

DATA MINING IN AGRICULTURE

Springer Optimization and Its Applications

Managing Editor
Panos M. Pardalos (University of Florida)

Editor—Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques have
been developed, the diffusion into other disciplines has proceeded at a rapid
pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics and other sciences.

The Springer Optimization and Its Applications series publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory works that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow prob-
lems, stochastic optimization, optimal control, discrete optimization, multi-
objective programming, description of software packages, approximation
techniques and heuristic approaches.

VOLUME 34

For other titles published in this series, go to
www.springer.com/series/7393

By

DATA MINING IN AGRICULTURE

ANTONIO MUCHERINO

PETRAQ J. PAPAJORGJI

University of Florida, Gainesville, FL, USA

University of Florida, Gainesville, FL, USA

PANOS M. PARDALOS
University of Florida, Gainesville, FL, USA

c
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

© Springer Science+Business Media, LLC 2009

Springer Dordrecht Heidelberg London New York

Information Technology Office

Antonio Mucherino

University of Florida
Information Technology Office

USA

Petraq J. Papajorgji

University of Florida

University of Florida

Panos M. Pardalos

303 Weil Hall

USA

Library of Congress Control Number: 2009934057

DOI 10.1007/978-0-387-88615-2

Institute of Food & Agricultural Institute of Food & Agricultural

P.O. Box 110350
Gainesville, FL 32611

P.O. Box 110350
Gainesville, FL 32611

USA
amucherino@ufl.edu petraq@ifas.ufl.edu

Department of Industrial & Systems Engineering

Gainesville, FL 32611-6595

pardalos@ise.ufl.edu

ISSN 1931-6828
e-ISBN 978-0-387-88615-2ISBN 978-0-387-88614-5

Dedicated to Sonia
who supported me morally

during the preparation of this book.

To the memory of my parents
Eleni and Jorgji Papajorgji

who taught me not to betray my principles
even in tough times.

Dedicated to my father and mother
Miltiades and Kalypso Pardalos

for teaching me to love nature
and to grow my own garden.

Preface

Data mining is the process of finding useful patterns or correlations among data.These
patterns, associations, or relationships between data can provide information about a
specific problem being studied, and information can then be used for improving the
knowledge on the problem. Data mining techniques are widely used in various sectors
of the economy. Initially they were used by large companies to analyze consumer
data from different perspectives. Data was then analyzed and useful information was
extracted with the goal of increasing profitability.

The idea of using information hidden in relationships among data inspired re-
searchers in agricultural fields to apply these techniques for predicting future trends
of agricultural processes. For example, data collected during wine fermentation can
be used to predict the outcome of the fermentation while still in the early days of
this process. In the same way, soil water parameters for a certain soil type can be
estimated knowing the behavior of similar soil types.

The principles used by some data mining techniques are not new. In ancient Rome,
the famous orator Cicero used to say pares cum paribus facillime congregantur (birds
of a feather flock together or literally equals with equals easily associate). This
old principle is successfully applied to classify unknown samples based on known
classification of their neighbors. Before writing this book, we thoroughly researched
applications of data mining techniques in the fields of agriculture and environmental
studies. We found papers describing systems developed to classify apples, separating
good apples from bad ones on a conveyor belt.We found literature describing a system
that classifies chicken breast quality, and others describing systems able to predict
climate forecasting and soil classification, and so forth. All these systems use various
data mining techniques.

Therefore, given the scientific interest and the positive results obtained using the
data mining techniques, we thought that it was time to provide future specialists in
agriculture and environment-related fields with a textbook that will explain basic
techniques and recent developments in data mining. Our goal is to provide students
and researchers with a book that is easy to read and understand. The task was chal-
lenging. Some of the data mining techniques can be transformed into optimization
problems, and their solutions can be obtained using appropriate optimization meth-

vii

viii Preface

ods. Although this transformation helps finding a solution to the problem, it makes
the presentation difficult to understand by students that do not have a strong mathe-
matical background.

The clarity of the presentation was the major obstacle that we worked hard to
overcome. Thus, whenever possible, examples in Euclidean space are provided and
corresponding figures are shown to help understand the topic. We make abundant
use of MATLAB r© to create examples and the corresponding figures that visualize
the solution. Besides, each technique presented is ranked using a well-known pub-
lication on the relevance of data mining techniques. For each technique, the reader
will find published examples of its use by researchers around the world and simple
examples that will help in its understanding. We made serious efforts to shed light
on when to use the method and the quality of the expected results. An entire chapter
is dedicated to the validation of the techniques presented in the book, and examples
in MATLAB are used again to help the presentation. Another chapter discusses the
potential implementation of data mining techniques in a parallel computing envi-
ronment; practical applications often require high-speed computing environments.
Finally, one appendix is devoted to the MATLAB environment and another one is
dedicated to the implementation of one of the presented data mining techniques in
C programming language.

It is our hope that readers will find this book to be of use. We are very thankful
to our students that helped us shape this course. As always, their comments were
useful and appropriate and helped us create a consistent course. We thank Vianney
Houles, Guillermo Baigorria, Erhun Kundakcioglu, Sepehr M. Nasseri, Neng Fan,
and Sonia Cafieri for reading all the material and for finding subtle inconsistencies.
Last but certainly not least, we thank Vera Tomaino for reading the entire book very
carefully and for working all exercises. Her input was very useful to us.

Finally, we thank Springer for trusting and giving us another opportunity to work
with them.

Gainesville, Florida Antonio Mucherino
January 2009 Petraq J. Papajorgji

Panos M. Pardalos

Contents

Preface . vii

List of Figures . xiii

1 Introduction to Data Mining . 1
1.1 Why data mining? . 1
1.2 Data mining techniques . 3

1.2.1 A brief overview . 3
1.2.2 Data representation . 6

1.3 General applications of data mining . 10
1.3.1 Data mining for studying brain dynamics 11
1.3.2 Data mining in telecommunications . 12
1.3.3 Mining market data . 13

1.4 Data mining and optimization . 14
1.4.1 The simulated annealing algorithm . 17

1.5 Data mining and agriculture . 19
1.6 General structure of the book . 20

2 Statistical Based Approaches . 23
2.1 Principal component analysis . 23
2.2 Interpolation and regression . 30
2.3 Applications . 36

2.3.1 Checking chicken breast quality . 37
2.3.2 Effects of energy use in agriculture . 40

2.4 Experiments in MATLAB r© . 40
2.5 Exercises . 44

3 Clustering by k-means . 47
3.1 The basic k-means algorithm . 47
3.2 Variants of the k-means algorithm . 56
3.3 Vector quantization . 62

ix

x Contents

3.4 Fuzzy c-means clustering . 64
3.5 Applications . 67

3.5.1 Prediction of wine fermentation problem 68
3.5.2 Grading method of apples . 71

3.6 Experiments in MATLAB . 73
3.7 Exercises . 80

4 k-Nearest Neighbor Classification . 83
4.1 A simple classification rule . 83
4.2 Reducing the training set . 85
4.3 Speeding k-NN up . 88
4.4 Applications . 89

4.4.1 Climate forecasting . 91
4.4.2 Estimating soil water parameters . 93

4.5 Experiments in MATLAB . 96
4.6 Exercises . 103

5 Artificial Neural Networks . 107
5.1 Multilayer perceptron . 107
5.2 Training a neural network . 111
5.3 The pruning process . 113
5.4 Applications . 114

5.4.1 Pig cough recognition . 116
5.4.2 Sorting apples by watercore . 118

5.5 Software for neural networks . 121
5.6 Exercises . 122

6 Support Vector Machines . 123
6.1 Linear classifiers . 123
6.2 Nonlinear classifiers . 126
6.3 Noise and outliers . 129
6.4 Training SVMs . 130
6.5 Applications . 131

6.5.1 Recognition of bird species . 133
6.5.2 Detection of meat and bone meal . 135

6.6 MATLAB and LIBSVM . 136
6.7 Exercises . 139

7 Biclustering . 143
7.1 Clustering in two dimensions . 143
7.2 Consistent biclustering . 148
7.3 Unsupervised and supervised biclustering . 151
7.4 Applications . 153

7.4.1 Biclustering microarray data . 153
7.4.2 Biclustering in agriculture . 155

7.5 Exercises . 159

Contents xi

8 Validation . 161
8.1 Validating data mining techniques . 161
8.2 Test set method . 163

8.2.1 An example in MATLAB . 163
8.3 Leave-one-out method . 166

8.3.1 An example in MATLAB . 166
8.4 k-fold method . 168

8.4.1 An example in MATLAB . 170

9 Data Mining in a Parallel Environment . 173
9.1 Parallel computing . 173
9.2 A simple parallel algorithm . 176
9.3 Some data mining techniques in parallel . 177

9.3.1 k-means . 178
9.3.2 k-NN . 179
9.3.3 ANNs . 181
9.3.4 SVMs . 182

9.4 Parallel computing and agriculture . 184

10 Solutions to Exercises . 185
10.1 Problems of Chapter 2 . 185
10.2 Problems of Chapter 3 . 191
10.3 Problems of Chapter 4 . 200
10.4 Problems of Chapter 5 . 204
10.5 Problems of Chapter 6 . 211
10.6 Problems of Chapter 7 . 216

Appendix A: The MATLAB Environment . 219
A.1 Basic concepts . 219
A.2 Graphic functions . 224
A.3 Writing a MATLAB function . 228

Appendix B: An Application in C . 231
B.1 h-means in C . 231
B.2 Reading data from a file . 238
B.3 An example of main function . 241
B.4 Generating random data . 244
B.5 Running the applications . 247

References . 253

Glossary . 265

Index . 269

List of Figures

1.1 A schematic representation of the classification of the data mining
techniques discussed in this book. 5

1.2 The codes that can be used for representing a DNA sequence. 8
1.3 Three representations for protein molecules. From left to right: the

full-atom representation of the whole protein, the representation
of the atoms of the backbone only, and the representation through
the torsion angles � and �. 10

1.4 The simulated annealing algorithm. 19

2.1 A possible transformation on aligned points: (a) the points are
in their original locations; (b) the points are rotated so that the
variability of their y component is zero. 25

2.2 A possible transformation on quasi-aligned points: (a) the points
are in their original locations; (b) the points after the transformation. 26

2.3 A transformation on a set of points obtained by applying PCA.
The circles indicate the original set of points. 29

2.4 Interpolation of 10 points by a join-the-dots function. 31
2.5 Interpolation of 10 points by the Newton polynomial. 33
2.6 Interpolation of 10 points by a cubic spline. 34
2.7 Linear regression of 10 points on a plane. 35
2.8 Quadratic regression of 10 points on a plane. 36
2.9 Average and standard deviations for all the parameters used for

evaluating the chicken breast quality. Data from [156]. 39
2.10 The PCA method applied in MATLAB r© to a random set of points

lying on the line y = x. 41
2.11 The figure generated if the MATLAB instructions in Figure 2.10

are executed. 42
2.12 A sequence of instructions for drawing interpolating functions in

MATLAB. 42

xiii

xiv List of Figures

2.13 Two figures generated by MATLAB: (a) the instructions in Figure
2.12 are executed; (b) the instructions in Figure 2.14 are executed. . 43

2.14 A sequence of instructions for drawing interpolating and regression
functions in MATLAB. 44

3.1 A partition in clusters of a set of points. Points are marked by
the same symbol if they belong to the same cluster. The two big
circles represent the centers of the two clusters. 49

3.2 The Lloyd’s or k-means algorithm. 50
3.3 Two possible partitions in clusters considered by the k-means

algorithm. (a) The first partition is randomly generated; (b) the
second partition is obtained after one iteration of the algorithm. 51

3.4 Two Voronoi diagrams in two easy cases: (a) the set contains only
2 points; (b) the set contains aligned points. 53

3.5 A simple procedure for drawing a Voronoi diagram. 53
3.6 The Voronoi diagram of a random set of points on a plane. 54
3.7 The k-means algorithm presented in terms of Voronoi diagram. 54
3.8 Two partitions of a set of points in 5 clusters and Voronoi diagrams

of the centers of the clusters: (a) clusters and cells differ; (b)
clusters and cells provide the same partition. 55

3.9 The h-means algorithm. 56
3.10 The h-means algorithm presented in terms of Voronoi diagram. 57
3.11 (a) A partition in 4 clusters in which one cluster is empty (and

therefore there is no cell for representing it); (b) a new cluster is
generated as the algorithm in Figure 3.12 describes. 59

3.12 The k-means+ algorithm. 60
3.13 The h-means+ algorithm. 60
3.14 A graphic representation of the compounds considered in datasets

A, B, E and F . A and E are related to data measured within the
three days that the fermentation started; B and F are related to
data measured during the whole fermentation process. 69

3.15 Classification of wine fermentations by using the k-means
algorithm with k = 5 and by grouping the clusters in 13 groups.
In this analysis the dataset A is used. 71

3.16 The MATLAB function generate. 74
3.17 Points generated by the MATLAB function generate. 74
3.18 The MATLAB function centers. 75
3.19 The center (marked by a circle) of the set of points generated by

generate and computed by centers. 76
3.20 The MATLAB function kmeans. 77
3.21 The MATLAB function plotp. 79
3.22 The partition in clusters obtained by the function kmeans and

displayed by the function plotp. 79

List of Figures xv

3.23 Different partitions in clusters obtained by the function kmeans.
The set of points is generated with different eps values. (a) eps =
0.10, (b) eps = 0.05. 80

3.24 Different partitions in clusters obtained by the function kmeans.
The set of points is generated with different eps values. (a) eps =
0.02, (b) eps = 0. 81

4.1 (a) The 1-NN decision rule: the point ? is assigned to the class on
the left; (b) the k-NN decision rule, with k = 4: the point ? is
assigned to the class on the left as well. 84

4.2 The k-NN algorithm. 84
4.3 An algorithm for finding a consistent subset TCNN of TNN 86
4.4 Examples of correct and incorrect classification. 86
4.5 An algorithm for finding a reduced subset TRNN of TNN 87
4.6 The study area of the application of k-NN presented in [97]. The

image is taken from the quoted paper. 90
4.7 The 10 validation sites in Florida and Georgia used to develop the

raw climate model forecasts using statistical correction methods. . . . 92
4.8 The 10 target combinations of the outputs of FSU-GSM and

FSU-RSM climate models. 92
4.9 Graphical representation of k-NN for finding the “best’’ match for

a target soil. Image from [118]. 95
4.10 The MATLAB function knn. 97
4.11 The training set used with the function knn. 98
4.12 The classification of unknown samples performed by the function

knn. 99
4.13 The MATLAB function condense: first part. 100
4.14 The MATLAB function condense: second part. 101
4.15 (a) The original training set; (b) the corresponding condensed

subset TCNN o btained by the function condense. 102
4.16 The classification of a random set of points performed by knn. The

training set which is actually used is the one in Figure 4.15(b). 103
4.17 The MATLAB function reduce. 104
4.18 (a) The reduced subset TRNN obtained by the function reduce;

(b) the classification of points performed by knn using the reduced
subset TRNN obtained by the function reduce. 105

5.1 Multilayer perceptron general scheme. 109
5.2 The face and the smile of Mona Lisa recognized by a neural

network system. Image from [200]. 115
5.3 A schematic representation of the test procedure for recording the

sounds issued by pigs. Image from [45]. 117
5.4 The time signal of a pig cough. Image from [45]. 118
5.5 The confusion matrix for a 4-class multilayer perceptron trained

for recognizing pig sounds. 119

xvi List of Figures

5.6 X-ray and classic view of an apple. X-ray can be useful for
detecting internal defects without slicing the fruit. 120

6.1 Apples with a short or long stem on a Cartesian system. 124
6.2 (a) Examples of linear classifiers for the apples; (b) the classifier

obtained by applying a SVM. 124
6.3 An example in which samples cannot be classified by a linear

classifier. 127
6.4 Example of a set of data which is not linearly classifiable in its

original space. It becomes such in a two-dimensional space. 128
6.5 Chinese characters recognized by SVMs. Symbols from [63]. 132
6.6 The hooked crow (lat. ab.: cornix) can be recognized by an SVM

based on the sounds of birds. 133
6.7 The structure of the SVM decision tree used for recognizing bird

species. Image from [71]. 135
6.8 The MATLAB function generate4libsvm. 138
6.9 The first rows of file trainset.txt generated by

generate4libsvm. 139
6.10 The DOS commands for training and testing an SVM by SVMLIB. 139

7.1 A microarray. 154
7.2 The partition found in biclusters separating the ALL samples and

the AML samples. 156
7.3 Tissues from the HuGE Index set of data. 157
7.4 The partition found in biclusters of the tissues in the HuGE Index

set of data. 158

8.1 The test set method for validating a linear regression model. 165
8.2 The test set method for validating a linear regression model. In

this case, a validation set different from the one in Figure 8.1 is used.166
8.3 The leave-one-out method for validation. (a) The point

(x(1),y(1)) is left out; (b) the point (x(4),y(4)) is left out. 168
8.4 The leave-one-out method for validation. (a) The point

(x(7),y(7)) is left out; (b) the point (x(10),y(10)) is left out. 169
8.5 A set of points partitioned in two classes. 171
8.6 The results obtained applying the k-fold method. (a) Half set is

considered as a training set and the other half as a validation set;
(b) training and validation sets are inverted. 172

9.1 A graphic scheme of the MIMD computers with distributed and
shared memory. 174

9.2 A parallel algorithm for computing the minimum distance between
one sample and a set of samples in parallel. 178

9.3 A parallel algorithm for computing the centers of clusters in parallel.179
9.4 A parallel version of the h-means algorithm. 180
9.5 A parallel version of the k-NN algorithm. 180

List of Figures xvii

9.6 A parallel version of the training phase of a neural network. 182
9.7 The tree scheme used in the parallel training of a SVM. 183
9.8 A parallel version of the training phase of a SVM. 183

10.1 A set of points before and after the application of the principal
component analysis. 186

10.2 The line which is the solution of Exercise 4. 187
10.3 The solution of Exercise 7. 189
10.4 The solution of Exercise 8. 190
10.5 The solution of Exercise 9. 190
10.6 The set of points of Exercise 1 plotted with the MATLAB function

plotp. Note that 3 of these points lie on the x or y axis of the
Cartesian system. 198

10.7 The training set and the unknown point that represents a possible
solution to Exercise 4. 202

10.8 A random set of 200 points partitioned in two clusters. 204
10.9 The condensed and reduced set obtained in Exercise 7: (a) the

condensed set corresponding to the set in Figure 10.8; (b) the
reduced set corresponding to the set in Figure 10.8. 205

10.10 The classification of a random set of points by using a training set
of 200 points. 206

10.11 The classification of a random set of points by using (a) the
condensed set of the set in Figure 10.8; (b) the reduced set of the
set in Figure 10.8. 207

10.12 The structure of the network considered in Exercise 1. 208
10.13 The structure of the network considered in Exercise 3. 209
10.14 The structure of the network considered in Exercise 7. 211
10.15 The structure of the network required in Exercise 8. 212
10.16 The classes C+ and C− in Exercise 3. 213

A.1 Points drawn by the MATLAB function plot. 225
A.2 The sine and cosine functions drawn with MATLAB. 227
A.3 The function fun. 228
A.4 The graphic of the MATLAB function fun. 229

B.1 The function hmeans. 232
B.2 The prototypes of the functions called by hmeans. 234
B.3 The function rand_clust. 235
B.4 The function compute_centers. 236
B.5 The function find_closest. 237
B.6 The function isStable. 237
B.7 The function copy_centers. 238
B.8 An example of input text file. 239
B.9 The function dimfile. 239
B.10 The function readfile. 241

xviii List of Figures

B.11 The function main. 242
B.12 The function main of the application for generating random sets

of data. Part 1. 246
B.13 The function main of the application for generating random sets

of data. Part 2. 247
B.14 An example of input text file for the application hmeans. 248
B.15 The output file provided by the application hmeans when the input

is the file in Figure B.14 and k = 2. 248
B.16 An output file containing a set of data generated by the application

generate. 249
B.17 The partition provided by the application generate (column A),

the partition found by hmeans (column B) and the components of
the samples (following columns) in an Excel spreadsheet. 250

Chapter 1
Introduction to Data Mining

1.1 Why data mining?

There is a growing amount of data available from many resources that can be used ef-
fectively in many areas of human activity. The Human Genome Project, for instance,
provided researchers all over the world with a large set of data containing valuable
information that needs to be discovered. The code that codifies life has been read, but
it is not yet known how life works. It is desirable to know the relationships among
the genes and how they interact. For instance, the genome of food such as tomato is
studied with the aim of genetically improving its characteristics. Therefore, complex
analyses need to be performed to discover the valuable information hidden in this
ocean of data. Another important set of data is created by Web pages and documents
on the Internet. Discovering patterns in the chaotic interconnections of Web pages
helps in finding useful relationships for Web searching purposes. In general, many
sets of data from different sources are currently available to all scientists.

Sensors capturing images or sounds are used in agricultural and industrial sec-
tors for monitoring or for performing different tasks. In order to extract only the
useful information, these data need to be analyzed. Collections of images of apples
can be used to select good apples for marketing purposes; sets of sounds recorded
from animals can reveal the presence of diseases or bad environmental conditions.
Computational techniques can be designed to perform these tasks and to substitute
for human ability. They will perform these tasks in an efficient way and even in an
environment harmful to humans.

The computational techniques we will discuss in this book try to mimic the human
ability to solve a specific problem. Since such techniques are specific for certain
kinds of tasks, the hope is to develop techniques able to perform even better than
humans.Whereas an experienced farmer can personally monitor the sounds generated
by animals to discover the presence of diseases, there are other tasks humans can
perform only with great difficulties. As an example, human experts can check apples
in a conveyor belt to separate good apples from bad ones. The percentage of removed
bad apples (the ones removed from the conveyor) is a function of the speed of the

© Springer Science + Business Media, LLC 2009

1
DOI: 10.1007/978-0-387-88615-2_1,
A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34,

2 1 Introduction to Data Mining

conveyor and the amount of human attention dedicated to the task. It is proved that it
is rather difficult for the human brain to be focused on a particular subject for a long
time, thus inducing distraction. Unlike humans, computerized systems implementing
computational techniques to solve a particular problem do not have these kinds of
problems as they are immune to distraction. Furthermore, there are tasks humans
cannot perform at all, such as the task of locating all the interactions among all the
genome genes or finding patterns in the World Wide Web. Therefore, researchers are
trying to develop specialized techniques to successfully address these issues.

Data mining is designed to address problems such as the ones mentioned above.
Techniques used in data mining can be divided in two big groups. The first group
contains techniques that are represented by a set of instructions or sub-tasks to carry
out in order to perform a certain task. In this view, a technique can be seen as a sort
of recipe to follow, which must be clear and unambiguous for the executor. If the
task is to “cook pasta with tomatoes,’’ the recipe may be: heat water to the boiling
point and then throw the pasta in and check whether the pasta has reached the point
of being al dente; drain the pasta and add preheated tomato sauce and cheese. Even
a novice chef would be able to achieve the result following this recipe.

Moreover, note that another way to learn how to cook pasta is to use previous
cooking experience and try to generalize this experience and find a solution for the
current problem. This is the philosophy the second group of data mining techniques
follows. A technique, in this case, does not provide a recipe for performing a task, but
it rather provides the instructions for learning in some way how to perform the task.
As a newborn baby learns how to speak by acquiring stimuli from the environment,
a computational technique must be “taught’’ how to perform its duties. Although
learning is a natural process for humans, it is not the case for computerized systems
designed to replace humans in performing certain tasks. In the case of the novice
chef, he has all the needed ingredients (pasta, water, tomato sauce, cheese) at the
start, but he does not know how to obtain the final product. In this case, he does not
have the recipe. However, he has the capability of learning from the experience, and
after a certain number of trials he will be able to transform the initial ingredients into
a delicious tomato pasta dish and be able to write his own recipe.

In this book we will present a number of techniques for data mining (or knowledge
discovery). They can be divided in two subgroups as discussed above. For instance,
the k-nearest neighbor method (Chapter 4) provides a set of instructions for classi-
fication purposes, and hence it belongs to the first group. Neural networks (Chapter
5) and support vector machines (Chapter 6), instead, follow particular methods for
learning how to classify data.

Let us consider the following example. A laboratory is performing blood anal-
ysis on sick and healthy patients. The goal is to correlate patients’ illness to blood
measurements. Why? If we were able to find a subgroup of blood measurement val-
ues corresponding to sick patients, we would predict the illness of future patients
by checking whether their blood measurements fall in the found subgroup. In other
words, the correlation between blood measurements and patient’s conditions is not
known and the goal is to find out the nature of this relationship. Available data accu-
mulated in the past can be used to solve the problem. The laboratory may perform

1.2 Data mining techniques 3

blood analysis and then check a patient’s conditions in a different way that is totally
reliable (and probably expensive and invasive). When a reasonable amount of data
is collected, it is then possible to use the accumulated knowledge for classifying
patients on the basis of their illness. In this process two sets of data are identified:
input data (i.e., blood measurements) and a set of corresponding outputs (patient
illnesses). Data mining techniques such as k-nearest neighbor (which follows a list
of instructions for classifying the patients) or neural networks (which are able to
learn how to classify the patients) can be used for this purpose.

Unfortunately, all needed data may not always be available. As an example, let
us consider that only blood measurements are available and there is no information
about patients. In this case, solving the problem becomes more difficult because
only input data are available. However, what can be done is to partition inputs into
clusters. Each cluster can be built so that it contains similar data, and the hope is
that each cluster would represent the expected outputs. The techniques belonging to
this group are referred to as clustering techniques or as unsupervised classification
techniques, because the couples of corresponding inputs/outputs are actually absent.
In the cases this information is available, classification techniques are instead used.

Data mining techniques can be therefore grouped in two different ways. They can
be clustering or classification techniques. Furthermore, some of them provide a list
of instructions for clustering or classification purposes, whereas others learn from the
available data how to perform classifications. Note that clustering techniques cannot
learn from data, because, as explained earlier, only a part of the data is available. In
classification techniques, the categories in which the data are grouped are referred
to as classes. Similarly, in clustering techniques, such categories are referred to as
clusters. The object contained in the set of data, i.e., blood measurements, apples,
sounds, etc., are referred to as samples. Section 1.2.1 provides an overview of data
mining techniques.

Based on what is presented above, the following can be a good definition of data
mining or knowledge discovery:

Data mining is a nontrivial extraction of previously unknown, potentially useful
and reliable patterns from a set of data. It is the process of analyzing data from
different perspectives and summarizing it into useful information.

1.2 Data mining techniques

1.2.1 A brief overview

Many data mining techniques have been developed over the years. Some of them
are conceptually very simple, and some others are more complex and may lead to
the formulation of a global optimization problem (see Section 1.4). In data mining,
the goal is to split data in different categories, each of them representing some
feature the data may have. Following the examples provided in Section 1.1, the

4 1 Introduction to Data Mining

data provided by the blood laboratory must be classified into two categories, one
containing the blood measurements of healthy patients and the other one containing
the blood measurements of sick patients. Similarly, apples must be grouped as bad and
good apples for marketing purposes. The problem is slightly more complicated when
using, for instance, data mining for recognizing animal sounds. One solution can be
to partition recorded sounds into two categories, in which one category contains the
sounds to be recognized and the other category contains the sounds of no interest.
However, sounds that may reveal signs of diseases in animals can be separated
from other sounds the animals can generate and from noises of the surrounding
environment. If more than two categories are considered, then sounds signaling
signs of diseases in animals can be more accurately identified, as in the application
described in Section 5.4.1.

Let us refer again to the example of the blood analysis for shedding some more
light on the data mining techniques discussed in this book. Once blood analysis data
are collected, the aim is to divide these data into two categories representing sick
and healthy patients. Thus, a new patient is considered sick or healthy based on the
fact that his blood values fall in the first (sick) or the second (healthy) category. The
decision whether a patient is sick or healthy can be made using a classification or
clustering technique. In the case that for every blood analysis, in a given set of blood
measurements data, it is known whether the patient is sick or healthy, then the set
of data is referred to as a training set. In fact, data mining techniques can exploit
this set for classifying a patient based on his blood values. In this case, classification
techniques such as k-nearest neighbor, artificial neural network and support vector
machines can be successfully used.

Unfortunately, in some applications available data are limited. As an example,
blood measurements data may be available, but no information about a patient’s
conditions may be provided. In these cases, the goal is to find in the data inherent
patterns that would allow their partitioning in clusters. If a clustering technique finds
a partition of the data in two clusters, then one of them should correspond to sick
patients and the other to healthy patients. Clustering techniques include the k-means
method (with all its variants) and biclustering methods.

Statistical methods such as principal component analysis and regression tech-
niques are commonly used as simple methods for finding patterns in sets of data.
Statistical methods can also be used coupled with the above-mentioned data mining
techniques.

There are different surveys of data mining techniques in the literature. Some of
them are [17, 46, 72, 116, 136, 239]. A graphic representation of the classification of
data mining techniques discussed in this book is given in Figure 1.1.

Fundamental for the success of a data mining technique is the ability to group
available data in disjoint categories, where each category contains data with similar
properties. The similarity between different samples is usually measured using a
distance function, and similar samples should belong to the same class or cluster.
Therefore, the success of a data mining technique depends on the adequate definition
of a suitable distance between data samples. If the blood data pertain to the glucose
level and the related disease is diabetes, then the distance between two blood values

1.2 Data mining techniques 5

Fig. 1.1 A schematic representation of the classification of the data mining techniques discussed
in this book.

is simply the difference in glucose levels. In the case that more complex analysis
needs to be performed, then more complex variables may be needed for representing
a blood test. Consequently, the distance between two blood tests cannot always
be defined as the simple difference between two real numbers, but more complex
functions need to be used. The definition of a suitable distance function depends on
the representation of these samples. Section 1.2.2 provides a wide discussion on the
different data representations that can be used.

Clustering techniques are divided in hierarchical and partitioning. The hierar-
chical clustering approach builds a tree of clusters. The root of this tree can be a
cluster containing all the data. Then, branch by branch, the initial big cluster is split
in sub-clusters, until a partition having the desired number of clusters is reached.
In this case, the hierarchical clustering is referred to as divisive. Moreover, the root
of the tree can also consist of a set of clusters, in which each cluster contains one
and only one sample. Then, branch by branch, these clusters are merged together to
form bigger clusters, until the desired number of clusters is obtained. In this case,
the hierarchical clustering is referred to as agglomerative. In this book, we will not
consider hierarchical techniques.

The partition technique referred to as k-means and many of its variants will be
discussed in Chapter 3. The k value refers to the number of clusters in which the
data are partitioned. Clusters are represented by their centers. The basic idea is that
each sample should be closer to the center of its own cluster. If this is not verified,
then the partition is modified, until each sample is closer to the center of the cluster
it belongs to. The distance function between samples plays an important role, since
a sample can migrate from a cluster to another one based on the values provided by
the distance function.

Among the partitioning techniques for clustering are also the recently proposed
methods for biclustering (Chapter 7). Such methods are able to partition the data
simultaneously on two dimensions. While standard clustering techniques consider
only the samples and look for a suitable partition, biclustering partitions simulta-
neously the set of samples, and the set of attributes used for representing them, in

6 1 Introduction to Data Mining

biclusters. First, biclustering was introduced as clustering technique. Later, methods
have been developed for exploiting training sets for obtaining partitions in biclusters.
Therefore, biclustering methods can be used for both clustering and classification
purposes.

In this book, the following classification techniques will be described: the k-
nearest neighbor method, the artificial neural networks and the support vector ma-
chines. A brief description of such methods is presented in the following.

The k-nearest neighbor method is a classification method and is presented in
Chapter 4. In this approach, the k value has a meaning different from the one in
the k-means algorithm that we will explain soon. A training set containing known
samples is required. All the samples which are not contained in the training set are
referred to as unknown samples, because their classification is not known. The aim is
to classify such unknown samples by using information provided by the samples in
the training set. Intuitively, an unknown sample should have a classification close to
the one its neighbors in the training set have. Therefore, each unknown sample can
be classified accordingly to the classification of its neighbors. The k value defines
the number of nearest known samples considered during the classification.

Artificial neural networks can also be used for data classification (Chapter 5).
This approach tries to mimic the way the human brain works and they try to “learn’’
how to classify data using knowledge embedded in training sets. A neural network
is a set of virtual neurons connected by weighted links. Each neuron performs very
easy tasks, but the network can perform complex tasks when all its neurons work
together. Commonly, the neurons in networks are organized in layers, and these kinds
of networks are referred to as multilayer perceptrons. Such networks are composed
by layers of neurons: the input layer, one or more “hidden’’ layers and finally the
output layer. A signal fed to the network propagates through the network from the
input to the output layer. A training set is used for setting the network parameters so
that a predetermined output is obtained when a certain input signal is provided. The
hope is that the network is able to generalize from the samples in the training set and
to provide good classification accuracy.

Support vector machines are discussed in Chapter 6. This is a technique for data
classification. Its basic idea is inspired by the classification of samples into two
different classes by a linear classifier. The method though can be extended and used
for classifying data in more than two classes. This is achieved by using more than
one support vector machine organized in a tree-like structure, since each of them is
able to distinguish between two classes only. The case where data are not linearly
separable can also be considered. Kernel functions are used to transform the original
space in another one where classes are linearly separable.

1.2.2 Data representation

The representation of the data plays an important role in selecting the appropriate
data mining technique to use. In the example of the blood analysis, the data can be

1.2 Data mining techniques 7

represented as real numbers. Usually one variable does not suffice for representing
a sample, and hence vectors or matrices of variables need to be used. For instance,
an apple can be represented by a digital image portraying the fruit. A digital image
is a matrix of pixels with a certain color. In this case, the image of the apple is
represented as a matrix of real numbers. A sound can instead be represented as a
set of consecutive audio signals. In this case the data are represented as vectors of
real numbers. The length of the representing vector is important as longer vectors
represent the sound more accurately. Other representations can make use of graphs
or networks, as is the case of the financial application discussed in Section 1.3.3.

Some of the data mining techniques use distances between samples for partition-
ing or classifying data. Computing the distance between two samples means com-
puting the distance between two vectors or two matrices of variables representing
the samples. An efficient representation of the data impacts the definition of a good
distance function. Even in the cases where data mining techniques do not use the
distance function (such is the case of artificial neural networks), data representation
is important as it helps the technique to better perform the task.

In order to understand the importance of data representation, let us consider as
an example the different ways a DNA (deoxyribonucleic acid) sequence can be
represented. The DNA contains the genetic instructions used in the development and
the functioning of all living organisms. It consists of two strands that wrap around
each other. Chemical bonds hold together the two strands. Each strand contains a
sequence of 4 bases and each base has a complementary base. This means that one
strand can be rebuilt by using the information located on the other one. Only one
sequence of bases is therefore sufficient for representing a DNA molecule. One of
the possible representations can be the sequence of initials of the name of the bases:
A for adenine, C for cytosine, G for guanine and T for thymine. On a computer, a
character is represented using the ASCII code, an 8-bit code. However, as pointed
out in [49], there are more efficient representations. Four names or initials can be
coded by 4 integer numbers, for instance 0 for adenine, 1 for cytosine, 2 for guanine
and 3 for thymine. These numbers can be represented on computers using a 2-bit
code: 00, 01, 10, 11. This code is certainly more efficient than the ASCII code, since
it needs one fourth of the variables for representing the same data. Figure 1.2 gives
a schematic comparison of the possible representations for the DNA molecules.

In living organisms a DNA molecule can be divided into genes. Genes contain the
information for coding proteins. Proteins have been studied for many years because
of their high importance in biology, and finding out the secrets they still hide is one of
the major challenges in modern biology. Because of its relevance, this topic is largely
treated in the specialized literature. There is a considerable amount of work dedicated
to the protein representation and its conformations. In January 2009, Google Scholar
provided more than 6000 papers on “protein folding’’ published during 2008, and
already about 300 papers published in 2009. Just to quote one of them, the work in
[115] presents the recent progress for uncovering the secrets of protein folding.

Even though protein molecules are not specifically studied in agricultural-related
fields, we decided to discuss here the different ways a protein conformation can be
modeled. This is a very interesting example, because it shows how a single object,

8 1 Introduction to Data Mining

Fig. 1.2 The codes that can be used for representing a DNA sequence.

the protein, can be modeled in different ways. The model to be used can then be
chosen on the basis of the experiments to be performed. In the following, only the
spatial conformations that proteins can assume are taken into consideration, leaving
out protein chemical and physical features.

Proteins are formed by other smaller molecules called amino acids. There are
only 20 different amino acids that are involved in the protein synthesis, and therefore
proteins can be built by using 20 different molecular bricks only. Each amino acid has
a common part and a part that characterizes each of them, which is called side chain.
The amino acids forming a protein are bonded chemically to each other through the
atoms of their common parts. Therefore, a protein can be seen as a chain of amino
acids: the sequence of atoms contained in the common parts form the so-called
backbone of the protein, where the side chains of all the amino acids are attached.

Among the atoms contained in the common part of each amino acid, more im-
portance is given to the carbon atom usually labeled with the symbol Cα . In some
models presented in the literature [38, 172, 175], this atom has been used alone for
representing an entire amino acid in a protein. Then, in this case, protein confor-
mations are represented through the spatial coordinates of n atoms, each of them
representing an amino acid. It is clear that these models give a very simplified rep-
resentation of a protein conformation. In fact, information about the side chains are
not included at all, and therefore the model cannot discriminate among the 20 amino
acids. However, this representation is able to trace the protein backbone.

More accurate representations of the protein backbones can be obtained if more
atoms are considered. If three particular atoms from the common part of each amino
acid are considered (two carbon atoms Cα and C and a nitrogen N), then this infor-
mation is sufficient for rebuilding the whole backbone of the protein. Therefore, a
protein backbone can be represented precisely by a sequence of 3n atomic coordi-
nates, where n is the number of amino acids.

1.2 Data mining techniques 9

This representation is however not much used, because there is another repre-
sentation of the protein backbones which is much more efficient. A torsion angle
can be computed among four consecutive atoms of the sequence of atoms N , Cα

and C representing a protein backbone. Then, a corresponding sequence of 3n − 3
torsion angles can be computed. This other sequence can be used for representing
the protein backbone as well, because the torsion angles can be computed from the
atomic coordinates, and vice versa. The representation which is based on the torsion
angles is more efficient, because the protein backbone is represented by using less
information. Indeed, a sequence of 3n atoms is a sequence of 9n coordinates, whereas
a sequence of 3n − 3 angles is just a sequence of 3n − 3 real numbers.

In the applications, the representation based on the sequence of torsion angles is
further simplified. The sequence of atoms on the backbone is a continuous repetition
of the atoms N , Cα and C. Each quadruplet defining a torsion angle contains two
atoms of the same kind that belong to two bonded amino acids. Then, the torsion
angles can be divided in 3 groups, depending on the kind of atom that appears twice.
Torsion angles of the same group are usually denoted by the same symbol: the most
used symbols are �, � and ω. Statistical analysis on the torsion angle ω proved that
its value is rather constant. For this reason, often all the torsion angles ω are not
considered as variables, so that only 2n−2 real numbers are needed for representing
a protein backbone by the sequence of torsion angles � and �. One of the most
successful methods for the prediction of protein conformations, ASTROFOLD, uses
this efficient representation [130, 131].

Depending on the problem that is under study, different representations of the
protein backbones can be convenient. In the problem studied in [138, 139, 140, 141,
152, 153], for instance, the distances between the atoms of each quadruplet that can be
defined on the protein backbone are known. This information is used for computing
the cosine of the torsion angle among the atoms of each of such quadruplets. Thus, if
the cosine of a torsion angle is known, the torsion angle can have only two possible
values. If all these values are preliminarily computed, then the sequence of torsion
angles � and � can be substituted by a sequence of binary variables that can have
two possible values only, 0 and 1. In this representation, 2n − 2 variables are still
needed for representing the protein backbone, but the variables are not real numbers
anymore, but rather binary variables.

The representation of entire protein conformations is more complex. The full-
atom representation consists in the spatial coordinates of all the atoms of the protein.
Even though some of the atoms can be omitted because their coordinates can be
computed from others, the full-atom representation still remains too much complex,
especially for large proteins. Another possibility is to represent the protein backbone
with the � and � torsion angles, and to represent each side chain through suitable
torsion angles χ that can be defined on each side chain. A protein molecule can
contain 20 different amino acids, and therefore 20 different sets of torsion angles χ

need to be defined, each of them tailored to the different shape of each side chain.
Figure 1.3 shows three possible representations of myoglobin, a very important

protein. On the left, the full-atom representation of the protein is shown: atoms
having a different color or gray scale refer to different kinds of atoms. In the middle,

10 1 Introduction to Data Mining

Fig. 1.3 Three representations for protein molecules. From left to right: the full-atom representation
of the whole protein, the representation of the atoms of the backbone only, and the representation
through the torsion angles � and �.

the same representation is presented, where all the atoms related to the side chains
are omitted. The figure gives an idea on how many atoms more are needed to be
considered when the information about the side chains is also included. Finally, on
the right, the path followed by the protein backbone is shown, which can be identified
through the sequence of torsion angles � and �. Note that we did not include the
representation of the protein backbone as a sequence of binary variables, because
it would just be a sequence of numbers 0 and 1. The conformation of the protein
in Figure 1.3 has been downloaded from the Protein Data Bank (PDB) [18, 186], a
public Web database of protein conformations.

Depending on the problem to be solved, a representation can be more convenient
than others. For instance, in [175], the protein backbones are represented by the
trace of the Cα carbon atoms, because the considered model is based on the relative
distances between such Cα atoms. The model is used for simulating protein confor-
mations. In [131], the sequence of torsion angles is instead used, because the aim
is to predict the conformation of proteins starting from their chemical composition.
The complexity of the problem needs a representation where the maximum amount
of information is stored by using the minimum number of variables. Finally, in [139],
the molecular distance geometry problem is to be solved. In this case, some of the
distances between the atoms of the protein backbone are known, and the coordinates
of such atoms must be computed. By using the information on the distances, the
representation can be simplified to a sequence of binary variables. In this way, the
complexity of the problem decreases, and it can then be solved efficiently. Protein
molecules have been studied also by using data mining techniques. Recent papers
on this topic are, for instance, [47, 107, 242].

1.3 General applications of data mining

In this section, some general application of data mining is presented, with the aim
of showing the applicability of data mining techniques in many research fields.
An overview of the applications in agriculture discussed in this book is given in
Section 1.5.

1.3 General applications of data mining 11

1.3.1 Data mining for studying brain dynamics

Data mining techniques are successfully applied in the field of medicine. Some recent
works include, for instance, the detection of cancers from proteomic profiles [149],
the prediction of breast cancer survivability [56], the control of infections in hospitals
[27] and the analysis of diseases such as bronchopulmonary dysplasia [199]. In this
section we will focus instead on another disease, epilepsy, and on a recently proposed
data mining technique for studying this disease [20, 31].

Epilepsy is a disorder of the central nervous system that affects about 1% of
the population of the world. The rapid development of synchronous neuronal fir-
ing in persons affected by this disease induces seizures, which can strongly affect
their quality of life. Seizure symptoms include the known uncontrollable shaking,
accompanied by loss of awareness, hallucinations and other sensory disturbances.
As a consequence, persons affected by epilepsy can have issues in social life and
career opportunities, low self-esteem, restricted driving privileges, etc. Epilepsy is
mainly treated with anti-epileptic drugs, which unfortunately do not work in about
30% of the patients diagnosed with this disease. In such cases, the seizure could be
cured by surgery, but not all the patients can be cured in this way. The main prob-
lem is that the procedure cannot be performed on brain regions that are essential for
the normal functioning of the patient. In order to check the eligibility for surgery,
electroencephalographic analysis is performed on the patient’s brain.

Since not all the patients can be treated by surgery and since surgery is a very
invasive procedure, especially if we know that the procedure is performed on the
brain, there have been other attempts to control epileptic seizures. These attempts
have to do with the electronic stimulations of the brain. One of these is the chronic
vagus nerve stimulation. A device can be inplanted subcutaneously in the left side
of the chest for electric stimulations of the cervical vagus nerve. Such device is
programmed to deliver electrical stimulation with a certain intensity, duration, pulse
width, and frequency. This method for controlling epileptic seizures has been suc-
cessfully applied, and patients had the possibility to benefit from it, after that the
device has been tuned. Each patient has to be stimulated in his own way, and there-
fore the stimulation parameters need to be tuned in newly implanted patients. This
process is very important, because the device must be personalized for the patient’s
needs.

Unfortunately, the only way for tuning the device is currently a trial-and-error
procedure. Once the device has been implanted, it is tuned on initial parameters,
and patient reports help in modifying such parameters until the ones that better fit
the patient are found. The problem is that the patient, during this process, may still
continue experiencing seizures because the parameter values are not good for him,
or he may not tolerate some other parameter values. Then, locating the optimal pa-
rameters more rapidly would save money due to fewer doctor visits, and would help
the patient at the same time. Data from electroencephalography have been collected
from epileptic patients and they have been analyzed by data mining techniques, in
order to predict the efficacy of the numerous combinations of stimulation parameters.
In these studies, support vector machines (Chapter 6) have been used in the experi-

12 1 Introduction to Data Mining

ments presented in [20], whereas a biclustering approach (Chapter 7) has been used
in [31]. The results of the analysis suggest that patterns can be extracted from elec-
troencephalographic measures that can be used as markers of the optimal stimulation
parameters.

1.3.2 Data mining in telecommunications

The telecommunication field has some interesting applications of data mining. In
fact, as pointed out in [197], the data generated in the telecommunications field
has reached unmanageable limits of information, and data mining techniques have
showed their advantages in helping to manage this information and transforming
it into useful knowledge. In the quoted paper, a real-time data mining method is
proposed for analyzing telecommunications data.

An interesting application in this field consists of the detection of the users that
potentially will perform fraudulent activities against telecommunication companies.
Million of dollars are lost every year by telecommunication companies because of
frauds. Therefore, the detection of users that can have a fraudulent behavior is useful
for the companies in order to monitor and avoid such activities. The hope is to identify
the fraudulent users as soon as possible, starting from the time they subscribe.

The studies that are the focus of this section are related to a telecommunication
company and details can be found in [69]. The aim of the studies is to develop a
system for identifying fraudulent users at the time of applications. In this example, a
neural network approach is used (see Chapter 5). The data used for training the neural
network are collected from different databases managed by the company. The data
consist of information regarding each single user and the classification of the user’s
behavior as fraudulent or not. For each user, information such as name, address, data
of birth, ID number, etc., are collected. The classification of the user’s behavior is
performed by an expert by checking his payment history. Once the neural network
is trained, it is supposed to do this job on new users, whose payment history is not
available yet.

The personal information that each user provides when he subscribes can contain
clues about his future behavior. If a user has the same name and ID number of another
user in the database which already had a fraudulent behavior, then there is a high
probability that this behavior will be repeated again. In the specific case discussed
in [69], a public database is available where insolvency situations mostly related to
banks and stores are registered. Therefore, the user’s behavior can be checked also
in other situations beyond the ones related to the telecommunication company itself.
Users having the same address can also behave in similar ways. Moreover, when
the application for a new phone line is filled, the new user is asked to provide an
existing phone number as reference. The new and the existing phone lines have high
probabilities to be classified in the same way. By using this information, a particular
kind of fraudulent behavior can be detected. Before that the telecommunication
company finds out that a particular line is related to a fraud and it blocks such line,
the fraudster can apply for a new phone line under another name but providing the

1.3 General applications of data mining 13

old line during the application. This could be repeated in a sort of chain, if the line
provided in the application is not verified.

The user’s behaviors can be classified as fraudulent or not. This is a simplified
classification in 2 classes only. In general, each subscriber can be classified in more
than 2 classes when he applies for a new phone line. In the first class, the most
fraudulent users can be cataloged: they do not pay bills or their debt/payment ratio
is very high and they have suspicious activities related to long distance calls. The
otherwise fraudulent users are instead those that have a sudden change in their calling
behavior which generates an abnormal increase of the bill amount. Users having two
or more unpaid bills and having a debt less than 10 times their monthly bill are
classified as insolvent. Finally, users who paid all the bills or with one unpaid bill
only can be classified as normal.

The neural network used in these studies is a multilayer perceptron in which
the neurons are organized on three layers (see Section 5.1). The 22 neurons on
the input layer correspond to the 22 pieces of information collected from the user
during the application. The 2 neurons on the output layer allow the network to
distinguish only between two classes: fraudsters and non-fraudsters. The internal
layer, the hidden layer, contains 10 neurons. The data obtained from the databases of
the telecommunication company and successively classified by an expert are divided
in a training set, a validation set and a testing set. In this way, it is possible to control
if the network is correctly learning how to classify the data during the training phase
using the validation set. After this process, the network can then be tested on known
data, the ones in the testing set. For more details about validation techniques, refer
to Chapter 8.

1.3.3 Mining market data

Data mining applied to finance is also referred to as financial data mining. Some of the
most recent papers on this topic are [240], in which a new adaptive neural network is
proposed for studying financial problems, and [247], in which stock market tendency
is studied by using a support vector machine approach. In fact, in finance, one of the
most important problems is to study the behavior of the market. The large number
of stock markets provides a considerable amount of data every day in the United
States only. These data can be visualized and analyzed by experts. However, the
quantity of data allows the visualization of small parts of all the available data per
time and the expert’s work can be difficult. Automated techniques for extracting
useful information from these data are therefore needed. Data mining techniques can
help solve the problem, as in the application presented in [25].

Recently, stock markets are represented as networks (or graphs). As discussed
in Section 1.2.2, the success of a data mining method strongly depends on the data
representation used. In this approach, a network connecting different nodes repre-
senting different stocks seems to be the optimal choice. The network representation
of a set of data is currently widely used in finance, and also in other applied fields. In
this example, each node of the network represents a stock and two nodes are linked

14 1 Introduction to Data Mining

in the network if their marketing price is similar over a certain period of time. Such
network can be studied with the purpose of revealing the trends that can take place
in the stock market.

Given a certain set of marketing data, a network can be associated to it. In the
network, stocks having similar behaviors are connected by links. Grouping together
stocks with similar market properties is useful for studying the market trends. Clus-
tering techniques can be used for this purpose. However, in this case, the problem is
different from the usual. Section 1.2.1 introduces clustering techniques as techniques
for grouping data in different clusters. In this case, there is only one complex vari-
able, the network, and its nodes have to be partitioned. Similar nodes can be grouped
in the same cluster, which defines a sort of sub-network of the original one. In such
sub-networks, nodes are connected to each other, because they are similar. These
kinds of networks are called cliques in graph theory. Thus, this clustering problem
can be seen as the problem of finding a clique partition of the original network. Such
problem is considered challenging because the number of clusters and the similarity
criterion are usually not known a priori.

Recently, in [10], the food market in the United States has been analyzed by using
this approach. The food market in United States is one of the largest in the world,
since it is a major exporter and significant consumer of food products. For instance,
the agricultural exports in the US were about $68 billion for the year 2006. The
food sector in the US includes retailers, wholesalers and all food services that link
the farmers to the consumers. In general, the food market industry in the US has a
significant global impact and it provides a representative sample for food economic
studies.

In [10], the food market of the US has been represented by a network and its
trends have been analyzed by looking for a clique partition of such network. An
optimization problem has been formulated for this purpose, and it has been solved
by using the software CPLEX9 [114]. The obtained cliques showed the markets
with a high correlation. For instance, the clustering showed that beverages, grocery
stores, and packaged foods markets have significantly high market capitalization.
This can also help in predicting the behaviors of different stock markets. Indeed, if
some market in a clique is known, then the trend of other markets in the same clique
has to be similar to the known one.

1.4 Data mining and optimization

Optimization is strongly present in our everyday life. For instance, every morning
we follow the shortest path which leads to our office. If we were farmers, we would
want to minimize the expenses while trying to maximize the profits. We are not the
only ones which try to optimize things, since there are many optimization processes
in nature. Molecules, such as proteins, assume their equilibrium conformations when
their energy is minimum. As we try in the morning to minimize our travel time, rays
of light do the same by following the shortest paths during their travel. In all these

1.4 Data mining and optimization 15

cases, there is something, called objective, which has to be minimized or maximized,
in other words optimized. Objectives can be the length of paths which lead from home
to the office, the total expenses in a farm, the total profit in a farm, the energy in a
molecule, the length of paths followed by a ray of light, etc. The objectives depend
on certain characteristics of the system which are called variables. In these cases,
variables can be the set of roads on which we drive, the set of things we need to
buy for the farm, the set of farm products we expect to sell, the positions of the
atoms in a molecule, the set of light paths. Sometimes these variables are not free to
have any possible value. For instance, if there are roads closed in our home city, we
need to avoid driving on these roads, even though they may decrease the travel time.
Therefore, the set of roads we can drive on is restricted, in other words the variables
are constrained. The process of identifying objective, variables, and constraints for
a given problem is known as modeling of the optimization problem.

Data mining techniques seek the best classification or clustering partition of a set
of data.Among all the possible classifications or partitions, the best one, the optimum
one, is searched. Indeed, many of the data mining techniques we will discuss in this
book lead to the formulation of an optimization problem. For instance, k-means
algorithms (see Chapter 3) try to minimize an error function which depends on the
possible partitions of the data in clusters. The error function is the objective in this
case, and the partitions represent its independent variables, which are not constrained.
A neural network (see Chapter 5) and a support vector machine (see Chapter 6) lead
also to an optimization problem. In these two cases, the optimization problem has
to be solved in order to teach the neural network or the support vector machine how
to classify sets of data, by defining certain parameters. The objective is the error
which occurs by classifying data with a given set of parameters, corresponding to
the variables of the objective. Such variables are constrained in the support vector
machine approach.

From a mathematical point of view, optimization is the minimization or maxi-
mization of a function (the objective) subject to constraints on its variables. x is
usually used for indicating the vector of independent variables, f (x) is the objective
function, and functions ck represent the constraints. Since minimizing f (x) is equiv-
alent to maximizing −f (x), the general optimization problem may be formulated as
follows:

min
x

f (x)

subject to
ci(x) = 0 ∀i

cj (x) ≤ 0 ∀j.

Functions ci and cj represent the equality and inequality constraints, respectively.
They may not be present in some formulations, and in that case the optimization
problem is unconstrained. There is not only one way for solving these problems, but
rather a collection of algorithms, which can be chosen on the basis of the particular
needs. Properties of the objective function, or of the constraints, can determine the
choice of one algorithm or another. A large variety of optimization methods and
algorithms for optimization can be found in [76, 184].

16 1 Introduction to Data Mining

Methods for optimization are mainly divided into deterministic or exact meth-
ods and meta-heuristic methods. Deterministic methods are based on mathematical
theories. If some hypotheses are met, they guarantee that the solution can be found.
Meta-heuristics instead are based on probabilistic mechanisms and there are only
probabilities that the solutions can be found. Deterministic methods can usually be
applied to a certain subset of optimization problems only, whereas meta-heuristics
are more flexible. The implementation of meta-heuristic methods is also easier in
general, and the basic ideas behind these methods are usually simple. For this rea-
son, meta-heuristic methods are widely applied in many research fields. Due to their
simplicity and flexibility, meta-heuristic methods are the choice of many researchers
who are not experts in computer science and numerical analysis. Even though one
cannot be sure if the solution found by applying a meta-heuristic method is correct
or not, often such solutions are good approximations of the real one. In general, eas-
ier methods might provide a solution with a lower accuracy. However, researchers
commonly use such methods. They first seek to find out the method which is the
best fit for their problem. This decision may result in trading off the quality of the
solution with speed or ease of implementation. For high-quality solutions, modeling
issues may usually become more complex, requiring additional programming skills
and powerful computational environments [174].

Once a global optimization problem has been formulated, the usual approach is
to attempt to solve it by using one of the many methods for optimization. The choice
of the method that fits the structure of the problem is very important. An analysis
of the complexity of the model is required and the expected quality of the solution
needs to be determined. The complexity of the problem can be derived from the data
structures used, and from the mathematical expression of the objective function and
the constraints. If the objective function is linear, or convex quadratic, and the prob-
lem has box, linear or convex quadratic constraints, then the optimization problem
can be solved efficiently by particular methods, which are tailored to the objective
function and constraints [33, 76, 100]. For instance, the optimization problem arising
when training support vector machines has a convex quadratic function and linear
constraints (see Chapter 6 for details). Methods for solving these particular kinds of
problems include the active set methods and the interior point methods [33, 100].
However, there are methods tailored to the support vector machines for solving such
quadratic optimization problems, and hence the general methods are often not used.
If the objective function and the constraints are instead nonlinear without any re-
striction, then more general approaches must be used. For differentiable functions,
whose gradient vector can be computed, deterministic methods can be used. As al-
ready pointed out, these methods are able to guarantee that the solution can be found
if certain hypotheses are met. Functions that are twice differentiable with a com-
putable Hessian matrix can be locally approximated by a quadratic function. Typical
examples of methods which exploit the quadratic approximation of a differential
function are the trust region algorithms [40]. Other deterministic approaches include
for instance the branch and bound methods [1, 2, 5].

Meta-heuristic methods are often used in applied fields such as agriculture because
they are, in general, easier to implement and more flexible. The ideas behind the most
used meta-heuristics for global optimization follow. Most of them took inspiration

1.4 Data mining and optimization 17

from animal behavior or natural phenomena and try to reproduce such processes on
computers. In the simulated annealing algorithm, for instance, the temperature of a
given system is slowly decreased in order to obtain a crystalline structure, which
corresponds to the optimal solution of an optimization problem [128]. More de-
tails about this optimization technique are given is Section 1.4.1. Genetic algorithms
[88] mimic the evolution of a population of chromosomes that can procreate child
chromosomes, which can undergo genetic mutations. Harmony search [82] is in-
spired by jazz music improvisation, and it seeks the optimal value of an optimization
problem the same way musicians look for perfect harmonies. Many meta-heuristic
methods took inspiration from animal behavior. Swarm intelligence can be defined
as the collective intelligence that emerges from a group of simple entities, such as
ant colonies, flocks of birds, termites, swarm of bees, and schools of fish [148]. Ant
colony optimization [64] algorithms simulate the behavior of a colony of ants finding
and conserving food supplies, whereas particle swarm optimization [126] simulates
the motion of a large number of insects or other organisms. Finally, the recently
proposed monkey search [173] is inspired by the behavior of a monkey climbing
trees in its search for food supplies.

It is worth noting that hybrid methods which are in part deterministic and in part
meta-heuristic have been developed with the aim of combining their qualities [190].
Moreover, optimization problems that would require the use of complex methods are
sometimes reformulated, so that an easier and more effective method for optimization
can be used. To reformulate an optimization problem means to transform the original
problem into another problem that is equivalent or similar to the original one, and
that is easier to manage. A lot of research is devoted to suitable reformulations of
difficult global optimization problems [151, 213].

In this section, we referred only to optimization problems with a single objective
function. However, there are several application in which there is not only one func-
tion to be optimized, but rather a small set of functions. These problems are referred
to as multi-objective optimization problems. Let us consider again the problem of
a farmer who tries to maximize his profits while the expenses must be as small as
possible. In this example, there are in fact two objectives: the profits (to be maxi-
mized) and the expenses (to be minimized). In these situations, the easiest strategy is
to combine the two objectives in order to obtain a unique objective function, so that
the multi-objective optimization problem is reformulated as an optimization problem
having only one objective function. As for example, if f (x) represents the profit,
and g(x) are the expenses, then a maximization problem with objective function
α1f (x) − α2g(x) would be a possible reformulation of the original problem, where
α1 and α2 are two real and positive constants. The reader is referred to [162, 178, 194]
for recent surveys on methods for solving multi-objective optimization problems.

1.4.1 The simulated annealing algorithm

In this section, we give some more details about one of the easiest methods for
optimization, the simulated annealing (SA) [128]. It is a meta-heuristic method,

18 1 Introduction to Data Mining

which is inspired by a physical process. Since it is very easy to implement, it can be
used to perform the first experiments on a given optimization problem. Because of
its simplicity, the solutions provided by SA might lack a high accuracy, especially on
more complex problems. Depending on the problem at hand, the solutions found by
SA can be either considered as accurate enough, or just an initial approximation of
the solutions that can be found later by more complex and more accurate methods.

SA is a meta-heuristic method for optimization, and therefore it is based on a
probabilistic mechanism. It is based on an analogy with the annealing physical pro-
cess, in which the temperature of a given system is decreased slowly, in order to
obtain a crystalline structure. As an example, let us consider a simple glass of water.
If the system “glass of water’’ is kept to the normal temperature of 20◦C, then the
molecules of water in the glass are free to move. That is why the water is a liquid
at this temperature. However, if we put the glass of water in the cooler, then the
temperature of the glass of water decreases slowly to 0◦C. The more the temperature
is lowered, the less are the molecules free to move. When the temperature reaches
and passes 0◦C, the glass contains an ice piece having the same shape of the glass.
The molecules of water in the glass cannot move so freely anymore, because they
are now organized in a crystalline structure.

This physical process is simulated for solving a given optimization problem. The
variables of the objective function play the role of the molecules of water. They
are free to move when the temperature is high. Their mobility is simulated by ap-
plying suitable perturbations to the variables. When the temperature decreases, the
variables are less free to change their values. This is monitored through the corre-
sponding objective function value: the lower is the temperature, the less variability
is allowed on the objective function values. The hope is that, when the temperature
approaches to zero, the variables of the problem contain values which represent a
good approximation of the solution.

The basic SA algorithm can be described by two nested loops. At the start, random
and feasible values are assigned to the variables, defining the initial approximation
to the solution X(0). The inner loop generates at each iteration a new candidate
approximation to the solution, by applying random perturbations to the previous
one. The new approximation is accepted or rejected, by using a random mechanism
based on an acceptance function, whose value depends on the temperature parameter.
The lower is the temperature, the smaller is the number of accepted approximations.
The outer loop controls the decrease of the temperature parameter, i.e., defines the
so-called cooling schedule.

It follows that SA is built up from three basic components: next candidate gen-
eration, acceptance strategy and cooling schedule. To generate the next candidate
approximation to the solution, totally random or customized perturbations can be
applied. The acceptance strategy usually used is based on the Metropolis acceptance
function [164]. If X(k) is the approximation of the solution at a step k of the SA and
X̂ is a new candidate approximation, then X̂ is accepted if

A(X(k), X̂, t(k)) = min

{
1, e

− f (X̂)−f (X(k))

t(k)

}
> p,

1.5 Data mining and agriculture 19

t = t0

maxout = maximum allowed number of outer iterations

nsteps = number of steps at constant temperature

X = random starting solution

nout = 0

while (f (X) not stable and nout ≤ maxout)

nout = nout + 1

for k = 1, nsteps

X(k) = random perturbation on X

p = uniform random number in (0,1)

if (A(X,X(k),t)) > p) then

X = X(k)

end if
end for
t = γ t, γ < 1

end while

Fig. 1.4 The simulated annealing algorithm.

where f is the objective function to be minimized, t (k) is the temperature value at
step k and p is a random number from the uniform distribution in (0, 1). The can-
didate approximation can be accepted even if it does not increase the value of f ,
depending on t (k) and p. At high temperatures, many candidate approximations can
be accepted, but, as the temperature decreases, the number of candidate approxi-
mations decreases, in analogy with the physical process of annealing. The cooling
strategy has an important role in SA. The temperature must be decreased very slowly
to avoid trapping into local optima that are far from the global one. This reflects the
behavior of the physical annealing, in which a fast temperature decrease leads to a
polycrystalline or amorphous state. Figure 1.4 gives a sketch of the SA algorithm.

1.5 Data mining and agriculture

Data mining is widely applied to agricultural problems. For instance, the prediction of
wine fermentation problems can be performed by using a k-means approach (Section
3.5.1). Knowing in advance that the wine fermentation process could get stuck or
be slow can help the enologist to correct it and ensure a good fermentation process.
Weather forecasts can be improved using a k-nearest neighbor approach (Section
4.4.1), where it is assumed that the climate during a certain year is similar to the one
recorded in the past. The same data mining technique can also be used for estimating
soil water parameters (Section 4.4.2).

Apples and other fruits are widely analyzed in agriculture before marketing. Ap-
ples running on conveyors can be checked by humans and the bad apples (the ones
presenting defects) can be removed. The same task can be efficiently performed by
a recognition system based on the k-means method (Section 3.5.2). In this approach,
digital pictures of the fruit are taken. However, some defect can be internal and not

20 1 Introduction to Data Mining

visible at the exterior. The approach discussed in Section 5.4.2 uses X-ray images
for checking the apple watercore. It is based on an artificial neural network which
learns from a training set how to classify the X-ray images. Neural networks are also
used for classifying sounds from animals such as pigs for checking the presence of
diseases (Section 5.4.1). Support vector machines can be used for recognizing ani-
mal sounds as well, such as sounds from birds (Section 6.5.1). Besides the scientific
interest in the classification of such sounds, there are practical applications related to
these kinds of studies. For instance, collisions between aircraft and birds can cause
damage to the vehicle and the bird’s death. Then, the recognition of a bird by its
sounds is helpful.

Other applications of data mining techniques include the detection of meat and
bone meal in feedstuffs destined to farm animals (Section 6.5.2), the control of
chicken breast quality (Section 2.3.1), and the analysis of the effects of energy use in
agriculture (Section 2.3.2). An interesting recent review of data mining techniques
and applications to agriculture can be found in [48].

1.6 General structure of the book

In this book, we will discuss several data mining techniques and we will provide
many applications in the agricultural field. Chapter 2 presents simple and common
statistical methods which can be used as a data mining technique itself or combined
with more complex techniques. The statistical based methods presented are principal
component analysis, interpolation and regression. Chapters 3 to 7 present widely used
data mining techniques. Chapter 3 is devoted to the k-means methods and to many
of its variants. Chapter 4 focuses on the k-nearest neighbor approach. In this chapter,
many strategies for reducing the training sets used in the k-nearest neighbor approach
are presented. Chapter 5 is dedicated to artificial neural networks, and hence to the
training, pruning and testing process of a neural network. Chapter 6 is on support
vector machines. This technique is introduced as a simple linear classifier able to
discriminate between two classes only. Then it is extended to the general case when
the classes are more than two and they are not linearly separable. Finally, Chapter
7 is focused on biclustering techniques. Biclustering has been recently proposed
and it is very efficient in some kind of applications. There are no applications in
agriculture yet which use this method. However, a chapter in this book is devoted to
it for completeness, and an application in the field of biology is presented.

Chapters have a common structure. The first sections are dedicated to the data
mining techniques. Basic ideas are given, as well as variants and improvements of the
technique proposed over time. Several applications in agriculture of the data mining
technique are then provided, and a couple of applications per chapter are presented
in detail. Our aim is to give the reader the instruments for applying the data mining
techniques for his purposes. For this reason, experiments in MATLAB r© and/or
applications of freeware software for data mining are discussed in each chapter. The
simplicity behind the k-means and the k-nearest neighbor allows one to implement

1.6 General structure of the book 21

them by using little code. Codes in MATLAB are provided for both techniques. They
are very simple and may not work in some kinds of situations. Our aim is to keep the
simplicity, however the reader could even modify such codes for solving particular
problems. Artificial neural network and support vector machines are much more
complex. Therefore, various software implementing such techniques are presented
and examples on how to use them are discussed. At the end of each chapter, a
section devoted to exercises is given. The solutions of such exercises can be found
in Chapter 10.

All the data mining techniques can be validated by using validation techniques. A
review of the most common validation techniques is provided in Chapter 8. Then, for
some of the data mining techniques discussed in the previous chapters, examples of
applications of the validation techniques are provided. The last chapter of the book,
Chapter 9, focuses on the implementation of data mining techniques in a parallel
environment. The parallel version of some of the data mining techniques discussed
in the book are given.

This book provides two appendices. Appendix A gives some details about the
MATLAB environment. The reader who is interested in MATLAB can also find a lot
of textbooks in literature. Therefore, only the basic concepts needed for understand-
ing the several examples in MATLAB given in this book are discussed. Appendix B
presents an entire application in C programming language. The implemented algo-
rithm is the k-means algorithm. The aim of this appendix is to provide to the reader
the instruments for programming personal applications when software performing
the desired tasks does not exist or is not available. The k-means algorithm has been
chosen because it is one of the simplest algorithms in data mining.

