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Preface

The post-genomic revolution is witnessing the generation of petabytes of information
annually, with deep implications ranging across evolutionary theory, developmental biol-
ogy, agriculture, and disease processes. The great challenge during the coming decades is
not so much in generating the data, for that will continue at an accelerating pace, but in
converting it into the information and knowledge that will improve the human condition
and deepen our understanding of the world around us. A first step in meeting that
challenge is to structure data so that it is easily accessed, integrated, and assimilated.
Data Mining in Systems Biology surveys and demonstrates the science and technology of
this important initial step in the data-to-knowledge conversion. The volume is organized
around two overlapping themes, network inference and functional inference.

Network Inference

Tsuda and Georgii (Dense Module Enumeration in Biological Networks) discuss a rigorous,
robust, and inclusive approach to inferring a particular type of network; viz, networks
defined by databases that record physical interactions between proteins. Willy, Sung, and
Ng (Discovering Interacting Domains and Motifs in Protein–Protein Interactions) discuss a
method for discovering interactions between protein domains and short linear sequences,
which are fundamental to multiple cellular processes. In particular, they discuss and
demonstrate how to exploit the surge in structural data to infer such interactions. Mon-
giovı̀ and Sharan (Global Alignment of Protein–Protein Interaction Networks) describe a
novel method for identifying proteins that are orthologous across species. Their method is
based on alignment of protein–protein interaction networks. This paper and that of Tsuda
and Georgii represent a good example of the knowledge amplification that can be achieved
by research on different but potentially complementary projects carried out by different
labs. These three papers illustrate important directions in the discovery and analysis of
protein–protein interactions.

While protein–protein interactions define the repertoire of cellular processes, pro-
tein–DNA interactions regulate those processes. In general, gene/protein networks
defined by such interactions can be inferred from experimental data by various multivariate
statistical methods. One of the widely used forms of inference is Bayesian probabilistic
modeling. Larjo, Shmulevich, and L€ahdesm€aki (Structure Learning for Bayesian Networks
as Models of Biological Networks) review recent progress in the development and application
of these methods. Mordelet and Vert (Supervised Inference of Gene Regulatory Networks
from Positive and Unlabeled Examples) discuss SIRENE, a machine learning method for
inferring networks of transcriptional regulators and their targets from expression data and
known regulatory relationships. Honkela, Rattray, and Lawrence (Mining Regulatory
Network Connections by Ranking Transcription Factor Target Genes Using Time Series
Expression Data) developed a reverse engineering approach to infer regulator target inter-
actions and applied it to candidate targets of the p53 tumor suppressor promoter.
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Historically, molecular biology has focused on proteins and nucleic acids. One of
the major changes in the past decade has been a dramatic increase in understanding
metabolism; this, of course, is also stimulated by the availability of whole genome sequence
data. This constitutes the subject of Protein–Chemical Substance Interactions. Hancock,
Takigawa, andMamitsuka (Identifying Pathways of Co-ordinated Gene Expression) present a
tutorial for the use of gene expression data to identify metabolic networks associated with
a given condition.

More direct approaches to metabolism include an increased emphasis on the structure
of complex carbohydrates. Aoki-Kinoshita (Mining Frequent Subtrees in Glycan Data
Using the RINGS Glycan Miner Tool) describes an algorithmic method for finding fre-
quently occurring tree structures with glycan databases, which are relevant to the binding
of particular proteins. This can be thought of as the metabolic analogue to approaches that
identify protein–protein and protein–DNA binding sites.

The chapter by Yamanishi (Chemogenomic Approaches to Infer Drug–Target Interaction
Networks) discusses another kind of network, those formed by drug–target interactions. In
this case, sequence and chemical structure databases provide the information that enable
statistical classification methods to identify plausible drug–target interactions.

Functional Inference

The ability to predicatively localize proteins to one or another cellular compartment can
generate important clues about their possible function. Imai, Hayat, Sakiyama, Fujita,
Tomii, Elofsson, and Horton (Localization Prediction and Structure-Based In Silico Anal-
ysis of Bacterial Proteins: With Emphasis on Outer Membrane Proteins) evaluate localization
prediction tools against a known dataset, and illustrate with an application to b-barrel outer
membrane proteins in E. coli. For biological interpretation of large-scale datasets, visuali-
zation tools play key roles. Hu (Analysis Strategy of Protein–Protein Interaction Networks)
explains how to use the multiple data sources and analytical tools in VisANT to identify and
analyze networks of various kinds. Karp, Paley, and Altman (Data Mining in the MetaCyc
Family of Pathway Databases) present an introduction to the contributions made by Karp
and his colleagues over many years. The chapter is a rich source of tools and methods for
mining this extensive, well-curated, and extremely important set of databases.

Approaches to genotype–phenotype correlations have evolved continuously over the
past several decades. With the advent of whole genome sequencing, the search for correla-
tions between genes and Mendelian traits accelerated enormously, but complex pheno-
types, whether normal traits or diseases, find their genetic basis in sets of genes, and in
particular combinations of alleles. Various procedures have been developed to infer such
sets from variations in transcriptional variation. Hung (Gene Set/Pathway Enrichment
Analysis) describes in detail how the so-called gene set enrichment analysis can be used
to draw functional inferences from such transcriptional datasets. The method has been
applied to identify processes that distinguish disease phenotypes from normal phenotypes.
This leads to the final four chapters of the volume, which are all disease related.

Linghu, Franzosa, and Xia (Construction of Functional Linkage Gene Networks by Data
Integration) discuss an approach to combining heterogeneous datasets in order to con-
struct full genome networks in which each gene is surrounded by functionally related
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neighbors, with the relationships specified by evidence-weighted links. Such functional
linkage networks (FLNs) of human genes can uncover surprising genetic associations
between phenotypically unrelated diseases and suggest that our current disease nosology
may need to be reformulated.

The chapter by Yang, Kon, and DeLisi (Genome-Wide Association Studies) presents an
overview of genome-wide association methods and explains how multiple data sources,
including databases generated by high-throughput genotyping technologies, can be used
to identify disease-associated chromosomal locations.

Kuiken, Yoon, Abfalterer, Gaschen, Lo, and Korber (Viral Genome Analysis and
Knowledge Management) discuss three of the major infectious disease sequence-function
databases—those for the human immunodeficiency, hepatitis C, and hemorrhagic fever
viruses. The challenge here again is combining information from different sources, but in
this case, integration and quality control are achieved by a continually upgraded
community-developed infrastructure.

Kanehisa (Molecular Network Analysis of Diseases and Drugs in KEGG) presents
another integrated approach where known disease genes and drug targets are integrated
into the KEGG molecular network database and explains how to make use of this resource
with the KEGG Mapper tool in large-scale data analysis.

We expect this book to be of interest to cell biologists and biotechnologists, as well as
to the scientists and engineers developing the databases and mining and visualization
systems that are central to the paradigm-altering discoveries being made with increasing
frequency.

Uji, Kyoto, Japan Hiroshi Mamitsuka
Boston, MA, USA Charles DeLisi
Uji, Kyoto, Japan Minoru Kanehisa
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Chapter 1

Dense Module Enumeration in Biological Networks

Koji Tsuda and Elisabeth Georgii

Abstract

Automatic discovery of functional complexes from protein interaction data is a rewarding but challenging
problem. While previous approaches use approximations to extract dense modules, our approach exactly
solves the problem of dense module enumeration. Furthermore, constraints from additional information
sources such as gene expression and phenotype data can be integrated, so we can systematically detect dense
modules with interesting profiles. Given a weighted protein interaction network, our method discovers all
protein sets that satisfy a user-defined minimum density threshold. We employ a reverse search strategy,
which allows us to exploit the density criterion in an efficient way.

Key words: Protein complex, Dense module enumeration, Reverse search, Gene expression, Protein
interaction

1. Introduction

Today, a large number of databases provide access to experimentally
observed protein–protein interactions. The analysis of the corres-
ponding protein interaction networks can be useful for functional
annotation of previously uncharacterized genes as well as for reveal-
ing additional functionality of known genes. Often, function pre-
diction involves an intermediate step where clusters of densely
interacting proteins, called modules, are extracted from the net-
work; the dense subgraphs are likely to represent functional protein
complexes (1). However, the experimental methods are not always
reliable, which means that the interaction network may contain
false positive edges. Therefore, confidence weights of interactions
should be taken into account.

A natural criterion that combines these two aspects is the average
pairwise interaction weight within a module (assuming a weight of
zero for unobserved interactions, cf. (2)). We call this the module
density, in analogy to unweighted networks (3).We present a method

Hiroshi Mamitsuka et al. (eds.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 939,
DOI 10.1007/978-1-62703-107-3_1, # Springer Science+Business Media New York 2013
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to enumerate all modules that exceed a given density threshold. It
solves the problem efficiently via a simple and elegant reverse search
algorithm, extending the unweighted network approach in (4).

There is a large variety of related work on module discovery in
networks. The most common group are graph partitioning meth-
ods (5–7). They divide the network into a set of modules, so their
approach is substantially different from dense module enumeration
(DME), which provides an explicit density criterion for modules
(Fig. 1a). Another group of methods define explicit module

Fig. 1. Dense module enumeration approach. (a) DME versus partitioning. While partitioning methods return one clustering
of the network, DME discovers all modules that satisfy a minimum density threshold. (b) Combination with profile data.
Integration of protein–protein interaction (PPI) and external profile data allows to focus on modules with consistent
behavior of all member proteins in a subset of conditions. The top module has two conditions where all nodes are positive
and one condition where all nodes are negative. The arrows in the profile show such consistent conditions. On the other
hand, the bottom module does not have such consistency.

2 K. Tsuda and E. Georgii



criteria, but employ heuristic search techniques to find the modules
(3, 8). This contrasts with complete enumeration algorithms,
which form the third line of research: they give explicit criteria
and return all modules that satisfy them. For example, clique search
has been frequently applied (9, 10). The enumeration of cliques can
be considered as a special case of our approach, restricting it to
unweighted graphs and a density threshold of one. Further enu-
merative approaches use different module criteria assuming
unweighted graphs (11).

In recent years, many module finding approaches which inte-
grate protein–protein interaction networks with other gene-
related data have been published. One strategy, often used in the
context of partitioning methods, is to build a new network whose
edge weights are determined by multiple data sources (12). Tanay
et al. (13) also create one single network to analyze multiple
genomic data at once; however, they use a bipartite network
where each edge corresponds to one data type only. In both
cases, the different data sets have to be normalized appropriately
before they can be integrated. In contrast to that, other approaches
keep the data sources separate and define individual constraints for
each of them. Consequently, arbitrarily many data sets can be
jointly analyzed without the need to take care of appropriate
scaling or normalization. Within this class of approaches, there
exist two main strategies to deal with profile data like gene expres-
sion measurements. In the first case, the profile information is
transformed into a gene similarity network, where the strength of
a link between two genes represents the global similarity of their
profiles (2, 14, 15). In the second case, the condition-specific
information is kept to perform a context-dependent module anal-
ysis (16–18). Our approach follows along this line, searching for
modules in the protein interaction network that have consistent
profiles with respect to a subset of conditions. In contrast to the
previous methods, our algorithm systematically identifies all mod-
ules satisfying a density criterion and optional consistency con-
straints.

2. Materials

1. A protein interaction network: It can be downloaded, e.g.,
from the following Web sites, IntAct (19), MINT (20), and
BIND (21).

2. Gene expression data: For example, global human gene expres-
sion profiles across different tissues can be obtained from the
supplementary information of (22).

1 Dense Module Enumeration in Biological Networks 3



3. Methods

We describe the basic idea of DME using the examplar graph shown
in Fig. 2. First, we discuss how to enumerate dense modules in a
network, and then proceed to explain how gene expression data can
be involved.

3.1. Enumeration

of Dense Modules

Our method is based on the reverse search paradigm (23), which is
quite popular in the algorithm community, but only in a limited
degree known in the data mining community. A weighted graph is
represented as a symmetric association matrix (edges that are not
shown have zero weight). We denote by wij the weight between
two nodes, and define the density of a node subset U as

rðU Þ ¼
X

i;j2U ;i<j

wij
jU jðjU j � 1Þ

2

�
:

We would like to enumerate all subsets U with rðU Þ � y,
where y is a prespecified constant.

All subsets form a natural graph-shaped search space, where
one can move downwards or upwards by adding or removing a
node, respectively (Fig. 3a). Here, the root node corresponds to the
empty set. For efficient traversal, however, one needs a spanning
tree, not a graph. When a tree is made by lexicographical ordering
(Fig. 3b), the search tree is not anti-monotonic with respect to the
density. Namely, the density is not monotonically decreasing when
the tree is traversed from the root to a leaf. This property disallows
early pruning and makes the enumeration difficult. However, there
exists indeed a search tree which is anti-monotonic (Fig. 3c). It can
be constructed by reverse search.

In reverse search, the search tree is specified by defining a
reduction map f ðU Þ which transforms a child to its parent. In our
case, the parent is created by removing the node with minimum
degree from the child. Here, the degree of a node is defined as the
sum of weights of all adjacent edges within U. If there are multiple

Fig. 2. An examplar graph for dense module enumeration.
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nodes with minimum degree, the one with the smallest index is
removed. It is proven that the density of a parent is at least as high as
the maximum density among the children, ensuring that the search
tree induced by the reduction map is anti-monotonic.

In addition to the anti-monotonicity property, a valid reduc-
tion map must satisfy the following reachability condition (23):
starting from any node of the search tree, we can reach a root
node after applying the reduction map a finite number of times.
This condition ensures that the induced search tree is indeed span-
ning. For the reduction map stated above, it is trivial to show that
the reachability condition is satisfied, because any cluster shrinks to
the empty set by removing nodes repeatedly.

To enumerate all clusters with density � y, one has to traverse
this implicitly defined search tree in a depth-first or a breadth-first
manner. During traversal, children are generated on demand. As the
reduction map defines how to get from children to parents and not
vice versa, we cannot directly derive the children from a given

Fig. 3. Illustration of reverse search.
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parent. Instead, to generate the children of a cluster U, we have to
consider all candidatesU [ fig; i =2U and apply the reduction map
to every candidate (reverse search principle). Qualified candidates
with f ðU [ figÞ ¼ U are then taken as children. A naive imple-
mentation of this child generation process can make the algorithm
very slow. Thus, it is important to engineer this process well. As the
search tree is anti-monotonic, one can prune the tree whenever the
density goes below y.

The definition of a search tree is not an issue in the context of
frequent pattern mining (24), because frequency is anti-monotonic
in any tree. Reverse search is interesting because it provides a
systematic way of defining an anti-monotonic tree. Notice, how-
ever, that it is not applicable to all score functions. Cluster density is
an example where reverse search can be applied most effectively.

3.2. Integration of

Additional Constraints

The DME framework makes it easy to incorporate and systemati-
cally exploit constraints from additional data sources. For illustra-
tion, consider the case where we have an additional data set which
provides profiles of proteins or genes across different conditions
(Fig. 1.1b). For simplicity, let us assume binary profiles being 1 if
the protein is positively associated with the corresponding condi-
tion, and 0 otherwise. Then, dense modules where all member
proteins share the same profile across a certain number of condi-
tions are of particular interest; we call these modules consistent. The
problem of DME with consistency constraints is formalized as
follows.

Definition 1: Given a graph with node set V and weight matrix W, a
density threshold y> 0, a profile matrix ðmij Þi2V ;j2C , and nonnegative

integers n0 and n1, find all modules U � V with rW ðU Þ � y s.t.
there exist at least n0 conditions c 2 C with muc ¼ 0; 8u 2 U and
there exist at least n1 c 2 C with muc ¼ 1; 8u 2 U .

Given such a consistency constraint, we can stop the module
extension during the dense module mining as soon as the con-
straint is violated. This is due to the fact that the number of
consistent profile conditions cannot increase while extending the
module; more generally, this property is called anti-monotonicity.
So we simply add to the module enumeration algorithm a condi-
tion which checks for the consistency requirements. These are then
automatically taken into account in the check for local maximality.
The use of additional constraints can restrict the search space
considerably, so it accelerates the computation and helps to focus
on biologically interesting solutions.

We have described a method for enumerating dense modules
in a network. Methodological details and experimental results
are available in (25). Our framework can be extended to module
detection from multiple networks. see ref. 26 for detailed
explanation.
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4. Notes

1. If one starts from a low density threshold, our algorithm often
takes too much time. One should start from very large thresh-
old first, and gradually reduce the threshold to meet one’s
requirement.
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Chapter 2

Discovering Interacting Domains and Motifs
in Protein–Protein Interactions

Willy Hugo, Wing-Kin Sung, and See-Kiong Ng

Abstract

Many important biological processes, such as the signaling pathways, require protein–protein interactions
(PPIs) that are designed for fast response to stimuli. These interactions are usually transient, easily formed,
and disrupted, yet specific. Many of these transient interactions involve the binding of a protein domain to a
short stretch (3–10) of amino acid residues, which can be characterized by a sequence pattern, i.e., a short
linear motif (SLiM). We call these interacting domains and motifs domain–SLiM interactions. Existing
methods have focused on discovering SLiMs in the interacting proteins’ sequence data. With the recent
increase in protein structures, we have a new opportunity to detect SLiMs directly from the proteins’ 3D
structures instead of their linear sequences. In this chapter, we describe a computational method called
SLiMDIet to directly detect SLiMs on domain interfaces extracted from 3D structures of PPIs. SLiMDIet
comprises two steps: (1) interaction interfaces belonging to the same domain are extracted and grouped
together using structural clustering and (2) the extracted interaction interfaces in each cluster are structur-
ally aligned to extract the corresponding SLiM. Using SLiMDIet, de novo SLiMs interacting with protein
domains can be computationally detected from structurally clustered domain–SLiM interactions for PFAM
domains which have available 3D structures in the PDB database.

Key words: Short linear motifs, Protein structural mining, Domain–SLiM interactions, Protein–
protein interactions

1. Introduction

Many protein–protein interactions (PPIs), such as those in signal
transductions pathways, require fast response to stimuli. These
interactions, also known as transient interactions, are designed to
be easily formed and disrupted, and specific. While other PPIs are
mediated by the binding of two large globular domain interfaces
(domain–domain interactions), these transient interactions typi-
cally involve the binding of a protein domain to a short stretch
(3–10) of amino acids (domain–motif interactions).

Hiroshi Mamitsuka et al. (eds.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 939,
DOI 10.1007/978-1-62703-107-3_2, # Springer Science+Business Media New York 2013
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Many bioinformatics researchers have worked on discovering
domain–domain interactions computationally. One of the earlier
works is the InterDom database (1) created by detecting interacting
domains fromoverabundant domainpairs in the protein sequence data
of PPIs. With the increase in the availability of protein 3D structure
data, researchers are able to detect domain–domain interactions
directly from the PDB structural database (2); the databases in this
line include iPFAM(3), 3DID(4), SCOPPI (5), andSNAPPI-DB(6).

Recently, researchers have found that in addition to domain–-
domain interactions, protein domains can recognize a second type
of interaction motifs on other proteins called short linear motifs
(SLiMs) (7–12). The SLiMs are short and degenerate, typically only
3–20 residues long containing just a few conserved positions. The
SLiMs are often found to mediate PPIs that are specific but, at the
same time, easily formed and disrupted. This type of interaction is
found in many key biological pathways such as the signal transduc-
tion. Because of their small sizes, SLiM-based PPIs are good targets
for small-molecule drug therapy, for it is easier to design drugs to
mimic the SLiMs (13) than the larger structural motifs like
domains. The listing of all known SLiMs to date can be found in
databases like ELM (14) and MiniMotif (MnM) (15).

Experimental methods to find SLiMs include site-directed
mutagenesis and phage display. These are tedious and expensive
methods to apply on whole interactomes. As such, bioinformatics
researchers have developed a number of computational methods for
predicting SLiMs from other biological data. The current methods
can be broadly classified into two approaches. The first approach
mines motifs from a given set of related protein sequences, with the
relations being established by prior biological knowledge such as
similarity in known biological functions, similar localization to a
certain cell compartment, or sharing of interaction partners. Meth-
ods in this class include DILIMOT (16), SLiMDisc (17), and
SLiMFinder (18). The second approach is to mine SLiMs that are
overrepresented in the available PPI data. Methods in this class
include D-STAR (19), MotifCluster (20), and SLIDER (21).
There are several drawbacks with these two approaches. First, the
motifs identified via these sequence-based approaches are not guar-
anteed to occur on the binding interface. Such atomic level of details
can only come from high-resolution 3D structures (22). Second,
because SLiMs are highly degenerative, most of these algorithms
masked conserved structured regions (which are assumed not to
have many SLiMs) such as globular domains to reduce false posi-
tives. However, it was found that such filtering has caused true
motifs to be missed (18). Third, the algorithms are highly depen-
dent on the accuracy of the interaction identification experiments,
but high-throughput PPI data are well known to be noisy (23).

Just as the development of domain–domain interaction
detection methods has progressed from sequence-based into
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structure-based approaches, the rapid increase of protein structure
data in the PDB database also offers an excellent opportunity for
detecting SLiMs directly from 3D structures instead of the pro-
teins’ sequences. The atomic level of details available in the high-
resolution 3D structures are much richer than the linear protein
sequences for discovering the weak signals of SLiMs, and the
detected SLiMs are guaranteed to occur on the binding surfaces.
In this chapter, we describe a method called SLiMDIet (24) to find
SLiMs solely from 3D structure data. From the protein structure
dataset downloaded from PDB on August 24, 2009, SLiMDIet was
able to detect 452 distinct SLiMs on the domain interaction inter-
faces. One hundred and fifty-five of them were validated using the
literatures, available structures, or statistical enrichment in the
high-throughput PPI data. In addition, 198 SLiMs have been
detected on domain–domain interaction interfaces (we call these
domain–domain SLiMs), suggesting that the common belief that
SLiMs occur outside the globular domain regions is not completely
accurate, and that some of the apparent domain–domain interac-
tions could in fact be mediated by domain–SLiM interactions.

2. Materials

1. Protein 3D structure data. The protein structure dataset can
be downloaded from public databases such as the PDB. In
the running example of this chapter, we used a protein 3D
structure dataset downloaded from PDB on August 24,
2009, containing 57,559 structures. We chose structures with
at least one protein chain and whose crystallographic resolution
is 3.0 Å or better. We also included all NMR structures. In
total, we have a working dataset of 54,981 structures with
130,488 protein chains.

2. Protein domain annotations. We compute PFAM domain anno-
tations on eachPDB chain using the hmmpfam program from the
HMMER library version 2.3.2 (25) with the PFAM 23.0 library
(26). We use PFAM as our choice of protein domain definition
instead of the structurally defined SCOP (27) or CATH (28)
because of the relatively better coverage of the former (see Note
1). However, PFAM domain does have its own limitation. It
currently does not define structural domains that are formed by
multiple protein chains. Nevertheless, SLiMDIet can also be
applied on SCOP/CATH domain definitions if needed.

3. PPIs. To compute the statistical significance of the SLiMs
detected by SLiMDIet, we compute their enrichment within
a large nonhomologous PPI dataset which can be downloaded
from online databases such as the BioGRID (29) (see Note 2).
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3. Methods

SLiMDIet consists of two main steps: a DIet step (Domain
Interface extraction and clustering step), followed by a SLiM step
(SLiM extraction step):

1. The DIet step takes a set of protein structures from PDB as
input, finds all known domains within the input structures, and
extracts the domain interfaces associated with each of them.
A domain interface comprises two sets of amino acid residues:
one found within a protein domain (the set is called the domain
face) while the other on a partner chain (the partner face) that
are in close vicinity of each other. The interaction interfaces
of each domain are then clustered based on their structural
similarity.

2. In the SLiM step, we conduct an approximate structural multi-
ple alignment to align the domain faces and the partner faces in
each cluster. We then check if the alignment of the partner faces
contains any conserved linear region (called a “block”) of an
appropriate length. If so, we construct a (linear) gapped
position-specific scoring matrix (PSSM) from the block to
represent the detected SLiM.

The details of each step are given as follows (see also Fig. 1).

3.1. DIet Step: Domain

Interface Extraction

and Clustering

3.1.1. Domain Interface

Extraction

1. For each PDB structure, we use the HMMER program to
identify the PFAM domains in its chains. Regions with over-
lapping domain annotations are resolved by choosing the
PFAM domain with the best HMMER E-value.

2. For all possible domain interfaces, we retain those in which
each amino acid on the domain face is within a distance thresh-
old of 5 Å (as done in PSIMAP (30)) from some amino acid on
the partner face and vice versa. We define the distance between
two amino acid residues to be the nearest distance between any
pair of non-hydrogen atoms in the two residues.

3. To curb possible nonbiological (crystal) interfaces, which
generally have smaller interface area, we set a threshold of
having domain interfaces involving a minimum of eight amino
acids on the domain face and four amino acids on the partner
face. This lower bound corresponds to a binding area larger
than 800 Å2—the average size of a domain interface as
given in (5).

4. For intrachain domain interfaces, we also require that the
residues on the partner face are at least ten residues from the
ends of the domain (see Note 3).
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Fig. 1. SLiMDIet’s overview. The domain interfaces of each PFAM domain are clustered by their structural similarity. Next,
from each cluster, the domain and partner faces are structurally aligned and we build a gapped PSSM based on the
contacts on the partner faces. The gapped PSSM has flexible gaps defined by the minimum and maximum gaps observed
between two PSSM positions. We define a gapped PSSM as linear when the total length of its non-gap positions is 3–20
residues with gaps of at most four residues between any consecutive residue positions. To detect domain–SLiM interfaces,
we collect domain interface clusters whose partner faces are covered by a linear gapped PSSM.



3.1.2. Pairwise Structural

Alignment

1. Next, we compute the similarity scores and pairwise alignments
among all pairs of domain interfaces of each PFAM domain in
our dataset.

2. Alignment of two domain interfaces is done by treating each
interface (both the domain and partner face) as one rigid body.
Moreover, we enforce the alignment of the domain face residues
on one interface against the domain face residues on the other,
and do the same for the partner face residues (see Note 4).

3. We define the similarity of two interfaces using the modified
S-score function by Alexandrov and Fischer (31) as follows:

Snorm ¼ 1
ð1þDÞ

N
min Aj j; Bj jð Þ where D is the root mean square dis-

tance (RMSD) between the two structures being aligned, N is
the number of aligned residues between the two interfaces, and
|A| and |B| are the sizes of the aligned interfaces, respectively.
The similarity of two interfaces is measured using both the
backbone and side chain conformation of the residues on
each interface (see Note 5). To this end, we designed MatA-
lignAB for comparing domain interfaces’ both Ca and Cb
atoms, based on the MatAlign algorithm (32).

3.1.3. Hierarchical

Agglomerative Clustering

of the Domain Interfaces

1. For every domain, we cluster its interfaces using a hierarchical
agglomerative clustering algorithm using average linkage (see
Note 6) as follows.

2. We start by setting every domain interface as a trivial cluster
with one member.

3. Next, we pick the pair of clusters which has the highest similar-
ity and combine them into a new cluster. We compute the
average similarity of the newly combined cluster.

4. We repeat the above step until the similarity score between
every possible pair of the clusters is below a certain threshold
(for threshold setting, see Note 7).

3.2. SLiM Step: SLiM

Extraction

3.2.1. Multiple Alignment

of the Partner Faces in a

Cluster

1. For each resulting domain interface cluster, we choose the
interface with the least average distance to all other cluster
member as the cluster center.

2. To generate an approximate multiple alignment of the partner
faces, we align the partner faces from the interfaces in the cluster
to the cluster center’s partner face. We keep only the alignments
that contain at least four nonhomologous partner faces. A face fa
is defined as homologous to fb when (1) fa’s and fb’s aligned
residues in the alignment are exactly the same and (2) their full
protein chains share more than 50% sequence similarity.

3. We also make sure that each alignment column has at least 50%
occupancy, i.e., the number of nonempty residues aligned in
each column (see Note 8) must be at least half of the number of
nonhomologous interfaces aligned.
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3.2.2. SLiM Extraction

from the Longest Linear

Block

1. We identify the longest linear block in each of the above
alignments of the nonhomologous faces (see also Fig. 2 for
an example). A linear block is defined as a set of 3–12 consecu-
tive alignment positions with gaps of at most four residues.

2. We also require that the block must cover at least half of the
partner faces in the alignment. A block is said to cover a partner
face fa when it includes at least half of the contact residues in fa.

3. From the longest linear block thus identified, we construct a
gapped PSSM (i.e., a PSSM with flexible gaps) to represent the
SLiM recognized in the particular domain interface cluster.
The (flexible) gap in between each alignment column is com-
puted by taking the minimum and maximum gap observed
between two residue positions.

4. Given that our multiple alignment is derived from limited
structural data, we do not directly score a residue with its
observed frequency in the alignment. Instead, we define the
score of a residue X on the alignment column i by

GappedPSSMði;X Þ ¼ ln
X

AA2ResðiÞ
freqiðAAÞ � eBLOSUMðX ;AAÞ

0
@

1
A;

where Res(i) is the set of amino acids seen in the column i of the
alignment and freqi(AA) is the frequency of residue AA in column
i. Basically, the equation computes the weighted combination of
the BLOSUM62 substitution score (33) of any residue X against
the residues observed in the alignment—it extrapolates the feasibil-
ity of having other residues in that position based on the BLO-
SUM62 substitution matrix. An illustration of gapped PSSM
construction can be seen in Fig. 3.

3.2.3. Computing

the Statistical Significance

of the SLiM Using PPI Data

1. For each SLiM extracted from an interface cluster, we also
verify whether the motif occurs significantly more in the inter-
action partners of the domain as compared to random PPIs.

2. We define the gapped PSSM score of a particular position j in a
given protein sequence S as the maximum sum of the gapped
PSSM’s residue scores starting at j over all possible gap value in
the PSSM (see Note 9 for an example).

3. We define a position j in a protein with a gapped PSSM score
s as an occurrence of the PSSM if the probability of scoring
j with s or higher in a set of random protein sequence is at
most 0.0001 (see Note 10).

4. Given a SLiM’s gapped PSSM and a set of PPI data, the
probability of observing a certain number of occurrences in
the interaction partners of a protein domain by random can be
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Fig. 2. Partner face alignment steps for finding the longest linear block. The latter is where we extract the SLiM from.
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computed by the standard hypergeometric distribution
function:

P - Value(I ; ID; IM ; IDM Þ ¼
IMj j
IDMj j

� �
Ij j� IMj jð Þ
IDj j� IDMj jð Þ

� �

Ij j
IDj j

� � ;

where I is the whole set of the high-throughput PPI data, IM is the
subset of Iwhich contains an occurrence of the gapped PSSMM, ID
is the subset of I containing the domainD, and IDM is the subset of
ID which contains an instance of M in the domain D’s interaction
partners. SLiMs with P-value �0.05 are considered to be enriched
in the PPI data and reported as detected SLiMs.

4. Notes

1. PFAM has higher PDB chain coverage on the current dataset
[it covers 112,424 chains (86.16% coverage)] as compared to
SCOP [version 1.75, dated June 2009, covering 87,064 chains
(66.72% coverage)] and CATH [version 3.2.0, dated July
2008, covering 86,105 chains (65.99% coverage)].

Fig. 3. An illustration of SLiMDIet’s gapped PSSM generation from a linear block computed from the multiple interface
alignment.
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2. We collected a set of 181,997 nonhomologous PPI data from
the BioGRID interaction database version 2.0.58. We removed
genetic (nonphysical) interactions (as defined by BioGRID)
and those derived directly from structural data (to avoid self-
discovery). Non-homology is enforced by keeping only one
interaction among those whose both proteins are at least 70%
homologous to another pair(s) of interacting proteins. The
PPIs are collected as ordered tuples, i.e., for a given pair of
interacting protein A and B, the tuple (A, B) is distinct from
(B, A). From each tuple, we collect the domain face from the
left element and the partner face from the right one.

3. The requirement is important in order to avoid recognizing
local secondary structures at the end of a domain as interface
contacts. A similar filtering is also used by Stein and Aloy (34)
(published shortly after SLiMDIet).

4. We do not align the structures of entire domains as done in
SCOPPI (5) and SNAPPI-DB (6), which greatly reduces com-
putation time. By considering both domain and partner face as
one rigid body, we also avoid the need of considering the
relative orientation between the domain and partner face.

5. Usually, the RMSD between two proteins is approximated
only by the RMSD of their backbone’s Ca atoms. Since SLiM-
DIet’s domain interfaces only consist of the contact residues
(instead of the whole domain), the Ca representation is rather
inadequate. We use the Cb atom position as a first-order
approximation of the side chain with respect to its backbone
Ca (a similar Cb approximation was mentioned in (35)).

6. The similarity of two clusters is the average pairwise similarity
between all the members of the two clusters (as done in (5)).

7. We use the multiple thresholds, 0.15, 0.2, 0.25, and 0.3, to
generate different sets of (possibly overlapping) domain inter-
face clusters. Those clusters which originate from different
thresholds but have more than 70% overlapping cluster mem-
ber are grouped and SLiMDIet only reports the one with the
most stringent cutoff as the representative of the group.

8. Some alignment column may have empty residues because the
pairwise structural alignment may not align a residue from a
particular partner face to the cluster center’s residue when these
residues’ 3D positions are too different.

9. For example, the best score of position 0 in the string FSDTK

based on the gapped PSSM
L : 4:62
F : 1:38

� �
� f1; 2g T : 2:4

D : �0:12

� �

would be max
1:38þ ð�0:12Þ ðgap ¼ 1Þ;
1:38þ 2:4 ðgap ¼ 2Þ

�
:
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Note that this is a mini-version of a gapped PSSM for exem-
plary purpose; the real gapped PSSM would have entries for all
20 amino acids.

10. We created a set of 10,000 random protein sequences, each of
length 500, whose amino acid distribution follows the distri-
bution observed in our PPI data (BioGRID 2.0.58). For each
gapped PSSM, we compute its scores on all protein positions in
the random dataset (of approximately five million positions)
and sort the scores in nonincreasing order. The 500th score on
the sorted score list would have an empirical P-value of 0.0001
and is chosen as the cutoff score for the gapped PSSM’s
occurrence.
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Chapter 3

Global Alignment of Protein–Protein Interaction Networks

Misael Mongiovı̀ and Roded Sharan

Abstract

Sequence-based comparisons have been the workhorse of bioinformatics for the past four decades, furthering
our understanding of gene function and evolution. Over the last decade, a plethora of technologies have
matured for measuring Protein–protein interactions (PPIs) at large scale, yielding comprehensive PPI
networks for over ten species. In this chapter, we review methods for harnessing PPI networks to improve
the detection of orthologous proteins across species. In particular, we focus on pairwise global network
alignment methods that aim to find a mapping between the networks of two species that maximizes the
sequence and interaction similarities betweenmatched nodes.We further suggest a novel evolutionary-based
global alignment algorithm. We then compare the different methods on a yeast-fly-worm benchmark,
discuss their performance differences, and conclude with open directions for future research.

Key words: Network alignment, Protein–protein interaction, Functional orthology, Network
evolution

1. Introduction

Over the last decade, high-throughput techniques such as yeast
two-hybrid assays (1) and co-immunoprecipitation experiments (2),
have allowed theconstructionof large-scalenetworksofProtein–protein
interactions (PPIs) for multiple species. Comparative analyses of
these networks have greatly enhanced our understanding of pro-
tein function and evolution.

Analogously to the sequence comparison domain, two main
concepts have been introduced in the network comparison context:
local network alignment and global network alignment. The first
considers local regions of the network, aiming to identify small
subnetworks that are conserved across two or more species (where
conservation is measured in terms of both sequence and interaction
patterns). Local alignment algorithms have been utilized to detect
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protein pathways (3) and complexes that are conserved across
multiple species (4–6), to predict protein function, and to infer
novel PPIs (4).

In global network alignment (GNA), the goal is to associate
proteins from two or more species in a global manner so as to
maximize the rate of sequence and interaction conservation across
the aligned networks. In its simplest form, the problem calls for
identifying a 1-1 mapping between the proteins of two species
so as to optimize some conservation criterion. Extensions of the
problem consider multiple networks and many-to-many (rather
than 1-1) mappings. Such analyses assist in identifying (functional)
orthologous proteins and orthology families (7) with applications
to predicting protein function and interaction. They aim to improve
upon sequence-only methods that partition proteins into ortholo-
gous groups based on sequence-similarity computations (8–10).

GNA methods can be classified into two main categories. The
first category contains matching methods that explicitly search for a
one-to-one mapping that maximizes a suitable scoring function.
The scoring function favors mappings that conserve sequence and
interaction. Methods in this category include the integer linear
programming (ILP) method of (11) and a greedy gradient ascent
method of (12). The second category includes ranking methods
that consider all possible pairs of interspecies proteins that are
sufficiently sequence-similar, and rank them according to their
sequence and topological similarity. These ranks are then used to
derive a 1-1 mapping. Methods in this category include a Markov
random field (MRF) approach (13), the IsoRank method that is
based on Google’s Page Rank (7), and a diffusion-based method—
hybrid RankProp (14). In addition, there are several very recent
ranking approaches that do not use sequence-similarity information
at all (15, 16).

Here, we aim to propose a third, evolutionary perspective on
global alignment by designing a GNA algorithm that is based on a
probabilisticmodel of network evolution. The evolution of a network
is described in terms of four basic events: gene duplication, gene loss,
edge attachment, and edge detachment. This model allows the com-
putation of the probability of observing extant networks given the
ancestral network they originated from; bymaximizing this probabil-
ity, one obtains the most likely ancestor–descendant relations, which
naturally translate into a network alignment.

This chapter is organized as follows: Subheading 3 reviews
GNA methods that are based on graph matching. Subheading 4
presents the ranking-based methods. Subheading 5 describes in
detail the probabilistic model of evolution and the proposed
alignment method. The different approaches are compared in
Subheading 6. Finally, Subheading 7 gives a brief summary and
discusses future research directions.
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2. Preliminaries
and Problem
Definition

We focus the presentation onmethods for pairwise global alignment,
where the input consists of two networks and possibly sequence-
similarity information between their nodes, and the output is a corre-
spondence, commonly one-to-one, between the nodes of the two
networks.

A protein networkG¼(V, E) has a set Vof nodes, corresponding
to proteins, and a set E of edges, corresponding to PPIs. For a
node i ∈ V , we denote its set of (direct) neighbors by N(i). Let
G1 ¼ (V 1, E1) and G2 ¼ (V 2, E2) be the two networks to be
aligned. Let R � V 1 �V 2 be a compatibility relation between
proteins of the two networks, representing pairs of proteins that
are sufficiently sequence-similar. A many-to-many correspondence
that is consistent with R is any subset R ∗ � R. Under such a
correspondence, we say that an edge (u, v) in one of the networks
is conserved if there exists an edge (u0, u0) in the other network
such that (u, u0), (u, u0) ∈ R ∗ or (u0, u), (u0, u) ∈ R ∗ . We let
T(G1, G2) ¼ {(u, u0, u, u0): (u, u), (u0, u0) ∈ R, (u, u0) ∈E1, (u, u0)
∈ E2} denote the set of all quadruples of nodes that induce a
conserved interaction.

In its simplest formulation, the alignment problem is defined as
the problemof finding an injective function (one-to-onemapping)’:
V 1 ! V 2 such that (i) it is consistent withR and (ii) itmaximizes the
number of conserved interactions. More elaborate formulations of
the problem can relax the 1-1 mapping to a many-to-many mapping
and possibly define an alignment score to be optimized that combines
the amount of interaction conservation and the sequence similarity of
thematched nodes. The definition of a conserved interaction can also
be made more elaborate by taking into account the reliability of the
pertaining interactions and by allowing “gapped” interactions, i.e., a
directed interaction in one network is matched to two nodes that are
of distance 2 in the other network. We defer the discussion of these
extensions and the specific scoring functions used to thenext sections,
where the different GNA approaches are described.

The problem of finding the optimal one-to-one alignment
between two networks, as defined above, can be shown to be
NP-hard by reduction from maximum common subgraph (11).
Consequently, an efficient algorithm cannot be designed for the
general case. However, under certain relaxations the problem can
be solved optimally on current data sets in acceptable time.

3. Graph Matching
Methods

In this section, we describe GNA methods that look for an explicit
1-1 correspondence between the two compared networks. The first
method, by Klau, is based on reformulating the alignment problem
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as an ILP (11). The variables of the program represent the 1-1
mapping sought. Specifically, for each pair (u, v) ∈ R, the author
defines a binary variable xuv denoting whether u and v are matched
(xu, v ¼ 1) in the alignment or not (xu, v ¼ 0). The ILP formulation
is as follows:

max
X

ðu;u0;u;u0Þ2T ðG1;G2Þ
xu;u � xu0;u0 þ

X

ðu;uÞ2R
sðu; vÞ � xu;u

s:t:
X

u2V 1

xu;u � 1 8u 2 V 2

X

u2V 2

xu;u � 1 8u 2 V 1;

where s(u, v) denotes the sequence similarity of u and v. The
objective function can be linearized in an obvious way by introdu-
cing binary variables tu, u0, u, u0 ¼ xu, u �xu0, u0 (for (u, u0, u, u0) ∈
T(G1, G2)) with appropriate constraints.

While the author uses optimization techniques, such as
Lagrangian decomposition and Lagrangian relaxation, to solve
this problem, an optimum solution for restricted instances can be
found in reasonable time as we report in Subheading 6. We note
that if V 1\V 2 is first partitioned into sufficiently small orthology
clusters (using, e.g., the Inparanoid algorithm (8)) and if the graph
of potential conserved interactions across clusters has no loops,
then the optimum alignment can be found in polynomial time via
a dynamic programming algorithm (12).

In the general case, the computation of optimal solutions is too
costly, hence the use of heuristics is necessary. Vert et al. (12)
suggested a gradient ascent approach. It starts from a feasible
solution and computes a sequence of moves in the direction of
the objective’s gradient until converging to a local maximum.
Denoting the adjacency matrices of the two graphs by A1 and A2,
respectively, and assuming that jV 1j ¼ jV 2j ¼ n (otherwise, add
dummy vertices), the goal of the optimization is to find a permuta-
tion matrix P that maximizes a weighted sum of the number J(P) of
conserved interactions and a sequence similarity term S(P). In

matrix notation, J ðPÞ ¼ 1
2 trðAT

1 PA2P
T Þ and its gradient is

AT
1 PA2; SP ¼ trðPCÞ where C, the matrix of sequence-similarity

scores, is its gradient.
The initial solution P0 is given by sequence similarity alone,

using a maximum matching algorithm. At each step, the algorithm
employs a maximum matching computation to update the current
permutation in the direction of the gradient:

Pnþ1 ¼ argmax
P

trð½lAT
1 PnA2 þ ð1� lÞC�PÞ;

where 0 � l � 1 is a weighting constant.
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4. Methods Based
on Ranking

A second class of methods is based on assigning a score to each pair
of compatible nodes and only at a second step choosing a global
pairing of the nodes. The latter pairing is effectively disambiguating
the compatibility relations, pinpointing the “best” 1-1 mapping.
The disambiguation can be achieved by computing a maximum
weighted bipartite matching or via simple greedy strategies. The
difference between the various methods lies mainly in the first,
scoring phase.

The first method for GNA has been proposed by Bandyopad-
hyay et al. (13) and uses a ranking that is based on a MRF model. It
starts by building an alignment graph, where the nodes represent
candidate pairs of (sequence-similar) proteins and the edges repre-
sent potentially conserved interactions. Each node in the alignment
graph is associated with a binary state z indicating if that node
represents a true orthology relation or not. The state values are
modeled using aMRF. TheMRFmodel assumes that for each node
of the alignment graph j ¼ (u, u), the probability that j represents a
true pair of orthologs (zj ¼ 1) depends only on the states of its
neighbors (N(j)), and the dependence is through a logistic
function:

Pðzj jzN ðjÞÞ ¼ 1

1þ e�a�b�cðjÞ ;

where a and b are parameters and c(j) is the conservation index of j,
defined as twice the number of conserved interactions between j
and neighbors of j whose states are pre-assigned with value 1 (true
orthologs), divided by the total number of interactions involving u
and u across the two species. The inference of the states of the nodes
is conducted using Gibbs sampling (17), yielding orthology prob-
abilities for every node. These estimated probabilities are used to
disambiguate the pairing.

Singh et al. (7) proposed an alignment method (IsoRank) that
is based on Google’s PageRank algorithm. As for MRF, the
method first computes a score for each candidate pair of orthologs
and then uses the scores for disambiguating the pairing. The score
R(i, j) of the pair (i, j) ∈ V 1 �V 2 is a weighted average of the
scores of its neighboring pairs (assuming that all node pairings are
allowed):

Rði;jÞ ¼
X

u2N ðiÞ

X

v2N ðjÞ

Rðu;vÞ
jN ðuÞjjN ðvÞj :
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The authors translate the problem of finding R into an eigen-
vector problem by expressing it in matrix form as R ¼ AR where A
is defined as:

Aði;jÞðu;vÞ ¼
1

jN ðuÞjjN ðvÞj if ði;uÞ 2 E1; ðj ; vÞ 2 E2

0 otherwise:

(

Under this formulation, theproblemreduces tofinding thedominant
eigenvector of A, which is efficiently solved using the power
method. To account for sequence similarity, the objective is
modified as R ¼ ½aA þ ð1� aÞB1T �R where B is the vector of
normalized bit scores and 1T is an all-1 row vector.

Yosef et al. (14) devised the hybrid RankProp algorithm. It con-
siders one “query node” of the first network at a time and ranks the
nodes of the second network with respect to it by using a diffusion
procedure. To this end, they constructed a composite network with
two types of edges: PPI and sequence similarity. The query node is
assigned a score of 1.0 that is continually pumped to the other
nodes through the network’s edges. The scores that the nodes
assume after the diffusion process converges induce a ranked list
of candidates for matching the query node. In detail, at step t + 1,
the score of a node i with respect to a query q is given by:

Siðt þ 1Þ ¼ Wqi þ a
X

j2N ðiÞnfqg
WjiSj ðtÞ;

where a is a parameter controlling the diffusion rate andW is a weight
matrix that represents the composite network—it is the normalized
confidence of an interaction for PPI edges and a normalized
sequence similarity for sequence-similarity edges. Finally, to make
the score symmetric, proteins from both networks are queried and
each pair is assigned the average score of its two associated queries.

5. Network
Evolution-Based
Alignment

In this section, we present a new alignment method, called PME,
that is based on a probabilistic model of evolution. PME aims to
reconstruct the most probable ancestral network that gave rise to
the observed extant networks. Such a network induces a many-to-
many alignment in the descending networks by associating groups
of proteins in the two input networks with the corresponding
ancestral proteins. The method is based on a probabilistic model
of the evolutionary dynamics of a network, that supports four kinds
of evolutionary events: link attachment, link detachment, gene
duplication and gene loss (18).

An alignment between two networks G1 and G2 is defined by an
ancestral networkG0¼ (V 0, E0) and two functions f1 :V 1 ! V 0 and
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f2 : V 2 ! V 0 which map the nodes of G1 and G2 into the nodes of
G0 (ancestral proteins). The score of an alignmentA¼ (G0, f1, f2) is
the product of the prior probability for A and the likelihood of
observing G1 and G2 given A. We describe the probability computa-
tions in detail below.

The probability P(A) is the product of two terms that consider
the prior probability of observing G0 and the probability of the
pattern of gene duplications and losses implied by f1 and f2. For the
former, we adopt a simple Erdős–Rényi model where edges occur
independently with some constant probability PE. For the latter,
we focus on gene duplications (as in (18)), assuming that gene
duplication events occur independently with some fixed probability
Pd. For computational efficiency, we disallow gene losses, although
those could be easily incorporated to the model in a similar manner.
Formally, the two terms are as follows:

l A priori ancestral network probability:

Y

ðu;uÞ62E0

ð1� PEÞ �
Y

ðu;uÞ2E0

PE :

l Gene duplication (i ∈ { 1, 2}):

Y

u2V 0

f �1
i ðuÞ6¼f

P
jf �1

i ðuÞj�1

d �
Y

u2V 0

jf �1
i ðuÞj�1

ð1� PdÞ:

The probability P(GijA) of observing the networkGi, i ∈ {1, 2}
is given by the product of two factors that consider edge attachment
and edge detachment events, assuming these events occur indepen-
dently with probabilities PA and PD, respectively.

l Edge attachment:

Y

ðu;uÞ62E0

Y

ðu0;u0Þ62Ei

f iðu0Þ¼u;f iðv0Þ¼u

ð1� PAÞ �
Y

ðu0;u0Þ2Ei

f iðu0Þ¼u;f iðv0Þ¼u

PA

0

BBBB@

1

CCCCA
:

l Edge detachment:

Y

ðu;uÞ2E0

Y

ðu0;u0Þ2Ei

f iðu0Þ¼u;f iðu0Þ¼u

ð1� PDÞ �
Y

ðu0;u0Þ62Ei

f iðu0Þ¼u;f iðu0Þ¼u

PD

0

BBBB@

1

CCCCA
:

Our goal is to find an alignment that maximizes P(G1, G2, A)
¼ P(A) �P(G1jA) �P(G2jA). In the following, we provide an ILP
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formulation of the problem. Consider a set of n hypothetical nodes
of the ancestral network, where n ¼ jV 1j þ jV 2j is the maximal
number of nodes in the ancestral network. With each node, we
associate a binary variable ziwhich is 1 if and only if node i has some
descendant node in the extant networks. With each vertex pair
(i, j), we associate a binary variable tij which is 1 if and only if
nodes i and j interact with each other in the ancestral network. To
model the mappings f1 and f2, we define binary variables xiu and yiv,
where xiu ¼ 1 (yiu ¼ 1) if and only if f1(u) ¼ i (f2(u) ¼ i). Finally, in
order to consider gene duplications, we add binary variables di

j,
j ∈ {1, 2} such that di

j ¼ 0 if and only if i has more than one
descendant in Gj.

5.1. The ILP Formulation The constraints of the ILP are defined as follows:

t ij � zi; zj ; 1 � i<j � n

to allow edges only between “true” vertices of the ancestral network.

Xn

i¼1

xiu ¼ 1; u 2 V 1;

Xn

i¼1

yiu ¼ 1; 2 V 2

to model the fact that each protein descends from a single ancestor.
X

u2V 1

xiu � zi; 1 � i � n;

X

u2V 2

yiu � zi; 1 � i � n;

xiu � zi; 1 � i � n; u 2 V 1;

yiu � zi; 1 � i;� n; u 2 V 2

tomodel the fact that each true node of the ancestral network (zi¼ 1)
must have at least one descendant in each network and each dummy
node of the ancestral network (zi ¼ 0) cannot have any descendants.

d1
i � 1þ zi � xiu � xiu; 1 � i � n; u; u 2 V 1;

d1
i � 1þ zi �

X

u2V 1

xiu; 1 � i � n;

d2
i � 1þ zi � yiu � yiu; 1 � i � n; u; u 2 V 2;

d2
i � 1þ zi �

X

u2V 2

yiu; 1 � i � n

to impose that nodes that have only one descendant have not
undergone a duplication event. Finally, we add the integer con-
straints:

xiu; yiu; zi; t ij ; d
1
i ; d

2
i 2 f0; 1g 1 � i; j � n;u 2 V 1; u 2 V 2:
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The objective is to maximize P(G1, G2, A) or, equivalently, to
maximize logP(G1, G2, A). The latter is a sum of four terms:

l A priori ancestral network probability:

’E ¼
X

i<j

logðPEÞ � t ij þ logð1� PEÞ � ð1� t ij Þ
� �

:

l Gene duplication (for simplicity, we specify only the sub-term
involving G1):

’d ¼
Xn

i¼1

X

u2V 1

xiu � zi

 !
� logðPdÞ þ

Xn

i¼1

logð1� PdÞ � d1
i :

l Edge attachment (for simplicity, we specify only the sub-term
involving G1):

’A ¼
X

i<j

ð1� t ij Þ �
X

ðu;uÞ62E1

xiu � xju � logð1� PAÞ
0
@

þ
X

ðu;uÞ2E1

xiu � xju � logðPAÞ
1

A:

l Edge detachment (for simplicity, we specify only the sub-term
involving G1):

’D ¼
X

i<j

t ij �
X

ðu;uÞ2E1

xiu � xju � logð1� PDÞ
0
@

þ
X

ðu;uÞ62E1

xiu � xju � logðPDÞ
1

A:

In order tomake the problem linear, we introduce the following
additional binary variables with appropriate constraints: pijuu ¼ tij �
xiu �xju and qijuv ¼ ð1� t ij Þ � xiu � xju.

5.2. Refinements

and Variable

Reduction

In some cases, there are not enough interactions to support a
match. To avoid an arbitrary choice among identically scored solu-
tions, we choose the solution that agrees best with the sequence-
similarity information. To this end, we add a small penalty to each
ancestral-descendant connection whose value is 10�8 � logðS þ 1Þ,
where S is the bit score of the two proteins.

Although PME naturally produces a many-to-many correspon-
dencebetweenorthologous proteins,we focus here on its reduction to
a one-to-one mapping to facilitate its comparison to other methods.
To this end,we rank all pairs of inter-species proteins that are predicted
to descend from the same common ancestor. For any potentially
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matched pair (u, v), with f ðuÞ ¼ f ðuÞ ¼ i, the score of (u, u) is given
by the score of the global alignment after removing all the nodes that
descend from i except for u and v (i.e., forcing the alignment tomatch
u and u). These scores are then fed to a maximum bipartite matching
computation to construct a 1-1 alignment.

The sequence-similarity information allows us to greatly reduce
the number of variables considered. We start with a set V¼ V 1 \V2

of hypothetical ancestral nodes. We build two relations R1 � V �V

1 and R2 � V �V 2 as follows: For each i ∈ V , we add to R1 all
pairs (i, u) with u ∈ V 1 such as u is sequence-similar to i and
u � i. Analogously, we add to R2 all pairs (i, u) with v ∈ V 2 such
that u is sequence-similar to i and u � i. The search is then
restricted to alignments whose ancestor–descendant pairs are in
R1 \R2.

The relations R1 and R2 also allow us to reduce the number of
possible edges of the ancestral network. Consider a pair of nodes
(u, v) of the ancestral network such that all possible pairs of des-
cendants of these nodes span non-edges. Clearly, in the optimal
solution, (u, v) will be a non-edge. Since the networks are usually
very sparse, this simple rule greatly reduces the number of variables
required to model the topology of the ancestral network and,
consequently, greatly saves in variables introduced by the lineariza-
tion. Although non-edges contribute to the objective function, we
can modify the latter so that the contribution of non-edges is zero
(by adding � logð1� PEÞ to all ancestral vertex pairs). In a similar
manner, we can reduce the number of ancestor–descendant pairs
that are considered in the computation of edge attachment events.

6. Experimental
Results

To compare the different GNA methods, we used the benchmark
in (13), which focuses on the pairwise global alignment of the PPI
networks of yeast and fly, starting from an initial clustering of the
proteins into orthology families formed by the Inparanoid algo-
rithm (8). In addition, we compared, under the same setting, the
alignments of each of these networks to a PPI network of worm.
The worm network was constructed by collecting data from
recently published papers and public databases (19–21) and
spanned 2,967 proteins and 4,852 interactions. The yeast network
contained 4,393 proteins and 14,318 interactions; the fly network
contained 7,042 proteins and 20,719 interactions. We considered
2,244 Inparanoid groups between yeast and fly, 1,833 groups
between yeast and worm, and 4,228 groups between worm and fly.

We included in the comparison the following methods:
ILP (11), MRF (13), IsoRank (7) and PME (Subheading 5).
We did not consider gradient ascent (12) and hybrid RankProp (14)
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in our tests. Gradient ascent tries to approximate the same objective
as the ILPmethod, hence the latter should be superior to it. Hybrid
RankProp was shown by its authors to be equivalent in perfor-
mance to the original RankProp method, which is based on
sequence only.

We implemented ILP, IsoRank, and PME in Matlab and used
ILOG CPLEX as an ILP solver. For MRF, we report on the results
published in the original paper (13). The parameter that balance
topology versus sequence similarity was set as c ¼ 0. 01 for both
IsoRank and ILP in order to give higher weight to topology. For
PME, we used the following settings: The probability of attach-
ment and detachment was set so as to obtain the same global rate of
attachments and detachments estimated from the unambiguous
clusters of Inparanoid (PA ¼ 0. 0026; PD ¼ 0. 9617). The proba-
bility of an edge in the ancestral network was estimated from the
density of the two networks (PE ¼ 3:32e�4). The probability of
duplication was set to Pd ¼ 0. 03 with the results being robust to a
wide range of values for this parameter (in the range 10 � 4–0.5).
All the experiments were executed on a DELL server with eight
processors Quad-Core AMD Opteron and 16 GB RAM, OS
Ubuntu 9.04.

To evaluate the functional coherency of the aligned proteins,
we considered two measures: (1) the number of pairs that are
classified as orthologs by HomoloGene (22), considered as a gold
standard; and (2) a score based on the gene ontology (GO) (23),
focusing on the biological process and molecular function
branches. To evaluate the significance of the number of Homolo-
Gene pairs that were matched, we computed a hypergeometric
p-value, which measures the probability that a random set of
matches (of the same size as our alignment and constrained to the
Inparanoid clusters) would yield the observed overlap or higher.
The GO score is computed as the average GO similarity of all
matched pairs. We employed the Resnik similarity among terms
and considered as a similarity between proteins the value of the best
matching between their terms (24). We restricted our analysis to
the set of ambiguous clusters, i.e., clusters that contain more than
one protein for at least one of the species.

The results for yeast-fly, yeast-worm and fly-worm are reported
in Table 1. Evidently, all methods perform similarly. ILP and Iso-
Rank always attain the maximum number of conserved interac-
tions. This is expected for ILP and suggests that IsoRank is a
good heuristic for maximizing the number of conserved interac-
tions. ILP also achieves the maximum number of HomoloGene
pairs, except in the yeast-worm alignment, where it is outperformed
by IsoRank. With respect to the GO measures, ILP attains the
highest scores in most cases, with PME performing better on the
molecular function measure.
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7. Conclusions

In this chapter, we present the GNA problem and discuss extant
methods for solving it. A guiding principle in most of these meth-
ods is the maximization of conserved interactions across the two
aligned networks. We further present a novel strategy to the prob-
lem that is based on a probabilistic model of protein network
evolution. We test the methods on a yeast-fly-worm benchmark
and find that all methods perform similarly on current networks
when starting from a defined set of orthology groups.

