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Preface

Robots are here!
Service robots are beginning to live with us and occupy the same social space we

live in. These robots should be able to understand human’s natural interactive
behavior and to respond correctly to it. To do that they need to learn from their
interactions with humans. Considering the exceptional cognitive abilities of Homo
sapiens, two features immediately pop up, namely, autonomy and sociality.

Autonomy is what we consider when we think of human’s ability to play chess,
think about the origin of the universe, plan for hunts or investments, build a robust
stable perception of her environment, etc. This was the feature most inspiring the
early work in AI with its focus on computation and deliberative techniques. It was
also the driving force behind more recent advances that returned the interactive
nature of autonomy to the spotlight including reactive robotics, behavioral robotics,
and the more recent interest in embodiment.

Sociality, or the ability to act appropriately in the social domain, is another easily
discerned feature of human intelligence. Even playing chess has a social component
for if there was no social environment, it is hard to imagine a single autonomous
agent coming up with this two-player game. Humans do not only occupy physical
space but also occupy a social space that shapes them while they shape it.
Interactions between agents in this social space can be considered as efficient
utilization of natural interaction protocols which can be roughly defined as a kind of
multi-scale synchrony between interaction partners.

The interplay between autonomy and sociality is a major theoretical and prac-
tical concern for modern social robotics. Robots are expected to be autonomous
enough to justify their treatment as something different from an automobile and
they should be socially interactive enough to occupy a place in our humanly
constructed social space. Robotics researchers usually focus on one of these two
aspects but we believe that a breakthrough in the field is expected only when the
interplay between these two factors is understood and leveraged.

This is where data mining techniques (especially time-series analysis methods)
come into the picture. Using algorithms like change point discovery, motif
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discovery, and causality analysis, future social robots will be able to make sense of
what they see humans do and using techniques developed for programming by
demonstration they may be able to autonomously socialize with us.

This book tries to bridge the gap between autonomy and sociality by reporting
our efforts to design and evaluate a novel control architecture for autonomous,
interactive robots and agents that allow the robot/agent to learn natural social
interaction protocols (both implicit and explicit) autonomously using unsupervised
machine learning and data mining techniques. This shows how autonomy can
enhance sociality. The book also reports our efforts to utilize the social interactivity
of the robot to enhance its autonomy using a novel fluid imitation approach.

The book consists of two parts with different (yet complimentary) emphasis that
introduce the reader to this exciting new field in the intersection of robotics, psy-
chology, human-machine interaction, and data mining.

One goal that we tried to achieve in writing this book was to provide a
self-contained work that can be used by practitioners in our three fields of interest
(data mining, robotics, and human-machine-interaction). For this reason we strove
to provide all necessary details of the algorithms used and the experiments reported
not only to ease reproduction of results but also to provide readers from these three
widely separated fields with the essential and necessary knowledge of the other
fields required to appreciate the work and reuse it in their own research and
creations.

Assiut, Egypt Yasser Mohammad
Kyoto, Japan Toyoaki Nishida
October 2015
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Chapter 1
Introduction

How to create a social robot that people do not only operate but relate to? This book
is an attempt to answer this question and will advocate using the same approach
used by infants to grow into social beings: developing natural interaction capacity
autonomously. We will try to flesh out this answer by providing a computational
framework for autonomous development of social behavior based on data mining
techniques.

The focus of this book is on how to utilize the link between autonomy and social-
ity in order to improve both capacities in service robots and other kinds of embodied
agents. We will focus mostly on robots but the techniques developed are applicable
to other kinds of embodied agents as well. The book reports our efforts to enhance
sociality of robots through autonomous learning of natural interaction protocols as
well as enhancing robot’s autonomy through imitation learning in a natural environ-
ment (what we call fluid imitation). The treatment is not symmetric.Most of the book
will be focusing on the first of these two directions because it is the least studied in
literature as will be shown later in this chapter. This chapter focuses on themotivation
of our work and provides a road-map of the research reported in the rest of the book.

1.1 Motivation

Children are amazing learners. Within few years normal children succeed in learning
skills that are beyond what any available robot can currently achieve. One of the key
reasons for this superiority of child learning over any available robotic learning
system, we believe, is that the learning mechanisms of the child were evolved for
millions of years to suit the environment in which learning takes place. This match
between the learning mechanism and the learned skill is very difficult to engineer
as it is related to historical embodiment (Ziemke 2003) which means that the agent
and its environment undergo some form of joint evolution through their interaction.
It is our position that a breakthrough in robotic learning can occur once robots can
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2 1 Introduction

get a similar chance to co-evolve their learning mechanisms with the environments
in which they are embodied.

Another key reason of this superiority is the existence of the care-giver. The care-
giver helps the child in all stages of learning and in the same time provides the fail safe
mechanism that allows the child tomakemistakes that are necessary for learning. The
care-giver cannot succeed in this jobwithout being able to communicate/interact with
the child using appropriate interaction modalities. During the first months and years
of life, the child is unable to use verbal communication and in this case nonverbal
communication is the only modality available for the care-giver. This importance
of nonverbal communication in this key period in the development of any human
being is a strong motivation to study this form of communication and ways to endow
robots and other embodied agents with it. Even during adulthood, human beings still
use nonverbal communication continuously either consciously or unconsciously as
researchers estimate that over 70% of human communication is nonverbal (Argyle
2001). It is our position here that robots need to engage in nonverbal communication
using natural means with their human partners in order for them to learn the most
from these interactions as well as to be more acceptable as partners (not just tools)
in the social environment.

Research in learning from demonstration (imitation) (Billard and Siegwart 2004)
can be considered as an effort to provide a care-giver-like partner for the robot to help
in teaching it basic skills or to build complex behaviors from already learned basic
skills. In this type of learning, the human partner shows the robot how to execute
some task, then the robot watches and learns a model of the task and starts executing
it. In some systems the partner can also verbally guide the robot (Rybski et al. 2007),
correct robot mistakes (Iba et al. 2005), use active learning by guiding robot limps to
do the task (Calinon and Billard 2007), etc. In most cases the focus of the research is
on the task itself not the interaction that is going between the robot and the teacher.
A natural question then is who taught the robot this interaction protocol? Nearly in
all cases, the interaction protocol is fixed by the designer. This does not allow the
robot to learn how to interact which is a vital skill for robot’s survival (as it helps
learning from others) and acceptance (as it increases its social competence).

Teaching robot interaction skills (especially nonverbal interaction skills) is more
complex than teaching them other object related skills because of the inherent ambi-
guity of nonverbal behavior, its dependencyon the social context, culture andpersonal
traits, and the sensitivity of nonverbal behavior to slight modifications of behavior
execution. Another reason of this difficulty is that learning using a teacher requires
an interaction protocol, so how canwe teach the robots the interaction protocol itself?
One major goal of this book is to overcome these difficulties and develop a com-
putational framework that allows the robot to learn how to interact using nonverbal
communication protocols from human partners.

Considering learning from demonstration (imitation learning) again, most work in
the literature focuses on how to do the imitation and how to solve the correspondence
problem (difference in form factor between the imitatee and the imitator) (Billard
and Siegwart 2004) but rarely on the question of what to imitate from the continuous
stream of behaviors that other agents in the environment are constantly executing.
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Based on our proposed deep link between sociality and autonomy we propose to
integrate imitationmorewithin the normal functioning of the robot/agent by allowing
it to discover for itself interesting behavioral patterns to imitate, best times to do the
imitation and best ways to utilize feedback using natural social cues. This completes
the cycle of autonomy–sociality relation and is discussed toward the end of this book
(Chap.12).

The proposed approach for achieving autonomous sociality can be summarized
as autonomous development of natural interactive behavior for robots and embodied
agents. This section will try to unwrap this description by giving an intuitive sense
of each of the terms involved in it.

Theword “robot”was introduced toEnglish by theCzech playwright, novelist and
journalist Karel Capek (1880–1938) who introduced it in his 1920 hit play, R.U.R.,
or Rossum’s Universal Robots. The root of the word is an old Church Slavonic word,
robota, for servitude, forced labor or drudgery. This may bring to mind the vision of
an industrial robot in a factory content to forever do what it was programmed to do.
Nevertheless, this is not the sense by which Capek used the word in his play. R.U.R.
tells the story of a company using the latest science to mass produce workers who
lack nothing but a soul. The robots perform all the work that humans preferred not to
do and, soon, the company is inundated with orders. At the end, the robots revolt, kill
most of the humans only to find that they do not know how to produce new robots.
In the end, there is a deux ex machina moment, when two robots somehow acquire
the human traits of love and compassion and go off into the sunset to make the world
anew.

A brilliant insight of Capek in this play is understanding that working machines
without the social sense of humans cannot enter our social life. They canbedangerous
and can only be redeemed by acquiring some sense of sociality. As technology
advanced, robots are now moving out of the factories and into our lives. Robots are
providing services for the elderly, work in our offices and hospitals and starting to
live in our homes. This makes it more important for robots to become more social.

The word “behave” has two interrelated meanings. Sometimes it is used to point
to autonomous behavior or achieving tasks, yet in other cases it is used to stress
being polite or social. This double meaning is one of the main themes connecting
the technical pieces of our research: autonomy and sociality are interrelated. Truly
social robots cannot be but truly autonomous robots.

An agent X is said to be autonomous from an entity Y toward a goal G if and only
if X has the power to achieve G without needing help from Y (Castelfranchi and
Falcone 2004). The first feature of our envisioned social robot is that it is autonomous
from its designer toward learning and executing natural interaction protocols. The
exact notion of autonomy and its incorporation in the proposed system are discussed
in Chap.8. For now, it will be enough to use the aforementioned simple definition of
autonomy.

The term “developmental” is used here to describe processes and mechanisms
related to progressive learning during individual’s life (Cicchetti and Tucker 1994).
This progressive learning usually unfolds into distinctive stages. The proposed sys-
tem is developmental in the sense that it provides clearly distinguishable stages of
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progression in learning that covers the robot’s—or agent’s—life. The system is also
developmental in the sense that its first stages require watching developed agent
behaviors (e.g. humans or other robots) without the ability to engage in these inter-
actions, while the final stage requires actual engagement in interactions to achieve
any progress in learning. This situation is similar to the development of interaction
skills in children (Breazeal et al. 2005a).

An interaction protocol is defined here as multi-layered synchrony in behavior
between interaction partners (Mohammad and Nishida 2009). Interaction protocols
can be explicit (e.g. verbal communication, sign language etc.) or implicit (e.g. rules
for turn taking and gaze control). Interaction protocols are in general multi-layered
in the sense that the synchrony needs to be sustained at multiple levels (e.g. body
alignment in the lowest level, and verbal turn taking in a higher level). Special cases of
single layer interaction protocols certainly exist (e.g. human–computer interaction
through text commands and printouts), but they are too simple to gain from the
techniques described in this work.

Interaction Protocols can have a continuous range of naturalness depending on
how well they satisfy the following two properties:

1. A natural interaction protocol minimizes negative emotions of the partners com-
pared with any other interaction protocol. Negative emotions here include stress,
high cognitive loads, frustration, etc.

2. A natural interaction protocol follows the social norms of interaction usually
utilized in human–human interactions within the appropriate culture and context
leading to a state of mutual-intention.

The first feature stresses the psychological aspect associated with naturalness
(Nishida et al. 2014 provides detailed discussion). The second one emphasizes the
social aspect of naturalness and will be discussed in Chap. 8.

Targets of this work are robots and embodied agents. A robot is usually defined
as a computing system with sensors and actuators that can affect the real world
(Brooks 1986). An embodied agent is defined here as an agent that is historically
embodied in its environment (as defined in Chap.8) and equipped with sensors and
actuators that can affect this environment. Embodied Conversational Agents (ECA)
(Cassell et al. 2000) can fulfill this definition if their capabilities are grounded in the
virtual environments they live within. Some of the computational algorithms used
for learning and pattern analysis that will be presented in this work are of general
nature and can be used as general tools for machine learning, nevertheless, the whole
architecture relies heavily on agent’s ability to sense and change its environment
and partners (as part of this environment) and so it is not designed to be directly
applicable to agents that cannot satisfy these conditions. Also the architecture is
designed to allow the agent to develop (in the sense described earlier in this section)
in its own environment and interaction contexts which facilitates achieving historical
embodiment.

Putting things together, we can expand the goal of this book in two steps: from
autonomously social robots to autonomous development of natural interaction proto-
cols for robots and embodied agents which in turn can be summarized as: design and

http://dx.doi.org/10.1007/978-3-319-25232-2_8
http://dx.doi.org/10.1007/978-3-319-25232-2_8


1.1 Motivation 5

evaluation of systems that allow robots and other embodied agents to progressively
acquire and utilize a grounded multi-layered representation of socially accepted syn-
chronizing behaviors required for human-like interaction capacity that can reduce
the stress levels of their partner humans and can achieve a state of mutual intention.
The robot (or embodied agent) learns these behaviors (protocols) independent of its
own designer in the sense that it uses only unsupervised learning techniques for all
its developmental stages and it develops its own computational processes and their
connections as part of this learning process.

This analysis of our goal reveals some aspects of the concepts social and
autonomous as used in this book. Even though these terms will be discussed in
much more details later (Chaps. 6 and 8), we will try to give an intuitive description
of both concepts here.

In robotics and AI research, the term social is associated with behaving according
to some rules accepted by the group and the concept is inmany instances related to the
sociality of insects and other social animals more than the sense of natural interaction
with humans highlighted earlier in this section. In this book, on the other hand, we
focus explicitly on sociality as the ability to interact naturally with human beings
leading to more fluid interaction. This means that we are not interested in robots
that can coordinate between themselves to achieve goals (e.g. swarm robotics) or
that are operated by humans through traditional computer mediated interfaces like
keyboards, joysticks or similar techniques.

We are not interested much in tele-operated robots, even though the research pre-
sented here can be of value for such robots, mainly because these robots lack—in
most cases—the needed sense of autonomy. The highest achievement of a teleoper-
ated robot is usually to disappear altogether giving the operating human the sense of
being in direct contact with the robot’s environment and allowing her to control this
environment without much cognitive effort. The social robots we think about in this
book do not want to disappear and be taken for granted but we like them to become
salient features of the social environment of their partner humans. These two goals
are not only different but opposites. This sense of sociality as the ability to interact
naturally is pervasive in this book. Chapter 6 delves more into this concept.

1.2 General Overview

The core part of this book (Part II) represents our efforts to realize a computational
framework within which robots can develop social capacities as explained in the pre-
vious sections and can use these capacities for enhancing their task competence. This
work can be divided into three distinct—but inter-related—phases of research. The
core research aimed at developing a robotic architecture that can achieve autonomous
development of interactive behavior and providing proof-of-concept experiments to
support this claim (Chaps. 9–11 in this book). The second phase was real world appli-
cations of the proposed system to two main scenarios (Sect. 1.4). The third phase

http://dx.doi.org/10.1007/978-3-319-25232-2_6
http://dx.doi.org/10.1007/978-3-319-25232-2_8
http://dx.doi.org/10.1007/978-3-319-25232-2_6
http://dx.doi.org/10.1007/978-3-319-25232-2_9
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Basic Interactive Behaviors
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ToM

Learning through 
data mining

Learning through 
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Fig. 1.1 The concept of interaciton protocols as coupling between the intentions of different part-
ners implemented through a simulation based theory of mind

focused on the fluid imitation engine (Chap. 12) which tries to augment learning
from demonstration techniques (Chap. 13) with a more natural interaction mode.

The core research was concerned with the development of the Embodied Inter-
active Control Architecture (EICA). This architecture was designed from ground
up to support the long term goal of achieving Autonomous Development of Natural
Interactive Behavior (ADNIB). The architecture is based on two main theoretical
hypotheses formulated in accordance with recent research in neuroscience, experi-
mental psychology and robotics. Figure1.1 shows a conceptual view of our approach.
Social behavior is modeled by a set of interaction protocols that in turn implement
dynamic coupling between the intentions of interaction partners. This coupling is
achieved through simulation of the mental state of the other agent (ToM). ADNIB
is achieved by learning both the basic interactive acts using elementary time-series
mining techniques and higher level protocols using imitation.

The basic platform described in Chap.9 was used to implement autonomously
social robots through a special architecture that is described in details in Chap. 10.
Chapter 11 is dedicated to the details of the developmental algorithms used to achieve
autonomous sociality and to case studies of their applications. This developmental
approach passes through three stages:

Interaction Babbling: During this stage, the robot learns the basic interactive acts
related to the interaction type at hand. The details of the algorithms used at this
stage are given in Sect. 11.1.

Interaction Structure Learning: During this stage, the robot uses the basic inter-
active acts it learned in the previous stage to learn a hierarchy of probabilis-
tic/dynamical systems that implement the interaction protocol at different time
scales and abstraction levels. Details of this algorithm are given in Sect. 11.2.

http://dx.doi.org/10.1007/978-3-319-25232-2_12
http://dx.doi.org/10.1007/978-3-319-25232-2_13
http://dx.doi.org/10.1007/978-3-319-25232-2_9
http://dx.doi.org/10.1007/978-3-319-25232-2_10
http://dx.doi.org/10.1007/978-3-319-25232-2_11
http://dx.doi.org/10.1007/978-3-319-25232-2_11
http://dx.doi.org/10.1007/978-3-319-25232-2_11
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Interactive Adaptation: During this stage, the robot actually engages in human–
robot interactions to adapt the hierarchical model it learned in the previous stage
to different social situations and partners. Details of this algorithm are given in
Sect. 11.3.

The final phase was concerned with enhancing the current state of learning by
demonstration research by allowing the agent to discover interesting patterns of
behavior. This is reported in Chap. 12.

1.3 Relation to Different Research Fields

The work reported in this book relied on the research done in multiple disciplines
and contributed to these disciplines to different degrees. In this section we briefly
describe the relation between different disciplines and this work.

Thiswork involved threemain subareas. The development of the architecture itself
(EICA), the learning algorithms used to learn the controller in the stages highlighted
in the previous section and the evaluation of the resulting behavior. Each one of
these areas was based on results found by many researchers in robotics, interactions
studies, psychology, neuroscience, etc.

1.3.1 Interaction Studies

Interaction studies is a wide area of research focusing on the study of human–human
interactions in various contexts including face to face situations. A classical theory
of human–human interaction is the speech act theory according to which utterances
(and other communicative behaviors) are actions performed by rational agents (e.g.
humans) to further their goals and achieve their desires based on their beliefs and
intentions (Austin 1975). In some sense, our work is extending the notion of speech
acts to what we can call interaction acts that represent socially meaningful signals
issued through interactive actions including both verbal and nonverbal behaviors.
The speech act theory involves analysis of utterances at three levels:

1. locutionary actwhich involves the actual physical activity generating the utterance
and its direct meaning.

2. illocutionary act which involves the intended socially meaningful action that
the act was invoked to provoke. This includes assertion, direction, commission,
expression and declaration.

3. perlocutionary act which encapsulates the actual outcome of the utterance includ-
ing convincing, inspiring, persuading, etc.

The most important point of the speech-act theory for our purposes is its clear
separation between locutionary acts and illocutionary acts. Notice that the same utter-
ance with the same locutionary act may invoke different illocutionary acts based on

http://dx.doi.org/10.1007/978-3-319-25232-2_11
http://dx.doi.org/10.1007/978-3-319-25232-2_12
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the context, shared background of interaction partners, and nonverbal behavior asso-
ciated with the locutionary act. This entails that understanding the social significance
of verbal behavior depends crucially on the ability of interacting partners to parse
the nonverbal aspects of the interaction (which we encapsulate in the interaction pro-
tocol) and its context (which selects the appropriate interaction protocol for action
generation and understanding).

Another related theory to our work is the contribution theory of Herbert Clark
(Clark and Brennan 1991) which provides a specific model of communication. The
principle constructs of the contribution theory are the common ground andgrounding.

The common ground is a set of beliefs that are held by interaction partners and,
crucially, known by them to be held by other interaction partners. This means that
for a proposition b to be a part of the common ground it must not only be a member
of the belief set of all partners involved in the interaction but a second order belief B
that has the form ‘for all interaction partners P: P believes b’ must also be a member
of the belief set of all partners.

Building this common ground is achieved through a process that Clark calls
grounding. Grounding is achieved through speech-acts and nonverbal behaviors.
This process is achieved through a hierarchy of contributions where each contribu-
tion is considered to consist of two phases:

Presentation phase: involving the presentationof anutteranceU by A to B expecting
B to provide some evidence e that (s)he understood U . By understanding here
we mean not only getting the direct meaning but the underlying speech act which
depends on the context and nonverbal behavior od A.

Acceptance phase: involving B showing evidence e or stronger that it understoodU .

Both the presentation and acceptance phases are required to ensure that the content
of utterance U (or the act it represents) is correctly encoded as a common ground for
both partners A and B upon which future interaction can be built.

Clark distinguishes three methods of accepting an utterance in the acceptance
phase:

1. Acknowledgment through back channels including continuers like uh, yeah and
nodding.

2. Initiation of a relevant next turn. A common example is using an answer in the
acceptance phase to accept a question given in the presentation phase. The answer
here does not only involve information about the question asked but also reveals
that B understood what A was asking about. In some cases, not answering a
question reveals understanding. The question/answer pattern is an example of a
more general phenomenon called adjacency pairs in which issuing the second
part of the pair implies acceptance of the first part.

3. The simplest form of acceptance is continued attention. Just by not interrupting
or changing attention focus, B can signal acceptance to A. One very ubiquitous
way to achieve this form of attention is joint or mutual gaze which signals without
any words the focus of attention. When the focus of attention is relevant to the
utterance, A can assume that B understood the presented utterance.
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It is important to notice that in two of these three methods, nonverbal behavior
is the major component of the acceptance response. Add to this that the utterance
meaning is highly dependent on the accompanying nonverbal behavior and we can
see clearly the importance of the nonverbal interaction protocol in achieving natural
interaction between humans. This suggests that social robots will need to achieve
comparable levels of fluency in nonverbal interaction protocols if they are to succeed
in acting as interaction partners.

The grounding process itself shows another important feature of these interaction
protocols.Acceptance can be achieved through another presentation/acceptance dyad
leading to a hierarchical structure. An example of this hierarchical organization can
be seen in an example due to Clark and Brennan (1991):

Alan: Now, –um, do you and your husband have a j– car?

Barbara: – have a car?

Alan: yeah.

Barbara: no –

The acceptance phase of the first presentation involved a complete presentation
of a question (“have a car?”) and a complete acceptance for this second presentation
(“yeah”). The acceptance of the first presentation is not complete until the second
answer of Barbara (“no”).

This hierarchical structure of conversation and interaction in general informed the
design of our architecture as will be explained in details in Chap.10.

The importance of gaze in the acceptance phase of interactions and signaling
continued attention inspired our work in gaze control as shown by the selection of
interaction scenarios (Sect. 1.4) and applications of our architecture (Sects. 9.7 and
11.4).

1.3.2 Robotics

For the purposes of this chapter, we can define robotics as building and evaluating
physically situated agents. Robotics itself is a multidisciplinary field using results
from artificial intelligence, mechanical engineering, computer science, machine
vision, data mining, automatic control, communications, electronics etc.

This work can be viewed as the development of a novel architecture that supports
a specific kind of Human–Robot Interaction (namely grounded nonverbal commu-
nication). It utilizes results of robotics research in the design of the controllers used
to drive the robots in all evaluation experiments. It also utilizes previous research in
robotic architectures (Brooks 1986) and action integration (Perez 2003) as the basis
for the proposed EICA architecture (See Chap.9).

Several threads of research in robotics contributed to the work reported in this
book. The most obvious of these is research in robotic architectures to support
human–robot interaction and social robotics in general (Sect. 6.3).

http://dx.doi.org/10.1007/978-3-319-25232-2_10
http://dx.doi.org/10.1007/978-3-319-25232-2_9
http://dx.doi.org/10.1007/978-3-319-25232-2_11
http://dx.doi.org/10.1007/978-3-319-25232-2_9
http://dx.doi.org/10.1007/978-3-319-25232-2_6
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This direction of research is as old as robotics itself. Early architectures were
deliberative in nature and focused on allowing the robot to interact with its (usually
unchanging) environment. Limitations of software and hardware reduced the need
for fast response in these early robots with Shakey as the flagship of this generation of
robots. Shakey was developed from approximately 1966 through 1972. The robot’s
environment was limited to a set of rooms and corridors with light switches that can
be interacted with.

Shakey’s programming languagewasLISPand it usedSTRIPS (StanfordResearch
Institute Problem Solver) as its planner. A STRIPS system consists of an initial state,
a goal state and a set of operations that can be performed. Each operation has a set
of preconditions that must be satisfied for the operation to be executable, and a set of
postconditions that are achieved once the operation is executed. A plan in STRIPS
is an ordered list of operations to be executed in order to go from the initial state to
the goal state. Just deciding whether a plan exists is a PSPACE-Complete problem.

Even from this very first example, the importance of goal directed behavior and
the ability to autonomously decide on a course of action is clear. Having people
interacting with the robot, only complicates the problem because of the difficulty in
predicting human behavior in general.

Due to the real-time restrictions of modern robots, this deliberative approach was
later mostly replaced by reactive architectures that make the sense–act loop much
shorter hoping to react timely to the environment (Brooks et al. 1998). We believe
that reactive architectures cannot, without extensions, handle the requirements of
contextual decision making hinted to in our discussion of interaction studies because
of the need to represent the interaction protocol and reason about the common ground
with interaction partners.

For these reasons (and others discussed in more details in Chap.8) we developed
a hybrid robotic architecture that can better handle the complexity of modeling and
executing interaction protocols as well as learning them.

The second thread of robotics research that our system is based upon is the tradition
of intelligent robotics which focuses on robots that can learn new skills. Advances in
this area mirror the changes in robotic architecture from more deliberative to more
reactive approaches followed by several forms of hybrid techniques.

An important approach for robot learning that is gainingmore interest from robot-
ocists is learning from demonstration. In the standard learning from demonstration
(LfD) setting, a robot is shown some behavior and is expected to learn how to execute
it. Several approaches to LfD have been proposed over the years starting from inverse
optimal control in the 1990s and the two currentlymost influential approaches are sta-
tistical modeling and Dynamical Motion Primitives (Chap. 13). The work reported
in this book extends this work by introducing a complete system for learning not
only how to imitate a demonstration but for segmenting relevant demonstrations
from continuous input streams in what we call fluid imitation discussed in details in
Chap.12.

http://dx.doi.org/10.1007/978-3-319-25232-2_8
http://dx.doi.org/10.1007/978-3-319-25232-2_13
http://dx.doi.org/10.1007/978-3-319-25232-2_12
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1.3.3 Neuroscience and Experimental Psychology

Neuroscience can be defined as the study of the neural system in humans and animals.
The design of EICA and its top-down, bottom-up action generation mechanism was
inspired in part by some results of neuroscience including the discovery of mirror
neurons (Murata et al. 1997) and their role in understanding the actions of others and
learning the Theory of Mind (See Sect. 8.2).

Experimental Psychology is the experimental study of thought. EICA architecture
is designed based on two theoretical hypotheses. The first of them (intention through
interaction hypothesis) is based on results in experimental psychology especially the
controversial assumption that conscious intention, at least sometimes, follows action
rather than preceding it (See Sect. 8.3).

1.3.4 Machine Learning and Data Mining

Machine learning is defined here as the development and study of algorithms that
allow artificial agents (machines) to improve their behavior over time. Unsupervised
as well as supervised machine learning techniques where used in various parts of this
work to model behavioral patterns and learn interaction protocols. For example, the
Floating Point Genetic Algorithm FPGA (presented in Chap. 9) is based on previous
results in evolutionary computing.

Data mining is defined here as the development of algorithms and systems to
discover knowledge from data. In the first developmental stage (interaction babbling)
we aim at discovering the basic interactive acts from records of interaction data (See
Sect. 11.1.1). Researchers in data mining developed many algorithms to solve this
problem including algorithms for detection of change points in time series as well as
motif discovery in time series.We used these algorithms as the basis for development
of novel algorithms more useful for our task.

1.3.5 Contributions

Themain contribution of thiswork is to provide a complete framework for developing
nonverbal interactive behavior in robots using unsupervised learning techniques. This
can form the basis for developing future robots that exhibit ever improving interactive
abilities and that can adapt to different cultural conditions and contexts. This work
also contributed to various fields of research:

Robotics: The main contributions to the robotics field are:

• The EICA architecture provides a common platform for implementing both
autonomous and interactive behaviors.

http://dx.doi.org/10.1007/978-3-319-25232-2_8
http://dx.doi.org/10.1007/978-3-319-25232-2_8
http://dx.doi.org/10.1007/978-3-319-25232-2_9
http://dx.doi.org/10.1007/978-3-319-25232-2_11
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• The proposed learning system can be used to teach robots new behaviors by utiliz-
ing natural interaction modalities which is a step toward general purpose robots
that can be bought then trained by novice users to do various tasks under human
supervision.

Experimental Psychology: This work provides a computational model for testing
theories about intention and theory of mind development.

Machine Learning: A novel Floating Point Genetic Algorithm was developed to
learn the parameters of any parallel system including the platform of EICA (See
Chap.9). The Interaction Structure Learning algorithms presented in Sect. 11.2
can be used to learn a hierarchy of dynamical systems representing relations
between interacting processes at multiple levels of abstraction.

Data Mining: Section3.5 introduces several novel change point discovery algorithms
that can be shown to provide higher specificity over a traditional CPD algo-
rithm both in synthetic and real world data sets. Also this work defines the con-
strained motif discovery problem and provides several algorithms for solving it
(See Sect. 4.6) as well as algorithms for the discovery of causal relations between
variables represented by time-series data (Sect. 5.5)

Interaction Studies: This book reports the development of several gaze controllers
that could achieve human-like gazing behavior based on the approach–avoidance
model as well as autonomous learning of interaction protocols. These controllers
can be used to study the effects of variations in gaze behavior on the interaction
smoothness. Moreover, we studied the effect of mutual and back imitation in the
perception of robot’s imitative skill in Chap.7.

1.4 Interaction Scenarios

To test the ideas presented in this work we used two interaction scenarios in most of
the experiments done and presented in this book.

Thefirst interaction scenario is presented inFig. 1.2. In this scenario the participant
is guiding a robot to follow a predefined path (drawnor projected on the ground) using
free hand gestures. There is no predefined set of gestures to use and the participant
can use any hand gestures (s)he sees useful for the task. This scenario is referred to
as the guided navigation scenario in this book.

Optionally a set of virtual objects are placed at different points of the path that
are not visible to the participant but are known to the robot (only when approaching
them) using virtual infrared sensors. Using these objects it is possible to adjust the
distribution of knowledge about the task between the participant and the robot. If
no virtual objects are present in the path, the participant–robot relation becomes a
master–slave one as the participant knows all the information about the environment
(the path) and the robot can only follow the commands of the participant. If objects are
present in the environment the relation becomes more collaborative as the participant
now has partial knowledge about the environment (the path) while the robot has the

http://dx.doi.org/10.1007/978-3-319-25232-2_9
http://dx.doi.org/10.1007/978-3-319-25232-2_11
http://dx.doi.org/10.1007/978-3-319-25232-2_3
http://dx.doi.org/10.1007/978-3-319-25232-2_4
http://dx.doi.org/10.1007/978-3-319-25232-2_5
http://dx.doi.org/10.1007/978-3-319-25232-2_7
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Fig. 1.2 Collaborative navigation scenario

remaining knowledge (locations and states of the virtual objects) which means that
succeeding in finishing the task requires collaboration between them and a feedback
channel from the robot to the participant is necessary. When such virtual objects
are used, the scenario will be called collaborative navigation instead of just guided
navigation as the robot is now active in transferring its own knowledge of object
locations to the human partner.

In all cases the interaction protocol in this task is explicit as the gestures used are
consciously executed by the participant to reveal messages (commands) to the robot
and the same is true for the feedback messages from the robot. This means that both
partners need only to assign a meaning (action) to every detected gesture or message
from the other partner. The one giving commands is called the operator and the one
receiving them is called the actor.

The second interaction scenario is presented in Fig. 1.3. In this scenario, the par-
ticipant is explaining the task of assembling/disassembling and using one of three
devices (a chair, a stepper machine, or a medical device). The robot listens to the
explanation and uses nonverbal behavior (especially gaze control) to give the instruc-
tor a natural listening experience. The verbal content of the explanation is not utilized
by the robot and the locations of objects in the environment are not known before
the start of the session. In this scenario, the robot should use human-like nonverbal
listening behavior even with no access to the verbal content. The protocol in this
case is implicit in the sense that no conscious messages are being exchanged and the
synchrony of nonverbal behavior (gaze control) becomes the basis of the interaction
protocol.
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Fig. 1.3 Explanation scenario

1.5 Nonverbal Communication in Human–Human
Interactions

The system proposed in this book targets situations in which some form of a nat-
ural interaction protocol—in the sense explained in Sect. 1.1—needs to be learned
and/or used. Nonverbal behavior during face to face situations provides an excellent
application domain because it captures the notion of a natural interaction protocol
and in the same time it is an important interaction channel for social robots that is
still in need for much research to make human–robot interaction more intuitive and
engaging. This section provides a brief review of research in human–human face to
face interactions that is related to our work.

During face to face interactions, humans use a variety of interaction channels to
convey their internal state and transfer the required messages (Argyle 2001). These
channels include verbal behavior, spontaneous nonverbal behavior and explicit non-
verbal behavior. Research in natural language processing and speech signal analysis
focuses on the verbal channel. This work on the other hand focuses only on nonverbal
behavior.

Table1.1 presents different types of nonverbal behaviors according to the aware-
ness level of the sender (the one who does the behavior) and the receiver (the partner
who decodes it). We are interested mainly in natural intuitive interactions which
rules out the last two situations. We are also more interested in behaviors that affect
the receiver which rules out some of situations of the third case (e.g. gaze saccades
that do not seem to affect the receiver). In the first case (e.g. gestures, sign language,
etc.), an explicit protocol has to exist that tells the receiver how to decode the behav-
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Table 1.1 Types of nonverbal behavior categorized by the awareness level of sender and receiver

Sender Receiver Examples

1 Aware Aware Iconic gestures, sign language

2 Mostly Unaware Mostly aware Most nonverbal communication

3 Unaware Unaware Gaze shifts, pupil dilation

4 Aware Unaware Trained salesman’s utilization intonation and
appearance (clothes etc.)

5 Unaware Aware Trained interrogator discovering if the
interrogated person is lying

ior of the listener (e.g. pointing to some device means attend to this please). In the
second and third cases (e.g. mutual gaze, body alignment), an implicit protocol exists
that helps the receiver—mostly unconsciously—in decoding the signal (e.g. when
the partner is too far he may not be interested in interaction).

Over the years, researchers in human–human interaction have discovered many
types of synchrony including synchronization of breathing (Watanabe and Okubo
1998), posture (Scheflen 1964), mannerisms (Chartrand and Bargh 1999), facial
actions (Gump andKulik 1997), and speaking style (Nagaoka et al. 2005). Yoshikawa
andKomori (2006) studied nonverbal behavior during counseling sessions and found
high correlation between embodied synchrony (such as body movement coordina-
tion, similarity of voice strength and coordination and smoothness of response tim-
ing) and feeling of trust. This result and similar ones suggest that synchrony during
nonverbal interaction is essential for the success of the interaction and this is why
this channel can benefit the most from our proposed system which is in a sense a
way to build robots and agents that can learn these kinds of synchrony in a grounded
way.

There are many kinds of nonverbal behavior used during face to face interaction.
Explicit and implicit protocols appear with different ratios in each of these channels.
Researchers in human–human interaction usually classify these into (Argyle 2001):

1. Gaze (and pupil dilation)
2. Spatial Behavior
3. Gestures, and other bodily movements
4. Non-verbal vocalization
5. Posture
6. Facial Expression
7. Bodily contact
8. Clothes, and other aspects of appearance
9. Smell

The previous list was ordered, roughly, by applicability to human–robot interac-
tion and especially the suitability for applying our proposed technique.
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Fig. 1.4 Some of the robots used in this work [a is reproduced with permission from (Kanda et al.
2002)]. a Robovie II, b cart robot, c NAO, d E-puck

Smell is rarely used in HRI because of the large difference in form factor between
most robots and humans which is expected to lead to different perception of the
smell than with the human case. In this work we do not utilize this nonverbal channel
mainly because it is not an interactive channel which means that the two partners
cannot change their behavior (smell) based on the behavior of each other.

Clothes and other aspects of appearance are important nonverbal signaling chan-
nels. Nevertheless, as it was the case with smell, this channel is not useful for our
purposes in this research because it is not interactive. At least with current state of the
art in robotics, it is hard (or even impossible) to change robot’s appearance during
the interaction except in a very limited sense (e.g. changing the color of some LEDs
etc.). This channel was not utilized in this work for this reason. In fact we tried to
build our system without any specific assumptions about the appearance of the robot
and for this reason we were able to use four different robots with a large range of
differences in their appearances (Fig. 1.4).

Bodily contact is not usually a safe thing to do during human–robot interaction
with untrained users especially with mechanically looking robots. In this work we
tried to avoid using this channel for safety reasons even though there is no principled
reason that disallows the proposed system from being applied in cases where bodily
contact is needed.

With current state of the art in robotics, facial expressiveness of robots is not in
general comparable to human facial expressivenesswith some exceptions though like
Leonardo (Fig. 6.4) and germinoids (Fig. 6.3). This inability of the robot to generate
human-like behavior, changes the situation from an interaction into facial expression
detection from the robot’s side. This is the main reason facial expressions also were
not considered in this work.

Posture is an important nonverbal signal. It conveys information about the internal
state of the poser and can be used to analyze power distribution in the interaction
situation (Argyle 2001). Figure1.4 shows some of the robots used in our work.
Unfortunately with the exception of NAO and Robovie II they can convey nearly no
variation of posture and even with the Robovie II the variation in posture is mainly
related to hand configuration which is intertwined with the gesture channel. For these
practical reasons, we did not explicitly use this channel in this work.

http://dx.doi.org/10.1007/978-3-319-25232-2_6
http://dx.doi.org/10.1007/978-3-319-25232-2_6
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Non-verbal vocalization usually comes with verbal behavior and in this work we
tried to limit ourselves to the nonverbal realm so it was not utilized in our evaluations.
Nevertheless, this channel is clearly one of the channels that can benefit most of our
proposed system because of the multitude of synchrony behaviors discovered in it.

Gestures and other body movements can be used both during implicit and explicit
protocols. Robot’s ability to encode gestures depends on the degrees of freedom
it has in its hands and other parts of the body. For the first glance, it seems that
the robots we used (Fig. 1.4) do not have enough degrees of freedom to convey
gestures. Nevertheless, we have shown in one of our exploratory studies (Mohammad
and Nishida 2008) that even a miniature robot like e-puck (Fig. 1.4d) is capable of
producing nonverbal signals that are interpreted as a form of gesture which can be
used to convey the internal state of the robot. Gesture is used extensively in this work.

Spatial behavior appears in human–human interactions in many forms including
distance management and body alignment. In this work we utilized body alignment
as one of the behaviors learned by the robot in the assembly/disassembly explanation
scenario described in Sect. 1.4.

Gaze seems to be one of the most useful nonverbal behaviors both in human–
human and human–robot interactions and for this reason many of our evaluation
experiments were focusing on gaze control (e.g. Sect. 9.7).

1.6 Nonverbal Communication in Human–Robot
Interactions

Robots are expected to live in our houses and offices in the near future and this stresses
the issue of effective and intuitive interaction. For such interactions to succeed, the
robot and the human need to share a common ground about the current state of
the environment and the internal states of each other. Human’s natural tendency for
anthropomorphism can be utilized in designing both directions of the communication
(Miyauchi et al. 2004). This assertion is supported by research in psychological
studies (see for example Reeves and Nass 1996) and research in HRI (Breazeal et al.
2005b).

For example, Breazeal et al. (2005b) conducted a study to explore the impact of
nonverbal social cues and behavior on the task performance of Human–Robot teams
and found that implicit non-verbal communication positively impacts Human–Robot
task performance with respect to understandability of the robot, efficiency of task
performance, and robustness to errors that arise from miscommunication (Breazeal
et al. 2005b).

http://dx.doi.org/10.1007/978-3-319-25232-2_9
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1.6.1 Appearance

Robots come in different shapes and sizes. From Humanoids like ASIMO and NAO,
to miniature non-humanoids like e-puck. The response of human partners to the
behavior of these different robots is expected to be different.

Robins et al. (2004) studied the effect of robot appearance in facilitating and
encouraging interaction of children with autism. Their work compares children’s
level of interaction with and response to the robot in two different scenarios: one
where the robot was dressed like a human (with a ‘pretty girl’ appearance) with an
uncovered face, and the other when it appearedwith plain clothing andwith a feature-
less, masked face. The results of this experiment clearly indicate autistic children’s
preference— in their initial response—for interaction with a plain, featureless robot
over interaction with a human-like robot (Robins et al. 2004).

Kanda et al. (2008) compared participants’ impressions of and behaviors toward
two real humanoid robots (ASIMO and Robovie II) in simple human–robot inter-
action. These two robots have different appearances but are controlled to perform
the same recorded utterances and motions, which are adjusted by using a motion
capturing system. The results show that the difference in appearance did not affect
participants’ verbal behaviors but did affect their non-verbal behaviors such as dis-
tance and delay of response (Kanda et al. 2008).

These results (supported by other studies) suggest that, in HRI, appearance mat-
ters. For this reason, we used four different robots with different appearances, and
sizes in our study (Fig. 1.4).

1.6.2 Gesture Interfaces

The use of gestures to guide robots (both humanoids and non-humanoids) attracted
much attention in the recent twenty years (Triesch and von derMalsburg 1998;Nickel
and Stiefelhagen 2007; Mohammad and Nishida 2014). But as it is very difficult to
detect all the kinds of gestures that humans can—and sometimes do—use, most
systems utilize a small set of predefined gestures (Iba et al. 2005). For this reason,
it is essential to discover the gestures that are likely to be used in a specific situation
to build the gesture recognizer.

On the other hand, many researchers have investigated the feedback modalities
available to humanoid robots or humanoid heads (Miyauchi et al. 2004). Fukuda et al.
(2004) developed a robotic-head system as a multimodal communication device for
human–robot interaction for home environments. A deformation approach and a
parametric normalization scheme were used to produce facial expressions for non-
human face models with high recognition rates. A coordination mechanism between
robot’s mood (an activated emotion) and its task was also devised so that the robot
can, by referring to the emotion-task history, select a task depending on its current
mood if there is no explicit task command from the user (Fukuda et al. 2004). Others,
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proposed an active system for eye contact in human robot teams in which the robot
changes its facial expressions according to the observation results of the human to
make eye contact (Kuno et al. 2004).

Feedback from autonomous non-humanoid robots and especiallyminiature robots
is less studied in the literature. Nicolescu and Mataric (2001) suggested acting in the
environment as a feedback mechanism for communicating failure. For example, the
robot re-executes a failed operation in the presence of a human to inform him about
the reasons it failed to complete this operation in the first place. Although this is an
interesting way to transfer information it is limited in use to only communicating
failure. Johannsen (2002) used musical sounds as symbols for directional actions of
the robot. The study showed that this form of feedback is recallable with an accuracy
of 37–100% for non-musicians (97–100% for musicians).

In most cases a set of predefined gestures has to be learned by the operator before
(s)he can effectively operate the robot (Iba et al. 2005; Yong Xu and Nishida 2007).
In this book we develop an unsupervised learning system that allows the robot to
learn the meaning of free hand gestures, the actions related to some task and their
associations by just watching other human/robot actors being guided to do the task
by different operators (Chap.11). This kind of learning by watching experienced
actors is very common in human learning. The main challenge in this case is that
the learning robot has no a-priori knowledge of the actions done by the actor, the
commands given by the operator, or their association and needs to learn the three
in an unsupervised fashion from a continuous input stream of actor movements and
operator’s free hand gestures.

Iba et al. (2005) used a hierarchy of HMMs to learn a new programs demonstrated
by the user using hand gesture. The main limitation of this system is that it requires a
predefined set of gestures. Yong Xu and Nishida (2007) used gesture commands for
guided navigation and compared it to joystick control. The system also used a set of
predefined gestures. Hashiyama et al. (2006) implemented a system for recognizing
user’s intuitive gestures and using them to control an AIBO robot. The system uses
SOMs and Q-Learning to associate the found gestures with their corresponding
action. The first difference between this system and our proposed approach is that it
cannot learn the action space of the robot itself (the response to the gestures as dictated
by the interaction protocol). The second difference is that it needs an awarding signal
to derive theQ-Learning algorithm. Themost important difference is that the gestures
where captured one by one not detected from the running stream of data.

1.6.3 Spontaneous Nonverbal Behavior

Researchers in HRI have also studied spontaneous nonverbal interactive behaviors
during human–robot interactions. Breazeal (2002) and others explored the hypothesis
that untrained humans will intuitively interact with robots in a natural social manner
provided the robot can perceive, interpret, and appropriately respond with familiar
human social cues. Researchers trained a set of classifiers to detect four modes of

http://dx.doi.org/10.1007/978-3-319-25232-2_11
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nonverbal vocalizations (approval, prohibition, attention, comfort) (Breazeal 2000).
The result of the classifier can bias the robot’s affective state by modulating the
arousal and valence parameters of the robot’s emotion system. The emotive responses
are designed such that praise induces positive affect (a happy expression), prohibi-
tion induces negative affect (a sad expression), attentional bits enhance arousal (an
alert expression), and soothing lowers arousal (a relaxed expression). The net affec-
tive/arousal state of the robot is displayed on its face and expressed through body
posture, which serves as a critical feedback cue to the person who is trying to com-
municate with the robot. This expressive feedback serves to close the loop of the
Human–Robot system (Breazeal and Aryananda 2002). Recorded events show that
subjects in the study made use of Robot’s expressive feedback to assess when the
robot understood them. The robot’s expressive repertoire is quite rich, including both
facial expressions and shifts in body posture. The subjects varied in their sensitivity
to the robot’s expressive feedback, but all used facial expression, body posture, or a
combination of both. This result suggests that implicit interaction protocols applica-
ble to human–human interaction may be usable with Human–Robot interactions as
well because users will tend to anthropomorphize robot’s behavior if it resembles
human behavior acceptably well.

Kanda et al. (2007) studied interaction between a humanoid (Robovie II) robot
and untrained subjects using motion analysis. In this experiment, a human teaches
a route to the robot, and the developed robot behaves similar to a human listener
by utilizing both temporal and spatial cooperative behaviors to demonstrate that it
is indeed listening to its human counterpart. Robot’s software consisted of many
communicative units and rules for selecting appropriate communicative units. A
communicative unit realized a particular cooperative behavior such as eye-contact
and nodding, found through previous research inHRI (the SituatedModules architec-
ture used for this work will be discussed in more details in Sect. 6.3.2). The rules for
selecting communicative units were retrieved through a preliminary experiment with
a WOZ method. The results show that employing this carefully designed nonverbal
synchrony behavior by the listener robot increased empathy, sharedness, easiness,
and listening scores according to subjective questionnaires (Kanda et al. 2007).

These two studies emphasize the current state of art in HRI design. Design usually
takes the following steps:

1. The human behavior that needs to be achieved by the robot is analyzed either
from previous human–human and human–computer interaction research (as was
done in the first study Breazeal 2002) or from aWizard of Oz experiment (as was
done in the second study Kanda et al. 2007).

2. The required behavior as understood from this analysis is embedded into the robot
usually using a behavioral robotic architecture.

3. Robot’s behavior is then evaluated to find its effectiveness or comparability to
human behavior.

This strategy is by no means specific to the two studies presented, but it is ubiq-
uitous in human–robot interaction research. This is the same condition we found in
gesture interfaces (See Sect. 1.6.2). The limitation of this strategy is that the result-

http://dx.doi.org/10.1007/978-3-319-25232-2_6
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ing interactive behavior is hard-coded into the robot and is decided and designed
by the researcher which means that this behavior is not grounded into the robot’s
perceptions. This leads to many problems among them:

1. This strategy is only applicable to situations in which the required behavior can be
defined in terms of specific rules and generation processes and, if such rules are
not available, expensive experiments have to be done in order to generate these
rules.

2. The rules embedded by the designer are not guaranteed to be easily applicable
by the robot because of its limited perceptual and actuation flexibility compared
with the humans used to discover these rules.

3. Each specific behavior requires separate design and it is not clear how can such
behaviors (e.g. nonverbal vocal synchrony and body alignment) be combined.

The work reported in this book tries to alleviate these limitations by enabling the
robot to develop its own grounded interaction protocols.

1.7 Behavioral Robotic Architectures

Learning natural interactive behavior requires an architecture that allows and facili-
tates this process. Because natural human–human interactive behavior is inherently
parallel (e.g. gaze control and spatial alignment are executed simultaneously), we
focus on architectures that support parallel processing. These kinds of architectures
are usually called behavioral architectures when every process is responsible of
implementing a kind of well defined behavior into the robot (e.g. one process for
gaze control, one process for body alignment etc.). In this section we review some of
the well known robotic architectures available for HRI developers. Many researchers
have studied robotic architectures formobile autonomous robots. The proposed archi-
tectures can broadly be divided into reactive, deliberative, or hybrid architectures.

1.7.1 Reactive Architectures

Maybe the best known reactive behavioral architecture is the subsumption architec-
ture designed by Rodney Brooks in MIT (Brooks 1986). This architecture started
the research in behavioral robotics by replacing the vertical information paths found
in traditional AI systems (sense, deliberate, plan then act) by parallel simple behav-
iors that go directly from sensation to actuation. This architecture represents robot’s
behavior by continuously running processes at different layers. All the layers have
direct access to sensory information and they are organized hierarchically allowing
higher layers to subsume or suppress the output of lower layers. When the output of
higher layers is not active lower layer’s output gets directly to the actuators. Higher
layers can also inhibit the signals from lower layerswithout substitution. Eachprocess
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is represented by an augmented finite state machine (AFSM) which is a normal state
machine augmented with timers that allow it tomaintain its output for sometime after
the stimulus that activated it is turned off. This architecture was designed to be built
incrementally by adding new processes to higher layers to generate more complex
behavior. The main advantages of this architecture are robustness and the grounded
behavior it can generate and—at the time it was invented—it could be used to develop
robots that achieved far more complex tasks in the real world compared with tradi-
tional AI based robots (Brooks 1991). The main disadvantage of this architecture for
our purposes is the limited ways processes can affect the signals originating from
other processes in lower layers (either inhibition or suppression). Another disadvan-
tage of this architecture in HRI research in general is the inability to accommodate
deliberative behavior that is arguably necessary for verbal communication and for
setting the context within which nonverbal behavior proceeds.

1.7.2 Hybrid Architectures

Because complex human-like behavior is believed to require high level reasoning as
well as low level reactive behavior, many researchers tried to build architectures that
can combine both reactive and deliberative processing.

Karim et al. (2006) designed an architecture that combines a high level reasoner,
JACK (based on the BDI framework), and a reinforcement learner (RL), Falcon
(based on an extension of Adaptive Resonance Theory (ART)). This architecture
generated plans via the BDI top-level from rules learned by the bottom-level. The
crucial element of the system is that a priori information (specified by the domain
expert) is used by the BDI top-level to assist in the generation of plans. The proposed
architecture was applied successfully to a minefield navigation task.

Yang et al. (2008) proposed another hybrid architecture for a bio-mimetic robot.
The lowest part consists of central pattern generators (CPGs) which are types of
dynamical systems that are fast enough to achieve reliable reactive behavior while
the upper layer consists of a discrete time based single dimensional map neural
network.

One general problem with most hybrid architectures concerning real world inter-
actions is the fixed pre-determined relation between deliberation and reaction (Arkin
et al. 2003; Karim et al. 2006). Interaction between humans in the real world utilizes
many channels including verbal, and nonverbal channels. To manage those channels,
the agent needs to have a variety of skills and abilities including dialog management,
synchronization of verbal and nonverbal intended behavior, and efficient utilization
of normal society dependent unintended nonverbal behavior patterns. These skills
are managed in humans using both conscious and unconscious processes of a wide
range of computational loads.

This suggests that implementing such behaviors in a robot will require integra-
tion of various technologies ranging from fast reactive processes to long term delib-
erative operations. The relation between the deliberative and reactive subsystems
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needed to implement natural interactivity is very difficult to be caught in well struc-
tured relations like deliberation as learning, deliberation as configuration, or reac-
tion as advising usually found in hybrid architectures. On the other hand, most other
autonomous applications used to measure the effectiveness of robotic architectures
(like autonomous indoor and outdoor navigation, collecting empty cans, delivering
Faxes, and underwater navigation) require a very well structured relation between
reaction and deliberation. To solve this problem the architecture should has a flexible
relation between deliberation and reaction that is dictated by the task and the inter-
action context rather than the predetermined decision of the architecture designer.

1.7.3 HRI Specific Architectures

Some researchers proposed architectures that are specially designed for interactive
robots. Ishiguro et al. (1999) proposed a robotic architecture based on situated mod-
ules and reactive modules. While reactive modules represent the purely reactive part
of the system, situated modules are higher level modules programmed in a high-level
language to provide specific behaviors to the robot. The situated modules are evalu-
ated serially in an order controlled by the module controller. This module controller
enables planning in the situated modules network rather than the internal represen-
tation which makes it easier to develop complex systems based on this architecture
(Ishiguro et al. 1999). One problem of this approach is the serial nature of execution
of situated modules which, while makes it easier to program the robot, limits its abil-
ity to perform multiple tasks at the same time which is necessary to achieve some
tasks especially nonverbal interactive behaviors. Also there is no built-in support for
attention focusing in this system. Section6.3.2 will discuss this architecture in more
details.