Chapter 2
Statistical Based Approaches

2.1 Principal component analysis

Principal component analysis (PCA) is a method used to reduce the dimension of a
given set of data while retaining the variability present in the set. Each set of data
contains information represented through vectors of single variables (that usually
have real, integer or binary values). For instance, a geometric point in the three-
dimensional space can be represented through a vector having three variables, each
one associated to one of the three coordinate axes x, y and z. In general, a sample can
be represented by a vector formed by a certain number of variables. Such number
of variables defines the length of the vectors contained in the set, and hence the
dimension of the set. Moreover, for each variable, a certain range of variability can
be defined, which determines the interval of values that the single variable can take.
For instance, if the set of data contains three-dimensional points delimited into a
cube having side 1 and centered in (0, 0, 0), then the three variables representing

the Cartesian coordinates are bounded to have values in
[
− 1

2 , 1
2

]
. This interval

defines the range of variability of the three variables. The aim of PCA is to find
hidden patterns amongst the data and transform the original data in such a way that
emphasizes their similarities and differences. Once the patterns are found, the data
can be represented as components ordered by their relevance and it is possible then to
discard components of low level of relevance without loss of important information.

PCA is able to reduce the dimension of a set of data if the original variables used
for representing the data are correlated. In order to clarify this concept, let us consider
again the example of the three variables representing the three coordinates of points
in a cube. If, for instance, all the points in the set lie on a suitable plane, then the three
variables are correlated. PCA applied to this particular problem transforms the three
variables in a way that one of them has a null variability. In the new transformed
space, the points can therefore be represented by two variables only, and hence in
a space having a dimension less with respect to the original one. The information
regarding the third dimension (the discarded dimension) is irrelevant, because the

© Springer Science + Business Media, LLC 2009

A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34, 23
DOI: 10.1007/978-0-387-88615-2_2,

24 2 Statistical Based Approaches

points actually lie on a two-dimensional space. This is a very simplified situation.
The following examples introduce the PCA method in more detail.

Let us suppose that the considered set of data contains the points having as coor-
dinates

(−2, −1), (−1, 0), (0, 1), (1, 2), (2, 3)

in a two-dimensional space. The values of x vary in the interval [−2, 2], and the
values of y vary in the interval [−1, 3]. These two intervals show the variability
of the variables x and y. As it is easy to note, these two variables are correlated.
Indeed, the x coordinates increase in value when the y coordinates increase, and
vice versa: a straight line passes through them. Hence, one of the two coordinates
can be obtained if the other one is known. The idea behind PCA is to transform
these variables in a way that they become uncorrelated. Doing so, the dimension
of the set of data can be reduced if only the variables having the larger variability
are considered and all the others are discarded. The variables with larger variability
are here called principal components. They are usually sorted by their variability, so
that only the first principal components can be used for representing the data. Note
that there are cases where a low order principal component exhibiting low variance
within the ensemble does not necessarily imply that it is unimportant in regression
models [13].

In this example, the following transformation can be applied (see Figure 2.1). The
straight line passing through all the points of the set and the x axis of the Cartesian
system form a certain angle. All the points can be rotated so that they change their
configuration from the one in Figure 2.1(a) to the one in Figure 2.1(b). As the figure
shows, the transformation brings all the points on the x axis. Therefore, they all have
zero as y coordinate. After the transformation, the points are represented by two new
variables x̂ and ŷ, where x̂ has a variability similar to the one x has, and ŷ has a
null variability. The variable ŷ can then be discarded, so that the dimension of the
set of points decreases to 1. The original points in the two-dimensional space can be
actually represented in a one-dimensional space without losing any information.After
the transformation is applied to the original set of points, the points are represented
with vectors having a shorter length. In this example, they were represented in a
two-dimensional space before, and they are represented in a one-dimensional space
now. The values of the variables used for the representation are completely different.
However, the distances between these points is preserved. This is very important.
Indeed, distances are usually used for evaluating the similarities and the differences
among the data. Note that Figure 2.1(a) and 2.1(b) have two different scales, and
therefore the distances between the points in Figure 2.1(b) look shorter but they are
actually the same.

Let us suppose now that the considered set of data contains points that are not
perfectly aligned. Let us suppose that the coordinates of the points are

(−2.1,−1), (−1, 0), (0, 1), (1, 2), (2, 3.2).

Figure 2.2(a) shows that there is no straight line passing through these points as in
the previous example. However, a similar kind of transformation of the data can be

2.1 Principal component analysis 25

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

(a)

−3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 2.1 A possible transformation on aligned points: (a) the points are in their original locations;
(b) the points are rotated so that the variability of their y component is zero.

performed. The linear regression function defined by these points and the x axis form
a certain angle, and all the points can be rotated by this angle (see Section 2.2 for
details on regression functions). The result is the set of points shown in Figure 2.2(b).
As the points are not aligned, not all of them lie on the x axis as in the previous case.
However, the new variables x̂ and ŷ obtained after the transformation have interesting
properties with respect to the original ones x and y. The variable x has values ranging
in the interval [−2.1, 2], and the new variable x̂ has a similar variability, as Figure
2.2 shows. The variable y can have instead values in the interval [−1, 3.2], whereas

26 2 Statistical Based Approaches

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

−3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(b)

Fig. 2.2 A possible transformation on quasi-aligned points: (a) the points are in their original
locations; (b) the points after the transformation.

the corresponding variable ŷ has almost a null variability. In this second example,
ŷ has a certain variability, but it is very small. It can then be discarded in order to
decrease the dimension of the set of data. Since its variability is small, the loss of
information is small as well. For instance, the distances of the points in the new space
are different, but the introduced error is small.

In general, PCA can be applied for reducing the dimension of a set of data, where
samples are represented by using m-dimensional vectors. Reducing the dimension
of the set means to find a representation of the same samples in a lower-dimension

2.1 Principal component analysis 27

space, where vectors have a number of components smaller than m. In other words,
the PCA method applied to these components finds a set of principal components
that are able to represent the same sample by using shorter vectors.

The following introduces and motivates the PCA method [120]. Its basic idea is
quite simple, however it requires a little knowledge on eigenvalues and eigenvectors
of a matrix (see Glossary for the definitions) for understanding it. This topic can be
difficult for the readers who do not have a mathematical background. The reader can
therefore continue reading at the end of this section, where a practical example is
provided. What is needed to know is that PCA computes the kth principal component
as a linear combination of the original variables, where the coefficients used in the
linear combination come from the elements of the kth eigenvector of a covariance
matrix. The eigenvectors of the covariance matrix are sorted in ascending order by the
value of the corresponding eigenvalues. Even though the names “covariance matrix,’’
“eigenvalue’’ and “eigenvector’’ may seem related to very difficult mathematical
concepts, they can be easily computed with software for mathematical computations,
such as MATLAB r©. The reader can refer to the example at the end of this section
and to the exercises at the end of this chapter for learning how to apply PCA to simple
examples by using MATLAB.

In order to find the first principal components, the variables xi in the generic
sample x = {x1, x2, . . . , xm} of the set of data need to be transformed so that they
become uncorrelated. Let us consider a linear combination of all the variables:

αT
1 x = α11x1 + α12x2 + · · · + α1mxm =

m∑
i=1

α1ixi , (2.1)

where α1 is the vector containing all the linear coefficients and αT
1 is its transposed

vector. The variability of a variable can be monitored using the so-called covariance
matrix �, whose element (i, j) represents the covariance between the ith and j th

elements of x when i �= j , and the variance of the ith element when i = j . The real
covariance matrix is not known in applications, and an approximation of this matrix
can be computed using the samples x of the set of data. It can be proved that the
variability (or variance) of αT

1 x can be expressed as

αT
1 �α1. (2.2)

In order to find the linear transformation of the variables xi maximizing its variance
or variability, the quantity (2.2) needs to be maximized. Since there are infinite
coefficient vectors α1 that are solutions to this problem and one unique solution is
searched, the vector α1 is normalized. The quantity (2.2) can be therefore maximized
subject to the constraint αT

1 α = 1. This is a simple optimization problem. Indeed, it
does not require a computational method (see Section 1.4) to be solved, but it can be
solved analytically. The constraint on the coefficient vector α1 can be considered as
a penalty term in the objective function:

αT
1 �α1 + λ(αT

1 α1),

28 2 Statistical Based Approaches

where λ determines the trade-off between constraint satisfaction and maximization
of the variance. The derivative with respect to α1 of this function helps locating
the function stationary points. The stationary points of the function include their
minimum and maximum points. Such stationary points are the ones satisfying the
equation:

�α1 − λα1 = 0.

This equation can be equivalently written as

(� − λIm) α1 = 0, (2.3)

where Im is the square identity matrix of dimension m.The equation (2.3) corresponds
to the definition of eigenvalue and eigenvector of a matrix. In this case, the matrix is
represented by �, the eigenvalue is represented by λ and the eigenvector by α1. For
this reason, the problem of finding the first principal component becomes the problem
of finding the eigenvalues and eigenvectors of the matrix �. All the eigenvectors
related to � are stationary points of the considered objective function. However, only
the vector α1 maximizing the αT

1 x variance is searched. The matrix � has in fact
m eigenvectors and m eigenvalues, and each corresponding couple (λ, α1) satisfies
equation (2.3). Then, the variance

αT
1 (�α1) = αT

1 (λα1) = λ(αT
1 α1) = λ

equals the eigenvalue related to α1. The first principal component is therefore defined
as the variable αT

1 x, where α1 is the eigenvector related to the larger eigenvalue λ of
� and x is the vector of the original variables. In general, the kth principal component
of x is αT

k x, where λk is the kth largest eigenvalue of � and αk is the corresponding
eigenvector. The demonstration for k > 1 is provided in [120].

Let us consider the set of points

(−2.1, −1), (−1, 0), (0, 1), (1, 2), (2, 3.2)

again and let us apply the PCA method. According to the definition, the covariance
matrix related to these points is

� =
(

2.6020 2.6510
2.6510 2.7080

)
.

The eigenvectors related to � are

α1 = (−0.7141, 0.7000), α2 = (0.7000, 0.7141)

and the corresponding eigenvalues are

λ1 = 0.0035, λ2 = 5.3065.

One of the eigenvalues is very small, and this means that the corresponding trans-
formed variable has a small variability. Indeed, if the transformed variables αT

1 x and

2.1 Principal component analysis 29

−3 −2 −1 0 1 2 3 4

−2

−1

0

1

2

3

Fig. 2.3 A transformation on a set of points obtained by applying PCA. The circles indicate the
original set of points.

αT
2 x are computed, then it is possible to see that the first one (corresponding to a

small eigenvalue) has variability equal to 	x = 0.01, whereas the other one has
variability 	y = 5.87. Figure 2.3 shows the set of points before and after the trans-
formation. The computation of the covariance matrix of a given set of data and the
computation of the eigenvalues and eigenvectors of a given matrix can be performed
by using software such as MATLAB (see Section 2.4).

As a conclusion, we can say that initially we had points on a two-dimensional
Cartesian system. Each point had two coordinates x and y in the system, but no in-
formation was provided regarding how each point was related to each other. After the
transformation, we have points expressed in terms of eigenvectors. As eigenvectors
are orthogonal, they define the Cartesian system in which they are now expressed.
Therefore, we are still considering the same exact points, even though they are rep-
resented in a different system. This new system helps in finding out how the points
are related.

Finally, it is worth noting that PCA has an interesting property that allows one to
have an estimation of the information loss when discarding eigenvectors of low value.
To better explain this property, let us consider generic data points X = {x1, x2,xN }
where each xi ∈ �n. After applying PCA, a subspace Y = span{u1, u2, ..., um} is
obtained, where each ui ∈ �m with m ≤ n. According to [211]:

N∑
j=1

d2(xj , Y) =
n∑

i=m+1

λi

where d represents the distance between the generic point xj and Y . It follows from
the formula that the sum of squared distances of the points xj to the subspace Y is

30 2 Statistical Based Approaches

equal to the sum of discarded eigenvectors. λi represents the error of approximation
by the subspace Y . This error is small if the sum of discarded eigenvalues is small
and, therefore, the impact of discarded eigenvectors is also small.

2.2 Interpolation and regression

In this section, interpolation and regression techniques for data mining are introduced
step by step through several examples. The aim is to model a given set of data
with a suitable mathematical function. The sets of data obtained in real applications
usually contain a discrete number of samples which describe a certain process or
phenomenon. By applying interpolation or regression techniques, the hope is to find
a function that is able to describe this phenomenon or process in general.

Let us suppose that the quantity of water y in a certain soil is monitored during
time x. Experimental analysis can be used for obtaining y at different times x, so
that a set of points (x ′, y ′) can be defined. As always in real life applications, the
number of experiments is discrete and limited, whereas a general function able to
relate each time x to a water level y is searched. Finding this function by using the
data available (the x′ and y′ pairs in this case) means to find a model which is able to
provide the correct water level y for any time x. In this simple example, the points
(x′, y′) belong to a two-dimensional space, and hence all the functions defined in �
and having values in � can be a good model for the process under study.

In general in mathematics, given an independent variable x, a function f provides
a value for the corresponding dependent variable y = f (x). The functions that are
the focus of this section must obey the following properties. Given a known x ′,
they must be able to provide the corresponding y ′ or a good approximation of y ′.
Moreover, they must be able to generalize: given an x which is unknown (no pairs
(x, y) are contained in the set of data), the value of y provided by the function must
be an estimation of the behavior of the modeled process. The final goal is to find the
general rule that relates x and y. For example, let us suppose that water levels y in a
given soil are measured every hour x for 10 successive hours. The 10 pairs (x ′, y′)
containing the details of these measurements represent the available set of data. An
interpolation or regression function modeling this set of data is required to provide
a good estimation of the water levels y even for times x that are not included in the
data. If this aim is reached, no more measurements are needed, but the process can
be monitored using the obtained model.

Let {(x1, y1), (x2, y2), . . . , (xn+1, yn+1)} be a set of points representing a given
process to be modeled. This set can be called training set, because it can be used for
learning how to model the process. Most of the following discussion is limited to
functions defined in � and having values in �.

The easiest way for modeling a set of data by a function f : � −→ � is the
following one. All the points can be simply linked by linear segments. The join-the-
dots functions are able to model the data with no errors on the known pairs (xi, yi).
In other words, they are able to provide the exact yi when they have as input the

2.2 Interpolation and regression 31

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 2.4 Interpolation of 10 points by a join-the-dots function.

corresponding xi . The value of the function in points x ∈ (xi, xi+1) is instead a sort of
mean between the two known values yi and yi+1 (see Figure 2.4). The join-the-dots
functions are very easy to define, but they usually do not provide an accurate model.
Moreover, the join-the-dots functions are not smooth, and they are not differentiable
in all the points of the training set. These are properties that might be useful when
the model is successively used.

Smoother functions that can be used as models are the polynomials. Polynomials
having degree 1 are straight lines in the two-dimensional space, and polynomials
having degree 2 are parabolas in the two-dimensional space. If it is required that
each yi must correspond to p(xi), i.e., the graphic of the polynomial p must pass
through the known points, then the degree of the polynomial plays a crucial role. In
fact, two points suffice for defining a straight line. If there is a third point in the training
set which is not aligned with the first two, then the straight line is not sufficient, and
a polynomial having degree 2 is needed. In general, a degree equal to n is needed
for defining a polynomial p such that p(xi) = yi for each i = 1, 2, . . . , n+ 1. If the
set of points satisfies particular properties, then a smaller degree could suffice. For
instance, if n points are perfectly aligned, a polynomial having degree 1 is sufficient.
These polynomials are called interpolating polynomials.

Let us introduce a simple rule for building interpolating polynomials. The general
formula of a straight line in a two-dimensional space is

y = ax + b,

where x ∈ � is the independent variable, where y ∈ � is the dependent variable
and where a and b are two real constants, the coefficients. A line on a plane can
be unequivocally identified by the values given to the two coefficients a and b. A

32 2 Statistical Based Approaches

generic straight line can also be expressed as

y = a0 + a1(x − x1), (2.4)

where a0, a1 and x1 are real constants. It is very easy to show that these two equations
are equivalent if a = a1 and b = a0 − a1x1. Note that x1 is associated to y = a0
by the equation. Therefore, if a line passing through a point (x1, y1) is searched,
then one of its equations is (2.4) where a0 = y1. a1 can have any value, and each of
them defines one of the infinite lines passing through (x1, y1). The passage through
(x1, y1) is guaranteed because a1(x − x1) is zero when x = x1 and then y = a0.

Defining a model by using a set with only one point does not have any practical
meaning. Let us suppose then that there is another point (x2, y2) in the training set.
There are infinite straight lines passing through (x1, y1), and if the passage through
(x2, y2) is also required, one of these infinite lines has to be chosen. As previously
noticed, a1 can be any real number in (2.4), for guaranteeing the passage from the
point (x1, y1). Let us now define a1 as follows:

a1 = y2 − y1

x2 − x1
. (2.5)

The line (2.4) having as coefficients a0 = y1 and a1 as defined in (2.5) passes through
both (x1, y1) and (x2, y2). Indeed, if x = x2, it follows that

y = a0 + a1(x2 − x1) = y1 + y2 − y1

x2 − x1
(x2 − x1) = y2,

and then the line passes through (x2, y2) as well.
Supposing that there is a third point (x3, y3) in the training set, then a straight

line is not sufficient anymore, unless the three points are aligned. The following
polynomial having degree 2 can be used

y = a0 + a1(x − x1) + a2(x − x1)(x − x2)

for modeling the set of data. In general, the Newton polynomial of degree n

y = a0 +
n∑

i=1

ai

i∏
j=1

(x − xj)

can be used for modeling sets of data represented through n + 1 points in a two-
dimensional space. The coefficients ai can be substituted with the so-called Newton’s
divided differences:

y = f (x1) +
n+1∑
i=2

f [x1, . . . , xi]
i−1∏
j=1

(x − xj).

The divided differences can be defined iteratively by the following formula:

2.2 Interpolation and regression 33

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 2.5 Interpolation of 10 points by the Newton polynomial.

f [x1, x2, . . . , xn+1] = f [x2, x3, . . . , xn+1] − f [x1, x2, . . . , xn]
xn+1 − x1

where
f [x1, x2] = y2 − y1

x2 − x1
,

which corresponds to the a1 coefficient used before.
Figure 2.5 shows a polynomial having degree 9 interpolating 10 points in the

two-dimensional space. The figure shows that the polynomial has high oscillations,
especially in the interval [1, 2] of the x axis. In fact, the greater is the polynomial
degree, the more are the polynomial oscillations. For this reason, when there are
many points to consider, the oscillations of the polynomial can be much higher. This
could not model the points in the correct way.

If particular properties about the model are not known, but high oscillations must
be avoided, then a spline function can be used, instead of a polynomial. A spline is a
function defined piecewise by polynomials. It is used for avoiding the phenomenon
of the increase of oscillations when the degree of a polynomial increases. Indeed, a
spline locally is a polynomial having a low degree, so that its oscillations are low. In
its general form a polynomial spline

S : [a, b] −→ �
consists of polynomial pieces

Pi : [ti , ti+1) ∈ [a, b] −→ � ∀i ∈ {1, 2, . . . , K},

34 2 Statistical Based Approaches

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 2.6 Interpolation of 10 points by a cubic spline.

where a = t1 < t2 < · · · < tK < tK+1 = b. Each Pi has a predefined degree. The
most used degree is 3, and in this case S is called cubic spline. By using a cubic
spline, a large number n of points can be interpolated while the oscillations of the
values of the function are kept low. Figure 2.6 shows a cubic spline interpolating
the same points in Figure 2.5. In the interval [1, 2] of the x axis there are not high
oscillations anymore.

There are applications where some information about the process to model is
known a priori. Sometimes it might be known that the model has to be linear, or
quadratic or other, and hence particular functions need to be used. Let us suppose,
for instance, that the model must be linear. As pointed out above, the only way
for finding a line passing through more than 2 points is to have all these points
aligned. If a polynomial is used for interpolating these non-aligned points, its degree
corresponds, in general, to the total number of points minus one. Therefore, if the
model must be linear and the points are not aligned, then a function approximating
these points can be searched, instead of an interpolating function. Functions that
approximate a given set of data are called regression functions. The main difference
between interpolation and regression functions is that the equality yi = f (xi), for
each pair (xi, yi) of the training set, must be satisfied in the first case, whereas f (xi)

must be only an approximation of yi in the second case.
The easiest regression function is the linear regression. A straight line of equation

y = ax + b

is considered. For each point (xi, yi) of the training set,

ri = yi − (axi + b)

2.2 Interpolation and regression 35

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 2.7 Linear regression of 10 points on a plane.

corresponds to the so-called residual.A residual is zero if the point (xi, yi) belongs to
the straight line, i.e., when the line passes through the point (xi, yi). Instead of forcing
the residual to be zero for all the points (interpolation), it is minimized (regression).
In this way, the straight line that better approximates the points can be found. The
problem to be solved can be seen as an optimization problem having as objective
function

R =
n+1∑
i=1

r2
i

where n+1 is the number of points. A linear regression related to the set of 10 points
used in the previous examples is shown in Figure 2.7.

Nonlinear regression models include quadratic regression (see Figure 2.8), and
in this case the residual is defined as

ri = yi − (ax2
i + bxi + c),

or logistic regression, where

ri = yi − 1

1 + e−axi
.

The estimation of the parameters of the regression models can be seen as an
optimization problem. Different approaches have been developed over the years
for performing this estimation. For instance, in [109, 235], surveys on regression
techniques based on least-square models are presented.

36 2 Statistical Based Approaches

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 2.8 Quadratic regression of 10 points on a plane.

It is important to note that instead of one independent variable x, more variables
can be employed for more complex problems. If the generic point (xi1, xi2, . . . , xik,

yi) contains k independent variables and one dependent variable yi , then all the
independent variables can be put together in the expression

zi = β0 + β1xi1 + β2xi2 + · · · + βkxik,

where the generic βi is a real coefficient. Then, the new variable zi can be used
instead of xi in the previous equations.

2.3 Applications

The PCA method, and interpolation and regression models, are used as techniques
for mining data. PCA allows one to represent samples using vectors with a smaller
dimension without losing important information on the data. Interpolation and re-
gression techniques allow one to model by simple functions a given set of data and
to generalize from it. They can be considered basic statistical techniques. They can
provide good results in some applications, but they may not be adequate for solving
more complex problems. However, some examples can be found in the literature of
successful application of these techniques. For instance, PCA is used for studying
the star formation history of galaxies [73], and also for analyzing gene expressions
in cells [246]. Linear and nonlinear regression is used for the prediction of babies’
birth weight among maternal demographic characteristics in [70]. Interpolation is
for instance used in [106] for analyzing the human brain.

2.3 Applications 37

PCA can be used as a data mining technique itself, but more often it is used for
reducing the dimension of a set of data before applying some other data mining
technique. Applications in agriculture in which PCA has been used alone are listed
below and one of them is presented in detail in Section 2.3.1. Moreover, PCA is also
used in some of the applications discussed in other chapters of this book, which are
devoted to other data mining techniques. For instance, in Section 3.5.1, PCA is used
in conjunction with the k-means algorithm for data partitioning. In this application,
the wine fermentation process is studied and the aim is to find clues that reveal bad
results at the beginning of the fermentation process [230]. The main technique used
is k-means and not PCA. However, PCA helps k-means in partitioning the data in
clusters, since it reduces the dimension of the set of data before applying the k-means
algorithm.

Some applications of the statistical techniques in agriculture are presented in
the next section of this chapter. PCA is for instance applied for characterizing beef
meat [58], for analyzing chicken breast quality [156], for locating the origin of
potentially toxic elements in soils [23], and for evaluating the impact of irrigation
water quality [161]. Interpolation models are used for analyzing climate data [8].
Regression models are used for evaluating soil liquefaction probability [137], for
predicting the distributions of New Zealand’s freshwater fishes [143], for predicting
aroma properties of aged red wines [12], and for monitoring the effects of energy use
in agriculture [125]. In [248], nonlinear regression models are used for predicting
shrimp growth. The same studies on the shrimps are conducted by using a neural
network approach and they show that neural networks perform better.

In the following we will focus on two applications. In Section 2.3.1 we will discuss
the application of PCA for controlling the quality of chicken breast meat. In Section
2.3.2 we will present the application of regression models for evaluating the effects
of energy use in the agricultural field.

2.3.1 Checking chicken breast quality

Chicken breast meat is widely used as a food resource. After the death of the chicken,
the animal has to be deboned. The quality of the meat strongly depends on the post-
mortem aging time. Characteristics that are directly related to the physical compo-
nents of meat products can provide reliable information about meat quality. However,
humans go beyond the physical components to describe a wide range of factors in-
volved in mastication and afterfeel/aftertaste sensations, such as appearance, flavor,
and texture. All these characteristics can be used for analyzing the variations of phys-
ical, color, and sensory properties of chicken breast meat deboned at different times
after death.

We will focus in this section on the studies published in [156]. In order to analyze
the meat quality and the deboning time, a set of 36 chicken carcasses has been
considered and randomly divided into 4 subgroups, each one containing 9 carcasses.
These subgroups are designed for different deboning times. Precisely, chickens in the

38 2 Statistical Based Approaches

different groups have been deboned after 2, 4, 6 and 24 hours after death. During the
period between death and deboning the carcasses have been kept at a 2◦C temperature.
After deboning, the breasts have been cut in two parts, and each part has been subject
to a different set of analysis.

Several parameters have been used for evaluating the meat quality. A colorimeter
has been used for measuring the color of both the breasts of the chickens, and a
pH meter has been used for measuring their pH levels. The hardness of the meat
has been evaluated by using a blade which sheares the meat perpendicularly to the
longitudinal orientation of the muscles fibers. Sensory attributes include cardboardy,
wet feathers, springiness, cohesiveness, hardness, moisture release, particle size,
bolus size, chewiness, and metallic aftertaste-afterfeel. These attributes have been
evaluated by 9 expert panelists. The numerical scale for each attribute ranged from
0 to 15.

Before that the PCA method can be applied, the corresponding covariance matrix
needs to be created. It provides the variance of each variable and also the variance of
each single variable with respect to the other variables. This matrix provides useful
information on the nature of the data. Figure 2.9 shows the variance of the consid-
ered variables at different deboning times. In general, the considered variables show
a steady decrease in value when the deboning time increases. In particular, the pH
levels decreased gradually in meats deboned from 2 to 6 hours, while it remained
constant when the meat was deboned from 6 to 24 hours. This suggests that com-
plex biochemical reactions are active during postmortem aging. The chicken breast
lost redness during time: in particular, its redness decreases while its yellowness
increases. The meats deboned at earlier postmortem time require more force to shear
and therefore they are less tender. The attributes evaluated by the panelists also de-
crease gradually. The two sensory flavor attributes (cardboardy and wet feathers),
the seven sensory texture attributes (springiness, cohesiveness, hardness, moisture
release, particle size, bolus size, and chewiness), and the afterfeel-aftertaste attribute
also decreased with the increase of deboning time. In general, these observations
suggest that the optimal deboning time for chicken breast meat is after 4 hours from
death.

In this application, the covariance matrix includes the 24 variables used for eval-
uating the chicken meat. One hundred forty-four samples are used and their variance
and covariances are computed for generating the covariance matrix. The PCAmethod
just finds the eigenvalues and eigenvectors of the covariance matrix, so that it can
locate the principal components. As previously explained in detail, the first few prin-
cipal components should be able to represent most of the variations in the data. In
other words, they should be able to represent the data with minimal loss of informa-
tion. In this example, the first seven principal components are able to represent about
70% of the total variations on the data. Moreover, the first four principal components
represent about 50% of the total variations. In particular, the first principal compo-
nent takes 23.3% of the variations, the second one 13.6%, the third one 8.8% and
finally the fourth one 6.9%. An analysis on the data showed that the first component
was mainly defined by the shear force and by the attributes decided by the panelists.

2.3 Applications 39

D
eb

on
in

g
tim

e
B

re
as

tc
ha

ra
ct

er
is

tic
2h

4h
6h

24
h

A
ll

to
ge

th
er

pH
6.

06
±

0.
20

6.
02

±
0.

18
5.

98
±

0.
18

5.
98

±
0.

16
6.

01
±

0.
18

L
ig

ht
ne

ss
(%

)
70

.5
6

±
7.

59
69

.6
8

±
7.

52
70

.7
1

±
9.

29
72

.0
3

±
10

.1
4

70
.7

4
±

8.
66

R
ed

ne
ss

(%
)

−2
4.

30
±

16
.9

8
−2

5.
16

±
15

.9
8

−2
9.

07
±

15
.2

8
−3

4.
87

±
14

.3
9

−2
8.

35
±

16
.0

8
Y

el
lo

w
ne

ss
(%

)
25

7.
53

±
12

6.
45

26
7.

18
±

14
8.

95
40

4.
57

±
37

2.
85

34
5.

38
±

50
3.

33
31

8.
66

±
33

0.
18

C
oo

ki
ng

yi
el

d
(%

)
73

.7
9

±
3.

00
74

.6
8

±
2.

69
75

.1
4

±
3.

21
75

.3
3

±
3.

03
74

.7
4

±
3.

01
Sh

ea
r

fo
rc

e
(k

g)
9.

40
±

3.
26

7.
08

±
2.

83
5.

79
±

1.
74

3.
90

±
1.

01
6.

54
±

3.
10

B
ro

th
y

3.
58

±
0.

92
3.

77
±

0.
67

3.
99

±
0.

74
3.

73
±

0.
69

3.
77

±
0.

77
C

hi
ck

en
-m

ea
ty

4.
17

±
0.

56
4.

22
±

0.
58

4.
26

±
0.

48
4.

12
±

0.
45

4.
19

±
0.

52
C

ar
db

oa
rd

y
2.

87
±

1.
06

2.
71

±
0.

95
2.

63
±

0.
86

2.
39

±
0.

97
2.

67
±

0.
97

W
et

fe
at

he
rs

2.
88

±
0.

97
2.

83
±

0.
86

2.
77

±
0.

95
2.

53
±

0.
88

2.
75

±
0.

92
B

lo
od

y-
se

ru
m

y
3.

30
±

1.
24

3.
48

±
1.

17
3.

48
±

1.
36

3.
12

±
1.

14
3.

34
±

1.
23

Sw
ee

t
2.

21
±

0.
80

2.
11

±
0.

94
2.

22
±

0.
89

2.
40

±
0.

66
2.

24
±

0.
79

Sa
lty

2.
05

±
0.

74
1.

91
±

0.
85

2.
02

±
0.

87
2.

19
±

0.
73

2.
04

±
0.

80
So

ur
2.

89
±

0.
95

2.
71

±
0.

78
2.

85
±

0.
85

2.
95

±
0.

77
2.

85
±

0.
84

Sp
ri

ng
in

es
s

3.
81

±
1.

10
3.

87
±

1.
25

3.
81

±
1.

24
3.

42
±

1.
30

3.
73

±
1.

23
C

oh
es

iv
en

es
s

5.
95

±
1.

70
5.

63
±

1.
66

5.
08

±
1.

51
4.

61
±

1.
38

5.
32

±
1.

63
H

ar
dn

es
s

5.
60

±
1.

02
5.

45
±

1.
27

5.
01

±
1.

11
4.

34
±

1.
18

5.
10

±
1.

24
M

oi
st

ur
e

re
le

as
e

3.
82

±
0.

82
3.

68
±

0.
86

3.
69

±
0.

68
3.

57
±

0.
87

3.
69

±
0.

81
Pa

rt
ic

le
si

ze
3.

74
±

0.
76

3.
71

±
1.

05
3.

36
±

0.
95

3.
01

±
0.

93
3.

46
±

0.
97

B
ol

us
si

ze
4.

16
±

0.
76

3.
95

±
0.

99
3.

57
±

0.
98

3.
32

±
0.

98
3.

75
±

0.
98

C
he

w
in

es
s

5.
63

±
1.

15
5.

18
±

1.
35

4.
66

±
1.

28
4.

27
±

0.
97

4.
96

±
1.

28
To

ot
hp

ac
k

3.
66

±
1.

00
3.

83
±

1.
06

3.
68

±
0.

96
3.

57
±

0.
94

3.
68

±
0.

99
M

et
al

lic
3.

31
±

1.
17

3.
31

±
1.

13
3.

06
±

1.
26

3.
09

±
1.

28
3.

19
±

1.
20

O
ily

-g
re

as
y

1.
28

±
0.

92
1.

18
±

0.
96

1.
28

±
1.

00
1.

27
±

0.
90

1.
26

±
0.

94

F
ig

.2
.9

A
ve

ra
ge

an
d

st
an

da
rd

de
vi

at
io

ns
fo

r
al

l
th

e
pa

ra
m

et
er

s
us

ed
fo

r
ev

al
ua

tin
g

th
e

ch
ic

ke
n

br
ea

st
qu

al
ity

.
D

at
a

fr
om

[1
56

].

40 2 Statistical Based Approaches

Therefore, these attributes are the most important variables for the evaluation of the
chicken breast quality.

2.3.2 Effects of energy use in agriculture

Modern agricultural sector needs an increasing demand of energy resources. Such
resources include electricity, fuels, natural gases and coke. Much of this energy
is directly used in agriculture for a wide range of purposes. For instance, operating
vehicles need fuel or electricity, and irrigation pumps need gas and water. Fertilizers,
seeds, pesticides, etc., can also be considered as indirect use of energy in agriculture.
In general, energy has an important role in the social and economic development of
a country. In [125], studies are presented for analyzing the effect of the energy factor
on agricultural productivity.

These studies are focused on the agricultural productivity in Turkey. In this coun-
try, energy consumption has increased more than 55% during the past three decades.
Interesting is to note that, during the same period, the agricultural productivity in
Turkey has increased as well. The studies are based on data obtained from the Min-
istry of Energy of Turkey, and they cover the period 1970–2003. The data have been
used for modeling a regression function having the following form:

ln(API (t)) = α1 + α2 ln(EC(t)) + α3 ln(AFA(t)) + εt .

In the formula, API (t) is an index for agricultural productivity (eight products have
been used: wheat, barley, sunflower, cotton, sugar, beet, chickpea, tomato and milk),
EC(t) is the energy consumption of the agricultural sector, AFA(t) represents gross
additional assets, and εt is a real value denoting possible noise in the data. All these
parameters are known year by year, and one can refer to a different year through the
variable t . αi are the coefficients to be found for modeling the data. Note that the
equation used is a double logarithmic linear regression.

After the estimation of the coefficients αi , the results showed that the energy
consumption coefficient EC(t) is statistically significant. Its positive sign indicates
that agricultural productivity increases with the increase in energy consumption.
There is actually a very strong relationship between energy use and agricultural
productivity. The energy consumption EC(t) is more sensitive to productivity than
the gross additional assets AFA(t). The found coefficient for the gross additional
assets is also positive, and therefore an increase in AFA(t) also results in an increase
in the productivity.

2.4 Experiments in MATLAB

In this section some few experiences in MATLAB regarding the techniques discussed
in this chapter are presented.

2.4 Experiments in MATLAB 41

x = rand(1,10);
y = 2*x + rand(1,10);
A = cov(x,y);
[v,d] = eig(A);
x1 = v(1,2)*x + v(2,2)*y;
y1 = v(1,1)*x + v(2,1)*y;
plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
hold on
plot(x1,y1,’kd’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 0 .63])
var_x1 = max(x1) - min(x1);
var_y1 = max(y1) - min(y1);

Fig. 2.10 The PCA method applied in MATLAB to a random set of points lying on the line y = x.

An example of the use of the PCA method in MATLAB is given in Figure 2.10.
The figure shows the set of instructions in MATLAB for computing the principal
components of a random set of two-dimensional points. In the following, all the
instructions in Figure 2.10 are commented on step by step. The function rand is used
for generating a random vector of points close to the line y = 2x. The x coordinates
of the points are created by rand, while the y coordinates are obtained by adding a
random number to 2x. In MATLAB all the variables, if it is not differently specified,
are matrices of real numbers (for details about MATLAB the reader is referred to
Appendix A). Then, x and y are matrices, where one of their dimensions is 1, and
this makes them actually vectors. It is very important to keep in mind that MATLAB
considers variables as matrices, when functions such as rand need to be used. Indeed,
rand takes two input parameters: the number of rows and the number of columns of
the random matrix to be generated. If a vector is needed, one of these two parameters
has to be 1.

After defining a set of points, the covariance matrix related to the variables used
for representing these points, the coordinates x and y, needs to be computed. In MAT-
LAB, the function cov computes the covariance matrix of a given set of variables.
The result is stored in A and used as an input parameter for the function eig. eig
computes the eigenvalues d and the eigenvectors v of the covariance matrix A. The
eigenvectors play the role of the vector α1 in equation (2.1). They can be used for
computing the transformed variables. The two new variables are x1 and y1.

Two calls to the function plot creates Figure 2.11. The figure contains the original
set of points and the transformed set of points. The original points are marked by
circles. From the figure, it is clear that the variability on one of the transformed vari-
ables is very small. The variables var_x1 and var_y1 contain this information. Note
that the basic plot function needs two input parameters only: a vector containing the
x coordinates and a vector containing the y coordinates of the points to draw. In this
case, other optional parameters are also used. For a description of these options refer
to Appendix A. They are used for marking each point with a particular marker having
a certain color. The vector [.49 1 .63] specifies a particular tonality of green. The
instruction hold on is used for letting the different graphs created by plot overlap
on each other.

42 2 Statistical Based Approaches

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 2.11 The figure generated if the MATLAB instructions in Figure 2.10 are executed.

Let us generate now in MATLAB interpolating and regression functions. In Fig-
ure 2.12 a sequence of MATLAB instruction is shown. The calls to the function
plot generate Figure 2.13(a). In this example, a set of 9 points in a two-dimensional
space is considered. The 9 points are specified in MATLAB through their x and y

coordinates, contained in the vector x and the vector y, respectively. These points
are drawn in the figure by using the first call to the function plot. The function plot

is then used another time for drawing all the points in the set. This time no options
are used, and, by default, the function plot connects the points to draw by a line.
What is drawn is therefore the join-the-dots function interpolating the set of points.
The polynomial interpolating the points is instead computed by using the function
polyfit. The specified degree is 8, since the polynomial passing through 9 points is
unique if its degree equals the number of points minus one. The function polyfit

needs as input parameters the x and y coordinates of the points to interpolate, and the
degree of the polynomial. The output of the function is a vector c containing the coef-
ficients of the polynomial. In order to draw this polynomial, it must be evaluated on a
certain number of independent variables, and the couples of independent/dependent

x = [-8 -6 -3 -2 1 5 7 9 10];
y = [1 2 2 1 -1 1 0 0 -1];
plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
hold on
plot(x,y)
c = polyfit(x,y,8);
xx = -8:0.1:10;
yy = polyval(c,xx);
plot(xx,yy,’r:’)

Fig. 2.12 A sequence of instructions for drawing interpolating functions in MATLAB.

2.4 Experiments in MATLAB 43

−8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(a)

−8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(b)

Fig. 2.13 Two figures generated by MATLAB: (a) the instructions in Figure 2.12 are executed; (b)
the instructions in Figure 2.14 are executed.

variables can be used to draw the polynomial using the function plot. If the used
independent variables are sufficiently close to each other, then the figure generated
by the function plot is a good approximation of the polynomial. The vector xx is
used for storing the independent variables. It is a vector whose first component is
−8 (the smallest value in x), whose last component is 10 (the largest value in x),
and such that the difference between any consecutive components in xx is 0.1. The
function polyval can evaluate a polynomial. It takes as input parameters the poly-
nomial coefficients and a vector xx containing a set of independent variables. The

44 2 Statistical Based Approaches

plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,
[.49 1 .63])

hold on
yy = spline(x,y,xx);
plot(xx,yy,’k’)
c = polyfit(x,y,1);
yy = polyval(c,xx);
plot(xx,yy)
c = polyfit(x,y,2);
yy = polyval(c,xx);
plot(xx,yy,’m:’)

Fig. 2.14 A sequence of instructions for drawing interpolating and regression functions in MAT-
LAB.

result, the set of corresponding dependent variables, is given in output and stored in
yy. The function plot is then called for drawing the points specified in xx and yy.
The option ’r:’ forces the figure to be in red and drawn with dashed lines.

As discussed above, there are other ways for interpolating or approximating a
certain set of points by a function. Suppose that the variables x and y are still in
memory as defined in the code in Figure 2.12, then the code in Figure 2.14 generates
Figure 2.13(b). The points are drawn another time, by the first call to the function
plot. Then, the cubic spline interpolating such points is computed. The function
spline evaluates the cubic spline passing through the given points specified in x

and y in the independent variables in xx. The corresponding dependent variables
are stored in yy. Once again, the function plot is called for drawing the points
specified in xx and yy. This time ’k’ is used as option, meaning that the figure
must be black. After that, the linear regression approximating the points is computed
by using the function polyfit. This function has been used before for finding the
coefficients of the interpolating polynomial. The only difference stands in the degree
of the polynomial: it has to be 1 if the linear regression function is needed. The two
coefficients of the linear function are then stored in c, the function polyval is used
for evaluating such linear function in a set of points that are utilized by plot. The
same procedure is used at the end for drawing the quadratic regression function.

2.5 Exercises

Some exercises related to the principal component analysis, the interpolating func-
tions and the regression functions are presented in this section. All the solutions are
reported in Chapter 10.

1. Given the set of points

(1, −1), (3, 0), (2, 2),

compute the range of variability of their components.
2. In MATLAB, generate randomly a set of points in a two-dimensional space lying

on the line y = x. Apply PCA in order to reduce the dimension of the set of points.

2.5 Exercises 45

3. Compare the original set of points randomly generated in Exercise 2 to the set
with reduced dimension obtained by PCA. For this purpose, create a figure in
MATLAB that displays the two sets.

4. Given 2 points in a two-dimensional space:

(1, 0), (0, −2),

compute the equation of the unique line passing through them.
5. Build a figure in MATLAB of the line obtained in Exercise 4.
6. Given 3 non-aligned points in a two-dimensional space:

(0, 1), (1, 2), (−1, 3),

compute the equation of the unique parabola passing through them.
7. Consider 5 points in a two-dimensional space:

(4, 2), (2, 2), (1, 4), (0, 0), (−1, 3).

Build a MATLAB figure containing the points and the join-the-dots function
interpolating them.

8. Consider the same points of the previous exercise. Build a MATLAB figure con-
taining the points and the quadratic regression approximating such points.

9. Consider 6 points in a two-dimensional space:

(1, 2), (2, 3), (1, −1), (−1, 3), (1, −2), (0, −1).

Build a MATLAB figure in which the points are represented with their linear and
quadratic regression functions.

10. Consider the same set of points of the previous exercise. Suppose that each point
(x, y) of the set is approximated with the corresponding point (x, f (x)) of the lin-
ear regression f obtained in the previous exercise. Compute the mean arithmetic
error on the whole set of points using MATLAB.

Chapter 3
Clustering by k-means

3.1 The basic k-means algorithm

Clustering techniques are used for finding suitable groupings of samples belonging
to a given set of data. There is no knowledge a priori about these data. Therefore, such
set of samples cannot be considered as a training set, and classification techniques
cannot be used in this case. The k-means algorithm is one of the most popular
algorithms for clustering [103]. It is one of the most used algorithms for data mining,
as it has been placed among the top 10 algorithms for data mining in [237].

The k-means algorithm partitions a set of data into a number k of disjoint clusters
by looking for inherent patterns in the set. The parameter k is usually much smaller
than the dimension of the set of samples, and, in general, it needs to have a prede-
termined value before using the algorithm. There are cases where the value of k can
be derived from the problem studied. For instance, in the example of the blood test
analysis (see Section 1.1), the aim is to distinguish between healthy and sick patients.
Hence, two different clusters can be defined, and then k = 2. In other applications,
however, the parameter k may not be defined as easily. In the example of separating
good apples from bad ones (see Section 1.1), images of apples need to be analyzed.
The set of apple images can be partitioned in different ways. One partition can be
obtained by dividing apples into two clusters, one containing apples with defects
and another one containing good apples. In this case k = 2. However, defective
apples can be classified based on the degree of the defect. For instance, if the apples
have a defect which is not very visible, then these apples could be sold with a lower
price. Therefore, even defective apples can be grouped in different clusters. In this
case, k shows the number of defects that are taken into consideration. When there
is uncertainty on the value of the parameter k, a set of possible values is considered
and the algorithm is carried out for each of the values. The best obtained partition in
clusters can then be considered.

Let us suppose that X represents the available set of samples. Each sample can
be represented by an m-dimensional vector in the Euclidean space �m. For instance,
blood analysis can be represented by a vector whose components contain the exper-

© Springer Science + Business Media, LLC 2009

A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34, 47
DOI: 10.1007/978-0-387-88615-2_3,

48 3 Clustering by k-means

imentally found blood measurements. The image of a fruit can be represented by a
matrix of pixels that can be organized row by row in a vector. Moreover, the image
of the fruit can be analyzed, and some properties regarding the image can be in-
serted in a vector that can be used for representing the image. Thus, in the following,
X ≡ {x1, x2, . . . , xn} will represent a set of n samples, where the generic sample xi

is an m-dimensional vector.
Given a predetermined k value, the aim of the k-means algorithm is to find a

partition of k disjoint clusters of X. If Sj represents one of these clusters, then the
following conditions must be satisfied

X =
k⋃

j=1

Sj , Sj ∩ Sl = ∅ 1 ≤ j �= l ≤ k.

Each cluster is a subset of X and contains samples with some similarity. In this
approach, the similarities between samples are measured by metric functions. The
distance between two samples provides a measure of similarity: it shows how similar
or how different two samples are. In other words, if sample x1 is closer to x2 than to
x3, then x1 is considered to be more similar to x2 than to x3.

A representative can be assigned to each cluster. In the k-means approach, the
representative of a cluster is defined as the mean of all the samples contained in the
cluster. The mean is referred to as the center of the cluster, and is calculated by the
following formula:

cj = 1

n(Sj)

n(Sj)∑
i=1

xj (i).

In the formula, n(Sj) is the number of samples contained in cluster Sj , and j (i)

represents the index of the ith sample in cluster Sj . Then, each xj (i) ∈ Sj for all the
i ∈ {1, 2, . . . , n(Sj)}, and cj is the vector having as components the means of all the
components of vectors xj (i). It is worth noting that different methods for clustering
may use different representatives for a cluster. For instance, the k-medoids method
uses as representative one of the samples in the cluster.

Let us consider the set of points shown in Figure 3.1. Even though there is no
previous knowledge about the data, the figure clearly shows that two subsets of
points can be defined. For simplicity, let us refer to the cluster whose points are
marked with the symbol � as C�. Similarly, C+ denotes the cluster containing the
points marked with the symbol +. Such subsets represent the inherent patterns that
clustering algorithms try to discover by partitioning the data. The two points marked
by a circle in the figure represent the centers of the two clusters. Let us consider
computing the distances between one of the samples and the two centers. The distance
between a sample and the center of its cluster is smaller than the distance between
the sample and the center of another cluster. This shows that samples that are similar
belong to the same cluster or that a cluster contains similar samples. The center, or the
mean of the cluster, can be considered as a sample similar to all samples contained
in this cluster. Since the similarity is here measured using the distance function, the
smaller the value of the distance between samples, the more similar samples are.

3.1 The basic k-means algorithm 49

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.1 A partition in clusters of a set of points. Points are marked by the same symbol if they
belong to the same cluster. The two big circles represent the centers of the two clusters.

The example shown in Figure 3.1 is a very simplified one. Actually, clusters are
usually not so easily defined, and the dimension of the set of data does not allow
analyzing the samples visually. Therefore, a general formulation of the clustering
problem is to find k disjoint clusters that minimize the error function:

f (S1, S2, . . . , Sk) =
k∑

j=1

n(Sj)∑
i=1

d(cj , xj (i)), (3.1)

where d represents a suitable distance function. In the example provided in Figure
3.1, d is the Euclidean distance. Regardless of the distance function used, the error
function (3.1) consists of a sum of positive real numbers, because the distance func-
tion always has non-negative values. Therefore, minimizing the error function means
minimizing all its terms. Each term represents the distance between the sample xj (i)

and the center of its cluster. The optimal partition of the data is obtained when all
the samples are closer to the representative of their own cluster.

Note that the error function (3.1) can be considered as the objective function of
an optimization problem. The optimization problem can be formulated for finding a
partition that minimizes the error function. Therefore, optimization methods may be
used to solve this partitioning problem (see Section 1.4).

An easier way to solve this partitioning problem is to use the k-means algorithm.
The basic k-means algorithm is also known in literature as the Lloyd’s algorithm,
and it is based on a simple idea. Let us suppose that an arbitrary partition is currently
associated with a certain set of data. The aim of the algorithm is to find a partition
which minimizes the objective function (3.1), or equally, a partition which minimizes
all its terms. Then, all the terms of the objective function must be checked for finding

50 3 Clustering by k-means

out whether the current partition is optimal or not. Let us consider the general sample
xj (i) that is currently assigned to cluster Sj . The distances between xj (i) and cj , the
center of Sj , should be minima, in order to minimize the error function. Therefore,
all the distances between xj (i) and the k centers of the k clusters are computed. If the
distance d(xj (i), cj) is the smallest one, then sample xj (i) stays in the cluster. If xj (i)

is instead closer to the center cj̄ of another cluster Sj̄ , then d(xj (i), cj) should be
replaced by the distance d(xj (i), cj̄). In function (3.1), the distances are computed
between the sample and the center of its cluster. In order to substitute the distance,
then, the sample xj (i) must be moved from cluster Sj to cluster Sj̄ , so that the new
distance associated to this sample is d(xj̄(i), cj̄). In general, at each iteration of the
algorithm, a sample is moved from its current cluster to the cluster whose center is
closer to the sample. Note that every time a sample moves, the centers of the two
clusters, the one where the sample was and the one where the sample is moved to,
change.

The k-means algorithm is shown in Figure 3.2. At the start, each sample is ran-
domly assigned to one of the k clusters. The centers cj of the clusters are then
calculated. The main loop of the algorithm (while loop) analyzes all the samples,
from the first one to the last one. Each time a sample is considered, its distances
from the k centers are calculated and it is assigned to the cluster with the closest
center. Even though the sample already belongs to such a cluster, it is reassigned
to it another time. The algorithm can be modified to reassign samples to clusters
only when a sample changes cluster. However, this approach makes the algorithm
more computationally expensive, and therefore, it is not used in practice. When a
sample changes cluster, the centers of two clusters, the one where the sample was
and the new cluster, are recomputed. The while loop is executed until no samples
are effectively moved from one cluster to another. The clusters are considered as
stable when there are no movements of samples from one cluster to another during
one iteration of the while loop. The stability of the clusters can also be checked by
controlling their centers: if the centers do not change during an iteration of the while
loop, then the clusters are stable. When the stability of the clusters is reached, then
an optimal partition is obtained, and the algorithm stops. Figure 3.3 shows the result
of the execution of the algorithm on a set of points defined in a two-dimensional
space. Such execution has been performed using the MATLAB r© function kmeans,

randomly assign each sample to one of the k clusters S(j), 1 ≤ j ≤ k

compute c(j) for each cluster S(j)

while (clusters are not stable)

for each sample Sample(i)

compute the distances between Sample(i) and all the centers c(j)

find j* such that c(j*) is the closest to Sample(i)

assign Sample(i) to the cluster S(j*)

recompute the centers of the changed clusters

end for
end while

Fig. 3.2 The Lloyd’s or k-means algorithm.

3.1 The basic k-means algorithm 51

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 3.3 Two possible partitions in clusters considered by the k-means algorithm. (a) The first par-
tition is randomly generated; (b) the second partition is obtained after one iteration of the algorithm.

whose code is provided in Section 3.6. Figure 3.3(a) shows the initial distribution of
the points and Figure 3.3(b) shows the distribution of the points after one iteration
of the algorithm. Note that the algorithm almost converges after only one iteration.
In Figure 3.3(b) there is only one point which is still contained in the wrong cluster.
Let us compute its distance from the centers of the two clusters: the distance from
the center of the cluster C+ is greater than the distance from the center of the cluster
C�. Such point needs then to be assigned to the cluster C� and removed from cluster

52 3 Clustering by k-means

C+. Performing one more iteration of the algorithm, the convergence is reached and
the optimal partition is obtained.

As already mentioned, the k-means algorithm solves an optimization problem
having as objective function the error function (3.1). At each iteration of the algo-
rithm, a partition with a smaller value of the error function is obtained. Indeed, if at
least one of the samples xj (i) is moved, then the corresponding distance d(xj (i), cj)

has a smaller value, and therefore the error function has a smaller value. The error
function decreases at each iteration, until an optimal partition is obtained. Since the
error function can never increase after one while loop, the algorithm defines a strictly
decreasing path on the domain of the objective function. Therefore, if the function
has more than one local minimum, the k-means algorithm stops at one of these,
which may or may not be the global minima. The algorithm can reach one local
minima or another depending on the starting random partition, which represents the
root of the decreasing path followed on the domain of the function. Therefore, the
k-means algorithm is actually a method for local optimization, because it provides
one of the local optimal partitions in clusters. For this reason, often the k-means
algorithm is applied more than one time using different starting partitions. The best
result obtained over a certain number of trials is then considered as the global optimal
solution.

The k-means algorithm can be represented in terms of a Voronoi diagram. The
Voronoi diagram is a partition of a metric space in disjoint parts referred to as cells.
The diagram is related to a given set V of points, and each point defines a cell in
the diagram. A point y of the metric space lies in the cell corresponding to the point
xp ∈ V if and only if

d(xp, y) ≤ d(xq, y) ∀xq ∈ V.

As a result, different sets of points define different Voronoi diagrams. Such diagrams
are able to capture information on the relative distances between the points in a
metric space.

In order to build a Voronoi diagram related to a certain set of points, the boundaries
between its cells need to be drawn. Let us start describing a simple case with a set
containing 2 points only. For simplicity, all the figures presented in this chapter refer
to Voronoi diagrams built in two-dimensional spaces. If only 2 points x1 and x2
are considered, then the diagram divides the Euclidean plane in two parts only: the
diagram has only two cells. The border between the two cells can then be defined by
all points on the plane which are equidistant from x1 and x2. Figure 3.4(a) shows the
Voronoi diagram of two points. The infinite line that divides the two cells separates
the points which are closer to x1 and the points which are closer to x2. If the set
contains more than two points and they are aligned, the Voronoi diagram is the one
in Figure 3.4(b). If a point is randomly selected in any of the cells, this point is closer
to point xi defining the cell than to any other xj with i �= j .

The Voronoi diagrams shown in Figure 3.4 are quite simple to draw. Such dia-
grams, however, can become more complex, when the number of points in the set
increases and when they do not satisfy particular conditions. If this is the case, the

3.1 The basic k-means algorithm 53

Fig. 3.4 Two Voronoi diagrams in two easy cases: (a) the set contains only 2 points; (b) the set
contains aligned points.

following procedure can be used for drawing the diagram. Figure 3.5 shows the
procedure in the case in which three non-aligned points are considered. For each
couple of points, the perpendicular bisector between them needs to be computed
(Figure 3.5(a)). As mentioned before, the borders between two cells contain points
which are equidistant from the two points generating the two cells. If all the points
that violate this equidistance rule are removed from the lines drawn in Figure 3.5(a),
then Figure 3.5(b) is obtained. This is exactly the Voronoi diagram related to the
three considered points. The same procedure can be used if more than three points
are considered. Other more efficient procedures have been developed for building
Voronoi diagrams, as for instance the one implemented in the MATLAB function
voronoi. By using this function, the Voronoi diagram related to a random set of
two-dimensional points is built and it is shown in Figure 3.6.

The k-means algorithm can be presented in terms of the Voronoi diagrams. A
sketch of the algorithm is shown in Figure 3.7. Figure 3.8(a) shows the initial distri-
bution of a set of points and Figure 3.8(b) shows the distribution of points after one
iteration of the algorithm. The parameter k is set to 5. The Voronoi diagrams are built

Fig. 3.5 A simple procedure for drawing a Voronoi diagram.

54 3 Clustering by k-means

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 3.6 The Voronoi diagram of a random set of points on a plane.

using the centers of the five clusters. As shown in Figure 3.8(a), the Voronoi cells
do not coincide with the k clusters, because the same cell contains points belonging
to different clusters. Figure 3.8(a) shows the encircled points that belong to clusters
C+ and C× and to a cell that is different from cells containing clusters C+ and C×.
The algorithm moves these points to the cluster whose center generates the cell con-
taining these points. It is worth noting that the algorithm only moves these points to
another cluster, i.e., the algorithm only changes the symbol representing the points.
After this step, the new centers are calculated, and a new Voronoi diagram is built.
Figure 3.8(b) shows an optimal partition. In this case, the Voronoi cells coincide with
clusters and provide the optimal partition.

randomly assign each sample to one of the k clusters S(j), 1 ≤ j ≤ k

compute c(j) for each cluster S(j)

while (clusters are not stable)

build the Voronoi diagram of the set of centers c(j)

for each sample Sample(i)

locate the cell Sample(i) is contained in

assign Sample(i) to the cluster whose center generates such cell

recompute the centers of the changed clusters

end for
end while

Fig. 3.7 The k-means algorithm presented in terms of Voronoi diagram.

3.1 The basic k-means algorithm 55

Fig. 3.8 Two partitions of a set of points in 5 clusters and Voronoi diagrams of the centers of the
clusters: (a) clusters and cells differ; (b) clusters and cells provide the same partition.

56 3 Clustering by k-means

3.2 Variants of the k-means algorithm

Over the years, many variants to the standard version of the k-means algorithm have
been proposed as there are a few well-known issues with the standard algorithm. The
standard algorithm may be slow to converge, it may reach a local optimal solution
which is not the global one, and it may provide empty clusters. The convergence speed
depends on the number of iterations needed to stabilize clusters. The computational
cost is mainly due to the evaluations of the distances and to the computation of
the centers of the clusters. Finally, in the k-means algorithm, the k clusters are not
constrained to contain a predefined number of samples, and hence the algorithm
may provide empty clusters. An empty cluster does not have any practical meaning,
and therefore constraints need to be considered so that the algorithm avoids creating
empty clusters. The following focuses on ideas and strategies developed with the aim
of overcoming these problems. The k-means algorithm is often found in literature
with other names representing various modifications to the main algorithm. In [237],
an inventory of the 10 most known algorithms for data mining is presented, and none
of them but the k-means algorithm is mentioned. This means that the basic algorithm
is mostly used rather than its variants. However, some of the following ideas for
overcoming some of the k-means limitations can be useful in particular practical
cases.

In order to improve the performances of the algorithm, a simple variation of the
Lloyd’s algorithm is proposed by [110]. In literature, this variation of the algorithm is
sometimes referred to ash-means algorithm, and sometimes as the k-means algorithm
itself as the h-means algorithm is very similar to Lloyd’s algorithm. Figure 3.9
shows the h-means algorithm. The only difference between k-means and h-means
algorithms stands in the computation of the centers of the clusters. In the algorithm
in Figure 3.2 the centers are computed into the for loop, whereas in the h-means
algorithm they are computed just after the for loop. Therefore, even when a sample
migrates from one cluster to another, the new centers are not recomputed. Centers
are recomputed only after the for loop. In terms of Voronoi diagram, the algorithm
changes as it is shown in Figure 3.10. Even though a very small change is applied to
the standard algorithm, the h-means algorithm can provide different solutions. The
optimal partition obtained depends on the random initial partition in clusters. Just like

randomly assign each sample to one of the k clusters S(j), 1 ≤ j ≤ k

compute c(j) for each cluster S(j)

while (clusters are not stable)

for each sample Sample(i)

compute the distances between Sample(i) and all the centers c(j)

find j* such that c(j*) is the closest to Sample(i)

assign Sample(i) to the cluster S(j*)

end for
recompute all the centers

end while

Fig. 3.9 The h-means algorithm.

3.2 Variants of the k-means algorithm 57

randomly assign each sample to one of the k clusters S(j), 1 ≤ j ≤ k

compute c(j) for each cluster S(j)

while (clusters are not stable)

build the Voronoi diagram of the set of centers c(j)

for all the samples Sample(i)

locate the cell Sample(i) is contained in

assign Sample(i) to the cluster whose center generates such cell

end for
recompute all the centers

end while

Fig. 3.10 The h-means algorithm presented in terms of Voronoi diagram.

k-means, the h-means algorithm can be seen as a method for local optimization. The
h-means algorithm improves the current partition iteration after iteration by reducing
the value of the error function (3.1). After one iteration, the obtained partition can be
either better than the previous one or exactly the same.The obtained values of the error
function create a decreasing sequence of values and therefore the algorithm converges
toward a local minimum of the function. Therefore, both k-means and h-means
algorithms are usually carried out many times using different starting partitions.
Different partitions in clusters can be randomly generated and the algorithm can be
carried out as many times. In general, the algorithm can provide a different solution
for each run. The greater is the number of executions of the algorithm, the greater
are chances to find the global optimal partition. This procedure can be used for both
k-means and h-means algorithms independently.

Moreover, the two algorithms can be used together. The h-means algorithm is
faster than the k-means algorithm, but the latter has better chances to obtain optimal
solutions. Therefore, the two algorithms can be used together: the h-means algorithm
can be used to obtain a partition close to the optimal one, and then, the k-means
algorithm can be used to locate an optimal solution. The two-phase algorithm is
often referred to as hk-means algorithm.

Both the k-means and h-means algorithms need that a predetermined value k

is decided before any of the algorithms is executed. The k value is the number
of clusters in which the data are partitioned. In some applications, this number is
unknown. Different k values can be used and the one providing a partition with the
minimum error is retained. The choice of k plays an important role in the success
of the algorithm. In some cases, indeed, the k-means and the h-means algorithms
may provide a final partition with one or more empty clusters. This situation is
to be avoided, since the k value represents the number of clusters expected in the
partition. Empty clusters have no practical meanings. The k-means+ and the h-
means+ algorithms use a particular strategy (described in [219]) for avoiding that
the found optimal partitions include empty clusters. The strategy works as follows.
Both k-means or h-means can be carried out until their halting criteria are satisfied.
Then, the obtained partition can be checked for the presence of empty clusters. If t

clusters are empty, then all samples are considered and t samples with the greatest
distance from their respective centers are selected and each of them is moved in

58 3 Clustering by k-means

one of the empty clusters. In this way, the new partition has t clusters with only
one sample. At this point, the k-means or the h-means algorithm can restart from
this new partition and halt when the stopping criteria is satisfied. This procedure
can be iterated until a partition having only non-empty clusters is obtained. Figure
3.11(a) shows that an optimal solution for k = 4 is obtained and the optimal solution
contains an empty cluster. This figure shows three cells of the Voronoi diagram, each
cell coinciding with a cluster of the optimal partition. Clusters of the optimal partition
are C�, C× and C+. The encircled point in cluster C× (which has the greatest distance
from the center of cluster C×) is considered to move to the empty cluster and a new
cell is therefore created. The newly created cluster contains only one sample. The
new partition just created, as shown in Figure 3.11(b), is then used by the k-means
algorithm as the initial partition and a new optimal solution without empty clusters
is obtained. Figure 3.12 shows the k-means+ algorithm, while Figure 3.13 shows
the h-means+ algorithm. In the algorithms, a repeat…until loop is iterated until an
optimal partition including only non-empty clusters is obtained.

In [101] another variant of the k-means algorithm is presented, referred to as J -
means algorithm. In the cases when k is large, some of the centers of the clusters
may coincide with or be very close to some of the samples. When a cluster contains
one sample only, then its center corresponds to the sample. Generally a cluster has
more than one sample, and its center can be very close to one or more of its samples.
All the samples in the same clusters are similar to their common center. Moreover,
if a threshold distance or positive tolerance tol is set up, then samples with distance
from centers smaller than tol can be considered as very similar. Only few samples
around the center satisfy this rule, and, in the J -means algorithm, these samples are
referred to as occupied samples. The basic idea behind this algorithm is to jump from
a partition to another by selecting as center of a cluster an unoccupied sample. At
each iteration of the algorithm, a new cluster is added to the partition whose center
is an unoccupied sample. When a new cluster is added to the partition, another
cluster is deleted in order to keep the k value constant. Therefore, the unoccupied
sample defining the new cluster and the old cluster to delete are chosen so that the
error function (3.1) decreases as much as possible. The J -means algorithm is able to
reduce the error function value at each iteration. When the algorithm halts, an optimal
partition is reached. Hybrid algorithms can be developed using the k-means(+), h-
means(+) and J -means algorithms. For instance, the partition obtained at each step
of the J -means algorithm can be improved by applying one iteration of the k-means
or h-means algorithm.

As mentioned before, the k parameter needs to have a value before the k-means(+),
h-means(+) or J -means algorithm can be carried out. Sometimes the k value can be
easily obtained from the real-life application at hand. Some other times more than
one value may be suitable for the parameter k. In these cases, the algorithms can be
carried out more than once and the value providing the best partition can be selected
for k.

Another variant of the k-means is the Y -means algorithm, designed for cases when
no information on k is available. The k value is defined during the execution of the
algorithm. k can range from 1 to the total number of samples. During the execution

3.2 Variants of the k-means algorithm 59

Fig. 3.11 (a) A partition in 4 clusters in which one cluster is empty (and therefore there is no cell
for representing it); (b) a new cluster is generated as the algorithm in Figure 3.12 describes.

60 3 Clustering by k-means

randomly assign each sample to one of the k clusters S(j), 1 ≤ j ≤ k

repeat
if (some of the clusters S(j) is empty)

compute the number t of empty clusters

find the t samples farther from their centers

for each of these t samples

move the sample to an empty cluster

end for
end if
compute c(j) for each cluster S(j)

while (clusters are not stable)

for each sample Sample(i)

compute the distances between Sample(i) and all the centers c(j)

find j* such that c(j*) is the closest to Sample(i)

assign Sample(i) to the cluster S(j*)

recompute the centers of the changed clusters

end for
end while

until (all the clusters are non-empty)

Fig. 3.12 The k-means+ algorithm.

of the algorithm, clusters are deleted and other clusters are added to the current
partition, until an optimal partition is obtained. The algorithm searches, for instance,
for empty clusters. If there are empty clusters, they are deleted. The algorithm also
searches for outliers, i.e., for samples which are different from the majority of the
samples in the same cluster. If outliers are detected, they are removed from their
clusters and used for generating new clusters. This operation splits one cluster in two

randomly assign each sample to one of the k clusters S(j), 1 ≤ j ≤ k

repeat
if (some of the clusters S(j) is empty)

compute the number t of empty clusters

find the t samples farther from their centers

for each of these t samples

move the sample to an empty cluster

end for
end if
compute c(j) for each cluster S(j)

while (clusters are not stable)

for each sample Sample(i)

compute the distances between Sample(i) and all the centers c(j)

find j* such that c(j*) is the closest to Sample(i)

assign Sample(i) to the cluster S(j*)

end for
recompute all the centers

end while
until (all the clusters are non-empty)

Fig. 3.13 The h-means+ algorithm.

3.2 Variants of the k-means algorithm 61

parts and therefore, in this case, the k value increases. The algorithm also looks for
adjacent clusters that may overlap with each other. If such clusters are found, they
are merged to form one unique cluster. This operation merges clusters: the k value is
decreased. When the optimal partition is obtained at the same time k has its optimal
value.

Krishna and Murty [134] combined the basic k-means algorithm with genetic
algorithms (GAs) [88]. As explained in Section 1.4, GAs are meta-heuristic methods
for global optimization that simulate the evolutionary process of living organisms
according to Darwinian theory. The genetic k-means algorithm is a GA in which the
crossover operator is substituted with one iteration of the k-means algorithm. At the
start, an initial population of chromosomes is randomly generated. Each chromosome
represents a partition in clusters of the data. As in GAs, the selection and mutation
operators are used. Here, the mutation operator is defined such that the probability
of performing a change on a sample is higher if the sample is closer to one of the
centers. At each iteration of the algorithm, a partition in clusters is selected from
the current population, a mutation is performed on the partition and one step of the
k-means algorithm is performed on the whole set. The genetic k-means algorithm
performs better than the basic k-means algorithm, because it couples the basic idea
of the k-means with the heuristic evolutionary searches. Variations of this algorithm
have been proposed in [157, 158].

