sample graphical-document cluster models from the corpus-level graphical repre-
sentation in Figure 10.5.
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those sentences are supported by other sentences. To this end, in order to represent 
semantic relationships among sentences, we construct a text semantic interaction 
network (TSIN), in which vertices are sentences, edges are the semantic relation-
ships between vertices (sentences), and edge weights indicate the degrees of the 
relationships. For this to work, we need to solve two problems: (1) how to measure 
similarities between vertices (i.e., sentences); and (2) how, using the similarities, to 
identify important vertices.

10.3.4.1 How to Measure Similarities Between Vertices in TSIN

To measure the similarities (as edge weights in the network) between vertices (i.e., 
sentences), we use the notion of edit distances between graphical representations of 
sentences. The edit distance between G1 and G2 is defi ned as the minimum number 
of structural modifi cations required to transform G1 into G2, where the structural 
modifi cation is vertex insertion, vertex deletion, or vertex update. For example, in 
Figure 10.6, the edit distance between the two graphical representations of D1 and 
D3 is 5.

10.3.4.2 How to Identify Important Vertices in TSIN

The next step is how to identify important nodes (i.e., sentences) in TSIN. We 
basically use a well-known Web-page ranking algorithm, Hypertext Induced 
Topic Search (HITS) [7], because the problem of identifying important nodes in 

Figure 10.5 A graphical representation of a document set as a scale-free network.
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TSIN is nearly identical to the problem of identifying important Web pages on the 
Internet. 

The HITS algorithm begins with the search constituting the user’s query. The 
search result, consisting of relevant Web pages, is defi ned as the root set. Then, the 
Root Set is expanded to a base set by adding two kinds of Web pages: incoming 
Web pages that have hyperlinks to the root set pages and out-coming Web pages 
that are hyperlinked from the root set pages. After the input dataset (i.e., base set) 
is collected, both authority and hub scores are calculated for each Web page in the 
base set. The authority score of a page is based on the hyperlinks to the page, while 
the hub score is based on the links from the page. The actual calculations of author-
ity and hub scores are based on the following observations:

If a page has a high authority score, this means that many pages that have  •

hyperlinks to the page have high hub scores.

If a page has a high hub score, the page can provide high authority scores to  •

the pages that are hyperlinked by the page.

As indicated, authority scores and hub scores are mutually reinforcing. Based 
on this intuition, for page i, the authority score A(pi) and hub score H(pi) are math-
ematically rendered as:
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where Link(pj → pi) implies that page j(pj) has a hyperlink to page i (pi).
These two iterative operations are performed for each Web page (here, each 

sentence). The authority score of each Web page is updated with the sum of the hub 
scores of the Web pages that are linked to the page, and the hub score of each Web 
page is updated with the sum of the authority scores of the Web pages that link 

Figure 10.6 Edit distance between two graphical representation of D1 and D3.
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to the page. The authority and hub scores are then normalized. There are several 
normalization methods, such as min-max normalization or z-score normalization. 
After normalization, values fall within a specifi ed range (e.g., 0–1), so it is easy to 
see both relative and absolute position or ranking of values. 

Unlike hyperlinked Web pages or the Internet, a TSIN graph is an undirected 
graph, so we may unify authority scores and hub scores into node centrality (C(Ni) 
for node i), which is mathematically rendered as:
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where, Neighbor(Ni, Nj) indicates that nodes i and j are directly connected to each 
other and C′(Ni) is the normalized centrality of node Ni, C(Ni). We call this simpli-
fi ed HITS algorithm the Mutual Refi nement (MR) centrality, since the node central-
ity is recursively mutually refi ned. Because the node centralities mutually depend 
upon one another, we provide each node with its degree centrality as an initial value 
(otherwise, it would become a chicken-or-egg type of causality dilemma). We apply 
MR centrality, as well as degree centrality, to measure the centrality of sentences in 
TSIN. The top n sentences are selected as a summary.

10.3.5 Document Clustering and Summarization with Graphical 
Representation

This section introduces a novel coherent document-clustering and summarization 
approach, called clustering and summarization with graphical representation for 
documents (CSUGAR), and discusses how the whole system works. This approach 
consists of two main portions, document clustering and text summarization, as 
shown in Figure 10.7. Three main components of CSUGAR were discussed in Sec-
tions 10.3.2, 10.3.3, and 10.3.4. The remaining components are discussed in this 
section. In Figure 10.7, steps 1–3 correspond to document clustering and steps 4–6 
correspond to text summarization. 

Step 1: Creating Ontology-Enriched Graphical Representations for Documents and Inte-
grating Them into a Corpus-Level Graph In this step, every document in a MEDLINE 
document set is represented as a graph through concept mapping and co-occurrence 
concept enrichment, using a biomedical ontology, MeSH. Individual graphical rep-
resentations of documents are integrated into a corpus-level graphical representa-
tion. Refer to Section 10.3.2 for details. 

Step 2: Graph Clustering for Graphical Representation of Documents This graph-clus-
tering algorithm is designed for clustering a scale-free network, such as a graphical 
representation of documents. The graph clustering algorithm fi rst detects k hub 
vertex sets as cluster centroids and then recursively assigns nonhub vertices to graph 
clusters. Refer to Section 10.3.3 for details.
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Step 3: Model-Based Document Assignment In this section, we discuss how to assign 
each document to document clusters. In order to decide which document belongs 
to which document cluster, CSUGAR matches the graphical representation of each 
document with each of the graph clusters as document cluster models or semantics. 
For this purpose, graph similarity mechanisms, such as edit distance (the minimum 
number of primitive operations for structural modifi cations on a graph) could be 
considered. These mechanisms are not appropriate for this task, however, because 
individual document representations (graphs) and graph clusters are too different 
in terms of the number of vertices and edges. As an alternative to graph-similarity 
mechanisms, we assign documents to graph clusters based on how many of the 
vertices in the individual graphical representation of each document belong to HVS 
and non-HVS vertices in each graph cluster. Vertices belonging to HVS are heav-
ily weighted. A document is assigned to a graph cluster based on the highest score 
among the k clusters.

Step 4: Making Ontology-Enriched Graphical Representations for Each Sentence The 
graphical representation for sentences is basically the same as the graphical-repre-
sentation method for documents, except for concept extension and individual graph 
integration. The concepts in sentences are extended using the relationships among 
the concepts in relevant document-cluster models, rather than the entire concept 
hierarchy (MeSH tree), because document-cluster models are richer than the MeSH 
tree, due to co-occurrence concept enrichment and because document cluster mod-
els are regarded as a topic-specifi c semantic network.