Nicolescu and Matarić (2002) proposed a hierarchical architecture based on
abstract virtual behaviors that tried to implement AI concepts like planning into
behavior based systems. The basis for task representation is the behavior network
construct which encodes complex, hierarchical plan-like strategies (Nicolescu and
Matarić 2002). One limitation of this approach is the implicit inhibition links at the
actuator level to prevent any two behaviors from being active at the same time even if
the behavior network allows that, which decreases the benefits from the opportunistic
execution option of the system when the active behavior commands can actually be
combined to generate a final actuation command. Although this kind of limitation is
typical to navigation and related problems in which the goal state is typically more
important than the details of the behavior, it is not suitable for human-like natural
interaction purposes in which the dynamics of the behavior are even more important
than achieving a specific goal. For example, showing distraction by other activities
in the peripheral visual field of the robot through partial eye movement can be an
important signal in human robot interactions.

http://dx.doi.org/10.1007/978-3-319-25232-2_6


24 1 Introduction

One general problem with most architectures that target interactive robots is the
lack of proper intentionmodeling on the architectural level. In natural human–human
communication, intention communication is a crucial requirement for the success of
the communication. Leaving such an important ingredient of the robot outside the
architecture can lead to reinvention of intentionmanagement in different applications.

This brief analysis of existing HRI architectures revealed the following limita-
tions:

• Lack of Intention Modeling in the architectural level.
• Fixed pre-specified relation between deliberation and reaction.
• Disallowing multiple behaviors from accessing the robot actuators at the same
time.

• Lack of built-in attention focusing mechanisms in the architectural level.

To overcome the aforementioned problems, we designed and implemented a novel
robotic architecture (EICA). Chapter 6 will report some details on three other HRI
specific architectures.

1.8 Learning from Demonstrations

Imitation is becoming an important research area in robotics (Aleotti and Caselli
2008; Argall et al. 2009; Abbeel et al. 2010) because it allows the robot to acquire
new skills without explicit programming. There are two main directions in robotic
imitation research. The first direction tries to utilize imitation as an easy way to
program robots without explicit programming (Nagai 2005). This use usually goes
by other names like learning from demonstration (Billing 2010), programming by
demonstration (Aleotti and Caselli 2008) and apprenticeship learning (Abbeel et al.
2010). Researchers here focus on task learning. The second direction tries to use
imitation to bootstrap social learning by providing a basis for mutual attention and
social feedback (Nagai 2005; Iacoboni 2009). We can say that, roughly, in the first
case, imitation is treated as a programming mode while in the second, it is treated as
a social phenomenon.

In some animals, including humans, imitation is a social phenomenon (Nagai
2005) that was studied intensively by ethologists and developmental psychologists.
Social psychology studies have demonstrated that imitation and mimicry are per-
vasive, automatic, and facilitate empathy. Neuroscience investigations have demon-
strated physiological mechanisms of mirroring at single-cell and neural-system lev-
els that support the cognitive and social psychology constructs (Iacoboni 2009).
Neural mirroring and imitation solves the “problem of other minds” and makes inter-
subjectivity possible, thus facilitating social behavior. The ideomotor framework of
human actions assumes a common representational format for action and percep-
tion that facilitates imitation (Iacoboni 2009). Furthermore, the associative sequence

http://dx.doi.org/10.1007/978-3-319-25232-2_6
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learning model of imitation proposes that experience-based Hebbian learning forms
links between sensory processing of the actions of others and motor plans (Iacoboni
2009).

One of themajor differences between learning from demonstration and traditional
supervised learning, is the availability of a limited number of training examples for the
learner. This limits the applicability of traditional machine learning approaches like
SVMs andBNs.Anothermajor difference—that is usually ignored in LfD research—
is that in real world LfD situations, the learner may have to detect for itself what
behaviors it needs to learn as the demonstrator may not be always explicit in marking
the boundaries of these behaviors or the dimensions of the input space that are of
interest for learning.

For a robot to be able to learn from a demonstration, it must solve many problems.
Most important of these problems are the following seven challenges:

• Action Segmentation: Where are the boundaries of different elementary behaviors
in the perceived motion stream of the demonstrator?

• Behavior Significance for Imitation: What are the interesting behaviors and fea-
tures of behavior that should be imitated? This combines the what and who prob-
lems identified by Nehaniv and Dautenhahn (1998).

• Perspective Taking: How is the situation perceived in the eyes (or sensors) of the
demonstrator?

• Demonstrator modeling: What are the primitive actions (or actuation commands)
that the demonstrator is executing to achieve this behavior? What is the relation
between these actions and the sensory input of the demonstrator?

• Correspondence Problem: How can actions and motions of the demonstrator be
mapped to the learner’s body and frame of reference?

• Evaluation Problem How can the learner know that it succeeded in imitating the
demonstrator and how to measure the quality of the imitation in order to improve
it? This evaluation would usually require feedback from the demonstrator or other
agents and can utilize social cues (Scassellati 1999).

• Quality Improvement Problem: How can the learner improve the quality of its
imitative behavior over time either by adapting to new situations or by modifying
learnedmotions to better represent the underlying goals and intentions of perceived
demonstrations?

Most of the research in imitation learning has focused on the perspective taking,
demonstrator modeling and the correspondence problems above (Argall et al. 2009).
In most cases, the action segmentation problem is ignored and it is assumed that the
demonstrator (teacher) will somehow signal the beginning and ending of relevant
behaviors.

There are many factors that affect the significance of a behavior for the learner.
There are behavior intrinsic features that may make it interesting (e.g. repetition,
novelty). There are object intrinsic features in the objects affected by the behavior
(e.g. color, motion pattern) that can make that behavior interesting. These features
determine what we call the saliency of the behavior and its calculation is clearly
bottom-up. Also the goals of the learner will affect the significance of demonstrator’s



26 1 Introduction

behaviors. This factor is what we call the relevance of the behavior and its calculation
is clearly top-down. A third factor is the sensory context of the behavior. Finally
learner’s capabilities affect the significance of demonstrator’s behavior. For example,
if the behavior cannot be executed by the learner, there is no point in trying to imitate
it. A solution to the significance problem needs to smoothly combine all of these
factors taking into account the fact that not all of them will be available all the time
(e.g. sometimes saliency will be difficult to calculate due to sensory ambiguities,
sometimes relevance may not be possible to calculate because imitator’s goals are
not set yet).

Learning from Demonstrations is a major technique for utilizing natural interac-
tion in teaching robots new skills. This is the other side of the utilization of machine
learning techniques for achieving natural interaction. LfD is discussed inmore details
in Chap.13. Extensions of standard LfD techniques to achieve natural imitative learn-
ing that tackles the behavior significance challenge will be discussed in Chap.12.

1.9 Book Organization

Figure1.5 shows the general organization of this book. It consists of two parts with
different (yet complimentary) emphasis that introduce the reader to this exciting new
field in the intersection of robotics, human-machine-interaction, and data mining.

One goal that we tried to achieve in writing this book was to provide a self-
contained work that can be used by practitioners in our three fields of interest (data
mining, robotics and human-machine-interaction). For this reason we strove to pro-
vide all necessary details of the algorithms used and the experiments reported not
only to ease reproduction of results but also to provide readers from these three
widely separated fields with all necessary knowledge of the other fields required to
appreciate the work and reuse it in their own research and creations.

The first part of the book (Chaps. 2–5) introduces the data-mining component with
a clear focus on time-series analysis. Technologies discussed in this part will provide
the core of the applications to social robotics detailed in the second part of the book.
The second part (Chaps. 6–13) provides an overview of social robotics then delves
into the interplay between sociality, autonomy and behavioral naturalness that is at
the heart of our approach and provides into the details a coherent system based on the
techniques introduced in the first part to meet the challenges facing the realization
of autonomously social robots. Several case studies are also reported and discussed.
The final chapter of the book summarizes our journey and provides guidance for
future passengers in this exciting data-mining road to social robotics.

http://dx.doi.org/10.1007/978-3-319-25232-2_13
http://dx.doi.org/10.1007/978-3-319-25232-2_12
http://dx.doi.org/10.1007/978-3-319-25232-2_2
http://dx.doi.org/10.1007/978-3-319-25232-2_5
http://dx.doi.org/10.1007/978-3-319-25232-2_6
http://dx.doi.org/10.1007/978-3-319-25232-2_13
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Fig. 1.5 The structure of the book showing the three components of the proposed approach, their
relation and coverage of different chapters

1.10 Supporting Site

Learning by doing is the best approach to acquiring new skills. That is not only true
for robots but for humans as well. For this reason, it is beneficial to have a platform
from which basic approaches described in this book can be tested.

To facilitate this, we provide a complete implementation of most of the algo-
rithms discussed in this book in MATLAB along with test scripts and demos. These
implementations are provided in two libraries. The first is a toolbox for solving
change point discovery (Chap.3), motif discovery (Chap.4) and causality discov-
ery (Chap.5) as well as time-series generation, representation and transformation
algorithms (Chap. 2). The toolbox is called MC2 for motif, change and causality
discovery. This toolbox is available with its documentation from:

http://www.ii.ist.i.kyoto-u.ac.jp/~yasser/mc2
The second set of tools are algorithms for learning from demonstration (Chap. 13)

and fluid imitation (Chap.12) available from:
http://www.ii.ist.i.kyoto-u.ac.jp/~yasser/fluid

http://dx.doi.org/10.1007/978-3-319-25232-2_3
http://dx.doi.org/10.1007/978-3-319-25232-2_4
http://dx.doi.org/10.1007/978-3-319-25232-2_5
http://dx.doi.org/10.1007/978-3-319-25232-2_2
http://www.ii.ist.i.kyoto-u.ac.jp/~yasser/mc2
http://dx.doi.org/10.1007/978-3-319-25232-2_13
http://dx.doi.org/10.1007/978-3-319-25232-2_12
http://www.ii.ist.i.kyoto-u.ac.jp/~yasser/fluid
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Using these MATLAB libraries, we hope that the reader will be able to reproduce
the most important results reported in this book and start to experiment with novel
ways to utilize these basic algorithms and modify them for her research. These
toolboxes, erratas, and new material will be constantly added to the supporting web
page for this book at:

http://www.ii.ist.i.kyoto-u.ac.jp/~yasser/dmsr.

1.11 Summary

This chapter provided an overview of the book and tried to localize it within current
research trends in social robotics. We started by introducing the proposed approach
for realizing natural interaction through effective utilization of machine learning
and data mining techniques and related this approach to basic research in psychol-
ogy, developmental psychology, neuroscience, and human–computer interaction.
The chapter then introduced two examples of interaction scenarios that will be used
repeatedly as benchmarks for the proposed approach: guided navigation and natural
gaze behavior during face to face interactions. Based on these preliminaries, the book
organization is then described with its two parts focusing on basic technologies of
data mining, social robotics and their utilization for learning natural interaction pro-
tocols and achieving fluid imitation. The chapter also discussed forms on nonverbal
communication channels in human–human interactions and their extensions of HRI
and introduced different types of robotic architectures including reactive and hybrid
architectures as well as HRI specific architectures. The following four chapters will
discuss basic time series mining techniques used throughout the book.
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Part I
Time Series Mining



Chapter 2
Mining Time-Series Data

Data is being generated in an ever increasing rate by all kinds of human endeavors. A
sizable fraction of this data appears in the form of time-series or can be converted to
this form. For example, a random sampling of 4000 graphics from 15 of the world’s
newspapers published from 1974 to 1989 found that 75% of these graphics were
time-series (Ratanamahatana et al. 2010).

This makes time series analysis and mining an important research area that is
expected only to become more so over time. Time series analysis is a huge field
and it is not possible to exhaustively cover it in an introductory chapter or even in a
complete book. This means that in this chapter we had to be selective. The guiding
principle for the selections made in this chapter is utility for the ideas presented
in subsequent chapters. At the very least, this chapter introduces the notation used
throughout the book and forms the background againstwhich the ideas to bepresented
are painted.

This chapter was written with the social robotics researcher in mind and most
of it would be elementary knowledge for practitioners of time-series analysis, or
related fields. Nevertheless, a quick pass through the chapter is advised in order for
the reader to familiarize herself with the notation and definitions that will be used
extensively in the following chapters.

2.1 Basic Definitions

A time-series is simply an ordered list with an implied independent variable (usually
time) and one or more dependent variables from a predefined domain (usually R).
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Definition 2.1 TimeSeriesXt is an ordered list of items (x0, x1, . . . , xt, . . . , xT ) each
of them is called a point, where t is the independent variable belonging to a domain
DT and is assumed to be monotonically increasing and T is a scalar specifying the
length of the time-series. All items xt belong to a predefined domain DX .

In most of the time-series described in this book, the domain of the independent
variable is the set of integers (i.e.DT = I

+). If the domain of the dependent variable is
the set of real numbers (i.e. DX = R) then the time-series is called a real valued time-
series. If the domain of the dependent variable is multidimensional (e.g. DX = R

N )
then the time-series is called a multidimensional time-series and the dimensionality
of the time series is N where N is the dimensionality of each point. When the
independent variable is not important or is known we will ignore it and will use X
instead of Xt . In this book we use the notations xi and x (i) interchangeably to mean
the point i of the time-series X.

In many cases we need to consider a contiguous list of items belonging to a
time-series. This is made more precise in the following definition.

Definition 2.2 A subsequence xi:j is a time-series that consists of the tuple (xi, xi+1,
…, xj) belonging the time-series X. Another notation is xi,n which is the time-series
that consists of the ordered points xi, xi+1, …, xi+n−1.

We use x (. . .) to mean the same thing as x.... In some cases, the length of the
subsequence will be known from the context and in these cases we will drop it from
the subsequence name (e.g. xi, will imply xi,n). Notice that in this case xi is a point
while xi, is a subsequence starting at point i with the implicit length n.

For simplicity and throughout this book we will speak of the independent variable
as time (t) even though our discussion can be generalized without any modification
to any other variable given that it is monotonically increasing at a constant rate. We
call this rate of increase/decrease of the independent variable τ and in most cases it
is assumed to be unity.

2.2 Models of Time-Series Generating Processes

Time-series are generated continuously from nearly every kind of information
processing or dynamical system. It is not possible to find an exhaustive set of gener-
ating processes that can be combined to lead to all possible time-series but there are
some time-series models that received more attention from researchers due to their
simplicity and/or ability to represent a wide range of phenomena and this section
introduces some of them.

2.2.1 Linear Additive Time-Series Model

The Linear Additive Time-series Model (LAT) decomposes the time-series into a set
of four components that are combined linearly (additively):
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X = T0 + C + S + R. (2.1)

T0 is called the trend and is the long-term non-periodic variation in the time-series.
In many cases it is a monotone function (i.e. its first difference does not change sign).
For example the identity time-series xt = t has only a trend component.

C represents a cyclic component with some period Tc � τ (remember that τ is
the rate of increase of the independent variable or the inverse of the sampling rate).
A good example of cyclic components is the famous business cycle of economics or
fluctuations of electricity consumption based on the time of the year.

S represents another cyclic component but with a much smaller period which is
only assumed to be greater than τ (i.e. Ts > τ ). This seasonal component is useful in
modeling short lived behavior in some applications. For example, it can model daily
fluctuations in electricity consumption.

R models all other random fluctuations added to the time-series.
The differentiation between C and S is ad-hoc and there is no reason that restricts

the number of cyclic components to just two. A more general model that we call
xLAT (Extended LAT) assumes Nc cyclic components and can be written as:

X = T0 + R +
Nc∑

n=1

Cn. (2.2)

Notice that the Fourier transform (See Sect. 2.3.3) is a special case of this model
assuming the trend to be constant and random fluctuations to be zero while setting
Nc = ∞ and each cyclic component to a sinusoidal function.

This decomposition of time-series data to different kinds of components can be
useful in getting a sense of the underlying dynamics. For example, a lot of the
controversy about global warming boils down to whether the perceived increase in
temperatures is a part of T0, C or R.

The linear additive model has several applications specially in economics where
the four types of components represent specific socio-economic factors affecting
different economic metrics.

2.2.2 Random Walk

A random-walk is a time-series that is generated by making small random variations
of the current time-series value at every step. One of the simplest random walks
involves moving around the integer numbers (usually starting with zero) with an
increment of either 1 or −1 based on a fair coin flip. A slightly generalized version
of this random walk can be formalized as follows:

x0 = 0, (2.3)
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Fig. 2.1 Examples of random walks with variable probability of increase p

xt =
{

xt−1 + δ 0 ≤ pt < p
xt−1 − δ otherwise

, (2.4)

where δ ∈ R
+ is some positive real number, pt is a random number between zero

and 1 and p is the probability of increasing.
The MC2 toolbox accompanying this book contains a data generation function

called generateRandomWalk() that generates 1-D random walks. Figure2.1 shows
examples of random walks for different increase probabilities (p). It is easy to show
that the expected value of the time-series average and trend are zero when p = 0.5
but it gets a positive/negative trend when p is larger/smaller than this critical value.
The toolbox function allows the user to control the step size or evenmake it randomly
chosen from a uniform probability distribution.

2.2.3 Moving Average Processes

A moving average process generates time-series points by a linear combination of
past values of another time-series (usually white noise) and is parameterized by the
number of past points involved. MA (m) is a moving average process of order m iff
it generates data according to:

xma(m)
t =

m∑

i=0

aiθt−i, (2.5)
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Fig. 2.2 Examples of time-series generated from a MA(m) process for different values of m. In all
cases a0 = 1 and ai = 2 for 1 ≤ i ≤ m

where Θ is a random time-series representing white noise. Moreover, ai ∈ R for
0 ≤ i ≤ m and usually a0 is set to unity. White noise can be generated using randn()

in MATLAB/Octave or better wgn(). Assuming that the mean of the white noise
signal is μθ and its variance is σ 2

θ , it can be shown that:

〈X〉 = μθ

m∑

i=0

ai, (2.6)

V ar (X) = σ 2
m∑

i=0

a2
i , (2.7)

where as usual 〈X〉 and V ar (X) are the expectation and variance of the time-seriesX.
TheMC2 toolbox has a functiongenerateMA() that can generate time-series froma

moving average processMA(m). Figure2.2 shows examples of time-series generated
from a MA(m) process for different values of m. In all cases a0 = 1 and ai = 2
for 1 ≤ i ≤ m. It is clear that with increased order, the variance of the time-series
increases. Notice that the mean of the white noise used was zero which accounts for
the observation that the mean of the final time-series is also around zero and did not
change with increased model order.

An implementation detail related to moving average processes is what to do with
the first m points in the output time-series for which no enough data is available to
apply Eq.2.5. In our implementation we assume that θ−1:−m is generated from the
same process from which Θ is generated and use these values implicitly to set x0:m
(Fig. 2.3).
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Fig. 2.3 Examples of time-series generated from an AR(3) process for different values of the
parameters ai. Each example shows the values of a1:3 used to generate it. For simplicity we assume
that the white noise had zero variance (e.g. no white noise)

2.2.4 Auto-Regressive Processes

An auto regressive process AR(m) generates each new data point as a linear weighted
combination of the pastm points in the time-series plus an additive white noise value.

xt =
m∑

i=1

aixt−i + δt . (2.8)

The function generateAR() can be used to generate data from an auto-regressive
process in MC2 (Fig. 2.3).

2.2.5 ARMA and ARIMA Processes

An ARMA(m, n) process is a linear summation of an AR(m) process and a MA(n)

process which can be written in the form:

xarma
t =

m∑

i=1

aix
arma
t−i +

n∑

i=0

biθt−i. (2.9)

An ARIMA(m, n, d) process is a process when differencing its output d times will
be an ARMA(m, n) process. ARIMA processes find many applications in economic
theory but will not be used much in the second part of this book to model robot or
human behavior.
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Fig. 2.4 Examples of time-series generated from an ARMA(3, 5) process for different values of
the parameters ai. Each example shows the values of a1:3 used to generate it. In all cases, B =
[1, 2, 3, 2, 1]T

In MC2, you can generate data from an ARMA process using generateARMA()
and from an ARIMA process using generateARIMA() (Fig. 2.4).

2.2.6 State-Space Generation

Another widely used generation model of time-series is the state-space model.

st = g (st−1) + r1 (εt) ,

xt = f (st) + r2 (λt) .
(2.10)

In general all time-series involved in this definition are multidimensional in order
to code the full state of the system at every time-step.

Of special interest are affine state-space models that have the specific form:

st = Ast−1 + Bεt,

xt = Cst + λt,
(2.11)

where A, B, C are matrices and the output time-series of the model is X. Assuming
that S has the dimensionality Ns, X has the dimensionality Nx, and εt ∈ R

N
ε then A

is a Ns × Ns matrix, B is a Ns × Nε matrix, and C is a Nx × Ns matrix. The noise
components (εt and λt) are sampled from two Gaussian distributions with zero mean
and known covariance matrices.

This generation model can be used to simulate random walks, MA processes, AR
processes, and ARMA models. Consider for example the ARMA model of Eq.2.9.
An equivalent affine state-space model (See Eq.2.11) will have the following form:
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st = (
xt xt−1 . . . xt−m+2 xt−m+1 εt εt−1 . . . εt−n+2 εt−n+1

)T
, (2.12)

A =
⎛

⎝
aT bT

Im×m 0m×m

0n×n In×n

⎞

⎠ , (2.13)

B = (
1 01×m 1 01×n

)T
, (2.14)

C = (
1 0n+m×1

)
, (2.15)

λt = 0. (2.16)

The reader can confirm that these definitions when plugged into Eq.2.11 will
recover Eq.2.9. As random walks, MA and RA processes are all special cases of
ARMA processes; we have just shown that affine state-space models can be used
as a general generation process of all of these. This model is implemented in the
function generateAffineStateSpace().

2.2.7 Markov Chains

All of the previous methods for time-series generation are deterministic, in the sense
that given the parameters of the time-series all points are known exactly up to the
addednoise. TheMarkov chain (MC)generation process, on the other hand, generates
time-series points from a probabilistic distribution. The defining assumption of this
model is that the time-series point depends only on the previous value of the time-
series.

AMCmodel is definedby its initial distributionp (x0) and its transition conditional
distribution p (xt|xt−1). Both can take any form.

One of the simplest continuous MCs is the Gaussian MCModel (GMC) which is
defined as:

xgmc
0 ∼ p

(
xgmc
0

) ≡ N (μ0,Σ0),

xgmc
t ∼ p

(
xgmc

t |xgmc
t−1

) ≡ N (xt−1,Σ) , 0 < t � T .
(2.17)

It has three parameters:

• μ0,Σ0: The mean and covariance matrix for generating the first point of the series
• Σ : The covariance matrix used to generate xt+1 given xt as its mean.

The MC2 toolbox has a function generateMarkovChain() which generates time-
series of arbitrary length and dimensionality from a GMC. The implemented version
has an option to add an MA process. Notice that this will not be added after the com-
plete time-series is generated but at each time-step. The effect of having a non-zero
MA(m) process here depends on the exact values of its m parameters. For example
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Fig. 2.5 Examples of 2 dimensional time-series (represented by the two colors) generated from a
Gaussian Markov Chain with μ = μ0 = 0 and unit Σ0 for four different Σ cases (Color in online)

the MA(m) process with a = (1, 2, 3, 4, 5, 4, 3, 2, 1)T will tend to smooth out the
time-series. Figure2.5 shows four time-series generated from this function.

It is interesting to see how can we control various aspects of the time-series by
changing its three parameters (i.e. μ0, Σ0, and Σ). Given that μ0 and Σ0 affect only
the first point of the time-series, we will focus on the effect of Σ . Figure2.5a shows
an example 2D time-series when Σ = I which means that the two dimensions of
the time-series are independent (because the off-diagonal elements are zeros) and
they both have the same overall variance. Figure2.5b shows what happens when we
change the relative values of the diagonal elements. Here the second dimension of
the time-series (green) is still uncorrelated with the first dimension but has much
higher variability because of increased variance. Figure2.5c, d shows the effect of
increasing off-diagonal elements creating correlations between different dimensions
of the time-series.

2.2.8 Hidden Markov Models

A slightly more complex probabilistic generation mechanism is the Hidden Markov
Model (HMM). For our purposes, a HMM has both unobserved states and observed
time-series. An appropriate HMM definition for our purposes is given by:

s0 ∼ p (s0) ,

st ∼ p (st|st−1) , 0 < t � T ,

xhmm
t ∼ p

(
xhmm

t |st
)
.

(2.18)
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For the rest of this book we will assume—if not otherwise stated—that the condi-
tional probability p

(
xhmm

t |st
)
is the same for all values of t but in general this needs not

be the case and the probability distribution used may depend on time. Furthermore,
we assume that the HMM has discrete Ns internal states, that the dimensionality of
the output time-series is Nx and that the observation distribution is a Gaussian. This
leads to the following definition of Gaussian HMM (GHMM):

s0 ∼ p (s0) ≡ π,

st ∼ p (st|st−1) ≡ AT
st−1

, 0 < t � T , (2.19)

xghmm
t ∼ p

(
xghmm

t |st

)
≡ N (

μst ,Σst

)
.

The literature on HMM and related probabilistic models is vast and the interested
reader is advised to consult any of the excellent textbooks discussing these ver-
satile structures. For our purposes though, GHMMs will suffice for all our needs
in this book. The toolbox implements GHMM generation through the function
genrateHMM()which also has the option of adding an MA(m) process to the output.

Figure2.6 shows four examples of the output of a Gaussian HMM with fixed
means. The variation of the transition matrix affects the output in an expected way.
Figure2.6a shows a case where each state has high probability of being repeated
(0.9) relative to the probability of going to the other state (0.1). This leads to a
time-series that looks like a square wave with variable duty cycle. Figure2.6b shows
a middle case where the probability of staying at the same state is equal to the

Fig. 2.6 Examples of time-series generated from aGaussian HiddenMarkovmodel with two states
and single dimensional output. The means of the observational Gaussians for the two states were
set to 10 and −10
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probability of changing to the other state. This leads to a time series that jumps
between the two states rapidly. Figure2.6c shows a case with one state (the first)
having equal probability of repeating or toggling while the other state (the second)
has high probability of repeating (0.9). This leads to a time series that spends more
time in the second state. A more extreme example is given in Fig. 2.6d where no
matter what is the current state, the second state has higher probability of occurring
in the next output compared with the first state (9 times higher). This leads to a
time-series that spends even more of its time in the second state.

2.2.9 Gaussian Mixture Models

Awidely used probabilistic generation model for time-series uses a mixture of prob-
ability distributions rather than switching between them as in HMM. In this book
we only utilized Gaussian Mixture Models (GMM) so we will focus our attention
on them.

Assume that we have a joint distribution of two variables x and y (i.e. p (x, y)).
We can then condition on one of them using the definition of conditioning:

p (x|y) = p (x, y)∑
x p (x, y)

. (2.20)

This means that we can generate points of a time-series X by conditioning on the
independent variable (time) at every time-step. The math becomes much easier when
we assume that the joint distribution is a Mixture of Gaussians in the form:

p (x, t) =
K∑

k=1

p (k) pk (x, t), (2.21)

pk (x, t) ≡ N (μk,Σk) .

Given this joint distribution, it is possible to generate time-series points by condi-
tioning on time. This is the basic idea of GaussianMixture Regression (GMR) which
is being widely applied in both statistics and learning from demonstration commu-
nities for providing a middle ground between high-bias parametric approaches and
high-variance non-parametric approaches to modeling.

The use of a GMM to model the joint distribution ensures that the conditional
distribution is also a GMM. In such cases, Eq. 2.20 simplifies to the following:

p (x|t) =
K∑

k=1

π c
k pc

k (x|t), (2.22)

pc
k (x|t) ≡ N (

(x, t)T ;μc
k,Σ

c
k
)
.

Now assume that we make the following definitions:
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μk ≡ (
μx

k, μ
t
k

)T
, (2.23)

Σk ≡
(

Σx
k Σxt

k(
Σxt

k

)T
Σ t

k

)
, (2.24)

where μt
k ∈ R

� and Σx
k ∈ R

N×N while μx
k ∈ R

1×N .
Given these definitions, the new parameters of the conditional GMM are given

by the following set of equations:

π c
k = p (k)N (

t;μt
k,Σ

t
k

)
∑

π c
k

, (2.25)

μc
k = μx

k + Σxt
k

(
Σ t

k

)−1 (
t − μt

k

)
, (2.26)

Σc
k = Σx

k − Σxt
k

(
Σ t

k

)−1(
Σxt

k

)T
. (2.27)

Furthermore, using properties of Gaussians, Eq.2.22 can be further simplified by
approximating the GMM with a single Gaussian:

p (x|t) ∼= N (
x; μ̄x, Σ̄x

)
, (2.28)

where μ̄x = ∑K
k=1 π c

k μc
k and Σ̄x = ∑K

k=1

(
π c

k

)2
Σc

k .

Fig. 2.7 Examples of a four dimensional time-series generated fromaGaussianMixtureRegression
model (the four colors represent the four dimensions). Themean and covariancematriceswere taken
from the data provided in Calinon et al. (2006) for the first demo of Learning from Demonstration
using GMM/GMR (Color in online)
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A time-series can then be generated from this GMM by sampling from p (x|t)
for every value of t from 1 to the desired T . This procedure is implemented in the
toolbox using the function generateGMR(). Figure2.7 shows an example time-series
generated using this function.

GMRwas originally designed as a regression algorithm that uses a GMM learned
from example data points to smoothly find the value of learned function at unseen
points. Using it for data generation as we did in this example is not a standard
procedure and is not even recommended. The main disadvantage for using GMR for
generation is that the final step generates the data at every time-step independent
from the data at nearby time-steps. This results in rough functions as seen in Fig. 2.7.
This problem can be alleviated if the correlation between nearby points is taken into
account which is what can be achieved by Gaussian Processes.

2.2.10 Gaussian Processes

HMM and GMM/GMR provide two alternative statistical methods for modeling
time-series generation. The main problem with HMM is the need to select an appro-
priate number of states in advance. This problem can be somehow alleviated by
using model selection techniques (e.g. Bayesian Information Criteria) if we have
time-series data to use as example for the system to bemodeled. This requires though
multiple trainings with different values for the number of states.

GMM/GMRmodeling discussed in the previous section had the problem of inde-
pendence between successive time steps even though it could capture the covariance
between different dimensions at the same time-step.

Gaussian Processes can overcome both of these problems by directly modeling
the correlation between different dimensions of the time-series at all time-steps.
It requires no selection of a number-of-states and can generate smooth time-series
output.

A Gaussian Process (GP) is defined as a collection of random variables (possibly
infinite), any finite number of which have a joint Gaussian distribution (Rasmussen
and Williams 2006).

A GP is completely specified by its mean function m (x) and covariance functions
k
(
x, x′) both are direct extensions of the mean and covariance matrix of a standard

multivariant Gaussian distribution. Notice that for this section we use x as the inde-
pendent variable instead of t as the GP formalism is general and can handle any kind
of real valued independent variable not only time.

The standard formalism for Gaussian Processes is:

f (x) ∼ GP (
m (x) , k

(
x, x′)) , (2.29)
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where the mean and covariance matrices are defined as:

m (x) = E (f (x)) , (2.30)

k
(
x, x′) = E ((f (x) − m (x)) (f (x) − m (x))) .

Given aGaussianProcess, it is easy to generate time-series by sampling at different
values of x. For example, consider the case where m (x) = 0 and the covariance
function is defined as:

k
(
x, x′) = kse

(
x, x′) = λe

−(x−x′)
T
(x−x′)

/
l
. (2.31)

This covariance function is called the squared exponential and results in smooth
time-series. We will use λ = 1 and l = 0.5 for our example. To generate a time-
series spanning the time from 0 to 20, we select a sampling rate (100 in our case)
and then calculate the mean of the function to be sampled which will equal to μ =
m (0 : 0.01 : 20) then calculate the covariance matrix at the values of the input x =
0 : 0.01 : 20 by applying Eq.2.31 for each pair of values in this set. The resulting
covariance matrix Σ is then used with the mean μ to generate multivariate Gaussian
values. This can easily be achieved by finding the Eigen Value Decomposition of Σ

and sampling from independent Gaussians on this basis then projecting back using
V λ−1/2 where V is the set of Eigen vectors ofΣ and λ is the set of Eigen values. This
is implemented in grand() in the Toolbox. Figure2.8 shows five example time-series
sampled using this method.

It is trivial to add noise to this system by adding it directly to the mean vector μ

during sampling.
Figure2.9a shows a set of functions sampled from a 1D GP with the squared

exponential covariance function (after adding the Gaussian noise). An important
advantage of GPs is that it can update its internal generation model incrementally
and with few data points. For example, Fig. 2.9b–d shows the mean and variance
of the same GP used in Fig. 2.9a after fixing three points in succession (shown as
red circles). It is clear that, even with few data points, the GP can easily learn a
model that can be used to interpolate and extrapolate the function for all time. To
achieve this incremental learning, GPs exploit the properties of Gaussians specially
the decomposability of the covariance matrix. Using our previous notation:

cov
(
yi, yj

) = λe‖xi−xj‖2
/

l + σnδij, (2.32)

where δij is the Kronecker delta function. In matrix notation this leads to:

cov (y) = KXX + σn
2I, (2.33)

where y is a column vector of the outputs observed and KXX is the covariance matrix
calculated by applying Eq.2.31 to all pairs of inputs. Notice that the noise model
is decoupled and iid which is expected for a Gaussian noise generation process.
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Fig. 2.8 Five examples of time-series sampled from a GP with zero mean and squared exponential
covariance function with unity parameters

Now given a set of input output pairs (X, y) and a test point xt , we can calculate the
distribution of the output at this test point using the rules for conditioning Gaussian
distributions as follows:

p (ft |X, y, xt) = N
(

KxtX

(
KXX + σ 2

n I
)−1

y, Kxtxt − KxtX

(
KXX + σ 2

n I
)−1

KxtX
T
)

.

(2.34)

Equation2.34 was used to generate the estimates shown in Fig. 2.9. Most applica-
tions of GPs use the squared exponential function which is infinitely differentiable.
This may lead to over-smoothing of the output and makes it harder for the system to
represent abrupt changes in system dynamics due for example to a sudden change in
the load for a manipulator. One example covariance function that can handle sudden
changes better than the squared exponential is the Matern covariance function which
has the form:

kMatern
(
x, x′) = 21−υ

Γ (υ)

(√
2υ

∣∣x − x′∣∣
l

)υ

Kυ

(√
2υ

∣∣x − x′∣∣
l

)
. (2.35)

There are many possible covariance functions other than the squared exponential
andMatern and they can be combined to lead to a large variety of generation schemes
(for several examples, please refer to Rasmussen and Williams 2006).
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Fig. 2.9 Sample functions from a SE Gaussian Process showing the adaptation to input data and
the limitation on the variance even outside the seen samples. The bold black signal represents the
mean and other signals represent samples from the process. The gray color shows two standard
deviations at each point (Color in online)

The GP generation process is implemented in the toolbox using a set of functions.
The function grand() can be used to generate a time-series from a Gaussian Process
given the mean and covariance matrices corresponding to the time-steps. To generate
thesematrices, you can use either generateGP() to generate aGP from a set of sample
points or the functions createGP() to create a GP with no restrictions similar to the
one used to generate the time-series shown in Fig. 2.8. The function add2GP() can be
used to add points of known values to theGP and generateFromGP() can be used—at
any time—to create the mean and covariances matrices needed for grand().

The implementation ofGP in theMC2 toolbox accompanying this book isminimal
with only one covariance function (the squared exponential) and two mean functions
(linear and sinusoidal) and with no optimization tricks in the implementations to
facilitate understanding. These can easily be extended. There are several GP tool-
boxes for Matlab that implement more covariance functions already implemented
and with more advanced GP algorithms for the interested reader. The information
given here will, nevertheless, be enough for all our purposes in this book.

2.3 Representation and Transformations

In many cases, it is desirable to represent the time-series differently from the direct
representation presented in Definition 2.1. The most effective representation scheme
depends largely on the application. This section introduces some of the most useful
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representations for time-series.Wewill focus first on single-dimensional time-series.
Multidimensional extensions will be discussed later.

2.3.1 Piecewise Aggregate Approximation

Piecewise Aggregate Approximation (PAA) is one of the simplest time-series com-
pression and representation approaches. The idea of PAA is very simple. Rather than
keeping the whole time-series, it is divided into equal length segments and we keep
only the mean of each segment. These means are then concatenated to form another
time-series that represents the original time-series albeit being shorter. This can be
expressed as follows assuming that the segment length is m:

xpaa
i = 1

mi

min(T−1,(i+1)m−1)∑

j=im

xj, (2.36)

for 0 ≤ i ≤ T/m� where mi = m for all i but the last and equals T − m × �T/m�
for the last point of Xpaa.

Assuming that the segment length is m then the output of PAA is m times shorter
than the original time-series. The PAA representation requires a single parameter
from the user, which is the length of the segment m. In the extreme case where
m = 1, PAA simply returns the input time-series without any change. In the other
extreme case when m = T where T is the length of the input time-series, PAA
returns a single number representing the mean of the time-series (i.e. the DC or
zero-frequency component).

Despite its simplicity, PAA can be very useful in many applications. For example,
it can be shown that the Euclidean distance between any two time-series is larger
than or equal the Euclidean distance between their PAA representations:

∑
(xi − yi)

2 ≥
∑(

xpaa
i − ypaa

i

)2
. (2.37)

This property (called lower bounding) allows linear time generation of indexing
structures that can be used to search through large numbers of time-series efficiently.
Another important feature of the PAA transform or representation is that all calcu-
lations are local which means that it can be applied to the data in real time.

It is also trivial to extend PAA to the multidimensional case. Simply apply PAA
to each dimension of the input time-series.

A simple extension of PAA that we do not utilize much in this book is called
Adaptive Piecewise Constant Approximation (APCA) in which the length of each
segment is not fixed but adapted to the time-series.
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Table 2.1 The location of break points for the first 5 cases of alphabet sizes (na)

na 1 2 3 4 5

βa

β1 −0.43 −0.67 −0.84 −0.97 −1.07

β2 0.43 0 −0.25 −0.43 −0.57

β3 – 0.67 0.25 −0 −0.18

β4 – – 0.84 0.43 0.18

β5 – – – 0.84 0.57

β6 – – – – 1.07

A more complete table (up to na = 10) can be found in (Lin et al. 2003)

2.3.2 Symbolic Aggregate Approximation

Symbolic Aggregate approXimation (SAX) is a transformation algorithm that con-
verts a single-dimensional time-series to a string. The main advantage of SAX is
that it is designed to achieve equiprobable symbol production. Because it is based on
PAA, it also provides a lower bound on the Euclidean distance. SAXwas proposed by
Lin et al. (2003) and since then became one of the most widely used transformation
for data mining of time-series data.

SAX is built upon the finding that z-score normalized time-series have Gaussian
distributions (Larsen and Marx 1986). Based on that, the normal distribution is
divided into bands where the probability of falling within all bands is the same.
The number of bands is selected to equal to the number of symbols in the alphabet
to be used for discretization (na). The limits of these bands are called break points
βa where a ∈ {1, 2, . . . , na − 1}. These break points can be calculated easily from
tables of cumulative normal function. Table2.1 shows the break points for the first
five alphabet sizes.

The locations of the break points can be calculated and stored for any finite
alphabet size.

Given these break point locations and the alphabet size (na), we can transform
a single-dimensional time-series into a string by first z-score normalizing it (i.e.
subtracting the mean from each point and dividing the standard deviation). The
normalized time-series is then transformed to a shorter time-series using PAA (See
Sect. 2.3.1). The break points corresponding to the chosen alphabet size are then
used to map values of this shorter time-series into symbols by issuing the symbol
corresponding to the band within which each PAA value lies.

The implementation of this transform in MC2 is encapsulated by the function
time-series2symbol() which is provided by Lin et al. (2003). Figure2.10 shows the
processing steps of this function leading to the final string representation of the
time-series.

The aforementionedSAX transformassumes that the input is a single-dimensional
time-series. Mohammad and Nishida (2014) proposed three different extensions of
this algorithm to multi-dimensional time-series. There are several methods to extend
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Fig. 2.10 Example time-series and its transformation steps using SAX. The original time-series
is shown as well as its PAA transformation. The break points corresponding to a 4-letters alphabet
are also shown (light gray). Finally the final symbols from the set {ddcbbbaa} is shown

SAX to handle multidimensional time-series. The first approach is not to modify
SAX in any way and start by reducing the dimensionality of the time-series to one
then apply the traditional SAX transformation. This approach is called SAX-PCA
because we use Principal Component Analysis (PCA) for dimensionality reduction.

We start by z-score normalizing each dimension then applying Singular Value
Decomposition (SVD) to represent the time-series USV T = X. The output single
dimensional time-series x is then obtained by projecting the time-series on the first
singular vector: x = U1X, where U1 is the singular vector of U corresponding to
the largest singular value in S. The time-series x is then passed as an input to the
traditional SAX algorithm.

Another, even simpler, approach is to apply SAX to every dimension of the data
separately and then combine the resulting string by assigning every possible combi-
nation of symbols in the resulting D strings a unique identifier. This leads to a string
of length N but from an extended alphabet of length MD. In most cases, most of the
symbols of this extended alphabet will not appear in the final string. To keep the
requirement that the final string is from an M-symbols alphabet, we can simply clus-
ter the resulting characters into M clusters using K-means and replace each character
with the centroid of its cluster. This approach is called SAX-REPEAT.

A third approach (called SAX-z-score hereafter) is to modify the normalization
step in SAX to use an extended multidimensional version of the z-score normalizer.
This can be done by calculating an intermediate time-series x̂ that has a zero-mean
unit-variance distribution. The PAA step can then be applied to the L2 norm of the
data. Assuming that the covariance matrix of X is C and that the mean of its columns
is μ, the intermediate time-series is calculated as:

x̂ (t) = C−1/2 (X − μ) . (2.38)
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The PAA step is then modified to be:

x̄ (n) = N

T

Tn
N∑

t= T
N (n−1)+1

∥∥x̂ (t)
∥∥
2. (2.39)

Multidimensional SAX (MSAX) provides a fast way to encode the time-series
information in a symbolic way which opens the way for utilizing existing text-
retrieval and manipulation techniques.

2.3.3 Discrete Fourier Transform

PAA represents the time-series with a shorter one that has the same independent vari-
able (usually time). A completely different approach is taken by the Discrete Fourier
Transform (DFT) which represents the time-series using a different yet related inde-
pendent variable. If the independent variable of the original time series was time,
then the transformed version will be represented using frequency as the independent
variable.

DFT works with complex time-series. Given a time-series X, we can calculate its
DFT transform using:

xdft
i =

T−1∑

k=0

xke−j2π ik/T , (2.40)

where j2 = −1 and the time-series length is T as usual.
It is clear that the transform is not local in the sense that calculating the value

of xdft
t depends on ALL the values of X. This means that—in contrast to PAA for

example—the transform cannot be implemented incrementally. Even though that
naive implementation of DFT requires O

(
T 2

)
operations, implementations based on

the Fast Fourier Transform (FFT) can achieve time complexity of O (T logT).
DFT is used extensively in the digital signal processing community and has several

applications. For example, keeping only 10% of the output can preserve 90% of
signal energy of random walks which makes DFT a good candidate for compression
applications.

As with the case in PAA, DFT provides a lower bound on Euclidean distance:

∑
(xi − yi)

2 ≥
∑(∣∣xdft

i

∣∣ − ∣∣ydft
i

∣∣)2. (2.41)

This can be the basis of an indexing application and it usually achieves speedups
between 3–100 comparedwith using the original time-series. ExtendingDFT tomul-
tiple dimensions can be achieved by applying the same transform to each dimension
of the input.
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2.3.4 Discrete Wavelet Transform

PAA was clearly local while DFT was a clearly global transform of the time-series.
Some transforms (wavelet transforms) give a hierarchical view of the time series
allowing it to be examined at multiple resolutions. There are several wavelet trans-
forms but all share the common feature of having a function called themotherwavelet
ψ that is translated and scaled to get other similar functions on a different scale and/or
position called child wavelets according to the following equation:

ψ(t)τ,s = 1√
s
ψ

(
t − τ

s

)
. (2.42)

The parameter s controls the scale while the parameter τ controls the positioning
of the wavelet. The simplest yet most widely used wavelet transform in time-series
mining is the Haar wavelet. The mother wavelet of the Haar transform is defined as:

ψHaar (t) =
⎧
⎨

⎩

1 0 ≤ t < 0.5
−1 0.5 ≤ t < 1
0 otherwise

. (2.43)

Applying this wavelet to any time-series is very efficient and can be executed in
linear time using only summation and difference operators between pairs of points.
Given a time-series X of length T which is assumed to be a power of 2, we start by
finding the averages and differences of all consecutive pairs of points according to:

x0t = x2t+1 − x2t, (2.44)

for 0 ≤ t ≤ T/2. Another temporary time-series is calculated using the sum operator
applied to the same pairs

x̄0t = x2t+1 + x2t, (2.45)

for 0 ≤ t ≤ T/2. The same two operations are applied again to X̄0 leading to:

x1t = x̄02t+1 − x̄02t, (2.46)

x̄1t = x̄02t+1 + x̄02t . (2.47)

Now t will range from 0 to T/4.
In general:

xi
t = x̄i−1

2t+1 − x̄i−1
2t , (2.48)

x̄i
t = x̄i−1

2t+1 + x̄i−1
2t , (2.49)
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until we get a time-series of a single point for both Xi and X̄i which will happen
when i = log2 T . The time-series named Xi are then concatenated to give the Haar
transform of the original time-series:

XHaar = (
X0, X1, . . . , X log2T

)
. (2.50)

Notice that each successive Xi gives a view of the original time-series that is pro-
gressively coarser.

Again, multidimensional time-series can be treated by simply applying the afore-
mentioned transformation on every dimension independently.

The main advantages of Haar transform are simplicity of calculation and the
ability to inspect the time-series at different resolutionswhichmay reveal for example
hierarchical repeated pattern (an important application for social robotics).

2.3.5 Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a relatively new approach for analyzing and
representing time-series data. This approach has several advantages. Firstly, it can
be applied to any time-series either of a single or multiple dimensions and it can be
applied in a single scan of the time series to generate a representation that requires
a predefined multiple of the original time-series length. Secondly, the approach is
flexible enough to allow both unsupervised and semi-supervised analysis of the data.
Moreover, unlike Fourier analysis for example, it is data driven even in deciding the
basis functions used in the decomposition of the input time-series. Compare that to
the Haar transform which as we have just seen uses a predefined basis function that
is applied repeatedly to the time-series.

Singular spectrum analysis has seen increased interest in the current century and
has found applications in several areas including forecasting, noise rejection, causal-
ity analysis and change point discovery among many other approaches (Elsner and
Tsonis 2013). This section will introduce the technique showing how to use it for
time-series representation. Most of the change point discovery techniques used in
this book (See Chap.3) are based on this representation.

The main idea behind SSA is to represent the signal through a set of data-driven
basis functions that are generated by subdimensional representation of the Hankel
matrix representing the original time-series. This subdimensional representation, if
carefully selected, can remove unwanted signal components (e.g. noise) and can be
used to discover the basic building blocks of the time-series.

Given a time-series X, SSA analysis generates a set of times-series Xssa
i where

each of these components can be identified as a trend, a periodic, a quasi-periodic or
a noise component while allowing reconstruction of X as:

X =
∑

Xssa
i .

http://dx.doi.org/10.1007/978-3-319-25232-2_3
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This means that SSA analysis is done in three stages: decomposition, selection,
and reconstruction. At the first stage, the time-series is decomposed into its set of
basis time-series. At the selection stage, we select only a subset of these basis time-
series to use for reconstruction in the hope that they will have lower noise levels or
reveal some underlying property of the original time-series (e.g. its trend). Finally,
the selected basis time-series are used to reconstruct the original time-series. If not
all basis time-series are selected in the second stage, the final reconstruction will not
generate the exact input time-series but a modified version of it that highlights the
purpose of the analysis.

The decomposition stage consists of two steps: Hankel matrix embedding and
SVDdecomposition.Given a time-seriesX of lengthT , theHankelmatrix embedding
is the matrixH of size L × K where L is called he lag parameter andmust be between
2 and T and K = T − L + 1. Row k of of H consists of the subsequence xi,L in our
terminology. This means that H is a Hankel matrix (i.e. it has the property that
Hi,j = Hi′,j′ for i + j = i′ + j′) and H ∈ R

K×L.
Consider the following time-series:

X = [
0.05 0.49 0.36 0.90 0.98 0.87 0.91 0.84 0.95 0.59 −0.13 −0.01

]
,

and a lag parameter (L) equal to 3, the corresponding Hankel matrix is given by:

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.05 0.49 0.36
0.49 0.36 0.90
0.36 0.90 0.98
0.90 0.98 0.87
0.98 0.87 0.91
0.87 0.91 0.84
0.91 0.84 0.95
0.84 0.95 0.59
0.95 0.59 −0.13
0.59 −0.13 −0.01

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

ThisHankelmatrix can be created inMATLABusing the hankel() function. Given
the Hankel matrix H, we can create the set of basis functions Xssa

i in two steps: SVD
decomposition and Hankelization. SVD decomposition consists of simply applying
Singular Value Decomposition to the Hankel matrix (e.g. using svd() in Matlab).
Mathematically this corresponds to findingU ∈ R

K×K , S ∈ R
K×L, V ∈ R

L×L where:

H = USV T . (2.51)
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In our previous example, we get:

U =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.13 −0.22 0.35 −0.37 −0.28 −0.33 −0.24 −0.45 −0.48 0.08
−0.26 −0.26 −0.54 −0.09 −0.32 −0.15 −0.32 0.10 0.13 −0.56
−0.33 −0.43 0.20 −0.09 −0.04 −0.08 −0.11 0.06 0.66 0.44
−0.41 0.00 0.08 0.86 −0.10 −0.12 −0.09 −0.16 −0.15 0.04
−0.41 0.05 −0.17 −0.15 0.84 −0.15 −0.15 −0.14 −0.10 −0.05
−0.39 0.01 0.01 −0.13 −0.11 0.88 −0.10 −0.15 −0.13 0.02
−0.40 −0.03 −0.18 −0.15 −0.15 −0.14 0.85 −0.12 −0.04 −0.01
−0.35 0.15 0.29 −0.12 −0.07 −0.10 −0.05 0.81 −0.29 0.02
−0.21 0.71 0.31 −0.12 −0.14 −0.12 −0.08 −0.23 0.42 −0.28
−0.06 0.42 −0.55 −0.09 −0.22 −0.12 −0.21 −0.01 −0.08 0.63

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.92 0.00 0.00
0.00 1.06 0.00
0.00 0.00 0.59
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V =
⎡

⎣
−0.57 0.73 −0.37
−0.60 −0.06 0.80
−0.56 −0.68 −0.47

⎤

⎦ .

It can easily be shown that Eq.2.11 holds for these matrices. The following prop-
erties hold for all SVD decompositions assuming that Ai is column i of matrix A, Ai,j

is element j of vector Ai, and 〈V, W 〉 is the dot product of vectors V and W :

〈Ui, Uj〉 =
{
1 i = j
0 i �= j

, (2.52)

〈Vi, Vj〉 =
{
1 i = j
0 i �= j

. (2.53)

This means that the sets of vectors Ui and Vi each form an orthonormal vector set.

Si,j =
{√

λi i = j ∧ i, j � min (K, L)

0 otherwise
, (2.54)

where λi is the ith Eigen vector of the matrix HHT . Notice that at most min (K, L)

elements are nonzero. Si,i are called the singular values of H. We will always assume
that Si,i ≥ Sj,j for i ≥ j andwill use Si,i and si interchangeably. The number of nonzero
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singular values are denoted d hereafter. In our running example, s1, s2 and s3 are all
nonzero which means that d = 3. The value for d will always be less than or equal
min (K, L) and represents the rank of the original matrix H.

The matrix H can then be expressed as a summation (H =
d∑

i=1
Hi) where:

Hi = siUiV
T

i . (2.55)

The tuple (si, Ui, Vi) is called the ith Eigen triple in SSA literature (Hassani 2007).
The vectors Ui are called factor empirical orthogonal functions or EOFs, and the
vectors Vi are called principal components.