We believe that future research in this domain should cover
both the development of better alignment methods and the bench-
marking of such methods. While current methods do reasonably
well with respect to maximizing the number of conserved interac-
tions, evolutionary considerations are still scarcely used and could
potentially guide the alignment in a more refined way, particularly
when comparing species that are less distant apart. Additional
developments could include going beyond 1-1 alignments and
pairwise comparisons (25). An orthogonal axis is the development
of gold standard alignments. Current benchmarks such as the
Homologene collection are mostly sequence-driven and, thus,
potentially lead to biased assessment of methods. In summary, we
expect GNA methods to have greater impact as protein networks
and orthology information continue to accumulate.

Table 1
A comparison of GNA methods on a yeast-fly-worm benchmark

Dataset Method
Total
pairs

Conserved
interactions

HomoloGene GO Sim

Pairs % P-value (MF) (BP)

Yeast-fly ILP 545 91 134 0.246 4.33e � 09 3.32 1.87
MRF 535 87 133 0.248 2.17e � 09 3.26 1.85
IsoRank 545 91 133 0.244 1.01e � 08 3.28 1.88
PME 545 86 132 0.242 2.33e � 08 3.25 1.83

Yeast-
worm

ILP 194 48 72 0.371 0.059 2.95 2.23
IsoRank 194 48 74 0.381 0.021 2.97 2.22
PME 194 47 72 0.371 0.059 2.98 2.22

Fly-worm ILP 209 38 93 0.445 0.004 2.32 1.62
IsoRank 209 38 87 0.416 0.084 2.32 1.50
PME 209 36 92 0.440 0.007 2.34 1.61
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Chapter 4

Structure Learning for Bayesian Networks
as Models of Biological Networks

Antti Larjo, Ilya Shmulevich, and Harri L€ahdesm€aki

Abstract

Bayesian networks are probabilistic graphical models suitable for modeling several kinds of biological
systems. In many cases, the structure of a Bayesian network represents causal molecular mechanisms or
statistical associations of the underlying system. Bayesian networks have been applied, for example, for
inferring the structure of many biological networks from experimental data. We present some recent
progress in learning the structure of static and dynamic Bayesian networks from data.

Key words: Static Bayesian networks, Dynamic Bayesian networks, Structure learning, Active learning

1. Introduction

Many biological systems are naturally modeled as networks. In
many applications, one would often like to know the (network)
structure of a measured system. Knowing the network structure
also allows the prediction of future states or effects of interventions.
Consider a set X ¼ X1, . . ., XN of N random variables describing
the state of a system. These nodes may be states of genes
(expressed/not expressed, available/not available for transcrip-
tion), proteins (phosphorylation state, protein level), or other bio-
molecules, and the states may be discrete, continuous, or both.
Causal mechanisms or statistical associations between variables in
X can be represented in a form of graphical network structure
(see Fig. 1a for example). Often, the structure of (at least part of)
the system is unknown and needs to be inferred from measurement
data. Bayesian networks are well suited for this task, and several
inference methods have been developed (1, 2).

1.1. Bayesian Networks A Bayesian network represents a joint probability distribution by
decomposing it into several local distributions

Hiroshi Mamitsuka et al. (eds.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 939,
DOI 10.1007/978-1-62703-107-3_4, # Springer Science+Business Media New York 2013
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P X jG; yð Þ ¼
YN

i¼1

P Xi ¼ xijPaGðXiÞ; yið Þ ; (1)

where G is a directed acyclic graph (DAG) describing the indepen-
dence relations between the random variables, Xi denotes the ith
variable and xi its value, PaG(Xi) denotes the parents of Xi as
defined in G, and y ¼ y1, . . ., yN is the set of parameters defining
the probability distributions. A Bayesian network is formally said to
consist of the pair G, u.

When nodeXi and its parents are discrete valued, its conditional
probability distribution P(Xi ¼ xijPaG(Xi), ui) can be defined as a
conditional probability table (see Fig. 1b) for an example). The
probability of each configuration in the table can be calculated as
the frequency of incidences of that configuration in the training
data. For continuous valued nodes perhaps the most used distribu-
tion is Gaussian. For example, the distribution for node Xi with
continuous nodes can be Norm(m þ WpaG(Xi), s), where m is the
mean of the normal distribution, s its covariance, paG(Xi) denotes
the values of the parents of Xi (as a column vector), and W is the
weight (regression) coefficients (see Fig. 1c) for an example). The
network can also be a mix of both discrete and continuous nodes.

Given a dataset D that is measured from a system consisting of
N random variables X, one would like to obtain the underlying
structure of the system. However, often the measurements are
noisy, the models do not capture all relevant aspects of the system,
or the system itself is inherently noisy. So, instead of just one
structure, it is often more sensible to consider a set of network
structures (or ideally all potential structures) and weight them
based on the posterior distribution

P GjDð Þ ¼ P DjGð ÞPðGÞ
PðDÞ ; (2)

Fig. 1. (a) An example of a small Bayesian network, consisting of three nodes with G3 having G1 and G2 as parents.
(b) shows an example of the parameters of node G3 when the BN is discrete valued and all nodes are binary, which can be
interpreted, for example, as being on/off or present/absent. Thus, considering the example figure in a biological setting,
it could present a case where the presence of transcription factors G1 and G2 (i.e., G1¼1 and G2¼1) indicates a
probability of 0.9 that gene G3 is expressed. In (c), an example where the nodes in (a) are allowed to have continuous
values from [0, 1] is considered and the plotted function is the value of probability distribution function f for G3¼1.
The parameters used in this case were m ¼ 0, W ¼ [0.5, 0.5], s ¼ 0.3 (see text).
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where P(G) is the prior probability of G, P(D) ¼ ∑G 0P(DjG 0)P
(G 0) is the marginal probability of data, and P(DjG) is the marginal
likelihood of G that can be calculated by integrating over the
parameter space, i.e., P(DjG) ¼ R

P(DjG, yG)P(yGjG)dyG.
Assuming complete data (i.e., no missing data points) and

mutual independence of parameters yG, then with certain choices
of parameter priors, the marginal likelihood P(DjG) can be solved
in closed form. In these cases, it is required that the prior is the
conjugate prior of the posterior distribution, the two main cases
being multinomial distributions with Dirichlet priors (3) and
Gaussian distributions with normal-Wishart priors (4). For incom-
plete data or other priors that are not conjugate, it is necessary to
utilize approximations. Here, we concentrate on BNs with multi-
nomial distributions and Dirichlet priors.

The marginal likelihood can be used to score different network
structures as shown in Eq. 2. Additionally, the posterior can be
used, for example, to predict next measurements:

P X jDð Þ ¼
X

G

PðGjDÞ
Z

PðX jyG ;GÞPðyG jD;GÞ dyG ; (3)

which can also be used when the network has been intervened with.
Predictive behavior will be discussed more in Subheading 2.2.
Posterior probabilities of network features can also be calculated

P f jDð Þ ¼
X

G

Pð f ;GjDÞ ¼
X

G

f ðGÞPðGjDÞ ; (4)

where f is an indicator function, i.e., f (G) ¼ 1 if graph G contains
the wanted feature and f (G) ¼ 0 otherwise.

The prior probability of a network structure can be used to
include additional knowledge about the domain into learning. This
knowledge can include expert knowledge (transferred to subjective
probabilities) or measurement data from other sources, which
allows combining heterogeneous data types.

Relevant to inference of biological network structure is the
causal interpretation of BN structure, meaning that each edge
A ! B in the BN denotesA is a direct cause of B. Thus, by learning
the structure of a BN, one is also learning the causal structure.

1.2. Dynamic Bayesian

Networks

Dynamic Bayesian networks are created as temporal extensions of
static BNs. That is, each node i ¼ 1, . . ., N becomes a random vari-
able Xi[t] which also depends on time t ∈ {1, 2, . . .}. DBNs can
overcome one drawback of static BNs, namely, the acyclicity require-
ment,which, for example, prohibits feedback loops that are frequently
found in biological systems. This is because it is legal to have in the
same network the edges Xi[t � 1] ! Xj[t] and Xj[t � 1] ! Xi[t],
which in the “time rolled” network become Xi ⇌ Xj. For example,
see Fig. 2. If we assume the random variables depend only on the
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values of the previous timestep (i.e., make the first-order Markov
assumption), then P X ½t �jX ½t � 1�; . . . ;X ½1�ð Þ ¼ P X ½t �jX ½t � 1�ð Þ,
and the joint distribution decomposes as

P X ½1�;X ½2�; . . . ;X ½T �ð Þ ¼ P X ½1�ð Þ
YT

t¼2

P X ½t �jX ½t � 1�ð Þ (5)

¼ P X ½1�ð Þ
YT

t¼2

YN

i¼1

P Xi½t �jPaðXi½t �Þð Þ ; (6)

although in general the parents Pa(Xi[t]) can be from both X[t]
and X[t � 1].

2. Structure
Learning

For selecting among all the possible model structures one or more
that best describe the biological system, a way to score the networks
is needed. An evident scoring criterion is Eq. 2, whose denomina-
tor we are unable to evaluate but as it is independent ofG, it suffices
to evaluate the nominator to find the relative posterior probabilities
of different structures. Thus, we can use, for example,
log pðD;GÞ ¼ log pðgÞ þ log pðDjGÞ.

The number of different Bayesian network structures grows
superexponentially as a function of the number of nodes. This
makes exhaustive evaluations prohibitive for all but smallest num-
bers of nodes (about N < 9), and heuristic search algorithms must
be used instead.

Search methods are commonly iterative and move in the space
of DAGs by making allowed (i.e., fulfilling acyclicity constraint)
one-edge modifications (addition, deletion, reversal) to a DAG.
Perhaps the simplest one, called greedy search, moves by selecting

Fig. 2. The “time unrolled” DBN network in the right can be seen to represent the left-hand side network. Note that it is also
possible to include influences with slower effects, such as the effect of C on B.
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the modification giving the highest improvement in score. An issue
with this approach is its inability to escape local maxima; however,
this can be overcome with random restarts of the algorithm or
using some other application-dependent heuristics.

In addition to only passively observing the states of the system,
exact identifiability of the network structure requires that the sys-
tem is intervened with or perturbed in some ways. Intuitively, the
reason is simple: consider a simple network of two nodes A and B.
Just by observing their states, one is not able to distinguish causa-
tion (either A ! B or B ← A) from mere correlation. This results
from the fact that P(A)P(BjA) ¼ P(B)P(AjB), i.e., both structures
produce the same probability distribution.1 Such inseparable DAGs
are said to belong to the same equivalence class (6) and the scoring
function should give equal scores for DAGs in the same equivalence
class (7). By including interventional data (e.g., by measuring the
system when A or B have been forced to certain values), it is
possible to break these equivalence classes into smaller, and, with
enough properly selected interventions, the size of the most prob-
able class should reduce to one, thus allowing to differentiate the
causal structure. Note that the effect of intervention on calculating
the score is such that the contribution of each intervened node i is

PðXijPaGðXiÞ; D̂Þ ¼ 1, where D̂ consists of the measurements in
dataset D that have node i intervened (8).

Selection of interventions in a beneficial way is discussed in
Subheading 2.2. It has also been noted that the interventions are
not always perfect, which can also be modeled while learning the
structure (9).

The search methods may aim at returning a single network
structure, preferably the one giving the highest-scoring (i.e., maxi-
mum a posteriori, MAP) model. Often the posterior landscape can
be very peaky, perhaps due to sparseness of data or because the
underlying system may not be accurately modeled with BNs. In
such cases, finding a single MAP model can be very challenging or
no single network can describe the system data well. It would be
desirable to have the whole posterior distribution available, but in
practice, one can only sample the posterior with methods such as
Markov chain Monte Carlo (MCMC).

In order to sample from the posterior of structures, a Markov
chain is set up so that its target distribution is P(GjD) (10). This is
done using the Metropolis-Hastings algorithm which consists of
proposing a move from structure G to G0 with probability Q(G0jG)
and accepting the move with probability

1In more exact terms, given causal interpretation, there is a concordance between independence equivalence
(given by the v-structure method) and likelihood equivalence (5).
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min 1;
PðG 0jDÞQ ðGjG 0Þ
PðGjDÞQ ðG 0jGÞ

� �
¼ min 1;

PðDjG 0ÞPðG 0ÞQ ðGjG 0Þ
PðDjGÞPðGÞQ ðG 0jGÞ

� �
;

(7)

where the probability distribution Q() is called the proposal
distribution. In the case of BN structure learning, the proposal
distribution is most often defined as

Q ðG 0jGÞ ¼
1

jNQ ðGÞj ; if G 0 2 NQ ðGÞ
0; ifG 0 =2 NQ ðGÞ

(
; (8)

where NQ(G ) is the neighborhood of G reachable by Q(), for
example, the set of DAGs that are the result of a single-edge-
modification (addition, deletion, reversal) to G, andjNQ(G)jis the
cardinality of this set. This algorithm is run for long enough (called
burn-in period), after which the actual sample is taken (sampling
period) and this sample should be relatively large in order to
correctly represent the posterior distribution.

Note that both sets NQ(G) and NQ(G
0) are needed in calculat-

ing Eq. 7. Forming these neighborhood sets can get cumbersome
for greater than one consecutive edge modifications, which is why
normally the proposal distributions are restricted to single-edge-
modifications. However, the MCMC chains using such proposals
can be very slow in converging to the steady-state distribution,
especially in cases of peaky posteriors. Improvements have been
achieved by using more versatile proposals, such as in (11, 12).

Alternatively, it is possible to learn in the space of node orders
instead of structure space (13), which considerably enhances con-
vergence of MCMC chains. Notable improvements in BN structure
learning also include (14), who utilize dynamic programming to
calculate the posterior probabilities of all BNs in exponential time,
and variations of this in (15, 16).

Assessment of convergence of the MCMC chains is critical to
ensure that the results are from the steady-state distribution. Yet,
without evaluating all the structures, it is impossible to say
whether a chain is converged, and one is most often left to check
only some necessary (not sufficient) convergence criteria. Among
the most used ones is running two or more chains in parallel and
calculating the posterior probabilities of edges for the samples
from each chain:

P eðGÞjDð Þ � 1

jgj
X

G2g
eðGÞ ; (9)

where e is a function so that e(G) ¼ 1 if graph G contains a given
edge and e(g) ¼ 0 otherwise, and g is a sample from an MCMC
chain, having jgj sampled graphs. The edge posterior probabilities
can then be examined, for example, by plotting them pairwise in a
scatter-plot, where any marked deviations from the diagonal
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indicate partial convergence or convergence to different distribu-
tions. Another simple method is to plot the Bayesian scores
(logp(D, G)) for the samples from each chain, in which case lack
of overlap denotes the chains have not converged and “wandering”
of a chain in the score-plot may suggest a longer burn-in period
would be needed.

2.1. Learning DBN

Structure

The same methods as the ones used for BN structure learning can
be used for DBNs since DBNs are in effect BNs where all nodes are
duplicated for each time-slice. If the parents ofXi[t] are constrained
to only Xi[t � 1] (i.e., within-time-slice edges disallowed), then
the DBN structure is guaranteed to be acyclic, thus facilitating
movement of search methods in the structure space.

The data used for DBN structure inference must consist of time-
series measurements. Inmany systems biology applications, however,
it is not possible to carry out time-course experiments. There are
also methods for inferring DBN structure from either static
measurements alone or a combination of static and time-series mea-
surements (17). DBNs are essentially vector-valued Markov chains,
which under relativelymild technical assumptions possess a stationary
distribution. It is natural to assume that static measurements are then
sampled from this stationary distribution. For a given discrete-valued
DBN, likelihood of the static data can be computed in a straightfor-
wardmanner by solving for the steady-state distribution of theDBN.
Frequentist methods, however, are not well-suited for this problem
because, for example, several DBNs can have the same steady-state
distribution. Bayesian inference in turn is computationally challeng-
ing because the marginal likelihood cannot be computed in a closed
form. An efficient reversible jump MCMC (RJMCMC) method is
proposed in (17) to sample from the full posterior of DBNs, includ-
ing bothG and y. TheRJMCMCstructure learningmethod is similar
in nature with the standard MCMC algorithms for BNs or DBNs
except that the RJMCMC for DBNs must propose two different
moves: (1) a “jump” into a new network structure in the neighbor-
hood of the current network structure, in which case the parameters
are also sampled from a proposal distribution, and (2) a “null” move
where only new parameter values are proposed. To achieve the
detailed balance and convergence to the desired posterior distribu-
tion, care needs to be taken that a bijective mapping between DBN
models with different dimensionality is obtained. For full details, the
reader is referred to (17).

2.2. Active Learning

of BN Structure

Not all measurements are equally informative for the task of learning
a model structure, and therefore it is of interest to select (e.g.,
biological) experiments to be done in order to gain maximal infor-
mation from them. This is a highly nontrivial problem, andmethods
implemented for such experimental design are called active learning
methods. In the case of BN (and other model classes) learning, they
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can be divided into ones aiming at inferring either the parameters or
the structure of the system. For the latter category, the methods are
used to propose the nodes of a BN that should be intervened or
clamped for maximum benefit.

Two closely related approaches for selecting the perturbations
have been presented: those that break equivalence classes (18)
and decision theoretic methods that aim to diminish uncertainty
(or increase information maximally) about some edges (19, 20).
The similarity of the methods is due to the fact that within an
equivalence class, the inability to say which direction an edge takes
is, in other words, uncertainty about that edge.

As an example of an active learning method, we utilize the one
presented in (19), where the utility of action a is defined as

V ðaÞ ¼
X

G2g

X

y2YG;a

PðyjG; a;DÞPðGjDÞU ðG; a; y;DÞ ; (10)

where g is our set of possible DAGs and Y G, a denotes the set of
possible observations that G can produce given that intervention a
has been made. Note that action a can be an empty intervention
(i.e., an observation) or it can consist of perturbing one or
several nodes. The utility function is defined as U(G, a, y, D) ¼
logP(Gja, y, D), which includes the assumption that every inter-
vention costs the same. The most beneficial action is then selected
from the set of all possible actionsA as the one with maximal utility,
i.e., a ∗ ¼ argmaxa ∈ AV (a).

Evaluating the whole Eq. 10 would require summation over the
space of DAGs and possible observations, which is, again, impossible
and stochastic samplingmethodsmust be used instead. For sampling,
it is possible to use, for example, importance sampling.

To demonstrate the use of an active learning method in a
realistic situation and assessing its performance compared to a
nonactive learner (i.e., picking interventions randomly), two com-
peting schemes can be set up: (1) active learner, which makes at
each step the measurement (intervention or observation) suggested
by the active learning algorithm based on the sampled graphs,
available measurements, sampled observations, and data collected
so far, and (2) random learner, which makes a measurement ran-
domly without relying on an active learning algorithm. In both
cases, after each measurement, the MCMC chains are run for a
between-measurement burn-in period, followed by taking new
samples of DAGs from the chains.

Our test case consisted of taking from the Sachs dataset2 a
sample with 100 observational data points and 20 data points per

2Sachs dataset: consists of flow cytometry measurements from a signaling network with 11 nodes, of which five
have been perturbed in some measurements (21). These interventions contain both inhibitions and activations of
the nodes. The data was discretized into ternary values, and uniform Dirichlet priors for parameters and uniform
structural priors were used.
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intervention, totaling 220 measurements. Each test was initiated
by taking a set of observations as initial data and running two
MCMC chains in parallel for a long initial burn-in period. Follow-
ing this, samples were taken from both chains, and the conver-
gence of the chains was checked by comparing distributions of
edge posterior probabilities calculated from both samples. If the
distributions were similar (i.e., chains were converged), either
sample was used as the initial sample for both active and non-
active learners. Figure 3 shows the result when comparing both
learners to the steady-state distribution obtained with a normal
“batch” MCMC run.

The results show the clear benefit of active learning methods as
guides to choosing experiments, since, as shown in this example,
the same distance from the “true” structure can be obtained in an
active learning setting with half the measurements needed for non-
active learning.

Although the active learning method was demonstrated only
for static BNs, it is also suitable for DBNs. We note that this
does not hold for active learning based on breaking equivalence
classes.

Fig. 3. Averaged results from four different runs showing Euclidean distance from edge
posterior probabilities, calculated using samples from chains run with active and
nonactive learning methods, to the “steady-state” posterior distribution. The system
and data were the 11 node network from (21). Number of measurements shows the
number of data points sampled after the initial 40 observational datapoints. For each run,
the initial burn-in was 2 �105, between-measurement burn-in was 5,000, graph sample
size 5,000, and sampled observations 300.
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3. Notes

1. Bayes Net Toolbox is available (for Matlab) with extensive
functionality (22).

2. For a list of other BN software, refer to (23).

3. If prior knowledge about the structure is available, it is sensible
to use informative structure priors. Informative priors may be
derived from expert knowledge or from multiple datasets, refer
to for example (24). If such priors are not available, uninfor-
mative (uniform) priors (i.e., P(Gi) ¼ P(Gj), for all i and j)
can be used or priors penalizing for growing complexity, such

as (13): PðGÞ / QN
i¼1

N�1
PaGðXiÞj j

� ��1
.

4. Using MCMC over ordering of nodes instead of structures can
considerably speed up computations by improving conver-
gence of MCMC. However, the ordering introduces an inher-
ent bias via structure priors, and trying to include additional
prior information is intractable (for discussion on this topic,
see, e.g., (12)). A large dataset can overweigh the priors, but
for smaller datasets typically present in systems biology applica-
tions or when fusing different data types is required, it may be
better to use structure MCMC.

5. The active learning method discussed in Subheading 2.2 (from
(19)) is stochastic in nature, and, although in average performs
better than random learning, it is possible that it give worse
results at times. Thus, care must be taken when running the
method and large enough samples should be used.

6. The discussed active learningmethod predicts for each iteration
the intervention/observation most beneficial to make and the
same intervention can be suggested recurringly, unlike in the
equivalence class-based method (18), which outputs the
sequence of interventions. Thus, the first method is more flexi-
ble, but because it is computationally demanding and since
sampling can affect the precision of the method, using the
method of (18) becomes more attractive after about n > 12.
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Chapter 5

Supervised Inference of Gene Regulatory Networks
from Positive and Unlabeled Examples

Fantine Mordelet and Jean-Philippe Vert

Abstract

Elucidating the structure of gene regulatory networks (GRN), i.e., identifying which genes are under
control of which transcription factors, is an important challenge to gain insight on a cell’s working
mechanisms. We present SIRENE, a method to estimate a GRN from a collection of expression data.
Contrary to most existing methods for GRN inference, SIRENE requires as input a list of known regula-
tions, in addition to expression data, and implements a supervised machine-learning approach based on
learning from positive and unlabeled examples to account for the lack of negative examples.

Key words: Gene regulatory network, Reverse engineering, Inference, Machine learning, Gene
expression

1. Introduction

The regulation of gene expression in living cells is a complex
process involving many actors. Among them, cis-regulation by
transcription factors (TF) is of crucial importance to allow cells to
adapt their behavior in response to external stimuli and to meet
their needs depending on environmental conditions. Elucidating
the structure of gene regulatory networks (GRN), i.e., identifying
which genes are under control of which TF, is therefore an impor-
tant challenge to gain insight on a cell’s working mechanisms and
may pave the way, e.g., to rational, predictive and personalized
medicine (1).

Theexperimental characterizationof transcriptional cis-regulation
at a genome scale remains, however, a daunting task even for
well-studied model organisms. In silico methods that attempt to
reconstruct the GRN from prior biological knowledge and available
genomic and post-genomic data therefore constitute an interesting
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direction towards the elucidation of these networks. This task, often
referred to as reconstruction, inference, or reverse engineeringofGRN
in the literature, is often basedon the analysis of gene expression data
across samples and experimental conditions (2). Indeed, large
volumes of expression data are easily collected by DNA microarray
and next-generation sequencing technologies, and expression levels
are directly affected by changes in transcriptional regulation.
A variety of approaches have been proposed to reverse engineer
GRN from expression data, including clustering techniques to
infer co-regulation (3), detection of relationship between a TF and
target gene by correlation or mutual information (4–6), models of
conditional probability distribution (7), differential equations
(8–13), or Boolean relationships (14).

All aforementioned approaches infer a GRN from expression
data, based on various assumptions on the influence of the GRN on
expression. Since some GRN in model organisms have already been
partially deciphered through decades of experimental biology, it is
possible to assess the performance of these methods by comparing
the GRN they predict to known regulations (6). However, it should
be pointed out that none of these methods makes use of known
regulations to guide the inference of new ones. In opposition to
these approaches which perform de novo inference of GRN from
expression data, we and others have proposed that using known
regulations, in addition to expression data, in order to infer new
ones may be a more promising paradigm to improve the accuracy of
inference methods for GRN and other biological networks
(15–19). We refer to this later family of methods as supervised
methods, as opposed to de novo methods, because they follow
the paradigm of supervised inference in statistics and machine
learning where data known to have a property are used to guide
the search of other data sharing the same property (20).

In this chapter, we describe the SIRENE method (Supervised
Inference of REgulatory Networks), first proposed by (19), to infer a
GRN from a set of expression data and a set of known regulations.
SIRENE is a supervised method, intuitively based on the following
inference principle: if a gene A has an expression profile “similar” to a
gene B known to be regulated by a given transcription factor, then
gene A is likely to be also regulated by the transcription factor. The
fact that genes with similar expression profiles are likely to be co-
regulated has been used for a long time in the construction of groups
of genes by unsupervised clustering of expression profiles (3). The
novelty in SIRENE is to use this principle in a supervised classification
paradigm, where the notion of similarity is optimized to characterize
the set of genes regulated by a given TF, based on known regulated
genes. This inference paradigm has the advantage that no particular
hypothesis is made regarding the relationship between the expression
level of a TF and those of regulated genes. In fact, expression data for
the TF are not even needed in this approach.
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In practice, SIRENE treats each TF in turn, and learns so-called
local models to characterize the genes regulated by each TF, an
approach pioneered by (18) in the case of protein-protein interac-
tion and metabolic networks. To estimate the local model of a given
TF, we make use of genes known to be regulated by the TF to learn
a scoring function able to predict the probability that other genes
are also regulated by the TF. Since biological experiments are
usually designed to prove the existence of an interaction—and not
its absence—and since databases seldom report negative results, we
rarely have in advance a list of genes that we know are not regulated
by the TF. Calling a gene positive or negative depending on
whether or not it is regulated by a TF of interest, this means that
we have a set of positive examples from which we need to learn a
model to predict the label of other genes. While learning a scoring
function from positive examples only is a well-studied field in
statistics and machine learning (21), it has been shown both theo-
retically and in practice that learning from positive and unlabeled
examples (the so-called PU learning paradigm) is often more effi-
cient than learning from positive examples only (22–31). In our
setting, this amounts to learning a model from expression data (to
represent all genes), a list of known regulated genes (positive exam-
ples), and the list of all other genes which are candidate targets for
the TF (the unlabeled examples). SIRENE implements a supervised
strategy to infer GRN from gene expression data and known reg-
ulations, based on the PU learning method proposed in (31),
which we describe in detail below.

2. Materials

The method we describe is meant to infer GRN for any organism
for which expression and regulation data are available. For the sake
of clarity, we take the example of the bacteria Escherichia coli as a
running example in this chapter.

2.1. Microarray Data The first ingredient we need to collect in order to run this analysis
is a collection of expression data. Typically, data obtained from
DNA microarrays in different experimental collections can be
gathered from public repositories or in-house databanks. Stan-
dard technology-dependent preprocessing must be carried out to
assign to each gene of interest (typically, all known genes) a
measure of expression in each experiments. The result should
therefore be a n �p matrix of expression for n genes across
p experimental conditions.

We used in our example the expression data collected by (6)
for E. coli, which can be downloaded from http://gardnerlab.bu.
edu/data/PLoS_2007/data_and_validation.html (see Note 1).
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The expression data consist of a compendium of p ¼ 445 E. coli
Affymetrix Antisense2 microarray expression profiles for
n ¼ 4, 345 genes. The microarrays were collected under different
experimental conditions such as PH changes, growth phases, anti-
biotics, heat shock, different media, varying oxygen concentrations,
and numerous genetic perturbations. We normalize the expression
data for each gene to zero mean and unit standard deviation.

2.2. Regulation Data The second ingredient we need is a list of TF, for which we will
predict target genes and a list of known targets for these TF. In our
case, we collect the list of 328 genes coding for known TF in E. coli,
and the list of known targets for these TF from the RegulonDB (32)
database. We take the data prepared by (6) who extracted 3, 293
experimentally confirmed regulation interactions between 154
known TF and 1, 211 target genes, including auto-regulations.
These regulations are available at http://gardnerlab.bu.edu/data/
PLoS_2007/reg.tar.gz. In addition, in the particular case of bacte-
rial genomes, it is useful to collect regulon information since genes
belonging to the same operon are regulated by the same TF. In our
case, we downloaded the list of 899 known operons in E. coli from
RegulonDB. Each operon contains one or several genes, and each
gene belongs to at most one operon. Genes not present in any
operon of the RegulonDB were considered to form an operon by
themselves, resulting in a total of 3, 360 operons for the 4, 345
genes (see Note 2).

3. Methods

3.1. A Local Model

Approach
We decompose the global GRN inference problem into a series of
local problems, each dedicated to predicting new regulated genes
for a single TF. Afterwards, the predictions of all local models are
combined into a global network. We now explain how to make a
single local model for a given TF of interest, which we refer to as T
below. We denote by P the set of known targets of T (positive
examples) and byU the set of genes amongwhichwewant to predict
new targets. Usually, U is only made of all genes which are not in P.

3.2. Learning

from Positive

and Unlabeled

Examples

Given the sets of genes P and U, where each gene is described by a
vector of expression values across different experiments, we want to
predict which genes in U have a positive label. While a frequent
strategy is to score unlabeled examples based on their similarity to
known positive examples (see Note 3), SIRENE follows the so-
called PU learning paradigm where the scoring function is learned
from both the positive and the unlabeled examples.
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Algorithm 1 describes our PU learning method for identifying
new regulated targets for TF A from P and U. The general idea of
the procedure is to estimate many scoring functions by discriminat-
ing P versus random subsamples of U and then average all scoring
functions to assign a final score to each unlabeled example. The
idea to use supervised machine learning procedures to discriminate
P from U has been successfully used for PU learning, and our
procedure builds on this idea (see Note 4). It is akin to bagging
(33) to learn to discriminate P from U with two important
specificities:

l First, only U is subsampled. This is to account for the fact that
elements in P are known to be positive, and moreover that the
number of positive examples is often limited (see Note 5).

l Second, the size of subsamples is a parameter K which is pref-
erably smaller than the size of U. Each time a random subsam-
ple U t of U is generated, a classifier is trained to discriminate P
from Ut , and used to assign a predictive score to any element of
U n U t .

Eventually, the score of any element x 2 U is obtained by
averaging the predictions of the classifiers trained on subsamples
that did not contain x (see Note 6). As such, no point of U is used
simultaneously to train a classifier and to test it. Note that the
counter n(x) in Algorithm 1 simply counts the number of scoring
functions that were estimated without x as training example.

3.3. Choosing

a Classification

Method

At the heart of Algorithm 1, we need an algorithm to train a
classifier to discriminate two sets of genes based on their expression
data. In practice, any classification method can be used to trainft,
e.g., logistic regression or support vector machines (SVM). In
SIRENE, we use a SVM, a popular algorithm to solve general
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supervised binary classification problems considered state of the
art in many applications (34, 35). Many free and public implemen-
tations of SVM are available (see Note 7). An important ingredient
needed to run an SVM is a kernel functionK(x, y) between any two
genes x and y that can often be thought of as a measure of similarity
between the genes. In our case, the similarity between genes is
measured in terms of expression profiles. Given a set of n genes
x1, . . ., xn that belong to two classes, denoted arbitrarily � 1 and
þ 1, an SVM estimates a scoring function for any new gene x of the
form:

f ðxÞ ¼
Xn

i¼1

aiKðxi; xÞ :

Theweightsai in this expression are optimizedby the SVMtoenforce
as much as possible large positive scores for genes in the class þ1 and
large negative scores for genes in the class � 1 in the training set.
A parameter, often calledC, allows to control the possible overfitting
to the training set. The scoring function f(x) can then be used to rank
geneswith unknown class by decreasing score, from themost likely to
belong to class þ 1 to the most likely to belong to class � 1.

The kernel K(x, y) defines the similarity measure used by the
SVM to build the scoring function. In our experiments, we want to
infer regulations from gene expression data. Each collection of gene
expression data is a vector, so we simply use the common Gaussian
radial basis function kernel between vectors u and u:

Kðu; uÞ ¼ exp � jju � ujj2
2s2

 !
;

where s > 0 is the bandwidth parameter of the kernel.

3.4. Parameter Selection Each SVM has therefore two parameters, C and s. To select the
values of these parameters, we followed the following principles
(see Note 6):

l Concerning the C parameter, it is often useful to check differ-
ent values and choose the most appropriate one by cross-
validation. This requires however a sufficient number of posi-
tive examples and might not be appropriate when the positive
set is too small, like in our case. It addition, it considerably
increases the computation time of the procedure. Alternatively,
if time is a constraint or if there are not enough known positive
examples to perform cross validation, one may fix an arbitrary
value for C. A useful default choice is a large C value, e.g.,
C ¼ 1, 000, which corresponds approximately to learning a so-
called hard-margin SVM (34). This choice is particularly rele-
vant with a Gaussian kernel, where the bandwidth s of the
kernel allows to control overfitting (36).
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l The s parameter was simply set to unique value s ¼ ffiffiffiffiffiffi
2p

p
=4,

where p ¼ 445 is the number of expression data available for
each gene. This choice was based on the observation that the
expression profile for each gene was scaled to zero mean and
unit standard deviation for each gene, meaning that each gene
is represented by a vector of dimension p and of Euclidean
norm

ffiffiffi
p

p
. Two completely independent genes should be repre-

sented by roughly orthogonal vectors, implying that the
Euclidean distance between two unrelated genes is of order offfiffiffiffiffiffi
2p

p
. We expect that a bandwidth of the order of s ¼ ffiffiffiffiffiffi

2p
p

=4,

which puts two orthogonal profiles at about 4s from each
other, is a safe default choice to make sure that unrelated
genes have no effect on each other (see Note 8).

In addition to SVM parameters, algorithm 1 also needs two
additional input parameters:

l K, the size of subsamples. K ¼ NP or up to 5 �NP seems a safe
choice. To our knowledge, K does not have a significant influ-
ence on the performance (31). Note that the SVM weights
should be balanced if K is considerably higher than NP, the
size of the positive set.

l T, the number of bootstraps. In theory, the higher T, the better
the performance but also the longer it takes for the algorithm
to run. In practice, we observed that T ¼ 30 led to good
results, but we advocate to increase that value for smaller values
of K if time is not an issue.

3.5. Results In this section, we present a few results obtained from experiments
on the E. coli dataset which we previously described. We restrict
ourselves to 31 TFs with at least 8 known regulated genes and for
each TF, and run a double three-fold cross validation with an
internal loop on each training set to select parameter C of the
SVM (or n for the 1-class SVM). Following (19), we perform a
particular cross validation scheme to ensure that operons are not
split between folds. We test two variants of bagging SVM, settingK
successively to NP and 5 �NP. These choices are denoted respec-
tively by bagging1 SVM and bagging5 SVM. We compare them to
the biased SVM, which is considerably longer to train, as well as to
two methods that estimate the scoring function from positive
examples only: the baseline method, which scores the unlabeled
examples by their mean Euclidean distance to known positives, and
the one-class SVM method (see Note 3).

Figure 1 shows the average precision/recall curves of all meth-
ods tested. Overall, we observe that all three PU learning methods
give significantly better results than the two methods which use
only positive examples (Wilcoxon paired sample test at 5% signifi-
cance level). No significant difference was found between the three
PU learning methods. This confirms again that for different values
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ofK, bagging SVMmatches the performance of biased SVM.More
details about the performance of SIRENE, in particular compar-
isons with de novo GRN inference methods, are presented and
discussed in (19, 31, 37).

4. Notes

1. We used the RMA-normalized expression values for all probe
sets that were annotated as genes and all conditions. More
recent and complete datasets for E. coli are available from
http://m3d.bu.edu/norm/.

2. More recent andcompletedatasets foroperons canbedownloaded
from http://regulondb.ccg.unam.mx/data/OperonSet.txt.

3. A possible strategy to overcome the lack of negative examples is
to disregard unlabeled examples during training and simply
learn from the positive examples, e.g., by ranking the unlabeled
examples by decreasing similarity to the mean positive example
(38) or using more advanced learning methods such as 1-class
SVM (21, 24, 36, 39).

4. Our starting point to learn a classifier in the PU learning setting
is the observation that learning a scoring function to discrimi-
nate positive from unlabeled samples is a good proxy to our
objective, which is to learn a scoring function to discriminate
positive from negative samples (23, 27, 30). In practice, it is
useful to train classifiers to discriminate P from U by penalizing
more false-negative than false-positive errors, in order to
account for the fact that positive examples are known to be

Fig. 1. Precision-recall curves to compare the performance between the bagging SVM, the
bagging5 SVM, the biased SVM, the 1-class SVM and the baseline method.
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positive, while unlabeled examples are known to contain
hidden positives. Using soft-margin SVM while giving high
weights to false-negative errors and low weights to false posi-
tive errors leads to the biased SVM approach described by (27),
while the same strategy using a logistic regression leads to the
weighted logistic regression approach of (29). Both methods,
tested on text categorization benchmarks, were shown to be
very efficient in practice and in particular, outperformed all
other existing approaches for PU learning. The PU learning
method we propose in this chapter, based on bagging, is an
extension of the biased SVM, which can lead to more accurate
and computationally more efficient models (31):

l First, it can improve the performance of the model by
limiting overfitting. In particular, assigning a score to an
unlabeled example that has been used as negative training
example, as does the biased SVM, can be problematic.
Indeed, if the classifier fits too tightly the training data, a
false-negative xi can hardly be given a high training score
when used as a negative. In a related situation in the
context of semi-supervised learning, (40) showed, e.g.,
that unlabeled examples used as negative training examples
tend to have underestimated scores when an SVM is trained
with the classical hinge loss. More generally, most theoreti-
cal consistency properties of machine learning algorithms
justify predictions on samples outside of the training set,
raising questions on the use of all unlabeled samples as
negative training samples at the same time.

l Second, it improves scalability and speed of biased SVM.
Indeed, a typical machine-learning algorithm, such as an
SVM, trained on N samples has time complexity propor-
tional to Na, with a between 2 and 3. Therefore, biased
SVM which is trained to discriminate P from U has com-
plexity proportional to (NP þ NU)

a, whereNP andNU are
respectively the sizes of P and U. On the other hand,
bagging SVM’s complexity is proportional T ∗ (NP þ
K)a, where T is the number of times we randomly subsam-
ple unlabeled examples, and K is the size of each subsam-
ple. With the default choiceK ¼ NP, the ratio of CPU time
needed to train the biased SVM versus the bagging SVM is
therefore ðNP þNU Þ=ð2NPÞð Þa=T . Then, we conclude
that bagging SVM is faster than biased SVM as soon as

NU =NP>2T 1=a � 1. For example, taking T ¼ 35 and
a ¼ 3, bagging SVM is faster than biased SVM as soon as
NU∕NP > 6, a situation very often encountered in practice
where the ratioNU∕NP is more likely to be several orders of
magnitude larger.
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5. In this example, known regulations are manually curated and
experimentally validated. Therefore, they are believed to be
high-confidence interactions. However, if the positive training
set is believed to be noisy, one might consider bootstrapping
P too.

6. In practice, it is useful to ensure that all elements of U are not
too often in U t , in order to average the predictions over a
sufficient number of classifiers. This can be achieved, e.g., by
repeatedly splitting U intoN∕K non overlapping groups of size
K and training a model with each group taken in turn as
negative examples. Besides, although we propose to aggregate
the scores by a simple average, there exist alternative aggrega-
tion techniques (31).

7. A list of SVM implementations is available at http://www.
support-vector-machines.org. We used the free and publicly
available libsvm library (41), which can be called directly as
a C program of via many languages such as R, MATLAB or
PYTHON.

8. Correctly choosing parameters can be of paramount importance
to obtain good performance with machine learning algorithms.
The default choice we propose have the advantage to be easy and
fast to implement, since they require no parameter optimization.
However, it is always safe to check that these choices are not too
bad for the problem to be solved. In our case, we performed
preliminary experiments with different values of C and s, which
did not result in significant improvement or decrease of perfor-
mance. This suggests that the behavior of our algorithm is robust
to variations in its parameters around the default values we pro-
pose and that ignoring further parameter optimization is a safe
decision. We strongly recommend to analyze the effect of para-
meters on a case-by-case basis.
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Chapter 6

Mining Regulatory Network Connections by Ranking
Transcription Factor Target Genes Using Time Series
Expression Data

Antti Honkela, Magnus Rattray, and Neil D. Lawrence

Abstract

Reverse engineering the gene regulatory network is challenging because the amount of available data is very
limited compared to the complexity of the underlying network. We present a technique addressing this
problem through focussing on a more limited problem: inferring direct targets of a transcription factor
from short expression time series. The method is based on combining Gaussian process priors and ordinary
differential equation models allowing inference on limited potentially unevenly sampled data. The method
is implemented as an R/Bioconductor package, and it is demonstrated by ranking candidate targets of the
p53 tumour suppressor.

Key words: Gaussian process, Reverse engineering, Gene regulatory network, Ordinary differential
equation

1. Introduction

Understanding the function and regulation of all human genes is
one of the most important challenges that needs to be solved to
fully reap the benefits of the Human Genome Project and the
genomic era.

There are several regulatory mechanisms affecting protein
expression. We will focus on transcriptional regulation, which is
mediated by transcription factors (TFs). They are proteins that bind
the DNA to activate or repress the transcription of their target
genes. The relationships between TFs and their target genes can
be represented as a graph which is called the gene regulatory
network. In reality, this network is context sensitive with many
connections being, for instance, tissue specific.

Inferring the gene regulatory network from data is a very
challenging problem. Even with high-throughput measurement
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techniques providing data on a genome-wide scale, the amount of
data is tiny compared to the potential complexity of the regulatory
network. Taking a conservative estimate of 1,500 human TFs (1)
regulating some 22,500 genes (2) yields an astronomical number of
more than 10450 potential networks. Even with a more realistic
assumption of at most 5 regulating TFs for each gene, there are
more than 1018 potential networks or from another perspective
more than 6.3�1013 potential sets of regulators for each gene.
Assuming the regulatory network can be captured by a differential
equation model with as many parameters, roughly twice as many
experiments would be needed to identify all the parameters (3). If a
simplified model of regulation with fewer parameters (such as a
linear differential equation) can be assumed, the number of experi-
ments will drop accordingly (4), but naturally such a model cannot
capture all possible modes of combinatorial regulation.

Thedifficulty of general network inference even for simpler organ-
isms was recently demonstrated by the DREAM5 Network inference
challenge (see Note 1), where one of the tasks was to infer the regu-
latory network for yeast using practically all available expression data.
As a result, the best-performing team in this subtask achieved an
area under the ROC curve of 0.539, which is only marginally better
than the result 0.5 corresponding to random guessing.

1.1. Probabilistic

Dynamical Models of

Gene Regulation

To avoid these difficulties, we will focus on the specific task of
identifying the targets of a TF in a time series experiment where
the TF activity is changing (5, 6). The method works based on
expression data alone. The TF activity can be estimated using
information from known target genes or using the TF mRNA, if
the TF is assumed to be primarily under transcriptional control (see
Note 2). Given an estimate of TF activity and a model of transcrip-
tion based on this activity, we can rank candidate targets based on
how well they fit the model of regulation by this TF.

As our model of gene transcription regulated by a TF and
optionally TF protein translation we use the following system of
linear ordinary differential equations (ODEs):

dpðtÞ
dt

¼ f ðtÞ � dpðtÞ (1)

dmj ðtÞ
dt

¼ Bj þ SjpðtÞ �Djmj ðtÞ (2)

where p(t) is the TF protein at time t,mj (t) is the jth target mRNA
concentration and f (t) is the TF mRNA. The parameters Bj, Sj, and
Dj are the baseline transcription rate, sensitivity and decay rate,
respectively, for the mRNA of the jth target as described in (7).
The parameter d is the decay rate of the TF protein (6).

In order to infer the protein activity p(t), we need a prior for it.
As the functions f(t), p(t) and mj(t) are deterministically linked by
the ODEs, this can be accomplished by placing a Gaussian process
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prior on f(t) (see Note 3). This leads to a joint Gaussian process
over the three continuous-time functions f(t), p(t) and mj(t). Data
are observations of the expression levels at arbitrary specific times
(not necessarily evenly spaced), and we assume a Gaussian noise
model: m̂j ðt iÞ � N ðmj ðt iÞ;s2i;mj

Þ and f̂ ðt iÞ � N ðf ðt iÞ; s2i;f Þ with
known (derived from puma, see below) or estimated gene-specific
noise variance parameters. The parameters of the model as well as
other parameters of the Gaussian process covariance are optimised
by maximising the marginal likelihood.

1.2. Related Approaches Other approaches for ranking TF targets using similar data include
the rHVDM package (8) which implements a non-probabilistic
variant of the same transcription ODE model (7). rHVDM does
not support using the TF mRNA observations to infer TF activity.
Another alternative that defines the model based only on TF
expression data without a possibility of using information from
the targets to infer TF activity is TSNI (9).

In general, the main difficulty in linking putative target genes
with their regulators using expression data is the different degrada-
tion rates of mRNAmolecules of different genes. If the degradation
rates are available and can be compensated for, estimation of the
regulator activation profiles is greatly simplified (10). Our method
can easily use such information as well.

2. Materials

The presented target-ranking approach is implemented in the tigre
package which is available in Bioconductor (11) for R (since Bio-
conductor 2.6 for R-2.11). tigre can make effective use of error
estimates for expression levels provided by preprocessing methods.
For Affymetrix arrays these are most easily available from the Bio-
conductor package puma (12); for Illumina arrays the
corresponding information is available from the Bioconductor
package lumi (13).

3. Methods

3.1. Data Collection

and Experimental

Design

The primary data used by the model are expression time series.
They can be measured using any quantitative technique such as
mRNA sequencing (RNA-seq) or microarrays.

The application of our rankingmethod requires time series data.
Due to financial constraints, most biological time series are very
short, which poses problems for data modelling. We have applied
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the ranking to data sets with as few as 6–7 time points (6, 14),
although longer time series (>10 time points) are significantly
more informative.

Given a fixed experimental budget, it seems in general prefera-
ble to have more experimental perturbations and more finely sam-
pled time series rather than more replicates of the same
measurements, except possibly for some single key time points.
The models can use continuity in the time series to compensate
for the noise that is usually detected using the replicates.

3.2. Preprocessing The expression data should be preprocessed using the best tools for
that particular platform. The tigre ranking method can make use
of error or variance estimates from preprocessing. At the time of
writing, the first such tools for RNA-seq data are only beginning to
emerge. For microarrays, for example, the puma (12) Bioconduc-
tor package provides such estimates for Affymetrix GeneChips,
while the lumi (13) package provides this for Illumina Bead Arrays.

In order to use the data with tigre, it must be imported using
the function processData that normalises the output from puma
and lumi, or processRawData, that handles plain expression data
matrices. These functions require information about the experi-
mental setup of the data, including observation times of different
samples and which replicate time series they belong to. An example
of the preprocessing using the p53 activation data from (7) is
presented below. More details are available in the vignettes and
other documentation of the respective packages.

l ibrary ( ArrayExpress )

## Get data from ArrayExpress
p53 . a f f ybatch <− ArrayExpress ( ’E−MEXP−549 ’ )
## Sort the arrays in a s e n s i b l e order
mynames <− rownames( pData ( p53 . a f f ybatch ) )
I <− order ( s t r t r im (mynames , 5 ) ,

pData ( p53 . a f f ybatch ) [ ’ Factor . Value . . time . ’ ] )
p53 . a f f ybatch <− p53 . a f f ybatch [ , I ]

## Run mmgMOS preproce s s ing
l ibrary (puma)
p53 . exprRes l t <− mmgmos( p53 . a f f ybatch )

## Run t i g r e data norma l i sa t ion
exps <− rep ( 1 : 3 , each=7) # r e p l i c a t e s : 1 , . . . , 1 , 2 , . . . , 2 , 3 , . . . , 3
p53 . t im e s e r i e s <− processData ( p53 . exprRes lt , exper iments=exps )
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3.3. Ranking Ranking candidate targets of a TF requires inferring the TF activity
profile. This can be done using TF mRNA expression levels if the
TF can be assumed to be under transcriptional control, or using
expression data of known targets, or combining both. Both of these
cases are handled by the tigre function GPRankTargets.

If known targets are available, the function first fits a model
using these known targets to infer the TF activity. All other genes
are then screened by fitting additional models by adding them to
the target set one at a time. If there are no known targets, all genes
are screened by simply fitting them one at a time. In our p53
example, this is achieved using the code below.

3.4. Visualisation

and Analysis

The most effective way to explore the ranking results is by looking
at visualisations of the models. Given that more than 10,000 mod-
els are produced in the above analysis, this can be a daunting task
without proper tools. A very useful tool for browsing the models is
the tigreBrowser tool (see Note 4). The scores and the
corresponding model visualisations can be exported for tigreBrow-
ser as below.

## Known t a r g e t probe−s e t s from Barenco e t a l . (2006)
## These are the most in f o rmat i v e probes f o r genes
## ’DDB2’ , ’CDKN1A’ , ’PA26 ’ , ’BIK’ , ’TNFRSF10B’
knownprobes <− c ( ’ 203409 at ’ , ’ 202284 s at ’ , ’ 218346 s at ’ ,

’ 205780 at ’ , ’ 209295 at ’ )

## Run the ranking . This may take s e v e r a l hours to run .
## Resu l t s are saved to f i l e ’ p53ranking . RData ’ .
s c o r e s <− GPRankTargets ( p53 . t ime s e r i e s , knownTargets=knownprobes ,

s c o r eSaveF i l e=’ p53ranking . RData ’ )

## Sort the l i s t accord ing to l i k e l i h o o d
s c o r e s <− sort ( s co re s , descending=TRUE)

## Find 10 top−ranking probe s e t s
genes ( s c o r e s ) [ 1 : 1 0 ]

## Find the corresponding gene symbols
l ibrary ( annotate )
mget ( unlist ( genes ( s ) [ 1 : 1 0 ] ) ,

getAnnMap( ’SYMBOL’ , annotat ion ( p53 . t im e s e r i e s ) ) )
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The results can then be viewed most easily by running the
tigreServer.py script and pointing it to the saved
p53_results.sqlite file. A screen shot of the browser is
shown in Fig. 1.

As there is no suitable genome-wide validation data available,
we used a sequence-based method of validation. To do this, we
looked for strong occurrences of the known p53 binding motif in
the promoters of highly ranked targets. This was done by using the
p53scan tool of Smeenk et al. (15) on the sequences of 5,000 bp
upstream of annotated transcription starts of RefSeq genes with
annotated 5’ UTRs downloaded from hg19 assembly in the UCSC
Genome Browser (16). Figure 2 shows the enrichment of the
strongest 10% of the binding motif instances identified by
p53scan as ranked by the score on the promoters of highly ranked
genes. While these high-scoring motif instances are the most likely
true binding sites, some of them may still be non-functional. On
the other hand, it is likely that many other genes are regulated
through a weaker site on the promoter or a more distant site
which cannot be detected without additional information.

4. Notes

1. See http://wiki.c2b2.columbia.edu/dream/results/DREAM5/
?c¼4_1.

2. One critical question in applying tigre is whether to use the TF
mRNA data. The extra information can potentially greatly help
in identifying the TF activity profile and hence making better
predictions of new targets, but it can also lead to incorrect
predictions if it turns out incorrect. Based on our experience,
the critical question is whether some outside influence, such as
a external signal, is the rate-limiting factor in the production of
the active TF. Simple post-translational modifications such as
dimerisation do not appear to significantly hinder the use of TF
mRNA data, as witnessed by the results in (6) for Drosophila
TFs Mef2 and Twi which are known to function as dimers.

3. If the TF protein is under significant post-translational
regulation, Eq. 1 may be omitted and the prior placed directly

## Export the s core s and model v i s u a l i s a t i o n s to t i g reBrowser
export . s c o r e s ( s co re s , datasetName=’ Barenco2006 ’ ,

exper imentSet=’GPSIM 5 known ’ ,
database=’ p53 r e s u l t s . s q l i t e ’ ,
preprocData=p53 . t im e s e r i e s )
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Fig. 1. Screen shot of the tigreBrowser showing the top results of the p53 experiment.
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on p(t). In this case, multiple known targets are needed to
reliably infer p(t).

4. tigreBrowser is available for download at http://www.hiit.fi/
u/ahonkela/tigre/.

References

1. Vaquerizas JM, Kummerfeld SK, Teichmann
SA, Luscombe NM (2009) A census of human
transcription factors: function, expression and
evolution. Nat Rev Genet 10:252–263

2. Pertea M, Salzberg SL (2010) Between a
chicken and a grape: estimating the number
of human genes. Genome Biol 11:206

3. Sontag ED (2002) For differential equations
with r parameters, 2r+1 experiments are enough
for identification. J Nonlinear Sci 12:553–583

4. Stark J, Brewer D, Barenco M, Tomescu D,
Callard R, Hubank M (2003) Reconstructing
gene networks: what are the limits? Biochem
Soc Trans 31:1519–1525

5. Gao P, Honkela A, Rattray M, Lawrence ND
(2008) Gaussian process modelling of latent
chemical species: applications to inferring tran-
scription factor activities. Bioinformatics 24:
i70–i75

6. Honkela A, Girardot C, Gustafson EH,
Liu Y-H, Furlong EEM, Lawrence ND,
Rattray M (2010) Model-based method for
transcription factor target identification with
limited data. Proc Natl Acad Sci USA
107:7793–7798

7. Barenco M, Tomescu D, Brewer D, Callard R,
Stark J, Hubank M (2006) Ranked prediction

of p53 targets using hidden variable dynamic
modeling. Genome Biol 7:R25

8. BarencoM, Papouli E, Shah S, Brewer D,Miller
CJ, Hubank M (2009) rHVDM: An R package
to predict the activity and targets of a
transcription factor. Bioinformatics 25:419–420

9. Della Gatta G, Bansal M, Ambesi-Impiombato
A, Antonini D, Missero C, di Bernardo D
(2008) Direct targets of the TRP63 transcrip-
tion factor revealed by a combination of gene
expression profiling and reverse engineering.
Genome Res 18:939–948

10. Barenco M, Brewer D, Papouli E, Tomescu D,
Callard R, Stark J, Hubank M (2009) Dissec-
tion of a complex transcriptional response
using genome-wide transcriptional modelling.
Mol Syst Biol 5:327

11. Gentleman RC et al (2004) Bioconductor: open
software development for computational biol-
ogy and bioinformatics. Genome Biol 5:R80

12. PearsonRD,LiuX, SanguinettiG,MiloM,Lawr-
enceND, RattrayM (2009) puma: A bioconduc-
tor package for propagating uncertainty in
microarray analysis. BMC Bioinformatics 10:211

13. Du P, Kibbe WA, Lin SM (2008) lumi: A
pipeline for processing illumina microarray.
Bioinformatics 24:1547–1548

25 50 75 100 125 150 175 200

Enrichment of p53 binding motifs

# of top genes

%
 e

nr
ic

hm
en

t o
f s

tr
on

g
bi

nd
in

g 
m

ot
ifs

0

5

10

15

20

25

+
* **

** **
* *

+

Fig. 2. Enrichment of strong p53 binding motifs in the promoters of selected number of top predicted targets. p-values of
the enrichments are denoted by “***”: p < 0.001, “**”: p < 0.01, “*”: p < 0.05, “þ”: p < 0.1 (tail probability in
hypergeometric distribution).

66 A. Honkela et al.



14. Honkela A,MiloM,HolleyM, RattrayM, Lawr-
ence ND (2010) Ranking of gene regulators
through differential equations and Gaussian pro-
cesses. Proceedings of 2010 IEEE international
workshop onmachine learning for signal proces-
sing (MLSP 2010), Kittil€a, Finland, pp 154–159

15. Smeenk L, van Heeringen SJ, Koeppel M, van
Driel MA, Bartels SJJ, Akkers RC, Denissov S,
Stunnenberg HG, Lohrum M (2008) Charac-
terization of genome-wide p53-binding sites
upon stress response. Nucleic Acids Res
36:3639–3654

16. Fujita PA, Rhead B, Zweig AS, Hinrichs AS,
Karolchik D, Cline MS, Goldman M, Barber
GP, Clawson H, Coelho A, Diekhans M,
Dreszer TR, Giardine BM, Harte RA,
Hillman-Jackson J, Hsu F, Kirkup V, Kuhn
RM, Learned K, Li CH, Meyer LR, Pohl A,
Raney BJ, Rosenbloom KR, Smith KE, Hauss-
ler D, Kent WJ (2011) The UCSC Genome
Browser database: update 2011. Nucleic Acids
Res 39:D876–D882

6 Mining Regulatory Network Connections by Ranking Transcription Factor. . . 67



Chapter 7

Identifying Pathways of Coordinated Gene Expression

Timothy Hancock, Ichigaku Takigawa, and Hiroshi Mamitsuka

Abstract

Methods capable of identifying genetic pathways with coordinated expression signatures are critical to
advance our understanding of the functions of biological networks. Currently, the most comprehensive and
validated biological networks are metabolic networks. Complete metabolic networks are easily sourced
from multiple online databases. These databases reveal metabolic networks to be large, highly complex
structures. This complexity is sufficient to hide the specific details on which pathways are interacting to
produce an observed network response. In this chapter we will outline a complete framework for identifying
the metabolic pathways that relate to an observed phenomenon. To illuminate the functional metabolic
pathways, we overlay microarray experiments on top of a complete metabolic network. We then extract the
functional components within a metabolic network through a combination of novel pathway ranking,
clustering, and classification algorithms. This chapter is designed as a simple tutorial which enables this
framework to be applied to any metabolic network and microarray data.

Key words: Metabolic network, Gene pathway, Micorarray expression, Ranking, clustering,
Classification

1. Introduction

Metabolic networks are maps of chemical reaction pathways that are
known to occur within a cell. The functions of a metabolic network
are controlled by the coordinated activation and interaction of
specific genes. The metabolic network can therefore be viewed as a
set of organized gene interactions which combine together to form
well-defined pathways. For many organisms, the network structure
and genetic dependencies of metabolism have been identified and
are stored within online databases such as KEGG (1), MetaCyc (2),
and Reactome (3, 4). These databases serve as maps which describe
the known metabolic processes that occur within the cell. These
maps can be analyzed at many different resolutions from large-scale
views of interacting pathways and subnetworks through to the
analysis of individual compounds and their genetic dependencies.
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Pathways of coordinated gene expression determine which
metabolic compounds can be synthesized and thus can define the
function of metabolic networks. Additionally, microarray experi-
ments have allowed researchers to measure gene expression under
various experimental conditions. The widespread use of microarray
expression has led to the creation of many bioinformatics methods,
most notably gene set enrichment analysis (GSEA) (5, 6) and
subgraph extraction methods (7–10). These methods combine
microarray expression with metabolic networks in order to identify
the pathways that drive an observed response. Although these
methods all combine metabolic networks with gene expression
they largely ignore the known pathway structure of metabolism.