Step 5: Constructing a Text Semantic Interaction Network (TSIN) After representing 
each sentence as an ontology-enriched graph, a text semantic interaction network 
(TSIN) is constructed by connecting semantically similar sentences. To measure 
similarities between sentences, edit distance is used. The purpose of the construc-
tion of a TSIN is to identify which vertices (sentences) are important when they 
are represented in a network in terms of their association; this technique has been 
widely used in the social-network fi eld. Please refer to Section 10.3.4 for details.

Step 6: Selecting Signifi cant Text Contents for Summary After constructing the TSIN, 
important vertices (sentences) are identifi ed in the TSIN using the simplifi ed Hy-
pertext Induced Topic Search (HITS) algorithm. Please refer to Section 10.3.4 for 
details.

10.4 Swanson’s Undiscovered Public Knowledge (UDPK) 

The huge volume of biomedical literature provides a promising opportunity to in-
crease knowledge by fi nding novel connections among logically-related medical 
concepts. For example, Swanson introduced an undiscovered public knowledge 
(UDPK) model to generate biomedical hypotheses from biomedical literature, such 
as MEDLINE [11]. According to Swanson, UDPK is “knowledge which can be 
public, yet undiscovered, if independently created fragments are logically related 
but never retrieved, brought together, and interpreted.” [11]
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10.4.1 How Does UDPK Work?

The UDPK model formalizes a procedure to discover novel knowledge from bio-
medical literature as follows (see Figure 10.8): Consider two separate sets of bio-
medical literature, BC and AB, where the document set BC discusses biomedical 
concepts B and C, and the document set AB discusses biomedical concepts B and A. 
However, none of the documents in the sets BC or AB primarily discusses biomedi-
cal concepts C and A together. The goal of the UDPK model is to discover some 
novel connections between the starting concept C (e.g., a disease) and the target 
concept A (e.g., a possible treatment or intervention for the disease) by identifying 
the biomedical concept B (called a bridge concept). For example, Swanson discov-
ered that fi sh oil (concept A) could be a potential treatment for Raynaud’s disease 
(concept C) by identifying the bridge concept blood viscosity (concept B). This dis-
covery (UDPK) is accomplished by fi nding two different biomedical document sets, 
such that one set (document set CB) mentions that Raynaud disease (concept C) 
aggravates blood viscosity (concept B), and the other set (document set BA) men-
tions that fi sh oil (concept A) improves blood viscosity (concept B).

Swanson’s UDPK model can be described as a process to induce “C implies A”, 
which is derived from both “C implies B” and “B implies A”; the derived knowl-
edge or relationship “C implies A” is not conclusive, but, rather, hypothetical. The 
concept B is the bridge between concepts C and A. The following steps summarize 
the procedure [12]:

Specify the user’s goal (a starting concept 1.   C, such as a disease, symptom, 
 and so on).

Search the relevant documents 2.   BC from the biomedical literature (e.g., 
 MEDLINE) for C.

Generate a set of selected biomedical terms (called the 3.   B list) from the 
 document set BC, using a predefi ned stop-list fi lter. B concepts are chosen 
 from only the titles of the documents.

Figure 10.8 Swanson’s Undiscovered Public Knowledge Model.
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Search MEDLINE for each term in the 4.   B list to retrieve documents AB, 
 related to the B concepts.

Generate a set of biomedical terms (5.   A candidates) from the AB documents. 
 A concepts come from only the titles of the documents.

Check whether each of the 6.   A candidates and concept C are cocited 
 together in any MEDLINE articles. If not, keep the A candidate.

Rank the selected 7.   A terms, based on how many linkages are made with the 
 B terms.

One of the drawbacks of Swanson’s method is that it requires a large amount 
of manual intervention. Although he and his colleague designed an interactive tool 
called Arrowsmith to automate some of the steps [13], the procedure still requires 
such manual interventions as having to choose proper lists of stop words and hav-
ing to fi lter through a large number of C-B and B-A connections to identify the 
genuinely novel connections/hypotheses. Another problem is that the quantity of 
relationships or associations among a large number of biomedical concepts is huge, 
and it grows exponentially as the number of concepts increases. As a result, using 
an automated process yields too many irrelevant suggestions, and a key issue for 
the UDPK procedure becomes how to exclude meaningless C-B and B-A concept 
pairs.

Several algorithms have been developed to overcome the limitations of Swan-
son’s approach [4, 5, 9, 10]. However, applied to the UDPK model, none of these 
approaches considers the different roles of concepts A and B on concept C in fi lter-
ing terms for concepts A and B. In addition, the approaches try to tackle the UDPK 
association problem, using information measures such as TF*IDF, rather than se-
mantic relationships among the concepts.

10.4.2 A Semantic Version of Swanson’s UDPK Model

Here, we discuss a semantic-based mining approach called the biomedical semantic-
based knowledge discovery system (Bio-SbKDS). Bio-SbKDS automatically mines 
undiscovered public knowledge from the biomedical literature, using a combination 
of ontology knowledge and data mining. Specifi cally, Bio-SbKDS can semantically 
identify the relationship between concepts C (e.g., Raynaud’s disease) and B (e.g., 
blood viscosity) and the relationship between concept B (e.g., blood viscosity) and 
A (e.g., fi sh oils) in two sets of biomedical documents and induce a novel hypothesis 
(i.e., the relationship between concepts C and A).

There are two key problems in mining the biomedical literature for UDPK: (1) 
how to determine concept B as a bridge concept between concepts C and A, or, in 
other words, after retrieving documents related to concept C as a starting concept 
(such as Raynaud’s disease), we need to determine which terms (concept B candi-
dates) are highly semantically related to concept C; and (2) how to determine con-
cept A from the many documents retrieved using concept B, or, in other words, the 
document set contains many concepts related to concept B, and we need determine 
which term (concept A) is highly semantically related to concept B and has a poten-
tial yet unpublished relationship with concept C. In summary, a major problem of 
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UDPK is how to properly prune the large number of possible relationships between 
concepts C and B, and also between concepts B and A, in the relevant biomedical 
literature.

In order to solve these problems, Bio-SbKDS relies on the biomedical ontolo-
gies UMLS and MeSH. First, using user-defi ned semantic relations (possible rela-
tionships, e.g., treats and prevents) between concepts C and A, Bio-SbKDS induces 
semantic types as fi lters for concepts B and A. Then, using these semantic types 
(fi lters), the model fi nds the correct concepts B and A from a large number of pos-
sible relationships between concepts C and B and concepts B and A, respectively, 
in the relevant biomedical literature. Thus, a major distinguishing feature of this 
algorithm is that the semantic types for concepts B and A are automatically derived 
by using only user-defi ned semantic relations. 