For our running example, we can calculate H1, H2, and H3 from Eq.2.55 to be:

H1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.30 0.32 0.30
0.57 0.60 0.56
0.74 0.77 0.73
0.91 0.95 0.89
0.91 0.95 0.90
0.87 0.90 0.85
0.89 0.93 0.87
0.79 0.82 0.77
0.47 0.49 0.46
0.14 0.15 0.14

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.17 0.01 0.16
−0.20 0.02 0.18
−0.33 0.03 0.31
0.00 −0.00 −0.00
0.04 −0.00 −0.03
0.01 −0.00 −0.00

−0.02 0.00 0.02
0.12 −0.01 −0.11
0.55 −0.04 −0.51
0.32 −0.03 −0.30

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.08 0.16 −0.10
0.12 −0.25 0.15

−0.04 0.10 −0.06
−0.02 0.04 −0.02
0.04 −0.08 0.05

−0.00 0.00 −0.00
0.04 −0.09 0.05

−0.06 0.13 −0.08
−0.07 0.14 −0.08
0.12 −0.26 0.15

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Notice for now that all of these matrices are not Hankel matrices. From linear
Algebra, it is known that the Frobenius norm of a matrix can be found from its
singular values using the following equation:

‖H‖2 =
K∑

i=1

L∑

j=1

(
Hi,j

)2 =
d∑

i=1

λi =
d∑

i=1

si
2. (2.56)

For our running example the Frobenius norm of H calculated any way of the
three ways in Eq.2.56 will equal 16.8045. Moreover, we know that each one of the
expansion matrices (Hi) is a rank one matrix (See how they are created according
to Eq.2.55). This means that they will have a single nonzero singular value which
equals si because both Ui and Vi are unit vectors. This leads to:

∥∥Hi
∥∥ = si. (2.57)

From Eqs. 2.56 and 2.57, it is straight forward to see that:

‖H‖2 =
d∑

i=1

∥∥Hi
∥∥2. (2.58)

If we define ζi as the contribution of expansionmatrixHi toH, it is easy to see that

ζi = s2i∑d
j=1 s2j

. (2.59)

In our running example, ζ1 = 0.9129, ζ2 = 0.0667, ζ3 = 0.0204 which means
that 91.29% of the total variance in the data is captured in the first expansion matrix.
Notice that SVD is optimal in the sense that taking the K columns of U and V
corresponding to the top K singular values, we can reconstruct H̄ with the guarantee
that ‖H − H̄‖ is minimum compared to any other linear decomposition. This means
that for any value K , and assuming that the singular values are ordered in descending

order, it is guaranteed that
∥∥∥H − ∑K

k=1 Hk
∥∥∥ is minimal compared to any other linear

decomposition of H to matrices.
Giving the decomposition of H into the set

{
Hi

}
and their weights ζi, we can then

generate approximations ofH by just grouping together some of the expansionmatri-
ces using simple summation. This leads to the the following two-steps reconstruction
process.

The first step of reconstruction is to group the expansion matrices then summing
the matrices in each group. Given the d nonzero expansion matrices, we generate a
set of sets representing the groups:

{
I1, I2, . . . , Ig

}
where 1 ≤ g ≤ d is the number

of groups and each Ii is a set
{
i1, . . . , ini

}
where 1 ≤ ij ≤ d and 1 ≤ j ≤ ni. The sets

Ij are disjoint. Each one of these groups should correspond to some meaningful com-
ponent of the original time-series. This process is called Eigen-triple grouping. The
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expansion matrices of all members of a group are added to generate a matrix repre-
senting the group using Eq.2.60. The contributions of all member expansionmatrices
in a group are simply added to get the total contribution of the group according to
Eq.2.61.

HIi =
∑

j∈Ii

Hj. (2.60)

ζIi =
∑

j∈Ii

ζj. (2.61)

In our running example, we can create two groups {I1 = {1, 2} , I2 = {3}} with
the following corresponding expansion matrices:

HI1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.13 0.33 0.46
0.38 0.61 0.75
0.41 0.80 1.04
0.91 0.95 0.89
0.95 0.95 0.86
0.87 0.90 0.85
0.87 0.93 0.89
0.91 0.81 0.66
1.01 0.44 −0.05
0.47 0.12 −0.16

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

HI2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.08 0.16 −0.10
0.12 −0.25 0.15

−0.04 0.10 −0.06
−0.02 0.04 −0.02
0.04 −0.08 0.05

−0.00 0.00 −0.00
0.04 −0.09 0.05

−0.06 0.13 −0.08
−0.07 0.14 −0.08
0.12 −0.26 0.15

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The final step of reconstruction is to convert the matrices corresponding to groups
into time-series that comprise the final expansion of the input time-series. To achieve
that, the expansion matrix corresponding to each group (HIi ) is converted into a
Hankelmatrix by averaging allmembers that have rowand columnnumbers summing
to the same integer. In our running example this leads to the following two hankelized
matrices:
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H̄I1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.13 0.35 0.49
0.35 0.49 0.82
0.49 0.82 0.98
0.82 0.98 0.90
0.98 0.90 0.88
0.90 0.88 0.89
0.88 0.89 0.91
0.89 0.91 0.52
0.91 0.52 0.04
0.52 0.04 −0.16

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H̄I2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.08 0.14 −0.13
0.14 −0.13 0.08

−0.13 0.08 0.01
0.08 0.01 −0.03
0.01 −0.03 0.03

−0.03 0.03 −0.05
0.03 −0.05 0.04

−0.05 0.04 0.06
0.04 0.06 −0.17
0.06 −0.17 0.15

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is now trivial to read-off the corresponding two expansion time-series from the
hankelized matrices which leads to:

X1 = [
0.13 0.35 0.49 0.82 0.98 0.90 0.88 0.89 0.91 0.52 0.04 −0.16

]
,

X2 = [−0.08 0.14 −0.13 0.08 0.01 −0.03 0.03 −0.05 0.04 0.06 −0.17 0.15
]
.

It can easily be confirmed that the summation of these two time-series gives the
original time-series. Notice that X2 is very near to zero and fluctuates between small
negative and positive numbers. This corresponds to an estimation of the noise on the
time-series. The actual noise in this case was:

[
0.05 0.18 −0.23 0.09 0.03 −0.13 −0.04 0.03 0.36 0.28 −0.13 0.30

]
.

We can compare the Euclidean norm of the difference between the original noisy
time-series and its ground truth to be 0.6567 while the Euclidean norm between the
first expansion time-seris (X1) and the ground-truth is only 0.3331 which means that
SSA analysis was able to remove around 49% of the noise in the original time-series.
Figure2.11 shows the ground-truth, original time-series, and the time-series resulting
from hankelizing HI1 which is SSA’s best approximation to the ground truth.

Even though the example we used in this section was small with very small T and
L values, the extension to longer time-series and larger Hankel matrices is trivial.
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Fig. 2.11 Example time-series and its corresponding SSA analysis. See text for details

The problem in this case is that the number of non-zero singular values d increases
dramatically with increased L. In most cases, many of these singular values will be
zeros or very near to zeros and they can be ignored as corresponding to noise in the
input (similar to s3 in our running example). The remaining expansion matrices then
will need to be grouped intelligently to generate meaningful expansion. There is no
optimal grouping criterion that works for all applications and in this book we mostly
will use simple grouping strategies like grouping the first expansion matrices with
total weights over some threshold together in a single group and ignoring everything
else.

A slightly more complex example is shown in Figs. 2.12 and 2.13. The ground
truth time-series consists of a linear trend and two sinusoidal as defined by Eq. 2.62
which is shown in Fig. 2.12a (Top–left).

x (t) = sin (0.02tπ) + 2 sin (0.2tπ) + 0.02t (2.62)

Gaussian noisewith zeromean andunit variance is then added to generate the input
signal to the SSA algorithm as shown in Fig. 2.12b (Top–right). The major features
of the ground truth signal including the trend and the oscillating components are still
preserved.We then applied SSAwith a lag parameter of 50 to this time-series. The top
six expansion time-series (without grouping) are shown in Fig. 2.12 (second to last
rows) along with their weights. The trend is visible in the first expansion time-series.
The high frequency sinusoidal is clear in the second and third components and the
low frequency sinusoidal (despite being distorted) is visible in the fourth expansion
series. notice that the sixth expansion time-series has much lower peak-to-peak (PP)
value compared with the five before it and smaller weight signaling that it is a noise
component.
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Fig. 2.12 Example time-series and its corresponding SSA analysis. See text for details

Fig. 2.13 Example time-series and its corresponding SSA approximation using two groups (signal
and noise approximations). See text for details

We then used the very simple grouping strategy of combining all expansion matri-
ces with weights summing up to 45% of the total in an approximation of the input
time-series and combine the rest in another time-series estimating the noise. These
are the two signals shown in Fig. 2.13’s second row.

It is clear that the SSA approximation could recover most of the information
in the ground-truth while eliminating the additive Gaussian noise. To quantify this
intuition, we calculated the Euclidean distance between the ground truth and the
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input time-series to be 21.0518. The Euclidean distance between the approximated
signal and the ground truth is only 11.2344. This suggests that the SSA analysis
could, again, eliminate around half of the distance introduced by the noise.

In general it is advisable to use the largest possible lag parameter value less
than half the time-series (in order not to have more columns than rows in H). This
shows one problem with SSA analysis. The complexity of most implementations
of SVD is cubic in matrix dimensions when they are similar which is the case in
SSA. This means that for long time-series, SSA application may be prohibitively
time-consuming. Several approaches have been proposed to deal with this problem
but they are outside the scope of this book.

Extending SSA to multidimensional time-series is straight forward. We simply
stack the Hankel matrices of all dimensions together to generate a combined Hankel
matrix. This matrix is then fed to the rest of the algorithm as it is without any need
to modify any parts except the hankelization process which now averages the corre-
sponding parts of each dimension alone. This algorithm is called SSAM hereafter.
SSAM is not the same as applying SSA to each dimension and combining the results
because V will be shared between all the dimensions.

Figure2.14 shows a time-series generated from a markov chain with Gaussian
noise added and the first few expansion time-series using SSAM. Figure2.15 shows
application of repeated SSA to the two input dimensions of the same data used
in Fig. 2.14. Even though the expansion time-series seem very similar, they are not
identical.We can confirm that be comparing the result of grouping the first expansion
matrices corresponding to a total weight of 0.75 in both cases as shown in the bottom
row of Fig. 2.16. Did SSAM improve the results of repeated SSA? To answer this
question we calculated the Euclidean distance between the ground truth and both

Fig. 2.14 Example time-series and its corresponding SSAM analysis. See text for details
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Fig. 2.15 Example time-series and its corresponding repeated applications of SSA analysis. The
two colors represent two dimensions of the time-series. See text for details

Fig. 2.16 Example time-series and its corresponding SSA analysis using SSAM and repeated
applications of single dimensional SSA analysis. The two colors represent two dimensions of the
time-series. See text for details

inputs and output of SSAM and repeated SSA. For the input, the distance was 22.45.
It was 17.24 for repeated SSA and 16.39 for SSAM. This shows that SSAM had
slightly better approximation capability compared with repeated application of SSA.
This was true because the covariance matrix used to generate the data had nonzero
off-diagonal numbers resulting in correlations between the two-time series. SSAM
can utilize these correlation because of the combined V matrix while repeated SSA
application cannot.
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From this example, it is clear that SSAM is expected to work well when the
dimensions of the input time-series are correlated otherwise, repeated application of
SSA may achieve higher approximation accuracy.

2.4 Learning Time-Series Models from Data

In data mining applications in general and in social robotics in particular, we rarely
have access to a generation model in one of the simple mathematical forms presented
in Sect. 2.2. In most cases, we only have data generated—or can be assumed to be
generated—from one of these models and are interested in estimating the generation
model either for predicting future behavior or simply to understand the generation
process. This sectionwill focus onmethods for learning the generationmodel assum-
ing that it falls under one of the most important models presented in Sect. 2.4. Most
of the information given here is standard knowledge for practitioners of time-series
analysis, pattern recognition or machine learning and for this reason we only briefly
describe the methods without delving into proofs or the correctness and soundness
of the algorithms involved.

2.4.1 Learning an AR Process

Recall that an AR process is described by the following equation:

xt = a0 +
m∑

i=1

aixt−i + εt, (2.63)

where εt N
(
0, σ 2I

)
is a Gaussian noise variable.

The constant value a0 can be estimated by the mean of the time-series and we will
assume that it is zero without loss of generality hereafter.

The simplest way to find the set of parameters ai is to use least squares. Let
θ = [−ap,−am−1, . . . ,−a2,−a1, 1]′, ε = [ε1, ε2, . . . , εT ] and A′ = [xt−m:t]T

t=m+1,
and B = [xp : xT ], then Eq.2.63 can be be summarized for every point in the time-
series as:

Aθ = B. (2.64)

This equation can be solved using standard least-squares to estimate θ . Moreover,
the residuals from comparing the signal generated by using the learned θ in Eq.2.63
to the original time-series can be used to estimate the variance of the white noise
component (σ 2).

This approach is used in learnARLS() to learn the parameters of an AR process
given an input time-series and an estimate of the system order.
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The problem with this approach is that it requires the solution of T equations on
only m unknowns which may not scale well with the length of the time-series.

Least squares estimation in general reduces the squared distance between the
prediction from the learned model and the input data. This can be captured by the
following unconditional optimization problem:

min
a

J (a) = min
a

∞∑

t=−∞

(
xt −

m∑

i=1

aixt−i

)2

. (2.65)

To solve this problem for each parameter aj, we simply find the point at which
the partial derivative of J with respect to aj vanishes.

∂J

∂aj
= ∂

∂aj

∞∑

t=−∞

(
xt −

m∑

i=1

aixt−i

)2

,

∂J

∂aj
=

∞∑

t=−∞

∂

∂aj

(
xt −

m∑

i=1

aixt−i

)2

, (2.66)

∂J

∂aj
=

∞∑

t=−∞
−2xt−j

(
xt −

m∑

i=1

aixt−i

)
.

Setting ∂J
∂aj

= 0, we get:

∂J

∂aj
=

∞∑

t=−∞
2xt−j

(
xt −

m∑

i=1

aixt−i

)
= 0,

∞∑

t=−∞
xt−jxt −

∞∑

t=−∞
xt−j

(
m∑

i=1

aixt−i

)
= 0, (2.67)

∞∑

t=−∞
xt−jxt−0 −

m∑

i=1

ai

∞∑

t=−∞
xt−ixt−j = 0.

Defining Ai = −ai for 1 ≤ i ≤ m and A0 = 1, and defining l = i − j we get:

m∑

i=0

Ai

∞∑

t=−∞
xtxt+l = 0. (2.68)
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Now we notice that the internal summation is the autocorrelation coefficient ρ for
different delays l. This means that the Eq.2.68 can be written as:

m∑

i=0

Aiρl = 0. (2.69)

We do not have access to ρl in Eq.2.69 but we can estimate it using:

rl =
T−l∑

t=1

xtxt+l. (2.70)

Substituting rl for ρl in Eq.2.69, we get the famous Yule–Walker equations. These
are M equations in M unknowns and their solution scales well with the length of the
time-series and can be written as:

RA = B, (2.71)

where:

R =

⎡

⎢⎢⎢⎣

r0 r−1 · · · r1−m

r1 r0 · · · r2−m
...

...
. . .

...

rm−1 rm−2 · · · r1

⎤

⎥⎥⎥⎦ ,

A = [a1, a2, . . . , am]′,

B = [r1, r2, . . . , rm].

This system of equations can be solved efficiently using the Levinson-Durbin
recursion leading to an estimate for a. This procedure is implemented in the function
learnARYuleW alker() in the toolbox.

Figure2.17 shows the results of applying least squares and Yule–Walker
approaches to learning the parameters of a time-series generated from an AR
model. The originalmodel had the parameter vector: a = [2.7607,−3.8106, 2.6535,
−0.9238]. The model learned from least squares was als = [2.7746,−3.8419,
2.6857,−0.9367], while the model learned fromYule–Walker equations was: ayw =
[2.7262,−3.7296, 2.5753,−0.8927]. Comparing the parameter vectors directly we
get a.als = 0.0487 and a.ayw = 0.1218. It appears that the least-squares estimator
could provide smaller error in terms of parameter values. Figure2.17 shows also
that the Yule–Walker approach gives higher error in terms of the ability to predict
the actual values of the time-series which is what we usually care about. This is
quantified by finding the Euclidean distance between the original time-series and the
one predicted using the learned parameters (with the same random Gaussian noise)
which leads to 39.5113 for the Yule–Walker approach compared with only 38.7442
for the least squares solution.
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Fig. 2.17 Results of learning the parameters of an AR process using both least squares and Yule–
Walker approaches then generating an estimate of the time-series from the learned model

2.4.2 Learning an ARMA Process

Learning the parameters of an AR process using least squares or the Yule–Walker
approach was a simple exercise. ARMA processes on the other hand provide a more
challenging problem because we need to fit not only the parameter vector a but also b
and the MA part of the process makes noise values at different time-steps correlated
which renders least squares like solutions inappropriate for the problem.

The simplest approach to solve this problem is two-stages regression. We start by
assuming that the data is from an AR(m̂) process instead of an ARMA(m, n) process
where m̂ > m. This means that we assume that information about the Gaussian noise
part is encoded in the longer AR process directly in the values of the time-series.
This can be seen by rearranging Eq.2.9 as follows:

θt =
m∑

i=1

aix
arma
t−i − xarma

t +
n∑

i=1

biθt−i, (2.72)
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θt−1 =
m∑

i=1

aix
arma
t−i−1 − xarma

t−1 +
n∑

i=1

biθt−i−1, (2.73)

...

θt−n =
m∑

i=1

aix
arma
t−i−n − xarma

t−n +
n∑

i=1

biθt−i−n. (2.74)

This set of equations show that past values of x carries information about the
Gaussian noise. We use m̂ = m + n for our implementation.

After fitting the time-series using AR(m̂) and finding the parameter vector â, we
use the fitted model to predict the time-series using:

xfit
t =

m̂∑

i=1

âix
fitt−i . (2.75)

An estimate of the Gaussian noise can then be found as:

θ̂t = xarma
t − xfit

t . (2.76)

We now solve another regression problem (similar to the one used to fit the AR
model) but with estimates of θ1:T now incorporated into the linear model Aθ = B
where:

A =

⎡

⎢⎢⎢⎣

xr−1 xr−2 · · · xr−m ε̂r−1 ε̂r−2 · · · ε̂r−n

xr xr−1 · · · xr−m+1 ε̂r ε̂r−1 · · · ε̂r−n+1
...

...
. . .

...
...

...
. . .

...

xT−1 xT−2 · · · xT−m ε̂T−1 ε̂T−2 · · · ε̂T−m

⎤

⎥⎥⎥⎦ , (2.77)

θ = [a1, a2, . . . am, b1, b2, . . . , bn]
′ , (2.78)

B = [xr − ε̂r, xr+1 − ε̂r+1, . . . , xT − ε̂T ]′. (2.79)

Solving this linear system leads to an estimate of the parameter vectors a and b.
Figure2.18 shows the results of applying this procedure to a time-series generated
from an ARMA(3, 5) model with a = [−0.7, 0.5, 0.9] and b = [1, 2, 3, 2, 1].

Even thought the accuracy is less than the case for the AR process shown in
Fig. 2.17, this solution still captures the main characteristics of the time-series rising
and falling with it with a correlation coefficient of 0.9356. This solution can also be
used as an initial solution for a local search method (e.g. gradient descent on the log-
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Fig. 2.18 Results of learning the parameters of an ARMAprocess using two-stages regression then
generating an estimate of the time-series from the learned model

Fig. 2.19 Results of learning the parameters of an ARMA process using two-stages regression and
maximum likelihood then generating an estimate of the time-series from the learned model

likelihood function) to find a better solution. Two-stages regression is implemented
in the MC2 toolbox using the function learnARMALS().

Matlab’sEconometrics toolboxhas an implementation of themaximum likelihood
estimator for ARMAmodel parameters in the function estimate(). Figure2.19 shows
the results of using two-stage regression and maximum likelihood to learn the same
data presented in Fig. 2.18.

Another approach for estimating the parameters of anARMAprocess is to convert
it into a linear state-space model and use a Kalman filter to estimate the state of the
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system (which corresponds to the time-series values without theMA part). These can
then be used to estimate a. To estimate b, we use the residues of the firstmodeling step.

2.4.3 Learning a Hidden Markov Model

Hidden Markov Models (HMM) are widely utilized in speech recognition, gesture
recognition and—aswewill see in Chap. 13—in learning from demonstration. In this
section we will focus on HMMs with Gaussian observation distributions (GHMMs)
defined as in Sect. 2.2.8.

A GHMM is completely specified by a tuple {π, A, μ1, μ2, . . . , μN ,Σ1,

Σ2, . . . , ΣN } where π is a N × 1 vector specifying prior probabilities for the first
hidden state, A is a N × N matrix where Aij specifying the transition probabilities
from state i to state j, and μn and Σn specify a Gaussian distribution from which the
time-series value is sampled when the GHMM is in state n for 1 ≤ n ≤ N . The full
specification of a GHMM is given in Sect. 2.2.8 and repeated in Eq.2.80 for conve-
nience.

s0 ∼ p (s0) ≡ π,

st ∼ p (st|st−1) ≡ Ast−1
T , 0 < t � T , (2.80)

xghmm
t ∼ p

(
xghmm

t |st

)
≡ N (

μst ,Σst

)
.

Now, given a time-series X = (x0, x1, . . . , xT−1), we would like to learn the para-
meters of the GHMM generating it. Collecting all the parameters in a single vector
θ , this problem can be casted as a maximum likelihood problem of the form:

max
θ

J (θ) = max
θ

p (X|θ) .

This problem can be solved efficiently using the Baum–Welch forward-backward
algorithm which is a form of expectation maximization that takes advantage of the
independence relationships implicit in the definition of HMMs to achieve linear time
estimation of model parameters.

Because it is an Expectation Maximization algorithm, it requires an initial model
λ = (π, A, μ1:N ,Σ1:N ). Using this model, we will find p (st = n|X, λ) for 0 ≤ t ≤
T − 1 and 1 ≤ n ≤ N which is the probability of having every possible state n at
every possible time-step t given that we have observed X and assuming the model
λ. This is the expectation step. Given these probabilities, it is straightforward to
find an estimate of the model parameters λ+ that achieves higher likelihood in the
maximization step. Iterating these two steps, it is guaranteed that λ+ will converge
to a local maximum of the likelihood function J .

Let’s consider the expectation step. Our goal is to calculate p (st = n|X, λ) effi-
ciently. Firstly we notice that:

http://dx.doi.org/10.1007/978-3-319-25232-2_13
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p (st = n|X, λ) ≡ γt (n) = p (st = n, x0:t|λ) p (xt+1:T |st = n, λ) . (2.81)

Equation2.81 is true due to the Markovian property of HMMs (i.e. st+1 is inde-
pendent of everything given st). Defining αt (n) ≡ p (st = n, x0:t|λ) and βt (n) ≡
p (xt+1:T |st = n, λ), Eq. 2.81 can be written as:

γt(n) ∝ αt(n) ◦ βt(n), (2.82)

where ◦ is the elementwisemultiplication operator. Now the expectation step reduces
to the problem of calculating α and β.

Consider α, we know that:

α0 (n) = p (s0 = n|x0, λ) = p (s0 = n, x0|λ)

p (x0|λ)
, (2.83)

∴ α0 (n) = p (s0 = n|λ) p (x0|s0 = n, λ)

p (x0|λ)
, (2.84)

∴ α0 (n) = πnN (x0;μn,Σn)

p (x0|λ)
. (2.85)

Defining ρt (n) ≡ N (xt;μn,Σn), Eq. 2.85 can be written as:

α0 (n) = πnρt (n)

p (x0|λ)
. (2.86)

Now consider the general case (i.e. αt (n)):

αt (n) = p (st = n|x0:t, λ) = p (st = n, x0:t|λ)

p (x0:t|λ)
.

∴ αt (n) ∝ p (st = n, xt, x0:t−1|λ) ,

∴ αt (n) ∝ p (st = n, x0:t−1|xt, λ) p (xt|st = n, x0:t−1, λ) ,

∴ αt (n) ∝ p (st = n, x0:t−1|xt, λ) p (xt|st = n, λ) ,

∴ αt (n) ∝ βt (n)

N∑

i=1

p (st = n, st−1 = i, x0:t−1|xt, λ),

∴ αt (n) ∝ βt (n)

N∑

i=1

p (st = n, st−1 = i, λ) p (st−1 = i, x0:t−1|λ).

This can be written as:

αt (n) ∝ βt (n)

N∑

i=1

Ainαt−1 (i) . (2.87)
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Butwe know that
∑

αt (n)must equal 1. This leads to the final estimation equation
for αt (n):

αt (n) = βt (n)
∑N

i=1 Ainαt−1 (i)
∑N

j βt (j)
∑N

i=1 Aijαt−1 (i)
. (2.88)

This derivation shows that we can find αt (n) for any t and nwithin their respective
ranges given A, αt−1(1 : N), and ρt (1 : N). This suggests a simple recursion starting
by finding α0 (n) for 1 ≤ n ≤ N using Eq.2.86. We then use Eq.2.88 for 1 ≤ t ≤ T
and 1 ≤ n ≤ N . This is called the forward recursion.

The second part of Eq.2.81 can be estimated using a similar procedure but now
going backward in the time-series according to the following two equations:

βT (n) = 1, (2.89)

βt (n) =
N∑

i=1

Aniρt+1 (i) βt+1 (i). (2.90)

Using these two equations, βt (n) can be calculated backward starting fromβT (n).
Now having calculated both α and β, it is easy to calculate γ as follows:

γt (n) = αt (n) βt (n)
∑N

i=1 αt (i) βt (i)
. (2.91)

Now γt (n) gives us an estimate of the probability of being at state n at time step
t given the observed time-series X and the initial model λ. Now that we have an
estimate of the hidden state at every time-step, we can try to re-estimate the model
parameters.

A useful quantity for the maximization step is the probability of transiting from
state i at time-step t to state j at time-step t + 1 (notice that marginalizing this gives
an estimate of Aij). This quantity is defined as:

ζt (i, j) ≡ p (st = i, st+1 = j|x0:T−1, λ) .

It can easily be shown that ζ can be calculated as:

ζt (i, j) = αt (i) Aijρt+1 (j) βt+1 (j)
∑N

l=1

∑N
k=1 αt (k) Aklρt+1 (l) βt+1 (l)

. (2.92)

Given these estimates of ζ and γ , we can easily estimate the model λ+ =(
π+, A, μ+

1:N ,Σ+
1:N

)
using:

π+ (n) = γ0 (n) , (2.93)
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A+
ij =

∑T−2
t=0 ζt (i, j)

∑T−2
t=0 γt (i)

, (2.94)

μ+
i =

∑T−1
t=0 xtγt (i)∑T−1

t=0 γt (i)
, (2.95)

Σ+
i =

∑T−2
t=0 γt (i)

(
xt − μ+

i

) (
xt − μ+

i

)T

∑T−1
t=0 γt (i)

. (2.96)

This process can be repeated until λ+ does not differ much from λ or its likelihood
is not different from that of λ or until a predefined number of iterations is reached.
The aforementioned procedure is implemented in the function learnHMM() in the
MC2 toolbox. When multiple time-series are available that are believed to be from
the same GHMM, a slightly modified version of this procedure can be implemented
to learn the HMM parameters from all of the input time-series. This procedure is
implemented in the function learnHMMMulti().

2.4.4 Learning a Gaussian Mixture Model

Learning the parameters of a GMM from input time-series is conceptually very
similar to learning the parameters of GHMMs using Expectation Maximization. The
main idea is to estimate the responsibility of everyGaussian for the time-series values
at every sample in the expectation step rt (k) using:

rt (k) = πkN (xt;μk,Σk)∑K
i=1 πiN (xt;μi,Σi)

. (2.97)

The maximization step can be summarized as:

π+ (k) =
∑T

t=1 rt (t)

K
, (2.98)

μ+
k =

∑T
t=1 rt (t) xt∑T

t=1 rt (t)
, (2.99)

Σ+
k =

∑T
t=1 rt (t)

(
xt − μ+

k

) (
xt − μ+

k

)T

∑T
t=1 rt (t)

. (2.100)

These two steps are repeated a predefined number of times or until the likelihood is
not changing anymore. This algorithm is implemented in the learnGMM() function
of the toolbox.
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2.4.5 Model Selection Problem

Learning the parameters of a generating model (despite the type of this model)
usually requires an assumption about the model complexity. For example, to learn
the parameters of an ARMA(m, n) process we need some assumption about m and
n and to learn a GHMM, we need to know the number of states N . Selecting the
complexity of the model is a ubiquitous problem in data mining and there are several
known approaches to deal with it.

The simplest approach is K-fold cross validation. The training data (the time-
series in our case) is divided to K equally sized partitions. The system is trained on
K − 1 partitions and its performance is tested on the remaining one. This process is
repeated K times with a different testing partition each time. This process is repeated
for the set of complexities to be tested (e.g. values for K in HMM learning) and the
value the achieves best predictive performance is then selected.

Another approach that is used widely is Bayesian Information Criteria (BIC). In
this case, a statistic is calculated by adding the negative log–likelihood of different
models to another termmeasuring the complexity of the system.Rather than selecting
the system complexity that maximizes the likelihood (which is prone to overfitting),
we take the fact that more complex systems can in general achieve higher likelihood
values due to their tendency to overfit the data andmodel not only the system dynam-
ics but the noise corrupting it. The complexity level that minimizes the BIC statistic
is selected instead of the maximum likelihood statistic.

2.5 Time Series Preprocessing

Before any mining algorithm is applied to time-series data, preprocessing may be
required to remove artifacts, or enhance the quality of the data in some way. Several
preprocessing operations exist and for each of which there can be several alternative
algorithms. Here, we discuss the most useful of these operations for our purposes in
this book and some simple algorithms to achieve them keeping in mind application
to social robotics.

2.5.1 Smoothing

Avery common problemwith collected time-series specially from real-world sensors
is the contamination with high frequency noise that may cause problems to modeling
algorithms. For example, piecewise linear approximations of time series (that wewill
use several times in this book) may suffer from over-segmentation (i.e. generating
too many lines) in the face of such noise. A simple approach to reduce the effect of
this kind of noise is smoothing. Several algorithms exist for smoothing of time-series
data but in most cases the simple moving average approach will do.
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2.5.2 Thinning

Thinning is the process of keeping only local maxima of the time-series. This process
can be used as a compression technique by keeping a sparse representation of the
time-series in question. In this book we use thinning as a postprocessing step in the
RSST change point discovery algorithm (See Sect. 3.5).

A very simple thinning algorithm can be implemented by noticing the first differ-
ence of the data. Two rules are applied in order given some positive small number δ:
if xt − xt−1 > δ then set xt−1 to zero. if xt − xt−1 < −δ then set xt to zero.

More sophisticated approaches exist. For example, a piecewise linear approxima-
tion of the time series can be generated then only the points at which the line slopes
changes from positive to negative are kept.

2.5.3 Normalization

In many cases, it is necessary to keep the range of values in a time-series within
some range or make these ranges similar for different dimensions of the time-series.
Again several approaches can be thought of for this problem but we will focus on
two simple and widely used approaches.

First of all, wemay just want to remove any constant component of the time-series
because for example it does not contribute to the information content. This can easily
be achieved by removing the mean of the time-series from each point. This approach
is applicable to both single dimensional and multidimensional time-series. Defining
μ (X) to be the mean of a time-series along its independent dimension, we can state
this simply as:

x̄t = xt − μ (X) . (2.101)

If the scale is also to be removed, we can use the following general formula:

x̄t = xt − μ (X)

S
, (2.102)

where S represents the scale which can be either the range of the time-series (i.e.
max(X) − min(X)) or its standarddeviationσ (X). Equation2.102 assumes thatX has
a single dimension. A generalization to the multidimensional case can be defined as:

x̄t = C−1 (xt − μ (X)) , (2.103)

where C is the covariance matrix calculated as XXT assuming xt are column vectors.

http://dx.doi.org/10.1007/978-3-319-25232-2_3
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2.5.4 De-Trending

Referring to the xLAT model of time-series discussed in Sect. 2.2.1, the time-series
can be modeled by the addition of four factors one of them is the trend T0 which is a
monotonically increasing/decreasing time-series. A common pre-processing step in
many time-series mining applications is called de-trending and involves the removal
of this trend from the time-series. This is analogous to the removal of DC component
in signal processing applications. The simplest case of de-trending happens when
we can assume that T0 is linear. In this case, a line is fit to the original time-series
then subtracted from each point in it. Figure2.20 shows two examples of de-trending
when the original trend is linear. As the figure shows, when this assumption holds,
this method can recover the original signal up to the added noise level while when the
linear assumption fails, the results can differ widely from the ground truth. Notice
though that the error at every point is dependent only on the difference between the
fitted line and the actual trend. In MC2, the function detrendLinear() implements
this linear de-trending procedure.

When the trend is nonlinear, SSA can be used to find it by manually grouping
monotonically increasing or decreasing expansion time-series during the grouping
step (Sect. 2.3.5). The problem here is that a test is needed to decide whether a given
expansion time-series is a trend component.

Empirical Mode Decomposition (EMD) is another adaptive expansion technique
that has the advantage of always finding the trend component as its last component
by construction. The MC2 has another de-trending routine called detrendEMD()

that uses EMD for finding the trend component and removing it. Figure2.21 shows
the results of applying this routine to two time-series with a linear trend (left) and

Fig. 2.20 Linear de-trending of a time-series. On the left the case where the trend is linear and on
the right the case when it is nonlinear
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Fig. 2.21 EMD based de-trending of a time-series. On the left the case where the trend is linear
and on the right the case when it is nonlinear

a nonlinear trend (right). In both cases, EMD based de-trending provides superior
performance over linear de-trending.

2.5.5 Dimensionality Reduction

In many cases, we need to convert a multidimensional time-series to a single-
dimensional time-series. Several methods for dimensionality reduction can be used
including linear methods like Independent Component Analysis (ICA), Principle
Component Analysis (PCA), and nonlinear methods including IsoMap. This section
introduces one of the simpler approaches using PCA.

The following notation will be used in this section: xt;i is the ith dimension of xt ,
xt,l;i is the ith component of the subsequence xt,l, and X;i is the ith dimension of the
time-series X which is a single-dimensional time-series.

To apply PCA to a time-series, we start by creating the covariance matrix A which
is defined as:

Ai,j =
T∑

t=1

xt;ixt;j. (2.104)

This matrix can easily be found by treating X as a n × T matrix:

An×n = Xn×T XT
T×n. (2.105)
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We then find the first Eigen vector of A (v1) and its corresponding Eigen value λ1.
The output 1D time-series can then be found by projecting every time-series value
on that vector using the dot product operation:

yt = v1
T xt . (2.106)

CalculatingA in the aforementioned procedure requiresO
(
n2T

)
operationswhich

may be too slow for some applications. We can speedup the operation by selecting
K < T vectors from the time-series and use them to find A. Both of the exact and
approximate versions of this process are implemented in the function tspca() in the
MC2 toolbox.

2.5.6 Dynamic Time Warping

Sometimes, we receive for mining a set of time-series of different lengths and would
like to use an algorithm that assumes that all inputs have the same length. This can
simply be achieved by re-sampling/interpolating the shorter sequences. For example
if we have two time-series X, Y of lengths Tx and Ty where Tx > Ty, we assume
that the sample yt represents the value of Y at time t×(Tx−1)

(Ty−1)
. Linear or polynomial

interpolation can then be used to estimate values of Ŷ at times 0, 1, . . . , Tx. A similar
approach can be used to change the length of the longer time-series to equal the
length of the shorter time-series.

This simple approach assumes that the difference in the length between the two
time-series comes from a difference in the sampling frequency used to collect them.
In many cases, the difference in length is not related to the sampling frequency
but represents genuine difference between the two time-series. One such example
happens in learning from multiple demonstrations (Chap.13). In these problems, we
have multiple demonstrations of the same action conducted by a teacher from which
a learner is expected to generate a model representing the generation process of
these demonstrations. In this case, the difference in length of the time-series cannot
be assumed to originate from a difference in sampling rate or approximated by such
difference. The difference here is most likely a genuine difference in how fast did the
teacher perform different phases of the motion compared to one another. This means
that the relation between the time-series to be equalized in length cannot be assumed
to be a constant scaling that can be handled by the simple re-sampling procedure
described above. A common solution to these cases is to use the Dynamic Time
Warping algorithm (DTW).

DTW appeared as a distance function that can be used to estimate distances
between time-series more accurately than the standard Euclidean distance when the
data points are slightly temporally displaced compared with one another (See Ding
et al. 2008 for an experimental evaluation). It reuses all the points in the two time-
series to be aligned. The main idea is to find for each point in the shorter time-series

http://dx.doi.org/10.1007/978-3-319-25232-2_13
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a corresponding point in the longer one with the constraint that the first and last two
points of the two time-series must align (this is called the boundary constraint). The
algorithm can be visualized on a 2D grid M where the points of time-series X are
represented by the rows and the points of the time-series Y are represented by the
column. The boundary condition translates to the statement that the path representing
the correspondences between these two time-series must start at the bottom left cell
(representing (x0, y0)) and end at the top right cell (representing (xTx−1, yTy−1)).
Each cell in this grid contains the distance between the corresponding points of X
and Y (i.e.Mij = d(xi, yj) for some distance function d). Now, DTW finds the path
through M that minimizes the sum of these distances. This corresponds to the best
possible match between the two time-series. Other than the boundary constraint,
DTW optimization is constrained in two other ways:

Monotonicity constraint: The indices of both X and Y must be monotonically
increasing which means that for the optimal path (P = (p1, p2, . . . , pmax(Tx,Ty))),
where pi is an ordered pair

(
ji, ki

)
and 0 ≤ ji ≤ Tx, 0 ≤ ki ≤ Ty , i1 > i2; implies

that ji1 ≤ ji2 and ki1 ≤ ki2 .
Continuity constraint: Continuous points in the path correspond to adjacent cells

both horizontally and vertically. This means that for pi and pi+1,
∣∣ji+1 − ji

∣∣ ≤ 1
and

∣∣ki+1 − ki
∣∣ ≤ 1.

Other constraints are usually used to speed up the calculation of DTW and prevent
the path from wandering around leading to meaningless wraps. A warping window
condition limits the maximumwandering distance allowed from the diagonal. A slop
constraints limits the number of steps that can be taken in the same direction by the
path horizontally or vertically. The twomost common constraints in the literature are
the Sakoe-Chiba Band and the Itakura Parallelogram. Sakoe-Chiba Band restricts the
path to lie within a band around the diagonal. The width of this band is usually taken
to be 10% of the shorter time-series’ length. Ratanamahatana and Keogh (2005)
showed that this limit is not only useful for speeding up the DTW calculations but
that it is even less stringent than necessary for real world data mining applications.
Itakura Parallelogram limits the path to lie within a parallelogram with two vertices
at the starting and ending points of the path (limited by the boundary constraint).
This means that the path is allowed to wander more near the middle of the time-series
and less near the boundaries.

DTW is usually used to align single dimensional time-series but it can easily be
extended to multidimensional time-series by modifying the distance function used.
This algorithm is implemented in the function dtw() in the MC2 toolbox.

2.6 Summary

This chapter introduced basic time-series analysis techniques that will be used
throughout this book. The focus of the chapter was on techniques that are of direct
relevance to the ideas presented in the following chapters, rather than on providing
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an exhaustive treatment of time-series analysis (which requires a much larger vol-
ume by itself). We presented several models of generating processes for time-series
data. These generation models will be used for generating test sets for algorithms
developed later and some of them (e.g. GMM/GMR and GP) will be of direct use in
learning from demonstration. We also presented five transformations for represent-
ing time-series that will form the basis of algorithms for change point discovery and
motif discovery (Chaps. 2 and 3) specially the Singular Spectrum Analysis method
that will be a common ingredient of several algorithms later in this book. The chapter
also gave a brief treatment of preprocessing techniques that are employed everywhere
in this book including smoothing, thinning, normalization and de-trending. The fol-
lowing three chapters will focus on specific time-series analysis problems that use
the aforementioned generation models and transformations to create the building
blocks for our autonomous learning system to be introduced in the second part of
the book.
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Chapter 3
Change Point Discovery

Change point discovery (CPD) is one of the most relied upon technologies in this
book. We will use it to discover recurrent in Chap. 4, to discover causal relations in
Chap.5 and as a basis for combining constraints for long-term learning in Chap. 12.

Given a time-series, the goal of CPD is to discover a list of locations at which
the generating dynamics or process changes or the shape of the time-series changes.
Depending on the context, researchers use generating dynamics or shape and in this
book we focus on the first alternative. For us shape is secondary but the generating
dynamics are our goal. The exact definition of change and generating processes is
application dependent and this chapter will try to introduce the most general and
applicable methods. As usual, we will be interested in algorithms that are most
usable in the context of social robotics while not ignoring CPD algorithms that best
represent the field.

Change Point Discovery (CPD) has a very long history. The reader can find survey
papers for CPD since 1976 (Willsky 1976).

CPD can be divided into two separate subproblems and this was realized by
researchers for a long time (e.g. Willsky 1976; Basseville and Kikiforov 1993). The
first problem involves calculating some change score (called residual in some papers)
for every point in the time-series. This score is expected to change in a smooth fashion
mostly. For example, it is expected to rise before the actual change point and then fall
after it. The second problem is the discovery of a discrete list of time-steps at which
change is announced given the scores found by solving the first problem. We call the
first sub-problem the scoring problem and call the second the localization problem.
This chapter will introduce different approaches to dealing with both of them.
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3.1 Approaches to CP Discovery

Given a time-series X = {xt } of length |X | = T , and an integer Nc, we say that there
are change points at positions ck ∈ [1, T − 2] for 1 ≤ k ≤ Nc if the time series is
generated using the following scheme:

xt =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ1 (.) 0 � t < c1
...

λi (.) ci−1 � t < ci
...

λNc+1 (.) cNc � t < T − 1.

(3.1)

The parameters of the generation processes λi (.) depend on the specific modeling
scheme employed. An equivalent information for the list {ck} can be provided by a
time-series {x̃} which is defined as:

x̃t =
{
1 t ∈ {ck}
0 t /∈ {ck}. (3.2)

Equation3.2 can be used to report change point positions but it can easily be
extended to handle uncertainty in this decision as:

x̃t = p (change at point t) . (3.3)

An even more general form can be obtained as:

x̃t ∝ p (change at point t) . (3.4)

A CPD algorithm may directly estimate {ck} or report {x̃t } in either of the forms
presented earlier. If Eq.3.4 is used, a final localization stepmay be needed (depending
on the application) to recover the series {ck}. This problem will be discussed in
Sect. 3.6.

Change point discovery is a problem with long history in data mining which
resulted in many approaches that may not be even directly comparable as they may
be solving slightly different problems.

Firstly, we distinguish between approaches that infer change points given previous
locations of change points (called direct location inference methods hereafter) and
methods that do not utilize information about previous change locations directly.

Secondly, in both cases, a very important factor in the solution of theCPDproblem
is the definition of the data encapsulated by the time-series. On one hand, we have
stochastic approaches that assume that the data are coming from some stochastic
model (e.g. a GMM, an HMM, etc.) in which every time-series value xt is sampled
from a distribution that may depend on previous values of the time-series (e.g. as in
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AR and ARMAmodels). On the other hand, some approaches do not explicitly make
this assumption or work directly with a dynamical systems model of the generation
process. The distinction between these two approaches is somewhat muddied by the
fact that in almost all cases, noise is modeled as a stochastic process which makes it
possible to use stochastic approaches even when we have a dynamical model of the
generation process.A third approach tries to bypass probabilisticmodeling altogether
and does not explicitly model the noise in the time-series (examples include SSA
based systems).

Another distinction between themethods to be explored in this chapter is how they
delineate the change. In some algorithms, a change is announced when two models
fit the data in somewindow better than onemodel. Another approach is to announce a
change when data before some point is different from data after it according to some
criterion. Yet a third approach is to announce a change when data before the point
are incapable of explaining the data after it in some sense. We will see algorithms
that use each of these three criteria for announcing a change.

Algorithms also differ in how fast can they detect changes in the time-series but in
all cases that interest us, change point algorithms are local in the sense that they base
their decision on a small sample of the time-series around the point being considered.
This property allowsmost of the algorithmswewill discuss to be implemented online
even though in almost all cases it will require some information from the future of
any point to measure the odds for a change at that point which means that most
of these algorithms will run with some known lag. The only exception will be in
algorithms that directlymodel the probability of a change given prior changes and use
stochastic sampling because such algorithmsmay need to consider samples spanning
the complete time-series as in the approach presented in the following section.

3.2 Markov Process CP Approach

Thefirst approachwewill consider is based onmodeling change point positions using
a Markov process. As discussed in Sect. 2.2.7, a Markov process is fully specified
by a set of transition probabilities and initial probability.

A simple model in this case is to assume that the location of k’th change point
depends only on the location of k − 1’s change point. This can be represented by:

Probabili t y (change at point t |change at point t − s) = g (t − s) , (3.5)

where we assumed that g depends only on the difference between the two integers
t , s and that s < t . We will also assume that the initial probability distribution is p.
Furthermore, g (0) = 0 because it does not make any sense to announce a change at
time 0 or two changes at exactly the same time.

http://dx.doi.org/10.1007/978-3-319-25232-2_2
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In any segment of the time-series xs+1:t within which no change occurs, we will
have—by definition—a single generation model λs+1:t ≡ λs+1. To use the method
proposed by Fearnhead and Liu (2007) and described in this section, we will have
to limit the set of possible models. We assume that the set of possible models is Λ.
Thesemodels are grouped into a finite number of groupsΩi for 1 ≤ i ≤ Nm for some
positive integer Nm with a prior distribution π (λ) for every group Ωi . Furthermore,
we assume that models differ only on a set of parameters α which renders the prior
over models a prior over parameters π (λ) ≡ π (α).

Given the above definitions, the probability of having a segment xs+1:t can be
defined as:

p (xs+1:t |Λ) =
∫

p (xs+1:t |α,Λ)π (α) dα. (3.6)

For example, given the set of models:

xs+1:t = Hα + N (0, σ 2 It−s×t−s
)
, (3.7)

for some order q where |α| = q. Assuming thatσ 2 has an inverseGammadistribution
withmeta parametersυ/2 and γ /2 and components of theGaussian regression vector
α have independent Gaussian priors with zero mean and the variance of αi ’s prior is
δ2i . Fearnhead and Liu (2007) reported that under these conditions, the likelihood of
xs+1:t given model order q can be found as:

p
(
xs+1:t |Ωq

) = π(s−t)/2

√
|M |
|D|

(γ )υ/2� ((t − s − υ) /2)
(‖xs+1:t‖2P + γ

)(t−s+υ)/2
� (υ/2)

, (3.8)

where M = (H T H + D−1
)−1

, P = I − H M H T , ‖x‖2A = xT Ax , D = diag(
δ21, . . . , δ

2
q

)
.

For this example, Λ is all linear models that can be defined using Eq.3.7. Ωq

is the set of models with order q (i.e. |α| = q). λi
q ∈ Ωq is a specific linear model

with α = αi . The maximum order qmax will then be equal to Nm . The importance
of the models described by Eq.3.7 is that it can easily represent several generation
processes. For example the AR(q) process can be modeled using Eq.3.7. This can
be achieved by defining H as:

H =

⎡

⎢⎢⎢⎣

xs xs−1 . . . xs−q+1

xs+1 xs . . . xs−q+2
...

...
. . .

...

xt xt−1 . . . xt−q+1

⎤

⎥⎥⎥⎦ . (3.9)

The same form can represent polynomial regression by setting H as:
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H =

⎡

⎢⎢⎢⎣

z0 (s + 1) z1 (s + 1) . . . zq (s + 1)
z0 (s + 2) z1 (s + 2) . . . zq (s + 2)

...
...

. . .
...

z0 (t) z1 (t) . . . zq (t)

⎤

⎥⎥⎥⎦ ,

where z (i) = i/(t − s).
Now that we know how to define the probability of a change at time t given a

change at an earlier time s, we move on to explain an algorithm for calculating {ck}
given {xt } (Fearnhead and Liu 2007). The algorithm consists of a filtering recursion
that operates on the time-series point by point.

A helper time-series {ζt } of the same length as {xt } (i.e. T ) will be defined to keep
track of the last point at which a change occurred. This means that if ζt−1 = s then
ζt = s if there was no change at time t (implying that last change was at time s) or
ζt = t − 1 implying that the last change happened at time t − 1. The sequence {ζt }
is a Markov chain with the following definition of transition probabilities:

p (ζt+1 = j |ζt = i) =

⎧
⎪⎨

⎪⎩

1−G(t−i)
1−G(t−i−1) if j = i

G(t−i)−G(t−i−1)
1−G(t−i−1) if j = t

0 otherwise

, (3.10)

where G(k) is the commutative distribution associated with g (k).
Applying Bayes rule we get:

(ζt = j |x0:t ) ∝ p (xt |ζt = j, x0:t−1) p (ζt = j |x0:t−1) . (3.11)

Moreover, we have:

p (ζt = j |x0:t−1) =
t−1∑

i=0

p (ζt = j |ζt−1 = i)p (ζt−1|x0:t−1) . (3.12)

This leads to the following recursion:

p (ζt = j |x0:t ) ∝

⎧
⎪⎪⎨

⎪⎪⎩

w j
t
1−G(t−1− j)
1−G(t−2− j) p (ζt−1 = j |x0:t−1) if j < t − 1,

wt−1
t

t−2∑
i=0

(
G(t−1−i)−G(t−2−i)

1−G(t−2− j) p (ζt−1 = j |x0:t−1)
)
if j = t − 1,

0 otherwise
(3.13)

where w j
i = p (xi |ζi = j, x0:i−1). These weights represent predictions of the current

time-series value assuming the state of the Markov chain and previous values of the
time-series and they can be calculated efficiently in constant time independent of the
time-series length using:
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w j
i =

qmax∑
q=1

p ( j, i, q) p (q)

qmax∑
q=1

p ( j, i − 1, q) p (q)

. (3.14)

Given that we have calculated p (ζt = j |x0:t ) for 0 ≤ t ≤ T , the discovery of
change points becomes the problem of finding the Maximum A posteriori Estimate
(MAP) of ζt . This can be solved by aViterbi algorithmwhich also gives us an estimate
of the order of the system (q) at every time-step. The time-series {x̃t } can then easily
be found from ζt by differencing.

The approach presented in this section suffers from some problems. Firstly, the
time required to calculate the value of p (ζt = j |x0:t ) according to Eq.3.13 increases
with timewhichmeans that the time-complexity of the algorithm is quadratic in time-
series length. This is a prohibiting cost for longer time-series that we are usually
interests us in social robotics and in many other realistic applications. Fearnhead
and Liu (2007) proposed a solution to this problem by using particle filtering to
approximate this distribution. This renders the inference approximate but with linear
time-complexity. Secondly, the algorithm requires a predefined set of models Λ.
Selection of this set of models is crucial for the inference we presented in this section
and in real world applications it may not be clear how to select this set.

Other approaches that wewill describe in this chapter will not try to directlymodel
the length of time-series segments. This removes the need to define Λ because we
need not predict segment lengths. Nevertheless, most of the algorithms described
in this chapter will still rely on predefined models with the exception of Singular
Spectrum Analysis approaches (Sect. 3.5).

3.3 Two Models Approach

Figure3.1 shows a schematic of the subsequences involved in change point discov-
ery using the two-models approach. Three models can be seen: A long-term model
representing the totality of the time-series or a large segment of it (Ma representing a
subsequence of length na) and two short-term models representing the past (Mp rep-
resenting a subsequence of length n p) and the future (M f representing a subsequence
of length n f ) around the point of interest t . Some delay may be used before the future
model and after the past model (δ f and δp respectively). These two constants may
be negative signaling overlap between Mp and M f . These three models can then be
compared to give an estimation of x̃t . In most cases, we only use two of the models
for comparisons (either Ma and M f or Mp and M f ). The involvement of M f in both
cases means that the CPD algorithm must run by some lag of around n f + δ f .

To instantiate a specific CPD algorithm using the two-models formalism, we need
to specify the values of the constants involved, the two-models selected for compar-
isons, the model familyΛ used for estimating them, and a method for comparing the
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Fig. 3.1 The subsequences involved in change point discovery

Fig. 3.2 Application of Brandt’s GLR test with three different model orders to a time-series gen-
erated by concatenating noisy signal primitives

two models. One of the earliest approaches for CPD was based on comparing Ma

and M f and using an autoregressive model for both (AR(p)) with additive Gaussian
noise. The difference between the predictions of the two models is measured using
Generalized Likelihood Ratio (GLR) test and this difference gave an estimate of
the change point score at every point. Andre-Obrecht (1988) applied this method to
speech segmentation as early as 1988.

This approach is called Brandt’s generalized likelihood ratio (GLR) test and is
implemented in the function brandt () in the MC2 toolbox. See Sect. 2.4.1 for two
general approaches for learning AR(p) models knowing the model order. Figure3.2
shows an example of applying this method to discover the change points in a time-
series thatwas generated by concatenating shapes like sinusoidals, lines, and constant
pieces. Notice that the generation mechanism is not an autoregressive model, yet the
recovered estimate of change point locations is acceptably accurate.

http://dx.doi.org/10.1007/978-3-319-25232-2_2
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Brandt’s GLR test is used to test for the existence of a change point within a time-
series x0:T The main idea behind Brandt’s GLR test is to compare the predictions of
two hypotheses:

H0: Thedata in subsequence x0:T is describedbymodel Ma = AR (m) + N (0, σ 2
a

)
.

H1: The data in subsequence x0:r is described bymodel Mp = AR (m) + N (0, σ 2
p

)

while the data in subsequence xr+1:T is described by a different model M f =
AR (m) + N

(
0, σ 2

f

)
.