In our original paper (11), we proposed our complete frame-
work for the extraction and analysis of the most correlated meta-
bolic pathways within gene expression data. Our framework is a
combination of three complementary methods. Firstly, a pathway-
ranking method is used to extract the most correlated metabolic
pathways within gene expression data (12). Then to analyze the
structure within the extracted pathway list, we developed Markov
mixture models for both unsupervised (13) and supervised analyses
(14, 15). In this chapter, we present a tutorial on our proposed
framework, and we clearly discuss the major steps, assumptions, and
limitations of our methodology.

In theMaterials section (Subheading 2), we will discuss how to
prepare a metabolic network for pathway analysis. This procedure
involves three steps:

Creating a gene-interaction network: We describe how to convert
the compound-reaction structure of metabolic networks into
the gene-interaction network.

Defining the pathway targets: We discuss the specification of start
and end nodes required for pathway mining and how this will
affect the interpretation of the result.

Weighting the gene interactions: We show how to use microarray
expression information to weight the edges of a gene-
interaction network and highlight the metabolic network fea-
tures which are related to specific observations.

In theMethods section (Subheading 3), we will discuss how
to extract and analyze pathways of coordinated gene-expression
from a metabolic network.

Pathway extraction: We describe how to efficiently identify the top
K most important pathways from the weighted gene interac-
tion network.

Pathway clustering and classification methods: We provide examples
of pathway clustering and classification algorithms which allow
for the analysis of large numbers of pathways.
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A complete implementation of the methods described in
this chapter is available in the PathRanker R package which can
be downloaded from http://www.bic.kyoto-u.ac.jp/pathway/tim
hancock/index.html.

2. Materials

Metabolic networks are collections of known biologically present
pathways. Within online databases such as KEGG, known metabolic
pathways are commonly represented as compound-reaction graphs.
A compound-reaction graph focuses on how metabolic compounds
are produced and used within the network by connecting compound
nodes using reaction edges which define substrate and product com-
pound dependencies. The entire metabolic network is then built by
connecting all available pathway compound-reaction graphs. The
resultant metabolic network is highly redundant where multiple
paths exist between any two compounds. This high level of redun-
dancy means that care must be taken to ensure that any identified
paths through the network are faithful representations of the under-
lying biological processes. In this section, we describe a protocol for
processingmetabolic networks from the original compound-reaction
graph stored by the online databases into a gene-interaction graph
which captures the structure of the original network but allows for the
extraction of paths comprising of pairwise gene interactions.

2.1. Creating a Gene

Interaction Network

The top network in Fig. 1 presents an example compound-reaction
graph in a form commonly found in onlinemetabolic databases such
as KEGG. This network contains five metabolic compounds [C1,
C2, C3, C4, C5] connected by three reactions [R1, R2, R3], each
of which are catalyzed by a subset of five genes [G1, G2, G3, G4,
G5]. A compound reaction graph defines the nodes as metabolic
compounds and labels the edges with reactions. Compound-
reaction graphs focus on high-level reaction interactions and their
compound dependencies. However, if we are to overlay microarray
data onto a metabolic network and analyze gene interactions, a
more detailed gene-interaction network must be created. There-
fore, we must first convert this compound-reaction graph in Fig. 1
into a gene-interaction graph which defines the nodes as genes, and
the edges are labeled by the compounds produced by the interaction
between two genes. The compound-reaction graph in Fig. 1 has
some interesting features that are common within metabolic net-
works but which highlight the assumptions we must make when we
define a gene-interaction network. These features are:

1. There are two reactions, R1 and R3, which produce two

product compounds: C1�!R1 ðC2;C3Þ and C3�!R3 ðC4;C5Þ.
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2. Reaction R2 requires both C2 and C3 to proceed: ðC2;C3Þ
�!R2

C4.

3. Reaction R2 is reversible meaning that C4�!R2 ðC2;C3Þ is also
a valid pathway.

4. Gene G2 occurs in two connected reactions R1 and R3.

To convert a compound-reaction graph into a gene-interaction
graph requires the definition of node annotations which include
function and location information of each gene. To achieve this, we
define each node by the gene name, substrate compound, product
compound, reaction, and pathway within which it is observed. In
the gene-interaction graph at the base of Fig. 1, each rounded
rectangle is a resulting gene node where each annotation is a string
delimited by a colon, for example, annotation G4:C2:C4:R2 corre-
sponds to the gene G4 observed in reaction R2 using substrate
compound C2 and producing compound C4. For clarity of repre-
sentation within Fig. 1, we removed the pathway annotations.

Edge annotations are also added to the gene-interaction graph
in Fig. 1 and are displayed as dashed rectangles. These edge anno-
tations allow for easy visual mapping between the compound-
reaction and gene-interaction graphs. The edge annotations simply
summarize the interaction between two genes by the substrate
compound, middle compound, and final product compound pro-
duced. For example, edge label C1:C2:C4 defines a transition from

Fig. 1. Example conversion from a metabolic network to a gene interaction network.
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C1 ! C2 and then from C2 ! C4. The edge annotates help to
reduce the visual complexity of the network by allowing for group-
ing of edges with the same compound transitions. This can help as
each reaction can be catalyzed by multiple genes but still only
related to a single compound transition.

Using this annotation scheme, the following compound-
reaction network properties are retained:

1. Reaction direction information is maintained by the creation of
separate gene nodes for each direction. For example, G4:C4:
C2:R2 is the reverse direction ofG4:C2:C4:R2. These different
nodes each have different connectivity within the graph and
therefore will be used in paths.

2. The different reaction memberships of G2 are also simply
converted into different nodes, G2:C1:C2:R1, G2:C1:C3:R1
and G2:C3:C5:R3. However, G2 is now directly connected to
itself (with different annotations) which will cause trouble
when we considered weighting the edges using microarray
data as both nodes will contain the same expression informa-
tion. We deal with this issue in Subheading 2.3.

The disadvantages of this annotation scheme are:

1. Reactions that produce multiple products or require multiple
substrates are broken up into single pathways. For example,

the multiple substrate reaction ðC2;C3Þ�!R2
is treated as two

separate pathways leading to C4: C2�!R2
C4 and C3�!R2

C4.
This separation of reaction function may not always completely
represent the underlying biology but does allow for a view of
the network in terms of pairwise gene interactions.

2. The gene-interaction network appears much more complex
than the original compound-reaction graph. However, this
disadvantage motivates our development of pathway-mining
tools to extract the important structure from such complex
networks.

2.2. Defining Pathway

Targets

A pathway in biological terms has multiple definitions. We define a
pathway to be a connected sequence of connected gene interactions
between prespecified start and end points (see Note 1). These start
and end points are defined to be sets of compounds within the
metabolic network. In Fig. 1, we specified the start compound to
be C1 and the end compound to be either C4 or C5. These start
and end compound sets are stored as pseudo nodes in the network
from which we add edges to each relevant compound. For example,
in Fig. 1, the start pseudo node s is connected to C1, and the end
pseudo node t connected to both C4 and C5. This connection is
done before the conversion to the gene-interaction network:
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l In the PathRanker R package, the specification of the start
and end compounds and the conversion to a gene-interaction
network can be done using a combination of the getKEGG and
computeGeneNetwork functions.

The specification of the start and end compounds is also specify-
ing the type of research question. In (12) and (14, 15) (see Note 3),
we specified single start and end compounds. Our goal in these
analyses was to identify pathway branches from otherwise conserved
paths which explain a specific set of experimental observations.
A separate approach taken in (11) defined the set of start com-
pounds to be all source compounds and the set of end compounds
to be all sink compounds within the entire KEGG metabolic net-
work. In this analysis our goal was to extract paths with common
structure that could be clustered together to identify larger subnet-
works that corresponded to specific experimental conditions.

2.3. Weighting the

Gene Interactions

The specification of pseudo start and end nodes means that we are
seeking the most important paths of coordinated gene expression
between s ¼ C1 and either C4 or C5, t ¼ [C1, C5]. There are
many potential paths which fulfill the criteria, and two potential
paths could be:

1. s ! s : C1 : C2 ! G1 : C1 : C2 : R1 ! C1 : C2 : C4
! G4 : C2 : C4 : R2 ! C2 : C4 : t ! t.

2. s ! s : C1 : C3 ! G2 : C1 : C3 : R1 ! C1 : C3 : C4 ! G4 :
C3 : C4 : R2 ! C3 : C4 : C2 ! G4 :
C4 : C2 : R2 ! C4 : C2 : C3 ! G4 :
C2 : C3 : R2 ! C2 : C3 : C5 ! G5 :
C3 : C5 : R3 ! C3 : C5 : t ! t.

These two paths finish at different end compounds and have a
remarkably different structure. In this section we describe how to
use microarray data to weight the edges of the network. These edge
weights will then be combined together to compute a pathway
probability score which will be used to all rank pathways in order
of importance.

Microarray data is presented in a matrix where the expression
levels of each gene are defined as the columns and the rows are the
experiments. In Subheading 2.1 we construct a gene iteration
network where each gene is a network node. A correlation coeffi-
cient of the expression values between two connected genes can
now be used to measure the importance of each edge within the
gene-interaction network. In (11, 12), we use the correlation
between two neighboring gene expression vectors to define a set
of edge weights for a metabolic network:

l It is common for each experiment to be labeled by an experi-
mental condition. In this case separate edge weights can be
computed from each experimental condition separately.
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To illustrate the results and highlight some pitfalls of this
weighted gene-interaction network we follow these steps:

1. Download the KEGG saccharomyces cerevisiae (budding yeast)
metabolic network and process it into a gene-interaction
network as in Fig. 1 (see Note 2).

2. Download the benchmark Gasch microarray data (16) from the
gaschYHS Bioconductor package (17, 18). The Gasch micro-
array data measure the gene expression response of yeast under
multiple stress conditions.

3. Extract the heat shock experiments as our target experimental
condition and group together all other stress conditions into
one group called other.

4. For both heat shock and other microarray observations, com-
pute the Pearson correlation coefficient for all neighboring
genes within the gene-interaction network:

(a) For the correlation coefficient computation to reduce the
effect of outlying observations we take the median of 100
bootstrapped samples.

(b) The edge weights between the pseudo start s and end
t nodes and the genes they are connected to are set to 1.

The results of this procedure are presented in Fig. 2:

l In the PathRanker R package, the bootstrapped edge
correlations can be computed using the assignEdge-
Weights function.

In Fig. 2, the left-most column of histograms shows the distri-
bution of all neighboring gene correlation coefficients for each stress
condition. Note here that both histograms, specifically for the other
group, appear have a peak correlation of r ¼ 1. This is due to the
effect of the same gene being connected to itself. This situation is
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Fig. 2. Distribution of gene-interaction (edge weight) correlations.
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shown in the example network in Fig. 2 withG2 being connected to
itself (G2:C1:C3:R1 ! G2:C3:C5:R3). The same microarray
expression must be used for all three nodes related to G2 in the
gene-interaction network, and the correlation between all of these
nodes will be r ¼ 1. We call this situation a same gene edge.

It is common in metabolic networks for the same gene to
catalyze a chain of reactions, see, for example, the fatty acid metab-
olism pathways of KEGG. Therefore, same gene edges must be very
common in the gene-interaction network. However, as most ana-
lyses are interested in the interaction between different genes, these
same edges may become somewhat artificial and uninteresting. One
way to reduce the impact of the same gene edges within any
pathway analysis is to manually set the correlation of these edges
to a prespecified value as done in (11). We perform this correction
to the edge correlations in Fig. 2 and set all same gene edges to
have a correlation of (p ¼ 0) and present the results in the middle
column of histograms in Fig. 2. The same gene-corrected histo-
grams in Fig. 2 clearly show the artificial perfect (r ¼ 1) correla-
tions induced by same gene edges create a skew within the edge
correlation histograms:

1. Assigning the same gene edge correlations to a value of p ¼ 0
has the effect of emphasizing positively correlated edges. Posi-
tively corrected connected genes are assumed to support each
other and therefore create a path. Negative correlations are
assumed to create a block and not allow the path to proceed.
Setting the same gene edge correlations to a value of 0 will have
the effect of a path-ranking algorithm to select a same gene
edge rather than a negatively correlated edge.

2. The settingof samegene correlations to a lowvaluemayhave the
effect of blocking some pathways, such as fatty acidmetabolism.

While it is reasonable to use the correlation value as an edge
weight, the procedure can be generalized by using the probability
of each edge weight as computed by an empirical cumulative distri-
bution function (ecdf probability) over all edge weights (12). The
ecdf probability computes the probability of each edge weight
given all observed edge correlations. There are two advantages of
using the ecdf as the edge weight:

1. It allows for the computation of a nonparametric p value for any
path within the network (12).

2. It can be computed for any edge weight, not simply correlation
but also allows any other metrics of interest to be specified.

The ecdf probabilities for the edge correlations are presented in
the right most column of plots in Fig. 2. Once the edges have been
weighted with microarray expression information we can now
consider methods of extracting and analyzing pathway through
the weighted gene-interaction network.
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3. Methods

3.1. Pathway Extraction Once a weighted gene-interaction network has been created by
following the instructions in Subheading 2 we use the procedure
as defined in (12) for ranking and extracting the top K pathways.
The pathway-ranking procedure is a greedy algorithm to find the
shortest loopless paths through the gene interaction network
between any pair of start, s, and end, t, nodes. In practice, this is
solved efficiently in polynomial time with the Yen–Lawler algorithm
(19, 20). In this chapter, we do not discuss the implementation
details of Yen–Lawler algorithm but instead discuss the practical use
of the path-ranking algorithm.

To highlight the potential problems that may be encountered
when extracting the top K pathways, we have to consider the
pathway scoring metric. Consider a path of length L containing
genes ½ g1; . . . ; gL �, then the path score metric used in (12) is
defined to be

Pscoreðg1; . . . ; gLÞ ¼ min �
XL

l¼2

log ecdf ðgl�1; glÞ
� �

( )
; (1)

where ecdf is the empirical cumulative distribution probability of
the correlation between gl � 1 and gl. There are several important
implications of this scoring system that must be considered:

1. The ecdf value is the probability of each edge correlation
observed within the data. Therefore, an ecdf value of 1 corre-
sponds to the most highly correlated gene pair.

2. The closer the ecdf value is to 1, the closer its log value will
be to 0.

3. Therefore, to minimize, we simply take the shortest most
highly correlated gene path between any start and end vertex.

Depending on how the s and t nodes are specified, minimizing
Pscore can be biased to short paths. For example, in Fig. 3, we show
a simple example network where naively minimizing Pscore may lead
to problems. In Fig. 3, we have predefined start nodes [S1, S2, S3]
and end node [T1, T2] which are connected through a gene net-
work. The ecdf values of each edge are also displayed. From Fig. 3
we can see the following features:

1. The top-ranked path will clearly be from S1 to T1 by G1 and
G3. The Pscore of this path is 0.0305, and it contains one gene
interaction so the path length is 1.

2. The longest path is from S3 to T2 by genesG6,G8,G9,G7 and
G5. The of this path is 0.1202, and it contains four gene
interactions, so its path length is 4.
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If we use the Pscore metric, the longest paths are ranked last, and
the shortest path are ranked first. The table of ranked paths is
displayed on the right-hand side of Fig. 3. However, the initial
ranking highlights the strong bias of the Pscore metric to path
length. If we correct by path length (by simply dividing by the
path length), we see a complete reversal in the pathway rankings.
The longest path now has the minimum corrected score of 0.0301
and is ranked first. Therefore, naively using Pscore to rank pathways
can lead to a collection of overly short and potentially biologically
uninteresting pathways:

1. It is not possible to efficiently extract paths of minimum aver-
age score as this is a known NP hard problem (12).

2. The path length bias problem is significantly reduced if specific
start and end nodes are set. However, the problem is not
completely removed, and it is recommended that some path
length correction is performed on all analyses.

To efficiently overcome the path length bias of the metric, we
propose two heuristic methods:

Set a minimum path length and only extract paths which are greater
than this value: We used path length thresholding in (11) and
found that searching for the optimal minimum path length can
yield insights into the complexity of specific metabolic phe-
nomena. However, this approach requires an external method
to evaluate the quality of the extracted paths.

Perform a post-hoc correction for path length: In (12), we proposed a
method to convert the Pscore into a Pvalue and correct for path
length bias. However, for this procedure to be successful, a
large number of paths must be extracted, and there is no
guarantee that the best path in terms of p value will be found.

To create a pathway dataset for further analysis, we extract the
top 2,000 paths for both heat shock and other with a minimum
path length of five gene interactions. A visual display of this dataset
is presented in Fig. 4. In Fig. 4, the top plot is an image of all paths

Fig. 3. Pscore pathway ranking versus p value ranking.
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where the rows correspond to an extracted path and the columns to
a gene. A color indicates that a gene has been selected within a path.
The paths are grouped in terms of their experimental condition and
sorted in order of Pscore. The Pscore value for each path is plotted in
the right-hand side line plot. The bar plot at the base of the image
displays the probability of each gene over all paths and experimental
conditions:

l In the PathRanker R package pathway extraction can be done
using the pathRanker function.

An immediate striking feature of Fig. 4 is that there seems to be
clusters of similar paths within each experimental condition. This
clustering effect is due to path-ranking method getting caught in
highly correlated subnetworks of genes which are related to specific
experimental conditions. However, there are too many genes, over
300 selected in all paths, and therefore, analyzing the structure of
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Fig. 4. Top 2,000 extracted paths for “heat shock” and all “other” stress conditions using the Gasch microarray
and the KEGG yeast metabolic network.
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all paths simply by looking at Fig. 4 is quite difficult. Therefore, to
make this task possible, we now describe pathway-specific cluster-
ing and classification algorithms.

3.2. Pathway Clustering

and Classification

Methods

In (13–15), we proposed pathway-specific probabilistic models for
clustering with 3M and classification with HME3M respectively.
These models have the same probabilistic assumption that a path-
way is a first-order Markov chain of gene interactions. In this
chapter, we do not describe the derivation of these models but
only present the model definitions and describe their practical use
for analyzing a real pathway dataset.

To begin an analysis of the extracted pathways with 3M or
HME3M the following steps are taken:

1. Both 3M and HME3M construct a binary pathway matrix X
which is of the structure in Fig. 4. The pathway X defines each
row as a pathway and each gene as a column. If gene j occurs
within a pathway i, then xij ¼ 1 otherwise xij ¼ 0.

2. Once the pathway matrixX is constructed, the model structure
of 3M and HME3M are,

(a) 3M:

pðxÞ ¼
XM

m¼1

pm
YK

k¼2

pðgkjgk�1; ykmÞ

(b) HME3M:

pðyjxÞ ¼
XM

m¼1

pmpðyjX ; bmÞ
YK

k¼2

pðgkjgk�1; ykmÞ;

where

l M is the number of pathway clusters to be found.

l pm is the probability of each pathway cluster.

l p(gkjgk � 1; ykm) is the conditional probability of gk being
within each path given gene gk � 1. This conditional proba-
bility is estimated by the parameters ykm.

l K is the length of each path.

l y is a binary response variable indicating the target experi-
mental condition to be classified.

l p(yjX, bm) is a classification model trained within each
pathway cluster and estimates the probability of classifying
the response variable y with parameters bm.

3. The 3M or HME3Mmodel parameters can be estimated using
the expectation maximization (EM) algorithm (21).
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The difference between 3M and HME3M is that HME3M is a
supervised model and includes experimental condition information
through the classification probabilities p(yjX, bm). In contrast the
3M model is an unsupervised clustering model. The choice of 3M
or HME3M for any given situation depends on the problem:

1. The unsupervised nature of 3M means it is better suited to
identifying pathways of similar structure regardless of observed
experimental condition.

2. The supervised nature of HME3M means it is suited to identi-
fying pathways which define a specific experimental condition.

The HME3M classification probabilities, p(yjX, bm), are esti-
mated within each pathway cluster M by separate weighted pena-
lized logistic regression (PLR) models (22). This penalization is an
L2 or ridge penalization, and its purpose is to stabilize each esti-
mate of the parameter vector bm to cope with a large number of
genes and the sparse nature of the pathway matrix X:

1. The PLR model contains a penalization parameter l to control
the degree of penalization. In (11, 14, 15), we set this l ¼ 1
and did not optimize this parameter (see Note 3). In our
experience, the optimization of l in the context of HME3M
does not dramatically impact the classification performance but
does affect the convergence of the EM optimization algorithm.

2. The parameters bm for each component are the log odds that
each gene can correctly classify the response the label in com-
ponent m. The bm values may be positive or negative which
indicates the presence or absence of a gene within each pathway
component m respectively.

3. The optimization of each pathway cluster PLR model is not
done as a separate step after training an initial 3M model but at
the same time as the pathway clustering through the mixture of
expert framework (23). The mixture of expert framework uses
an EM algorithm to share information between HME3M’s
pathway clustering and classification steps to ensure that each
pathway cluster found is optimized for classification perfor-
mance.

The optimization of 3M or HME3M involves estimating the of
number pathway clusters M to be extracted. This can be done in
two ways:

1. In (14, 15), we searched for the optimum M through a greedy
search betweenM ¼ 1 to 10. This procedure assumes that there
are multiple pathway clusters within each experimental condi-
tion, and the number of subclusters can be greater than the
number of experimental conditions. For example, in (14, 15),
we found 4–5 pathway subclusters within two experimental
conditions
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2. In (11) we set M to be the known number of groups and then
search for the optimum minimum path length in the pathway-
ranking algorithm defined in Subheading 3.1. This approach
assumes that there is one pathway cluster for each experimental
condition, but the size and complexity of this structure are
unknown. By increasing the minimum path length that can
be extracted by the path-ranking method, we are increasing
the complexity of each path. As we have shown in (11), increas-
ing the complexity of these paths can be used to optimize the
performance of 3M and HME3M.

3. For any given parameter settings, the performance of either 3M
or HME3M should be evaluated by a cross validation regime:

l In the PathRanker R package, 3M pathway clustering can
be performed using the pathCluster function, and
HME3M pathway classification can be performed using
the pathClassifier function.

To show the differences in the results obtained by 3M and
HME3M, we run both models on the dataset presented in Fig. 5.
To produce the images in Fig. 5, perform the following steps:

1. Optimize the number of components by performing five
repeats of fivefold cross validation for each model for every
size M ¼ 2 to M ¼ 10. The results from the performance
optimization are presented in Fig. 5a. In Fig. 5a we compare
the performance of each model using a normalized mutual
information (NMI). The optimal value of the NMI which
indicates perfect agreement between the response label and
predicted label is an NMI ¼ 1 and the minimum value is
0 (see Note 4).
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2. Identify the optimal 3M and HME3M model size and plot
the optimal pathway clusters by running each model once on
the entire pathway dataset. The optimal pathway clusters are
plotted in Fig. 5b.

The performance optimization results (Fig. 5a) clearly show
the improvement in classification accuracy that can be gained by
using the supervised model HME3M as opposed to the unsuper-
vised approach of 3M:

1. The additional response information included within the
HME3M clearly increases the NMI between the known
response labels and predicted model labels.

2. The HME3M model also has reduced variance of the predic-
tions which leads to a simpler optimal model.

3. To pick the optimal model size, we take a conservative
approach for our model selection and pick the HME3M
model size to be M ¼ 2 and the 3M model to be M ¼ 6.

To show the difference between the 3M and HME3M model,
we produce an image of the identified clusters in Fig. 5b:

1. Figure 5b displays the same pathway dataset in Fig. 4; how-
ever, we have sorted the pathways in order of the known
experimental conditions then by 3M cluster label and finally
by HME3M predicted label.

2. The three color bars to the right of the pathway image in
Fig. 5b show the known experimental conditions, the
HME3M predicted label, and 3M cluster labels respectively.
Each color represents a different cluster label.

From observation of the pathway clusters for each model in
Fig. 5b, we clearly see the difference between the goals of HME3M
and 3M:

1. The HME3M-assigned labels are clearly seen to agree very well
with the known experimental conditions, with a few expected
assignment errors:

(a) This good classification performance however is not
extracting the cluster structure of the pathways. To observe
the cluster structure of a HME3M model, you have to
analyze each component individually and take into account
the logistic regression parameters bm.

(b) This result highlights the upside of HME3M which is
improved predictive accuracy, but the downside is the
additional analysis complexity introduced by the model
parameters bm.
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2. The 3M model label assignments appear to agree with the
pathway cluster structure within the dataset. However, these
labels do not necessarily agree with the response labels:

(a) This result highlights the upside of 3M to clearly identify
the cluster structure within a pathway dataset, but this
structure may not be representative of the known experi-
mental conditions.

4. Notes

We have described a complete framework for the extraction and
analysis of co-ordinated gene expression pathways within metabolic
networks. All methods described in this chapter are freely available
as an R package which can be downloaded from the website http://
www.bic.kyoto-u.ac.jp/pathway/timhancock/index.html.

Although we have discussed implementation issues throughout
the chapter, we now briefly address some broader issues related our
framework:

1. Care should be taken when analyzing metabolic pathways of
gene expression as expression levels are only indicative of gene
RNA levels. However, it is not the RNA levels that perform the
enzymatic function but their proteins, and it is not clear to
what extent increasing RNA levels leads to increased protein
production.

2. In this work, we used the KEGGmetabolic networks; however,
other networks exist which may contain more or different
annotations and information. However, as different qualities
of evidence exist to assign genes to metabolic reactions, we
recommend care when constructing metabolic networks.

3. In our initial HME3M (14, 15) work, we used a different
pathway extraction technique to the one described in this
chapter. This initial HME3M pathway technique cannot be
applied for the analysis of large networks as described here.

4. The paths are extracted summaries of the structure within the
original microarray dataset, and model performances based
on these paths do not necessarily reflect the actual performance
on the original dataset. These performances cannot be com-
pared to models which directly classify using the original micro-
array dataset.
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Chapter 8

Mining Frequent Subtrees in Glycan Data
Using the Rings Glycan Miner Tool

Kiyoko Flora Aoki-Kinoshita

Abstract

This chapter describes the Glycan Miner Tool, which is available as a part of the Resource for INformatics of
Glycomes at SokaWeb site. It implements the a-closed frequent subtree algorithm to find significant subtrees
from within a data set of glycan structures, or carbohydrate sugar chains. The results are returned in order of
p-value, which is computed based on the probability of the reproducibility of the returned structures. There is
also a user-friendly manual that allows users to apply glycan array data from the Consortium for Functional
Glycomics. Thus, glycobiologists can take the glycan structures that bind to a particular glycan-binding
protein, for example, to retrieve the glycan subtrees that are deemed to be important for the binding to occur.

Key words: Glycans, Glycobiology, Complex carbohydrates, Data mining, a-Closed frequent
subtrees

1. Introduction

The Web-based tool called the Glycan Miner Tool introduced in
this chapter implements the data mining of glycan structures based
on the concept of a-closed frequent subtree mining (1). Frequent
subtree mining in general has been applied to various research
areas, including computer networks, Web mining, and bioinfor-
matics (2). These consisted of finding the most frequently occur-
ring subtrees within a forest of data. For example, tree mining was
applied to molecular databases, where tree-shaped molecular frag-
ments frequently found in active molecules, but also infrequent in
inactive molecules, were extracted. These frequently occurring
fragments could be thereby used to analyze Quantitative
Structure-Activity Relationships (QSAR) (3).

Because of the large number of potential subtrees that can be
produced by mining frequent subtrees, new methods for mining
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trees were developed. One of these is the mining of maximal
frequent subtrees (4), whereby the most frequent supertrees in a
data set could be found. In other words, only those frequent
subtrees that are not subtrees of other frequent subtrees are
returned. Another mines closed frequent subtrees (5), whereby for
any support value, only the most frequent supertrees are returned.
As a result, one can see that the set of maximal frequent subtrees is
a subset of closed frequent subtrees, which is itself a subset of
frequent subtrees in general.

Mining maximal and closed frequent subtrees produced results
that could be considered sufficient for such applications as drug
discovery and others (6).However, in order to allowmore flexibility
in mining frequent subtrees, the idea of an additional parameter a
was introduced. By specifying a threshold bywhich tomine frequent
subtrees, users could control the range of results that could be
obtained. Thus, the concept of a-closed frequent subtree was pro-
posed (1), which was used as the basis of the Glycan Miner Tool.

2. Materials

2.1. Glycobiology Glycobiology is the study of complex carbohydrates, or glycans,
which are chains of monosaccharides (five- or six-carbon rings)
that oftentimes take branched configurations (7). Thus, glycans
can be represented as tree structures, whereby the nodes represent
monosaccharides and edges represent glycosidic bonds. Because
glycosidic bonds can be formed between any of several hydroxyl
groups, or carbon atoms, on monosaccharides, a single monosac-
charide may be bonded (via its first or second carbon) with several
other monosaccharides via different carbon atoms, which are
usually carbon numbers 2, 3, 4, or 6. Figure 1 is an illustration
of a disaccharide structure; Galactose is linked to Glucose via a
glycosidic linkage in a beta 1–4 configuration. In this case, the
“parent” would be considered the glucose, and the “child” would
be the galactose, because glycan structures are usually drawn from
right to left.

2.2. a-Closed Frequent

Subtree Mining

In order to explain the usage of the Glycan Miner Tool, we first
describe some notations to introduce the methodology behind this
tool called a-closed frequent subtree mining. A graph is a data
object that contains nodes and edges, where an edge connects
two nodes. A tree, usually denoted as T, is a graph without any
cycles. A rooted tree is a tree that contains a root node fromwhich all
other nodes emanate. A labeled tree is a tree whose nodes (and at
times edges) contain labels. A node n on a unique path from the
root node to a node c is an ancestor of node c, and conversely, c is a

88 K.F. Aoki-Kinoshita



descendant of n. A parent of a node n is defined as the closest
ancestor of n, and a child is the closest descendant. A leaf is a
node that does not have any children. Internal nodes are nodes
that are neither leaves nor the root. An ordered tree is a tree contain-
ing nodes whose children have an ordering.

In the context of glycobiology, glycans are regarded as rooted,
labeled, ordered trees, which are hereafter simply called trees. A tree
S is a called a subtree of tree T if S consists of nodes and edges which
form a connected (and rooted) subset of the nodes and edges of T.
Conversely, T can then be called a supertree of S. The size of a tree T
refers to the number of edges in T, denoted by |T|. An immediate
supertree T of S satisfies Tj j ¼ Sj j þ 1.

2.3. Gycan Miner Tool In order to use the Glycan Miner Tool, we next describe the text
format called KCF, which is used to describe glycan structures. This
format is currently required to specify the input glycan data.

KEGG Chemical Function format, or KCF, was first described
for use in the KEGG GLYCAN database (8). It uses a graph
concept to describe glycan structures, where nodes represent
monosaccharides and edges represent glycosidic bonds. An exam-
ple of the tri-mannose N,N0-diacetyl chitobiose core structure of
N-glycans, usually depicted as in Fig. 2, is described in KCF format
as follows:

Fig. 1. An illustration of a disaccharide structure, where Galactose is linked to Glucose via
a glycosidic linkage in a beta 1–4 configuration. In this case, the “parent” would be
considered the glucose, and the “child” would be the galactose.

8 Mining Frequent Subtrees in Glycan Data Using the Rings Glycan Miner Tool 89



ENTRY G00311 Glycan
NODE 5

1 GlcNAc 15 0
2 GlcNAc 5 0
3 Man �5 0
4 Man �15 5
5 Man �15 -5

EDGE 4
1 2:b1 1:4
2 3:b1 2:4
3 4:a1 3:6
4 5:a1 3:3

///

The KCF file format must contain the NODE and EDGE
sections as a minimum. The ENTRY line is used to denote the
name or ID of the represented structure, if any. In this example, the
glycan ID is G00311. The NODE section starts with a number
indicating the number of residues being represented. The same
number of rows follows this line, each containing the following
information: residue number, residue name, and x- and y-
coordinates for drawing the structure. The EDGE section follows
similarly with a number indicating the number of glycosidic bonds
in the structure, which will usually be one less than the number of
residues. The same number of rows follows, with each row contain-
ing the following information: bond number, node numbers of
residues being bound, anomeric configuration, and hydroxyl
groups in the bond. For example, the following row

3 4:a1 3:6

represents the third bond, which indicates that node number 4
(Man at position �15,5) is bound to node number 3 (Man at
position �5,0) in an a1–6 configuration.

The Resource for INformatics of Glycomes at Soka (RINGS)
Web site (Akune 2010) provides a convenient drawing tool whereby
users can draw a glycan structure and immediately obtain its KCF
format. RINGS also has several format conversion utilities such that
data that may already be in a particular format can be easily converted

Fig. 2. The tri-mannose N,N0-diacetyl chitobiose core structure of N-glycans.

90 K.F. Aoki-Kinoshita



to KCF format. Conversely, there are tools that can translate from
KCF to other formats, such as LinearCode® (9) and as image files.

2.4. Glycan Databases

2.4.1. KEGG GLYCAN

Database

The KEGGGLYCAN database is available at http://www.genome.
jp/kegg/glycan/ and is a database of glycan structures, accumu-
lated from the original CarbBank database (8). It has since been
refined and updated with structures from the literature. All the data
is freely available from the Web and can also be accessed via an
application programming interface (API), which is described at
http://www.genome.jp/kegg/docs/keggapi_manual.html.

2.4.2. Consortium for

Functional Glycomics

The Consortium for Functional Glycomics (CFG) glycan structure
database was originally developed as a part of the bioinformatics core
of the CFG. In addition to their own database of glycan-binding
proteins (GBP) and glycosyltransferases, they had initially accumu-
lated N- and O-linked glycans from the CarbBank database as well as
theglycan structuredata fromGlycoMinds,Ltd. Since then, theyhave
added their own synthesized glycans from their glycan array library
and characterized glycans from their tissue and cell profiling data.

All of the glycan profiling data, glycan array data, and knockout
mouse data generated by the CFG are also available as data
resources over the Web. Glycan profiling data consists of the mass
spectral data for various human and mouse tissue samples, which
have been annotated using Cartoonist. The glycan array data con-
sist of binding affinity information of various glycans for different
GBP, viruses, bacteria, etc. Each data set focuses on a particular
GBP or other binder and lists the binding affinity for each glycan
structure on the array. Glycan arrays have developed over the years,
and the latest version contains over 600 glycan structures (10).

2.4.3. GlycomeDB In addition to KEGG GLYCAN and CFG, there are several glycan
structure databases available around the world. GlycomeDB was
developed to serve as a portal to all of these structure databases via a
single interface. It was a major project that entailed with integration
of all the structures in the various databases, which was complicated
mostly due to the inconsistent naming conventions of monosac-
charides. As a result, this database was able to integrate seven
different glycan databases and includes over 30,000 distinct glycan
structures. The URL is http://www.glycome-db.org/ (11).

3. Methods

3.1. a-Closed Frequent

Subtree Mining

Given a set of trees D, the support of a subtree S is the number of
trees in D that contain S as a subtree, which we denote by support
(S). A frequent subtree is thus the subtree whose support is larger
than or equal to a given threshold value denoted by minsup.
A maximal frequent subtree is a frequent subtree, none of

8 Mining Frequent Subtrees in Glycan Data Using the Rings Glycan Miner Tool 91



whose proper supertrees are frequent. A subtree is closed if none of
its proper supertrees has the same support as it has. With the
concept of maximal and closed frequent subtrees defined, we can
then formally define an a-closed frequent subtree as a frequent
subtree S, none of whose frequent supertrees has support greater
than or equal to a fraction a of support(S).

Given a data set of trees, the mining of a-closed frequent
subtrees from within this data set entails the enumeration of all
possible subtrees and then determining their support values. This is
in fact a difficult problem because the enumeration of all possible
subtrees can grow exponentially. However, by considering the
support of supertrees as subtrees are enumerated, potential sub-
trees can be pruned so that frequent subtrees can be found effi-
ciently. Because the details of this method are beyond the scope of
this chapter, interested readers are referred to (1).

3.2. Gycan Miner Tool The Glycan Miner Tool is available in the RINGS resource at
http://www.rings.t.soka.ac.jp/ (12). By registering as a user, any
uploaded data is automatically saved in the user data space, which is
password protected. Thus all executions of any program on RINGS
can be recorded and managed by the user.

The input to the Glycan Miner Tool is a list of glycan structures
in KCF format. There are also two parameters, minsup and alpha,
which take on a value between zero and one. A screenshot of the
Glycan Miner Tool where default values have been supplied is
illustrated in Fig. 3. Given these inputs, the tool then computes

Fig. 3. The Glycan Miner Tool where default values have been supplied.
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the a-closed frequent subtrees from among the input data, and
returns the results in order of p-value, which is computed as the
following. First, the list of a-closed frequent subtrees are broken
down into parent–child pairs of linked monosaccharides. Then
taking the shape of each of the resulting structures, the probability
of regenerating the same structure based on the distribution of
original parent–child pairs is computed as the p-value for each
structure. The final results are then returned in order of increasing
p-value.

As an example of the usage of the GlycanMiner Tool, a step-by-
step manual was developed for glycobiologists such that the glycan
array data of the CFG, for example, can be applied directly to this
tool. The link to the manual is provided at the top of the input
screen of this tool (Fig. 3). The top part of this manual is listed in
Fig. 4, where each step is listed in a menu on the left. First, users can
download the spreadsheet files for each GBP that was analyzed on
the glycan array. These files include the binding affinity for each
glycan on the array, so the user must select the strongly binding
glycan structures for analysis. Conversely, it may be possible to

Fig. 4. A screenshot of part of the step-by-step manual for using the Glycan Miner Tool with glycan array data from the
CFG. Each step is listed in a menu on the left.

8 Mining Frequent Subtrees in Glycan Data Using the Rings Glycan Miner Tool 93



select the weakly binding ones to compare those subtrees that must
NOT be in a glycan for binding to occur. In any case, the glycan
structures are depicted in IUPAC format, so the data needs to be
translated into KCF format for use in the Glycan Miner Tool.
RINGS provides a conversion utility for this purpose, so the
selected structures from the spreadsheet can be copy-and-pasted
into the converter. The resulting KCF data can then be used as
input to the Glycan Miner Tool. Once the minsup and alpha values
are specified, the a-closed frequent subtrees will be returned in
order of increasing p-value. Figure 5 is a screenshot of the results
of the default input.

4. Notes

1. The results of the Glycan Miner Tool may return with no
structures. When this occurs, the parameters of minsup and
alpha should be adjusted. Minsup should be at most the

Fig. 5. A screenshot of the results of the default input for the Glycan Miner Tool.
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number of structures that were input; alpha should be between
0 and 1. The simplest input would be a minsup value of one (1)
and alpha of one (1). These are the default values of the tool.
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Chapter 9

Chemogenomic Approaches to Infer Drug–Target
Interaction Networks

Yoshihiro Yamanishi

Abstract

The identification of drug–target interactions from heterogeneous biological data is critical in the drug
development. In this chapter, we review recently developed in silico chemogenomic approaches to infer
unknown drug–target interactions from chemical information of drugs and genomic information of target
proteins. We review several kernel-based statistical methods from two different viewpoints: binary classifi-
cation and dimension reduction. In the results, we demonstrate the usefulness of the methods on the
prediction of drug–target interactions from chemical structure data and genomic sequence data. We also
discuss the characteristics of each method, and show some perspectives toward future research direction.

Key words: Drug–target interactions, Compound–protein interactions, Chemical genomics,
Genomic drug discovery, Bipartite graph, Supervised network inference

1. Introduction

The completion of the human genome sequencing project has
made it possible for us to analyze the “genomic space” consisting
of possible proteins coded in the human genome, and various
postgenomic approaches are being undertaken to utilize the
genome information, such as for discovery of new therapeutic
protein targets and personalized medicine. At the same time,
many efforts have also been devoted to the constitution of molec-
ular databanks to explore the entire “chemical space” of possible
compounds. These public or private databanks contain synthe-
sized molecules or natural molecules extracted from animal,
plants, or microorganisms. They are available as physical and
virtual databanks, to be screened in various biological assays or
virtual screens. However, there is little knowledge about the rela-
tionship between the chemical and genomic spaces. For example,
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the US PubChem database at NCBI (National Center for
Biotechnology Information) stores more than sixty million com-
pounds, but the number of compounds with information on their
target proteins is very limited (1).

Most drugs are small compounds which interact with their
target proteins and inhibit or activate the biological behavior of
the proteins. Therefore, the identification of drug–target interac-
tions, which are defined as interactions between drugs (or drug
candidate compounds) and target proteins (target candidate pro-
teins), is an important part of genomic drug discovery. Although
high-throughput screening (HTS) is becoming available, experi-
mental determination of drug–target interactions remains challeng-
ing and very expensive even nowadays. Therefore, there is a strong
incentive to develop new methods capable of predicting potential
drug–target interactions, in order to reduce the experimental work
to be done.

So far, a varietyof computational approacheshavebeendeveloped
to analyze andpredict drug–target interactionsor compound–protein
interactions. Traditional computational approaches are categorized
into ligand-based approach and docking approach. Ligand-based
approach like quantitative structure activity relationship (QSAR)
compares a candidate ligand to the known ligands of a target protein
to predict its binding using machine learning methods (2, 3). How-
ever, the performance of the ligand-based approach is poor when the
number of known ligands for a target protein of interest decreases.
The docking is a powerful approach, but the docking cannot be
applied to proteins whose 3D structures are unknown (4). This
limitation is serious for membrane proteins such ion channels and
G protein-coupled receptors (GPCRs), so it is difficult to use the
docking on a genome-wide scale. Recently, a classification of target
proteins based on their ligand structures has been performed (5) and
an analysis of the drug–target network has revealed characteristic
features of its network topology (6). However, neither protein
sequence information nor chemical structure information was
taken into consideration simultaneously. Another unique approach
is the text mining techniques which are usually based on keyword
searching in a huge number of literatures (7), but it suffers from an
inability to detect new biological findings and the problemof redun-
dancy in the compound names and protein names in the literature.

In that domain, the importance of chemogenomics research has
recently grown fast to investigate the relationship between the
chemical space and the genomic space (8–10). A key issue in che-
mogenomics is computational prediction of drug–target interac-
tions or compound–protein interactions on a genome-wide scale.
Recently, a variety of in silico chemogenomic approaches have been
developed to predict drug–target interactions or compound–pro-
tein interactions. The underlying idea is that similar ligands are likely
to interact with similar proteins, and the prediction is performed
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based on compound chemical structures, protein sequences, and the
currently known drug–target interactions. A straightforward statis-
tical approach for predicting drug–target interactions is to use
binary classification methods where they take drug–target pairs as
an input for machine learning classifiers such as neural network (11)
and support vector machine (SVM) (12–15). The combination of
many target-specific and drug-specific local classifiers was also pro-
posed to detect missing interactions between known drugs and
known target proteins (16). Another statistical approach for pre-
dicting drug–target interactions is the dimension reduction that
map drugs and target proteins into a unified feature space in which
known interacting drugs and target proteins are close to each other,
then to infer potentially new drug–target interactions between
other pairs of drugs and target proteins that were newly mapped
close to each other in the unified space (17, 18).

Another promising approach for predicting drug–target interac-
tions is to use pharmacological information of drugs. The use of side-
effect similarity has been recently proposed, which is based on the
assumption that drugs with similar side effects are likely to interact
with similar target proteins (19). However, the method requires
drug package inserts that describe the detailed side-effect informa-
tion, so it is applicable only to marketed drugs for which side-effect
information is available. Therefore, it is not possible to predict
potential interactions between new drug candidate compounds and
target proteins. To overcome this limitation, amethod for predicting
unknown pharmacological information of any compounds from
their chemical structures has been proposed (20, 21), which enables
us to predict drug–target interactions on a large scale.

In this chapter, we review recently developed in silico chemo-
genomic approaches to predict drug–target interactions from
chemical data of drugs and genomic data of target proteins. Espe-
cially, we introduce several kernel-based statistical methods from
two different viewpoints: binary classification (12–16) and the
dimension reduction (17, 18). In the results, we show the useful-
ness of the methods on the predictions of drug–target interactions
from chemical structure data and genomic sequence data. We also
discuss the characteristics of each method and show some perspec-
tives toward future research direction.

2. Materials

2.1. Drug–Target

Interactions

The information about drug–target interactions was obtained from
the KEGG BRITE (22), SuperTarget (23) and DrugBank data-
bases (24). In this study, we focus on drug–target interactions
involving four pharmaceutically useful protein classes: enzymes,
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ion channels, GPCRs, and nuclear receptors. We constructed a set
of drug–target interactions, where the number of known interac-
tions involving enzymes, ion channels, GPCRs, and nuclear recep-
tors is 2,926, 1,476, 635, and 90, respectively. The number of
known drugs targeting enzymes, ion channels, GPCRs, and nuclear
receptors are 445, 210, 223, and 54, respectively, and the number
of target proteins in these classes is 664, 204, 95, and 26, respec-
tively. This is the same data used in (17). These data sets are used as
gold standard data to evaluate the prediction performance.

2.2. Chemical Structures Chemical structures of the drugs were obtained from the KEGG
DRUG database (22). We computed the kernel similarity value of
chemical structures between drugs using the SIMCOMP algorithm
(25), where the similarity value between two drugs is computed by
Tanimoto coefficient defined as the ratio of common substructures
between two drugs based on the chemical graph alignment.
Applying this operation to all drug pairs, we construct a similarity
matrix.

2.3. Target Protein

Sequences

Amino acid sequences of the human proteins were obtained from
the KEGG GENES database (22). We computed the sequence
similarities between the target proteins using Smith-Waterman
scores based on the local alignment between two amino acid
sequences (26). Applying this operation to all target protein pairs,
we construct a similarity matrix.

2.4. Computation

of Kernel Similarity

Matrices

In this study, we used the above similarity measures as kernel
functions, because these measures are very popular, efficient, and
widely used in the field of chemistry and genomics. However, the
graph-based Tanimoto coefficients and the Smith–Waterman scores
are not always positive definite, so we added an appropriate identity
matrix such that the corresponding kernel Gram matrix is positive
definite. All the kernel matrices are normalized such that all diag-
onals are ones. Note that other kernel functions can be used in
the same framework in the methods introduced in this chapter
(see note 1).

3. Methods

The drug–target interaction network can be regarded as a bipartite
graph with drugs (or drug candidate compounds) and target pro-
teins (or target candidate proteins) as heterogeneous nodes and
their interactions as edges, which is mathematically represented by a
bipartite graph G ¼ ðU þ V ;EÞ, where U ¼ fx1; . . . ; xnxg is a set
of drug nodes, V ¼ fy1; . . . ; yny

g is a set of target protein nodes and
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E � (U �V ) is a set of drug–target interaction edges. From the
viewpoint of statistics and machine learning, the prediction of
drug–target interactions can be formulated as the problem of
supervised bipartite graph inference. The question is to predict
the presence or absence of edges between heterogeneous objects
known to form the nodes of the bipartite graph, based on the
observed data about the heterogeneous objects. Figure 1 shows
an illustration of this problem, where solid lines indicate known
interactions and dot lines indicate unknown interactions to be
predicted. In the following section, we assume that we have a set
of drugs fxignx

i¼1 and a set of target proteins fyjgny

j¼1 and their
interaction information. We consider the situation where we want
to predict unknown interactions involving any given drug candi-
date compound x 0 and any given target candidate protein y 0.

3.1. Binary

Classification

Approach

A straightforward approach for drug–target interaction prediction
is to use a binary classification method. Among many binary classi-
fication algorithms, the SVM is recently gaining popularity in bio-
informatics (27) and in chemoinformatics (28) because of its high-
performance classification ability and applicability to structured
data. Therefore, we focus on the use of SVM in this chapter. An
SVM basically learns how to classify an object z 0 into two classes
f�1;þ1g from a set of labeled objects {z1, z2, . . ., zn}. The result-
ing classifier is formulated as

f ðz0Þ ¼
Xn

i¼1

tikðzi; z0Þ; (1)

where z 0 is any new object to be classified, n is the number of
training objects, k(�,�) is a positive definite kernel, that is, a sym-
metric function k : Z � Z ! R satisfying ∑n

i, j ¼ 1aiajk(zi, zj) � 0
for any ai, aj ∈ N, and {t1, t2, . . ., tn} are the parameters learned.
If f(z 0) is positive, z 0 is classified into class + 1. On the contrary, if f
(z 0) is negative, z 0 is classified into class � 1.

Fig. 1. An illustration of the problem of drug–target interaction prediction.
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All SVM-basedmethods in thedrug–target interactionprediction
problem are classified into the local model (16) and the global model
(12–15).

3.1.1. Local SVM 1. A simple way is to construct a target-specific SVM classifier in
order to predict a given drug x 0 to interact with target protein
yj or not, as follows:

fyj ðx
0Þ ¼

Xnx

i¼1

aikxðxi; x 0Þ ðj ¼ 1; 2; . . . ;nyÞ; (2)

where kx(�,�) is a kernel function for drugs and faignx

i¼1 are the
parameters learned. If f yj

ðx 0Þ is positive, drug x 0 and target
protein yj are predicted to interact with each other. On the
contrary, if fyj ðx 0Þ is negative, drug x 0 and target protein yj are
predicted not to interact. We repeat the process for all ny target
proteins. The concept of constructing a classifier for a specific
target protein is similar to traditional ligand-based virtual
screenings such QSAR(2, 3).

2. Likewise, we can construct a drug-specific SVM classifier in
order to predict a given target protein y 0 to interact with drug
xi or not, as follows:

f xi
ðy 0Þ ¼

Xny

j¼1

bj kyðyj ; y 0Þ ði ¼ 1; 2; . . . ;nxÞ; (3)

where ky(�,�) is a kernel function for target proteins and fbjgny

j¼1

are the parameters learned. If fxi ðy 0Þ is positive, drug xi and
target protein y 0 are predicted to interact with each other. On
the contrary, if fxi ðy 0Þ is negative, drug xi and target protein y 0

are predicted not to interact. We repeat the process for all nx
drugs.

3.1.2. Pairwise SVM

with Pairwise Kernels

1. Another approach is to construct a global SVM classifier by
regarding each drug–target pair as an object (12–15). In this
case, we construct an SVM classifier to classify a given drug–
target pair (x 0, y 0) into two classes f�1;þ1g from a set of labeled
drug–target pairs fxi; yjg ði ¼ 1; . . . ;nx ; j ¼ 1; . . . ;nyÞ. The
resulting classifier is formulated as

f ðx 0; y 0Þ ¼
Xnx

i¼1

Xny

j¼1

tij kpairððxi; yj Þ; ðx 0; y 0ÞÞ; (4)

where (x 0, y 0) is any newdrug–target pair to be classified, kpair(�,�)
is a positive definite kernel drug–target pairs, and tij are the
parameters learned. If f(x 0, y 0) is positive, drug x 0 and target
protein y 0 are predicted to interact with each other. On the
contrary, if f(x 0, y 0) is negative, drug x 0 and target protein y 0 are
predicted not to interact. Therefore, the essential question here is
how to design the kernel function for drug–target pairs.
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2. We consider a vector representation of a drug–target pair (x, y).
Suppose that a drug x is represented by a vector FxðxÞ 2 Rdx ,
which corresponds to physico-chemical molecular descriptors
or substructure fingerprint (29). Likewise, suppose that a tar-
get protein y is represented by a vector FyðyÞ 2 Rdy , which
corresponds to the features related with amino acid composi-
tion or functional motif profiles, for example. We then consider
representing a drug–target pair (x, y) by a vector F(x, y). A
simple vector representation is to concatenate Fx(x) and Fy(y)
as F(x, y) ¼ (Fx(x)

T, Fy(y)
T)T (12, 13). Note that the size of

the vector is (dx + dy) in this case.

3. Another vector representation approach is to use the set of all
possible products of features of x and y by the tensor product as
follows (14, 15):

Fðx; yÞ ¼ FxðxÞ � FyðyÞ: (5)

Note that the tensor product is a vector of size (dx�dy), so it
requires prohibitive computational burden. To avoid such a
computational problem, an efficient technique has been pro-
posed by using a property of tensor product (14, 15). The use of
a classical property of tensor products enables us to compute the
inner product between tensor products can be computed by

kpairððx; yÞ; ðx 0; y 0ÞÞ ¼ kxðx; x 0Þ � kyðy; y 0Þ; (6)

where kx(x, x
0) ¼ Fx(x)

TFx(x
0) and ky(y, y

0) ¼ Fy(y)
TFy(y

0).
This implies that, as soon as we obtain the drug kernel kx(x, x

0)
and the target protein kernel ky(y, y

0), we can compute the
kernel for the corresponding drug–target pair.

4. Finally, the pairwise kernel is used as an input in the SVM
classifier in order to predict whether drug–target pairs are likely
to interact or not. Note that pairwise SVM (P-SVM) requires
considerable computational burden (see note 2).

3.2. Dimension

Reduction Approach

Here, we introduce two dimension reduction approaches based on
kernel regression model (KRM) (17) and kernel distance learning
(KDL) (18). Both methods consist of the following two steps:

l Learn two mappings f and g in order to embed drugs and target
proteins into a unified Euclidean space representing the net-
work topology, where interacting drugs and target proteins are
close to each other.

l Apply the mappings f and g to any drugs and target proteins,
respectively, and predict new interactions between drugs and
target proteins if the distance between mapped drugs and target
proteins is smaller than a threshold.
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The difference between the two methods is that KRM explicitly
embeds drugs and target proteins in a unified feature space, while
KDL implicitly embeds drugs and target proteins in a unified
feature space.

3.2.1. Kernel Regression

Model

1. We represent the bipartite graph structure of a drug–target
interaction network by an Euclidian space such that both
drugs and target proteins are represented by sets of d-dimen-
sional feature vectors fuxignx

i¼1 and fuyjgny

j¼1
, respectively. To do

so, based on the shortest distance between drugs and target
proteins on the bipartite graph, we first construct a graph-

based similarity matrix L ¼
LccLcp

LT
cpKpp

 !
, where the elements

of Lcc, Lpp, and Lcp are computed by using Gaussian functions
as follows: ðLccÞij ¼ expð�sðxi; xj Þ2=h2Þ for i, j ¼ 1, . . ., nx,

ðLppÞij ¼ expð�sðyi; yj Þ2=h2Þ for i, j ¼ 1, . . ., ny, and

ðLcpÞij ¼ expð�sðxi; yj Þ2=h2Þ for i ¼ 1, . . ., nx, for j ¼ 1, . . .,

ny, where s( �, �) is the shortest distance between all possible
objects (including drugs and target proteins) on the interaction
network with a bipartite graph structure, h is a width parame-
ter, and the distance between unreachable object pairs is treated
as infinity. Note that the size of the resulting matrix L is
ðnx þ nyÞ � ðnx þ nyÞ. The matrix L is not always positive defi-

nite, so an appropriate identity matrix is added to the L such
that the matrix L meets the positive definite property. Another
possibility of constructing the graph-based similarity matrix L is
to use the diffusion kernel (30).

2. Similarly as kernel principal component analysis (31), we apply
the eigen-value decomposition of L as L ¼ GL1=2L1=2GT ,
where the diagonal elements of matrix L are eigenvalues and
columns of matrix G are eigenvectors, and we construct a
(nx +ny) �d feature matrix U as U ¼ GdL

1=2
d by using the d

largest eigenvalues and associated eigenvectors. Then, we rep-
resent all drugs and target proteins by using the row vectors of
the feature matrix U ¼ ðux1 ; . . . ;uxnx ;u

y1 ; . . . ;uyny
ÞT . The

space spanned by features ux and uy is referred to as “interaction
feature space”.

3. We consider a model representing the correlation between the
data similarity space and the interaction feature space. To do so,
we propose to apply a variant of the KRM as follows:

u ¼ f ðzÞ ¼
Xn

i¼1

kðz; ziÞwi þ E; (7)

where z is an object, n is the number of training samples, f is
the projection from a similarity space to an Euclidean space,
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k(�,�) is a kernel similarity function, wi is a weight vector of size
d, and E is a noise vector. For simplicity, we assume that all the
feature values are centered. The model fitting can be done by
finding wi which minimizes jj U � KW jjF2, where K is an n
�n similarity matrix, W ¼ (w1, . . ., wn)

T, and jj � jjF is Frobe-
nius norm. In this study, we learn two models: fx for the
correlation between the chemical structure similarity space
and the interaction feature space with respect to drugs, and fy
for the correlation between the genomic sequence similarity
space and the interaction feature space with respect to target
proteins, respectively.

4. Given a new drug x 0, we apply the model fx and map the new
drug x 0 onto the interaction feature space as

ux 0 ¼ f xðx 0Þ ¼
Xnx

i¼1

kxðx 0; xiÞwxi ; (8)

where wxi is a weight vector and kx(�,�) is a chemical structure
kernel function.

5. Given a new target protein y 0, we apply the model fg and map
the new target protein y 0 onto the interaction feature space as

uy 0 ¼ f yðy 0Þ ¼
Xny

j¼1

kyðy 0; yj Þwyj ; (9)

where wyj is a weight vector and ky(�,�) is a sequence kernel
function.

6. Finally, we compute the closeness between drugs and target
proteins by the inner product of the features between the
corresponding drugs and target proteins in the interaction
feature space. Then, drug–target pairs whose closeness is larger
than a threshold are predicted to interact with each other.

3.2.2. Kernel Distance

Learning

1. We consider two functions f : U ! R and g : V ! R to map
drugs and target proteins in a unified feature space, where
interacting drugs and target proteins are close to each other.
A possible criterion to assess whether interacting drug–target
pairs are mapped onto close points in R is the following:

Rðf ; gÞ ¼
P

ðxi ;yj Þ2Eðf ðxiÞ � gðyj ÞÞ2
P

ðxi ;yj Þ2U�V ðf ðxiÞ � gðyj ÞÞ2
; (10)

where E � (U �V ) is a set of drug–target interaction edges on
the graph. A small value of R(f, g) ensures that connected
drug–target pairs tend to be closer than all possible drug–target
pairs in the sense of quadratic error.
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2. To avoid the over-fitting problem and obtain meaningful
solutions, we regularize the criterion Eq. 10 by a smoothness
functional on f and g based on a classical approach in statistical
learning (32, 33). We assume that f and g belong to the
reproducing kernel Hilbert space (r.k.h.s.) ℋU and ℋV

defined by the kernels kx for drugs and ky for target proteins
and to use the norms of f and g as regularization operators.
Let us define by jj f jj and jj gjj the norms of f and g in ℋU

and ℋV. Then, the regularized criterion to be minimized
becomes:

Rðf ; gÞ ¼
P

ðxi ;yj Þ2Eðf ðxiÞ � gðyj ÞÞ2 þ l1jjf jj2 þ l2jjgjj2
P

ðxi ;yj Þ2U�V ðf ðxiÞ � gðyj ÞÞ2
; (11)

where l1 and l2 are regularization parameters which control
the trade-off between minimizing the original criterion Eq. 10
and smoothing the functions, and the norms are set as
jjf jj ¼ jjg jj ¼ 1.