We assume that readers are familiar with basic aspects of UMLS, for example, 
the notions of concepts, semantic types, and semantic relations. Otherwise, please 
refer to Chapter 1 or to http://www.nlm.nih.gov/research/umls. Figure 10.9 shows 
the relations among the UMLS components of concepts (in the metathesaurus), 
semantic types (i.e., concept categories), and semantic relations (i.e., relationships 
between semantic types). A concept normally belongs to more than one semantic 
type, and each semantic type normally has more than one relationship (e.g., result 
of) to other semantic types.

10.4.3 The Bio-SbKDS Algorithm

Figure 10.10 shows the data fl ow of Bio-SbKDS when mining for UDPK. Each 
black circled number in Figure 10.10 indicates the procedure step in the algorithm. 
Next, we explain each step in detail using Swanson’s Raynaud’s disease example. 

Figure 10.9 The relationship among UMLS components (metathesaurus, semantic types, and se-
mantic relations).
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Note that in Steps 1–5, Bio-SbKDS fi rst determines what concept B and concept 
A should be (i.e., their correct semantic types as concept categories), and then in 
Steps 6–9, the algorithm identifi es the correct concepts B and A. Finally, to validate 
the novelty of the hypothesis (i.e., the relationship between concept C and con-
cept A), Bio-SbKDS checks whether concept C and concept A have co-occurred in 
MEDLINE.

The inputs of Bio-SbKDS are the concept C (e.g., Raynaud’s Disease) as a 
MEDLINE search keyword in MajorTopic MeSH terms, the possible semantic re-
lations between concept C and concept A (e.g., treats and prevents), the two pre-
defi ned relation fi lters (mainly discussed in Step 2 below), and the role12 (subject 
or object) of concept C in the semantic relations. Information about the role of 
concept C is important because knowing the role signifi cantly reduces the search 
space of semantic relations, and it helps fi nd correct semantic types when inducing 
semantic types for concepts B and A from the semantic relations.

Step 1 The semantic type(s) of the starting concept C (ST_C) is (are) identifi ed 
through the UMLS semantic network (a UMLS concept may belong to more than 
one semantic type). Concept C must be a MeSH term, because the semantic type 
of the starting concept is used to induce the semantic types for concept B. The se-
mantic type of concept C (here, Raynaud’s disease) is [Disease or Syndrome]. The 
output of Step 1 is a list of the semantic type(s) of concept C.

Step 2 In this step, possible semantic types for concept B are induced by (1) iden-
tifying the initial relations between concepts C and A and the role of concept C in 
those relations, and (2) applying the predefi ned relation fi lter between the semantic 
type(s) for concept C and the semantic type(s) for concept B. 

How does this step proceed? Before discussing this in detail, we need to men-
tion the internal format of a semantic relation, because we use the format to create 
a query. A semantic relation has the following format: 

 <semantic type 1> <semantic relation> <semantic type 2>

Now, we provide several details of Step 2:

Identifying the initial relations between concepts C and A and the role of 1.   
 concept C in these relations.

In Step 1, more than one semantic type for concept C can be identi-
fi ed, but not all semantic types identifi ed are going to be valid, because the 
semantic types of concept C must have one of the user-specifi ed initial rela-
tions with the semantic types of concept A. For this reason, the semantic 
types of concept C must meet the following requirement:

12. For example, if concept C is Raynaud’s Disease, and the semantic relations between concepts C and A are 
treats and prevents, the role of concept C (i.e. Raynaud’s Disease) in the semantic relations is as an object, be-
cause Bio-SbKDS will try to fi nd something (as concept A) that treats or prevents Raynaud’s Disease (concept 
C).
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 <STa> <{treats, prevents}> <STc>

In this way, invalid semantic types of concept C are pruned. Please note 
that the initial relations are also used in Step 3.
Applying the predefi ned relation fi lter between the semantic type(s) for 2.   

  concept C and the semantic type(s) for concept B. 
The semantic relation fi lter between concepts C and B is {process_of, 

result_of, manifestation_of, causes}. Using this fi lter, we can create the fol-
lowing queries:

 <the semantic types of concept B> <process_of > <Disease or Syndrome>
 <the semantic types of concept B> <result_of > <Disease or Syndrome>
<the semantic types of concept B> <manifestation_of > <Disease or Syndrome>
<the semantic types of concept B> <causes> <Disease or Syndrome>

Using these queries (i.e., searching by them in the UMLS Semantic Net-
work), Bio-SbKDS can induce the semantic types of concept B, because the 
semantic types of concept B must have at least one of the relations in the 
relation fi lters with the semantic types of concept C. Table 10.2 shows that 
the semantic types Physiologic Function and Steroid are selected, because 
the role of concept C is set as an object and the relation fi lter includes proc-
ess_of, result_of, and causes. 

Step 3 In order to derive the semantic types of concept A, the initial semantic rela-
tions (i.e., treats, prevents) are used. Here, it is important that concept C be set as 
a subject or an object for the initial relations. For example, if concept C is set as an 
object, only the semantic types on the fi rst (not third) column in Table 10.3 will be 
considered for the search space for possible semantic types of concept A. Note that 
if a semantic type is too general, then that semantic type will be ignored. Whether or 
not a semantic type is too general is determined by its hierarchy level in the UMLS 
Semantic Network. 

Currently, levels 1, 2, 3 (e.g., A1.4.1) in the UMLS Semantic Network are 
regarded as too general (or too broad), since the concepts in the semantic types in 
such levels are too broad.

Table 10.2 Possible Semantic Types of Concept B That Have at Least 
One of the User-Defi ned Semantic Relations (Filters) with the Semantic 
Type of Concept C 

Semantic Types (as Subjects)
of Concept B Relation

Semantic Types (as Objects)
of Concept C

Physiologic function Process_of Disease or Syndrome

Physiologic function Result_of Disease or Syndrome

Steroid Causes Disease or Syndrome
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Step 4 This step extends the semantic types (of concept A), identifi ed in Step 3, 
through the ISA relations.13 Through this process, all parent (general or broad) or 
child (specifi c or narrow) semantic types of the original semantic types of concept A 
are added; however, concepts that are too general are eliminated. For example, the 
semantic type Antibiotic is a child (specifi c or narrow)  semantic type of the seman-
tic type Pharmacologic Substance, so Antibiotic  is added (even though Antibiotic 
is one of the original semantic types). Please note that extended semantic types are 
used for the semantic types of concept A as a category restriction in Step 9.