For any subsequence xt0 :t0+T −1, the variance of theGaussian noise canbe estimated
once the parameters of the AR model are learned using:

σ 2 = min
a

1

T

t0+T −1∑

t=t0

(
xt −

m∑

i=1

ai xt−i

)2

. (3.15)

The log-likelihood for H0 can be shown to be:

L (H0) = −T log σa − T/2, (3.16)

while the log-likelihood for H1 is defined by:

L (H1) = −r log σp − (T − r) log σ f − T/2. (3.17)

The likelihood ratio of the two hypotheses is then defined by:

LR (r) = L (H1 (r)) − L (H0) = −r log σp − (T − r) log σ f + T log σa . (3.18)

The Brandt’s test consists of comparing the maximum value of LR (r) for 2 ≤
r ≤ T − 1 to a predefined threshold.

MLR = max
r

(−r log σp − (T − r) log σ f + T log σa
)
. (3.19)

Given any window of a time-series, calculating MLR using Eq.3.19 involves
operations quadratic on the length of the window (T ).

A faster implementation that was proposed by Andre-Obrecht (1988) is to fix the
value of r and use a moving window of length T . Once LR (r) exceeds a predefined
limit, the location of the change point is assumed to be within the last T − r points
of the window and another GLR test is used to localize it.

Brandt’s GLR test is but one of several possible two-models approaches. It is
critical to notice that these tests do not assume that the model used is the same as
generating dynamics of the time-series but only that the model can describe the data
with enough accuracy for its predictions to be of value for CPD. One problem of this
approach can be seen in Fig. 3.2. The output of the system can have any value which
makes it harder to select a meaningful threshold.
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Other forms of two-models approaches can be envisioned. For example, the mod-
els used can be HMMs or GMMs and probabilistic comparison methods like the KL
divergence can be used to compare the predictions of these models.

Singular Spectrum Analysis based CPD that will be explained in Sect. 3.5 can be
seen as a two-modelsmethod that does not commit to theARmodel for prediction but
utilizes the form of the time-series sequences for the past and the future for deciding
whether or not a change occurred.

3.4 Change in Stochastic Processes

A general class of solutions for CPD involves converting the signal into a stochastic
process with parameterized probability distribution (Pθ (xi |xi−1, xi−2, . . . , x0)) then
deciding whether at some point in the input signal (or a sliding window over it for
online approaches) there is a change in θ from θ0 to θ1 against the alternative that
a single parameter vector θ explains the whole signal. This is a likelihood ratio test
and can be decided statistically (e.g. Basseville and Kikiforov 1993).

One of the earliest approaches that follow this scheme is the CUMSUM algorithm
(Page 1954) which is sometimes called Page-Hinkley stopping rule. The goal here
is to detect a sudden change of the mean of some process. This can be used, for
example, in conversation analysis for detecting the times at which a sudden change
in gaze direction occurred. Because of noise in the gaze direction detector, the gaze
direction can be modeled as a random walk around a mean value that represents the
target. Sudden change in gaze can then be modeled as a change of this mean.

For simplicity let’s start by assuming that both the mean before the changeμ0 and
after it μ1 are known. This means that we can model the signal using the following
very simply Equation:

yi = μi + N (0, σ 2
)
, (3.20)

where σ is the (possibly unknown) standard deviation of the Gaussian noise added
to the means andμi is equal toμ0 before the point of change (r ). If a change happens
at the point r , then μi will equal μ1 for i ≥ r otherwise it will equal μ0.

In this case our hypotheses can be stated rigorously as:

H0 : r > n,

H1 : r � n, (3.21)

where r is the change point we are looking to locate and n is the length of our signal
(or a sliding window on it).

Given the assumptions of this problem, we can define the likelihood ratio between
the two hypotheses by:
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n∏

k=r

p1 (yk)

p0 (yk)
, (3.22)

where p j = N (μ j , σ
)
.

Now the log of this likelihood can be written as:

Ln (r) = μ1 − μ0

σ 2

n∑

k=r

(
yk − μ1 + μ0

2

)
= 1

σ 2
Sn

r (μ0) , (3.23)

where

Sn
r (μ) = (μ1 − μ0)

n∑

k=r

(
yk − μ1 + μ0

2

)
. (3.24)

This assumes that we actually know r but in reality that is what we are after (the
change point). For this reason, we can replace r by itsmaximum likelihood estimate r̂
which can be calculated as the value that maximizes Sn

r (notice that σ is independent
of this value). This gives us the following estimate for r̂ :

r̂ = argmax
1�r�n

⎛

⎝
r−1∏

i=0

p0 (yi )

n∏

j=r

p1
(
y j
)
⎞

⎠ = argmax
1�r�n

(
Sn

r (μ0)
)
. (3.25)

After calculating r̂ , we can then decide that a change happens within the n-point
signal (or window) if max

1�r�n

(
Sn

r (μ0)
)
was higher than some predefined threshold τ .

This leads to the CUMSUM statistic which can be computed recursively using:

gn = (gn−1 + yn − μ0 − 0.5 (μ1 + μ0)) . (3.26)

Whenever gn exceeds the predefined threshold τ we announce a change at the
point r̂ estimated as described above.

Of course in real life we do not know μ0 and μ1 but we can use the same strategy
used for r and use their maximum likelihood estimates from the data.

3.5 Singular Spectrum Analysis Based Methods

As the discussion of CUMSUM showed, most CPD algorithms require the specifica-
tion of some threshold (e.g. τ in CUMSUM) that is used for localization. They also
assume some predefined model of the signal (e.g. a constant value corrupted by a
Gaussian noise inCUMSUM). In our application formotor-babbling (See Sect. 11.1),
for example, the signals we deal with are very different ranging from speech to motor

http://dx.doi.org/10.1007/978-3-319-25232-2_11
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commands. It is difficult to have a model for each kind of these signals and it is also
very difficult to decide apriori appropriate threshold values.

Apromising approach that can overcomeall of these problems is based onSingular
Spectrum Analysis (Sect. 2.3.5). There are several SSA based CPD algorithms in
literature (for a survey see, Mohammad and Nishida 2011). Here we discuss one of
the simplest versions that was used in early implementations of our social robotics
work called Robust Singular Spectrum Transform (RSST).

The essence of the RSST is to find for every point x (i) the difference between a
representation of the dynamics of the few points before it (i.e. x (i − p) : x (i) or Mp

in Fig. 3.1) and the few points after it (i.e. x (i + g) : x (i + f ) or M f in Fig. 3.1).
This difference is normalized to have a value between zero and one and named xs (i).

Rather than relying on a predefined model (e.g. AR, ARMA, HMM, etc.), the
system tries to directly model the shape of the time-series using Singular Spectrum
Analysis (See Sect. 2.3.5).

The subsequences before and after the current point are represented using the
Hankel matrix which is calculated in two steps:

1. A set of subsequences seq(t) are calculated as:

seq (t − 1) = {x (t − w) , . . . , x (t − 1)}T . (3.27)

2. The Hankel matrix is calculated as the concatenation of n overlapping subse-
quences:

H (t) = [seq (t − n) , . . . , seq (t − 1)] . (3.28)

Singular Value Decomposition (SVD) is then used to find the singular values and
vectors of the Hankel Matrix by solving:

H (t) = U (t) S (t) V (t)T , (3.29)

where S (i − 1, i − 1) ≤ S (i, i) ≤ (i + 1, i + 1).
Only the first l (t) left singular vectors (Ul (t)) are kept to represent the past change

pattern as the hyperplane defined by them. Ide and Inoue (2005) showed that this
hyperplane encodes the major directions of change in the signal. In RSST the value
of l (t) is allowed to change from point to point in the time series depending on the
complexity of the signal before it. To calculate a sensible value for l (t) we first sort
the singular values of H (t) and find the corner of the accumulated sum of them
(lin f (t)) (the point at which the tangent to the curve has an angle of π /4).

To find a first guess of the change score around every point, RSST tries to utilize
as much information as possible from the future Hankel Matrix (G (t)) by using the
l f (t) Eigen vectors of G (t) G (t)T with highest corresponding Eigen values (λ1:l f ).
The value of l f (t) is selected using the same algorithm for selecting l (t).

http://dx.doi.org/10.1007/978-3-319-25232-2_2
http://dx.doi.org/10.1007/978-3-319-25232-2_2
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G (t) G (t)T ug = μug, (3.30)

βi (t) = ug
i , i ≤ l f and λ j−1 ≤ λ j ≤ λ j+1 f or 1 ≤ j ≤ w. (3.31)

Each one of these l f directions are then projected onto the hyperplane defined by
Ul (t).

The projection of βi (t)s and the hyperplane defined byUl (t) is then found using:

αi (t) = U T
l βi (t)∥∥U T
l βi (t)

∥∥ , i ≤ l f . (3.32)

The change scores defined by βi (t)s and alphai (t)s are then calculated as:

csi (t) = 1 − αi (t)T βi (t) . (3.33)

The first guess of the change score at the point t is then calculated as the weighted
sum of these change point scores where the Eigen values of the matrix G (t) are used
as weights.

x̂ (t) =

l f∑
i=1

λi × csi

l f∑
i=1

λi

. (3.34)

After applying the aforementioned steps we get a first estimate x̂ (t) of the change
score at every point t of the time series. RSST then applies a filtering step to attenuate
the effect of noise on the final scores. The filter first calculates the average and
variance of the signal before and after each point using a subwindow of size w.

μb (t) =

w−1∑
i=0

x̂ (t − i)

w
, (3.35)

σb (t) =

w∑
i=1

(
x̂ (t − i) − μb (t)

)2

w − 1
, (3.36)

μa (t) =

w∑
i=1

x̂ (t + i)

w
, (3.37)

σa (t) =

w∑
i=1

(
x̂ (t + i) − μa (t)

)2

w − 1
. (3.38)
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Fig. 3.3 Application of RSST and SST. The second half of the input consisted of pure Gaussian
noise, yet SST is still generating many false positives while SST could generate a much more
specific score

The guess of the change score at every point is then updated by:

x̃ (t) = x̂ (t) × |μa (t) − μb (t)| ×
∣∣∣
√

σa (t) −√σb (t)
∣∣∣ , (3.39)

where x̃ (t) is then normalized to get x (t) which represents the final change score
of RSST.

This approach is implemented in the function rsst () in the MC2 toolbox. The
original approach of (Ide and Inoue 2005) called SST is implemented in the function
sst () which lacks the final filtering step for removal of noisy segments and uses
always a fixed number of Eigen vectors for representing the past Hankel matrix for
score calculation instead of automatically calculating it as in RSST. Figure3.3 shows
an example of applying both algorithms to a time-series generated by concatenating
different simple shapes. Notice that the second half of the input time-series (last 3000
points) was pure Gaussian noise. Nevertheless, SST was confused to generate many
false positives. The reason for this behavior is that the Hankel matrices generated by
this random noise contain random data. When converted into hyperplanes they will
be oriented more or less randomly and the same is true for the Eigen vector repre-
senting the future. The comparison between these two randomly oriented constructs
is expected to lead a random values which is why SST has so many false positives.

This problem is sidestepped in RSST through the use of the filtering step which
simply detects these regions in the score signal and removes them.
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3.5.1 Alternative SSA CPD Methods

Up to this point, we described two possible SSA based CPD algorithms (RSST and
SST). A unifying framework for several other possible alternatives was presented
by Mohammad and Nishida (2011). This framework differentiates between CPD
algorithms using four different design decisions that result in 32 different alternatives.
It also shows that six of these are superior in performance to both SST and RSST in
the tested examples (Mohammad and Nishida 2011).

Here we focus on three of these design decisions with slight modifications: How
are the dimensionality of the projection subspaces for the future and the past selected?
How is the score defined in terms of the past subspace and the future subsequence?
Whether or not the algorithm normalizes the distance between future representation
and thepast subspacewith the distances betweenpast subsequences andpast subspace
representation.

The toolbox contains the function cpd() which allows the user to change all of
these variables generating more than 64 different alternatives for SSA based change
point discovery. The reader is encouraged to experiment with these variations for her
dataset before settling on the variation to use. Guidelines can be found in our earlier
work (see Mohammad and Nishida 2011).

3.6 Change Localization

The algorithms described in the previous sections use two stages for CPD. A score
{x̃t } is first calculated then a localization step has to be conducted. In some cases—
like the Brandt’s GLR test presented in Sect. 3.3—the scoring algorithm suggests a
localization algorithm. In other cases (e.g. SSA CPD described in Sect. 3.5), no such
bias exists and the practitioner is free to choose among many possible localization
systems.

One of the simplest possible localization approaches is thinning (Sect. 2.5.2) in
which we just extract the local maxima of the score. This approach is bound to
generate too many change points due to noise in score calculation.

Figure3.4 shows two simple alternatives for thinning for change localization. In
both cases a threshold is used and the score signal is scanned from beginning to

Fig. 3.4 Localization
methods used in this book

http://dx.doi.org/10.1007/978-3-319-25232-2_2
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end. Once the threshold is exceeded a segment is started that continues until the
score becomes less than the threshold once more. This segment is then converted
to a single change point location. Several alternatives can be used to achieve that.
The simplest is to use the point with the maximum score value within the segment
or the ridge center if the maximum was a ridge. Another approach is to us the point
in the middle of the segment. Both approaches are implemented in the toolbox with
functions locT hMax() and locT h() respectively.

Even thoughmore accurate localization schemes can be devised (e.g. using a form
of GLR for localization), these simple approaches proved accurate enough for our
applications.

3.7 Comparing CPD Algorithms

Comparing change point discovery algorithms is not an easy task. Consider the case
given in Fig. 3.5. A time-series is shown with the ground truth change points in blue.
The outputs of three fictitious CPD algorithms are also shown. In one case (green),
the algorithm finds two change points perfectly but gave smaller scores for them and
failed to find the other two. In another case (red), it could find all of the four points
but reported the change a little bit earlier than where it should have been reported.
The third algorithm (dashed) also found all of the four change points but reported
them later than when they happened. This variety of ways in which a CPD algorithm
may fail (e.g. failure to find a change, false positives, delay in change reporting, too
early announcement of change, inaccurate scoring of change, etc.) makes it difficult
to quantify—using a single number—the relative quality of CPD algorithms.

Comparison between change detection algorithms is usually done using one of
three approaches. The first approach is using the traditional confusion matrix based
statistics including the F measure, MCC, Precision, Recall, and ROC curves (we
call these confusion matrix measures). The second approach is using information
theoretic measures like the Kullback–Leibler divergence or Jennsen–Shannon Diver-
gence between the true change point locations and estimated locations (we call these

Fig. 3.5 (Top) A time-series. (Bottom) Ground truth change points (blue) and the output of three
CPD algorithms
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divergence methods). The third approach is using the delay between the change and
its discovery (we call these delay measures). In earlier work, we argued that all of
these approaches cannot effectively differentiate the performance of different CPD
algorithms and proposed a new approach that can solve this problem (Mohammad
and Nishida 2011).

3.7.1 Confusion Matrix Measures

All confusion matrix measures are based on evaluating four values: true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN). The total
number of positives (P) equals the sum of true positives and false negatives and the
total number of negatives (N) equals the sum of true negatives and false positives.
False positives are sometimes called Type I Errors or false alarms and false negatives
are sometimes called Type II errors or misses.

Consider true–positives. These are usually defined as the number of positives
(announced changes in CPD) that correspond to real positives (real change points
in CPD). This implies some form of localization of the changes. A general problem
of confusion matrix measures then is that they can only compare CPD algorithms
after localization and cannot directly be used to compare the scoring step which is
sometimes all what is needed (e.g. in constrainedmotif discovery as will be discussed
in the Chap.4).

Even with a localization algorithm, the possible delay in CP detection may com-
plicate the matters. Consider an algorithm that announces a change at point 503
while a true change happens at point 500. Should we consider this a false positive
(because the point is different) or a true-positive because it is near enough (only 3
points difference). The simplest way to solve this problem is to use a predefined
delay threshold (which can even be different for early and late announcements of
changes). After a localization algorithm is specified and this threshold is fixed, it is
possible to calculate the four quantities needed for the confusion matrix.

Given the four quantities of the confusion matrix, it is easy to calculate several
indicators to compare CPD algorithms. Some of the most important indicators for
the CPD problem are shown in Table3.1.

Table 3.1 Confusion matrix based indicators of algorithm quality

Indicator Calculation Intuitive meaning

Specificity T N/(F P + T N ) How much can we trust the algorithm when it
announces a change

Sensitivity (Recall) T P/(T P + F N ) How much can we trust the algorithm when it
announces no changes

Precision T P/(T P + F P) How much of the changes announced by the
algorithm are correct

http://dx.doi.org/10.1007/978-3-319-25232-2_4
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Notice that some of the most widely used confusion matrix based indicators are
of little value for comparing CPD algorithms due to the large imbalance between
P and N (positives are usually much rarer than negatives in the ground truth). For
example accuracy (defined as (T P + T N ) / (P + N )) is not a good indicator of
algorithm quality for CPD despite its widespread use in comparing classification
algorithms because P � N and assuming for example that an algorithm will just
output x̃t = 0 for 1 ≤ t ≤ T , it will has T P = 0 and T N = N which leads to an
accuracy of N/ (P + N ) � 1.0.

Usually we need two of the indicators given in Table3.1 to compare CPD algo-
rithms (e.g. precision vs. recall or specificity vs. sensitivity). Some other indicators
try to use a single number to signal algorithm quality by combining these indicators.
For example Fα combines precision and recall using:

Fα =
(
1 + α2

)
Precision × Recall

(
α2 × Precision

)+ Recall
=

(
1 + α2

)
T P

(
a + α2

)
T P + α2F N + F P

. (3.40)

F1 is the harmonic mean of precision and recall and puts the same emphasis on
both of them. F2 puts more emphasis on recall while F0.5 puts more emphasis on
precision. Depending on the application one of the other of these indicators may be
more appropriate.

A similar approach is taken by Matthews correlation coefficient (MCC) which is
defined as:

MCC = T P × T N − F P × F N√
P × N × (T P + F P) × (T N + F N )

. (3.41)

MCC is specially useful for CPD problems because of the imbalance between
the number of positives and negatives in the time-series. It represents a correlation
coefficient ranging from −1 to 1 between the prediction and correct value of change
point locations (after taking the acceptable delay into account).

These confusion matrix metrics can be computed in the MC2 toolbox using the
function cpquali t y()which accepts the localized change points (or scores and local-
ization function) and an acceptable delay threshold and calculates all the confusion
matrix based indicators discussed in this section.

3.7.2 Divergence Measures

Given the problems of confusion matrix measures of CPD algorithm, another
approach (that is more appropriate for comparing scores instead of localization
results) is treating the output of the algorithm as a probability distribution and com-
paring the two probability distributions using one of many possible probability dis-
tribution distance functions. We call these methods divergence methods as they try
to measure the divergence of the estimated change scores and ground truth change
point locations.
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Assuming that we have M changes at locations γm where 1 ≤ m ≤ M in a time-
series of length T . Ground-truth distribution pgt () will then be defined as:

pgt (t) =
{
1/M t ∈ {γm},
0 otherwise.

(3.42)

Another possible approach is to locate a small Gaussian at every one of the change
points with small variance σ leading to the following definition:

pgt (t) =
M∑

m=1

N (t; γm, σ 2
)
. (3.43)

The advantage of the ground truth distribution described by Eq.3.43 over that
described by Eq.3.42 is that it does not penalize algorithms that fail to detect some
change point the same way as algorithms that merely detect it slightly after (or even
before) its occurrence.

Other possibilities can be considered. For example, we can us the idea of accept-
able delay τ from the previous section and define pgt as:

pgt (t) =
{
1/ (τ M) ∃0 � δ � τ where t + δ ∈ {γm} ∨ t − δ ∈ {γm}

0 otherwise
. (3.44)

There are several other possibilities for defining pgt (t) for all 1 ≤ t ≤ T but these
threemethods represented by Eqs. 3.42, and 3.43 can cover our needs for this chapter.

Now, given some output from a CPD algorithm {x̃t }, we can define a probability
distribution by just normalizing the output using:

p (t) = x̃t∑
x̃t

. (3.45)

If we have instead the output of a localization algorithm in the form {γm} for
1 ≤ m ≤ M and γ ∈ [1, T ], we can use any one of the three approaches used to
generate the ground truth distribution (pgt ) to generate the distribution to be tested.

Now that we have both
{

pgt (t)
}
and {p (t)}, we can use any distance measure

defined for probability distributions to compare them.
One of the most widely used such measure is the Kullback–Leibler divergence of

two discrete probability distributionswhich is implemented in the function K L Div()

in the toolbox. Other possibilities include Jennsen–Shannon Divergence imple-
mented in jsdiv().

Amore appropriate distancemeasure for CPD comparisonwith ground truth is the
Earth Mover’s Distance (EMD) which is defined intuitively as follows: Assume that
pgt (t) represents some dirt distributed over T bins corresponding to the T possible
values of t . Moreover, assume that p (t) represents the same number of holes but
with depths corresponding to the values of p (t). Assume moreover that moving dirt
from bin i to bin j costs some cost ci j which is usually taken to be |i − j |p where
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p ∈ {1, 2}. Now the EMD is defined as the total cost needed to completely fill all
the holes using all the dirt by transporting dirt into holes. Because we know that the
volume of dirt is the same as the total volume of the holes (both are 1.0), we know
that a solution exists. In general EMD is calculated by solving a linear programming
problem.

For probability distributions though, it was shown by Levina and Bickel (2001)
that EMD is equivalent to Mallow’s distance which is defined as:

Mp (p, q) = min
F

EF
(‖X − Y‖p

)1/p
, (3.46)

where p and q are probability distributions of the random variables X and Y (respec-
tively) and F represents a joint probability distribution where (X, Y ) ∼ F subject to
the two constraints:

X ∼ p, Y ∼ q.

Mallows distance is the expected difference between the two random variables X
and Y taken over all joint probability distributions such that the marginal distribution
of X and Y equal the compared p and q distributions.

It can be shown that Mp
(

pgt , p
)
(and so E M D

(
pgt , p

)
) can be found as:

E M D
(

pgt , p
) = Mp

(
pgt , p

) =
(
1

T

T −1∑

t=0

∣∣pgt (t) − p (t)
∣∣p
)1/p

. (3.47)

In our context, Mallows distance represents the expected difference between the
ground-truth location of a change point and a sample from the distribution repre-
senting the CPD result. An immediate problem with this measure is that it does
not take into account the direct correspondence between ground truth change points
and estimated change points. A more subtle problem has to do with the fact that
the scores generated from CPD algorithms are rarely uniform yet we do not care
much about their value but their location. To make this point clear, consider a time
series of length 100 with two change points at points 10 and 80. Now consider two
change point algorithms: one generating an only two nonzero equal values at points
80 and 10 (call this Algorithm 1), and the other generates two nonzero but unequal
values at the same points (call this Algorithm 2). Both algorithms detected the two
changes perfectly and for most purposes they should be considered equal as long as
both nonzero values are beyond the decision threshold, yet Algorithm 1 will have
an EMD distance of zero while Algorithm 2 will have nonzero distance signaling
inferior performance.

What we really care about in most of our applications is how many ground truth
change points are discovered by the CPD algorithm. A more appropriate measure
for this value will be presented in Sect. 3.7.3.
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3.7.3 Equal Sampling Rate

The discussion of CPD quality measures so far leads to a set of desirable features in
any such measure:

1. It should take into account acceptable delays and allows for penalizing delayed
discoveries of changes while allowing also for rewarding early discovery.

2. It should be able to compare both raw change scores and localized change point
estimates.

3. It should be bounded.
4. It should give maximum quality score for estimates that match the ground truth

exactly and give minimum scores for random estimates.
5. It should correspond to our intuitive notion of change discovery accuracy. This

means that algorithms declaring changes at every point or no changes at any
points without considering the data should get minimum possible scores (similar
to algorithms that just assign random estimates).

This section describes a form of a divergence measure that was developed explic-
itly for measuring the quality of CPD algorithms. It also treats the estimated and
ground truth locations or scores as a probability distribution as we did in the pre-
vious section. The main idea of this measure (called Equal Sampling Rate) is to
find the probability that a random sample from the distribution representing the esti-
mate will be within some predefined acceptable distance from a real change point
while discounting delayed discovery and possibly encouraging early (before change)
prediction.

Consider again the example given by the end of the last section. We had a time
series of length 100 with two change points at points 10 and 80. Now consider two
changepoint algorithms: one generating anonly twononzero equal values at points 80
and 10 (call thisAlgorithm1), and the other generates two nonzero but unequal values
at the same points (call this Algorithm 2). According to ESR, both algorithms will
have exactly the same score (which is 1.0 the maximum possible score) because no
matter fromwhere dowe sample in the estimated change locations in both algorithms
we get exactly one of the ground truth change points. This is in contrast to the other
divergence methods discussed in the previous section that always will give different
scores to these two algorithms.

Given two discrete probability distributions p (t) and q (t) defined on the range
1 ≤ t ≤ T , a positive integer n and a scaling function s (i) defined for −n ≤ i ≤ n ,
we define the equality of sampling from p to q with allowance n and distance scaling
s (ES in short) as:

E S (p, q, n, s) =
T∑

t=1

q (t)
j=min(T,t+n)∑

j=max(1,t−n)

p ( j) s ( j − t). (3.48)

If we treat p as the true distribution and q as the measured distribution, then
E S (p, q, n, 1) can be informally considered as ameasure of how likely that a sample
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selected according to the measured distribution (q) will be within n points of a point
with high probability in p. Notice that n is allowed to be infinite. The function s (i)
representing another way to integrate delays within the evaluation by assigning a
weight based on the distance between a sample from q and the real nonzero values in
p. Usually one uses a specific value of n or a decreasing function s (i) but they can be
combined. The function s (i) allows us in principle to treat change predictions before
a real change differently than predictions on the same distance after that change.

Relating E S
(

pgt , p, n, s
)
to confusion matrix based measures, it can be seen as

a generalization of the notion of recall while E S
(

p, pgt , n, s
)
can be related to a

generalized form of precision. This suggests that a combination of them (inspired by
Fα) can be defined as:

E S R
(

p pg, p, n, s
) = α × E S R

(
p, p pg, n, s

)+ (1 − α) × E S R
(

p pg, p, n, s
)
.

(3.49)

In this book we always use α = 0.5 and most of the results reported in this
chapter and future applications of CPD will not depend much on the selection of
this parameter. Mohammad and Nishida (2011) introduced the ESRmeasure of CPD
quality and used it to compare different SAA based CPD algorithms (See Sect. 3.5).

3.8 CPD for Measuring Naturalness in HRI

This section presents one possible application of CPD in HRI. Future chapters will
report many more applications of this core technology in achieving autonomous
social behavior envisioned in this book.

How do we define naturalness in HRI? It is difficult to find an overarching defi-
nition of naturalness that is applicable to all situations. Nevertheless, one common
thread of natural robot behavior would be a subjective evaluation of the behavior by
human interlocutors of the robot to be as expected or to cause no anxiety in them.

This means that we can use human’s subjective response to the behavior of the
robot as some indicator of the naturalness of this behavior in a given social context.
But, how can we measure this response to the robot’s behavior? The most direct
method is subjective evaluation and measuring it using questionnaires. The limi-
tations of questionnaires are well known: they are cognitively mediated, they are
prone to mistakes caused by priming effects resulting from the wording of the ques-
tionnaires and people in general are not very accurate in reporting their subjective
responses after the fact. For all of these reasons, an objective measure of the human
response to robot’s behavior is needed.

As an operational definition, we define natural behavior as the behavior that
reduces stress, cognitive load and other negative subjective experiences in the robot’s
interlocutors while maximizing positive responses like engagement and enjoyment.
This definition is based on our earlier work (Mohammad and Nishida 2010). Sev-
eral physiological signals have been shown to correlate with each of these subjective
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experiences and can be used as a basis for finding an objectivemeasure of naturalness
in HRI (Mohammad and Nishida 2010). For a detailed discussion of several of these
signals see our earlier work (Nishida et al. 2014).

One problem of using these signals in general is that the correlations with sub-
jective state are only clear for extreme situations and it is difficult to elicit these
differences in natural interaction situations. This makes it difficult to compare dif-
ferent robot behaviors based on them and here we can find a practical application of
CPD (Mohammad and Nishida 2009).

Even though it may be difficult to find differences in these physiological signals
between natural and unnatural interaction situations, we may be able to find clearer
differences in the change scores resulting from applying CPD to these signals. The
rationale for this hypothesis is that change point scores represent probable variations
in the generating dynamics of the signal and even though that the unnatural day-to-
day interaction situations of interest may not have enough effect on the measured
physiological signals that can be measured by direct comparison of the signals them-
selves, the instability of human perception of the interactions situation is expected
to cause such changes.

This instability in situation perception will lead to changes in how the human
responds to the robot leading to some changes in the generating dynamics. Even
though these changes are not enough for detection using standard signal processing
techniques, CPD focuses on the probability that such changes occur (without empha-
sizing the degree of change in the signals themselves). In principle, this may lead
to more accurate estimation of the subjective state. Mohammad and Nishida (2010)
experimentally tested this hypothesis. We used the explanation scenario described
in Sect. 1.4.

The participants (44 subjects) where randomly assigned either the listener or the
instructor role. The instructor interacts in three sessions with two different human
listeners and one humanoid robot (Robovie II). The instructor always explains the
same assembly/disassembly task after being familiarized with it before the sessions.
To reduce the effect of novelty, the instructor sees the robot and is familiarized with
it before the interaction (Kidd and Breazeal 2005).

The listener listened to two different instructors explaining two different assem-
bly/disassembly tasks. In one of these two sessions (s)he plays the Good listener
role in which (s)he tries to listen as carefully as possible and use normal nonverbal
interaction behavior. In the other session (s)he plays the Bad listener role in which
(s)he tries to appear distracted, and use abnormal nonverbal interaction protocol. The
listener is free to decide what is normal and what is abnormal.

We used the following set of features that were calculated from the smoothed
signals: Heart Rate (HR), Heart Rate Variability (HRV) as well as raw pulse data (P)
were calculated from BVP data. Skin Conductance Level (SCL) and Galvanic Skin
Response (GSR) were calculated from skin-conductance sensor data. Respiration
Rate (RR), Respiration Rate Variability (RRV), and raw respiration pattern (R) were
calculated from the respiration sensor.

We then extracted the statistics usually used in estimating the psychological state
of people from their physiological signals (see Shi et al. 2007; Lang 1995; Liao et al.

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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2005): mean (MEA), median (MED), standard deviation (STD), minimum (MIN)
and maximum (MAX) leading to a 160 features for every session.

We employed RSST (See Sect. 3.5) tomeasure changes in the physiological signal
and derived two features from the output of this algorithm: the number of local
maxima per second (RSSTLMD) andmaximum number of local maxima per minute
(RSST LMR) were calculated.

Analysis of the data revealed that these two RSST based features were more accu-
rate in distinguishing between natural and unnatural interaction sessions. Moreover,
the robot which just moved its head randomly was ranked as unnatural according to
these features which accords with our expectations (Mohammad and Nishida 2010).

3.9 Summary

This chapter introduced the first of our three data mining pillars over which the
second part of the book will be erected. Change point discovery is the problem
of estimating the points at which generating dynamics of a given time-series are
changing without access to these dynamics. The chapter introduced several methods
applicable to stochastic time-series and model based CPD algorithms as well as
shape based CPD algorithms like SSA CPD. The chapter also introduced several
methods for comparing CPD algorithms in practical situations focusing on the Equal
Sampling Rate (ESR) measure of discovery quality which is the main measure we
utilize in our work. Finally, the chapter introduced briefly one practical application
of change point discovery in assessing the naturalness of robot behavior based on
human response to it using objective physiological signal analysis.
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Chapter 4
Motif Discovery

A recurring problem in the second part of this book is the problem of discover-
ing recurrent patterns in long multidimensional time-series. This chapter introduces
some of the algorithms that can be employed in solving this kind of problems for both
discrete and continuous time-series. As usual the treatment does not target exhaus-
tiveness but focuses on the algorithms most important for later developments in this
book. We try to systematize the varied literature focusing on motif discovery into
four categories: algorithms for discrete time-series that can be employed for con-
tinuous time-series after discretization, algorithms that find exact motifs with some
predefined notion of similarity, algorithms that find approximate motifs using some
form of random sampling and algorithms that utilize constraints on motif locations
to speedup the processing.

4.1 Motif Discovery Problem(s)

The history ofmotif discovery is rich and dates back to the 1980s. The problem started
in the bioinformatics research community focusing on discovering recurrent patterns
inRNA,DNAandprotein sequences leading to several algorithms thatwewill discuss
later in this chapter. Since the 1990s, data mining researchers started to shift their
attention to motif discovery in real-valued time-series and several formulations of
the problems and solutions to these formulations were and are still being proposed.
The motif discovery problem in real-valued time-series is harder to pose compared
to the discrete case due to the complications arising from the fact that noise and
inaccurate productions never allow the pattern to be repeated exactly and this forces
the practitioner to decide upon allowed distortions to consider two time-series as
realizations of the same pattern. Even in the discrete case, noisemay cause repetition,
deletion or letter-change of a part of the motif occurrences rendering the problem
again more difficult and more interesting.
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Due to these problems, there is no single motif discovery problem in the literature
but a set of related problems that all focus ondiscovering—probably approximately—
repeated patterns in the time-series. This makes it much harder to compare different
approaches to motif discovery and Sect. 4.7 will be dedicated to our approach for
comparing the outputs of these algorithms.

4.2 Motif Discovery in Discrete Sequences

Motif discovery appeared first as the problem of discovering recurrent patterns in
discrete sequences. It was inspired by research in bioinformatics which focused
on analyzing long sequences of RNA, DNA and proteins (see for example Staden
1989). For our purposes, these sequences are just long strings of an alphabet of prede-
fined letters. This set of letters (alphabet) is {A, T, C, G} for DNA, {U, T, C, G} for
RNA and {A, C, D, E, F, G, H, I, K , L , M, N , P, Q, R, S, T, V, W, Y } for pro-
teins. An early use of the term motif discovery is attributed toWaterman et al. (1984).
In that paper, the recurrent pattern was called a consensus motif.

The following definitions will be used throughout this section: An alphabet A is
a finite set of items of length NA. Each member of an alphabet is called a character
cA

k where the subscript identifies the character number and the superscript identi-
fies the alphabet. We may skip indicating the alphabet when it is clear from the
context. A string is a sequence of characters that follows our normal time-series ter-
minology but is usually indexed by letters i, j, k instead of t . For example S = {si }
is string of characters. We will use Ts to indicate the length of string S but may
skip the subscript if the string is known from the context. When multiple strings
are being considered we will use superscripts to distinguish them (e.g. S1, Si , etc.).
Substrings are subsequences using our standard time-series terminology and use the
same naming conversions where, again, superscripts identify the string if multiple
strings are implied. For example: s j

i,l is the subsequence starting at index i of length
l of the string number j (called S j ). We usually reserve Nx to indicate the number
of strings if a set of strings

{
X1, X2, . . . , X N

}
is used. Notice that we will use the

terms string, sequence, and time-series interchangeably in this section and as usual
any subsequence is a sequence.

A distance function Dl(p, q) is a mapping |A|l × |A|l → R that measures how
different are the sequences p and q. Examples are the Levinstein distance which
measures the number of edit operations (mutation, insertion and deletion) that are
required to match the two sequences and the Hamming distance which measures the
number of places in which the two sequences differ. Again when l is known from
the context we will drop it and use D(., .).

Given a distance function of specific length, it is possible to define a general-
ized distance function between strings of different lengths as the minimum distance
between the shortest string and all subsequences of its length belonging to the longest
string. This generalization can be represented mathematically as:
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D
min(Tp ,Tq )

(p, q) = D
min(Tp ,Tq )

(q, p) =

{
min

i
DTp

(
p, qi,Tp

)
Tp � Tq ,

min
i

DTq

(
q, pi,Tq

)
otherwise.

(4.1)

A sequence p is said to occur (or occur exactly) in another sequence q (where
Tp ≤ Tq ) iff DTp (p, q) = 0 and is said to occur approximately within a range
r ∈ R

+ iff DTp (p, q) ≤ r and in both cases the shorter sequence p will be said to
occur (exactly or approximately) at point (or index or location) τ (0 ≤ τ ≤ Tq − 1)
of q iff DTp

(
p, qτ , Tp

) = min
i

DTp

(
p, qi,Tp

)
. Notice that this definition means that

the locations at which a short subsequence appears in a long subsequence may be
the empty set, a singleton set of one item (single occurrence) or a multiple items set
(multiple occurrences). In some cases, the locations at which a string p occurs in
another may be separated by less than Tp points. In another word, the occurrences
of p in q can overlap.

There are two general approaches to motif discovery in discrete time-series that
do not only constitute different algorithms but different views of the problem. This
means that some MD problems are best understood using the first and others using
the later. We call these approaches: Pattern-First and Sequence-First approaches. In
Pattern-First problems and solutions, the repeated pattern is not even required to
occur in the time-series; only approximations of it may appear. In Sequence-First
problems and solutions, the sought motifs MUST occur exactly at least once in the
time-series. This means that the space of possible motifs considered for Pattern-first
problems is much larger than Sequence-first problems. Consider an alphabet of na

characters. The total number of possible sequences of length l that can occur is (na)
l

while considering a time-series of length T , the total number of sequences of the
same length that actually occur in it is upper-bound by T − l (this is usually an
exaggerated count assuming that all subsequences are distinct). This shows that for
realistic values of l and T , pattern-first approaches always consider more motifs than
sequence-first approaches.

One of the earliest pattern-first MD problems to be formulated was the common
motif discovery problem (Sagot 1998), which can be stated as follows:

Definition 4.1 Common Motif Discovery Problem Given a set of N strings ({Sn}),
a motif length l, a distance function D (of the same length) and a threshold value τ ,
find all sequences that occur approximately with range τ in at least M out of the N
sequences.

This problem was introduced in slightly different form by Pavesi et al. (2001) but
in this case, the length l is considered as an upper limit and the problem is solved for
all lengths up to it. Research in solving this problem was partially motivated by the
need to discover binding sites in unaligned DNA sequences (e.g. ribosome binding
site problem Tompa 1999).

The simplest pattern-driven method is to generate a list called P of all patterns
of length l which will have a length of |A|l = Nl

A. For each member of this table
pi , we find the list of exact occurrence locations of pi in each string Sn according to
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our earlier definition. Let’s call this set Oi = {oi }. We keep the length of this list ni .
These counts ({ni }) are stored in a list called N with members ni storing the count
for sequence pi . For each pattern pi ∈ P , we then calculate a new count (ci ) which
sums the counts of all other member of P that occur approximately within range τ

from pi (i.e. ci = ∑
j |Dl(pi ,p j)�τ n j ).

Finally from each subset of P that is within range τ from each other, we keep
only the member with maximum ci value. This approach was used by Staden (1989).

It is evident that this simple algorithm is not scalable as it scales exponentially
with motif length. It scales only linearly with the time-series length for the strings
involved. This means that the approach is only beneficial for discovering short motifs
(small l).

A more subtle problem with this algorithm (and the problem formulation of the
common motif discovery problem in general) is that it depends solely on the number
of repetitions of a subsequence. This may not be a good indicator of the importance
of the subsequence specially for short lengths because short subsequences may occur
due to random variations in the data. For most realistic noise models leading to these
random variations, some sequences will be more likely to appear randomly due only
to being near a larger number of sequences that are usually generated. This will give
these sequences an undue advantage and bias the algorithm toward discovering them.
For this reason another significance measure is usually used to keep only the patterns
that are significant (i.e. having small probability of being generated randomly in the
sequences). The most used such measure is the relative entropy between character
frequencies in the pattern pi and character frequencies in the whole sequence set sk

(Pavesi et al. 2001).
To illustrate the sequence-first approach, consider the following problem due to

Sagot (1998):

Definition 4.2 Repeated Motif Discovery Given a string S, a motif length l, a real
number τ , and a positive integer r > 1, and a distance function Dl , find all sequences
of length l that occur in S approximately within τ at r or more different locations.

This problem can be solved using a pattern-first algorithm by simply finding all
possible sequences of length l and counting the number of occurrences within τ

distance units using Dl . We can then filter the ones that occur r or more times. This
approach though seems extremely wasteful because we will have to consider too
many sequences that will have zero occurrences.

A sequence-first solution can be devised based on the idea presented in Fig. 4.1
which represents a metric space showing the ball (circle for 2D) containing all pos-
sible sequences that are τ distance units or less from M (the red circle in the center).
The maximum possible distance between any of the points within this ball is 2 × τ .
This is true under the assumption that the triangular inequality is true for the distance
function Dl . Given this assumption a simple sequence-first algorithm for solving the
repeated motif discovery problem defined above.
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Fig. 4.1 Example of a
metric space showing the ball
(circle for 2D) containing all
possible sequences that are τ

distance units or less from M
(the red circle in the center)

The algorithm firstly scans the input string and builds a list L of all subsequences
of length l occurring exactly in the string. The algorithm then creates a graph G with
all members of Γ as vertices. An edge is connected between any two vertices γ1 and
γ2 iff Dl (γ1, γ2) ≤ 2× τ . Now the problem is reduced to the standard clique finding
problem. Each fully connected clique in this graph will represent a set of occurrences
that are all within the desired 2×τ distance limit from each other. The cliques with r
or more members can then be returned to represent the occurrences of the motif and
themean of thesemembers can then be used as themotif M . This is amodified version
of the WINNOWER algorithm introduced by Pevzner et al. (2000) for solving the
slightly simpler planted motif problem which fixes the distance function to counting
point replacements and finds motifs that occur exactly τ distance units apart.

An important point about this sequence-first algorithm is that it is quadratic in the
length of the string. This is a common feature of exactMDalgorithms for both discrete
and continuous domain time-series and is the main reason why MD is a challenging
problem because quadratic time is not good enough for processing long time-series.
Most of the efforts that will be described later in this chapter to come up with more
advanced algorithms for motif discovery (specially in the continuous domain) will
be directed toward finding subquadratic solutions to the problem. Usually quadratic
solutions are as easy to find as the algorithms we just described.

The aforementioned discussion of the pattern-first and sequence-first approaches
highlights the fuzzy line between them. Even though the repeated motif discovery
problem tries to find a motif that may never occur exactly in the time-series, it is still
a sequence-first problem which can be seen by the extreme difference between the
exponential time needed to solve it using a pattern-first algorithm and the quadratic
time needed to solve it by the sequence-first simple alternative. In fact we can say
that this problem is not strictly a sequence-first problem if we limit the definition of
sequence first problems to finding motifs that occur exactly within the time-series at
least once. We will see later that restricted sense of sequence-first problems leads to
the approach commonly known as exact motif discovery for real-valued time-series.

Wewill now turn to one of themost important discrete time-series motif discovery
algorithms which will be the basis of a whole set of algorithms for discoveringmotifs
in real-valued time-series later.
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4.2.1 Projections Algorithm

The projections algorithm tries to solve the planted(n, l) problem related to the
repeated motif discovery problem discussed earlier in this section. The exposition of
the algorithm given here is based on our earlier book (Nishida et al. 2014). We will
present the definition of this problem here again for concreteness:

Definition 4.3 Planted (l, d) Motif Discovery Problem (PMD): Let M be a fixed
but unknown sequence (the motif) of length l. Suppose that M occurs once in each
of N strings Sn of common length T , but that each occurrence of M is corrupted
by exactly d point substitutions in positions chosen independently at random. Given
the N sequences, recover the motif occurrences and the motif M .

The WINNOWER algorithm described earlier can be used to solve this problem
by simply using all subsequences from all strings as edges to the graph and only
considering subsequences from different strings when generating the edges. This
algorithm is clearly quadratic in T which makes it applicable only to short strings.

Amore scalable algorithmwas proposed by Buhler and Tompa (2002) for solving
the special case of Planted(l, 2) problem.

Projections is a seeding step that aims at discovering probable candidates for the
hidden motif M . The main idea of the algorithm is to select several random hash
functions f j

(
st

i

)
and use them to hash the input sequences. Occurrences of the hidden

motif are expected to hash frequently to the same value (called bucket) with a small
proportion of background noise. Noise sequences on the other hand are not expected
to hash to similar values. If the hash functions are different enough (and complex
enough), we can use the buckets with largest hits as representing occurrences of the
motif. This is an initialization step that can then be refined using the EM algorithm
in order to recover the full motif.

There are several internal parameters to Projections that need to be set. Firstly,
the hashing functions f j must be determined and their number J must be decided.
Secondly, it is not expected that all occurrences of the same motif will hash to the
same bucket for every function so we need an estimate of the number of hits to count
as significant for each bucket (h).

Projections use hashing functions that balance ease of computation and versatil-
ity. Each function is a mapping from sequences of n characters (the input size) to
sequences of K characters where K < n. The hashing function f j (s; 〈l1, l2, . . . , lK 〉)
simply selects the characters of s at the K positions lk and concatenates them to cre-
ate a sequence. This leads to |Σ |K buckets. Notice that we need not store all of these
buckets as most of them will be empty which makes the bucket list a sparse matrix
for large enough values of K .

Now that we have decided the form of the hashing functions, we need to decide
how to select them from all possible hashing functions of that form (there are K !
possible such functions). We simply select J random functions of this function set.
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Two questions now remain concerning the hashing functions: How to select K and
J . A simple way to select K is to select a value that minimizes the probability that
two random sequences of length n will hash to the same bucket. This can be satisfied

by selecting K � log|Σ |
((

T
(
n − l + 1

))/
E

)
where E is the allowed expected

number of random sequences that hash into some bucket (usually selected as some
number less than 1). The guiding principle in selecting J is that we want to continue
hashing until the number of occurrences of the hidden motif that hash to the same
bucket are expected to be greater than some cutoff value s that can then be used to
decide which buckets contain possible occurrences of the motif we are after. Buhler
and Tompa (2002) have shown that we can select J such that:

J =
⌈

log (1 − q)

log
(
Bl,p (s)

)
⌉

, (4.2)

where Ba,p (c) is the probability that there are fewer than c success at a independent
Bernoulli trials each having probability p of success, and p is the probability that an
occurrence will hash to a specific bucket which can be calculated as:

p =
(

l − d
T

)/(
l
T

)
. (4.3)

The final piece of the puzzle is how to select the cutoff number of hits to a bucket to
be considered as a candidate occurrence set of a motif (s) which played an important
rule in selecting the value of J . Unfortunately, there is no agreed upon method to
select s but practical tests have shown that as long as it is near the value of d usually
good results can be achieved (e.g. 3–4 for the case of the (20,4)-motif case Buhler
and Tompa 2002). The projections algorithm is implemented in the projections()
function in MC2.

Even though, all of the formulations and algorithms discussed so far focus on
discrete sequences, it can be directly extended to real world time series by first
discretizing the time series then just using one of these algorithms.

4.2.2 GEMODA Algorithm

Gemoda is anotherMDalgorithm that stemmed frombioinformatics research (Jensen
et al. 2006). This algorithm thoughworks perfectlywith real-valued time-series (even
multidimensional time-series) given an appropriately defined distance function. Even
though the algorithm is clearly quadratic in the length of the time-series, it exemplifies
several basic ideas that will appear again and again in this chapter.

The problem for which Gemoda is an exact solution is another variant of the motif
discovery problem that requires slightly different definitions.
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Definition 4.4 Gemoda Motif Given a time-series X = {xt }, a distance function
D, a minimum length L , and a threshold real value τ ; a Gemoda motif GM is a set
of subsequences

{
Oi

}
of the same length W that satisfy the following properties:

• Oi occurs exactly in X .

• DL

(
Oi

k,L , O j
l,L

)
< τ for all 1 ≤ i ≤ |GM|, 1 ≤ j ≤ |GM|, 1 ≤ k ≤ W − L +1,

and 1 ≤ l ≤ W − L + 1.
• There exists no W point subsequences in X (xi,W for 1 ≤ i ≤ Tx − W + 1) that
can be added to GM without conflicting with one the previous property. This is
called maximal occurrence coverage.

• There can be no integers Ŵ > W such that the second property is still satisfied if
each member of GM is extended from right or left by adding the corresponding
values from X by Ŵ − W points. This property is called maximal extensibility.

Notice thatGemodamotifs aremaximal in the sense that they satisfy bothmaximal
occurrence coverage and maximal extensibility.

Discovering Gemoda motifs amounts to finding all possible such motifs in an
input set of time-series. In the rest of this exposition we will assume that the input is
a single time-series, yet extension to multiple input time-series is trivial.

The problem definition of Gemoda motif discovery is the first in this chapter
that does not assume apriori a length for motifs but only a minimal motif length
L . These types of motifs will be called variable length motifs and their discovery
will be of special interest to us because the length of recurring patterns in social
robotics datasets is usually impossible to guess apriori. Moreover, the same kind of
activity (e.g. gestures) may contain different recurrent patterns of different lengths.
A variable length MD algorithm can discover them all in one call.

Gemoda runs in three stages (comparison, clustering, and convolution). We will
explain each of them in turn.

During the comparison stage, a similarity matrixMT −L+1×T −L+1 is built by scan-
ning the input time-series and calculating all pairwise distances between all subse-
quences of length L . All entries of M that are greater than the threshold τ are set to
zero and the rest of the elements are set to 1. Depending on the clustering algorithm,
the diagonal may be set to 1 or to zero. This results in a new binary matrix B.

Clustering and convolution stages only reference thresholded binary matrixB and
never reference the input time-series X again. This means that once this similarity
matrix is created, the algorithm is agnostic about the datatype of the input time-
series. For this reason, Gemoda is applicable without any modifications (at least in
principle) to real-valued time-series as well as discrete strings.

The clustering stage, clusters the subsequences in the time-series using any clus-
tering algorithm like K-means. Jensen et al. (2006) proposed two simple clustering
algorithms based on graph operations. Considering B as a connectivity matrix rep-
resenting a graph with T − L + 1 vertices and Bi j = 1 represents a directed edge
from node i to node j , we can either find cliques or connected components in this
graph and use them as our clusters. The main advantage of this graph based approach
is that it requires no specification of the number of clusters. Moreover, connected
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components can be found efficiently (in linear time). Clique finding is in general
a NP-complete problem but for small time-series it can be carried out sufficiently
efficiently because connectivity is usually low in B. This step results in a set of clus-

ters
{
cL

i

}
where cL

i =
{

cL
i1, cL

i2, . . . , cL
inL

i

}
and 1 ≤ cZ

i j ≤ T − L + 1 represents the

starting position of a subsequence of length Z belonging to cluster cZ
i and occupying

index j in this cluster. nL
i represents the number of subsequences in cluster cL

i . For
convenience, we define a function

S Z (i, j) = xcZ
i j ,Z .

The function S Z maps from cluster and index values to the corresponding subse-
quence. We also define its inverse that reverses that mapping S−1 for any value of Z
as:

S−1
(

xcL
i j ,L

)
= cL

i j .

After Jensen et al. (2006), wewill define the following shortcut notation: xi,l +1 ≡
xi+1,l+1. This means that S Z (i, j) + 1 ≡ xcZ

i j +1,Z+1.
If clique finding is used for clustering, the set of resulting clusters all satisfy the

definition of Gemoda motifs of length L . These short motifs are called motif stems.
Given these stems, the convolution stage tries to extend them as far as possible
while preserving the definition of Gemoda motifs and in the same time removing
any redundant motifs when longer motifs are discovered. Many algorithms for real-
valued time-series that will be considered later in this chapter are based on this same
idea.

The final convolution stage is the heart of the Gemoda algorithm and it tries to
extend the motif stems found in the clustering stage. The algorithm uses only the
cluster set

{
cL

i

}
and does not access B, M, or X .

Given the set
{
cZ

i

}
for some value of L , the algorithm generates a new set

{
cZ+1

i

}

of one point longer motifs and also discovers all maximal motifs of length Z from
the set

{
cZ

i

}
that we call

{
m Z

i

}
hereafter. The final maximal motif set is then found

as the union of all of these maximal motif sets:

{GM} = ∪∞
z=L

{
m Z

i

}
.

To understand the convolution step, we need to define two more operations:
directed intersection (∩), and motif inclusion (

....⊂ ). Directed intersection finds the
set of stems in its right hand that can extend the any stems on its left hand side and
generates the extended stems. Formally:

cZ
i ∩cZ

j ≡ cZ+1
k ,
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where cZ+1
k is the set of all indices q such that

S−1
(S Z

(
cZ

iq

) + 1
) ∈ cZ

j .

Directed inclusion allows us to find the stems that can be extended one point (even
partially by extending a subset of its occurrences) without violating Gemoda motif
definition. If no such extension is possible (signaled by all directed inclusions of cZ

i

with all other members of
{

cZ
j

}
resulting in the empty set), we can simply add cZ

i to
{
m Z

i

}
because it is now proved to be a maximal motif.

If cZ∩cZ
j = cnew �= φ, then cnew represents a proposed motif of length Z +

1. Before adding this motif to the list
{
cZ+1

k

}
, we first have to make sure that no

previously added motif to this set includes this proposed new motif. This is where
we need the motif inclusion operator (

....⊂ ). The motif inclusion operator returns true
only if its left operand is either a superset of a subset of the motif represented by its
right operand.

We only add cnew to
{
cZ+1

k

}
if cnew

....⊂cZ+1
k returns false for all k. If cnew

....⊂cZ+1
k was

true for some value k, we combine cnew and cZ+1
k using a standard union operation.