Many other variants of the standard k-means algorithm can be found in the lit-
erature. One of these variants is the so-called global k-means algorithm [154]. This
is a global optimization method which uses the k-means algorithm as a local search
procedure. In [68], the k-means algorithm has been modified to avoid unnecessary
distance calculations and to perform faster. The well-known triangle inequality is
used in this algorithm. In [26], the performances of the k-means algorithm have
been improved by refining the initial and randomly generated partition in clusters.
Another variant of the basic algorithm is the symmetry-based k-means algorithm
[50, 51, 223].

Finally, we mention a technique for clustering efficiently a feature-extended set
of samples [207]. Precisely, it is supposed that a partition of a set of samples is
known, and that a new partition is searched after that some features have been
added for representing the samples. The technique in [207] has been applied to
hierarchical clustering. However, as the authors pointed out, it takes the concept
of center of a cluster from the k-means approach, and therefore it can be applied
to partitioning clustering as well. The idea is to avoid to partition the set of data
again after features are added to the samples, but rather to exploit the previous
partition in clusters. The easiest strategy could brutally divide the samples in the
clusters as they were in the previous partition. However, the introduction of new
features for representing these samples may change the clustering, and samples can
migrate from a cluster to another. In [207], a rule based on the centers of the clusters
has been proposed for removing samples from the clusters where they should not
belong anymore. The new samples can then be used for generating new clusters.
In the agglomerative hierarchical approach, the new set of clusters are successively
merged and the samples are assigned to the correct cluster. In the k-means approach,

62 3 Clustering by k-means

the removed samples could be assigned to the least populated cluster or equally
distributed to all the clusters in a random way. The obtained partition would anyway
be better than a random partition, and the k-means algorithm would reach another
optimal partition faster.

In this section, many variants on the standard k-means algorithm have been pre-
sented. As discussed above, they are able to overcome some of the issues arising
when the k-means approach is used. However, there are still other problems that
may arise when this approach is used. First of all, the basic idea of the method is to
use the centers for representing such clusters. The centers are computed as the mean
among all the samples in the same cluster. Unfortunately, a mean is not a good repre-
sentative of a set of samples if there are outliers. Indeed, the presence of one outlier
can modify the center of a cluster, and it can become closer to a certain subgroup
of samples. If this happens, and the k-means algorithm is executed, this subgroup of
samples is then moved in the cluster having such center. The partition in clusters can
therefore drastically change if outliers are contained in the considered set of data.
For avoiding this problem, outliers have to be removed prior the application of the
algorithm.

In some cases, for instance when the parameter k is not known, the quality of a
partition is evaluated through the value of the error function (3.1). With fixed k value,
the better partitions correspond to the smallest values of the error function. It is much
more difficult to compare instead the error function values in correspondence with
partitions in which the k value changes. Indeed, the error values tend to decrease
when k is larger. When only one cluster is considered, the error is the sum of all the
distances between the samples and the only center. Intuitively, if two clusters are
considered, then the average distances are smaller in general, and many non-optimal
partitions in clusters could have an error function value which is smaller than the one
corresponding to the partition in one cluster. The extreme case is the one in which
the number of clusters equals the number of samples. In such a case, there is only
one possible partition and the value of the error function is zero. This tendency of the
error value to decrease when k is increased makes it difficult to find out if a partition
in a larger number of clusters is better than any other with fewer clusters. Indeed,
a reduction on the error function value might be due to the increase of the k value
only, and not because the quality of the partition is higher.

3.3 Vector quantization

Data compression represents an important field in informatics. Large sets of data
are usually stored in single files on computer memories. Each file can represent a
text, a sound, a movie. The memory of the computer is limited, therefore it needs
to be managed efficiently. If the data files are compressed, less memory space is
needed. Thus, data compression allows saving this memory space, and it also allows
exchanging files over the Internet faster. Great interest is currently given to methods
for compressing images, sounds and movies, which are the kind of files mostly used

3.3 Vector quantization 63

on the Internet [57, 201, 218, 234]. For instance, a good compression of images can be
obtained by using the well-known JPEG format. Music is currently exchanged on the
Internet through MP3 files, which can have only 10% of the size of the corresponding
standard WAV file. Movies in MPEG format are sold on standard DVDs where up to
9 GB of data can be stored. The same movies are also exchangeable over the Internet
in DVIX format. The DVIX format is very efficient and an entire movie requires less
than 1 GB of space. When compressing data, some information can be lost, and their
quality can decrease. For instance, a movie in DIVX format in general has a lesser
quality than the same movie in MPEG format.

Vector quantization is a method for data compression [92]. It is based on the same
idea as the k-means algorithm. In the k-means approach, a set of data is partitioned in
k clusters where similar samples are contained. The idea behind vector quantization
is that the representative of each cluster, i.e., the center of each cluster, can be a
good approximation of each sample in the same cluster. In fact, all the samples in a
cluster are similar and the center is similar to all the samples in the cluster. In order to
compress a given set of data, representing a certain data file, all the samples belonging
to the same cluster can be substituted by the center of the cluster. Therefore, only k

different samples are contained in the set of data. These samples can be substituted
by a numeric label referring to the k centers. For instance, 0 can refer to the center
of the first cluster, 1 to the center of the second cluster, and so on. These labels can
have values from 0 to k−1 and they can be efficiently stored on a computer memory.
Indeed, if the data can be partitioned into 2 clusters, then the label can have either
value 0 or 1. In this simplified case only 2 possibilities are allowed, and only one bit
is sufficient for storing this information. If the clusters were 4, the labels would be
4, and 2 bits would be needed. In general, log2 k bits are needed for storing a label
when the data are partitioned in k clusters. The bits needed for a label are less than
the ones for storing a sample. For this reason, substituting a sample with the label
associated to the center of the cluster containing the sample actually compresses the
data.

The k-means algorithm, or the vector quantization algorithm, can hence be used
as an encoding algorithm for data compression. As in many applications, the number
k of clusters is usually not known a priori. Several k values could be used and the one
providing the smallest value of error should be chosen. In this case, small k values
should be tried before. Indeed, the aim here is to compress data, and the smaller k is,
the more important the compression rate is. Very small k values can provide a very
good compression rate, but the error function (3.1) value in the optimal partition may
be high, meaning that a lot of information is lost during the compression. Therefore,
small k values can be tried at the start, and the k value can be increased until an
acceptable value for the error function is obtained. The error function (3.1) provides
indeed the total error occurring when all the samples of the set are substituted by
the centers of the clusters. The smaller the value of error is, the less information is
lost during compression. Once the data are compressed and stored as a sequence of
labels, they need to be decompressed to be used. The decoding algorithm associated
to the vector quantization is simply the algorithm which associates a sample (the old
centers in the encoding algorithm) with each label. The decoding process aims at

64 3 Clustering by k-means

restoring the original data. However, not all the information comes back as before.
All samples previously contained in one cluster are all represented by the center. The
error function (3.1) sums all the distances between the samples and the corresponding
center, and hence it provides the encoding/decoding distortion of a set of data, or
data file.

3.4 Fuzzy c-means clustering

In the k-means algorithm and in all its variants presented in Section 3.2, each sample
can belong to only one cluster. In this section we will analyze another variation of
the k-means algorithm in which samples can belong to more than one cluster. As
mentioned before, none of the variants on the k-means algorithm is in the list of the
top 10 algorithms for data mining [237]. However, in some application, the following
ideas might be helpful, and therefore we decided to present them in this section.

The standard k-means algorithm and its variants discussed in Section 3.2 perform
a crisp partition of a certain set of samples. The term “crisp’’ is used here to indicate
that each sample can belong to one and only one cluster per time. Fuzzy clustering
instead refers to methods and algorithms for partitioning data where a single sample
can belong to more than one cluster. In this case, a sample is assigned to a certain
cluster with a certain “membership.’’ The membership of a sample indicates the
degree to which the sample belongs to different clusters. If a sample is assigned to
a cluster with a full membership, then it belongs to that cluster only. However, one
sample may belong, for instance, to both clusters C1 and C2, simultaneously. The
cluster C1 might be more representative of the sample than the cluster C2. This is
considered by giving a different membership to the sample when it is considered as
belonging to C1 and C2. A larger membership of a sample when referring to a certain
cluster corresponds to a better representability of the sample in the cluster.

In the case of fuzzy clustering, the error function (3.1) becomes:

f (U, V ; X) =
c∑

j=1

n∑
i=1

(uji)
md(vj − xj (i)), (3.2)

where
U ≡ (uji), ∀j = 1, . . . , c; ∀i = 1, . . . , n

is the fuzzy partition matrix, and

V ≡ (vj), ∀j = 1, . . . , c

identifies all the centers of the clusters. The parameter m ∈ [1, ∞) controls the
fuzziness of the membership values. In the formulas, n represents the number of
data samples and c is the number of clusters in which the data are partitioned. As in
the crisp case, the generic cluster is denoted by the symbol Sj , and n(Sj) refers to

3.4 Fuzzy c-means clustering 65

the number of samples assigned to the generic cluster. In the case of fuzzy clustering,
the sum

c∑
j=1

n(Sj)

can be greater than the total number n of samples. If the sum equals n, then the
partition is actually a crisp partition.

The general element uji of the fuzzy partition matrix U belongs to the interval
[0, 1] and represents the membership degree of the sample xj (i) in the cluster Sj .
The matrix U is constrained such that

c∑
j=1

uji = 1, ∀i = 1, 2, . . . , n,

and

0 <

n∑
i=1

uji < n, ∀j = 1, 2, . . . , c.

The first constraint indicates that the sum of the elements on the same column of
matrix U must be equal to 1. On the same column of U there are elements pertaining
to the same sample xj (i), in particular there is the membership of the same sample on
the different clusters. The constraint forces therefore the sum of all the memberships
pertaining to the same sample to be equal to 1. In this way, the memberships of
the same sample can be seen in terms of percentages. The second constraint forces
instead the sum of the elements on the same row of matrix U to be in the open interval
(0, n), where n is the total number of samples. On the same row there are elements
pertaining to the same cluster Sj , and the constraint indicates that the sum of all the
membership values in the same cluster cannot be less than or equal to 0, or greater
or equal to n. Indeed, if it were 0, the cluster Sj would be empty, and, as previously
mentioned, empty clusters need to be avoided. Moreover, if it were n, the cluster
Sj would have all the samples with full membership. This must be avoided as well,
since the partition would correspond to one cluster only containing the whole data.
Sum values smaller than 0 or greater than n make no sense.

A fuzzy partition matrix related to a crisp clustering would be like(
1 1 1 0 0 1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 1 1 1 1 1

)
.

This matrix satisfies the constraints showed above, and, in particular, the sum on
each column is always 1 because one of its elements is 1 while the other one is
0. This means that each sample has a full membership in the first class or the full
membership in the second one. A hypothetical matrix(

1 1 1 1/4 0 0 1 3/4 1/4 0 0 0 0
0 0 0 3/4 1 1 0 1/4 3/4 1 1 1 1

)

66 3 Clustering by k-means

corresponds to a fuzzy partition, where three points belong to two clusters, but with
different degrees of membership.

The most popular and effective method for fuzzy clustering alternates between
the optimization of function (3.2) over U with fixed V and over V with fixed U . At
each step, the new centers are computed by

vj =

n∑
i=1

(
uji

)m
xj(i)

n∑
i=1

(
uji

)m
by using the U values obtained during the previous step. Then, the fuzzy matrix U

is updated by using the V values just computed:

uji =
⎡
⎣ c∑

p=1

(
||xj (i) − vj ||2
||xj (i) − vp||2

) 2
m−1
⎤
⎦

−1

.

The fuzzy c-means algorithm stops when the difference in norm between two con-
secutive matrices V is less than a certain tolerance ε > 0.

As for the k-means algorithms, fuzzy c-means clustering algorithm is an optimiza-
tion algorithm. Its convergence depends heavily on the choice of the initial values
such as the starting partition in clusters and the starting degrees of membership. As
discussed before, the k-means algorithm and its variants should be carried out sev-
eral times using different initial parameters. The best solution obtained after a certain
number of trials can then be chosen. However, choosing good initial parameters is
not an easy task, in the case of fuzzy clustering. In [212], for instance, an algorithm
that can automatically and adaptively select these parameters with optimal values is
proposed.

The fuzzy algorithm can be very sensitive to noise and to outliers. For overcoming
these two problems, Hathaway et al. [104] tried to use Lp norms for computing
distances between samples and between a sample and the centers of the clusters.
After bench-marking the algorithm using different p values, they concluded that the
best results can be obtained for p = 1 or p = 2, and that p = 1 should be chosen
when the data are affected by noise and if there are outliers. The weighting exponent
m also plays a crucial rule, and it has been studied in [181].

The features used for representing the data are usually expressed by numerical
values. Such values can be sometimes not completely known, or, in other words,
some of the data can be incomplete. The fuzzy algorithm is able to deal with parti-
tion problems where the set of data is incomplete. In [105], for instance, different
strategies have been considered. If the proportion of incomplete data is small, then it
may be useful to simply delete all the incomplete data and apply the fuzzy algorithm
to the remaining “complete’’ data. This strategy allows working on the known data,
but it does not provide any information on the missing ones. As an alternative strat-

3.5 Applications 67

egy, the fuzzy algorithm can be applied using a distance which does not consider
the missing data explicitly, but they are considered implicitly. Another way to take
them into account is to consider the missing data as additional variables. These vari-
ables are optimized during the execution of the fuzzy algorithm in order to obtain
the smallest possible value of the objective function (3.2). Numerical results suggest
that although the simple approach of deleting incomplete data works fine for small
percentages of missing data (less than 20%), the other approaches usually perform
better if a larger proportion of data are incomplete. For more details, refer to [105].

3.5 Applications

The k-means algorithm and all its variants, including the ones discussed in Section 3.2
and the fuzzy approach presented in Section 3.4, have been applied to a wide variety
of real-life problems. The k-means and fuzzy c-means algorithms are for instance
used for analyzing and categorizing gene expression data [9, 80, 245], in order to
analyze and presume the function of unknown genes. The k-means algorithm has
been applied to solve the problem of segmenting images with smooth surfaces [182];
the genetic k-means algorithm has been applied for compressing images [133]; the Y -
means algorithm has been developed for monitoring intrusions in computer systems
[94]; the fuzzy c-means algorithm has been applied for detecting crime hot-spots or
geographic areas of elevated criminal activity [93].

One of the classic applications of the k-means algorithm is text mining [61, 251].
Text mining generally refers to the process of deriving high-quality information from
texts. Nowadays, there is a growing amount of text documents, and many of them are
also available on the Internet. Text categorization is the text mining process aimed
at the classification of a set of text documents with a certain criterion. If the criterion
refers to the document topic, then text categorization techniques try to classify the
documents by their topic.

Let us suppose that documents related to agriculture and computer science need to
be categorized. The aim is to partition the documents in two clusters, one containing
only documents related to agriculture, and the other one containing only computer
science-related documents. Let us suppose that the topic of interest can be recognized
by words used in the text of the document. For instance, the word agriculture can
be used as a criterion for grouping documents in the first cluster, and two words
computer and science together can be used for grouping documents in the second
cluster. The k-means algorithm can be applied to this clustering problem. However,
the standard Euclidean distance cannot be used in this application, because the text
documents are not points in a Euclidean space. Therefore, another kind of distance
needs to be used. It is defined as follows. Let T1 and T2 be two text documents. If
the word agriculture is used as criterion, the similarity between T1 and T2 can be
measured as the difference between the number of recurrences of this word in T1
and in T2. If the word agriculture occurs 5 times in T1 and 50 times in T2, then
d(T1, T2) = 45.

68 3 Clustering by k-means

A distance function defined in this way is not very meaningful. Indeed, in the
previous example, the distance d(T1, T2) is 45: it is quite far from 0 and hence T1
and T2 are different. This may be true, if T1 is a computer science-related document,
and there is a small part of the document that deals with agriculture-related matters,
while T2 is agriculture-related. However, this distance value does not preclude the
possibility that T1 and T2 are both on agriculture. In such a case, the two documents
are similar and their relative distance should be smaller. For instance, T1 might be
a short text: shorter texts have fewer words in general, and in particular they may
contain less occurrences of the word agriculture. For this reason, this distance is not
a good measure of text similarities.

In general in text mining, the cosine similarity function is used. The samples
are normalized for overcoming the problem discussed above. The distance function
consists of the inner product between two vectors representing two samples. Since
the vectors are normalized, the inner product corresponds to the cosine of the angle
between them. If the samples are similar, the angle between the vectors is small and
then the cosine is close to 1. Inversely, the more different samples are, the wider
is the angle, and the smaller is the cosine value. The k-means algorithm applied to
text mining by using the cosine similarity function is also referred to as spherical
k-means.

In the field of agriculture, the k-means algorithm has been applied, for instance,
for

• Forecasting pollution in the atmosphere [123];
• Soil classifications using GPS-based technologies [233];
• Classification of plant, soil, and residue regions of interest by color images [165];
• Predicting wine fermentation problems [230];
• Grading apples before marketing [146];
• Monitoring water quality changes [132];
• Detecting weeds in precision agriculture [225].

In the next sections, two applications in agriculture are discussed in detail. The
problem of predicting the fermentation process of wine and classifying it as good or
bad is presented in Section 3.5.1. The problem of classifying apples on the basis of
their grade is discussed in Section 3.5.2.

3.5.1 Prediction of wine fermentation problem

Problems occurring during the fermentation process of wine can impact the pro-
ductivity of wine-related industries and also the quality of wine. The fermentation
process of wine can be too slow or it can even become stagnant. Predicting how good
the fermentation process is going to be may help enologists (wine specialists) who
can then take suitable steps to make corrections when necessary and to ensure that
the fermentation process concludes smoothly and successfully. In order to monitor
the wine fermentation process, metabolites such as glucose, fructose, organic acids,
glycerol and ethanol can be measured, and the data obtained during the entire fer-

3.5 Applications 69

mentation process can be analyzed in order to obtain useful information [229]. Data
mining techniques can help extract this information from large databases, which may
be able to predict the fermentation process. In the work which is the focus of this
section, a k-means algorithm has been applied for exploring data accumulated from
measurements sampled regularly of 24 industrial vinifications of cabernet sauvignon
[230]. Data measured during the first three days of fermentation has been compared
to those obtained during the whole fermentation process. Information on the behav-
ior of the fermentation during the first three days can provide important clues about
the final classification.

The data come from a winery in Chile’s Maipo Valley, and they are related to
the 2002 harvest. Between 30 and 35 samples are taken per fermentation depending
on the duration of a vinification. The levels of 29 compounds are analyzed. Among
them, sugars are analyzed, such as glucose and fructose, organic acids, such as the
lactic and citric acids, nitrogen sources, such as alanine, arginine, leucine, etc., and
alcohols. The whole set of data consists in approximately 22,000 data points. The
used compounds are actually 28, since taking glucose and fructose as a single variable
(sugar) is the same as considering the two sugars as independent variables. Four sets
of data are defined in order to perform the analysis. Datasets A and B just consider 8
variables, including “sugar,’’ alcohols and organic acids, whereas datasets E and F

include all 28 components. The data contained in datasets A and E are related to the
first three days of fermentation, whereas datasets B and F are related to data measured
during the whole fermentation process. Figure 3.14 shows a graphic representation
of the considered databases.

Fig. 3.14 A graphic representation of the compounds considered in datasets A, B, E and F . A and
E are related to data measured within the three days that the fermentation started; B and F are
related to data measured during the whole fermentation process.

70 3 Clustering by k-means

These datasets have been reduced by applying a principal component analysis
(PCA) before the k-means algorithm is applied [163]. PCA is able to reduce the
dimension of a set of data, as discussed in Section 2.1. The k-means algorithm has
then been applied with the aim of classifying fermentations using data from the first
three days.

To establish if it is possible to classify fermentations early, results from applying k-
means to samples from the first three days, datasets A and E, are compared with those
in datasets B and F , where the whole set of data is contained. A and B showed similar
cluster patterns that are essentially sugar concentration-linked. Additionally, around
80% of fermentations with datasets E and F are clustered similarly. Consequently,
these classification results show that information contained in data taken during
the first three days of fermentation (datasets A and E) are sufficient to classify
fermentations early. For this reason, the following analysis considers datasets A and
E only.

In these studies, the samples of datasets A and E are partitioned into 5 clusters,
arbitrarily named as five colors: the blue (B), red (R), pink (P), brown (Br) and green
(G) clusters. The k-means algorithm is applied to classify the samples, by using
k = 5 and considering the data related to a certain time t smaller than 3 days. Due in
large part to the time-variable nature of the fermentation process, the algorithm often
partitions the data in different ways for different times t . Some of the fermentations
are then assigned to more than one cluster for different t . Twenty-four fermentations
are considered and there are 15 of them with fermentation problems, due to slow
fermentation processes or to processes getting stuck. When the dataset A is used,
only one fermentation process is always assigned to the same cluster, whereas all the
others are assigned to two or three different clusters. When the dataset E is instead
used, three fermentations are always found in the same cluster, whereas all the others
are assigned to two or three clusters. The 5 clusters are then grouped, in order to put
in evidence the properties of the fermentations belonging to more than one cluster.

Groups of clusters containing from one to three clusters have been obtained.
On the base of the fermentation processes found in them, a percentage of problem
fermentation is assigned to each of them. For instance, when using dataset A, three
fermentation processes are assigned to the group containing the red (R) and pink
(P) clusters. Two of them are good fermentation processes, while the third one is
related to a sluggish and stuck fermentation. For this reason, each fermentation
process classified in this same group has the 33% possibility to be bad, and the 67%
probability to be good. Other groups just contain good or bad fermentation processes,
and hence any other process found in the same group should be 100% good or 100%
bad. Figure 3.15 shows more details about the classification of the fermentations in
clusters and groups, and therefore it also shows how another unknown fermentation
can be considered on the basis of these classifications. In these studies, the bad
fermentations are the ones in which there is a high residual sugar content, which
will probably not finish properly, and the ones that take more than 13 days. Among
the fermentation processes used in the analysis, 9 of them are good, 10 are sluggish,
because they require more than 13 days, 3 of them get stuck, because the final sugar
content is too high, and finally 2 of them are both sluggish and stuck.

3.5 Applications 71

Fig. 3.15 Classification of wine fermentations by using the k-means algorithm with k = 5 and by
grouping the clusters in 13 groups. In this analysis the dataset A is used.

The previous results have been obtained by using the dataset A. When the dataset
E is instead used, the nitrogen compounds are also considered. Nitrogen deficiency
is widely reported to be an important factor in problem wine-making fermentations.
The clustering process in which nitrogen compounds are also included produced 12
groupings. Five groupings contain just problem fermentations, other five groupings
contain only normal fermentations, and the remaining two groups only provide a
percentage for the fermentation to be good or bad. It seems that dataset E does not
provide any additional information.

3.5.2 Grading method of apples

Machine vision offers a great potential to extract and identify target features, based
on color, shape, etc., of fruits, soil, etc. Fresh market fruits like apples are graded
into quality categories according to their size, color and shape and the presence of
defects. This process can be performed by humans, but it is expensive, repetitive
and therefore it cannot be considered reliable. For this reason, the interest in creating
machines able to classify fruits on the basis of their grading has created interest in the
research community. These machines are able to acquire images of the fruit, analyze
and interpret images, and finally classify the fruit. The main issue that needs to be
addressed is to find a reliable way to identify the fruit defects.

In [146], a real-time grading method for classifying apples is proposed. The first
step consists in acquiring images of the surface of the apples. In order to successfully
grade the fruits, two requirements must be addressed: the images must cover the
whole surface of the fruit, and a high contrast must be created between the defects

72 3 Clustering by k-means

and the healthy tissue. There are machines able to take pictures of the fruits while
they are passing through them. Usually, fruits are placed on rollers which make the
apples rotate on themselves and the pictures are taken from a camera located above.
In this case, the parts of the fruit close to the points where the rotation axis crosses its
surface may not be observed. Hence, if some defect is there, it may not be identified,
but this problem can be overcome by placing mirrors on each side of the rollers.
More complex systems have also been developed, in which fruits are free to move
on ropes while three cameras take pictures from different places, or where robot
arms are used to manipulate the fruit. The system which uses robot arms was able
to observe 80% of the fruit surface with four images, but it is quite slow, since it
takes about 1 second for analyzing 4 fruits. Another important issue is the lighting
system used. Commonly the images are monochrome images, but they can also be
color images.

After the image (or images) has been acquired from an apple, the segmentation
process must be applied. The result of an image segmentation is the division of such
image in many regions, related for instance to different gray levels, that represent the
background, the healthy tissue of the fruit, the calyx, the stem and possible defects.
The contrast between the fruit and the background should be high to simplify the
localization of the apple, even though calyx, stem ends and defects may have the same
color of the image background. The hard task is how to separate the defects from the
healthy tissue, the calyx and the stem. On monochrome images, the apple appears in
light gray, the mean luminance of the fruit varies with its color and decreases from
the center of the fruit to the boundaries [241, 243]. Defects are usually darker than
the other regions, but their size and their shape can vary strongly.

Supervised or unsupervised techniques can be used to segment the obtained im-
ages.As it has been pointed out in Chapter 1, supervised techniques tend to reproduce
a pre-existent classification or segmentation, whereas unsupervised techniques pro-
duce a segmentation on their own. For instance, in [177], neural networks have been
used (see Chapter 5) for classifying pixels into six classes including a class represent-
ing the fruit defect. The work which is the focus of this section is instead based on a
k-means approach, which is an unsupervised technique, since it is able to partition
the data without having any previous knowledge about them.

This approach is different from the others because it manages several images
representing the whole surface of the apple at the same time. In previous works,
indeed, each image taken from the same fruit was treated separately and the fruit
was classified according to the worst result of the set of representative images. The
method discussed here combines instead the data extracted from the different images
of a fruit moving on a machine in order to dispose information related to the whole
surface of the fruit. The method is applied on Jonagold apples characterized by green
(ground color) and red (blush) colors.

Images representing different regions of the fruit are analyzed and segmented
as described in [144]. The regions issued from the segmentation process including
the defects, over-segmentation and calyx and stem ends are called blobs. These
regions are characterized by using color (or gray scale), position, shape and texture
features. In total, 15 parameters are considered for characterizing a blob, five for

3.6 Experiments in MATLAB 73

the color, four for the shape, five for the texture and only one for the position. The
k-means algorithm, the blob and fruit discriminant analysis are made off-line by the
program, whereas the blobs and afterwards the fruits can be graded in-line by using
the parameters of the discriminant analysis [145].

Once the clusters have been defined, apples are classified with a global correct
classification rate of 73%. These results have been obtained by using a set containing
100 apples, i.e., 100 apples have been partitioned for obtaining the set of clusters
successively used for classifying other unknown apples.

3.6 Experiments in MATLAB

In this section we will present some programs written in MATLAB for performing
some of the algorithms we discussed in this chapter. In Appendix A there is a descrip-
tion of the MATLAB environment and of its potentialities. The k-means algorithm
will be carried out on a set of randomly generated samples. We will also write a
MATLAB function for visualizing the clusters that the k-means algorithm can locate
in the random set. After the presentation of each code, we will discuss it in a very
detailed way, in order to give to the reader the possibility to work and modify such
codes for his personal purposes. Initially, simple examples will be introduced, but
they can anyway show the difference between the theory and the practical work of
a programmer. Interested readers can find exercises at the end of this chapter.

In order to apply the k-means algorithm to a set of data for partitioning it in clusters,
a MATLAB function which generates such set of data is needed. Figure 3.16 shows a
short code for generating points in a two-dimensional space. The function generate

has two input parameters. The first one is the number of samples n. The second one
is a real variable eps which can be used for separating the samples with a certain
margin. In practice, the algorithm generates about 50% of the samples having a
negative x value, and about 50% of the samples with a positive x value. If eps is
greater than 0, then all the samples will have at least distance eps from the y axis and
the double of eps from any other sample on the other side. The output parameters of
this function are x and y, which will contain, respectively, the x and y coordinates
of the generated samples. The function consists of a simple for loop on the number
n of samples to generate, and at each step it decides whether to generate a sample
on the left or the right of line x = 0 by using a random mechanism. The built-in
function rand in MATLAB generates a uniform random real number in the interval
(0, 1), and hence there is exactly 50% probability that this number is in (0, 1

2] or in
[1

2 , 1). The y coordinates are generated with values in the interval (−1, 1). When
eps is zero, the x coordinates belong to the same interval, and it increases as eps
becomes larger. In Figure 3.17 a set of randomly generated points is shown. The
parameters used for generating this set of data are n = 100 and eps = 0.2. The
points are then simply plotted by the MATLAB function plot. Another execution of
this function would generate a different set of data, because it is based on a random
number generator.

74 3 Clustering by k-means

%
% this function generates a random sets of data
% in the two-dimensional space;
%
% input:
% n - number of random samples to be generated
% eps - predefined margin between samples separated by the line x = 0
%
% output:
% x - x coordinates of the samples
% y - y coordinates of the samples
%
% [x,y] = generate(n,eps)

function [x,y] = generate(n,eps)

for i = 1:n,
random = rand();
if random < 0.50,
x(i) = -eps - rand();

else
x(i) = eps + rand();

end
y(i) = 2.0*rand() - 1.0;

end

end

Fig. 3.16 The MATLAB function generate.

Before starting working on the k-means algorithm, let us work on one of its sub-
problems. k-means is based on the distances between the samples and the centers of
the clusters. One of the tasks to be carried out during the algorithm is the computa-
tion of the new centers. This task is required many times, and precisely every time a
sample migrates from a cluster to another. In Figure 3.18 the function centers for

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.17 Points generated by the MATLAB function generate.

3.6 Experiments in MATLAB 75

%
% this function computes the centers of k classes or clusters
%
% samples (x,y) are in the two-dimensional space
%
% input:
% n - number of samples
% x - x coordinates of the samples
% y - y coordinates of the samples
% k - number of classes
% class - classes to which each sample belongs
%
% output:
% cx - x coordinates of the k centers
% cy - y coordinates of the k centers
%
% [cx,cy] = centers(n,x,y,k,class)

function [cx,cy] = centers(n,x,y,k,class)

% initializations

for j = 1:k,
cn(j) = 0;
cx(j) = 0.0; cy(j) = 0.0;

end

% summing the coordinates of the points in the same class

for i = 1:n,
cn(class(i)) = cn(class(i)) + 1;
cx(class(i)) = cx(class(i)) + x(i);
cy(class(i)) = cy(class(i)) + y(i);

end

% computing the centers

for j = 1:k,
if cn(j) ˜= 0,
cx(j) = cx(j)/cn(j); cy(j) = cy(j)/cn(j);

else
cx(j) = 0.0; cy(j) = 0.0;

end
end

end

Fig. 3.18 The MATLAB function centers.

the computation of the centers of the clusters is presented. This function has 5 input
parameters: n is the number of points contained in the set of data to be partitioned; x
is the vector containing all the x coordinates of such points in the two-dimensional
space; y contains the y coordinates; k is the number of clusters in which the data
must be partitioned; class is a vector containing the cluster or class code of the
corresponding point in x and y. If k is 2, the first class is simply coded by 1 and
the second one by 2. The output of the function consists of two vectors cx and cy

containing, respectively, the x and y coordinates of the centers.
First of all, the algorithm initializes the needed variables, including the ones in

which the centers will be stored. cn is a vector with the same length as cx and cy in
which the number of samples belonging to one class or another is counted. This is

76 3 Clustering by k-means

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.19 The center (marked by a circle) of the set of points generated bygenerate and computed
by centers.

needed because in the second for loop, sums of x and y components are accumulated
cluster by cluster and they need to be divided by the corresponding cn for obtaining
the average value. It might happen that some cluster does not have any sample, and
in this case the corresponding values in cx and cy would be both 0, as well as the cn
value. This situation must be treated as a particular case, because there is a division by
cn, and so cn cannot be zero. The function centers simply returns (0, 0) as center of
the cluster when it is empty. This does not cause any problems on the convergence of
the k-means algorithm. In Figure 3.19 the center of the whole set of data previously
generated is shown. By using the MATLAB plot function, it is possible to change
the color and the symbols used for marking points. The function centers has been
used with k set to 1 and the vector class containing all the elements equal to 1.

The function kmeans is an implementation in MATLAB of the k-means algorithm
(see Figure 3.20). Its input parameters are the number n of points in the set, the x

and y coordinates of the samples and the number k of clusters in which these data
have to be partitioned. The output parameter is a vector containing the code of the
cluster for each point. These codes are numbers from 1 to k. At the start, points
are randomly assigned to one of the clusters, using random generated numbers. As
mentioned earlier, the MATLAB function rand generates a random real number in
the interval (0, 1). If this number is multiplied k times by itself then it becomes a real
number in (0, k), and its integer part is one of the natural numbers between 0 and
k − 1. This number increased by 1 is therefore a random integer number between 1
and k, and it can be used to randomly assign a point to one of the k clusters. Note
that the function int16 is used for extracting the integer part of a real number.

As shown in Section 3.1, the k-means algorithm consists of a main while loop
which terminates when the centers cannot be rearranged any longer. In the function,
this is controlled by the variable stable, which assumes value 1 when the centers

3.6 Experiments in MATLAB 77

%
% this function performs a k-means algorithm
% on a two-dimensional set of data
%
% input:
% n - number of samples
% x - x coordinates of the samples
% y - y coordinates of the samples
% k - number of classes
%
% output:
% class - classes to which each sample belongs
%
% [class] = kmeans(n,x,y,k)

function [class] = kmeans(n,x,y,k)

% initializing the clusters

for i = 1:n,
class(i) = int16(k*rand());
if class(i) == 0,

class(i) = k;
end

end

% computing the cluster centers

[cx,cy] = centers(n,x,y,k,class);
for j = 1:k,

cxnew(j) = cx(j); cynew(j) = cy(j);
end

stable = 1; % unstable

while stable == 1,

% computing the distances between samples (x,y) and centers (cx,cy)
for i = 1:n,

mindist = 10.e+100;
minindex = 0;
for j = 1:k,

dist = (x(i) - cxnew(j))ˆ2 + (y(i) - cynew(j))ˆ2;
dist = sqrt(dist);
if dist < mindist,

mindist = dist;
minindex = j;

end
end
% changing cluster
class(i) = minindex;
[cxnew,cynew] = centers(n,x,y,k,class);

end

% checking the algorithm convergence
stable = 0;
for j = 1:k,

if abs(cxnew(j) - cx(j)) > 1.e-6 | abs(cynew(j) - cy(j)) > 1.e-6,
stable = 1;

end
end

% preparing for the next iteration
for j = 1:k,

cx(j) = cxnew(j); cy(j) = cynew(j);
end

end % while

end

Fig. 3.20 The MATLAB function kmeans.

78 3 Clustering by k-means

are not stable and 0 otherwise. The for loop on i is performed for each sample. Once
a sample has been fixed, its distance from every center is computed and at the same
time the smallest distance and the corresponding center are located. In the algorithm,
mindist contains the value of the minimum distance between the sample and the
centers. It is initialized with a huge number that is soon substituted with the first
computed distance. minindex contains instead the code of the cluster whose center
has distance mindist from the prefixed sample. In the for loop on j, a distance is
computed and mindist and minindex are updated if the new distance is smaller
than the previous one already computed. After the for on j, the variable minindex
contains the code of the center which is closer to the predetermined sample. Then,
class is updated with this code. After that, all the clusters are recomputed by the
function centers and the algorithm starts working on another sample.

When all the samples have been processed, the current centers need to be compared
to the previous ones. If this is the first iteration of the algorithm, the new centers will
be compared to the centers of the clusters randomly generated at the start of the
algorithm. The convergence of the centers is checked through the variable stable.
In the algorithm, it is set to 0 (which means that the centers did not change) and
then it is eventually reset to 1 if at least one condition in the if construct is verified.
Such conditions are verified when the difference between the centers on their x or
y coordinates is greater than 10−6. Before the algorithm starts another iteration, the
variables cx and cy are updated with the new centers of the clusters.

This function is able to partition the set of points previously generated in two
clusters, where one cluster contains all the points on the left of the y axis and the
other cluster contains all the points on the right of the y axis. In order to view these
results on a figure, let us consider the MATLAB function in Figure 3.21. The function
plotp displays the points in the set by using different symbols and different colors
for each cluster. It receives as input parameters the number of points to display, the
x and y coordinates of such points, and the code of the cluster to which they belong.
For our purposes, a function distinguishing among no more than 6 clusters or classes
is sufficient. The function can be easily improved by adding other colors and/or other
symbols for other classes. In Figure 3.22 the partition found by function kmeans is
shown.

When the set of points is generated, the eps variable in the function generate is
set to 0.2. This means that points at the left of the y axis and points on the right of the
axis have a relative distance equal to or greater than two times eps. This helped the
k-means algorithm in re-finding this pattern with which the data have been generated.
However, if eps gets smaller, then it may be more difficult for the algorithm to find
a set of clusters that partition the data in the same way. In Figure 3.23 and Figure
3.24 more executions of the k-means algorithm have been performed using different
sets of points. Such sets have been generated by using the same function generate

but with decreasing eps values. The algorithm is able to correctly find the partition
in points generated by the function generate when eps = 0.10 and eps = 0.05
(Figure 3.23). Finally, when eps is set to 0.02 or 0, the algorithm cannot identify any
pattern and randomly divides the set in two balanced parts. These last two examples
are shown in Figure 3.24.

3.6 Experiments in MATLAB 79

%
% this function plots the n samples in (x,y) by using different colors
% for visualizing their belonging to different classes
%
% note that no more than 6 colors are used
%
% input:
% n - number of samples
% x - x coordinates of the samples
% y - y coordinates of the samples
% class - classes to which each sample belongs
%
% plotp(n,x,y,class)

function plotp(n,x,y,class)

hold on

for i = 1:n,
if class(i) == 1, col = ’r*’; % red/star
elseif class(i) == 2, col = ’b+’; % blue/plus
elseif class(i) == 3, col = ’kx’; % black/x-mark
elseif class(i) == 4, col = ’ms’; % magenta/square
elseif class(i) == 5, col = ’gp’; % green/pentagran
else col = ’yd’; % yellow/diamond

end

plot(x(i),y(i),col,’MarkerSize’,16)

end

end

Fig. 3.21 The MATLAB function plotp.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.22 The partition in clusters obtained by the function kmeans and displayed by the function
plotp.

80 3 Clustering by k-means

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.23 Different partitions in clusters obtained by the function kmeans. The set of points is
generated with different eps values. (a) eps = 0.10, (b) eps = 0.05.

3.7 Exercises

In this section some exercises regarding the data mining technique discussed in this
chapter are presented. Some of the exercises require programming in MATLAB. All
the solutions are reported in Chapter 10.

1. Consider 6 samples in a two-dimensional space:

(−1, −1), (−1, 1), (1, −1), (1, 1), (7, 8), (8, 7).

3.7 Exercises 81

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.24 Different partitions in clusters obtained by the function kmeans. The set of points is
generated with different eps values. (a) eps = 0.02, (b) eps = 0.

Assuming that the 1st , 3rd and 5th samples are initially assigned to cluster 1,
and that the 2nd , 4th and 6th samples are assigned to cluster 2, run the Lloyd’s
algorithm or the k-means algorithm.

2. Consider 7 samples in a two-dimensional space:

(1, 0), (1, 2), (2, 0), (0, 1), (1, −3), (2, 3), (3, 3).

Assuming that the 1st , 3rd , 5th and 7th samples are initially assigned to cluster 1,
and that the 2nd , 4th and 6th samples are assigned to cluster 2, run the k-means
algorithm.

82 3 Clustering by k-means

3. Run the h-means algorithm on the set of samples described in Exercise 1. Observe
the obtained results.

4. Provide an example in which the k-means algorithm can find 4 different partitions
in clusters corresponding to the same error function value (3.1).

5. Give an example of 8 points on a Cartesian plane that can be partitioned by k-
means in 2 different ways that correspond to the same error function value (3.1).

6. Consider the 7 samples described in Exercise 1. Suppose that the samples have
to be partitioned into 3 clusters. Assume that the samples are currently assigned
to cluster 1 and 2 as described in Exercise 1, while cluster 3 is empty. Apply the
k-means+ algorithm.

7. Using the same set of samples and the same initial conditions of Exercise 6,
apply the h-means+ algorithm and compare the solution to the one obtained in
the previous exercise.

8. By using the MATLAB function plotp, build a figure in which the points de-
scribed in Exercise 1 are drawn with two different symbols showing how they are
partitioned. Use the partition in clusters found in Exercise 1.

9. Starting from the MATLAB function kmeans presented in Section 3.6 (Figure
3.20), write the function hmeans which implements the h-means algorithm.

10. Prove that the sum of squares of distances from the samples of a class to its center
is equal to the sum of squares of all pairwise distances between the samples in
the class divided by the number of samples in the class:

∑
j∈Si

||xj − cj ||2 = 1

|Si |
∑
j1∈Si

∑
j2∈Si ,j2>j1

||xj1 − xj2 ||2.

Chapter 4
k-Nearest Neighbor Classification

4.1 A simple classification rule

The k-nearest neighbor (k-NN) method is one of the data mining techniques consid-
ered to be among the top 10 techniques for data mining [237]. The k-NN method
uses the well-known principle of Cicero pares cum paribus facillime congregantur
(birds of a feather flock together or literally equals with equals easily associate). It
tries to classify an unknown sample based on the known classification of its neigh-
bors. Let us suppose that a set of samples with known classification is available, the
so-called training set. Intuitively, each sample should be classified similarly to its
surrounding samples. Therefore, if the classification of a sample is unknown, then it
could be predicted by considering the classification of its nearest neighbor samples.
Given an unknown sample and a training set, all the distances between the unknown
sample and all the samples in the training set can be computed. The distance with the
smallest value corresponds to the sample in the training set closest to the unknown
sample. Therefore, the unknown sample may be classified based on the classification
of this nearest neighbor.

However, in general, this classification rule can be weak, because it is based on
one known sample only. It can be accurate if the unknown sample is surrounded by
several known samples having the same classification. Instead, if the surrounding
samples have different classifications, as for example when the unknown sample is
located amongst samples belonging to two different classes (and hence with differ-
ent classifications), then the accuracy of the classification may decrease. In order to
increase the level of accuracy, then, all the surrounding samples should be consid-
ered and the unknown sample should then be classified accordingly. In general, the
classification rule based on this idea simply assigns to any unclassified sample the
class containing most of its k nearest neighbors [42]. This is the reason why this
data mining technique is referred to as the k-NN (k-nearest neighbors). If only one
sample in the training set is used for the classification, then the 1-NN rule is applied.

Figure 4.1 shows the k-NN decision rule for k = 1 and k = 4 for a set of samples
divided into 2 classes. In Figure 4.1(a), an unknown sample is classified by using

© Springer Science + Business Media, LLC 2009

A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34, 83
DOI: 10.1007/978-0-387-88615-2_4,

84 4 k-Nearest Neighbor Classification

Fig. 4.1 (a) The 1-NN decision rule: the point ? is assigned to the class on the left; (b) the k-NN
decision rule, with k = 4: the point ? is assigned to the class on the left as well.

only one known sample; in Figure 4.1(b) more than one known sample is used. In the
last case, the parameter k is set to 4, so that the closest four samples are considered
for classifying the unknown one. Three of them belong to the same class, whereas
only one belongs to the other class. In both cases, the unknown sample is classified as
belonging to the class on the left. Figure 4.2 provides a sketch of the k-NN algorithm.

The distance function plays a crucial role in the success of the classification, as is
the case in many data mining techniques. Indeed, the most desirable distance function
is the one for which a smaller distance among samples implies a greater likelihood
for samples to belong to the same class. The choice of this function may not be trivial.
Another important factor is the choice of the value for the parameter k. This is the
main parameter of the method, since it represents the number of nearest neighbors
considered for classifying an unknown sample. Usually it is fixed beforehand, but
selecting an appropriate value for k may not be trivial. If k is too large, classes with
a great number of classified samples can overwhelm small ones and the results will
be biased. On the other hand, if k is too small, the advantage of using many samples
in the training set is not exploited. Usually, the k value is optimized by trials on
the training and validation sets (see Chapter 8). Moreover, assigning a classification
on the basis of the majority of the k “votes’’ of the nearest neighbors could not be
accurate in some particular cases. For example, if the nearest neighbors vary widely
in their distance, then an unknown sample may be classified considering samples

for all the unknown samples UnSample(i)

for all the known samples Sample(j)

compute the distance between UnSamples(i) and Sample(j)

end for
find the k smallest distances

locate the corresponding samples Sample(j1),..,Sample(jk)

assign UnSample(i) to the class which appears more frequently

end for

Fig. 4.2 The k-NN algorithm.

4.2 Reducing the training set 85

that are located far from it. Therefore, a more sophisticated approach could be to
weight the vote of each sample by its distance, so that the closest samples have more
importance during the classification. The two applications discussed in Section 4.4.1
and 4.4.2 use this approach.

The k-NN method is said to be a lazy classifier [237], because it actually does not
generate a classifier from the data in a training set, but it rather exploits the training set
every time a classification needs to be performed. This makes the method easier, but
computationally expensive. The main computational cost is due to the computation
of the distances between known and unknown samples. This task can be expensive
if the training set or the number of unknown samples is large. Therefore, the next
section introduces several strategies for reducing the size of the training set while
keeping the accuracy of the classification as high as possible.

4.2 Reducing the training set

As described in the previous section, the k-NN algorithm searches the k-nearest
neighbors of an unknown sample computing all the distances between the unclassified
sample and the samples in the training set. Therefore, if the training set is large, or
the number of samples to classify is large, then the computational complexity may
impact the performance of the algorithm.

In [102], a condensed nearest neighbor (CNN) rule has been introduced with the
goal of reducing the computational effort needed for carrying the algorithm out. Let
TNN be the available training set. Instead of using TNN , one of its subsets, TCNN , may
be used. IfTCNN is able to correctly classify every sample in the setTNN−TCNN , then
it is referred to as a consistent subset of TNN . A sample is correctly classified when
k-NN is able to reassign to it the correct classification using its nearest neighbors.
When this is verified, the correctly classified sample is discarded. If k-NN provides
a wrong classification when it tries to classify a sample, then the sample will be
incorrectly classified. In this case, the sample cannot be discarded and it remains
in the training set. A minimal consistent subset is a consistent subset containing the
minimum possible number of samples.

The algorithm for obtaining TCNN can be summarized as follows. Two sets of
samples X and Y , initially empty, are defined. Then a random sample from TNN is
placed in X. For each sample in TNN −X, the k-NN rule is applied for classifying it
and using X as the training set. All samples which are correctly classified are placed
in Y , whereas the ones that are incorrectly classified are placed in X. The set X can
change at each iteration, and in particular it becomes bigger every time a sample
is incorrectly classified. After this first phase in which the starting set TNN is used,
the algorithm starts considering samples stored in Y . Iteratively, each sample in Y

is classified using X as the training set and the current sample is moved to X if the
classification is incorrect. The algorithm can stop only when Y is empty or when
no samples are moved from Y to X after an entire loop on Y . The final samples
contained in X are used as reference samples: TCNN = X. If Y is empty at the end

86 4 k-Nearest Neighbor Classification

X = ∅, Y = ∅
copy the first sample from TNN to X

for all the samples Sample(i) in TNN − X

classify Sample(i) by using X as training set

if (Sample(i) is correctly classified)

copy Sample(i) in Y

else
copy Sample(i) in X

end if
end for
repeat

nmoves = 0

for all the samples Sample(i) in Y

classify Sample(i) by using X as training set

if (Sample(i) is not correctly classified)

nmoves = nmoves + 1

move Sample(i) to X

end if
end for

until (Y = ∅ or nmoves = 0)

TCNN = X

Fig. 4.3 An algorithm for finding a consistent subset TCNN of TNN .

of the algorithm, then X is equal to the whole set TNN . A sketch of this algorithm is
shown in Figure 4.3.

Figure 4.4 shows a training set in which samples are classified in four different
classes. Samples belonging to different classes are marked with different symbols.
The encircled samples are classified by using the k-NN rule, with k = 3. According
to the previous algorithm for finding a condensed training set, the samples that are
correctly classified can be discarded. For instance, the sampleAis correctly classified:
its three neighbors have the same classification. Sample B is classified in the wrong
way by k-NN. Two neighbors have classification � and only one has classification �.
Therefore B is classified as �, whereas its original classification was �. Sample C is
classified incorrectly as well. In this case, C is closest to a sample of its own class,
but the other two neighbors have classification +.

Fig. 4.4 Examples of correct and incorrect classification.

4.2 Reducing the training set 87

X = TNN, Y = ∅
for all the samples Sample(i) in X

move Sample(i) from X to Y

classify all the samples in Y by using X as training set

if (at least one sample is not correctly classified)

move Sample(i) from Y to X

end if
end for
TRNN = X

Fig. 4.5 An algorithm for finding a reduced subset TRNN of TNN .

In [81], a reduced nearest neighbor (RNN) rule is proposed. As the author points
out, this rule is able to reduce the training set TNN to a set TRNN which is smaller
than TCNN , which is the subset that can be obtained using the algorithm in Figure
4.3. Since TRNN is smaller than TCNN , it provides a more efficient way of reducing
the initial training set. The algorithm for obtaining TRNN is presented as follows.
X is set equal to TNN , whereas Y is empty. At each step of the algorithm, a sample
migrates from X to Y and all the samples in Y are classified using X as the training
set. If one of these samples is not correctly classified, then the sample just moved
from X to Y is reassigned back to X. The final set X will be considered as the reduced
training set TRNN . A sketch is given in Figure 4.5.

Over the years, many other variations on the algorithms presented above have been
proposed with the aim of finding the most efficient consistent subset of TNN . In the
following, we will present the main ideas behind proposed methods and algorithms
without providing many details. Interested readers may refer to the quoted references.
In [195], for example, the condensed rule is used coupled with other requirements,
in order to improve the quality of the obtained subset. In [90], the concept of mutual
nearest neighborhood and mutual neighborhood value are introduced and used for
selecting samples in a more effective way. Moreover, in [44], the training set is
iteratively reduced by merging the closest two samples. The closest pair of samples
is located in the training set at each step of the algorithm. They are then replaced by
another sample, which may simply be the average of the two deleted samples or their
weighted average. It is required that merged samples have the same classification.
The procedure stops when there are samples in TNN that are not correctly classified
using the obtained subset as training set.

More recently, a modified condensed nearest neighbor (MCNN) rule has been
proposed in [59]. At the start, the set X is empty and samples are added to it until it
becomes consistent.Actually, such samples can be either samples from the original set
TNN or samples computed from the ones in TNN . Therefore, the samples iteratively
added to X are called prototypes. At the first step of the algorithm, the set X has one
prototype per each class. The set Y contains all other samples not included in X. At
each step of the algorithm, all samples in Y are classified using X as training set.
Then, all incorrectly classified samples are considered and a representative prototype
for each class is determined and added to the set X. More than one method for finding
the representative prototypes can be used, and it may depend on the selected data

88 4 k-Nearest Neighbor Classification

representation. The easiest method computes the representative as the mean of all the
incorrectly classified samples. Once these representatives have been added to X and
Y is updated, the classification algorithm is carried out again on all the samples in
Y and using the enriched set X. Other representative prototypes are then generated
if incorrectly classified samples are found. The algorithm is repeated until all the
samples in the training set are classified correctly. This algorithm converges in a
finite time and the generated prototypes give 100% accuracy on the training set.
Another example of a recently proposed method for reducing the training set is the
fast condensed nearest neighbor (FCNN) method [6].

As pointed out in [236], strategies for decreasing the computational complexity
of the k-NN algorithms may impact the accuracy of the algorithm. In [236], two
strategies have been proposed that may be able to speed the algorithm up while the
accuracy does not decrease. The first strategy reduces the training set TNN as in the
previous cases, but using a different approach. The basic idea is that, if a large number
of classified samples are close to each other, then the number of classified samples in
the neighborhood of an unknown sample is usually greater than k. Therefore, some
of the classified samples can be discarded as they are not relevant to the classification
of the unknown sample. The other strategy dynamically reduces TNN by performing
a preprocessing phase on the training set. The L1 or L2 norm of a vector representing
a sample can be considered as a particular characteristic of that sample. The L1 norm
is the sum of all its components in absolute values:

||x||1 =
n∑

i=1

|xi |.

The L2 norm is the square root of the sum of the squares of the components of the
vector x:

||x||2 =
√√√√ n∑

i=1

(xi)2.

If x is an unknown sample and xi ∈ TNN , then x can be considered to be a distorted
variant of xi if

abs(||x|| − ||xi ||) < δ

where δ is a certain positive threshold and || · || is either the L1 norm or L2 norm. The
larger is δ, the more samples are considered similar to each other and precluded from
participating in the matching process. The choice of δ is important in such a strategy,
because a too small value may reject samples that are very close to an unknown
sample x, whereas large values of δ may make the preprocessing phase inefficient.

4.3 Speeding k-NN up

In the previous section we discussed different proposed strategies for reducing the
training sets which are used in the k-NN algorithm. Another way to speed the k-NN

4.4 Applications 89

algorithm up is to accelerate the matching algorithm. Since the computational cost is
due to the computation of distances, a quick method which is able to locate samples
close or far from each other would be very useful. The KD-tree method is one of the
well-known methods for accelerating k-NN [19].

This method works with the individual components of the vectors representing
the samples. If the samples closer to an unknown sample need to be identified, then
vectors having a set of components similar to the one the unknown sample has
are searched. This pre-process, applied before the distance function is used, can help
increase the speed of the algorithm, because only a subset of distances may be chosen
for the computation. However, as pointed out in [28], this method was more efficient
on problems of low dimension and with simple distance functions.

The template trees method [28] is more general than the KD-tree. The main
difference is that it directly works with distance functions rather than with the vector
components representing the samples. The template trees method is able to construct
large template trees that correctly identify all the samples in a training set. Since
it increases the speed of the k-NN algorithm, larger training sets can be used and
therefore this method is helpful even for increasing the classification accuracy.

A recent review of strategies for locating the nearest neighbors of a given sample
can be found in [4, 52]. Most of these strategies are based on suitable approximations
of such neighbors. When the 1-NN rule is applied, the aim is to find one sample in a
training set which is the closest to a given unknown sample. The triangle inequality
can be used for approximating the distances without computing them explicitly. As
it is well known, the triangle inequality allows one to define bounds on distance
values. Indeed, the sum of lengths of any two sides of a triangle is always greater
than the third side. Therefore, if d12 is the distance between x1 and x2 and d23 is the
distance between x2 and x3, then the distance d13 between x1 and x3 must be smaller
or equal to the sum d12 + d23. Moreover, an approximation of the known sample
can be for instance a sample in the training set whose distance from the unknown
one is at most a prefixed value R. There are many algorithms following these two
ideas for speeding the k-NN classification up, and many of them are reviewed in the
above quoted papers. In [52], moreover, general considerations on the metric space
in which the classification method is applied are provided.

4.4 Applications

The k-NN algorithm is one of the most popular algorithms for text categorization
or text mining. Some of the most recent works on this topic are for instance [14,
85, 95, 214, 227]. When working on a particular problem, and in this case in the
field of text mining, the standard algorithm for data mining can be tailored to the
particular problem to be solved. Just to quote an example, in [14], the k-NN algorithm
has been modified for solving text mining problems. Different numbers of nearest
neighbors are used for different classes in this approach, rather than a fixed number
across all classes. In this way, the only parameter that needs to be chosen by the user
when using k-NN, the k value, becomes less sensible and hence it does not need

90 4 k-Nearest Neighbor Classification

to be carefully chosen as in the standard algorithm. Indeed, the probability that an
unknown sample belongs to a class is computed by using only some top kn nearest
neighbors for that class. The kn value is derived from k according to the size of the
corresponding class in the training set. This modified k-NN was efficient and less
sensible to the k values when applied to text mining problems. The k-NN algorithm
has been also applied for analyzing micro-array gene expression data [149], where
the k-NN algorithm has been coupled with genetic algorithms, which are used as
a search tool. Other applications include the prediction of solvent accessibility in
protein molecules [216], the detection of intrusions in computer systems [150], and
the management of databases of moving objects such as computer with wireless
connections [16].

In general, k-NN is applied less than other data mining techniques in agriculture-
related fields. It has been applied, for instance, for simulating daily precipitations and
other weather variables [192]. Another interesting application is the evaluation of
forest inventories and for estimating forest variables [15, 108]. In these applications,
satellite imagery is used, with the aim of mapping the land cover and land use with few
discrete classes. In [97], the studied area includes Lake, Carlton, Cook, Koochiching,
Lake, and St. Louis counties in Northeast Minnesota. Figure 4.6 shows this study
area. The dots represent the samples that are taken in consideration. The white parts
represent clouds, where data have not been obtained.

The next sections present details of the use of the k-NN method in climate fore-
casting (Section 4.4.1) and for estimating soil water parameters (Section 4.4.2).

Fig. 4.6 The study area of the application of k-NN presented in [97]. The image is taken from the
quoted paper.

4.4 Applications 91

4.4.1 Climate forecasting

Knowing the weather a day or a week in advance is very important especially in
agriculture. Weather forecast can influence decisions, in order to avoid unwanted
situations or to take advantage of favorite weather conditions. The variability of the
climate is indeed one of the most important factors that seriously impacts agricultural
production. While TV channels or journals are able to provide quite accurate forecasts
of the weather in the next few days, it is still a big challenge forecasting the weather
conditions 3 to 6 months ahead of time. These are the kinds of time intervals to
deal with when working in agriculture. The uncertainty about the weather can be
devastating in agriculture, because farmers may not be prepared to face the weather
conditions that might occur. It can cause also poor productivity, because of the use
of conservative strategies that sacrifice productivity to reduce the risk of losses. If
the future weather conditions were known, this could be exploited for decreasing
unwanted impacts and for taking advantage of expected favorable conditions.

Most of the current climate forecasts are based on analysis on the El Niño-Southern
Oscillation (ENSO). This phenomenon is characterized by three phases: warm (El
Niño), neutral and cool (La Niña) phases. Even though the ENSO phenomenon
occurs within the tropical Pacific, it affects inter-annual weather variability across
much of the globe, and, in particular, it affects the climate of the southeastern USA.
In this region, lower winter temperatures with higher precipitations occurs during the
El Niño events, whereas La Niña events show the reverse of the climate anomalies
associated with the El Niño [87, 121].

In the studies presented in [117], a k-NN algorithm is used for the recalibration
of the precipitation outputs from the FSU-GSM (Florida State University Global
Spectral Model) and FSU-RSM (Florida State University Regional Spectral Model)
climate models. These climate models may not produce sufficiently accurate daily
weather variable outputs to use in crop models. For details on the FSU-GSM and
FSU-RSM, please refer to [39, 117].

The studies presented in [117] are related to 10 sites chosen in Florida and Georgia
(see Figure 4.7). They have been selected to represent increasing distances from the
Atlantic Ocean and the Gulf of Mexico. A set of monthly forecasts, from March to
August, related to the years from 1987 to 2003, with the exception of 2002, has been
used. The forecasts come from both FSU-GSM and FSU-RSM models. As pointed
out by the authors, all climatology models of the FSU-GSM are very accurate. For
instance, they can predict higher precipitation and excessive wet days. Even though
FSU-RSM has a higher resolution, it behaves almost the same, simulating only a
better average of the rainfall in March.

In order to recalibrate monthly rainfall forecasts, 10 combinations of the data
from FSU-GSM and FSU-RSM are used. In this way, results from both models are
taken into consideration. In the following, Rij refers to the forecast output obtained
by the FSU-RSM model and related to the ith month of the j th year. Similarly, Gij

refers to the forecasts obtained by the FSU-GSM model related to the ith month of
the j th year. Different combinations of Rij and Gij have been selected, as Figure 4.8
shows. Combinations number 1 and 8 just consider the output from the regional

92 4 k-Nearest Neighbor Classification

Fig. 4.7 The 10 validation sites in Florida and Georgia used to develop the raw climate model
forecasts using statistical correction methods.

and global model, respectively. Some combinations consider the outputs related to
all the months taken into account, and other combinations consider the current and
the neighboring months (as for instance combination number 6). In the following,
Pijq refers to the qth forecast output related to the ith month and j th year, for a
prefixed target combination. In general, q ∈ {1, 2, . . . , Q}, where Q refers to the
number of considered outputs in a given combination. For instance, Q = 3 when the
combination number 6 is used, because Ri−1j , Rij and Ri+1j are used in this case.

The objective is to find k neighboring years which have the forecasts closest to
those of a target year n. It is therefore assumed that the climate during a target year is

Counter Pij values
1 Rij

2 Rij , G1j

3 Rij , ∀j

4 G1j , Rij , ∀j

5 Rij , Gij , ∀j

6 Ri−1j , Rij , Ri+1j

7 Ri−1j , Rij , Ri+1j , G1j

8 Gij

9 Gij , ∀j

10 Gi−1j , Gij , Gi+1j

Fig. 4.8 The 10 target combinations of the outputs of FSU-GSM and FSU-RSM climate models.

4.4 Applications 93

a replication of the weather recorded in the past. Once a combination of the forecast
outputs has been chosen, the distances between target year and all the others can be
computed on the basis of the variables Pijq and Pinq , the first ones being related to
the j th year, and the second ones related to the target year n. The distance function
is defined as:

dij =

√√√√√ Q∑
q=1

(
Pijq − Pinq

)2
, ∀j �= n.

The k-NN algorithm has been applied for classifying the ith month of the target year
n on the base of the k closest dij distances. Then, the k neighboring years have been
sorted in ascending order, and the function j (r) has been defined for providing the
years in the correct order, and the weights of the k years have been defined as:

wr =
1

r
k∑

i=1

1

i

, (4.1)

where r ∈ {1, 2, . . . , k}. The corrected precipitation for month i in a target year n

has then been estimated as a weighted average of measured precipitations from the
same k analog years. If Oij(r) represents the precipitation during the ith month of the
j (r)th year, then the corrected precipitation is computed by the following formula:

Fin =
k∑

r=1

wrOij (r).

A considerable variability has been observed in the FSU-RSM predictions from
year to year, and this appears to be independent of variations in seasonal rainfall.
Negative correlations indicate that forecast rainfall is high when observed rainfall
is actually low and vice versa. The k-NN method was able to improve the accuracy
of the monthly precipitation forecasts across all sites. The best results in March
and April are obtained by FSU-GSM outputs, while FSU-RSM gives better results
for later months. This suggests that, in the predominantly flat topography of the
area under study, the corrected FSU-GSM output is able to closely mimic observed
rainfall in early season simulations.

4.4.2 Estimating soil water parameters

In recent years, several crop simulation systems have been developed. Examples
are DSSAT [122], CROPSYST [221], and GLEAMS [147], to name a few. Such
systems include components that are able to simulate soil dynamics, when certain
soil parameters are specified. Among these parameters, the ones usually denoted by

94 4 k-Nearest Neighbor Classification

the symbols LL, DUL, and PEWS are mostly used. LL is the lower limit of plant
water availability; DUL is the drained upper limit; PESW is the plant extractable
soil water. Unfortunately, these parameters are usually unknown. The available in-
formation about the soils usually concerns their texture, indicating the percentage of
clay, silt, sand and organic carbon in the soil. If there is a relationship between the
texture information and the parameters needed for the simulation models, then this
relationship can be used for obtaining the needed parameters.

As explained in [118], regression models may be used for finding these kinds of
relationships (Section 2.2). However, this approach may not be easy and may not
provide satisfactory results. In fact, when dealing with regression models, a function
needs to be defined able to fit the data. Examples of such functions are the linear
and quadratic functions, just to name two of the ones mentioned in Section 2.2. The
function that better fits the data is not known a priori, and usually it is chosen by
trying different functions and choosing the one that better fits the data.

The k-NN method can be considered a reasonable alternative to address this
category of problems [118]. The application discussed in the following and the one
discussed in the previous section have some authors in common. This shows how
the same methodology can be applied to different problems.

Experimental observations show that soils having similar textures also have simi-
lar values for the LL, DUL and PESW parameters. Let us suppose then that a database
is available where soil data are collected by their textures and LL, DUL and PESW
parameters. Let us consider now another soil, whose LL, DUL and PESW parame-
ters are unavailable. In order to find an approximation of the needed parameters, the
texture of the new soil can be compared to the textures of the soils in the database.
The soil under study most likely has LL, DUL and PESW parameters similar to those
of the nearest soils in the database. The distances between soils are based in this case
on percentages of clay, silt, sand and organic carbon in the soils. This strategy is
nothing else but the k-NN method.

In the quoted paper, an explicative picture has been used for showing the basic
idea of the approach. We present this picture in Figure 4.9. It describes an example
in which a target soil is considered such that its texture can be represented by a pair
(20, 60). The pair specifies that 20% of the soil is clay and that the 60% is sand.
In the database there are no pairs with the same values, but pairs having “similar
values.’’ In Figure 4.9, the four nearest pairs are shown. They correspond to the four
soils having more similarities with the target soil. If the 1-NN rule is applied, then
only the nearest soil in the database is considered. If the k-NN rule is applied and
k > 1, more soils are used, and the mean of their LL, DUL and PESW paramenters
can be considered as the best fit of the target soil.

In general, more parameters need to be used for representing a soil. If m is the
number of parameters, then

di =
√√√√ m∑

j=1

si(vij − vtj)2

4.4 Applications 95

Fig. 4.9 Graphical representation of k-NN for finding the “best’’ match for a target soil. Image
from [118].

is the distance between the target soil t and the ith soil in the database. The parameter
si represents the scaling factor of the ith soil. Scaling the variables can be helpful if
they have different ranges of variability. Scaling can prevent having variables that
predominate on the others in the computation of the soils nearest to the target soil.
Let y be a vector containing the values of one of the searched parameters (LL, DUL
and PESW) for all the k nearest neighbors of the target soil. Then, the value of such
parameter for the target soil can be estimated by applying the following formula:

ŷ =
k∑

i=1

wiyi,

where wi is the weight associated to the ith nearest neighbor of the target soil.
Weights can be associated to the nearest neighbors on the basis of their distances
to the target. If the neighbors are sorted in ascending order, then the formula (4.1)
can be used, as in the application discussed in the previous section. By using this
approach, soil water retention parameters can be efficiently estimated with a high
degree of accuracy using a database containing data pertaining to percentages of
clay, sand and organic matter of soils.

96 4 k-Nearest Neighbor Classification

4.5 Experiments in MATLAB r©

This section presents some experiments in the MATLAB environment. The k-NN
will be implemented in the simple case in which the samples are points in a two-
dimensional space.

In Figure 4.10 the MATLAB function knn is shown. It has 8 input parameters and
only one output parameter, which is the vector class containing the classification
of the samples obtained by the k-NN algorithm. As inputs, the function needs: the
number n of unknown samples to classify; the x and y coordinates of such samples,
stored in x and y, respectively; the number k of nearest neighbors that will be used
for classifying the unknown samples; the number ntrain of known samples used
as training set for classifying the unknown ones; the x and y coordinates of such
known samples are stored in xtrain and ytrain; finally, the classes to which each
known sample belongs are stored in ctrain. Note that this MATLAB function has
more parameters than the function in Figure 3.20 performing the k-means algorithm
discussed in Chapter 3. Indeed, k-NN is a classification method whereas k-means
is a clustering method, and then k-NN needs information about a training set for
classifying the unknown samples.

The main loop in the algorithm is a for loop on i, which counts all the unknown
samples. For each of them, three main operations must be performed: all the distances
between this unknown sample and all the ones in the training set need to be computed;
then the smallest k computed distances need to be checked and the corresponding
known samples need to be located; finally the unknown sample is classified accord-
ing to the known classification of these k known samples. The Euclidean distances
between the current unknown sample (x(i),y(i)) and the samples in the training
set (xtrain(j),ytrain(j)) are collected in a vector dist. The vector ind collects
the index of the known samples used to compute the distances. It is needed for the
identification of the k smallest distances. This task is performed by partially sorting
in ascending order the vector dist by using one of the well-known methodologies
for sorting data.