3. In order to obtain a d-dimensional feature representation of the
objects, we iterate the minimization of the regularized criterion
Eq. 11 under orthogonality constraints in the r.k.h.s., that is,
we recursively define the l-th features fl and gl for l ¼ 1, . . ., d
as follows:

ð f l ; glÞ ¼ argmin

P
ðxi ;yj Þ2Eð f ðxiÞ � gðyj ÞÞ2 þ l1jj f jj2 þ l2jjgjj2

P
ðxi ;yj Þ2U�V ð f ðxiÞ � gðyj ÞÞ2

;

(12)

under the orthogonality constraints: f ? f 1; . . . ; f l�1; and g ?
g1; . . . ; gl�1:

4. According to the representer theorem (34), for any l ¼ 1, . . .,
d, the solution to Eq. 12 has the following expansions:

f lðxÞ ¼
Pnx

j¼1al ;j kxðxj ; xÞ and glðyÞ ¼
Pny

j¼1bl ;j kyðyj ; yÞ for

some vectors al ¼ ðal ;1; . . . ; al ;nx
ÞT 2 Rnx and bl ¼ ðbl ;1; . . . ;

bl ;ny
ÞT 2 Rny . The optimization problem can be reduced to

the generalized eigenvalue problem with respect to a and b.
More details of the algorithm can be found in the original paper
(18). Note that if the denominator and numerator in Eq. 11 are
interchanged, the above minimization problem can be thought
of as the maximization problem. In the implementation, the
solution of the maximization problem is more stable than that
of the minimization problem in solving the corresponding
generalized eigenvalue problem from a numerical viewpoint.

5. Finally, we compute the closeness between drugs and target pro-
teins by the cosine correlation coefficient of the features between
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the corresponding drugs and target proteins in the interaction
feature space. Then, drug–target pairs whose closeness is larger
than a threshold are predicted to interact with each other.

3.3. Bipartite Local

Model Approach

with Score Aggregation

The combination of many local SVM (L-SVM) classifiers to predict
potential drug–target interactions was proposed (16). This method
is the bipartite graph version of the original local model approach
which was proposed in the context of protein-protein interaction
prediction (35).

3.3.1. Bipartite Local Model In their approach, the presence or absence of interactions between
drug xi and target protein yj are predicted in the following way.

1. Excluding target yj, we make a list of all other known targets of
drug xi in the gold standard network, as well as a separate list of
the targets not known to be targeted by drug xi. The known
targets are given a label þ 1 and the others a label � 1.

2. We look for a classification rule that tries to discriminate the
þ 1 labeled data from the � 1 labeled data using the available
genomic sequence data for the targets.

3. We take this rule and use it to predict the label of target yj and
hence an edge or nonedge between drug xi and target yj.

4. We fix the same target yj, then, excluding drug xi, we make a list
of all other known drugs targeting yj in the gold standard
network, as well as a list of drugs not known to target yj.
Similarly to before, drugs known to target yj are given the
label þ 1 and the others the label � 1.

5. We look for a classification rule that tries to discriminate the
þ 1 labeled data from the � 1 labeled data, using the available
chemical structure data for the drugs.

6. We take this rule and use it to predict the label of drug xi and
hence an edge or nonedge between drug x and target y.

Part of the originality of the approach is the steps 4–6, where
the goal is to make a second independent prediction of the same
edge, whenever possible. Even though we are attempting to predict
exactly the same edge in both cases, we are doing it with a different
data set in each case and potentially a different classification rule (or
class of rules). This gives us two independent predictions for the
same edge, though with one caveat.

3.3.2. Score Aggregation In practice, either the drugmay have no known targets or the target
may have no known targeting drug. Results in this chapter are
therefore presented to give a clear idea of prediction accuracy in
each of the following three cases:

Case 1. The drug has no known target, and the target has at least
one known targeting drug.
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Case 2. The target has no known targeting drug, and the drug has
at least one known target.

Case 3. The drug has at least one known target, and the target has
at least one known targeting drug.

The first two cases reflect the situation where we want to
predict unknown interactions involving newly arriving drug candi-
date compounds or target candidate proteins outside of the train-
ing data set. The third case represents a kind of double application
of the algorithm, treating each edge of the bipartite network as two
directed edges pointing in opposite directions. In this case, we end
up with two independent predictions for the same edge. Essentially,
we then define a function m(�,�) that aggregates the two (or even
more) prediction scores for the same edge into a global score.
A simple heuristic is the choice m(a, b) ¼ max(a, b), which was
used in the original work (16). Note that the score aggregation
procedure can be used not only for the L-SVMmethod but also for
other methods in the third case.

3.4. Performance

Evaluation

3.4.1. Baseline Method

As a baseline method, we used the nearest neighbor method (NN),
because this idea has been used in traditional molecular screening
so far. Given a new drug candidate compound, we find a known
drug (in the training set) sharing the highest structure similarity
with the new compound, and predict the new compound to inter-
act with target proteins known to interact with the nearest drug.
Likewise, given a new target candidate protein, we find a known
target protein (in the training set) sharing the highest sequence
similarity with the new protein and predict the new protein to
interact with drugs known to interact with the nearest target pro-
tein. Newly predicted drug–target interaction pairs are assigned
prediction scores with the highest structure or sequence similarity
values involving new compounds or new proteins.

3.4.2. Implementation We tested the five different methods: NN, L-SVM, P-SVM,
KRM, and KDL on their abilities to predict the drug–target
interactions.

1. In the application of L-SVM, we used the LIBSVM (v.2.88)
SVM implementation freely available for the MATLAB environ-
ment, and we fixed the C regularization parameter at 1.

2. In the application of P-SVM, it is impossible to apply standard
SVM implementations such as LIBSVM and SVMlight (36),
because the size of the kernel matrix for all possible drug–target
pairs is too huge to construct explicitly in the memory. In fact,
the space complexity is O(nx

2 �ny
2) which is just for storing the

kernel matrix, where nx and ny are the numbers of drugs and
target proteins, respectively. Therefore, we trained the models of
the P-SVM by using an online learning algorithm which
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processes one training example at each training step, so it is
computationally and spatially efficient. In this study, we used
PUMMA (37) whose solutions asymptotically converge to
those by the SVM with the squared hinge loss. In the experi-
ment, the hyperparameter for regularization in P-SVM is set to
C ¼ 1, and all of the training data were processed one time in
the training phase.

3. In the application of KRM, the width parameter in the
Gaussian function is set to h ¼ 2

4. In the application of KDL, the regularization parameter is set to
l ¼ 2 and the number of features is set to d ¼ 100, but d ¼ 20
is set for the nuclear receptor classes because of the data size.

3.4.3. Experiment

for Predicting Interactions

Involving New Drugs

and NewTargets

1. We evaluated the performance for predicting unknown interac-
tions involving new drug candidate compounds and target
proteins by performing the following fivefold cross-validation
in a block-wise manner: Both drugs and target proteins in the
gold standard set was split into five subsets of roughly equal size,
both each drug subset and each target subset were then taken in
turn as test sets, and the training is performed on the remaining
four sets. We draw the ROC curve, the plot of true positives as a
function of false positives based on various thresholds, where
true positives are correctly predicted interactions and false posi-
tives are predicted interactions that are not present in the gold
standard interactions. The ROC curves are drawn for different
sets of predictions depending on whether the drugs and/or the
target proteins were in the initial training set or not. Drugs and
target proteins in the training set are called “training,” whereas
those not in the training set are called “test.” Three different
classes are then possible: (1) test drugs vs training target pro-
teins, (2) training drugs vs test target proteins, (3) test drugs vs
test target proteins. The performance was evaluated by AUC
(area under the ROC curve) score.

2. Table 1 shows the resulting AUC scores for four classes of
drug–target interaction data. Note that NN and L-SVM cannot
predict the interactions between test drugs and test target pro-
teins, while this is possible with P-SVM, KRM, and KDL. One
explanation of the worst performance of NN is that raw drug
structure or protein sequence similarities do not always reflect
the tendency of interaction partners in true drug–target inter-
actions, which demonstrates the usefulness of the supervised
learning of the other fourmethods: L-SVM, P-SVM,KRM, and
KDL. Comparing the four different methods, KRM seems to
have the best performance for all the four protein families, and
consistently outperform the other methods.
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3.4.4. Experiment for

Detecting Missing

Interactions Between Known

Drugs and Known Targets

1. We evaluated the performance of the bipartite local model
(BLM) approach with score aggregation for detecting missing
interactions between known drugs and known targets. The
score aggregation technique was proposed for L-SVM in the
previous work (16), but it is possible to apply for the other
methods. So we also tested the effect of the score aggregation
for NN and KRM as well.

2. Table 2 shows comprehensive results of performing the leave-
one-out cross-validation. The first column shows the AUC
scores when performing leave-one-out on potential drugs,
which reflects the situation where the drug has no known target
and the target has at least one known targeting drug. The
second column shows results when performing leave-one-out
on potential target proteins, which reflects the situation where
the target has no known targeting drug and the drug has at
least one known target. The third column shows results when

Table 1
AUC (area under ROC curve) in cross-validation for
predicting unknown interactions involving new drug
candidate compounds and target proteins

AUC

(i) Test drugs (ii) Training drugs (iii) Test drugs
Data Method vs training targets vs test targets vs test targets

Enzyme NN 0.667 0.898 �
L-SVM 0.867 0.901 �
P-SVM 0.869 0.903 0.799
KRM 0.861 0.962 0.822
KDL 0.840 0.935 0.800

Ion NN 0.634 0.882 �
channel L-SVM 0.738 0.938 �

P-SVM 0.740 0.943 0.710
KRM 0.746 0.951 0.681
KDL 0.760 0.947 0.753

GPCR NN 0.691 0.801 �
L-SVM 0.886 0.903 �
P-SVM 0.891 0.901 0.829
KRM 0.886 0.918 0.838
KDL 0.814 0.918 0.802

Nuclear NN 0.742 0.672 �
receptor L-SVM 0.817 0.792 �

P-SVM 0.829 0.796 0.728
KRM 0.849 0.851 0.740
KDL 0.770 0. 807 0.739
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combining two or four leave-one-out predictions for the same
edge, which reflects the situation where the drug has at least
one known target and the target has at least one known target-
ing drug. The third column simulates the prediction of missing
drug–target interactions in the known network. Here, we see
the significant improvement in AUC score that can be achieved
by aggregating the set of prediction scores for the same drug–
target interaction (edge) into a global prediction score in all the
methods NN, L-SVM, and KRM. This result suggests that the
approach is useful for detecting missing interactions between
known drugs and known targets in practical applications.

4. Notes

1. All the methods introduced in this chapter belong to a class of
kernel methods (27), so the performance could be improved by
using more sophisticated kernel similarity functions designed
for drugs and target proteins. Considering the ligand–protein
interaction mechanism, the incorporation of prior information
about pharmacophores (38) and biding pockets (39) into the
design of drug similarity and target protein similarity is an

Table 2
AUC (area under ROC curve) in cross-validation
for detecting missing interactions between known drugs
and known targets

AUC

Data Method (i) Drug score (ii) Target score
(iii) Score
aggregation

Enzyme NN 0.682 0.899 0.930
L-SVM 0.831 0.942 0.973
KRM 0.828 0.929 0.967

Ion NN 0.647 0.887 0.917
channel L-SVM 0.745 0.935 0.970

KRM 0.745 0.917 0.969

GPCR NN 0.695 0.812 0.885
L-SVM 0.823 0.872 0.953
KRM 0.828 0.873 0.947

Nuclear NN 0.733 0.687 0.851
receptor L-SVM 0.812 0.536 0.858

KRM 0.836 0.523 0.867

9 Chemogenomic Approaches to Infer Drug–Target Interaction Networks 111



important work (40). Another promising approach is to use
pharmacological information such as side effect and drug effi-
cacy in the design of drug–drug similarity function (19, 20).

2. One serious problem of the P-SVM is that the complexity of
the “training” phase scales with the square of the “number of
training drugs times the number of training target proteins,”
leading to computational difficulties for large-scale problems
and requiring prohibitive computational cost.
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Chapter 10

Localization Prediction and Structure-Based In Silico
Analysis of Bacterial Proteins: With Emphasis on Outer
Membrane Proteins

Kenichiro Imai*, Sikander Hayat*, Noriyuki Sakiyama*,
Naoya Fujita*, Kentaro Tomii*, Arne Elofsson*, and Paul Horton*

Abstract

In this chapter, we first discuss protein localization in bacteria and evaluate some localization prediction
tools on an independent dataset. Next, we focus on b-barrel outer membrane proteins (BOMPs), describ-
ing and evaluating new tools for BOMP detection and topology prediction. Finally, we apply general
protein structure prediction methods on these proteins to show that the structure of most BOMPs in E. coli
can be modeled reliably.

Key words: Protein localization, Topologyprediction, b-barrelmembrane proteins, SVM, HMM

Abbreviations

BAM ß -barrel assembly machine complex
BBOMP bacterial ß -barrel outer membrane protein
HMM hidden markov model
SVM support vector machine
ioM-profile inside-outside-membrane profile

1. Introduction

Continuing rapid advances in sequencing technology have created a
situation in which genomic and inferred amino acid sequence data is
inundating our community. We now have complete sequence data
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for organisms that otherwise have not been well characterized—to
the extent that with metagenomic studies, we even have sequence
data for organisms that we do not know how to cultivate. Often,
these organisms are bacteria, which in some cases are disease causing
or of interest for environmental monitoring, biofuel development,
etc. Thus, it is important to try to infer as much as we can about such
organisms based on sequence data alone.

The localization of a protein within a bacteria provides an
important hint towards the function and potential interaction part-
ners of that protein. Gram-negative bacteria, in particular, possess
both inner and outer membranes, with outer membrane proteins
(OMPs) often playing an important role in drug resistance. Fortu-
nately, localization prediction from amino acid sequence is a
well-studied problem that can be performed relatively reliably in
many cases.

Structural analysis, such as structure-based remote homolog
search and homology modeling, is another application of sequence
analysis which can provide important clues regarding the function
of a protein. With the steady accumulation of soluble (and recently
membrane) protein structures for use as templates, along with
improvements in computational methods, structure-based
sequence analysis now enjoys increased coverage and accuracy.

In this chapter we describe some prediction software which can
be used to predict the localization and in many cases some aspects
of the structure of bacterial proteins based on amino acid sequence
alone. In the second part of this chapter, we focus on methods
aimed at OMPs, describing existing methods as well as our ongoing
predictor projects. Finally, we apply state-of-the-art structural mod-
eling methods to all proteins predicted to localize in the outer
membrane of E.coli.

2. General
Prediction
of Subcellular
Localization
in Bacteria

2.1. Subcellular

Localization

of Proteins in Bacteria

Proteins must be transported into their appropriate subcellular
compartment to maintain eukaryotic cellular function. Subcellular
localization of proteins is also important for bacteria, even though
they lack organelles, because they are surrounded by one or two
lipid bilayer membranes, through which proteins cannot freely
diffuse. Indeed, the presence or absence of an outer membrane,
which can be visualized by Gram staining (bacteria with outer
membranes are Gram-negative), serves as the first level of bacteria
classification. Gram-positive bacteria have four localization sites:
cytoplasm, cytoplasmic membrane, cell wall, and extracellular,
while Gram negative bacteria have five: cytoplasm, inner mem-
brane, periplasm, outer membrane, and extracellular.

116 K. Imai et al.



2.1.1. Gram-Positive

Bacteria

Since Gram-positive bacteria only posses a single membrane, the
main localization events are secretion and integration of proteins
into the cytoplasmic membrane. Both of these events can take place
in a Sec-dependent manner. Many secreted and membrane proteins
are synthesized with a cleavable N-terminal signal peptide which
targets them, in an unfolded state, to the SecYEG translocon
located in the cytoplasmic membrane. This N-terminal signal pep-
tide consists of a positively charged N-terminus (N-region), fol-
lowed by a hydrophobic core region (H-region) and the signal
peptidase cleavage site (C-region) (1). Accurate prediction tools
(2) have been developed for this relatively well-characterized sort-
ing signal.

Gram-positive bacteria also use another pathway, termed the
twin-arginine translocation (Tat) pathway, to transport proteins
across the cytoplasmic membrane (3). The Tat system comprises of
TatAC translocases in the cytoplasmic membrane, which transport
proteins in a fully folded state. Proteins using the Tat pathway have a
cleavable N-terminal signal peptide containing an almost invariant
twin-arginine sequencemotif. Signal peptides of the Tat pathway are
less hydrophobic and tend to be longer than those of the Sec path-
way, with a proline often appearing at the -6 position from the
cleavage site (3). Recently, an artificial neural network-based predic-
tion method for Tat signal peptides has been developed (4).

2.1.2. Gram-Negative

Bacteria

Gram-negative bacteria have five localization sites, and thus, pro-
tein sorting is a bit more complicated (particularly, the secretion
pathway). Like Gram-positive bacteria, Gram-negative bacteria use
the Sec and Tat pathways to transport proteins across the inner
membrane. Although the signal peptides of Gram-negative bacteria
tend to be shorter and have less positively charged residues in their
N-region than those of Gram-positive bacteria, integral membrane
proteins targeted for the inner membrane are also integrated via the
Sec system.

Almost all integral OMPs are b-barrel proteins, which are
assembled by the outer membrane complex BAM. Details regard-
ing the localization mechanism of b-barrel outer membrane pro-
teins (BOMPs) are given in Subheading 3.2.

Secretion is complicated in Gram-negative bacteria. They have
evolved at least six types (types I–VI), some of which are not well
characterized and remain difficult to predict from sequence. How-
ever, they can be roughly classified as Sec-dependent and Sec-
independent. The type II (T2SS) and type V (T5SS) secretion
systems are Sec-dependent, while types I (T1SS), III (T3SS), IV
(T4SS), and VI (T5SS) are Sec-independent (Fig. 1).

Sec-Dependent Pathway Secretion by T2SS is a two-step process.Cargo proteins are trans-
ported to the periplasmvia either the Sec or Tat pathway and then
through the outer membrane by the secretion, a protein complex
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spanning both the inner and the outer membrane(5). For example,
the two proteins constituting cholera toxin (CT) aresynthesized
with a cleavable N-terminal signal peptide by which they aretran-
sported into the periplasm (6) and subsequently transported across
theouter membrane via the type II secretion complex as a hetero-
hexamercomplex.

Another Sec-dependent pathway, T5SS, involves autotranspor-
ters (ATs) and two-partner secretion (TPS) (7–9). ATs code
for both a passenger domain to be transported out of the cell and
a b-barrel-forming translocator domain—all in the same amino acid
chain! TPS is similar to , but with the passenger and translocator
domains found on separate proteins. In both AT and TPS, the
b-barrel translocator domains are assembled by the b-barrel bio-
genesis pathway (see Subheading 3.2).

Sec-Independent Pathway Proteins secreted by T1SS, T3SS, T4SS, and T6SS do not carry
N-terminal signal peptides, but substrates of T1SS have a nonclea-
vable secretion signal in their C-terminus (10). The T1SS machin-
ery is a large complex, comprised of three proteins that span both
the inner and outer membrane: an ATP-driven transporter (ABC
protein), a membrane fusion protein (MFP), and an OMP belong-
ing to the TolC family.

The T3SS is a needle-like protein complex of about 30 proteins
with structural similarity to bacterial flagella. This system is not only
able to secrete proteins out of the bacteria but can even inject them
into the cytosol of eukaryotic cells. This mechanism is used by some
pathogenic bacteria, in which case the injected proteins are called
“effector proteins.”

Structural proteins forming the T3SS apparatus and chaperones
are also secreted by this system. The secretion signals of YopE
(Yersinia outer protein E) and YopH are located at the N-terminus

Fig. 1. Secretion System. Gram-negative bacteria secrete proteins through a variety of pathways.
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but share no similarity with the Sec-dependent pathway signal
peptide (11). Interestingly, it has been shown that the secondary
structure of Yop messenger RNA is important for secretion of their
protein products (12). Recently, some prediction tools have been
developed to predict effector proteins based on amino acid compo-
sition, G+C content, and physicochemical properties (13, 14).

T4SS also directs the translocation of virulence proteins into
eukaryotic host cell, but it differs from TS33 in using a pilus-based
system rather than a flagella-like tube. Conjugative transfer of DNA
into bacteria also is depended on T4SS. Secretion signals of some
effector proteins are located in their C-terminal region (15, 16).
However, in the case of the CagA protein, the C-terminal translo-
cation signal is not sufficient, because the deletion of the
N-terminus also prevents its translocation (17).

Recently, a novel secretion system, designated T6SS, has been
discovered in two bacterial pathogens. T6SS is a phage-like machin-
ery with roles in virulence, symbiosis, inter-bacterial interactions,
and anti-pathogenesis (18). However, the details of this secretion
system are not yet well characterized.

2.2. Prediction Tools

for Bacterial

Subcellular

Localization

2.2.1. Prediction Tools

Prediction of protein localization can provide important clues to
function and can help to identify drug and vaccine targets in path-
ogenic bacteria. In principle, the localization site of proteins is
determined by signals in their amino acid sequence, which in
some cases can be recognized without structural information.
Thus, many methods have been developed to predict localization
from amino acid sequence. In this section, we summarize some
general prediction methods and in later sections discuss methods
specialized for the prediction of BOMPs (Table 1).

PSORTb is a predictive method which combines several
sources of information: homology as detected by blastp search,
a support vector machine (SVM) trained on sequence signatures
associated with each localization site, PROSITE motifs, a trans-
membrane a-helix predictor, and a signal peptide predictor (19).
Recently, PSORTb updated to version 3.0 (20), which can make
predictions for all prokaryotes, including archaea and Gram-
positive and Gram-negative bacteria. PSORTb is available as both
a web server and an open-source stand-alone program. Several new
subcategories (host associated, type III secretion, fimbrial, flagellar,
and spore) can be predicted by PSORTb 3.0.

CELLO combines SVM-based prediction and homology
search to predict localization for both Gram-positive and Gram-
negative bacteria (also eukaryotes) (21). The SVM part uses a
modified version of n-gram features (e.g., the frequency of dipep-
tides) which groups amino acid residues by physicochemical prop-
erties. CELLO is only available as a web server, but it does accept
multiple sequences.
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SOSUI-GramN is based on a canonical discriminant analysis
using the physicochemical properties of the N- and C-terminal
region, including targeting signals (22). The prediction procedure
consists of three layers of filters: the first layer is prediction of inner
membrane proteins by SOSUI (23); the second layer discriminates
between Sec-dependent and Sec-independent pathway cargo based
on N-terminal signals; and the third layer consists of several predic-
tion modules for subclassification of extracellular proteins, OMPs,
periplasmic proteins, and cytoplasmic proteins, based on physico-
chemical properties of the N- and C-termini. Like CELLO, the
SOSUI-GramN system is only available as a web server, but it also
accepts multiple sequences.

Gpos-mPLoc and Gneg-mPLoc were recently developed for
predicting protein subcellular localization of Gram-positive and
Gram-negative bacteria, respectively (24, 25). They use a pipeline
consisting of Gene Ontology term search, domain search, and
evolutionary information as detected by PSI-BLAST (26). Both
tools are freely available at their web site, but only single-sequence
queries are accepted, which makes this server difficult to use when
analyzing large numbers of sequences.

Table 1
Prediction tools for protein localization and b-barrel outer
membrane proteins

Predictor URL

General protein
localization

SOSUI-GramN http://bp.nuap.nagoya-u.ac.jp/sosui/
sosuigramn/sosuigramn_submit.html

Gpos-mPLoc http://www.csbio.sjtu.edu.cn/bioinf/Gpos-
multi/

Gneg-mPLoc http://www.csbio.sjtu.edu.cn/bioinf/Gneg-
multi/

PSORTb ∗ http://www.psort.org/psortb
CELLO ∗ http://cello.life.nctu.edu.tw/

b-barrel outer
membrane (BBOMP)

BOCTOPUS http://boctopus.cbr.su.se/
BOMP http://services.cbu.uib.no/tools/bomp
TMB-hunt http://bmbpcu36.leeds.ac.uk/~andy/

betaBarrel/AACompPred/aaTMB_Hunt.cgi
PROFtmb http://www.predictprotein.org/
HHomp http://toolkit.tuebingen.mpg.de/hhomp

Prediction tools and their public server website addresses are shown. PSORTb
and CELLO are marked with an asterisk to indicate that we included them in
our BBOMP detection comparison as well as our general localization predic-
tion comparison
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2.2.2. Performance

Evaluation

As mentioned above, many tools for localization prediction of
bacterial proteins have been developed. However, direct compari-
son based on published accuracies is difficult, because the methods
have been trained and evaluated on different data sets. Therefore,
we report the results of a direct comparison here.

When preparing our dataset for comparison, we set aside pro-
teins used to train {PSORTb, Gpos-mPLOC} and {PSORTb,
SOSUI-GramN, Gneg-mPLoc}, for Gram-positive and Gram-
negative bacteria respectively, as “trained on”. We did not include
the CELLO v2.5 training set because it was not available for
download. As a test dataset, we extracted all Swiss-Prot (release
2011_07) records of bacterial proteins with firm localization anno-
tation, excluding records marked as “by similarity,” etc. We further
excluded any proteins with significant sequence similarity (E-value
< 0. 001, as computed by SSEARCH) to any of the trained on
proteins. Finally, we used the CD-HIT program (27) with a cutoff
of 30% identity to reduce the presence of pairs of similar sequences
within the test set. Unfortunately, this left only one OMP, so we
added two bacterial b-barrel outer membrane proteins (BBOMPs)
with less than 25% sequence identity from PDBTM (28) (see also
Subheading 3.3). In this way, we obtained 48 sequences as a test set
for Gram-negative bacteria: 15 cytoplasmic, 12 periplasmic, 11
extracellular, 7 inner membrane, and 3 outer membrane proteins;
and 55 sequences for Gram-positive bacteria: 21 cytoplasmic, 15
extracellular, 11 cytoplasmic membrane, and eight cell wall.

We performed prediction on the test proteins using the follow-
ing web servers: PSORTb 3.0, CELLO v2.5, SOSUI-GramN,
Gneg-mPLoc, and Gpos-mPLoc. For each localization site, we
computed standard binary classification performance measures
defined in terms of the number of true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN), namely,
recall, TP/(TP+FN); specificity, TN/(TN+FP); andMatthews cor-
relation coefficient (MCC) (29):

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FN ÞðTN þ FPÞðTN þ FN Þp :

Two details slightly complicate this picture; for some proteins,
some predictors output no sites (“unknown”) or multiple sites. We
treated no site prediction as predicting negative for all sites, so this
tends to increase specificity at the cost of lower recall. For methods,
such as CELLO, which give numerical scores, we did not allow
multiple predictions but instead converted them to single-site pre-
dictions by taking the site with the maximum score. However, for
methods, such as Gneg-mPLoc and Gpos-mPLoc, which do not
give scores, we did allow multiple positive predictions, which tend
to increase recall at the cost of specificity. For example, a prediction
of both periplasm and extracellular for a protein annotated as extra-
cellular was scored as a FP for periplasm and a TP for extracellular.
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Table 2 shows our comparison results. CELLO v2.5 performed
better than other predictors for both Gram-positive and Gram-
negative bacteria, with an average MCC of 0.49 and 0.51, respec-
tively, and also edged out Gpos-mPLoc and SOSUI-GramN by one
point in overall accuracy—but recall that our test data may include
some of the CELLO training data. For Gram-negative bacteria,
SOSUI-GramN attained the 2nd highest average MCC (0.48) and
the highest for detection of inner membrane proteins. We also
computed overall accuracy (number of correct predictions divided
by total number of predictions), with similar results: Unfortunately,
no prediction tools could successfully predict cell wall proteins.
However, in many cases, cell wall proteins were predicted as extra-
cellular. If we consider cell wall proteins together with extracellular
proteins, the MCC for this extended extracellular class improved
to 0.29, 0.49, and 0.53 for PSORTb 3.0, CELLO v2.5, and

Table 2
Performance comparison for Gram-positive and Gram-negative bacteria
protein localization prediction tools

PSORTb 3.0 CELLO v2.5 Gpos-mPLoc

Gram positive Rec Spe MCC Rec Spe MCC Rec Spe MCC

Cytoplasmic 0.76 0.76 0.52 0.95 0.76 0.70 1.00 0.85 0.83

Cytoplasmic membrane 0.73 0.91 0.62 0.82 0.95 0.77 0.82 0.86 0.61

Cell wall 0.00 1.00 0.00 0.00 1.00 0.00 0.13 0.98 0.20

Extracellular 0.07 0.95 0.03 0.67 0.85 0.51 0.80 0.73 0.47

Average 0.39 0.91 0.29 0.61 0.89 0.49 0.69 0.86 0.53

Overall accuracy 80% 85% 84%

PSORTb 3.0 CELLO v2.5 Gneg-mPLoc SOSUI-GramN

Gram negative Rec Spe MCC Rec Spe MCC Rec Spe MCC Rec Spe MCC

Cytoplasmic 0.67 0.79 0.44 0.87 0.76 0.58 0.53 0.73 0.25 0.87 0.73 0.55

Inner membrane 0.29 0.95 0.30 0.29 0.98 0.38 0.86 0.46 0.23 0.71 0.95 0.67

Periplasmic 0.00 1.00 0.00 0.75 0.89 0.62 0.17 0.97 0.25 0.42 1.00 0.59

Outer membrane 0.33 1.00 0.56 1.00 0.93 0.68 0.33 0.96 0.29 0.67 0.93 0.48

Extracellular 0.00 1.00 0.00 0.27 0.95 0.30 0.45 0.92 0.42 0.18 0.89 0.09

Average 0.26 0.95 0.26 0.64 0.90 0.51 0.47 0.81 0.29 0.57 0.90 0.48

Overall accuracy 82% 85% 74% 84%

Recall, specificity, and MCC are shown for each combination of predictor andlocalization site. The last row
shows the overall accuracy
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Gpos-mPLoc, respectively. Nevertheless, for all predictors, the pre-
diction of extracellular proteins in Gram-negative bacteria was poor
compared to other localization sites. As mentioned above, secretion
in Gram-negative bacteria is complicated and involves a variety of
secretion signals.We hope that continued efforts to incorporate new
knowledge, such as the discovery of T6SS, into prediction methods
will lead to improved accuracy.

3. Prediction
of b-Barrel Outer
Membrane Proteins

3.1. What Are

b-BarrelOuter

Membrane Proteins?

Gram-negative bacteria are enveloped by both an inner and outer
membrane. The outer membrane, homologous to the outer mem-
brane of mitochondria and plastids, shows distinct properties
including asymmetrical distributions of phospholipids and lipopo-
lysaccharides. Proteins crossing the inner membrane adopt an a-
helical structure in their membrane-spanning regions, but almost
all proteins in the outer membrane adopt b-barrel structures (see
(30, 31) for two exceptions).

Due to its physical properties, the outer membrane functions as
a selective barrier that prevents the entry of many toxic molecules
into the cell, a property that is crucial for bacterial survival in many
environments. In such an impermeable membrane, BBOMPs not
only work as channels for ion transport, nutrient intake, enzymes,
and signaling but also play an important role in virulence and
multidrug resistance (32–35).

3.2. Biogenesis

of b-BarrelOuter

Membrane Proteins

The mechanism of BBOMP biogenesis is not yet completely clear;
however, a network of proteins related to this process has been
discovered in the past 10 years (36, 37). The process of sorting and
assembly of BBOMPs to the outer membrane has multiple stages
(Fig. 2). BBOMP precursors are synthesized with N-terminal sig-
nal peptides, which lead them to the Sec (secretion) translocon in
the inner membrane (38). The cytoplasmic chaperon SecB plays an
important role in this process by preventing the BBOMPs from
folding in the cytosol.

After cleavage of their signal peptide by signal peptidase,
nascent BBOMPs cross the periplasm in an unfolded state. The
periplasmic chaperones (SurA, Skp, and DegP) interact with
BBOMPs to prevent them from aggregation or misfolding and
target them from the Sec translocon to the BAM (b-barrel assemble
machinery) complex in the outer membrane. Periplasmic transport
is thought to be handled by two pathways: the SurA pathway and
the Skp-DegP pathway (39). SurA was reported to bind unfolded
BBOMPs and aromatic residue-rich peptides such as Ar-X-Ar-X-P
or Ar-X-Ar (40, 41) (where Ar indicates F,Y, or W).
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These alternating aromatic residue patterns are much more
common in BBOMPs than in soluble or inner membrane proteins
(40, 41). Skp is a general chaperone which binds to denatured
BBOMPs, and DegP also exhibits chaperone activity in a
temperature-dependent manner (42, 43). Knockdown experiments
suggest that Skp and DegP function in the same pathway, but SurA
works in a separate parallel pathway (39). Several hypotheses
regarding the Skp-DegP pathway have been suggested, but its
precise role in BBOMP biogenesis remains unclear (36, 37).

The BAM complex assembles BBOMPs in the outer mem-
brane when they reach the outer membrane. In E. coli, this com-
plex is composed of the integral membrane b-barrel protein BamA
(omp85/YaeT) and four lipoproteins: BamB(YfgL), BamC
(NlpB), BamD(YfiO), and BamE(SmpA). BamA and BamD are
essential genes, while the deletion of the other three lipoproteins
also affects BBOMP biogenesis (37). BamA, the central compo-
nent of this complex, is conserved in all Gram-negative bacteria
and has homologs in both mitochondria (Sam50) and plastids
(Toc75).

Fig. 2. Sorting and integration of BBOMPs. BBOMP precursors interact with the Sec
translocon and cytoplasmic chaperones to mediate translocation across the inner mem-
brane. Subsequently, nascent BBOMPs then are transported to the outer membrane by
periplasmic chaperones in the SurA or Skp/DegP pathways. The BAM complex integrates
BBOMPs into outer membrane and folds them.

124 K. Imai et al.



BamA has a soluble domain usually containing 3–7 polypeptide
transport-associated (POTRA) repeat units on its periplasmic side
(44).ThePOTRAdomainenablesBAMcomplexassemblybybinding
to other component lipoproteins (45). BamA is also essential for the
recognition of BBOMP substrates. It has been reported that it may
recognize the C-terminal Phe (or Trp) present in a large fraction of
BBOMPsand thedyadicperiodicity ofhydrophobic residues common
in membrane-spanning b-strands (46, 47).

3.3. Structural Features

of b-Barrel Outer

Membrane Proteins

In BBOMPs, cylindrical b-barrel structures are formed by hydrogen
bonds between adjacent b-strands. So far, more than 40 nonredun-
dant BBOMP structures have been solved (28). All of these
BBOMPs contain between 4 and 24 transmembrane b-strands
(28, 48, 49). Of these, the BBOMPs with the smallest number of
b-strands form a trimeric 12-stranded b-barrel structure, to which
each monomer contributes four b-strands, as exemplified by TolC
and Hia (50, 51). In the case of monomeric b-barrels, the smallest
number of b-strands is eight. At the other extreme, the recently
solved structure of FimD (52) forms a 24-stranded b-barrel
translocon channel.

Several rules can be inferred from these bacteria b-barrel
structures (49):

l All b-strands are antiparallel and connected to their nearest
primary sequence neighbors.

l The number of b-strands is even, and the N- and C-termini are
found on the periplasmic side.

l The periplasmic side interstrand loops tend to be shorter than
the external loops.

l In membrane-spanning b-strands, alternating residues tend to
be less hydrophobic (they face the aqueous interior of the
barrel).

l Tyrosine is often observed in b-barrel structures with its
aromatic ring located near the membrane interface (53, 54).

Note however that the mitochondrial outer membrane protein
VDAC breaks the first two rules by forming a 19-transmembrane
b-strand structure (55–57).

3.4. Computational

Detection Methods

for b-Barrel Outer

Membrane Proteins

3.4.1. Prediction Methods

The membrane-spanning b-strands of BBOMPs are shorter and
less hydrophobic than their a-helical counterparts, making them
somewhat more difficult to predict. As mentioned above,
membrane-spanning b-strands often exhibit hydrophobic residues
at alternating positions and a characteristic amino acid composi-
tion, both of which are commonly used as features for prediction.
TMB-Hunt (58) is a k-nearest neighbor predictor using an amino
acid composition-derived function as a protein–protein distance
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measure. BOMP (59) uses a pipeline requiring candidate BBOMPs
to match a regular expression pattern at their 10 C-terminal
residues, contain sequence segments fitting the statistical character-
istics of membrane-spanning b-barrel strands (60), and have an
appropriate overall amino acid composition. PROFtmb (61) uti-
lizes a kind of hidden Markov model (HMM) with a topology
designed to capture the different environments of residues relative
to the membrane, with states representing periplasmic and extra-
cellular loops and various positions in the transmembrane-spanning
strands. States in their HMM emit PSI-BLAST (26)-type profiles
instead of single characters, enabling the use of some evolutionary
information. The HHomp (62) approach rests on the belief that all
b-strand pairs (bb-hairpins) in BBOMPs have a common origin
(63). It uses a remote homology detection method based on tran-
sitive sequence similarity search, in which similarity is measured by
pairwise HMM profile comparison.

In addition to these BBOMP-specific methods, general predic-
tion methods (described in Subheading 2) for protein subcellular
localization, such as CELLO (64) and PSORTb (20), can predict
BBOMPs reasonably well, by treating all predicted OMPs as
BBOMPs.

Prediction accuracy has improved year by year, with recent
methods reporting over 90% accuracy. However, as in general
localization prediction, direct comparison of published accuracies
is somewhat problematic due to different datasets and different
levels of redundancy. Therefore, we conducted a simple comparison
on an independent test data.

3.4.2. Performance

Evaluation

Using two databases, theGram-negative BBOMPs database OMPdb
(65) and themembrane protein structure database PDBTM (28), we
gathered BBOMP sequences with no sequence similarity to the
BBOMPs used to train existing BBOMP predictors (E-value by
SSEARCH � 0.001). As mentioned in Subheading 2.2.2, it is
quite difficult to make an independent BBOMP dataset because
almost all experimental verified BBOMPs have already been used
in the training of existing BBOMPpredictors. Sincewe found only 3
experimentally verified independent BBOMPs (Uniprot ID:
Q72JD8, Q8ZPT3, and Q9Z6M6), we added 52 outer membrane
proteins in OMPdb without known structures but with annotated
b-barrel domains by InterPro and Pfam (66, 67).However, wemust
warn the reader that these 52 sequences cannot be considered as
absolutely confirmed BBOMPs. In any case, we obtained 55 test
sequences sharing less than 25% sequence similarity with each other.
As mentioned above, these sequences do not show a significant
SSEARCH hit against BBOMPs used to train existing prediction,
although they probably are distant homologs as reflected in their
classification by InterPro and Pfam. For negative data, we used the
45 non-BBOMP proteins described in Subheading 2.2.2.
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We performed our comparison on six representative prediction
methods listed in Table 1, each of which provides a web site which
can accept multiple sequence input. Table 3 lists precision, recall,
specificity, and MCC of the six prediction methods. The HMM
profile-based predictions are clearly superior to the others, with the
highest MCC (0.90) achieved by PROFtmb and the 2nd highest
(0.88) by HHomp. One hundred percent precision and specificity
were attained by BOMP and PSORTb, but their recall was lower
(0.71 and 0.31, respectively). For the three experimentally verified
BBOMPs, PROFtmb, TMB-hunt, and CELLO could predict all
three, while HHomp missed one and PSORTb two. Taken
together, these results suggest that HMM profile-based predictions
are best for the detection of BBOMPs. However, the methods
using N- and C-terminal targeting signals could be said to more
closely model the underlying phenomenon of BBOMP sorting and
assembly.

3.5. Improved Prediction

of the Topology

of Transmembrane

b-Barrel Proteins

BBOMPs are formed by antiparallel b-strands that form a closed
barrel-like central pore region. Residues in the b-strands tend to
follow a dyad repeat pattern (68), but their less prominent hydro-
phobicity profile makes it difficult to detect b-strands based on
hydrophobicity alone. Since only a limited number of BBOMP
three-dimensional structures have been determined, computational
methods to provide structural information are needed. Fortunately,
the structures of the barrels are regular, so it should be possible
to determine their overall structure, given accurate topology
prediction (69).

The small number of known transmembrane b-barrel (TMB)
structures also poses problems in the development of computa-
tional methods for BBOMP topology prediction and identification.
Nevertheless, many BOMP topology prediction methods have

Table 3
Performance comparison between representative BBOMP prediction methods

Predictor TP FP FN TN Precision Recall Specificity MCC

BOMP 39 0 16 45 1.00 0.71 1.00 0.72

TMB-hunt 26 3 29 42 0.90 0.47 0.93 0.45

PROFtmb 51 1 4 44 0.98 0.93 0.98 0.90

HHomp 51 2 4 43 0.96 0.93 0.96 0.88

CELLO v2.5 36 3 19 42 0.92 0.66 0.93 0.60

PSORTb 3.0 17 0 38 45 1.00 0.31 1.00 0.41

The number of true and false positives and negatives along with otherperformance measures are shown for
several BBOMP predictors
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been developed (61, 62, 70–74). These predictors employ a variety
of computational methods, but a comparison carried out by (75)
found that the HMM-based methods performed best.

Recently, we introduced BOCTOPUS (76), a computational
method for BOMP topology prediction. BOCTOPUS uses a
position-specific scoring matrix (PSSM) as its input and employs
a combination of SVMs and an HMM to account for local and
global residue preferences, respectively. BOCTOPUS is based on
similar ideas to those used in two recent methods for topology
prediction of a-helical membrane proteins: OCTOPUS (77) and
MEMSAT-3 (78).

Based on a cross-validation estimation, the per-residue Q3
accuracy of BOCTOPUS is 91%. Furthermore, BOCTOPUS pre-
dicted the correct number of strands for 34 out of 36 proteins in
the dataset.

3.5.1. BOCTOPUS: Dataset

and Method

BOCTOPUS is trained on a nonredundant dataset of 36 BBOMP
structures, homology reduced at 30% sequence identity. The 3-D
structures were obtained from the OPM database (79). Tenfold
cross validation was employed in the training of the SVMs used in
BOCTOPUS, and to further avoid influence by distantly related
homologs, the training was performed such that all proteins that
belong to the same OPM family were put together in the same
cross-validation partition. Based on the membrane boundaries
included in the PDB files obtained from the OPM database (79)
and the z-coordinate of the C-a atoms, all residues in the dataset
were annotated as either “i” (inner loop), “o” (outer loop), or “M”
(transmembrane b-strand).

The first step in a prediction is to obtain PSSMs with PSI-
BLAST as the input for the SVMs. In the first stage, BOCTOPUS
employs three separate SVMs (80) to recognize residues belonging
to the “i,” “o,” and “M” classes. The second part of BOCTOPUS
consists of an HMM-like module that uses the ioM-profile as its
input, using the modhmm package (81). As shown in Fig. 3(B),
the HMM describing the global topology contains a pre-barrel
stage (P) that describes the protein region before the first trans-
membrane b-strand is detected. Further, a BBOMP is defined by 4
different states, representing the inner loop, outer loop, and the up
and down transmembrane b-strands. As previously described by
(77), the transition probabilities between all states are set to 0.0
or 1.0 between most states. Different combinations of weights for
estimating the emission scores for the P and O loop states were
tried. The up and down strand states can handle b-strands in the
range of 6–15 residues. To be consistent with structural properties
known from the 3-D structures available so far, all protein topolo-
gies start in the “P” or “i” state and end in the “M” (down strand)
or “i” state. The Viterbi algorithm is used to predict the most likely
topology based on the emission scores.
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The per-residue performance of BOCTOPUS was evaluated
based onQ3 and segment overlap (SOV)measures (82). In addition,
the number of strands predicted per protein and the number of
strands with an overlap of at least two residues were used to evaluate
the overall predicted topology. Correct predicted topology is defined
as the correct number of predicted strands, where correct is defined as
overlapping by at least two residues with an observed strand.

3.5.2. Topology Prediction

Using BOCTOPUS

As shown in Table 4, BOCTOPUS predicts the correct number of
strands in 34 out of 36 cases (94%). In the remaining two cases,
BOCTOPUS under-predicts the number of strands (fimbrial usher
porin from E.coli (2vqi) and anion-selective porin fromComamonas
acidovorans (1e54)). Furthermore, BOCTOPUS also has the high-
est accuracy (83%) for predicting the correct topology. The BOC-
TOPUS web server takes a FASTA-formatted sequence as the input
to predict the topology of putative BBOMPs. Figure 4 shows the

Fig. 3. BOCTOPUS pipeline. (1) PSI-BLAST is used to generate a PSSM for each given
sequence. (2) Three separate SVMs are used to predict the residue-level preference for
each amino acid to be in the i, M, and o regions, respectively. (3) An “ioM-profile” is
generated from the probabilities obtained from the SVMs. (4) The “ioM-profile” is then
used by an HMM to predict the global topology, calculated using the Viterbi algorithm.
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Table 4
Comparison of BBOMP topology predictor performance

Methods Proteins with correct Proteins with UP OP
no. strands correct topology

BOCTOPUS 34(94%) 30(83%) 2 0

PRED-TMBB 22(61%) 15(42%) 5 9

PROFtmb 27(75%) 25(69%) 4 5

TMBETAPRED-RBFa 27(75%) 21(58%) 4 4

TMBpro 24(67%) 19(53%) 3 9

Correct no. strands—number of sequences where the number of predicted
strandsis equal to the number of observed strands. Correct topology—number
for whichthe number of strands is correct and the predicted strands overlap
by at least 2residues. Underpredicted (UP)—sequences where the number of
strands isunderpredicted, i.e., some strands are missed. Overpredicted (OP)—
sequenceswhere the number of strands is overpredicted. BOCTOPUS-SVM
shows theaccuracy measures without the HMM stageaTMBETAPRED-RBF
(73) classified 2qomA as a non-BOMP protein

Fig. 4. BOCTOPUS output. Output for sucrose-specific porin ScrY from Salmonella typhimurium (PDB ID: 1a0s). The X-axis
shows the residue number. Output probabilities from the SVMs are shown at the bottom (0 to 1). Final topology predictions
are shown at the top with horizontal bars. Outer loops, inner loops, and the TM strands are shown in blue, red, and gray
color, respectively.
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output from the BOCTOPUS web server for sucrose-specific porin
ScrY from Salmonella typhimurium (PDB ID: 1a0s). The observed
topology is overlaid to compare the observed and the predicted
topologies.

BOCTOPUS has been trained on single-chain BBOMPs and
does not take into account multichain BBOMPs, which are
BBOMPs whose barrel comprises of b-strands from different chains
(61, 63). Only a few multichain BBOMP structures are available:
TolC protein from E. coli (1tqq), drug-discharge OMP, OprM
from Pseudomonas aeruginosa (1wp1), and multidrug resistance
(VceC) protein from Vibrio cholerae (1yc9) have long inner loops
which are different from typical single-chain BBOMPs. To the best
of our knowledge, most topology prediction methods in the litera-
ture do not consider multichain BBOMPs. Nevertheless, a compar-
ison of two prediction methods on multichain BBOMPs is
provided in Table 5. In the case of the a-hemolysin protein from
Staphylococcus aureus (7ahl), BOCTOPUS overpredicts the num-
ber of strands, which could be due to the presence of multiple b-
sheets in the outer-loop of 7ahl which are wrongly classified as
transmembrane b-strands. The under-predicted number of strands
in the case of 1wp1 and 1yc9 could be due to their large inner
loops. It should be noted that 7ahl and porin MspA fromMycobac-
terium smegmatis (1uun) are found in Gram-positive bacteria.
Given the role played by these atypical BBOMPs as toxins, it will
be interesting to further investigate them in the future when more
3D structures are made available (83).

Table 5
Comparison of predictor topology results on multichain
BBOMPs

Predicted no. strands

PDB-ID
Actual no.
strands BOCTOPUS PRED-TMBB PROFtmb

1tqq_A 4 4 2 6

1wp1_A 4 0 4 –

1yc9_A 4 0 2 4

1uun_A 2 4 4 2

3emo_A 4 4 2 4

7ahl_A 2 10 10 8

The prediction accuracy on multichain BBOMPs is shown. BOCTOPUS
reports the correctnumber of b-strandsin 2 out of 6 cases
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4. Structure-Based
Sequence Analysis
of Bacterial Proteins

This section focuses on general computational methods for protein
structure prediction. Although amino acid sequence alignment
methods are still commonly used techniques to infer protein struc-
tures based on known 3-D structures, profile–profile (and also
HMM–HMM) alignment methods have become increasingly
important techniques since their introduction in 2000 (84).
Indeed, profile–profile alignment methods generally outperform
conventional methods, such as PSI-BLAST, in terms of both sensi-
tivity and alignment accuracy (85).

Several profile–profile methods have been developed for struc-
tural analysis (86). One well-performing method is FORTE (87),
which performs profile–profile alignments for protein structure
prediction. To predict the structure of a protein, FORTE uses
PSSMs, which are calculated by PSI-BLAST iterations over the
NCBI nonredundant database of amino acid sequences, with
both the query and templates as profiles. FORTE utilizes massive
sequence information, optimized gap penalties, and the Pearson’s
correlation coefficient of amino acid frequency as the scoring
scheme to measure the similarity between two profile columns.
Global–local algorithm is employed to build an optimal alignment
between a query profile and a template one. The statistical signifi-
cance of each alignment score is estimated by calculating Z-scores
with a simple log-length correction. Candidate templates are sorted
by Z-scores and presented to the user.

The FORTE server is available at http://www.cbrc.jp/forte/.
The server holds a profile library of representative proteins mainly
based on the SCOP database as templates. Users can submit a single
protein sequence to explore the possibilities of similarity with
known structures. FORTEhas performedwell inCASP (theCritical
Assessment of protein Structure Prediction experiments) http://
predictioncenter.org/ and has been employed in various studies
(88–92). It is expected that the performance of profile–profile
alignmentmethods will become evenmore effective asmore protein
sequence and structure information accumulate and computational
methods are refined.

In recent CASPs, consensus prediction methods, also known as
“meta-servers,” which combine prediction results from many dif-
ferent methods, including profile–profile alignment methods have
been the most successful. Generally speaking, these methods com-
pare 3-D models constructed based on alignments of a query
protein and the top hits from the involved methods, and then
report the medoid structure as their prediction result. For example,
Pcons (93), one of the earliest meta-servers, combines machine-
learning approaches with consensus analysis to select the best pos-
sible model from a set of predicted structures.
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According to a comprehensive study of structural annotation of
genomes (94), we can expect that about 45% of genes in bacteria
have at least one domain with known structure (see Figure 1 of
(94)). By employing the sophisticated methods described above,
one can expect even greater coverage. In the following section, we
apply structure prediction methods to predicted E. coli OMPs.

4.1. Structural

Predictions of E. coli

BBOMPs

To estimate the number of BBOMPs in E. coli that could be reliably
modeled using state-of-the-art methods, we first applied a localiza-
tion prediction method (PSORTb 3.0) (20) on the complete pro-
teome of E. coli. This resulted in 82 proteins predicted to be located
in the outer membrane. Thereafter, we used the Pcons.net (93)
structure prediction method on these proteins. However, Pcons.
net can create models both of the barrel and the nonbarrel domains
of the proteins. Therefore, hits to known BBOMPs were manually
identified, and it was found that a good model could be made for
31 proteins, (see Table 6). For 27 proteins, a non-TMB domain
could be modeled. Furthermore, we used BOCTOPUS to predict
the topology of the 82 proteins, see Fig. 5. Here, it was found that
22 of the 82 proteins were predicted to have no b-strands, indicat-
ing that they most likely are not BBOMPs. This was thereafter
verified by applying BOMP (59) and PROFtmb (61) on these
proteins.

In summary, we found that a reliable structural model can be
made for 31 of 60 (52%) of the identified BBOMPs in E.coli.
Further, it can be seen that these proteins are predicted to contain
between 2 and 30 b-strands, and the correct topology could be
predicted by BOCTOPUS for 26 out of these 31 proteins. Some of
the 29 proteins may contain some multichain BBOMPs which
cannot be reliably identified using the BOCTOPUS topology pre-
diction method.

5. Notes

Based on the methods described in this chapter, here, we propose a
step-by-step procedure for how to identify and annotate BBOMPs
within a Gram-negative bacterial proteome. We also discuss the
possible pitfalls and hints that can aid in accessing the reliability of
the generated models.

Step 1: The identification of OMPs by subcellular localization
prediction is an important first step to obtain a set of likely
BBOMPs. One of the better methods for this is to use BOMP
(59), as it shows relatively good coverage (Table 3) and is much
faster than PROFtmb (61) or HHomp (62). If obtaining maximal
coverage is not of high concern, PSORTb (20) is convenient,
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Table 6
Modeling of BBOMPs using the Pcons meta-server

Uniprot ID
PCONS
score Template %coverage %identity

Observed no.
of strands in
template

Predicted no.
of strands
BOCTOPUS

1 P0A910 0.089 2K0L 57 82 8 10

2 P09169 0.273 1I78 94 98 10 10

3 P77211 0.172 1YC9 89 26 12(4) 0

4 P0A921 0.117 1QD5 89 100 12 12

5 P75733 0.212 3JTY 93 14 18 18

6 P75780 0.38 2W16 97 20 22 22

7 P0A915 0.14 2F1V 90 100 8 8

8 P06996 0.369 2J1N 94 100 16 16

9 P76045 0.132 2X9K 92 99 14 14

10 P0A927 0.207 1TLY 90 100 12 12

11 Q47706 0.201 2QTK 93 18 18 18

12 P31827 0.085 3FHH 96 17 22 22

13 P77747 0.39 2J1N 94 67 16 18

14 P02932 0.401 2J1N 94 63 16 16

15 P05825 0.271 1FEP 96 98 22 22

16 P17315 0.333 2HDI 95 99 22 22

17 P02930 0.136 1EK9 87 99 12(4) 4

18 P02931 0.423 1PHO 94 64 16 16

19 P76773 0.124 2WJQ 90 27 12 12

20 P37001 0.122 3GP6 87 99 8 6

21 P0A917 0.157 1ORM 87 98 8 8

22 P06971 0.301 1QFG 86 100 22 22

23 P02943 0.298 1AF6 94 100 18 18

24 P16869 0.351 2W16 98 33 22 22

25 P32714 0.145 1YC9 87 28 12(4) 2

26 P10384 0.23 3DWO 94 22 14 14

27 P06129 0.311 2HDI 96 25 22 22

28 P13036 0.385 1KMO 85 100 22 22

29 P69856 0.311 2WJR 90 99 12 12

30 P26218 0.185 1AF6 77 25 18 18

31 P76115 0.262 2W16 97 17 22 22

Using a Pcons score cutoff of 0.05, 31 out of 60 BBOMPs canbe modeled using Pcons. BOCTOPUS gets
the number ofb-strandscorrect in 26 out of these 31 cases. Contribution to the barrel by a single chain ina
multichain BBOMP is shown in circular brackets



because their web site provides precomputed predicted subcellular
localization for a number of genomes for download.

Step 2: The next step is to perform a topology prediction of the
putative BBOMPs. One of the better methods for this is BOCTO-
PUS (http://boctopus.cbr.su.se/), but PRED-TMBB and other
methods can also be used to determine the number of b-strands
in all putative BBOMPs. Although the state-of-the-art methods
perform quite well ( > 80% accuracy), it should be noted that
they are not optimized to correctly predict the topology of multi-
strand BBOMPs.

Step 3: The predicted number of b-strands can theoretically be
used to generate ideal BBOMP templates based on theoretically
determined barrel radius and b-strand tilt (95). However, to obtain
more accurate models, structure prediction servers such as Pcons.
net (93), FORTE (87), or HHpred (96) can then be used to create
homology models of putative BBOMPs. Of these methods,
HHpred has the advantage to be significantly faster than the others.
Here, a query sequence is aligned against a set of templates of
known structure. However, a hit does not guarantee that the barrel
part of a potential BBOMP can be modeled accurately. This is due
to the fact that large proteins, such the AG43 protein in E. coli
(Uniprot id: P39180), can contain several non-BBOMP domains

Fig. 5. BOCTOPUS predictions for E. coli. Predicted topologies of all 82 putative outer membrane proteins in E. coli.
Predictions by BOCTOPUS are shown in gray. For 36 of these proteins, a significant hit to an OMP of known structure is
found. The number of strands for these proteins is shown in black.

10 Localization Prediction and Structure-Based In Silico Analysis. . . 135



whose structure might be accurately modeled. In the case of
BBOMPs in E. coli, 27 non-TMB domains could be modeled,
suggesting that either the query sequences had no reliable known
structural template for their TMB domains or that those sequences
do not contain a TMB domain and are in fact not BBOMPs. Thus,
it is imperative to inspect what region of the sequence is represented
by the template found. For this chapter, this was done both manu-
ally by visualizing the structures and by comparing the identified
templates as BBOMPs or not.

Step 4: To verify that the putative BBOMPs without predicted
strands and without a reliable hit to a BBOMP by Pcons.net are
not BBOMPs, a more reliable identification can be done using
various dedicated BBOMP identification methods (58, 59, 61,
62, 97, 98). These methods employ a variety of features such as
statistical propensities and C-terminal pattern identification
(BOMP) (59), amino acid composition (58, 97), and secondary
structure element alignments (98). In this chapter, we applied
BOMP (59) and PROFtmb (62) for this step.