The convolution step repeats the aforementioned steps from Z = L until for some
value Lmax , the set

{
cLmax

}
is the empty set which can be shown to always occur for

some value of Lmax ≤ T . Actually Lmax will be much less than T .
It can be shown that this convolution operation when seeded with Gemoda motifs

will only return Gemoda motifs at all lengths. It can also be shown that it is an
exhaustive operationwhichmeans that if the Gemodamotifs of the first length passed
to it were representing all possible Gemoda motifs at that length, then by the end of
the convolution operation, all Gemoda motifs at all lengths will be discovered.

Gemoda is implemented in the MC2 toolbox by the function gemoda(). In our
implementation, it is possible to restrict the allowable overlap between different
motifs and different motif occurrences. It is also possible to build the similarity
matrix from a predefined set of locations in the time-series rather than using exhaus-
tive search. These options render Gemoda an approximate algorithm but they can
significantly increase its speed. This is the simplest way to utilize knowledge about
probable motif locations in Gemoda (See Sect. 4.6).

4.3 Discretization Algorithms

The first algorithms for discovering real-valued motifs in real-valued time-series
to be considered in this chapters are discretization algorithms. These algorithms
were among the first to be introduced and tried to take advantage of the wealth of
research in motif discovery for discrete sequences in the bioinformatics literature.
Many of these early algorithms depended on the projections algorithm described in
the previous section.
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For real valued time-series, distances can rarely (if ever) be exactly zero. This
requires us to use a softer definition of a match between two sequences in this case.
We say that two time-series X and Y match up to τ ∈ R given a distance function
D (., .) iff D (X, Y ) ≤ τ .

Another problem that we face usually in real-valued time-series analysis is the
problem of trivial matches. A trivial match is a match that happens between two
subsequences of a time-series xi,l and x j,l just because i and j are very near making
the two subsequences overlapping. For a smooth time-series X , it is expected that xi

and xi+δ will be small for small values of δ. This is the underlying cause of trivial
matches. For all algorithms considered in this section and the following ones, we will
always assume that trivial matches are ignored. The simplest method to ignore trivial
matches is to set D

(
xi,l , x j,l

) = ∞ for all j ≤ i + l. This forces all occurrences of
all motifs discovered to have no overlaps.

One of the earliest discussions of motif discovery in real-valued time-series and
the paper that first used the term explicitly was by Lin et al. (2002). In that paper
motifs were defined as follows:

Definition 4.5 K-Motifs: (Lin et al. 2002) Given a time series x , a subsequence
length l and a range R, the most significant motif in x (called thereafter 1st-Motif )
is the subsequence C1 that has the highest count of non-trivial matches (ties are
broken by choosing the motif whose matches have the lower variance). The K th
most significant motif in x (called thereafter K-Motif ) is the subsequence CK that
has the highest count of non-trivial matches, and satisfies D (CK , Ci ) > 2R, for all
1 ≤ i < K .

Note that a K-Motif according to this definition is a subsequence that exactly
occurs within the time-series. This is clearly a sequence-first problem and, as we will
see, the sequence-first approach dominates real-valued time-seriesmotif discovery in
most of its forms with the exception of the newly suggested optimal motif discovery
problem which forms a return to the earlier pattern-first approach to motif discovery.

One of the simplest discretization based algorithms that were suggested in litera-
ture for discovering the 1-Motif problem is to discretized the input time-series using
SAX (See Sect. 2.3.2) then just apply the projections algorithm (See Sect. 4.2.1). This
was the approach taken in Chiu et al. (2003). Following this milestone paper, several
other researchers used variations of this approach formotif discovery (see of example
Minnen et al. 2007; Tang and Liao 2008). This approach can be implemented in the
MC2 toolbox in two lines by calling sax() followed by projections().

Because projections is only a stemming operation, it only finds pairs of probable
motif candidates. After recovering these pairs from the projections matrix, we need
to scan the original real-valued time-series and find all subsequences that are nomore
than R distance units far from either of the two subsequences corresponding to the
two members of the stem. This is a linear time operation.

Several extensions have been suggested over the years to this general framework
(Minnen et al. 2007; Tang and Liao 2008; Tanaka et al. 2005). We here describe
one such extension that represents this body of work and present a complete related
approach in Sect. 4.3.1.

http://dx.doi.org/10.1007/978-3-319-25232-2_2
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One limitation of the method proposed by Chiu et al. (2003) and discussed earlier
is the need to specify R (the range). Minnen et al. (2007) proposed a method for
automatically selecting this range dynamically for each proposed motif stem found
through projections. This approach bears some similarity to the approach discussed in
Sect. 3.5 while introducing RSST for the selection of the appropriate dimensionality
of the past Hankel matrix.

Given a motif stem from the projection step consisting of two subsequences of
length L (x1

i,L and x2
j,L ), we start by scanning X to find the distance from each

subsequence of length L in it and this stem which is defined as:

Dk = min
(
DL

(
xk,L , xi,L

)
, DL

(
xk,L , x j,L

))
. (4.4)

The vector {Dk} will have length T − L + 1. We then calculate the α’s order
statistic where usually α is taken as T/10 and keep only the α smallest distances in
Dk leading to the α long vector D̂k . We now sort D̂k in ascending order generating
D̃k and find the knee in the curve by finding the first difference δDk = D̃k+1 − D̃k

and find the estimated range as the expected value of this derivative:

R̂ = E (δD) =

α−1∑
k

D̃k × (
k + 1

2

)

α−1∑
k

D̃k

. (4.5)

This value of the range can then be used as usual to find other occurrences of the
motif represented by the stem.

Li and Lin (2010) proposed using the Sequitur (Nevill-Manning andWitten 1997)
algorithm for discovering motifs of variable length using grammar inference after
discretization using SAX (Lin et al. 2007). This technique can discover variable
length motifs but a small burst of outliers in a single motif occurrence will result in
dividing this motif into two disjoint motifs.

4.3.1 MDL Extended Motif Discovery

This algorithmwas proposed by Tanaka et al. (2005) to discover motifs of any length
starting from some minimal length Lmin . The main new features of this algorithm
comparedwith the projections based approach of Chiu et al. (2003) are the following:

• The input is assumed to be multidimensional time-series instead of a single-
dimensional time-series.

• The user needs to provide a minimal motif length but the algorithm can still find
motifs of longer lengths.

• The algorithm uses a principledMDL based approach for selecting the importance
of different motifs.

http://dx.doi.org/10.1007/978-3-319-25232-2_3
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The algorithm receives a multidimensional input time-series Xmd = {
xmd

t

}
of

length T . The first step is to convert it to a single-dimensional time-series. PCA
can be used to achieve this as previously discussed in Sect. 2.5.5. This leads to a
single-dimensional time-series X that will be used for the rest of the algorithm.

The second step of the algorithm is discretization using SAX as described in details
in Sect. 2.3.2 resulting in a T − w + 1 × w matrix of symbols called S where w is
the length of the window used for SAX. Notice that in this case, we convert ALL
subsequences of X to symbols rather than just converting X (which would have
resulted in a T/w × w symbols matrix instead). Each row of this matrix is called a
word hereafter and represent the SAX transformation of a subsequence of length w
starting at the same index as the word’s row index. Notice that application of SAX
requires other than the window size w, the specification of alphabet size and number
of time-series points per symbol.

The third step is to build a dictionary of behavior symbols that represents the
shape of each one of these words. This has two advantages: firstly, we reduce the
storage space required by storing a single symbol for each word and secondly, we
detect words of similar behavior by giving them the same behavior symbol. Each
word is then replaced by a unique symbol from the set B that represent all possible
behavior symbols found in the time-series. This results in a discrete time-series of
behavior symbols BS of length T − w + 1.

The string of behavior symbols BS is then scanned to generate all substrings
(subsequences) of length Lmin − w + 1 which corresponds to Lmin points of the
original time-series (X or Xmd ). This results in another matrix of length (T − Lmin +
1) × Lmin − w + 1 words representing the behavior of subsequences of length Lmin

in the original time-series. This matrix is called M hereafter.
Nowwe start digging for motifs in M by finding repeated words (rows). The rows

are sorted from the one with maximum repeat count to the one with minimum repeat
count in a sorted matrix SB.

For each element of SB (in order), we find all of its appearances in M and consider
them amotif candidate. Let the number of these occurrences be K . Even though these
K words are the same after discretization, the time-series subsequences on Xmd

corresponding to them may not satisfy the required maximum distance threshold
(τ ). Let the function S map between the index of the behavior symbol word in M
and the corresponding time-series sequence in Xmd (or X ). Call the set of indices
of the behavior symbol words in the current motif candidate

{
Lsb

i

}
. We find the

corresponding subsequences in Xmd as Lts
i = S (

Lsb
i

)
. A similarity matrix M is

then created where:
Mi j = DLmin

(
xLts

i ,Lmin
, xLts

j ,Lmin

)
. (4.6)

A thresholded version of M called T M is then created by setting the diagonal
using:

T Mi j =
{
0 i = j ∨ Mi j > τ

1 otherwise
. (4.7)

http://dx.doi.org/10.1007/978-3-319-25232-2_2
http://dx.doi.org/10.1007/978-3-319-25232-2_2
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Now counting the number of nonzero elements in any row (or column for sym-
metric distance functions) of T M gives the number of time-series subsequences that
are within the acceptable range defined by τ of every candidate occurrence. This is
called connectedness. This indicates how central this occurrence is given this motif.
For this reason the subsequence with maximum connectedness is called the center
of the motif. Usually, multiple occurrences will share the maximum value of con-
nectedness and in this case we select the center as the subsequence of them with the
minimum total distance to all other occurrences in M. Once the center is selected,
all subsequences connected to it according to T M are combined with it to form the
final motif candidate MC .

This process can be repeated for all words in SB and then for all lengths from
Lmin to T/2. This results in a large set of motif candidates. We need a way to select
the most significant motifs from this large list. Firstly, we can remove candidates
that are completely covered by longer candidates. Still this gives us an indication of
motif lengths but not their significance. To calculate motif significance, we use an
MDL approach proposed first by Tanaka et al. (2005) which is explained for the rest
of this section.

Assume that we have the behavior symbols representing a motif candidate repre-
sented byMC with n p behavior symbols in each. Assume that we have ns different
symbols in this BS. We can then calculate the description length (e.g. the number of
bits required to describe this motif candidate) as:

DL (MC) = log2n p + n plog2ns . (4.8)

We would like also to know the description length of the time-series given that
we are going to replace all of the occurrences of this motif with a symbol. This
gives us DL (BS|MC). Assume that the total length of Xml was T . We know that
|BS| = T − Lmin + 1. This means that the length of the time-series after replacing
all occurrences of MC with a single symbol will be: nT = T − Lmin + 1 − (no) ×
(L MC − 1) where L MC is the length of the subsequences in Xml corresponding to
any occurrence of MC and no is the number of occurrences of MC in BS. Now
assume that there are ms unique symbols in BS. Given these definitions, we can find
the description length of BS given MC as:

DL (BS|MC) = log2nT + nT log2 (no + ms) . (4.9)

GivenEqs. 4.8 and 4.9,we can find theminimumdescription length corresponding
to accepting the motifMC as:

M DL (BS,MC) = DL (BS|MC) + M DL (MC) , (4.10)

leading to the final estimation Equation:

M DL (BS,MC) = log2nT + nT log2 (no + ms) + log2n p + n plog2ns . (4.11)
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Fig. 4.2 An example time-series with implanted motifs (top) and the results of discovery using
MDL extended motif discovery algorithm

This MDL value is calculated for all candidate motifs discovered and used to
sort them ascendingly. A cut-off value can then be used to select the motifs to be
returned to the user. The toolbox implements this algorithmby the function tanaka().
Figure4.2 shows an example application of it to a time-series with implanted motifs.

This algorithm (MDL EMD) can discover motifs of a range of lengths (in that
it is similar to GEMODA and different from Projections) but it is an approximate
algorithm in the sense that it has no guarantees of discovering maximal motifs or
even to discover any motifs. That is in direct contrast with GEMODA which has
good theoretical guarantees (at least for discrete sequences). One main cause of this
problem is the reliance on the discretization step which introduces noise in distance
calculations. The algorithm introduced in the following sections work directly with
the real-valued time-series to avoid this problem.

An important idea that was introduced byMDL EMD is the importance of relying
on a significance measure other than the length of the motif. By basing the decision
of motif importance on MDL, this algorithm is biased toward longer more complex
patterns that are usually of interest for the practitioner.

The algorithmalso exemplifies a generalmethod thatwewill use again and again to
avoid the generation of the full similarity matrix used in GEMODA like algorithms.
It tries first to generate candidate motifs using a heuristic (the discretized behavior
symbols in this case) and builds a similarity matrix only of these candidate motifs.
It is important to make a clearer definition of what is discovered by this algorithm.

Definition 4.6 Range Motif Given a time-series X (possibly multidimensional), a
symmetric distance function D (., .) and a real-valued threshold τ called the range,
A range motif RM is a set of subsequences {oi } of cardinality N that satisfy the
following properties:
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• oi occurs exactly in X for 1 ≤ i ≤ N .
• There exists a subsequence C that occurs exactly in X for which: D (C, oi ) ≤ τ

for 1 ≤ i ≤ N . C is called the center or exemplar of the motif RM.

This definition of a range motif clearly indicates that range-motif discovery is a
sequence-first approach according to our taxonomy. What MDL EMD discovers are
motifs that satisfy the aforementioned definition, yet the algorithm cannot discover
all such motifs nor can what it discovers be considered maximal in either of the
maximal extensibility or maximal occurrence coverage senses (See definition of
Gemoda motifs in Sect. 4.2.2).

4.4 Exact Motif Discovery

The methods discussed in Sect. 4.3 discover motif stems in the discretized version
of the time-series then solves a motif detection rather than a motif discovery in the
original time-series which can be solved efficiently.

Another possible approach is to generate the stems directly from the time-series.
Any exact solution to this problem will be quadratic in the worst case but some tricks
can be used to speed up this operation significantly achieving amortized linear speeds
as will be discussed in this section. This is currently one of the leading approaches
for solving motif discovery problems and we will present a series of algorithms all
based on the groundbreaking work of Mueen et al. (2009b).

Definition 4.7 Exact Motif : (Mueen et al. 2009a) An Exact Motif is a pair of L-
point subsequences xi,L , x j,L of a time series x that are most similar. More formally,
∀a,b,i, j the pair {xi,L , x j,L} is the exact motif iff D

(
xi,L , x j,L

) ≤ D
(
xa,L , xb,L

)
,

|i − j | ≥ w and |a − b| ≥ w for w > 0.

This definition defines exactly a single exact motif with exactly two occurrences
which is simply the pair most similar in the time-series. What we care about though
are recurrent motifs and we care about finding more than a single motif. For this
purpose we make the following extended definition:

Definition 4.8 Top K Pair-Motifs: The top K Pair Motifs is an ordered list of K
pairs of L-point subsequences xk

i,L , xk
j,L of a time series x that are most similar.

More formally, ∀a,b,i, j the pair {x1
i,L , x1

j,L} is the first pair-motif iff D
(

x1
i,L , x1

j,L

)
≤

D
(
xa,L , xb,L

)
, |i − j | ≥ w and |a − b| ≥ w for w > 0. The kth pair-motif is the

pair that satisfy the aforementioned definition after ignoring the first to the (k − 1)th
pair motifs.

The distance function of choice for pair-motif discovery is the Euclidean distance
between z-score normalized time-series defined as:
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Dz−score (x, y) =
∑L

k=0

(
x (k) − μx

σx
− y (k) − μy

σy

)2

, (4.12)

where μi and σi are the mean and standard deviation of time-series i .

4.4.1 MK Algorithm

The most basic algorithm discussed in this section is the MK algorithm used to solve
the exact motif discovery problem (See Definition 4.7) (Mueen et al. 2009b).

Themain idea of theMK algorithm is to use two features of the Euclidean distance
to speedup calculation:

• Early abandoning of distance calculation. The summation in Eq.4.12 can be aban-
doned earlier if we know that it already exceeded the current minimum subse-
quence distance because summed elements are always positive.

• The triangular inequality can be used to ignore certain distance calculations com-
pletely because it gives a lower bound on them that is higher than the current
minimum subsequence distance.

To understand the role of triangular inequity, consider the following situation
where a, b, and c are all time-series and D is the Euclidean distance: D (a, b) = 50,
and D (a, c) = 200. The triangular inequality in this case can be stated as:

D (b, c) � D (b, c) − D (a, c) , (4.13)

∴ D (b, c) � 150.

Now, we can immediately conclude that D (b, c) ≥ D (a, b)without bothering to
calculate it. TheMKalgorithm is a cleverway to exploit this basic idea combinedwith
early abandoning of distance calculations that leads practically to linear performance
for the discovery of exact motifs.

The MK algorithm works on two stages. The first stage (called the referenc-
ing stage hereafter), calculates the z-score normalized distances between all sub-
sequences of length L and a set of R randomly chosen subsequences of the same
length (called {re fr }). This parameter (R) is usually selected something around 8
based on the recommendation of Mueen et al. (2009b). This results in R vectors of
length T − L + 1 each (call these Dr where 1 ≤ r ≤ R). We calculate the variance
of these vectors and find the one with maximum variance (let the corresponding
best random subsequence xb,L ) and order it ascendingly (call this list D ≡ {

Db
i

}

for 1 ≤ i ≤ T − L + 1). We assume that the function F (i) gives the subse-
quence in x corresponding to item t in D and the function Gr (i) that returns the
distance Dz−score

(
re fr , xi,L

)
where re fr is the reference subsequence at index r .

These functions can easily be implemented as constant-time lookup operations by
trivial book-keeping during the referencing stage.
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The justification of this decision is that the distances to the corresponding ran-
dom subsequence re fr will have maximum variability which allows the triangular
inequality criterion discussed before to remove more pairs from consideration. This
stage is clearly linear in the length of the time-series. Notice that during this stage
and for the rest of the algorithm we always keep the pair with minimum distance{

xm1,L , xm2,L
}
and the value of this minimum distance dmin . During the second stage

of the algorithm, any distance calculation that exceeds the current value of dmin will
be abandoned.

The referencing stage gives us an ordered list of distances between one selected
random subsequence of length L (re fr ) and all other subsequences in the time-
series (D). The second stage (called the scanning stage) utilizes this list to remove
as many pairs as possible from consideration without distance calculation. When
distance calculation is deemed necessary, we use early abandoning of the summation
operation as explained earlier to further speedup the operation.

The scanning stage uses D to order the pairs of subsequences considered for
distance calculation. To understand this stage of the algorithm consider the first three
elements of D.

Dz−score (r,F (1)) − Dz−score (r,F (2)) � Dz−score (re fb,F (1)) − Dz−score (re fb,F (3)) .

(4.14)

From the triangular inequality, we know that:

Dz−score (F (2) ,F (1)) � Dz−score (re fb,F (2)) − Dz−score (re fb,F (1)) ,

Dz−score (F (3) ,F (1)) � Dz−score (re fb,F (3)) − Dz−score (re fb,F (1)) .

(4.15)

Considering Eqs. 4.14 and 4.15, it is trivial to show that there exists two non-
negative values γ and δ such that:

∴ Dz−score (F (1) ,F (2)) � γ,

Dz−score (F (1) ,F (3)) � γ + δ. (4.16)

Equation4.16 suggest that the lower bound on the distance between the two sub-
sequences corresponding to the first two elements of D is lower than that for the
first and third subsequences which leads the following heuristic. Consider the pair
{F (1) ,F (2)} before the pair {F (1) ,F (3)}. The same reasoning can be extended
to lead to the following general heuristic:

Given three integers 1 ≤ i ≤ j ≤ k ≤ T − L + 1, consider pair {F (i) ,F ( j)}
before considering pair {F (i) ,F (k)} for being the exact motif.

This suggests that we scan D taking first consecutive indices, then ones with one
index in the middle, and one with two indices in the middle, etc. This can be done in
T − L loops each with T − L +1 distance calculations in the worst case. It seems that
this will be quadratic. In practice though, only few of these runs will be enough and
the rest of the calculations will not be done by virtue of another application of the
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triangular inequality as will be explained later. We call the offset between considered
indices α and it takes the values from 1 to T − L .

Because this is just a heuristic, in some cases the pair considered later will have
less distance that the pair considered earlier. This means that we still need to calculate
these distances.

The triangular inequality can be utilized once more to make this operation as
efficient as possible. We can do that by first calculating R lower-bounds for the
distance between the candidate subsequence starting locations and only calculate
the Euclidean distance when any of these lower-bounds is lower than the current
minimum distance dmin . This can be put formally as:

∀1 � r � R ∧ 1 � i � T − L + 1 ∧ 1 � j � T − L + 1,

Dz−score (F (i) ,F ( j)) � ΔDr
i j ≡ Dr (F (i)) − Dr (F ( j)) . (4.17)

We simply calculate ΔDr
i, j for all r and only calculate Dz−score (F (i) ,F (i))

when at least one of these values is less than dmin .
When a full scan with some value of α results in no change in the best pairs

considered, then it can be shown that all other distance calculations need not be
considered as the triangular inequality (once more) will rule them out (Mueen et al.
2009b).

The MK algorithm is implemented in the function mk() in the MC2 toolbox
which calls a slightly modified version of the MK utility written in C and provided
by Mueen et al. (2009b).

4.4.2 MK+ Algorithm

A naive way to extend the MK algorithm to discover top K pair-motifs rather than
only the first is to apply the algorithm K times making sure in each step (i) to
ignore the (i − 1) pair-motifs discovered in the previous calls. To ignore trivial
matches, a maximum allowable overlap between any two motifs can be provided
and all candidates overlapping with an already discovered motif with more than this
allowed maximum are ignored. A similar idea was used in (Mueen et al. 2009b) to
discover an appropriate ordering in anytime nearest neighbor applications. This is
called naive MK hereafter.

MK+ was proposed to overcome the slow performance of naive MK for discov-
ering top K pair motifs (Mohammad and Nishida 2012b). The main idea of MK+
is to keep a sorted list of pairs and corresponding distances instead of dmin used in
MK. By keeping this list updated appropriately, the algorithm can discover the top K
pair-motifs with a single referencing and scanning stages. Mohammad and Nishida
(2012b) showed empirically that this approach can achieve an order of magnitude
speedup compared with naive MK even for medium sized time-series.
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The algorithm keeps an ordered list Dbest ≡ {
dbest

k

}
of K elements at most

containing the lowest distances obtained at any point from all subsequence distance
calculations so far. We assume that the pair of functions I1 (k) and I2 (k) can return
the starting positions of the two subsequences of length L corresponding to the
distance recorded in dbest

k . These two functions can be implemented as constant time
operations by appropriate book-keeping. To simplify the exposition of the algorithm
we will only keep track of updates to Dbest and will ignore all of this book-keeping.
The source code of the implementation provided in the MC2 toolbox (M K + .cpp)
provides detailed explanation of this book-keeping. A MATLAB binding is also
available in mkp().

In contrast to MK, MK+ needs a way to avoid trivial matches because it gener-
ates multiple pair-motifs as its output. This is achieved by considering the distance
between any two subsequences overlapping at more than wexternal × L points as
infinite. Hereafter, we call two subsequences overlapping only if this condition is
met.

During referencing stage andwhen a newdistance di j between a pair 〈i, j〉 is larger
than dbest

K− where K− is the number of elements currently in Dbest and K− < K , we
just insert di j at location K−+1.When di j is less than dbest

K− where K− ≤ K , the list is
updated by looping over Dbest elements executing the following rules: If the new pair
is overlapping the corresponding 〈I1 (k) , Is (k)〉 pair, then dbest

k ← min
(
di j , dbest

k

)
.

If they are not overlapping then, again, dbest
k ← min

(
di j , dbest

k

)
but in this case,

we will need to remove any elements of Dbest that are overlapping the pair 〈i, j〉 to
avoid trivial matches. A more detailed discussion of this process and its justification
is provided by Mohammad and Nishida (2012b). This same procedure will be used
during the scanning stage whenever the best distance so far needs to be checked and
updated.

One complicating factor of the simple story we told so far is that it is possible that
a pair of subsequences gets removed because of an overlap with another pair with
smaller distance which in turn gets removed because of another overlap. To make
sure of the algorithm exactness, we keep a linked list attached to each position of the
Dbest list and use it to save such removed pairs on the first overlap event and allow
them to be recovered when the second overlap event happens.

It can be shown easily that with appropriate book-keeping,MK+ provides an exact
solution to the top K pair motifs discovery problem. Nevertheless, that is not enough
for most applications to find recurring patterns.

A simple idea to use the top K pair motifs for general motif discovery is to find
them for a large value of K . A similarity matrix can then be used to compare them
and GEMODA like convolution process can then be used to recover approximate
Gemoda motifs at variable lengths (See Sect. 4.2.2). To recover range motifs from
these pairs, we can keep increasing K until the maximum distance in Dbest is larger
than the user-selected threshold (τ ). At this point, we know that these K motifs
contain all subsequences that are no more than τ distance unites apart. A similarity
matrix can then be built and clusters in this matrix can be used to recover range
motifs.
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Another approach is to combine pair-motifs into clusters using connected compo-
nents directly from Dbest and then use an extensionmechanism like GSteXB that will
be discussed in Sect. 4.5 to extend discovered motifs to higher lengths (Mohammad
and Nishida 2012b).

A third approach that will be pursuit in the following sections for extending MK+
to higher lengths is to find top K pair motifs at multiple lengths at the same time,
then just use clustering to recover approximate range motifs without the need for
motif extension.

4.4.3 MK++ Algorithm

If the distance functionwe use is the standard Euclidean distance, or if it is evenmean
normalized Euclidean distance (defined by applying the Euclidean distance after
subtracting the means), then we can use the distances at one length to lower-bound
distances at higher lengths and this can provide another heuristic to be combined
with the triangular inequality to speedup calculations at higher lengths. This is the
main idea behind the MK++ algorithm that finds top K pair motifs at all lengths
starting from some minimum length L .

To use lower length distances to bound higher length distances, the distance func-
tion must satisfy the following condition:

Dl(i, j) ≤ Dl+1(i, j) ∀l > 0 ∧ 1 � i; j � T − l + 1. (4.18)

If subsequences are not normalized and the distancemeasure used is the Euclidean
is used for D(., .), it is trivial to show that Eq.4.18 holds. Subtracting the mean of
the whole time-series does not change this result. It is not immediately obvious that
normalizing each subsequences by subtracting its own mean will result in a distance
function that respects Eq.4.18. Nevertheless, we can prove the following theorem:

Theorem 4.1 Given that the distance function D(., .) is defined for subsequences
of length l as:

Dl(i, j) =
l−1∑

k=0

[(
xi+k − μl

i

) − (
x j+k − μl

j

)]2
, (4.19)

and μn
i = 1

n

n−1∑
k=0

xi+k; then

Dl(i, j) < Dl+1(i, j) ∀l > 0 ∧ 1 � i; j � T − l + 1.

A sketch of the proof was given by Mohammad and Nishida (2015a) and is given
below for concreteness: Let Δk ≡ Δi+k

j+l ≡ xi+k − x j+k and μl
i j ≡ μl

j − μl
j , then the

definition of Dl(i, j) can be written as:



130 4 Motif Discovery

Dl(i, j) =
l−1∑

k=0

(
Δk − μl

i j

)2 =
l−1∑

k=0

(Δk)
2 − 2

l−1∑

k=0

(
Δkμ

l
i j

) +
l−1∑

k=0

(
μl

i j

)2
,

Dl(i, j) = −l
(
μl

i j

)2 +
l−1∑

k=0

(Δk)
2.

We used the definition of μl
i j in arriving at the last result. Using the same steps

with Dl+1(i, j), subtracting and with few manipulations we arrive at:

Dl+1(i, j) − Dl(i, j) = Δ2
l + l

(
μl

i j

)2 − (l + 1)
(
μl+1

i j

)2
. (4.20)

Using the definition of μl
i j , it is straight forward to show that:

(l + 1) μl+1
i j = lμl

i j + Δl . (4.21)

Substituting in Eq.4.20 and rearranging terms we get:

Dl+1(i, j) − Dl(i, j) = Δ2
l + (

μl
i j

)2 − 2μl
i jΔl = (

Δl − μl
i j

)2 � 0.

This proves Theorem 4.1.
The MK++ algorithm starts by applying MK+ as explained in Sect. 4.4.2 to find

top K pair motifs at length L . The algorithm then progressively uses Theorem 1 to
lower-bound the distances at higher lengths during the referencing phase. The same
Dbest list from every length can then be used to seed the search at higher lengths.
Updating the distances in Dbest to the higher length may take them out of order. We
then have to re-sort Dbest in ascending order and update the best-so-far accordingly.
This gives us a—usually—tight upper bound on the possible distances for the top
K pair-motifs at the higher length. This is specially true if the increment in motif
length is small and the time-series is smooth. This is the source of the speedup
achieved by MK++ over repeated application of MK+ which has to find these lists
from scratch at every length. Moreover, the referencing step will not need to be
completely recalculated at every length because of the lower-bound property.

The exactness ofMK++depends on the applicability of the condition inEq.4.18 to
the distance function. z-score Normalized Euclidean distance (the distance function
of choice in may applications because of its relative scale independence), does not
satisfy this condition. The following section provides a solution to this problem and
another algorithm that can discover top K motifs using scale normalized distance
functions. MK++ is implemented in C++ with a Matlab interface provided by the
function mkpp() in the MC2 toolbox. Figure4.3 shows the results of applying this
algorithm to the same time-series used to testMDLEMD(Sect. 4.3.1). Comparing the
results with the results reported in Fig. 4.2, it is clear that the exact solution discovers
only a single motif in the data but completely, while MDL EMD discovered partially
both embedded motifs but in smaller segments.
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Fig. 4.3 Results of applying MK++ on the same time-series shown in Fig. 4.2

4.4.4 Motif Discovery Using Scale Normalized Distance
Function (MN)

We utilize the following notation in this section: The symbols μl
x , σ l

x , mxl
x , mnl

x
stand for the mean, standard deviation, maximum and minimum of xl where we
use superscript to indicate the lengths of time-series. The normalization constant
rl

x is assumed to be a real number calculated from xl and is used to achieve scale-
invariance by either letting rl

x = σ l
x (z-score normalization), or rl

x = mxl
x − mnl

x
(range normalization).

The distance function (between any two time-series x and y) used in this section
has the general form:

Dl
xy =

∑l−1

k=0

(
xk − μl

x

r l
x

− yk − μl
y

r l
y

)2

. (4.22)

This is an Euclidean distance between two subsequences x̄ and ȳ, where

z̄k = (
zl

k − μl
z

)
/rl

z .

This means that it satisfies the triangular inequality which allows us to use the
speedup strategy described in Sect. 4.4.1. Nevertheless, because of the dependence
of rl

x and rl
y on data and length, it is no longer true that Dl+1

xy ≥ Dl
xy . Moreover, once

any of these two values change, we can no longer use any catched values of x̄ and ȳ.
We need few more definitions: αl

x ≡ rl−1
x /rl

x , θ l
xy ≡ rl

x/rl
y , Δl

k ≡ xk − θ l
xy yk ,

nμm
xy ≡ μm

x − θn
xyμ

m
y and μl

xy ≡ lμl
xy . Notice that it is trivial to prove that the mean

of the sequence
〈
Δxy

l
〉
is equal to μl

xy .
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Using the above mentioned terminology, it is possible to prove the following
theorem:

Theorem 4.2 For any two time-series x and y of lengths Lx > l and L y > l, and
using a normalized distance function Dl

xy of the form shown in Eq.4.22, we have:

Dl+1
xy = Dl

xy + 1
(
rl

x

)2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

((
αl

x

)2 − 1
) l−1∑

k=0

(
xk

2
)

+ 2
(
θ l

xy − (
αl

x

)2
θ l+1

xy

) l−1∑

k=0

xk yk

+
((

αl+1
x θ l+1

xy

)2 − (
θ l

xy

)2) l−1∑

k=0

(
yk

2)

+ l
(
μl

xy

)2 + (
αl+1

x Δl+1
l

)2

− (l + 1)
(
αl+1

x μl+1
xy

)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A sketch of the proof for this theorem is given by Mohammad and Nishida (2015a).
The important point about this theorem, is that it shows that by having a running sum
of xk , yk , (xk)

2, (yk)
2, and xk yk , we can incrementally calculate the scale invariant

distance function for any length l given its value for the previous length l − 1. This
allows us to extend the MK+ algorithm directly to handle all motif lengths required
in parallel rather than solving the problem for each length serially as was done in
MK++.

The form of Dl+1
xy as a function of Dl

xy is quite complicated but it can be simplified
tremendously if we have another assumption:

Lemma 4.1 For any two time-series x and y of lengths Lx > l and L y > l, and using
a normalized distance function Dl

xy of the form shown in Eq.4.22, and assuming that
r l+1

x = rl
x and rl+1

y = rl
y , we have:

Dl+1
xy = Dl

xy + 1
(
rl

x

)2

(
l

l + 1

) (
μl

xy − Δl
l

)2
.

Lemma 4.1 can be proved by substituting in Theorem 4.2 noticing that given the
assumptions about rl

x and rl
y , we have Δl+1

k = Δl
k and

l+1μl+1
xy = lμl+1

xy .
What Lemma 4.1 shows is that if the normalization constant did not change with

increased length, we need only to use the running sum of xk and yk for calculating the
distance function incrementally and using amuch simpler formula. This suggests that
the normalization constant should be selected to change as infrequently as possible
while keeping the scale invariance nature of the distance function. The most used
normalization method to achieve scale invariance is z-score normalization in which
rl

x = σ l
x . Mohammad and Nishida (2015a) proposed using the—less frequently
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used—range normalization (rl
x = mxl

x − mnl
x ) because the normalization constants

changemuch less frequently. The formulas for incremental evaluation of the distance
function given in this section assume that the change in length is a single point. Both
formulas can be extended to the case of any difference in the length but proofs are
much more involved.

The main idea of the Motif discovery using Normalized distance metrics (MN)
algorithm is to utilize Theorem 4.2 and run the two phases of the MK algorithm
in parallel for all lengths. The algorithm starts similarly to MK+ by calculating the
distance between all subsequences of the minimum length and a randomly selected
set of reference points. These distances will be used later to find lower bounds during
the scanning phase. Based on the variance of the distances associated with reference
points, these points are ordered. The subsequences of the time-series are then ordered
according to their distances to the reference point with maximum variance. These
steps can be achieved in O (nlogn) operations. The distance function used in these
steps (D f ull) uses Eq.4.22 for distance calculation but in the same time keeps the
five running summation (xk , yk , (xk)

2, (yk)
2, and xk yk) needed for future incremental

distance calculations as well as the maximum and minimum of each subsequence.
After each distance calculation the structure Sl

bests is updated to keep the top K motifs
at this length with associated running summations using the same rules of MK++.

The next step is to calculate the Sl
bests list storing distances and running summa-

tions for all lengths above theminimum length using the function Dinc which utilized
Theorem 4.1 to find the distances at longer lengths. The list is then sorted at every
length. Both Dinc and D f ull update the bs f variable which contains the best-so-far
distance at all lengths and is used if the run is approximate to further prune out
distance calculations during the scanning phase.

The scanning phase is then started in which the subsequences as ordered in the
previous phase are taken in order and compared with increasing offset between
them. If a complete run at a specific length did not pass the lower-bound test, we can
safely ignore all future distance calculations at that length because by the triangular
inequality we know that these distances can never be lower than the ones we have in
Sl

bests . Scanning stops when all lengths are fully scanned.
During scanning we make use of Theorem 4.1 once more by using an incremental

distance calculation to find the distances to reference points and between currently
tested subsequences. If we accept approximate results based on Lemma 4.1, we can
speed things up even more by not calculating the distances to reference points during
the evaluation of the lower bound and by avoiding this step all-together if the distance
at lower length was more than the current maximum distance in Sl

bests (Mohammad
and Nishida 2015a).

This algorithm is implemented in the functionmn() in the MC2 toolbox. Figure4.4
shows an example application of this algorithm.
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Fig. 4.4 Application of the MN algorithm to the same time-series used in Fig. 4.2

4.5 Stochastic Motif Discovery

The algorithms discussed so far try to be as exhaustive as possible in their search
for motifs in the time-series. This reduces their scalability to very long time-series
(in the range of millions or billions of points). When these extremely long time-
series are considered, even linear time performance may prove too slow for practical
application. In such case we can resort to stochastic discovery algorithm that sample
the time-series more or less randomly instead of scanning it during the search for
motifs.

4.5.1 Catalano’s Algorithm

Catalano et al. (2006) provided one of the earliest stochastic algorithms for motif
discovery. The algorithm is designed to findmotifs with frequent repetitions andwith
known maximum length.

Themain idea behind the algorithm is to randomly sample a user specified number
of large candidate windows of data, sub-window and store them, then these sub-
windows are compared to the sub-windows of comparison windows sampled from
the time series.

If the candidate window contains a recurring pattern (a motif occurrence) then
the sampling process will yield comparison sub-windows with similar properties.
To distinguish patterns from noise, the mean similarity of the best matches for each
candidate sub-window is compared to a distribution of mean similarities constructed
so as to enforce the null hypothesis that the matching sub-windows do not contain
an instance of the same pattern. When the null hypothesis is rejected the candidate
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sub-window probably contains a part of a pattern instance and adjacent sub-windows
with this property are concatenated together to obtain the entire pattern in a process
similar to GEMODA’s convolution.

The steps of the algorithm can be summarized as:

1. Select a subsequence sw of length w ≥ lmax .
2. Select w values randomly from X and concatenate them to form a noise sequence

nw.
3. Select a set of nc comparison subsequences of length w from X ({cw

i }).
4. Find the set Sŵ of subsequences of X of length ŵ where ŵ ≤ lmin for sw (call this{

sŵ
k

}
), and nw (call this

{
nŵ

k

}
) where 1 ≤ k ≤ w − ŵ − 1. Then normalize all of

the resulting subsequences to have unit mean square.
5. For the candidate subsequence of sw (sŵ

k ) do the following:

a. Randomly select w − ŵ − 1 subsequences from the set of all subsequences
of the comparison windows (cw

i ). Call this set the comparison set ĉŵ
j .

b. Find the distances dk j = d
(
sŵ

k , ĉŵ
j
)
.

c. Group the set ĉŵ
j with their parent subsequence cw

i and for every group select

ĉŵ
j that has the minimum distance dk j . This leads to a set of R subsequences

c̃ŵ
r where R ≤ nc.

d. Keep only the R̂ subsequences of c̃ŵ
r with least dkr .

e. Repeat the previous three steps for subsequences of the noise subsequence
nw. This leads to another set of R̂ subsequences called ñŵ

r .

6. Remove all candidate subsequences sŵ
k that have average dkr less than a threshold

γ . To calculate γ , sort ñŵ
r by their distances and call these distances dn (u). γ

is selected as dn (�(αn)�) where α is a parameter of the algorithm. Repeat the
steps above using this reduced set. α is a parameter of the algorithm. Repeat this
reduction for nr times.

7. If the final set sŵ
k is not empty output each of them as a motif seed Ms after

concatenating any continuous subset of them.

There are six parameters of this algorithm: w, ŵ, R̂, nr , nc, α. Catalano et al.
(2006) suggested that w should be selected larger than lmax (we select it as lmax + 1).
They have also shown that a choice of α between 0.05 and 0.2 gives good results.
nr is decided based on the time available to run (the more the better). nc is decided
based on the space available. We select ŵ to be less than lmin/2 in order to be sure
that the smallest pattern has more than one subwindow. R̂ is difficult to select but
we can use R̂ = nc/2 which gave good results in all our evaluations (Mohammad
and Nishida 2009). In case motif length limits lmin and lmax are not available, it is
necessary to estimate them by visualizing parts of the data or trying different values
for them.

In this form, Catalano’s algorithm can discover motifs only if they are frequent
enough for two of its occurrences to fit perfectly within the candidate window and
at least one comparison window. Several approaches have been proposed to increase
the probability of this happening leading to the stream of constrainedmotif discovery
algorithms to be discussed in Sect. 4.6.



136 4 Motif Discovery

As stated, the algorithm does not discover range motifs but something akin to
GEMODA motifs because the criteria for selecting similarity is having a distance
less than a threshold for every short subsequence of length ŵ instead of satisfying
a range constraint. It is easy to convert the algorithm to a range motif discovery
system by filtering discovered motifs and running motif detection over the complete
time-series for every discovered motif.

4.6 Constrained Motif Discovery

Constrained motif discovery algorithms receive not only the time-series X to be
searched for motifs but another time-series P of the same length representing some
estimate of the odds that a motif occurrence exists near every point in X . In a sense,
this is a simpler problem than standard unconstrained motif discovery and the main
challenge is to utilize this information efficiently for motif discovery.

Where can we get this constraint P? It can contain some domain knowledge but
more interestingly for us, it can be found efficiently in linear time by a single scan of
the time-series using a change point discovery algorithm (SeeChap. 3). The basic idea
is that motif occurrences are assumed to be disjoint and do not repeat continuously.
In such cases, the beginning and ending of motif occurrences are likely to appear as
change points to the CPD algorithm. Here CPD is used to focus the search around
points of high interest at which we expect motifs to start and end.

One simple approach to solve this kind of problem is to build a similarity matrix
for short subsequences around these change points and use it for motif discovery.
Another simple approach that will be explored here is to use this estimate to bias the
sampling process of a stochasticmotif discovery algorithm likeCatalano’s algorithm.

4.6.1 MCFull and MCInc

If calculating the constraint P is not computationally expensive or if it cannot be
calculated for any required single point of the series X using only local information,
we can speed up Catalano’s algorithm by modifying the first three steps as follows
(Mohammad and Nishida 2009):

1. Apply a Gaussian smoothing filter (N (0, σ 2)) to the original P constraint which

results on the smoothed constraint P̃ , then normalize P̃ so that
n∑

t=1
p̂ (t) = 1 and

0 ≤ p̂ (t) ≤ 1.
2. Randomly select a subsequence sw of length w ≥ lmax using P̂ as the probability

distribution.

http://dx.doi.org/10.1007/978-3-319-25232-2_3
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3. Randomly select a set of w values from X by concatenating short subsequences
of length ŵ using 1 − P̂m where m ≥ 1. This is the noise sequence nw.

4. Randomly select a set of nc comparison subsequences of X ({cw
i }) each of length

w using P̂ as the probability distribution.

The rest of the algorithm goes exactly as the original. The smoothing step is
required to account for any inaccuracy of the constraint. This way we understand the
constraint as specifying the probability that a motif occurrence ends near and not
necessary at the corresponding time step.

This algorithm is called MCFull (standing for Modified Catalano Full) because
the P constraint must be calculated before the algorithm is run for the complete input
time-series.

The only parameter added to the set of Catalano’s parameters is the smoothing
variance σ . If an estimation of the locality variance of the constraint is available (how
accurate is it in finding the exact starting/ending point of motifs) then it can be used.

If calculating the constraint P is computationally expensive and if p (t) can be
calculated using only local information around t , then an incremental version of
MCFull can be constructed (named MCInc hereafter) by modifying the MCFull
steps as follows:

1. Randomly select a time step 1 ≤ τ ≤ n using a uniform distribution.

2. Calculate p (t) for τ − δ ≤ t ≤ τ + δ and calculate p̂ (τ ) = 1
2×δ+1

τ+δ∑
t=τ−δ

p (t).

3. Repeat steps 1 and 2 as long as p̂ (τ ) ≤ th.
4. Select the subsequence sw of length w ≥ lmax that ends at τ .
5. Randomly select a set of ŵ values from X and concatenate them to form a noise

sequence nw.
6. Repeat steps 1, 2, 3 for nc times to select the comparison subsequences of X

({cw
i }) each of length w.

The only added parameters by this algorithm are δ and τ . δ is selected based on
the locality variance of the constraint (similar to σ for MCFull). τ should be decided
experimentally by finding a tradeoff between increasing the number of iterations
(low τ ) and increasing the number of random samplings (high τ ) (Mohammad and
Nishida 2009).

The MC2 toolbox accompanying this book provides implementations of both
MCFull and MCInc algorithms.

Mohammad andNishida (2009) analyzed the theoretical benefits of usingMCFull
instead of relying on the basic Catalano’s algorithm and proved the following rela-
tionship:

mc
Pr
c
Pr

=
⎛

⎝ T

mlog2m
×

D
(

C P̂
r ||C Pg

r

)
+ H

(
C P̂

r

)

w − E (L) + 1

⎞

⎠
2

, (4.23)
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where C P
r =

r(i)∑
j=1

P ( j + (i − 1) r (i)),
∑

r (i) = T , m is the actual number of

occurrences of the motif, E (L) is the expected length of these occurrences, D (x ||y)

is the relative entropy of x given y, and H (x) is the entropy of x . Pg is the ground truth
probability distribution of motif occurrences (having the value 1/m at the endings
of motif occurrences and zero everywhere else), and P is the constraint after being

normalized to have a sumof 1.
mc
Pr
c
Pr
is the ratio between the probability of finding amotif

using MCFull to the probability of finding it using the basic Catalano’s algorithm.
Several points of Eq.4.23 need to be highlighted. Firstly, the odds of discovering

a motif using random sampling improves with the square of the time-series length
not linearly. This suggests that for longer time-series using constraints to guide the
search for motifs is necessary. Moreover, the ratio depends also on m2log2m which
shows that the smaller the number of occurrences, the more focusing the search will
be beneficial.

4.6.2 Real-Valued GEMODA

Having found a constraint P (usually from a change point discovery algorithm), we
can assume that motifs will be found around points with relatively high values for
pt . This suggests a simple approach for motif discovery. Firstly, we sample random
points from P (after proper normalization), and then we can collect subsequences at
these random locations and build a complete similarity matrix for them.

The similarity matrix can then be fed to the GEMODA algorithm (Sect. 4.2.2) to
generate GEMODAmotifs. This option is implemented in the function gemoda() by
passing candidate locations to use when building the similarity matrix. The results of
using this approach is shown in Fig. 4.5. It is clear that the approach is approximate in
the sense that it is no longer having the maximal discovery guarantees of GEMODA
when using the full similarity matrix. This is the price we pay for having a scalable
algorithm.

4.6.3 Greedy Motif Extension

Mohammad et al. (2012) proposed a different approach for extending themotif stems
discovered through comparison of distances at candidate locations sampled randomly
from the constraint called greedy motif extension (GSteX) which can either work
sequentially (GSteXS) or using bisection (GSteXB).

Given a list cand Loc of candidate motif locations found for example by an appli-
cation of CPD, a set of stem locations is generated from cand Loc by collecting all
subsequences of length lmin around each member of cand Loc. This set is called
sequences. Notice that lmin is a small integer that is used for initialization and
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Fig. 4.5 Application of the Gemoda algorithm to the same time-series used in Fig. 4.2 using RSST
for change point discovery to focus the search for motifs. All occurrences of the same motif are
shown with the same color and occurrences of different motifs are shown in different colors

the stems will then be allowed to grow. In our experiments, we selected lmin to be
max

(
10, 10−5T

)
, where T is the length of the input time series. The results presented

were not dependant on the choice of this parameter as long as it was less than half
the discovered motif lengths.

The distances between all members of sequences is then calculated and clustered
into four clusters using K-means. The largest distance of the cluster containing short-
est distances is used as an upper limit of distances between similar subsequences
(max Near ) and is used to prune future distance calculations.

The sequences generating the first distance clusters (nearSequences) are then
used for finding motif stems. Each one of these distances corresponds to a pair of
sequences in the sequences set. This is the core step in G-SteX. For each pair of
sequences in the nearSequences set, the first of them is slid until minimum distance
is reached between the pair and then a stem is generated from the pair using one of
the two following two techniques.

The first extension technique is called G-SteXB (for binary/bisection) and it starts
by trying to extend the motif to the nearest end of the time series and if the stopping
criteria is not met, this is accepted as themotif stem. If the stopping criteria is met, the
extension is tried with half of this distance (hence the name binary/bisection) until
the stopping criteria is not met. At this point, the extension continues by sequentially
adding half the last extension length until the stopping criteria is met again. This
is done in both directions of the original sequences. By the end of G-SteXB, we
have a pair of motif occurrences that cannot be extended from any direction without
meeting the stopping criteria.

The second extension technique is called G-SteXS (for sequential) and it extends
the sequences from both sizes by incrementally adding lmin points to the current pair
from one direction then the other until the stopping criteria is met. At this step it is
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possible to implement the don’t care section ideas presented in (Chiu et al. 2003)
by allowing the extension to continue for subsequences shorter than the predefined
maximum outlier region length (don’t care length) as long as at least one lmin points
are then added without breaking the stopping criteria.

The stopping criteria used in G-SteX with both its variations combines pruning
using the max Near limit discovered in the clustering step with statistical testing of
the effect of adding new points to the sequence pair. If the new distance after adding
the proposed extension is larger than max Near , then the extension is rejected. If the
extension passes this first test, point-wise distance between all corresponding points
in the motif stem and between all corresponding points in the proposed extension
part. If the mean of the point-wise distances of the proposed extension is less than the
mean of the point-wise distances of the original stem or the increase in themean is not
statistically significant according to a t-test then the extension is accepted otherwise
it is rejected.

This approach is implemented by the function dgr() in the MC2 toolbox with the
actual extension logic in the function extend Stem(). Figure4.6 shows the results of
applying this approach to the same running example of this chapter. We can see that
the algorithm has relatively high false negatives rate due to the stringent criteria it
uses for combining the stems and extending them.

4.6.4 Shift-Density Constrained Motif Discovery

The last stochastic motif discovery algorithm we will consider is called shift den-
sity constrained motif discovery (sdCMD) (Mohammad and Nishida 2015b). The

Fig. 4.6 Application of the GSteXB algorithm to the same time-series used in Fig. 4.2 using RSST
for change point discovery to focus the search for motifs. All occurrences of the same motif are
shown with the same color and occurrences of different motifs are shown in different colors
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algorithm starts by finding candidate locations for motifs using the same change
point discovery technique and random sampling used by all other constrained motif
discovery algorithms discussed so far.

The goal of sdCMD is to discover GEMODA-likemotifs but without requiring the
complete occurrences to fitwithin the candidate and comparisonwindows (in contrast
to Catalno’s and related algorithms like MCFull). This is achieved by converting
the problem of motif discovery in multidimensional data to the problem of shift-
clustering.

To understand the idea of this algorithm, consider Fig. 4.7. The subsequences of
a time-series with two motif occurrences. The top subsequence contains a partial
occurrence, the middle subsequence contains the complete occurrence, while the
bottom subsequence contains no occurrences. We now consider 10-points short win-
dows of the middle subsequence at indices 31, 46, and 73. The first two of these
windows are within the partial motif occurrence while the third is outside it. Now
we find the subsequence that has the minimum distance to each of these three win-
dows in the remaining two subsequences. The top subsequence with the full motif
occurrence gives 1, 16 and 80 in order. Notice that the two windows that correspond
to parts of the motif gave the same shift between the top and middle subsequences of
−30 while the window outside the motif occurrence gave a shift of 7. This result is
expected because windows inside the middle motif occurrence is expected to show
maximum similarity (minimum distance) with the corresponding windows of the top
subsequence which will be shifted by exactly the same amount (−30 points in this
case). The parts outside the motif occurrences in the middle and top subsequences
will show no such pattern.

Fig. 4.7 Three subsequences of a time-series with two motif occurrences. The top subsequence
contains a partial occurrence, the middle subsequence contains the complete occurrence, while the
bottom subsequence contains no occurrences
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Now consider the bottom subsequence and repeat the same procedure. Now the
windows corresponding to windows 31, 46, and 73 of the middle subsequence will
be 20, 69, 20 with shifts of −11, 23, and −53. There is no pattern to these shifts as
expected.

This simple example suggests that the shifts between the windows with minimum
distance to parts of a subsequence contain information about not only whether two
motif occurrences happen to be inside the two compared subsequences but further-
more about the needed shifting of one of them to align these occurrences if they exist
and the limits of these occurrences. If we have a streak of shift values of the same
(or similar) values we can conclude that the two subsequences have at least partial
occurrences of a motif and furthermore, we know how to align them to get the full
motif. Moreover, we know that the parts that show no such behavior in the shifts are
outside the motif occurrence.

The sdCMD algorithm capitalizes on this feature of shifts between most similar
short subwindows of candidate and comparison windows to discover motif occur-
rences even if they only appear partially within the windows and complete them (an
advantage over Catalano’s and similar algorithms).

Assuming that the sampling based on the constraint generated a set � of windows.
They are considered a candidate window in turn and compared with the rest of the
windows in �.

The current candidate window (c) is divided into w − w̄ ordered overlapping
subwindows (xc(i) where w is the length of the window, w̄ = ηlmin , 1 ≤ i ≤ w − w̄
and 0 < η < 1). The same process is applied to every window in the current
comparison set. The following steps are then applied for each comparison window
( j) for the same candidate window (c).

Firstly, the distances between all candidate subwindows and comparison subwin-
dows are calculated (D

(
xc(i), x j(k)

)
for i, k = 1 : w − w̄). The distance found is then

appended to the list of distances at the shift i − k which corresponds to the shift to
be applied to the comparison window in order to get its kth subwinodw to align with
the i th subwindow of the candidate window. By the end of this process, we have a
list of distances for each possible shift of the comparison window.