The methodology used for sorting the vector dist works as follows. It starts
considering the last element in dist, it compares this current element to its neighbor
in the vector and it exchanges their positions if they are not sorted in an ascending
order. Step by step, the current element moves one step toward the first element in
the vector. When it reaches the first element, and it eventually exchanges the last
two elements, the first element of dist refers the minimum distance contained in
the whole vector. At this point, the procedure can restart another time from the last
element of the vector and repeat the same instructions. This time it is not needed to
reach the first vector element, because it already contains the global minimum. It
can stop at the second element. If this procedure is repeated a number of times equal
to the vector size minus 1, then the vector will be completely sorted. In this case,
instead, only the smallest k distances are searched, and therefore the procedure can
be iterated only k times. Not only the distance values are important, but even the
indices of the points having these distances from the unknown sample. Therefore,

4.5 Experiments in MATLAB 97

%
% this function performs a k-NN algorithm
% on a two-dimensional set of data
%
% input:
% n - number of samples to classify
% x - x coordinates of the samples to classify
% y - y coordinates of the samples to classify
% k - kNN parameter
% ntrain - number of training samples
% xtrain - x coordinates of the training samples
% ytrain - y coordinates of the training samples
% ctrain - classes to which each training sample belongs
%
% output:
% class - classes to which each unknown sample belongs
%
% [class] = knn(n,x,y,k,ntrain,xtrain,ytrain,ctrain)

function [class] = knn(n,x,y,k,ntrain,xtrain,ytrain,ctrain)

for i = 1:n,

% computing the distance between (x(i),y(i)) and all the
% training samples

for j = 1:ntrain,
dist(j) = (x(i) - xtrain(j))ˆ2 + (y(i) - ytrain(j))ˆ2;
dist(j) = sqrt(dist(j));
ind(j) = j;

end

% checking the k smallest distances obtained

for kk = 1:k,
for jj = ntrain-1:-1:kk,
if dist(jj) > dist(jj+1),
aus = dist(jj); dist(jj) = dist(jj+1); dist(jj+1) = aus;
aus = ind(jj); ind(jj) = ind(jj+1); ind(jj+1) = aus;

end
end

end

% classifying the unknown sample on the base of the k-nearest
% training samples

for j = 1:k,
score(j) = 0;

end
for kk = 1:min(k,ntrain),
score(ctrain(ind(kk))) = score(ctrain(ind(kk))) + 1;

end
maxscore = 1; val = score(1);
for j = 2:k,
if score(j) > val,
val = score(j);
maxscore = j;

end
end
class(i) = maxscore;

end

end

Fig. 4.10 The MATLAB function knn.

98 4 k-Nearest Neighbor Classification

during the sorting process, the elements of the vector ind are exchanged according
to the changes applied to dist.

For classifying the current unknown sample (x(i),y(i)), a “score’’ is assigned
to each class and the one having the maximum score is considered to be the class to
which the unknown sample belongs. At the start all the scores are set to 0, then each
of them is updated according to the classes in which the k closest known samples are.
The expression score(ctrain(ind(kk))) refers to the score related to the class
located by ctrain when it refers to the known sample having index ind(kk). After
all the scores are updated, the maximum score and related class are identified and
the unknown sample is assigned to the class coded by maxscore.

A training set of 50 points has been generated using the MATLAB function
generate (Figure 3.16) and setting eps to 0.1. The value of eps allows one to
separate the points in 2 groups with a certain margin. The points so obtained are not
assigned yet to a class or another. The function kmeans (Figure 3.20) has been used
for clustering these data and therefore for assigning them a classification. Therefore,
the generated set of points can now be considered as a training set for the k-NN algo-
rithm (see Figure 4.11). Another set of 200 points is then generated by the function
generate and by setting eps = 0, so that these points contain no inherent patterns.
Figure 4.12 shows the points marked in accordance with the classification obtained
by the function knn using the training set in Figure 4.11. The boundary between the
two classes is not precisely located, but most of the points can be considered as well
classified.

As previously shown, the k-NN algorithm can be computationally expensive if
the used training set contains more information than needed. This can happen when
the number of samples it contains is too large. In these cases, subsets of the orig-
inal training set can be identified for obtaining the same classification in a shorter

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4.11 The training set used with the function knn.

4.5 Experiments in MATLAB 99

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4.12 The classification of unknown samples performed by the function knn.

time, but with a good accuracy. Figures 4.13 and 4.14 show a MATLAB function
implementing the algorithm for finding a consistent subset of a starting training set
TNN . The function has as input parameters: the number ntnn of points contained
into the original training set TNN ; the x coordinates xtnn of these points and the
corresponding y coordinates ytnn; the numerical code indicating the class the point
belongs to; finally, the k value related to the k-NN algorithm, i.e., the number of
classes. The function output parameters are: the number ntcnn of points contained
in the condensed subset TCNN ; the x and y coordinates of these points, xtcnn and
ytcnn, respectively; the codes ctcnn of classes these points belong to. This MAT-
LAB function uses the function knn as sub-procedure, because classifications are
performed in the algorithm for finding TCNN .

This function is the translation of the algorithm in Figure 4.3 in the MATLAB
language. The roles played by sets X and Y are played by wellclass and badclass

in the function. These two sets contain the points that are “well’’ classified and “bad’’
classified during the algorithm. Each of them is represented in MATLAB by an
integer number counting its size and three vectors. The set of bad classifications is
for instance considered through the variables: nbadclass counting the number of
points in the set; xbadclass containing the x coordinates of its points; ybadclass
containing the y coordinates of such points;cbadclass containing the corresponding
class codes. At the start, badclass is initialized by copying the first sample of TNN

into it. Recursively, then, all the other samples are classified by the knn function
using badclass as training set (first for loop). Even though badclass contains one
point only at the start, it gets bigger every time a sample is not classified correctly by
knn. More precisely, every time knn runs for classifying one sample, such sample
is moved to wellclass if it is classified well and it is moved to badclass if the
classification is not correct. After this starting phase, a while loop starts. This loop

100 4 k-Nearest Neighbor Classification

%
% this function computes a condensed subset T_CNN of
% a given training set T_NN
%
% input:
% ntnn - number of points in T_NN
% xtnn - x coordinates of points in T_NN
% ytnn - y coordinates of points in T_NN
% ctnn - classes each point in T_NN belongs to
% k - kNN parameter
%
% output:
% ntcnn - number of points in T_CNN
% xtcnn - x coordinates of points in T_CNN
% ytcnn - y coordinates of points in T_CNN
% ctcnn - classes each point in T_CNN belongs to
%
% [ntcnn,xtcnn,ytcnn,ctcnn] = condense(ntnn,xtnn,ytnn,ctnn,k)

function [ntcnn,xtcnn,ytcnn,ctcnn] = condense(ntnn,xtnn,ytnn,ctnn,k)

% the first point is added to class "badclass"

nbadclass = 1;
xbadclass(nbadclass) = xtnn(1);
ybadclass(nbadclass) = ytnn(1);
cbadclass(nbadclass) = ctnn(1);
nwellclass = 0;

% checking the classification

for i = 2:ntnn,

% classifying points in (1,xtnn(i),ytnn(i))
% by using (nbadclass,xbadclass,ybadclass,cbadclass) as training set
class = knn(1,xtnn(i),ytnn(i),k,nbadclass,xbadclass,ybadclass,cbadclass);

if class == ctnn(i),
nwellclass = nwellclass + 1;
xwellclass(nwellclass) = xtnn(i);
ywellclass(nwellclass) = ytnn(i);
cwellclass(nwellclass) = ctnn(i);

else
nbadclass = nbadclass + 1;
xbadclass(nbadclass) = xtnn(i);
ybadclass(nbadclass) = ytnn(i);
cbadclass(nbadclass) = ctnn(i);

end
end

Fig. 4.13 The MATLAB function condense: first part.

stops when wellclass does not have any point anymore or the variable nmoves is
zero when an iteration of the while loop is over. At each iteration of this while

loop, each point in wellclass is classified by using badclass as training set. If the
point is classified incorrectly, then it is moved from wellclass to badclass. At
the end of the procedure, the points in badclass are able to classify correctly those
in wellclass. The final condensed set is therefore given by the current points in
badclass.

As before, a training set can be generated by using the function generate and
by applying the kmeans algorithm for assigning a class to each point of the set. In

4.5 Experiments in MATLAB 101

% checking the points in "wellclass"

while nwellclass > 0,

nmoves = 0;
i = 0;

while i < nwellclass,

i = i + 1;

% classifying points in (1,xwellclass(i),ywellclass(i),cwellclass(i))
% by using (nbadclass,xbadclass,ybadclass,cbadclass) as training set

class = knn(1,xwellclass(i),ywellclass(i),k,nbadclass,xbadclass,
ybadclass,cbadclass);

% if the point is not well-classified
% it is moved from wellclass to badclass
if class ˜= cwellclass(i),
nmoves = nmoves + 1;
del(nmoves) = i;
nbadclass = nbadclass + 1;
xbadclass(nbadclass) = xwellclass(i);
ybadclass(nbadclass) = ywellclass(i);
cbadclass(nbadclass) = cwellclass(i);
nwellclass = nwellclass - 1;
xwellclass(i) = [];
ywellclass(i) = [];
cwellclass(i) = [];
i = i - 1;

end

end

if nmoves == 0,
nwellclass = 0;

end

end

% the class "badclass" is the condensed subset

ntcnn = nbadclass;
for i = 1:ntcnn,
xtcnn(i) = xbadclass(i);
ytcnn(i) = ybadclass(i);
ctcnn(i) = cbadclass(i);

end

end

Fig. 4.14 The MATLAB function condense: second part.

this case, 200 points have been generated by setting eps = 0.1. Then, the function
kmeans is used with k = 4. The generated training set is presented in Figure 4.15(a).
In Figure 4.15(b) there is the corresponding condensed set TCNN . In Figure 4.16 the
performances of the knn function using the obtained reduced set are shown. After
the reduction of the training set, the quality of the classification remains the same.
Just few points close to the borders among different classes are misclassified. This

102 4 k-Nearest Neighbor Classification

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 4.15 (a) The original training set; (b) the corresponding condensed subset TCNN o btained by
the function condense.

can be avoided if the margin among the classes is larger. The set of points to classify
has been generated by the function generate with n = 50 and eps = 0.

Figure 4.17 shows the MATLAB function implementing the algorithm in Figure
4.5 for finding a reduced subset TRNN of a training set. The input and output
parameters of this function are similar to the ones of the function condense. The
integer number ntnn and the three vectors xtnn, ytnn and ctnn represent the original
training set TNN . The parameter k always refers in this context to the number of
nearest neighbors used during the classification algorithm. As outputs, the integer

4.6 Exercises 103

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4.16 The classification of a random set of points performed by knn. The training set which is
actually used is the one in Figure 4.15(b).

ntrnn and the vectorsxtrnn,ytrnn andctrnn represent the reduced set this function
provides.

At the beginning, the entire original set is copied into the variables that will contain
the reduced set at the end. At each iteration of the for loop, a sample has a chance
to be removed from it, allowing the reduced set to get smaller. The integer count
counts the points of the original training set. Each of them is moved from the reduced
set to an auxiliary set. If the points currently in the auxiliary set cannot be correctly
classified using the current reduced set as training set, then the point is moved back
to the reduced set. In the other case, however, the point remains in the auxiliary set,
and therefore the reduced set is actually reduced. Figure 4.18(a) shows the subset
obtained by function reduce from the set in Figure 4.15(a). Figure 4.18(b) shows
the classification provided by knn using the reduced training set on the same set
of 500 random points. As before, the classification accuracy remains the same after
the reduction of the training set, while the computational cost of the classification
decreases.

4.6 Exercises

Exercises related to the k-NN algorithm follow.

1. Let us suppose it is necessary to distinguish between points on a Cartesian system
having positive x value and negative x value. Let us call these two classes as C+
and C−. By using the training set

104 4 k-Nearest Neighbor Classification

%
% this function computes a reduced subset T_RNN of
% a given training set T_NN
%
% input:
% ntnn - number of points in T_NN
% xtnn - x coordinates of points in T_NN
% ytnn - y coordinates of points in T_NN
% ctnn - classes each point in T_NN belongs to
% k - kNN parameter
%
% output:
% ntrnn - number of points in T_RNN
% xtrnn - x coordinates of points in T_RNN
% ytrnn - y coordinates of points in T_RNN
% ctrnn - classes each point in T_RNN belongs to
%
% [ntrnn,xtrnn,ytrnn,ctrnn] = reduce(ntnn,xtnn,ytnn,ctnn,k)

function [ntrnn,xtrnn,ytrnn,ctrnn] = reduce(ntnn,xtnn,ytnn,ctnn,k)

% copying the original training set

ntrnn = ntnn;
for i = 1:ntrnn,
xtrnn(i) = xtnn(i);
ytrnn(i) = ytnn(i);
ctrnn(i) = ctnn(i);

end

% an auxialiary set (n,xtrain,ytrain,ctrain) is needed
n = 0;

% performing the reduction algorithm

for count = 1:ntnn,

% moving one point from T_RNN to the auxiliary set
n = n + 1;
xtrain(n) = xtrnn(1);
ytrain(n) = ytrnn(1);
ctrain(n) = ctrnn(1);

ntrnn = ntrnn - 1;
xtrnn(1) = [];
ytrnn(1) = [];
ctrnn(1) = [];

% classifying points in the auxiliary set by T_RNN

aux_class = knn(n,xtrain,ytrain,k,ntrnn,xtrnn,ytrnn,ctrnn);

% counting the number of misclassifications

nbadclass = 0;
for i = 1:n,
if ctrain(i) ˜= aux_class(i),
nbadclass = nbadclass + 1;

end
end

% if there is one misclassification at least
% the point is moved back

if nbadclass > 0,
ntrnn = ntrnn + 1;
xtrnn(ntrnn) = xtrain(n);
ytrnn(ntrnn) = ytrain(n);
ctrnn(ntrnn) = ctrain(n);
n = n - 1;
xtrain(n) = [];
ytrain(n) = [];
ctrain(n) = [];

end

end

end

Fig. 4.17 The MATLAB function reduce.

4.6 Exercises 105

−1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 4.18 (a) The reduced subset TRNN obtained by the function reduce; (b) the classification of
points performed by knn using the reduced subset TRNN obtained by the function reduce.

{{(−1, −1), C−}, {(−1, 1), C−}, {(1, −1), C+}, {(1, 1), C+}} ,

classify the points (2,1), (-3,1) and (1,4) with the k-NN algorithm and k = 1.
2. Given the training set:

{{(0, 1), CA}, {(−1, −1), CA}, {(1, 1), CA}, {(−2, −2), CB}, {(2, 2), CB}} ,

classify the points
(7, 8), (0, 0), (0, 2), (4, −2)

106 4 k-Nearest Neighbor Classification

using the 1-NN rule.
3. By using the training set in Exercise 2, classify the points (5, 1) and (−1, 4)

applying the 3-NN decision rule.
4. Provide an example of a training set such that the same unknown sample can be

classified in different ways if k is set to 1 or 3.
5. Plot the training set and the unknown sample that satisfies the requirements of

Exercise 4 by using the MATLAB function plotp.
6. Solve the classification problem proposed in Exercise 1 in the MATLAB envi-

ronment and with the function knn.
7. In MATLAB, create a training set and find the corresponding condensed and

reduced set with the functions condense and reduce.
8. In MATLAB, build figures showing the original training set, and the condensed

and the reduced subsets obtained in the previous exercise.
9. In MATLAB, use the function knn for classifying a set of unknown points. Use

the training set originally generated in Exercise 7. Create a figure showing the
obtained classification.

10. In MATLAB, use the function knn for classifying a set of unknown points. Use the
condensed and reduced subsets obtained in Exercise 7. Create a figure showing
the obtained classifications.

Chapter 5
Artificial Neural Networks

5.1 Multilayer perceptron

In the early days of artificial intelligence (AI), artificial neural networks (ANNs) were
considered a promising approach to find good learning algorithms to solve practical
application problems [189]. Perhaps, a certain unjustified hype was associated to their
use, since, nowadays, ANNs seem to have less appeal for researchers. In fact, they
are not considered to be among the top 10 data mining techniques [237]. Moreover,
publications using ANNs are found not to be backed by a sound statistical analysis
[75] and that statistical evaluation of ANNs experiments is a necessity [74]. There
are, however, applications in which ANNs have been successfully used. Among
such applications, there are the applications in the agricultural-related areas which
are discussed in Section 5.4 of this chapter. Therefore, even though they may not be
so appealing for some researchers anymore, we decided to dedicate this chapter to
ANNs.

ANNs can be used as data mining techniques for classification. They are inspired
by biological systems, and particularly by research on the human brain. ANNs are
developed and organized in such a way that they are able to learn and generalize from
data and experience [99]. Despite their origin related to brain studies, the networks
discussed in this chapter have little to do with biology.

In general, ANNs are used for modeling functions having an unknown mathemat-
ical expression. In Chapter 2 we showed that, given a set of independent variables
(inputs) and corresponding dependent variables (outputs), interpolation and regres-
sion techniques can be used for modeling such data. As already discussed, when
interpolating polynomials are used, one problem is that their degree grows with the
dimension of the set of data. This problem is avoided when splines or regression
approaches are used. However, there are reasons that brought researchers to use
ANNs instead of interpolation and regression models. First of all, ANNs do not be-
come more complex if the set of data used is larger. Moreover, ANNs can model
very complex functions without the need of finding their (complex) mathematical
expressions.

© Springer Science + Business Media, LLC 2009

A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34, 107
DOI: 10.1007/978-0-387-88615-2_5,

108 5 Artificial Neural Networks

According to [180], ANNs consist in a number of independent and simple pro-
cessors: the neurons. The network is formed by neurons, which are connected and
usually organized in layers. The human brain contains tens of billions of neurons
and tens of trillions of such connections. Each neuron is characterized by an ac-
tivity level and by its input and output connections. The activity level represents
the state of polarization of a neuron, the input connections feed the neuron with
signals, whereas the output connections broadcast the neuron signal to others. All
these neuron properties are represented mathematically by real numbers. Each link
or connection between neurons has an associated weight, which determines the ef-
fect of the incoming input on the activation level of the neuron. The weights can be
positive or negative. If a connection has a positive weight, its effect on the signal
passing through is excitement, whereas effect is inhibitory if the weight is negative.
In other words, if the weight sign is positive, it raises the activation; if the sign is
negative, it lowers the activation. ANNs differ from each other by the way in which
the neurons are connected, by the way each neuron processes its input, and by the
learning method used. Usually, the network structure is defined a priori, and must
be tailored to the process that must be modeled. During the learning phase, only the
connection weights are optimized in a way that the network can respond with the
given outputs when it has certain inputs.

The multilayer perceptron is the kind of ANNs that are the focus of this chapter.
The multilayer perceptron has the neurons organized in layers, one input layer, one
or multiple hidden layers and one output layer. In some applications there are only
one or just two hidden layers, but it is more convenient to have more than two layers
in some other applications. Figure 5.1 shows an example of a multilayer perceptron.
The input data are provided to the network through the input layer, which sends this
information to the hidden layers. The data are processed by the hidden layers and the
output layer. Each neuron receives output signals from the neurons in the previous
layer and sends its output to the neurons in the successive layer. The last layer, the
output one, receives the inputs from the neurons in the last hidden layer, and its
neurons provide the output values. The neurons of the input layer do not perform
any computation, since they are just allowed to receive the data that they send to the
first hidden layer. Layer by layer, then, the neurons communicate among them and
process the data they receive. The network is able to provide the output values after
the inputs have propagated from the input layer to the output layer through the entire
network.

As already mentioned, initial research on ANNs presented them as a very promis-
ing approach for learning from data. For instance, many benefits in using ANNs
have been discussed in [99]. In this paper, besides presenting neural networks as
a good alternative to polynomial interpolation or regression, other advantages are
discussed. ANNs are for instance said to be able to handle imperfect and incomplete
data. Therefore they may be useful when working with data from the real world,
which are noisy and imprecise. Moreover, data from the real world are often com-
plex, and since multilayer perceptron is nonlinear, it can capture complex iterations
among the input variables of the system. Finally, ANNs are highly parallel, so that

5.1 Multilayer perceptron 109

Fig. 5.1 Multilayer perceptron general scheme.

they can naturally be developed in a parallel environment. In fact, an implementation
for parallel computing of ANNs is provided in Section 9.3.3.

As already pointed out, ANNs can be used for mathematically modeling a certain
unknown process.Anetwork having n neurons in the input layer and m neurons in the
output layer can be used for describing a function having n independent variables and
m dependent variables. Using a mathematical language, ANNs can model functions
defined in �n and having values in �m (where � is the set of real numbers), if the
network has n input neurons and m output neurons.

Each neuron receives as input the outputs from the neurons in the previous layer.
Passing through the connections, these outputs are lowered or raised, depending on
the connection weights. All these values are assumed to sum linearly yielding an
activation value for the current neuron. If j is one of the neurons in the current layer,
and L is the number of neurons in the previous layer connected to j , then the function

netj =
L∑
i

wij oi

computes the activation value for j , where wij is the weight associated to the link
between the neuron i of the previous layer and the neuron j , and where oi is the
output provided by neuron i. The obtained value is then processed by neuron j in
the current layer, by computing its output

oj = Oj(netj).

110 5 Artificial Neural Networks

The function Oj is fixed for each neuron and it is normally a nonlinear function of its
activation value. Usually it is chosen to be a smooth function, and the default choice
is the standard sigmoid function:

Oj = sigmoid(x) = 1

1 + e−x
.

Other functions are also used, as for instance the one used in the application described
below in Section 5.4.2, which is the logistic function:

Oj = logistic(x) = 1

1 + e
−x
T

. (5.1)

In the formula, the parameter T of the logistic function yields functions of different
slopes. Section 5.4.1, instead, is focused on an application in which the logistic
function is used only for the neurons on the output layer, while the function Oj

corresponds to

Oj = tanh(x) = ex − e−x

ex + e−x
, (5.2)

if the neurons on the hidden layers are considered. Function (5.2) is called hyperbolic
tangent. Functions Oj , in general, are usually predefined a priori and they are not
modified during the learning process.

The simplest neural network whose neurons are organized in layers is the one
having one input layer, one output layer, but no hidden layers. This kind of network
is actually called single perceptron and was presented in [198] in 1958. In this case,
the input variables are processed only by the neurons in the output layer: the output
variables are computed by functions Oj which have as input a linear combination
of the input variables. This kind of network may be useful for its simplicity, but it
cannot solve some types of problems, in particular when the function to model is
not linearly separable. In other words, if the function to model cannot be written as
a linear combination of its inputs, then the single perceptron cannot model it, just
because netj is a linear combination. The hidden layers have been introduced for
overcoming this problem: a multilayer perceptron having just one hidden layer can
model nonlinear functions.

ANNs are commonly used as classification techniques. They can be used for su-
pervised learning, since the network parameters (the neuron weights) are computed
by computational procedures based on a certain training set of data. The hope is that
the network so designed is able to generalize, i.e., to correctly classify data that are
not present in the training set. As explained in [215], generalization is usually af-
fected by three factors. The first one consists of the size and efficiency of the training
set, since small sets of data cannot contain information enough for generalization,
and, even when they are larger, they may not be efficient. The training set may, for
instance, contain data which are representative for some classes and not for some
others, providing in this way incomplete information. Another important factor is
the complexity of the network. The number of hidden layers can impact the accuracy
of the system: a system with a large number of hidden layers has better chances

5.2 Training a neural network 111

to provide better accuracy. However, if the complexity grows, the training and the
normal use of the neural network may become too computationally demanding, and
therefore a good trade-off must be found. Finally, a crucial factor is the complexity
of the process which needs to be modeled. After the network size is determined,
including the number of hidden layers and the number of neurons for each of them,
the network must be trained. An important issue is to select a good algorithm for
this purpose. In Section 5.2 we will overview some of the commonly used training
algorithms for ANNs. After the learning phase, the network is able to use what it did
learn from the data. Evaluating and using these trained networks can be computa-
tionally expensive, and some redundant links and useless neurons may be removed
to make the network more efficient. This phase is called pruning of the network, and
these issues are discussed in Section 5.3.

5.2 Training a neural network

The problem of learning in neural networks is the problem of finding a set of connec-
tion weights which allows the network to carry out the desired computations. During
the learning process, the neural network must learn how to model the data. The most
used method is the back-propagation method.

The basic idea of the back-propagation method is as follows. It is supposed that a
set of input data and a set of corresponding output data are available. It is required that
the network is able to provide the correct output when a certain input is provided. In
other words, the network has to deliver certain output results {o1, o2, . . . , om} when it
receives certain input variables {i1, i2, . . . , in}. The back-propagation method works
on the weights associated to each link between neurons. Predefined weights can be
used at the start of the algorithm. In the case predefined weights are not available
they can be randomly generated. The method starts feeding the network with inputs
ik and allows these signals to propagate through the network layer by layer. Every
time a neuron receives inputs from the neurons in the previous layer, it computes a
weighted sum of them and sends its output to the neurons in the successive layer.
When the signal arrives to the output layer, its neurons compute the outputs. Let us
denote the generic output obtained with the symbols cok , meaning “current output.’’
At this point, these current cok outputs and the outputs ok the network should learn
to provide can be compared. The difference between ok and cok can be defined as
the current error ek which is present in the output neuron k. The error values are
then passed back to the last hidden layer using the same weights. This backward
propagation gives the name to the algorithm. By computing the weighted sums of
the received errors, each neuron is able to compute its contribution to the output error,
and adjust its weight for reducing the output error. The back-propagation method is
iterative and it stops when the network can process the input with sufficient accuracy.
The final weights represent what the network has learned.

The difficult task in this back-propagation process is to find out the connections
between the neurons that are not performing correctly or that are performing worse

112 5 Artificial Neural Networks

than the others. This is a nontrivial problem, especially if the network has hidden
layers. A possible way for facing the problem is to avoid finding a single connection
or a set of connections to blame for the network error and considering a measure
of the overall performance of the system. The performance of the network can be
defined as follows:

E =
∑
ξ,k

(
co

ξ
k − o

ξ
k

)2
, (5.3)

where ok represents the kth expected output, and where cok is the current output
provided by the network. The superscripts ξ correspond to the sets of input/output to
be learned. E represents the total error of the network. Therefore the task of learning
from a given training set can be seen as an optimization problem, where E must be
minimized. The problem is unconstrained, and it may be solved by using one of the
optimization methods discussed in Section 1.4.

Many approaches have been proposed for the learning phase of a neural network.
In [129], for instance, genetic algorithms (GAs) are used [88]. GAs are meta-heuristic
methods for global optimization and they use simple operators in order to simulate
evolution according to Darwinian theory. GAs are among the meta-heuristic methods
for global optimization listed in Section 1.4. In this case, GAs work with a population
of networks, which are randomly generated when the algorithm starts. The main
operator in the search is the crossover, which generates new network children starting
from network parents. In these studies, a network (or individual or chromosome) is
represented as a square matrix such that each single element in row i and column j

has value ηij = 0 if there are no connections between neurons i and j , and value
ηij �= 0 if there is a connection. This matrix can contain all the information regarding
a neural network, such as connectivity and weights. Two special crossover operators
are used, which are tailored to the matrix representation of the network. The row-
wise crossover is performed generating two children by exchanging two random
rows between two parents. In the same way, the column-wise crossover is performed
by exchanging two random columns between two parents. GAs have also been used
in other studies with the aim of training a network as fast and efficiently as possible.
In [113], for instance, GAs have been used coupled with a BFGS (Broyden-Fletcher-
Goldfarb-Shano) method [204] for improving the training performance.

One problem that may occur during the learning process is overfitting. At some
point, in later stages of the learning process, the network may start to fit the data in
the training set very well. In the meantime, though, it may start to lose generalization.
In other words, the network begins to be very good at reproducing the data on which
it is trained, whereas it may be completely wrong on any other kind of data. For
avoiding overfitting, the generalization ability of the network during training can be
checked and the learning process can be stopped when this ability begins to decrease.
The simplest method is to divide the data into a training set and a validation set. The
training set can then be used during the learning process, whereas the validation set
can be used to estimate the generalization ability. The learning process must therefore
be stopped when the error on the validation set begins to increase. This technique can

5.3 The pruning process 113

work very well for avoiding overfitting, but it may not be practical when only a small
amount of data is available, since the validation data cannot be used for training.

After a network has been trained, it is expected to be able to classify samples
using the parameters established during the training phase. It is desirable that the
classification is as fast as possible. In order to improve the performance of a neural
network, the network can be pruned. During the pruning process, all the redundant
and useless connections that affect the performance of the network can be removed.
In Section 5.3 we will discuss pruning strategies for neural networks.

5.3 The pruning process

As discussed in Section 5.2, ANNs can generalize well from the training set if the
network does not overfit during the training process. A way for avoiding this phe-
nomenon could be to use the smallest network able to model a certain problem [193].
However, it is not easy to determine the optimal network size for a particular problem.
One possible approach is to train successively smaller networks until the smallest
one is found that is able to learn from the data. This process can work but it can be
time consuming. Therefore, other strategies have been proposed over time in order
to improve the ability of the neural network to generalize.

Training many networks having a decreasing number of neurons and choosing
the smallest one able to generalize from the data can be computationally demanding.
The alternative is to try training a network with a number of neurons unnecessarily
large. Training a large network can be expensive, but not as expensive as training
many networks. The problem is that this large network can also be very expensive
to use, and for this reason it needs to be pruned after the training process. The initial
large network size allows learning reasonably quickly and the network can then work
efficiently when the unnecessary neurons and connections have been removed.

A brute-force pruning method is as follows. After the network has been trained, all
its weights can be considered one per time, and set to zero. The total error provided
by the network can then be checked on the training set. If the error increases too
much, it means that the link corresponding to the weight set to zero is indispensable
and cannot be removed. Otherwise, if the total error is acceptable, the link can be
eliminated from the network. If all the connections related to one neuron are removed,
the neuron itself can be eliminated from the network. The brute-force method can
be quite expensive. If W is the number of weights contained in the network and M

the number of input/output couples from the training set, the computational cost is
about MW 2, because, every time the method tries to delete one of the W weights, it
has to check M errors over W − 1 connection.

Other methods, even more sophisticated, have been proposed over the time for
pruning a neural network, and they can be divided into two main groups. One group
contains methods that estimate the sensitivity of the error function to the removal
of a neuron, and the ones with the least effect are then removed. The second group

114 5 Artificial Neural Networks

contains methods that add terms to the objective function that reward the network for
choosing solutions in which the weights are smaller. For instance, a term proportional
to the sum of all weight magnitudes favors solutions with small weights. The ones
that are nearly zero are not likely to influence the output much and hence they can
be eliminated. There is some overlap in these two groups, because the term added to
the objective function can include sensitivity terms.

Many pruning tests have been proposed in the literature. In [37], for instance,
the pruning problem is formulated in terms of solving a system of linear equations.
The basic idea is to iteratively eliminate neurons and adjust the remaining weights
in such a way that the network performance does not worsen over the entire training
set. In [78], instead of pruning the network as a whole, it is pruned layer by layer
with the use of a pruning decision based on local parameters. Other recent works on
pruning algorithms can be found in [179, 238, 249].

5.4 Applications

ANNs have been used experimentally for decades in practical applications. An in-
teresting work is for instance the one presented in [200] for detecting frontal views
of faces in gray-scale images. In this approach, more than one neural network is
used and each of them is trained to output the presence or the absence of a face in
an image. This is a very difficult detection task. Unlike face recognition, in which
the classes to be discriminated represent different kind of faces, the two classes to
be discriminated in face detection are “images containing faces’’ and “images not
containing faces.’’ Obtaining a representative sample representing images without
faces is the most difficult task. Experiments presented in [200] showed that neural
network can handle this kind of problem, and one of the experiments is presented in
Figure 5.2. Other general applications of neural networks include the classification
of recorded musical instrument sounds [62], the development of decision making
tools in the field of cancer [155], and the classification of events during high-energy
physics experiments at the Super Proton Synchrotron at CERN in Geneva, Switzer-
land [224].

Neural networks have been successfully applied in agriculture and related fields.
For instance, a neural network approach has been proposed in [135] for evaluating
sugar and acid contents of a variety of oranges by a machine vision system. Machine
vision can replace human visual judgment by providing a more consistent and reliable
system. The measurement of the sugar or acid contents of an orange fruit is, however,
a difficult task, because its skin is thick and usually light cannot penetrate the skin
effectively. In the approach proposed in [135], images of the oranges have been taken
and the sugar and acid contents have been measured by the standard equipment. The
neural network has been used for finding the relationships between the orange aspect
and the acid and sugar contents. The used three-layer network has been able to predict
that reddish, low height, medium size and glossy orange fruits are relatively sweet.

5.4 Applications 115

Fig. 5.2 The face and the smile of Mona Lisa recognized by a neural network system. Image from
[200].

However, the network could not provide a clear indication of the level of sugar
content, but the feasibility to evaluate inside quality of fruits by neural networks and
machine vision has been anyway demonstrated.

Other applications of neural networks in the field of agriculture are for instance:

• Classification of fertile and infertile eggs by machine vision [53];
• Prediction of flowering and maturity dates of soybean [67];
• Detection of cracks in eggs using computer vision [185];
• Forecasting water resources variables [160];
• Detection of pig coughs in farms by recorded sounds [45];
• Detection of watercores in apples by X-ray images [210];
• Wine classifications by taste sensors made from ultra-thin films [196];
• Modeling of sediment transport [22].

In the following we will focus on the problem of detecting pig coughs with the
aim of identifying diseases in farms (Section 5.4.1) and on the problem of detecting
watercore inside apples for a good selection of fruits for the market (Section 5.4.2).

116 5 Artificial Neural Networks

5.4.1 Pig cough recognition

Coughing, in human and animals, is associated with the sudden expulsion of air. This
is a defense mechanism of the body, against the possible entry of materials into the
respiratory system. Coughing is typically accompanied by a sound, whose changes
may reflect the presence of diseases affecting the airways or the lungs or of early
symptoms of diseases. If someone is coughing, it is easy to say if he or she has a bad
or normal cough from the sound produced. In the same way, the sound provided by
pig coughing can be used for monitoring possible health problems. An expert could
say if the cough of a pig signals the presence of a potential disease, and eventually
check the health of the pig. Nowadays, however, human attention is not so present
anymore, because big farms have a large quantity of animals and, moreover, the
environment can be very harmful for the presence of contagious diseases [3].

Systems for the automatic control of the pig houses are useful. Their use can
prevent the transmission of diseases from pigs to humans, and at the same time
guarantee a constant control on pig health conditions. Therefore, considerable efforts
have been undertaken for the development and application of sensors and sensing
techniques for diagnosis in pig farms. Besides the advantages farmers can have, such
as improving the health of the pigs and avoiding contaminations, the final consumer
also can benefit from these techniques. The early detection of an animal disease can
bring to the consumer’s table better meat, by reducing, for instance, the residuals of
antibiotics. The different techniques developed for cough detection have the common
characteristic of being based on supervised learning methods. As a consequence, the
failure or success of a technique depends highly on the quality of the training set of
data. The training set is obtained by experimental observations, where the sounds
produced by pigs are recorded and where each record is labeled by an expert in
different ways. An expert farmer is indeed able to distinguish among coughs and
other sounds pigs can issue.

We will focus in this section on the studies presented in [45, 170, 171] where
neural networks have been used as a supervised learning technique. There is also a
similar example in the literature that uses a fuzzy c-means algorithm [231]. In the
neural network approach, a metal chanmber has been built in order to perform the
experiments (see Figure 5.3). It is covered with transparent plastic for controlling the
environment around the animal, and its dimensions are 2 m long, 0.80 m wide and
0.95 m high. The pigs are invited to enter in the metal chamber and sound measure-
ments by a microphone are recorded. During this process, the environment inside the
chamber is controlled by checking the temperature, the dust and the NH3 concen-
tration, and other variables. A full description of the experiment set up is presented
in [169]. We just point out that the microphone is placed in the chamber from 0.4 m
to 1.0 m from the pig, and it is positioned through an aperture into the plastic cover.
The sample rate chosen is 22,050 Hz, because the frequencies of a typical cough are
below 10,000 Hz. After the pig is invited to enter the chamber, normal pig sounds are
recorded, such as grunting and other sounds due to respiration. Other sounds from
the surrounding environment are also recorded. Animal movements can cause metal
clanging, because the construction used in the experiment is metallic. Moreover, the

5.4 Applications 117

Fig. 5.3 A schematic representation of the test procedure for recording the sounds issued by pigs.
Image from [45].

controlled environment that needs ventilation and the presence of researchers may
cause other noises. When all these sounds are recorded, pigs are finally induced to
cough for recording cough sounds.

A neural network is trained using the sounds obtained during these experiments.
The training set contained 354 sounds: 212 samples are records of coughs from dif-
ferent pigs, 50 samples represent metal clanging, 23 samples grunts, and 69 samples
background noise. Each sound is analyzed by a human expert to determine whether
it is a cough or not. All these samples are then divided into two sets, the training
and the testing set. The sounds have been equally distributed between the two sets,
except for the sounds of coughs that are used more in the testing set, because it is
important to check if the recognition of the coughs is correct. Figure 5.4 shows the
time signal of a pig cough. The amplitude for the cough in all the samples recorded is
0.5 ± 0.09. The grunts have a larger duration and variability; among all the samples
the duration is 1.2±0.15. The time signal of these sounds is analyzed mathematically
and transformed in a vector formed by 64 real numbers. For further details about this
process, the reader may refer to [45] and the citations therein. This transformation
is very useful, because it allows one to work on vectors and not on signals. In the
following, then, two sounds are compared by comparing the components of two real
vectors. They are normalized before use, because their components can vary sig-
nificantly even when comparing two vectors from the same class. These variations
are mainly due to the distance and direction between the pigs and the microphone.

118 5 Artificial Neural Networks

Fig. 5.4 The time signal of a pig cough. Image from [45].

Such variations do not negatively affect the quality of the sound because of the low
environmental noise.

The network is trained using a BFGS optimization procedure [204]. The network is
a multilayer perceptron with one or two hidden layers of hyperbolic tangent neurons
(see equation (5.2)), while the output layer consists in logistic neurons (see equation
(5.1)). The multilayer perceptrons with two hidden layers did not provide any im-
provement on the correct classification percentage. Once the network is trained to
discriminate between coughs and metal clanging, it is able to reach percentages of
correct recognition greater than 90%. This is a very difficult task, because these two
sounds have a similar frequency range. Then the network is trained to distinguish
among four sounds: coughs, metal clanging, grunting and background noise. The
confusion matrix shown in Figure 5.5 describes how many of the sounds, whose
correct class appears in the first column, are misclassified. The recognition accuracy
remains high, as the figure shows.

5.4.2 Sorting apples by watercore

Grading fruits before marketing is a very important process that can increase the
profits, since quality defects decrease the marketability of the fruit. In this section, we

5.4 Applications 119

Sound Coughs Metal Clanging Grunting Noise

Coughs 69.5 21.7 8.7 0.0
Metal clanging 4.3 82.6 0.0 0.0
Grunting 0.0 0.0 91.3 8.7
Noise 0.0 0.0 8.7 91.3

Fig. 5.5 The confusion matrix for a 4-class multilayer perceptron trained for recognizing pig sounds.

will focus on grading procedures of apples. Some defects, such as discoloration, poor
shape, external damage, and bruising in light colored apples are visible externally and
apples containing such defects are commonly removed at sorting tables.Arecognition
system based on the k-means algorithm and based on the external appearance of the
fruit is discussed in Section 3.5.2. Unfortunately, other defects are internal. Such
defects are particularly harmful to consumer acceptance since they are typically
recognized after purchase. Internal defects include internal browning, internal small
black regions of unknown origin, core and other rot, watercore and insect damage.
Bruises are generally referred to as external defects. Codling moth problems in
exported apples can be expected to increase with the phase-out of methyl bromide
fumigation, resulting in more sustained insect damage.

We will focus in this section on watercore. Watercore is an internal apple disorder,
found in most apple varieties, that adversely affects the longevity of the fruit. Apples
with slight or mild watercore are sweeter, and this may be considered a good fea-
ture of the apple. Unfortunately, apples with moderate to severe degree of watercore
cannot be stored for any length of time. Moreover, internal tissue breakdown of a
few fruits during storage may damage the whole batch. For this reason, apples with a
sufficient percentage of watercore need to be detected and separated from the batch.
Non-destructive methods such as X-ray imaging have shown promising results for
detecting internal quality defects in various horticultural products. X-ray is a radioac-
tive method which can penetrate into the apple without serious surface reflection. In
particular, radiographic imaging, which is sensitive to density differences, is a good
candidate for detecting the internal defects so far neglected as well as for detecting
watercore and bruises. The fact that this technology is also quite inexpensive makes
the X-ray method the best choice for detecting internal disorders in apples. The major
challenge in this field is thus to develop adequate image analysis and classification
schemes that can successfully classify products using X-ray image data.

A normal fruit has 20–35% of the total tissue volume occupied by the intercellular
air space, whereas in apples with watercore this large air space is filled with a liquid.
These changes in density and water content of fruit can be exploited for watercore
detection by non-destructive techniques based on X-ray. In [203] watercores in apples
have been detected with an accuracy of more than 90% by using still X-ray images.
In this approach, apples have been scanned by X-ray and successively sliced and
photographed (see Figure 5.6). The obtained images, both normal and X-ray images,
have then been used to characterize them as defective or not. In this phase, both
kinds of images are inspected and evaluated by human experts. In order to create
an automatic classifier, computational procedures are needed for performing some

120 5 Artificial Neural Networks

Fig. 5.6 X-ray and classic view of an apple. X-ray can be useful for detecting internal defects
without slicing the fruit.

of these tasks on a computer. The inspection of the X-ray images can be carried
out by a computer, which needs though to learn how to inspect such images before.
Therefore, classifiers such as neural networks can be useful in these studies. In fact
a method based on ANNs has been proposed in [210] for detecting watercores in
apples by X-ray.

In this work, line scan images of 240 Red Delicious apples with varying degree
of watercore have been acquired and three features of the images, considered good
indicators of watercore, have been extracted from the images. Details about this
process can be found in [209]. After scanning, the apples are cut and opened in order
to check the presence of watercores from a human expert. Each fruit is scored on
a scale from 0 to 2 based on watercore severity. Apples labeled with 0 do not have
a watercore or they have a mild watercore, whereas apples labeled with 1 have a
moderate watercore and the ones labeled with 2 a severe watercore. The final set of
data obtained includes the three X-ray features and the corresponding scores. The
aim is to teach a neural network to predict the score when it is fed by the three features
of the images.

The set of data is randomly divided into two subsets. The first one includes 150
samples (55 having score 0, 46 having the score 1 and 49 having the score 2) and is
used as training set. The second one includes 90 samples (58 having the score 0, 14
having the score 1 and 18 having the score 2) and is used as testing set. The employed
network is a multilayer perceptron having three layers in total, and hence only one
hidden layer. The output function Oj is the logistic function (see equation (5.1)).

Usually the number of neurons in the input layer equals the dimension of the
input vector, and therefore the considered network has three neurons on the input
layer, each one related to one of the features extracted from the X-ray images. There
are actually two choices for selecting the number of neurons in the output layer,
depending on the nature of the problem at hand. In classification problems where
the network is trained to recognize well-defined classes, the number of output nodes
usually equals the number of classes.Asample is recognized as belonging to a certain
class when the output corresponding to this class is higher in value. However, there
may be problems in using this strategy. When the classes are not well-defined by the
network, the network may give two similar outputs and there may be uncertainty in

5.5 Software for neural networks 121

assigning a sample to a class or to another. For this reason, a single output neuron
is used in these studies with a continuous value coupled with two threshold levels.
If the output is lower than the first threshold, the sample is considered to have mild
watercore. Instead, it is considered to have severe watercore if the output value is
larger than the second threshold. Samples are considered to have moderate watercore
when the output value is between the two thresholds.

The number of neurons in the hidden layer is often determined either by trial
and error or by ad hoc schemes. Several networks with different numbers of hidden
neurons (from 2 to 10) have been evaluated to determine an optimal structure for
achieving a good generalization. The network with the maximum classification ac-
curacy is considered the optimal classifier for sorting apples. The optimal network
found in this application has 4 hidden neurons. The method used for training the
network is the standard back-propagation method described in Section 5.2. The 150
samples contained in the training set are divided in two other subsets. The first one,
containing 105 samples, is used for normal training, while the second one having
just 45 samples is used for validating the network during the training process. This
strategy is used for avoiding the overfitting of the network.

The best classification accuracy has been obtained using a neural network having
four neurons on the hidden layer and by using as thresholds 0.35 and 0.60. The neural
classifier achieved an overall accuracy of 88% with the losses and false positives as
low as 5%. The overall accuracy approached the target of 90% whereas the losses and
false positives were well below the target limits of 10%. In [210] the classification of
the apples has also been carried out using a fuzzy c-means method. The experiments
showed that the neural network classifier performs better.

5.5 Software for neural networks

Instead of presenting experiments in MATLAB r© with the technique discussed in
this chapter, we just provide here a list of available software for neural networks.
The main reason is that the training and use of the simplest neural network would
require the need of developing relatively long codes in MATLAB. Since there is
various software available for training and using neural networks, we decided it was
not worthwhile to devote a section to possible implementations of the data mining
technique in MATLAB. The list below includes the most popular software currently
on the Internet. The reader can extend the list with a simple search with Google.

• NeuroSolutions, http://www.nd.com/
It is advertised as the most powerful and flexible neural network modeling soft-
ware currently available. NeuroSolutions is also available for MATLAB and Ex-
cel. It has an icon-based network design interface with an implementation of
advanced learning procedures, such as conjugate gradients and backpropagation
through time.

• EasyNN, http://www.easynn.com/
Quoting the Web site, complex data analysis with EasyNN is fast and simple.

122 5 Artificial Neural Networks

Prediction, forecasting, classification and time series projection is easy. Moreover,
EasyNN allows one to train, validate and query ANNs with just a few button
pushes.

• MATLAB toolbox, http://www.mathworks.com/products/neuralnet/
Neural Network Toolbox extends the MATLAB environment with tools for de-
signing, implementing, visualizing, and simulating neural networks. This soft-
ware provides comprehensive support for many proved network paradigms, as
well as graphical user interfaces (GUIs) that enable one to design and manage the
networks.

5.6 Exercises

Exercises related to ANNs follow.

1. Consider a multilayer perceptron having one input neuron, two hidden neurons
on only one hidden layer and one output neuron. The function Oj related to all
the active neurons is just the identity function. Train the network so that it is able
to model the equation:

y = 2x.

2. Prove that the network used in the previous exercise cannot model exactly the
equation:

y = 2x + 1.

3. Train a multilayer perceptron having one hidden layer with 2 neurons for the
AND classification problem. The network has 2 input neurons, 2 hidden neurons
and only one output neuron. Suppose that the function Oj is not preassigned and
choose it so that the network can perform the AND operator.

4. Consider a network with the same structure of the one in the previous exercise
and with the sigmoid function (Oj) associated to the only output neuron. Suppose
that all the weights have unitary value. Feed the network with the points (6, 1)

and (−1, −1).
5. Keep working on the same network as the one in the previous exercise, but have

all the weights equal to 2 and the logistic function (with T = 2) associated to the
output neuron, and feed the network with the points (1, 1) and (0, 2).

6. Consider the two networks used in Exercises 4 and 5. State which of them can
have the hidden layer deleted without changing the output of the network.

7. Consider the network with 2 input neurons, 3 hidden neurons on only one hidden
layer and one output neuron. Suppose that the weights are equal to 0.1 if they are
related to links with the input layer, and that they are equal to 0.3 if related to
links with the output neuron. Suppose that the identity function is associated to
all the neurons. Remove a link that caused the inactivation of one neuron.

8. Design a network having the same organization in layer and the same number
of neurons as in the previous exercise, but having all the neurons from a layer
connected to the following layer.

Chapter 6
Support Vector Machines

6.1 Linear classifiers

Support vector machines (SVMs) are supervised learning methods used for clas-
sification [30, 41, 232]. This is one of the techniques among the top 10 for data
mining [237]. In their basic form, SVMs are used for classifying sets of samples
into two disjoint classes, which are separated by a hyperplane defined in a suitable
space. Note that, as consequence, a single SVM can only discriminate between two
different classifications. However, as we will discuss later, there are strategies that
allow one to extend SVMs for classification problems with more than two classes
[232, 220]. The hyperplane used for separating the two classes can be defined on the
basis of the information contained in a training set.

In this section, the basic idea behind the SVMs is introduced through examples.
For this aim, let us consider the image in Figure 6.1, showing apples with a long
stem and apples with a short stem (for the version of the book in color, note that
green apples have a short stem and red apples have a long stem). Let us suppose that
a general rule for classifying these apples is needed, i.e., a classifier is wanted that
is able to decide if a given apple has a short or a long stem. In the example in Figure
6.1, areas of the Cartesian system can be easily located in which only apples with
a short stem, or only apples with a long stem, can be found. Therefore, a classifier
could simply follow the rule: the apple has a short stem if it is in an area defined
by the apples having a short stem, and it has instead a long stem if it is in the area
defined by the apples having a long stem. Apples with a known classification can be
used for defining the two areas of the Cartesian system related to these two different
types of apples. Such apples define the training set, which can be used for learning
how to classify apples whose length of the stem is unknown. In other words, they
can be used for locating the two areas of the Cartesian system in which only one type
of apple is contained.

How can we define these two areas of the Cartesian system with the aim of
classifying the apples? As Figure 6.2 shows, many straight lines can be used for
dividing the Cartesian system into two disjoint areas such that one contains only

© Springer Science + Business Media, LLC 2009

A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34, 123
DOI: 10.1007/978-0-387-88615-2_6,

124 6 Support Vector Machines

Fig. 6.1 Apples with a short or long stem on a Cartesian system.

apples with a short stem and the other one contains only apples with a long stem.
Once one of these lines has been defined, the classifier can work as follows. If an
unknown apple is found to be in the area defined by the apples having a short stem,
then it is considered to have a short stem, otherwise it has a long stem. Note that each
line drawn in Figure 6.2(a) classifies the apples of the training set correctly. However,
a unique classifier is usually needed and, among all the possible choices, the best
one is desirable. Intuitively, the linear classifier that provides the largest possible
margin between the two classes is the best choice, because small perturbations in
the data, or an operation such as adding or removing data, are least likely to cause
misclassifications. Let us suppose for instance that the classifier is the dashed line in
Figure 6.2(a). Such line is very close to one of the apples having a long stem. Since
an apple with a short stem is found in this position, other apples having the same

Fig. 6.2 (a) Examples of linear classifiers for the apples; (b) the classifier obtained by applying a
SVM.

6.1 Linear classifiers 125

feature are expected to be found around this position. However, this particular apple
is close to the border defined by the dashed line, and hence apples close to this one
may be on the separation line or in the other area. In the first case, the apples could
not be classified, and in the second one the apples are classified in the wrong way.
Therefore, it is important that the distance between the border and the samples close
to it is as large as possible. In other words, not only a classifier able to classify the
data must be searched, but also a classifier having the maximum distance from the
nearest samples of each class. The larger is the margin, the higher the generalization
ability of the classifier should be. Samples that the margin pushes up against are
referred to as support vectors, and this is why this method is referred to as support
vector machines. The image in Figure 6.2(b) shows the best linear classifier for the
apples. It can be determined by computing two parallel supporting lines, one for each
of the two classes, and maximizing the distance between them. In Figure 6.2(b), the
two parallel supporting lines are represented by the dashed lines. In general, these
supporting lines can be defined as any line such that all the points of a class are on
one and only one side of that line.

Let us leave the example of the apples now and let us deal in general with samples
that can be defined as points in an n-dimensional space. The data need to be classified
in two disjoint classes. Let us suppose that the classes are linearly separable, and
hence a hyperplane (or a line in the two-dimensional case) can be considered as a
good classifier. The general equation of a hyperplane is

wT x + b = 0.

The parameters w and b can be normalized so that wT x + b = +1 is the hyperplane
that goes through the support vectors of the first class, and wT x + b = −1 is
the hyperplane that goes through the support vectors of the other class. The first
hyperplane is also called plus-plane and it refers to the plus class C+, whereas the
second one is called minus-plane and it refers to the minus class C−. In this way, all
the unknown samples x satisfying equation wT x +b ≥ 1 are classified as belonging
to the first class, and all the samples x satisfying equation wT x+b ≤ −1 are classified
as belonging to the second one. All the x satisfying the equation −1 < wT x +b < 1
cannot be classified.

As shown in Chapter 5, the learning process of a neural network can be formulated
as a global optimization problem. The training process of an SVM is formulated as
an optimization problem as well. Let x+ be a sample on the plus-plane C+, and let
x− be the sample closest to x+ on the minus-plane C−. The margin width M can be
expressed as the distance between x+ and x−:

M = |x+ − x−|.
However, it can be proved that M can also be expressed in terms of w:

M = 2√
wT w

. (6.1)

126 6 Support Vector Machines

A hyperplane having a margin M as large as possible is searched as classifier for the
classes C+ and C−. From formula (6.1), maximizing the margin M is equivalent to
minimizing the quantity

√
wT w. Therefore, the problem of finding the best classifier

can be formulated as an optimization problem, where the objective function to be
minimized is the margin M:

min
w,b

1

2
wT w (6.2)

subject to separation constraints:{
wT xi + b ≥ +1 ∀i ∈ C+
wT xi + b ≤ −1 ∀i ∈ C− . (6.3)

This is a convex quadratic optimization problem that can be efficiently solved. It can
also be transformed into an equivalent problem by its dual formulation. We will not
give details on how to compute the dual formulation of an optimization problem, but
we will consider the dual reformulation of the problem (6.2)–(6.3) in the following
discussion. The dual formulation is

max
α

∑
i

αi − 1

2

∑
i,j

cicj (x
i)T xjαiαj (6.4)

subject to ⎧⎨
⎩
∑

i

ciαi = 0

α ≥ 0
(6.5)

where α is the vector containing the dual variables, and c is a vector whose compo-
nents ci is equal to 1 if the corresponding xi belongs to the plus class C+, and it is
equal to −1 if xi belongs to the minus class C−. The dual variables are also called La-
grange multipliers, and they are non-negative real numbers. These are the variables
which SVMs use to learn from the data. They are in fact the analogue of the weights
associated to the neurons of the neural networks. Once an SVM has been trained by
solving this optimization problem, the optimal hyperplane is found and a number of
support vectors is located. It is interesting to note that the same hyperplane can now
be identified using the small training set, containing all the support vectors. In other
words, all other samples can be removed from the training set and recomputing the
hyperplane would produce exactly the same answer. Therefore, SVMs can also be
used for summarizing the information contained in a certain set of data.

6.2 Nonlinear classifiers

The problem of classifying samples into two classes that can be separated by a
hyperplane has been discussed in the previous section. However, the hypothesis of
the linear separability is not always satisfied, as Figure 6.3 shows. In this case, the

6.2 Nonlinear classifiers 127

Fig. 6.3 An example in which samples cannot be classified by a linear classifier.

apples cannot be separated by a line on the Cartesian system, but a more complex
classifier should be used. In fact, in most real-world applications, there is no reason
for expecting that the classes can be separated by hyperplanes. Therefore, SVMs
need to be extended to address more general cases. Not only hyperplanes should be
used, but also nonlinear surfaces may be considered. Working on nonlinear surfaces
can be much more complex than working on hyperplanes. Therefore, a very smart
method has been developed for taking into account the case in which the considered
classes are not linearly separable.

Let us consider the one-dimensional points in Figure 6.4. The problem is to find
a classifier for the samples on the one-dimensional space defined by the x axis of
the Cartesian system. As one can easily note, the samples are not linearly separable,
because one class (class 2) has samples ranging from 0 to 1, whereas the other class
(class 1) has samples before 0 and after 1. One will never find a hyperplane (actually
a point in this example) which separates the two classes. Let us project now this data
in a two-dimensional space, as Figure 6.4 shows. The points belonging to class 1
and class 2 are now linearly separable, and then a linear classifier can be used. It is
obvious that this data transformation may substantially increase the dimension of the
problem. In this example, the dimension of the new problem is twice the original.

The function which transforms the data is called a mapping function and it is
usually denoted by �. A sample xi in the original space can be represented by �(xi)

in the newly transformed space. It follows that the general equation of the hyperplane
in this case is:

wT �(x) + b = 0

and that the dual formulation of the optimization problem (6.4) is

max
α

∑
i

αi − 1

2

∑
i,j

cicj�(xi)T �(xj)αiαj

128 6 Support Vector Machines

Fig. 6.4 Example of a set of data which is not linearly classifiable in its original space. It becomes
such in a two-dimensional space.

subject to the constraints (6.5). For using this formulation of the optimization prob-
lem, a function � able to transform the set of data into another one that can be
separated by hyperplanes needs to be defined. However, this is actually not required,
because the function � participates only in the inner product �(xi)T �(xj) in the
objective function of the optimization problem. Then, there is no need to compute it
explicitly. This inner product can be replaced by a suitable function

K(xi, xj) = �(xi)T �(xj),

which is called SVM kernel function. In this way, an SVM can be trained by solving
the optimization problem (6.4), where the inner product (xi)T xj is substituted by
the kernel function K(xi, xj) for taking into consideration the cases where the data
are not linearly separable. The corresponding optimization problem is then

max
α

∑
i

αi − 1

2

∑
i,j

cicjK(xi, xj)αiαj (6.6)

subject to the constraints (6.5). Kernel functions K(xi, xj) can be obtained by the
specific mapping needed for transforming the data. This approach, however, requires
the definition of a suitable mapping. Therefore, a more common approach is to avoid
defining explicitly a mapping � and to find a function which can work as a kernel
function. In practice, pre-defined kernel functions are usually used, and different
SVMs can be trained using different kernels in order to select the one that performs
better for the given problem. The choice of a kernel in SVMs can be considered as

6.3 Noise and outliers 129

analogous to the problem of choosing a suitable architecture in neural networks. The
most used kernels include the polynomial kernel

K(xi, xj) =
(
(xi)T (xj) + 1

)d

,

which is able to lift the feature space by including all monomials of the original
features up to degree d. Examples of kernels also include the Gaussian kernel

K(xi, xj) = exp

(
− (xi − xj)2

2σ 2

)

and the Neural-net-style kernel

K(xi, xj) = tanh
(
κ(xi)T (xj) − δ

)
.

The Gaussian kernel represents the most reasonable choice because of its simplicity
and the ability to model data of arbitrary complexity. It is provided with a tuning
parameter σ that adjusts the kernel’s width.

SVMs coupled with these kernel functions are able to classify sets of data with
a good accuracy, as is the case of the applications discussed in Section 6.5. As
pointed out in [24], however, there is probably no theoretical explanation of why
SVMs perform so well in practice. Following the quoted paper, we can say that,
even though it is commonly accepted that maximizing the margin M is good for
generalization, there is no way to prove it. Moreover, SVMs are based on ideas
guided by geometric intuitions, as is the case of the example of apples on a Cartesian
system. However, this intuition cannot be applied in the spaces of higher dimension
obtained using the kernel functions. In the case of the Gaussian kernel, the obtained
space has an infinite dimension. From here comes though the explanation of why
the Gaussian kernel works well. Any two disjoint sets of data in the original space,
indeed, can be separated by a hyperplane in the infinite dimensional space.

6.3 Noise and outliers

SVMs can be trained for classifying data in two classes which may and may not be
linearly separable. In both cases, if the data are affected by noise and outliers, the
used hyperplanes could not be able to generalize well. Indeed, a perfect separating
hyperplane may be unsuccessful because of samples that badly represent their class.
In these cases, it is desirable to have only the “majority’’ of the samples correctly
classified and avoid noise data and outliers. Therefore, some violations during the
training process are usually allowed. A term in the objective function of the op-
timization problem is added for taking these violations into account. This is done
by including non-negative slack variables ξ . The optimization problem (6.2) then
becomes

130 6 Support Vector Machines

min
w,b

1

2
wT w + C

∑
i

ξi

subject to {
wT �(xi) + b ≥ 1 − ξi ∀i ∈ C+
wT �(xi) + b ≤ ξi − 1 ∀i ∈ C− ,

where C is the trade-off parameter between the margin M and the classification error.
This problem formulation is for SVM having soft margins, whereas the previous
formulation was for SVM with hard margins. The dual formulation in the soft case
is very similar to the one in the hard case, since there is only a constraint more on the
vector α. Finally, the optimization problem usually solved for training an SVM is

max
α

∑
i

αi − 1

2

∑
i,j

cicjK(xi, xj)αiαj

subject to ⎧⎨
⎩
∑

i

ciαi = 0

0 ≤ α ≤ C

.

6.4 Training SVMs

In order to train an SVM, a suitable kernel function needs to be selected and the ker-
nel parameters and the trade-off parameter C need to be chosen. The quality of the
classifications can be greatly affected by C, since it determines how severely classi-
fication errors must be penalized. A large C value may lead to overfitting problems,
thus reducing the ability of SVM to generalize. The kernel and all these parame-
ters are usually defined by cross-validation techniques (see Chapter 8). However,
strategies for finding better ways to estimate optimal parameter values have been
proposed. In [202], for example, C is computed based on a slightly lower value than
the largest α coefficient obtained from training with C as infinity.

The discussed SVM approach addresses only binary classifications and it was
originally developed for this purpose. However, SVMs can also be used for classi-
fying samples in n classes, where n > 2. Various approaches have been developed
for dealing with multi-class classification problems [205]. One of these is the one-
against-rest approach, where the data are classified in n classes using n different
SVMs. The SVM l ∈ {1, 2, . . . , n} is trained so that it is able to recognize if an
unknown sample belongs to class l or to one of the others. During the classification,
the SVM having the maximal output defines the estimated class. In other words, an
unknown sample can be classified according to the result of the SVM that recog-
nizes it with higher confidence. Another possible approach is the one-against-one
approach. In this case, for each pair of classes, a single SVM is considered. Therefore
n(n−1)

2 SVMs are needed for considering all the possible pairs, and each of them is

6.5 Applications 131

trained by using different training sets. In fact, each SVM just needs to select be-
tween two classes, and hence only a subset of the initial training set is needed, where
only samples from the two considered classes are used. All the SVMs during the
classification are combined through a majority voting scheme to estimate the final
estimation. Finally, another approach is to consider decision trees of binary SVM
classifiers. At the root of the tree, a classifier can select between two disjoint sets of
classes. These sets may include more than 2 classes, and hence other SVMs need
to be used for separating these classes into smaller subclasses. Branch by branch, at
some point, the SVMs at the top of the tree can discriminate between the last two
classes and provide the classification. Many tree structures can be used, but each
SVM can receive only one input from its incoming edge. Hierarchies of SVMs can
also be used instead of tree structures.

As mentioned above, assuming that classes are linearly separable, a simple
quadratic programming problem with linear constraints needs to be solved for train-
ing a SVM (see equation (6.2)). The function to be optimized is convex. When the
classes are not linearly separable, SVMs can be trained using a suitable kernel func-
tion and by optimizing the objective function (6.6). Kernels allow non-linearization
of the learning algorithm while preserving the convexity of the associated optimiza-
tion problem. However, due to its size, the quadratic programming problems for
training SVMs are not usually solved by the standard quadratic programming tech-
niques. The matrix of the quadratic function, indeed, has a number of elements equal
to the square of the size of the training set. Different methods for solving these
quadratic programming problems have been proposed [127, 188]. Many of them are
based on the idea of breaking the original quadratic programming problem down into
a series of smaller subproblems. In some approaches the size of the subproblems is
kept constant, by adding and removing the same number of samples from the ob-
jective function. In other approaches the subproblems can have different sizes and
the smallest quadratic programming problem is chosen at each step. Some of these
approaches solve each subproblem by standard methods for quadratic programming,
and others solve them analytically. In the last case, the manipulation of large matrices
is avoided and then the algorithm is less susceptible to numerical precision problems.

6.5 Applications

There are several applications of SVMs in the literature. In [63], for instance, SVMs
are used for building a handwritten Chinese character recognition system. This is a
very difficult problem, since handwritten Chinese characters have complex structures
and large shape variations. Moreover, there are many characters that are similar to
one another. In Figure 6.5 some selected Chinese characters are displayed. There are
mainly two problems to be faced when dealing with character recognition, and in
particular when these characters are Chinese. First of all, the Chinese language is
not similar to the English language where an alphabet of 26 letters is sufficient to
create all the words written in this book. In the case of Chinese written language,

132 6 Support Vector Machines

Fig. 6.5 Chinese characters recognized by SVMs. Symbols from [63].

instead, there are many existing characters that should be taken into account. As
previously explained, many SVMs can be trained when a multi-class classification
is needed, and the number of SVMs needed depends on the number of classes. In the
easiest case, there must be at least one SVM for each class, when the one-against-rest
approach is used. Therefore, the greater is the number of characters considered, the
greater is the number of SVMs needed. Another problem is the representation of
these characters as black and white images. The smoothness of the symbols can be
lost due to the pixel representation, and it can decrease the quality of the image to
the point to affect the accuracy of the classification. One of the easiest methods for
avoiding this problem is to store the characters in images of higher quality.

SVMs are also used for speaker and language recognition [35]. In biology, protein
function classifications [34] and cancer diseases classifications by gene selections
[96] have been performed via SVMs. In medicine, SVMs have been used for ana-
lyzing signals from the macaque monkey brain during a visual discrimination task
[208]. In these studies, SVMs are generalized and the selective classification concept
is introduced.

In agriculture, SVMs have been applied for predicting soil moisture [86]. In fact,
weather forecasts in agriculture are very important, as already pointed out in Sec-
tion 4.4.1. It is difficult for a farmer to know when to irrigate the soil, especially if
there is uncertainty about the weather in the following days. The irrigation schedule
is a key factor in the management of a farm, and advanced knowledge or accu-
rate forecasts can help to design an efficient irrigation scheduling and water quality
monitoring. Soil moisture measurements are helpful in predicting and understand-
ing various hydrologic processes, including weather changes, energy and moisture
fluxes, and irrigation scheduling. There are different physically based approaches
that can be difficult to use, and for this reason researchers are working on data driven
forecasting tools. In the approach used by [86], soil moisture and meteorological
data are used to generate SVM predictions for four and seven days ahead.

Other applications of SVMs in the field of agriculture include:

• Classification of crops [36];
• Classification of milk by means of an electronic nose [29];
• Detection of meat and bone meal in compound feeds [187];

6.5 Applications 133

• Classification of pizza sauce spread [65];
• Detection of weed and nitrogen stress in corn [124];
• Analysis on the climate change scenarios [226];
• Recognition of bird species [71].

The following presents discussions related to the classification of bird species by
their sounds in Section 6.5.1 and to the verification of the presence of meat and bone
meal in feedstuffs for animals in Section 6.5.2.

6.5.1 Recognition of bird species

For many people the sound of birds is the sign for the start of spring. Usually, people
are able to recognize at least a few common species by their sound and experts can
recognize hundreds of species only by their sound. The automatic recognition of
birds by their vocalization has also use in some practical applications. For instance,
collisions between aircraft and birds can cause bird death and also damages to the
aircraft. In order to avoid collision with birds during the flight, different devices have
been implemented on aircraft, such as radars, infrared and microphones. Radars
are able to recognize objects in movement from long distances, but they cannot
distinguish between harmful and non-harmful objects. Infrared cameras perform
very badly when the weather is not good. Therefore, the most promising method for
recognizing birds in movement is using microphones able to monitor bird sounds.
This technology can also be applied to wildlife monitoring, speech enhancement
in communication centers, conference rooms, aircraft cockpits, cars, buses, and so
forth. It can be used for security monitoring in airport terminals and bus and train
stations.