6. Conclusion

In this chapter, we introduced and evaluated some tools for
sequence analysis of bacterial proteins—with a special emphasis on
OMPs. It can be seen that, while far from perfect, these tools can
provide important hints regarding the localization and structure of
bacterial proteins from amino acid sequence alone. We hope this
chapter may serve as a starting point for readers planning to carry
out this kind of analysis.
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importance of the twin-arginine translocation
pathway for bacterial virulence. Trends Micro-
biol 16:442–453

4. Bendtsen J, Nielsen H, Widdick D, Palmer T,
Brunak S (2005) Prediction of twin-arginine
signal peptides. BMC Bioinf 6:167

5. Voulhoux R, Ball G, Ize B, Vasil M, Lazdunski
A, Wu L, Filloux A (2001) Involvement of the
twin-arginine translocation system in protein
secretion via the type II pathway. EMBO J
20:6735–6741

6. Reichow S, Korotkov K, Gonen M, Sun J,
Delarosa J, Hol WGJ, Gonen T (2011) The
binding of cholera toxin to the periplasmic
vestibule of the type II secretion channel.
Channels (Austin) 5:215–218

7. Jacob-Dubuisson F, Fernandez R, Coutte L
(2004) Protein secretion through autotran-
sporter and two-partner pathways. Biochim
Biophys Acta 1694:235–257

8. Desvaux M, Parham N, Henderson I (2004)
The autotransporter secretion system. Res
Microbiol 155:53–60

9. Thanassi D, Stathopoulos C, Karkal A, Li H
(2005) Protein secretion in the absence of ATP:
the autotransporter, two-partner secretion and
chaperone/usher pathways of gram-negative
bacteria (review). MolMembr Biol 22:63–72

136 K. Imai et al.



10. Cescau S, Debarbieux L, Wandersman C
(2007) Probing the in vivo dynamics of type I
protein secretion complex association through
sensitivity to detergents. J Bacteriol
189:1496–1504

11. Sory M, Boland A, Lambermont I, Cornelis G
(1995) Identification of the YopE and YopH
domains required for secretion and internaliza-
tion into the cytosol of macrophages, using the
cyaA gene fusion approach. Proc Natl Acad Sci
USA 92:11998–2002

12. Anderson D, Schneewind O (1997) A mRNA
signal for the type III secretion of Yop proteins
by Yersinia enterocolitica. Science
278:1140–1143

13. Arnold R, Brandmaier S, Kleine F, Tischler P,
Heinz E, Behrens S, Niinikoski A, Mewes H-
W, Horn M, Rattei T (2009) Sequence-based
prediction of type III secreted proteins. PLoS
Pathog 5:e1000376

14. Samudrala R, Heffron F, McDermott J (2009)
Accurate prediction of secreted substrates and
identification of a conserved putative secretion
signal for type III secretion systems. PLoS
Pathog 5:e1000375

15. Vergunst A, van Lier M, den Dulk-Ras A, St€uve
TAG, Ouwehand A, Hooykaas P (2005)
Positive charge is an important feature of the
C-terminal transport signal of the VirB/D4-
translocated proteins of Agrobacterium. Proc
Natl Acad Sci USA 102:832–837

16. Nagai H, Cambronne E, Kagan J, Amor J,
Kahn R, Roy CR (2005) A C-terminal trans-
location signal required for Dot/Icm-
dependent delivery of the Legionella RalF
protein to host cells. Proc Natl Acad Sci USA
102:826–831

17. Hohlfeld S, Pattis I, P€uls J, Plano G, Haas R,
Fischer W (2006) A C-terminal translocation
signal is necessary, but not sufficient for type IV
secretion of the Helicobacter pylori CagA pro-
tein. Mol Microbiol 59:1624–1637

18. Records A (2011) The type VI secretion sys-
tem: a multipurpose delivery system with a
phage-like machinery. Mol Plant-Microbe
Interact 24:751–757

19. Gardy J, Laird M, Chen F, Rey S, Walsh C,
Ester M, Brinkman FSL (2005) PSORTb
v.2.0: expanded prediction of bacterial protein
subcellular localization and insights gained
from comparative proteome analysis. Bioinfor-
matics 21:617–623

20. Yu N et al (2010) PSORTb 3.0: improved
protein subcellular localization prediction
with refined localization subcategories and pre-
dictive capabilities for all prokaryotes. Bioinfor-
matics 26:1608–1615

21. Yu C-S, Chen Y-C, Lu C-H, Hwang J-K
(2006) Prediction of protein subcellular locali-
zation. Proteins 64:643–651

22. Imai K, Asakawa N, Tsuji T, Akazawa F, Ino A,
Sonoyama M, Mitaku S (2008) SOSUI-
GramN: high performance prediction for
sub-cellular localization of proteins in gram-
negative bacteria. Bioinformation 2:417–421

23. Hirokawa T, Boon-Chieng S, Mitaku S (1998)
SOSUI: classification and secondary structure
prediction system for membrane proteins. Bio-
informatics 14:378–379

24. Shen H-B, Chou K-C (2009) Gpos-mPLoc: a
top-down approach to improve the quality of
predicting subcellular localization of Gram-
positive bacterial proteins. Protein Pept Lett
16:1478–1484

25. Shen H-B, Chou K-C (2010) Gneg-mPLoc: a
top-down strategy to enhance the quality of
predicting subcellular localization of Gram-
negative bacterial proteins. J Theor Biol
264:326–333

26. Altschul S, Madden T, Schaffer A, Zhang J,
Zhang Z, Miller W, Lipman D (1997) Gapped
BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic
Acids Res 25:3389–3402

27. Li W, Godzik A (2006) Cd-hit: a fast program
for clustering and comparing large sets of pro-
tein or nucleotide sequences. Bioinformatics
22:1658–1659
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Chapter 11

Analysis Strategy of Protein–Protein Interaction Networks

Zhenjun Hu

Abstract

Protein interactions, as well as the networks they formed, play a key role in many cellular processes and the
distortion of the protein interacting interfaces may lead to the development of many diseases. In this
chapter, we will briefly introduce the background knowledge of the protein–protein interaction, followed
by the detailed explanation of varied analysis—from basic to advanced, as well as related tools and databases.
VisANT (http://visant.bu.edu)—a free Web-based software platform for the integrative visualization,
mining, analysis, and modeling of the biological networks—will be used as a main tool for all examples
used in this section.

Key words: Interaction, Multi-scale visualization, Large-scale network, Integration, Pathway,
Systems biology, Expression, Enrichment analysis

1. Background

In the past few years protein–protein interactions (PPIs) have gained a
strong interest in the fields of pharmacy, medicine, biology, and
bioinformatics. Identifying and characterizing PPIs and their net-
works is essential to understand the mechanisms of biological pro-
cesses on amolecular level. For example, signals from the exterior of a
cell are mediated to the inside of that cell by PPIs of the signaling
molecules. Protein interactions can be classified into different types
depending on their strength (permanent and transient), specificity
(specific or nonspecific), the location of interacting partners within
one or on two polypeptide chains, and the similarity between inter-
acting subunits. Inmanycases, the analyses ofPPIs areusually coupled
with other type of interactions, such as transcription binding (pro-
tein–DNA interaction) and synthetic lethal (gene–gene interaction).
This is mainly because the complexity of the biological processes is
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carried out by the combination of various types of interactions
between different types of molecules. From this perspective,
our discussion will also cover other biological interactions of living
organisms, in addition to the PPIs.

1.1. Techniques

for Identification

of Protein Interactions

Although PPIs have been invaluable biological knowledge for quite
a long time, its importance to the systems biology becomes more
practical only after high-throughput methods (method that enables
the screening of a large number of proteins), such as yeast two-
hybrid system (Y2H), become available recently. In fact, there are a
multitude of methods to detect interactions now (Table 1 for
typical ones). Each of the approaches has its own strengths and
weaknesses, especially with regard to the sensitivity and specificity
of the method. A high sensitivity means that many of the interac-
tions that occur in reality are detected by the method; a high
specificity indicates that most of the interactions detected by the
screen are also occurring in reality.

1.1.1. Experimental Method A detailed classification, comparison, and description of the exper-
imental methods to detect the interactions can be found in the
review of Phizichy and Fields (1); while the review of Berggard
et al. (2) emphasizes on the advantage/disadvantage of different
methods. The technology development has mainly been fuelled by
the advances in mass spectrometry (MS) (3, 4), which has made
the identification of proteins, as well as macromolecular com-
plexes such as ribosomes and exosomes, a relatively simple task.
A number of large-scale studies have been presented, using e.g.,
Y2H screens and coaffinity purification followed by MS to detect
PPIs on a genome-wide scale. However, only a small number of
the interactions are supported by more than one method (5).
Estimates of 40–80% false negatives and 30–60% false positives
and have been assigned to high-throughput studies that have used
two-hybrid techniques, affinity-based techniques or computa-
tional approaches (5–7). The poor overlap can be explained partly
by the fact that many different methods have been used. However,
even within subsets of PPIs identified using the same method, the
overlap can be poor (e.g., compare the results from the yeast two-
hybrid (Y2H) screens from Ito et al. (8) and Uetz et al. (9)). It has
been estimated that due to a high false positive rate, current yeast
and human interaction maps are roughly only 50 and 10% com-
plete, respectively (10). It is clearly important to experimentally
validate PPIs by several methods. However, very few databases or
tools, except VisANT (11–16), provide convenient method-based
query and filtering of the interactions.

In addition to the specificity and sensitivity, the method may
also hint the type of the interaction as shown in Table 1. For
example, the Y2H always identifies the physical interactions
between proteins while the synthetic lethality tells the genetic
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Table 1
Typical methods to identify the interactions

Method name
(H)igh/(L)ow
throughput

VisANT
method ID

Interaction
type Brief description

Experimental methods
Mass
spectrometry
(11, 22)

H M0028 Protein
complex

Mass spectrometric approaches to the
study of protein in complexes
permits the identification of subunit
stoichiometry and transient
associations. By preserving
complexes intact in the mass
spectrometer, mass measurement
can be used for monitoring changes
in different experimental conditions,
or to investigate how variations of
collision energy affect their
dissociation

Yeast two hybrid
(33, 44)

H M0034 Physical
interaction

The classical yeast two-hybrid system is
a method that uses transcriptional
activity as a measure of
protein–protein interaction. The
DNA-binding domain serves to
target the activator to the specific
genes that will be expressed, and the
activation domain contacts other
proteins of the transcriptional
machinery to enable transcription to
occur

Copurification
(55)

H M0013 Protein
complex

Approaches designed to separate cell
components on the basis of their
physicochemical properties. The
copurified components are thought
to form a molecular complex

Synthetic lethality
(66)

H M0047 Genetic
interaction

Death phenotype observed on cells
carrying combination of two
independently silent mutations

Electron
microscopy
(77)

L M0062 Protein
complex

Electron microscopy methods provide
insights into the structure of
biological macromolecules and their
supramolecular assemblies.
Resolution is on average around 10
Angstroms but can reach the atomic
level when the samples analyzed are
2D crystals

Computational methods
Domain fusion
(88, 99)

H M0036 Functional
association

The rosetta stone, or domain fusion,
procedure is based on the
assumption that proteins whose
homologues in other organisms
happen to be fused into a single
protein chain are likely to interact or
to be functionally related

(continued)
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interactions between genes. As a matter of fact, these methods are
classified hierarchically by the committee of Protein Standard
Initiative-Molecular Interaction (PSI-MI) (17) and can easily be
explored using MI Ontology Browser (http://www.ebi.ac.uk/
ontology-lookup/browse.do?ontName¼MI).

1.1.2. Computational

Method

Although high-throughput experimental methods produce a large
amount of interaction data, for many organisms they are far from
complete. The low interaction coverage along with the experimen-
tal biases toward certain protein types and cellular localizations
reported by most experimental techniques call for the development
of computational methods to predict whether two proteins inter-
act. These methods can be very useful for choosing potential targets
for experimental screening. Some computational methods are evo-
lution based, such as fusion and phylogenetic profiling listed in
Table 1; many others use mathematical methods, such as one or
another Bayesian variant or support vector machines, to carry out a
principled and systematic integration of experimental and compu-
tational techniques to different extent and do not predict physical
interactions directly but rather infer the functional associations
between potentially interacting proteins (18, 19). Computational
methods typically take as input weighted interactions of diverse
types, and return confidence levels for inferred relations. They are

Table 1
(continued)

Method name
(H)igh/(L)ow
throughput

VisANT
method ID

Interaction
type Brief description

Phylogenetic
profile (10, 11)

H M0037 Functional
association

The phylogenetic profile of a protein
stores information about the
presence and the absence of that
protein in a set of genomes. By
clustering identical or similar
profiles, proteins with similar
functions and potentially interacting
are identified

Gene
neighborhoods
(12, 13)

H M0038 Functional
association

Gene pairs that show a conserved
topological neighborhood in many
prokaryotic genomes are considered
by this approach to encode
interacting or functionally related
proteins. By measuring the physical
distance of any given gene pair in
different genomes, interacting
partners are inferred

144 Z. Hu



essential for drawing network inferences, and knowing how likely
an inference is to be valid. Furthermore, computational methods
can greatly reduce the complexity of an integrated network by
condensing diverse biological data into single all-encompassing
relation.

1.2. Protein Interaction

Databases

A large variety of databases exists to study binary protein interac-
tions and the higher order interactions in protein complexes (20).
Typical examples are BioGrid (21), IntAct (22), MINT (23), and
MIPS (24). Some organism-specific database, such as Saccharomy-
ces Genome Database (SGD) (25), FlyBase (26), and Human
Protein Reference Database (HPRD) (27). Different databases
contain interactions obtained by direct submission from experi-
mentalists and by mining literature and other data sources; in
some cases the data is verified using automated algorithms or
manual curation. In addition, some databases, such as Predictome
(28) and String (29), also provide the computationally predicted
functional association between proteins.

2. Basic Analysis
Strategy

2.1. Integrating Data

from Diverse Sources

In spite of the interaction data diversity, there exist considerable
overlaps in the datasets contained in the databases, making it diffi-
cult to recommend a single resource for a particular type of infor-
mation. At the same time, this also indicates that you will need to
visit all of these interaction databases and then integrate all the
downloaded data to get a most complete interaction data set.

2.1.1. Name Unification The first task in network integration is the unification of equiva-
lent genes/proteins which have been labeled using different clas-
sifications, such that total knowledge available for each node can
be determined. This very basic, yet vital, unification operation is
nontrivial in practice. In VisANT, name unification is achieved
using the Name Normalization function. Currently, this function
can resolve the identities of genes or proteins, but not com-
pounds.

Unification requires knowing whether the node refers to a
gene or a protein. Although names of genes and proteins are often
used interchangeably, gene IDs cannot reliably be used to repre-
sent proteins, primarily because splice variants exist. From this
perspective, the integration of the interaction is often gene
based, meaning that two proteins will be recognized as a single
protein, if the same gene encodes them. This decision not to
distinguish gene nodes from protein nodes was based primarily
on the following observations:
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l Independently created interaction databases often use different
naming systems for proteins/genes. For example, MINT (23)
uses a protein’s UniProt (30) id in PPI forHomo sapiens which,
however, is represented using gene’s HGNC (HUGO Gene
Nomenclature Committee) (31) id in BioGrid (21).

l Genetic associations very often need to be compared to PPIs
(32–34).

l High-throughput gene expression results must often be
mapped onto a PPI network or pathway.

Because genes often encode multiple proteins, using gene id to
represent both gene and protein is a natural choice; otherwise,
uncertainty may arise when integrating interaction data. For exam-
ple, for a gene with two splice variants, the variant to use when
integrating interactions between the MINT (protein based) and
BioGrid databases (gene based) will be ambiguous. The shortcom-
ing of this solution is that certain splice variants may only share a
subset of interactions. This dilemma can be overcome if alternative
splicing knowledge is represented using a metanode, as discussed in
the Subheading 3.

The data used for name unification can be compiled from the
Entrez Gene (35) andUniProt databases, as well as some organism-
specific databases such as SGD (25), Flybase (26), and Wormbase
(36). Careful attention, however, needs to be paid to assure that
every ID/name will be mapped to only one gene for a given species.

2.1.2. Interaction Integration Large-scale studies have resulted in networks composed of various
biological interaction types, such as PPIs, genetic interactions and
transcriptional coexpression. A systems-level understanding can be
better achieved by integrating these diverse data types, such that
not only the molecular assemblies involved can be deciphered, but
also their functional connections. As discussed in the previous
section, although the number of references reporting the interac-
tion may be the straightforward way to roughly access the reliability
of the integrated interactions from multiple resources, the number
of methods detecting the interaction appears more promising due
to the well-known systematic biasing of many experimental meth-
ods toward certain protein types and cellular localizations. All
interaction data downloaded from public databases provides the
corresponding experimental methods, some are compliant with
PSI-MI and some not, it is a nontrivial task to integrate and
categorize the interaction data according to the method hierarchy
defined by PSI-MI.

2.1.3. Database

of the Integration

The Predictome database stores relations based on some 90 differ-
ent methods for 110+ species. The interaction statistics on the
VisANT Web site (http://visant.bu.edu) lists the total number of
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interactions for each species, the methods contributing to these
interaction totals, and the total number of interactions classified
under each method. There total 918,312 interactions in the data-
base with 300,297 being predicted computational and 618,015
identified experimentally. If an interaction is reported by multiple
references using the same technology, it is counted as one interac-
tion although all these references can be easily accessed through
corresponding menus in VisANT. The numbers of the interactions
grow all the time as the system is synchronized with major interac-
tion databases, such as Biogrid, MINT, BIND, MIPS, IntAct, and
HPRD monthly.

All interactions are classified based on the experimental/
computational methods that report them. The name of the method
is compatible with those defined in PSI-MI standard whenever
possible. Different types of interactions can be distinguished using
their method names. For example, interactions based on two-
hybrid experiments are physical, while those with synthetic lethal
are genetic, and do not necessarily imply a direct physical interac-
tion. As shown in Fig. 1, edges for the interactions between pro-
teins are colored based on the interaction method, and edges
resulting from computational prediction are often associated with
weights which can be used to quickly filter networks with different
confidence scores (Fig. 1III, weight cutoff).

Among other issues illustrated in Fig. 1, are two major chal-
lenges which need to be addressed in the implementation of any
tool for supporting the visualization of large-scale interaction
networks, namely readability and performance. In general, a net-
work becomes difficult to interpret with hundreds of nodes and
edges; and for the majority of available tools, performance starts
to deteriorate quickly when working with networks containing
thousands of nodes and edges. Although VisANT has been highly
optimized and can handle much larger networks (tested with
226 k+ edges and nodes in a PC with 1 GB memory and
2.33 GHz CPU), some functions, such as spring-force based
layout, can become very slow when working with larger networks.
In Subheading 3, we will discuss metagraph-based technology,
which addresses this bottleneck in network integration. We will
also introduce additional solutions in VisANT to support for
computationally heavy tasks.

Figure 2 shows an example of the use of theName Normaliza-
tion function in VisANT. The original data (37) shows what is
actually a single gene, but displayed as three different nodes each
with its own label. This ambiguity is resolved by name normaliza-
tion, as indicated in Fig. 2. Subsequent to node unification, the
gene aliases and a brief functional annotation will be shown as
node’s tooltip (Fig. 2II), and HTTP links to the related nucleo-
tide/protein sequences will be available in the corresponding
menus. In addition, VisANT provides a special function to label a

11 Analysis Strategy of Protein–Protein Interaction Networks 147



gene with its official name (Fig. 2). This function will automatically
be carried out when a gene’s interactions are queried against the
Predictome database. VisANT users can import their own mapping
data using the ID-Mapping format, which is detailed in the
VisANT user manual.

2.2. Interaction

Visualization

Visualization of PPIs as a network is usually a start point to analyze
the interaction data where nodes represent genes, proteins, or
metabolites. and edges connect them in accordance with evidence
for one or another type of interaction. Figure 3 shows a typical
interaction network with hundreds of nodes and edges, as well as
the various visual customization of both nodes and edges can be
achieved in VisANT. Big nodes containing other nodes are meta-
nodes that will be detailed later. While the edge color corresponds
to the methods that identifies the interaction, the interaction detail
(e.g., binding and inhibition) is represented the edge head/tail.

Fig. 1. Method-based loading and filtering of large-scale interaction data set. (I) Directly load interactions associated with
method M0046 into VisANT through interaction statistics page. (II) Directly load interactions associated with method
M0034 through methods table in VisANT. (III) The combined interaction network of M0034 and M0046 shown in VisANT.
(IV) The interaction network with the overlap of the two data sets created using built-in filter.
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Automatic layout usually helps to organism the interaction
network, typically separate the network based on their connectivity.
Figure 4 below shows the different visual presentation for a relative
small interaction network with three different layout algorithms
available in VisANT, while Fig. 5 presents a huge interaction net-
work with 1.7+ million nodes and edges and its layout takes hours
to finish using the batch mode of VisANT (http://visant.bu.edu/
vmanual/cmd.htm).

Interactions, especially those predicted computationally, usu-
ally have an associated weight to indicate their reliability. The
weight of the interaction is usually visualized using line thickness,
or line color, or both, as shown in Fig. 6.

Fig. 2. Network of cancers rebuilt in VisANT using metagraph with subset data of cancer extracted from the work of Goh
and coworkers (37). Each metanode (gray box) represents one type of cancer. The correlations between cancers are
evaluated based on the number of shared genes. Mouse clicking a metanode will reveal its substructure: genes involved in
the cancer and their correlations to one another if any. An example of an expanded node for ovarian and endometrial
cancers is shown. The original data shows that ovarian cancer of endometrial type involves three different genes (MSH6,
GTBP, HNPCC5) (I) which are actually all the same gene with official name MSH6 as discovered by the Name Normalization
function (II).
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2.3. Exploratory

Navigation

of the Interactions

Many researchers may not be interested in seeing the whole
interactome (defined as the whole set of molecular interactions in
cells), but instead are interested in performing an interaction walk
starting from one protein of interest. From this perspective, a
navigation technique named Exploratory Navigation is developed.
Figure 7 shows how it works in VisANT.

Fig. 3. Typical interaction visualization in VisANT.

Fig. 4. The difference of three spring-forces-based layout.
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2.4. Interaction Filtering Although the interaction data can be filtered based on many
different rules, the most important factors that need to be consid-
ered are interaction type and reliability. As we discussed earlier, the
method associated with the interaction not only informs the type of
interaction it identifies, but may also its systematic accuracy. From
this perspective, here we mainly focus on weight-based and
method-based filtering.

Fig. 5. An interaction network with 1.7+ million nodes and edges laid out using Spring-Embedded-Relaxing in VisANT
batch mode.

Fig. 6. Interaction (Edge) weight visualization in VisANT.
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Weight-based filtering. As shown in Fig. 8, increasing the weight
cutoff not only results in an interaction network with higher confi-
dence but may also reveal the network structure (Fig. 8II) that may
be hidden in a denser (Fig. 8I) network.

Method-based filtering. As also shown in Fig. 1 (I and II), VisANT
supports method-based fast loading of large numbers of interac-
tions that can be obtained from the interaction statistics page of
VisANT Web site (http://visant.bu.edu) or method table in
VisANT. The latter also enables method-based filtering of the
interactions: check/uncheck the checkbox of each method
will make the corresponding interactions visible/invisible.
In addition, it is somehow useful to filter out the interactions
that are identified only by one method, as also shown in Fig. 1
(III and IV).

Fig. 7. Exploratory navigation of interactions. The navigation starts by querying the interaction of gene STE4 of Saccharo-
myces cerevisiae and followed by the order STE4 ! MRP4 ! MRPS35 ! DIP5 ! YDR463W ! CSN9. The “�” sign
of the node indicates its interactions have been expanded and the “+” sign indicates not. Be aware that you can always
walk back from CSN9 ! STE4.
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2.5. Interaction

Comparison

The network shown in Fig. 1 (III and IV) also indicates a conve-
nience approach to compare the two interaction data sets, and is
especially useful to find the overlap between two interaction data
sets. In addition, the methods table in VisANT allows users to add,
delete, or customize the methods as well, so that users can create
methods for their own data for comparison purpose.

In the case that an interaction is identified by multiple methods
and each method provides the weights, their weight can visually be
compared as shown in Fig. 9.

2.6. Network Structure

Analysis

Examines the topological and dynamical properties of the interac-
tion networks may bring new insights to the corresponding
biological processes. Integrated biological networks are often
hybrid, meaning they contain both directed (e.g., transcription
factor binding) and undirected (e.g., protein interaction) connec-
tions, and compound or modular (see Subheading 3 for detail),

Fig. 8. Filter the weighted interactions. (I) A set of proteins in a protein cluster with weight of the interactions represents
sequence similarities. (II) Same set of proteins with weight being filtered between 0.04 and 1, and two subclusters are
clearly formed using the layout after the weight cutoff.

Fig. 9. Visual comparison of the weighted interactions.
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meaning that linked components can either be single or grouped.
Unlike other software for biological network topological analysis,
VisANT explicitly allows creation of mixed networks involving
different types, with topological algorithms to support type. For
example, if protein A inhibits B and B interacts C, then there will be
no path from protein A to protein C (Fig. 10).

2.6.1. Node Degree

and Distribution

The degree of a network component, k, is the number of connec-
tions it has with other components. The distribution of degrees
among components is useful for characterizing the topology and
scale of a network, and often has meaningful biological interpreta-
tion. In protein interaction and genetic interaction networks, for
example, the degree of a hub is often its importance and essentiality
for cell function. For directed networks, such as transcription factor
binding networks, the degree is separated into the “in”-degree and
“out”-degree, depending on the directions of interaction between
two given components. Degree is also a feature which distinguishes
hubs (highly connected nodes) from leaves or orphans (weakly or
nonconnected nodes) in the network. In VisANT, users can see a
scatter plot and log-linear regression fit of the degree distribution, p
(k), of the network. The degree exponent (g) of the log-linear
regression, where pðkÞ ¼ k�r , is a measure of the network’s
“scale-free” property (39, 40). The VisANT degree plot is dyna-
mically linked to the network view (selection in one window maps
to corresponding points in the other, see Fig. 3).

Fig. 10. Dynamic linking for finding topological features. The network of synthetic lethal genetic interactions (38) in yeast
contains 823 genes and 3,952 interactions. A plot of the degree distribution of genes in this network allows users to
quickly identify which genes have the highest (or lowest) connectivity. In this example, the gene shown is YDL029W, which
has synthetic lethal interactions with 58 neighbors.
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2.6.2. Clustering Coefficients

and Distribution

The clustering coefficient (C ¼ 2n=½kðk � 1Þ�), where n is the
number of links between k neighbors, measures the tendency of a
network to have highly connected clusters. Fully connected sets of
nodes have C ¼ 1, because everything is connected to everything
else. In large-scale mass spectrometric networks in yeast, this prop-
erty can be used to identify groups of proteins involved in the
assembly of the ribosome (41). The exponential degree of the
log-linear fitCðkÞ ¼ k�r can be used to characterize the hierarchical
structure of a network (42). VisANT provides scatter plots and log-
linear regression fit of the clustering coefficients in a network,
allowing users to identify densely connected clusters of nodes (the
direction in hybrid networks is ignored in calculating C). This plot,
like the degree plot, is dynamically linked to the network view.

2.6.3. Shortest Path Lengths

and Distribution

In studying the function of pathways, the property of interest is
often how a given gene or protein is related to (or responds to) an
up- or downstream signal. Given a large data set of interactions, it
may be useful in some contexts to find the most direct path between
two genes, proteins, complexes, or pathways; e.g., the overall
lengths of such pathways may be related to the immediacy or
breadth of signal response (43). The average shortest path also
indicates the well-known “small-world” property of many real-life
networks (44). Networks in VisANT are analyzed by depth-first-
searching (DFS) for both the shortest path between two given
components as well as the distribution of shortest paths between
all components. In the consideration of the direction of the inter-
action, as well as some detailed interaction type (e.g., inhibition/
repression) being treated as the stop of the path, a shortest path
from A ! B may not be the same as the one from B ! A and
VisANT will list both. VisANT also lists all the possible shortest
paths that may be available.

2.6.4. Detection of Network

Motifs

Certain patterns and motifs have been shown to occur with more
frequency in biological networks than would be expected by chance
alone (45, 46). This leads to the hypothesis that such motifs, for
example feed-forward loops, have functional characteristics that
correspond to their structure (47). Identifying topological features
in networks is an important part of understanding the relationship
between structure and function of these motifs. VisANT supports
searching of basic motif types, such as feedback and feed-forward
loops, and development is in progress for detection of other arbi-
trary motifs, and for assessing the statistical significance of these
patterns in large networks. Motif detection is performed with
exhaustive breadth-first-search (BFS) over nodes in the network.

2.6.5. Network

Randomization

It is important to test whether somemeasured structure features are
statistically significant. In such case, we will test these features in the
corresponding random networks. The randomization criteria are
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different for directed and undirected networks. Randomization of
undirected networks preserves the same number of nodes and
edges, but edges are randomly distributed, and the resulting net-
work therefore follows a Poisson distribution. Directed network
randomization preserves the same number nodes and same in-
degree and out-degree for each node, but the directed edges are
randomly distributed among the nodes.

2.7. Integration

of Interaction Network

and Expression Data

Both expression and interaction data may be noisy and integration
of two biologically relevant signals supported by both data types are
more likely to be correct than those supported from either data
source alone. VisANT provides twomethods to visualize expression
data over the pathways: either the node color is used to represent
the expression value of the current experiment, or the plot of
expression profile is embedded in the node, as shown in Fig. 11.

Fig. 11. Visual integration of expression and transcriptional interaction data. Node color here represents the value of
expression and line arrow represents the direction of the transcription factor binding. The expression can also be shown as
a plot if there are expression data for multiple experiments. At the right-bottom corner is the expression plot for a collapsed
interaction module where average expression of all nodes inside the module is shown using black color.
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The two methods can be toggled either for individual nodes, or
for the whole network. Different experiments can be navigated
using a sliding bar and the navigation process can be animated.
When the expression profile is shown for the node, there will be a
cursor to indicate the position of current experiment, as well as
corresponding expression value.

It is also very convenient to test whether the genes in the same
interaction module are coexpressed as all the expression profiles of
the nodes contained in the module, as well as average profile, will be
drawn together as one plot with average profiles in black.

2.8. Annotation of the

Interaction Network

Using Gene Ontology

One of the most widely used bioinformatics resources is the Gene
Ontology (GO) (48), which provides hierarchically organized infor-
mation about gene products, their activity, biological functions, and
cellular locations. Tools for network visualization and analysis often
provide functions to annotate gene functions using GO. However,
the different relational meanings of GO and network edges, and the
ontological structure of GO, make the integration between GO and
interaction network more challenging. GO terms are structured as a
Directed Acyclic Graph (DAG), where nodes represent terms, and
edges represent inclusive relationships between terms. A key charac-
teristic of such representation is that a term in a DAG can have
multiple parents. As a result, genes are associated with multiple
biological terms and individual biological terms can also be associated
with multiple genes. These “many-genes-to-many-terms” (49) asso-
ciations reflect the complex nature of biological processes and make
visualization and modeling of the integrated network difficult (50).

VisANT provides four basic options to annotate genes using GO
annotations with corresponding menus shown in Fig. 12. Options
1–3 listed below can also be applied to the selected branches.
These options provide users great flexibility to test various

Fig. 12. Menus for GO annotations under the MetaGraph menu, which will annotate all the genes, including those hidden in
the collapsed metanodes. The same list of menus is also available under Nodes menu which should be used to annotate
the selected nodes.
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hypotheses. To save the space, we use the human gene ACN9 that is
involved in the predisposition to alcohol dependence to illustrate
these options (indicated below):

1. Using most specific GO terms. Genes are annotated with the
most specific functional descriptions available at Entrez Gene
database. The table below lists the GO annotation of ACN9
with this option.

Biological process Cellular component

Gluconeogenesis
(GO:0006094) [ISS]

Mitochondrion (GO:0005739) [IEA]
Mitochondrial intermembrane space
(GO:0005758) [ISS]

2. Using informative GO terms. Genes are annotated using GO
terms (i) having more than a user-specified number of genes
and (ii) each of whose descendent terms have less than the
specified number of genes. Let us use 145 as the cutoff (click
the button near Search button of GO explorer, and enter 145
in the corresponding field and press Enter key), the informative
GO annotations for ACN9 is shown below:

Biological process Cellular component

Hexose metabolic process(GO:0019318)

3. Using GO Terms with Genes under the Branch > cutoff. A term
must have more than a user-specified number of genes. Let us
again use 145 as the cutoff, and here are the results:

Biological process Cellular component

Hexose metabolic process
(GO:0019318)

Cellular alcohol metabolic process
(GO:0006066)

Mitochondrion
(GO:0005739)

Cellular biosynthetic process
(GO:0044249)

Mitochondrial envelope
(GO:0005740)

Biosynthetic process (GO:0009058) Mitochondrial part
(GO:0044429)

Carbohydrate metabolic process
(GO:0005975)

Intracellular organelle part
(GO:0044446)

Monosaccharide metabolic process
(GO:0005996)

Membrane-enclosed lumen
(GO:0031974)

Monocarboxylic acid metabolic
process (GO:0032787)

Organelle envelope
(GO:0031967)
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4. Using selected GO terms only. Genes are annotated using only
selected GO terms. Following figure shows the selected terms
and resulting annotation for ACN9:

Options 2 and 3 are frequently used when predicting gene
functions using functional linkages. Annotations resulting from
different options can coexist as node descriptions in VisANT
for comparison purposes.

3. Advanced
Analysis Strategy

The increasing importance of network models in biology stems
from the emergence of systems biology, and the promise of repre-
senting the cell as a computable network of genes and proteins
(51, 52). This in turn requires software for computable representa-
tions, such as the proposed “biological information system” of
Endy and Brent (53), which can extend current databases to
embody new types of mechanistic knowledge. Still, while networks
will likely play a critical role as the basic data structures that repre-
sent the fundamental capabilities of such systems, common net-
work models, as explained below, have limited utility to incorporate
graphical representations of the interactions with the wealth of
annotation, in part because they cannot readily represent overlap-
ping functions between agents (molecules or sets of molecules) or
multiple functions of a single agent (54).

3.1. Hierarchy

and Complexity

in Biological Networks

3.1.1. Abstraction

Biological networks differ from general networks because such
networks abstract common features from different situations, at
the expense of concreteness. Protein p53, for example, in PPI net-
works is an abstraction of many p53 proteins in different cells under
different conditions; their associated interactions are combined
regardless of temporal, spatial, or conditional dependency. This is
also true of conditional dependencies between proteins and DNA-
binding sites or, in genetic interactions, between genes themselves.
Clearly such network representations of protein–protein and pro-
tein–DNA interactions invariably omit environmental and temporal
conditions; they display a static repertoire of potential interactions,
but do not consider environmentally mediated combinatorial selec-
tion of subsets of the molecules. To have a computable model
suitable for simulation, adaptability needs to be taken into account,
and that will often require the same node to have multiple instances
in one network. This is very different from a physical network such
as a logic circuit in which each node represents a single physical
component with invariant properties; consequently biological net-
works require considerably more sophisticated visualization systems
than those currently available.
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3.1.2. Multiple Scales The scale of a network is related to the number of elements it
contains (e.g., number of genes and proteins) and the number of
states available to each element (e.g., posttranslational modifica-
tions of the proteins, promoter site occupancy, and conformation-
dependent activity). Since each element generally has multiple
states (think of the combinatorial possibilities for just a single type
of modification—phosphorylation—of just a single protein) the
combinatorial complexity of the network is enormous; considerably
greater than that of a very large scale integrated (VLSI) circuit,
which grows combinatorially, but only as a power of 2, and much
greater still than geological maps, which are static for common
purposes (53). This complexity would be practically impossible to
represent or to relate—in even a very incomplete manner—to
phenotype, were it not for the fact that the cell is organized into
functional modules. In that respect it is reminiscent of a VLSI chip.
Meanwhile, the size of the network is a key issue in its visualization.
Not only because the increasing number of network elements can
easily comprise the performance of the viewing platform but also
because the large number of network elements will impact its view-
ability and usability: it becomes impossible to discern between
nodes and edges.

The challenge is to represent information at different levels of
detail and in different contexts while maintaining continuity
between levels of what will likely be a hierarchy of modules. Thus,
a protein complex in a pathway may be represented by a simple nod;
however, the same complex may need to be represented as a net-
work if the detailed associations among subunits needs to be
explored, such as in a spliceosome in alternative splicing (54). In
addition, a protein is not well represented by a simple node if its
state, determined by condition-dependent posttranslational mod-
ifications, changes its function or localization.

When analyzing a large network, a user often needs to magnify
it, or to focus on a subset of the network at a finer resolution, to see
greater detail among a particular set of molecules. It is helpful to
make a distinction between two kinds of magnification: geometric
zooming, in which a region of the network is enlarged; and semantic
zooming, in which additional properties are to be introduced with
enlargement. Geometric zooming changes only the size of objects
(nodes and links) (55) and therefore the field of view, but objects
themselves are unaltered. Semantic zooming, on the other hand,
changes resolution: objects can appear and disappear depending on
context, allowing the kind and number of objects included in the
network to change, in addition to the size of the objects (48, 55).
For example, Google Maps implements a type of semantic magnifi-
cation in which the annotation changes automatically as the zoom
level changes (e.g., at level 12, states are seen as black boxes; at level
6 major roads within a state become visible; at level 1 local streets
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can be seen). Semantic zooming makes use of the viewing context
to decide, in real time, what kind of information is appropriate to
include.

3.1.3. Modularization

and Hierarchy

The expression “biological module” is not uniquely defined, but is
used in different ways by different researchers. Most modules are
either computationally inferred ormanually curated. A protein com-
plex is the cleanest example of amodule since it is detecteddirectly by
experiment. Manually curated pathways are also considered mod-
ules, though pathway boundaries are somewhat arbitrary (56).
Additionally, genes subsumed by GO (48) biological process terms
can also be thought as a functional module, although the interac-
tions between genes can be further defined with other methods.
Computational inference of modules usually adopts a bottom-up
approach (57); typical methods include classifying nodes into uni-
versal roles according to their pattern of intra- and inter-module
connection in an interaction network (58), iterative searching for
coexpressed clusters from genome-wide expression data (59), and
integrative clustering with additional evidence such as CHIP-chip
data (60). The correlation threshold with which a link is defined
plays an important role in themodule definition, usually in a statisti-
cally defensible way. For example, when attempting to discover
functional modules based on co-regulated elements, it would be
very important to quantify the strength of postulated relationship
based on sound statistical principles. Modules detected using differ-
ent methods are usually cross-validated using existing definitions of
curated pathways, or other “known” modules (61). Despite the
different definitions of modules, their use in large-scale networks
reduces visual complexity and increases the performance of graph
drawing tools and algorithms.

Software tools with module visualization capability should not
be tied to a particular definition of modules; the user defines the
module for a particular biological context, and the tool mines and
displays it. For example, the cellular network of protein complexes
in yeast can be modeled by interactions between complexes based
on shared components (Fig. 13I), or by the direct interactions
between protein members of different complexes (Fig. 13II). It is
also evident from Figs. 2 and 4 that modularization, if it is to be
useful, must be connected with semantic zooming. This relation
becomes even clearer in a more general context, in which the cell’s
network repertoire (i.e., the entire subset of connections, as
opposed to the particular subset selected by a specific environment)
is coarse grained as a hierarchical pyramid (62) with protein
domains at the base and modules at the apex (modules $ path-
ways $ proteins $ domains) where resolution and annotation
changes by zooming from one level to the next.
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3.2. Metagraphs:

Representing Networks

of Networks

A metagraph (12, 13, 50) is an advanced graph type developed in
our Lab to integrative inclusive or partially inclusive relationships
and the adjacent relationships into one single network, as illustrated
in Fig. 14. The inclusive relationship in a metagraph is represented
by a metanode which is a special type of node that contains asso-
ciated sub nodes, much as a Gene Ontology (GO) term contains its
subterms or associated genes. A metanode has two states, expanded
or collapsed; the expanded state manifests the internal subgraph
(that is, places all descendent nodes with their connections into the
graph) while the collapsed state replaces this subgraph with the
single node. Networks represented by a metagraph are usually
termed metanetworks, and such visualization technology is often
referred to multi-scale visualization because information at differ-
ent abstraction scales is presented in one network. Detailed mathe-
matical definition of the metagraph can be found in Appendix.

In this session we focus on the advanced analysis using
VisANT’s functions associated with the work flows shown in
Fig. 15. Users are advised to visit http://visant.bu.edu for the rest
functions of VisANT. Both work flows shown in Fig. 15 are usually
aimed to find network modules that may account for the differen-
tial RNA expression patterns (e.g., tumor vs. normal) determined
by genome-wide association studies. The first work flow starts with
the modules whose functions are unknown, therefore the task is to
determine their functions; while the other starts with the modules

Fig. 13. The network of protein complexes inferred by bottom-up method. (I) A metagraph of the network of protein
complexes discovered via TAP-MS-tagging by Gavin et al. (41) The complexes were determined by tandem affinity mass
spectrometry and were colored to indicate subsequent functional assignments (41). The gray edges connect complexes
that share protein components. The components of each complex are included in the model and are visible when the
metanode representing the complex is expanded. As an example, the complex labeled as 175 is expanded so that its
components, as well as the one being shared (shadowed) with complex 36, are visible. (II) A network using the same set of
complexes as (I), only with edges representing interactions derived by large-scale two-hybrid assays (13). The integration
of interaction data enables the internal connectivity of the complexes to be revealed when a node is expanded. An
expansion of node 175 would reveal an interaction between Exo84 and Sec5, and between Sec8 and Sec10.
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Fig. 14. Illustration of the multi-scale visualization using metagraph. Note that node E has two instances in the inclusive
tree. (a) A network where an edge represents the inclusive relationship such as F belongs to M2, E is part of M2 and M3. (b)
A network with adjacency relations. (c) Integration of inclusive relations (dashed lines) and adjacency relations (solid lines).
(d) The intgrated network using metagraph (also referred as meta-network) where node E belongs to both metanode M2
and M3. (e) The same meta-network with three metanode (M1–3) collapsed, the dashed line between M2 and M3
indicates there is a shared node between two metanodes.

Fig. 15. Different work flows focused in this chapter. The solid lines represent the work flow of functional profiling where
GO annotations are used to interpret the roles of a given gene set. The dashed lines represent the work flow of the gene
set/network module enrichment analysis, where GO terms and associated genes may be used to construct the functional
modules.
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whose functions are already know and the task is to determine
whether they are enriched in the expression pattern. Finally, we
illustrate the automatic creation of the cancer gene network based
on the cancer network shown in Fig. 2 using the built-in VisANT
function “Create the co-metanode network.”

3.3. Network-Based

Functional Profiling

Functional profiling (63), or GO term enrichment analysis
(GOTEA), aims to determine whether particular GO terms inform
the difference of molecular phenotypes in any set of user-specified
genes, typically the coexpression modules (Fig. 15, solid lines). In a
network context, the goal is to identify biological functions for a
given subnetwork, or for a network module. Although many algo-
rithms and tools (49, 64–75) have been developed for GOTEA, they
generally omit correlations based on disparate and varied datasets,
such as yeast two-hybrid, genetic interaction, mass spectrometry
(MS) and so on. Such relations may help to overcome some draw-
backs in the current enrichment analysis. For example, one drawback
is that all terms are weighted equally (76), while in a network
module, terms annotated for highly connected genes will have
more weight than those annotated for the loosely connected genes.
Accuracy may also be improved if network type is considered; e.g.,
for a regulatory network, we probably can exclude those annotations
of metabolic processes. From this perspective, flexible annotation
schema will be needed to enable users to select subsets of GO
annotations as discussed in the section. Such flexibility could help
determine the functions of genes in a specified network.

3.3.1. Construct a Network

of Modules

Assume we have three coexpression clusters named CLUSTER_A,
CLUSTER_B, and CLUSTER_C, each contains a number of genes
as listed below, copy and paste (either through the pop-out menu, or
the key combination CTRL-C and CTRL-V) the following text into
the Add text box of VisANT’s toolbox and click the Add button (left-
bottom corner indicated by the mouse cursor in Fig. 5), three meta-
nodes will be created (Fig. 5). The Add textbox can be used to add
any type of the data whose format is supported by VisANT (Table 1).

#group Cluster_A
KRT1 SIGIRR MYD88 MASP2 C1QA
MASP1 IL1R1 TLR4 TLR2 TLR1
TIRAP TBK1 IL1RAP TBKBP1 MBL2
SERPING1 CR2 C1S C1R

#group Cluster_B
NA SNAPAP BLOC1S3 BLOC1S2 DTNBP1 BLOC1S1
MUTED SNAP25 PLDN TRPV1 EBAG9 STX12

#group Cluster_C
HYAL2 CLP1 TEP1 RPP40 TSEN15
ERVWE1 RPP38 POP1 LOC100128314 TSEN34
RPP30 TSEN2 TSEN54 TERT
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Above text uses VisANT’s extended Edge-List format1 to cre-
ate the network, which is the simplest format supported in VisANT.
It can also be used to easily add nodes (each line with the name of
one single node) or edges (each line with the name of the two nodes
separated by space or tab). Alternatively, users can load this edge-
list from URL through File ! Open URL menu and enter the
URL http://visant.bu.edu/other_formats/edge_list_3_clusters.
txt (depending on the type of browsers, you may be able to paste
the above URL using the key combination CTRL-V), and follow
the instruction to achieve the same result. Once laid out using
Circle Layout, the network shall look similar as the one shown in
Fig. 16

3.3.2. Predict the Functions

of Modules Using

Hypergeometric Test

Thismethod predicts the overall functions for a given set of genes by
checking the overrepresented GO terms associated with the genes.
Therefore the first step is to annotate the functions of the genes of
each cluster through the menu “MetaGraph ! GO Annotation
of All Nodes ! Using Most Specific GO Terms.” VisANT will

Fig. 16. Network of three clusters created using Edge-List format and laid out using Circle Layout. Functions of the cluster
is predicted using hypergeometric testing.

1When you are uncertain about the format of edge-list, you can always export the network in the format of edge-
list with the menu File!Export as Tab-Delimited File!All and follow the exported examples.
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automatically resolve the node names when annotating the nodes.
The same annotation menus are also available under the menu
“Nodes” which are only used to annotate the selected nodes. In
the case you have collapsedmetanodes, such as for KEGGpathways,
always use the annotation options under “MetaGraph”menu.Once
the genes have been annotated using GO terms, we can easily
predict the functions using hypergeometric test through the menu
“MetaGraph ! Predict Functions of Metanodes Using GO !
Detect Overrepresented GO Terms Using Hypergeometric Test !
Start Hypergeometric Test over GO Database.” VisANT will per-
form the prediction for all non-embedded metanodes. For more
information, please reference the manual at http://visant.bu.edu/
vmanual/ver3.50.htm#hyper. The prediction results will be added
to themetanode as part of its description that are available as tooltips
when mouse-over the node (Fig. 16). Table 2 lists all predictions of
three clusters based on the reported created by VisANT: http://
visant.bu.edu/misi/hyper_3_cluster.htm

Predictome database maintains a local copy of GO database and
the gene–GO associations are extracted from Entrez Gene data-
base. Both data sets are being updated constantly therefore the
actual prediction results may be a little different from the results
shown in the link above. This also applies to the GOTEA algorithm
that will be illustrated later because the interactions are also being
updated from a list of interaction databases.

Table 2
Cluster functions predicted with hypergeometric-based test

Molecular function Biological process Cellular component

Cluster_A Cytokine binding
(GO:0019955)

Positive regulation of immune
response (GO:0050778)

Growth factor binding
(GO:0019838)

Innate immune response
(GO:0045087)

Serine-type endopeptidase
activity (GO:0004252)

Acute inflammatory response
(GO:0002526)

. . .

Cluster_B Synaptic transmission (GO:0007268)
Exocytosis (GO:0006887)
Generation of a signal involved in
cell–cell signaling (GO:0003001)

Cluster_C Endonuclease activity
(GO:0004519)

tRNA metabolic process
(GO:0006399)

Nucleolus
(GO:0005730)

Nucleotidyltransferase
activity (GO:0016779)
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3.3.3. GOEA Although it is common and fast to use hypergeometric test to
predict module’s function, the algorithm, however, does not take
into the account the interaction information for a given network
module. From this perspective, a new algorithm has been devel-
oped and implemented as a VisANT plugin to find overrepresented
GO terms in user-specified network modules (represented as meta-
nodes in VisANT). The function is available under the “Meta-
Graph” menu. By default, the analysis will be performed for all
non-embedded metanodes; i.e., it is not performed for descendent
metanodes unless they are specifically selected. Similarly, overrepre-
sented GO terms will be shown as a quick tip when the mouse is
passed over a node, and clicking on a node will display the hierarchy
of GO annotations in GO Explorer (Fig. 17). GOTEA also requires
genes in the modules to be annotated prior to the analysis.

For a given target GO term, the algorithm first computes the
density score of each node based on the path distance (number of
links) to other nodes in the same module, and the similarity
between its associated GO terms and the target term. The use of
a similarity score rather than an exact match enables the algorithm
to give the target term a high score so long as it is functionally
similar to the annotations of the genes in a module. The similarity
score between two terms is calculated by aggregating the semantic
contributions of their ancestor terms in the GO graph (77).
The enrichment of target term is determined using statistical

Fig. 17. Annotate the gene using the selected GO terms only. Four among the total thirteen terms are annotated for ACN9
because GO term hexose metabolic process (GO:0019318) are their child term, which will be very clear when the hierarchy
of GO:0019318 is shown in the GO explorer. Please reference http://visant.bu.edu/vmanual/ver3.50.htm for the information
of GO hierarchy visualization.
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measurement through permutation test over the subset of same
number of genes extracted from all known genes annotated by
Entrez Gene database (78) with appropriate false discovery rate
(FDR) (79) cutoff. Details of the algorithm can be found in the
Appendix. Related parameters, such as the cutoff and the iteration
number of the permutation test can be configured. By default, all
terms that have the associated genes for the current species will
need to be tested; users however, may select subset of term
branches in the GO Explorer to speed up the analysis.

The advantage of the algorithm over similar algorithms (such as
hypergeometric test) is reflected in the computation of the density
score, where the impact of one gene on another is a function of the
GO term similarity, and the number of links between the genes.
GO term similarity is calculated using a fuzzy search rather than a
conventional exact match (77). With such a density score, a gene
having many neighbors with similar GO terms will have more
significant contributions to the enrichment outcome; the algorithm
therefore leverages network topology, as well as the GO hierarchy.
In addition, metagraphs provide a flexible visual context to perform
analysis for hierarchically organized network modules. The func-
tion is designed for work flow shown as the solid red line in Fig. 15;
network modules need not be limited to expression profiling.

Permutation-based algorithms tend to be computationally
intensive and therefore time-consuming. In addition to the hyper-
geometric test-based algorithm, VisANT provides two options to
address this shortcoming. First, VisANT provides an option “Fast
GOTEA,” which only scans related GO terms for a given network
module (GO terms annotated for the genes in the module and
corresponding ancestor terms); and second, macro commands have
been created to allow the time-consuming GOTEA tasks be carried
out in the background with the command-line mode of VisANT.

Continue with the same example as in the previous session, and
load all interactions detected by the affinity technology (M0045) in
Predictome database (when VisANT is run as Applet, this can be
achieved through Interaction Statistics page as shown in Fig. 18).
Otherwise, they can also be loaded through metapod table in
VisANT (Fig. 1).

Once all interaction has been loaded, filter out all nodes that are
not in the three clusters will results in a network similar to the one
shown in Fig. 19. VisANT automatically adjust the global zoom
level when loading large interaction set. To resume the zoom level,
simply click first the Zoom Out button and then “Reset” button in
VisANT’s toolbox.

GOTEA can be performed through the menu “MetaGraph !
Predict Functions of Metanodes Using GO ! Network-based
GOTEA ! Fast GOTEA menu” and the iteration number is set
to 20,000 using the menu “MetaGraph ! Network-based
GOTEA ! Configure GOTEA.” The prediction results will be
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added to the metanode as part of its description that are available as
tooltips. Table 3 lists top three GO terms resulted from GOTEA
analysis for three clusters. The complete report can be found at:
http://visant.bu.edu/misi/gotea_M0045_3_cluster.htm.

It is obvious that GOTEA finds more enriched GO terms for
each cluster than hypergeometric test, which is mainly because
GOTEA uses a fuzzy searching algorithm to find those GO terms
that are semantically similar. As a result, GOTEA is much slower
than hypergeometric test, and takes about half hour to finish the

Fig. 19. Network modules for the three clusters with integrated interactions of M0045.

Fig. 18. Total interactions available in Predictome database for Homo sapiens. Click on the number will load the
corresponding interactions in VisANT.
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analysis of three clusters. From this perspective, VisANT provides a
red cancel button at the right end of the status bar to cancel the
analysis, as shown in Fig. 20:

More information about GOTEA in VisANT can be found at
http://visant.bu.edu/vmanual/ver3.50.htm#gotea.

3.4. Network-Based

Expression Enrichment

Analysis

Another typical application of the enrichment analysis is the study
of differential RNA expression patterns (e.g., tumor vs. normal)
determined by genome-wide association studies, to determine if
one or more specified gene sets (e.g., KEGG pathways) might
account for some of the differences (Fig. 2, dashed lines)
(80–83). Gene Set Encrichment Analysis (GSEA) (82) is probably
the most used algorithm in such analysis which does not take
account of prior network knowledge. Here we introduce the

Table 3
Cluster functions predicted by GO with integrated interaction of M0045

Molecular function Biological process Cellular component

Cluster_A Cytokine binding
(GO:0019955)

Cytokine biosynthetic process
(GO:0042089)

Extracellular space
(GO:0005615)

Growth factor binding
(GO:0019838)

Positive regulation of immune
response (GO:0050778)

Receptor complex
(GO:0043235)

Sugar binding
(GO:0005529)

Innate immune response
(GO:0045087)

Secretory granule
(GO:0030141)

. . . . . . . . .

Cluster_B Calmodulin binding
(GO:0005516)

Synaptic transmission (GO:0007268) Clathrin-coated vesicle
(GO:0030136)

ATP binding
(GO:0005524)

Neurotransmitter transport
(GO:0006836)

Neuron projection
(GO:0043005)

Calcium channel activity
(GO:0005262)

Generation of a signal involved in
cell–cell signaling (GO:0003001)

Cytoplasmic vesicle
membrane
(GO:0030659)

. . . . . .

Cluster_C Endonuclease activity
(GO:0004519)

tRNA metabolic process
(GO:0006399)

Nucleolus
(GO:0005730)

Nucleotidyltransferase
activity (GO:0016779)

DNA recombination (GO:0006310) Anchored to membrane
(GO:0031225)

ATP binding
(GO:0005524)

Cellular carbohydrate catabolic
process (GO:0044275)

Soluble fraction
(GO:0005625)

. . . . . .

Fig. 20. Use the red cancel button on VisANT status bar to cancel the computational heavy analysis.
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Network Module Enrichment Analysis (NMEA) to test whether
the modules are enriched with transcriptional changes between the
control and the sample. NMEA is basically an extension of GSEA
but takes advantage of the extra information provided by network
connectivity. In VisANT, a network can be constructed using the
data from any combination of 70-odd methods (e.g., Y2H, ChIP-
Chip, MS, and knockouts) for the interested gene lists. And mod-
ules can be easily constructed as metanodes through corresponding
menus, simple drage&dop operation from GO explorer, and
extended edge-list (http://visant.bu.edu/import#Edge) of user’s
own data.

Here we use the GO term to create the network modules and
then performNMEA over them. This example can be carried out in
the following steps

1. Start VisANT as a local application (see Appendix for more
detail) and have an empty network for Homo sapiens.

2. Resume the zoom level by clicking first the “Zoom Out”
button and then “Reset” button in VisANT’s toolbox.

3. Click on the GO Explorer tab in VisANT’s control panel, enter
GO:0000077 in the search box at the bottom of GO explorer,
and click the “Search” button. Drag and drop the highlighted
term DNA damage checkpoint to the network to create the
metanode for GO:0000077 (Fig. 12).

4. Repeat step 3 for GO:0051320, GO:0007127 and
GO:0051318. All three metanodes have overlaps with the
first metanode of GO:0000077, move the overlapped genes
to the center of each metanode, and a metanetwork shall appear
similar to the one shown in Fig. 21 except there is no edge.

5. Mapping the expression profiles by opening the expression data
from the following address: http://visant.bu.edu/sample/
exp/p53_visant.dat using File ! Open URL menu.

The expression data shown in above link contains 22 micro-
array samples with mutations in P53 and 17 wild-type samples.
The data is downloaded from GSEA Web site (http://www.
broad.mit.edu/gsea/). Please reference http://visant.bu.edu/
vmanual/ver3.50.htm#Expression for the format of expression
data supported by VisANT.
An alternative way to load the expression data is copy/paste
expression data in the Add textbox of the toolbox.

6. Change the color mapped for the minimal and maximum
expression values to the light green and darker green, respec-
tively, by clicking left/right side the color map shown in the
toolbar (Fig. 21). The color map will also be used to indicate
the relative contribution to the enrichment score within each
metanode.
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7. Select all nodes using Edit ! Select All Nodes menu

8. Query the interactions between selected nodes from Predic-
tome database using Node(s) ! Query Internal Interactions
menu. The edges between the nodes appear as in Fig. 21.

In comparison to the network modules shown in Fig. 19 where
only a portion of the interactions are used to construct the
network modules, here we query all possible interactions in
the Predictome database.

9. Clear all selection with left-mouse clicking on empty space of
the network panel.

10. Start NMEA using Expression ! NMEA ! Start NMEA
Analyze menu. Once finished, p-value and FDR score will be
added to each metanode’s description (Fig. 21) and an html
report will generated similar to the one at: http://visant.bu.
edu/misi/nmea_go_modules.htm.

From the report it is clear that only the process DNA damage
checkpoint (GO:0000077) exhibits the phenotypic difference in
the expression of genes between mutated and wild-type samples,
probably due to the fact that P53 plays a role in the process. As
mentioned in step 6, nodes with the darker color have more con-
tribution to the enrichment score.

Fig. 21. NMEA analysis for four GO modules in VisANT.
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More information about NMEA in VisANT can be found at
http://visant.bu.edu/vmanual/ver3.50.htm#nmea.

3.5. Using Top-Down

Method to Model the

Cancer Gene Interaction

Network

In this session we will illustrate how to use metagraph to build a
network of cancers based on the simple cancer-gene association,
and how this cancer network can be used to create the cancer gene
network. Follow instructions shows the detailed step how this
analysis can be carried out.

1. Construct the cancer network

1.1 Clear the network by clicking Clear button

1.2 Load the edge-list for the cancer network from http://
visant.bu.edu/other_formats/edge_list_cancers.txt using
the File ! Open URL menu. Once finished, click the Fit
to Page button on the toolbox.