Our goal is then to find the best shift required to minimize the summation of all
subwindow distances between the comparison window and the candidate window.
Our main assumption is that the candidate and comparison windows are larger than
the longest motif occurrence to be discovered. This means that some of the distances
in every list are not between parts of the motif occurrences (even if an occurrence
happens to exist in both the candidate and comparison windows). For this reason we
keep only the distances considered small from each list. The algorithm also keeps
track of the comparison subwindow indices corresponding to these small distances.

Finally, the comparison windows are sorted according to their average distance
to the candidate window, with the best shift of each of them recorded.

At the end of this process and after applying it to all candidate windows, we have
for each member of � a set of best matching members with the appropriate shifts
required to align the motif occurrences in them (if any).
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Fig. 4.8 Application of the Shift Density ConstrainedMotif Discovery algorithm to the same time-
series used in Fig. 4.2 using RSST for change point discovery to focus the search for motifs. All
occurrences of the same motif are shown with the same color and occurrences of different motifs
are shown in different colors

Given this list, we can create a matching matrix showing for each subwindow of
the candidate window the shift required to match it with the comparison window.We
search this matrix for streaks of the same (or similar) values at every row and these
streaks define motif stems containing one occurrence in the candidate window and
another in a comparisonwindow.These stems can thenbe extendedbyGEMODAlike
convolution process (Mohammad and Nishida 2015b) leading to complete motifs.

This approach is implemented in the function sdC M D() in the MC2 toolbox and
its results are exemplified in Fig. 4.8.

4.7 Comparing Motif Discovery Algorithms

Comparing motif discovery algorithms is not a trivial task. For example, a MD
algorithm that finds a hundred occurrences of a 5-pointsmotif with a single point shift
will have 200 errors if compared directly with the ground truth. Another algorithm
that finds exactly only 61 occurrences and fails to find the rest may be considered
better if only false positives and negatives are counted. This may or may not be
appropriate depending on the application.

Mohammad et al. (2012) proposed to use a mutli-dimensional criterion for eval-
uating MD algorithms assuming that ground-truth information about the motifs and
their occurrences is available.
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For each of the discovered motifs, four quantities are calculated:

• Correct Motifs: The number of discovered motifs that completely cover at least
some occurrences of a single ground truth motif.

• CoveringNone: The number of discoveredmotifs that cover no parts of any ground
truth motif.

• Covering Partially: The number of discovered motifs that cover only parts of some
occurrences of a single ground truth motif.

• Covering Multiple: The number of discovered motifs that cover occurrences from
multiple ground truth motifs.

Based on the application, one or more of these dimensions may bemore important
than the others. For example, in gesture discovery it is necessary to discover the
complete gesture and hence motifs in the covering-multiple set should be treated
harshly but in an imitation learning task that involves a higher-cognitive planner,
these motifs may be counted as correct motifs because the boundaries between acts
are not important in this task.

These four criteria are calculated from the view-point of the discovered motifs.
We also calculate two criteria from the ground-truth motifs view point: Fraction
Covered is the fraction of occurrences of each one of the ground-truth motifs that is
covered by discovered motifs. Extra Fraction is the fraction of the discovered motif
occurrences used in calculating the fraction covered that are not covering a part of
the ground truth occurrence.

This approach to comparison of motifs is implemented in the function
mdquali t y() in the MC2 toolbox.

Another simpler approach to motif discovery algorithm comparison is to collect
the output motif locations in a single list and compare it to ground truth using the
same techniques suggested for comparing change point discovery algorithms. This
is done in the MC2 toolbox using the function mdq2cpq().

4.8 Real World Applications

This section presents three applications of motif discovery to real-world datasets
related to robotics and social robotics. The second part of the book will contain other
cases.

4.8.1 Gesture Discovery from Accelerometer Data

The first application of motif discovery to real world data that we will consider is in
the area of gesture discovery (Mohammad and Nishida 2015b). Our task is to build a
robot that can be operated with free hand-gestures without any predefined protocol.
The way to achieve that is to have the robot watch as a human subject is guiding
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another robot/human using hand gestures. The learner then discovers the gestures
related to the taskby running amotif discovery algorithmon thedata collected froman
accelerometer attached to the tip of themiddle finger of the operator’s dominant hand.
We collected only 13min of data during which seven gestures were used. The data
was sampled 100 times/s leading to a 78000 points 3D time-series. The time-series
was converted into a single space time series using PCA as proposed in Mohammad
and Nishida (2011). sdCMD as well as GSteXS were applied to this projected time-
series. sdCMD discovered 9 gestures, the top seven of them corresponded to the true
gestures (with a discovery rate of 100%) while GSteXS discovered 16 gestures and
the longest six of them corresponded to six of the seven gestures embedded in the
data (with a discovery rate of 85.7%) and five of them corresponded to partial and
multiple coverings of these gestures.

4.8.2 Differential Drive Motion Pattern Discovery

The second application we will consider is discovery of motion patterns of a differ-
ential drive robot (Mohammad and Nishida 2012a). In this experiment, we employed
a simulated differential drive robot moving in an empty arena of area 4m2. The robot
had the same dimensions as an e-puck robot (Fig. 1.4d) and executed one of three
different motions at random times (a circle, a triangle and a square). At every step,
the robot selected either one of these patterns or a random point in the arena and
moved toward it. The robot had a reactive process to avoided the boundaries of the
arena.

Ten sessions with four occurrences of each pattern within each session were
collected and the proposed algorithmwas applied to each session after projecting the
2D time-series representing motor commands sent to the robot’s two motors into a
1-D time-series as in previous applications.

MK++ discovered 3 motifs corresponding to the three motion patterns. In this
case there were no partial motifs or false positives and discovery rate was 100%.
These results were obtained in a simulated environment and are not expected to be
the same in a real world situation but they support the claim that motif discovery can
in principle be applied to motion pattern discovery.

4.8.3 Basic Motions Discovery from Skeletal Tracking Data

The final real world application to be considered here is basic motion discovery from
skeletal tracking data (Mohammad and Nishida 2015b). Discovering basic motions
(sometimes calledmotion primitives ormotor primitives) from observation of human
behavior is a heavily researched problem in robotics (Kulic and Nakamura 2008;
Pantic et al. 2007; Minnen et al. 2007; Vahdatpour et al. 2009). A recurrent motion
primitive is a special case of a motif but in a multi-dimensional time-series.

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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This work uses a recording of the joint angles of a human skeletal’s two arms
(Θle f t (t),Θright (t)) and the goal is to discover motion primitives (e.g. recurring
patterns ofmotion) using aMD algorithm. As discussed in Sect. 4.3.1, it is possible to
apply a dimensionality reduction technique to the data before applying the proposed
method. The problem of this approach in our case is that sometimes the motion
primitive does not span all of the dimensions but involves a subset of the joints
measured. For this reason, we applied MD (using sdCMD) to each dimension of the
input and found recurrent patterns in a single dimension.

The experiment was designed to make it easy to find a quantitative measure of
performance by having accurate ground truth data. The robot used in this experiment
is a NAO robot (See Fig. 1.4c). The head was fixed and the legs DoFs were fixed to a
supporting pose. The experimental setup was designed as a game called follow-the-
leader where NAO was the leader in the beginning. The subject faced the NAO and
a Kinect sensor. The NAO repeatedly selected one of 4 different predefined motions
for each arm and executed it while the subject watched the motion. The subject then
imitated the motion of NAO. Each motion was conducted 5 times (in random order).
This gives a total of 20 motions. After each five of these motions, the leader was
switched to the subject who was allowed to make 5 motions that were imitated by
the NAO. The subject was instructed to move freely/randomly and try not to repeat
his motion. This gave a total of 40 motions from both partners in the game for each
session (Mohammad and Nishida 2015b). sdCMD could discover 75% of the motifs
in both streams and with a correct discovery rate of 71% (human data) and 83%
(robot data).

4.9 Summary

Discovering recurrent patterns in longmultidimensional time-series is a core problem
for our approach to autonomous learning of social behavior. This chapter introduced
several definitions of the patterns we are after (e.g. GEMODAmotifs, K-Motifs, Pair-
Motifs, and Range Motifs) and reported several algorithms that are adequate for dis-
covering each of them. The algorithms covered in this chapter range from algorithms
appropriate mostly for discrete time-series like projections and GEMODA to algo-
rithms designed for multidimensional real-valued time series like MDL-Extended
Motif Discovery algorithm. We reported also discretization algorithms for solving
real-valued motif discovery problems as well as other approaches that do not require
any discretization. Three applications of motif discovery to HRI related situations
were also presented: gesture discovery, differential drive motion pattern discovery,
and motion discovery from skeletal data. In the second part of this book, motif dis-
covery will be used extensively for several applications and will prove to be a useful
tool for social robotics.

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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Chapter 5
Causality Analysis

The study of causality can be traced back to Aristotle who defined four types of
causal relations (material, formal, efficient and final causes). From these four types,
only efficient causality is still considered a form of causality today. In his Treatise
of Human Nature (1739–1740), David Hume described causality in terms of regular
succession. For Hume, causality is a regular succession of event-types: one thing
invariably following another. In his words: We may define a CAUSE to be ‘an object
precedent and contiguous to another, and where all the objects resembling the for-
mer are placed in like relations of precedence and contiguity to those objects, that
resemble the latter’.

Since Hume, there were many definitions of causation (Glymour 2003). There
are two ingredients of the concept that are widely accepted by most definitions:
causation is related to predictability of effects from knowing causes and causation
involves time asymmetry between causes and effects. Simply put, causes precede
effects or at least cannot follow them in time. In fact this is the basis of the definition
of Causal Linear Systems as used in electrical engineering literature.

There are three main definitions of causation that can be used to devise computa-
tional models. Some theorists equated causality with increased predictability leading
to Granger-causality tests (Granger 1969; Gelper and Croux 2007). Some theorists
have equated causality with manipulability (Menzies and Price 1993). Under these
theories, x causes y if and only if one change y by changing x. This is the root of cau-
sation from perturbation models (Hoover 1990). Finally, yet other theorists defined
causality as a counterfactual which means that the statement “x causes y” is equiva-
lent to “y would not have happened if x did not”. This kind of definition of causality
is the basis of Pearl’s formalization of the Structure Equation Model (SEM) (Pearl
2000). All of the three definition agree on the time asymmetric nature of causality.

There are two problems thatmost of these systems (taken alone) run into: causality
cycles and common causes. Causality cycles (sometimes called feedbacks) happen
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when an event directly or indirectly causes itself to happen again in the future. Linear
Granger causality can detect these cycles only if two independent null-hypothesis
were rejected (Bai et al. 2010). Common causes happen when event A causes both
B and C but with different time delays. most techniques analyzing the behavior of B
and C alone would result on the false conclusion that one of them is causing the other.
When representing causality usinggraphs, causality cycles correspond to cycles in the
graphs and common causes appear as bifurcations in these graphs (Mohammad and
Nishida 2010). This chapter will introduce three algorithms for discovering causal
relations between time-series that will be of use for both interaction protocol learning
(Chap.11) and fluid imitation (Chap.12). This chapter presents three algorithms for
causality discovery.

5.1 Causality Discovery

The central problem in causality discovery can be stated as follows: Given a set
of nt time-series of length T characterizing the performance of n processes (where
nt ≥ n), build a n-nodes directed graph representing the causal relations between
these processes. Each edge in the DAG should be labeled by the expected delay
between events in the source processes and their causal reflection in the destination
node.

We assume that every process Pi generates a time series of dimension ni ≥ 1.
This means that nt = ∑

ni. Our goal is to build a graph that represents each process
(not each time series) by a node and connects processes with causal relations using
directed edge (cause as a source and effect as a destination). Each edge should be
labeled by the expected delay time (E(τ ) ) between a change in the cause processes
and the resulting change in the effect process.

5.2 Correlation and Causation

It is common to hear that correlation does not imply causation which is true in most
cases but may hide the more subtle fact that causation may not imply correlation.
Thismeans that neither of these two concepts can in general be used to infer the other.
Examples of correlations that do not imply causation can be found everywhere. To
show the other side of this coin consider the following system:

x (t + 1) = x(t) (3.8 − 3.8x(t) − 0.02y(t)),

y (t + 1) = αy(t) (3.5 − 3.5y(t) − 0.1x(t)).
(5.1)

It is clear that the two variables X and Y are causally connected because we
need each of them to determine the other. Figure5.1 shows the first 100 samples of

http://dx.doi.org/10.1007/978-3-319-25232-2_11
http://dx.doi.org/10.1007/978-3-319-25232-2_12
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Fig. 5.1 Example of two causally connected time-series

these two time-series with initial conditions (x(0) = 0.4, y(0) = 0.2). Calculating
the correlation between the two time-series between samples 50 and 100 gives a
correlation coefficient of 0.0537with a p-value of 0.7084. Calculating the correlation
for 3000 samples gives a correlation coefficient of only 0.0481 nowwith a p-value of
0.0084. The correlation coefficient of the samples between 200 and 300 is−0.45with
a p-value of less than 0.0001. These conflicting results ranging from no correlation
to strong negative correlation signify the difficulty in relying on correlations for
inferring causation.

5.3 Granger-Causality and Its Extensions

Themain idea of Granger causality is to base the decision on causality on predictabil-
ity instead of correlation. This may sidestep the problem highlighted in the previous
section for systems basing causality on correlation.

Granger causality is defined between two stationary stochastic processes X and
Y within a universe U as follows: X Granger-causes Y with respect to U (or X
g-causes Y with respect to U) iff σ 2(Yt|U−∞:t−1) < σ 2(Yt|U−∞:t−1 − X−∞:t−1)

where σ 2(A|B) is the variance of the residuals for predicting A from B.
There are many ways in which to implement a test of Granger causality. One

particularly simple approachuses the autoregressive specificationof a bivariate vector
autoregression. First we assume a particular autoregressive lag length for every time
series (ρa, ρb) and estimate the following unrestricted equation by ordinary least
squares (OLS):

Â (t) = ε1 + u (t) +
ρa∑

i=1

αiÂ (t − i) +
ρb∑

i=1

βiB̂ (t − i). (5.2)

Second, we estimate the following restricted equation also by OLS:
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Â (t) = ε2 + e (t) +
ρa∑

i=1

λiÂ (t − i). (5.3)

We then calculate the sum of squared residuals (SSR) in both cases:

SSR1 =
T∑

i=1
u2 (t),

SSR0 =
T∑

i=1
e2 (t).

(5.4)

We then calculate the test statistic Sρb as:

Sρb = (SSR0 − SSR1)
/
ρb

SSR1
/

(T − 2ρb − 1)
. (5.5)

If Sρb is larger than the specified critical value then reject the null hypothesis that
A does not g–cause B. The p-value in this case is 1− Fρb,T−2ρb−1

(
Sρb

)
. As presented

here Ganger Causality can be used to deduce causal relations between two variables
assuming a linear regression model. The test was extended to multiple variables and
nonlinear relations (e.g. using radial basis functions) (Ding et al. 2006).

From this analysis of Granger causality, we can see that it is essential that the
variable tested for being a cause must be separable from other possible causes.
This means that it should be possible to remove the to-be-a-cause variable from the
universe of all possible causation variables. In a linear system with a superposition
guarantee, this can be assumed safely but in general it may not be possible to achieve
this separability because other variables may carry information about the tested
variable and this may affect the analysis outlined above. Separability is a technical
term for decomposability which means that the system can be decomposed into
pieces and understood by understanding each of these pieces and their relations.
Even though linear systems and purely stochastic systems may be decomposable,
this is usually lacking for deterministic dynamical systems with weak to moderate
coupling (Granger 1969; Sugihara et al. 2012.)

To see this, consider the following example a modified version of the one given
in Sugihara et al. (2012):

x (t + 1) = x(t)
(
rx − rxx(t) − βxyy(t)

)
,

y (t + 1) = αy(t)
(
ry − ryy(t) − βyxx(t)

)
.

(5.6)

It is easy to solve the first equation for x (t) which will be:

x(t) = (
ry − ryy(t) − y (t + 1) /αy(t)

)
/βyx. (5.7)

From Eq.5.7, we can see that x (t) can be determined from y (t) and y (t + 1)
which means that y carries information about x. Moreover, increasing the value of
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α reduces the importance of y (t + 1) in determining x (t) and makes it dependent
only on y (t). If the system is noisy with large value of α, the effect of y (t + 1) on
x (t) will become smaller than the noise level rendering it impossible to discover the
effect of x (t) on y (t + 1).

In (Mohammad and Nishida 2010), we utilized an extended version of the
Granger causality test combined with a constrained motif discovery (CMD) algo-
rithm (Sect. 4.6) to discover causal relations. The main problem with this approach
is that a large amount of data is required in order for the CMD algorithm to discover
meaningful recurrent patterns. Also CMD requires the specification of an upper limit
on the motif length which may be difficult to give in some contexts.

Because the optimal lag is not usually known in advance, we use BIC (Sect. 2.3)
for selecting these lags in our evaluations. This approach is implemented in the
function detectGC() in MC2.

5.4 Convergent Cross Mapping

The previous section discussed Granger causality which is applicable to stationary
stochastic processes for which the condition of separability is satisfied. In many
robotics applications, the time-serieswe are interested on are not stationary stochastic
processes but dynamical systems with corrupting noise. This regime is different in-
principle from the regime in which Granger causality excels and a new approach is
needed to handle it.

A new development in this area was the introduction of convergent cross mapping
(CCM) by Sugihara et al. (2012). The system is also based on predictability analysis
rather than correlation but is both theoretically andpractically different fromGranger-
causality.

For dynamical systems, we can say that two time-series have a causal link if they
are both parts of the same dynamical system. Equation5.6 gives one example of two
causally linked time-series. Figure5.2 shows the first 50 points of these two time-
series. The primary structure in this figure is the manifold presented in the middle
which depicts the two time-series together. The system moves over this manifold
with time and the two time series (left and right) can be though of as representing
projections of this main manifold onto the dimensions of the two time-series.

Figure5.3 shows the first 100 points of these two time-series in the middle. Com-
pared with the middle of Fig. 5.2, we can see that the lines traced by the time-series
are nearer to each other. This is expected as longer time-series are not expected to
trace the same path traced in the early samples leading to denser lines. Figure5.3
shows also two other manifolds that are generated by drawing x(t) against x(t − 1)
(right) and y(t) against y(t − 1). These two projection manifolds are called My (left)
and Mx (right) while the common manifold is simply called M.

http://dx.doi.org/10.1007/978-3-319-25232-2_4
http://dx.doi.org/10.1007/978-3-319-25232-2_2
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Fig. 5.2 Example of two causally connected time-series showing the common manifold (middle)
and its projection on Y (left) and X (right)

Fig. 5.3 Example of two causally connected time-series showing the common manifold (middle)
and the manifold of lagged values of Y (left) and X (right)

The idea behind CCM is to study the prediction of each variable based on the
manifold of the other variable (i.e. Ŷ |Mx and X̂|My). If the two time-series belong
to the same dynamical system (i.e. M exists) then the longer the time-series used
for prediction the more accurate will these prediction be compared with the original
time-series. By studying the convergence of this cross mapping, we can quantify the
causal relation between the two time-series and decide its direction.
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A simple algorithm for achieving this analysis can be devised as follows: Firstly,
we convert the two time-series into state-representations by concatenating lagged
vectors (as we have done in Singular Spectrum Analysis in Sect. 2.3.5).

Given two time-series X ={x (t) |0 ≤ t ≤ T − 1} and Y ={y (t) |0 ≤ t ≤ T − 1},
and a lag value N , we create the lagged state matrices X̃ = [XN , X2, ..., XT ] and
Ỹ = [YN , Y2, ..., YT ] where X̃t = x (t − N + 1 : t) and Ỹt = y (t − N + 1 : t). The
two matrices (X̃ and Ỹ ) are two Hankel matrices the same as the ones used for SSA
(Sect. 2.3.5).

Now Each column of these matrices represent a point on the manifolds Mx and
My. The next step is to calculate Ŷ |Mx. To achieve that, we calculate the nearby points
to each vector of X̃ using K-nearest neighbors where K = N + 1. The indices of
these neighbors will be called I for the rest of this section. We then use the points
vectors of Ỹ that appear in the same indices (I) to predict the value of Y . This is done
using simple weighted averaging:

Y̌ |Mx =
N+1∑

k=1

wkỸI(k), (5.8)

where Y̌ |Mx is the prediction of Ỹ given the manifold Mx and the weights are calcu-
lated as:

wi = e−di/d1

∑N+1
j=1 e−dj/d1

. (5.9)

Finally, we can find Ŷ |Mx from Y̌ |Mx by the same procedure used to find the final
time series in SSA from group approximations of the Hankel matrix (See Sect. 2.3.5)
by simply averaging the values corresponding to each point of the time-series.

The same procedure can be used to find X̂|My. If past values of Y affect X, we
expect the projection X̂|My to predict X accurately. Moreover, comparing the middle
panel of Figs. 5.2 and 5.3 we noticed that the larger the number of data points used
(T ) the more dense will the manifold lines be which will make the nearest neighbors
better approximators of X. This means that if Y is a cause of X, we expect this
approximation to converge to a high value. We can measure this approximation by
the correlation coefficient (ρ) between X̂|My and X and the same for Ŷ |Mx and Y .

Figure5.4 shows the results of applying this algorithm to the system modeled by
Eq.5.6 with initial conditions 0.4, 0.2, rx = 3.8, ry = 3.5, βxy = 0.02 and βyx = 0.1.
Figure5.4a shows the correlation coefficients as a function of time-series length. It is
clear that both coefficients converge but to different values (both near 1.0). Because
βyx > βxy, the effect of X on Y is higher than the effect of Y on X. This is reflected in
better approximation for Ŷ |Mx compared with X̂|My. This can be seen by comparing
Fig. 5.4a, b which shows higher error in predicting Y . The correlation coefficient

graph (Fig. 5.4a) shows this by faster convergence ofρx = corr
(

X, X̂|My

)
compared

with ρy = corr
(

Y , Ŷ |Mx

)
and having ρx > ρy for all lengths.

http://dx.doi.org/10.1007/978-3-319-25232-2_2
http://dx.doi.org/10.1007/978-3-319-25232-2_2
http://dx.doi.org/10.1007/978-3-319-25232-2_2
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(a)

(b)

(c)

Fig. 5.4 Result of CCM analysis of the system of equation 5.6 with βxy = 0.02 and βyx = 0.1.
a Correlation coefficient as a function of time-series length, b error in predicting X, c error in
predicting Y
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(a)

(b)

(c)

Fig. 5.5 Result of CCM analysis of the system of equation 5.6 with βxy = 0.0 and βyx = 0.1.
a Correlation coefficient as a function of time-series length, b error in predicting X, c error in
predicting Y
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Figure5.5 shows the results of applying the same algorithm to the systemmodeled
by Eq.5.6 with the same initial conditions and parameters with the exception of
having βxy = 0.0 which means that Y does not affect X. Figure5.5a shows the
correlation coefficients as a function of time-series length. It is clear that only the
coefficient of ρx converges now to a value near 1 while ρy shows chaotic behavior
near zero. This is also reflected in better approximation for Ŷ |Mx compared with
X̂|My. This can be seen by comparing Fig. 5.5b, c which shows higher error in
predicting Y .

Figure5.6 shows the reverse situation in which βxy = 0.1 and βyx = 0 which
means that now X does not affect Y . Comparing Figs. 5.5 and 5.6, it is clear that X
and Y now reverse positions with ρy > ρx for all lengths and better approximation
of Y compared with X.

Figure5.7 shows what happens with X and Y do not affect each other. This is
achieved by setting βxy = βyx = 0.0. Here both ρx and ρy show no convergence
to high values and both wander near zero. These figures where generated using the
script demoCCM of the MC2 toolbox which uses the function ccm() to apply CCM
analysis as explained in this section. The reader is advised to modify the parameters
of the generating dynamics and try different dynamical generation models.

Comparing these four cases together suggests a very simple algorithm for deciding
causality between any N variables. We start by a graph containing N nodes repre-
senting the time-series (variables) under investigation. The second step is to apply
CCM analysis and compare the convergence behavior of each two variables. A bidi-
rectional link is added between the two variables when both ρ time-series converge
to a value larger than a predefined threshold. A unidirectional link is added between
the two variables when ρ corresponding to one of them is converging and the other
is not. If neither ρ is converging then no links are added. This is implemented in the
function detectCCMC() of the MC2 toolbox.

CCMwas initially developed by Sugihara et al. (2012) for loosely coupled dynam-
ical systems in the biological world. When the coupling constants (e.g. βxy and βyx

in our example) becomes large enough, each time-series will contain enough infor-
mation about the other that predictability based causality tests like CCM will assign
causal relations to both directions even if one of them only was correct. Consider the
same dynamical system we used as our example in this section but now with βxy = 0
and βyx = 1. Here we expect to see a situation similar to what is depicted in Fig. 5.5
with only ρy converging to a large value and with ρx wandering near zero. Figure5.8
shows the results of applying CCM to this system. Surprisingly, ρy also seem to con-
verge to a value larger than 0.5. Figure5.4 show that both time-series are perfectly
predictable give the manifold of the other after a transient short period. This singular
case, would be considered as a case of bidirectinoal causation even though βxy = 0.
To see how did this happen, consider the actual time-series generated as shown in
Fig. 5.9. The large coupling constant caused each time-series to be predictable from
the other which confused CCM.
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(a)

(b)

(c)

Fig. 5.6 Result of CCM analysis of the system of equation 5.6 with βxy = 0.1 and βyx = 0.0.
a Correlation coefficient as a function of time-series length, b error in predicting X, c error in
predicting Y
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(a)

(b)

(c)

Fig. 5.7 Result of CCM analysis of the system of equation 5.6 with βxy = 0.0 and βyx = 0.0.
a Correlation coefficient as a function of time-series length, b error in predicting X, c error in
predicting Y
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(a)

(b)

(c)

Fig. 5.8 Result of CCM analysis of the system of equation 5.6 with βxy = 0.0 and βyx = 1.
a Correlation coefficient as a function of time-series length, b error in predicting X, c error in
predicting Y
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Fig. 5.9 The first 100 samples of the time-series used in Fig. 5.8

Despite the singular cases with large coupling constants, CCM shows great
promise for real-world applications involving dynamical systems. It is implemented
in the function detectCCMC() in MC2.

5.5 Change Causality

The main insight of our approach to causal analysis is that causation can be defined
as the predictability of change in the effect given a change in the cause rather than the
predictability of the effect itself given the cause itself. This insight can be applied to
most causality tests. In this section we will focus on applications in the same regime
for Granger causality (stationary stochastic processes) but applications to weakly
coupled dynamical systems (the regime of CCM) can easily be achieved with minor
modifications. Consider a differential drive robot navigating a 2D environment under
gesture control from a user. concentrating the analysis on robot’s location and the
rotation speeds of its two motors or even the hand motion of the user will reveal
no causal relation at all because the position of the robot is actually not drivable
from the commands given to it. The initial condition of the robot and environmental
factors makes it very hard to predict its position from either motor speeds or user’s
hand motion. It is not that these factors do not uniquely define the position, the main
problem is that these factors do not even correlate with the position even though
we can consider either of them the cause of the motion. In terms of g-causality the
AR model induced using the position of the robot alone will not be less predictive
than the AR model induced by adding the instantaneous value of either of these two
factors. The fact that both motor speed and handmotion are multidimensional further
complicates the problem as either dimension alone gives no information whatsoever
about the next location of the robot even if we know the current position (except in
the very special cases of zero or maximum motor speed). Figure5.10 shows the path
of the robot, its horizontal (x), vertical (y), and orientation (θ ) state as well as the
commands given to the left and right motors in radians/second. From the figure, no
clear causation can be inferred. Applying g-causality test as described in Sect. 5.3
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Fig. 5.10 Simulated differential drive Robot’s path in a 2D environment

revealed no causality forARmodels of orders 1–50 (ρb in Sect. 5.3 and corresponding
to maximum delay before a change is propagated).

The main lesson of this example is that causation may not be readily inferred from
predictability of the time series themselves. The concept of causation by perturbation
comes here to rescue. If we can show that perturbing motor commands perturbs the
behavior of the robot, then we may be able to infer the causality relationship. From
this, we hypothesize that causation may be inferred not from the predictability of
the time-series themselves as in the standard Granger causality test but from the
predictability of the change in them.

For this approach to work, we need a general change detection algorithm that can
provide us with the ground-truth with which we compare our predictions. We simply
use RSST for change detection (Sect. 3.5). For multidimensional data we employ
PCA as described in Sect. 2.5.

We apply multidimensional RSST (PCA+RSST) to get the set of P̃i processes
representing the n processes in the system and use these signals as the inputs of our
algorithm.

Our main assumption is that if Process i causes j then P̃j will most of the time
if not always has major changes near τij time-steps after P̃i where τij is a constant
representing the delay of the causation. Because in the real world, many factors
will affect the actual delay (add to this inaccuracies in the change point detection
algorithm), we expect that in reality the delays between these change points will be
well approximated with a Gaussian distribution with a mean of τ̂ij where

∣∣τ̂ij − τij

∣∣ <

ε for some small value ε. The main idea of our algorithm is to check for the normality
of the delays and to use the normality statistic as a measure of causality between the
two processes.

We start with a causality graph with n nodes representing the processes and no
edges. First, we scan all the P̃i time-series to find locations of change (Li). This can be

http://dx.doi.org/10.1007/978-3-319-25232-2_3
http://dx.doi.org/10.1007/978-3-319-25232-2_2
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done in different ways. In this section we simply find the midpoints of subsequences
in P̃i over some predefined threshold.

Second, for each pair of change point location vectors (Li and Lj in order); we
find the list of all delays between changes in processes i and j (

{
τij

k
}
). Notice that in

general (if no causal loops exist) the sets
{
τij

k
}
have nothing to do with

{
τji

k
}
. This

is the reason that our graph will be directed.
To guard against inaccuracies in change point detection we remove from the set{

τij
k
}
all points that are more than 4 standard deviations from its median assuming

that these points are outliers. Removal of outliers serves also to allow the system to
work if the change caused by process i in process j happens with a probability less
than one (but is still high enough to be detected). If it was expected that the causal
changes are probabilistic then a different approach to this step would have been to
cluster the delays and keep the cluster with largest number.

Prior knowledge about the system can be incorporated at this stage. For example if
we know that there can be no self-loops in the causality graph (a change in a process
does no directly cause another change later) we can restrict the pairs of Li, Lj by
having i �= j. If we know that processes with higher index can never cause process
with lower index, then we can restrict i to be less than or equal to j. Extension to
more complex constraints is fairly straightforward.

We then calculate a causality score from set
{
τij

k
}
using itsmean (μij) and standard

deviation (σij) (after removing the outliers as explained before) by:

score = 1 − exp
(−σij

/
μij

)
. (5.10)

This score is always between zero and one. The larger this score is, the more
probable is it that there is a causal relation between processes i and j. To construct the
causality graph we accept the causal relation if this score was over some predefined
threshold. In the causality graph we add an edge from i to j and associate with it the
mean and variance of the delays (μij, σij) calculated from

{
τij

k
}
. It is also possible

to add to this edge’s label a confidence measure by dividing the number of times Lj

has a change after μij ± δ from a change in Lj to the number of changes of process
i (|Li|). This confidence measure characterizes the predicting power of this causal
relationship. We write this information as:

i
μij,σij,cij−−−−→ j.

After completing this operation for all Li and Lj pairs (an n2 order of operations),
we have a directed graphs that represents the causal relationships between the series
involved. The problem now is that this graph may have some redundancies. In this
case, we resolve this ambiguity by simply removing the causal relation with the
longest time delay. A better approach would be keep multiple possible graphs and
then use a causal hypothesis testing system like Hoover’s technique (Hoover 1990)
for selecting one of them.We call this algorithm Delay Consistency-Discrete (DCD)
and the MC2 toolbox implements it in the function detectCC().
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5.6 Application to Guided Navigation

5.6.1 Robot Guided Navigation

This section presents a feasibility study to assess the applicability of causality dis-
covery in learning the causal structure in the guided navigation task explained in
Sect. 1.4. This task was selected because it has a known causal structure that we can
compare quantitatively to the results of applying our proposed algorithm.

The evaluation experiment was designed as a Wizard of Ooz (WOZ) experiment
in which an untrained novice human operator is asked to use hand gestures to guide
the robot along the two paths in two consecutive sessions. The subject is told that the
robot is autonomous and can understand any gesture (s)he will do. A hidden human
operator was sitting behind a magic mirror and was translating the gestures of the
operator into the basic primitive actions of the WOZ robot that were decided based
on an earlier study of the gestures used during navigation guidance (Mohammad and
Nishida 2008, 2009).

In this design the movement of the robot is known to be caused by the commands
sent by the WOZ operator which in turn is partially caused by the gestures of the

participant. This can be formally explained as: Gi
T1,0,1−−−→ Wj and Wj

T2,0,1−−−→ Mk where
Gi represent some gesture done by the participant, Wj represent some action done by
the WOZ operator (e.g. pressing a button on the GUI of the control software), and
Mk represents some pattern in the movement of the robot (e.g. moving toward the
participant, stopping, etc.).

The total number of sessions conducted was 16 sessions with durations ranging
from 5:34min to 16:53min.

The motion of the subject’s hands (G) was measured by six B-Pack (Ohmura et al.
2006) sensors attached to both hands generating 18 channels of data. The PhaseSpace
motion capture system was also used to capture the location and direction of the
robot using eight infrared markers. The location and direction of the subject was also
captured by the motion capture system using six markers attached to the head of the
subject (three on the forehead and three on the back). Eight more motion capture
markers were attached to the thumb and index of the right hand of the operator.

The time of button presses in the GUI used by the WOZ operator was collected
in synchrony with both participant gestures and robot actions. The interface had
seven buttons (related to robot motion) each of which can be toggled on and off and
a single button can be on at any point of time. The WOZ operator’s actions were
represented by a single input dimension giving the ID of the currently active button
(from 1 to 7).

This leads to a total of 67 input dimensions. The generating causal model (ground
truth) consists of seven gestures, seven button press configuration and corresponding
seven robot actions (21 total patterns).

There are four processes in this system representing the user, the operator, the
motors of the robot, and the configuration of the robot (location/orientation). The

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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causal structure of this problem as set by the controlled experiment setup is very
simple user → operator → robotMotors → robotConfiguration. The true value of
the delays are not controlled in the experiment.

We applied the CDC algorithm first to the collection of all interactions and it was
able to discover the exact causal structure of the problem with any threshold value
larger than 0.1.

We also applied the algorithm to each interaction alone and calculated the number
of times each causal relationwas discovered correctly. The relation user → operator
was found 83.4% of the time and the relation operator → robot was discovered
91.6% of the time. The system had two single false positives in two sessions and both
where robot → operator. In fact these errors can be explained because the hidden
operator in our experiment had some hard time dealing with rotation commands
and repeatedly did the wrong rotation then he had to correct it which appeared as if
these corrections are caused by robot’s behavior. These results show that the proposed
algorithm can successfully discover the causal structure of this real world experiment
with known causal structure.

5.7 Summary

This chapter discussed the problem of causality discovery. Three approaches to dis-
cover causal structure from time-series were discussed in detail: Granger causality
test, convergent cross mapping and change causality. Causality analysis is important
for social robots because it allows them to discover the causal structure of human’s
behavior during interaction which helps them in deciding what to imitate (Chap. 12)
andhow to relate the behavior of different partners in interaction situations (Chap.11).
The chapter also reported a simple experiment to test change causality discovery in
the context of the guided navigation scenario.
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Chapter 6
Introduction to Social Robotics

Social robotics is an exciting field with toomany research threads within which inter-
esting new developments appear every year. It is very hard to summarize what a field
as varied and interdisciplinary as social robotics is targeting but we can distinguish
two main research directions within the field. The first direction (the engineering
one) targets the design of robots that can interact with people in a social manner fol-
lowing human-like interaction patterns while the second direction (the scientific one)
tries to evaluate the responses of people to robots and understand the expectations,
and subjective responses to engineered social robots. This chapter tries to highlight
some of the main findings in each of these two directions related to our quest for
autonomous sociality. A third direction of research is concerned with using robots
for understanding human’s social behavior but we do not interest ourselves much
with this research agenda in this book.

6.1 Engineering Social Robots

Social robotics is a multifaceted research field with many intertwined threads that
makes it hard to summarize. This section provides an introduction to the field that
does not claim exhaustiveness but only points to research ideas that are most related
to our goal of achieving autonomous sociality.

Fascination with robots that can interact in a human-like manner dates back to
the early days of biologically inspired robotics. One of the earliest examples are the
robotic tortoises built byWalter in 1940s. The two robots involved (Elmar and Elsie)
used lamps attached to their bodies and light sensitive sensors driving a phototaxis
mechanism to produce what appeared as social behavior. This very early example
has some lessons for us. Firstly, the phototaxis mechanism existed in the robots not
primarily for social purposes but to allow them to find their charging station when
they run lowonbattery in order to preserve their autonomy.This reuse of an autonomy
enhancing mechanism to produce socially acceptable (or even socially describable)
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behavior is one of this book’s main focusing points. Secondly, this kind of social-
like behavior did not require complex computations but relied on a set of predefined
reflexes that are easy to implement yet can produce complex behavior in line with
ideas in behavioral robotics and reactive architectures that we discussed in Chap. 1.
Thirdly, the robots did not actually produce social behavior in the sense that they did
not really interact with people. Nevertheless, it is usually asserted that it is hard to see
the videos of these robots without attributing some sense of agency to them (Fong
et al. 2003). This mostly unconscious tendency to attribute agency to machines that
produce certain kinds of behavior is the key human trait that social robotics relies
upon and tries to exploit. Finally, Elmar and Elsie exemplify what we call later in
the book the engineering approach to social robotics. The interaction between the
agents was engineered carefully to give the illusion of sociability. The location of
the light source and the photo-sensitive sensors as well as the internal wiring were
all adjusted to produce the required behavior. 70 years later this approach is still
the predominant approach in Human–Robot Interaction design either for social or
industrial robots.

This book is in some sense a break from this tradition because it tries to rely less
on careful engineering of the interaction and more on learning interaction protocols
as discussed in full details in this part of the book.

Early research in robotics focused on the mechanical and control problems of
industrial robots. After all, the first robot that left the researchers’ imaginations and
laboratories was unimate which started working on a General Motors assembly line
at the Inland Fisher Guide Plant in Ewing Township, New Jersey in 1961.

The first attempts at social robotics focused on creating robots that interacted
more or less like social insects. A common communication mechanism that was
used in the early days was stigmergy which is a form of indirect communication
through modifications of the environment. Stigmergy based ant-like robots started
to appear in the 1990s followed by an avalanche of research in multi-robot systems
that sometimes used modeling of social phenomena (e.g. interference, aggressive
competition, and collaboration) to enhance the behavior of the robot group. This
kind of research based on social animals is valuable in better understanding these
animal societies aswell as in solvinggenuine engineeringproblems includingdisaster
response, collaborativemap building etc. Nevertheless, this book focuses exclusively
on robots that interact with people and other robots using individualized historical
embodiment.

Dautenhahn and Billard (1999) defined social robots as:

. . . embodied agents that are part of a heterogeneous group: a society of robots or humans.
They are able to recognize each other and engage in social interactions, they possess histories
(perceive and interpret the world in terms of their own experience), and they explicitly
communicate with and learn from each other.

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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This definition highlights the interplay between social robots and humans. It is
not the case that the robot simply learns from the human experts but both kinds of
agents are adapting to each other. This mutual adaptation will be one of the two bases
of our proposed computational model in Chap. 8.

The interaction between the social robot and humans living in its social space
shapes the development of its individuality. For example Kozima and Yano (2001)
propose an epigenetic approach to social robot development based on three stages:

(1) the acquisition of intentionality, which enables the robot to intentionally use certain
methods for obtaining goals, (2) identification with others, which enables it to indirectly
experience other people’s behavior, and (3) social communication, in which the robot empa-
thetically understands other people’s behavior by ascribing to the intention that best explains
the behavior.

It is instructive to consider in more details the design procedure for empathetic
social robots proposed by Kozima and Yano (2001). The procedure starts by mod-
eling how infant humans develop their ability to empathize. Based on research in
developmental psychology, three stages are proposed: In the first 3 months of life,
the infant shares gaze and exchanges voice and facial expressions with the caregiver.
During this stage, the caregiver is responsible of structuring the interaction into a
form of elementary turn-taking. The second stage starts at 3 months of age and lasts
for around 6months. During this stage, the caregiver starts to interpret the behavior of
the infant in an intentional manner and later the infants starts to learn to interpret the
behavior of the caregiver also in an intentional manner leading to a more symmetric
interaction. The final stage the follow during which the infant learns to engage in
joint attention (attention to the same object) with the caregiver. Two robotic platforms
(infanoid and keepon) were then programmed to execute exactly these behaviors in
that order (mutual gaze followed by mutual attention).

As another example, Kanda et al. (2007) developed a robot that pretends to listen
to route guides given by a human subject using natural interaction protocol in such
situations. The design procedure is similar to the one shown in the previous example.
Human–human interaction in the same situation were analyzed and, based on them,
different situated behaviors (See Sect. 6.3.2) were designed to capture each primitive
action found in the human–human interaction trials and the relation between these
situated behaviorswere carefully engineered to produce the requirednatural listening
behavior.

These two examples show success stories for the engineering approach
(Fig. 6.1[upper]) which involves careful engineering of interaction rules learned from
research in human–human interactions.

Given the large number of possible situations that the robot may find itself in
and the complexity and context dependence of human behavior, this approach is not
expected to build a complete system for a social robot even in a limited interaction
context (e.g. within an office or a hospital room). Another approach to social robotics
that we advocate in this book is shown in the lower panel of Fig. 6.1 which we call the
autonomous approach. In this case, human–human interaction data is not modeled
manually by a researcher but is used to automatically build a model of the interaction

http://dx.doi.org/10.1007/978-3-319-25232-2_8
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Fig. 6.1 The two main approaches for designing social robots

protocol involved using machine learning techniques. This model is then tested in
actual HRI trials and the robot adapts the model based on the outcomes of these
trials.

This machine learning approach is starting to gain ground in social robotics com-
munity only in the past decade and only slowly. The development approach we detail
in Chap.11 is based on this autonomous approach to sociality as well as the fluid
imitation architecture described in Chap.12. Other researchers are also working to
advance this agenda. For example, Liu et al. (2014), proposed a system for teach-
ing the robot how to interact in a shop keeper role in a simplified interaction with
a customer. Interactions between people in the same situation were captured using
networked sensors and both verbal and nonverbal behaviors were used to learn a set
of semantically meaningful elementary behavior elements that are represented by
joint behavior states highlighting the exchange of behaviors between two partners
(customer and shop keeper). These basic elements are then clustered and the clusters
are used in real-time to generate appropriate social behavior based on prediction of
the current joint behavior state.

6.2 Human Social Response to Robots

How would humans respond to intelligent robots? This question lies at the heart of
social robotics research, yet, it is not easy to answer or even to understand. Answering
this question is the focus of the second scientific direction of research in social
robotics.

Humans respond to robots differently based on the qualities of the robot, the con-
text and the human. Most importantly, it depends on the expectations that the human

http://dx.doi.org/10.1007/978-3-319-25232-2_11
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brings to the situation. For example, Komatsu and Yamada (2007) compared the ten
university students’ ability to distinguish between the positive and negative attitudes
of a PC, AIBO robot, and Mindstorms robot based on sound. They found that their
subjects were best at classifying the attitudes of the PC. This result can be expected if
we assume that the robot’s embodiment affected the connection between sound and
attitude attributed to it by people. The beeping sounds used in the experiments were
expected from the PC but not the robots which made it more cognitively demanding
to recognize the attitude of the robot from the sound.

A related hypothesis is the uncanny valley hypothesis suggested by Mori et al.
(2012) which suggests that increased robotic anthropomorphism increases the pos-
itivity of humans’ emotional response to them up to a point at which the similarity
between the robot and a human becomes too close that further increases in human-
likeness leads to decreased likability (to level even worse than clearly mechanical
robotic forms) followed by another increase in likability when the robot becomes
indistinguishable from humans and further on. If human-likeness is plotted against
likability, according to this hypothesis, a valley appears which is what gives the
hypothesis its name. The hypothesis further predicts that robotic motion exagger-
ates the whole curve leading to even faster increase and decrease of likability with
human-likeness (See Fig. 6.2).

Experimental evaluations of the uncanny valley for robots can be conducted using
pictures, videos or actual interactions with robots of variable human-likeness.

The uncanny valley hypothesis is widely cited in HRI and agents research. What
causes it? A study by Bartneck et al. (2009) suggests one possible cause. In this
study 16 subjects interacted with either a human (Prof. Ishiguro) or an android that
was designed to resemble (as perfectly as technologically possible) that human called
GeminoidHI-1. The android’s eyes had either normal glasses or a visor (See Fig. 6.3).
In each of these three cases the robot eithermoved normally or had limitedmovement.
This lead to a 3 × 2 experimental design. Statistical analysis of the participants’

Fig. 6.2 The uncanny valley
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Fig. 6.3 (Left) Prof. Ishiguro (right) Germinoid HI-1 during interaction. Reproduced with per-
mission from Bartneck et al. (2009)

responses to questionnaires showed that they perceived the robot (both with the
eye-glasses and the visor) as less human-like than the human which is expected. It
also showed that this led to no effect on likability. Movement also had no effect on
likability for the robot. These results seem to directly contradict the uncanny valley
hypothesis but it can be explained in two different ways. It is possible to argue that
the similarity of the human and the robot’s appearance either did not approach the
valley or passed it. It is difficult to maintain this position though as Fig. 6.3 shows
that the similarity is high enough to confuse the two from a distance but is not perfect
enough that participants who were seated in front of the robot could be deceived.
Another, more plausible, explanation that was advocated by Bartneck et al. (2009) is
that likability is not a single-dimensional factor. Humans do not just compare robots
and other humans on the same scale but they use different scales to compare each
of them. This again shows the importance of expectations in judgment of robot’s
appearance and behavior.

There can be other explanations for the uncanny valley that we will refer to here.
Our discussion follows closely that provided by MacDorman and Ishiguro (2006).
One such explanation attributes the existence of the valley to failure of the robot
in producing micro-behaviors necessary for the completion of the interaction cycle.
This is a form of expectation breaking but directly related to the interaction between
the self and the robot rather than being focused on the actions of the robots themselves
(e.g. jerkiness of motion or unnatural postures).

Another possible explanation of the uncanny valley is based on evolutionary aes-
thetics. Researchers have found that there is a core of common sense of beauty that is
the same (or similar) independent of culture specially for judging the attractiveness of
members of the other gender (MacDorman and Ishiguro 2006). This sense of beauty
is related to features that reflect higher infertility in many cases including symmetry
of the body (indicating lower levels of mutation and tear), motion patterns indicat-
ing youth and vitality, etc. These norms—according to this explanation—evolved in
humans to guide the selection of mates (a binary decision) utilizing subconscious
processing that results in either acceptance of rejection. When dealing with a robot,
these same subconscious processes leads to a subconscious rejection for the robot
based on this aesthetic criterion which leads in turn to it falling into the uncanny
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valley. The degree of uncanniness of a robot would then be proportional to its failure
in achieving higher levels of aesthetic quality.

Ramey (2005) provides a different explanation which keeps that the similarity
between the robot and the self forces the self to contemplate the existence of a form
of an intermediate between its humanity and unhumanity of machines. This phe-
nomenological confrontation leaves the sense of uncanniness. A related hypothesis
is that the robotmay elicit an implicit fear of death by showing amachinewith human
facade that forces us to contemplate that we are just soulless machines.

Even though all of these explanations may have some role in explaining the
uncanny valley phenomenon, expectation violation continues to be the simplest
explanation. A supportive study used fMRI to measure the difference in percep-
tion of a robot, an android and a human. Using neural adaptation analysis, it was
found that watching a video of an android was associated with significant increase
in activity of the anterior intraparietal cortex. This suggests that the uncanny valley
has roots in perception conflicts within the brain’s action perception system (Saygin
et al. 2010).

This discussion of the uncanny valley highlights the importance of perception of
the robot’s behavior in acceptance by humans. This extends in our opinion to behavior
not only appearance and this means that naturalness is not always a synonym of
human-likeness when thinking about social behavior. A natural behavior of a robotic
pet is not to be like humans but like pets.

6.3 Social Robot Architectures

Section1.7 discussed briefly different architectures for robotics in general focusing
on reactive and hybrid behavioral architectures. Here we try to give the reader a
taste of HRI specific architectures that were designed with social interaction aspects
in mind. We will introduce three of them each with its own strengths and weak-
nesses. Chapter10 will provide detailed explanation of our proposed social architec-
ture which relies completely on unsupervised learning techniques to approach our
goal of autonomous sociality.

6.3.1 C4 Cognitive Architecture

The first architecture that we will consider here was not originally designed for
social robots or for HRI but for synthetic creatures living in virtual worlds that
can though interact with human subjects based on ideas from ethology and animal
training (Blumberg and Galyean 1995). The later iterations of the architecture (C4
and C5m) were utilized is several research projects with the animal-like robot called
Leonardo shown in Fig. 6.4 (Lockerd and Breazeal 2004; Breazeal et al. 2004, 2005;
Breazeal and Aryananda 2002).

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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Fig. 6.4 Leonardo an animal—like robot controlled using the C4 architecture. Reproduced with
permission from (Breazeal et al. 2006)

Fig. 6.5 Main components of the C4 architecture

Figure6.5 shows the main component of this architecture (Isla et al. 2001). Per-
ceptual processes in this architecture are organized in a tree structure with a single
root (something). Each layer in this structure represent percepts of lower abstraction
and more specificity. Figure6.5 shows a part of a percept tree. The root node rep-
resents any thing and is always active as long as the robot is turned on. In this tree,
all percepts are localized in a specific location in the perceptual field of the robot.
This is represented by the single percept in the second level of the tree w/location.
As long as a location can be assigned to any sensory input this percept becomes
active. The third layer of the percept tree differentiates percepts based on their sen-
sational modality and higher layers represent ever more specific percepts leading for
example for a specific node for the word “fetch”. The figure shows active nodes in
shaded boxes and the whole tree represents that case when the robot perceives the
word “fetch” with the scene of a red circle (ball). The architecture gives no specific
constraints on the internal design of perception behaviors that generate the percept
except the implicit assumption that it should work fast enough to give an honest
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picture of the world around the agent/robot in a timely fashion. The tree structure
can be used to reduce the computational complexity of perception by activating the
behaviors testing for every percept only if its parent percept is active. Each percept
is also accompanied by a confidence level.

The basic percepts generated from the perception system are sent to the working
memory. The working memory in C4 is not a passive container of information but
an active entity that was designed to achieve some form of perception stability. The
percepts active at any moment are combined together to form percept memories.
A PerceptMemory is a bound representation of the perceptual state of the agent.
When the working memory receives a PerceptMemory, it compares it with existing
PerceptMemories and if it matches one of them, the confidences accompanying each
percept are added to the existing PerceptMemory. This means that a PerceptMemory
is not just a single snapshot but represents a history of bound perceptual states. The
confidences in each PerceptMemory are automatically decreased at every timestep
if not boosted by a matching percept.

When no match is found for percept bound inside a PerceptMemory at any
timestep, the expected value of this percept is predicted in light of its previous values
(e.g. through a regressionmechanism) and this predicted value is added instead of the
missing percept. This prediction when combined with natural decay of confidences,
provide a simple form of perceptual stability for the agent.

Whenever a percept is available again that was predicted previously in Percept-
Memory, the difference between its true value and its predicted value provide a
measure of the surprise in that percept that can be used to drive the attentional
system of the agent.

The PerceptMemory object provides a good supporting structure for grounded
learning of perceptual concepts and objects. When localized perceptions of multi-
ple modalities co-occur in percept memories enough times, a concept representing
them can be abstracted which will be—by definition—grounded in the perceptual
capacities of the robot.

The third major part of C4 (other than the perceptual system and working mem-
ory), is the action system. The most important component of the actions system is the
action selection mechanism. Actions are represented in C4 by sets of action tuples.
Each action tuple consists of five parts:

• Trigger context: this is the pre-conditions component that must be activated to
execute the action. The trigger context relies on specific percepts (for example
“red” and “circle”)within the context represented by the current contents of percept
memories.

• Action: that is the actual action code that generate commands to the robot
motors/agent actuators.

• Object context: this part of the action tuple defines the objects that are to be used
to execute the commands in the action part. These objects can be links to specific
PerceptMemories stored in the current working memory. Not all actions are object
related (for example the action “say”) which makes this part of the tuple optional.
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• Do-until context: this part of the tuple specifies the percept and working memory
context that is necessary to keep executing the action once it is activated after
satisfying the trigger context.

• Intrinsic value: this part represents a value for the tuple. It can be used to bias
the action selector to select the actions with highest values. These intrinsic values
are usually learned from interactions through a rewarding mechanism (Isla et al.
2001). These intrinsic values work similar to Q-values in reinforcement learning
(Sutton and Barto 1998).

To avoid the problems that may arise from parallel execution of contradictory
actions that have their trigger context satisfied, action tuples are grouped into action
groups. Each action group can have its own action selection mechanism but only a
single action from each group is allowed to execute at any time. Several action groups
can be added to the architecture. By default there are two action groups: the attention
group which selects the perceptual focus of attention and the primary group which
determines the large-scalemotion of the robot (Sutton and Barto 1998). Navigation is
handled outside the action system in a dedicated module to keep the action selection
system focused on other tasks.