The focus of this section is a method for the automatic recognition of bird species
by their sounds [71]. The final objective is to develop a fully automatic system that is
able to recognize bird species from their sounds made in field conditions. Figure 6.6

Fig. 6.6 The hooked crow (lat. ab.: cornix) can be recognized by an SVM based on the sounds of
birds.

134 6 Support Vector Machines

shows one of the bird species considered in these studies. The name of the bird is
“hooded crow,’’whereas its Latin name is “cornix.’’Bird sounds are typically divided
into two categories: songs and calls. These two sounds are different because they have
different functions. Generally, songs are longer, more complex than calls, occur more
spontaneously, and they are mainly related to the breeding process. Many bird species
sing only during the breeding season and this is generally limited to males only. Call
sounds instead are typically short vocalizations that carry a function out, for example
an alarm, flight, or feeding. Bird sounds can also be divided into hierarchical levels
of phrases, syllables, and elements. A phrase is a series of mainly similar syllables
that occurs in a particular pattern. Syllables are constructed from elements: there are
simple syllables formed by one element only and more complex ones that can be
constructed using several elements. For simplicity, the syllable can be regarded as
the smallest unit of bird vocalization.

In the studies presented in [71], the sound signals have been represented by the so-
called mel-cepstrum model and by the descriptive parameters model. Details about
these two models can be found in [54]. The set of data obtained by recording the bird
sounds has then been used for training an SVM classifier with a Gaussian kernel. This
is a multi-class classification, since the aim is not to distinguish between two bird
species only. A decision tree of SVMs is therefore used, where each node of the tree
contains a binary SVM classifier which considers only two classes ignoring all the
others. The decision tree is organized in a way that at each layer one class is rejected.
The last remaining class at the bottom of the tree is considered as the winning class.
The structure of the used decision tree is presented in Figure 6.7. Circles carry the
Latin abbreviation of the species names on which each SVM works.

The training of the SVMs on the decision tree is performed in two steps. During
the first one the optimal model parameters are searched, which are the constant C in
the optimization problem to be solved and the width of the Gaussian kernel σ . Since
each of the SVMs is independent from one another, different optimal C and σ values
can be found for each SVM. During the second phase, the actual training process of
the SVMs is performed.

n-fold cross validation method is used to find the optimal values for the model
parameters (see Chapter 8). For all pairs of classes in the decision tree, the data points
are divided into training and test subsets such that the test subset contains all data
from one individual. The training subset is used to construct an SVM classifier and
its performance is evaluated with a test subset. The classification error is the average
of the test errors of the subsets. The validation procedure is repeated for a grid of
parameter values C and σ . Parameters that produce the lowest classification error
are selected as the final model parameters.

The actual training process is performed using the sequential minimal optimiza-
tion (SMO) algorithm. The MATLAB r© support vector machine toolbox implemen-
tation of the SMO algorithm is used to train individual SVM classifiers [188]. Com-
putational results proved that the overall recognition accuracy of the presented SVMs
decision tree is larger than 90%. The studies presented here are performed within the
AveSound project [11].

6.5 Applications 135

Fig. 6.7 The structure of the SVM decision tree used for recognizing bird species. Image from [71].

6.5.2 Detection of meat and bone meal

Since the emergence of the mad cow crisis in Europe, and all its socio-economic
consequences, European Union regulatory agencies have undertaken many legal
measures to ensure the safety and quality of feedstuffs for animals. One of the most
important decisions was to ban meat and bone meal in feedstuffs destined to farm
animals which are kept, fattened, or bred for the production of food. Controls are
needed for verifying if meat and bone meal is instead used for accidental contam-
ination or against the law. Therefore, the effective enforcement of this regulation
requires accurate and efficient analytical methods capable of analyzing thousands of
samples per year. Some methods have been developed for this purpose, which are
reliable but tedious. The main problem is that visual observations and interpretations
by an experienced analyst are needed, and this makes the process slower, expensive
and subject to errors.

Near-infrared microscopy is an alternative method, which works well in dis-
criminating the different ingredients found in compound feeds. Each particle in the
feedstuffs is evaluated based on its chemical properties rather than appearance, re-
ducing in this way the human subjectivity. Unfortunately, this method is slower than

136 6 Support Vector Machines

classical microscopy. Therefore other methods have been developed. One of these
methods combines the advantages of spectroscopic and microscopic methods along
with much faster sample analysis. An imaging spectrometer gathers spectral and
spatial data simultaneously by recording sequential images of a predefined sample.
The set of data obtained by this method (a collection of spectra in this case) can be
used for training an SVM with the aim of defining a classifier able to discriminate
between vegetable and meat and bone meal.

In this section, the training process of an SVM for these purposes [187] is pre-
sented. Spectra coming from 26 pure animal meals and spectra coming from 59
pure vegetable meals have been used for creating the training set. The animal and
vegetable materials analyzed have been selected to span the diversity of materials
mainly used for the formulation of compound feeds. In total, more than 267,000
spectra have been collected from pure animal and vegetable meals. All spectra have
been kept as raw absorbance units.

In this application, samples belonging to two classes only have to be discriminated,
and therefore only one SVM is needed. Different kernels are tested on the obtained
set of data, and the results show that the best choice is the Gaussian kernel. The SVM
parameters are optimized using the “grid search’’method with a fixed calibration and
validation set. The optimal parameter settings for C and σ are then selected as the
values that give the maximum correct classification rate. When C is increased, the
second term of the objective function dominates, forcing SVM toward a solution with
the least training error, which decreases the amount of regularization. Moreover, a
larger number of calibration samples are retained as support vectors, which increases
the computation time of prediction. In this case, animal particles begin to be classified
as vegetable, but no plant particles are misclassified.

In this particular area it is very important that all the samples are classified with a
good precision. Indeed, a false detection of meat and bone meal can severely damage
the reputation of honest and scrupulous farmers and manufacturers. Human analysis
can be included in the process for verifying if there are false detections of meat
and bone meal, but this would require additional expenses. For validating the trained
SVM, a cross-validation technique is used (see Chapter 8). For this purpose, a testing
set of 76,800 spectra is created in the same manner as the calibration samples, using
the same imaging instrument.

The prediction of the data in the testing set is handled in two different ways. For
details, please refer to [187]. During the first test, most of the animal particles are
well detected and no vegetable particles are misclassified. During the second test,
the detected animal particles correspond better with the true meat and bone meal
particles, and no vegetable or background particles are misclassified.

6.6 MATLAB and LIBSVM

There is a MATLAB toolbox especially designed for SVMs. However, we will not
discuss its potentialities in this chapter, and the interested reader can find additional

6.6 MATLAB and LIBSVM 137

information on this toolbox on the MATLAB Web site. This section is instead devoted
to the free software LIBSVM (a LIBrary for Support Vector Machines). MATLAB
is used just to generate instances that will be solved by using LIBSVM. This will
give an example of how to interface two different software. The code in MATLAB
we propose is simple and easy to modify for personal purposes.

LIBSVM is an integrated software for SVM classification and also regression and
distribution estimation [43]. LIBSVM is distributed with the source code, so that it
can be compiled and used on any platform. Executable files are also available for
DOS and Windows users. It is composed of 4 procedures:

• svmtrain can be used for training an SVM by a certain training set and using
different parameters.

• svmpredict can be used for predicting classifications by SVMs defined with the
previous procedure.

• svmscale can be used for scaling the data. This procedure is highly recommended
by the authors of LIBSVM for avoiding what they call “numerical difficulties’’
during the calculations. In fact, variables having a greater variability can dominate
on the ones with smaller ranges of variability, and this may spoil the classification
accuracy.

• svmtoy is a LIBSVM procedure which can be used for playing with SVMs. It has
a graphic interface, where two-dimensional points can be drawn on a virtual plane
and different classifications can be associated to them. The procedure provides
graphical representations of SVMs modeling the drawn points. This can be a
valuable exercise for checking the SVM classification skills in different situations,
such as linear and nonlinear separable data.

In the following, it is shown how a training set can be generated and used for
training an SVM. For generating the data, the MATLAB function generate is used.
In this case, however, the data do not have to be used in the MATLAB environment.
Hence, the data need to be stored in a text file formatted so that it can be read by the
LIBSVM software.

The LIBSVM procedures are able to read text files formatted as follows. At least
two text files need to be generated: one containing the samples of the training set
and another one containing the samples of a testing test. These samples need to
be listed row by row in the text files, so that each sample is represented on one
single row. Each row starts with the identifier of the class the sample belongs to.
If the samples are divided in two classes, the identifiers can be −1 and +1. After
the identifier, all the components of the vector representing the sample need to be
inserted. For each component, the component counter {1, 2, . . . , n} and its value are
inserted and separated by the symbol ‘:’. If known, the class to which the sample
belongs can be inserted also in the text file related to the testing test. In this way,
svmpredict is able to verify how many unknown samples are classified correctly
by the SVM. In Figure 6.8 a modified version of the MATLAB function generate

(Figure 3.16) is given. It saves the generated data in the text file trainset.txt by
using the functions fopen and fprintf. The function generate4libsvm assigns

138 6 Support Vector Machines

%
% this function generates a random sets of data
% in the two-dimensional space and prints it in
% the text file "trainset.txt" formatted in the
% LIBSVM format
%
% input:
% n - number of random samples to be generated
% eps - predefined margin between samples separated by the line x = 0
%
% output:
% x - x coordinates of the samples
% y - y coordinates of the samples
%
% [x,y] = generate4libsvm(n,eps)

function [x,y] = generate4libsvm(n,eps)

output = fopen(’trainset.txt’,’w’);

for i = 1:n,

random = rand();
if random < 0.50,
x(i) = -eps - rand();

else
x(i) = eps + rand();

end
y(i) = 2.0*rand() - 1.0;
if random < 0.50,
fprintf(output,’-1 1:%f 2:%f\n’,x(i),y(i));

else
fprintf(output,’+1 1:%f 2:%f\n’,x(i),y(i));

end

end

fclose(output);

end

Fig. 6.8 The MATLAB function generate4libsvm.

each sample of the type (−x, y) to class −1 and each sample of type (+x, y) to
class +1.

A set of 100 samples has been generated by function generate4libsvm with
eps = 0.1. The first samples contained in the text file are shown in Figure 6.9.Another
set of 1000 samples have then been generated by the same function and imposing
eps = 0.0. This second set is used as a testing set, and hence its name has been modi-
fied from trainset.txt to testset.txt after the generation. The two-dimensional
points in the sets of data are generated in a way that their components range approx-
imately in the set [−1, 1] × [−1, 1], depending on the eps value. For this reason,
the procedure svmscale is not used in this example. Figure 6.10 provides the com-
mands used for training and testing an SVM. The procedure svmtrain is used for
training the SVM. The procedure has many parameters. If they are not specified,
the default values are used for such parameters. In this example, the option ‘-t’ is
used for specifying one of the possible kernels that can be employed. The procedure
svmpredict is then used for performing the classification of unknown samples by

6.7 Exercises 139

-1 1:-0.600916 2:-0.341989
-1 1:-0.430370 2:0.260895
-1 1:-0.548602 2:0.182902
+1 1:0.173930 2:0.886739
-1 1:-0.301908 2:-0.606139
+1 1:0.561792 2:0.250258
+1 1:0.801817 2:-0.182400
-1 1:-0.165739 2:0.066201
-1 1:-0.415784 2:-0.242835
-1 1:-0.728737 2:-0.424297
-1 1:-0.571923 2:-0.329246
+1 1:0.219608 2:0.522800
-1 1:-0.381697 2:-0.523980
-1 1:-0.330673 2:-0.572741
-1 1:-0.409537 2:0.352594
+1 1:0.644180 2:-0.959050
+1 1:0.449036 2:-0.778927
-1 1:-0.230469 2:0.714791
+1 1:0.507112 2:0.338388
-1 1:-0.931043 2:-0.975567
-1 1:-1.054988 2:-0.882514
+1 1:0.398074 2:-0.844848
+1 1:0.852871 2:-0.896554
+1 1:0.483371 2:-0.019956
+1 1:0.168895 2:0.768616
+1 1:0.169426 2:-0.769558
-1 1:-0.867158 2:-0.823894
+1 1:0.287914 2:-0.596423
... ...

Fig. 6.9 The first rows of file trainset.txt generated by generate4libsvm.

using the trained SVM. This procedure needs two text files as input and one text
file as output. The first one is testset.txt, where the samples to be classified are
stored. The second one is trainset.txt.model, which is a text file generated by
svmtrain where the parameters related to the SVM are saved. Finally, the output
file testresult.txt will contain the classification of the unknown samples. The
overall accuracy is 98%.

6.7 Exercises

This section presents some exercises related to SVMs. All the solutions are reported
in Chapter 10.

LIBSVM> svmtrain -t 3 trainset.txt
*
optimization finished, #iter = 16
nu = 0.213405
obj = -14.075954, rho = -0.091571
nSV = 23, nBSV = 20
Total nSV = 23

LIBSVM> svmpredict testset.txt trainset.txt.model testresult.txt
Accuracy = 98.1% (981/1000) (classification)

Fig. 6.10 The DOS commands for training and testing an SVM by SVMLIB.

140 6 Support Vector Machines

1. Let us suppose that a set of points in a three-dimensional space is defined as
follows. The generic point of this set is the triplet

(A, B, C)

such that the components can have value 0 or 1. Let us suppose that all the points
grouped in the class C0 satisfy the rule:

A AND B AND C = 0,

whereas all points grouped in the class C1 satisfy the rule:

A AND B AND C = 1.

State whether the two classes C0 and C1 are linearly separable.
2. As in the previous exercise, check if the two classes C0 and C1 are linearly

separable, when the classes are defined as:

C0 = {(A, B, C) : NOT A AND B = 0}
C1 = {(A, B, C) : NOT A AND B = 1}

and when the classes are defined as:

C0 = {(A, B, C) : (A OR B) AND (A AND C) = 0}
C1 = {(A, B, C) : (A OR B) AND (A AND C) = 1} .

3. Suppose that a set of points and their classifications in two classes C+ and C−
are specified as follows:(

(0, 0), C−) , (
(0, 1), C+) , (

(1, 0), C+) , (
(1, 1), C−) .

State why the classes C+ and C− are not linearly separable.
4. Consider the set of points and their classification as described in Exercise 3.

Transform the set of points by using the function

�(x1, x2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2x1√
2x2

x2
1

x2
2√

2x1x2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Check also if the set of points is linearly separable after the transformation.
5. Consider the set of points and their classification as described in Exercise 3.

Formulate the primal optimization problem for finding the maximum margin
classifier in the higher-dimensional space defined by the function �(x1, x2) in
Exercise 4.

6.7 Exercises 141

6. Reproduce the experiment discussed in Section 6.6 by using different kernel
functions.

7. Considering the context of Section 6.1, prove that

M = 2√
wT w

.

Chapter 7
Biclustering

7.1 Clustering in two dimensions

Clustering techniques aim at partitioning a given set of data into clusters. Chapter 3
presents the basic k-means approach and many variants to the standard algorithm.All
these algorithms search for an optimal partition in clusters of a given set of samples.
The number of clusters is usually denoted by the symbol k. As previously discussed
in Chapter 3, each cluster is usually labeled with an integer number ranging from
0 to k − 1. Once a partition is available for a certain set of samples, the samples
can then be sorted by the label of the corresponding cluster in the partition. If a
color is then assigned to the label, a graphic visualization of the partition in clusters
is obtained. This kind of graphic representation is used often in two-dimensional
spaces for representing partitions found with biclustering methods.

A set of data can be represented through a matrix. The samples can be represented
by m-dimensional vectors, where the components of these vectors represent the
features used for describing each sample. All the vectors representing the samples
can be grouped in a matrix

A =

⎛
⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

.

am1 am2 am3 . . . amn

⎞
⎟⎟⎟⎟⎠ .

If a given set of data contains n samples which are represented by m features, then A

is an m×n matrix. Each column of the matrix represents one sample, and it provides
information on the expression of its m features. Each row represents a feature, and
it provides the expression of that feature on the n samples of the set of data.

Standard clustering methods partition the samples in clusters, i.e., the columns of
the matrix A are partitioned in clusters. Biclustering methods work instead simulta-
neously on the columns and the rows of the matrix A. Besides clustering the samples,
even their features are partitioned in clusters. Two different partitions are therefore

© Springer Science + Business Media, LLC 2009

A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34, 143
DOI: 10.1007/978-0-387-88615-2_7,

144 7 Biclustering

needed. The search of the two partitions is not performed independently, but rather
the clusters of samples and the clusters of features are related. The concept of “bi-
cluster’’ is introduced for this purpose. A bicluster is a collection of pairs of samples
and features subsets B = {(S1, F1), (S2, F2), . . . , (Sk, Fk)}, where k, as usual, is the
number of biclusters [32]. Each bicluster (Sr , Fr) is formed by two single clusters:
Sr is a cluster of samples, and Fr is a cluster of features.

The following conditions must be satisfied:

k⋃
r=1

Sr ≡ A, Sζ ∩ Sξ = ∅ 1 ≤ ζ �= ξ ≤ k,

k⋃
r=1

Fr ≡ A, Fζ ∩ Fξ = ∅ 1 ≤ ζ �= ξ ≤ k.

Note that the union of all the clusters Sr must be A because each sample, organized
in columns in the matrix, must be contained in at least one cluster Sr . Similarly, the
union of all the clusters Fr must be A as well. The only difference is that the features
are organized on the rows of the matrix A. Note also that these same conditions are
imposed on clusters when standard clustering is applied. Besides ensuring that each
single sample or feature is contained in a cluster, they guarantee that all the clusters
of samples and the clusters of features are disjoint.

The aim of biclustering techniques is to find a partition of the samples and of
their features in biclusters (Sr , Fr). In this way, not only a partition of samples is
obtained, but also the features causing this partition are identified. As for the standard
clustering, the single clusters Sr and Fr can be labeled from 0 to k−1. Independently,
the clusters Sr can be sorted by their own labels, and the same can be done for the
clusters Fr . A color or a gray scale can be associated to each label, and a matrix
of pixels can be created. On the rows of such matrix, the clusters Fr are ordered
by their labels, and the clusters Sr are ordered on the columns. Even though this
matrix is built considering the clusters Sr and Fr independently, it gives a graphic
visualization of the biclusters (Sr, Fr). The matrix shows a checkerboard pattern
where the biclusters can be easily identified. This pattern can be easily noticed, for
instance, in Figure 7.4, related to the application of biclustering discussed in Section
7.4.1.

Biclustering is widely applied for partitioning gene expression data, and therefore
some of the nomenclature in biclustering is similar to the one in gene expression
analysis. In [159], a survey of biclustering algorithms for biological data is presented.
Since biology is currently the main field of application of biclustering, this survey
can be actually considered a survey on biclustering. It is updated to the year 2004,
and hence it does not include recent developments, which are discussed in Section
7.2 of this chapter.

Following the definition, a bicluster is a pair of clusters (Sr , Fr), where Sr is a
cluster of samples and Fr is a cluster of features. Since the samples and the features
are organized in the matrix A as explained above, a bicluster can also be seen as a

7.1 Clustering in two dimensions 145

submatrix of A. A submatrix of an m × n matrix can be identified by the set of row
indices and column indices it takes from A. For instance, if

A =
⎛
⎝1 2 3

1 1 0
0 −1 2

⎞
⎠ ,

then the submatrix with the first and third row of A and the second and third column
of A is

SA =
(

2 3
−1 2

)
.

In the following, bicluster and submatrix of A will be used interchangeably.
Different kinds of biclusters can be defined. One might be interested in biclusters

in which the corresponding submatrices of A have constant values. This requirement
may be too strong in some cases, and it may work on non-noisy data only. Indeed,
data from real-life applications are usually affected by errors, and a bicluster with
constant values may not be possible to find. Formally, these kinds of biclusters are
the ones in which

aij = µ ∀i, j : ai ∈ Fr aj ∈ Sr ,

where µ is a real constant value. If the data contain errors, the following formalism
can be used

aij = µ + ηij ∀i, j : ai ∈ Fr aj ∈ Sr ,

where ηij is the noise associated to a real value µ of aij . The problem of finding
biclusters with constant values can be formulated as an optimization problem in
which the variance of the elements of the biclusters have to be minimized. If ISr is
the set of column indices related to the samples aj ∈ Sr , i.e., ISr

contains all the
j indices associated to Sr , and IFr is the set of row indices related to the features
ai ∈ Fr , then

f (Sr, Fr) =
∑
i∈ISr

∑
j∈IFr

(
aij − M

)2
evaluates the quality of the bicluster (Sr , Fr), where M is the average of all the
elements in (Sr , Fr). If the data are not affected by errors, a perfect bicluster with
constant values is such that f (Sr , Fr) = 0. Otherwise, minimizing the function
f (Sr , Fr) equals finding the bicluster which is closest to the optimal one. It is worth
noting that every bicluster containing one row and one column is a perfect bicluster
with constant values, since its only element aij equals M . In general, when the
function f (Sr, Fr) is optimized, constraints must take into account that the number
of rows and columns of the submatrices representing the biclusters must be greater
than a certain threshold.

Biclusters with constant row values and constant column values can also be of
interest. If the row values in a bicluster are constant, then all the samples in the
bicluster (and in Sr) have a constant subset of features (the ones in Fr). Inversely,

146 7 Biclustering

if the columns have constant values, then the samples in Sr have all the features in
Fr constant. In this case, different samples have different feature values, but all the
feature values in the same sample are the same. A bicluster having constant rows
satisfies the condition

aij = µ + αi ∀i, j : ai ∈ Fr aj ∈ Sr

or the condition
aij = µαi ∀i, j : ai ∈ Fr aj ∈ Sr

where µ is a typical value within the bicluster and αi is the adjustment for row
i ∈ ISr . Similarly, a bicluster having constant columns satisfies the condition

aij = µ + βj ∀i, j : ai ∈ Fr aj ∈ Sr

or the condition
aij = µβj ∀i, j : ai ∈ Fr aj ∈ Sr .

Even here, the presented conditions can be satisfied only if the data are not noisy, oth-
erwise the noise parameters ηij can be used, as in the previous example of biclusters
with constant values.

The easiest way to approach the problem of finding biclusters with constant row
values or constant column values is the following one. Let us suppose a bicluster with
constant rows is contained in a matrix A and that the submatrix which corresponds
to it is

SA =

⎛
⎜⎜⎝

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

⎞
⎟⎟⎠ .

Since all the values on the rows are constant, the mean among all these values
corresponds to any of the row values. If each row is normalized by the mean of all
its values, then the following matrix is obtained

ŜA =

⎛
⎜⎜⎝

1/1 1/1 1/1 1/1
2/2 2/2 2/2 2/2
3/3 3/3 3/3 3/3
4/4 4/4 4/4 4/4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠ ,

which corresponds to a bicluster with constant values. Therefore, the row and the
columns normalization can allow the identification of biclusters with constant values
on the rows or on the columns of the matrix A by transforming these biclusters into
constant biclusters.

Biclusters have coherent values when the generic element of the corresponding
submatrix can be written as

aij = µ + αi + βj ∀i, j : ai ∈ Fr aj ∈ Sr .

7.1 Clustering in two dimensions 147

Particular cases of coherent biclusters are biclusters with constant rows (βj = 0),
or biclusters with constant columns (αi = 0), or biclusters with constant values
(αi = βj = 0). This kind of bicluster can be represented by submatrices such as

SA =

⎛
⎜⎜⎝

µ + α1 + β1 µ + α1 + β2 . . . µ + α1 + βm

µ + α2 + β1 µ + α2 + β2 . . . µ + α2 + βm

.

µ + αn + β1 µ + αn + β2 . . . µ + αn + βm

⎞
⎟⎟⎠ .

The whole submatrix SA can be built using the value µ and the two vectors α ≡
(α1, α2, . . . , αn) and β ≡ (β1, β2, . . . , βm).

The following proves that a generic element aij of a submatrix SA can be obtained
from means among the rows, the columns and all the elements of the matrix. The
mean among the elements of the ith row of SA is

Mi = µ + αi + 1

m

m∑
k=1

βk,

whereas the mean among the elements of the j th column of SA is

Mj = µ + 1

n

n∑
k=1

αk + βj .

Moreover, the mean of all the elements of the matrix SA is

M = µ + 1

n

n∑
k=1

αk + 1

m

m∑
k=1

βk.

From simple computations, it results that

Mi + Mj − M = µ + αi + βj = aij . (7.1)

Therefore, the generic element of a coherent bicluster can be written as the mean of
its rows, plus the mean of its columns, minus the mean of the whole submatrix. If
the data are affected by errors, then equation (7.1) may not be satisfied. The residue
r(aij) associated to an element aij is then defined as

r(aij) = aij − Mi − Mj + M

and consists of the difference between the value aij and the value obtained applying
equation (7.1). A perfect (not affected by noise) coherent bicluster would have all
the residues r(aij) equal to zero. Thus, the following function is able to evaluate the
coherency of biclusters:

148 7 Biclustering

H(Sr , Fr) = 1

nm

n∑
i=1

m∑
j=1

[
r(aij)

]2
.

Coherent biclusters can be located in the matrix A by minimizing this objective
function.

As shown in this section, the problem of finding a bicluster or a partition in
biclusters can be formulated as an optimization problem. The easiest way to solve
it is through an exhaustive search among all the possible biclusters. This can be
affordable only if the considered set of data contains a small number of samples and
features. When this is not the case, optimization methods need to be used. In Section
1.4, some standard methods for optimization are presented. However, usually the
optimization methods used for biclustering are tailored to the particular problem to
solve [66, 83].

7.2 Consistent biclustering

In this section, the notion of consistent biclustering is introduced. This part of the
chapter makes a large use of mathematical symbols: the symbology utilized follows.
As already observed, the set of clusters Sr and the set of clusters Fr represent two
partitions of the samples and of the features of a set of data. Each cluster Sr or Fr

has a certain center. Since we have to deal with two different partitions (samples
and features), let us denote the center of the generic cluster Sr with the symbol cS

r

and the center of the generic cluster Fr with the symbol cF
r . The center cS

r refers to
the rth cluster of the samples. Since it is the average of samples represented by m-
dimensional vectors, cS

r is an m-dimensional vector. These vectors can be organized
into an m × k matrix CS , where the centers are stored column by column, just as the
samples in the matrix A. The same can be done in correspondence of the clusters Fr

and their centers. The generic center cF
r refers to the rth cluster of features. A matrix

CF can be defined where such centers are organized column by column. CF is an
n× k matrix, since each feature is represented by an n-dimensional vector. Since the
matrices CS and CF contain averages, their elements are the average expressions of
the corresponding samples and features. It is clear that the nomenclature “average
expression’’ comes from the studies on gene expression data. An average expression
can be evaluated by a non-negative number: we will suppose in the following that
all the centers have non-negative values.

Matrices are widely used in biclustering: A contains the set of data to partition in
biclusters; CS and CF contain the centers of the clusters Sr and Fr , respectively. aij

refers to the ith feature of the j th sample. A sample can be referred to as aj : the j as
superscript means that the j refers to the column index of the matrix A. Similarly, ai

refers to the ith row of the matrix, i.e., to the ith feature. The same symbology can
be used for elements in CS and CF . cS

ir refers to the ith component of the center of
the cluster Sr ; cF

jr refers to the j th component of the center of the cluster Fr .

7.2 Consistent biclustering 149

As already pointed out, the two single clusters in a bicluster (Sr, Fr) are related.
Actually, once a partition in clusters of the samples is provided, a corresponding
partition in clusters of the features can be obtained. Vice versa, a partition in clusters
Sr can be obtained from the clusters Fr . Let us suppose then that the clusters Sr are
known. In this case, each sample or column aj is assigned to a certain cluster. The
centers of all the clusters Sr are also known and contained in the matrix CS column
by column. The generic element cS

ir of the matrix represents the average expression
of the ith feature in the rth cluster, among all the samples in Sr . Let r̂ be the cluster in
which the ith feature is most expressed. In mathematical formulas, r̂ can be defined
as the index such that the following condition is satisfied:

ai ∈ Fr̂ ⇐⇒ cS
ir̂

> cS
iξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ . (7.2)

Intuitively, it is reasonable to assign the feature ai to the cluster Fr̂ . If the condition
(7.2) is applied for all the indices i ∈ {1, 2, . . . , k} and all the features ai are assigned
to the corresponding clusters Fr̂ , a partition in clusters Fr is obtained from a previous
partition in clusters Sr .

The same procedure can be applied for obtaining a partition of the samples when
a partition of the features is known. The following rule can be used for assigning a
sample aj to a certain cluster Ŝr :

aj ∈ Ŝr̂ ⇐⇒ cF
j r̂

> cF
jξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ . (7.3)

If this rule is applied for each j , a new partition in clusters Ŝr is obtained from the
partition in clusters Fr . Note that a symbol is used for discriminating the generic
cluster Sr and the generic cluster Ŝr . Indeed, Sr is the generic cluster used for finding
a partition in clusters Fr of the features, whereas Ŝr represents the partition in clusters
obtained from the clusters Fr . Two different notations for Sr and Ŝr are used because
these two partitions of samples can be different in general. Even though Sr generated
Fr and Fr generated Ŝr , there are no reasons why Sr and Ŝr should correspond. If
they correspond, then the partition in biclusters (Sr, Fr) is called consistent.

It is important to note that not all the sets of data admit a consistent partition in
biclusters. This may happen because there may not be a statistical evidence that a
sample or a feature belongs to a certain cluster. If a consistent partition in biclusters
exists for a certain set of data, then it is said to be biclustering-admitting. When it is
not the case, samples or features are usually deleted from the set of data for letting it
become biclustering-admitting. In this case, it is important to delete the least possible
in order to preserve the information in the set of data. This procedure is known as
feature selection.

The requirement of consistency can be weak in some cases. Let us suppose that a
partition in clusters Sr is available, and that a partition in clusters Fr is obtained from
it. Each feature is therefore assigned to the cluster Fr̂ such that cS

ir̂
has the largest

value in the vector cS
i . Let us suppose now that the following condition holds:

min
ξ �=r̂

{cS
ir̂

− cS
iξ } ≤ ε (7.4)

150 7 Biclustering

where ε is a small number. In this case, small changes in the data can bring different
partitions of the features in the clusters Fr . Indeed, small variations of the samples
bring variations of the centers of the clusters Sr , and this can bring a different feature
to be more expressed. The following example should clarify this concept.

Let us suppose that the data are partitioned in two biclusters only. S1 and S2 are
known, as well as their centers cS

1 and cS
2 . The features are also partitioned into two

clusters F1 and F2. Each feature is assigned to one of the two clusters depending
on their average expressions in the corresponding clusters Sr . Therefore, the generic
feature ai is assigned to F1 if cS

i1 > cS
i2, and vice versa. Let us suppose for instance

that cS
i1 = 5.9 and cS

i2 = 6.1. Then, ai is assigned to F2. However, the condition
(7.4) holds with α ≥ 0. This means that it is not evident statistically that ai belongs
to F2. Indeed, let us suppose that another sample is added to the set of data, and
that it is assigned to cluster S1. The center of S1 hence changes, and in particular
its ith component changes. If the feature ai is more expressed in this sample, the
average cS

i1 can increase. Since it is an average and it considers all the samples in the
same cluster, it cannot change dramatically, even though the new sample might be
different from the others. However, in the considered example, the feature ai might
be assigned to a different cluster after the new sample is added. If indeed cS

i1 is now
equal to 6.2, then cS

i1 > cS
i2, and the feature ai is assigned to F1.

In order to overcome this kind of problem, conditions stronger than consistent
biclustering are introduced in [176]. A biclustering is called an additive consistent
biclustering with parameter α or an α-consistent biclustering if the following two
relations holds

ai ∈ F̂r̂ ⇐⇒ cS
ir̂

> αF
j + cS

iξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ (7.5)

aj ∈ Ŝr̂ ⇐⇒ cF
j r̂

> αS
i + cF

jξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ (7.6)

where each αF
j and αS

i are positive numbers. It is easy to prove that an α-consistent
biclustering is a consistent biclustering, but not the inverse. Indeed, if the conditions
(7.5) and (7.6) are satisfied with αF

j > 0 and αS
i > 0, then they keep being satisfied

with αF
j = 0 and αS

i = 0. Inversely, let us suppose that cS
ir̂

> αF
j + cS

iξ for all

the ξ different from r̂ , in correspondence with some feature ai and with αF
j = 0. If

αF
j is successively modified and it becomes positive, then the condition may not be

satisfied anymore. The quantity αF
j + cS

iξ becomes larger, and therefore the quantity

cS
ir̂

may not be greater than it anymore.
Similar to α-consistent biclustering is the β-consistent biclustering.Abiclustering

is called a multiplicative consistent biclustering with parameter β or a β-consistent
biclustering if the following two relations holds

ai ∈ F̂r̂ ⇐⇒ cS
ir̂

> βF
j cS

iξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ (7.7)

aj ∈ Ŝr̂ ⇐⇒ cF
j r̂

> βS
i cF

jξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ (7.8)

7.3 Unsupervised and supervised biclustering 151

where βF
j > 1 and βS

i > 1. As before, a β-consistent biclustering is a consistent
biclustering.

7.3 Unsupervised and supervised biclustering

Biclustering is a technique for clustering on two dimensions. On the first dimension,
the samples contained in a set of data are taken into account. Standard clustering
methods work on this dimension only. On the second dimension, moreover, biclus-
tering considers the features that are used for representing the samples. The simulta-
neous clustering of samples and features allows one to partition the data in clusters
where similar samples are contained, and to find out the features that cause these
similarities.

Biclustering can be performed by solving one of the optimization problems dis-
cussed in Section 1.4. In this way, the partition of the samples and the partition of the
features are searched simultaneously. Biclustering can also be performed by using
methods for standard clustering coupled with the concepts introduced in the previous
section. For instance, the k-means algorithm can be applied for partitioning a given
set of samples. Then, the conditions (7.2) can be used for finding a correspondent
partition in clusters of the features. In this way, the biclusters can be defined. Besides
the partition of the samples, the partition of their features allows one to identify the
ones that generate the current partition of the samples.

However, the partition found in biclusters might not be consistent. From the par-
tition in clusters of the features, a partition in clusters, the samples can be obtained
using the conditions (7.3). As already pointed out, the obtained partition of the sam-
ples can be equal or not to the starting partition, i.e., to the partition found by the
k-means algorithm in this example. If they correspond, the biclustering is consistent,
otherwise it is not. In the latter case, some features be can deleted from the set of
data in order to let the biclustering become consistent. The feature selection process
is not easy, and the consistent biclustering can be found only if the set of data is
biclustering-admitting.

Clustering techniques are referred to as techniques for unsupervised classifica-
tions, because they are used when there is not any previous knowledge about the
data. Biclustering can be also supervised, because the information from a training
set can be actually used. If a training set is available, a set of data is available that
is already partitioned in different classes. In this case, a partition algorithm such as
k-means is not needed, because the data are already partitioned. Then, a partition
of the features can be obtained applying the conditions (7.2). At this point, a set of
biclusters is defined, which is able to provide information on the features that caused
the classification of the samples given by the training set. As before, this information
is accurate if the biclustering is consistent, otherwise there is not a strong statistical
evidence that a feature belongs to one cluster or another.

The problem of finding a consistent biclustering, once a partition of the samples
is given, can be formulated as an optimization problem (see Section 1.4). Before

152 7 Biclustering

formulating the optimization problem, let us introduce some notations. Let F be an
m × k matrix whose elements can have value 0 or 1 only. The generic fir element
has value 1 if the feature ai belongs to the cluster Fr , and 0 otherwise. By using
this matrix, the condition of consistency can be written as follows. Suppose that the
clusters Sr are known. Suppose that the clusters Fr are built by using the conditions
(7.2). Then, the clustering in biclusters (Sr , Fr) is consistent if Sr is obtained when
the conditions (7.3) are applied. Equivalently, the following conditions must hold:

m∑
i=1

aijfir̂

m∑
i=1

fir̂

>

m∑
i=1

aijfiξ

m∑
i=1

fiξ

, ∀r̂ , ξ ∈ {1, 2, . . . , k}, r̂ �= ξ, j ∈ Sr̂ . (7.9)

Let us introduce now the binary vector x of length m whose generic element xi is
1 if the feature ai is taken into account, and 0 otherwise. The condition (7.9) on a
subset of features can be written as follows:

m∑
i=1

aij fir̂xi

m∑
i=1

fir̂xi

>

m∑
i=1

aij fiξ xi

m∑
i=1

fiξ xi

, ∀r̂ , ξ ∈ {1, 2, . . . , k}, r̂ �= ξ, j ∈ Sr̂ . (7.10)

As already pointed out, when deleting features in order to find a consistent biclus-
tering, the minimum possible features have to be removed. The problem of choosing
a subset of features that is as large as possible and such that the corresponding bi-
clustering is consistent can be formulated as an optimization problem. The function
to maximize is

f (x) =
m∑

i=1

xi (7.11)

while subject to the constraints (7.10). In the optimization field, this problem is called
fractional 0-1 programming problem. Its solution provides an efficient selection of
the features to take into account. This optimization problem can be solved by using a
suitable method for global optimization (Section 1.4), but it is usually quite difficult
to manage. Therefore, ad hoc methods have been developed. Details about these
methods can be found in [32, 176].

The solutions of the formulated optimization problem allow one to obtain consis-
tent biclusterings where the maximum number of features is considered. Similarly,
the following optimization problem provides α-consistent biclusterings:

max
x

f (x)

subject to

7.4 Applications 153

m∑
i=1

aij fir̂xi

m∑
i=1

fir̂xi

> αj +

m∑
i=1

aijfiξ xi

m∑
i=1

fiξ xi

, ∀r̂ , ξ ∈ {1, 2, . . . , k}, r̂ �= ξ, j ∈ Sr̂ .

This other optimization problem provides instead β-consistent biclusterings:

max
x

f (x)

subject to

m∑
i=1

aijfir̂ xi

m∑
i=1

fir̂ xi

> βj

m∑
i=1

aijfiξ xi

m∑
i=1

fiξ xi

, ∀r̂ , ξ ∈ {1, 2, . . . , k}, r̂ �= ξ, j ∈ Sr̂ .

7.4 Applications

Biclustering techniques are nowadays mainly applied to the field of biology, and in
particular for the analysis of microarray data. In Section 7.4.1 we will discuss in
detail this kind of application and we will report the experiments presented in [32],
where supervised biclustering has been applied. Moreover, even other applications
of biclustering have emerged in the literature. Biclustering is used for collaborative
filtering, where the aim is to identify subgroups of customers with similar preferences
or behaviors toward a subset of products [55, 228, 244]. In information retrieval and
text mining [60], biclustering can be successfully used to identify subgroups of
documents with similar properties relative to subgroups of attributes, such as words
or images. In [103], biclustering has been used for analyzing electoral data and, in
[142], it has been used for studying the exchanges of foreign currencies. To the best
of our knowledge, biclustering has never been used before for solving problems
related to agriculture. However, as we will explain in Section 7.4.2, it is our opinion
that biclustering techniques can be successfully applied to agricultural-related data
mining problems.

7.4.1 Biclustering microarray data

Microarrays in biology are used for studying the expression of genes under different
conditions. Genes in humans, for instance, have different expression levels in pres-
ence of diseases. Finding the set of genes that have similar expression levels in the

154 7 Biclustering

Fig. 7.1 A microarray.

presence of a certain disease can help understanding the disease itself and how the
body reacts to it. Microarray data are organized as in a matrix: each row of the matrix
is related to a gene, and each column is related to a different condition. Therefore, the
generic element of a microarray gives the expression level of the gene, specified by
the current row, under the condition specified by the current column. The expression
levels are usually visualized by a matrix of colors ranging from light green to red. In
black and white pictures, this range of colors corresponds to a gray scale from white
to black. Figure 7.1 shows a microarray.

The expression levels obtained by a microarray can be placed in a m×n numerical
matrix A. The samples contained in this matrix are organized column by column:
each of them represents an experimental condition through the expression levels of
all the considered genes. The features used for describing such samples are hence the
expression levels of the genes. Each row of A contains all the measured expression
levels of the same gene under the different experimental conditions.

Biclusters in the matrix A can reveal genetic pathways that can be used, for
instance, for identifying the genes with different expression levels in presence of a
disease. A bicluster of samples and features groups a subset of similar conditions that
are caused by a subset of genes having similar expression levels. The meaning of the
term “similar’’ depends on the kind of considered bicluster. For instance, biclusters
can have constant values, on the whole bicluster or only on its rows or columns, or
it can be a bicluster with coherent values.

7.4 Applications 155

Another way for finding biclusters in the matrix A is to look for a consistent
biclustering of the data as explained in Section 7.2. Let us suppose that the samples
(the experimental conditions in this application) are already classified in clusters.
Then, the rule (7.2) can be used for finding a partition in clusters of the features, i.e.,
a partition in clusters of the genes. In this way, biclusters containing conditions and
genes can be identified, and the genes causing certain conditions can be located. It
is important to note that the correlation between conditions and genes is statistically
evident only if the partition found in biclusters is consistent. For this reason, the best
way to find such partition is to solve the optimization problem (7.11)–(7.10). In this
way, the features that cause the biclustering not to be consistent are removed.

In [32, 176], this technique has been applied to a well-researched microarray data
set containing samples from patients diagnosed with acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML) diseases [89]. The original set of data has
been divided in two parts: a part used as training set and another used as validation
set. Hence, the training set used contains 27 samples classified as ALL and 11 sample
classified as AML; the validation set contains 20 ALL samples and 14 AML samples.
A consistent biclustering is obtained by following a methodology described in [32],
which is based on the optimization of the problem (7.11)–(7.10). After that, the
samples of the validation set are subsequently classified choosing for each of them
the class with the highest average feature expression: 3439 features for class ALL
and 3242 features for class AML have been selected. The obtained classification
contains only one error: one AML-sample was classified into the ALL class. The
obtained partition in biclusters is shown in Figure 7.2.

The same methodology has also been applied to the Human Gene Expression
(HuGE) Index data set [112]. The purpose of the HuGE project is to provide a
comprehensive database of gene expressions in normal tissues of different parts
of the human body and to highlight similarities and differences among the organ
systems [111]. The data set consists of 59 samples from 19 distinct tissue types. It
was obtained using oligonucleotide microarrays capturing 7070 genes. The samples
were obtained from 49 human individuals: 24 males with median age of 63 and 25
females with median age of 50. Each sample came from a different individual except
for the first 7 BRA (brain) samples that were from different brain regions of the same
individual and 5th LI (liver) sample, which came from that individual as well. The list
of considered tissue types with their abbreviations and the number of samples for each
of them is given in Figure 7.3. Figure 7.4 presents the partition in biclusters obtained
by applying the same methodology as above. The distinct block-diagonal pattern of
the heatmap evidences the high quality of the obtained feature classification.

7.4.2 Biclustering in agriculture

There are currently no applications in the agricultural field for biclustering tech-
niques. The reason might be the fact that biclustering techniques are used only in
recent years, in which they have been mainly applied to gene expression analysis.

156 7 Biclustering

Fig. 7.2 The partition found in biclusters separating the ALL samples and the AML samples.

7.4 Applications 157

Tissue type Abbreviation Number of samples

Blood BD 1
Brain BRA 11
Breast BRE 2
Colon CO 1
Cervix CX 1

Endometrium ENDO 2
Esophagus ES 1

Kidney KI 6
Liver LI 6
Lung LU 6

Muscle MU 6
Myometrium MYO 2

Ovary OV 2
Placenta PL 2
Prostate PR 4
Spleen SP 1

Stomach ST 1
Testes TE 1
Vulva VU 3

Fig. 7.3 Tissues from the HuGE Index set of data.

In fact, biclustering was introduced in the literature in 1972 by Hartigan [103], but
only later, in 2000, Cheng and Church took the idea and applied it to expression
data [47]. Another reason for the non-use of biclustering in agriculture may be the
complexity of the method. As usual, scientists who are expert in fields different from
numerical analysis and computer science tend to use easier solutions. This is one of
the reasons why methods such as k-means are applied more than neural networks or
support vector machines in applied fields.

However, it is our opinion that biclustering may provide good results if applied
to agricultural problems. Let us take as example the problem considered in Sec-
tion 3.5.1, where wine fermentation problems are predicted by a k-means approach.
In this example, each sample is represented as a vector having as components some
compounds measured in the wine during the fermentation process. The goal is to
predict wine fermentation problems that may occur using information about the
compounds measured not later than 3 days after the start of the fermentation process.
The clustering algorithm used provides a partition of the samples but no consid-
erations are made about the compounds that are responsible for these partitions.
Biclustering might also provide this kind of information. If the feature is known, a
particular compound in this case that is associated to a cluster of samples, then such
samples are similar because of that feature. In this application, besides discovering
patterns that signal fermentation problems, the compounds that are more responsible
for such problems can be located. This may help the work of the enologist when his
intervention is required to correct the fermentation process.

158 7 Biclustering

Fig. 7.4 The partition found in biclusters of the tissues in the HuGE Index set of data.

7.5 Exercises 159

Biclustering can be applied even to other applications discussed in the other
chapters of the book. In particular, when a training set is available, and classification
techniques can be used, then a partition in biclusters of the data can be found before
the classification technique is applied. This can be done using the rule (7.2). When
the biclusters are found, each class in the original training set is associated to a
cluster of features. This allows one to find out which are the features responsible
for grouping a subset of samples in a certain class. In order to be sure that each
feature is actually assigned to the right class, the partition in biclusters has to be
consistent. The consistency can be checked by applying the rule (7.3) and checking
if the original classification in the training set is found again. In the case the partition
is not consistent, then some of the features need to be discarded. This task could be
done by hand if the classification problem is not so large. Otherwise, the optimization
problem (7.11)–(7.10) needs to be solved.

Note that, once the samples in a testing set have been classified by using a classifi-
cation technique, the rule (7.3) can be applied to it and another partition in biclusters
can be found. The classification technique tries to reproduce the classification in the
training set on unclassified samples. Therefore, choosing a certain class, the corre-
sponding bicluster in the training set and the one in the testing set should be similar.
This may also be used for validating the data mining technique used.

7.5 Exercises

In this section some exercises related to biclustering are presented.

1. Consider the matrix

A =

⎛
⎜⎜⎜⎜⎝

1 2 3 −4 5
1 1 0 0 1
0 1 2 2 0

−1 3 1 0 2
3 −1 1 2 1

⎞
⎟⎟⎟⎟⎠ .

Locate a bicluster with constant row values having dimension 2 × 2.
2. Consider 6 samples in a three-dimensional space:

x1 = (7, 0, 0), x2 = (5, 0, 0), x3 = (0, 1, 0),

x4 = (0, 3, 0), x5 = (0, 0, 1), x6 = (0, 0, 5).

Suppose that they are assigned to 3 clusters as follows:

x1 ∈ S1, x2 ∈ S1, x3 ∈ S2, x4 ∈ S2, x5 ∈ S3, x6 ∈ S3.

By using the rule (7.2), find a partition of the features used for representing the
three-dimensional points. Then, define a partition of the points in biclusters.

3. Verify that the partition in biclusters obtained in the previous exercise is consistent.

160 7 Biclustering

4. Consider 4 samples in a three-dimensional space:

x1 = (1, 2, 3), x2 = (2, 3, 4), x3 = (3, 4, 2), x4 = (4, 5, 1).

Suppose that
x1 ∈ S1, x2 ∈ S1, x3 ∈ S2, x4 ∈ S2.

Find a partition in biclusters by using the rule (7.2) and check if the biclustering
is consistent.

5. Provide an example of partition in biclusters of a given set of data which is α-
consistent but not consistent for a certain α value.

Chapter 8
Validation

8.1 Validating data mining techniques

This book presents details for some of the most frequently used data mining tech-
niques in the field of agriculture. As pointed out in Chapter 1, data mining techniques
can be mainly divided into clustering and classification techniques. Clustering tech-
niques are used when there is not any previous knowledge about the data, and hence a
partition in clusters grouping similar data is searched. When a training set is available,
classification techniques can be applied. In such cases, the training set is exploited
for classifying data of unknown classification. The training set can be exploited in
two ways: it can be used directly for performing the classification, or it can be used
for setting up the parameters of a model which fits the data.

Chapter 3 presents the most frequently used clustering algorithm, the k-means
algorithm, and many of its variants. Samples in a set of data are partitioned into
clusters; each cluster groups a subset of samples very similar to one another. The
similarities between the samples are measured using a distance function. Each cluster
contains the samples closest to the center of the cluster. An error function monitoring
the distances between the samples and the centers is used to evaluate the quality
of a given partition in clusters. Chapter 7 introduces the simultaneous partition of
the samples and their features in biclusters. In this case, the quality of the biclusters
is evaluated using error functions as well, where the variance in the elements of a
bicluster is measured. These error functions depend on the kinds of biclusters that
are searched.

The classification techniques discussed in this book are the k-nearest neighbor
(Chapter 4), the artificial neural networks (Chapter 5), the support vector machines
(Chapter 6), and the supervised biclustering (Chapter 7). All these techniques require
the use of a training set. k-nearest neighbor exploits such a training set directly for
classifying samples with unknown classification.An unclassified sample is compared
to similar samples in the training set, and the classification is assigned in accordance
with the ones such similar samples have. As before, the similarities between samples
are measured through distance functions. Artificial neural networks consist of a set

© Springer Science + Business Media, LLC 2009

A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34, 161
DOI: 10.1007/978-0-387-88615-2_8,

162 8 Validation

of neurons performing simple tasks and connected to each other in a structure that
resembles the human brain. A neural network can be trained using the information
available in a training set. During this phase, they are supposed to learn from the
data and generalize from them. Once trained, a neural network should be able to
classify unknown samples because of the information extracted during the learning
phase from the known samples of the training set. Similarly, support vector machines
learn from a training set how to classify unknown data. They are linear classifiers
and can be extended to nonlinear cases. The basic assumption is that a classifier able
to separate two distinct classes of samples with a larger margin is a better classifier.
Finally, supervised biclustering uses a training set of samples for simultaneously
classifying in biclusters the samples themselves and even their features. Therefore,
not only the samples are categorized in classes, but even their features, so that the
features responsible for the classification of a class can be identified.

In the clustering techniques discussed in this book, an error function is usually
used for finding the best partition in clusters or biclusters of the data. Such error
function gives an evaluation of the quality of a given partition: the lower is the error
function value, the higher is the quality. This can be considered as an evaluation of
the quality of the solution. However, even when the error function has a small value,
the obtained partition may not be accurate. For instance, let us suppose that the k-
means algorithm is used with different values for the k parameter. For a given k, the
error function values show the best partition among a set of partitions in k clusters.
Unfortunately, if k changes, and k1 and k2 are for instance used, then the error function
values cannot be used for comparing the partitions in k1 clusters to the partitions in
k2 clusters. Therefore, sometimes validation techniques are needed when clustering
methods are used. Reference [98] presents a survey of validation techniques applied
to clustering methods. This survey takes into account even clustering methods that
are not presented in this book.

The situation is different when dealing with classification techniques. In the k-
nearest neighbor approach, an unknown sample is classified considering the classifi-
cation of its neighbors in the training set. The accuracy of the classification depends
on the value chosen for the parameter k, and some k values may be good for some
types of applications and not as good for other types of applications. Although the
method provides a simple and often effective classification, unfortunately, the accu-
racy of the classification needs verification. In the neural network approach, an error
function is defined for monitoring how the network fits the data during the learning
phase. This error function evaluates the mean error occurring when the network is
used for classifying the samples of a training set. Once the network is trained, and
eventually also pruned, it can be used for classifying unknown samples. Even in
this case, the network is not able to provide an estimation for the accuracy of the
classification, and therefore the results need to be validated in a different way. In
general, all the classification techniques using a training dataset are able to estimate
the accuracy of their classification on the known data only.

Therefore, it is important to validate the classifiers used in the classification pro-
cess. Validation techniques can be used for this purpose. Usually, the available train-
ing set is divided at least in two parts. The first part is actually used as training set

8.2 Test set method 163

and the second part is used for validation purposes. The latter part is usually called
validation or testing set. Both names, in general, can refer to the set of known samples
used for evaluating the quality of the classifications. In some cases, however, vali-
dation and testing sets are actually two different objects. As an example, during the
learning phase of a neural network, the parameters of the network are improved step
by step and they converge toward the optimal values. Therefore, at each iteration, the
parameters can be used for classifying samples different from the ones in the training
set. This allows one to check if the parameters are converging to optimal values, or
if there is overfitting, during the learning phase. The set of samples used in this case
is usually referred to as the validation set. Once the network has been trained, then a
set of known samples can be used to check the quality of the classifications obtained
by the network. This last set of known samples is referred to as the testing set.

In the following sections, three validation techniques are presented and for each
of them an example in MATLAB r© is provided. For simplicity, regression models
and the simple k-nearest neighbor rule are validated on a random set of samples in
a two-dimensional space in MATLAB. For more details about these techniques, the
reader may consider Andrew Moore’s lecture that can be found on the Internet [167].

8.2 Test set method

The training set contains the information needed for performing the classification of
unknown samples. It consists in a set of pairs grouping samples and their correspond-
ing classifications. All the other samples which are not contained in the training set
have an unknown classification, and hence they cannot be used for validation pur-
poses.

The test set method is based on the following idea. Since only the samples in the
training set have a known classification, the idea is to split the training set in two
parts: a part which is actually used as a training set, and another part used for the
validation. In general, 70% of the data can be used as a training set, and the remaining
(30%) can be used for the validation process.

Let us suppose that the k-nearest neighbor rule is used for classifying a set of
unknown samples. To validate the effectiveness of this rule, 30% of the training
set is classified using the remaining 70% of the training set. Since samples in both
cases are taken from the training set, their classification is known, and therefore the
classification obtained by the k-nearest neighbor rule can be validated. Similarly, a
neural network or a support vector machine can be trained using 70% of the training
set, and then the accuracy of the classification provided by the trained network or
support vector machine can be evaluated on the remaining 30% of the training set.

8.2.1 An example in MATLAB

In this example, a linear regression model is validated by using the test set method.
It is supposed that a set of points in a two-dimensional space is available, and that

164 8 Validation

it is needed to model these points by linear regression. These points can represent
measurements of a certain process that it is known to be linear. The available set of
points is used as a training set: the general rule governing the process needs to be
discovered from this set. Once the regression model has been found, it should be
able to approximate with an acceptable accuracy the points of the training set, and it
should also be able to generalize to other unknown points.

In order to validate the quality of the regression model, the test set method can
be applied. Following this method, the original training set has to be divided in two
parts. Let us suppose the training set contains the following 10 points:

(1, 4), (2, 2), (3, 3), (4, 1.7), (5, 1)

(6, 1.2), (7, 1.5), (8, 1.9), (9, 2.3), (10, 2.7).

Three of these points (30%) can be used for validating the model, while the other
seven points (70%) are used as a training set for finding the model. One issue can
be how to decide the points to place in the validation set and the ones to place in the
actual training set. This separation can be done in a totally random way, but there
might be cases in which this can lead to problems. Let us consider, for instance, that
the three points having the smallest x value are used as a validation set, whereas the
others are used as a training set. The following MATLAB code has been used for
performing the validation and generating Figure 8.1.

x = [1 2 3 4 5 6 7 8 9 10];
y = [4 2 3 1.7 1 1.2 1.5 1.9 2.3 2.7];
x1 = x(4:10);
y1 = y(4:10);
x2 = x(1:3);
y2 = y(1:3);
plot(x1,y1,’ks’,’MarkerSize’,16,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
hold on
plot(x2,y2,’ko’,’MarkerSize’,16,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.87 1 .23])
c = polyfit(x1,y1,1);
xx = 0:0.1:12;
yy = polyval(c,xx);
plot(xx,yy,’k’)
err = abs(y(1) - polyval(c,x(1)))

The x vector is initialized with the x coordinates of the whole set of points, and the
y vector is initialized with their y coordinates. In the vectors x1 and y1 are then placed
the points that are actually used for computing the regression model. In x2 and y2 are
instead placed the remaining points, the ones that are used for the validation. In this
example, the compact symbologies 1:3 and 4:10 are used for considering vectors
whose first component is 1 (or 4), whose last component is 3 (or 10) and having
distance between any consecutive components equal to 1 (for details see Appendix
A). These points separated in this way are then printed by using the function plot.
Note that many options are used for controlling the symbols used when the points
are drawn. In particular, the points in the validation set are marked by circles, and
the points in the training set are marked by squares.

The functionpolyfit is able to find the coefficient of the linear function that better
approximates the points in x1 and y1 (see Section 2.4). The specified degree for the

8.2 Test set method 165

polynomial is 1, because a linear model is searched. The output of the function
polyfit is placed in the vector c, which is soon used as input in the function
polyval that evaluates the polynomial in the x coordinates stored in xx. The vector
xx is created so that it contains all the x coordinates in x. The vector yy generated
by polyval contains the corresponding y coordinates. The vectors xx and yy are
finally given as input to the function plot.

Figure 8.1 shows that the found linear regression does not give a good approxima-
tion of the points placed in the validation set. For instance, the error err computed
on the point (x(1),y(1)) has value 3.59. This is not a small error, if it is compared to
the coordinates of the points. This error is larger than 3 times the difference between
two consecutive x components. If the points (x1,y1) and (x2,y2) are instead chosen
in the following way

x1 = x([1 2 4 5 7 8 10]);
y1 = y([1 2 4 5 7 8 10]);
x2 = x([3 6 9]);
y2 = y([3 6 9]);

then the accuracy grows. Figure 8.2 shows the new-found linear regression. In this
case, the whole set of points is represented better by the chosen 70% of the original
training set. This brings to a reduction of the overall error on the points in the
validation set. The largest error is here due to the points (x6,y6) and it corresponds
to 0.85. In general, more than one random division of the training set could be
considered and the test set method applied for each of these divisions.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 8.1 The test set method for validating a linear regression model.

166 8 Validation

0 2 4 6 8 10 12
1

1.5

2

2.5

3

3.5

4

Fig. 8.2 The test set method for validating a linear regression model. In this case, a validation set
different from the one in Figure 8.1 is used.

8.3 Leave-one-out method

There are two disadvantages in using the test set method for validation. First, a
consistent part of the training set is actually not used as a training set, but it is used
as a validation set. Second, the validation set is generally randomly extracted from
the original training set, and it may not be a good representative of the whole set.
Therefore, the original training set has to be reduced for applying this method, and it
may be a problem if there is not much data available. Furthermore, the validation set
may not provide an accurate validation. For instance, if only one sample of a certain
class is contained in the validation set, which the accuracy of classifications in this
class is evaluated only on such a sample, and this is statistically irrelevant.

The leave-one-out method overcomes these problems. As the name suggests, the
validation is performed by leaving only one sample out of the training set: all the
samples except the one left out are used as a training set, and the classification method
is validated on the sample left out. If this procedure is performed only once, then the
result would be statistically irrelevant as well. The procedure is indeed performed as
many times as the number of samples in the training set, that one by one are taken
out of the training set. The overall accuracy of the classifications of the samples left
out gives an evaluation of the classification method.

8.3.1 An example in MATLAB

A quadratic regression model is validated in the example discussed in this section.
Let us suppose that the same set of points used in the example in Section 8.2.1

8.3 Leave-one-out method 167

is available, but this time it is known that the model fitting these points has to be
quadratic. In practice, the parabola that better fits the points is searched. As before,
the available set of points can be used as a training set for finding the quadratic
regression model which is able to approximate the points in the training set and even
unknown points.

The leave-one-out method is used for evaluating the quality of several quadratic
models that can be generated from the set of points. In particular, each model is
created by using the whole training set except only one point, which is later used for
the validation. The following MATLAB code can be used for building one of these
quadratic models leaving out the point (x1,y1):

x = [1 2 3 4 5 6 7 8 9 10];
y = [4 2 3 1.7 1 1.2 1.5 1.9 2.3 2.7];
x1 = x;
y1 = y;
x1(1) = [];
y1(1) = [];
x2 = x(1);
y2 = y(1);
plot(x1,y1,’ks’,’MarkerSize’,16,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
hold on
plot(x,y,’ko’,’MarkerSize’,16,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.87 1 .23])
c = polyfit(x1,y1,2);
xx = 0:0.1:12;
yy = polyval(c,xx);
plot(xx,yy,’k’)
err = abs(y(1) - polyval(c,x(1)))

It is supposed that the original training set is the same used in Section 8.2.1, containing
points whose x and y coordinates are stored in x and y, respectively. In x1 and y1 are
specified the points that are part of the training set. In the code, x1 and y1 are initially
set equal to x and y, and then the first component of both of them is deleted. The
instruction x1(1) = [] actually removes the component 1 of x1, since it assigns to
x1(1) an empty matrix []. The validation set contains in this case only one point,
whose x and y coordinates are stored in x2 and y2. Figure 8.3(a) is generated by the
two calls to the function plot, separated by the instruction hold on.

The MATLAB function polyfit is used for creating the quadratic regression
model. It receives as inputs the actual training set through the vectors x1 and y1,
and the degree of the approximating polynomial, which is 2 in this example. The
provided output consists of the obtained polynomial coefficients, stored in the vector
c. In order to draw the polynomial, a vector xx is defined and the function polyval

is called, similarly as in the example showed in Section 8.2.1. Another call of the
function plot finally draws the quadratic regression in Figure 8.3(a).

The error occurring when the point left out, (x(1),y(1)) in this case, is compared
to the corresponding point (x(1),polyval(c,x(1))) is 0.75. Following the leave-
one-out method, the same procedure has to be repeated leaving out all the points of
the training set, one by one. Figure 8.3(b) shows the quadratic regression obtained
leaving out the point (x(4),y(4)). In Figure 8.4(a) the point (x(7),y(7)) is left
out, and in Figure 8.4(b) the point (x(10),y(10)) is left out. The obtained errors
are 0.01 when (x(4),y(4)) is left out, 0.11 when (x(7),y(7)) is left out, and 0.44

168 8 Validation

0 2 4 6 8 10 12
1

1.5

2

2.5

3

3.5

4

4.5

(a)

0 2 4 6 8 10 12
1

1.5

2

2.5

3

3.5

4

4.5

5

(b)

Fig. 8.3 The leave-one-out method for validation. (a) The point (x(1),y(1)) is left out; (b) the
point (x(4),y(4)) is left out.

when (x(10),y(10)) is left out. The errors on the other points of the training set,
when left out, have similar values. Therefore, in general, this regression model can
be considered sufficiently accurate, since such errors are quite small.

8.4 k-fold method

As previously observed, the test set method may not be very efficient as a valida-
tion method because the validation set takes data from the training set and because

8.4 k-fold method 169

0 2 4 6 8 10 12
1

1.5

2

2.5

3

3.5

4

4.5

5

(a)

0 2 4 6 8 10 12
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(b)

Fig. 8.4 The leave-one-out method for validation. (a) The point (x(7),y(7)) is left out; (b) the
point (x(10),y(10)) is left out.

these data may not be a good representative of the original set. These problems are
overcome if the leave-one-out method is instead used. In this case, indeed, only one
sample is taken out of the training set at a time, and hence the amount of data actually
used as a training set is not reduced. Moreover, all the samples, one by one, are also
used for testing the accuracy of the classification, overcoming the problem of using
a validation set that may not be a good representative of the whole set of data. The
leave-one-out method seems to be the optimal choice, but it actually introduces an-
other issue. This issue is related to the computational cost of the validation method.

170 8 Validation

If the training set contains n samples, then, following the leave-one-out method,
the used classification method needs to be trained and applied n times. If n is large
enough, this can be computationally demanding.

The optimal choice between the speed of the test set method and the reliability
of the leave-one-out method is the k-fold method. In this method, the samples are
partitioned in k groups. Then, for each of these k groups, the classification method
is performed using as a training set the original set without the samples contained
in one of these groups. After that, the group left out from the training set is used
as a validation set. Note that if k = n, then the k-fold method corresponds to the
leave-one-out method. If k = 4, then one iteration of the k-fold method, in which
about 25% of the training set is devoted to the validation, is similar to the test set
method. Therefore, the choice of a value for the parameter k is very important as it
provides the trade-off between accuracy and computational speed.

8.4.1 An example in MATLAB

In this example, an application of the k-nearest neighbor method is validated by
using the k-fold method. The example is carried out in the MATLAB environment
and the code used for performing it is the following one:

[x,y] = generate(100,0.2);
[class] = hmeans(100,x,y,2);
plotp(100,x,y,class);
xA = x(1:50);
yA = y(1:50);
xB = x(51:100);
yB = y(51:100);
classA = class(1:50);
classB = class(51:100);
[class] = knn(50,xA,yA,2,50,xB,yB,classB);
plotp(50,xA,yA,class)
[class] = knn(50,xB,yB,2,50,xA,yA,classA);
plotp(50,xB,yB,class)

The MATLAB functions used in this example have been discussed in the previous
chapters and their source codes are available in the book. The function generate is
used for creating a random set of points in a two-dimensional space. One hundred
points are generated, and they are randomly separated in two subgroups having a
margin equal to 0.2 (see Section 3.6 and Figure 3.16). The chosen margin is quite
wide, so that a clustering method is able to discover easily this pattern in the data.
In particular, the function hmeans is used for partitioning the points in two parts.
The partition is stored through the vector class, whose components can have value
1 or 2 (Section 3.6, Figure 3.20). This set of points and its partition are used as a
training set for the application of the k-nearest neighbor. The call to the function
plotp generates Figure 8.5.

The k-fold method is used for validating the application of the k-nearest neighbor
method in which the training set is the one generated above. For simplicity, the
parameter k in k-fold is set to 2, and therefore the training set is divided in 2 parts
only. The division in 2 parts can be performed randomly, or the strategy used here

8.4 k-fold method 171

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 8.5 A set of points partitioned in two classes.

can be implemented. xA and yA are defined so that they contain the first 50 points
stored in x and y; xB and yB, instead, are defined so that they contain the last 50
points stored in x and y. The vectors classA and classB are defined similarly. The
k-nearest neighbor method must be applied twice. The training set is specified by xB,
yB and classB and the points stored in xA and yA are classified. Successively, the
training set is specified by xA, yA and classA and the points stored in xB and yB are
instead classified. The function plotp is used for plotting the points in xA and yA,
where the vector class is the one just obtained by the function kNN. The obtained
result is shown in Figure 8.6(a). Successively, the function plotp is used again for
printing the points xB and yB marked in accordance with the classification given by
the k-nearest neighbor. This other plot is shown in Figure 8.6(b). If Figure 8.5 and
Figures 8.6(a) and 8.6(b) are compared, it is easy to see that the points are correctly
classified by the k-nearest neighbor in both the cases. This classification method on
this simple example is therefore validated.

172 8 Validation

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 8.6 The results obtained applying the k-fold method. (a) Half set is considered as a training
set and the other half as a validation set; (b) training and validation sets are inverted.

Chapter 9
Data Mining in a Parallel Environment

9.1 Parallel computing

In this section, we give a very brief introduction to parallel computing, with the aim
of giving to the reader the basic knowledge needed to understand the parallel version
of some of the data mining techniques discussed in this book. A very simple example
of a parallel algorithm is presented in Section 9.2. A parallel version of the k-means
algorithm, the k-nearest neighbor decision rule, and the training phases of a neural
network and a support vector machine are presented in Section 9.3.

When there is the need to analyze a large amount of data, the parallel computing
paradigm can be used to fulfill these tasks and also reduce both the computational
time and the memory requirement. A parallel environment is a machine or a set
of machines in which more processors can simultaneously work on the same task.
When working in a parallel environment, the computational time needed for carrying
a standard algorithm out is sped up, because it is performed in parallel on more
processors. The basic idea is to split the problem at hand into smaller subproblems
that can be solved on different processors simultaneously. Each processor can also
have a private memory in which it can store its own data. This reduces the memory
requirement on each single processor.