The data shown in the above URL is extracted from
the work of Goh and coworkers (37). The disease is repre-
sented by disease ID and not very informative. From this
perspective, we use the ID-Mapping format (Table 1) to
add informative description for each cancer. The first few
lines of the file are shown below:

#!ID Mapping AddNewNode ¼ false
#VisANT_ID description
DOR2212 Rhabdomyosarcoma, alveolar, 268220 (3)
[DOR2212]
DOR2211 Rhabdomyosarcoma, 268210 (3)
[DOR2211]
DOR2210 Rhabdoid tumors (3) [DOR2210]
DOR1804 Nasopharyngeal carcinoma, 161550 (3)
[DOR1804]

1.3 Similar to above step, load the ID-Mapping file from URL:
http://visant.bu.edu/other_formats/IDMapping_cencers.txt

1.4 Collapse all metanodes using MetaGraph ! MetaNode
! Collapse All menu.

1.5 A dashed edge between two cancers will be created auto-
matically if they share at least one gene.

1.6 Click the Zoom Out button on the toolbox 6 times and
then click the Fit to Page button to reduce the node size
and make it easier to examine the connections between
diseases

1.7 Layout the cancer network using the Layout ! Spring-
Embedded Relaxing menu. Click the Stop Animation but-
ton whenever appropriate (Fig. 14). The cancer network
shall look similar to the one shown below:

11 Analysis Strategy of Protein–Protein Interaction Networks 173



2. Create the cancer gene network
Apply the similar concept as “disease gene network” (37), i.e.,
two genes are connected if they are associated with the same
disorder; we can easily create cancer gene network in VisANT.

2.1. Use the MetaGraph ! Create Co-Metanode Network
menu to create the cancer gene network.

2.2. Repeat step 4.1.6 to apply spring-embedded relaxing
layout.

2.3. Change node shape, color, and size of the cancer gene
network by copy/paste following macros into the Add
textbox (clear the textbox if necessary using the key
CTRL-A and then Backspace):

#!batch commands
select_all_node
set_node_property¼node_size:7
set_node_property¼node_shape:circle
clear_selection

Please reference http://visant.bu.edu/vmanual/cmd.htm
for more information about macros.

2.4. The cancer gene network shall look similar to the one
shown in Fig. 22:

Fig. 22. Cancer gene network automatically created by VisANT based on the cancer
network. The dark dot represents the gene and the edge represents that the two genes
are associated with the same cancer.
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Appendix

Mathematical Definition

of Metagraph

AmetagraphGm ¼ fV ;Eg consists of a finite set Vof the nodes and
a finite set E of the edges. Nodes in a metagraph can be denoted as
V ¼ fVs;Vmg where Vs represents simple nodes as generally
defined in simple graph and Vm represents the metanodes. The
subscription s represents the simple node/edge and the subscrip-
tion m represents metanode/metaedge. Each metanode vm 2 Vm

contains a subgraph consisting of child nodes and connected edges.
In addition, each node v 2 V represents a set of its instance nodes,
i.e., v ¼ vi i>0jf g where vi is the instance node of v. Instance nodes
remains exact same identity between them but can have individual-
specific properties. The statement that two metanodes share a node
implies that each metanode contains an instance of the same node.

A metanode vm has two states, expanded or contracted; the
expanded state manifests the internal subgraph (that is, places all
children nodes with their connections into the graph) while the
contracted state replaces this subgraph with the single node. The
combination of different states of the metanodes for a given meta-
graph results in multiple views that are abstract representations of
the same underlying data. The change of the views for a given
metagraph is defined as the dynamics of the metagraph, as shown
in Fig. 1D, E.

Edges in a metagraph can be denoted as E ¼ fEs;Emgwhere
Esrepresents simple edges that are generally defined in the simple
graph and Em represents metaedges. Each metanode edge em 2
Em ¼ evm;vis associated with at least one contracted metanode
vmand is transient: it appears when the metanode is contracted
and disappears when one or two connected metanode nodes
expanded, i.e., the metaedge is derived from the properties of two
connected nodes. The most common derivation of the metaedge is
the connection transfer. For example, when metanodesM1 andM2
are contracted in Fig. 1E, the connection between C and E is
transferred to M1 and M2. However, metaedge can also be derived
from other properties of the metanode. The metaedge shown in
Fig. 1E is derived because two metanode M2 and M3 share the
same node E. The derivation of the metaedge can be generalized as
evm;v ¼ gðvm;vÞ, where g is the aggregation function and v 2 V can

either be a metanode node or a simple node.

Download and Run

VisANT as a Local

Application

VisANT has four running modes in total, and two of them require a
local copy of VisANT. Please visit http://visant.bu.edu and click
the link “Run VisANT” for detailed instruction of other modes. It
is recommended to run VisANT as a local application when
handling large-scale network, such as the network with more than
100,000 nodes and edges because you will have the option to
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specify the memory size that VisANT can use. In addition, a local
application allows VisANT to access local resources, such as load/
save network files, directly; it also allows the user to develop
VisANT plugins, as well as run a list of batch commands in the
background without any user interface (batch mode).

The only drawback to run VisANT as a local application is that
it easily becomes out of date because VisANT is under active
development. Fortunately, VisANT provides a function to checks
the update automatically and an icon will be shown near the Help
menu if the update is available. Users can either click the icon, or
corresponding menu to upgrade the VisANT to the latest version,
as shown below:

1. If not already installed, download and install the Java 2 Plat-
form, Standard Edition, version 1.4 or higher (http://java.sun.
com/javase/downloads/index.jsp).

2. Go to http://visant.bu.edu and click on the link “Download,”
then click the link “Latest Version of VisANT.”

3. Select a directory to save the file “VisAnt.jar”

The VisAnt.jar is only about 400 K in size and the download
shall take less than 1 min to finish. No installation is needed to
run the VisANT.

4. To launch VisANT, double-clicking VisAnt.jar

5. To launch VisANT by an alternative mean: Open a Dos win-
dow in Win OS, or a shell window in other operation systems,
and go to the directory where VisAnt.jar locates, and run the
command:

java -Xmx512M -classpathVisAnt.jar cagt.bu.visant.VisAntApplet

where 512 M indicates the maximum size of the memory that
VisANT can use. Increase this number if you have a large
network or you get the “run out of memory” error.

6. The VisANT main window will appear (Fig. 4).

7. To exit VisANT, close the VisANT main window, or use
the File ! Exit menu option, or press the key combination
ALT + X.

GO Term Enrichment

Analysis

The four steps here describe how GOTEA works in VisANT. For
illustration purposes, the following steps take only one metanode,
G, into account and calculate only the enrichment score of one
target GO term, T.

Step 1: Fully annotate all of the nodes in G with gene names and
GO terms.

Step 2: Calculate density scores for each node based upon the
topology and the GO term similarity to T. A vector DG of density
scores of each gene in G is computed, with the element of DG for
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the ith gene denoted Di. The density score is used to evaluate the
impact of other genes in G on the ith gene, according to both the
GO term similarity and the topological distance to the ith gene. Di

is defined as:

Di ¼
X

j2G
log2

Mj

a

� �
YðMj � aÞ þYða�Mj Þ

� �
e�bdij ;

where the step function,

Yðx � yÞ ¼ 1 x� y
0 x<y;

�

ensures that Di � 0. Mj is a measure of the GO term similarity
calculated based upon the graph structure of the GO term hierar-
chy [85]. A significance threshold, a, is used to control the contri-
bution that gene j makes to Di. For larger a, a greater number of
less statistically significant (withMj < a) genes are filtered and they
do not contribute toDi. The shortest distance between genes i and
j given the topology of G is denoted dij and was calculated with the
Floyd–Warshall algorithm. We assume that shorter distances make
an exponentially greater contribution to the density than do longer
distances, with the steepness of the exponential determined by the
parameter ~bWhen a bigger b is chosen, more distant genes can
contribute to the density. Taken together, the parameters a and b
are used to control the sensitivity and selectivity of the density.

Step 3: Another vector of density scores, DNG, is computed based
upon a randomly chosen subset of genes representative of the
background distribution. The background consists of all genes
annotated by NCBI.

Step 4: Statistical significance for rejecting the null hypothesis is
determined by a permutation test. For statistical robustness, step 3
is repeated n times. The number of times the average density score
of randomly chosen genes is found to be larger than the average
density score of genes in G is counted after n iterations and used to
compute the final p-value (Fig. 23).

These four steps can be carried out for multiple testing by
using multiple metanodes and multiple targeting GO terms. In
this case, the p-values are corrected using FDR methods (79).

Fig. 23. VisANT upgrade.
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Specifically, FDR ¼ p �m k= , where m is the total number of GO
terms tested and k is the rank of the GO terms under consideration.
There is also an option for GOTEA to identify representative GO
terms from all its discoveries based upon approaches that identify
the most informative GO term (84).

Network Module

Enrichment Analysis

NMEA is implemented in a manner similar to GOTEA. Where
GOTEA used GO term similarities, NMEA uses p-values from T-
tests on the expression values of two phenotypes.

Step 1: Fetch the expression profile of each gene in a given module
(i.e., metanode, denoted M in the following context) from format-
ted user input. The input should include an adequate number of
samples with comparable phenotypes (e.g., normal and disease).

Step 2: A vectorDM of density scores of each gene is computed, with
the element of DM for the ith gene denoted as Di. Di is defined as:

Di ¼
X

j2G
log2

a
Mj

� �
Yða�Mj Þ þYðMj � aÞ

� �
e�bdij ;

where the step function,

Yðx � yÞ ¼ 1 x� y
0 x<y;

�

ensures that Di � 0. Mj is the p-value from a two-tailed t-test of
differential expression between two phenotypes (for example, nor-
mal and disease). The parameters a and b are used to control the
sensitivity and selectivity of the density as described in the previous
section.

The density score is used to evaluate the impact of other genes
inM on the ith gene, according to both the p-value calculated by T-
test (an indicator of differential expression) and their topological
distances to the ith gene.

Step 3: Another vector of density scores, DNM, is computed by
randomly shuffling the phenotypes to obtain a representative sam-
pling of the background distribution.

Step 4: Statistical significance for rejecting the null hypothesis is
determined by a permutation test. For statistical robustness, step 3
is repeated n times. The number of times the average density score
of randomly chosen genes is found to be larger than the average
density score of genes inM is counted after n iterations and used to
compute the final p-value.

When applying NMEA to multiple metanodes, the p-value
must be corrected by FDR in a manner similar to what was
described above for GOTEA. In this case, FDR ¼ p �m k= as
before, but m is the total number of metanodes and k is the rank
of the metanodes under consideration.
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Chapter 12

Data Mining in the MetaCyc Family of Pathway Databases

Peter D. Karp, Suzanne Paley, and Tomer Altman

Abstract

Pathway databases collect the bioreactions and molecular interactions that define the processes of life. The
MetaCyc family of pathway databases consists of thousands of databases that were derived through
computational inference of metabolic pathways from the MetaCyc pathway/genome database (PGDB).
In some cases, these DBs underwent subsequent manual curation. Curated pathway DBs are now available
for most of the major model organisms. Databases in the MetaCyc family are managed using the Pathway
Tools software. This chapter presents methods for performing data mining on the MetaCyc family of
pathway DBs. We discuss the major data access mechanisms for the family, which include data files in
multiple formats; application programming interfaces (APIs) for the Lisp, Java, and Perl languages; and web
services. We present an overview of the Pathway Tools schema, an understanding of which is needed to
query the DBs. The chapter also presents several interactive data mining tools within Pathway Tools for
performing omics data analysis.

Key words: Metabolic pathways, Pathway databases, Systems biology

1. Introduction

Pathway DBs describe the functional landscape of the cell. They
collect the bioreactions and molecular interactions that comprise
the processes of life. This chapter presents methods for performing
data mining on the MetaCyc family of pathway DBs. Most DBs in
the MetaCyc family contain metabolic pathway data, although
some contain signaling pathway and regulatory information. Data-
bases in theMetaCyc family are created, updated, and queried using
the Pathway Tools software (1).

TheMetaCyc family consists of thousands of pathway/genome
databases (PGDBs) whose contents were derived through compu-
tational inference of metabolic pathways from the MetaCyc PGDB
(2), followed in some cases by additional manual curation. Curated
pathway DBs are now available for a number of model organisms

Hiroshi Mamitsuka et al. (eds.), Data Mining for Systems Biology: Methods and Protocols, Methods in Molecular Biology, vol. 939,
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including Escherichia coli, Saccharomyces cerevisiae, Arabidopsis
thaliana, Mus musculus, and Homo sapiens. Table 1 lists the loca-
tions of these PGDBs.

The methodology we present is as follows:

l Choose the DB or DBs to be used for your data mining project.
The MetaCyc family contains thousands of DBs created by
many different researchers.

Table 1
Other Pathway Tools-based websites

Website Contents URL

ApiCyc Apicomplexan genomes http://apicyc.apidb.org/PLASMO/server.html

AraCyc Arabidopsis thaliana http://www.arabidopsis.org/biocyc/index.jsp

BeoCyc 33 BioEnergy genomes http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi

BioCyc 1,004 microbial Genomes http://biocyc.org/

CalbiCyc Candida albicans http://pathway.candidagenome.org/

ChlamyCyc Chlamydomonas
reinhardtii

http://chlamycyc.mpimp-golm.mpg.de

EcoCyc Escherichia coli http://ecocyc.org/

FungiCyc Multiple fungal genomes http://fungicyc.broadinstitute.org:1555

DictyCyc Dictyostelium discoideum http://dictybase.org/Dicty_Info/dictycyc_info.html

LeishCyc Leishmania major http://leishcyc.bio21.unimelb.edu.au/

MicroScope 542 Genomes http://www.genoscope.cns.fr/agc/microscope/

MouseCyc Mus musculus http://mousecyc.jax.org:8000/

PseudoCyc Pseudomonas aeruginosa http://v2.pseudomonas.com:1555/

RiceCyc Multiple plant genomes http://www.gramene.org/pathway/

ScoCyc Streptomyces genomes http://scocyc.streptomyces.org.uk:14980/SCO/server.html

ShewCyc 18 Shewanella genomes http://spruce.ornl.gov:1555/SHEON/organism-summary?
object¼SHEON

SolCyc Solanaceae genomes http://solcyc.sgn.cornell.edu/

SoyCyc Soybean http://soybase.org

TBestDB Taxonomically Broad EST
DB

http://pepdbpub.bcm.umontreal.ca/pathway/

TBCyc Mycobacterium tuberculosis http://tbcyc.tbdb.org/

SGD Saccharomyces cerevisiae http://www.yeastgenome.org/
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l Choose among the many data access mechanisms that exist for
these DBs:

– Files in BioPAX format.

– Files in attribute-value format.

– Perl API.

– Java API.

– Lisp API.

– Web services API.

l Study the Pathway Tools schema to understand what data fields
to query.

l Use interactive data mining tools provided by the Pathway
Tools software to analyze data of interest.

Pathway Tools has many additional capabilities that are not
presented here including tools for identification of dead-end meta-
bolites and metabolic choke points, and tools for inferring pathway
hole fillers and operons. For more details, see (1).

2. Materials

For web access to PGDBs, we recommend use of Firefox, Safari, or
Chrome. Versions of Internet Explorer released prior to 2011 are
not recommended because of their slow speed and other problems.

BioCyc PGDBs are freely and openly available to all users, and
are available in a variety of file formats listed at (3).

The Pathway Tools software is available for the Linux, Win-
dows, and Macintosh platforms. It is freely available to academic
users and is available to commercial users for a fee. BioCyc and
Pathway Tools may be obtained from (4).

3. Methods

3.1. Choose

the Database(s)

for Your Data Mining

Project

The following factors should be considered when choosing a
PGDB for a data mining project.

Does a PGDB exist for the organism of interest? The websites
listed in Table 1 contain thousands of PGDBs that overlap to some
degree. If a PGDB does not exist for an organism of interest, a
researcher can create a new PGDB using Pathway Tools.

Does a curated PGDB exist for the organism of interest?
Curated DBs are generally significantly more accurate than uncu-
rated DBs (note that most pathway DBs outside the MetaCyc
family are uncurated). Curated DBs contain minireviews that
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summarize the biology of a gene or pathway. They contain citations
to the literature, and they contain curated data that cannot be
predicted computationally (such as enzyme inhibitors and cofac-
tors). The curation level of a PGDB can be assessed by invoking the
command Tools ! Comparative Analysis and then selecting the
organisms report for the PGDB of interest. The resulting report
identifies the number of publications cited in the PGDB and the
number of genes and pathways with experimental evidence. In
some cases a curated PGDB contains a large and unique collection
of data. For example, EcoCyc contains extensive curated informa-
tion on the regulation of E. coli genes by a variety of mechanisms
including transcriptional regulation, regulation by attenuation, and
regulation by small RNAs.

Depending upon how you plan to access the PGDB for data
mining, a local copy of the PGDB may be required for use within a
local copy of Pathway Tools. Accessing PGDB data using web
services does not require having a local copy. Accessing PGDB
data using the Java, Perl, and Lisp APIs does require having a
local copy, because those APIs are accessed from within the Path-
way Tools software using a local Unix socket. Pathway Tools must
load the PGDB into its virtual memory.

A local copy of a PGDB can be downloaded via the PGDB
registry (5), which is a peer-to-peer DB server. The Pathway Tools
command Tools ! Browse PGDB Registry will list all PGDBs
defined within the registry. The user can click on a PGDB to
download it locally for use within Pathway Tools. If a known
PGDB of interest is not within the registry, contact its authors to
request that they deposit it there.

3.2. Choose a Data

Access Mechanism

Three different approaches can be used to obtain and operate on
PGDB data: (1) download the full data files from the BioCyc
website and operate on them locally, (2) use the web services
interface to retrieve selected data, or (3) install the Pathway Tools
software on a local machine and use one of the programmer APIs.

3.2.1. Data Files Data files can be downloaded from the BioCyc website by following
the instructions at (4). For PGDBs hosted elsewhere, contact the
administrators of that site directly. The downloadable archive for a
given PGDB contains all relevant files for that PGDB, including
BioPAX files, attribute-value files, sequence files, and various tabu-
lar files. If the Pathway Tools software is installed locally, these files
can also be generated using the File ! Export command.

BioPAX Files BioPAX (6) is an XML-based standard format that facilitates the
exchange of pathway-related information. A number of software
tools can import or use data in BioPAX format. Two versions of the
BioPAX format file are provided for each PGDB: a level 2 file, which
conforms to an older BioPAX version, and a level 3 file, which uses
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the most recent BioPAX version (the two versions of BioPAX are
incompatible). A single file contains data for all pathways and
metabolic and transport reactions in the PGDB—including all
metabolites, enzymes, and regulators—relevant to those pathways
and reactions. It does not contain information about genes, tran-
scription units, or transcriptional or translational regulation. To
obtain BioPAX data for just a single pathway rather than for all
pathways, use the web services interface instead.

Attribute-Value Files Attribute-value files contain data in a format that corresponds
closely to the Pathway Tools schema. A different file is provided
for each class of data object, such as genes, proteins, or reactions.
For each Pathway Tools object (such as a single gene), the file will
list its unique identifier and the values of its attributes, with each
attribute on a different line. More details can be found at (7). Users
may have to parse and integrate data from multiple files to extract
the information they want. For example, to determine the reaction
catalyzed by an enzyme, search the proteins.dat file for the
value of the CATALYZES attribute of the enzyme (which
will give the id for the catalysis object, known as an enzymatic
reaction), search for that value in the enzrxns.dat file to extract
the REACTION attribute, and then search for that reaction in the
reactions.dat file to retrieve properties of the reaction, such as
its reactants and products.

Other Files The file archive for a PGDB also contains other miscellaneous files.
FASTA files contain the sequence for each gene or protein in the
PGDB in FASTA format. Tabular data files summarize selected
commonly used relationships between objects, such as genes of a
pathway or reactions of an enzyme, in tab-delimited table format.
This format can be more convenient than having to extract and
integrate information from multiple attribute-value files if those are
the relationships you are interested in retrieving. The full list of files
can be found at (7).

3.2.2. Web Services Data can be retrieved from the BioCyc website (or from any other
website that runs version 14.5 or higher of the Pathway Tools
software) in XML format using the web services API. Simple
queries can return the data for a single Pathway Tools object
(such as a gene or a reaction) given its unique id. More complex
queries can be constructed using the BioVelo query language to
retrieve data for one or more objects based on their properties. For
a detailed description of the web services API, including sample
queries, see (8).

Pathway data for a single pathway can be optionally retrieved in
BioPAX format. All other requests through the web services API
generate data in a format known as ptools-xml. This format is
closely related to the underlying Pathway Tools object
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representation, so an understanding of the Pathway Tools schema is
necessary in order to interpret the data. The ptools-xml format is
further described at (9).

To retrieve data for a single object (such as a gene or reaction),
you must supply both the PGDB identifier (a short string that
uniquely identifies the organism DB) and the object identifier.
Objects can be retrieved in either low or full detail. Low detail
includes only selected attributes and relationships. For example,
low detail for a protein or RNA includes only its name and syno-
nyms and links to its gene, its components (if a complex) or com-
plexes, and any reactions it catalyzes. Full detail (the default)
includes all information associated with that object in the DB,
including but not limited to textual summaries, citations to the
literature, links to other DBs, reactions in which the object partici-
pates, and regulation information.

TheURL to retrieve anobject from theBioCycwebsite in ptools-
xml format is http://wgetxml?i/getxml?[ORGID]:[OBJECT-
ID] or http://wgetxml?i/getxml?id¼[ORGID]:[OBJECT-
ID]&detail¼[low|full], where [ORGID] and [OBJECT-ID]
are the PGDB identifier and the object identifier, respectively.

The BioVelo query language (10) allows you to write precise
queries to extract a set of objects from one or more PGDBs that
satisfy specific criteria. Some example searches might be for all pro-
teins whose name includes some search string, all heteromultimeric
complexes in the PGDB, all genes associated with a particular path-
way, or all compounds in a particular molecular weight range. Query
results can be returned at either low detail (the default), full detail, or
no detail. In the no detail case, the query returns unique ids only,
without any additional attributes, for objects that satisfy the query.

The URL to issue a BioVelo query to the BioCyc website
that returns a list of objects in ptools-xml format is http://
websvc.biocyc.org/xmlquery?[QUERY]or http://websvc.
biocyc.org/xmlquery?query¼[QUERY]&detail¼[none|
low|full], where [QUERY] is a properly escaped BioVelo query
string that returns a single list of Pathway Tools objects. For exam-
ple, the request http://websvc.biocyc.org/xmlquery?[x:
x<-ecoli^̂ pathways] retrieves data for all pathways in EcoCyc.
The request http://websvc.biocyc.org/xmlqu ery?[x:x<-
mtbrv̂ Ĝenes,x̂ left-end-position>100000,x̂ right-end-
position<200000, %23[pp:pp<-x^product,pp^molecular-
weight-kd>¼50,pp^molecular-weight-kd<¼60]>0] retrieves
data for all genes in the M. tuberculosis H37Rv PGDB whose map
position on the chromosome is between 100,000 and 200,000, and
that have a product whose molecular weight is between 50 and
60 kdaltons.

BioVelo can be a tricky language to master, but several example
queries are provided at (8). In addition, BioVelo is the engine
underlying a number of the search mechanisms available from the
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Search menu on the BioCyc website, including the Compound,
Genes/Proteins/RNAs, Reactions, Pathways, and Advanced
search forms. Each search conducted using these forms also returns
the BioVelo query that was evaluated, so some experimentation
with these can provide guidance when generating your own Bio-
Velo queries (but bear in mind that these query forms often gener-
ate multicolumn tables, whereas the web services API is more
limited and supports only queries that return a single column).

3.2.3. Lisp, Perl,

and Java APIs

If the Pathway Tools software has been installed on a local machine,
programs can be written that query the data directly through the
Lisp, Perl, or Java APIs. A wealth of information and relevant links
can be found at (11), including the list of API functions, example
queries, download links for PerlCyc and JavaCyc, and general
information about Lisp and the Lisp debugger. It is strongly recom-
mended to explore these resources before beginning to use any of
the APIs, so this discussion will provide just a general overview of
the APIs.

There are two layers of API functions. The bottom level is the
basic object access protocol, known as the generic frame protocol
(GFP) (12), which includes operations for enumerating all objects
in a class and accessing the attributes (slot values) of an object.
These operations require precise knowledge of the Pathway Tools
schema in order to utilize them effectively. On top of that are a
number of higher-level functions, known collectively as the Path-
way Tools API, that encapsulate some of the biological knowledge
and relationships between objects, such as how to query the path-
ways containing a gene, the genes regulated by a given gene, or
whether a protein is an enzyme or a transporter. Your programs will
probably make use of functions from both layers.

Lisp API ThePathwayTools software is written in theCommonLisp language,
so when writing a new program starting from scratch (as opposed to
interfacing with an existing Perl or Java program), the Lisp API is the
most convenient API to use. There is no separate package to install,
and no interprocess communication to worry about. Learning
enough Lisp to write simple queries is quite straightforward (some
good resources for learning Lisp are (13, 14)), and will greatly
increase your productivity when working with the data.

To use the Lisp API, start Pathway Tools in Lisp mode. On a
Linux or Macintosh machine, this is done by supplying the -lisp
command-line argument when starting Pathway Tools. On a Win-
dows machine, a separate desktop icon is provided to start in Lisp
mode. In either case, the normal Pathway/Genome Navigator
interface will not appear. Instead, you will see a lisp prompt in the
console window, which indicates that the software is ready to accept
commands. Commands and code snippets can be either typed or
pasted directly to the Lisp prompt, or they may be loaded from a
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separate file. Commands and code are interpreted as they are
entered and, in case of errors, can be debugged interactively.
Some example queries can be found at (15).

PerlCyc and JavaCyc The Perl and Java APIs are known as PerlCyc (16) and JavaCyc (17),
respectively, and must be downloaded as separate modules. Unix
file sockets are used for communication between the process run-
ning the PerlCyc or JavaCyc program and the Pathway Tools server,
which leads to several important limitations: (1) the Java and Perl
APIs work only with a Unix installation of Pathway Tools (Linux or
MacOS), not with Windows; (2) the machine running the Java or
Perl program must be the same as, or share, a file system with the
machine running Pathway Tools; and (3) only one external process
may interact with a Pathway Tools process at a time.

To use PerlCyc or JavaCyc, Pathway Tools must have been
invoked with the -api command-line argument. When invoked in
this fashion, no change is noticeable in the operation of the Path-
way Tools program—the Pathway/Genome Navigator appears as
usual, and users can interact with it in the normal fashion. The only
difference is that simultaneously the program is alert to connections
from an external process.

The external Perl or Java program must load the PerlCyc or
JavaCyc module and then create a new PerlCyc or JavaCyc object to
connect to the desired PGDB. Perl functions and Java methods are
available that are analogous to most of the corresponding GFP and
Pathway Tools API Lisp functions. When one of these functions is
invoked on the PerlCyc or JavaCyc object, the function is converted
to a Lisp query and submitted to the Pathway Tools process. The
subsequent response is then converted back into the appropriate
data type in Perl or Java. Examples showing exactly how to write
JavaCyc or PerlCyc queries are included in the appropriate module
documentation and in Fig. 1. Note that the JavaCyc interface does
not support passing of actual objects between Java and Pathway
Tools, merely object identifiers. An additional JavaCyc query
would be necessary to retrieve some attribute of a returned object.

3.3. Study the Pathway

Tools Schema

PGDB data is stored in an object management system called Ocelot
(18). Objects are organized into a class/instance hierarchy. Each
class can have its own set of attributes, known as slots. A slot can
have one or multiple values and either describes an attribute of the
object (such as the name or molecular weight of a protein) or
defines a relationship between that object and some other object
in the DB (such as the gene for a protein or the complexes of which
a protein is a component). Some of the major classes in the Pathway
Tools schema are listed in Table 2.
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3.4. Use Interactive Data

Mining Tools

Pathway Tools includes powerful interactive tools for analyzing
data, including enrichment/depletion analysis, visualization tools
for high-throughput experimental data, and comparative analysis.

3.4.1. Enrichment Analysis Consider the analysis of a gene-expression experiment in which 200
genes are found to be significantly up- or downregulated. Biologists
frequently want to ask whether those 200 genes contain significant
numbers of genes involved in one or more biological processes
(such as cell division) or in one or more biological pathways. That
is, are genes from one or more processes statistically overrepre-
sented in that set of genes? Put another way, is the given set of
genes enriched for genes from one or more processes or pathways?
Similarly, in analysis of metabolomics data, one might ask whether a
set of metabolites observed to have changed between two experi-
ments is enriched with respect to the metabolites in one or more
metabolic pathways.

Fig. 1. Sample code showing how to find all enzymes inhibited by ATP in EcoCyc using the (a) Lisp, (b) Perl, and (c) Java
APIs.
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Enrichment analysis is a statistical analysis tool that is able to
answer this type of question. Gene or metabolite lists such as those
in our examples are usually generated as a result of a high-
throughput experiment. High-throughput experiments are noisy,
and genes and compounds can participate in multiple biological
processes or pathways. So in the context of the above example, it is a

Table 2
Some of the major classes and subclasses in the Pathway
Tools schema

Compounds-And-Elements Compounds
Elements

Proteins Polypeptides
Protein-Complexes

RNAs tRNAs
rRNAs
Regulatory-RNAs

Genetic-Elements Chromosomes
Plasmids
Contigs

DNA-Segments Genes
DNA-Binding-Sites
Promoters
Terminators
Transcription-Units

Protein features Modified-Residues
Active-Sites
Signal-Sequences

Reactions Chemical-Reactions
Transport-Reactions
Binding-Reactions
Redox-Half-Reactions

Pathways

Enzymatic-Reactions

Regulation Regulation-of-Enzyme-Activity
Regulation-of-Transcription-Initiation
Transcriptional-Attenuation
Regulation-of-Translation

Organisms

Publications

Evidence

CCO (Cell Component Ontology)

Gene-Ontology-Terms

Databases
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mistake to take all the pathways in which at least one gene from a list
of 200 genes is involved and assume that they all participate in the
phenomenon studied in the gene-expression experiment. Enrich-
ment analysis enables us to statistically distinguish the pathways
explaining the phenomenon that underlies the expression experi-
ment from those that contain genes from the list by accident.

Enrichment analysis was initially described (19–21) for lists of
genes obtained using microarray experiments and for gene-
ontology (GO) terms. We have developed a general framework for
enrichment analysis. It is tied in to our object groups functionality to
allow facile creation of groups of genes, compounds, or other types
of objects and then evaluating whether their enrichment or deple-
tion of GO terms, pathways, or other sets is statistically significant.

3.4.2. Omics Viewers Pathway Tools Omics Viewers use the Cellular, Regulatory, and
Genome Overviews to illustrate the results of high-throughput
experiments in a global metabolic and genomic context.

Omics Viewers can show absolute data values (such as the
concentration of a metabolite or protein, or the absolute expression
level of a gene) and can be used to compare two sets of experimental
data by computing a ratio and mapping the ratios onto a color
spectrum. Multiple sets of experimental data can be superimposed
on the same overview diagram so that users can, for example,
combine gene expression and metabolomics in the same figure, or
view the results of two different microarray experiments together.
When combining multiple datasets, users should be careful to
assign color schemes that avoid ambiguity. For example, you
might want to use “warm colors” like yellow and red for one dataset
and “cool colors” like blue and purple for a different dataset, to
allow them to be seen side by side.

Superposition of multiple sets of experimental data on the
overviews can also be animated to show, for example, how gene
expression levels of enzymes change with time over the course of an
experiment. The animation can be exported toHTML so that it can
be published online.

After displaying Omics data on one of the overviews, navigat-
ing to any pathway display will show the Omics data superimposed
on the individual pathway. If a particular reaction step has multiple
isozymes, then rather than just choosing one value as is done on the
Cellular Overview, all values are shown.

Cellular Overview Omics

Viewer

The Cellular Overview diagram is a representation of all metabolic
pathways and reactions, signaling pathways, membrane proteins, and
transporters defined for the current organism. In this diagram, each
icon (e.g., circle, square, ellipse) represents a single metabolite. The
shape of the icon encodes the chemical class of the metabolite. Each
thick line in the overview diagram represents a single reaction. Nei-
ther the icons nor the lines are unique in the sense that a given

12 Data Mining in the MetaCyc Family of Pathway Databases 193



metabolite or a given reactionmay occur inmore than one position in
the diagram. If there are any thin gray reaction lines, these represent
reactions for which no enzymes have been identified in the PGDB—
in other words, pathway holes.

The Cellular Overview Omics Viewer can be used to illustrate
an even wider range of high-throughput experimental results in a
global metabolic pathway context (Fig. 2). Genes (in the case of a

Genes

Polypeptides

Enzymatic reactions

Reactions

Pathways

Genetic elements

Compounds and elements

RNAs

Protein complexes
Organisms

Transcription units

Terminators
Promoters

DNA binding sites

Catalyzes

in pathwayReaction list

ProductGene

Gene

Product

Components

Component of

Enzyme

Enzymatic reaction Reaction

Genome

Component ofComponents

Component of

Components

Component ofComponents

Left, right

Appears in left side of
Appears in right side of

Proteins

Regulation of 
Transcription

initiation

Regulates Associated binding site

Regulated entity

Regulated by

Regulator

Regulation of 
enzyme activityRegulated entity

Regulated by

Regulates Regulator

Catalyzes

Enzyme

Component of
Components

Fig. 2. Some of the major relationships between classes of objects in the Pathway Tools schema. For example, the arrow
labeled reaction-list going from Pathways to Reactions indicates that the Pathways class has a slot reaction-list, whose
values are members of the Reactions class.
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gene-expression experiment) andproteins (in the case of a proteomics
experiment) that are involved in metabolism are mapped to reaction
steps in the Cellular Overview, and the range of data values in a given
experimental dataset is mapped to a spectrum of colors. Reaction
steps in the Cellular Overview are colored according to the
corresponding data value. Similarly, for metabolomics experiments,
compound nodes are colored according to the data value for the
corresponding compound. This facility enables the user to see
instantly which pathways are active or inactive under some set of
experimental conditions.

The Cellular Omics Viewer can be used for:

Microarray gene-expression data: Reaction lines (and protein icons,
where present) are color coded according to the relative or
absolute expression level of the gene that codes for the enzyme
that catalyzes that reaction step. The Cellular Omics Viewer
allows a scientist to interpret the results of gene-expression
experiments in a pathway context.

Proteomics data: Reaction lines (and protein icons, where present)
are color coded according to the concentration of the enzyme
that catalyzes that reaction step.

Proteomics data: Reaction lines (and protein icons, where present)
are color coded according to the concentration of the enzyme
that catalyzes that reaction step.

Metabolomics data: Compound icons are color coded according to
the concentration of the compound.

Reaction flux data: Reaction lines are color coded according to
reaction flux values.

Other experimental data: Any experiment, high throughput or
otherwise, in which data values are assigned to genes, proteins,
reactions, or metabolites can be viewed in a pathway context
using the Omics Viewer.

Genome Overview Omics

Viewer

The Genome Overview Omics Viewer can map any dataset that
focuses on genes (such as gene-expression studies) onto the full
genome of the organism, using a spectrum of colors to display the
numerical values associated with each gene (Fig. 3).

The Genome Overview shows in one screen all the genes in an
organism’s genome as well as additional information about their
transcription units and products. The Genome Overview has
several key differences from the genome browser. Unlike the
genome browser, the overview is not to scale nor does it reflect
spacing between genes. Conversely, the Genome Overview shows
the full genome of an organism at once, even if that genome
contains multiple chromosomes or plasmids. Each individual repli-
con (chromosome, plasmid) is displayed on the page with an
appropriate identifying label.
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The Genome Overview uses iconography similar to that of the
genome browser, showing the direction of gene transcription with
a sloping line on the top (protein-coding gene) or on the bottom
(RNA-coding gene) of the gene. Lines underneath genes indicate
the extent of transcription units and are particularly useful for
identifying multiple promoters. Transcription units are also indi-
cated by shared gene color, although this coloring is replaced if you
choose to map expression data onto the overview using the
Genome Overview Omics Viewer function.

You can identify a gene in the overview by clicking on it to go to
its gene page or bymousing over it to display its gene name, product,
and distance from neighboring genes at the bottom of the screen.
The Genome Overview Omics Viewer can be used for:

Microarray gene-expression data: Genes are color coded according
to the relative or absolute expression level of the gene.

Other experimental data: Any experiment, high throughput or
otherwise, in which data values are assigned to genes, can be
viewed using the GenomeOmics Viewer. One such possible use
is the mapping of a set of ESTs that have been assigned to genes
onto a sequenced genome, thus offering a view of howmuch of,
and which parts of, the genome are covered by that EST set.

Regulatory Overview

Omics Viewer

The Regulatory Overview Omics Viewer, like the Genome Over-
view Omics Viewer, can display gene- or protein-oriented data. It
utilizes the Regulatory Overview to display experimental data in the
context of a PGDB’s regulatory network.

The Regulatory Overview enables the user to visually analyze
the regulatory relationships between genes for a specific organism.
These relationships are based on the regulatory data available in the
PGDB of the organism. Currently, the relationships are based on
transcriptional regulatory data (future versions may cover other

Fig. 3. The Cellular Omics Viewer displays many kinds of high-throughput data.
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types of regulation). The Regulatory Overview is represented as a
network with nodes and arrows (i.e., arcs). Each node represents a
gene of a specific organism. An arrow extends from gene A to gene
B if and only if A regulates B.

The Regulatory Overview initially shows the transcriptional
regulatory network for the currently selected organism, in one
window, without any arrow relationships shown. Otherwise, their
great number would clutter the overview. These arrows can
be selectively added by using highlighting commands. Each node
icon in the diagram, such as a plus sign or circle, depicts one gene.
Not all genes in the genome are shown in the diagram. The genes
shown are regulators (transcription factors and sigma factors) and
all other genes for which the PGDB encodes regulatory informa-
tion for the gene.

Two network layouts are available: three nested ellipses and top
to bottom rows. Three nested ellipses is the default layout when
displaying the entire overview for the first time. Top to bottom rows
is the default layout when redisplaying only the highlighted genes.

For the three nested ellipses layout, the genes are partitioned
into three groups, each group being laid out on a separate ellipse.
The two inner ellipses contain all the genes that regulate at least one
gene. The innermost ellipse contains the genes that regulate the
most. Typically, about 15% of the regulators are in the innermost
ellipse. The outermost ellipse contains genes that are regulated but
that do not regulate.

The outermost ellipse is further partitioned into groups of
genes such that all genes within one group are regulated by the
same set of genes.We call these groupsmulti-regulons. Some groups
are shown as a line or as a line leading to a triangle, perpendicular to
the outermost ellipse. Note that although all genes within a multi-
regulon respond to the same set of regulator genes, different genes
in the group may be controlled in different ways. For example,
consider a multi-regulon, comprising genes A and B, that are regu-
lated by genes X and Y. Genes X and Y might both activate the
transcription of A, but they might both inhibit transcription of B.

It is possible to display a regulatory subnetwork of a specific
organism by doing a series of highlighting operations and then
using the command Redisplay Highlighted Genes Only. This com-
mand will create a new, smaller layout of the regulatory network
containing only the genes that are highlighted. Genes that do not
regulate, or are not regulated by any highlighted genes, are not
included in the subnetwork. Further operations can be done on this
subnetwork as for the complete overview.

The Regulatory Overview Omics Viewer illustrates the results
of high-throughput experiments in the context of gene regulation.
Genes that are involved in regulation are mapped to their gene icon
in the Regulatory Overview diagram, and the range of data values
in a given experimental dataset is mapped to a spectrum of colors.
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This facility enables the user to see instantly which genes are active
or inactive under some set of experimental conditions.

The Regulatory Overview Omics Viewer is very similar to the
Cellular OverviewOmics Viewer. The data file can utilize the names
or DB identifiers of genes, proteins, reactions, EC numbers, or
compounds in the first column. The data file supports having a
mix of objects specified on separate lines (e.g., you can specify
metabolomics data in one set of lines in the data file and microarray
data in a different set of lines in the same file).

Omics Graphing When an experimental dataset includes multiple individual experi-
ments, such as in a time-series experiment, the Omics Viewer
animation offers one view of the data. However, it can also be
useful to visualize the data from all time points simultaneously.
Thus, for a given object (such as a gene or a metabolite) or set of
objects (such as all the genes or metabolites in a pathway), the

Fig. 5. A pathway display showing the three different styles of omics popups.

Fig. 4. The Genome Omics Viewer displays gene expression results.
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software can generate a popup overlay depicting the omics data for
all time points (Fig. 4). The data can be displayed either as a heat
map, a bar graph, or a plot. Any number of pop-ups can be dis-
played simultaneously, and the user can drag them with the mouse
to reposition them as desired.

Figure 2 illustrates some of the relationships between different
classes of objects. More detailed information about classes and their
slots can be found at (22–25) or in the Pathway Tools User’s Guide.
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Chapter 13

Gene Set/Pathway Enrichment Analysis

Jui-Hung Hung

Abstract

Thanks for the dramatic reduction of the costs of high-throughput techniques in modern biotechnology,
searching for differentially expressed genes is already a common procedure in identifying biomarkers or
signatures of phenotypic states such as diseases or compound treatments. However, in most of the cases,
especially in complex diseases, even given a list of biomarkers, the underlying biological mechanisms are still
obscure to us. In other words, rather than knowing what genes are involved, we are more interested in
discovering the common, collective roles of all these genes. Based on the assumption that genes involved in
the same biological processes, functions, or localizations present correlated behaviors in terms of expression
levels, signal intensities, allele occurrences, and so on, we can therefore apply statistical tests to find
perturbed pathways. Gene Set/Pathway enrichment analysis is one of such techniques; a step-by-step
instruction is described in this chapter.

Key words: Gene set enrichment analysis, Pathway enrichment analysis, GO term analysis, Overrep-
resentation analysis, Biomarker

1. Introduction

Gene Set/Pathway enrichment analysis can identify statistically
significant gene sets that represent functions, mechanisms, pro-
cesses, etc. from genes that are either differentially expressed (by
microarray probing or RNA-seq techniques) or having strong bind-
ing signals of a transcription factor (by ChIP techniques) or of any
collection that we believe to share properties. To demonstrate the
idea of a gene set enrichment analysis (GSEA), we begin with going
to Gene Expression Omnibus (GEO) (1) and accessing microarray
experiment GDS3716 (2) (see Fig. 1) as our example. In these
experiments, there are 42 human breast epithelium microarrays of
either normal or cancerous samples. In Fig. 1a, b, we see some of
the putative oncogenes, KPNA3, VPS4B, and others, exhibiting
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Fig. 1. (a) A snapshot of the heatmap of the expression profiles of GEO GDS3716. Heatmap encompassed by the dash line
rectangle on the left represents expression of normal samples, and the dash line rectangle on the right for cancer samples.
(b) Using line plot to present the same data. It is obvious that the expression levels of these genes are higher in cancer than
in normal samples. (c) Based on the Student T test, the difference of the mean expression levels between two groups (i.e.,
normal and cancer samples) should follow a T distribution, and a T statistic and corresponding p-value can be estimated.
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higher expression level in cancer samples than normal. Systemati-
cally examining each gene with a statistical test (Fig. 1c) can give
each gene a score that represents the level of differential expression.
Applying a stringent cutoff on the statistical scores leaves a list of
differentially expressed (DE) genes.

A list of genes of interested and a label-to-gene mapping file
(see Subheading 2.3) is the minimum requirement for performing a
Gene Set/Pathway enrichment analysis. The typical types of gene
lists are shown in Fig. 2. The simplest gene list (type 1) is just a list
of genes (Fig. 1a), which specifies only the identifications of genes
of interests, for example, differentially expressed genes with Stu-
dent’s T test p-values <0.01.

Type 2 gene list is a complete list of all possible candidates (e.g.,
all known genes), with a quantification field that indicates the
magnitude (e.g., the level of DE, or the Student’s T test statistic,
see Fig. 1b). Keeping a complete gene list is required for the gene-
shuffling background (GSB) simulation of the corresponding
enrichment analysis (see below).

Fig. 2. Typical gene lists. (a) Gene identities of interests only. Filtered list with only genes that have T test scores >3
marked in grey. (b) All genomic genes with the quantitative annotations without filtering. (c) Like b, however accompanied
by the raw data.
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Type 3 (Fig. 1c) is like Type 2, but requires the original
experimental raw data as the input as well (e.g., the expression
profile of each gene across all samples). Type 3 input is used for
phenotype-shuffling background (PSB) simulation for statistical
inference making (see below). In general, type 2 (GSB) and type
3 (PSB) simulation helps increase the sensitivity and specificity of
the enrichment analyses than that of type 1.

Respective to three types of gene lists, there are basically two
types of Gene Set/Pathway enrichment analysis that can be per-
formed: Overrepresentation analysis (ORA; for Type 1 input, see
Fig. 1a) and Quantitative Enrichment Analysis (QEA; for Type
2 and 3 input, see Fig. 1b, c).

1.1. Over Representation

Analysis

The concept of ORA (3) stems from the assumption that if, from
our gene list, genes annotated to a known pathway significantly
outnumber the expected amount of background genes (i.e., from a
collection of randomly genome-wide selected, equal-sized gene
lists) annotated to the same pathway, then it alludes that our gene
list is overrepresented with genes in the pathway. It is a typical
approach for finding enriched Gene Ontology (GO) terms (4) of
a gene list without additional information given, and sometimes
known as GO term enrichment analysis. A limitation of this
approach is at the qualitative input of the collection of genes,
which disregards magnitude information; therefore all genes in
the collection are assumed to contribute equally to the identifica-
tion of a correlated gene set.

1.2. Quantitative

Enrichment Analysis

Since ORA assumes that every gene is independent and equally
weighted, which is not concordant with biological facts, this
assumption is a target for QEA to improve. QEA hypothesizes
that genes with higher magnitude give higher contribution than
genes with lower magnitude, and weighs each gene according to its
magnitude; by doing so it increases the chances of finding gene sets
with fewer but higher weighted genes (see Note 1).

2. Materials

First, collect a list of genes that we want to perform Gene set/
Pathway enrichment on, for example: a list of genes that have a
specific transcription factor binding at their promoter region by
ChiP (5) experiment with or without the intensities of the binding
profiles; a list of genes that possess risk alleles of a heritable disease
by genome-wide association study (GWAS) (6) with or without the
relative risk levels; and a list of genes that differentially expressed
between normal and cancer samples with or without the level of
their correlations to the phenotypes.
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2.1. Collecting a List of

Genes with or Without

Quantitative Annotation

As mentioned previously, ORA needs only gene IDs as input (i.e.,
the type 1 gene list). In the field of biotechnology, this list is usually
based on a series of experiments and in practice it usually requires a
cutoff to retain only the most plausible ones. For example, setting a
cutoff of binding profiles of 1,000 reads/per 1,000 base pair to
retain only genes with higher ChIP signals than the signal magni-
tudes is no longer needed for the analysis. In contrast, in QEA, all
the genes that are being tested in the ChiP experiment should be
included and are free from any prerequisite cutoff and the quanti-
tative annotations of all genome-wide genes should be kept (i.e.,
the Type 2 or 3 gene lists). Although type 2 and type 3 are similar,
they are different in the shuffling simulation for generating the
statistics backgrounds, and require different quantitative annota-
tions (see Fig. 1b, c).

In addition, it is important to know that each gene is required
to have a universal identification. The ambiguity of gene naming
systems is unexpectedly high. It is recommended to prepare the
gene list using Entrez Gene ID (7) to assure correct annotations
that is going to be made in Subheading 2.3.

2.2. Preparing a Label-

to-Gene Mapping File

We need to have a catalogue that annotates each gene with labels
indicating gene functions, biological properties, or any attribute
of our interests. There are several widely used public databases
that provide annotations such as Gene Ontology (4), KEGG (8),
Biocarta (9), and Molecular Signatures Database (10). A category
annotation file should have each gene well documented and tabu-
lated (see Fig. 3). In ORA, it is also required to know how many
genes in the genome are assigned to each label for estimating
statistical inference (see Subheading 3.1).

2.3. Topology or

Interaction Information

(Optional)

If the annotations are from biological pathways, network modules,
or topological atlas that consist of interactions between genes, for
example, KEGG pathways, this topology/interaction information
(see Fig. 4) can be also fed into someQEA approaches that consider
correlation of neighboring genes to increase sensitivity and speci-
ficity of the enriched pathway discovery (see Subheading 3.3.1).

Fig. 3. Label-to-gene mapping file. KEGG pathway to Entrez Gene ID from Molecular Signatures Database 3.0.
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3. Methods

3.1. ORA Approach A typical ORA (3) starts from tallying the number of genes that are
annotated with the predefined gene sets, then uses the Fisher exact
tests to verify if the annotations are over represented among input
gene sets compared to whole genome (multiple test correction is

Fig. 4. Topological information of p53 signaling pathway (a) From KEGG. (b) From Biocarta.
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needed if more than one gene sets are tested, see below), and then
reports gene sets that pass a significance threshold.

Steps:

1. Collect the type 1 gene list and the label-to-gene mapping
table.

2. Select a label (e.g., a pathway) to start with.

3. Tally the following 4 numbers: m, N, k, and n, where m is the
total number of genes genome-widely annotated with this
label, N is the total number of genome-wide genes, k is the
number of genes annotated with this label in the gene list, and
n is the total number of genes in the list. Constructing a 2-by-
2 contingency table as in Fig. 5 might be helpful.

4. Perform a Fisher exact test with the 4 numbers gotten in step 3
as follows:

f ðk;N ;m;nÞ ¼
m
k

� �
N�m
n�k

� �

N
n

� � :

The f value is the probability that this random event could
happen under the hypergeometric distribution. To get the
p-value, sum up all the probability of more extreme cases, as
follows:

p ¼
Xn

l¼k

f ðl ;N ;m;nÞ:

5. Go to step 2 for another label of interest until all labels are
tested.

6. Correct the p-value for multiple testing according to the False
Discovery Rate (FDR, see Note 3) correction (11, 12) in the
following three steps: (1) All regions are ranked by their
p-values in the increasing order; (2) proceeding down the
rank, the q-value is computed as k � pk/M, where k is
the rank, pk is the p-value of the region at rank k, and M is the
total number of regions in the genome; (3) only labels with
q-values less than a prespecified FDR are retained (e.g., FDR
¼ 0.01, or 1% of predicted labels are false positives).

Fig. 5. A 2 � 2 contingency table.
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3.2. QEA Approach One of the most widely used QEA methods, GSEA (10), ranks
genes according to their differential expression and then uses a
modified Kolmogorov–Smirnov statistic (weighted K-S test, or in
short, WKS) as a basis for determining whether genes from a
prespecified set (e.g., KEGG pathways or GO terms) are overrep-
resented among the top or bottom of the list, correcting for false
discovery when multiple sets are tested.

There are assorted QEA approaches, and are considered to be a
more powerful type of enrichment analysis than ORA. However,
QEA requires more input and raises more concerns, and unlike
ORA, QEA is still a vivid, unsettled topic in bioinformatics, and
one of the major differences between QEA variants is how the
background distributions are generated. They can be grouped
into three types: Phenotype/sample Shuffling Background (PSB),
Gene name Shuffling Background (GSB), and analytical Back-
ground (AB). Each of them is applicable to specific experiment
setups, and its limitation, feasibility, and assumption are crucial
for interpretation of the result.

3.2.1. PSB This type of background is used for statistics-based gene list (see
Subheading 2.1) according to the comparison between phenotypes
of multiple samples such as microarray experiments, GWAS, and so
on. To make the steps easier to follow, we take microarray expres-
sion experiments as our example. The following steps are excerpted
from the PathWay Enrichment Analysis (PWEA) (13), which takes
advantage of topology information to increase sensitivity and spec-
ificity of the enriched pathway found. Another good thing of using
PWEA is that when topology information is missing, PWEA can
still work as GSEA, one of the most widely used QEA.

1. Prepare original materials (i.e., expression profiles) and the
label-to-gene mapping file. Organize the normalized expres-
sion levels into an expression matrix with the corresponding
phenotypes like in Fig. 2c.

2. Calculate the gene-level statistic (e.g., the Student’s T statistic)
for each gene based on the phenotypes (e.g., normal or cancer).
Note that the gene-level statistics can be any kind of test that is
suitable for the application and the raw data. If possible, gene-
level statistic can be further transformed (see Note 5).

3. Select a label (e.g., a pathway) to start with.

4. (Optional, can be skipped if topological information is missing)
For a topological pathway K, compute a topological impact
factor (TIF) score for each gene in PK. TIF is defined as the
average of the mutual influence, C, with all other reachable
genes in the pathway. Cij is used to evaluate the influence
between ith gene and the jth gene in PK, according to both
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the absolute value of the correlation of their expression patterns
and their topological distances. Cij is defined as

Cij ¼ e�f ij ;

where f ij ¼ dij cij
�� ���

, dij is the topological shortest distance
between gene i and gene j in the pathway calculated using the
Floyd–Warshall algorithm (with dii ¼ 0), and cij is the Pearson
correlation coefficient between gene i and gene j based on their
expression profiles over both normal and diseased tissues. The
TIF for a gene i is defined by the geometric mean of all
influence functions Cij in a given pathway that involve gene i
and satisfy Cij > a:

Tif i ¼ exp � 1

N

Xn

j¼1
j 6¼i

f ijYðf ij ln aÞ

0

BBBB@

1

CCCCA
;

where

Yðf ij þ ln aÞ ¼ 1 f ij � � ln a
0 f ij>� ln a

�

and

N ¼
Xn

j¼1
j 6¼i

Yðfij þ ln aÞ:

The significance threshold, a, is used to control the contribu-
tion that gene j makes to TIFi. Note that shorter distances
make an exponentially greater contribution to the mutual influ-
ence (and TIF) than do longer distances. The parameter a
(suggested to be 0.05) is used to control the sensitivity and
selectivity of the TIF.

5. Calculate the gene set statistics according to the WKS test (note
that there are many other substitutions than WKS test, such as
median,mean, chi-square test, and so on). First, rank all genes by
their absolute t score (denoted as r) by t-test with the weights of
TIF scores (if step 4 is skipped, take all TIF ¼ 0),which is r1 + TIF.
The t-test is performed on each gene to compare the expression
levels between normal and disease samples. The cumulative dis-
tribution functions (CDFs) of Pk and Not Pk at position i in the
rank can be written as

CDFPk
ðiÞ ¼ P

j�i
rj

1þTIF

Nk
, where Nk ¼ P

j rj
1þTIF and j is the

index of all genes belonging to Pk.
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CDFNotPk
ðiÞ ¼ P

j�i
1

NNotk
, whereNNot k is the number of genes

belonging to Not Pk.

6. Generate the background distribution of the gene set statistics
by shuffling the phenotypes. The statistical significance for
rejection of the null hypothesis is determined by comparing
the maximum deviation (MD) of two CDFs to other n times of
phenotype shuffles. Each randomly generated gene set for
which its maximum deviation is higher than the original data
will be counted and after n iterations, the p-value is computed.
n is set at a large number, usually above 1,000.

7. Go back to step 3 until all pathways are tested.

8. Multiple test correction as described in Subheading 3.3.1, step
6, in ORA (see Note 4).

3.2.2. GSB This type of background is like ORA and no original material is
required; however, instead of knowing the number of genes anno-
tated to each specific function label in ORA, GSB needs the entire
list of genes with the quantitative annotations (see Note 2). Please
note that if the data is applicable to both PSB and GSB, then PSB is
always the better choice (14).

1. Collect the genome-wide gene list with the quantitative anno-
tations (type 2 input) for testing and the label-to-gene
mapping file.

2. Select a label (e.g., a pathway) to start with.

3. Calculate the gene set statistics, such as the WKS test in Sub-
heading 3.3.1, step 5, or simply a mean test as follows:

M ¼ 1

jP j
XjP j

i2P ;i¼1

pi, where P is the set of genes with the label and pi

is the quantitative annotation of gene i, representing the
importance of gene i in the pathway.

4. Generate the background distribution of the gene set statistics
by shuffling the gene name. The statistical significance for
rejection of the null hypothesis is determined by comparing
the M to other n times of gene name shuffles. Each randomly
generated gene set for which its M is higher than the original
data will be counted and after n iterations, the p-value is
computed. n is set at a large number, usually above 1,000.

5. Go to step 2 for another label of interest until all labels are
tested.

6. Correct the p-value for multiple testing according to the FDR
approach. Specifically, FDR ¼ p�m

k , where m is the total num-
ber of labels tested and k is the rank of the label with p-value p.

7. Multiple test correction as described in Subheading 3.3.1, step
6, in ORA.
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3.2.3. AB This type of background requires no simulation for background but
goes with very strong assumptions, and is suggested to be used only
when PBS and GBS are not applicable. AB is only suggested in the
case where quantitative annotations are from T tests of microarray
experiments. For other case, users might need to check if the
genome-wide quantitative annotations fit the standard normal dis-
tribution for using the analytical background shown below (see
Note 6).

1. Collect the genome-wide gene list with the quantitative anno-
tations (Type 2 input) for testing and the label-to-gene
mapping file.

2. Select a label (e.g., a pathway) to start with.

3. Calculate the gene set statistics; only several types of statistics
can be applied to using analytical backgrounds for estimating
significance. One of them is the z test:

z ¼
XjP j

i2P ;i¼1

pi;

where pi can only be the untransformed T test statistic from
microarray analysis.

4. By assuming that mean statistic follows standard normal distri-
bution, we can directly get the p-value from the following
equation or the Z distribution table:

p -- value ¼ 1� 1
2 erf zffiffi

2
p

� 	
þ 1

h i
, where erf is the Gauss error

function.

Note that this is a very strong assumption and is sometimes
error-prone; please see Note 6 for more discussion.

5. Go to step 2 for another label of interest until all labels are
tested.

6. Multiple test correction as described in Subheading 3.3.1, step
6, in ORA.

4. Notes

1. The key difference between ORA and QEA is that GSB needs
weight of each gene and ORA assumes that all genes contribute
equally. However, both of them assume no correlation between
genes by declaring that every gene is independent to each
other, which increases the chance of reporting false positive.
Using ORA and QEA does not always give similar results. It is
getting more and more recognized that QEA with correct
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background simulation gives more reliable results than ORA.
However, if quantitative annotations are not available, ORA is
the only choice; otherwise, use QEA. We discuss both methods
below.

2. FDR correction is required when multiple tests are carried out.
An event can be rare if you sample only a few time; however,
once you sample frequent enough, it is almost guaranteed that
a rare case will appear. In other words, P-value for a single test
becomes more and more inaccurate when the number of test
cases increases.

3. In PSB, usually a gene-level statistic (Student’s T statistic) will
be a signed (�) number and the sign indicates overexpression
or depletion of a gene in one of the phenotypes. In many gene
set statistic, such as WKS test, the sign values can be cancelled
out and reduced the chance of finding enriched pathway having
half of genes up-regulated and half of genes down-regulated;
taking absolute value (16) of the gene-level statistic can
increase the sensitivity of finding such pathway.