Step 5 Up to this point, we have induced the semantic types of concept B and 
concept A. Are all these induced semantic types valid? One way to prune invalid 
semantic types uses the fact that concept B must have a relationship with concept 
A. In other words, the semantic types of concept B must have some semantic rela-
tion to the semantic types of concept A. If not, the semantic type of B is invalid. For 
example, the semantic type Organic Chemical of concept B has no relationship with 
the semantic type Drug Delivery Device of concept A. Such invalid semantic-type 
pairs are shown in Table 10.4. In order to detect such unrelated semantic-type pairs, 
for each semantic type of concept B, Bio-SbKDS checks whether there exists at least 
one relationship between it and any of the semantic types of concept A.

If a semantic type of concept B does not have a relationship with any of the 
semantic types of concept A, that semantic type is dropped from the semantic-type 
list of concept B. After this process is completed for the semantic types of concept 

13. An ISA (is a) relation in a concept hierarchy indicates a parent (general or broad)-child (specifi c or narrow) 
concept relationship between two concepts.

Table 10.3 Possible Semantic Types of Concept A That Have at Least One of 
the User-Defi ned Initial Relations with the Semantic Type of Concept C

Semantic Types (as Subjects) of 
Concept A Relation

Semantic Types (as Ob-
jects) of Concept C

Antibiotic Treats Disease or Syndrome

Drug Delivery Device Treats Disease or Syndrome

Medical Device (too General) Treats Disease or Syndrome

Pharmacologic Substance Treats Disease or Syndrome

Therapeutic or Preventive Procedure Treats Disease or Syndrome

Table 10.4 Semantic-Type Pairs Having No Relation

Semantic Types of
Concept B Relation

Semantic Types of
 Concept A

Invertebrate None
Neuroreactive Substance or 
Biogenic Amine

Geographic area None
Neuroreactive Substance or 
Biogenic Amine

Organic chemical None Drug Delivery Device
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B, the same process is performed for the semantic types of concept A. These proc-
esses are called mutual qualifi cation. 

There is another way to prune invalid semantic types using the predefi ned rela-
tion fi lter between the semantic type(s) for concept A and the semantic type(s) for 
concept B, just as a similar fi lter was used in Step 2. Bio-SbKDS checks if the two 
semantic-type sets (for concepts A and B) pass the predefi ned relation fi lter during 
the mutual-qualifi cation procedure. 

This fi lter includes the following semantic relations: interacts_with, produces, 
and complicates. Table 10.5 shows the two semantic type sets for concept B and 
concept A. Those semantic types are automatically generated using only concept C, 
the initial relations, and the two relation fi lters.

Step 6 So far, in Steps 1–5, we have discussed what concept B and concept A 
should be, in terms of semantic types. Now we discuss how to identify the correct 
concept B and concept A, using the semantic types (i.e., concept category fi lters) 
from two MEDLINE document sets: set CB, which is related to (or retrieved using) 
concept C, and set BA, which is related to (or retrieved using) concept B (see Figure 
10.8). In order to identify the correct concept B, Bio-SbKDS searches documents 
related to concept C (in the MajorTopic MeSH terms) in MEDLINE. Bio-SbKDS 
extracts MajorTopic MeSH terms from the retrieved MEDLINE documents,14 

14. This retrieved document set is the MEDLINE document set CB in Figure 10.8.

Table 10.5 The Semantic Type Sets for Concept B and Concept A

Semantic Types of Concept A (Used as a 
Category-Restriction Filter)

Semantic Types of Concept B (Used as a Category-
Restriction Filter)

Indicator, Reagent, or Diagnostic Aid
Antibiotic
Biologically Active Substance
Pharmacologic Substance
Chemical Viewed Functionally
Immunologic Factor
Receptor
Biomedical or Dental Material
Therapeutic or Preventive Procedure
Vitamin
Hormone
Enzyme
Hazardous or Poisonous Substance
Neuroreactive Substance or Biogenic Amine

Cell Function
Carbohydrate
Eicosanoid
Steroid
Mental or Behavioral Dysfunction
Element, Ion, or Isotope
Organophosphorus Compound
Congenital Abnormality
Amino Acid, Peptide, or Protein
Organism Function
Pathologic Function
Organ or Tissue Function
Chemical Viewed Structurally
Nucleic Acid, Nucleoside, or Nucleotide
Organic Chemical
Cell or Molecular Dysfunction
Inorganic Chemical
Acquired Abnormality
Molecular Function
Neoplastic Process
Mental Process
Genetic Function
Lipid
Experimental Model of Disease
Physiologic Function
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because extracted MeSH terms have strong semantic relationships to concept C. 
We call the extracted MeSH terms candidates for concept C. Bio-SbKDS calculates 
the number of MEDLINE documents containing an extracted MajorTopic MeSH 
term (a candidate for concept B). The count indicates how strongly each candidate 
is associated with concept C. 

Step 7 Bio-SbKDS applies the category-restriction fi lters (i.e., the semantic types 
of concept B obtained in Step 5) to the candidates for concept B. If the semantic 
type of a candidate does not belong to the fi lter, the candidate is eliminated. During 
this process, too general candidates are excluded. In addition to those qualifi ca-
tions, Bi-Decision Maker (discussed in Section 10.4.3.1) determines whether each 
candidate is appropriate to concept B. Then, the top N candidates are selected in 
terms of count (i.e., the number of MEDLINE documents containing a candidate as 
a MajorTopic MeSH term).

Table 10.6 shows the top fi ve candidates for concept B in terms of count. Blood 
Viscosity is ranked fi rst, which is the one Swanson found manually.

Step 8  At this point, we need the MEDLINE document set BA, mentioned in 
Figure 10.8, to select candidates for concept A. To retrieve the document set BA, 
Bio-SbKDS searches all of the top fi ve candidates for concept B in MEDLINE. Table 
10.7 shows one of the MEDLINE search keywords for this retrieval.

In order to simulate Swanson’s fi ndings, a date range is used, as used for con-
cept C. Documents related to concept C should be excluded from the MEDLINE 
document set BA, because Bio-SbKDS seeks novel hypotheses (in other words, if 
concepts C, B, and A have co-occurred together in a MEDLINE document, the 
relationship between concepts C and A is not novel).

Table 10.6 Top Five Bridge 
Concepts, with Their Counts

Candiates for Concept B
in MajorTopic MeSH Terms Count

Blood Viscosity 22

Quinazolines 10

Pyridines 8

Vinyl Chloride 8

Imidazoles 8

Table 10.7 A Sample MEDLINE Search Keyword for Retrieving MEDLINE 
Document Set BA

Blood Viscosity[MAJOR] 1974[dp]:1985[dp] Not Raynaud’s Disease[MeSH]

Concept B in 
MajorTopic MeSH term

Data range Excluding documents related
to concept C
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Next, Bio-SbKDS extracts MajorTopic MeSH terms from the retrieved 
MEDLINE documents (the BA document set in Figure 10.8). The extracted MeSH 
terms are candidates for concept A. Bio-SbKDS calculates the number of MEDLINE 
documents containing an extracted MajorTopic MeSH term (a candidate for con-
cept A). The count indicates how strongly they are associated with concept C. 