The simplest and cheapest way to build a parallel machine is to interconnect sin-
gle personal computers by a network and make them work together. The obtained
parallel machine is also called a Beowulf cluster of computers. Each computer of
the cluster can keep working independently from the others, but they can also work
in parallel on a single task. These clusters of computers belong to the group of the
MIMD parallel architectures, where MIMD stands for multiple instruction multiple
data. As already mentioned, the basic idea in parallel computing is to divide a cer-
tain problem into smaller subproblems. On MIMD computers, each subproblem is
solved independently from the others on different processors. The instructions are
multiple, and therefore each subproblem can be solved by using an algorithm which
is completely different from the ones implemented on the other processors. The data
are also multiple, and therefore each processor can refer to a set of data different from

© Springer Science + Business Media, LLC 2009

A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34, 173
DOI: 10.1007/978-0-387-88615-2_9,

174 9 Data Mining in a Parallel Environment

the ones the other processors refer to. Thus, each processor on a MIMD computer
can work independently from the others. It is very important that the computational
load on each processor is as balanced as possible. In other words, it is important
that the computational cost for solving each subproblem is similar on each proces-
sor. If this aim is reached, the time for solving a problem in parallel on a machine
with p processors could be the time for solving it on a sequential machine divided
by p. However, this result is quite difficult to reach. Indeed, the subproblems in
which a problem can be split are usually dependent from each other. For instance,
some variable computed while solving one of these subproblems could be needed
for the solution of another subproblem. For this reason, the processors often need to
exchange data among them, and this operation may have a relevant computational
cost. A good parallel algorithm is the one in which the computational load is well
distributed among the processors and the number of synchronizations among the
processors is limited.

Nowadays, Beowolf clusters of computers are much used. They work as a MIMD
computer in which each processor can be located on a different personal computer. In
particular, a Beowulf cluster is a MIMD parallel computer with distributed memory.
In fact, each personal computer is equipped with its own processor and its own
memory. Each processor can then access its own memory only, and not the memories
of the others. Therefore, when the processors need to synchronize and exchange data,
they actually need to communicate. Some processor may need to send its data to
another or to all the processors. Some other processor may need to receive and save
these data on its own memory. All these communications have a computational cost,
which depends on the particular Beowulf cluster.

It is worth noting that other parallel computers with different architectures exist.
For instance, MIMD computers can also have a shared memory. In this case, all the
processors of the parallel machine refer to the same memory. Therefore, this memory
must be big enough for containing all the data needed for all the processors. Moreover,
the processors read and write on the same memory, and then the data a processor
access can be modified even by another processor. This makes the development of
algorithms for MIMD computers with shared memory more complex. On the other
hand, there is no need of communications, and therefore there is no computational
cost for communications in this case. Figure 9.1 compares the MIMD computers
with distributed and shared memory.

Another kind of parallel machine is the SIMD computer, where SIMD stands for
single instruction multiple data. As before, the data are multiple, and hence all the

Fig. 9.1 A graphic scheme of the MIMD computers with distributed and shared memory.

9.1 Parallel computing 175

processors of the parallel machine can work on different data. The instructions are
single, though. This means that all the processors carry out the same instructions
on different data. Differently from the MIMD computers, the processors are always
synchronized in this case. A detailed classification of the parallel machines can be
found in [77]. In this context, a single personal computer is referred to as a SISD
machine, where SISD stands for single instruction single data. Recently, hybrid ma-
chines using both MIMD and SIMD architectures have also been developed. Details
can be found in [217]. Finally, it is important to note that parallel computing re-
cently evolved into the so-called grid computing [79]. The main difference between
standard parallel computing and grid computing stands in the fact that many remote
computers having difference properties (such as the CPU clock) are used simultane-
ously in grid computing. This brings consequences which are not discussed in this
book.

Let us consider a simple problem and let us try to develop a parallel algorithm for
solving this problem. Given an integer and positive number N , it could be desirable
to know if such number is prime or not. The easiest way for finding out if N is prime
is to try all the possible divisions of N by all the integer numbers smaller than N .
The totality of these divisions can then be split among the p processors of a parallel
machine so that each processor can try different divisors in parallel. In theory, the
processors can work without knowing anything about the other processors. When
all the processors have finished their job, p answers are available. Each processor
indeed can provide as output the divisibility or not of N considering only its part of
all possible divisors. If all the processors give as an answer “not divisible,’’ then N is
prime. If at least one processor gives as an answer “divisible,’’ then N is not prime.

A way for improving this parallel algorithm can be the following one. While
the processors work simultaneously, one of them may find an integer n̄ such that
N is divisible by n̄. This would mean that N is not prime, and then the parallel
algorithm can already provide its output: N is not prime. All the next divisions
that all the processors might perform are completely useless, because the output is
already known. In a sequential algorithm, this situation can be simply handled by
a loop such as while or repeat..until. In this case, instead, only the processor
which finds n̄ can stop making divisions in this way. How to tell the other processors
that continuing work is useless? The processors need to communicate.

On MIMD computers with distributed memory, all the processors have a private
memory. On each memory, a variable can be stored and used as a sort of signal for
the divisibility. This variable can have value 1 when no divisors have been found,
and 0 otherwise. Naturally, if one processor changes the signal variable to 0, the
others cannot see the change and stop working. For overcoming this problem, the
processors can periodically exchange their own signal variable. If one of them at least
is 0, all the processors can stop working and all of them can provide as output “the
number is not prime.’’ Instead, if all the processors finish working on their divisions,
they exchange the signal variables and they find out that none of them is 0, then the
global (or parallel) output is: “the number is prime.’’

Organizing the communications among the processors of a parallel computer in an
efficient way is a crucial point for the success of a parallel procedure. Let us suppose

176 9 Data Mining in a Parallel Environment

a variable, say a, needs to be computed somewhere during the algorithm, and that
the variable is needed later for computing other variables by all the processors. The
variable a should then be located in the memory of each processor, because it is
needed for performing a part of the instructions. There is therefore the need to let
the processors communicate for exchanging data. An example may be that a single
processor computes a and then it sends a to another processor that receives this
information. Another example is that a single processor sends a to all the other
processors. This kind of communication is called broadcast, because one processor
sends its data to all the others involved in the computation. Let us suppose now that
another variable, say b, is needed in all the memories because it has to be used in
some part of the algorithms performed on each processor. Another communication
may be activated for sending b to all the other processors by the time they need it.
However, communications among the processors require time, and the time saved in
the computation must pay off the time spent in the communication process. When the
computation of a or b is not very expensive, it is preferable to let all the processors
compute such variables in order to avoid communications, which might require more
time.

Since clusters of computers are currently more frequently used than other paral-
lel architectures, we will focus in the following on algorithms to be implemented
on these kinds of parallel machines. On these machines, each processor can work
on a different algorithm by using its own data, which are stored on its own mem-
ory. Communications are needed during the execution of the parallel algorithm. The
message passing interface (MPI) [168] provides interfaces for allowing processors
to communicate to each other. It was originally designed to be used on clusters of
computers. It is based on C and Fortran programming languages and it is available on
almost all platforms and operating systems. MPI consists of a library of C functions
and Fortran subroutines needed for making the processors communicate. Basic com-
munications are implemented, such as for sending or receiving variables from one
processor to another. Other functions or subroutines allow more than two processors
to communicate to one another and to perform simultaneously predetermined tasks.

9.2 A simple parallel algorithm

In order to show the basic idea behind the development of a computational procedure
in a parallel environment, a simple parallel algorithm is presented in this section. The
aim is to compute the distances between one sample A and all the samples contained
into a certain set S and to identify the closest sample in S to A. This parallel procedure
can be used as a sub-procedure when dealing with some of the data mining methods
discussed in the previous chapters. For instance, a possible implementation of the
k-NN method with k = 1 could use this parallel sub-procedure.

The parallel algorithm is developed for working on a MIMD parallel machine.
There are therefore p processors having a different memory and working on different
tasks at the same time. They need to communicate among them for exchanging data.

9.3 Some data mining techniques in parallel 177

This algorithm can be mainly divided into two parts: the computation of all the
distances between A and the samples in S; and the identification of the minimum
distance found. During the first part, the samples in S can be divided among the p

processors so that each of them has the same computational load. The sample A must
be in the memory of all the processors, whereas only a part of the set S must be in
the memory of every single processor. Locally, during the first part of the algorithm,
each processor can then compute the distances between A and all the samples in S

allocated to this processor. In this phase, each processor is completely independent,
and it does not need to exchange data with the others.

The second part of the algorithm consists of finding the minimum distance which
has been computed before. The minimum of a set of real numbers must therefore be
computed. These numbers are divided into the memories of the p processors working
simultaneously, because each processor could save each computed distance only in
its own memory. Exchange of data is then needed, but it must be reduced to the
minimum, in order to decrease the number of communications and in this way the
time needed for carrying the algorithm out. An efficient method for computing this
minimum distance is to let the processors work alone for computing the minimum
among the distances each of them has in memory. After that, the processors need to
communicate with each other. Each of them can send to one predetermined processor
the minimum distance on its own memory: in this way, one processor has the partial
minimum of the distances related to each processor. At this point, this processor can
compute the minimum among all the partial minima and therefore find the desired
algorithm output. If the final output is needed in all the processor memories for
performing other tasks, there are two strategies that can be used. Once one processor
has computed the global minimum distance, it can send to the others this information.
This requires time for one communication of one processor with all the others. If the
computation of the final output is very fast, as in this case, a more efficient strategy
can be the following: when the processors exchange their partial minimum distances,
they can communicate so that each of them has in memory all these partial distances.
In this way, all of them can compute the global minimum and have it in their own
memories. Since the processors work together on the same data, the parallelism
seems not to be exploited during this phase. However, the time in which they work
this way is smaller than the time needed for letting the processors communicate for
receiving the result from another processor. A sketch of the parallel algorithm is
given in Figure 9.2. Note that there are more complex strategies for exchanging the
partial distances among the processors and for computing the minimum distance.
For instance, the processors can communicate as in a tree-like scheme and compute
in parallel the minimum distance in a more efficient way.

9.3 Some data mining techniques in parallel

In this section, we present a parallel version of some of the data mining techniques
discussed in the previous chapters.

178 9 Data Mining in a Parallel Environment

A = one sample

S = set of samples

equally divide the samples in S among the p processors

for each processor (in parallel)

for all the samples s in S and in the processor memory

compute distance between s and A

save each distance in the vector dist

end for
partDist = minimum distance value in dist

send partDist to all the other processors

receive partDist from the other processors

minDist = minimum among all the partDist

end for

Fig. 9.2 A parallel algorithm for computing the minimum distance between one sample and a set
of samples in parallel.

9.3.1 k-means

k-means is a data mining technique for clustering. A detailed description of the
technique is provided in Chapter 3. In the same chapter different improvements
and variants of the technique are also discussed. A sketch of the standard k-means
algorithm is provided in Figure 3.2. An application in C implementing a simple
variant of the algorithm is presented in Appendix B and is referred to as h-means
algorithm (see Figure 3.9). The aim of the algorithm is to find a suitable partition of a
set of samples in clusters. The main tasks to be performed during the algorithm are:
the computation of all the distances between samples and the centers of the clusters,
and the computation of the centers. These tasks can be carried out in parallel in order
to speed the clustering algorithm up. In [119, 191, 222, 250] some parallel versions
of the k-means algorithm can be found. In the following we will present a parallel
h-means algorithm based on the ideas presented in [119].

The set of data to be partitioned can be divided among the memories of the
processors involved in the computation. If p is the number of processors, and n is
the size of the set of data, every processor can store on its own memory approximately
np = n/p samples. This allows reduction of the quantity of memory that must be
devoted to storing the data on each processor memory. Each single processor can then
work only on the samples allocated to this processor. Each cluster has a center. The
current k centers of the clusters can be stored in the memories of all the processors,
because they are frequently needed during the algorithm.

The computation of the centers of the clusters can be performed in parallel as
follows. Each processor contains on its own memory a part of the samples to partition.
Hence it does not have all the information for computing the centers, because the
samples it has can belong to different clusters. A center can be simply computed
by calculating the arithmetic mean among all the samples belonging to the same
cluster. Precisely, the sum of all the samples in the same cluster must be computed
and the obtained value must be divided by the number of samples. This simple

9.3 Some data mining techniques in parallel 179

for each processor kp in {0, 1, . . . , p − 1} (in parallel)

compute the partial sums of the samples belonging to the same cluster

send the partial sums to the other processors

receive the partial sums from the other processors

for each cluster

sum the partial sums

divide the total sum by the number of samples in the current cluster

end for
end for

Fig. 9.3 A parallel algorithm for computing the centers of clusters in parallel.

task must be split in p sub-tasks in order to compute such centers in parallel. The
main idea is that all the processors exploit all the information they have, while
the number of communications is kept minimal. The samples in each processor
can in general belong to each of the k clusters. Hence, only the partial sum of the
samples belonging to the same cluster can be computed on each processor. During
this phase, no communications are needed. When these partial sums are computed,
the processors need to exchange them for computing the centers. Each processor has
to send its partial sum to the others and needs to receive the partial sums from all
the other processors. After the communication phase, each processor can sum the p

partial sums and then divide the result by the number of samples contained in each
of the k clusters. In this way, each processor has the k cluster centers. A sketch of
this parallel algorithm is given in Figure 9.3.

At each step of the h-means algorithm, the distances between each sample and
the centers of the clusters are computed and the sample is assigned to the cluster
having the closest center. Since all the processors know the centers, this task can
be performed independently on each processor on the samples stored in the local
memories. There is no need of communications at all, and this makes this phase of
the h-means algorithm very efficient in parallel. When all samples are re-assigned,
new centers need to be computed. At this point, the parallel procedure discussed
above can be reused. A communication phase is included in such procedure, but it is
the only one needed during an entire iteration of the h-means algorithm. Therefore,
this parallel version of the h-means algorithm can be efficiently implemented on
parallel computers. A sketch of the parallel h-means algorithm is given in Figure 9.4.

9.3.2 k-NN

k-NN is a method for classification (see Chapter 4). It classifies unknown samples
by checking the classification of the k-nearest known samples contained in a given
training set. The basic k-NN algorithm is provided in Figure 4.2. k-NN is a very
simple algorithm, but it can be computational expensive if the training set and the
set of samples to be classified are large. Parallel computing can help in speeding the

180 9 Data Mining in a Parallel Environment

equally divide the samples among the p processors

for each processor kp in {0, 1, . . . , p − 1} (in parallel)

randomly assign each sample in processor kp to one cluster

end for
compute the cluster centers in parallel

while the centers are not stable

for all the samples Samples(i) in processor kp

compute the distances between Samples(i) and all the centers

find k’ such that the k’-th center is the closest to Sample(i)

assign Sample(i) to the cluster k’

end for
recompute the centers of the clusters in parallel

end while

Fig. 9.4 A parallel version of the h-means algorithm.

algorithm up. Since the basic algorithm is very simple, there are parallel versions of
it which are simple as well.

The most simple parallel solution is presented in [84]. Given an unknown sample,
it must be compared to all the samples contained in the training set, but it is not
compared to any of the other unknown samples. Hence, if the set of unknown samples
is divided among the p processors involved into a parallel computation, and the
training set is replicated on each of them, each processor can work independently
from each other. The standard k-NN algorithm can be performed on each processor by
using the whole training set and only a part of the set of samples to be classified. This
is highly efficient, because no communications are needed during the computation
at all. A sketch of this parallel k-NN algorithm is given in Figure 9.5.

equally divide the unknown samples among the p processors

for each processor kp in {0, 1, . . . , p − 1} (in parallel)

for all the unknown samples UnSample(i) in processor kp

for all the known samples Sample(j)

compute the distance between UnSamples(i) and Sample(j)

end for
find the k smallest distances and check the related classification

assign UnSample(i) to the class which appears more frequently

end for
end for

Fig. 9.5 A parallel version of the k-NN algorithm.

If the training set is much larger than the set of unknown samples, then this parallel
algorithm may not be so effective. This is a very rare situation though, where a lot
of known data are available for classifying few unknown samples. In any case, for
reducing the computational time, large training sets can be reduced by using one of
the techniques presented in Section 4.2. If the training set is still too large to be stored
in all the processor memories, it might be split among the p processors. The basic
k-NN could be carried out locally on each processor, but a communication phase

9.3 Some data mining techniques in parallel 181

would be needed before an unknown sample could be classified. For this reason, if
there are not problems related to the memory space on each processor, the algorithm
in Figure 9.5 is the most efficient one. Other studies on parallel versions of the k-NN
algorithm are presented in [7].

9.3.3 ANNs

Neural networks can be used for solving classification problems (see Chapter 5).
They are inspired by studies on the human brain. The multilayer perceptron is a
neural network in which the neurons are organized in layers. The input signal is
fed to the network through the input layer and then such signal propagates layer by
layer. The neurons of the output layer provide the network output. Layer by layer,
the neurons on the same layer manage the data they receive simultaneously and then
they send their output to the neurons of the following layer. A general scheme of the
multilayer perceptron is given in Figure 5.1.

There is an inherent parallelism in neural networks [206]. Neurons belonging
to the same layer work in parallel, and hence they can be distributed on different
processors. When the signal passes from one layer to another, each neuron in the
first layer must send its information to all the neurons on the second layer. During
this phase, then, processors need to communicate with each other for receiving in-
formation from neurons working on other processors. Every time a certain input is
given to the network, the processors need to communicate a number of times equal
to the number of layers before obtaining the corresponding output. The quantity of
communications is therefore high, and therefore neural networks can be efficiently
used in parallel environments if the number of neurons on each layer is sufficiently
large. For small networks, instead, this kind of parallelism would not be so efficient.
Indeed, the computational cost in terms of operations would be much smaller than
the computational cost in terms of communications.

Another kind of parallelism can also be introduced for neural networks. The
training process of a neural network can be formulated as a global optimization
problem where the function to be optimized is the function (5.3) (see Section 5.2).
As already pointed out, global optimization problems can be difficult to solve and
methods designed for solving them may give as solution a point which actually is
only one of the local optima. For more details refer to Section 1.4. When meta-
heuristic algorithms are used, different executions of the algorithms can lead to
different solutions, because the algorithm is probabilistically driven. In such cases,
the algorithm is performed more than once for solving the exact same problem, and
the best solution obtained over a certain number of trials is considered to be the
global optimal solution.

The parallelism can then be introduced at another level. The training phase of
the neural network can be considered as sequential and not parallel. However, more
training phases can be performed in parallel on a parallel computer. On each pro-
cessor, one training phase can start by using different initial parameters (such as the

182 9 Data Mining in a Parallel Environment

nt = number of trials (must be divisible by p)

for i = 1 to nt step i = i + p

for each processor (in parallel)

set a seed for the random number generator

generate randomly the initial neuron weights

minimize function (5.3) by heuristic optimization

save the solution in the local memory

end for
end for
each processor sends its solutions to the others

each processor receives the solutions from the others

each processor identifies the best solution

Fig. 9.6 A parallel version of the training phase of a neural network.

seed of the random number generator in heuristic methods or the initial values of
the neuron weights). When the training process is finished on each processor, they
can communicate and exchange the solution they found. At this point, the best so-
lution found by the p processors can be considered as the solution of the parallel
algorithm. Moreover, the best solution might be only stored as the best “parallel’’
solution found so far, while the processors start another training phase in parallel. At
the end of this other phase, the processors need to exchange their solutions another
time. The final solution would be in this case the best solution among the best ones
obtained during the previous parallel training phase and the new generated solutions
on the p processors. A sketch of a possible parallel version of the training process
of a neural network is given in Figure 9.6. Note that this kind of parallelism can be
applied to other problems where different attempts are carried out using different ini-
tial conditions. An example could be the general resolution of a global optimization
problem using a meta-heuristic method.

9.3.4 SVMs

Support vector machines are used for finding linear and nonlinear classifiers. They
are based on the idea that the best classifier is the one maximizing the margin between
the support vectors (see Chapter 6).As already pointed out before, the support vectors
satisfy a very interesting property which can be exploited for using SVMs on parallel
computers. The support vectors are able to redefine the same exact classifier obtained
by using an entire training set. If the support vectors are known, the SVM can be
trained by using just them and discarding all the other samples in the training set. The
problem is that the support vectors are identified only when the classifier is defined.
However, samples in the training set which are not support vectors can be discarded,
in order to improve the performances of the training process.

A parallel training process for SVMs is presented in [91]. In these studies, the
training set is divided among the p processors involved in the computation. The

9.3 Some data mining techniques in parallel 183

subsets of the training set are used for training smaller SVMs in parallel on each
processor. Each of the found SVMs are actually not good classifiers, because they are
based only on the data in random representatives of the whole training set. However,
the interesting result is given by the support vectors identified with the classifiers
on each processor. Indeed, non-support vectors of a subset have a good chance to
be non-support vectors of the whole training set. All the non-support vectors are
then eliminated from the subsets, couples of subsets are merged and other SVMs are
trained in parallel using these new subsets. The general scheme of this strategy has
a tree structure, where at the top there are the initial subsets and at the root there is
the last subset. The SVM trained by this last subset provides the final classifier and
uses only the samples which are support vectors in all the previous SVMs on the
tree. The final support vectors can be tested for global convergence by feeding the
result back to the top of the tree. Figure 9.7 shows the tree scheme used.

A sketch of the parallel algorithm is given in Figure 9.8. In this algorithm, it is
supposed that the number of initial SVMs is equal to the number of processors p.
However, the initial SVMs can also be greater than the number of processors, and for
instance two SVMs can be trained on the same processor at the first step. This does
not exploit the parallelism abilities of the parallel computer, but divides the original

Fig. 9.7 The tree scheme used in the parallel training of a SVM.

equally divide the training set among the p processors

Set(i) = subset of the training set assigned to the i-th processor

for each processor p

for i to log2 p

train a SVM by using Set(i)

locate the support vectors

end for
merge support vectors following the tree scheme

update all the subsets Set(i)

end for

Fig. 9.8 A parallel version of the training phase of a SVM.

184 9 Data Mining in a Parallel Environment

problem into smaller problems with a consequent reduction of the complexity. In the
case of an algorithm following the scheme in Figure 9.7, log2 p steps are needed,
as the tree scheme suggests. When these kinds of schemes are used, the parallelism
cannot be completely exploited. In fact, at the first step (top of the tree) all the
processors train different SVMs, but, from the second step on, at least two processors
work on the same problem. At the root of the tree, only one SVM must be trained,
and this cannot be done in parallel. Either only one processor can work on that, or all
the processors can work on the same problem. The computational cost is exactly the
same in both cases. In the last one, the solution though is present in all the memories
of the processors, and no communications have been performed.

9.4 Parallel computing and agriculture

Currently, there are no parallel computing applications in data mining and agriculture.
However, the growing amount of data collected from agricultural-related activities
and the need for analyzing these data in an efficient and fast way will force researchers
to use parallel computing. As discussed in this chapter, indeed, parallel computing
allows one to perform a certain task in parallel on different processors working
simultaneously. The advantage in this is the possibility to perform the same task in
a shorter time.

Let us take as example the application we discussed in Section 3.5.2. Apples
running on a conveyor are analyzed with the aim of discriminating between good
and bad apples for marketing. Pictures are taken in real time, and a k-means approach
is exploited in the analysis. In big industries or farms, the speed with which a certain
task is performed is very important. If more apples can be analyzed in a shorter
time, more apples can be ready to be put onto market earlier. In this application, the
speed needed for performing the analysis is given by the speed the apples run on
the conveyor. The faster the speed, the more apples are analyzed in the same time.
However, this speed can increase only until a certain limit. Indeed, the pictures taken
from the apples need to be processed by a computational system implementing the
k-means approach. This process requires time that must be shorter than the time the
considered apple is still on the conveyor and reachable by a robot arm which puts
it with the other good or bad apples. It is obvious then how parallel computing can
help to let this process become more efficient.

Chapter 10
Solutions to Exercises

In this chapter, all the solutions of the exercises appearing at the ends of the chapters
of this book are presented. Each following section contains the solutions related to
one chapter.

10.1 Problems of Chapter 2

1 The variability of the components of the points

(1, −1), (3, 0), (2, 2)

has to be computed. Let us consider the x components. They can assume values 1,
3 and 2, and therefore the range of variability of x is 2. The value 2 comes from the
difference between the largest and the smallest values the x component can have.
Similarly, the variability of the y component can be computed and it is equal to 3.

2 The following MATLAB r© instructions generate a random set of points in a two-
dimensional space lying on the line y = x. Then, the principal component analysis
is applied in order to reduce the dimension of the set of points to 1:

>> x = rand(1,20);
>> y = x;
>> A = cov(x,y);
>> [v,d] = eig(A);
>> d

d =

0 0
0 0.1619

>> x1 = v(1,2)*x + v(2,2)*y;
>> y1 = v(1,1)*x + v(2,1)*y;
>> var_y1 = max(y1) - min(y1)

var_y1 =

0

© Springer Science + Business Media, LLC 2009

A. Mucherino et al., Data Mining in Agriculture, Springer Optimization and Its Applications 34, 185
DOI: 10.1007/978-0-387-88615-2_10,

186 10 Solutions to Exercises

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 10.1 A set of points before and after the application of the principal component analysis.

3 If the variables used in the previous exercise are still in the memory of the MATLAB
environment, then the following instructions can be used for creating the Figure 10.1,
as required by the exercise:

>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,
[.49 1 .63])

>> hold on
>> plot(x1,y1,’kd’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 0 .63])

4 The equation of the unique line passing through the two points

(x1, y1) = (1, 0), (x2, y2) = (0, −2)

needs to be computed. The general equation of a line l is

y = ax + b.

In this very easy case, the equation of the l can be easily obtained imposing the
passage of the line through the points as follows:

(x1, y1) ∈ l =⇒ y1 = ax1 + b =⇒ 0 = a + b

(x2, y2) ∈ l =⇒ y2 = ax2 + b =⇒ −2 = 0 + b

Then, {
a = 2
b = −2

.

Let us check if the line l of equation

10.1 Problems of Chapter 2 187

y = 2x − 2

passes through the given points. Since

x1 = 1 =⇒ y1 = ax + b = 2 · 1 − 2 = 0
x2 = 0 =⇒ y2 = ax + b = 2 · 0 − 2 = −2

the passage is verified.

5 The following instructions draw the line which is the solution of Exercise 4 (see
Figure 10.2):

>> x = [1 0];
>> y = [0 -2];
>> plot(x,y)
>> hold on
>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])

6 The only parabola passing through the points

(x1, y1) = (0, 1), (x2, y2) = (1, 2), (x3, y3) = (−1, 3)

has to be computed. The general equation of the Newton polynomial is

y = f (x1) +
n+1∑
i=2

f [x1, . . . , xi]
i−1∏
j=1

(x − xj).

In this case, the Newton polynomial can be written as:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Fig. 10.2 The line which is the solution of Exercise 4.

188 10 Solutions to Exercises

y = f (x1) + f [x1, x2](x − x1) + f [x1, x2, x3](x − x1)(x − x2).

Two divided differences have to be computed for finding the equation of the parabola.
The first one is

f [x1, x2] = y2 − y1

x2 − x1
= 2 − 1

1 − 0
= 1.

The second one needs the computation of the divided difference f [x2, x3], because

f [x1, x2, x3] = f [x2, x3] − f [x1, x2]
x3 − x1

.

Since

f [x2, x3] = y3 − y2

x3 − x2
= 3 − 2

−1 − 1
= −1

2
,

the needed divided difference is

f [x1, x2, x3] =
−1

2
− 1

−1 − 0
= 3

2
.

By substituting the divided differences in the Newton polynomial, the following
equation is obtained:

y = 1 + x + 3

2
x(x − 1).

The passage of the given points is satisfied by the obtained equation:

(x1, y1) =⇒ 1 = 1 + 0 + 3

2
0(0 − 1) = 1

(x2, y2) =⇒ 2 = 1 + 1 + 3

2
1(1 − 1) = 2

(x3, y3) =⇒ 3 = 1 − 1 − 3

2
1(−1 − 1) = 3.

Therefore, the obtained equation is actually a parabola passing from the given points.

7 A figure in which the points

(4, 2), (2, 2), (1, 4), (0, 0), (−1, 3)

and the join-the-dots function interpolating such points are displayed needs to be
created. The MATLAB instructions for performing this exercise are the following
ones:

>> x = [4 2 1 0 -1];
>> y = [2 2 4 0 3];
>> plot(x,y)
>> hold on
>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
What is obtained is shown in Figure 10.3.

10.1 Problems of Chapter 2 189

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 10.3 The solution of Exercise 7.

8 Considering the same points given in Exercise 7 and supposing that the join-the-
dots function is replaced by a quadratic regression function, then the exercise can be
solved by the following MATLAB instructions:

>> x = [4 2 1 0 -1];
>> y = [2 2 4 0 3];
>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
>> hold on
>> c = polyfit(x,y,2);
>> xx = min(x)-1:0.1:max(x)+1;
>> yy = polyval(c,xx);
>> plot(xx,yy)

What obtained is shown in Figure 10.4.

9 In this exercise, the linear and quadratic regression functions approximating the
points

(1, 2), (2, 3), (1, −1), (−1, 3), (1, −2), (0, −1)

have to be computed in MATLAB. Figure 10.5 shows the result obtained by using
the following instructions in the MATLAB environment:

>> x = [1 2 1 -1 1 0];
>> y = [2 3 -1 3 -2 -1];
>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
>> hold on
>> c = polyfit(x,y,1);
>> xx = min(x)-1:0.1:max(x)+1;
>> yy = polyval(c,xx);
>> plot(xx,yy)
>> c = polyfit(x,y,2);
>> yy = polyval(c,xx);
>> plot(xx,yy,’m:’)

190 10 Solutions to Exercises

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 10.4 The solution of Exercise 8.

10 In the previous exercise, the linear and quadratic regression functions related to a
set of 6 points are computed. If it is supposed that each point (x, y) is approximated
with the corresponding point (x, f (x)) of the linear regression f , then the mean
arithmetic error on these 6 points can be computed by using the following MATLAB
code:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

0

2

4

6

8

10

12

Fig. 10.5 The solution of Exercise 9.

10.2 Problems of Chapter 3 191

>> err = 0; for i = 1:6, err = err + abs(y(i) - polyval(c,x(i))); end
>> err = err/6

err =

2

10.2 Problems of Chapter 3

1 The aim of the exercise is to partition a small set of points by using the standard
k-means algorithm. Let us assign a label to each considered point:

x1 = (−1, −1), x2 = (−1, 1), x3 = (1, −1),

x4 = (1, 1), x5 = (7, 8), x6 = (8, 7).

As suggested by the exercise, the 1st , 3rd and 5th samples are initially assigned to
class 1, and the 2nd , 4th and 6th samples are initially assigned to class 2:

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 1 x6 → 2.

Let us compute the centers of these two clusters:

c1 = x1 + x3 + x5

3
= (−1, −1) + (1, −1) + (7, 8)

3
=
(

7

3
, 2

)

c2 = x2 + x4 + x6

3
= (−1, 1) + (1, 1) + (8, 7)

3
=
(

8

3
, 3

)
.

Following the k-means algorithm, for each point xi , the distances d(xi, c1) and
d(xi, c2) must be computed and the point has to be assigned to the cluster corre-
sponding to the nearest center. Let us start from the first point x1:

d(x1, c1) = 4.48 d(x1, c2) = 5.43.

Since d(x1, c1) < d(x1, c2), the point x1 is closer to the center of the cluster 1, and
therefore it is not moved to the other one. Let us consider now the second point:

d(x2, c1) = 3.48 d(x2, c2) = 4.18.

The closest center is the one of the cluster 1, whereas x2 is currently assigned to
cluster 2. Then, the point x2 is moved from cluster 2 to cluster 1. Following the
algorithm, the new centers of the two clusters need to be recomputed when there is a
change. In fact, the two clusters do not contain the same points anymore, and hence
their centers have changed. The new partition is

x1 → 1 x2 → 1 x3 → 1 x4 → 2 x5 → 1 x6 → 2

and the new centers are

192 10 Solutions to Exercises

c1 = x1 + x2 + x3 + x5

4
= (−1, −1) + (−1, 1) + (1, −1) + (7, 8)

4
=
(

3

2
,

7

4

)

c2 = x4 + x6

2
= (1, 1) + (8, 7)

2
=
(

9

2
, 4

)
.

By considering the centers just computed, let us keep checking the distances starting
from the point x3:

d(x3, c1) = 2.80 d(x3, c2) = 6.10.

The point x3 results to be in the right cluster, hence it is not moved. The next point
is x4:

d(x4, c1) = 0.90 d(x4, c2) = 4.61.

In this case, x4 needs to be moved from cluster 2 to cluster 1:

x1 → 1 x2 → 1 x3 → 1 x4 → 1 x5 → 1 x6 → 2,

and therefore new centers are computed:

c1 = x1 + x2 + x3 + x4 + x5

5
= (−1, −1) + (−1, 1) + (1, −1) + (1, 1) + (7, 8)

5

=
(

7

5
,

8

5

)

c2 = x6 = (8, 7).

The next point to consider is x5, and its distances from the centers just recomputed
are checked:

d(x5, c1) = 8.50 d(x5, c2) = 1.41.

Since x5 is closer to c2, it is moved to cluster 2:

x1 → 1 x2 → 1 x3 → 1 x4 → 1 x5 → 2 x6 → 2

and new centers are computed:

c1 = x1 + x2 + x3 + x4

4
= (−1, −1) + (−1, 1) + (1, −1) + (1, 1)

4
= (0, 0)

c2 = x5 + x6

2
= (7, 8) + (8, 7)

2
=
(

15

2
,

15

2

)
.

The last point of the set that needs to be checked is

d(x6, c1) = 10.63 d(x6, c2) = 0.71,

and it is closer to the center of the cluster it is currently assigned to, and hence it
is not moved. All the points have been checked at least once, and during this phase
the centers changed several times. The centers are therefore not stable yet, and the

10.2 Problems of Chapter 3 193

algorithm needs to restart checking the points from the first one:

d(x1, c1) = 1.41 d(x1, c2) = 12.02.

The point x1 is not moved. All the other points are not moved as well:

d(x2, c1) = 1.41 d(x2, c2) = 10.70
d(x3, c1) = 1.41 d(x3, c2) = 10.70
d(x4, c1) = 1.41 d(x4, c2) = 9.19
d(x5, c1) = 10.63 d(x5, c2) = 0.71
d(x6, c1) = 10.63 d(x6, c2) = 0.71.

Since all the points have been checked and none of them changed cluster, the centers
are finally stable and the k-means algorithm can terminate.

2 In this exercise, the set of points

x1 = (1, 0), x2 = (1, 2), x3 = (2, 0),

x4 = (0, 1), x5 = (1, −3), x6 = (2, 3), x7 = (3, 3)

has to be partitioned in two clusters using the basic k-means algorithm. The initial
partition in clusters is

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 1 x6 → 2 x7 → 1.

The current centers of the clusters are

c1 = x1 + x3 + x5 + x7

4
= (1, 0) + (2, 0) + (1, −3) + (3, 3)

4
=
(

7

4
, 0

)

c2 = x2 + x4 + x6

3
= (1, 2) + (0, 1) + (2, 3)

3
= (1, 2).

Following the k-means algorithm, all the points from x1 to x7 have to be considered
and their distances from the centers of the clusters have to be checked. In this ex-
ample, all the points from x1 to x6 do not need to be moved, because the computed
distances are

d(x1, c1) = 0.75 d(x1, c2) = 2.00
d(x2, c1) = 2.13 d(x2, c2) = 0.00
d(x3, c1) = 0.25 d(x3, c2) = 2.23
d(x4, c1) = 2.02 d(x4, c2) = 1.41
d(x5, c1) = 3.09 d(x5, c2) = 5.00
d(x6, c1) = 3.01 d(x6, c2) = 1.41.

Then, the point x7 is moved to the cluster 2, because the distances from the centers are

d(x7, c1) = 3.25 d(x7, c2) = 2.24.

The new partition is therefore

194 10 Solutions to Exercises

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 1 x6 → 2 x7 → 2,

and the new centers are

c1 = x1 + x3 + x5

3
= (1, 0) + (2, 0) + (1, −3)

4
=
(

4

3
, −1

)

c2 = x2 + x4 + x6 + x7

4
= (1, 2) + (0, 1) + (2, 3) + (3, 3)

4
=
(

3

2
,

9

4

)
.

The centers changed, and hence another iteration of the algorithm has to be per-
formed. These are the distances of all the points in the set from the new two centers:

d(x1, c1) = 1.05 d(x1, c2) = 2.30
d(x2, c1) = 3.02 d(x2, c2) = 0.56
d(x3, c1) = 1.20 d(x3, c2) = 2.30
d(x4, c1) = 2.40 d(x4, c2) = 1.95
d(x5, c1) = 2.03 d(x5, c2) = 5.27
d(x6, c1) = 4.06 d(x6, c2) = 0.90
d(x7, c1) = 4.33 d(x7, c2) = 1.67.

Since all the points are closer to the centers of the cluster to which they belong, none
of them is moved. The algorithm then stops.

3 In this exercise, the set of points

x1 = (−1, −1), x2 = (−1, 1), x3 = (1, −1),

x4 = (1, 1), x5 = (7, 8), x6 = (8, 7),

must be partitioned in two clusters using the h-means algorithm. The centers of the
initial partition in clusters are (see Exercise 1):

c1 =
(

7

3
, 2

)
, c2 =

(
8

3
, 3

)
.

In the h-means algorithm, all the distances from the points and the centers c1 and c2
are computed and each point is moved to the cluster with closest center. Even though
some point can migrate from a cluster to another, the centers are updated only after
all the points have been checked. Let us compute all the distances:

d(x1, c1) = 4.48 d(x1, c2) = 5.43
d(x2, c1) = 3.48 d(x2, c2) = 4.18
d(x3, c1) = 3.28 d(x3, c2) = 4.33
d(x4, c1) = 1.67 d(x4, c2) = 2.60
d(x5, c1) = 7.60 d(x5, c2) = 6.62
d(x6, c1) = 7.76 d(x6, c2) = 6.67.

According to these distances, the new partition of the points becomes:

10.2 Problems of Chapter 3 195

x1 → 1 x2 → 1 x3 → 1 x4 → 1 x5 → 2 x6 → 2.

The new centers are:

c1 = x1 + x2 + x3 + x4

4
= (−1, −1) + (−1, 1) + (1, −1) + (1, 1)

4
= (0, 0)

c2 = x5 + x6

2
= (7, 8) + (8, 7)

2
=
(

15

2
,

15

2

)
.

This is the same partition obtained at the end of the solution of Exercise 1: this is
the optimal partition of the points. Note that the same partition has been obtained
by computing the centers only twice by using the h-means algorithm, whereas they
have been computed 4 times when the k-means algorithm has been applied.

4 The k-means algorithm can find 4 different partitions in clusters having the same
error function value (3.1) if, for instance, the following input is provided:

(−1, −1), (−1, 1), (1, −1), (1, 1).

5 An example of 8 points on a Cartesian plane that can be partitioned by k-means in 2
different ways that correspond to the same error function value (3.1) is the following
one:

(−1, 1), (0, 1), (1, 1),

(−1, 0), (1, 0),

(−1, −1), (0, −1), (1, −1).

6 The set of points

x1 = (−1, −1), x2 = (−1, 1), x3 = (1, −1),

x4 = (1, 1), x5 = (7, 8), x6 = (8, 7).

is initially assigned to the clusters 1, 2 and 3 as follows:

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 1 x6 → 2.

Note that the cluster 3 is currently empty. According to the k-means+ algorithm, the
cluster 3 can be filled by the point that currently is the farthest from its center. Let
us compute the distances from each point to the corresponding center:

d(x1, c1) = 4.48
d(x2, c2) = 4.18
d(x3, c1) = 3.28
d(x4, c2) = 2.60
d(x5, c1) = 7.60
d(x6, c2) = 6.67.

The farthest point is x5: the new partition of the points is therefore the following one:

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 3 x6 → 2.

196 10 Solutions to Exercises

The current centers are

c1 = (0, 1) , c2 =
(

8

7
, 3

)
, c3 = (7, 8) .

Let us check the distances of the points from these 3 centers:

d(x1, c1) = 1.00 d(x1, c2) = 4.54 d(x1, c3) = 12.04
d(x2, c1) = 2.24 d(x2, c2) = 2.93 d(x2, c3) = 10.63.

According to the algorithm, x2 is moved to the cluster 1, and the updated centers
need to be computed before proceeding. The new partition is

x1 → 1 x2 → 1 x3 → 1 x4 → 2 x5 → 3 x6 → 2

and the new centers are

c1 =
(

−1

3
, −1

3

)
, c2 =

(
9

2
, 4

)
, c3 = (7, 8) .

Let us continue checking the other points:

d(x3, c1) = 1.49 d(x3, c2) = 6.10 d(x3, c3) = 10.82
d(x4, c1) = 1.89 d(x4, c2) = 4.61 d(x4, c3) = 9.22.

The point x4 is then moved to cluster 1. The partition is now

x1 → 1 x2 → 1 x3 → 1 x4 → 1 x5 → 3 x6 → 2

and the centers are

c1 = (0, 0) , c2 = (8, 7) , c3 = (7, 8) .

Let us continue checking the points until the last one:

d(x5, c1) = 10.63 d(x5, c2) = 1.41 d(x5, c3) = 0.00
d(x6, c1) = 10.63 d(x6, c2) = 0.00 d(x6, c3) = 1.41.

x5 and x6 are not moved. Another iteration of the algorithm starts:

d(x1, c1) = 1.41 d(x1, c2) = 12.04 d(x1, c3) = 12.04
d(x2, c1) = 1.41 d(x2, c2) = 10.82 d(x2, c3) = 10.63
d(x3, c1) = 1.41 d(x3, c2) = 10.63 d(x3, c3) = 10.82
d(x4, c1) = 1.41 d(x4, c2) = 9.22 d(x4, c3) = 9.22
d(x5, c1) = 10.63 d(x5, c2) = 1.41 d(x5, c3) = 0.00
d(x6, c1) = 10.63 d(x6, c2) = 0.00 d(x6, c3) = 1.41.

None of the points are moved, none of the clusters are empty, and therefore the
k-means+ algorithm can stop.

10.2 Problems of Chapter 3 197

7 The set of points

x1 = (−1, −1), x2 = (−1, 1), x3 = (1, −1),

x4 = (1, 1), x5 = (7, 8), x6 = (8, 7)

are initially assigned to 3 clusters as in the previous exercise. The cluster 3 is empty,
and since x5 is the point which is the farthest from its center (see previous exercise),
it is chosen for filling the empty cluster. Then the current partition in clusters is

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 3 x6 → 2

and the centers of the clusters are

c1 = (0, 1) , c2 =
(

8

7
, 3

)
, c3 = (7, 8) .

According to the h-means+ algorithm, all the distances from the points and the centers
have to be checked and the centers must be updated only when all the points have
been checked. The distances are

d(x1, c1) = 1.00 d(x1, c2) = 4.54 d(x1, c3) = 12.04
d(x2, c1) = 2.24 d(x2, c2) = 2.93 d(x2, c3) = 10.63
d(x3, c1) = 1.00 d(x3, c2) = 4.00 d(x3, c3) = 10.82
d(x4, c1) = 2.24 d(x4, c2) = 2.01 d(x4, c3) = 9.22
d(x5, c1) = 11.40 d(x5, c2) = 7.70 d(x5, c3) = 0.00
d(x6, c1) = 11.31 d(x6, c2) = 7.94 d(x6, c3) = 1.41.

Because of the distances obtained, x2 is moved to cluster 1, and x6 is moved to cluster
3. The new partition is then

x1 → 1 x2 → 1 x3 → 1 x4 → 2 x5 → 3 x6 → 3

and the corresponding centers are

c1 =
(

−1

3
, −1

3

)
, c2 = (1, 1) , c3 =

(
15

2
,

15

2

)
.

All the distances are checked another time:

d(x1, c1) = 0.94 d(x1, c2) = 2.83 d(x1, c3) = 12.02
d(x2, c1) = 1.49 d(x2, c2) = 2.00 d(x2, c3) = 10.70
d(x3, c1) = 1.49 d(x3, c2) = 2.00 d(x3, c3) = 10.70
d(x4, c1) = 1.89 d(x4, c2) = 0.00 d(x4, c3) = 9.19
d(x5, c1) = 11.10 d(x5, c2) = 9.22 d(x5, c3) = 0.71
d(x6, c1) = 11.10 d(x6, c2) = 9.22 d(x6, c3) = 0.71.

None of the points changed cluster, and then the h-means+ can stop.

198 10 Solutions to Exercises

This exercise also requires to compare the partition obtained in this exercise to
the one obtained in the previous one. The two partitions are different, and this shows
that the k-means(+) and h-means(+) algorithms can provide different solutions. In
particular, the error function (3.1) has value 5.34 in this partition, and value 5.64
in the one of the previous exercise. Therefore, in this case, the h-means+ algorithm
provided a better partition.

8 The following MATLAB code can be used for generating Figure 10.6.

x = [-1 -1 1 1 7 8];
y = [-1 1 -1 1 8 7];
class = [1 1 1 1 2 2];
plotp(6,x,y,class)

9 The possible code for the MATLAB function hmeans implementing the h-means
algorithm in the two-dimensional space follows.

%
% this function performs a h-means algorithm
% on a two-dimensional set of data
%
% input:
% n - number of samples
% x - x coordinates of the samples
% y - y coordinates of the samples
% k - number of classes
%
% output:
% class - classes to which each sample belongs
%
% [class] = hmeans(n,x,y,k)

function [class] = hmeans(n,x,y,k)

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

8

Fig. 10.6 The set of points of Exercise 1 plotted with the MATLAB function plotp. Note that 3
of these points lie on the x or y axis of the Cartesian system.

10.2 Problems of Chapter 3 199

% initializing the clusters

for i = 1:n,
class(i) = int16(k*rand());
if class(i) == 0,
class(i) = k;

end
end

% computing the cluster centers

[cx,cy] = centers(n,x,y,k,class);

stable = 1; % unstable

while stable == 1,

% computing the distances between samples (x,y) and centers (cx,cy)
for i = 1:n,
mindist = 10.e+100;
minindex = 0;
for j = 1:k,
dist = (x(i) - cx(j))ˆ2 + (y(i) - cy(j))ˆ2;
dist = sqrt(dist);
if dist < mindist,
mindist = dist;
minindex = j;

end
end
% changing cluster
class(i) = minindex;

end

% checking the cluster centers

[cxnew,cynew] = centers(n,x,y,k,class);

stable = 0;
for j = 1:k,
if abs(cxnew(j) - cx(j)) > 1.e-6 | abs(cynew(j) - cy(j)) > 1.e-6,
stable = 1;

end
end

% preparing for the next iteration
for j = 1:k,
cx(j) = cxnew(j); cy(j) = cynew(j);

end

end % while

end

10 The simple proof of the equivalence follows. We have that

||xj1 − xj2 ||2 = ||xj1 − ci ||2 + ||xj2 − ci ||2 − 2||xj1 − ci ||
· ||xj2 − ci || cos(xj1 − ci, xj2 − ci)

= ||xj1 − ci ||2 + ||xj2 − ci ||2 − 2(xj1 − ci)(xj2 − ci).

Then the quantity ∑
j1∈Si

∑
j2∈Si

||xj1 − xj2 ||2

200 10 Solutions to Exercises

is equal to

∑
j1∈Si

∑
j2∈Si

(
||xj1 − ci ||2 + ||xj2 − ci ||2

)
− 2

∑
j1∈Si

∑
j2∈Si

(xj1 − ci)(xj2 − ci).

The last term is zero, since

∑
j1∈Si

∑
j2∈Si

(xj1 − ci)(xj2 − ci) =
∑
j1∈Si

⎛
⎝(xj1 − ci)

∑
j2∈Si

(xj2 − ci)

⎞
⎠

and ∑
j2∈Si

(xj2 − ci) =
∑
j2∈Si

xj2 − |Si |ci = |Si |ci − |Si |ci = 0.

Thus,∑
j1∈Si

∑
j2∈Si

||xj1 − xj2 ||2 =
∑
j1∈Si

∑
j2∈Si

(
||xj1 − ci ||2 + ||xj2 − ci ||2

)

= 2|Si |
∑
j1∈Si

||xj − ci ||2,

which implies the equality.

10.3 Problems of Chapter 4

1 The 1-NN rule has to be applied for classifying the points x1 = (2, 1), x2 = (−3, 1)

and x3 = (1, 4) in the two classes C+ and C− by using the training set:{{T1 = (−1, −1), C−}, {T2 = (−1, 1), C−}, {T3 = (1, −1), C+}, {T4 = (1, 1), C+}} .

Following the 1-NN rule, the points have to be classified in accordance with the
classification of their closest point in the training set. Let us consider the first point
x1:

d(x1, T1) = 3.61, d(x1, T2) = 3.00, d(x1, T3) = 2.23, d(x1, T4) = 1.00.

Since the nearest point to x1 in the training set is T4, the point is classified in the
same way as T4:

x1 ∈ C+.

Following the same procedure, the other two points x2 and x3 can be classified with
the same rule:

d(x2, T1) = 2.83, d(x2, T2) = 2.00, d(x2, T3) = 4.47,

d(x2, T4) = 4.00 =⇒ x2 ∈ C−

10.3 Problems of Chapter 4 201

d(x3, T1) = 5.38, d(x3, T2) = 3.61, d(x3, T3) = 5.00,

d(x3, T4) = 3.00 =⇒ x3 ∈ C+.

2 In this exercise, the points

x1 = (7, 8), x2 = (0, 0), x3 = (0, 2), x4 = (4, −2)

have to be classified in the classes CA and CB by using as training set the set of
points:

{T1 = (0, 1), T2 = (−1, −1), T3 = (1, 1)} ∈ CA,

{T4 = (−2, −2), T5 = (2, 2)} ∈ CB.

The 1-NN rule is applied:

d(x1, T1) = 9.90, d(x1, T2) = 12.04, d(x1, T3) = 9.22,

d(x1, T4) = 13.45, d(x1, T5) = 7.81
d(x2, T1) = 1.00, d(x2, T2) = 1.41, d(x2, T3) = 1.41,

d(x2, T4) = 2.83, d(x2, T5) = 2.83
d(x3, T1) = 1.00, d(x3, T2) = 3.16, d(x3, T3) = 1.41,

d(x3, T4) = 4.47, d(x3, T5) = 2.00
d(x4, T1) = 5.00, d(x4, T2) = 5.10, d(x4, T3) = 4.24,

d(x4, T4) = 6.00, d(x4, T5) = 4.47.

According to the distance values obtained, the unknown points are classified as
follows:

x1 ∈ CB x2 ∈ CA x3 ∈ CA x4 ∈ CA.

3 In this exercise, the points

x1 = (5, 1), x2 = (−1, 4),

must be classified into the classes CA and CB by using the points:

{T1 = (0, 1), T2 = (−1, −1), T3 = (1, 1)} ∈ CA,

{T4 = (−2, −2), T5 = (2, 2)} ∈ CB.

The 3-NN rule is applied:

d(x1, T1) = 5.00, d(x1, T2) = 6.32, d(x1, T3) = 4.00,

d(x1, T4) = 7.62, d(x1, T5) = 3.16
d(x2, T1) = 3.16, d(x2, T2) = 5.00, d(x2, T3) = 3.61,

d(x2, T4) = 6.08, d(x2, T5) = 3.61.

Both the points x1 and x2 are classified as belonging to the class CA.

4 The following training set allows different classification for the point x̂ = (1, 1)

if the k-NN rule is applied with k equal to 1 or 3. The set of points contains:

202 10 Solutions to Exercises

xA1 = (1, 0), xA2 = (3, 0),

xB1 = (0, 0), xB2 = (−1, 0), xB3 = (0, 2),

and they are classified in the classes CA and CB according to their subscripts. The
point x̂ is classified as belonging to class CA if k is 1 and it is classified as belonging
to class CB if k is 3. Let us compute the distances between x̂ and all the points in the
training set:

d(x̂, xA1) = 1.00, d(x̂, xA2) = 2.24,

d(x̂, xB1) = 1.41, d(x̂, xB2) = 2.24, d(x̂, xB3) = 1.41.

The nearest point to x̂ is xA1. If the 1-NN rule is then applied, x̂ is classified as xA1,
i.e., it is assigned to the class CA. If the 3-NN rule is instead used, the three nearest
neighbors of x̂ are xA1, xB1 and xB3. Since two of them belong to the class CB and
only one to the class CA, the unknown point x̂ is classified as the majority of its
neighbors. In this case, then, x̂ is assigned to the class CB .

5 The training set and the unknown sample that satisfies the requirements of Exer-
cise 3 can be plotted by the MATLAB function plotp. Figure 10.7 shows the training
set and the point given as solution of Exercise 4.

6 The classification problem proposed in Exercise 1 can be easily solved by using
the MATLAB environment and the function knn. A list of instructions in MATLAB
follows:

>> ntrain = 4;
>> xtrain = [-1 -1 1 1];
>> ytrain = [-1 1 -1 1];
>> ctrain = [1 1 2 2];
>> x = [2 -3 1];

−2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 10.7 The training set and the unknown point that represents a possible solution to Exercise 4.

10.3 Problems of Chapter 4 203

>> y = [1 1 4];
>> class = knn(3,x,y,2,ntrain,xtrain,ytrain,ctrain)

class =

2 1 1

7 In this exercise, a training set has to be randomly created and the correspond-
ing condensed and reduced set have to be computed. In MATLAB, the following
instructions can be used for this purpose:

>> [x,y] = generate(200,0.1);
>> [class] = hmeans(200,x,y,2);
>> [ntcnn,xtcnn,ytcnn,ctcnn] = condense(200,x,y,class,2);
>> ntcnn

ntcnn =

11

>> [ntrnn,xtrnn,ytrnn,ctrnn] = reduce(200,x,y,class,2);
>> ntrnn

ntrnn =

9

As shown, the condensed training set has only 11 points, and the reduced training
set has only 9 points. The original training set was created with 200 points.

8 The figures required by the exercise can be generated using the function plotp.
If the variables used in the previous exercise in MATLAB are still in memory, then
the following instructions can be used:

>> plotp(200,x,y,class)
>> plotp(ntcnn,xtcnn,ytcnn,ctcnn)
>> axis([-1.5 1.5 -1 1])
>> plotp(ntrnn,xtrnn,ytrnn,ctrnn)
>> axis([-1.5 1.5 -1 1])

The first call to the function plotp generates Figure 10.8. The other two calls create
Figures 10.9(a) and 10.9(b).

9 The solution of the exercise can be found by using the following instructions in
MATLAB. It is supposed that the variables x, y and class used in the Exercise 7
are still in memory.

>> ntrain = 200;
>> xtrain = x;
>> ytrain = y;
>> ctrain = class;
>> [x,y] = generate(500,0);
>> [class] = knn(500,x,y,2,ntrain,xtrain,ytrain,ctrain);
>> plotp(500,x,y,class)

The call to the function plotp generates Figure 10.10.

10 If it is supposed that all the variables used in Exercise 7 are still in memory, such
as the condensed and reduced subsets, then the following code can be used:

204 10 Solutions to Exercises

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 10.8 A random set of 200 points partitioned in two clusters.

>> [class] = knn(500,x,y,2,ntcnn,xtcnn,ytcnn,ctcnn);
>> plotp(500,x,y,class)
>> [class] = knn(500,x,y,2,ntrnn,xtrnn,ytrnn,ctrnn);
>> plotp(500,x,y,class)

The two calls to the function plotp generate Figure 10.11.

10.4 Problems of Chapter 5

1 A multilayer perceptron having one input neuron, two hidden neurons on only one
hidden layer and one output neuron has the structure shown in Figure 10.12. For the
labels assigned to each neuron and weight, refer to the figure. The network has to be
trained so that it is able to model the equation

y = 2x.

For simplicity, the function Oj assigned to each active neuron is the identity function,
which can be expressed by the equation y = x. For training the network, let us
consider a subset of couples of independent variables x and dependent variables y

satisfying the equation y = 2x. For instance, the points

(1, 2), (−1, −2), (2, 4)

satisfy the equation. Let us start considering the first point: (1, 2). A network trained
as required should be able to provide 2 when 1 is fed. When x = 1 is fed, this signal
is sent from the input neuron A to both the neurons of the hidden layer, B and C.

10.4 Problems of Chapter 5 205

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 10.9 The condensed and reduced set obtained in Exercise 7: (a) the condensed set corresponding
to the set in Figure 10.8; (b) the reduced set corresponding to the set in Figure 10.8.

These two neurons compute their activation levels using the weights assigned to the
links connecting them to the input neuron. In general, the activation level in B is
w11x and the activation level in C is w12x. Hence, in this case, the activation in B
is w11 and the activation in C is w12. The function Oj is the identity function, and
therefore the neurons B and C do not modify the activation values, which are sent
as they are to the output neuron. The activation level in D is w11w21 + w12w22. As
before, Oj is the identity function, and hence this is the final output provided by
the network. Since the network has to mimic the equation y = 2x, the following

206 10 Solutions to Exercises

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 10.10 The classification of a random set of points by using a training set of 200 points.

condition has to be satisfied:

w11w21 + w12w22 = 2. (10.1)

If the point (−1, −2) is considered, and −1 is fed to the network, the output from
the network is −2 if the condition

− (w11w21 + w12w22) = −2

is satisfied. Similarly, if (2, 4) is considered, the condition

2 (w11w21 + w12w22) = 4

is obtained. Note that all these conditions depend on each other, and hence only one
of them can be considered and the others discarded. If other points are considered,
and other conditions obtained, they would be dependent on these ones. Let us take
in account the condition (10.1). There are 4 unknown weights in only one condition,
and therefore there is an infinite number of combinations of the 4 weights that satisfy
such condition. For instance the weights

w11 = 1, w21 = 1, w12 = 2, w22 = 1

satisfy the condition (10.1). The network with these weights works as the equation
y = 2x.

2 It is needed to prove that a multilayer perceptron having one input neuron, two
hidden neurons on only one hidden layer and one output neuron having the structure in
Figure 10.12 cannot model the equation y = 2x+1 exactly. In the previous exercise,

10.4 Problems of Chapter 5 207

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 10.11 The classification of a random set of points by using (a) the condensed set of the set in
Figure 10.8; (b) the reduced set of the set in Figure 10.8.

the network has been fed with different points satisfying the equation y = 2x. Let
us consider now the generic point satisfying the equation y = 2x + 1:

(x, 2x + 1).

Let us feed x to the network. The activation level in B is w11x and the activation
level in C is w12x. The function Oj is the identity function, and then these two
activation levels are sent as they are to the output neuron. In D, the activation level

208 10 Solutions to Exercises

Fig. 10.12 The structure of the network considered in Exercise 1.

is w11w21x + w12w22x. Therefore, the following condition has to be satisfied if the
network has to approximate the equation y = 2x + 1:

(w11w21 + w12w22) x = 2x + 1.

It follows that:
(w11w21 + w12w22 − 2) x = 1,

and this implies that the weights must depend on x for satisfying the equation. There
are no possible choices for the weights that satisfy the condition for all the x, and
for this reason this network cannot model the equation y = 2x + 1 exactly.

3 A multilayer perceptron having one hidden layer with 2 neurons has to be trained
for the AND classification problem. Given two logical variables, X and Y, X AND
Y must be the answer of the classification rule. As known, the AND logical operator
works in accordance with the following table.

X Y X AND Y
True True True
True False False
False True False
False False False

In the exercise, the logical value ‘true’ is indicated by 0, and the logical value ‘false’
is indicated by 1. In this way, the previous table can be written in terms of 0 and 1.

10.4 Problems of Chapter 5 209

X Y X AND Y
0 0 0
0 1 1
1 0 1
1 1 1

The network is trained so that, when X and Y are fed, the corresponding X AND Y
value is given as output. The network has two input neurons, one corresponding to
X and the other corresponding to Y, and it has only one output value, where X AND
Y is provided. The hidden neurons on one hidden layer are 2. The structure of this
network is in Figure 10.13: refer to the figure for the labels given to the neurons and
the weights.

Let us feed the network with a generic couple (X,Y). The signal containing X starts
from the neuron A and reaches the neuron C. The activation level of the neuron C is
then w11X. Similarly, the signal containing Y starts from the neuron B and reaches
the neuron D. The activation level of the neuron D is then w12Y. Successively, both
neurons C and D send their signal to the input neuron E. The activation level on E is

w11w21X + w12w22Y.

Therefore, the network is able to provide the following results:

X Y Network output
0 0 0
0 1 w12w22

1 0 w11w21

1 1 w11w21 + w12w22

Fig. 10.13 The structure of the network considered in Exercise 3.

210 10 Solutions to Exercises

The network works as theAND classifier if all the weights are set to 1 and the function

Oj =
⎧⎨
⎩

0 −→ 0
1 −→ 1
2 −→ 1

is associated to the neuron E.

4 The network considered in this exercise has the same structure as the one in
Exercise 3. Its structure is provided in Figure 10.13. All the weights are set to 1, and
the sigmoid function

Oj = sigmoid(x) = 1

1 + e−x

is associated to the output neuron. Let us feed the network with (6, 1). The signal
containing 6 starts from the neuronAand arrives at the neuron C unaltered. Similarly,
the signal containing 1 starts from the neuron B and arrives at the neuron D unaltered.
These signals start from the neurons C and D and arrive at E. The activation level in E
is the weighted sum of the received signals, and therefore it is 6 + 1 = 7. Associated
to E is the sigmoid function, and hence the output value of the network is

sigmoid(7) = 1

1 + e−7 .

If instead (−1, −1) is fed to the network, the output value of the network is

sigmoid(−2) = 1

1 + e2 .

5 In this exercise, the considered network has the same structure as the one in
Figure 10.13. All the weights are equal to 2 and the logistic function is associated to
the neuron E. When the signal propagates from one neuron to another it is doubled in
value. Since there is only one hidden layer, the original signal is sent from the input
layer to the hidden layer, and then from the hidden layer to the output neuron. In
total, therefore, the original signal is amplified four times when it passes the network.
When the neuron E receives its inputs, it sums them and applies the logistic function
to the result. Thus, if (1, 1) is fed to the network, then the output provided by the
network is

logistic(4 + 4) = 1

1 + e− 8
2

.

The same result can be obtained when (0, 2) is fed:

logistic(0 + 8) = 1

1 + e− 8
2

.

6 Two networks having the same structure as shown in Figure 10.13 are considered.
The first network has all the weights equal to 1 and the sigmoid function associated
to the output neuron. The second one has all the weights equal to 2 and the logistic

10.5 Problems of Chapter 6 211

Fig. 10.14 The structure of the network considered in Exercise 7.

function associated to the output neuron. The first network can have the hidden layer
removed without changing the its outputs, because the weights related to the hidden
neurons are equal to 1 and no functions are associated to them. Such neurons actually
do not have any effect.

7 The structure of the network considered in this exercise is shown in Figure 10.14.
The weights on the links are assigned as specified in the figure. Let us feed the
network with an arbitrary input (1, 2). The signal containing 1 propagates from A
and the signal containing 2 propagates from B. In C the signal is 0.1, in D it is 0.2,
and it is 0.1 in E. The signal in the output neuron is 0.12. It is easy to verify that, if
the link between A and C is removed, then the neuron C remains inactive. Similarly,
E remains inactive if the link between B and E is removed. If only one of the other
links is removed, no neurons remain inactive.

8 A network having the features required by the exercise is given in Figure 10.15.

10.5 Problems of Chapter 6

1 The set of points
(A, B, C)

whose components can have 0 or 1 as value are separated in the two classes

212 10 Solutions to Exercises

Fig. 10.15 The structure of the network required in Exercise 8.

C0 = {(A, B, C) : A AND B AND C = 0} ,

and
C1 = {(A, B, C) : A AND B AND C = 1} .

The aim of the exercise is to check if the two classes are linearly separable or not. Note
that the points (A, B, C) lie on the vertices of a three-dimensional cube. Suppose
that 0 stands for ‘true’ and that 1 stands for ‘false.’ From the definition of the AND
operator it follows that only the point (0, 0, 0) belongs to the class C0 and all the
others belong to the class C1. Therefore, the two classes are linearly separable.

2 The classes

C0 = {(A, B, C) : NOT A AND B = 0}
C1 = {(A, B, C) : NOT A AND B = 1}

are linearly separable since they can be separated by the place having equation
B − A ≥ 1. The classes

C0 = {(A, B, C) : (A OR B) AND (A AND C) = 0}
C1 = {(A, B, C) : (A OR B) AND (A AND C) = 1}

are linearly separable as well. The plane 2A + B + C ≥ 2 separates the two classes.

10.5 Problems of Chapter 6 213

Fig. 10.16 The classes C+ and C− in Exercise 3.

3 A set of points and their classifications in two classes C+ and C− are specified as
follows: (

(0, 0), C−) , (
(0, 1), C+) , (

(1, 0), C+) , (
(1, 1), C−) .

As it is possible to see from Figure 10.16, the classes C+ and C− are not linearly
separable.

4 The same set of points and the same classification described in Exercise 3 are
considered in this exercise. Figure 10.16 gives a geometric representation of these
points. In this exercise, the transformation

�(x1, x2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2x1√
2x2

x2
1

x2
2√

2x1x2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

has to be applied in order to get the two classes C+ and C− linearly separable. The
transformation is applied point by point:

(0, 0) =⇒ (1, 0, 0, 0, 0, 0)

(0, 1) =⇒ (1, 0,
√

2, 0, 1, 0)

(1, 0) =⇒ (1,
√

2, 0, 1, 0, 0)

(1, 1) =⇒ (1,
√

2,
√

2, 1, 1,
√

2).

214 10 Solutions to Exercises

Note that the first component of the transformed points is always 1, and therefore it can
be discarded. Moreover, the components 2 and 3 and the components 4 and 5 of the
transformed points satisfy a particular symmetry property. Indeed, the components
2 and 3 are

(0, 0), (0,
√

2), (
√

2, 0), (
√

2,
√

2),

and the components 4 and 5 are

(0, 0), (0, 1), (1, 0), (1, 1).

Thus, these two couples of components have the same coefficients in the separating
hyperplane equation because of the symmetry. Simplifying, the given points are
transformed in:(
(0, 0, 0), C−) , (

(
√

2, 1, 0), C+) ,
(
(
√

2, 1, 0), C+) ,
(
(2

√
2, 2,

√
2), C−) .

The second and the third point are identical, and therefore only three points are
considered. There is always a plane in the three-dimensional space that can separate
a point by other two different points, and therefore the obtained points belong to
classes that are linearly separable.

5 The optimization problem to be solved for training a support vector machine related
to the set of points in the transformed space considered in the previous exercise is

min
w

1

2

(
w2

1 + w2
2 + w2

3

)
subject to

b ≤ −1√
2w1 + w2 + b ≥ 1

2
√

2w1 + 2w2 + √
2w3 + b ≤ 1.

6 The experiments discussed in Section 6.6 regard the use of the freeware software
LIBSVM. In the quoted section, a training test and a testing set have been generated
randomly by using the MATLAB function generate4libsvm. In the experiments, a
support vector machine has been trained by using a sigmoidal kernel. In the following,
two different support vector machines are trained by using the same training set but
two different kernel functions.

LIBSVM>svmtrain -t 1 trainset.txt
*
optimization finished, #iter = 35
nu = 0.584346
obj = -47.033541, rho = -0.249598
nSV = 61, nBSV = 58
Total nSV = 61

LIBSVM>svmpredict testset.txt trainset.txt.model
testresult-polynomial-kernel.txt

Accuracy = 82.6% (826/1000) (classification)

LIBSVM>svmtrain -t 2 trainset.txt
*

10.5 Problems of Chapter 6 215

optimization finished, #iter = 17
nu = 0.175650
obj = -11.319766, rho = 0.030302
nSV = 20, nBSV = 16
Total nSV = 20

LIBSVM>svmpredict testset.txt trainset.txt.model
testresult-polynomial-kernel.txt

Accuracy = 98.6% (986/1000) (classification)

These experiments show that the kernel that performs better on the considered prob-
lem is the radial basis kernel, which is specified by ‘2’ when the option ‘-t’ of the
procedure svmtrain is used.

7 This exercise uses the same notations introduced in Section 6.1. For instance, w

and b are the parameters of the general equation of the hyperplane:

wT x + b = 0.