4. Actually, when a shuffling simulation is generated, one can do
FDR correction directly from the collection of all gene set
statistic either from observation or simulation, which is taken
as the empirical distribution of gene set statistic (15). For exam-
ple, among all the tests, we want to estimate the FDR of a gene
set statistics X, as we know that there are totally 50 shuffled cases
having gene set statistics bigger than X from the real observa-
tion, and 10 other statistics bigger than X from the simulation,
and then the FDR of X is 100% � 10/50 ¼ 20%. However, it
is difficult to assure that the distribution of gene set statistics is
correctly generated for calculating FDR, since the distribution
ofX from different gene set can be different (determined by the
size of a gene set or other properties), and is not suitable for a
universal use of FDR estimation. Therefore, to simplify the
complexity of it, we used the Benjamini–Hochberg procedure
all throughout our steps in this chapter.

5. By shuffling phenotypes (PSB), rather than gene name (GSB),
the correlation between genes is preserved in the simulation;
therefore, PSB gives inference based on a more realistic back-
ground distribution and should be used whenever applicable.

6. AB is based on the observation that the Student T statistic
distributes as a standard normal distribution in many micro-
array experiments. By assuming this is true for our data, it
becomes very easy to get the significance as described in Sub-
heading 3.3.3, steps 3 and 4. Although convenient, however, it
has been suggested to use AB with cautions since it causes over-
significant p-values and unexpected false positive (17).
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Chapter 14

Construction of Functional Linkage Gene Networks
by Data Integration

Bolan Linghu, Eric A. Franzosa, and Yu Xia

Abstract

Networks of functional associations between genes have recently been successfully used for gene
function and disease-related research. A typical approach for constructing such functional linkage
gene networks (FLNs) is based on the integration of diverse high-throughput functional genomics datasets.
Data integration is a nontrivial task due to the heterogeneous nature of the different data sources and their
variable accuracy and completeness. The presence of correlations between data sources also adds another
layer of complexity to the integration process. In this chapter we discuss an approach for constructing a
human FLN from data integration and a subsequent application of the FLN to novel disease gene discovery.
Similar approaches can be applied to nonhuman species and other discovery tasks.

Key words: Gene networks, Functional association, Data integration, Data heterogeneity, Disease
gene prediction

1. Introduction

In the post-genomic era it remains a significant challenge to fully
understand the cellular functions of genes, including how the
dysfunction of one or more genes causes a disease. Genes or pro-
teins cooperate with each other in specific functional modules for
particular cellular tasks (1, 2). Such functional modules can be
represented as discrete biological processes or pathways. Genes or
proteins can have multiple types of functional association. For
instance, certain proteins physically interact with each other to
form a protein complex and function as a single unit (3); certain
transcription factors regulate a group of target genes in order to
coordinate particular biological processes, such as the cell cycle (4);
certain genes with similar sequences encode members of a protein
family such that different members can be used under different
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cellular conditions (5). On the other hand, when one or more
genes involved in a particular biological process becomes dysfunc-
tional, the normal status of that biological process might be per-
turbed, leading the organism to show abnormal physiological
phenotypes referred to as a disease (6). Therefore, for gene function
and disease-related research, it is very important to consider indi-
vidual genes as functionally related components within a coherent
biological system.

Recent network-based approaches have demonstrated great
success in representing functional relationships among genes for
the purpose of understanding gene function and human disease
(7–19). In these networks, nodes represent genes, and edges repre-
sent functional associations between linked genes. These networks
are referred to as functional linkage gene networks (FLNs). Typi-
cally, to construct such an FLN, multiple types of functional geno-
mics data are desired since different data sources reveal different
aspects of functional association between genes. For instance, high-
throughput yeast two-hybrid (Y2H) data can identify the physical
interactions between proteins, and microarray experiments can
identify the transcription-level correlations between genes (e.g.,
co-expression). Data integration is a nontrivial task due to the
heterogeneous nature of the different data sources and their vari-
able accuracy and completeness. The presence of correlations
between data sources also adds another layer of complexity to the
integration process. To address these challenges, we present in this
chapter an approach for constructing a human FLN from data
integration and an application of the FLN to novel disease gene
discovery. Similar approaches can be applied to nonhuman species
and other discovery tasks.

2. Methods

2.1. Collecting Diverse

Functional Genomics

Data

The first step in constructing the integrated FLN is to collect the
results of diverse functional genomics experiments. For instance,
Y2H and mass spectrometry experiments can reveal protein–
protein binary physical and co-complex interactions (20, 21);
microarray experiments can reveal co-expression relationships
between genes at the transcriptional level (22–25); using sequence
data, computational approaches such as the phylogenetic profile
method can predict gene pairs with similar function based on
their correlated occurrence patterns across a set of taxa (23).
Since each data source usually reveals a specific dimension of func-
tional association between genes, the challenge is to integrate
different data sources in order to evaluate the functional associa-
tions between genes in a comprehensive way.
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Collecting individual data sources can be a tedious task given
that different data sources are often found in diverse locations (see
Note 1). Additionally, due to the unique properties of each data
source, a source-specific scoring scheme is often required. Gener-
ally, such scores are either binary or continuous. For instance, for
scoring protein–protein interaction (PPI), a binary score of 1 or
0 can be used to denote the presence or absence of the interaction.
For microarray expression data, the Pearson correlation coefficient
between two genes’ expression levels across a set of experimental
conditions can serve as the score. The major data sources and their
scoring schemes are summarized in Note 1.

The diverse gene ID systems used in different data sources also
add complexity to the data integration process. A typical solution is
to use common IDs to refer to genes across all data sources. In
practice, different gene identifiers, transcript identifiers, and pro-
tein identifiers can be mapped onto their corresponding Entrez
gene IDs (see Note 2). This also unifies the levels of functional
associations inferred from different data sources to the gene level, as
opposed to the protein level or transcript level.

The currently available functional genomics data for human is
far from complete. To increase coverage, we can further integrate
functional genomics data from other model organisms based on the
assumption that gene–gene functional associations are conserved
across species (11). Specifically, we can retrieve the functionally
associated gene pairs in other model organisms—such as yeast,
worm, fly, mouse, and rat—and then map them to human through
gene orthology relationships (see Note 1).

Finally, once all individual data sources have been retrieved and
scored, the next step is to assemble them as a feature matrix in
preparation for data integration (Fig. 1). Each row of the feature
matrix represents a gene pair and each column of the matrix repre-
sents a particular data source or feature. The value in each cell of the
matrix represents the score measuring the functional association for
the corresponding gene pair in terms of the corresponding data
source. In order to include all the data sources in this matrix,
the gene pair rows are obtained by taking the union of the gene
pairs present in any individual data source. Since different data sources
have different coverage, there exist somegene pairs that have scores in
some data sources but not in others; i.e., there are missing values
in some cells of the feature matrix. To deal with these missing values,
a “missing” label can be assigned in place of the actual value.

2.2. Data Integration

Using the Naı̈ve Bayes

Approach

After the feature matrix encoding the diverse data sources has been
built, the next step is to perform data integration in order to build
an integrated FLN. In the FLN, the nodes represent genes, and
edges (links) represent the degree of functional association between
linked genes after summarizing the evidence provided by the indi-
vidual data sources. One major challenge at this step results from
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the heterogeneity of the diverse data sources. The different data
sources usually vary in their reliability and coverage. As a result, data
integration should not be a simple union or intersection of individ-
ual data sources. Instead, data integration must take into account
the differences among individual sources in terms of their false
positive and false negative error rates, as well as their predictive
power for functional association. A rigorous solution to this prob-
lem requires methods based on (supervised) machine learning, such
as Bayesian approaches, support vector machines (SVM), and logis-
tic regression(7, 26–28).

The machine learning-based approaches typically first define a
benchmark dataset (gold standard) in order to calibrate and unify
the different data sources. To construct such a benchmark dataset,
the notion of a true “functional association” between genes must
first be defined in an intuitive and consistent manner. One typical
way to define functional association is the sharing of Gene Ontol-
ogy (GO) biological process (29). Specifically, this benchmark
dataset is composed of both gold standard positives (GSP; gene
pairs sharing the same biological process terms in GO) and gold
standard negatives (GSN; gene pairs with both members annotated
in GO but not sharing any GO biological process terms; see Note
3). A training set is then constructed based on this benchmark
dataset, and each individual data source is calibrated according to

Fig. 1. Construction of the FLN by data integration. Diverse functional genomics data are collected and assembled into a
feature matrix with each data source representing a particular feature. In the matrix, each row denotes a gene pair and
each column denotes a feature. For each gene pair, each feature is scored individually based on its feature-specific scoring
scheme (see Note 1) and the scores are filled in the matrix. A naı̈ve Bayes classifier is then employed to sum up pieces of
evidence from individual sources into an integrated functional association score, the total LLR. The gene pairs are then
assembled into a weighted FLN with the genes as the nodes and the integrated LLR as the linkage weight for linked genes.
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its ability to predict the biological process-sharing relationship
between genes; in other words, each data source is weighted such
that stronger evidence (more predictive power) is given higher
weight, and weaker evidence (less predictive power) is given lower
weight. Data integration is then performed by summing the pieces
of evidence from different data sources using the calibrated
weights. Such an integration approach achieves optimal perfor-
mance in terms of coverage and accuracy because (i) all data sources
are taken into account and (ii) gene pairs supported by high-
confidence pieces of evidence are given higher weights.

Below we have selected the naı̈ve Bayes method to illustrate
machine learning-based data integration. There are two primary
reasons that we choose naı̈ve Bayes as the integration approach.
First, it allows for the direct integration of heterogeneous data
sources in an easily interpretable model. Second, it calculates the
probability that two genes have a functional association (share a GO
biological process) given their input features. Naı̈ve Bayes classifiers
have been previously used to successfully combine heterogeneous
data in human (7, 26, 30, 31). The input to the classifier is the
feature matrix assembled from various data sources (see Note 1).
For each gene pair, the naı̈ve Bayes method generates a total log
likelihood ratio (LLR) score denoting how much the current evi-
dence encoded in the feature matrix supports the prediction that
the gene pair participates in the same biological process. The asso-
ciated gene pairs are then assembled into a functional linkage
network with individual genes as nodes and the total LLR score as
the linkage weight (Fig. 1).

In the Bayesian framework, the posterior log odds that a gene
pair participates in the same biological process given the available
evidence can be expressed as the sum of two terms:

log
P ðI jf 1; :::; f n Þ
Pð� I jf 1; :::; f nÞ

¼ log
PðI Þ

Pð� I Þ þ log
P ðf 1 ; :::; f n j I Þ

P ðf 1 ; :::; f n j � I Þ : (1)

The first term is the prior log odds for functional association;
this term is the same for all gene pairs. The second term is the
integrated LLR, which measures how much the predicted func-
tional association for this gene pair is supported by the integrated
evidence:

LLR ðf 1; :::; f n Þ ¼ log
P ðf 1 ; :::; f n j I Þ

P ðf 1; :::; f n j � I Þ ; (2)

where I is a binary variable representing the existence of a functional
association (GSP pairs), ~I represents the absence of a functional
association (GSN pairs), and f1 through fn are the genomic features.

In naı̈ve Bayes, we assume that features are conditionally inde-
pendent. As a result, LLR(f1,. . ., fn) can be rewritten as:
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LLR ð f 1 ; :::; f n Þ ¼ LLRð f 1Þ þ : : :þ LLRð f nÞ; (3)

where LLR(fi) represents the individual LLR score for feature i:

LLR ð f i Þ ¼ log
Pð f ijI Þ

Pð f ij � I Þ : (4)

The integrated LLR score (left-hand side of Eq. 3) represents
the functional association strength of a gene pair after summing up
the evidence from individual data sources (individual LLR scores in
Eq. 4). The LLR scores for the individual data sources are calcu-
lated by calibrating the corresponding raw scores represented in the
input feature matrix against the common training dataset defined
above. Specifically, all continuous features are converted into cate-
gorical features by binning the values into nonoverlapping inter-
vals, with LLR scores calculated for each individual bin:

LLRð f i 2 binij Þ ¼ log
Pð f i 2 binij jI Þ

Pð f i 2 binij j � I Þ ; (5)

where I and ~I denote belonging to the GSP set and the GSN set,
respectively; fi denotes the value of feature i; and binij denotes the
j-th bin for feature i. Gene pairs with missing values are put into a
separate bin for LLR calculation.

As a result of this procedure, the heterogeneous measurements
from different data sources are normalized into the individual LLR
scores in Eq. 4, which can then be combined to form the total LLR
score representing the functional association strength.

Another major challenge for data integration comes from the
correlations between data sources. This is especially important for
the naı̈ve Bayes method since naı̈ve Bayes assumes conditional
independence among features, although in practice the naı̈ve
Bayes classifier can still be applied even when this assumption is
not strictly satisfied (26, 30, 31). To reduce instances in which this
assumption is violated, we can combine related datasets or features
into single features before final integration. Specifically, for corre-
lated data sources, an individual LLR is calculated independently
for each individual source, and then the maximum LLR among
these individual LLRs is used as the final LLR for each gene pair
(27, 30).

2.3. FLN Quality

Assessment

After naı̈ve Bayes integration, each gene pair is assigned an LLR
score for sharing a GO biological process. The associated gene pairs
are then assembled into a functional linkage network with individ-
ual genes as nodes and the LLR score as the linkage weight (Fig. 1).
The quality of the FLN can be evaluated by comparing the perfor-
mance of the integrated data versus the performance of individual
data sources. Typically, performance is measured by plotting link-
age precision versus linkage sensitivity at various linkage weight
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cutoffs using the gold standard dataset defined above. Given a
prespecified linkage weight cutoff, “linkage precision” is defined
as the fraction of the linked gold standard gene pairs that belong to
the GSP set, and “linkage sensitivity” is defined as the fraction of
the GSP pairs that are linked. Generally a K-fold cross-validation
approach is used for the assessment. Specifically, the gold standard
dataset is randomly partitioned into K equal segments; K � 1
segments serve as the training set and the remaining segment serves
as the test set. This procedure is repeated K times such that each
segment serves as the test set exactly once. Next, all K test sets are
combined and the performance is assessed by plotting linkage
precision versus linkage sensitivity. In a successful data integration
procedure, the integrated FLN should have higher linkage preci-
sion at the same linkage sensitivity level compared with each indi-
vidual data source. Finally the whole gold standard dataset is used as
a training set to generate one final FLN, which is then used in
downstream analysis.

2.4. Use FLN for Novel

Disease Gene Discovery

One major FLN-based application is novel disease gene discovery.
The key assumption behind the utility of an FLN in disease
research, which is supported by diverse empirical evidence, is that
genes underlying the same or related diseases tend to be function-
ally related. Because an FLN represents functional associations
among genes, genes associated with the same or related diseases
are expected to be located close to each other (“in the same neigh-
borhood”) of the network (7, 9, 10, 32, 33). Based on this assump-
tion, FLNs have been successfully used to predict new disease genes
in recent studies. Given a particular disease of interest, the FLN-
based approaches typically start with the identification of known
disease genes in the network as “seeds,” followed by exploration of
the network neighborhoods of these seeds, and finally prioritization
of new candidate disease genes based on how closely connected
they are to the seeds (Fig. 2).

The seed disease genes can be obtained from the OMIM
database, a compendium of human disease genes and phenotypes

Fig. 2. Prediction of novel disease genes using the FLN. To predict novel genes associated with a particular disease, we
first label known genes associated with the disease as seeds, and then rank order the neighboring genes based on their
connectivity to seed genes as measured by the neighborhood weighting rule (Eq. 6).
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(34) (see Note 4). To obtain reliable test statistics, diseases with at
least five seed genes are included in the analysis. Once the seed
genes are identified, an appropriate decision rule can then be
employed to rank candidate genes based on the strength of their
association with the seed genes.

The choice of the optimal decision rule is determined by the
nature of the FLN. In our case, the FLN is weighted and the linkage
weight is derived from extensive data integration. As a result,
the FLN is very dense: for example, in our previous work, we
constructed an FLN containing over 21,000 genes and over
22,000,000 edges, with each gene having 2,000 neighbors on
average (7). Since links in this FLN are weighted, the high density
of the network allows one to directly measure the strength of the
functional associations between one gene and thousands of other
genes. Taking these features into account, a simple yet effective
“neighborhood weighting rule” can be used to rank candidate
genes for a particular disease by focusing on the immediate neigh-
borhood of the seed genes (7). In particular, candidate genes are
rank-ordered by the sum of the weights of their functional links to
the seed genes in the network. Given a particular disease and its
seed gene set, we quantify the association of each candidate gene i
with the disease using the following disease association score, Si:

Si ¼
X

j2 seeds

wij ; (6)

where wij is the linkage weight connecting gene i and seed
j (7, 11, 13). This score is 0 for genes that are not connected to
any seed. This approach successfully ranked ~12,000 genes for each
disease in our previous work (7). A general justification for the
neighborhood weighting rule is given in Note 5.

2.5. FLN Visualization FLNs can be conveniently visualized by software tools designed for
exploring and analyzing biological networks. One such software
tool is VisANT, a Web-based open-source platform for the visuali-
zation and analysis of different types of biomolecular networks
(35–37). Users can upload and explore their own FLNs or the
FLNs stored in the VisANT database, which includes integrated
FLNs and FLNs derived from single types of data sources. VisANT
enables users to interactively query genes of interest in an FLN,
explore their network neighborhoods, and perform topological
analyses or calculate network degree for selected nodes. Users can
also filter an FLN with different linkage weight thresholds and
visualize the weights by edge color or edge thickness. As described
earlier, genes work in functional groups for specific cellular tasks,
and genes underlying the same diseases tend to (i) be functionally
associated and (ii) belong to the same functional groups. VisANT
introduces meta-nodes—a special type of node that contains
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associated sub-nodes—to represent these functional groups, which
include protein complexes, molecular pathways, and sets of genes
associated with a given disease. As a result, the hierarchical structure
of the FLN can be visualized: users see not only the functional
associations between individual genes in a low-level map but also
functional modules composed of gene groups in a high-level map.
The disease gene prediction function is also available in VisANT,
allowing the user to specify the seed disease genes in the FLN and
to rank novel candidate disease genes in the neighborhood of the
seed genes using the neighborhood weighting rule.

3. Notes

1. The major data sources for human FLN construction and their
scoring schemes are listed as below.

1.1. Curated PPIs. Curated human PPIs can be downloaded
from HPRD, BIND, BioGRID, IntAct, MIPS, DIP,
and MINT (38–44). To differentiate these data from
high-throughput PPIs, large-scale Y2H data and mass
spectrometry data are excluded. A binary score is used
to denote the presence or absence of an interaction. To
minimize redundancy, these seven datasets are com-
bined as one feature as described in Subheading 2.2.

1.2. High-throughput Y2H. Y2H data can be downloaded
from Rual et al.’s datasets (21). A binary score is also
used to denote the presence or absence of an interaction.

1.3. Large-scale mass spectrometry. The mass spectrometry
data can be downloaded from Ewing et al. (20).
A binary score is used to denote whether two proteins
occur in the same protein complex. The high-
throughput Y2H experiment and the large-scale mass
spectrometry are complementary techniques revealing
different aspects of PPI, and so they are treated as two
separate features.

1.4. PPI inferred from domain–domain interaction. Physical
PPIs involve interactions between protein domains.
Therefore, new PPIs can be predicted by identifying
pairs of protein domains enriched in known interacting
protein pairs (30, 31). Two studies have identified
enriched domain pairs (with confidence scores) by
mining the HPRD database (30, 31). The domain pairs
from both studies can be downloaded, and protein pairs
containing these domain pairs can be retrieved using the
InterPro database (45). Each retrieved protein pair is
given the same confidence score as the corresponding
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domain pair. Since both studies identified the interacting
domain pairs by mining the HPRD database, the two
resulting datasets are combined as one feature to mini-
mize redundancy, as described in Subheading 2.2. Pro-
tein pairs already included in the curated PPI dataset are
excluded here as their interactions are known.

1.5. Text mining. Text mining is also an important source
for retrieving functionally associated gene pairs. It
involves searching for co-occurrence of gene names in
PubMed abstracts (23). Text mining data can be down-
loaded from the String database with each gene pair
associated with a corresponding text mining score (23).

1.6. Correlated gene expression. Correlated gene expression
can be inferred based on experiments from the GEO
database (http://www.ncbi.nlm.nih.gov/geo/) (46).
The Pearson correlation coefficient for each data set
can be used as a measure of functional association. To
reduce the effects of correlations between datasets,
multiple datasets can be combined as one feature, as
described in Subheading 2.2.

1.7. Phylogenetic profile. The presence and absence of a
gene across a set of genomes can be represented by a
binary string called a phylogenetic profile (23, 47, 48).
Genes with sufficiently similar profiles tend to be func-
tionally related (23, 47, 48). Gene pairs with correlated
phylogenetic profiles and their associated correlation
scores can be downloaded from the String database
(23, 47, 48).

1.8. Gene neighbor. If two genes are found to be chromo-
somal neighbors in several different genomes, a functional
linkage can be inferred between the proteins they encode
(23, 47, 48). Gene pairs identified by the gene neighbor
method and their associated interaction scores can be
downloaded from the String database (23, 47, 48).

1.9. Gene fusion. Some protein pairs with related functions
in one species are observed as a single fused protein in
other species (23, 47, 48). Gene pairs involved in such
fusion events and the associated confidence scores can
be downloaded from the String database (23, 47, 48).

1.10. Functional associations inferred from model organisms
(yeast, worm, fly, and mouse/rat). It has been sug-
gested that gene–gene functional associations tend to
be conserved across species (11). Such conserved func-
tional associations are defined as “associalogs” (11).
We can retrieve functionally associated gene pairs from
yeast (49), worm (11), fly, mouse, and rat (23) and then
map them onto their human associalogs using the
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INPARANOID database (50). For each model organ-
ism, the integrated functional association score from
species-specific data sources is already available (11, 23,
49), and can serve as the functional association score for
the corresponding human associalogs. Associalogs from
each model organism encode one single feature. We
previously evaluated the correlation of associalogs
mapped from pairs of model organisms. A strong corre-
lation between mouse and rat was found, and so the
associalogs from mouse and rat can be combined as one
feature, as described in Subheading 2.2.

1.11. Sharing molecular function terms in Gene Ontology.
Two genes sharing the same GO molecular function
term (51) are more likely to belong to the same
biological process (be functionally linked) (8). Further-
more, genes sharing more specific molecular function
terms should be more likely to belong to the same
biological process than genes sharing more general
terms. We can download human molecular function
annotations from Entrez Gene (ftp://ftp.ncbi.nih.
gov/gene/DATA/gene2go.gz). The functional associ-
ation between two genes with one or more shared GO
terms is measured as the number of genes sharing the
most specific of those GO terms (i.e., the GO term
shared by the smallest number of genes) (30). A lower
score corresponds to a higher degree of functional
association.

1.12. Sharing cellular component GO terms. Cellular locali-
zation information can be described by GO cellular
component terms (51). Genes sharing cellular localiza-
tions tend to be functionally associated. We can down-
load human cellular component annotations from
Entrez Gene (ftp://ftp.ncbi.nih.gov/gene/DATA/
gene2go.gz). The scoring scheme is the same as that
described in “Sharing molecular-function GO terms.”

1.13. Protein domain sharing. Proteins containing the same
protein domains tend to have similar functions (52,
53). To retrieve protein domain information, we use
InterPro database, which is a database of protein
families, domains, repeats, and sites (45). We refer to
these protein families, domains, repeats, and sites as
InterPro terms. As is the case for GO terms, there
exist hierarchical organizations among these InterPro
terms, and hence we can use the same scoring scheme
described in “Sharing molecular-function GO terms.”
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2. Different gene, transcript, or protein identifiers from individual
data sources are all mapped to Entrez gene IDs using the cross-
reference files from Entrez Gene (ftp://ftp.ncbi.nih.gov/
gene/DATA/gene_info.gz), the International Protein Index
(IPI) database (ftp://ftp.ebi.ac.uk/pub/databases/IPI/cur-
rent/ipi.genes.HUMAN.xrefs.gz), or Biomart (http://
uswest.ensembl.org/biomart/index.html). The reason we
provide three cross-reference sources is that they are not iden-
tical to each other and using the union of the three can increase
coverage.

3. We define gene pairs sharing the same Gene Ontology (GO)
biological process term as being functionally associated. Since
GO terms are organized hierarchically according to different
levels of specificity, we must choose a specificity level that con-
stitutes the appropriate degree of functional association. We
count the total number of genes annotated with a GO term as
a measure of that term’s specificity; low counts correspond to
high-specificity GO terms and high counts correspond to low-
specificity terms (54–56). To select GO terms with the appro-
priate level of specificity, we use the definition of an “informa-
tive GO term” given by Zhou et al. (54, 56). Specifically,
informative GO terms need to satisfy two criteria: (i) at least
175 genes are annotated with the term, and (ii) none of its
descendant terms are used to annotate over 175 genes. The
files for mapping genes to GO terms can be downloaded from
Entrez Gene (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.
gz), andwe only consider annotations which are not predictions
themselves, i.e., with non-IEA evidence codes (57). We define
gene pairs sharing one or more informative biological process
GO terms as the gold standard positive (GSP) set. Our gold
standard negative (GSN) set is defined as the collection of
gene pairs that are annotated with GO informative terms but
that do not share common GO biological process terms except
for the root term.

4. The seed disease genes are obtained from the Morbid Map
(ftp://ftp.ncbi.nih.gov/repository/OMIM/morbidmap) in
the Online Mendelian Inheritance in Man (OMIM) database,
a compendium of human disease genes and phenotypes (34).
To obtain highly reliable seeds, we select only entries with the
“(3)” tag, which indicates “mapping of a wild-type gene com-
bined with demonstration of a mutation in that gene in associ-
ation with the disorder” (6, 34). Next, the subtypes of a single
disease are merged into one unique disorder entry according to
the merging files provided by Gol et al. (Supporting Informa-
tion Table 1 in Goh et al.’s paper (6)). For example, “Alport
syndrome, 301050 (3)” and “Alport syndrome, autosomal
recessive, 203780 (3)” are merged as “Alport syndrome.”
Each disease is assigned a unique disease ID.
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5. Here we provide a general justification for the neighborhood
weighting rule for FLN-based ranking of disease candidate
genes. Consider the following binary classification problem:
for each human gene we have n feature variables x ¼
ðx1; x2; :::; xnÞ representing various properties of the gene and
a class variable y (1 or�1) representing whether or not the gene
is implicated in a particular disease. In addition, we have a
training set T ¼ ðxðiÞ; yðiÞÞ; i ¼ 1; :::;m

� �
consisting of m

genes known to be either involved or not involved in the
disease. The goal is to build a linear classifier which integrates
gene features to accurately predict if a gene is implicated in the
disease:

ŷðxÞ ¼ b þ wT x (7)

Although we focus on linear classifiers here, this argument
is very general and can be applied to nonlinear classifiers as well.
The performance of the classifier on the i-th gene in the train-
ing set can be characterized by the margin ti:

t i ¼ yðiÞŷðiÞ ¼ yðiÞðb þ wT xðiÞÞ (8)

The margin ti is positive when the predicted class sgn(ŷ(i))
agrees with the actual class y(i), and negative otherwise. In
other words, a positive margin means a correct prediction,
and a negative margin means an incorrect prediction.

Our task is to train the classifier, i.e., tune the weight vector
w and intercept b so as to minimize the objective function (J),
which includes a loss term measuring the total prediction error
on the training set T, plus a second regularization term which
penalizes complex models:

min
w;b

J ðw; bÞ ¼ min
w;b

Xm

i¼1

lðt iÞ þ l wk k2: (9)

Here, l(t) is a predefined loss function which converts the
margin t into a loss for each gene in the training set. The first
term on the right-hand side of Eq. 9 is the total loss over the
entire training set. The second term is a commonly used L2
regularization term that penalizes large weights. l is a nonneg-
ative constant that quantifies the relative importance of the
regularization and loss terms.

The weight vector w can be decomposed into two orthog-
onal component vectors in the following way:

w ¼ w1 þ w2; w1 ¼
Xm

j¼1

bj x
ðjÞ; wT

2 x
ðjÞ ¼ 0; wT

2 w1 ¼ 0: (10)

14 Construction of Functional Linkage Gene Networks by Data Integration 227



The loss term in Eq. 9 now becomes:

Xm

i¼1

lðt iÞ ¼
Xm

i¼1

lðyðiÞðb þ wT xðiÞÞÞ ¼
Xm

i¼1

lðyðiÞðb þ wT
1 x

ðiÞÞÞ: (11)

The L2 regularization term in Eq. 9 becomes:

wk k2 ¼ w1k k2 þ w2k k2 � w1k k2: (12)

So the following inequality is always true:

Xm

i¼1

lðyðiÞðb þ wT
1 x

ðiÞÞÞ þ l w1k k2

�
Xm

i¼1

lðyðiÞðb þ wT xðiÞÞÞ þ l wk k2: (13)

It follows that the optimal solution to Eq. 9 must have the
following form:

w ¼ w1 ¼
Xm

j¼1

bj x
ðjÞ ¼

Xm

j¼1

aj yðjÞxðjÞ: (14)

Equation 9 is then equivalent to:

min
a;b

J ¼ min
a;b

Xm

i¼1

lðbyðiÞ þ
Xm

j¼1

aj yðiÞyðjÞKðxðiÞ; xðjÞÞÞ

þ l
Xm

i¼1

Xm

j¼1

aiaj yðiÞyðjÞKðxðiÞ; xðjÞÞ; (15)

where K(x, y) ¼ xTy (called the kernel) measures the
“intrinsic

similarity” between two genes x and y in terms of the dot
product of their corresponding feature vectors.

To find the optimal solution to Eq. 15, we set partial
derivatives of the objective function to be zero:

@J

@b
¼

Xm

i¼1

l 0ðt iÞyðiÞ ¼ 0;

@J

@aj
¼

Xm

i¼1

ðl 0ðt iÞ þ 2laiÞyðiÞyðjÞK ðxðiÞ; xðjÞÞ ¼ 0: (16)

Solving Eq. 16 leads to:

ai ¼ �l 0ðt iÞ=ð2lÞ
Xm

i¼1

aiyðiÞ ¼ 0
(17)

The loss function l(t) is generally a monotonically decreasing
function of the margin t, i.e., the better the prediction, the
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smaller the loss. Thus: ai ¼ �l 0ðt iÞ=ð2lÞ � 0. As a result, a
parameters are always nonnegative.
Equation 7 can now be rewritten as:

ŷðxÞ ¼ b þ wT x ¼ b þ
Xm

j¼1

aj yðjÞxðjÞ
T

x ¼ b þ
Xm

j¼1

aj yðjÞKðxðjÞ; xÞ: (18)

It is clear from Eq. 18 that the overall prediction for the new
gene x is based on the “weighted majority vote” from all genes
in the training set. The contribution of each gene x(j) in the
training set to the overall prediction of the new gene x depends
on two factors: K(x(j), x), the “intrinsic similarity” between
genes x(j) and x; and aj, the “informativeness” of gene x(j) in
the prediction task at hand. If the total weighted votes from the
genes in the positive training set outweigh the total weighted
votes from the genes in the negative training set, then the
overall prediction will be positive; otherwise it will be negative.
Our neighborhood weighting rule (Eq. 6) can be viewed as an
approximate extension of this weighted majority vote rule for
the complex task of integrated FLN-based disease gene priori-
tization.
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Chapter 15

Genome-Wide Association Studies

Tun-Hsiang Yang, Mark Kon, and Charles DeLisi

Abstract

A host of data on genetic variation from the Human Genome and International HapMap projects, and
advances in high-throughput genotyping technologies, have made genome-wide association (GWA) studies
technically feasible. GWA studies help in the discovery and quantification of the genetic components of
disease risks, many of which have not been unveiled before and have opened a new avenue to understanding
disease, treatment, and prevention.
This chapter presents an overview of GWA, an important tool for discovering regions of the genome that

harbor common genetic variants to confer susceptibility for various diseases or health outcomes in the post-
Human Genome Project era. A tutorial on how to conduct a GWA study and some practical challenges
specifically related to the GWA design is presented, followed by a detailed GWA case study involving the
identification of loci associated with glioma as an example and an illustration of current technologies.

Key words: Genome-wide association studies, Genetic variation markers, Genotyping quality control,
Linkage disequilibrium

1. Introduction

A significant scientific breakthrough in genomic research has been
made in the first decade of the new millennium. The draft comple-
tion of the Human Genome Project in 2001 is a major milestone in
human genomics and biomedical sciences (1, 2). It mapped the
three billion nucleotide bases that make up the human genetic
code, providing the foundation for studying genetic variations in
the human genome, and showed that theDNA sequences of any two
people are about 99.9% identical. The International HapMap Proj-
ect (3) (http://www.hapmap.org/) which was completed in 2005 is
another scientific landmark in the genomic research. It provides a
catalog of common genetic variants, predominantly single nucleo-
tide polymorphisms (SNPs), occurring in humans within and across
populations in the world, and identifies chromosomal regions where
genetic variants are shared. It further deepens on our understanding
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of the genetic architecture of the human genome. The linkage
disequilibrium (LD) map of the human genome provided by the
HapMap project creates a valuable and useful genome-wide data-
base of patterns of human genetic variation and also promotes the
breakthrough in large-scale and high-throughput genotyping tech-
nological developments.

During the past 5 years, the accumulating knowledge about the
correlation structure and frequency of common variants in the
human genome combined with rapid advances in array technology
have made GWA studies technically feasible. The number of pub-
lished GWA studies at p � 5 � 10�8 has doubled within a year
from June 2009 to June 2010 (N ¼ 439 through 6/2009, and
N ¼ 904 for 165 traits through 6/2010 (NHGRI GWA Catalog,
www.genome.gov/GWAStudies). In contrast to hypothesis-driven
candidate-gene association studies, which largely rely on the under-
standing of known and suspected pathology in a given trait, GWA
studies systematically investigate genetic variation across the
genome without the constraints of a priori hypotheses and allow
for the possibility of discovering associations in previously unsus-
pected pathways or in chromosomal regions of as yet undetermined
function. This approach provides a comprehensive and unbiased
examination of the common genetic basis of various complex traits.
GWA studies have expanded our understanding of the complexity
and diversity of genetic variations in the human genome, and have
led to pivotal discoveries of new genetic loci for a host of common
human disorders, including cancer, type 2 diabetes mellitus, and
autoimmune diseases (4).

2. How Are Genome-
Wide Association
Studies Conducted?

As in other genetic association studies (such as candidate gene
studies), genome-wide association compares the allele/genotype
frequencies between groups that in principle differ in a single
well-defined phenotype; e.g., with and without a particular disease,
looking for markers that are statistically significant correlates of
phenotype.

2.1. Association

Study Designs

The principal goal is to minimize systematic bias and maximize
power. Two fundamentally different designs are used: population-
based designs that collect unrelated individuals (such as case–control
or cohort studies) and family-based designs that use families (such as
trio or pedigree studies), but case–control studies are most typically
used in GWA studies. For common diseases, population-based stud-
ies generally have higher statistical power; in addition, in late-onset
diseases/disorders such as Alzheimer’s disease, parents and siblings
may not be available. On the other hand, although family-based
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design is generally more time- and resource-consuming, it is robust
against population stratification and population admixture, and
significant findings always imply both linkage and association.

2.2. DNA Sample

Collection and

Genotyping Technology

After appropriate samples are recruited, DNA is drawn from each
participant, usually by either blood draw or buccal swab. Each
person’s complete set of DNA is then purified from the blood or
buccal cells, placed on tiny chips and scanned on automated labo-
ratory machines. The genotyping machines quickly survey each
participant’s genome for a dense set of strategically selected markers
of genetic variation, including either SNPs or copy number
polymorphisms (CNPs), or both.

The popular commercially available genotyping arrays for GWA
studies include Illumina arrays (such as Human Hap550, Human
Hap650, and InfiniumHDBeadChips) and Affymetrix arrays (such
as Genome-wide Human SNP Array 5.0, SNP Array 6.0, and
Human Mapping 500 K Array Set). In terms of the design in
general, Affymetrix chips use the “random” design, in which the
SNPs on the platform are randomly selected from the genome,
without specific reference to the LD patterns. In contrast, Illumina
chips use the “tagging” design, where SNPs are explicitly chosen to
serve as surrogates for common variants in the HapMap data.
The current genotyping platforms can accommodate up to one
million or even more markers per chip per person.

2.3. Genotyping

Quality Control

A battery of genotyping quality control procedures should be
performed and checked after genotyping is completed, including
marker completion rate, marker concordance, deviations from
Hardy-Weinberg Equilibrium (HWE), sample completion rate,
minor allele frequency (MAF), heterozygosity, gender concor-
dance, duplicate sample detection, relatedness check, self-reported
ethnicity concordance, and Mendelian consistency for markers and
samples (if it is family-based study). In the population-based
design, unexpected population structure can cause potential bias
due to population stratification when there is confounding due to
correlated differences in both allele frequencies and disease risks
across unobserved subpopulations. GWA studies therefore typically
adjust for multiple random, unlinked markers as a surrogate for
genetic variation across subpopulation using EIGENSTRAT soft-
ware (5). A principal component-based analysis detects and correct
for population stratification and false positive results from ethnic
mixtures. (http://genepath.med.harvard.edu/~reich/EIGENSTR
AT.htm). In addition, linkage agglomerative clustering based on
pairwise identity-by-state (IBS) distance followed by multidimen-
sional scaling (MDS) implemented in the PLINK toolset (6)
(http://pngu.mgh.harvard.edu/~purcell/plink/) can be used to
identify clusters of samples with more homogeneous genetic back-
grounds for subsequent association tests.
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A Quantile–Quantile (QQ) plot that compares observed order
statistics of p-values against the expected order statistics of p-values
under the null hypothesis is also useful for visualizing and to
summarizing both systematic bias and evidence for association.
Early departure from the expected p-values usually suggests system-
atic bias, whereas late departures suggest true association signals.

2.4. Statistical Analysis Because the purpose of the GWA studies is to analyze associations
between thousands and millions of genetic markers at the genome-
wide level and a disease or trait of interest without an a priori
hypothesis, the initial association analysis examines marker-disease
associations on a marker-by-marker basis from those who pass the
quality control filtering. Depending on the assumption of genetic
mode of inheritance, researchers may choose either allelic test,
dominant, recessive, or codominant genotypic test, or trend test.
Association analysis can be performed by several existing program-
ming packages, such as PLINK (6) and EIGENSTRAT (5).
PLINK is a free, open-source specifically developed for GWA stud-
ies that allows large-scale analyses in a computationally efficient
manner for both population-based and family-based designs.
EIGENSTRAT uses principal component analysis to model ances-
try differences between cases and controls. The resulting correc-
tion minimizes spurious associations while maximizing power to
detect true associations.

Because a large number of tests are conducted in GWA studies,
stringent significance thresholds are essential to rule out false posi-
tive results. Several hundred thousand tests require a threshold of
p ¼ 10�7 to control experiment-wide type I error for all common
variants and p ¼ 5 � 10�8 for all variants (7–9). A comprehensive
analysis beyond single-marker analyses in the GWA setting is not yet
feasible because it can introduce a large number of additional tests.
For example, a combinatorial scan for all two-way interaction on
one million SNPs is barely feasible. A restriction to only a small
subset of the data based on a specific rationale or hypothesis is more
desirable, unless solutions on high-dimension data reduction and
optimization are developed. SNPs or markers that are identified
from the GWAS results can be further assigned to pathway analysis
or enrichment analysis which could potentially be very useful for
prioritizing genes and pathways within a biological context, which
can be done with computational tools and pathway databases (10).

2.5. Validation

and Replication

If certain genetic markers are found to be significantly more fre-
quent or less frequent in cases than in controls, the variations are
said to be “associated” with the disease. The associated genetic
variations can serve as powerful pointers to the region of the
human genome where the causal locus resides. However, the sig-
nificantly associated variants themselves may not always directly
cause the disease. In fact, in most cases they may just “tag along”
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with the actual causal variants due to the LD correlation structure
in the human genome. Deeper analysis of the associated regions
by sequencing is the best way to identify (a set of possible)
causal variant(s), and filtering the list of highly associated variants
using biologic annotation, including sequence context or known
function (eQTLs), or conducting further in vitro experiments for
functionality.

In order to represent credible genotype–phenotype associa-
tions observed in a GWA study, replication of the results is especially
critical. That means finding the same marker or a marker in perfect
or high LD with the prior marker (11).

With the increasing number consortia of multiple GWA stud-
ies, meta-analysis of multiple genome-wide studies conducted by
different investigative groups, in different populations, using dif-
ferent genotyping technologies and different study designs)
becomes an emerging approach of replication of GWA studies in
the context of gene discovery (11), as illustrated below. Meta-
analysis can increase the sample size effectively by combining dif-
ferent studies, which is especially powerful and useful in genetic
association research, particularly whenmost of the common genetic
variants contributing to complex diseases have only small to modest
effects (odds ratio <1.5). While a single GWA may not have suffi-
cient statistical power to detect small effects, secondary analyses
using a meta-analysis framework that pools information across
studies provides an inexpensive and efficient way to accumulate
evidence, which can also provide additional power for discovery
of new associations by combing association signals across GWA
studies, even when the original raw data are unavailable. For exam-
ple, additional genetic loci with BMI (12) and lipid traits (13, 14)
have recently been discovered by meta-analysis.

3. An Example:
Glioma Genome-
Wide Association
Study A case study involving the identification of loci which are associated

with glioma using the GWA approach is presented here as a working
example. We follow closely the presentation in (15).

3.1. Study Samples To identify risk variants for glioma, we conducted a principal
component-adjusted genome-wide association study. 226 glioma
patients were collected from The Cancer Genome Atlas (TCGA)
SNP data (16). The TCGA data portal contains clinical informa-
tion, genomic characterization data of the tumor genomes and
provides a platform for researchers to search, download, and ana-
lyze data sets generated by TCGA. Genotypes were determined
using the Illumina Human Hap550 Array. We eliminated all sam-
ples for which more than 5% of the SNPs are missing, and
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eliminated all SNPs that (1) are determined in fewer than 95% of
the samples, (2) have MAF less than 5%, or (3) have a HWE p-value
of less than 10�6. The procedure is outlined in Fig. 1.

In order to adjust the potential confounding effects by
ethnicity-specific SNP frequencies, we further confined our study
sample to European-Americans only, which is the group from
which the majority of samples were obtained. Glioma patient sam-
ples were identified by a two-step screening: (a) self-reporting of
ancestry, and (b) computationally assisted stratification. The latter
was carried out using the EIGENSTRAT package (5). After screen-
ing, 179 TCGA samples remained. Of these, we used for

Fig. 1. Subjects and single-SNP exclusion schema for genome-wide association studies.
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confirmation only the 92 that were released after August 2009,
since the majority of the earlier samples have been already included
in the Adult Glioma Study (AGS) (17).

The comparison group included normal European-American
blood samples (n ¼ 1366), which was downloaded from the Illu-
mina iControlDB (iControls), an online data repository of geno-
type and phenotype data from individuals that can be used as
controls in association studies. After applying the quality control
procedures described above, 1,306 control samples remained.

3.2. Association

Analysis

Association analysis was performed with the EIGENSTRAT pack-
age, under the null hypothesis of “no association between the
glioblastoma multiform (GBM) SNP genotype and the control
SNP genotype” based on an additive inheritance model. To set
the significance threshold for p we required that the probability of
1 or more false positives be less than 0.05; in particular,

1� e�Np �0:05 or p�0:93� 10�7 � 10�7 withN, the total num-
ber of SNPs examined, taken as 550,000. At this level, few if any
SNPs will be detected for typical glioma population sizes. The
alternative is to accept a less stringent p-value, and to eliminate
false discoveries by seeking confirmation in an independent study.

3.3. Meta-Analysis Various versions of meta-analysis can be used to combine p-values
from two independent studies. Because the AGS and TCGA data-
sets differ widely in the number of samples, we assigned them
different weights (18). In particular

p12 ¼ P Z>
W1Z1 þW2Z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W 2
1 þW 2

2

q

0
B@

1
CA; Z � Normalð0; 1Þ (1)

where the weights (Wi) are proportional to the square root of the
“total number of individuals,” Zi ¼ F�1(1 � pi), and F�1 (.) is an
inverse standard normal CDF. The false discovery rate (FDR) is
estimated as the fused probability multiplied by the total number of
SNPs, which is 300,000.

The procedure for calculating fused p-values begins with lists of
SNPs that have p-values of less than 0.001 in each population. We
walk down this list, calculating a combined p value Eq. 1 for each
pair, and accept all SNPs for which the FDR is less than 0.05 (or
equivalently p12 ¼ 0.05/300,000 ¼ 1.7 � 10�7; see Table 1). For
our results, when p exceeds 0.001 in either population, p12 no
longer meets the required threshold, and the walk stops.1

1As a practical matter, the walk can be stopped at more stringent p values without changing the main conclusions.
In particular stopping AGS at p ¼ 10�5, and TCGA at 10�3, while requiring that p12 pass the genomic signifi-
cance level (1.7 � 10�7), loses only 2 SNPs (rs12021720 and rs2810424), neither of which adds new genomic
regions.
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3.4. Genes in Linkage

Disequilibrium

with SNPs

We use the coefficient of determination, R2, to identify genes in
strong linkage disequilibrium with the SNPs that we identified in
the meta-analysis.R2 is calculated based on the correlation between
gene expression level and SNP genotype. Genes with R2 greater
then 0.8 are considered to be in strong LD with the SNP.

3.5. Relative Risk As indicated below, analysis of TCGA and AGS identifies 12 signifi-
cant SNPs, 7 of which are new. One of the implications of additional
SNPs is that the number of associated genes that can be used to
estimate relative glioma risk increases combinatorially. Consequently
we can expect higher prognostic reliability for individuals possessing a
combination of risk alleles, although at some loss of population
coverage. We consider here all combinations of two and three
SNPs, while constraining our choices to SNPs that are more than a
mega-base pairs (Mb) apart, in order to minimize redundant (dis-
equilibrated) information. Specifically, the 12 SNPs are divided into
five groups based on location. Chromosome 1 has 5 SNPs clustered
together within 1 Mb, and chromosome 9 has 4 SNPs within 1 Mb
around genes CDKN2A/2B. The remaining 3 SNPs are located on
chromosomes 3, 5, and 7.

If we rule out combinations including any pair of SNPs that are
within a single chromosome, we find 50 SNP pairs, and 88 SNP
triplets. Statistical analyses were implemented using R (v2.7) and
PLINK (v1.07) (6). Combinations with odds ratios greater than
three, along with p-values, are shown in Table 2, which also shows
that SNP combinations from chromosomes 1 and 9 are associated
with the highest relative risk.

3.6. Identification

of Associated

Pathways and Genes

The standard method for identifying altered processes is a pathway
enrichment analysis, which can be carried out using a single popu-
lation (19). In this case pathways would be identified by showing
that the number of significant SNPs/genes that occur in a particu-
lar pathway is above chance expectation. The procedure that we
describe here requires multiple populations. The assignment of a
SNP/gene to a particular pathway from a single population meets a
significance threshold which is loose enough to allow multiple
assignments from that population, but not stringent enough for
an acceptable FDR. The FDR is brought down to an acceptable
level, as described below, when both populations assign the same
gene(s) to the same pathway.

The procedure is as follows: (1) identify SNPs having a p-value
<10�3 in either the populations; (2) identify genes that include
these SNPs, and (3) assign the genes thus obtained to KEGG
pathways (20). The detailed procedure by which assignments are
made is explained elsewhere (15).
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3.7. Results 1. Significant SNP candidates
Using TCGA datasets, we validated 4 of the 13 SNPs inferred
byWrensch et al. based on theAGS (Table 1, boldface) (15, 17).
SNPs rs7530361 and rs501700, both at 1p21.2, were reported
for the first time.

Table 2
Pairwise and triplet SNP combinations with odds ratios greater than 3

SNP combinations
Risk
allelea Frequency OReq2 p-value

rs1412829 (1.58)b rs7530361 (1.89)c 11 5.45E-02 3.31 3.58E-07

rs1412829 (1.58)b rs501700 (1.90)c 11 5.51E-02 3.09 1.95E-06

rs1412829 (1.58)b rs506044 (1.96)c 11 5.47E-02 3.23 5.15E-07

rs1412829 (1.58)b rs640030 (1.95)c 11 5.42E-02 3.28 4.30E-07

rs1412829 (1.58)b rs687513 (1.93)c 11 5.52E-02 3.18 7.32E-07

rs2157719 (1.49)b rs7530361 (1.89)c 11 5.51E-02 3.2 6.83E-07

rs2157719 (1.49)b rs506044 (1.96)c 11 5.54E-02 3.12 9.64E-07

rs2157719 (1.49)b rs640030 (1.95)c 11 5.49E-02 3.16 8.12E-07

rs2157719 (1.49)b rs687513 (1.93)c 11 5.59E-02 3.07 1.35E-06

rs1063192 (1.42)b rs7530361 (1.89)c 11 5.60E-02 3.12 1.13E-06

rs1063192 (1.42)b rs506044 (1.96)c 11 5.63E-02 3.05 1.60E-06

rs1063192 (1.42)b rs640030 (1.95)c 11 5.59E-02 3.08 1.35E-06

rs4977756 (1.60)b rs7530361 (1.89)c 11 5.35E-02 4.28 3.14E-10

rs4977756 (1.60)b rs501700 (1.90)c 11 5.44E-02 4.17 5.57E-10

rs4977756 (1.60)b rs506044 (1.96)c 11 5.36E-02 4.18 4.46E-10

rs4977756 (1.60)b rs640030 (1.95)c 11 5.31E-02 4.24 3.66E-10

rs4977756 (1.60)b rs687513 (1.93)c 11 5.41E-02 4.1 6.86E-10

rs2736100 (0.63) rs7530361 (1.89)c rs1920116 (0.68) 212 5.01E-02 4.3 5.02E-10

rs11823971 (1.45) rs1412829 (1.58)b rs7530361 (1.89)c 211 5.21E-02 3.04 5.05E-06

rs11823971 (1.45) rs1412829 (1.58)b rs506044 (1.96)c 211 5.26E-02 3.01 4.67E-06

Numbers in parenthesis are single-SNP odds ratios. Last column is the Wald test p-value for the odds ratio
of the combination. This is an unadjusted p-value, with an 0.05 multiple testing adjusted threshold of
p ¼ 0.05/(50 + 88) ¼ 3.6 � 10�4. Freq denotes the combined frequency of the given combination in the
case and control populations as a whole
aDenotes alleles in which significant shifts occur. 11 denotes significant shift in the minor alleles for both
SNPs. 212 denotes significant shifts in major, minor major; 211, significant shifts in major, minor, minor
bDenotes SNP on chromosome 9 in gene CDKN2A/2B
cDenotes SNP on chromosome 1
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Joint analysis of data, as reported in (15), rather than sequential
analysis of two or more populations can increase the power to
detect genetic associations (21). In particular using Eq. 1 as
described in Methods, we found 12 SNPs (Table 1), confirmed
by AGS and TCGA at an FDR <0.05, one of which was previ-
ously confirmed by Wrensch et al. (17) and Shete et al. (22).
Of the 11 remaining, 4 were reported by Shete et al.; the other 7
are reported for the first time. The 12 SNPs are distributed
across five genomic regions: chromosomes 5q15.33, 9q21.3,
1p21.2, 3q26.2 and 7p15.3. Two of these, 5q15.33 and
9q21.3, have been reported in previous studies (17, 22). The
12 candidates are in strong linkage disequilibrium with 25
genes, 8 of which are previously known to be associated with
cancer are indicated in boldface inTable 1. An additional SNPof
interest is rs12341266 at 9q32, which has an FDRof 0.06 and is
in the glioma-associated gene, RGS3.

2. Genes identified by conserved pathway analysis
We identified 49 pathways that contain genes associated with
loosely defined AGS or TCGA SNPs. Thirty-six of them do
not meet the hypergeometric test at a p value of 0.001 (an
FDR of 0.05 divided by 49), leaving 13 invariant pathways;
i.e., pathways that are relevant to both populations. Each of
the 13 pathways has 1 common gene (Table 3) from the two
groups. There are 5 such genes—FHIT, GABRG3, PRKG1,
DCC, and ITGB8—each of which occurs in more than one of
these pathways.

3. Genes in Strong Linkage Disequilibrium with SNP candidates
The SNP candidates occur within, or are in strong linkage dis-
equilibrium with, 25 genes (Table 1). Eight of which are cancer
associated. The latter are TERT (17, 23, 24), SLC6A18 (23),
CLPTM1L (23, 24), CDKN2A/2B (17, 25, 26), SASS6 (27),
ITGB8 (28), and MACC1 (29) (Table 1). Five of the genes,
TERT, SLC6A18, CLPTM1L, and CDKN2A/2B, were previ-
ously shown to be associated with glioma by other GWA studies.
As explained below, we have predicted by a combination of GWA
and pathway analysis, 4 additional genes, which are identified in
the literature as cancer related. The detail literature citations and
the type of cancers that associated with these genes are discussed
in discussion section. We therefore predict 29 glioma-associated
genes, 12 of themknownbyprevious studies to be cancer related.
It is useful to ask for the probability that as many as 12 cancer
related genes in a set of 29 would be found by chance. If we use
the fraction ofOMIMgenes that are cancer related as an estimate
of the background frequency of cancer genes in the disease genes
population, the probability that 29 genes have 12 cancer-
associated genes by chance is 1.4 � 10�6. The fraction of
OMIMgenes that are cancer related is 0.1 (750 cancer-associated
gene in 7,381 OMIM genes).
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Each of the 8 cancer related genes listed above plays one ormore
key roles in processes known to be altered during tumor initia-
tion and development (30). For example, MACC1 is a growth
pathway regulator influencing angiogenesis and processes
related to metastasis (29); CDKN2A is a well studied cell cycle
regulator (26) and a known tumor suppressor whose loss results
in a diminished ability to regulate growth and predisposition to
cancer (25); ITGB8 has been implicated in activities related to
metastasis, including adhesion and migration (28); and the
telomerase enzyme (TERT) is linked to unlimited replication
(17). It is worth noting that CDKN2A/2B are in strong linkage
disequilibrium with rs1412829 at 9p21.3, which has now been
identified in 3 independent studies and should therefore be
considered an unusually high confidence gene marker.

Table 3
Pathways that contain significant SNPs (p< 10�3) inferred from both
AGS and TCGA samples

Pathway* AGS_SNP Gene TCGA_SNP Gene

Purine metabolism (p ¼ 3.50E-04)**
Small cell lung cancer (p ¼ 4.35E-04) **
Non-small cell lung cancer (p ¼ 2.6E-04) **

rs7617530 FHIT rs13059601 FHIT

Neuroactive ligand-receptor interaction
(p ¼ 8.00E-04) **

rs1011455 GABRG3 rs12904325 GABRG3
rs4887546 GABRG3
rs1011456 GABRG3

Vascular smooth muscle contraction
(p ¼ 3.48E-04) **

Gap junction (p ¼ 1.30E-04) **
Long-term depression (p ¼ 6.95E-04) **
Olfactory transduction (p ¼ 3.47E-04) **

rs4400745 PRKG1 rs1922139 PRKG1
rs4466778 PRKG1

Axon guidance (p ¼ 3.91E-04) **
Pathways in cancer (p ¼ 2.13E-03)
Colorectal cancer (p ¼ 8.69E-05) **

rs1145245 DCC rs11082983 DCC
rs11872471 DCC
rs12604940 DCC

Focal adhesion (p ¼ 1.95E-03)
ECM-receptor interaction (p ¼ 8.69E-04) **
Cell adhesion molecules (CAMs)

(p ¼ 1.74E-04) **
Regulation of actin cytoskeleton (p ¼ 1.56E-03)
Hypertrophic cardiomyopathy (HCM)

(p ¼ 1.22E-03)
Arrhythmogenic right ventricular cardiomyopathy

(ARVC) (p ¼ 9.12E-04) **
Dilated cardiomyopathy (p ¼ 1.04E-03)

rs3779505 ITGB8 rs3779505 ITGB8
rs2301727 ITGB8
rs3807936 ITGB8
rs2158250 ITGB8

* p ¼ Probability of the gene overlap in two independent populations. Multiple testing adjusted threshold
of p ¼ 0.05/49 ¼ 10�3

** Pathways with p < 10�3

246 T.-H. Yang et al.



4. Potential
Challenges
in Genome-Wide
Association Studies While GWA studies open a new avenue of discovering and

understanding of the common genetic variation of the human
genome in diseases and health, the assessments of the overall evi-
dence deriving fromGWA studies remains a complex endeavor. The
GWA studies also create some open challenges as the field is still
under development and much of the literature remains exploratory.

4.1. From Statistics

to Functionality

Although statistically compelling associations have been identified,
many association signals identified in GWA studies are not localized
to intervals that include a gene, unlike Mendelian human diseases
whose genetics is understood that functional rare mutations with
large effects act through altering or truncating gene products. How-
ever, there is growing evidence that a sizeable proportion, perhaps the
majority, of the functional variants that underlie GWA studies exert
their effects through gene regulation rather than changing gene
products (31). For example, a SNP (rs6983267) in the 8q24 locus
implicated inmultiple cancer pathogeneses identified in GWA studies
is located in a gene desert that is >300 kb away from the most
neighboring annotatedMYC proto-oncogene; recently studies have
shown that the region harboring this risk allele is a transcriptional
enhancer that interacts with the MYC gene (32, 33). How to trans-
lating mere statistically association signals to biological relevance of
the precise variants that have a causal role in conferring the disease
susceptibility remains unclear at present, but more research towards a
deeper understanding of the vast regulatory regions within the
human genome and functional studies will be the future direction.

4.2. Investigations

of Complex

Interactions

Given the fact that common complex diseases are multifactorial
with each factor contributing a small effect, it is possible that
what really counts is not the main effect of the genes but complex
gene–gene or gene–environment interactions. How to proceed
with the investigations of gene–gene interactions or gene–environ-
ment interactions in GWA studies is an important question with no
straightforward answers.