Step 9 This step is basically the same as Step 7. Bio-SbKDS applies the category-
restriction fi lters (i.e., the semantic types of concept A obtained in Step 5) to the 
candidates for concept A. During the process, candidates that are too general are 
excluded. In addition to those qualifi cations, Bi-Decision Maker (discussed in Sec-
tion 10.4.3.1) determines whether each candidate is appropriate to concept B. Then, 
the top N candidates are selected in terms of the number of MEDLINE documents 
containing a candidate as a MajorTopic MeSH term.

Step 10 So far, Bio-SbKDS has semantically induced candidates for concept A. 
The last step left is to qualify the candidates for novel hypotheses. As mentioned 
previously, Bio-SbKDS seeks novel hypotheses, so Bio-SbKDS checks whether con-
cept C and any of the candidates for concept A have co-occurred in MEDLINE. If 
concept C and a candidate for concept A have co-occurred in any MEDLINE docu-
ment (in other words, basically the two concepts are discussed in an article), they 
are not regarded as novel. Otherwise, a novel hypothesis is made.

10.4.3.1 Bi-Decision Maker

The most challenging problem in mining for UDPK is how to reduce the number of 
potential candidates for concept B. Because a single candidate for concept B may 
involve many MEDLINE documents (document set BA), and this involves innu-
merable candidates for concept A, it is crucial to reduce the number of candidates 
for concept B. Although the semantic types, derived from the initial relations as 
category-restriction fi lters, can constrain candidates for concepts B and A, not every 
candidate in those semantic types is always appropriate to concepts B and A. For 
example, if concept C is Raynaud’s disease, we expect that candidates for concept 
B are symptoms of the disease, something to cause the symptoms, or something 
directly causing the disease. Consequently, we expect that candidates for concept 
A should be something to relieve the symptoms or inhibit the factors causing the 
symptoms. The relationship of concepts B and A should be complementary to the 
relationship of concepts B and C. In other words, if concept C is a human disease, 
concept A should be something positive to the disease, while concept B should be 
something negative to humans (the negative entity aggravates the condition of the 
disease). Therefore, using these properties of concepts B and A, we can further 
prune candidates for concept B and A.

In order to determine whether a MeSH term is positive or negative, the def-
initions of MeSH terms are analyzed. Currently, our method detects some key-
words that have different weights (−5 to 5); minus weights mean negative and plus 
weights positive. For example, a candidate for concept B Nifedipine, which is actu-
ally ranked fi rst before the bi-decision qualifi cation process, is dropped after the 
process, because some terms in the defi nition, underlined and italicized in Figure 
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10.11, are positive terms. Blood Viscosity is regarded as negative, however, because 
morbidity and disorder are negative terms.

Bi-Decision Maker does not always identify all MeSH terms as negative or 
positive, using their defi nitions, because NLM does not provide defi nitions for 
around 6% of MeSH terms. Secondly, many MeSH terms are between negative 
and positive. Bi-Decision Maker does signifi cantly reduce the number of irrelevant 
candidates for concepts B and A.

10.5 Conclusion

This chapter presents what text mining is and why ontologies are important in 
text mining. Text mining is a text information discovery process from source text 
through information retrieval, natural-language processing, information extrac-
tion, information induction, information deduction, and/or text summarization. 
The use of ontologies is becoming standard in text mining, because ontologies can 
resolve, or at least signifi cantly alleviate, the problems of the vector space model 
for text mining, and because ontologies help text-mining approaches understand 
the contents of documents with concept hierarchy, concept defi nition, and concept 
synonym sets.

In addition, we have shown two ontology applications in text mining: seman-
tic document clustering and summarization, and the semantic version of Swan-
son’s UDPK model. The coherent approach for semantic document clustering and 
summarization fi rst represents documents as an ontology-enriched scale-free graph 
structure, based on the graphical-representation method, using a biomedical ontol-
ogy. The key to the coherent approach is to construct document cluster models as 
semantic chunks capturing the core semantic relationships in the ontology-enriched 
scale-free graphical representation of documents. These document cluster models 
are detected by considering the term distribution following the scale-free network 
theory. The models are used for document clustering to assign documents to the 
best-fi t document cluster model. Text summarization constructs a text semantic 
interaction network (TSIN), using the semantic relationships in the models. Sum-
marization is made of the signifi cant text contents by considering their centrality 
in the TSIN. 

A semantic-based biomedical-literature mining method for Swanson’s UDPK is 
introduced. For a given starting medical concept (concept C), Bio-SbKDS discovers 

Figure 10.11 Bi-Decision Maker uses the defi nitions of MeSH terms to determine whether a MeSH 
term is positive or negative.
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potentially meaningful novel relations or connections with other concepts that 
have not been published in the medical literature before. The discovered relations/
connections can be useful for domain experts to conduct new experiments, try 
new treatments, and so on. Compared to other approaches, the most signifi cant 
novel feature of the method is that Bio-SbKDS does not require strong domain 
knowledge, and it automatically uncovers novel hypotheses or connections among 
relevant biomedical concepts, with minimum human intervention. 
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Background knowledge
 axiomatic formalization, 165
 data summarization through, 173–81
 defi ned, 164
 forms, 164
 referencing, 167–72
 representation, 164–67
Base set, 232
Basic Formal Ontology (BFO), 14
Bayes’ formula, 90
Betweenness centrality (BC), 229
Bi-Decision Maker, 245–46
Biomedical semantic-based knowledge

 discovery system. See Bio-SbKDS
Biomedicine, ontology history in, 2–5
Bio-ontologies, 17, 195–205
 current practices, 195–96
 defi ned, 17
 origins, 3–5
 structural issues limiting reasoning, 

 196–97
 See also Ontologies
Bio-SbKDS, 238–46

 category-restriction fi lters, 244, 245
 data fl ow, 238
 defi ned, 237
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Bio-SbKDS (continued)
 extraction, 245
 inputs, 240
 novel hypotheses, 244, 245
 semantic relation format, 240
 steps, 240–45

BLAST, 46, 64
 analyses, 71
 in fi nding similarity, 46

Boltzmann-Gibbs distribution, 96
Bonferroni correction, 93

Candidate-generation algorithms, 137
CAST, 46
Central Aspergillus Data Repository 