As known, the two parameters w and b can be normalized so that wT x+b = +1 is the
hyperplane that goes through the support vectors of the class C+, and wT x+b = −1
is the hyperplane that goes through the support vectors of the class C−. If x+ is a
sample on the hyperplane C+ and x− is the sample closest to x+ on the hyperplane
C−, then the margin between the two hyperplanes can be written as:

M = |x+ − x−|.
The aim of this exercise is to prove that the margin M between the two classes can
be also written as:

M = 2√
wT w

.

Since w is orthogonal to both C+ and C−, then

x+ = x− + λw

for some real λ. The following system of conditions⎧⎪⎪⎨
⎪⎪⎩

wT x+ + b = +1
wT x− + b = −1
x+ = x− + λw

M = |x+ − x−|
implies that

wT (x− + λw) = 1

=⇒ wT x− + b + λwT w = 1

=⇒ −1 + λwT w = 1

=⇒ λ = 2

wT w
.

216 10 Solutions to Exercises

Therefore,

M = |x+ − x−| = |λw| = λ|w| = λ
√

wT w,

and thus

M = 2√
wT w

,

and hence the proof is completed.

10.6 Problems of Chapter 7

1 The matrix

A =

⎛
⎜⎜⎜⎜⎝

1 2 3 −4 5
1 1 0 0 1
0 1 2 2 0

−1 3 1 0 2
3 −1 1 2 1

⎞
⎟⎟⎟⎟⎠

represents a set of samples and features that can be partitioned in biclusters. Each
column of the matrix represents a sample, each row of A represents instead a feature.
A possible bicluster with constant row values is

CA =
(

0 0
2 2

)
,

where CA can be obtained by A by extracting its second and third rows and its third
and fourth column.

2 The set of points:

x1 = (7, 0, 0), x2 = (5, 0, 0), x3 = (0, 1, 0),

x4 = (0, 3, 0), x5 = (0, 0, 1), x6 = (0, 0, 5)

is given and their partition is assigned as follows:

x1 ∈ S1, x2 ∈ S1, x3 ∈ S2, x4 ∈ S2, x5 ∈ S3, x6 ∈ S3.

The matrix A associated to this set of data is

A =
⎛
⎝7 5 0 0 0 0

0 0 1 3 0 0
0 0 0 0 1 5

⎞
⎠

and then the features are represented by the three 6-dimensional points:

f1 = (7, 5, 0, 0, 0, 0)

f2 = (0, 0, 1, 3, 0, 0)

f3 = (0, 0, 0, 0, 1, 5).

10.6 Problems of Chapter 7 217

Let us compute the centers of the three clusters S1, S2 and S3:

cS
1 = x1 + x2

2
= (7, 0, 0) + (5, 0, 0)

2
= (6, 0, 0) = (cS

11, c
S
21, c

S
31)

cS
2 = x3 + x4

2
= (0, 1, 0) + (0, 3, 0)

2
= (0, 2, 0) = (cS

12, c
S
22, c

S
32)

cS
3 = x5 + x6

2
= (0, 0, 1) + (0, 0, 5)

2
= (0, 0, 3) = (cS

13, c
S
23, c

S
33).

By applying the rule (7.2), it follows that

cS
11 > cS

12 and cS
11 > cS

13 =⇒ f1 ∈ F1

cS
22 > cS

21 and cS
22 > cS

23 =⇒ f2 ∈ F2

cS
33 > cS

31 and cS
33 > cS

32 =⇒ f3 ∈ F3.

Thus, the partition in biclusters is

B = {(x1, x2, f1), (x3, x4, f2), (x5, x6, f3)} .

3 In this exercise, the partition in biclusters obtained in the previous exercise must be
checked for consistency. In such a partition, each feature is contained in a different
bicluster, and therefore each center cF

r equals the rth feature fr :

cF
1 = f1, cF

2 = f2, cF
3 = f3.

The rule (7.3) can be applied:

cF
11 > cF

12 and cF
11 > cF

13 =⇒ x1 ∈ Ŝ1

cF
21 > cF

22 and cF
21 > cF

23 =⇒ x2 ∈ Ŝ1

cF
32 > cF

31 and cF
32 > cF

33 =⇒ x3 ∈ Ŝ2

cF
42 > cF

41 and cF
42 > cF

43 =⇒ x4 ∈ Ŝ2

cF
53 > cF

51 and cF
53 > cF

52 =⇒ x5 ∈ Ŝ3

cF
63 > cF

61 and cF
63 > cF

62 =⇒ x6 ∈ Ŝ3.

The partition found in clusters Ŝr is equal to the partition in clusters Sr . Thus, the
partition in biclusters is consistent.

4 The samples xi and the features fi related to this exercise can be summarized in
the matrix

A =
⎛
⎝1 2 3 4

2 3 4 5
3 4 2 1

⎞
⎠ .

218 10 Solutions to Exercises

The columns of the matrix represent the 4 points in the three-dimensional space to
which a partition in cluster is already assigned: the first two columns belong to the
cluster S1, whereas the last two columns belong to the cluster S2. Let us compute the
centers of these two clusters:

cS
1 = x1 + x2

2
= (1, 2, 3) + (2, 3, 4)

2
=
(

3

2
,

5

2
,

7

2

)

cS
2 = x3 + x4

2
= (3, 4, 2) + (4, 5, 1)

2
=
(

7

2
,

9

2
,

3

2

)
.

Let us apply the rule (7.2):

cS
11 > cS

12 =⇒ f1 = (1, 2, 3, 4) ∈ F1

cS
21 > cS

22 =⇒ f2 = (2, 3, 4, 5) ∈ F1

cS
31 < cS

32 =⇒ f3 = (3, 4, 2, 1) ∈ F2.

Then, the partition in biclusters is

B = {(x1, x2, f1, f2), (x3, x4, f3)} .

Let us now check if the obtained partition B is consistent. The centers of the clusters
Fr are

cF
1 = f1 + f2

2
= (1, 2, 3, 4) + (2, 3, 4, 5)

2
=
(

3

2
,

5

2
,

7

2
,

11

2

)

cF
2 = f3 = (3, 4, 2, 1).

The rule (7.3) is applied:

cF
11 < cF

12 =⇒ x1 = (1, 2, 3) ∈ Ŝ2

cF
21 < cF

22 =⇒ x2 = (2, 3, 4) ∈ Ŝ2

cF
31 > cF

32 =⇒ x3 = (3, 4, 2) ∈ Ŝ1

cF
41 > cF

42 =⇒ x4 = (4, 5, 1) ∈ Ŝ1.

The partitions in biclusters Sr and Ŝr are different, and therefore the obtained biclus-
tering B is not consistent.

5 Impossible. Every α-consistent biclustering, for any α, is also consistent.

Appendix A
The MATLAB r© Environment

A.1 Basic concepts

MATLAB is a numerical computing environment for scientific and numeric applica-
tions. It provides a wide variety of predefined functions that can be used for solving
several problems in the field of numerical analysis. MATLAB is moreover a pro-
gramming language, so that functions can be written and utilized with the ones that
are predefined in the environment. The name derive from the two words MATrix
and LABoratory. It indeed allows easy matrix manipulation, as they are considered
as single variables. Plotting of functions and data is also simple by using MATLAB.
In the following, we will pay attention to the basic concepts needed by the reader for
performing the experiments discussed in this book. The reader who is interested in
more details about MATLAB can make use of several tutorials on the topic.

In general, instructions that MATLAB can carry out are specified through a com-
mand window. When the symbol » is shown, MATLAB is waiting to have orders
from the user. The orders can range from simple arithmetic operations such as sums
and products of real numbers to the execution of complex functions. One of the
easiest operations MATLAB can make is the following one:

>> 2 + 3

ans =

5

In this case, MATLAB is used as a simple calculator. The result of the operation
is stored in the auxiliary variable ans. In MATLAB, every time it is not explicitly
specified, the result of an operation or function is stored in a variable called ans. The
output variable can be specified as follows:

>> a = 2 + 3

a =

5

219

220 A The MATLAB Environment

The same result is obtained if the following is given to MATLAB:

>> a = 2;
>> b = 3;
>> c = a + b;
>> c

c =

5

In this example, three variables are used for computing the same sum. The variable
a is firstly defined and its value is set to 2. The variable b has instead value 3. The
sum of the variables is this time stored in the variable called c, and the result of the
operation is shown. Note that MATLAB does not produce any printed output when
the given instruction ends with the symbol ;. This can be very convenient, because
in many cases a lot of operations are needed, but only the last operation provides the
result of interest. Every time the symbol ; is added at the end of the instruction, the
instruction is executed but the result is not printed. To visualize the current value of
a certain variable, for example c, it is sufficient to write its name.

Differently from other programming languages, the variables in MATLAB do
not need to be declared. In other languages the declaration of a variable is needed
for specifying the type of data the variable has to contain. In MATLAB, all the
variables are matrices of real numbers. For instance, the instruction a = 2 implicitly
declares a matrix with one row and one column and containing one real number,
which corresponds to 2 in this case. Variables need to be declared in MATLAB as
well if the user needs to represent different kinds of data. For simple applications,
however, the explicit declaration of variables is usually not needed.

Vectors are matrices having only one row or only one column. In MATLAB, a set
of sorted numbers between the symbol [and the symbol] represents a vector with
such numbers as components:

>> v = [1 3 5 7]

v =

1 3 5 7

The following ones are some of the basic operations that can be carried out on vectors:

>> v = [1 3 5 7];
>> w = [1 1 1 1];
>> v + w

ans =

2 4 6 8

A.1 Basic concepts 221

>> v - w

ans =

0 2 4 5

>> 2*v

ans =

2 6 10 14

>> v*w’

ans =

16

The sum of vectors is performed component by component, as well as the difference
between two vectors. A vector can also be multiplied by a number, and the result
is a vector having as components the product of such number by the components
of the vector v. The instruction v*w’ performs the so-called inner product between
two vectors with the same length, i.e., the same number of components. Its result
is a number defined as the sum of the products of all the homologue components.
In the example, the inner product v*w’ is (1 · 1) + (3 · 1) + (5 · 1) + (7 · 1). The
symbol ’ after a variable name is used for transposing the variable. The transpose of
a number is the number itself, the transpose of a row vector is a column vector, the
transpose of a column vector is a row vector. Before performing the inner product, the
second vector, w, has to be transformed into a column vector. In fact, these vectors
are actually matrices in MATLAB, and the product between two matrices can be
performed only if a condition is met. From the basic mathematical theory comes
that two matrices can be multiplied if and only if the number of columns of the first
matrix equals the number of rows of the second matrix. In this case, the row vector
v and the row vector w are two matrices with 1 row and 4 columns. The condition is
then not satisfied. In order to perform the inner product, the second vector w needs to
be transposed, so that it becomes a column vector, having 4 rows and 1 column. In
this way the condition is satisfied, and the two vectors can be multiplied. The symbol
* refers to multiplication. In general, it refers to the product between matrices. If
the variables are vectors, then the inner product is performed. If the variables are
just numbers, the standard arithmetic product is performed. As for the sum between
vectors, if the vector having as components the products of the components in v and
w is of interest, then the following instruction must be used:

>> v*.w

ans =

1 3 5 7

222 A The MATLAB Environment

The symbol . after the * specifies that the operation must be performed element by
element. In the case of vectors, the operation is performed component by component.
In the example, the result corresponds to the vector v because the vector w has all its
components equal to 1.

The following defines a matrix in MATLAB:

>> A = [1 2 3; 2 3 4]

A =
1 2 3
2 3 4

Numbers separated by a space (or a comma ,) belong to the same row, whereas
the symbol ; specifies that the following numbers belong to the successive row of
the matrix. When this syntax is used, it is important that all the rows and all the
columns of the matrix have the same number of elements, otherwise a message error
is provided by MATLAB. As for the vectors, similar basic operations can be carried
out by using matrices:

>> A = [1 2 3; 2 3 4];
>> B = [1 0 1; 0 1 2];
>> A + B

ans =

2 2 4
2 4 6

>> A - B

ans =

0 2 2
2 2 2

>> 2*A

ans =

2 4 6
4 6 8

>> A*B’

ans =

4 8
6 11

A.1 Basic concepts 223

As before, the sum of two matrices is a matrix having as elements the sum of the
homologue elements of the two matrices. If the difference is performed, the difference
between the homologue elements is considered. A matrix can be multiplied by a
number, and the result is a matrix having all the elements in A multiplied by that
number. The symbol * refers here to the standard product between two matrices. To
perform the product, the number of columns of A must equal the number of rows
of B. For this reason, B is transposed before performing the product. The solution
is a matrix, having a number of rows which equals the number of rows of A and
a number of columns which equals the number of columns of B’. As before, the
product element by element of two matrices can be carried out by using the symbol
. after *.

In MATLAB, every variable is considered as a matrix. However, elements of a
matrix can be considered separately, and they can define sub-matrices. The following
example extracts sub-matrices, vectors and numbers from a matrix A:

>> A = [1 2 3 4; 2 3 4 5; 5 6 7 8]

A =

1 2 3 4
2 3 4 5
5 6 7 8

>> A(2,3)

ans =

4

>> B = A(1:3,3:4)

B =

3 4
4 5
7 8

>> v = B(1,:)

v =

3 4

>> w = B(:,2)

w =

4
5
8

>> w(2)

224 A The MATLAB Environment

ans =

5

For referring to the element of a matrix, two indices are needed, the one related
to the rows and the one related to the columns. In the example, the element with row
index i = 2 and column index j = 3 is extracted. More than one element can be
extracted from a matrix per time. For instance, A(1:3,3:4) refers to the elements
of the matrix having row indices ranging from 1 to 3 and column indices ranging
from 3 to 4. If the symbol : is used instead of a number, then all the rows or columns
of the matrix are considered. The symbols 1:3 and 3:4 define vectors by using a
compact syntax. 1:3 is actually the vector [1 2 3], and 3:4 is the vector [3 4].
In general, x:y defines a vector having as first component x, having as last element
y and such that the difference between any consecutive components of the vector is
1. This difference is set to 1 by default. It can be specified by using the symbology
x:d:y, where d is the considered difference.

A.2 Graphic functions

MATLAB provides many graphic functions. They can be used for visualizing data
and mathematical functions, and for building complex figures. The basic graphic
function in MATLAB is plot. The following instructions in MATLAB draw Figure
A.1.

>> x = [1 2 3 4]; y = [0.2 1.5 1.8 3];
>> plot(x,y,’o’,’MarkerSize’,16)

The function plot draws on a two-dimensional Cartesian system the set of points
specified by the two vectors x and y. The x coordinates of such points are in the
vector x, whereas their y coordinates are in the vector y. In the example, four points
are drawn, and in particular the points with coordinates (1, 0.2), (2, 1.5), (3, 1.8)

and (4, 3). The third input parameter of the function plot specifies the symbol with
which the points have to be marked. In the example, a circle (o) is used. Other
symbols include stars *, crosses +, etc. The symbol o is specified between two ’

symbols. Everything between two ’ symbols is considered as a string of characters
in MATLAB. Besides the symbol for marking the points, even the color of the points
can be specified. For more details about the function plot, the MATLAB help

command can be utilized. For instance, the following provides information about
the plot function:

>> help plot
PLOT Linear plot.

PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
then the vector is plotted versus the rows or columns of the matrix,
whichever line up. If X is a scalar and Y is a vector, disconnected
line objects are created and plotted as discrete points vertically at

A.2 Graphic functions 225

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

Fig. A.1 Points drawn by the MATLAB function plot.

X.

PLOT(Y) plots the columns of Y versus their index.
If Y is complex, PLOT(Y) is equivalent to PLOT(real(Y),imag(Y)).
In all other uses of PLOT, the imaginary part is ignored.

Various line types, plot symbols and colors may be obtained with
PLOT(X,Y,S) where S is a character string made from one element
from any or all the following 3 columns:

b blue . point - solid
g green o circle : dotted
r red x x-mark -. dashdot
c cyan + plus -- dashed
m magenta * star (none) no line
y yellow s square
k black d diamond

v triangle (down)
ˆ triangle (up)
< triangle (left)
> triangle (right)
p pentagram
h hexagram

For example, PLOT(X,Y,’c+:’) plots a cyan dotted line with a plus
at each data point; PLOT(X,Y,’bd’) plots blue diamond at each data
point but does not draw any line.

PLOT(X1,Y1,S1,X2,Y2,S2,X3,Y3,S3,...) combines the plots defined by
the (X,Y,S) triples, where the X’s and Y’s are vectors or matrices
and the S’s are strings.

For example, PLOT(X,Y,’y-’,X,Y,’go’) plots the data twice, with a
solid yellow line interpolating green circles at the data points.

The PLOT command, if no color is specified, makes automatic use of
the colors specified by the axes ColorOrder property. The default
ColorOrder is listed in the table above for color systems where the

226 A The MATLAB Environment

default is blue for one line, and for multiple lines, to cycle
through the first six colors in the table. For monochrome systems,
PLOT cycles over the axes LineStyleOrder property.

If you do not specify a marker type, PLOT uses no marker.
If you do not specify a line style, PLOT uses a solid line.

PLOT(AX,...) plots into the axes with handle AX.

PLOT returns a column vector of handles to lineseries objects, one
handle per plotted line.

The X,Y pairs, or X,Y,S triples, can be followed by
parameter/value pairs to specify additional properties
of the lines. For example, PLOT(X,Y,’LineWidth’,2,’Color’,[.6 0 0])
will create a plot with a dark red line width of 2 points.

Example
x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
plot(x,y,’--rs’,’LineWidth’,2,...

’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,’g’,...
’MarkerSize’,10)

See also plottools, semilogx, semilogy, loglog, plotyy, plot3, grid,
title, xlabel, ylabel, axis, axes, hold, legend, subplot, scatter.

Overloaded functions or methods (ones with the same name in other
directories)

help timeseries/plot.m
help SimTimeseries/plot.m
help cfit/plot.m
help distributed/plot.m
help fints/plot.m

Reference page in Help browser
doc plot

Each function in MATLAB has a guide similar to this one, which can be accessed
through the help command.

The plot function can also be used for plotting real mathematical functions de-
fined in �. The following examples plot the function sin and cos.

>> x = 0:0.8:4*pi;
>> y = sin(x);
>> plot(x,y)
>> hold on
>> x = 0:0.1:4*pi;
>> y = cos(x);
>> plot(x,y,’r:’)

FigureA.2 shows the result. The vectorx defines the interval on the x axis. It is defined
as the vector having as first component 0, having distance between consecutive
components equal to 0.8 and having the last component smaller than 4*pi. The
variable pi is predefined in MATLAB and contains an approximation of π . In the
graphic of a mathematical function f : x ∈ A −→ y ∈ B, each point (x, y)

is such that y = f (x). The function sin is used in this case for computing the
dependent variables y related to the independent variables x stored in x. x is a

A.2 Graphic functions 227

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. A.2 The sine and cosine functions drawn with MATLAB.

vector, and the function sin works on all its components and returns as output in y a
vector containing the corresponding y variables. Note that the symbol ; is used for
avoiding that the results of the instructions are printed on the screen. The function
plot is then used. The third input parameter is in this case omitted, and hence the
default settings are implicitly used. By default, plot draws in blue and it connects
the points with straight lines. FigureA.2 shows indeed a sort of join-the-dots function
which recalls the well-known shape of the sine function. Note that the graphic can
be certainly improved if more points are used to draw it. The other instructions in
the example draw the cosine function. This graphic is overlapped to the previous
one in the same Figure A.2. To have that in MATLAB, the command hold on must
be used. If instead the current figure is not needed anymore and it can be deleted,
then the command hold off can be used. This time, the vector x is defined similarly
as before, but 0.8 is substituted by 0.1. In this way, the considered interval on the
x axis is always the same, but the number of points increased. This helps improve
the accuracy of the graphic. The function cos is then used for computing the vector
y. As x, this time vector y is longer, i.e., it contains more components. Finally, the
function plot is used another time by using the newly computed x and y. The third
parameter is specified, and it forces the graphic to be in red and visualized with a
dashed line.

Other important graphic functions in MATLAB are fplot, axis, title, just to
mention a few. The function fplot is used exclusively for drawing mathematical
functions such as sin and cos. It is able to adjust by itself the number of points
to use for obtaining a graphic of the function having a good quality. The function
axis is used for changing the intervals of the x and y axis in a MATLAB figure. The
function title adds a title to a MATLAB figure. Details about these functions can

228 A The MATLAB Environment

%
% this function evaluates the following mathematical function
%
% f(x)=(xˆ2)(1.2-x)(1-eˆ(10(x-1)))
%
% usage: y = fun(x);
%
% where x is a number or a vector of numbers
%

function [y] = fun(x)

% evaluating function fun for each component of vector x
for i=1:length(x),
y(i)=(x(i)ˆ2)*(1.2-x(i))*(1.-exp(10*(x(i)-1.)));

end

end

Fig. A.3 The function fun.

be found through the help command. MATLAB has many other functions that can
be used for drawing figures.

A.3 Writing a MATLAB function

Many built-in functions are available in the MATLAB environment. Groups of func-
tions are collected in the so-called MATLAB toolboxes, where functions are grouped
by specific fields of application. Other functions can be written by the user and inte-
grated in MATLAB. In this way, MATLAB can be used as a programming language.

In Figure A.3 an example of a MATLAB function is given. In order to use it,
the MATLAB code must be saved in a text file. The text file has extension .m and
this kind of file is referred to as m-file. The name of the file must be the same as
the function it contains. In this example, the text file must be named fun.m. All the
rows of the m-file which start with the symbol % are considered as comments for
the developer. MATLAB just ignores all such rows. In particular, the first comment
rows are read by MATLAB when the help command is used:

>> help fun

this function evaluates the following mathematical function

f(x)=(xˆ2)(1.2-x)(1-eˆ(10(x-1)))

usage: y = fun(x);

where x is a number or a vector of numbers

Every function in MATLAB needs to have a row in which the attributes of the
function are defined. This row must have as first word the key word function. Then,
the output parameters are specified, separated by commas and inserted between [and
]. In this example, there is only one parameter, y. The list of the output parameters

A.3 Writing a MATLAB function 229

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−20

0

20

40

60

80

100

120

140

160

Fig. A.4 The graphic of the MATLAB function fun.

and the name of the function are separated by the rest with the symbol =. After the
name of the function, the list of input parameters is specified: all the parameters are
separated by commas and they are included between the symbol (and the symbol
). In the example, the only input parameter x can be either a real number or a vector.
All the rows in the text file between this first row and the row containing the last end
represents the instructions the function carries out. In this example, just few rows
are needed: one row contains a comment, three rows contain instructions. A for

loop is used. The MATLAB function length counts the number of components of a
vector. It returns 1 if x contains only a real number. The instruction in the for loop
is repeated as many times as the number of components in x, and the index i starts
from 1 and then increases its value by 1 at each iteration. The instruction in the for
loop evaluates the mathematical function point by point. Note that the exponential
function is used and that it is implemented in MATLAB by the function exp. The
following MATLAB code:

x = -2:0.1:1.5;
y = fun(x);
plot(x,y)

exploits the function fun and creates the graphic of the mathematical function in
Figure A.4.

Besides for loops, repeat..until and while..end while constructs can also
be implemented in MATLAB, as well as the if construct. For other details about
MATLAB, refer to the several tutorials on this topic and to the help command
available in MATLAB.

Appendix B
An Application in C

B.1 h-means in C

In this section, an application in C implementing the h-means algorithm is presented.
As discussed in Section 3.2, h-means is a method for clustering which is slightly
different from the standard k-means algorithm or Lloyd’s algorithm. We decided to
implement h-means instead of k-means because it is more efficient. Moreover, as
already observed, since the two algorithms are very similar, h-means can be found
in the literature as the k-means algorithm.

The application presented in this section is able to partition sets of data whose
samples can be represented as m-dimensional vectors. This covers a wide range of
real-life applications. Sets of features are usually collected and grouped in vectors.
For instance, a sound track is a vector of digital sounds, and an image is a matrix
of pixels, whose rows or columns can be organized in a vector. In this application,
we do not refer to a particular problem. We also try to keep the code as simple as
possible. Because of this, the application may not work in particular cases. However,
the reader can use this code for solving a large part of clustering problems without
modifying the source code.

In C programming language, a software procedure consists of one or more func-
tions. In the procedural approach, the tasks a procedure has to carry out are usually
divided into different functions. The application we present is mainly divided into a
main function, where the data are read from input files, and the h-means function,
which actually performs the algorithm. As Figure 3.9 in Section 3.2 shows, the h-
means algorithm can be summarized in few rows, and there are tasks that need to
be repeated more than once. By using the procedural approach, every task that has
to be performed more than once can be implemented in a single function, so that
a function call is needed every time the task must be carried out. Different from
the procedural approach is the object-oriented approach, which can be implemented
by using programming languages such as C++ and Java [183]. In recent years, the
object-oriented approach has been utilized more and more. However, we decided to
present here a general procedural application in C, because we think it is much easier

231

232 B An Application in C

to use and modify for a user having expertise in other fields, such as agriculture. To
read and understand the following, it is essential the reader has some knowledge in
programming in C. C compilers are available on the Internet for free for either Win-
dows or Linux operating systems. Any of these is good for compiling the application
here presented.

In Figure B.1 the function hmeans is shown. The function returns the number
of performed iterations, and it has six input parameters. The first three parameters
specify the set of data to partition. n is the number of samples in the set, and m is
the number of components needed for representing samples as vectors. All samples
are stored in the two-dimensional array X. X is actually a matrix with n rows and m

columns. Each row represents one of the samples, and each column corresponds to
the values all samples have on the same component. The integer k is the number of
clusters the data have to be partitioned in. iTmax specifies the maximum number of

int hmeans(int n,int m,double **X,int k,int iTmax,int *clust)
{
int i,ii;
int iT;
double **c,**cnew;

// allocating memory
c = (double**)calloc(k,sizeof(double*));
for (ii = 0; ii < k; ii++) c[ii] = (double*)calloc(m,sizeof(double));
cnew = (double**)calloc(k,sizeof(double*));
for (ii = 0; ii < k; ii++) cnew[ii] = (double*)calloc(m,sizeof(double));

// initializing a random partition in clusters
rand_clust(n,k,clust);

// computing the centers of the clusters
compute_centers(n,m,X,k,clust,cnew);

iT = 0;

do
{

iT = iT + 1;

// preparing for next iteration
copy_centers(k,m,cnew,c);

// checking the distances between samples and centers
for (i = 0; i < n; i++)
{

ii = find_closest(m,X[i],k,c);
clust[i] = ii;

};

// recomputing the centers
compute_centers(n,m,X,k,clust,cnew);

} while (isStable(k,m,c,cnew,1.e-6) == 1 && iT < iTmax);

free(c); free(cnew);

return iT;
};

Fig. B.1 The function hmeans.

B.1 h-means in C 233

allowed iterations. Finally, the vector clust contains the code of the cluster each
sample belongs to. The clusters are coded using an integer number, from 0 to k − 1.
For instance, if clust[2] = 1, then the sample represented by vector in row 2 of
matrix X belongs to cluster 1. Be aware that the indices of the vectors and of the
matrices in C are counted from 0 on. Therefore, the row indexed by 2 in the matrix
X is actually the third one.

Variables need to be declared in C programming language. In fact, the function
hmeans starts declaring the local variables needed for performing the algorithm.
Among the others, c and cnew are declared as pointers to pointers. Memory will
be allocated later in the code for these two variables. Once the memory has been
properly allocated for c and cnew, they can be considered as two matrices with k rows
and m columns. Each row of these matrices represents the center of the corresponding
cluster. Two matrices of this kind are needed, because the stopping criteria of the
algorithm is based on the changes, iteration after iteration, of the centers of the
clusters. For this reason, at each iteration, cnew contains the centers related to the
current partition, whereas c contains the centers related to the previous partition.
The function calloc (stdlib.h) is used for allocating the memory for c and cnew.
Since they are pointers to pointers, the allocation of the memory is performed in two
steps.

At the start, the function hmeans computes a random partition of the set of data.
The function rand_clust is used for this purpose. It takes as inputs the set of data,
through the parameters n, m and X, and the number of clusters k. The output is the
vector clust, which provides a random division of the data in clusters. This function
and all the other functions hmeans uses will be explained in detail below.

Once a partition in clusters has been computed, the centers of these clusters need to
be computed before proceeding with the algorithm. The function compute_centers
is called with this aim. It takes as inputs the set of data to partition (n,m,X), and a
partition in clusters, specified by k and clust. The output of this function is stored
in the matrix cnew, where the centers of the clusters are stored row by row. After this
start-up phase where some variables are set up, the main loop of the algorithm can
be implemented.

The main loop of the function is a repeat..until loop. Note that a while loop
is instead used in the algorithm in Figure 3.9. The repeat..until is used here
because the stopping criteria cannot be evaluated until one iteration of the loop is
at least performed. Indeed, the matrix cnew must contain the centers of the current
partition in clusters, where c must contain the centers of the previous partition.
After the first iteration of the loop, c contains the centers of the random partition
computed at the start of the function, cnew the newly generated partition, and then
the stopping criteria can be evaluated. The stopping criteria is implemented by the
function isStable, which checks if the centers of the clusters are stable or not,
iteration after iteration. The centers are considered stable if the maximum difference
upon all the matrices c and cnew elements is smaller than a given threshold. When the
function isStable returns zero, the condition in the repeat..until results true,
and then the loop stops.

234 B An Application in C

In the repeat..until loop, the matrix cnew is soon copied in the matrix c.
Indeed, a new iteration is starting, and therefore cnew contains now the centers of
the previous partition. They are then moved to c, so that the new centers can be stored
in cnew. The copy of the centers is obtained through the function copy_centers.

As already explained, the main idea in the h-means algorithm is to move samples
to clusters whose center is closest to the sample. At each step of the algorithm, this
condition has to be checked sample by sample, and eventually samples need to be
moved from a cluster to another. The for loop in the repeat..until loop carries
this task out. Sample by sample, the closest center to a sample X[i] is located through
the function find_closest, and then X[i] is assigned to the corresponding cluster.
Note that, since X is a matrix, X[i] corresponds to the ith row of the matrix, i.e., it is
the ith sample. The centers used are those stored in c, which are related to the previous
partition. Sample after sample, the vector clust is updated, and it provides a new
partition at the end of the for loop. Hence, the new centers have to be computed.
The function compute_centers is used for updating cnew and the stopping criteria
is evaluated using the function isStable. When the stopping criteria is satisfied,
the vector clust contains an optimal partition of the data. The function can stop,
before freeing the allocated memory. Note that the repeat..until loop can also
stop when the maximum number of iterations is reached.

The prototypes of the functions used inhmeans are shown in Figure B.2. Functions
contained in standard C libraries are not included, because their prototypes can
be found in the corresponding header files. All the standard functions used in the
function presented in this chapter can be found in the standard input/output library
(stdio.h), in the standard C library (stdlib.h), in the library for string management
(string.h) or in the library for basic mathematics (math.h). The prototypes of the
functions which are used need to be placed at the top of the text files where the
function sources are written. If library functions are used, then the corresponding
header file needs to be specified.

The source of the function rand_clust is given in Figure B.3. The function does
not have any returning value and it expects to receive 3 input parameters. The integer
n represents the number of samples in the set, and the integer k represents the desired
number of clusters of the random partition. The random partition is given as output
by the function through the vector clust. For instance, if clust[i] = 2, then the
ith sample in the matrix X belongs to the cluster 2 (which is the third one). In order
to find a random partition, a random integer number from 1 to k is assigned to each
component of the vector clust. The standard function rand (stdlib.h) is used,
and it provides an integer random number. Note that the key words double and int

void rand_clust(int n,int k,int *clust);
void compute_centers(int n,int m,double **X,int k,int *clust,double **c);
int find_closest(int m,double *x,int k,double **c);
int compare_centers(int k,int m,double **c1,double **c2,double tol);
void copy_centers(int k,int m,double **c1,double **c2);

Fig. B.2 The prototypes of the functions called by hmeans.

B.1 h-means in C 235

void rand_clust(int n,int k,int *clust)
{

int i;
double aux;

for (i = 0; i < n; i++)
{

aux = (double)(rand());
aux = k*(aux/RAND_MAX);
clust[i] = (int)(aux);

};
};

Fig. B.3 The function rand_clust.

between parentheses forces the following variables to be converted in the desired
type. For instance, clust is a vector of integers, and hence the value in aux has to
be converted from double to int before assigning it to any clust[i]. This kind of
conversion just cuts all the decimal values of a real number. For instance, 1.3 and
1.9 are both converted to the integer 1.

The source of the function compute_centers is given in Figure B.4. It takes as
inputs the set of data (n,m,X), the number of clusters k and a partition through the
vector clust. The output is the matrix c that contains the centers of the clusters
row by row. Therefore, c is a matrix with k rows (the number of centers) and m

columns (the dimension of the space where the samples are represented). In this
function, the vector cclust is used as local variable. It is a counter of the samples
that are present in each cluster. The function starts initializing all the components of
the vector cclust and all the elements of the matrix c to zero. After that, sample by
sample, the following steps are performed. First, the cluster to which sample X[i]

belongs is checked using clust[i]. The code of the cluster is stored in the auxiliary
variable ii. Then, the counter regarding the cluster coded by ii is incremented by
1. Finally, the vector X[i] is added to c[ii], because X[i] belongs to cluster ii. At
the end of the for loop, each row in c is the sum of all the samples belonging to the
corresponding cluster. For computing the mean among all such samples, each c[ii]

has to be divided by the number of samples the cluster has. This information is stored
in cclust[ii]. The third and last part of the algorithm computes these divisions.
However, if there are empty clusters, then the division in correspondence of such
clusters cannot be computed, because the division by 0 is not allowed. The center of
an empty cluster actually does not exist, but the corresponding row in the matrix c

cannot be left empty. In this case, the function just assigns 0 to all the components
of the center. This does not affect the convergence of the h-means algorithm.

The function find_closest is shown in Figure B.5. Given a target vector and a
set of vectors, this function computes the closest vector in the set to the target. In the
function hmeans, where this function is used, the target vector is a sample and the
set of vectors corresponds to the set of centers of a partition in clusters. The function
has as parameters the dimension m of the vectors, the target vector x, the number k of
the vectors in the set and the set itself. The whole set of vectors is stored in a matrix
c with k rows and m columns. In the matrix, each row corresponds to a different

236 B An Application in C

void compute_centers(int n,int m,double **X,int k,int *clust,double **c)
{

int i,ii,jj;
int *cclust;
cclust = (int*)calloc(k,sizeof(int));

for (ii = 0; ii < k; ii++)
{

cclust[ii] = 0;
for (jj = 0; jj < m; jj++)
{

c[ii][jj] = 0.0;
};

};

for (i = 0; i < n; i++)
{

ii = clust[i];
cclust[ii] = cclust[ii] + 1;
for (jj = 0; jj < m; jj++) c[ii][jj] = c[ii][jj] + X[i][jj];

};

for (ii = 0; ii < k; ii++)
{

for (jj = 0; jj < m; jj++)
{

if (cclust[ii] != 0.0)
{

c[ii][jj] = c[ii][jj]/cclust[ii];
}
else
{

c[ii][jj] = 0.0;
};

};
};
free(cclust);

};

Fig. B.4 The function compute_centers.

vector. The returning value of the function is the row index in c of the vector which
is closest to the target x. In the function, all the distances between target and each
vector in the set are computed step by step. Every time a new distance is computed,
it is compared to mindist, which contains the minimum distance found so far. If
the new distance dist is smaller than mindist, then mindist and minindex are
updated. The variable mindist is just set to dist, while minindex is set to the
index of the row in c corresponding to the current vector. At the end of the two
nested loops, mindist contains the value of the minimum distance, and minindex

contains the corresponding row index. The information of interest is the index and
not the distance value. In fact, minindex is the function returning value. Note that
the Euclidean distance is used in this function and that it might be substituted by
other distances in particular applications.

The function isStable implements the stopping criteria of the h-means algo-
rithm. The source code is given in Figure B.6. In general, the function compares two
matrices c1 and c2 having the same dimensions, k and m. All the homologue ele-

B.1 h-means in C 237

int find_closest(int m,double *x,int k,double **c)
{

int ii,jj;
int minindex;
double dist,mindist;
double aux;

minindex = 0;
mindist = 1.e+100;

for (ii = 0; ii < k; ii++)
{

dist = 0.0;
for (jj = 0; jj < m; jj++)
{

aux = x[jj] - c[ii][jj];
dist = dist + aux*aux;

};
dist = sqrt(dist);
if (dist < mindist)
{

mindist = dist;
minindex = ii;

};
};

return minindex;
};

Fig. B.5 The function find_closest.

ments of the two matrices are compared, and the difference between the two matrices
is defined as the largest difference between their homologue elements. Therefore,
in practice, the function is an implementation of a method for finding a maximum
value in a given set of values. In this case, the values are the differences in absolute
values between elements of the matrix c1 and the matrix c2 having the same row

int isStable(int k,int m,double **c1,double **c2,double tol)
{

int ii,jj;
int stable;
double diff,max;

max = 0.0;
for (ii = 0; ii < k; ii++)
{

for (jj = 0; jj < m; jj++)
{

diff = fabs(c1[ii][jj] - c2[ii][jj]);
if (max < diff) max = diff;

};
};

stable = 1;
if (max < tol) stable = 0;

return stable;
};

Fig. B.6 The function isStable.

238 B An Application in C

and column indices. The maximum value is stored in the local variable max. Such
variable is initially set to 0, because this is the smallest value it can have, being all
the differences in absolute values. Once max has been found, its value represents
the difference between c1 and c2. If such value is greater than the threshold tol

given as input, then the two matrices are considered to be different. Otherwise, if
max< tol, then the matrices are considered similar. This is reflected on the h-means
stopping criteria: if the matrices are different, the centers are not stable, and other
iterations of the algorithm need to be performed; if the matrices are similar, instead,
the centers converged, and the algorithm can stop. The C programming language
does not provide a boolean data type. Therefore, the integer variable stable is used
for storing the following information: matrices are different / matrices are similar. In
particular, when the functions returns 0, the h-means algorithm can stop, otherwise
it returns 1, and another iteration of the algorithm is needed to be performed.

The last function which is used by the function hmeans is copy_centers (Figure
B.7). It is simply used for copying the centers of a cluster partition from one variable
to another. Since the centers are stored in matrices, the function performs the copy of
two matrices in practice. k and m represent the dimensions of the matrices: the number
of rows and the number of columns. c1 and c2 are the two variables containing the
matrices. c1 is the matrix to be copied in c2. Hence, c2 is the only output parameter
of the function copy_centers. The function does not return any value.

B.2 Reading data from a file

In the previous section, the function hmeans is presented for the partition of a given
set of data in clusters. A detailed description of the source codes is provided, for
the function hmeans itself and all the functions it uses. As already pointed out, the
set of data is considered in the function through three variables: the number n of
samples in the set of data, the number m of components each vector representing
a sample has, and a matrix X containing all the samples row by row. In order to
use the function hmeans, these variables need to be defined. In the experiments in
the MATLAB r© environment shown in Section 3.6, the data have been randomly

void copy_centers(int k,int m,double **c1,double **c2)
{

int ii,jj;

for (ii = 0; ii < k; ii++)
{

for (jj = 0; jj < m; jj++)
{

c2[ii][jj] = c1[ii][jj];
};

};
};

Fig. B.7 The function copy_centers.

B.2 Reading data from a file 239

4 3
12 23 34
45 56 67
78 89 90
13 46 79

Fig. B.8 An example of input text file.

generated. Something similar will be done also in this case. However, the aim of
this chapter is to provide to the reader an application which can be used for personal
purposes. For this reason, two functions are introduced in this section. They allow
one to read the set of data from an input file, and store them under the format (n,m,X).

Data files can have different formats. Just to quote some example, files in WAV or
MP3 format are used for storing digital audio tracks, whereas BMP and JPEG formats
are used for digital images. In this case, a set of vectors needs to be stored. Following
the same logical organization utilized when storing the data in X, the vectors can be
placed in a text file line by line. On the same line of the text file, the numeric values
related to each component of the vector can be saved. Then, a matrix structure is built
inside the file. The other two pieces of information that are needed are the length
of the vectors (the number of their components) and the number of lines in the file.
Knowing this information helps in reading the data. The n and m values can be placed
at the top of the text file. An example of text file formatted in this way is given in
Figure B.8.

In the following, two functions for reading these input text files are presented.
The reading task is split into two phases: in the first one, the variables n and m are
read, whereas the whole matrix X is read in the second one. This is done because the
memory for the matrix X can be allocated dynamically during the execution. In the
function main of the application, X can be declared as a pointer to pointers to double

variables. The first function can then be called, and the variables n and m can be read.
After that, the memory for X can be dynamically allocated, and the second function
can be called for transferring the data from the text file to the matrix X.

In Figure B.9 the function dimfile is reported. It takes a string of characters

int dimfile(char *filename,int *n,int *m)
{

FILE *input;

input = fopen(filename,"r");
if (!input) return 1;

if (fscanf(input,"%d %d",n,m) == EOF) return 1;

if (*n <= 0 || *m <= 0) return 1;

fclose(input);

return 0;
};

Fig. B.9 The function dimfile.

240 B An Application in C

filename as input and it gives as outputs the two variable values n and m. The values
n and m are specified as pointers, because they represent the output of the function.
The returning value for the function dimfile is an error variable: it is 0 if the two
variables n and m are read correctly, or 1 if some problem occurs.

The only local variable declared in the function dimfile is a pointer to a FILE

type. It is needed for opening a file and read or write it. The file named as specified in
filename is opened by calling the function fopen (stdio.h). This function has two
input parameters, a string of characters containing the name of the file, and another
string of characters containing the options to use when opening the file. In this case,
only one option is specified: r. By using this option, the file is opened in reading
mode only. Specifying w or rw, the file is opened in writing mode or both reading and
writing mode. By default, fopen opens file in text mode. If a binary file is instead
needed to be opened, the option b must specified. After fopen has been called, the
variable input contains a pointer to a file. If its value is NULL, then some problem
occurred when fopen tried to open the file. NULL is a variable declared and defined in
stdio.h. Reasons for having the input variable equal to NULL might be the attempt
of opening a file which does not exist or a damaged file. In that case, the function
dimfile stops and returns 1.

If the input file has been correctly opened, then the two parameters n and m can be
read. The function fscanf is used for this purpose (stdio.h). Four parameters are
specified when the function is called. The first one is the pointer to the file to read.
Then, the format of the text to read from the file is specified. The symbol %d indicates
that an integer value is expected in the text. n and m are the two variables where the
integer values have to be stored. Note that, in this function, n and m are pointers, as
the fscanf function requires. The returning value of the function fscanf is EOF if
the pointer to the input file reached the end of the file. In that case, the function stops
and returns 1. Just like NULL, EOF is a predefined variable, whose declaration and
definition can be found in the header file stdio.h. After that n and m have been read,
their value can be checked. They represent the dimensions of the matrix X, and so
they need to be positive numbers. Therefore, if n or m has as value zero or a negative
value, then the function stops and returns 1. If the n and m values are acceptable,
instead, the function closes the text file and returns 0.

The function that actually reads the text file is the one in Figure B.10. The function
readfile has the same parameters of the function dimfile, plus the matrix X, where
the set of data is stored. Moreover, in this function, the variables n and m are not
pointers. It is supposed indeed that the dimensions n and m are already known. At the
start, the source code of the function readfile is similar to the one of the function
dimfile. Besides the pointer to the file, two integer variables are declared, the two
indices i and j. The file named as specified in the variable filename is opened
for reading and its pointer is assigned to the pointer input. If no errors occurred
when opening the file, the n and m values are read from the file. This would not be
needed, because the n and m values are already known, as it is supposed that the
function dimfile already read it. However, the pointer input to the text file moves
sequentially over the file. Then, it finds n and m at the top of the file and the remaining
data after them. Therefore, n and m are read another time, and their values are stored

B.3 An example of main function 241

int readfile(char *filename,int n,int m,double **X)
{

int i,j;
FILE *input;

input = fopen(filename,"r");
if (!input) return 1;

if (fscanf(input,"%d %d\n",&i,&j) == EOF) return 1;

for (i = 0; i < n; i++)
{

for (j = 0; j < m; j++)
{

if (fscanf(input,"%lf",&X[i][j]) == EOF) return 1;
};

};

fclose(input);

return 0;
};

Fig. B.10 The function readfile.

in auxiliary variables. Since they are integer numbers, the variables i and j are used.
At this point, the data can be read. Two for loops start. The one on i counts the
number of vectors, whereas the one on j counts the components of each vector. For
each i and for each j, the corresponding value is stored in X[i][j]. As before, if
the file should be damaged or not well-formatted, then the file may end earlier than
expected. For controlling this, the returning value of the function fscanf is checked
and compared to EOF. Note that the data are saved in a matrix of double variables,
and hence in the format specified in the function fscanf the symbol used is %lf. If
no errors occurred when reading all the data, then the function readfile closes the
text file and returns 0.

B.3 An example of main function

In this section an example of function main in C is presented. The function is the
main one of an application which reads a set of data from a file and then it partitions
the set by using the function hmeans. This is just an example. The aim of this section
is to provide a function main for exploiting the function hmeans. Note that the
function hmeans might even be included in a general C function in which the h-
means algorithm is only a sub-procedure of a more complex procedure.

An example of function main is presented in Figure B.11. The standard function
main in C has as parameters the integer argc and the array of strings of charac-
ters argv. In this implementation, the final user is supposed to provide, as input
arguments, the name of the file containing the data, and the number k of clusters in
which the data need to be partitioned. The arguments of this application are provided
through the parameters argc and argv. In practice, argc contains the number of

242 B An Application in C

int main(int argc,char *argv[])
{

int i;
int n,m;
int len,iT;
int k,*clust;
double **X;
char *outfile;
FILE *output;

// checking the number of arguments
if (argc < 3)
{

fprintf(stderr,"%s: too few arguments\n",argv[0]);
fprintf(stderr,"%s: usage: %s nomefile.txt k\n",argv[0],argv[0]);
return 1;

};

// checking the k value
k = atoi(argv[2]);
if (k < 2)
{

fprintf(stderr,"%s: invalid k value (%d)\n",argv[0]);
return 1;

};

// checking the input file
if (dimfile(argv[1],&n,&m) == 1)
{

fprintf(stderr,"%s: error while opening file ’%s’ or
invalid dimensions (n=%d,m=%d)\n",argv[0],argv[1],n,m);

return 1;
};

fprintf(stderr,"%s: input file = ’%s’, k = %d\n",argv[0],argv[1],k);
fprintf(stderr,"%s: n = %d, m = %d\n",argv[0],n,m);

// memory allocation
X = (double**)calloc(n,sizeof(double*));
for (i = 0; i < n; i++) X[i] = (double*)calloc(m,sizeof(double));
clust = (int*)calloc(n,sizeof(int));

// reading the input file
if (readfile(argv[1],n,m,X) == 1)
{

fprintf(stderr,"%s: input file ’%s’ is not well formatted\n",argv[0],argv[1]);
return 1;

};

// applying the hmeans algorithm
iT = hmeans(n,m,X,k,1000,clust);

// checking the number of iterations
fprintf(stderr,"%s: algorithm terminated; %d iterations performed\n",argv[0],iT);
if (iT >= 1000)

fprintf(stderr,"%s: maximum number of iterations (1000) reached\n",argv[0]);

// saving the partition on an output file

len = strlen(argv[1]);
outfile = (char*)calloc(len+5,sizeof(char));
sprintf(outfile,"out.%s",argv[1]);

output = fopen(outfile,"w");
if (!output)
{

fprintf(stderr,"%s: error while writing output file\n",argv[0]);
return 1;

};

for (i = 0; i < n; i++) fprintf(output,"%d\n",clust[i]+1);

fclose(output);
fprintf(stderr,"%s: file ’%s’ saved\n",argv[0],outfile);

free(X); free(clust); free(outfile);

return 0;
};

Fig. B.11 The function main.

B.3 An example of main function 243

arguments, and argv contains the arguments, stored as strings of characters. In this
example, the arguments must be 2. Since the name of the application is always given
as first argument in C, they are actually 3. The array argv therefore contains: the
name of the application, the name of the input text file, and the k value.

Before that the algorithm implemented in the function starts, all the local variables
need to be declared. i is an integer variable used as counter in the for loops. n and
m contain the dimensions of the clustering problem: the number of samples in set
of data and the length of the vectors representing such samples. The variable len is
used for storing the length of the specified name of the input text file: it is needed
because another file name is defined in the algorithm taking characters from the
input file name. iT is used for monitoring the number of iterations the h-means
algorithm performs. k is the number of clusters, and clust is the vector containing
the partition in clusters of the data. The matrix X contains all the data, organized
row by row. outfile is a string of characters, where the name of the output file is
defined. Note that clust, X andoutfile are declared as pointers. Therefore, memory
is supposed to be allocated for them before their use. Finally, output is a pointer to
FILE.

Good applications should be able to manage exceptions. If the arguments the ap-
plication is expecting are not provided, or if they are not well-defined, the application
should stop and provide an error message. In this function main, only some basic
exceptions are checked. First of all, the number of arguments is checked. It should
be 3. If instead argc has a value smaller than 3, an error message is printed on the
screen. The function fprintf (stdio.h) is used for this purpose. Its first parameter
specifies where to print the message: stderr refers to the standard error stream of
the prompt command. Every time an error occurs, the function main stops, prints
an error message and returns 1. An application returning 1 is an application which
stopped its execution because of some error. After the number of arguments, the k

value is checked. It is stored as string of characters in argv[2]. The function atoi

(stdlib.h) is therefore used for converting the string of characters in an integer
value. After that, the obtained integer value is checked: it should be at least 2, oth-
erwise the h-means algorithm cannot be carried out. The last thing that is controlled
is that the file specified through argv[1] can be opened and that the values n and m

can be read from it.
At this point, it seems that there are not problems related to bad arguments.

However, other possible errors are checked later in the code. The function main

starts printing on the screen information regarding the clustering problem to solve.
Then, the memory for X and clust is dynamically allocated, because n and m are
now known. Since X is a pointer to pointers, the allocation of the memory requires
two steps. Once the memory has been allocated for X, the function readfile can be
called for transferring the data from the text file argv[1] to X. If some error occurs
during the process, the function readfile returns 1 and the function main stops after
printing an error message.

The function hmeans can be called at this point. The set of data to partition is
known and specified through the variables n, m and X. The number k of clusters
has been provided from the arguments of the application. The maximum number of

244 B An Application in C

iterations the algorithm is allowed to perform is set to 1000. The vector clust is
used for storing the final partition provided by the function hmeans. The returning
value of this function provides the number of iterations performed. If it corresponds
to 1000, then the number of allowed iterations has been reached. A message is then
printed on the screen, since the algorithm did not stop because the centers of the
clusters were stable: the found partition may not be optimal.

The partition in clusters of the data is stored in a text file. The name of the text file
is defined as follows. The characters “out.’’ are inserted before the ones defining the
input text file. For instance, if the input file is named “apples.txt’’, then the output
file is named “out.apples.txt’’. This name is stored in the string of characters
outfile. At the start, outfile is declared as a pointer, and so memory needs to
be allocated before using it. The length of the string is equal to the length of the
string argv[1] plus the other characters needed for “out.’’ The function strlen

(string.h) is used for computing the length of argv[1]. The function calloc

(stdlib.h) is used for allocating the memory, and sprintf is used for defining the
string of characters outfile.

The file named as specified in outfile is then opened for writing. In this case, if
the file already exists, it is deleted and re-created empty; if the file does not exist, it
is simply created. If some problem occurs when opening the file, an error message is
printed and the function main stops returning 1. If no errors occurred, the result of the
clustering algorithm can be stored in the output file. In the input file, the samples are
stored row by row. Therefore, the cluster to which they belong are stored row by row
as well in the output file. In C, indices start from 0. In general, they are considered
starting from 1, and this is why the values clust[i] + 1 are printed. When the
found partition is saved in the output file, the file can be closed, a message can notify
that the output file has been saved, the memory can be freed, and the function main

can finally stop.

B.4 Generating random data

In this section another application in C is presented. This application generates a
random set of data that can be used as input in the application implementing the
h-means algorithm. The application presented here can be exploited for testing the
h-means algorithm if other data are not available. This application consists of a single
main function only. It takes as input arguments the number of samples to generate,
the dimension of the vectors representing the samples, the number of clusters in
which the samples will be partitioned, and an output file to store the data. The data
might be generated in a completely random way, but then the effectiveness of the
clustering algorithm could not be validated. Therefore, this application generates data
containing intrinsic patterns. This is why the application requires as input argument
the number of clusters in which the data will be partitioned by h-means.

The algorithm applied for generating the data is the following one. If the data will
be partitioned in k clusters, then k random samples ci are generated at the start of

B.4 Generating random data 245

the algorithm. After that, the distances between each couple of generated samples
are computed, and the smallest one (mindist in the code) is located. These samples
are not inserted into the final set of data, but they rather represent the centers of
possible clusters a clustering algorithm might find. Indeed, the data of the set are
generated as follows. One of the k firstly generated samples ci is randomly chosen,
and a new sample is generated such that it has a distance from ci smaller than a
certain value. In this implementation, this value is set to half of the value mindist

previously computed. In this way, all the samples associated randomly to a certain
ci are generated so that they are much closer to ci than to any other cj , with j �= i.
A clustering algorithm, such as the h-means algorithm, should be able to find these
patterns.

The function main of the application for the generation of a random set of data is
given in Figures B.12 and B.13. These are the local variables used in the function:
i, i1 and j are used as counters in the for loops. The integer variables n, m and
k represent, respectively, the number of samples, the components of the vectors
representing the samples, and the number of clusters. ci contains the information
regarding the random ci chosen during the algorithm. The matrix c contains the
samples that act like centers. The two double variables dist and mindist are used
for storing distances. aux is an auxiliary variable used in the computation of the
distances. Finally, output is the pointer to the output file providing the generated
random set of data, and outputp is the pointer to the output file providing the
corresponding codes of the clusters.

As any standard function main in C, it has as parameters the two variables argc
and argv. This application requires as input arguments three integer numbers, n, m
and k, and the name of the file in which the data must be stored. The arguments
are checked soon in the function. If argc is smaller than 5, then not all the required
arguments have been specified, and the function stops, after that an error message
has been printed on the screen. If the number of arguments is right, then their values
are checked one by one. The first three arguments represent integer numbers, but
they are passed to the application through strings of characters. The function atoi

(stdlib.h) is therefore used for converting these values. Then, the obtained values
are checked, and if they are negative numbers, the function stops giving an error. Even
the k value is required to be non-negative. If k is 1, then the application generates a
set of data where there are not intrinsic patterns. Finally, the output file whose name
is given in argv[4] is opened by the function fopen in writing mode. The function
main checks if some problem occurred when opening the file.

The matrix c has been declared as a pointer to pointers to double variables.
Therefore, before using it, memory needs to be dynamically allocated. c is used
for storing the first k randomly generated samples that are utilized as reference for
generating the others. At this point, the algorithm for generating the set of data can
start. The procedure described above is then implemented. The samples are stored
in the output file as soon as they are generated. In fact, only memory for c has been
allocated. Simultaneously, in another file all the codes of the clusters are stored.
When all the set has been generated, the output file is closed, the memory is freed,
and the application stops returning 0.

246 B An Application in C

int main(int argc,char *argv[])
{

int i,i1,j;
int n,m,k;
int len,ci;
double **c;
double dist,mindist;
double aux;
char *filename;
FILE *output;
FILE *outputp;

// checking the number of arguments
if (argc < 5)
{

fprintf(stderr,"%s: too few arguments\n",argv[0]);
fprintf(stderr,"%s: usage: %s n m k nomefile.txt\n",argv[0],argv[0]);
return 1;

};

// checking the arguments

n = atoi(argv[1]);
if (n <= 0)
{

fprintf(stderr,"%s: invalid n value (%d)\n",argv[0],n);
return 1;

};

m = atoi(argv[2]);
if (m <= 0)
{

fprintf(stderr,"%s: invalid m value (%d)\n",argv[0],m);
return 1;

};

k = atoi(argv[3]);
if (k <= 0)
{

fprintf(stderr,"%s: invalid k value (%d)\n",argv[0],k);
return 1;

};

output = fopen(argv[4],"w");
if (!output)
{

fprintf(stderr,"%s: error while opening file ’%s’\n",argv[0],argv[4]);
return 1;

};

len = strlen(argv[4]);
filename = (char*)calloc(len+5,sizeof(char));
sprintf(filename,"cls.%s",argv[4]);
outputp = fopen(filename,"w");
if (!outputp)
{

fprintf(stderr,"%s: error while opening file ’%s’\n",argv[0],filename);
return 1;

};

Fig. B.12 The function main of the application for generating random sets of data. Part 1.

B.5 Running the applications 247

// memory allocation
c = (double**)calloc(k,sizeof(double*));
for (i = 0; i < k; i++) c[i] = (double*)calloc(m,sizeof(double));

// generating the random set of data

fprintf(output,"%d %d\n",n,m);

for (i = 0; i < k; i++)
{

for (j = 0; j < m; j++) c[i][j] = (double)rand()/(double)RAND_MAX;
};

mindist = 1.e+100;
for (i = 0; i < k; i++)
{

for (i1 = i + 1; i1 < k; i1++)
{

dist = 0.0;
for (j = 0; j < m; j++)
{

aux = c[i][j] - c[i1][j];
dist = dist + aux*aux;

};
dist = sqrt(dist);
if (dist < mindist) mindist = dist;

};
};
mindist = mindist/2.0;

for (i = 0; i < n; i++)
{

ci = (int)(k*(double)rand()/(double)RAND_MAX);
fprintf(outputp,"%d\n",ci+1);
for (j = 0; j < m; j++)
{

fprintf(output,"%lf ",c[ci][j]
+ mindist*((double)rand()/(double)RAND_MAX - 0.5));

};
fprintf(output,"\n");

};

fclose(output);

free(c);

return 0;
};

Fig. B.13 The function main of the application for generating random sets of data. Part 2.

B.5 Running the applications

All the source codes described above, the ones for the application implementing
the h-means algorithm and the one for generating a random set of data, have been
compiled by using the MinGW free compiler under Windows XP [166]. In this section,
some examples of execution of these applications is provided. For clearness, let
us refer to the application implementing h-means with hmeans, and let us refer
to the application generating the data with generate. In the compiling phase, the
executable file hmeans.exe can be created in correspondence with the application

248 B An Application in C

10 4
-10 -12 -15 -12
-11 -12 -13 -11
11 12 13 11
15 16 12 18

-15 -16 -12 -12
-11 -11 -11 -11
11 11 12 12
18 20 11 11

-10 -15 -13 -14
10 10 10 10

Fig. B.14 An example of input text file for the application hmeans.

hmeans, and the executable file generate.exe can be created in correspondence
with the application generate.

Let us start by showing a very simple example in which the input text file required
by the application hmeans is not randomly generated. For simplicity, let us suppose
that the following set of data is available: vectors in a four-dimensional space hav-
ing either all the components negative or all the components positive. The h-means
algorithm is able to correctly partition these data into two clusters. One cluster con-
tains all the vectors having all its components negative, and the other one all the
vectors having only positive components. Let us consider only few samples in this
first example, so that the input text file can be edited by hand. Figure B.14 shows an
example of an input text file. In the file, 10 samples represented by 10 vectors having
4 components are listed. All the vectors satisfy a property: all the components of
a vector have the same sign. Five vectors have all the components negative, and 5
vectors have all the components positive. The execution of the application hmeans on
this set of data and with k set to 2 gives as a result the text file shown in Figure B.15.
It is easy to note that the application hmeans partitioned the data so that each vector
with negative components is in cluster 1, and each vector with positive components
is in cluster 2.

Let us consider now a more complex example. The application generate can
create random sets of data having predetermined features. Let us generate a set of
data containing 100 samples with dimension 6. The applicationgenerate can then be
run by setting as arguments n to 100, m to 6 and k to 4. The application creates the set
of data which is grouped in four different categories. The aim is to present these data

1
1
2
2
1
1
2
2
1
2

Fig. B.15 The output file provided by the application hmeans when the input is the file in Figure
B.14 and k = 2.

B.5 Running the applications 249

100 6
-0.058106 0.578975 0.227904 0.858204 0.637098 0.317643
0.686582 0.441658 0.088690 0.067326 0.229113 0.511537
0.614237 0.696280 0.414173 0.236579 0.298327 0.383580
-0.017180 0.434939 0.369374 0.667589 0.720939 0.646909
0.390194 0.220094 0.936243 0.332058 0.020550 0.169999
-0.059085 0.365576 0.279437 0.593035 0.346252 0.683430
0.239906 0.938691 0.915766 0.910704 0.284197 0.851623
0.119721 0.548255 0.172871 1.027057 0.703821 0.289474
0.654719 0.627763 0.356959 0.050178 0.024006 0.195087
-0.035129 0.710803 0.201619 1.046905 0.707277 0.404807
0.077712 0.559647 -0.018841 0.905835 0.587346 0.308535
-0.026903 0.362810 1.082282 0.349962 0.083386 -0.204153
0.236353 -0.002650 1.171893 0.602048 0.158964 -0.145352
0.155426 0.551563 0.025883 0.810647 0.697783 0.433985
0.383705 0.984542 0.947199 0.854469 0.162100 0.675709
0.512966 0.669992 0.831110 0.825825 0.138247 0.666794
0.352131 0.189981 0.913666 0.431949 0.058317 0.173322
0.328953 0.785087 1.057592 0.648323 0.290368 0.891645
0.128266 0.728574 0.143559 0.809178 0.774652 0.250194
0.182595 -0.052581 1.003752 0.296991 0.285823 0.066282
0.563639 0.679844 0.120909 -0.174614 0.209576 0.274077
0.043335 0.086338 0.813672 0.558985 0.281728 0.105769
0.830663 0.393344 0.131189 -0.227259 -0.121974 0.513302
0.006636 -0.020941 1.014388 0.209590 -0.068646 -0.017440
0.237792 0.187015 0.781408 0.414934 -0.025791 0.100043
0.319519 0.765907 0.860688 0.762440 0.236655 0.693776
0.935567 0.608686 0.510474 -0.135719 0.011664 0.208111
0.126627 0.407964 0.792889 0.506533 -0.078065 -0.025599
-0.072175 0.357707 0.886461 0.313145 0.249865 -0.038727
0.063501 0.614206 0.169785 0.792386 0.632559 0.545357
0.307125 0.226547 1.095900 0.477652 0.058391 -0.148794
0.737299 0.710431 0.179013 -0.136209 0.142305 0.460938
0.638224 0.510843 0.100038 0.132001 0.145865 0.422964
0.858520 0.342983 0.340953 0.193724 0.291444 0.420205
0.488477 0.595084 0.535617 -0.074930 0.125039 0.270072
-0.189014 0.742963 0.364019 0.927492 0.417261 0.395743
-0.204545 0.632110 0.348844 0.830657 0.559859 0.435631
0.333552 0.896548 0.654009 0.660591 0.289789 0.768480
0.370450 0.347368 1.097902 0.348509 0.334893 -0.176518
0.139762 0.575534 0.246595 1.030439 0.377106 0.662455
0.624043 0.321445 0.306450 -0.117667 -0.010528 0.568587
0.789632 0.326177 0.300368 -0.043765 0.089853 0.507042
0.653325 0.604993 0.319622 0.066643 0.040456 0.124285
0.516379 0.573352 0.480554 0.010853 0.211623 0.362946
0.488995 0.921632 0.753381 0.968111 0.237708 0.701742
0.171240 1.014210 1.042403 0.801037 -0.055393 0.776238
0.068916 0.384534 0.362002 0.985819 0.632099 0.587604
-0.088582 -0.015660 1.089580 0.502632 -0.018196 -0.206304
0.061573 0.486294 0.105525 0.744369 0.663265 0.626854
0.160211 0.219901 1.133459 0.640408 -0.053560 0.067943
0.230575 0.719299 0.995483 0.535735 0.139019 0.894596
0.373647 0.762569 0.731145 0.557348 0.323833 0.681390
0.490330 1.088068 0.963620 0.865105 0.230113 0.791442
0.015344 0.342621 0.857016 0.323959 0.139695 0.240327
...

Fig. B.16 An output file containing a set of data generated by the application generate.

to the application hmeans and check if it is able to recognize these inherent patterns
in the data. If the three arguments n, m and k are specified, and the name of a file
is given to the application generate, two output files are generated, one containing
the set of data, and another one containing their intrinsic classification. Figure B.16
shows the first samples of the set of data. The list of cluster codes (contained in the
second file generate creates), is given in Figure B.17 together with the partition the
application hmeans finds.

As the spreadsheet shows, the h-means algorithm has been able to recognize all
the inherent patterns that the application generate inserted into the data. On the

250 B An Application in C

Fig. B.17 The partition provided by the application generate (column A), the partition found
by hmeans (column B) and the components of the samples (following columns) in an Excel
spreadsheet.

first column of the spreadsheet, the partition randomly generated by the applica-
tion generate is shown. On the second column, instead, the partition found by the
application hmeans is shown. The figure shows 39 samples on 100, but the same
result is obtained on the remaining samples. The codes of the clusters in these two

B.5 Running the applications 251

columns are often different, and only the code 3 can be found on the same row on
both columns. This does not mean that only the cluster coded by 3 has been located
correctly. Indeed, even all the other clusters have been identified, but the application
hmeans assigned to them a different code. Colors or gray scales show the corre-
spondence between a code in a column and another code in the other column. For
instance, the cluster coded by 1 by generate corresponds to the cluster coded by 2
by hmeans. This result shows a very good performance of the h-means algorithm.

The reader can deeply analyze the converge properties of the algorithm by creating
other sets of data (having different features) and checking the ability of the application
hmeans in partitioning the data. Moreover, real data can also be used, if they are stored
in a text file formatted as described in Section B.2.

References

1. C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier, A Global Optimization Method,
αBB, for General Twice-Differentiable Constrained NLPs - I. Theoretical Advances, Com-
puters and Chemical Engineering 22, 1137–1158, 1998.

2. C.S. Adjiman, I.P. Androulakis, and C.A. Floudas, A Global Optimization Method, αBB,
for General Twice-Differentiable Constrained NLPs - II. Implementation and Computational
Results, Computers and Chemical Engineering 22, 1159–1179, 1998.

3. J.-M. Aerts, P. Jans, D. Halloy, P. Gustin, D. Berckmans, Labeling of Cough Data from Pigs
for On-Line Disease Monitoring by Sound Analysis, American Society of Agricultural and
Biological Engineers 48 (1), 351–354, 2004.

4. A.Andoni and P. Indyk, Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor
in High Dimensions, Communications of the ACM 51 (1), 117–122, 2008.

5. I.P. Androulakis and C.A. Floudas, Distributed Branch and Bound Algorithms for Global
Optimization, In: Parallel Processing of Discrete Problems, P.M. Pardalos (Ed.), volume 106
of IMA Volumes in Mathematics and Its Applications, Springer, 1–36, 1998.

6. F. Angiulli and G. Folino, Efficient Distributed Data Condensation for Nearest Neighbor
Classification, A.-M. Kermarrec, L. Bouge, and T. Priol (Eds.), Lecture Notes on Computer
Science 4641, Springer, New York, 338–347, 2007.

7. F. Angiulli and G. Folino, Distributed Nearest Neighbor Based Condensation of Very Large
Datasets, IEEE Transactions on Knowledge and Data Engineering 19 (12), 1593–1606, 2007.

8. H. Apaydin, F.K. Sonmez, Y.E. Yildirim, Spatial Interpolation Techniques for Climate Data
in the GAP Region in Turkey, Climate Research 28, 31–40, 2004.

9. C.Arima, T. Hanai, M. Okamoto, Gene Expression Analysis using Fuzzy K-Means Clustering,
Genome Informatics 14, 334–335, 2003.

10. A. Arulselvan, G. Baourakis, V. Boginski, E. Korchina, P.M. Pardalos, Analysis of Food
Industry Market using Network Approaches, British Food Journal 110(9), 916–928, 2008.