4.3. Sufficiency

of Common Variants

to Account for Genetic

Bases of Complex Traits

The current technology for GWAS studies consider common
genetic variants, predominantly SNPs, as possible targets for asso-
ciation with a trait or a phenotype, and do not capture information
about rare variants. However, not only SNPs, there are also others
forms of genetic variations that could account for disease risk. For
example, recently, genomic copy number variations (CNVs) have
begun investigated in several GWA studies. CNVs are defined as
gains or losses of repeats of DNA sequences consisting of between
kilo- and mega-base pairs. CNVs have been detected in locations
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covering about 12% of the human genome (34, 35). As technology
and knowledge surrounding CNVs continue to improve, CNVs
have become a significantly more mainstream in GWA studies
(36, 37). However, in addition to SNPs and CNVs, there are also
other types of structural variations and epigenetics in the human
genome and it is unclear how much each type of genetic variation
contributes to inherited risk and the relative proportion of rare
versus common variants. The use of new technologies for assaying
DNA sequences can provide important and additional insights
about the roles of different types of genetic variants in human
disease or health. For example, the 1000 Genomes Project
launched in 2008 has used the next-generation sequencing tech-
nique to provide a comprehensive resource on human genetic
variation with at least 1% across most of the genome and down to
0.5% or lower within genes (38). The 1000 Genomes Project will
map not only the SNPs but also will produce a high-resolution map
of structural variants, including rearrangements, deletions, or
duplications of segments of the human genome.

References

1. Collins FS, Morgan M, Patrinos A (2003) The
Human Genome Project: lessons from large-
scale biology. Science 300:286–290

2. Roberts L, Davenport RJ, Pennisi E, Marshall
E (2001) A history of the Human Genome
Project. Science 291:1195

3. Frazer KA, Ballinger DG, Cox DR, Hinds DA,
Stuve LL, Gibbs RA, Belmont JW, Boudreau
A, Hardenbol P, Leal SM, Pasternak S, Wheeler
DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y,
Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang
X, Wang J, Wang W, Yu J, Zhang B, Zhang Q,
Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R,
Blumenstiel B, Camargo A, Defelice M, Fag-
gart M, Goyette M, Gupta S, Moore J, Nguyen
H, Onofrio RC, Parkin M, Roy J, Stahl E,
Winchester E, Ziaugra L, Altshuler D, Shen
Y, Yao Z, Huang W, Chu X, He Y, Jin L, Liu
Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y,
Xiong X, Xu L, Waye MM, Tsui SK, Xue H,
Wong JT, Galver LM, Fan JB, Gunderson K,
Murray SS, Oliphant AR, Chee MS, Montpetit
A, Chagnon F, Ferretti V, Leboeuf M, Olivier
JF, Phillips MS, Roumy S, Sallee C, Verner A,
Hudson TJ, Kwok PY, Cai D, Koboldt DC,
Miller RD, Pawlikowska L, Taillon-Miller P,
Xiao M, Tsui LC, Mak W, Song YQ, Tam PK,
Nakamura Y, Kawaguchi T, Kitamoto T, Mor-
izono T, Nagashima A, Ohnishi Y, Sekine A,
Tanaka T, Tsunoda T, Deloukas P, Bird CP,
Delgado M, Dermitzakis ET, Gwilliam R,
Hunt S, Morrison J, Powell D, Stranger BE,
Whittaker P, Bentley DR, Daly MJ, de Bakker

PI, Barrett J, Chretien YR, Maller J, McCarroll
S, Patterson N, Pe’er I, Price A, Purcell S,
Richter DJ, Sabeti P, Saxena R, Schaffner SF,
Sham PC, Varilly P, Altshuler D, Stein LD,
Krishnan L, Smith AV, Tello-Ruiz MK, Thor-
isson GA, Chakravarti A, Chen PE, Cutler DJ,
Kashuk CS, Lin S, Abecasis GR, Guan W, Li Y,
Munro HM, Qin ZS, Thomas DJ, McVean G,
Auton A, Bottolo L, Cardin N, Eyheramendy
S, Freeman C, Marchini J, Myers S, Spencer C,
Stephens M, Donnelly P, Cardon LR, Clarke
G, Evans DM, Morris AP, Weir BS, Tsunoda T,
Mullikin JC, Sherry ST, Feolo M, Skol A,
Zhang H, Zeng C, Zhao H, Matsuda I,
Fukushima Y, Macer DR, Suda E, Rotimi
CN, Adebamowo CA, Ajayi I, Aniagwu T,
Marshall PA, Nkwodimmah C, Royal CD,
Leppert MF, Dixon M, Peiffer A, Qiu R, Kent
A, Kato K, Niikawa N, Adewole IF, Knoppers
BM, Foster MW, Clayton EW, Watkin J, Gibbs
RA, Belmont JW, Muzny D, Nazareth L,
Sodergren E, Weinstock GM, Wheeler DA,
Yakub I, Gabriel SB, Onofrio RC, Richter
DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler
D, Wilson RK, Fulton LL, Rogers J, Burton J,
Carter NP, Clee CM, Griffiths M, Jones MC,
McLay K, Plumb RW, Ross MT, Sims SK,
Willey DL, Chen Z, Han H, Kang L, Godbout
M, Wallenburg JC, L’Archeveque P, Bellemare
G, Saeki K, Wang H, An D, Fu H, Li Q, Wang
Z, Wang R, Holden AL, Brooks LD, McEwen
JE, Guyer MS, Wang VO, Peterson JL, Shi M,
Spiegel J, Sung LM, Zacharia LF, Collins FS,

248 T.-H. Yang et al.



Kennedy K, Jamieson R, Stewart J (2007) A
second generation human haplotype map of
over 3.1 million SNPs. Nature 449:851–861

4. Hindorff LA, Sethupathy P, Junkins HA,
Ramos EM, Mehta JP, Collins FS, Manolio
TA (2009) Potential etiologic and functional
implications of genome-wide association loci
for human diseases and traits. Proc Natl Acad
Sci USA 106:9362–9367

5. Price AL, Patterson NJ, Plenge RM, Weinblatt
ME, Shadick NA, Reich D (2006) Principal
components analysis corrects for stratification
in genome-wide association studies. Nat Genet
38:904–909

6. Purcell S, Neale B, Todd-Brown K, Thomas L,
Ferreira MA, Bender D, Maller J, Sklar P, de
Bakker PI, Daly MJ, Sham PC (2007) PLINK:
a tool set for whole-genome association and
population-based linkage analyses. Am J Hum
Genet 81:559–575

7. Dudbridge F, Gusnanto A (2008) Estimation
of significance thresholds for genomewide
association scans. Genet Epidemiol
32:227–234

8. Pe’er I, Yelensky R, Altshuler D, Daly MJ
(2008) Estimation of the multiple testing
burden for genomewide association studies of
nearly all common variants. Genet Epidemiol
32:381–385

9. Wakefield J (2007) A Bayesian measure of the
probability of false discovery in genetic epide-
miology studies. Am J Hum Genet
81:208–227

10. Cantor RM, Lange K, Sinsheimer JS (2010)
Prioritizing GWAS results: a review of statistical
methods and recommendations for their appli-
cation. Am J Hum Genet 86:6–22

11. Kraft P, Zeggini E, Ioannidis JP (2009) Repli-
cation in genome-wide association studies. Stat
Sci 24:561–573

12. Willer CJ, Speliotes EK, Loos RJ, Li S,
Lindgren CM, Heid IM, Berndt SI, Elliott
AL, Jackson AU, Lamina C, Lettre G, Lim N,
Lyon HN, McCarroll SA, Papadakis K, Qi L,
Randall JC, Roccasecca RM, Sanna S, Scheet P,
Weedon MN, Wheeler E, Zhao JH, Jacobs LC,
Prokopenko I, Soranzo N, Tanaka T, Timpson
NJ, Almgren P, Bennett A, Bergman RN, Bing-
ham SA, Bonnycastle LL, Brown M, Burtt NP,
Chines P, Coin L, Collins FS, Connell JM,
Cooper C, Smith GD, Dennison EM, Deodhar
P, Elliott P, Erdos MR, Estrada K, Evans DM,
Gianniny L, Gieger C, Gillson CJ, Guiducci C,
Hackett R, Hadley D, Hall AS, Havulinna AS,
Hebebrand J, Hofman A, Isomaa B, Jacobs
KB, Johnson T, Jousilahti P, Jovanovic Z,
Khaw KT, Kraft P, Kuokkanen M, Kuusisto J,
Laitinen J, Lakatta EG, Luan J, Luben RN,

Mangino M, McArdle WL, Meitinger T,
Mulas A, Munroe PB, Narisu N, Ness AR,
Northstone K, O’Rahilly S, Purmann C, Rees
MG, Ridderstrale M, Ring SM, Rivadeneira F,
Ruokonen A, SandhuMS, Saramies J, Scott LJ,
Scuteri A, Silander K, Sims MA, Song K,
Stephens J, Stevens S, Stringham HM, Tung
YC, Valle TT, Van Duijn CM, Vimaleswaran
KS, Vollenweider P, Waeber G, Wallace C,
Watanabe RM, Waterworth DM, Watkins N,
Witteman JC, Zeggini E, Zhai G, Zillikens
MC, Altshuler D, Caulfield MJ, Chanock SJ,
Farooqi IS, Ferrucci L, Guralnik JM, Hatters-
ley AT, Hu FB, Jarvelin MR, Laakso M, Moo-
ser V, Ong KK, Ouwehand WH, Salomaa V,
Samani NJ, Spector TD, Tuomi T, Tuomilehto
J, Uda M, Uitterlinden AG, Wareham NJ,
Deloukas P, Frayling TM, Groop LC, Hayes
RB, Hunter DJ, Mohlke KL, Peltonen L,
Schlessinger D, Strachan DP, Wichmann HE,
McCarthyMI, BoehnkeM, Barroso I, Abecasis
GR, Hirschhorn JN (2009) Six new loci asso-
ciated with body mass index highlight a
neuronal influence on body weight regulation.
Nat Genet 41:25–34

13. Aulchenko YS, Ripatti S, Lindqvist I,
Boomsma D, Heid IM, Pramstaller PP, Pen-
ninx BW, Janssens AC, Wilson JF, Spector T,
Martin NG, Pedersen NL, Kyvik KO, Kaprio J,
Hofman A, Freimer NB, Jarvelin MR, Gyllen-
sten U, Campbell H, Rudan I, Johansson A,
Marroni F, Hayward C, Vitart V, Jonasson I,
Pattaro C, Wright A, Hastie N, Pichler I, Hicks
AA, Falchi M, Willemsen G, Hottenga JJ, de
Geus EJ, Montgomery GW, Whitfield J, Mag-
nusson P, Saharinen J, Perola M, Silander K,
Isaacs A, Sijbrands EJ, Uitterlinden AG, Witte-
man JC, Oostra BA, Elliott P, Ruokonen A,
Sabatti C, Gieger C, Meitinger T, Kronenberg
F, Doring A, Wichmann HE, Smit JH,
McCarthy MI, van Duijn CM, Peltonen L
(2009) Loci influencing lipid levels and coro-
nary heart disease risk in 16 European popula-
tion cohorts. Nat Genet 41:47–55

14. Kathiresan S, Willer CJ, Peloso GM, Demissie
S, Musunuru K, Schadt EE, Kaplan L, Bennett
D, Li Y, Tanaka T, Voight BF, Bonnycastle LL,
Jackson AU, Crawford G, Surti A, Guiducci C,
Burtt NP, Parish S, Clarke R, Zelenika D,
Kubalanza KA, Morken MA, Scott LJ, String-
ham HM, Galan P, Swift AJ, Kuusisto J, Berg-
man RN, Sundvall J, Laakso M, Ferrucci L,
Scheet P, Sanna S, Uda M, Yang Q, Lunetta
KL, Dupuis J, de Bakker PI, O’Donnell CJ,
Chambers JC, Kooner JS, Hercberg S, Mene-
ton P, Lakatta EG, Scuteri A, Schlessinger D,
Tuomilehto J, Collins FS, Groop L, Altshuler
D, Collins R, Lathrop GM, Melander O,
Salomaa V, Peltonen L, Orho-Melander M,

15 Genome-Wide Association Studies 249



Ordovas JM, Boehnke M, Abecasis GR,
Mohlke KL, Cupples LA (2009) Common
variants at 30 loci contribute to polygenic
dyslipidemia. Nat Genet 41:56–65

15. Yang TH, Kon M, Hung JH, Delisi C (2011)
Combinations of newly confirmed glioma-
associated loci link regions on chromosomes
1 and 9 to increased disease risk. BMC Med
Genomics. 4(1):63

16. McLendon R, Friedman A, Bigner D, VanMeir
E, Brat DJ, Mastrogianakis GM,Olson JJ, Mik-
kelsen T, Lehman N, Aldape K, Yung WK,
Bogler O, Weinstein JN, Vandenberg S, Berger
M, Prados M,Muzny D,MorganM, Scherer S,
Sabo A, Nazareth L, Lewis L, Hall O, Zhu Y,
Ren Y, Alvi O, Yao J, Hawes A, Jhangiani S,
Fowler G, San Lucas A, Kovar C, Cree A, Dinh
H, Santibanez J, Joshi V, Gonzalez-Garay ML,
Miller CA, Milosavljevic A, Donehower L,
Wheeler DA, Gibbs RA, Cibulskis K, Sougnez
C, Fennell T, Mahan S, Wilkinson J, Ziaugra L,
Onofrio R, Bloom T, Nicol R, Ardlie K, Bald-
win J, Gabriel S, Lander ES, Ding L, Fulton
RS, McLellan MD, Wallis J, Larson DE, Shi X,
Abbott R, Fulton L, Chen K, Koboldt DC,
Wendl MC, Meyer R, Tang Y, Lin L, Osborne
JR, Dunford-Shore BH, Miner TL, Dele-
haunty K, Markovic C, Swift G, Courtney W,
Pohl C, Abbott S, Hawkins A, Leong S, Haipek
C, Schmidt H, Wiechert M, Vickery T, Scott S,
Dooling DJ, Chinwalla A, Weinstock GM,
Mardis ER, Wilson RK, Getz G, Winckler
W, Verhaak RG, Lawrence MS, O’Kelly M,
Robinson J, Alexe G, Beroukhim R, Carter S,
Chiang D, Gould J, Gupta S, Korn J, Mermel
C, Mesirov J, Monti S, Nguyen H, Parkin M,
Reich M, Stransky N, Weir BA, Garraway L,
Golub T, Meyerson M, Chin L, Protopopov A,
Zhang J, Perna I, Aronson S, Sathiamoorthy
N, Ren G, Yao J, Wiedemeyer WR, Kim H,
Kong SW, Xiao Y, Kohane IS, Seidman J, Park
PJ, Kucherlapati R, Laird PW, Cope L, Herman
JG, Weisenberger DJ, Pan F, Van den Berg D,
Van Neste L, Yi JM, Schuebel KE, Baylin SB,
Absher DM, Li JZ, Southwick A, Brady S,
Aggarwal A, Chung T, Sherlock G, Brooks
JD, Myers RM, Spellman PT, Purdom E, Jak-
kula LR, Lapuk AV, Marr H, Dorton S, Choi
YG, Han J, Ray A, Wang V, Durinck S, Robin-
son M, Wang NJ, Vranizan K, Peng V, Van
Name E, Fontenay GV, Ngai J, Conboy JG,
Parvin B, Feiler HS, Speed TP, Gray JW,
Brennan C, Socci ND, Olshen A, Taylor BS,
Lash A, Schultz N, Reva B, Antipin Y, Stukalov
A, Gross B, Cerami E, Wang WQ, Qin LX,
Seshan VE, Villafania L, Cavatore M, Borsu L,
Viale A, GeraldW, Sander C, Ladanyi M, Perou
CM, Hayes DN, Topal MD, Hoadley KA, Qi
Y, Balu S, Shi Y, Wu J, Penny R, Bittner M,

Shelton T, Lenkiewicz E, Morris S, Beasley D,
Sanders S, Kahn A, Sfeir R, Chen J, Nassau D,
Feng L, Hickey E, Barker A, Gerhard DS,
Vockley J, Compton C, Vaught J, Fielding P,
Ferguson ML, Schaefer C, Zhang J, Madhavan
S, Buetow KH, Collins F, Good P, Guyer M,
Ozenberger B, Peterson J, Thomson E (2008)
Comprehensive genomic characterization
defines human glioblastoma genes and core
pathways. Nature 455:1061–1068

17. Wrensch M, Jenkins RB, Chang JS, Yeh RF,
Xiao Y, Decker PA, Ballman KV, Berger M,
Buckner JC, Chang S, Giannini C, Halder C,
Kollmeyer TM, Kosel ML, LaChance DH,
McCoy L, O’Neill BP, Patoka J, Pico AR, Pra-
dos M, Quesenberry C, Rice T, Rynearson AL,
Smirnov I, Tihan T, Wiemels J, Yang P,
Wiencke JK (2009) Variants in the CDKN2B
and RTEL1 regions are associated with high-
grade glioma susceptibility. Nat Genet
41:905–908

18. Liptak T (1958) On the combination of inde-
pendent tests. Magyar Tud Akad Mat Kutato
Int Kozl 3:171–197

19. Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, GilletteMA, Paulovich
A, Pomeroy SL, Golub TR, Lander ES,
Mesirov JP (2005) Gene set enrichment analy-
sis: a knowledge-based approach for interpret-
ing genome-wide expression profiles. Proc Natl
Acad Sci USA 102:15545–15550

20. Kanehisa M (2002) The KEGG database.
Novartis Found Symp 247:91–101, discussion
101–103, 119–128, 244–152

21. Skol AD, Scott LJ, Abecasis GR, Boehnke M
(2006) Joint analysis is more efficient than
replication-based analysis for two-stage
genome-wide association studies. Nat Genet
38:209–213

22. Shete S, Hosking FJ, Robertson LB, Dobbins
SE, Sanson M, Malmer B, Simon M, Marie Y,
Boisselier B, Delattre JY, Hoang-Xuan K, El
Hallani S, Idbaih A, Zelenika D, Andersson U,
Henriksson R, Bergenheim AT, Feychting M,
Lonn S, Ahlbom A, Schramm J, Linnebank M,
Hemminki K, Kumar R, Hepworth SJ, Price A,
Armstrong G, Liu Y, Gu X, Yu R, LauC, Schoe-
maker M, Muir K, Swerdlow A, Lathrop M,
Bondy M, Houlston RS (2009) Genome-wide
association study identifies five susceptibility loci
for glioma. Nat Genet 41:899–904

23. Kang JU, Koo SH, KwonKC, Park JW, Kim JM
(2008) Gain at chromosomal region 5p15.33,
containing TERT, is the most frequent genetic
event in early stages of non-small cell lung
cancer. Cancer Genet Cytogenet 182:1–11

24. Stacey SN, Sulem P,Masson G, Gudjonsson SA,
Thorleifsson G, Jakobsdottir M, Sigurdsson A,

250 T.-H. Yang et al.



Gudbjartsson DF, Sigurgeirsson B, Benedikts-
dottir KR, Thorisdottir K, Ragnarsson R,
Scherer D, Hemminki K, Rudnai P, Gurzau E,
KoppovaK, Botella-EstradaR, SorianoV, Juber-
ias P, Saez B, Gilaberte Y, Fuentelsaz V, Corre-
dera C, Grasa M, Hoiom V, Lindblom A,
Bonenkamp JJ, van Rossum MM, Aben KK, de
Vries E, Santinami M, Di Mauro MG, Maurichi
A, Wendt J, Hochleitner P, Pehamberger H,
Gudmundsson J, Magnusdottir DN, Gretars-
dottir S, Holm H, Steinthorsdottir V, Frigge
ML, Blondal T, Saemundsdottir J, Bjarnason
H, Kristjansson K, Bjornsdottir G, Okamoto I,
Rivoltini L, RodolfoM, Kiemeney LA, Hansson
J, Nagore E, Mayordomo JI, Kumar R, Karagas
MR, Nelson HH, Gulcher JR, Rafnar T, Thor-
steinsdottir U,Olafsson JH, Kong A, Stefansson
K (2009) New common variants affecting sus-
ceptibility to basal cell carcinoma. Nat Genet
41:909–914

25. Bisio A, Nasti S, Jordan JJ, Gargiulo S,
Pastorino L, Provenzani A, Quattrone A,
Queirolo P, Bianchi-Scarra G, Ghiorzo P,
Inga A (2010) Functional analysis of
CDKN2A/p16INK4a 50-UTR variants predis-
posing to melanoma. Hum Mol Genet
19:1479–1491

26. Sherr CJ (1996) Cancer cell cycles. Science
274:1672–1677

27. Leidel S, Delattre M, Cerutti L, Baumer K,
Gonczy P (2005) SAS-6 defines a protein
family required for centrosome duplication in
C. elegans and in human cells. Nat Cell Biol
7:115–125

28. Culhane AC, Quackenbush J (2009) Con-
founding effects in “a six-gene signature pre-
dicting breast cancer lung metastasis”. Cancer
Res 69:7480–7485

29. Boardman LA (2009) Overexpression of
MACC1 leads to downstream activation of
HGF/MET and potentiates metastasis and
recurrence of colorectal cancer. Genome Med
1:36

30. Hanahan D, Weinberg RA (2000) The hall-
marks of cancer. Cell 100:57–70

31. Ku CS, Loy EY, Pawitan Y, Chia KS (2010)
The pursuit of genome-wide association stud-
ies: where are we now? J Hum Genet
55:195–206

32. Pomerantz MM, Ahmadiyeh N, Jia L, Herman
P, Verzi MP, Doddapaneni H, Beckwith CA,
Chan JA, Hills A, Davis M, Yao K, Kehoe SM,
Lenz HJ, Haiman CA, Yan C, Henderson BE,
Frenkel B, Barretina J, Bass A, Tabernero J,
Baselga J, Regan MM, Manak JR, Shivdasani

R, Coetzee GA, Freedman ML (2009) The
8q24 cancer risk variant rs6983267 shows
long-range interaction with MYC in colorectal
cancer. Nat Genet 41:882–884

33. Tuupanen S, Turunen M, Lehtonen R, Halli-
kas O, Vanharanta S, Kivioja T, Bjorklund M,
Wei G, Yan J, Niittymaki I, Mecklin JP, Jarvi-
nen H, Ristimaki A, Di-Bernardo M, East P,
Carvajal-Carmona L, Houlston RS, Tomlinson
I, Palin K, Ukkonen E, Karhu A, Taipale J,
Aaltonen LA (2009) The common colorectal
cancer predisposition SNP rs6983267 at chro-
mosome 8q24 confers potential to enhanced
Wnt signaling. Nat Genet 41:885–890

34. Perry GH, Ben-Dor A, Tsalenko A, Sampas N,
Rodriguez-Revenga L, Tran CW, Scheffer A,
Steinfeld I, Tsang P, Yamada NA, Park HS,
Kim JI, Seo JS, Yakhini Z, Laderman S,
Bruhn L, Lee C (2008) The fine-scale and
complex architecture of human copy-number
variation. Am J Hum Genet 82:685–695

35. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry
GH, Andrews TD, Fiegler H, Shapero MH,
Carson AR, Chen W, Cho EK, Dallaire S, Free-
man JL, Gonzalez JR, Gratacos M, Huang J,
Kalaitzopoulos D, Komura D, MacDonald JR,
MarshallCR,Mei R,Montgomery L,Nishimura
K, Okamura K, Shen F, Somerville MJ, Tchinda
J, Valsesia A, Woodwark C, Yang F, Zhang J,
Zerjal T, Zhang J, Armengol L, Conrad DF,
Estivill X, Tyler-Smith C, Carter NP, Aburatani
H, Lee C, Jones KW, Scherer SW, Hurles ME
(2006) Global variation in copy number in the
human genome. Nature 444:444–454

36. Korn JM, Kuruvilla FG, McCarroll SA, Wyso-
ker A, Nemesh J, Cawley S, Hubbell E, Veitch
J, Collins PJ, Darvishi K, Lee C, Nizzari MM,
Gabriel SB, Purcell S, Daly MJ, Altshuler D
(2008) Integrated genotype calling and associ-
ation analysis of SNPs, common copy number
polymorphisms and rare CNVs. Nat Genet
40:1253–1260

37. McCarroll SA, Kuruvilla FG, Korn JM, Cawley
S, Nemesh J, Wysoker A, Shapero MH, de
Bakker PI, Maller JB, Kirby A, Elliott AL, Par-
kin M, Hubbell E, Webster T, Mei R, Veitch J,
Collins PJ, Handsaker R, Lincoln S, Nizzari M,
Blume J, Jones KW, Rava R, Daly MJ, Gabriel
SB, Altshuler D (2008) Integrated detection
and population-genetic analysis of SNPs and
copy number variation. Nat Genet
40:1166–1174

38. Kuehn BM (2008) 1000Genomes Project pro-
mises closer look at variation in human
genome. JAMA 300:2715

15 Genome-Wide Association Studies 251



Chapter 16

Viral Genome Analysis and Knowledge Management

Carla Kuiken, Hyejin Yoon, Werner Abfalterer, Brian Gaschen,
Chienchi Lo, and Bette Korber

Abstract

One of the challenges of genetic data analysis is to combine information from sources that are distributed
around the world and accessible through a wide array of different methods and interfaces. TheHIV database
and its footsteps, the hepatitis C virus (HCV) and hemorrhagic fever virus (HFV) databases, have made it
their mission to make different data types easily available to their users. This involves a large amount of
behind-the-scenes processing, including quality control and analysis of the sequences and their annotation.
Gene and protein sequences are distilled from the sequences that are stored in GenBank; to this end, both
submitter annotation and script-generated sequences are used. Alignments of both nucleotide and amino
acid sequences are generated, manually curated, distilled into an alignment model, and regenerated in an
iterative cycle that results in ever better new alignments. Annotation of epidemiological and clinical
information is parsed, checked, and added to the database. User interfaces are updated, and new interfaces
are added based upon user requests. Vital for its success, the database staff are heavy users of the system,
which enables them to fix bugs and find opportunities for improvement. In this chapter we describe some of
the infrastructure that keeps these heavily used analysis platforms alive and vital after nearly 25 years of use.
The database/analysis platforms described in this chapter can be accessed at

http://hiv.lanl.gov
http://hcv.lanl.gov
http://hfv.lanl.gov

Key words: RNA virus, Alignment, Database, Ontology, Taxonomy, Annotation

1. Background

The original HIV database project in Los Alamos was devoted to
storing HIV sequence data. In its 20 years of existence, it has
evolved to include data on immunological (B and T cell) epitopes
in HIV and a large set of tools for data manipulation and analysis.
Two other sites were added more recently that offer similar geno-
mic data analysis platforms for hepatitis C virus (HCV) and hemor-
rhagic fever viruses (HFV). Collectively, these repositories are
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denoted as the h*v databases. The HFV site especially requires
more sophisticated content management. Providing reference
information for one (or in the case of HIV, three: HIV-1, HIV-
2 and similarly structured SIV, and other SIV) is relatively simple,
since the information is static enough to manually update if there is
a modification. Making such information available for a large and
increasing number of viruses means it has to be parsed from a
number of relatively unstructured external sources.

A number of complementary sources of viral taxonomical and
gene structure information are available (1). For viral taxonomy,
the authoritative body is the International Committee on the Tax-
onomy of Viruses, ICTV. This committee is an unfunded commu-
nity effort. It is working hard to automate and structure its work,
but lacks resources to make great progress. Another important
player is the Uniprot database (2), which provides universal protein
annotation. Unfortunately, there are very few back-links from pro-
tein sequence to nucleotide sequence. The Gene Ontology (GO)
project has only recently turned its attention to viral gene informa-
tion, and the effort is not yet mature enough to be able to solve
many of these problems. At the same time, this information is vital
for the functionality of HFV database.

“Annotation” in a genomic context means identifying which
genes and coding regions are present in a genome, and assigning
functions to these regions. One cause of the problematic state of
viral annotation is a confusion of these two roles. Many regions are
labeled “hypothetical protein,” because at the time the sequence
was submitted to GenBank, the encoded protein had not been
positively identified.

Annotation is often done by analogy: a previously annotated
genome is aligned to the new genomes, and similar genes are
identified and named. New genomes that do not significantly
resemble any annotated ones have to be annotated de novo. This
is usually done by blindly translating the all sequences to amino
acids (six-way translation, three reading frames and two orienta-
tions), and seeing which translated regions are long enough to
potentially encode a protein. Next, the translations are compared
to each other to find groups of similar potential proteins in the new
sequence data or in stored proteins or profiles. Lab assays are then
usually needed to determine the function of the newly identified
proteins.

Future functionality for the viral databases will likely include
analysis of next-generation viral or metagenomic sequences, short
sequence fragments (200–300 nucleotides) that are random pieces
of genomes. Identifying which viruses are contained in a sample
means identifying the most similar viral sequences in the database
(using the Blast algorithm), and determining which genes are
included. If the sample viruses are sufficiently similar to existing
viruses, again the identification can be done by analogy.
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A trivial first step in annotating the sequences consists of parsing
submitted information such as sampling country and city, sampling
year, information about host, and sample treatment. Some of this
information is provided with fixed labels by GenBank, some of it
is harvested by free text searching. Additional information is added
through manual curation; among these are patient, patient cluster
(for transmission clusters), origin of infection, treatment history,
and HLA information.

2. Automated
Alignment of Viral
Sequences

Broadly, todoanykindof automated sequence comparison, including
annotation, the first step is to align the sequences to each other so
the similarity is maximized, and the effect of length variation is mini-
mized.This step is trivial for highly conservedgenes andgenomes,but
highly challenging for variable ones. Viruses have tiny genomes; the
ones in the h*v databases are usually around 10,000 bases. However,
the divergence and length variation within their genomes and genes
are very large—within one patient, viruses can be as much as 5%
different, and between types of the same viral species the difference
goes up to 20%. Consequently, the result of any analysis depends
greatly on the quality of the alignment. Existing alignment programs
can provide good starting points for an alignment, but they all make
mistakes that are obvious to a human and that need to be corrected by
hand. We will not dwell here on the alignment problems, but assume
there is an optimal starting alignment at the nucleotide level. For the
h*v databases, these manually curated alignments are available to the
user, and they form the basis of further processing.

Next, all new sequences are aligned to our existing HMM
model alignment using Sean Eddy’s HMMer program suite (3).
The programs HMMA and HMMSW are used consecutively;
HMMSW is sometimes able to align sequences for which HMMA
fails (opposite. First, try HMMSW and then next is HMMA). If the
alignment succeeds, the result file is parsed, and information is
added to the database about

(a) Gaps added to each sequence to align it to the model

(b) Gaps added to the model to accommodate any inserts in that
sequence

Upon retrieval, then, the gaps are added back to either the
sequence [in case of (a)] or to all other sequences in the alignment
[in case of (b)], and the resulting alignment can be downloaded as a
quasi-multiple alignment of all the sequences the user requested.

To identify the location of each sequence relative to the com-
plete genome, and the location of every gene and annotated region
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in the sequence, the program Gene cutter (4) was developed. It
uses the align0 algorithm (5) to align each sequence to the refer-
ence sequence for the species (HIV-1, HIV-2 and SIV) and deter-
mines the boundaries by analogy to the reference sequences. It can
then retrieve individual genes and regions by clipping them out of
longer sequences. The end result is a set of codon-aligned and
(optionally) translated alignments of all CDSs and proteins that
are present in the original alignment (Fig. 1). For the HFV plat-
form, a Blast search was added to identify the most similar reference
sequence; this option can be overridden by the user. (No GeneCut-
ter for HFV. Blast search is used in VirAlign).

3. Application:
The GenBank
Submission Tool

While creating a general-purpose sequence submission tool for
GenBank is complicated, viral sequences require only a limited subset
of the possible options. The Gene cutter tool described above can be
expanded fairly easily to createGenBank submissionfiles. This involves
finding the genes and CDSs, codon-aligning them to compensate for
length variation, assigning gene and protein names and coordinates,
and automatically annotating known features in the identified regions
based on a reference sequence. In addition, the information needs to
be submitted in a format that genBank accepts; we use ASN.1. The
sequence submission tool for HIV is already available (http://www.
hiv.lanl.gov/content/sequence/GENBANK/genbank.html), and
for HCVand HFV the tool is complete and in the final testing phase.

Once again, a similar tool that can handle viruses from multiple
families requires more thought. The reference-sequence informa-
tion is used to inform the framework of the annotation features, but

Fig. 1. Schematic of gene cutter algorithm.
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many specific cases cannot be dealt with in a general way. For
example, in Reston Ebolavirus a posttranscriptional modification
is used to create a CDS for the GP protein. Since this feature is not
inherent in the sequence, it is difficult to annotate based purely on
sequence data; the annotation will only succeed if the same feature
is present in the reference sequence. The tool is designed to catch
the standard and trivially predictable features, and otherwise warn
users if expected features are missing or malformed, e.g., because of
missing start- or premature stop codons.

4. Automated
Protein Retrieval
and Alignment

We recently started an effort to expand the pre-alignment and
region identification to amino acids (Fig. 2). There are many obvi-
ous reasons for this. Alignments based on amino acids tend to be

Fig. 2. Flowchart of the gene/protein extraction and alignment process.
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better; many users are interested in proteins; translation of the
aligned nucleotide sequences is problematic since they are not
codon-aligned; neither the Gene cutter nor the user-provided
annotation always gets the start location right; codon-alignment
for HIV is complicated further by its overlapping reading frames
and spliced genes. In the HFV database, several viruses have genes
containing a forward-encoding and a reverse-encoding region.
All these factors contribute to making this effort a large and
complicated undertaking.

First, we harvested all individual genes or coding regions
(the terms gene and coding region are used interchangeably here)
and gene fragments we could from the available sequences, without
regard to completeness. We used both Gene cutter and the user-
provided annotation for this. The annotation of HIV sequences
dates back about 25 years, and gene and region names have
changed over that period, so this required some sophisticated text
parsing. In addition, there is currently no spell check for gene
names in the GenBank submission tools, so annotation spelling
mistakes also had to be incorporated.

The next step was to compare the results from Gene Cutter and
from the annotation parsing. For this, sequences obtained from the
annotation were processed by Gene cutter to remove obvious mis-
takes (i.e., a Rev gene annotated as “Tat”). Next, sequences were
codon-aligned, translated, and cut off at the stop codon. The
process of codon alignment considers the reading frame of the
translated protein and adjusts the nucleotide alignment so that
the protein alignment stays in frame based on reference gene. For
each gene and entry, the longer sequence was retained. The result-
ing sets of amino acid sequences were aligned to amino acid models
that were made for all proteins based on manually curated align-
ments (available at http://www.hiv.lanl.gov/content/sequence/
NEWALIGN/align.html). Next, an adaptation of an in-house
code, described previously (4), was used to determine the location
of all gaps and store those locations in the database. This informa-
tion is used s necessary to recreate the alignment when users
retrieve an aligned set of sequences. The final steps are currently
being taken to make these data accessible to users.

5. Identifying
Homologous Genes
in Heterogeneous
Sequence Sets The curated RefSeq database provided by NCBI (6) has made it

possible to locate and isolate individual genes for each species. This
quality is used in the HFV database to allow users to retrieve
species-level alignments of individual genes and coding sequences
(CDSs), using a method that is exactly analogous to that described
in the previous section. However, the next step in an analysis is
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usually to compare genes between different species, at least up to
the genus level. To achieve this, HMM models were built for each
genus represented in the database by aligning all reference genomes
within each genus. The resulting model sequences can be used with
remarkable success to align sequences at the genus level.

For the HFV, individual genes are isolated using the same clip-
by-sequence-homology method, represented in the HFV database
by a generalized Gene cutter-like code called VirAlign (7) (Fig. 3).
VirAlign uses the predefined reference sequence for a species or
the curated HMM model sequence for genus-level alignments; it
will also execute a quick Blast search if the species does not have a
reference sequence, or is novel. Unfortunately, the alignment is
not always good enough to accurately isolate genes and proteins
for each species and variant. To produce an annotation-based
alignment analogous to the HIV case, the gene names would
need to be enumerated or matched using a text search. Our efforts
to achieve this so far have not yielded reliable enough results to
improve much on the results produced by VirAlign. We are hope-
ful that efforts such as NCBI’s Annotation Workshops, and Uni-
prot’s pilot implementation of gene ontologies will lead to a more
consistent gene- and protein naming, and a mapping table to
allow old-style, unstructured naming to be used for annotation-
based gene identification.

Fig. 3. Flowchart of the VirAlign program algorithm.
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6. Bringing Gene/
Protein
Identification
to Higher
Taxonomic Levels

The problemofmissing reliable gene identifiers plays amuch greater
role in theHFVdatabase, where genes fromdifferent species have to
be aligned. Our initial approach to this problem was to provide an
artificial genus-level reference sequence. The individual species
sequences are aligned to the species reference sequences, and those
in turn are aligned to the genus-level one. Then, if needed, the gene
coordinates from species X are mapped onto the genus reference,
and for each species the gene corresponding to the genus-level
location is retrieved. This method works remarkably well as long as
the gene locations are close and well behaved. However, when one
protein (for example, RNA-directed RNA polymerase) is translo-
cated, or a segmented genome needs to be compared to a nonseg-
mented one, it breaks down. It also does not function well when
there is no species-level reference sequence yet, or when a virus is
novel or unclassified. In that case the most similar (by Blast) refer-
ence sequence is substituted for reference-based analyses, but this
solution has obvious shortcomings.

A bettermethodwould be to incorporate the annotation into the
process. The parsing process described above for HIV is manageable
when there are only a few synonymous gene names to consider.
However, for the greater viral field the situation is much more com-
plex. A quick analysis of gene naming mapping using UniProt’s
standardized protein names showed that approximately half the
annotated gene names in the HFV database could be conclusively
mapped into UniProt’s framework. The other half comprised large
number of different naming variations, such as “West Nile Virus
RDRP,” “putative RDRP,” “hypothetical RDRP,” and “viral RNA
polymerase (L protein)”. To conclusively solve this issue (rather than
relying on parsing scripts of ever-increasing complexity) it requires a
unified, agreed-upon viral naming system and a set of mapping rules
from the current free-text annotation.

Even though viral genomes even in the same genus can be
nearly impossible to align due to their extreme variability, when
classified by function the protein encoding schemata of many RNA
viral orders are fairly simple and remarkably uniform. However, the
naming of the genes and the proteins and products they encode is a
tangle, and trying to identify CDSs on that basis is a daunting task.
We are currently in the process of investigating the possibility of
using the functional classification as the basis of a naming system. If
this translates down to lower levels, it will be possible to create a
synonym list on the basis of the annotated gene names and the
actual gene location and (predicted) protein function that allows
users to retrieve even highly dissimilar genes and CDSs by selecting
a (putative) gene/protein function.
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7. The Future

Currently, several efforts are proceeding in parallel. The expansion
of the viral gene and protein ontologies is ongoing, and we hope
the ontology can begin to be used by the start of 2012. Automated
viral annotation pipelines also require some information about the
correspondence between coding sequences, posttranscriptional
modification, and translation to protein.

Future plans include expanding the “Los Alamos viral genomic
database platform” to include further emerging viruses that are
human pathogens, and to provide an annotation and analysis facil-
ities for both current and next-generation sequence data. This will
include expanded and more sophisticated data manipulation, for
example faster and less labor-intensive ways to create reference
alignments that cover as much genetic and geographic variation as
possible, to identify contaminants and unusual outliers and to
classify new viruses. Meanwhile, the creation of new tools for
sophisticated analysis of viral and human immune data is ongoing.
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Chapter 17

Molecular Network Analysis of Diseases and Drugs in KEGG

Minoru Kanehisa

Abstract

KEGG (http://www.genome.jp/kegg/) is an integrated database resource for linking genomes or
molecular datasets to molecular networks (pathways, etc.) representing higher-level systemic functions of
the cell, the organism, and the ecosystem. Major efforts have been undertaken for capturing and represent-
ing experimental knowledge as manually drawn KEGG pathway maps and for genome-based generalization
of experimental knowledge through the KEGG Orthology (KO) system. Current knowledge on diseases
and drugs has also been integrated in the KEGG pathway maps, especially in terms of known disease genes
and drug targets. Thus, KEGG can be used as a reference knowledge base for integration and interpretation
of large-scale datasets generated by high-throughput experimental technologies, as well for finding their
practical values. Here we give an introduction to the KEGG Mapper tools, especially for understanding
disease mechanisms and adverse drug interactions.

Key words: KEGG pathway map, BRITE functional hierarchy, Disease gene, Drug target, KEGG
Mapper

1. Introduction

Thanks to the continuous development of sequencing and other
high-throughput experimental technologies, genome sequences
and various types of large-scale molecular datasets can now be
determined rapidly and cost-effectively. The experimental technol-
ogies and the associated bioinformatics technologies have revolu-
tionalized many areas of biological sciences. However, the benefits
of what may be called genomic revolution have been limited to
research communities. The promises of new strategies for diagno-
sis, treatment, and prevention of diseases have been repeatedly
made since the Human Genome Project 20 years ago, but the
genomic revolution has not yet been brought to society. We believe
that this is partly due to the lack of appropriate resources and
methods for linking research results to practical values. Here we
introduce the KEGG DISEASE and DRUG database resource (1)
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and present bioinformatics methods for finding potentially useful
information in practice and in society from genome sequences and
other large-scale data.

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a data-
base resource that integrates genomic, chemical, and systemic func-
tional information (2). In particular, gene catalogs in the
completely sequenced genomes are linked to higher-level systemic
functions of the cell, the organism, and the ecosystem. Major
efforts have been undertaken to manually create a knowledge base
for such systemic functions by capturing and summarizing experi-
mental knowledge in computable forms; namely, in the forms of
molecular networks called KEGG pathway maps, BRITE functional
hierarchies, and KEGG modules. Continuous efforts have also
been made to develop and improve the cross-species (ortholog-
based) annotation procedure for linking genomes to the molecular
networks. The molecular network-based methods in KEGG now
include diseases and drugs. We view diseases as perturbed states of
the molecular network system that operates the cell and the organ-
ism, and drugs as perturbants to the molecular network system.
From this perspective KEGG DISEASE, together with KEGG
DRUG, has been developed as a computable disease information
resource, enabling integrated analysis and interpretation of various
large-scale datasets.

2. Materials

2.1. KEGG Object

Identifiers

KEGG consists of 13 main databases shown in Table 1. Each
database is identified by the database name (such as pathway) or
by its abbreviation (such as path). Each entry in a database is
identified by an entry name (such as hsa04930 in pathway). Gener-
ally, in order to uniquely identify an entry across all the databases, it
is necessary to give the combination of the database name and the
entry name in the form of db:entry (such as path:hsa04930).
However, for the 11 databases that are originally developed by
KEGG the database name may be omitted because the entry
name, called the KEGG object identifier, consists of a database-
dependent prefix and a five-digit number (such as hsa04930).
KEGG GENES and KEGG ENZYME are the databases derived
from NCBI RefSeq (3) and IUBMB Enzyme Nomenclature (4),
respectively, and the identifiers are in the form of db:name. Specifi-
cally, the KEGG GENES identifier consists of the three-letter
organism code (alias of the T number identifier of KEGG
GENOME) and the gene identifier (usually locus_tag or Gene ID
in the RefSeq database). These identifiers represent molecular
objects, such as genes (K numbers), small molecules (C numbers),
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and drugs (D numbers), and higher-level objects, such as pathways
(map numbers), ontologies (br numbers), organisms (T numbers),
and diseases (H numbers).

2.2. KEGG PATHWAY

Database

The KEGG PATHWAY database is a collection of manually drawn
KEGG pathway maps representing our knowledge on the molecu-
lar interaction and reaction networks for metabolism, genetic infor-
mation processing, environmental information processing, cellular
processes, organismal systems, human diseases, and drug develop-
ment. Each map is a result of knowledge-intensive work summariz-
ing experimental evidence in published literature. This is similar to
writing a review article, but domain-specific knowledge is repre-
sented as molecular networks enabling computational processing
rather than text description for humans to read and understand.

For example, the pathway map for a human disease, type II
diabetes mellitus, can be retrieved by entering hsa04930 in the
search box of the KEGG top page (http://www.genome.jp/
kegg/). The molecular network is represented as a wiring diagram
of boxes and circles, where boxes correspond to genes and proteins

Table 1
KEGG databases and KEGG object identifiers

Database Content Prefix or db:entry Example

KEGG PATHWAY Pathway maps map/ko/ec/rn/(org) hsa04930

KEGG BRITE Functional hierarchies (ontologies) br/jp/ko/(org) ko01003

KEGG MODULE KEGG modules M M00008

KEGG DISEASE Human diseases H H00004

KEGG DRUG Drugs D D01441

KEGG ENVIRON Crude drugs, etc. E E00048

KEGG ORTHOLOGY KEGG Orthology (KO) groups K K04527

KEGG GENOME KEGG organisms T T01001 (hsa)

KEGG GENES Gene catalogs org:gene hsa:3643

KEGG COMPOUND Small molecules C C00031

KEGG GLYCAN Glycans G G00109

KEGG REACTION Biochemical reactions R R00259

KEGG RPAIR Reactant pairs RP RP004458

KEGG RCLASS Reaction class RC RC00046

KEGG ENZYME Enzyme nomenclature ec:number ec:2.7.10.1

org: three-letter organism code; gene: locus_tag or Gene ID
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and circles to chemical substances. As shown in Fig. 1, by clicking
on a box or a circle in the pathway map, the corresponding molec-
ular object can be retrieved, such as insulin receptor (hsa:3643) in
the KEGG GENES database or D-glucose (C00031) in the KEGG
COMPOUND database.

While experiments are usually done in specific organisms, the
KEGG pathway map is drawn as a generic molecular network that
can be extended to other organisms based on the genome informa-
tion. In fact Fig. 1 was a human version of the diabetes map, and
there are versions for mouse (mmu04930), rat (rno04930), and
many other organisms, which can be selected from the pulldown
menu. The generic version is called the reference pathway map
(ko04930), which is linked to the KEGG ORTHOLOGY database
as described next.

2.3. KEGG ORTHOLOGY

and BRITE Databases

When the KEGG pathway map is manually drawn, the boxes are
linked to ortholog groups rather than individual genes in specific
organisms. Figure 2 shows an example of the ortholog entry
(K04527 for insulin receptor) in the KEGG ORTHOLOGY
(KO) database, which contains a list of orthologous genes in all
available genomes together with a link to the KEGG pathway node.
Thus, having the same K number (KO identifier) represents

Fig. 1. KEGG pathway map for type II diabetes mellitus (hsa04930) including insulin receptor (hsa:3634) and D-glucose
(C00031).
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functional equivalence in the context of KEGG pathways. The KO
entry may also be defined in the context of BRITE functional
hierarchies, such as protein family classifications shown in Fig. 2.
The KEGG BRITE database contains hierarchical classifications of
molecular and higher-level KEGG objects shown in Table 1, and
classifications are developed in terms of orthologs (K numbers) for
genes and proteins.

The ortholog grouping andmembership assignment require con-
tinuous efforts. First, the initial grouping and assignment are done
manually when the pathwaymap or the BRITE functional hierarchy is
developed. Second, both computational and manual membership
assignments (genome annotations) are performed with the KOALA
(KEGG Orthology And Links Annotation) tool for all the complete
genomes that have become publicly available. Third, in order to
automate the KOALA annotation asmuch as possible, existing ortho-
log groups are often redefined by splitting, merging, and adding
groups. In essence, the KEGG ORTHOLOGY database represents a
genome-based generalization of experimental knowledge.

2.4. KEGG DISEASE and

DRUG Databases

In KEGG, diseases are viewed as perturbed states of the molecular
system, and drugs as perturbants to the molecular system. Different
types of diseases, including single-gene (monogenic) diseases,

Fig. 2. The KEGG ORTHOLOGY (KO) entry for insulin receptor (K04527) with links to the KEGG pathway map and BRITE
functional hierarchies.
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multifactorial diseases, and infectious diseases, are all treated in a
unified manner as shown in Fig. 3. Our knowledge on perturbed
molecular networks has been captured and represented as disease
pathway maps in the KEGG PATHWAY database (see, for example,
the disease pathway map of chronic myeloid leukemia hsa05220 in
Fig. 4). The KEGG DISEASE database is a collection of disease
entries capturing knowledge on genetic and environmental pertur-
bations. Each disease entry is identified by the H number and
contains a list of known genetic factors (disease genes), environ-
mental factors, diagnostic markers, and therapeutic drugs (see, for
example, the disease entry of chronic myeloid leukemia H00004 in
Fig. 4).

Fig. 3. Molecular network-based view on diseases and drugs.

Fig. 4. Chronic myeloid leukemia (H00004) and Gleevec (D01441). The fused gene BCR-ABL is both a disease gene and a
drug target as shown in the chronic myeloid leukemia pathway map (hsa05220).
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The KEGG DRUG database is a comprehensive collection of
prescription drugs marketed in Japan, USA, and Europe unified
based on the chemical structures and/or the chemical components.
Each KEGG DRUG entry is identified by the D number distin-
guishing the chemical structure of chemicals or the chemical com-
ponent of mixtures. It is associated with the following information
(see, for example, the molecular target drug for chronic myeloid
leukemia Gleevec D01441 in Fig. 4): generic names, representative
trade names, links to FDA-approved drug labels in DailyMed
(http://dailymed.nlm.nih.gov/) and Japanese labels in JAPIC
(http://www.japic.or.jp/), target molecules in the context of
KEGG pathway maps, drug metabolizing enzymes and transpor-
ters, other interacting molecules including genomic biomarkers
and CYP inducers/inhibitors, adverse drug–drug interaction data
(collected from the Japanese labels) (5), text description of activity
and efficacy, drug classification information in BRITE hierarchies
such as ATC codes, history of drug development represented as a
KEGG DRUG structure map (6), and links to outside databases.

3. Methods

The KEGG resource is accessible either at the GenomeNet Web site
http://www.genome.jp/kegg/ or at the KEGG Web site http://
www.kegg.jp/. The Web site is hierarchically organized as follows.
The first layer is the two top pages of the KEGG resource. The
database home (KEGG) page contains links to main databases,
selected computational tools, and documents. The KEGG Table
of Contents (KEGG2) page contains links to all databases and
computational tools. The second layer is the top page of each
database, and in the third layer each database entry is found. It is
good to remember the color coding of Web pages that correspond
to the category of databases: green for systemic information
(PATHWAY, BRITE, and MODULE), purple for practical infor-
mation (DISEASE, DRUG, and ENVIRON), red or brown for
genomic information (GENES, GENOME, and ORTHOLOGY),
and blue for chemical information (COMPOUND, GLYCAN,
REACTION, and ENZYME).

3.1. KEGG Mapper KEGG PATHWAY and KEGG BRITE are the reference knowledge
bases for biological interpretation of molecular datasets, especially
large-scale datasets generated by high-throughput experimental
technologies. This is accomplished by the process of KEGG
mapping, which is to map, for example, a genomic or transcrip-
tomic content of genes to KEGG pathway maps in order to see
which parts of pathways are reconstructed from the genome or up/
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down regulated in the transcriptome. The KEGG mapping opera-
tions are incorporated in the daily database update procedure in
KEGG. Especially, organism-specific pathway maps are computa-
tionally generated for all available genomes by combining genome
annotation data (gene to K number relations) and the reference
pathway maps.

The user interface for KEGGmapping is called KEGGMapper,
which currently consists of six tools as shown in Table 2. Query data
may be a collection of molecular objects (genes, proteins, small
molecules, etc.) or a more ordered set of object-attributes relations;
for example, genes annotated with K numbers, genes associated
with up/down expression levels, and genes associated with somatic
mutation frequency. Target data may be the KEGG PATHWAY
database, the KEGG BRITE database, or one entry of these data-
bases. The mapping procedure is considered a set operation
between the query data, which can be large-scale data, and the
target data of reference knowledge. In this Methods section we
show examples of how data and knowledge are computationally
processed to obtain new insights and to find new discoveries.

Figure 5 shows an example of using the Search&Color
pathway tool in KEGG Mapper. Here we prepare a list of genes
involved in chronic myeloid leukemia (CML) and ask KEGG
Mapper how this gene list is related to other pathways. The gene
list contains a color specification, background color, and optionally
followed by foreground color, for the matched objects found
(in this case, boxes). The RGB code of #bfffbf is a greenish color
used in organism-specific pathways in KEGG, and the foreground
color red is used to identify known disease genes in CML. Once the
query gene list is ready, enter the data in the search box or upload
the data from a file. Select “Homo sapiens (human)” in the “Search
against” pulldown menu, check the “Use uncolored diagrams”
option, and click on “Exec.” Then KEGG Mapper gives you

Table 2
KEGG mapper tools

Tool Query data Reference knowledge Examplea

Search Pathway Objects KEGG PATHWAY database

Search&Color Pathway Object-attributes relations KEGG PATHWAY database 3.1, 3.2

Color Pathway Object-attributes relations KEGG PATHWAY map 3.4

Search Brite Objects KEGG BRITE database 3.3

Search&Color Brite Object-attributes relations KEGG BRITE database

Join Brite Object-attributes relations BRITE functional hierarchy 3.3

aSubsection numbers are shown
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“Pathway Search Result,” a list of KEGG pathway maps that con-
tain the query genes sorted by the number of genes found. The top
hit “hsa05200 Pathways in cancer” is a global cancer pathway map,
which is shown in Fig. 6. This result shows the CML pathway
in relation to various cancer signaling pathways. By examining
other pathways in the “Pathway Search Result,” commonality of
signaling pathways between CML and other cancers may become
apparent.

3.2. Disease/Drug

Mapping

During the daily update of the KEGGPATHWAY database, manually
drawn reference pathways (prefix map) are combined with genome
annotation data to generate organism-specific pathways such as for
human (prefix hsa). Additionally one special type of pathwaymaps are
generated by incorporating all known disease genes accumulated in
KEGGDISEASEandall knowndrug targets stored inKEGGDRUG.
This is called disease/drug mapping, identified by the prefix “hsadd,”
and displayed as “Homo sapiens (human) + Disease/drug” in the
organism selection pulldownmenu of each pathway map. In addition
to greenish coloring of boxes in hsa maps, hsadd maps contain addi-
tional coloring. When the gene is known to be associated with a
disease, it is marked in pink. When the gene (product) is a known
drug target, it is marked in light blue. When the gene is both a disease
gene and a drug target, its coloring is split into pink and light blue.

Fig. 5. An example of using the Search & Color Pathway tool in KEGG Mapper. The query data contains a human gene list
with color specification.
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Let us examine one particular disease/drug mapping for the
pathway map of Alzheimer’s disease (hsadd05010) shown in Fig. 7.
The original map (hsa05010) contains four known disease genes
(marked red) for Alzheimer’s disease (H00056): APP (amyloid beta
protein), APOE (apolipoprotein E), PSEN1 (presenilin 1), and
PSEN2 (presenilin 2). In the disease/drug map (hsadd05010)
there are additional genes with pink coloring, namely, genes
associated with other diseases. Among them are: SNCA (alpha-
synuclein) associated with Parkinson’s disease (H00057) and
Lewy body dementia (H00066), MAPT (microtubule-associated
protein tau) associated with amyotrophic lateral sclerosis
(H00058), progressive supranuclear palsy (H00077), and Pick’s
disease (H00078), and other genes associated with spinocerebellar
ataxia (H00063) and Leber optic atrophy (H00068). All these
additional diseases are neurodegenerative diseases, suggesting com-
mon mechanisms of neurodegeneration (7). Thus, the disease/
drug mapping allows a holistic approach to understanding
molecular mechanisms of diseases.

3.3. Adverse Drug

Interactions

Coadministration of multiple drugs is known to sometimes cause
serious adverse effects. Adverse events are described in the package
inserts (labels) of prescription drugs, but the description is not
necessary complete or up-to-date, and interactions with OTC

Fig. 6. Chronic myeloid leukemia pathway displayed on the global cancer pathway map.
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drugs and food are not well documented. In the KEGG DRUG
database, there is an option (DDI button in each drug entry page)
to search against known drug–drug interactions and to predict
possible interactions. Known drug–drug interactions were
extracted from the package inserts of all prescription drugs mar-
keted in Japan. The extracted data were then processed to charac-
terize and classify different types of drug interactions, such as those
involving CYP enzymes or target molecules. Figure 8 shows the
result of searching drug–drug interactions for Gleevec, molecular
target drug for CML. The search result can be displayed on top of
theWHO’s ATC (Anatomical Therapeutic Chemical) classification.
This reveals a group of drugs with somemembers known to interact
with Gleevec, leading to a plausible conclusion that other members
in the same group may also interact with Gleevec.

The ATC classification (br08303) in the KEGGBRITE database
is manually constructed within KEGG by making correspondences
between D numbers and ATC codes. During the daily update proce-
dure of the KEGG DRUG database, the D number to target rela-
tionship and the D number to metabolizing enzyme relationship are
stored in binary relation files. Then, by using the procedure similar to
the Join Brite tool in KEGG Mapper, the BRITE hierarchy file and
the binary relation file are combined.This is like adding a new column

Fig. 7. Disease/drug mapping reveals relationships between Alzheimer’s disease and other neurodegenerative diseases.
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to the existing BRITE hierarchy file, again revealing the target infor-
mation (br08303_target) and the enzyme information (br08303_en-
zyme) associated with groups of similar drugs.

3.4. Cancer Pathway

Analysis

The KEGGCANCER resource currently consists of 55 KEGGDIS-
EASE entries, 14 KEGG pathwaymaps, one KEGGpathwaymap for
“Pathways in cancer” (hsa05200), which is a combined map of 14
cancers, a BRITE hierarchy file for “Cancer stages” (hsa05201), a
BRITE hierarchy file for “Antineoplastics” (br08308), and a BRITE
hierarchy file for “Carcinogens” (br08008). Thus, information about
genes, environmental factors, signaling pathways, and drugs is well
organized, reflecting our view on diseases and drugs shown in Fig. 3.

Thus far, we have shown examples of using only the KEGG
resource. As an attempt to integrate with outside resources, somatic
mutation data obtained from Sanger Institute’s COSMIC (Cata-
logue of Somatic Mutations in Cancer) database are mapped
against KEGG cancer pathway maps using the Color Pathway tool
of KEGG Mapper. The result of this mapping, such as shown in
Fig. 9, can be examined from the “Cancer stages” hierarchy. Gen-
erally speaking, the disease genes, which have been identified from
literature and whose gene names are marked red in the KEGG
cancer pathway maps, well correspond to the actual observations
of somatic mutations in cancer genomes.

Fig. 8. Drug–drug interaction search for Gleevec. The result is shown on the ATC classification hierarchy.
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4. Notes

1. KEGG Mapper is based on a set operation to match identifiers
in the query data and the target data. The target data of KEGG
pathway maps and BRITE hierarchies are created using the
KEGG object identifiers (Table 1). Therefore, it is recom-
mended to use KEGG object identifiers, such as K numbers,
C numbers, and org:gene identifiers, in the query data as well.
The use of EC number (Enzyme Commission number) (4) is
highly discouraged, for it is treated as an attribute of K number
rather than an identifier. The KEGG GENES entry identifiers
mostly correspond to NCBI identifiers: locus_tag for prokary-
otic genomes and Gene ID for eukaryotic genomes. If neces-
sary, conversion tables are available for download from the
LinkDB database at GenomeNet (http://www.genome.jp/
dbget/linkdb.html).
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