 (CADRE), 71
Centroids

 defi ned, 228
 hub vertex sets as, 229

Change-based association, 155
Classes

 annotated genes, 103
 defi ned, 5
 in hierarchy, 6
 OWL, 8

Clustering, 45–60
 CCV, 49–50
 connectivity, 173–76
 document, 14, 222–23
 graph, 228–30
 hierarchical, 177–78
 as knowledge-discovery method, 45
 NERFCM, 47–49
 OSOM, 50–52
 similarity, 177–81

Clustering and summarization with 
 graphical representation for 
 documents (CSUGAR), 233–35

 components, 233
 datafl ow, 234

Clustering examples, 52–59
 with CCV, 54–56
 with NERFCM, 53–54
 with OSOM, 56–59
 test dataset, 52–53

Cluster-validity measure, 47
Coexpression-linkage networks, 92

Common Anatomy Reference Ontology 
 (CARO), 194

Common disjunctive ancestors, 38–39
Concept mapping, 224–25
Concepts. See Classes
Confi dence, rule, 134, 135
Connectivity clustering, 173–76

 defi ned, 173
 priority, 176
 See also Summarization

Consequent, rule, 134
Correlation-cluster validity (CCV), 47, 

 49–50
 assumption, 49
 clustering example, 54–56
 defi ned, 49
 summary, 49–50
 See also Clustering

Cosine similarity, 222–23
Cross-ontological similarity measures, 

 37–38

Data
 amalgamated, 188
 annotation, 188–89
 derived, 187–88
 microarray, 89–90, 152–57
 observational, 188
 primary, 187, 208
 protein, 63–79
 reasoning and, 187–89

Datalog, 189
Data mining, 46
Data tables

 example, 135, 141
 GO terms, 145
 transactional, 135

Deepness, 176
Defuzzifi cation, 118, 119
Derived data, 187–88
Description logic, 192
Descriptive Ontology for Linguistic and 

 Cognitive Engineering (DOLCE),
 14

Detection rates (DR), 124, 129
DigiMorph digital library, 194
DIRDIF, 187
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Discovery
 accelerating, 186
 association rule, 147
 knowledge, 45, 134

Disjunctive ancestors, 38–39
Disjunctive OFRS, 121–22
Document clustering

 with graphical representation, 233–35
 introduction to, 222–23
 See also Clustering

Document representation independence, 
 223

Domain ontologies, 14–15, 222
Dual-specifi city phosphatases (DSPs), 65, 

 76

Edit distances, 231
Encoding ontologies, 7–10
Entity class similarity, 36–37
Equi-depth (EDP) algorithm, 143

False prediction rate (FPR), 123
FatiGO, 145
First-order logic (FOL), 117
Formal ontologies, defi ned, 15
Foundational Model of Anatomy (FMA), 

 16
F-OWL, 192
FunCluster, 46
Functional and sequence similarity 

 relationship, 87
Functional-linkage networks, 92–93

 coexpression, 92
 illustrated, 92

Functional relationship, 86–87
 functional and sequence similarity, 87
 gene-gene, 86–87
 See also GO-based gene function

Function learning, 90–91
Function-prediction algorithms, 93–98

 global prediction, 95–98
 local prediction, 93–95
 See also GO-based gene function

Fuzzy association rules, 140–43
 assessing, 142
 expression form, 141
 extracting, 143

 fuzzy proposals, 143
 fuzzy set determination, 141
 fuzzy set intersection, 142
 fuzzy taxonomy, 143
 overexpressed and, 157
 sharp boundary problem, 140
 underexpressed and, 157
 See also Association rule mining

Fuzzy C-means algorithm, 123
Fuzzy membership, 115–17
Fuzzy rules, 114

Gene expression, 26, 88
 patterns, association rules and, 

 153–55
 recording, 88

GENE Function Annotation System 
 (GENEFAS), 107

Gene function-prediction experiments, 
 98–103

 case study, 101–3
 data processing, 98
 decision table, 101
 meta-analysis, 99–101
 sequence-based prediction, 98
 See also GO-based gene function

Gene-gene relationship, 86–87
Gene length, 140
Gene-mapping algorithm, 122–24

 average detection rate, 129
 summary, 130–31
 testing, 124–25

Gene Ontology (GO), 11–12, 46, 120, 133
 annotation prediction, 151
 annotations, 11, 128, 144, 152
 with association rule mining, 144–52
 database, 3–4
 in data mining, 12
 defi ned, 11
 IDs, 101
 index-based functional similarity, 84
 joint applications of association rules 

and, 150–52
 molecular function in, 146
 in ontological similarity measures, 

 28–30
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 rule sets biological signifi cance, 

 147–50
 semantic similarity, 85–86
 term-similarity matrix, 122
 See also GO-based gene function; 

 GO terms
General Formal Ontology (GFO), 14
Generalization, 116, 176
Genes

 annotated classes, 103
 building relationship among, 87–88
 groupings/clusters, 152
 input, 128
 mapping to biological pathways, 

 120–31
 relations between, association rules 

 for, 155–57
GenMiner, 153
Global prediction, 95–98

 with Boltzmann machine, 95–98
 defi ned, 95–96
 global-optimization strategy, 96
 illustrated, 97
 See also Function-prediction a

 lgorithms
GO-based gene function, 83–108

 algorithms, 84
 defi ned, 83
 functional relationship, 86–87
 function-prediction algorithms, 93–98
 high-throughput data and, 86–87
 index-based similarity, 84
 introduction, 83–84
 prediction experiments, 98–103
 relationship building theoretical basis, 

 87–93
 semantic similarity, 85–86
 similarity, 84–86
 software implementation, 107
 transcription network feature analysis, 

 103–7
GO-enrichment analysis, 103, 106–7
GO terms, 144

 association, 128
 data table, 145
 extracting rules involving, 144–47

 rules involving, 146
 similarity matrix, 122
 statistically over-represented, 149
 See also Gene Ontology (GO)

GOToolBox, 46
Granules, 115
Graph clustering, 228–30, 233
Graph clusters

 assigning non-HVS vertices to, 229–30
 defi ned, 228

Graphical representations
 construction of, 225–26
 creating, 224–28
 document clustering and summariza-

tion with, 233–35
 of document set as scale-free network, 

 231
 graph clustering for, 228–30
 graphical-document cluster models, 

 230
 integration of, 226–27
 model, 223–28

Hidden Markov models (HMMs), 64
Hierarchical clustering, 177–78
Hub vertices, 228
Hypertext Induced Topic Search (HITS), 

 229, 231–32, 235
 base set, 232
 defi ned, 231
 root set, 232

ICD9CM (International Classifi cation of 
 Diseases, 9th Revision, Clinical 
 Modifi cations), 27, 46