11. AveSound Project Web site,
http://www.acoustics.hut.fi/research/avesound/avesound.html

12. M. Aznar, R. Lopez, J. Cacho, and V. Ferreira, Prediction of Aged Red Wine Aroma Properties
from Aroma Chemical Composition. Partial Least Squares Regression Models, Journal of
Agriculture and Food Chemistry 51, 2700–2707, 2003.

13. G.A. Baigorria, J.W. Jones, J.J. O’Brien, Potential Predictability of Crop Yield using an Ensem-
ble Climate Forecast by a Regional Circulation Model, Agricultural and Forest Meteorology
148, 1353–1361, 2008.

14. L. Baoli, Y. Shiwen, and L. Qin, An Improved k-Nearest Neighbor Algorithm for Text Cate-
gorization, ArXiv Computer Science e-prints, 2003.

15. M.E., Bauer, T.E. Burk,A.R. Ek, P.R. Coppin, S.D. Lime, T.A. Walsh, D.K. Walters, W. Befort,
and D.F. Heinzen, Satellite Inventory of Minnesota’s Forest Resources, Photogrammetric
Engineering and Remote Sensing 60 (3), 287–298, 1994.

253

254 References

16. R. Benetis, C.S. Jensen, G. Karciauskas, S. Saltenis, Nearest and Reverse Nearest Neighbor
Queries for Moving Objects, The International Journal on Very Large Data Bases 15 (3),
229–250, 2006.

17. P. Berkhin, Survey Of Clustering Data Mining Techniques, Tech. Report, Accrue Software,
San Jose, CA, 2002.

18. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov,
P.E. Bourne, The Protein Data Bank, Nucleic Acids Research 28, 235–242, 2000.

19. J.L. Bentley, Multidimensional Binary Search Trees Used for Associative Searching, Com-
munications of the ACM 18 (9), 509–517, 1975.

20. M. Bewernitz, G. Ghacibeh, O. Seref, P.M. Pardalos, C.-C. Liu and B. Uthman, Quantifi-
cation of the Impact of Vagus Nerve Stimulation Parameters on Electroencephalographic
Measures, AIP Conference Proceedings 953, Data Mining, System Analysis and Optimiza-
tion in Biomedicine, 206–218, 2007.

21. J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New
York, 1981.

22. B. Bhattacharya, R.K. Price, D.P. Solomatine, A Machine Learning Approach to Modeling
Sediment Transport, ASCE Journal of Hydraulic Engineering 133(4), 440–450, 2007.

23. L. Boruvka, O. Vacek, J. Jehlicka, Principal Component Analysis as Tool to Indicate the
Origin of Potentially Toxic Elements in Soils, Geoderma 128, 289–300, 2005.

24. O. Bousquet and B. Scholkopf, Comment, Statistical Science 21 (3), 337–340, 2006.
25. V. Bovinski, S. Butenko, P.M. Pardalos, Mining Market Data: a Network Approach, Comput-

ers and Operation Research 33, 3171–3184, 2006.
26. S. Bradley, M. Fayyad, Refining Initial Points for k-means Clustering, In: J. Shavlik (Ed.),

Proceedings of the 15th International Conference on Machine Learning (ICML98). Morgan
Kaufmann, San Francisco, 91–99, 1998.

27. S.E. Brossette, and P.A. Hymel Jr., Data Mining and Infection Control, Clinics in Laboratory
Medicine 28 (8), 119–126, 2008.

28. R.L. Brown, Accelerated Template Matching using Template Trees Grown by Condensation,
IEEE Transactions on Systems, Man and Cybernet 25 (3), 523–528, 1995.

29. K. Brudzewski, S. Osowski, T. Markiewicz, Classification of Milk by Means of an Electronic
Nose and SVM Neural Network, Sensors and Actuators B 98, 291–298, 2004.

30. C.J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery 2 (2), 955–974, 1998.

31. S. Busygin, N. Boyko, P.M. Pardalos, M. Bewernitz and G. Ghacibeh, Biclustering EEG Data
from Epileptic Patients Treated with Vagus Nerve Stimulation, AIP Conference Proceedings
953, Data Mining, System Analysis and Optimization in Biomedicine, 162–173, 2007.

32. S. Busygin, O.A. Prokopyev, P.M. Pardalos, Feature Selection for Consistent Biclustering via
Fractional 0–1 Programming, Journal of Combinatorial Optimization 10, 7–21, 2005.

33. S. Cafieri, M. D’Apuzzo, M. Marino, A. Mucherino, G. Toraldo, Interior Point Solver for
Large-Scale Quadratic Programming Problems with Bound Constraints, Journal of Opti-
mization Theory and Applications 129 (1), 55–75, 2006.

34. C.Z. Cai, W.L. Wang, L.Z. Sun, Y.Z. Chen, Protein Function Classification via Support Vector
Machine Approach, Mathematical Biosciences 185, 111–122, 2003.

35. W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer, P.A. Torres-Carrasquillo, Support
Vector Machines for Speaker and Language Recognition, Computer Speech and Language
20, 210–229, 2006.

36. G. Camps-Valls, L. Gomez-Chova, J. Calpe-Maravilla, E. Soria-Olivas, J.D. Martin-Guerrero,
J. Moreno, Support Vector Machines for Crop Classification using Hyperspectral Data, Lec-
tures Notes on Computer Science 2652, Springer, New York, 134–141, 2003.

37. G. Castellano, A.M. Fanelli, and M. Pelillo, An Iterative Pruning Algorithm for Feedforward
Neural Networks, IEEE Transactions on Neural Networks 8 (3), 1997.

38. G. Ceci,A. Mucherino, M. D’Apuzzo, D. di Serafino, S. Costantini,A. Facchiano, G. Colonna,
Computational Methods for Protein Fold Prediction: an Ab-Initio Topological Approach, In:
Data Mining in Biomedicine, Springer Optimization and Its Applications 7, P.M. Pardalos et
al (Eds.), Springer, 2007.

References 255

39. S. Cocke and T.E. LaRow, Seasonal Predictions using a Regional Spectral Model Embedded
with a Coupled Ocean - Atmosphere Model, Monthly Weather Review 128, 689–708, 2000.

40. A.R. Conn, N.I.M. Gould, Trust-Region Methods, SIAM Mathematical Optimization, 2000.
41. C. Cortes and V. Vapnik, Support Vector Networks, Machine Learning 20, 273–297, 1995.
42. T.M. Cover and P.E. Hart, Nearest Neighbor Pattern Classification, IEEE Transactions on

Information Theory IT-13 (1), 1967.
43. C.-C. Chang and C.-J. Lin, LIBSVM: a Library for Support Vector Machines, manual available

at http://www.csie.ntu.edu.tw/ ˜cjlin/libsvm/, 2001.
44. C.L. Chang, Finding Prototypes for Nearest Neighbor Classifiers, IEEE Transactions on

Computers 23 (11), 1179–1184, 1974.
45. A. Chedad, D. Moshou, J.M. Aerts, A. Van Hirtum, H. Ramon, D. Berckmans, Recogni-

tion System for Pig Cough based on Probabilistic Neural Networks, Journal of Agricultural
Enginnering Research 79 (4), 449–457, 2001.

46. M.-S. Chen, J. Han, P.S. Yu, Data Mining: an Overview from a Database Perspective, IEEE
Transactions on Knowledge And Data Engineering 8, 866–883, 1996.

47. J. Cheng, M.J. Sweredoski, P. Baldi, Accurate Prediction of Protein Disordered Regions by
Mining Protein Structure Data, Data Mining and Knowledge Discovery 11, 213–222, 2005.

48. R. Chinchuluun, W.S. Lee, J. Bhorania, P.M. Pardalos, Clustering and Classification Algo-
rithms in Food and Agricultural Applications: A Survey, inAdvances in ModelingAgricultural
Systems, Springer Optimization and Its Applications Series, P.J. Papajorgji, P.M. Pardalos
(Eds.), Springer, 433–454, 2008.

49. M.L. Chiusano, T. Gojobori, G. Toraldo, A C++ Computational Environment for Biomolecular
Sequence Management, Computational Management Science 2, 165–180, 2005.

50. K.L. Chung, and K.S. Lin, An Efficient Line Symmetry-Based K-means algorithm, Pattern
Recognition 27 (7), 765–772, 2006.

51. K.L. Chung, J.S. Lin, Faster and More Robust Point Symmetry-Based k-means Algorithm,
Pattern Recognition 40 (2), 410–422, 2007.

52. K.L. Clarkson, Nearest-Neighbor Searching and Metric Space Dimensions, In: Nearest-
Neighbor Methods for Learning and Vision: Theory and Practice, MIT Press, Cambridge,
MA, 2005.

53. K.C. Das, M.D. Evans, Detecting Fertility of Hatching Eggs using Machine Vision II: Neural
Network classifiers, Transactions of the American Society of Agricultural Engineers 35 (6),
2035–2041, 1992.

54. S.B. Davis and P. Mermelstein, Comparison of Parametric Representations for Monosyllabic
Word Recognition in Continuously Spoken Sentences, IEEE Transactions onAcoustic, Speech,
and Signal Processing 28 (4), 357–366, 1980.

55. P.A.D. de Castro, F.O. de Franca, H.M. Ferreira and F.J. Von Zuben, Applying Biclustering
to Perform Collaborative Filtering, Seventh International Conference on Intelligent Systems
Design and Applications, 421–426, 2007.

56. D. Delen, G. Walker, A. Kadam, Predicting Breast Cancer Survivability: a Comparison of
three Data Mining Methods, Artificial Intelligence in Medicine 34, 113-—127, 2005.

57. W. De Neve, P. Lambert, S. Lerouge, and R.V. de Walle, Assessment of the Compression Effi-
ciency of the MPEG-4 AVC Specification, Proceedings of SPIE 5308, Visual Communications
and Image Processing, 1082–1093, 2004.

58. G. Destefanis, M.T. Barge, A. Brugiapaglia, S. Tassone, The Use of Principal Component
Analysis (PCA) to Characterize Beef, Meat Science 56, 255–259, 2000.

59. V.S. Devi, M.N. Murty, An Incremental Prototype Set Building Technique, Pattern Recognition
35, 505–513, 2002.

60. I.S. Dhillon, S. Mallela, and D.S. Modha, Information-Theoretical Coclustering, Proceedings
of The Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 89–98, 2003.

61. I.S. Dhillon and D.M. Modha, Concept Decompositions for Large Sparse Text Data using
Clustering, Machine Learning 42 (1), 143–175, 2001.

256 References

62. Q. Ding and N. Zhang, Classification of Recorded Musical Instruments Sounds Based on
Neural Networks, Proceedings of the 2007 IEEE Symposium on Computational Intelligence
in Image and Signal Processing (CIISP 2007), 157–162, 2007.

63. J.-x. Dong,A. Krzyzak, C.Y. Suen, An Improved Handwritten Chinese Character Recognition
System using Support Vector Machine, Pattern Recognition Letters 26, 1849–1856, 2005.

64. M. Dorigo, G. Di Caro, Ant Colony Optimization: A New Meta-Heuristic, In: New Ideas in
Optimization, D. Corne, M. Dorigo and F. Glover (Eds.), McGraw-Hill, London, UK, 11-32,
1999.

65. C.-J. Du, D.-W. Sun, Pizza Sauce Spread Classification using Colour Vision and Support
Vector Machines, Journal of Food Engineering 66, 137–145, 2005.

66. D. Duffy and A. Quiroz, A Permutation Based Algorithm for Block Clustering, Journal of
Classification 8, 65–91, 1991.

67. D.A. Elizondo, R.W. McClendon, G. Hoogenboom, Neural Network Models for Predicting
Flowering and Physiological Maturity of Soybean, Transactions of the American Society of
Agricultural Engineers 37 (3), 981–988, 1994.

68. C. Elkan, Using the Triangle Inequality to Accelerate k-means, Proceedings of the Twentieth
International Conference on Machine Learning (ICML-2003), Washington, DC, 2003.

69. P.A. Estevez, C.M. Held, C.A. Perez, Subscription Fraud Prevention in Telecommunications
using Fuzzy Rules and Neural Networks, Expert Systems with Applications 31, 337–344,
2006.

70. I. Etikan, M.Z. Caglar, Prediction Methods for Babies’ Birth Weight using Linear and Non-
linear Regression Analysis, Technology and Health Care 13(2), 131–135, 2005.

71. S. Fagerlund, Bird Species Recognition Using Support Vector Machines, EURASIP Journal
on Advances in Signal Processing 2007, Article ID 38637, 1–8, 2007.

72. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From Data Mining to Knowledge Discovery
in Databases, Artificial Intelligence Magazine 17, 37–54, 1996.

73. I. Ferreras, A. Pasquali, R.R. de Carvalho, I.G. de la Rosa, and O. Lahav, A Principal Com-
ponent Analysis Approach to the Star Formation History of Elliptical Galaxies in Compact
Groups, Journal of Monthly Notices of the Royal Astronomical Society 370, 828–836, 2006.

74. A. Flexer, Connectionists and Statisticians, Friends or Foes?, In: From Natural to Artificial
Neural Computation, Proceedings International WorkshopArtificial Neural Networks, J. Mira
and F. Sandoval (Eds.), Lecture Notes in Computer Science 930, Springer, New York, 454–
461, 1995.

75. A. Flexer, Statistical Evaluation od Neural Network Experiments: Minimum Requirements
and Current Practice, Proceedings of the 13th European Meeting on Cybernetics and systems
research, EMCSR 96, Vienna, 1996.

76. R. Fletcher, Practical Methods of Optimization, Wiley, New York, Second Edition, 1987.
77. M. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Trans. Comput. C-21,

948–960, 1972.
78. N. Fnaiech, S. Abid, F. Fnaiech and M. Cheriet, A Modified Version of a Formal Pruning

Algorithm Based on Local Relative Variance Analysis, First International Symposium on
Control, Communications and Signal Processing, 2004.

79. I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 2nd edition, 2004.

80. W. Fx, W.J. Zhang, and A.J. Kusalik, A Genetic K-means Clustering Algorithm Applied
to Gene Expression Data, Advances in Artificial Intelligence, Lecture Notes in Artificial
Intelligence 2671, Springer, New York, 520–526, 2003.

81. G.W. Gates, The Reduced Nearest Neighbor Rule, IEEE Transactions in Information Theory
18, 431–433, 1972.

82. Z. W. Geem, J. H. Kim, G. V. Loganathan, A New Heuristic Optimization Algorithm: Harmony
Search, Simulations 76 (2), 60–68, 2001.

83. G. Getz, E. Levine, and E. Domany, Coupled Two-Way ClusteringAnalysis of Gene Microarray
Data, Proceedings of the National Academy of Sciences of the United States of America,
12079–12084, 2000.

References 257

84. R. Gil-Garcia, J.M. Badia-Contelles, and A. Pons-Porrata, Parallel Nearest Neighbour Al-
gorithms for Text Categorization, Lecture Notes in Computer Science 4641, Springer, New
York, 328–337, 2007.

85. R. Gil-Garcia and A. Pons-Porrata, A New Nearest Neighbor Rule for Text Categorization,
Lecture Notes in Computer Science 4225, Springer, New York, 814–823, 2006.

86. M.K. Gill, T. Asefa, M.W. Kemblowski, and M. McKee, Soil Moisture Prediction using
Support Vector Machines, Journal of theAmerican Water ResourcesAssociation 42 (4), 1033–
1046, 2006.

87. L. Goddard, S.J. Mason, S.E. Zebiak, C.F. Ropelewski, R. Basher and M.A. Cane, Current
Approaches to Seasonal-to-Interannual Climate Predictions, International Journal of Clima-
tology 21: 1111-1152, 2001.

88. D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning, Addison-
Wesley Longman Publishing Co., Inc., 1989.

89. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L.
Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander, Molecular Classi-
fication of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring,
Science 286, 531–537, 1999.

90. K.C. Gowda and G. Krishna, The Condensed Nearest Neighbor Rule using the Concept of
Mutual Nearest Neighbothood, IEEE Transactions on Information Theory IT-25 (4), 488–490,
1979.

91. H.P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik, Parallel Support Vector Ma-
chines: The Cascade SVM, In:Advances in Neural Information Processing Systems, Lawrence
Saul, Bernhard Scholkopf, and Leon Bottou (Eds.), volume 17, MIT Press, 2005.

92. R.M. Gray, Vector Quantization, IEEE ASSP Magazine, 4–28, 1984.
93. T. H. Grubesic, On The Application of Fuzzy Clustering for Crime Hot Spot Detection, Journal

of Quantitative Criminology 22 (1), 2006.
94. Y. Guan, A. A. Ghorbani, and N. Belacel. Y-means: A Clustering Method for Intrusion De-

tection, IEEE Canadian Conference on Electrical and Computer Engineering Proceedings,
1083–1086, 2003.

95. G. Guo, H. Wang, D. Bell, Y. Bi and K. Greer, Using kNN Model for Automatic Text Catego-
rization, Soft Computing - A Fusion of Foundations, Methodologies and Applications 10 (5),
423–430, 2006.

96. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene Selection for Cancer Classification using
Support Vector Machines, Machine Learning 46, 389–422, 2002.

97. R. Haapanen, A.R. Ek, M.E. Bauer, A.O. Finley, Delineation of Forest/Nonforest Land Use
Classes using Nearest Neighbor Methods, Remote Sensing of Environment 89, 265–271,
2004.

98. M. Halkidi, Y. Batistakis, M. Vazirgiannis, On Clustering Validation Techniques, Journal of
Intelligent Information Systems, 17 (2/3), 107–145, 2001.

99. D. Hammerstrom, Neural Networks at Work, IEEE Spectrum, 26–32, 1993.
100. C.G. Han, P.M. Pardalos and Y. Ye, Computational Aspects of an Interior Point Algorithm for

Quadratic Programming problems with Box Constraints, Large-Scale Numerical Optimiza-
tion, T. Coleman and Y. Li (Eds.), SIAM, 1990.

101. P. Hansen and N. Mladenovic. J-means: a New Local Search Heuristic for Minimum Sum-of-
Squares Clustering, Pattern Recognition, 34 (2): 405–413, 2002.

102. P.E. Hart, The Condensed Nearest Neighbor Rule, IEEE Transactions on Information Theory
IT-14, 515–516, 1968.

103. J. Hartigan, Clustering Algorithms, John Wiles & Sons, New York, 1975.
104. R. Hathaway, J. Bezdek, Y. Hu, Generalized Fuzzy c-means Clustering Strategies using Lp

Norm Distances, IEEE Transactions on Fuzzy Systems 8 (5), 576–582, 2000.
105. R. Hathaway, J. Bezdek, Fuzzy c-Means Clustering of Incomplete Data, IEEE Transactions

on Systems, Man and Cybernetics - Part B, Cybernetics 31 (5), 735–744, 2001.
106. J.C. Hemphill III, C.W. Barton, D. Morabito and G.T. Manley, Influence of Data Resolution

and Interpolation Method on Assessment of Secondary Brain Insults in Neurocritical Care,
Physiological Measurement 26, 373–386, 2005.

258 References

107. K. Hiroaki, Three-Dimensional Protein Structural Data Mining Based on the Glycine Filter
Reduced Representation, Journal of Computer Chemistry 4 (2), 33–42, 2005.

108. P. Holmgren, and T. Thuresson, Satellite Remote Sensing for Forestry Planning: a Review,
Scandinavian Journal of Forest Research 13 (1), 90–110, 1998.

109. P.W. Holland, R.E. Welsch, Robust Regression using Iteratively Reweighted Least-Squares,
Communications in Statistics, Theory and Methods 6 (9), 813–827, 1977.

110. R. Howard, Classifying a Population into Homogeneous Groups, In: J.R. Lawerence (Ed.),
Operational Research in the Social Sciences, Tavistock Publ., London. 1966.

111. L.-L. Hsiao, F. Dangond, T. Yoshida, R. Hong, R.V. Jensen, J. Misra, W. Dillon, K.F. Lee,
KE. Clark, P. Haverty, Z.Weng, G. Mutter, M.P. Frosch, M.E. MacDonald, E.L. Milford,
C.P. Crum, R. Bueno, R.E. Pratt, M. Mahadevappa, J.A. Warrington, G. Stephanopoulos, G.
Stephanopoulos, and S.R. Gullans, A Compendium of Gene Expression in Normal Human
Tissues, Physiological Genomics 7, 97–104, 2001.

112. HuGE Index.org Web site: http://www.hugeindex.org
113. L.C.K. Hui, K.-Y. Lam and C.W. Chea, Global Optimisation in Neural Network Training,

Neural Computing & Applications 5, 58–64, 1997.
114. ILOG Inc. CPLEX 9.0 User’s Manual, 2004.
115. L.S. Itzhaki and P.G. Wolynes, The Quest to Understand Protein Folding, Current Opinion in

Structural Biology 18, 1–3, 2008.
116. A.K. Jain, M.N. Murty, P.J. Flynn, Data Clustering: a Review, ACM Computing Surveys

31(3), 264–323, 1999.
117. S.S. Jagtap, J.W. Jones, T. LaRow, A. Ajayan, and J.J. O’Brien, Statistical Recalibration

of Precipitation Outputs from Coupled Climate Models, submitted to Journal of Applied
Meteorology.

118. S.S. Jagtap, U. Lall, J.W. Jones,A.J. Gijsman, J.T. Ritchie, Dynamic Nearest-Neighbor Method
for Estimating Soil Water Parameters, Transactions of the American Society of Agricultural
Engineers 47 (5), 1437–1444, 2004.

119. T. Jinlan, Z. Lin, Z. Suqin, L. Lu, Improvement and Parallelism of k-Means Clustering Algo-
rithm, Tsinghua Science and Technology 10 (3), 277–281, 2005.

120. I.T. Jolliffe, Discarding Variables in a Principal Component Analysis. I: Artificial Data,
Applied Statistics 21 (2), 160–173, 1972.

121. J.W. Jones, J.W. Hansen, F.S. Royce, C.D. Messina, Potential Benefits of Climate Forecasting
to Agriculture, Agriculture, Ecosystems and Environment 82, 169–184, 2000.

122. J.W. Jones, G.Y. Tsuji, G. Hoogenboom, L.A. Hunt, P.K. Thornton, P.W. Wilkens, D.T. Ima-
mura, W.T. Bowen, and U. Singh. Decision Support System for Agrotechnology Transfer:
DSSAT v3, In: Understanding Options For Agricultural Production, 157–177, G. Y. Tsuji, G.
Hoogenboom, and P. K. Thornton (Eds.), Dordrecht, The Netherlands: Kluwer Academic
Publishers, 1998.

123. H. Jorquera, R. Perez, A. Cipriano, and G. Acuna, Short Term Forecasting of Air Pollution
Episodes, In: Environmental Modeling 4, P. Zannetti (Ed.), WIT Press, UK, 2001.

124. Y. Karimi, S.O. Prasher, R.M. Patel, S.H. Kim, Application of Support Vector Machine Tech-
nology for Weed and Nitrogen Stress Detection in Corn, Computers and Electronics in Agri-
culture 51, 99–109, 2006.

125. O. Karkacier, Z.G. Goktolga, A. Cicek, A Regression Analysis of the Effect of Energy Use in
Agriculture, Energy Police 34, 3796–3800, 2006.

126. J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings IEEE International Con-
ference on Neural Networks 4, Perth, WA, Australia, 1942–1948, 1995.

127. Kernel-Machines Web site: http://www.kernel-machines.org/
128. S. Kirkpatrick, C. D. Jr. Gelatt and M. P. Vecchi, Optimization by Simulated Annealing,

Science 220 (4598), 671–680, 1983.
129. D. Kim, H. Kim, and D. Chung, A Modified Genetic Algorithm for Fast Training Neural

Networks, Lecture Notes in Computer Science 3496, Springer, New York, 660–665, 2005.
130. J.L. Klepeis and C.A. Floudas, ASTRO-FOLD: Ab Initio Secondary and Tertiary Structure

Prediction in Protein Folding, European Symposium on ComputerAided Process Engineering
12, Elsevier, 2002.

References 259

131. J.L. Klepeis and C.A. Floudas, ASTRO-FOLD: a Combinatorial and Global Optimization
Framework for Ab Initio Prediction of Three-Dimensional Structures of Proteins from the
Amino Acid Sequence, Biophysical Journal 85, 2119–2146, 2003.

132. K.A. Klise and S.A. McKenna, Water Quality Change Detection: Multivariate Algorithms,
Proceedings of SPIE 6203, Optics and Photonics in Global Homeland Security II, T.T. Saito,
D. Lehrfeld (Eds.), 2006.

133. K. Krishna, K.R. Ramakrishnan, M.A.L. Thathachar, Vector Quantization using Genetic K-
Means Algorithm for Image Compression, International Conference on Information, Com-
munications and Signal Processing, ICICS ‘97, Singapore, 1997.

134. K. Krishna, M. Murty, Genetic k-means Algorithm, IEEE Transactions on Systems, Man and
Cybernetics - Part B, Cybernetics, 29 (3), 433–439, 1999.

135. N. Kondo, U. Ahmad, M. Monta, H. Murase, Machine Vision based Quality Evaluation of
Iyokan Orange Fruit using Neural Networks, Computers and Electronics in Agriculture 29,
135–147, 2000.

136. S.R. Kulkarni, G. Lugosi, and S.S. Venkatesh, Learning Pattern Classification - A Survey,
IEEE Transactions on Information Theory 44 (6), 1998.

137. S.-Y. Lai, W.-J. Chang, and P.-S. Lin, Logistic Regression Model for Evaluating Soil Liquefac-
tion Probability Using CPT Data, Journal of Geotechnical and Geoenvironmental Engineering
132(6), 694–704, 2006.

138. C. Lavor, L. Liberti, and N. Maculan, Computational Experience with the Molecular Distance
Geometry Problem, In: Global Optimization: Scientific and Engineering Case Studies, J. Pintér
(Ed.), 213–225. Springer, Berlin, 2006.

139. C. Lavor, L. Liberti, and N. Maculan, Molecular distance geometry problem, In: Encyclopedia
of Optimization, C. Floudas and P. Pardalos (Eds.), 2nd edition, Springer, New York, 2305–
2311, 2009.

140. C. Lavor, L. Liberti, A. Mucherino and N. Maculan, Recent Results on the Discretizable
Molecular Distance Geometry Problem, Proceedings of the conference ROADEF09, Nancy,
France, Febraury 10/12 2009.

141. C. Lavor, L. Liberti,A. Mucherino and N. Maculan, On a Discretizable Subclass of Instances of
the Molecular Distance Geometry Problem, Proceedings of the Conference SAC09, Honolulu,
Hawaii, March 8/12, 2009.

142. L. Lazzeroni andA. Owen, Plaid Models for Gene Expression Data, technical report, Stanford
Univ., 2000.

143. J.R. Leathwick, D. Rowe, J. Richardson, J. Elith and T. Hastie, Using Multivariate Adaptive
Regression Splines to Predict the Distributions of New Zealand’s Freshwater Diadromous
Fish, Freshwater Biology 50(12), 2034–2052, 2005.

144. V. Leemans, H. Magein, and M.-F. Destain, Defect Segmentation on ‘Jonagold’Apples using
Colour Vision and Bayesian Method, Computers and Electronics in Agriculture 23, 43–53,
1999.

145. V. Leemans, H. Magein, and M.-F. Destain, On-line Apple Grading According to European
Standards using Machine Vision, Biosystem Engineering, 83 (4), 397–404, 2002

146. V. Leemans, M.F. Destain, A Real Time Grading Method of Apples based on Features Ex-
tracted from Defects, Journal of Food Engineering 61, 83–89, 2004.

147. R.A. Leonard, W.G. Knisel, and D.A. Still. GLEAMS: Groundwater-Loading Effects of Agri-
cultural Management Systems, Transactions of American Society of Agricultural Engineers
30 (5), 1403–1418, 1987.

148. L. Lhotska, M. Macas, and M. Bursa, PSO and ACO in Optimization Problems, E. Corchado
et al. (Eds.), Intelligent Data Engineering and Automated Learning 2006, Lecture Notes in
Computer Science 4224, Springer, New York, 1390–1398, 2006.

149. L. Li, D.M. Umbach, P. Terry and J.A. Taylor, Application of the GA/KNN Method to SELDI
Proteomics Data, Bioinformatics 20 (10), 1638–1640, 2004.

150. Y. Liao, V.R. Vemuri, Use of K-Nearest Neighbor Classifier for Intrusion Detection, Com-
puters & Security 21 (5), 439–448, 2002.

260 References

151. L. Liberti, S. Cafieri, F. Tarissan, Reformulations in Mathematical Programming: a Computa-
tional Approach, In: Foundations on Computational Intelligence, volume 3, A.-E. Hassanien,
A. Abraham, F. Herrera, W. Pedrycz, A. Carvalho, P. Siarry, A. Engelbrecht (Eds.), Studies
on Computational Intelligence 203, Springer, New York, 153–234, 2009.

152. L. Liberti, C. Lavor, and N. Maculan, Discretizable Molecular Distance Geometry Problem,
Tech. Rep. q-bio.BM/0608012, arXiv, 2006.

153. L. Liberti, C. Lavor, and N. Maculan, A Branch-and-Prune Algorithm for the Molecular
Distance Geometry Problem, International Transactions in Operational Research 15 (1): 1–
17, 2008.

154. A. Likasa, N. Vlassis, J.J. Verbeek, The Global k-means Clustering Algorithm, Pattern Recog-
nition 36 (2), 451–461, 2003.

155. P.L. Lisboa, A.F.G. Taktak, The Use of Artificial Neural Networks in Decision Support in
Cancer: A Systematic Review, Neural Networks 19, 408–415, 2006.

156. Y. Liu, B.G. Lyon, W.R. Windham, C.E. Lyon, and E.M. Savage, Principal Component Analy-
sis of Physical, Color, and Sensory Characteristics of Chicken Breasts Deboned at Two, Four,
Six, and Twenty-Four Hours Postmortem, Poultry Science 83, 101–108, 2004.

157. Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S. Brown, Fast Genetic K-means Algorithm and Its appli-
cation in Gene Expression Data Analysis, Detroit, Wayne State University, 2003.

158. Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. J. Brown, Incremental Genetic K-means Algorithm
and Its Application in Gene Expression Data Analysis, BMC Bioinformatics 5, 172, 2004.

159. S.C. Madeira and A.L. Oliveira, Biclustering Algorithms for Biological Data Analysis: a
Survey, IEEE Transactions on Computational Biology and Bioinformatiocs 1 (1), 24–44,
2004.

160. H.R. Maier, G.C. Dandy, Neural Networks for the Prediction and Forecasting of Water Re-
sources Variables: a Review of Modelling Issues and Applications, Environmental Modelling
& Software 15, 101–124, 2000.

161. U.K. Mandal, D.N. Warrington, A.K. Bhardwaj, A. Bar-Tal, L. Kautsky, D. Minz, G.J. Levy,
Evaluating Impact of Irrigation Water Quality on a Calcareous Clay Soil using Principal
Component Analysis, Geoderma 144, 189–197, 2008.

162. R.T. Marler, J.S. Arora, Survey of Multi-Objective Optimization Methods for Engineering,
Structural and Multidisciplinary Optimization 26(6), 369–395, 2004.

163. H. Martens, T. Naes, Multivariate Calibration, John Wiley & Sons, 1989.
164. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth. A.H. Teller, and E. Teller. Equation of

State Calculations by Fast Computing Machines, Journal of Chemical Physics 21, 1087–1092,
1953.

165. G. E. Meyer, J. C. Neto, D. D. Jones, T. W. Hindman, Intensified Fuzzy Clusters for Classifying
Plant, Soil, and Residue Regions of Interest from Color Images, Computers and Electronics
in Agriculture 42, 161–180, 2004.

166. MinGW: gnu C compiler: http://www.mingw.org
167. A. Moore, Lecture on Validation Techniques, available on the Internet at the address:

http://www.autonlab.org/tutorials/overfit.html
168. MPI - Message Passing Interface: http://www-unix.mcs.anl.gov/mpi/
169. B. Moreaux, D. Beerens and P. Gustin, Development of a Cough Induction Test in Pigs:

Effects of SR 48968 and Enalapril, Journal of Veterinary Pharmacology and Therapeutics 22,
387–389, 1999.

170. D. Moshou, A. Chedad, A. Van Hirtum, J. De Baerdemaeker, D. Berckmans, H. Ramon,
An Intellingent Alarm for Early Detection of Swine Epidemics based on Neural Networks,
American Society of Agricultural Engineers 44 (1), 167–174, 2001.

171. D. Moshou, A. Chedad, A. Van Hirtum, J. De Baerdemaeker, D. Berckmans, H. Ramon,
Neural Recognition System for Swine Cough, Mathematics and Computers in Simulation 56,
475–487, 2001.

172. A. Mucherino, S. Costantini, D. di Serafino, M. D’Apuzzo, A. Facchiano and G. Colonna,
Towards a Computational Description of the Structure of all-alpha Proteins as Emergent
Behaviour of a Complex System, Computational Biology and Chemistry 32 (4), 233–239,
2008.

References 261

173. A. Mucherino and O. Seref, Monkey Search: A Novel Meta-Heuristic Search for Global Opti-
mization, “Data Mining, SystemAnalysis and Optimization in Biomedicine’’,AIP Conference
Proceedings 953, O. Seref, O.E. Kundakcioglu, P.M. Pardalos (Eds.), 162–173, 2007.

174. A. Mucherino and O. Seref, Modeling and Solving Real Life Global Optimization Problems
with Meta-Heuristic Methods, Advances in Modeling Agricultural Systems, Springer Opti-
mization and Its Applications Series, P.J. Papajorgji, P.M. Pardalos (Eds.), Springer, 403–420,
2008.

175. A. Mucherino, O. Seref, P.M. Pardalos, Simulating Protein Conformations through Global
Optimization, arXiv e-print, arXiv:0811.3094v1, November 2008.

176. A. Nahapatyan, S. Busygin, and P. Pardalos, An Improved Heuristic for Consistent Biclustering
Problems, In: Mathematical Modelling of Biosystems, R.P. Mondaini and P.M. Pardalos
(Eds.), Applied Optimization 102, Springer, 185–198, 2008.

177. K. Nakano, Application of Neural Networks to the Color Grading of Apples, Computers and
Electronics in Agriculture 18, 105–116, 1997.

178. A.J. Nebro, E. Alba and F. Luna, Multi-Objective Optimization using Grid Computing, Soft
Computing - A Fusion of Foundations, Methodologies and Applications 11 (6), 531–540,
2007.

179. J. Ni, Q. Song, Dynamic Pruning Algorithm for Multilayer Perceptron Based Neural Control
Systems, Neurocomputing 69, 2097–2111, 2006.

180. A. Nurnberger, W. Pedrycz and R. Kruse, Neural Network Approaches, In: Handbook of Data
Mining and Knowledge Discovery, W. Klosgen and J.M. Zytkow (Eds.), Oxford University
Press, 2002.

181. N.R. Pal, J.C. Bezdek, On Cluster Validity for the Fuzzy c-means Model, IEEE Transactions
on Fuzzy Systems 3 (3), 370–379, 1995.

182. T.N. Pappas, An Adaptive Clustering Algorithm for Image Segmentation, IEEE Transactions
on Signal Processing 40 (4), 1992.

183. P.J. Papajorgji, P.M. Pardalos, Software Engineering Techniques Applied to Agricultural Sys-
tems An Object-Oriented and UML Approach, Applied Optimization Springer Series 100,
2006.

184. P.M. Pardalos, and H.E. Romeijn (eds.), Handbook of Global Optimization, Vol. 2, Kluwer
Academic, Norwell, MA, 2002.

185. V.C. Patel, R.W. McClendon, J.W. Goodrum, Crack Detection in Eggs using Computer Vision
and Neural Networks, Artificial Intelligence Applications 8 (2), 21–31, 1994.

186. PDB - Protein Data Bank, ftp://ftp.wwpdb.org/
187. J.A. Fernandez Pierna, V. Baeten, A. Michotte Renier, R.P. Cogdill and P. Dardenne, Combi-

nation of Support Vector Machines (SVM) and Near-Infrared (NIR) Imaging Spectroscopy for
the Detection of Meat and Bone Meal (MBM) in Compound Feeds, Journal of Chemometrics
18, 341–349, 2004.

188. J.C. Platt, Fast Training of Support Vector Machines using Sequential Minimal Optimization,
In: Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges, and A.
Smola (Eds.), MIT Press, 185–208, 1999.

189. L. Prechelt, A Quantitative Study of Experimental Evaluations of Neural Network Learning
Algorithms: Current Research Practice, Neural Networks 9 (3), 457–462, 1996.

190. J. Puchinger, G.R. Raidl, Combining Metaheuristics and Exact Algorithms in Combinatorial
Optimization:ASurvey and Classification, Lecture Notes in Computer Science 3562, Springer,
New York, 41–53, 2005.

191. S. Rahimi, M. Zargham, A. Thakre, D. Chhillar, A Parallel Fuzzy C-Mean Algorithm for
Image Segmentation, IEEE Annual Meeting of the Fuzzy Information, Processing NAFIPS
’04, 1, 234–237, 2004.

192. B. Rajagopalan, U. Lall, A k Nearest Neighbor Simulator for Daily Precipitation and Other
Weather Variables, Water Resources Research 35 (10), 3089–3101, 1999.

193. R. Reed, Pruning Algorithms - A Survey, IEEE Transactions on Neural Networks 4 (5), 1993.
194. M. Reyes-Sierra and C.A.C. Coello, Multi-Objective Particle Swarm Optimizers: A Survey

of the State-of-the-Art, International Journal of Computational Intelligence Research 2 (3),
287–308, 2006.

262 References

195. G.L. Ritter, H.B. Woodruff, S.R. Lowry, T.L. Isenhour, An Algorithm for a Selective Nearest
Neighbor Decision Rule, IEEE Transactions on Information Theory 21, 665–669, 1975.

196. A. Riul Jr., H.C. de Sousa, R.R. Malmegrim, D.S. dos Santos Jr., A.C.P.L.F. Carvalho, F.J.
Fonseca, O.N. Oliveira Jr., L.H.C. Mattoso, Wine Classification by Taste Sensors Made from
Ultra-Thin Films and using Neural Networks, Sensors and Actuators B98, 77–82, 2004.

197. L.E. Rocha-Mier, L. Sheremetov and I. Batyrshin, Intelligent Agents for Real Time Data
Mining in Telecommunications Networks, Lecture Notes in Computer Science 4476, Springer,
New York, 138–152, 2007.

198. F. Rosenblatt, The Percentron: a Probabilistic Model for Information Storage and Organiza-
tion in the Propagation, Physichological Review 65, 386–408, 1958.

199. M. Rova, R. Haataja, R. Marttila, V. Ollikainen, O. Tammela and M. Hallman, Data Min-
ing and Multiparameter Analysis of Lung Surfactant Protein Genes in Bronchopulmonary
Dysplasia, Human Molecular Genetics 13 (11), 1095–1104, 2004.

200. H.A. Rowley, S. Baluja, and T. Kanade, Neural Network-Based Face Detection, IEEE Tran-
sations on Patterns Analysis and Machine Intelligence 20 (1), 1998.

201. D. Salomon, Data Compression: The Complete Reference, Springer 2004.
202. C. Saunders, M.O. Stitson, J. Weston, L. Bottou, B. Scholkopf, and A. Smola, Support Vector

Machine Reference Manual, Royal Holloway Technical Report CSD-TR-98-03, 1998.
203. T. F. Schatzki, R. P. Haff, R. Young, I. Can, L-C. Le, N. Toyofuku, Defect Detection in Apples

by Means of X-ray Imaging, Transactions of the American Society of Agricultural Engineers
40 (5), 1407–1415, 1997.

204. R.B. Schnabel, J.E. Jr. Dennis, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice Hall, 1983.

205. F. Schwenker, Hierarchical Support Vector Machines for Multi-Class Pattern Recognition,
Proceedings of the 4th International Conference on Knowledge-Based Intelligent Engineering
Systems and Allied Technologies (KES ’00), vol. 2, 561–565, Brighton, UK, 2000.

206. U. Seiffert, Artificial Neural Networks on Massively Parallel Computer Hardware, European
Symposium on Artificial Networks proceedings, Bruges (Belgium), 319–330, 2002.

207. G. Serban, A. Campan, Hierarchical Adaptive Clustering, Informatica 19(1), 101–112, 2008.
208. O. Seref, O.E. Kundakcioglu, and P.M. Pardalos, Selective Linear and Nonlinear Classifica-

tion, In: Data Mining and Mathematical Programming, P.M. Pardalos, P. Hansen (Eds.), CRM
Proceedings and Lecture Notes 45, American Mathematical Society, Providence, RI, 2008.

209. M.A. Shahin, E.W. Tollner, M.D. Evans, H.R. Arabnia, Watercore Features for Sorting Red
Delicious Apples: a Statistical Approach, Transactions of theAmerican Society ofAgricultural
Engineers 42 (6), 1889–1896, 1999.

210. M.A. Shahin, E.W. Tollner, R.W. McClendon, Artificial Intelligence Classifiers for Sorting
Apples based on Watercore, Journal of Agricultural Engineering Research 79 (3), 265–274,
2001.

211. J.Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University
Press, 2004.

212. Y. Shen, H. Shi, and J.Q. Zhang, Improvement and Optimization of a Fuzzy C-Means Cluster-
ing Algorithm, IEEE Instrumentation and Measurement Technology Conference, Budapest,
Hungary, 2001.

213. H. Sherali, L. Liberti, Reformulation-Linearization Technique for Global Optimization, In:
Encyclopedia of Optimization, P.M. Pardalos and C. Floudas (Eds.), 2nd Edition, 3263–3268,
Springer, 2008.

214. K. Shin ,A.Abraham and S.Y. Han, Improving kNN Text Categorization by Removing Outliers
from Training Set, Lecture Notes in Computer Science 3878, Springer, New York, 563–566,
2006.

215. J. Si, B.J. Nelson and G.C. Runger, Artificial Neural Network Models for Data Mining, In:
The Handbook of Data Mining, N. Ye (Eds.), Lawrence Erlbaum Associates Publishers, 2003.

216. J. Sim, S.-Y. Kim and J. Lee, Prediction of Protein Solvent Accessibility using Fuzzy k-Nearest
Neighbor Method, Bioinformatics 21 (12), 2844–2849, 2005.

217. L.C. Sim, H. Schroder, G. Leedham, MIMD–SIMD Hybrid System - Towards a New Low Cost
Parallel System, Parallel Computing 29, 21–36, 2003.

References 263

218. A.N. Skodras, T. Ebrahimi, JPEG2000 Image Coding System Theory and Applications, Pro-
ceedings of the IEEE International Symposium on Circuits and Systems, 3866–3869, 2006.

219. H. Spath, Cluster Analysis Algorithms for Data Reduction and Classification of Objects, Ellis
Horwood, Chichester, 1980.

220. I. Steinwart, Consistency of Support Vector Machines and Other Regularized Kernel Classi-
fiers, IEEE Transactions on Information Theory 51, 128–142, 2005.

221. C.O. Stockle, S.A. Martin, and G.S. Campbell. CropSyst, a Cropping Systems Model: Wa-
ter/Nitrogen Budgets and Crop Yield, Agricultural Systems 46 (3), 335–359, 1994.

222. K. Stoffel, A. Belkoniene, Parallel k/h-Means Clustering for Large Data Sets, Lecture Notes
in Computer Science 1685, Proceedings of the 5th International Euro-Par Conference on
Parallel Processing, Springer, New York, 1451–1454, 1999.

223. M. Su, C. Chou, A Modified Version of the K-means Algorithm with a Distance Based on
Cluster Symmetry, IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (6),
674–680, 2001.

224. R. Sulej, K. Zaremba, K. Kurek and E. Rondio, Application of the Neural Networks in Events
Classification in the Measurement of the Spin Structure of the Deuteron, Measurement Science
and Technology 18, 2486–2490, 2007.

225. A. Tellaeche, X.-P. Burgos-Artizzu, G. Pajares and A. Ribeiro, A Vision-Based Hybrid Classi-
fier for Weeds Detection in Precision Agriculture Through the Bayesian and Fuzzy k-Means
Paradigms, Advances in Soft Computing 44, 72–79, 2008.

226. S. Tripathi, V.V. Srinivas, R.S. Nanjundiah, Downscaling of Precipitation for Climate Change
Scenarios: A Support Vector Machine Approach, Journal of Hydrology 330, 621–640, 2006.

227. Y.-H. Tseng, C.-J. Lin, and Y.-I Lin, Text Mining Techniques for Patent Analysis, Information
Processing & Management 43 (5), 1216–1247, 2007.

228. L. Ungar and D.P. Foster, A Formal Statistical Approach to Collaborative Filtering, Proceed-
ings of the Conference on Automated Learning and Discovery (CONALD ’98), 1998.

229. A. Urtubia, J.R. Perez-Correa, M. Meurens, E. Agosin, Monitoring Large Scale Wine Fer-
mentations with Infrared Spectroscopy, Talanta 64 (3), 778–784, 2004.

230. A. Urtubia, J. R. Perez-Correa, A. Soto, P. Pszczolkowski, Using Data Mining Techniques to
Predict Industrial Wine Problem Fermentations, Food Control 18, 1512–1517, 2007.

231. A. Van Hirtum and D. Berckmans, Fuzzy Approach for Improved Recognition of Citric Acid
Induced Piglet Coughing from Continuous Registration, Journal of Sound and Vibration 266
(3), 667–686, 2003.

232. V.N. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.
233. K. Verheyen, D. Adriaens, M. Hermy, S. Deckers, High-Resolution Continuous Soil Classi-

fication using Morphological Soil Profile Descriptions, Geoderma 101, 31–48, 2001.
234. K.N. Vikram, V. Vasudevan and S. Srinivasan, Rate-Distortion Estimation for Fast JPEG2000

Compression at Low Bit-Rates, Electronic Letters 41 (1), 16–18, 2005.
235. H.D. Vinod, A Survey of Ridge Regression and Related Techniques for Improvements over

Ordinary Least Squares, The Review of Economics and Statistics 60 (1), 121–131, 1978.
236. Y. Wu, K. Ianakiev, V. Govindaraju, Inproved k-Nearest Neighbor Classification, Pattern

Recognition 35, 2311–2318, 2002.
237. X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A. Ng, B.

Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, D. Steinberg, Top 10 Algorithms in Data
Mining, Knowledge and Information Systems 14, 1–37, 2008.

238. J. Xu, D.W.C. Ho, A New Training and Pruning Algorithm Based on Node Dependence and
Jacobian Rank Deficiency, Neurocomputing 70, 544–558, 2006.

239. R. Xu, D. Wunsch II, Survey of Clustering Algorithms, IEEE Transactions on Neural Networks
16 (3), 645–678, 2005.

240. S. Xu and M. Zhang, A New Adaptive Neural Network Model for Financial Data Mining,
Lecture Notes in Computer Science 4491, Springer, New York, 1265–1273, 2007.

241. Q. Yang, An Approach to Apple Surface Feature Detection by Machine Vision, Computers
and Electronics in Agriculture 11, 249–264, 1994.

242. Z.R. Yang, R. Hamer, Bio-Basis Function Neural Networks in Protein Data Mining, Current
Pharmaceutical Design 13 (14), 1403–1413, 2007.

264 References

243. Q. Yang, and J.A. Marchant, Accurate Blemish Detection with Active Contour Models, Com-
puters and Electronics in Agriculture 14, 77–89, 1996.

244. J. Yang, W. Wang, H. Wang, and P. Yu, Enhanced Biclustering on Expression Data, Proceed-
ings of the Third IEEE Conference in Bioinformatics and Bioengineering, 321–327, 2003.

245. N. Yano, M. Kotani, Clustering Gene Expression Data using Self-Organizing Maps and k-
means Clustering, SICE Annual Conference in Fukui, Japan, 2003.

246. K.Y. Yeung and W.L. Ruzzo, Principal Component Analysis for Clustering Gene Expression
Data, Bioinformatics 17 (9), 763–774, 2001.

247. S. Ying, Y. Zheng, G. Kanglin, Mining Stock Market Tendency by RS-Based Support Vector
Machines, IEEE International Conference on Granular Computing, 659–659, 2007.

248. R. Yu, P.S. Leung, P. Bienfang, Predicting Shrimp Growth: Artificial Neural Network versus
Nonlinear Regression Models, Aquacultural Engineering 34, 26–32, 2006.

249. X. Zeng, D.S. Yeung, Hidden Neuron Pruning of Multilayer Perceptrons using a Quantified
Sensitivity Measure, Neurocomputing 69, 825–837, 2006.

250. Y. Zhang, Z. Xiong, J. Mao, L. Ou, The Study of Parallel k-means Algorithm, Proceedings of
the 6th World Congress on Intelligent Control and Automation 2, 5868–5871, 2006.

251. S. Zhong, Efficient Online Spherical K-means Clustering, Proceedings of International Joint
Conference on Neural Networks 5, 3180–3185, 2005.

Glossary

agriculture The science, art, or occupation concerned with cultivating land, raising
crops, and feeding, breeding, and raising livestock. Data mining techniques applied
to agriculture are discussed in this book.

algorithm A set of unambiguous rules or instructions for solving a given problem
in a finite number of steps.

center of a cluster The mean among all the vectors representing the samples in a
unique cluster.

class A subset of samples having the same classification. The word “class’’ is used
when classification methods are used.

classification The problem of dividing a given set of data into different classes.

cluster A subset of samples having some common properties. The word “cluster’’
is used when clustering methods are employed.

clustering The problem of dividing a given set of data in different clusters into
which samples having some common properties are grouped.

covariance A statistical measure of the variance of two variables. It corresponds to
the product of the deviations of the corresponding values of the two variables from
their respective means.

covariance matrix A matrix of covariances between elements of a vector.

cubic spline A spline in which all the polynomial pieces have degree 3.

data mining The nontrivial extraction of previously unknown, potentially useful
and reliable patterns from a set of data; it is the process of analyzing data from
different perspectives and summarizing it into useful information; it is also known
as “knowledge discovery.’’

dependent variable A mathematical variable whose value is determined by the
value other variables have. For example, if f is a function in � and x is a real
variable, then y = f (x) is a dependent variable.

265

266 Glossary

deterministic method A method that is able to provide the solution to the problem
to be solved if specific hypotheses are met.

eigenvalues and eigenvectors Given a square matrix �, if there is a vector x such
that

(� − λI)x = 0,

where I is the identity matrix having the same dimensions of �, then x is an eigen-
vector of � and the real number λ is the corresponding eigenvalue. Usually, the above
linear system is solved in order to obtain all the eigenvalues and all the eigenvectors
of �.

Euclidean plane A Euclidean space in dimension 2.

Euclidean space The space of all possible n-tuples (x1, x2, . . . , xn) of real numbers.
It is denoted by the symbol �n.

exact method See “deterministic method.’’

function A rule or law that associates uniquely an element of a set A to one and
only one element of another set B.

heuristic method Heuristic methods are used to rapidly come to a solution that
is reasonably close to the best possible answer, or “optimal solution.’’ They do not
guarantee that the solution found is the optimal one. However, they are used when
any deterministic method for solving the same problem cannot be applied or it is too
computationally expensive.

independent variable A variable whose value determines the value of other vari-
ables. For example, if f is a function in � and x is an independent variable, then the
value of x influences the value of the variable y = f (x).

interpolating function A function that interpolates a given set of points

{(x1, y1), (x2, y2), . . . , (xn, yn)}
in a Euclidean space. In other words, f is an interpolating function if

f (xi) = yi ∀i = 1, 2, . . . , n.

learning phase The process in which a given system learns how to perform a certain
task. The learning phase is employed by artificial neural networks and support vector
machines.

logarithmic function The logarithmic function in base b of the real number x is
the exponent to give to the base for obtaining x.

multilayer perceptron A type of artificial neural network in which the neurons of
the network are organized in layers.

natural logarithm The logarithmic function having as base the Nepero number
(e = 2.71 . . .).

Glossary 267

Newton polynomial A polynomial interpolating a given set of points in the two-
dimensional space if its coefficients correspond to the “divided differences,’’obtained
from the points to interpolate.

objective function The function to be optimized in an optimization problem; de-
pending on the problem at hand, it can be required that the function is minimized or
maximized.

optimization problem The problem of optimizing (minimizing or maximizing) a
given objective function, subject to certain constraints.

outliers Any sample which is uniquely different from a given subgroup of samples
(a cluster or a class).

parabola A polynomial of degree 2.

parallel computing Parallel computing is a form of computation in which several
calculations are carried out simultaneously.

pattern A distinctive style, model, or form.

polynomial Any function having equation

p(x) = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0,

in the Euclidean two-dimensional space, is a polynomial of degree n.

pruning process The process of removing useless or redundant objects or informa-
tion from a given system. For example, artificial neural networks can be pruned after
the learning phase.

regression function A function which approximates a given set of points in a Eu-
clidean space. The coefficients of such a function are usually identified by solving a
certain optimization problem.

sample One that is representative of a group or class or cluster.

software Software is a general term used to describe a collection of computer pro-
grams, procedures and documentation that perform some tasks on an operating sys-
tem.

spline A function
S : [a, b] ⊂ � −→ �

formed by polynomial pieces

Pi : [ti , ti+1) ∈ [a, b] −→ � ∀i ∈ {1, 2, . . . , K},
where a = t1 < t2 < · · · < tK < tK+1 = b. Each polynomial piece usually has a
predetermined degree.

testing set A set of samples with known classification used for testing a data mining
technique.

268 Glossary

training phase See “learning phase.’’

training set A set of samples with known classification used for tuning the param-
eters of a given classification technique.

unsupervised classification See “clustering.’’

validation set A set of samples with known classification used for validating the
results obtained by certain classification technique.

variance The variability of a given variable. It can be obtained by locating the
minimum and the maximum value of the variable.

vector A sorted set of a variables which are called components.

Index

α-consistent biclustering, 150, 152, 160, 218
β-consistent biclustering, 150, 151, 153
k-fold method, 170
k-means, 4–6, 15, 19–21, 37, 47–50, 52, 53,

56–58, 61–64, 66–70, 72–74, 76, 78, 81,
96, 119, 143, 151, 157, 161, 162, 173,
178, 184, 191, 193, 198, 231

k-means variants
J -means, 58
Y -means, 58, 67
h-means, 56–58, 82, 178, 179, 194, 195,

198, 231, 234–236, 238, 241, 243–245,
247–249, 251

h-means+, 57, 58, 82, 197, 198
hk-means, 57
k-means+, 57, 58, 82, 195, 196
fuzzy c-means, 64, 66, 67, 116, 121
genetic k-means, 61, 67
global k-means, 61
spherical k-means, 68
symmetry-based k-means, 61

k-medoids, 48
k-nearest neighbor (k-NN), 2–4, 6, 19, 20,

83–86, 88–91, 93–96, 98, 99, 103, 105,
161–163, 170, 171, 173, 176, 179–181,
201

activation value, 109, 110
active set method, 16
agglomerative hierarchical clustering, 5
alcohols, 69
algorithm, 15, 37, 50, 51, 53, 56–58, 63, 64,

68, 73, 75, 78, 82, 85, 87, 89, 99, 102,
107, 111, 119, 143, 151, 173, 175–177,
179–181, 183, 193, 194, 196, 231, 233,
234, 243–245

amino acid, 8, 9

animal sound, 4, 20
ant colony optimization (ACO), 17
apple, 1, 3, 4, 7, 19, 20, 47, 68, 71–73, 115,

119–121, 123–125, 127, 129, 184
artificial neural networks (ANNs), 2–4, 6, 7,

12, 13, 15, 20, 21, 37, 72, 107–111,
113, 114, 120, 122, 125, 126, 129, 157,
161–163, 173, 181, 182, 204–211

ASTROFOLD, 9
atmosphere, 68

back-propagation method, 111, 121
Beowulf cluster, 173, 174
biclustering, 4–6, 12, 20, 143, 144, 148,

150–153, 155, 157, 159–162, 218
binary variable, 9, 10, 23, 152
bird, 17, 20, 83, 133, 134
blood analysis, 2–4, 6, 47
brain, 2, 6, 11, 36, 107, 108, 132, 155, 162, 181
branch and bound method, 16

C++ programming language, 231
character recognition, 131
chicken breast, 20, 37, 38, 40
class, 3, 6, 13, 20, 72, 78, 83, 84, 89, 90, 96, 98,

99, 102, 110, 114, 124–127, 130–132,
134, 137, 140, 151, 162, 201, 202, 212,
213, 265

classification, 2–6, 12, 15, 47, 67, 70, 72, 83,
85, 87, 96, 98, 99, 102, 107, 113, 115,
120, 122, 123, 130–132, 134, 137, 138,
151, 159, 161–163, 166, 171, 179, 181,
200, 208, 249, 265

clique, 14
cluster, 3, 5, 48, 50, 51, 54, 56, 58, 60–65, 70,

74–76, 78, 81, 82, 143, 144, 148–151,
157, 159, 161, 178, 179, 233–235, 238,
244, 248, 249, 251

269

270 Index

cluster of computers, 173, 176
clustering techniques, 3–6, 14, 47, 48, 96, 143,

151, 157, 161, 162, 170, 178, 265
collaborative filtering, 153
condensed nearest neighbor rule, 85
consistent biclustering, 148, 150–152, 155
constraints, 15, 16, 27, 56, 65, 126, 130, 145,

152
consumption coefficient, 40
corn, 133
correlated variables, 23, 24
cosine similarity function, 68
covariance, 27, 28, 38, 41, 265
covariance matrix, 27, 28, 38, 41
CPLEX, 14
crop, 91, 93, 132
CROPSYST, 93

data representation, 13, 88
decision tree, 131, 134
deterministic method, 16, 17, 266
distributed memory, 174
divisive hierarchical clustering, 5
DNA, 7
DOS operating system, 137
DSSAT, 93
dual problem, 126, 127, 130
dvix format, 63

EasyNN, 121
eggs, 115
eigenvalue, 27, 28, 38, 41, 266
eigenvector, 27, 28, 38, 41, 266
electoral data, 153
electronic nose, 132
energy consumption, 40
epilepsy, 11
exact method, 16, 17, 266

face detection, 114
fast condensed nearest neighbor rule, 88
feature selection, 149, 151
finance, 13
forecasts, 19, 68, 90–93, 115, 122, 132
foreign currencies, 153
forest inventory, 90
fractional 0-1 programming problem, 152
fruit, 7, 19, 48, 71–73, 114, 115, 118–120
functions in C
compute_centers, 233–235
copy_centers, 234, 238
dimfile, 239, 240
find_closest, 234, 235

hmeans, 232–235, 238, 241, 243, 244,
247–251

isStable, 233, 234, 236
main, 239, 241, 243–245
rand_clust, 233, 234
readfile, 240, 241, 243

functions in MATLAB r©
centers, 74, 76, 78
condense, 102, 106
fun, 229
generate4libsvm, 137, 138, 214
generate, 73, 78, 98, 100, 102, 137, 170
hmeans, 82, 198
kmeans, 50, 76, 78, 82, 98, 101
knn, 96, 98, 99, 101, 103, 106, 202
plotp, 78, 82, 106, 170, 171, 202–204
reduce, 103, 106

fuzzy partition, 64–66

genetic algorithms (GAs), 17, 61, 90, 112
GLEAMS, 93
glossary, 265
graph theory, 14
grid computing, 175

harmony search (HS), 17
heuristic method, 16–18, 61, 112, 181, 182
hierarchical clustering, 5, 61
hybrid method, 17, 58
hyperbolic tangent function, 110

interior point method, 16
interpolation, 20, 30, 36, 107, 266

Java, 231
join-the-dots function, 30, 42, 45, 188, 189
JPEG format, 63

KD-tree method, 89
kernel function, 128–131, 136, 138, 141

Lagrangian multipliers, 126
learning phase, 13, 108, 110–112, 116, 121,

125, 131, 162, 163, 266
leave-one-out method, 166, 167, 169, 170
LIBSVM, 137
LIBSVM procedures
svmpredict, 137, 138
svmscale, 137
svmtoy, 137
svmtrain, 137–139

linear classifier, 6, 124, 127, 162, 182
Linux operating system, 232
Lloyd’s algorithm, 49, 56, 81, 231
logistic functions, 94, 110, 120, 122, 210, 211

Index 271

machine vision, 71, 114, 115
market, 1, 4, 13, 14, 19, 68, 71, 115, 118, 184
MATLAB, 20, 21, 40, 44, 50, 73, 80, 96, 106,

134, 163, 164, 167, 170, 185, 186, 189,
198, 202, 203, 219, 238

MATLAB toolbox, 122, 134, 136, 228
meat and bone meal, 20, 132, 133, 135, 136
message passing interface (MPI), 176
meta-heuristic method, 16–18, 61, 112, 181,

182, 266
microarray, 153–155
MIMD computer, 173–176
model, 16, 30, 31, 33, 35, 37, 91, 92, 94, 110,

111, 122, 134, 161, 163–167, 204, 206
modified condensed nearest neighbor rule, 87
molecular distance geometry problem, 10
molecule, 7, 9, 10, 15
monkey search (MS), 17
MP3 format, 63
MPEG format, 63
multi-objective optimization, 17
multilayer perceptron, 6, 13, 108, 118, 120,

122, 181, 204, 206, 208, 266

NeuroSolutions, 121
nitrogen, 69, 71, 133
noise, 4, 40, 66, 117, 118, 129, 145–147
nonlinear classifier, 126, 182

objective, 15
objective function, 15, 16, 19, 27, 28, 49, 52,

67, 114, 126, 129, 131, 148, 267
occupied sample, 58
optimization, 3, 14, 27, 35, 49, 57, 66, 118,

125, 127, 145, 151, 155, 159, 181, 214,
267

orange, 114
organic acid, 68, 69
outlier, 60, 62, 66, 129, 267
overfitting, 112, 113, 121, 130

parallel computing, 109, 173, 179, 184, 267
parallel environment, 21, 109, 173–176, 179,

181–183
particle swarm optimization (PSO), 17
partitioning, 4, 5, 7, 37, 48, 49, 64, 143, 151,

251
partitioning clustering, 5, 61
personal computer, 173–175
pig cough, 115–117
pizza sauce, 133
plant, 68, 94, 136
pointer, 240, 243–245
pointer to pointers, 239, 243, 245

pollution, 68
polynomial, 31–34, 42, 44, 165, 167, 267
preface, vii
principal component, 24, 27, 28, 38, 41
principal component analysis (PCA), 4, 20, 23,

24, 26, 27, 29, 36–38, 41, 44, 45, 70,
185, 186

processor, 173–184
programming language, 231, 233
protein backbone, 8–10
protein conformation, 8, 9
protein folding, 7
pruning phase, 20, 111, 113, 114, 267

reduced nearest neighbor rule, 87
reformulations, 17
regression, 4, 20, 25, 30, 34, 36, 40, 44, 94,

107, 137, 163, 166, 189, 267

shared memory, 174
side chains, 8
sigmoid function, 110, 122, 210
SIMD computer, 174, 175
simulated annealing (SA), 17–19
single perceptron, 110
SISD computer, 175
software, 14, 20, 21, 121, 122, 137, 231, 267
soil, 19, 30, 37, 68, 71, 90, 93–95, 132
statistical technique, 36
subroutine, 176
sugar, 40, 69, 70, 114, 115
supervised classification, 72, 151, 153
support vector machines (SVMs), 2, 4, 6, 11,

13, 15, 16, 20, 21, 123, 125–132, 134,
136–139, 157, 161–163, 173, 182, 214

support vectors, 125, 126, 136, 182, 183, 215

taste sensors, 115
telecommunication, 12, 13
template trees method, 89
test set method, 163
text mining, 67, 68, 89, 90, 153
torsion angle, 9
training set, 6, 20, 31, 32, 34, 84, 85, 87–90,

96, 98–100, 102, 106, 120, 131, 137,
151, 159, 161–170, 172, 179, 180, 182,
183, 200, 201, 203, 268

trust region, 16

uncorrelated variables, 24, 27
unoccupied sample, 58
unsupervised classification, 3, 151, 268

validation techniques, 13, 21, 130, 162, 163,
166, 168

272 Index

vector quantization, 63
Voronoi diagram, 52–54, 56, 58

watercore, 20, 115, 119–121
WAV format, 63

Windows operating system, 137, 232, 247
wine fermentation, 19, 37, 68, 157

X-ray, 20, 115, 119, 120

	Cover
	Springer Optimization and Its Applications Volume 34
	Data Mining in Agriculture
	0387886141
	Preface
	Contents
	List of Figures
	Chapter 1 Introduction to Data Mining
	1.1 Why data mining?
	1.2 Data mining techniques
	1.2.1 A brief overview
	1.2.2 Data representation

	1.3 General applications of data mining
	1.3.1 Data mining for studying brain dynamics
	1.3.2 Data mining in telecommunications
	1.3.3 Mining market data

	1.4 Data mining and optimization
	1.4.1 The simulated annealing algorithm

	1.5 Data mining and agriculture
	1.6 General structure of the book

	Chapter 2 Statistical Based Approaches
	2.1 Principal component analysis
	2.2 Interpolation and regression
	2.3 Applications
	2.3.1 Checking chicken breast quality
	2.3.2 Effects of energy use in agriculture

	2.4 Experiments in MATLAB
	2.5 Exercises

	Chapter 3 Clustering by k-means
	3.1 The basic k-means algorithm
	3.2 Variants of the k-means algorithm
	3.3 Vector quantization
	3.4 Fuzzy c-means clustering
	3.5 Applications
	3.5.1 Prediction of wine fermentation problem
	3.5.2 Grading method of apples

	3.6 Experiments in MATLAB
	3.7 Exercises

	Chapter 4 k-Nearest Neighbor Classification
	4.1 A simple classification rule
	4.2 Reducing the training set
	4.3 Speeding k-NN up
	4.4 Applications
	4.4.1 Climate forecasting
	4.4.2 Estimating soil water parameters

	4.5 Experiments in MATLABr�
	4.6 Exercises

	Chapter 5 Artificial Neural Networks
	5.1 Multilayer perceptron
	5.2 Training a neural network
	5.3 The pruning process
	5.4 Applications
	5.4.1 Pig cough recognition
	5.4.2 Sorting apples by watercore

	5.5 Software for neural networks
	5.6 Exercises

	Chapter 6 Support Vector Machines
	6.1 Linear classifiers
	6.2 Nonlinear classifiers
	6.3 Noise and outliers
	6.4 Training SVMs
	6.5 Applications
	6.5.1 Recognition of bird species
	6.5.2 Detection of meat and bone meal

	6.6 MATLAB and LIBSVM
	6.7 Exercises

	Chapter 7 Biclustering
	7.1 Clustering in two dimensions
	7.2 Consistent biclustering
	7.3 Unsupervised and supervised biclustering
	7.4 Applications
	7.4.1 Biclustering microarray data
	7.4.2 Biclustering in agriculture

	7.5 Exercises

	Chapter 8 Validation
	8.1 Validating data mining techniques
	8.2 Test set method
	8.2.1 An example in MATLAB

	8.3 Leave-one-out method
	8.3.1 An example in MATLAB

	8.4 k-fold method
	8.4.1 An example in MATLAB

	Chapter 9 Data Mining in a Parallel Environment
	9.1 Parallel computing
	9.2 A simple parallel algorithm
	9.3 Some data mining techniques in parallel
	9.3.1 k-means
	9.3.2 k-NN
	9.3.3 ANNs
	9.3.4 SVMs

	9.4 Parallel computing and agriculture

	Chapter 10 Solutions to Exercises
	10.1 Problems of Chapter 2
	10.2 Problems of Chapter 3
	10.3 Problems of Chapter 4
	10.4 Problems of Chapter 5
	10.5 Problems of Chapter 6
	10.6 Problems of Chapter 7

	Appendix A - The MATLAB Environment
	A.1 Basic concepts
	A.2 Graphic functions
	A.3 Writing a MATLAB function

	Appendix B - An Application in C
	B.1 h-means in C
	B.2 Reading data from a file
	B.3 An example of main function
	B.4 Generating random data
	B.5 Running the applications

	References
	Glossary
	Index