In C4, credit assignment occurs when one action tuple becomes active and another
becomes inactive. During this process the value of an action tuple is adjusted to reflect
the likely consequences of performing the actions of the action tuple in the context of
the state of the world indicated by its trigger-context. This is done via a mechanism
similar to temporal difference learning (Isla et al. 2001).

The system keeps statistics about the correlation between activation of an action
tuple and the children (in the percept tree) of its trigger-context children. Whenever
the intrinsic value of the action tuple goes above a system wide threshold, high such
correlations mean that the child percept is reliably capable of activating this action
tuple. In such cases, a new action tuple is created that clones the original one with
its trigger-context set to this child percept. This results in a more specific activation
of the action tuple that reflects a learned association.

A similar mechanism can be used to modify the percept tree. In this case, children
percepts take the form of statistical models built from observations that capture those
aspects of the state space that seem correlated with the reliability of a given action.

When applied to HRI, goal-directed action was needed to account for the under-
standing of the interaction in from the top down instead of the standard association
based learningmechanism found inC4 (Breazeal et al. 2004). This can be achieved by
adding high level cognitive capabilities on top of the standard C4 architecture. These
include goal based decision making, hierarchical task representation, task learning,
and task collaboration.

To represent goals, the action tuple was extended with the notion of a goal which
can be added to the trigger-context or the do-unitl context. There are two types
of goals. State-change goals that evaluate to true in the trigger-context only if the
associated state is not perceived in the working memory (this allows for bypassing
actions when their goals are already achieved). In the do-until context, state-change
goals keep the robot trying until their state is achieved. Just-do-it goals on the other
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hand activate the action always if their state is not perceived when added to the
trigger-context and do not cause repetition in the do-until context.

Goal hierarchies can be used to separate the overall task-goal from action goals.
This allows the robot to bypass parts of a task when the overall task-goal is achieved
even when action goals are not. Breazeal et al. (2004) applied this system successful
to collaborative learning.

6.3.2 Situated Modules

One of the pioneering architectures that targeted social robots was the situated mod-
ules architecture (Ishiguro et al. 1999). This architecture was based on ideas from
behavioral robotics and tried to give special attention to practical aspects of imple-
menting robots that interact with changing environments and people. The archi-
tecture was the software base for Robovie (a robot designed specifically for HRI
applications—See Fig. 1.4a) (Ishiguro et al. 2001).

The architecture was designed to achieve five main requirements:

1. The developer can easily add behavioral modules.
2. Behavioral modules have to be situated which means being able to deal with a

specific situation in a local environment.
3. Execution order is adjusted automatically by the system to generate appropriate

behavior in different environments.
4. The system can represent the relation between different behaviors in a task on a

module network.
5. The developer can add, remove and update behavioral modules online.

The architecture first proposed by Ishiguro et al. (1999) as a general behavioral
architecturewithout specific focus on social robotics. Later it wasmodified to accom-
modate natural HRI during daily interactions between robots and humans. Special
care was given in this architecture to give the robot operator easy high level control
of the robot as will be clear shortly.

The basic building block of this architecture is the situated module. A situated
module is a computational unit that performs a specific behavior in a specific local
environment (called the situation). Figure6.6 shows the internal structure of situated
modules designed for HRI applications.

The two main components of any situation module are the preconditions seg-
ment which evaluates the applicability of the module when scheduled for execution
and a behavior segment which executes the actions represented by the module. For
general application of the architecture (e.g. in navigation tasks as in Ishiguro et al.
1999), no further details are given about the internal structure of the situated mod-
ule but for HRI applications the behavior segment gets more specific structure. The
basic idea is taken from linguistic research which defines adjacency pairs (e.g. greet-
ing/response, question/answer) as the building blocks of conversations. Assuming
that HRI sessions are similar to conversations, a situatedmodule is designed to repre-
sent an action/response pattern similar to an adjacency pair. The architecture mainly

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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Fig. 6.6 A situatedmodule as envisioned for HRI applications showing its preconditions and action
parts and the three possible outcomes of it (continuation to next module, interruption or activation
of reactive module). The robot indication is a program of communicative acts implemented as
communicative units (See Kanda et al. 2004)

targets robotic applications in which the robot is actively seeking for interaction
with humans leading to actions being from the robot and responses from the human.
This defines the internal structure of the behavior segment given in Fig. 6.6 where
the action part is called indication and the human response is measured using the
recognition part of the behavior segment. Indications of HRI situated modules are
built from basic blocks called communicative acts that represent basic simple unitary
actions with well defined communicative roles like nodding, mutual gaze, mutual
attention, approaching, turning to human, etc. We call the situated modules with this
structure HRI-situated-modules (HRISW).

Reactive modules are simpler units that represent basic reactive behaviors needed
in all contexts (e.g. obstacle avoidance). They can be activated and suppressed by the
higher level situated modules similar to the case with the subsumption architecture
(See Sect. 1.7.1).

Situated modules are always executed in a sequence which means that at most one
situated module will be active at any time. There are three ways to leave an HRISW.
Firstly, the recognition phase may result in a specific recognized human behavior and
based on that behavior the next module in the current execution list is executed (more
about execution order control later). Secondly, the human may not recognize robot’s
behavior, may not be interested in the interaction, or may be busy for any reason
and no recognizable response is detected. In this case, an interruption happens and a
different situated module is selected. The main difference between continuation and
interruption is that thefirst represents the ideal unhindered executionof the interaction
pattern being implemented while the later represents situations out of the normal and
can handle exception. Finally, environmental conditions or human behavior may
entail some reactive behavior to be executed. In this case, the appropriate reactive
module is executed in parallel with the currently executing situated module. For

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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Fig. 6.7 The situated modules architecture, see (Kanda et al. 2004; Ishiguro et al. 1999, 2001)

example, when a human touches the robot, the reactive module look-where-you-are-
touched may be executed in parallel with the current executing interaction module
like talking.

Now that we know the anatomy of a situated module and understand the possi-
ble way to leave it once it starts executing, we show how these modules fit within
the general situated modules architecture. Figure6.7 shows the general form of the
situated module architecture based on a consolidation of different articles detailing
the architecture and its application to different HRI situations (Kanda et al. 2004;
Ishiguro et al. 1999, 2001).

Situated modules are designed by hand and inserted into the system by the devel-
oper through themodule updater which also allows the developer to removed unused
modules and edit them.

Execution of situated modules is controlled centrally by the module controller
which activates links between situatedmodules in the behavior networkwhich selects
next module to execute in the continuation and interruption cases. This behavior
network is generated based on the task and a set of active episodic rules that are all
under the control of the human operator.

The most important construct for behavior control are the episodic rules. An
episodic rule is a specification of the condition(s) to select a specific situated module
as the next module for execution either through interruption or continuation. Condi-
tions of the episodic rules are continuously compared with the currently executing
situated module and the history of execution and rules for which the conditions are
satisfied are selected. If multiple rules are selected, the one with highest priority is
allowed to execute and select the next situated module for execution. This generated
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Fig. 6.8 Example of a social behavior implemented through a set of situated modules and their
connections specified through episodic rules

a network of connection between situated modules that is adapted through activation
and deactivation of episodic rules.

Kanda et al. (2004) proposed a simple declarative language for the specification of
situated modules. Figure6.8 shows an example social behavior implemented using
this architecture. Thewords start by executing the Explore behaviorwhich continues
to execute until interrupted by a human appearing in the visual field leading to the
execution of the Approach situated module. This module’s behavior gets the robot
to the location of the human subject. If the human disappeared from the visual field,
the Explore module is activated through an interruption link. If Approach failed to
arrive at the human’s location (e.g. due to a timeout or an obstacle), it keeps trying
for 5 times. Once Approach succeeds, the next module becomes Face through
a normal continuation link. Face rotates the robot until it is facing the human in
a socially acceptable manner and if successful activates the Greet module which
executes a culturally appropriate greeting (e.g. a bow for a Japanese person and may
be a simple nod for a western person with a short statement like “Hello”) and then it
waits for the recognition part of the situated module to report the human response.
If an appropriate response was elicited from the human partner, then a hand shake
is executed through the hand Shake module otherwise a bye gesture is executed
through the Bye module.

This example represents adequately the steps involved in building a social robot
using the situated modules approach. First of all, the designer implements as many
situated modules as necessary. Redundancy is an asset in this stage. While imple-
menting these modules, the designer reuses previous code that was stored as com-
municative units. Reactive modules are also added manually but these are usually
very simple. Secondly, the designer starts to consider different situations and adds
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appropriate episodic rules to generate the required network structure for the modules
to achieve a specific behavior in one task. The designer can then update these rules,
edit them or delete some of them until satisfied with the robot’s behavior. When a
new task is considered, the designer can reuse the same situated modules but will be
required to adjust the episodic rules to achieve the desired behavior. The structure of
the system allows the robot operator to modify episodic rules online or to add new
behaviors through the module updater which is a very effective way to achieve high
level programming while the robot is operated by a human.

Learning does not seem to have any part in the architectural level. Every situated
module may be learned (at least its parameters) through experiments with human
participants but the architecture itself and connections between modules is fixed by
the designer. That is not the only way to use the situated modules architecture. For
example Ishiguro et al. (1999) used a visual map to learn the connections between
different situated modules to achieve safe navigation in an indoors environment.

The situated modules architecture represents a large proportion of the current
way to program social robots. Basic behaviors are designed and linked by the system
developer. Learning has little to attribute to the success of the system and careful
engineering is essential to achieve good behavior. Creators of the situated module
architecture built several helpers including a visualization system and rule editing
software that helps researchers implement their ideas using it. Researchers have
achieved—using these tools—impressive natural behavior using this architecture
allowing Robovie to work in schools and shopping malls, yet, the need to manually
code most of the aspects of robot’s behavior may limit the extend this approach can
be extended. A nice illustration for the need for learning may be found in a recent
publication from the same research group which proposed a learning from human–
human interaction records similar in spirit to the approach advocated in this book
(Liu et al. 2014). In the rest of this book we will be focusing on our proposal that tries
to learn all of these aspects of behavior with minimal reliance on human intervention.

The situatedmodules architecturemay be able to achieve sociality through careful
engineering and may be of great value for robotic research and for robots designed
explicitly for specific roles but it does not fulfill the requirements of autonomous
sociality we are targeting in this book because of the lack of a clear methodology for
learning situated modules and their interactions.

6.3.3 HAMMER

The situated modules architecture did not have any developmental aspect which
means that there were no stages of development that the robot is supposed to fol-
low. This section introduces another robotic architecture that targeted social robotics
applications but with a developmental bend (Demiris and Hayes 2002). The name
HAMMER stands for Hierarchical, Attentive, Multiple Models for Execution and
Recognition. This architecture is based on the simulation theory of mind (Carruthers
and Smith 1996). We will discuss the simulation theory of mind in more details in
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Fig. 6.9 The basic building block of the HAMMER architecture inspired by Demiris and Hayes
(2002)

Chap. 7 but a brief introduction is in order here. The gist of the simulation theory is
that humans use the same neural circuits used for action production in understand-
ing actions of others as well as in understanding language about these actions. This
means that the same neural mechanism can be used in the forward direction to gen-
erate action and in the inverse direction to understand it. This forward-inverse use of
models is the hallmark of simulation based architectures in robotics.

The most basic building block in HAMMER is shown in Fig. 6.9. The computa-
tional systemof the robot consists of several concurrently running blocks. Each one of
these blocks consists of an inverse model (later called inverse control model) that can
be used to control the robot to achieve some desired goal given an estimation of the
current state (both of the robot and its environment) by sending actions/commands to
the actuators and a forward model that can predict the next state of the system given
the current state and the action (e.g. command) sent to the actuators. The difference
between the predicted next state and the actual next state as sensed by the robot is
calculated using the state comparator and sent back to the inverse model to modify
its behavior closing the loop. This block is similar in spirit to the model predictive
control approach in control theory.

The main insight from the simulation theory of mind employed by HAMMER is
to reuse this basic building block for action understanding and imitation. Figure6.10
shows the block when used for motion understanding. Firstly, sensed values are con-
verted through a perspective taking process to the frame of reference of the agent
which behavior is to understood or imitated by the robot. Secondly, this state infor-
mation is fed to the usual inverse-forward model arrangement but without sending
the output of the inverse model to the actuators (we say that the actions are blocked).
The error signal coming out form the state comparator are now fed to a confidence
calculator which simply integrates this error information to form a scalar value that
represents an estimation of the confidence on the hypothesis that the behavior repre-
sented by that block is active in the simulated agent. Confidence levels from different

http://dx.doi.org/10.1007/978-3-319-25232-2_7
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Fig. 6.10 The basic building block of the HAMMER architecture as used during simulation to
understand the behavior of others

Fig. 6.11 Three HAMMER
blocks with the inhibitory
signals between them

blocks are compared continuously and a winner-takes-all approach is utilized to esti-
mate the active behavior in the simulated agent. Moreover, the input state to the
block can be compared with the input states for which the action can in principle
be activated and this results in another score for the applicability of the block. Only
applicable blocks are allowed to compete during action understanding.

The winner-takes-all strategy is usually implemented in a distributed way by
having inhibitory signals from each block based on its confidence level be connected
to the other blocks reducing the target block’s confidence (Fig. 6.11).

The discussion so far assumed that the state is available to the inversemodel during
action generation and understanding. This is not always achievable and one possible
modification of the basic HAMMER architecture consists of adding an attention
system that can be requested (by inversemodels) to provide specific state information
actively (Demiris and Khadhouri 2006). Figure6.12 shows this arrangement of the
architecture after adding the attention system.
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Fig. 6.12 Three HAMMER blocks sending state requests to the attention system

Another feature of HAMMER (that will be sharedwith our proposed architecture)
is that it allows for the generation of hierarchy of HAMMER inverse models. This is
achieved by connecting low level inverse models either in a sequence or in parallel
to represent higher level inverse models corresponds to complex tasks employing
multiple basic actions.

Demiris and Johnson (2003) proposed the following combinatorial approach for
learning these higher level inverse models. While executing, several inverse models
get activated and run to completion. At the completion of each such inverse model,
an event is logged in a buffer indicating the start and end times of the execution of
this model, its ID, and its confidence level. Now the buffer is tested for compatibility
with any learned inverse model and if it was not compatible with any of them, a new
higher level inverse model is created. For events in the buffer that are overlapping
in time, the even with highest confidence is added to the new learned behavior if it
shares and degrees of freedom with the other overlapping events otherwise both are
added to the learned behavior to be executed in parallel.

How can we generate the models for the HAMMER blocks? One simple approach
is to simply hardcode them. This was done for example by Demiris and Dearden
(2005). A more interesting approach for our focus in this book is to autonomously
learn them. This can be achieved through a process called motor babbling (Demiris
and Dearden 2005). Motor babbling was first discussed in the context of infant
development (Meltzoff andMoore 1997). Themain idea is to generate randomactions
(probably generated from a Markov chain) and record the associated states after and
before action execution. This information can be used to learn a forward model.

To achieve motor babbling, we need to fix the computational structure of the
block. A convenient computational structure for HAMMER blocks is the Bayesian
Belief Network (BN). A BN is directed acyclic graph where each node represents
a random variable and links between nodes encode dependence. In the form used
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Fig. 6.13 The structure of the Bayesian Network used to realize the HAMMER block. From this
structure we can have the forward and a rudimentary inverse model. The delay elements are used
to represent the fact that action commands do not immediately affect the state

by HAMMER, links encode causal connections and the structure of the Graph is
specially simple. Every state variable (e.g. an object in the environment or an internal
degree of freedom) is considered as a random variable S. Every actuating action is
considered as a randomvariable M and every perceived (sensed) value corresponding
to every object or degree of freedom is an observed random variable O . For example,
the state variable corresponding to an object in a scene can have several output
variables like its position, velocity, color, size, etc. Now the Influence goes from
actions or motor command M (observed) through state variables S (unobservable)
to output variables O (observed) (Fig. 6.13).

Duringmotor babbling, the collected M and O values are used to infer the structure
and effect parameters defining the BN. An example due to Demiris and Dearden
(2005) is learning the forward model representing opening and closing the gripper
of a robot. A vision system for detection of the grippers in the camera image was
developed and used to infer its location in the scene, its velocity and its size. A state
variable for every gripper was added and these observable values were connected
to it. The robot simply applied different motor actions to the grippers and recorded
the resulting observables. The system could correctly infer that a delay of 11 steps
is needed for a noticeable change in the robot state after issuing a motor command.
Moreover, it could discover that only velocity is affected by the motor commands.

Now given a learned BN, it is easy to get the next state given a motor command
by forward inference in the network (p (S|M)). An inverse model can also be found
from the network using inverse inference p (M |S, O). This inverse model can be
used to decide the best command using for example MAP estimation (Demiris and
Dearden 2005).
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The robot continuously creates theseBNNsduringmotor babbling leading to a rich
library of HAMMERblocks to be used for bothmotion generation and understanding
the behavior of others.

6.4 Summary

This chapter introduced the field of social robotics. We briefly described the two
main directions in the field that are related to autonomous sociality: engineering
of social behavior in robot and scientific understanding of the response of humans
to these social robots. A contrast was made between the engineering approach to
social robotics and our advocated autonomous approach. Moreover, the importance
of expectations in our perception and response to robots was highlighted. The chapter
also introduced three robotic architectures for social robots: C4, situatedmodules and
HAMMER. The following two chapters will focus on learning from demonstration
and imitation which will be the main learning mechanism in our proposed approach.
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Chapter 7
Imitation and Social Robotics

Imitation is one of the most utilized modes of learning in human infants and adults.
We consciously imitate others when we want to learn new skills and unconsciously
imitate them during interaction. Imitation can also be found in the animal kingdom in
birds and higher apes. For these reasons, several fields of inquiry share an interest in
imitation including developmental and social psychology, primatology, comparative
and evolutionary psychology, ethology and robotics. This chapter provides a wide
overview of the results of this research related to imitation learning in robotics and
discusses the main aspects of imitation, and major challenges facing wide utilization
of imitation in robotics.

7.1 What Is Imitation?

The word “imitation” is used by different researchers in different fields to mean
different things. Nevertheless, there is a core of common aspects that can be used to
make an operational definition of imitation for the purposes of this book. One of the
earliest definitions in psychology was given by Thorndike (1898): “learning an act
by seeing it done”. This definition, while very simple, provides a good starting point
for our discussions in this chapter.

The first word in this definition is “learning” which emphasizes the importance
of acquiring new knowledge or skill during imitation. It is not clear though what
is this knowledge or skill acquired. For example, seeing a person opening a stuck
jar using a sharp edged knife, an imitator will be able to open another jar that (s)he
failed to open previously which passes as imitation according to this definition. It is
not obvious though what was learned in this case. Did the imitator learn how to use
a knife? Did the imitator learn that jars can be opened by allowing air to pass under
the lid? Did (s)he learn an exact trajectory of motion and pose orientations to open
stuck jars? Or did (s)he learn that an appropriate time to use a knife in this manner—
already known to her/him—is when wanting to open a stuck jar? Did the imitator
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open her/his jar because they just learned how to do so or simply because they are
bored and the jar is nowmore salient because of the model’s recent manipulation of a
similar one?Depending on the answer to these questions, many different possibilities
for explaining what happened arise and not all of them can be considered cases of
imitation.

The second word in the definition is “an act”. What is an act? The most obvious
example of acts are body motions but words qualify as well. Even less substantial
activities like learning strategies, and nonverbal behaviors accompanying speech
can be considered as acts. An important feature of all of these acts is that they are
different from their surrounding motions, words, or other activities. The ability to
separate an act from its surroundings (i.e. action segmentation) is a very important
step in imitation. If the would be imitator cannot find the boundaries of an act, it is
very unlikely that it will be able to imitate it.

The final part of the definition reads “by seeing it done”. It emphasizes the role of
perception. The imitator has to perceive the act. Even though visual sensing seems to
be implied if we take a literal view of the definition, most researchers will agree that
other sensing modalities can qualify as well. We do not see the prosody of our part-
ners during face to face interactions yet we imitate them. One thing that this simple
definition implies though is that the model needs not be aware or even willing to pro-
duce the demonstration learned by the imitator (more on that in Chap. 12). Imitation
is not always a form of tutelage. Another implication which is more technical but
not less important is that the imitator must have a way to translate what it perceived
into a form that it can use for reproduction. This becomes more problematic when
the imitator and the model do not share the same body plan (which is usually the
case in robotic imitation) or whenever the mapping of their actions to each other is
not straightforward. Even when the imitator and the model have the same body plan
and the translation between their actions seems trivial, the correspondence problem
is still a complex one because what is perceived by the imitator is not the actions of
the model as encoded in its motor control system but a projection of the external cor-
relates of these actions on the model’s body further transformed by the environment
and sensing apparatus of the imitator.

In many cases it is not even clear what exactly was the action. For example when
watching someone move her arm circularly while catching the lid of a jar, was the
action to be imitated just the circular motion? was it the final effect of lid ease and
removal? must the imitator use the same arm? must the imitator even use an arm or
can she just use her mouth instead or a leg perhaps? does imitator need to keep her
elbow in a similar relative pose as the one used by the model during the motion and if
so relative to what exactly? should the imitator ignore the pose of the legs? should she
ignore the grinding motion of the jaws that accompanied the action? There can be no
clear answers to any of these questions as we can conceived situations in which each
possible answer is a plausible one. This ambiguity is not an artifact of this definition
but an inherent property in imitation that will occupy us much when dealing with
imitation in social robots.

http://dx.doi.org/10.1007/978-3-319-25232-2_12
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We use the term imitation to refer to behavior copying by the imitator of a feature
of the model’s behavior leading to learning when or how to produce that behavior,
where this copying is caused by the observation of the model. Production imitation
is what happens when the imitator learns how to do the—previously unknown to
it—behavior of the model and context imitation is what happens when the imitator
learns when to execute a behavior it already knows how to produce.

This definition of imitation, excludes behavior matching caused by chance as
well as behavior matching caused by any other means other than the observation of
model’s behavior. This excludes, for example, stimulus facilitation (Zentall 2003) in
which object manipulations associated with the model’s behavior leads to increased
object saliency which in turn leads to higher probability of interacting with it by the
observer. Other behavior matching mechanisms that are excluded by this definition
include contagion, social facilitation, affordance learning and emulation.

Contagion is a form of behavior copying that is outside the control of the observer
and leads to no learning and no skill transfer. A common example is yawning which
is contagious in humans. Notice that contagion is not excluded on the ground of
being unconscious. The border between unconscious imitation and contagion is not
always clear. We accept unconscious behavior copying as a form of imitation (e.g.
entrainment of prosody during human–human interactions), yet contagion has the
further feature that the copying is instantaneous and can lead to no persistent change
in behavior. Prosody copying on the other hand may lead—with repeated exposure
and at least in principle—to some persistent change in behavior.

Social facilitation happenswhen themere existence of themodel leads to increased
probability of some behaviors in the observer that may appear as a form of behavior
copying when preceded by a similar behavior by the model who may also be under
the influence of social facilitation.

Affordance learning happens when the behavior of the model leads the observer
to learn that some action can be done with an object (learned affordance). This new
knowledge may increase the probability of interacting with the object executing the
just learned action. Affordance learning is hard to distinguish from imitation on the
grounds of external behavior. Pigeons (Columba livia) could learn how to gain access
to food by just watching the relevant objects moved with a model causing the motion
(Klein and Zentall 2003). Alpine parrots were also shown to be able to learn how
to disentangle locks after observing them disentangled but, crucially, using actions
other than the demonstrated ones (Huber et al. 2001).

Emulation is a related concept both to affordance learning and to imitation. Em-
ulation happens when the observer’s copying is for the change in object states rather
than the actions of themodel. Themain difference between emulation and affordance
learning is that the later implies that the observer did not have knowledge that the
objects manipulated could be acted upon the way demonstrated by the model before
the demonstration. Emulation is copying of final states which cannot be considered
a form of goal copying. Final states are not goals because they do not carry the in-
tentional connotations of goals. In order to call a form of copying “goal-oriented”, it
must be accompanied with some form of intentional attribution (i.e. the demonstrator
intends the goal). Depending on the task and context, emulation may be even more
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complex than direct behavior copying, yet goal copying is always harder than direct
motion copying and emulation. The uniqueness of human imitative skill lies on the
complex interplay between goal copying and action copying adjusted to the context.

7.2 Imitation in Animals and Humans

The degree by which we ascribe imitative ability to a given species depends tremen-
dously on how imitation is defined. Different animal species were found to possess a
variety of copying behaviors. Biologists distinguish three forms of these behaviors:

product-oriented copying: The animal in this case tries to produce the same re-
sult of the actions demonstrated using any means at its disposal not necessarily
the same means utilized by the model. This kind of copying is more related to
emulation rather then imitation in the vocabulary of Sect. 7.1.

part-oriented copying: The animal tries to produce the same result using the same
body parts used by the model but not necessarily using the same trajectories of
motion.

process-oriented copying: The animal tries to faithfully copy the actions perceived
from the model. This means that the same body parts (or corresponding ones)
and roughly the same trajectories are followed during reproduction. This kind of
copying is what we mean by imitation in this book.

One of the earliest studies that tried to find whether process-oriented copying
existed in chimpanzees was an experiment by Hayes and Hayes (1952). In this study
a home-raised chimpanzee calledViki was trained to reproduce actions on command.
These kinds of studies (duped Do–As–I–Do studies) were repeated for many species
including chimpanzees, orangutans, parrots, dolphins and dogs (Huber et al. 2009).
Whiten et al. (2004) concludes after reviewing several studies of action copying in
primates that:

compared with children, who may show recognizable matching on all of the actions in the
battery used, fidelity is typically low overall.

This low fidelity problem appears in most studies of the Do–As–I–Do variety.
For example, Myowa-Yamakoshi and Matsuzawa (1999) showed that only 5.4%
of demonstrated actions were copied and these actions were invariably free motion
actions involving two objects (e.g. putting a ball in a bowl). Actions involving no
objects or object-to-self actions (e.g. touching the bottom of a bowl) were never
copied.

Until the beginning of this century, the consensus was that even this low fidelity
process-oriented copying existed only in higher apes. Some studies now challenged
this positions showing forms of process oriented copying in birds, dolphins and even
a dog (Topál et al. 2006). A general feature of most of these studies is that the animals
were human-raised. For example, the dog Philip studied by Topál et al. (2006) was
raised as a service dog helping his master opening doors and doing related actions
and most chimpanzees studied in these experiments were human-raised.
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The Do–As–I–Do experimental design does not distinguish clearly between
process-oriented and product-oriented copying when objects are involved. Another
design paradigm (that is used extensively with birds) is the two–actions design in
which two groups of observers (subjects) are shown two kinds of demonstrations
that differ only in the body part used for achieving identical environmental change.
The two–actions design is so central to animal imitation studies and comparative
psychology that it acts as an operational definition of imitation in this field. Imita-
tion is treated as what the two–actions experiment measures and based on it several
species were shown to have imitative abilities (sometimes called true-imitation for
emphasis) (Byrne 2005).

One example of these studies showed that pigeons and Japanese quail show a
preference of using the same body part used to press a lever (e.g. peak or foot) used
by the model (Zentall 2004). These experiments fall more under the part-oriented
copying category rather than the process-oriented category. Due to the simplicity of
the actions involved in these studies, it is unlikely that the observers learned how
to execute them. More likely, what was learned is when to execute them. This is
sometimes called context imitation to distinguish it from production imitation in
which the action itself is learned.

Part-oriented copying was also tested using the two–actions design in marmosets
by Huber et al. (2009). Marmosets are more likely to open canisters using their
hands if they did not observer a demonstration of canister opening or if they watched
a demonstrator opening one with its hands. Nevertheless, after watching a demon-
stration of canister opening using the mouth, Marmosets become more likely to use
their mouthes in opening canisters. This effect cannot be explained away by affor-
dance learning because the learned affordance (openable by mouth) does not provide
any advantage over the already known affordance (openable by hands) for the Mar-
moset. Moreover, it is not social facilitation as there is nothing about having the
demonstrator in sight that would evoke opening-using-the-mouth behavior instead
of opening-using-the-hands. It is not stimulus facilitation either as the marmosets
opened the canisters with the same frequency only the body part employed was var-
ied based on whether or not there was a demonstration. Emulation is not enough to
explain the marmosets’ behavior because there was no change in the outcome (can-
ister opening) based on the demonstration. One final worry to lay to rest is whether
the increase of opening-by-the-mouth behavior was just a result of some form of
priming. Assuming that the brains of the marmosets have stored procedures for both
kinds of opening behaviors (it is not clear that without a demonstration, marmosets
never use their mouths to open canisters), just seeing the action done may prime
them toward one of these stored procedures. Notice that this does not imply strong
mirroring effects and there is no need to posit mirror neurons to justify that priming
effect. The only way to handle this situation is to use delayed imitation so the ob-
server is tested after some delay that is filled with other activities (better involving the
same body parts employed by bothmodels). This was done with Japanese quails with
delays of up to 30min and budgerigars with delays of up to 22h (Byrne 2005). At
least a weak form of process-oriented copying (e.g. part-oriented copying) is implied
by these cases.



198 7 Imitation and Social Robotics

One critical difference between the Do–As–I–Do and two–actions paradigms is
that the first is more appropriate to test imitation of complex tasks as the later usually
employs simple actions from the imitator’s repertoire. This is not always the case
though. In two studies, four human-reared chimpanzees and six zoo gorillas were
tested using the two–actions method but demonstrations involved three actions that
must be executed serially to obtain an award. The chimpanzees successfully learned
the complex task being demonstrated to them but only after several trials. The gorillas
failed (Stoinski et al. 2001).

It is difficult to distinguish imitation from other copying behaviors mentioned
above in the wild but some hints exist that it may probably play a role in acquiring
population specific techniques for achieving the same action.Whenever an action can
be done by two different methods where one of them is superior and there is a direct
path of adjustment to convert the inferior action to the superior one, the persistence of
the inferior technique in some exclusive population cannot be attributed to trial-and-
error. Trial and error in these cases would act as a hill-climbing optimizer and would
lead to the abandonment of the inferior technique in favor of the superior one as long
as enough time is available. The persistence of the inferior technique exclusively in a
population would then imply either explicit teaching or imitation. One such case can
be found in how populations of chimpanzees catch Dorylus ants. Some populations
exclusively use long sticks and bi-manual manipulations and others explosively use
short ones and uni-manual manipulation. This difference though may be attributed
to adaptation to slightly different environmental conditions (Byrne 2005).

The aforementioned discussion of animal imitation makes clear that process-
oriented copying seems more difficult than product-oriented copying. Now consider
the discussion of robotic learning from demonstration in Chap.13. For robot’s; one
of the main challenges was goal-oriented imitation which in this case appears to be
more difficult than just process-copying. This difference between robotic and animal
imitation is not the only one and it may stem from amore general difference between
animal and artificial cognition. Animals appear to have more built-in knowledge
about the environment and other agents acting on it (engineered through ages of
evolution) that makes them more apt at goal-inference—at least in familiar contexts
relevant to survival—compared with artificial agents. Faithful process copying (e.g.
production imitation)—on the other hand—is easier for artificial agents equipped
with the appropriate (human-designed) correspondence mappings compared to ani-
mals that may not have any propensity to copy behaviors not affecting their survival.

It is clear—even from casual observation—that humans learn a lot of their skills
through imitation. Infants have been shown to match tongue movements as early as
42min after birth (Meltzoff andMoore 1997). Children also imitate at early ages and
teenagers are known for their continual imitation of their peers and role models to
the distress of their parents. As adults, we engage in both conscious and unconscious
matching behaviors that may lead to genuine imitation in several cases.

There are two schools in developmental psychology about imitation in early life.
The nativist school maintains that infants come to life equipped with basic abilities
to engage in behavior matching and imitation while the developmental school as-
signs larger role for development and underplays the findings supporting behavior

http://dx.doi.org/10.1007/978-3-319-25232-2_13
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matching at early life as a form of imitation. Meltzoff’s classical work on imitation
in infants provides the main line of support for the nativist school (Meltzoff and
Moore 1997; Meltzoff 2005). The developmental school employs a dynamical sys-
tems account of imitation taking the position that imitation develops during the first
two years of the infant’s life emerging out of infant’s acquisition of different kinds
of knowledge and motor, cognitive and social skills (e.g. Jones 2009; Ray and Heyes
2011).

Despite the differences between these two schools of thought, they both assign
a role to developmental aspects in human imitation. The main difference is in the
degree at which the mind comes to life equipped with enough structure to engage in
imitation from the first day (Nishida et al. 2014).

A recent review by Oostenbroek et al. (2013) reported on three main alternatives
for understanding neonatal imitation: (1) neonatal imitation is a genuine act of social
communication mediated through an abstract representational system; (2) the phe-
nomenon is actually an involuntary, inborn reflex limited to tongue protrusion; and
(3) imitation in newborns is a product of arousal. stating that:

These views continue to be maintained without much promise of resolution.

Imitation is hypothesized to be at the root of several main characteristics of human
cognition, interaction and life. For example, Nagy and Molnar (2004) showed that
infants do not act passively just as imitators during natural interactions with care-
givers but they provoke interaction by spontaneous execution of acts they learned
through imitation earlier in the interaction (deferred imitation) which leads to a
rudimentary form of turn-taking thatmay have bootstrapped the appearance of dialog
in human communication.

Chartrand and Bargh (1999) experimentally showed that behavioral mimicry (the
chameleon effect) has a significant effect on the interaction and increases empathy
towards the interaction partner. HRI studies documented similar effects in human–
robot interaction. Riek et al. (2010) used real-time head gesture mimicry to improve
rapport between the human and a robot and Lee et al. (2004) programmed a robotic
penguin to nod in return to detected nods in order to consolidate the back-channel
communication in a natural way. Unconscious imitation is a stable feature of face to
face interactions in humans and the degree of this unconscious imitation of nonverbal
behavior predicts how agreeable a stranger partner appears to her interlocutors.

Imitation is also hypothesized to be a main mechanism for the transfer of skills
and knowledge leading to the appearance of culture and its maintenance. For exam-
ple, Prinz (2005) suggests that imitation plays a vital role in moral development. The
concepts of “good” and “bad” cannot be defined by showing examples and moral
behavior cannot be learned by just mimicking or matching the behavior of others.
Imitation plays a role in moral development through a different route through uncon-
scious emotional contagion. For example, when a child hurts someone, she perceives
the undesirable emotional response of this hurt person and through emotional con-
tagion (a rudimentary form of imitation), she feels a similar feeling. Without this
simple mechanism, it is very difficult to distinguish good from bad. Huesmann and



200 7 Imitation and Social Robotics

Guerra (1997) adds to this unconscious emotional mechanism, the need to form nor-
mative moral beliefs by the child. These beliefs are generalized from the behaviors
of others (specially care-givers) through imitation.

Imitation is also implied in enabling infants to learn a theory of mind (ToM) based
on the simulation theory which will be described in more details in Sect. 8.2. The
essence of the simulation theory is that we understand the actions and mental states
of others by simulating them in our own brains. Imitation is used here as a technique
to learn how to simulate other agents. For example, it was shown by Strack et al.
(1988) that imitating facial expression elicits the associated emotional state. Thus, by
imitating people, the infant may be able to associate their facial expressions with the
emotions elicited due to the imitation which in turn forms an early form of emotional
empathy that allows the infant to learn how to interpret the emotions of others.

Rao et al. (2004) proposed four stages of imitation development: (1) body bab-
bling, (2) imitation of body movements, (3) imitation of actions on objects and (4)
imitation based on inferring intentions of others.

Tomasello and Carpenter (2005) suggest different developmental stages starting
with mimicking or emulation without understanding of intention in the first 9 months
of life followed by imitative learningwhen the child starts to acquire an understanding
of goal-directed action at around her first birthday. Goal emulation comes later at
14–15 months of age with an understanding of intentions followed by role reversal
imitation at 18 months with an understanding of unfulfilled intentions, reciprocal
intentions and communicative intentions. Prior intentions, symbolic intentions and
hierarchies of goals are understood later during the first three years of life.

This brief discussion of imitation in animals and humans reveals important points
about imitation that can inform designers of social robots: Firstly, imitation is not
just means-ends copying or final state emulation. It is the complex interplay between
copying the means and attaining the goals that defines imitation. Secondly, uncon-
scious imitation is expected from social interlocutors. Social robots should be able to
simulate this human trait to gain more acceptance by their human partners. Finally,
behavior matching in all its forms provide a toolbox for learning new behaviors dur-
ing social interactions. We will discuss several approaches to imitation learning in
robotics in Chaps. 12 and 13. In the following section, we will focus on the social
aspects of imitation in robotics research. A subject that is still to receive its due
attention by researchers.

7.3 Social Aspects of Imitation in Robotics

Imitation is a social phenomenon. That seems clear and even tautological, yet most
research in robotic imitation seems to ignore it. Imitation does not happen without
interaction and this is why it is important to understand the social aspects of imitation
related to the interaction context. This section provides two examples of studies
targeting the social aspects of imitation. The first is an engineering approach to endow
robots with social understanding based on psychologically inspired imitation. This
exemplifies the engineering strand of social robotics in the terminology of Chap. 6.

http://dx.doi.org/10.1007/978-3-319-25232-2_8
http://dx.doi.org/10.1007/978-3-319-25232-2_12
http://dx.doi.org/10.1007/978-3-319-25232-2_13
http://dx.doi.org/10.1007/978-3-319-25232-2_6
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The second is a study, that we conducted, on the effect of back imitation on perception
of the robot’s imitative skills. This is an example of the scientific strand in social
robotics mentioned in Chap.6.

7.3.1 Imitation for Bootstrapping Social Understanding

Breazeal et al. (2005) provided one of the early examples of studying the social
aspects of imitation in the context of HRI. They proposed the use of imitative learning
to bootstrap social understanding by a humanoid robot.

The starting point of this work was the Active Intramodal Mapping (AIM) model
of Meltzoff and Moore (1997) which has an common (intra-modal) representation
for both action production and perception.

Breazeal et al. (2005) notices the computational advantages of AIM’s model for
robotics despite its accuracy as a model for imitation in infants. The concept of intra-
modal representation can be extended easily to other forms of imitation rather than
being confined to facial expression.

The systemuses theC4 cognitive architecture (SeeSect. 6.3.1) and is implemented
on an animal-like 64-DoF robot called Leonardo.

The percept tree consisted of movement percepts that detect motion of human
facial features and contingency percepts that detect when these motions are due to
movements of the robot. The system uses a single action group with two actions:
motor babbling action, and imitation action.

The motor babbling action allows the robot to explore its pose space by selecting
a random pose, going to it, then holding it for approximately four seconds. It is
triggered by sensing an approaching human. The human is expected to imitate the
robot during motor babbling by copying its pose during the four seconds it is fixed
(simulating back imitation of care givers that will be discussed in more details in the
next section). This form of back-imitation allows the robot to associate its actions
(current facial pose), with their facial appearance (on the face of the human partner).
The intra-modal representation used in this study is the pose space of the robot
(Breazeal et al. 2005). This choice accords with our own experiments with different
possible intra-modal representations for a navigation task (Mohammad et al. 2012)
which showed better performance for motor-like representations.

The contingency percept is implemented as a simple heuristic that detects time-
contingency between the start of robot and human motions. More complex contin-
gency evaluations based on organ identification is not possible at the early states of
learning. Two-layers feed-forward neural-networks can then be used to learn organ
identification and improve the performance of contingency evaluation (similar to the
second stage of the four stages proposed by Rao et al. (2004) and discussed in the
previous section).

Once organ identification is completed, the imitation action can start to be exe-
cuted. It is triggered by a set of percepts each detecting stable motion in one organ of

http://dx.doi.org/10.1007/978-3-319-25232-2_6
http://dx.doi.org/10.1007/978-3-319-25232-2_6
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the human face. The robot then tries to approximate this motion using its pose-graph
incrementally using a hill-climbing algorithm (Breazeal et al. 2005).

Using this interplay between imitation and back-imitation, the robot is able to
learn to imitate facial expressions and understand them in terms of its own motor
system (using the intra-modal representation). This ability is now used to bootstrap
social referencing.

Social referencing is the ability of one person to utilize another’s interpretation of
a situation in interpreting it and reacting to it. Infants start to show social referencing
by the end of the first year in the form of secondary appraisal. This ability forms a
simple yet important step toward social understanding of other people.

To achieve social referencing, the robot is equipped with an innate emotional
system based on basic-emotions that is activated when its own face takes specific
facial expressions (that are associated with these emotions in humans). When a new
facial expression is activated, the current emotional state of the robot is attached to
it. This allows the robot to learn affective appraisal.

The final stage involves the utilization of the attentional system (See Sect. 6.3.1)
and emotional system to associate emotionally communicated appraisals from the
human (based on its ability for intra-modal representation) to a novel object or toy
(Breazeal et al. 2005).

In this work, interplay between imitation, attention and emotional modeling were
utilized to achieve a socially meaningful milestone in social development, namely,
social referencing.

7.3.2 Back Imitation for Improving Perceived Skill

Section6.2 discussed some aspects of the human response to robots. In this section
we focus on some of the imitation related responses to robots. As was the case in
Sect. 6.2, this section is not trying to provide a comprehensive review of the subject
but just focuses attention on some of the experimental results that may inspire new
research directions in this under-researched area.

Meltzoff (1996) reports that:

human parents are prolific imitators of their young infants.

This highlights the ubiquity of back imitation (adult imitating infant) in natural
interactions between infants and their care-givers. In a series of papers, we studied
the effects of back imitation on human’s perception of the robot in several evaluation
dimensions (Mohammad and Nishida 2014a, b, 2015).

HRI studies documented a positive effect for having the robot imitate humans.
For example, Riek et al. (2010) reported improvement in rapport between a human
and a robot caused by head gesture mimicry from the robot. These studies have
focused on the effect of robot’s imitation on our response to it. To complete the
picture, it is useful to consider the effect of us imitating the robot on our response to
it. One motivation for conducting this study is the unconscious anthropomorphism

http://dx.doi.org/10.1007/978-3-319-25232-2_6
http://dx.doi.org/10.1007/978-3-319-25232-2_6
http://dx.doi.org/10.1007/978-3-319-25232-2_6
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known to color our response to robots and even TVs (Reeves and Nass 1996). This
anthropomorphic tendency may be enhanced if we imitated the robot because this
imitation can bias us toward perceiving its motion in a human-like manner (in order
to successfully imitate it). This may in turn lead to higher acceptance and intention
of future interaction (Mohammad and Nishida 2014b).

We conducted three experiments to evaluate this effect. The first experiment mea-
sured whether or not there is any effect for back imitation on the perception of the
robot’s imitative skill and whether this effect requires actual interaction with the ro-
bot or can be elicited in third persons watching the interaction. Twenty four subjects
participated in this experiment. Half of them interacted with the robot in three con-
ditions (online participants) while the other half watched these conditions (offline
participants).

The three conditions were the same in our first two experiments and we will de-
scribe them briefly here: In the first condition called no-imitation (NI) the participant
imitated a simulated agent that looks and moves just like the robot and the robot
also imitated the same simulated agent. In the mutual-imitation (MI) condition, the
participant imitated the robot (and the simulated agent also imitated the robot). The
(BI) condition was a variation on the MI condition in which when the participants
failed to imitate the robot, it imitates the participant for one pose then the session
goes back the BI condition. Notice that the experimental design forced the partici-
pant to imitate something in all conditions and that the only difference between NI
and BI conditions was the order by which commands are sent to the robot and the
simulated agent. After finishing a session in one of these three conditions, the partic-
ipant became the leader and the robot imitated it. It is about this second part (which
was identical in all conditions), that the participant was reporting when judging the
imitation skill, human-likeness, naturalness, and intention of future interaction with
the robot.

We could show that the robots that were imitated in the BI and MI conditions
were judged to have higher imitative skill and more human-likeness compared with
the robots that were not imitated (the NI condition) but only by online participants
not by offline participants. This showed that imitating the robot did have an effect
on our judgment of its imitative skill and human-likeness (Mohammad and Nishida
2014b).

Conducting a larger experiment with the same design but with 36 online par-
ticipants and no offline participants revealed the same pattern of results. Higher
attribution of imitative skill, human-likeness, and intention of future interaction with
the robots that we imitate (BI and MI conditions) (Mohammad and Nishida 2014a).

Finally, an even more direct comparison was performed. We had eighteen partic-
ipants play a game with two NAO robots. One of the NAO robots was assigned the
leader’s role and moved first. The participant and the other NAO robot imitated the
pose of this leader robot. The leader here is the robot imitated by the human while the
follower is not (similar to the difference between BI and NI conditions in previous
experiments). In the second session, the participant became the leader and the two
robots imitated himwith the same algorithm (only a small random delay was inserted
in the motions of the robots not to make the motion identical but without any bias
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toward any of the two robots). Even in this clear situation, in which the participant
is asked to compare the performance of two robots that are interacting with her in
the same time and with the same algorithm, more attribution of imitative skill and
human likeness was reported for the leader robot (the one that the human previously
imitated) (Mohammad and Nishida 2015).

Taken together, these results suggest that back imitation can be an effective way
to familiarize humans with robots and improve their judgment of the robot’s skill
and human-likeness. If this finding is confirmed through other experiments with
larger population and more varied participant sample (all our subjects were Japanese
university students), it canbeused to informdesigners of learning fromdemonstration
interactions. By providing a back-imitation game like follow the leader used in this
work during the familiarization session that usually precede the demonstrations,
the participant’s subjective evaluation of the robot imitative skill leading to more
demonstrations.

7.4 Summary

This chapter introduced the different shades of behavior copying related to imita-
tion like contagion, emulation, stimulus facilitation, affordance learning, and social
facilitation. We discussed various forms of behavior copying in animals reporting
experiments using both the do–as–I–do and two–actions paradigms and differenti-
ating between process-oriented, part-oriented, and product-oriented copying. This
discussion revealed the need for a fourth category of goal-oriented copying to cover
the cases involving intentional attribution of goals to the demonstrator. The chapter
then discussed the two main schools in infant imitation (the nativist and develop-
mental schools) commenting on the need of development for both approaches to
understanding infant imitation and provided two specific developmental schedules
proposed by researchers in developmental psychology. We also discussed the social
aspects of imitation in social robotics focusing on the phenomenon of back imitation
when humans imitate robots and reported two studies related to it. The first was an
engineering study that tried to utilize back imitation to bootstrap social referencing
and the later was a scientific study trying to understand the effect of back imitation
on our perception of the robot’s imitative skill and human likeness.
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Chapter 8
Theoretical Foundations

Research in HRI focuses on the social aspect of the robot while intelligent robotics
research strives to achieve the smartest possible autonomous robot. We argue in this
chapter that realizing sociability and realizing autonomy are not two independent
directions of research but are interrelated aspects of the robot design.

The robotic architecture used for any social robot can limit or enhance its prospects
of achieving appropriate autonomous and social behavior in the presence of humans.
The following chapters of the bookwill provide two broad architectures for approach-
ing autonomous sociality that stemmed from our research in the past decade. These
two architectures are the Embodied Interactive Control Architecture (EICA) dis-
cussed in this chapter and the following three chapters and the Fluid Imitation Engine
(FIE) which will be discussed in Chap.12. Both of these architectures rely on imi-
tation in some form to learn the needed behaviors. The main difference between the
two approaches is in the relation between autonomy and sociality. While EICA relies
on autonomous imitation to realize natural social interaction, FIE relies on interac-
tion to realize effective imitation. This interplay between interaction, imitation and
autonomy is the common thread that unifies these two architectures and our approach
to social robotics. This chapter discusses some of the theoretical concepts that guide
our approach and their implications for the design of robotic architectures for HRI.

8.1 Autonomy, Sociality and Embodiment

Throughout this book, we are using the concept of autonomy, yet we did not provide
a clear definition of this term. Researchers in psychology and social sciences use
the term in a variety of ways. Self-determination theory argues that there are three
essential psychological needs: autonomy, competence and relatedness (Ryan 1991).
Psychologists differentiate between two perceived sources of one’s behavior: some
actions are said to have internal perceived locus of causality (IPLC)while others have
external perceived locus of causality (EPLC). The former are called autonomous
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actions while the later are sometimes called heteronomous actions. It is important
to notice here that autonomy is not independent but is perceived volition (Ryan and
Deci 2000). De Charms (2013) distinguishes between autonomy and independence
in humans. The former highlighting the internal focus of behavior control while
the later highlights the ability—in principle—to enact this behavior. For example, a
person can be autonomously dependent on another for guidance or support (Chirkov
et al. 2003).

In AI and robotics, the terms autonomy and independence are more or less used as
synonyms. In robotics and AI literature, autonomy is usually equated with the ability
of the agent to decide for itself how to behave when confronted with unforeseen
situations in its environment. This does not though capture the different possibilities
entailed by the term. For example, consider two robots: the first robot has an imple-
mentation of a navigation algorithm that was developed for it to navigate inside a
building the map of which is stored in its memory. The second robot runs a SLAM
algorithm that builds the map through its own interaction with the environment. The
two robots can navigate their environment effectively and achieve the same perfor-
mance, yet we do not attribute the same kind of autonomy to both. The reason is that
the first robot is autonomous in the sense that it does not need a human to give it
commands during its navigation (e.g. it is autonomous from human operators toward
navigation of the environment). The second robot has this same level of autonomy
but it also has another kind of autonomy. It needs no map. This means that the second
robot is both autonomous from human operators and map builders toward navigation
of the environment. This highlights the relational aspect of autonomy. It is always a
relation between the agent and other entities on one hand and its goals on another.
Autonomy presupposes goals in this account.

To summarize: Autonomy is a relational concept that cannot be defined without
reference to the agent goals and environment. An agent X is said to be autonomous
from an entity Y toward a goal G if and only if, X has the power to achieve G without
needing help from Y (Mohammad and Nishida 2009). We would like our robots to be
as autonomous as possible from real-time operators, but also from designer choices
(to simplify the design process), and from environmental factors (to allow them to
behave appropriately in many situations).

The relational aspect of autonomy means that it is always from something and
toward something. Being from something implies being embedded in an environ-
ment, a context, from which the agent can be autonomous in some aspect or another
of its behavior. This presupposes a weak form of embodiment (defined later). Being
toward something, presupposes the existence of goals or desires. This is why being
autonomous presupposes being an agent but being an agent presupposes the possi-
bility in principle to be autonomous by just having goals. In that sense, autonomy,
agency and embodiment are related concepts.

Sociability is the ability of an agent to elicit social response from humans by being
able to follow human-style social interaction with them (Breazeal 2004). The ability
of following human-style social interaction is an essential aspect of sociability as
just eliciting a social response may tell more about people than about robots due to
our tendency to anthropomorphize objects and media (Reeves and Nass 1996).
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Dautenhahn (1998) suggests that socially intelligent agents should be in a sense
like us andprovides guidelines for the designof these agents basedon roles of humans.
Humans are embodied agents, humans are active agents, humans are individuals,
humans are social beings, humans are storytellers, humans are animators, humans
are autobiographic agents, humans are observers. These roles of humans are take
by Breazeal (2004) to imply that sociable robots should be embodied, have life-
like quality, human-aware, understandable and understanding of social norms, and
capable of socially situated learning.

In this work, sociality is defined as the ability to use normal modes of interaction,
and stable social norms during close encounters with humans. This definition is
focusing on short term fast interaction compared with the aforementioned definitions
of sociability and socially intelligent agents that focus more on long-term relation to
humans. Sociality with this definition is a pre-condition for implementing sociable
robots but is not enough tomake the robot sociable. Sociability and social intelligence
need explicit reasoning about social relations and expectations of others. Sociality
in the short term sense given here is a real time quality which resists traditional
deliberative reasoning and suggests a reactive implementation.

Autonomous sociality—our long term goal—can then be defined as the autonomy
of an agent from human operators or designers toward achieving sociality, where
autonomy and sociality are understood in terms of the definitions given earlier in
this section. This translates computationally to reliance exclusively on unsupervised
learning techniques to reduce the need for human intervention in robot learning.

Autonomy and sociality are related. Castelfranchi and Falcone (2004) argues
convincingly that autonomy and sociality (the ability to live and interact in a society)
are inter-related and as much as the society limits the autonomy of its members, it
enhances it at the same time through different processes.

Early AI research focused on implementing intelligence using logical manipula-
tion implying a Cartesian transcendental understanding of the mind. The body was
assumed to have nothing to dowith intelligence. This viewwas challenged by several
newer approaches to cognition that stressed the importance of studying intelligence
in the context of an environmental embodiment (Brooks 1991) and focused on the
dynamical coupling of the agent with its environment instead of exclusively con-
sidering internal symbol manipulations of representations of this environment (Vogt
2002).

Ziemke (2003) identified five different notions of embodiment. The widest notion
is called structural embodiment and it means that the agent is structurally coupled
with its environment. This means that perturbation channels exist between the two.
In other words, a structurally embodied agent is one that is affected by and can affect
its environment. These mutual effects need not be physical in any sense. A software
agent that is embedded in the computer’s memory can be considered as a structurally
embodied agent in some cases. This notion of embodiment is not very useful as any
open-system in the physical sense is structurally embodied. Even a rock on a river’s
floor is structurally embodied.
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Another notion of embodiment discussed byZiemke (2003) is the notion of histor-
ical embodiment which implies a history of structural couplingwith the environment.
Riegler (2002) defines embodiment as follows: A system is embodied if it has gained
competence within the environment in which it has developed (Riegler 2002). This
notion of embodiment is less inclusive than structural embodiment but it is still wide
enough to include agents with no physical bodies and, once more, may allow a rock
in a river to be included if we consider that the shape of this rock is affected by the
river while its position, orientation and shape in turn affects the flow of water in the
river and that this shape and configuration is a direct result of a history of dynamical
coupling with the river.