Inferred from electronic annotation (IEA), 
 148

Informal ontologies, 15–16
 applications, 16
 defi ned, 15
 goal, 15
 See also Ontologies

Information-content measures, 29, 32–35
 approaches, 33–34
 commonality/difference and, 34
 foundation, 32–33
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 path-based measures relationship, 
 35–36

 See also Ontological similarity 
 measures

Information retrieval (IR), 219
Instance Score, 70
Instantiated ontology, 164, 170–73

 based on paragraph from SEMCOR, 
 174

 defi ned, 170
 example illustration, 172

Intergenic length, 140
International Classifi cation of Diseases 

 (ICD), 4
InterProScan, 75
iPlant project, 188
Itemsets, 138, 139

 combination of, 139
 defi ned, 138
 generation procedure, 139
 rule derivation procedure, 140

Jiang-Conrath measure, 39

KEGG (Kyoto Encyclopedia of Genes and 
 Genomes), 108, 150

 annotations, 128
 database, 120, 124, 129
 defi ned, 120
 IDs, 123, 126, 127
 input genes, 128, 129
 pathways, 122, 124, 129

Kernel density, 90, 91
Knowledge

 background, 164–81
 expression of, 1
 induction, 221
 linking different kinds of, 206
 medicine and, 2

Knowledge discovery in databases (KDD),
 134

Least upper bound approaches, 178–81
 simple, 178–79
 soft, 179–81

Lin similarity measure, 34, 36
Local prediction, 93–95

 defi ned, 93
 gene-function relationship, 94–95
 illustrated, 94
 limitation, 95
 See also Function-prediction 

 algorithms
Low molecular weight PTPs (LMW-PTPs), 

 77

Maize tassel, 197–99
 anatomical modularity, 197–98
 anatomical parameter changes, 199
 angular interval, 199
 arc interval, 199
 development illustration, 203
 development representation, 202
 illustrated, 198
 modularity representation, 200–202
 module structure representation, 200
 multiplicative crisis, 200
 neologizing enforcement, 204
 number representation, 200–201
 positional information representation, 

 201–2
 properties representation, 202
 representational issues, 199–205
 term synthesis, 202–5
 tripartite languages, 205

Mamdani fuzzy rule system (FRS), 117–18
 defi ned, 117
 illustrated, 118
 OFRS versus, 118–19

MAPMAKER, 187
Market-basket databases, 134
MCL, 46
Medical Subject Headings. See MeSH
MEDLINE, 219, 222, 233, 244
Memetic approach, 46
MeSH, 219

 development, 219
 term hierarchy, 220
 term identifi cation, 245–46
 terms, positive/negative, 245
 trees, 220, 235
 vocabulary, 16, 27

Meta-analysis
 human microarray data, 102
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Meta-analysis (continued)
 microarray data, 89–90
 tools, 107
 yeast microarray data, 99–101

MetaMap application, 168, 169–70
Meta p-value, 89–90
Metathesaurus, 12–13, 168

 node identifi ers, 169
 vocabulary integration, 12
 See also Unifi ed Medical Language 

System (UMLS)
Microarray data

 applications for extracting knowledge 
from, 152–57

 meta-analysis, 89–90
 as noisy and incomplete, 89

Min-max normalization, 233
Model-based document assignment, 235
MorphoBank, 193
Morphology, 193–94
MorphologyNet digital library, 194
Multiple inheritance, 176
Multiplicative crisis, 200
Mutual Refi nement (MR) centrality, 233
MYCIN expert system, 113

National Center for Biotechnology 
 Information (NCBI), 101, 219

National Institute of Health (NIH), 219
National Library of Medicine (NLM), 219
Natural language, 1
Natural-language processing (NLP), 

 23–24, 167, 219
NERFCM, 46, 47–49

 clustering example, 53–54
 defi ned, 47
 dissimilarity matrix and, 47
 as iterative algorithm, 48
 for non-Euclidean relational data, 47
 summary, 48–49
 See also Clustering

OBO-Edit, 191
 defi ned, 9
 interface, 9
 use of, 195

Observational data, 188

ONTOLOG, 165
Ontological COG (OCOG), 119
Ontological fuzzy rule systems (OFRS), 

 113–31
 application of, 120–31
 defi ned, 115, 117
 defuzzifi cation, 118, 119
 disjunctive, 121–22
 format, 127
 FRS versus, 118–19
 main idea, 115
 numeric input, 115
 rule-based representation and, 113–15
 similarity as fuzzy membership and, 

 115–17
 symbolic input, 115

Ontological modeling, 14
Ontological similarity measures, 23–40

 common disjunctive ancestors and, 
 38–39

 cross-ontological, 37–38
 entity class similarity, 36–37
 evaluation, 26
 GO and, 28–30
 history, 25–27
 information content, 32–35
 new approaches, 36–39
 objective, 23
 path-based, 30–32
 traditional approaches, 30–36

Ontological SOM (OSOM), 47, 50–52
 algorithm outline, 52
 clustering example, 56–59
 defi ned, 51
 functional summarization, 58
 map, 59
 prototypes, 51–52
 representative terms, 60
 visualization with, 56–58
 See also Clustering

Ontologies
 algebraic approach to, 165–66
 anatomical, 194–95
 application, 16–17
 basic components, 5–7
 bio, 3–5, 17
 clustering with, 45–60
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 components for, 5–6
 in data mining, 46
 defi ned, 2
 domain, 14–15
 encoding, 7–10
 entity class similarity in, 36–37
 explicit, requirement for, 3
 formal, 15
 form and function of, 5–7
 hierarchies, 5–6
 history in biomedicine, 2–5
 informal, 15–16
 instantiated, 164, 170–73
 logic-based languages for, 6
 modeling, 166–67
 OBO, 8
 phosphatase, 67–70
 reasoning over, 185–208
 reference, 16
 in text mining, 220–21
 text summarization with, 163–82
 types of, 13–17
 upper, 14
 WordNet, 33

Ontology abstract machines, 195
Ontology engineering, 7
OntoMerge, 195
Open Biomedical Ontologies (OBO), 

 188–89
 Consortium, 4
 fi les, 7
 OBO-Edit, 9
 ontologies, 8

Open reading frame (ORF), 107
Overclassifi cation, 73
Overexpressed, 157
OWL. See Web Ontology Language 

 (OWL)
OWL-DL, 9, 192, 207
OWL-Full, 192

Partonomies, 6
Path-based measures, 30–32

 adjustments, 31
 defi ned, 30–31
 information-content measures 

 relationship, 35–36

 See also Ontological similarity 
 measures

Pathways
 mapping genes to, 120–31
 mapping genes to (disjunctive OFRS), 

 121–27
 mapping genes to (OFRS in 

 evolutionary framework), 127–30
 prediction in arabidopsis thaliana 

microarray dataset, 125–26
 prediction results, 125
 similarity matrix, 126

Pattern-growth algorithms, 137
Pearson correlation, 89
Pfam, 26, 64
Phenotypes, 194
Phosphatases

 A. fumigatus results, 71–73
 classifi cation pipeline, 66
 datasets, 66–67
 dual-specifi city (DSPs), 65, 76
 family, 65
 group relationships, 67
 in humans, 70–71
 ontology, 67–70
 TriTryps, 74–75

PHRED, 187
Phylogenetic profi les, 88
PPM, 65

 descriptions, 67
 membership, 66

PPP, 65
 descriptions, 67
 membership, 66

Primary data, 187, 208
PROMPT, 195
Properties

 defi ned, 5
 representation, 202

PROSITE, 64
Protégé, 10, 190
Protein data

 analyzing/classifying with OWL, 
 63–79

 case study, 73–77
 methods, 66–70
 phosphatase family, 65
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Protein data (continued)
 results, 70–73
 sequence data analysis, 64

Protein domains, 88
Protein-interactions similarity, 26
Protein-protein interaction, 88
Protozoan parasites

 comparisons, 77
 methods for, 75

PTPs, 65
 descriptions, 67
 low molecular weight (LMW-PTPs),

 77
 membership, 66

Racer, 190–91
RDBOM, 195
Reasoners, 189–93

 OBO-Edit, 9, 191
 Protégé, 190
 Racer, 190–91

Reasoning, 185–208
 biological ontologies and, 195–205
 contemporary reasoners and, 189–93
 data and, 187–95
 facilitating, 205–8
 importance of, 185–86
 languages, 191–93
 no ambiguity imperative and, 197
 over anatomical ontologies, 185–208
 over primary data, 208
 structural issues limiting, 196–97
 visions for the future, 208

Redundancy, 176
Reference ontologies, 16
Regulatory network reconstruction, 105–6
Regulons, 103
Relational fuzzy C-means, 47–49
Relations. See Properties
Relationship building

 functional-linkage network, 92–93
 function learning from data, 90–91
 genes, using one dataset, 87–88
 meta-analysis of microarray data, 

 89–90
 theoretical basis, 87–93

Resource Description Framework (RDF), 5

Reverse transporters, 79
Roles. See Properties
Root set, 232
Rule-based representation, 113–15
RuleML, 189

Scale-Free Graph Clustering (SFGC) 
algorithm

 defi ned, 228
 steps, 229

Self-organizing maps (SOM), 50, 60
Semantic distance, 24
Semantic imprecision, 114
Semantic Network WordNet, 166
Semantic similarity, 85–86
Semantic-type pairs, 242
Semantic Web, 188
SemCor, 164, 174
Sequence-based prediction, 98
Sequence similarity, 26
Sharp boundary problem, 140
SHOIN, 189
Similarity

 cosine, 222–23
 deriving, 167
 fi nding with BLAST, 46
 index-based, 84
 measuring between vertices in TSIN, 

 231
 ontological measures, 38–39
 path-based computation, 116
 Pfam, 26
 protein-interactions, 26
 semantic, 85–86
 sequence, 26
 Tversky’s parameterized ratio model 

 of, 27–28, 35
Similarity clustering, 177–81

 hierarchical similarity-based approach, 
 177–78

 least upper bound-based approach, 
 178–79

 soft least upper bound approach, 
 179–81

 See also Summarization
Simple least upper bound-based approach, 

 178–79



Index 261

Simultaneous association, 155
SMART, 64
SNMI (Systematized Nomenclature of 

 Medicine), 27
SNOMED, 46
Soft least upper bound approach, 179–81
SOLVE, 187
Specialization, 116
Subsumption, 24
Suggested Upper Merged Ontology 

 (SUMO), 14
Summaries

 defi ned, 163
 derivation of, 177
 examples, 164
 as itemsets, 163–64

Summarization, 163–82
 background knowledge reference and, 

 167–72
 background knowledge representation 

 and, 164–67
 connectivity clustering, 173–76
 defi ned, 164
 with graphical representation, 233–35
 introduction to, 163–64
 with ontologies, 163–82
 principles, 181
 similarity clustering, 177–81
 in text mining, 230–33
 through background knowledge, 

 173–81
Support, 134, 176
SWRL, 189
Symbolic variables, 118
Syntactics, 23

TAMBIS, 3, 196
Term synthesis, 202–5
Text mining, 219–47

 defi ned, 219
 ontology applications in, 219–47
 ontology importance to, 220–21
 summarization in, 230–33

Text semantic interaction network (TSIN), 
 246

 constructing, 231, 235

 similarities measurement between 
vertices, 231

 vertices identifi cation, 231–33
Text summarization. See Summarization
Time delay association, 155
Transcription network feature analysis, 

 103–7
 GO-enrichment analysis and, 106–7
 kinetic model for time series 

 microarray, 104–5
 reconstruction, 105–6
 regulation process schematic, 104
 time delay in regulation, 104
 See also GO-based gene function

Transparent Access to Multiple 
 Bioinformatics Information 
 Sources (TAMBIS) project, 16–17

Tripartite languages, 205
TriTryps

 atypical sequences, 76
 defi ned, 74
 diseases, 74
 protein phosphatases, 74–75
 sequence analysis results, 75–77

Tversky’s parameterized ratio model of 
 similarity, 27–28, 35

Type specifi c fanout (TSF) factor, 32

Uber Anatomy Ontology (UBERON), 194, 
 205

Underexpressed, 157
Undiscovered public knowledge (UDPK) 

 model, 235–46
 Bio-SbKDS algorithm and, 238–46
 defi ned, 235
 goal, 236
 illustrated, 236
 semantic version, 237–38, 246

Unifi ed Medical Language System (UMLS), 
 12–13, 166, 219

 defi ned, 12
 development, 219
 mapping into, 171
 Metathesaurus, 12–13, 168
 SPECIALIST Lexicon, 12, 13

Upper boundness, 179
Upper ontologies, 14
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VAT, 46
Vector space model (VSM), 37, 38

Web Ontology Language (OWL), 5
 axioms, 68
 classes, 8
 defi ned, 9
 encoding, 9
 F-OWL, 192
 Instance Score, 70
 OWL-DL, 9, 192, 207

 OWL-Full, 192
 Protégé, 10
 protein family data with, 63–79
 syntax, 8

WordNet ontology, 26, 27, 33, 164
 segment illustration, 172
 in similarity measure assessment, 26

World Wide Web Consortium (W3C), 4

Z-score normalization, 233
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