A third notion of embodiment that is used by Pfeifer and others is the notion of
physical embodiment which requires the agent to have a physical body (Pfeifer et al.
2001). Self organization plays an important role in this notion and the ability to sense
the environment through sensors and affect it through actuators are taken as essential
features of any embodied agent (Brooks et al. 1998).

Other notions of embodiment identified by Ziemke (2003) include organismic,
oranismoid embodiment that are much more related to biological entities (e.g. ani-
mals and plants) than to artificial agents. We do not consider these notions further in
this book.

Both humans and robots can easily achieve structural, historical, and physi-
cal embodiment. In that sense, they do not provide much guidance in designing
autonomously social robots. A more important notion of embodiment for our work
is social embodiment (Barsalou et al. 2003; Ziemke 2003; Duffy 2004). Social psy-
chology was always concerned by the effects of others on one’s cognition and effects
of cognition on action which made this field extremely receptive of the notion of
embodiment (Meier et al. 2012). Here, embodiment refers to the notion that feelings,
thoughts, and behaviors are all grounded in sensory experiences and bodily states.
Four types of social embodiment effects were identified by Barsalou et al. (2003):

First, perceived social stimuli do not just produce cognitive states, they produce bodily states
as well. Second, perceiving bodily states in others produces bodilymimicry in the self. Third,
bodily states in the self produce affective states. Fourth, the compatibility of bodily states
and cognitive states modulates performance effectiveness (Barsalou et al. 2003).

The importance of bodily states and its relation to social interaction in social
embodiment provides a guiding principle and a challenge to research in social robot-
ics. The guiding principle is that natural nonverbal behaviors of the robot are essential
for effective social interaction with people. The challenge is that this kind of behav-
ior should match the expected human behavior in similar situations. This is because
this matching would produce the required compatibility between bodily and cogni-
tive states required by social embodiment and expected by humans from life-long
interactions with other humans. This does not entail that social robots have to be
humanoids, it merely requires them to have human-understandable relation between
their internal state and bodily state.
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This notion of social embodiment may be compared with the notion of structural
embodiment but assuming that the environment is a social environment. In this work,
we are more interested in socially embodied agents that develop their social inter-
action abilities through interaction with their social environments (Mohammad and
Nishida 2009). This is how the challenge discussed in the previous paragraph is to
be met in our work. We posit that in order to build human-understandable relation
between the internal and bodily state of the robot in the social sense, the robot needs
to ground this relation (i.e. its nonverbal behavior) in historical interaction within its
social world. This suggests a notion of historical social embodiment analogous to
historical embodiment (Ziemke 2003). To achieve this form of social embodiment,
the robot will need to understand the behavior of humans using the intentional stance.
In other words, the robot needs to have a theory of mind.

8.2 Theory of Mind

Humans understand the behavior of other humans (and some animals) by assigning
mental states to them and reasoning about how these states affect or generate their
perceived behavior. This ability to reason about the mental state of other agents
(whether people or otherwise) is called by various names by different researchers
including mentalizing, mind reading, and theory of mind (ToM). It should be noted
though that, while the term theory of mind, implies some form of representational
structure with interconnected concepts and law-like relations; this is not by any
means the only possibility for ToMs. As we will see in this section, ToM—at least
in some views—requires no explicit theory. Despite this bias, the term ToM is the
most widely used of the three mentioned above in robotics research and will be used
throughout the book (Scassellati 2002).

There are several competing theories for how ToM works and how is it acquired
by humans. We will briefly describe the main theoretical clusters then discuss the
implications for social robotics.

Historically, the debate regarding ToM was mainly between theory theory (TT)
theorists on one side and simulation theory (ST) theorists on the other side. Variants
of TT included modular ToM (MT) and child-scientist theories (CT). A new comer
to the debate is what can be called the enactive theory (ET). We will discuss these
alternatives here with an eye on applicability and lessons for social robotics. Only a
broadbrushwill be used to paint the view takenby eachoneof thesefive approaches to
ToM and we will skip many of the details that sometimes define the debate between
them. Our goal is not to provide an exhaustive review of different approaches to
ToM in psychology and philosophy but to give he reader a general birds-eye view of
the research landscape that will be used to support specific design decisions of our
architecture for social robots later in the book.

The first approach to ToM that we consider here is the theory theory (TT). The
term “theory theory” may have first been used by Morton (1980) to define the view
that people rely on ...
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a fairly extensive commonplace psychological theory, concerned both with dispositional
traits such as those of character andmood andwith the intentions that produce action (Morton
1980).

The main distinguishing feature of TT is that it assumes that a form of repre-
sentation exists for the mental states of other people and their relations to behavior.
We understand other minds in this view by inference from this representation. This
representation may contain rules like “thirsty people want to drink”, “people who
see a tap, will believe it can give water”, and “people who want to drink and can find
water, will most likely drink”. The first of these rules represents a relation between
two internal states of mind, the second between a perception and a state of mind and
the third between a state of mind and a behavior. These rules may be deterministic
but are most likely only probabilistic. Using these kinds of rules, TT theorists suggest
that people understand the behaviors of others in mental terms.

The most commonly used supportive evidence for TT comes from studies of
children at ages of 3 and 4 years. It was shown by Wimmer and Perner (1983) that
three years old children cannot attribute a false believe to another while four years old
children can. A common scenario involves a child seeing two containers. A puppet
puts a chocolate bar in the left container and leaves the scene. Another puppet enters
the scene and moves the chocolate bar to the right container. The first puppet then
returns to the room and the child is asked, which container will the puppet open? The
correct answer is the left container as the puppet did not see the change of location
and that is what 4 years old children usually give as an answer showing that they can
attribute a false believe to the first puppet. Three years old children in most cases
fail this test asserting that the first puppet will look in the right container. Another
scenario is to show a child a container that usually holds some kind of objects (e.g.
candies) and then ask her what does she thinkwill be inside the container. She usually
answers with the common object. The container is then opened and shown to the
child to contain something else (e.g. a pen) and the child is asked what did she think
was in the container before it was opened? Again 3 years old usually fail this test.

The idea that children fail at some point to pass the false belief test then succeed
later was taken as a proof that they have some form of internal representation (the-
ory) that changes over time supposedly according to some predetermined maturing
or developmental schedule. This needs not be the case though. For example, if the
simulation theory (to be discussed later) is true and we understand others by simulat-
ing their internal state as if we were in their positions, it would be perfectly possible
that children fail the test before their fourth birthday because their simulation system
is not fully developed. It may be the case that they simulate both persons in the false
belief test and cannot distinguish their internal states which makes them attribute the
knowledge of the change in the location of the chocolate bar not only the second
puppet but also to the first puppet that was not in the room. It may also be the case
that 3 years old children fail the test not because of some problem in their ToM but
because of another reason. For example, it may be immaturity of their inhibitory
control system which does not allow them to inhibit the direct answer that they know
is correct about the chocolate bar location or the content of the candy container



8.2 Theory of Mind 213

(Carlson and Moses 2001). It may also be the cognitive difficulty of the task and
the language it is framed in. For example, Johnson (2005) showed, that simplifying
the task and using a nonverbal paradigm allows 15 months old children to pass the
false-belief test.

There are several ways in which the internal representation or theory can be struc-
tured and acquired and we can find several flavors of TT in the literature depending
on various views of this structure and process.

One extreme for the structure and acquisition of the internal representation in
TT, takes the position that it has the same structure, functional composition, and
dynamics of a scientific theory (Gopnik et al. 1997). This is usually called the child-
scientist theory (CT). Not only ToM is assumed to be acquired this way, but also all
kinds of theories about how the world work. In some cases, the specific Bayesian
formalism (popular in philosophy of science studies) is used to describe this internal
theory (Gopnik et al. 2004). CT does not try only to inform us about how children
learn their ToM but proposes that it can be of use for understanding how scientists
go about conducting science.

Gopnik and Wellman (1992) argue for a specific progression of theories that are
driven by the child’s interaction with the world and others. Around second birthday,
the child is assumed to have only a non-representational ToM that consists solely
of two constructs: desires and perceptions. Desires are mind-to-world states in the
language of Searle that drive the person toward specific objects or states and percep-
tions are world-to-mind states that are awarenesses of objects. This simplistic theory
is then changed at around the age of three to contain other constructs like beliefs but
again in a non-representational forms. Beliefs in this case are understood similarly
to perceptions. This non-representational nature makes it hard to keep false-beliefs
as it is not possible to keep false-perceptions. At around the age of four, this theory
morphs into a representational theory that corresponds to our folk psychology. All
of these are related to what is called the action theory which covers nearly all of folk
psychology. CT is not offered only as an approach to explain the acquisition of ToM
but cover two more areas of cognition: appearances theory (how object appearances
change and relate to their states) and kinds theory. This is far beyond our interests in
this section and we will focus only on action theory.

There are three kinds of features for theories in CT: structural, functional and
dynamic features. Structural features include abstractedness, causality, coherence,
and ontological commitment. Functional features include prediction, interpretation
and explanation. Dynamical features include defeasibility (being falsifiable by evi-
dence), changeability in light of counter evidence, and characteristic ways of revi-
sion in light of such evidence (Gopnik et al. 1997). CT maintains that children’s
ToM shares with scientific practice all of these features and goes to the extend of
suggesting that this is the basis upon which the scientific revolution of the sixteenth
and seventeenth century was based. It is not only that children are small scientists in
this theory, scientists are children as well. Even though not everyone agrees with this
feature of CT (see for example Bishop and Downes 2002), it provides a plausible
computational model for building robots that can learn social interaction in a similar
incremental theory-building way.
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The problem with CT for social robotics, is best understood by understanding
how does CT supporters explain the delay in appearance of modern science until
the sixteenth or seventeenth century if it is based on such capacities that all children
have. Gopnik et al. (1997) justified the appearance of modern science at that time
by the combination of several factors: Firstly, leisure—at least for some—enabled
them to put more time in falsifying existing theories about how the world work. Sec-
ondly, a large body of counter-evidence to existing theories accumulated at that time
and, finally, communication advances allowed for better inter-fertilization between
different disciplines.

In social robotics we seem to be in the situation of the world before the sixteenth
century in this regard. The robot cannot expect rich and continuous interactions sim-
ilar to those available for children specially when it cannot already respond appro-
priately due to its lack of a ToM. This scarcity of interactions would reduce the
amount of counter-evidence needed to falsify and modify any existing theory it may
be equipped with initially. Moreover, the robot does not have much interaction with
other learning robots to allow for transfer of information in most cases. Finally, it
is not clear how can the robot bridge the gap between non-representational theories
based on desires and perceptions and full folk psychology theories that can be used
for effective reasoning—beyond the level of a 3 years old child—about other people
essential for effective interaction.

CT was the inspiration for the learning mechanism of HAMMER (See Sect. 6.3.3
and Fig. 6.13) which used the Bayesian formalism for realizing HAMMER blocks
that acted as mini-theories usable both for forward and backward reasoning. In the
words of HAMMER creators:

The inspiration for solving these problem here is taken from developmental psychology.
Gopnik and Schulz (2004) compares the mechanism an infant uses to learn to that of a sci-
entist: scientists form theories, make observations, perform experiments, and revise existing
theories. Applying this idea here, forward models can be seen as a theory of the robots own
world and how it can interact with it. The process a robot uses to obtain its data and infer
a forward model from it is its experiment. To perform an experiment, a robot decides what
motor commands to use, gathers a corresponding set of evidence and uses this evidence to
learn the BBN structure (Demiris and Dearden 2005).

Baker et al. (2011) proposed the Bayesian ToM (BToM) as a computational model
that formalizes the concepts inCT and extends it but focuses completely on the theory
of action. Figure8.1 shows the relation between different constructs in this approach.
The principle of rational belief is used as the basis for constructing the probabilistic
relation between perceptions of the robot’s internal state and the environmental state
on one hand and the beliefs on the other. The principle of rational action is used
to relate actions to beliefs and desires. Notice that this model does not distinguish
desires from intentions which means that it has no attentional mechanism. Evolu-
tion of beliefs, desires, and actions over time is governed in BToM by a dynamic
Bayesian Network (DBN) in which current state is affected by previous state and
action, current environmental state is affected only be previous environmental state,
current observations are affected by current internal and environmental states, current
beliefs are affected by previous beliefs, current observations and previous actions,

http://dx.doi.org/10.1007/978-3-319-25232-2_6
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Fig. 8.1 Bayesian ToM showing the relation between beliefs, actions, and desires inspired by
(Baker et al. 2011)

current actions are affected by current beliefs, and desires. BToM does not model
the evolution of desire explicitly.

BToM can be thought of as an implementation of the full action theory assumed to
emerge after four years of age in CT. Computational models of the earlier perception-
desire theories assumed by CT can also be found in literature. Richardson et al.
(2012) investigated the development of these theories in children aged from 3 to 6
years by assessing their internal state inferences after watching a short video showing
a bunny and two fruits in three different conditions that affected the bunny’s beliefs.
The results suggested a developmental shift between three models. The first model
attributes to the bunny the desire of whatever outcome it gets. The more advanced
model used both perception (world states) and desires but not beliefs. This was
called the copy-theorist after Gergely et al. (1995). The final model was the full
BToM (Baker et al. 2011) which employed beliefs as well as desires and perceptions.
This progression corresponds fairly well with the CT progression described earlier
(Gopnik et al. 1997).

Another flavor of TT is the modular theory of mind approach (MT). While CT
employs a general construct (theory generation and revision) as the basis for learning
a theory of mind which is also employed for learning other theories (e.g. appearances
and kinds theories), MT theorists posit the existence of an evolutionary selected
module for reasoning about other people’s minds.

Leslie (1984) provided one of the early accounts ofMT.Threemodules are implied
by this model. The first model (ToBY) represents a theory about physical objects
and causal relations between their change of states in the spatiotemporal domain. It
was assumed by Leslie (1984) that this module is innate, yet some evidence suggests
that it develops in the first six months of age (Cohen and Amsel 1998). This module
allows the child to take the physical stance in Dennett’s terminology (Dennett 1989).
The next module to develop is system-1 of the ToMM. This system is responsible
for modeling goals/desires and actions and begins to appear at the age of 6 months
allowing the infant to understand behaviors in goal-directed manner. This module
corresponds roughly to the copy-theorist (Gergely et al. 1995) in CT (Gopnik et al.
1997). It does not have any conception of beliefs. The final module to develop is
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system-2 of the ToMM. This module represents a complete ToM that allows the
infant to reason about complicated mental states like beliefs and understand how
can mental life drive behavior. The first signs of this module appear at around 18
months and it fully develops by the fourth birthday. Leslie’s model cleanly separates
animate and inanimate inputs which raises some complications about how could
infants distinguish between the two.

AnotherMTmodel was proposed by Baron-Cohen (1997). This model consists of
four modules. The first module is the eye direction detector (EDD) which interprets
eye-gaze direction as a perceptual state. It allows the agent to infer that another agent
is looking at something or is seeing it. This is similar to attribution of belief to the
agent but is less symbolic and is tied to a specific perceptual mechanism (vision).
The EDD is assumed to be the oldest evolutionarily of the four building blocks of
ToMM as most vertebrates can use it to deduce the attention of predators (or prays
for predators). The second module is called he intentionality detector (ID) and is
responsible for detecting goals and desires in self-propelled motions. This module is
assumed be ancient and present in many primates. It allows an agent to understand
goal-directed behavior from other agents in its environment. These two modules
together can be used to attribute desires, perceptions and beliefs to other agents (the
building blocks of a ToM). The third module is called the shared attention module
(SAM) and it takes dyadic representations from the ID and EDD and generates
triadic representations involving the self, the other, and objects of mental states. For
example, it can take the representation of “He sees me” from the EDD and “I see
the toy” and constructs a representation of “He sees that I see the toy”. Both shared
attention and attribution of internal states can be constructed by SAM. The final
module of Baron-Cohen’s model is the ToMM which encapsulates a full ToM using
what is called M-representations that are capable of representing arbitrary complex
mental states like “he sees that I know that he beliefs that I desire that he wants that
she sees the toy”.

One supportive evidence that is usually marshaled in support of MT is the spe-
cific impairment of mindreading ability (ToM) in autistic children as compared with
normal children or even children with Down syndrome. An early study that sup-
ported this hypothesis was conducted by Baron-Cohen et al. (1985) who compared
the performance of normal pre-school normal children, Down syndrome children,
and autistic children on a false-belief task. All children had a mental age of above 4
years, although the chronological age of the second two groups was higher. Eighty-
five percent of the normal children, 86% of the Down syndrome children, but only
20% of the autistic children passed the test. This specific impairment (the argument
goes) suggests that ToM is a specific module that is affected in autistic children
(Nishida et al. 2014). Critics of the theory point out that ToM cannot be though of
as a standard module either because it does not have a limited domain of stimulus
to use and be activated through (Goldman 2006) or because it is affected by higher
cognitive functions (Gerrans 2002).

ToMM provided inspiration for several studies in social robotics thanks to the
clear computational path it provides for implementing ToM. Scassellati investi-
gated a system combining aspects from Leslie’s and Baron-Cohen’s approaches to
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implement a theory of mind in a humanoid robot (Scassellati 2002, 2003). Ono
et al. (2000) added to Baron-Cohen’s model an utterance understanding module to
understand the utterances of others by interacting with the ToMM module.

A simple approach to incorporate something like TT in social robotics is to endow
the robot with a complete folk-psychology theory and use deliberative reasoning—in
the style of good old-fashioned Artificial Intelligence (GOFAI)—to reason about the
internal mental states of people. This approach would be a return to the engineering
approach to social robotics that we argued against in Chap.1. Moreover, it is a chal-
lenging approach given that—despite several efforts—we do not have a satisfactory
common-sense knowledge base upon which to base this kind of theory. Like most
other incarnations of GOFAI, this approach will also suffer from grounding and poor
response time problems.

Nevertheless, all is not lost. We have shown already that CT and MT (variations
of TT) could be used successfully for social robotics. They provided guidance and
inspiration for specific implementations. The idea that rationality is assumed by the
theory (found specially in CT and BToM) informs us that social robots should show
rational behavior in order to activate our intentional stance attribution. From the
modular-nativist approach (as well as studies in early neonatal imitation) we salvage
the idea of the existence of a-priori structures that allow agents to develop their ToMs
during natural interaction with people. These structures need not be encapsulated in
Fodorian modules because of the need to interact heavily with other components of
the cognitive structure of the agent, yet it is still possible to achieve some limited
form of separation—at least in the computational resources—that allows us to focus
on the development of ToM components without having to implement the complete
cognitive structure of the agent.

A different approach to ToM that differs dramatically from TT in the forms of
representations and underlying computational mechanisms is the simulation theory
(ST). The main idea of the simulation theory is that we understand others by putting
ourselves in their position and trying to see what will happen inside our heads if
we were them (i.e. by simulating them). A major difference between the simulation
theory and the theory theory is that there is no need for generalized science-like
laws that we generate by observing other’s behavior (or that we have innately). The
understanding is then driven by simulation rather than propositional inference or any
kind of inference.

Goldman (2006) tracked the history of simulation theory to Hume, Adam Smith
and Kant. In modern times, the theory in its current form and the use of the term
simulation can be traced back to Robert Gordon when he suggested that we pre-
dict others’ behavior by answering the question: What would Ido in that person’s
situation? (Gordon 1986).

If the simulation theory is true, then we run internal simulations of other agents
using the same brain regions and activities that is used for generating our own beliefs,
emotions and motions. This immediately suggests two modes of failure. The simu-
lation may leak into our own beliefs and emotions (contagion) and our own beliefs
and emotions may leak into the simulation (attributing to the other some of our own
beliefs, desires and emotions). There is no clear reasonwhy these two kinds of failure

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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should exist in the theory theories. As the reader may have already noticed, these two
types of failures are common enough to give—at least some weak—support to the
simulation theory. The first type of failure mentioned may be—at least partially—
behind the very known forms of contagion in human behavior ranging from yawning
to emotional contagion and adult unconscious imitation. The second type of failure
is very common in everyday life and may be one of the contributing factors behind
the failure of 3-years old children to pass the false belief task.

Several strands of evidence are now available to support ST. For example,
Kanakogi and Itakura (2011) found that the onset of infants’ ability to predict the goal
of others’ action was synchronized with the onset of their own ability to perform that
action. Moreover, action prediction ability and motor ability for some action were
found to be correlated. The evidence of a correspondence in the impairment of min-
dreading (ToM) and motor abilities in autistic children can also be marshaled as a
supporting evidence for ST (Biscaldi et al. 2014). Nevertheless, this does not explain
the delay in attributing beliefs to other people compared with desires and perceptions
that is well explained by CT (Gopnik et al. 2004).

Another major criticism of ST is that it is not adequate for explaining self-
attribution of mental states (at least in its pure form) as discussed in details by
Goodlman who proposes a hybrid ST-TT approach that emphasizes the simulation
aspect in much of the same spirit as the proposal we put forward computationally in
this book (Goldman 2006).

ST has an obvious computational advantage forAI and robotics. It allows for reuse
of computational resources designed for actuation in understanding of others. Reuse
is a favorite for engineers at all times. Several studies in social robotics utilized one
form or another of ST. For example, a series of studies used an embodied cognitive
architecture called Adaptive Character of Thought-Rational/Embodied (ACTR/E)
to implement a form of a ToMM in the architectural level (Trafton et al. 2013). A
“Like-me” hypothesis is used to derive a simulation within this module to understand
the mental states of others (Kennedy et al. 2009). Nishida et al. (2014) relied heavily
on ST to construct a computational architecture for conversational agents.

In this book, we employ elements of ST, TT, and MT to allow robot learning of
a ToM suitable for understanding the behavior of people in social interactions. Our
approach is sub-symbolic as will be explained in more details in Chap.9. A theory of
mind is useful for predicting the dynamics of others’ intentions, beliefs and desires.
It is important to fully utilize it to have a way to represent these constructs. We turn
our attention now to intention modeling in AI and how it can be adapted to social
robotics.

8.3 Intention Modeling

Intention recognition is one of the major challenges facing realization of autono-
mously social robot (Burke et al. 2004). Natural interaction between people relies
heavily on our ability to understand the intentions of others—even at an implicit

http://dx.doi.org/10.1007/978-3-319-25232-2_9
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level—and use this understanding in guiding our behavior both in cooperative and
non-cooperative domains. A large body of research is dedicated to this problem since
the early days of AI and most of this work relies on a specific view of intention as
some hidden state of the person that needs to be recognized the same way that we
recognize people’s identity given a picture of them in face recognition applications.
We propose that—despite its widespread acceptance—this view of intention driven
from folk psychology is not the best way of thinking about that concept at least in
social robotics.

The traditional view of intention does not only define it as a hidden-state but it
attributes more structure to intention that was paramount in the way HRI researchers
thought about it. Intention in this view is a describable hidden state or a symbol.
By that we mean that—at least in principle—it is possible to verbally describe the
intentions of people. It is the kind of mental structure that can be put to words. Some
other aspects of our mental life may not be describable as most of subconscious
cognition. This assumption about the nature of intention as a describable entity
among related mental entities like beliefs and desires led directly to symbolic and
deliberative algorithms and techniques for both describing and discovering it under
the general framework of Belief–Desire–Intention (BDI) architectures.

The English word Intention has several meanings:

• WordNet: A volition that you intend to carry out
• Encarta:

– Something that somebody plans to do.
– The quality or state of having a purpose in mind.

• Webster dictionary: An anticipated outcome that is intended or that guides your
planned actions

The first definition focuses on the goal, the second on the plan and the third
combines both in some sense. The traditional view of intention seems to focus more
on the goal aspect of the concept which is stable and describable.

8.3.1 Traditional Intention Modeling

What does we mean when we say that a person intends something? Despite the intri-
cacies of intention definition, the question itself implies that intention is something
that a person can do. A specific intention seems to be a mental state that is related to
some content (i.e. whatever is intended).

Intentionality, in philosophy, is usually understood as the power of the mind to be
about something. Intentionality in that sense is not a feature of intention alone but of
other mental constructs like belief and hope. The aboutness is—nevertheless—not
the main feature of intention that we are trying to model in robots as it is implied by
the computational manipulations of internal representations.
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Intentionality according to the traditional view seems to be something that we
have in our minds in relation to other cognitive constructs. Something describable,
with specific identity and either is there or is not there. We either intend something,
intend its negation or we do not intend anything. We may oscillate between these
states but we always are in one of them. This is the view of intention assumed by
folk psychology and is underlying most of the research in intention modeling in HRI
and AI. In a court of law, a crime is either committed with intention or an accident
happened unintentionally. Either one of these is true and it seems that AI and HRI
borrowed this discrete nature of the concept.

It is worthwhile to note that intention in this view (as well as beliefs, desires, and
goals) has all the qualifications of a symbol in the traditional AI sense. Evolution of
the internal state is coded in this framework as continuous adoption and revocation
of different intentions.

As an example of employing this symbolic view of intention, consider the work
of Wang et al. (2013) which uses a statistical approach for inferring human intention
frommotion. Two exampleswhere given for intentionmodeling. Thefirst ismodeling
the intended location of the ball in table-tennis and the second is the intended gesture
during HRI sessions. In both cases, there is a clear domain for intentions(i.e. a
rectangle inR2 representing the table in thefirst case and the list of predefinedgestures
in the second case). The human is assumed to have a single intention belonging to
this domain at every point in time and the goal of the robot is to recover this hidden
intention from the behavior of the human. We will use this example through out this
section to contrast it with our dynamic view of intention.

8.3.1.1 Intention Modeling in AI and HRI

One of the most influential models of intention in AI in general is the planning
theory of intention proposed by Bratman (1987) which considers intention as the
main attitude that directs future planning. There is a close coupling between intention
and goals in this view. The practical usefulness of intention in this framework is to
guide practical reasoning to the most promising areas related to the current situation
to increase the efficiency of the agent. In a sense its main use is as an attention
mechanism.

The Belief–Desire–Intention (BDI) framework is a representative example of this
approach to intention modeling. Here intentions are representations of commitments
to specific plans (Braubach et al. 2004). This commitment has an attentional aspects
by focusing the reasoning power of the agent or robot (Morreale et al. 2006). This
framework represents intentions by symbols and uses deliberative manipulations
intensively and is one of the main frameworks for intention modeling not only in
AI but in HRI research as well (see for example Stoytchev and Arkin 2004; Parsons
et al. 2000).

Even when the traditional BDI approach is not explicitly used in modeling inten-
tion, this view of intention as a goal for a plan that directs behavior is usually assumed
implicitly. Consider the work of Wang et al. (2013) mentioned above. Even though
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the framework used ts probabilistic where Bayesian inference is utilized instead of
logical manipulations used usually in BDI models; still the system assumes that
intention is a predictor of a specific ball location in the table-tennis example or an
action in the action recognition task.

8.3.1.2 Intention Communication in AI and HRI

In social situations, intentions of interacting partners get joined. What does the tra-
ditional view of intention use to model this interaction between partners’ intentions?
In general, the intention-as-a-plan view naturally divides this intention interaction
into two separate processes: intention expression and intention recognition.

Intention expression is a behavioral process that generates external motions and
behaviors representing the hidden intentional state.

Intention recognition is a perceptual process that recognizes the hidden internal
intentional state from sensed external behaviors. In most cases the intention to be
recognized is assumed to be one specific yet unknown member of a set of possible
intentions.

The importance of intention expression and recognition for social robots ledAlami
et al. (2005) to propose integrating HRI within the cognitive architecture of the robot
based on the Joint Intention Theory (JIT) which relies on the aforementioned view
of intention but expands it to handle intention communication to form coherence
between the goals of interacting agents.

The JIT itself is designed after the planning view of intention discussed in this
section. Successful teams in this theory are ones in which all members commit
to a joint persistent goal that synchronizes their own personal intentions (Cohen
and Levesque 1990). JIT uses symbolic manipulation and logic to manage the inten-
tion/belief of teammembers. This approach proved successful in dialogmanagement,
and simple collaborative scenarios.

8.3.2 Intention in Psychology

This view of intention as something we posses from some domain of possible inten-
tions has the advantage of simplicity as well as providing a natural decomposition of
intention communication into expression and recognition stages. Nevertheless, this
view has several problems that we will investigate in this section from the points of
view of experimental psychology and neuroscience. These difficulties do not mean
that this simple model is not useful for modeling intention in social robotics. In many
simple cases, this static view of intention is sufficient and even desirable because of
its simplicity.

Two main types of intention can be distinguished in psychological research
(Gollwitzer 1999): goal and implementation intentions.
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Goal intentions simply specify a goal or an answer to the question: “what
should happen?”. Implementation intentions couple perceived situations with spe-
cific behaviors to achieve some goal. In another word, implementation intentions
are policies not just symbolic goals. They are the precursors of actual intentional
behavior.

Experimental psychology suggests that only a small portion of our day-to-day
activities and behaviors are generated based on prior goal intentions (from 20% to
30% in some accounts) (Sheeran 2002).Why is that the case? Inmost cases the reason
is that we fail to create effective plans from goal intentions. One resolution to this
problem is to construct implementation intentions instead of goal intentions. Being
a policy, implementation intentions come ready with the plan and this was shown to
increase goal attainability (e.g. Gollwitzer and Sheeran 2006; Paschal Sheeran and
Gollwitzer 2005).

It is believed that the existence of an implementation intention increases the prob-
ability of detecting the associated situation, and converts the effort-full plan initiation
action needed to attain goal intentions into effortless unconscious behavior launching
based on environmental cues (Gollwitzer 1999).

Goal intentions are the least effective according to the aforementioned discussion,
yet they are the kind of intentions directly representable in symbolicBDI frameworks.
Robots do not have the problem of distraction or failure to construct a plan (as long
as the planner can find one) but, as with the human case, representation of intentions
as policies (implementation intentions) may improve adaptability to environmental
changes and reduce the computational power required to execute them.

Intention causes action. Nothing seems more common-sense from the viewpoint
of the static view of intention. This is, after all, the basis of the planning theory of
intention. Searle (1983) distinguish between two kinds of intention in relation to
action execution: prior intentions (similar to goal intentions) and intention-in-action.
The later is the direct cause of action while the former may be a contributing factor
in creating the intention-in-action (for more details, see Searle 1983).

This simple causal relation between intention-in-action and action, despite being
common-sensical, was challenged in some neuroscience research suggesting that at
least conscious intention may be the result of action preparation rather than the cause
of it (Haggard 2005).

8.3.3 Challenges for the Theory of Intention

Any theory of intention must meet two challenges. The first challenge is model-
ing intention in a way that can represent all aspects of intention mentioned in the
discussion above including being a goal and a plan, while being able to represent
implementation intentions.

The second challenge is to model intention communication in a way that respects
its continuous synchronization nature which is not captured by the recognition/
expression duality of the traditional view. This means recasting the problem of inten-
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tion communication from two separate problems to a single problem we call Mutual
Intention formation and maintenance.

Mutual intention is defined in this work as a dynamically coherent first and second
order view toward the interaction focus shared by interaction partners.

First order view of the interaction focus, is the agent’s own cognitive state toward
the interaction focus.

Second order view of the interaction focus, is the agent’s view of the other agent’s
first order view.

Two cognitive states are said to be in dynamical coherence if and only if the two
states co-evolve according to a fixed dynamical law.

8.3.4 The Proposed Model of Intention

To solve the problems with the traditional view, we propose a new vision of intention
that tries to meet the two challenges presented in the last section based on two main
ideas:

1. Dynamic Intention, which tries to meet the representational issue (Challenge 1).
2. Intention through Interaction, which meets the communication modeling issue

(Challenge 2).

8.3.4.1 Dynamic Intention

This hypothesis can be stated as:Every atomic intention is best modeled as a Dynamic
Plan.

A Dynamic Plan—in this context—is defined as an executing process—with
specific set of final states (goals) and/or a specific behavior—that reacts to sensory
information directly and generates a continuous stream of actions to attain the desired
final states (goals) or realize the required behavior.

This definition of atomic intentions has a representational capability that exceeds
the traditional view of the intention point as a goal or a passive plan because it can
account for implementation intentions that was proven very effective in affecting the
human behavior.

This definition of atomic intentions is in accordance with the aforementioned neu-
roscience results, as the conscious recognition of the intention-in-action can happen
any time during the reactive plan execution (it may even be a specific step in this
plan) which explains the finding that preparation for the action (the very early steps
of the reactive plan) can proceed the conscious intention.

A single intention cannot then be modeled by a single value at any time simply
because the plan is still in execution and its future generated actions will depend on
the inputs from the environment (and other agents). This leads to the next part of the
new view of intention as explained in the following section.
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8.3.4.2 Intention Through Interaction

This hypothesis can be stated as:

1. Intention can be best modeled not as a fixed unknown value, but as a dynamically
evolving function over all possible outcomes.

2. Interaction between two agents couples their intention functions creating a single system
that co-evolves as the interaction goes. This co-evolution can converge to a mutual
intention state.

The intention of the agent at any point of time—in this view—is not a single point
in the intention domain but is a function over all possible outcomes of currently active
plans. From this point of view every possible behavior (modeled by a dynamic plan)
has a specific probability to be achieved through the execution of the reactive plan
(intention) which is called its intentionality.

The view presented in this hypothesis is best described by a simple example.
consider the evolution over time while a human is drawing a “S” character. In the
beginning when the reactive drawing plan is initiated, its internal processing algo-
rithm limits the possible output behaviors to a specific set of possible drawings (that
can be called the intention at this point).When the human starts to draw andwith each
stroke, the possible final characters are reduced and the probability of each drawing
change. If the reactive plan is executing correctly, the intention function will tend
to sharpen out with time. By the time of the disengagement of the plan, the human
will have a clear view of his/her own intention which corresponds to a very sharp
intention function. It should be clear that the mode of the final form of the intention
function need not correspond to the final drawing except if the coupling law was
carefully designed (Mohammad and Nishida 2007b).

8.4 Guiding Principles

Our discussions of autonomy and historical social embodiment (Sect. 8.1) suggest
that the robot is better equipped with appropriate learning mechanisms and left to
discover for itself how to achieve socially acceptable interaction protocols. On the
other hand, earlier discussions of imitation in Chap. 7 and its role in animal and
human cognition suggest that it could provide a valuable technique for learning
these protocols. This is the approach that will be taken in the following chapters to
achieve autonomous sociality.

Two principles guided our design of the embodied interactive robot architecture
(EICA) described in Chaps. 9–11. The first principle is what we call the historical
social embodiment principle which stresses the need for life-long interaction with
the social environment.

The second principle is the intention through interaction principle which states
that intention should be modeled as a dynamically evolving function that changes
through interaction rather than a fixed hidden variable of unknown value. Interaction
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between two agents couples their intention functions creating a single system that co-
evolves as the interaction goes. This co-evolution can converge to a mutual intention
state of either cooperative or conflicting nature if the dynamical coupling law was
well designed (Mohammad and Nishida 2007a, 2009, 2010).

A common concept in both principles is that of interaction as a kind of co-evolution
between the agent and its social environment. This co-evolution can be modeled by
a set of interaction protocols and these protocols are what the social robot should be
designed to learn.

8.5 Summary

This chapter provided the theoretical underpinnings of the embodied interactive
control architecture (EICA) that will be proposed in Chaps. 9–11 to tackle the
autonomous sociality challenge.We started by definingmore carefully what is meant
by autonomy and sociality in this book and related them to the ideas of embodiment
and agency. This led us to the importance of endowing social robots with a theory of
mind that can help them understand human’s internal mental life and its relation to
behavior. Discussion of different theories for the structure and development of this
theory of mind in humans led us to explore the theory theory, simulation theory, mod-
ular theory, and child scientist theory among others and show how many of them are
already being utilized for social robotics research. Having a theory of mind implies
having the ability to represent intentions of humans. Analysis of intention model-
ing in AI and HRI as well as research about intention in psychology, philosophy
and neuroscience led to the concept of dynamic intention as a function that evolves
with interaction with the environment and get coupled to the intention functions of
other agents to achieve mutual intention in natural interactions. Finally, we summa-
rized the discussions in this and the previous chapter in two principles that guided
our design of the proposed architecture: The historical social embodiment principle
which stresses the need for life-long interaction with the social environment and the
intention through interaction principle which stresses the dynamic evolution and
coupling of intention functions.
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Chapter 9
The Embodied Interactive Control
Architecture

In the previous chapter, we pointed out the main theoretical foundations of EICA
and its guiding principles: intention through interaction and historical social embod-
iment. EICA has two components: a general behavioral robotic architecture with a
flexible action integration mechanism upon which interaction protocol learning to
support autonomous sociality is implemented. In this chapter, we discuss the design
of the behavioral platform of EICA focusing on its action integration mechanism
and provide example applications of social robots that can be implemented directly
using the constructs of this platform without the need for interaction protocol learn-
ing. Chapter 10 will provide the details of our autonomous sociality supporting
architecture that is built on top of the platform discussed here.

9.1 Motivation

The main construct for achieving autonomous sociality are interaction protocols as
discussed in Sect. 8.4. These protocols can be either implicit or explicit protocols
but they correspond to ways of synchronizing and organizing the behaviors of dif-
ferent partners in a social interaction according to their roles in it. Our goal is to
develop an architecture that can support learning of these protocols autonomously.
Because these protocols represent behaviors executed at different time-scales, they
will require a variety of implementation techniques. This chapter introduces a generic
robotic architecture that was designed to handle this situation by allowing different
processes implementing these protocols to co-exist and propose actions for the robot
while providing a general action integration mechanism that can generate consistent
behavior by combining these actions.

Robotic architectures have a long history in autonomous robotics literature.
The earliest of these architectures were deliberative in nature within the sense–
think–act paradigm where logical manipulations of a world representation are
used extensively. One problem common to most of these architectures was poor real-
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time performance and inability to adapt to changes in the environment.
The second wave of architectures focused on solving these problems by being
reactive and encapsulating the robot’s computational functions into a set of behav-
iors designed to reduce the latency between perception and action. These archi-
tectures, nevertheless, lacked the internal representations needed for scalability to
complex situations including social contexts. The third type of architectures were
hybrid architectures that tried to marry the advantages of these two diametrically
different approaches.

Hybrid architectures employed in most cases fixed pre-determined relations
between deliberation and reaction (see for example, Arkin et al. 2003,
Karim et al. 2006). The platform discussed here is a hybrid architecture that does
not limit the relation between deliberation and reaction. Deliberative and reactive
processes occupy the same space and interact with each other using the same com-
munication mechanisms. Only reactive processes are allowed to directly access the
action integration mechanism under the assumption that they represent dynamic
intentions as described in Sect. 8.3.

9.2 The Platform

EICA consists of a set of active components connected by communication channels
and their actions are integrated through an action integration mechanism.

Figure9.1 shows the building blocks of this architecture. Two types of components
exist in the architecture: active components and passive channels. Active components
are the executing components of the architecture and they encapsulate the processing
building blocks of the robot. Channels are used to transfer data and control signals
between active components. Active components in EICA correspond to behaviors in
behavioral systems or agents in multi-agent systems.

There are three types of active components in EICA. The simplest kind are
reflexes that encapsulate fast processing direct couplings between perception and

Fig. 9.1 Embodied interactive control architecture’s (EICA’s) underlying hybrid robotic architec-
ture

http://dx.doi.org/10.1007/978-3-319-25232-2_8
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Fig. 9.2 Schematics of EICA components

action. These components are connected directly to the sensors and actuators of
the robot and their actions override actions from higher components. This is in
direct contrast with subsumed lower processes in the subsumption architecture
(Brooks et al. 1998). These reflexes should be used only to implement reactive
responses to dangerous situations in the environment that require immediate reactions
like collision avoidance.

Other than reflexes, there are two active components in EICA: processes and
intentions. Figure9.2 shows a schematic of a process and an intention. The figure
shows that they share most of their internal structure. Both have data ports for inter-
changing data through data channels (to be explained later). Three special ports exist
for intentions and only two of them are available for processes. The special ports
available for both intentions and processes are activation-level and attentionality.

Activation-level is a value from zero to one that determines the level of importance
of an active entity when exchanging activation and deactivation signals with other
active entities. If activation-level is zero, the entity does not run. It is simply kept in
secondary storage. If activation-level is higher than zero, its value is used to calculate
the effect of its component (either a process or intention) on other components as
will be described when discussing effect channels.

Attentionality is used to implement a form of attention focusing. Active entities
are allowed to use processing power relative to their attentionality value. This means
that a process with low attentionality will get less processor cycles than another one
with higher attentionality.

Intentions have a third special port called intentionality. This value is used to adjust
the effect of intentions on the action integration mechanism as will be explained in
Sect. 9.4.
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This specification for the Active type was inspired by the Abstract Behaviors of
(Nicolescu and Matarić 2002) although it was designed to be more general and to
allow attention focusing.

Special ports (attentionality, activation-level, and intentionality) are adjusted
through effect channels. Each special port is connected to an effect channel as its
output. Every effect channel has a set of n inputs connected to ports (including spe-
cial ports) of active components and one output that may be connected to multiple
special ports. This output is calculated according to the operation attribute of the
effect channel. The currently implemented operations are:

• Max:y = max
i=1:n (xi |ai > ε )

• Min:y = min
i=1:n (xi |ai > ε )

• Avg: y =
n∑

i=1
(ai xi )

n∑
i=1

(ai )

where xi is an input port, ai is the activation-level of the object connected to port
i and y is the output of the effect channel.

• DLT: y is calculated from a lookup table after discretizing the inputs. This effect
channel is useful for implementing discrete joint probability distributions and
makes it possible to translate any Bayesian Network directly into an EICA imple-
mentation.

By convention, processes connected directly to sensors are called perceptual
processes and their outputs are called percepts. This terminology is borrowed from
the C4 architecture (Sect. 6.3.1).

Active components exchange data through data channels. These channels imple-
ment the publisher-subscriber communication pattern. They have multiple modes of
operation the details of which are not necessary for understanding the rest of this
chapter (for details, see Mohammad and Nishida 2009).

Other than the aforementioned types of active entities, EICA employes a central
Action Integrator that receives actions from intentions and uses the source’s inten-
tionality level as well as an assigned priority andmutuality for every DoF of the robot
in the action to decide how to integrate it with actions from other intentions using
simple weighted averaging subject to mutuality constraints. The details of action
integration in EICA are discussed in Sect. 9.4.

The current implementation of EICA is done using standard C++, and is plat-
form independent. The system is also suitable for implementation onboard and in
a host server. It can be easily extended to support distributed implementation on
multiple computers connected via a network. The EICA implementation is based on
Object-Oriented design principles so every component in the system is implemented
in a class. Implementing software EICA Applications is very simple: Inherit the
appropriate classes from the EICA core system and override the abstract functions.

http://dx.doi.org/10.1007/978-3-319-25232-2_6
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9.3 Key Features of EICA

It should be noted here that EICA was designed with natural interaction in mind
and so a lot of infrastructure was implemented to facilitate intention communication,
but—nevertheless—EICA has enough expressive power to implement many other
robotic application like autonomous navigation and accuratemanipulator controllers.
Some of the key features that separate EICA from available robotic architectures will
be summarized in the following points.

1. Intention Modeling: EICA is designed to implement the dynamic view of inten-
tion advocated in Sect. 8.3. Intentions provide the basic building blocks of com-
putation and they are the only active processes allowed to access the action
integrator. Internal interaction between control processes determines the inten-
tionality attributed to each of these intentions. Taken together, active intentions
provide the intention function described in Sect. 8.3. Interactions between differ-
ent robots implemented using EICA couples these intention functions through
the higher control processes realizing the intention through interaction principle
described in Sect. 8.4.

2. Action Selection/Integration: Action integration in EICA is done in two stages: a
distributed stage implemented by adjusting the activation-level attributes of con-
trol processes and intentions and a central stage implemented through the action
integrator process. Through this two-stages process, EICA is able to achieve a
continuous range of integration policies ranging from pure action selection to
action averaging common to behavioral systems. The details of this mechanism
are given in Sect. 9.4.

3. Low level continuous attention focusing. By separating the activation-level from
the attentionality and allowing activation-level to have a continuous range, EICA
enables a distributed form of attention focusing. This separation allows the robot
to select the active processes depending on the general context (by setting the
activation-level value) while still being able to assign the computation power
according to the exact environmental and internal condition (by setting the atten-
tionality value). The fact that the activation-level is variable allows the system to
use it to change the possible influence of various processes (through the operators
of the effect channels) based on the current situation.

4. Relation between Deliberation and Reaction: In most hybrid architectures avail-
able the relation betweendeliberation and reaction is fixedbydesign.An example
of that is the deliberation as configuration paradigm. Some architecture designers
supported the scheduling of deliberation process along with reactive processes
and forced both to compete for processing time (Arkin and Balch 1997), but
EICA took this trend further by imposing no difference on the architectural level
between deliberative and reactive processes. For example, deliberative processes
can take control and directly activate or deactivate intentions. This is useful for
implementing some interaction related social behaviors like turn taking that is
usually implemented as a deliberative process.

http://dx.doi.org/10.1007/978-3-319-25232-2_8
http://dx.doi.org/10.1007/978-3-319-25232-2_8
http://dx.doi.org/10.1007/978-3-319-25232-2_8
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9.4 Action Integration

Action integration is a major concern for any distributed architecture like EICA in
which multiple computational components (intentions in this case) can issue actua-
tion commands. This is of special importance for behavioral architectures because
computation in these architectures are decomposed into vertical stacks that are run
concurrently instead of the horizontal decomposition common to earlier deliberative
architectures (Mohammad and Nishida 2008). There are two general approaches
to action integration: selective and combinative approaches. Selective approaches
select one action from the set of proposed actions at any point of time and exe-
cutes it. Combinative approaches generate a final command by combining proposed
actions using a simple mathematical averaging operation in most cases.The action
integration mechanism proposed in this chapter can be classified as a hybrid two
layered architecture with distributive attention focusing behavior level selection fol-
lowed by a fast central combinative integrator and was first proposed byMohammad
and Nishida (2008).

Mohammad and Nishida (2008) proposed six requirements for an HRI friendly
action integration mechanism based on analysis of selective, combinative and hybrid
action integration mechanisms usually used in robotics. Only, the most important of
them will be discussed here.

The first requirement is allowing a continuous range from purely selective to
purely combinative action integration strategies. This is essential for HRI because of
the intuitive anthropomorphism that characterizes human’s understanding to robot’s
behavior (Breazeal et al. 2005). Thismeans that theminute details of the robot’s exter-
nal behavior may be taken as intentional signals. To make sure that these details are
not affected by the existence ofmultiple active behaviors in the robot,mostHRI archi-
tectures utilize some form of selective action integration. For example, only a single
action from each action group is allowed to execute in C4 (Sect. 6.3.1) and a single
situated module is active at any point in Situated Modules architecture (Sect. 6.3.2.).
Nevertheless, this may lead to jerky behavior as the robot jumps between behaviors
(the usual robotic motion). The ability to handle combinative strategies can be of
value for reducing such jerkiness and achieving human-like smooth motions that
can easily be interpreted as social signals by the robot’s interlocutors. Moreover,
research in nonverbal communication in humans reveals a different picture in which
multiple different processes do collaborate to realize the natural action. For exam-
ple, human spatial behavior in close encounters can be modeled with two interacting
processes (Argyle 2001). It is possible in the selective framework to implement
these two processes as a single behavior, but this goes against the spirit of behavioral
architectures that emphasizes modularity of behavior (Perez 2003).

Given the controllability of selectivity in action integration, amechanism is needed
to adjust it according to timely perceptual information (both from external sensors
and internal state). This leads to the second requirement of enabling control of the
selectivity level in the action integration mechanism based on perceptual and internal
sensory information.

http://dx.doi.org/10.1007/978-3-319-25232-2_6
http://dx.doi.org/10.1007/978-3-319-25232-2_6
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EICA is a parallel architecture with tens and may be hundreds of running active
components. It is extremely difficult to integrate the actions suggested by all of these
active components by hand. A first simplification of this problem was the design
decision of allowing only intentions to issue action commands to the central action
integrator. Still, if action integration strategy depended on global factors like the
specifics of the effect channel connections between running processes and intentions,
adjustment of the strategy will be extremely challenging. The third requirement
is then to make the action integration mechanism local in the sense that it does
not depend on the global relationships between behaviors. For a negative example
consider the Hybrid Coordination approach presented in Perez (2003). In this system
every two behaviors are combined using a Hierarchical Hybrid Coordination Node
that has two inputs. The output of the HHCN is calculated as a nonlinear combination
of its two inputs controlled by the activation levels of the source behaviors and an
integer parameter k that determines how combinative the HHCN is, where larger
values of k makes the node more selective. The HHCNs are then arranged in a
hierarchical structure to generate the final command for every DoF of the robot
(Perez 2003). The structure of this hierarchy is fixed by the designer. That means
that when adding a new behavior, it is not only to decide how to implement it but
where to fit it in this hierarchy. That is why we need to avoid global factors affecting
action integration.

The number of behaviors needed in interactive robots usually is very high com-
pared with autonomously navigating robots if the complexity of each behavior is
kept acceptably low, but most of these behaviors are usually passive in any specific
moment based on the interaction situation. This property leads to the requirement
that the system should have a built-in attention focusing mechanism.

Fig. 9.3 The proposed
action integration
mechanism
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Figure9.3 shows the block diagram of this hybrid action integration system used
in EICA.

9.4.1 Behavior Level Integration

Control Processes implement the behavior-level distributed integrationmechanism in
EICA. This is achieved by adjusting the three special ports of intentions (activation-
level, attentionality and intentionality). Activation-level and attentionality will deter-
mine the computational resources allocated to each intention as discussed earlier in
this chapter while intentionality will determine how much each intention affects the
central action integration mechanism to be discussed later.

Control processes are connected to each other and to intentions through effect
channels. Effect channels can be arranged into hierarchical structures like theHHCNs
in Perez (2003), but rather than carrying action and influence information; the effect
channels carry only the influence information between different processes of the
system.

9.4.2 Action Level Integration

This layer consists of a central fast action integrator that fuses the actions generated
from various intentions based on the intentionality of their sources, the mutuality and
priority assigned to them, and general parameters of the robot. The activation-level
of the action integrator is set to a fixed positive value to ensure that it is always
running. The action integrator is an active entity and this means that its attentionality
is changeable at run time to adjust the responsiveness of the robot.

The action integrator periodically checks its internal master command object and
whenever it finds some action stored in it, the executer is invoked to execute this
action on the physical actuators of the robot.

Algorithm 1 shows the register-action function responsible of updating the
internal command object based on actions sent by various intentions of the robot.
The algorithm first ignores any actions generated from intentions below a specific
systemwide threshold τact . The function then calculates the total priority of the action
based on the intentionality of its source, and its source assigned priority. Based on
the mutuality assigned to every degree of freedom (DoF) of the action, difference
between the total priority of the proposed action and the currently assigned priority
of the internal command, the system decides whether to combine the action with
the internal command, override the stored command, or ignore the proposed action.
Intentions can use the immediate attribute of the action object to force the action inte-
grator to issue a command to the executer immediately after combining the current
action.
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Algorithm 1 Register Action Algorithm (Mohammad and Nishida 2008)
function Register- Action(Action a, Intention s)

if s.activation − level < τact ∨ s.intentionali t y < τint then
exit

end if
c ← current combined command
p ← a.priori t y + max_priori t y × s.intentionali t y
for every DoF i in the a do

combined ← true
if p < c.priori t y ∧ s �= c.source then

c.source ← s
c.dof (i) ← a.dof (i)
c.priori t y (i) ← p
c.has Action (i) ← true

end if
if c.source �= null then

c.source ← null
c.priori t y (i) ← max (p, c.priori t y (i))

else
c.source ← s
c.priori t y (i) ← p

end if
if a.mutual = true ∨ c.source = s then

c.source ← s
c.dof (i) ← a.dof (i)
c.priori t y (i) ← p

else
c.dof (i) ← p×a.dof (i)+c.priori t y×c.dof (i)

p+c.priori t y
end if
if combined = true then

return false
end if
c.actionable ← true
if a.notCombinableWithLower then

c.stopCombiningLower ← true
end if
if a.immediate then

execute c
end if

end for
end function

9.5 Designing for EICA

One of the main purposes of having robotic architectures is to make it easier for the
programmer to divide the required task into smaller computational components that
can be implemented directly. EICA is designed to help achieving a natural division
of the problem by the following simple procedure. First the task is analyzed to find
the basic competencies that the robot must possess in order to achieve this task.
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Those competencies are not complex behaviors like attend-to-human but finer
behaviors like look-right, follow-face, etc. Those competencies are then mapped
to the intentions of the system. Each one of these intentions should be carefully
engineered and tested before adding any more components to the system.

The next step in the design process is to design the control processes that control
action integration of these intentions. To do that, the task is analyzed to find the
underlying processes that control the required behavior. Those processes are then
implemented. The most difficult part of the whole process is to find the correct
parameters of those processes to achieve the required external behavior. Once all the
required behaviors are implemented, any adequate learning algorithm can be used to
learn the optimal values of their parameters. In this chapter we describe e a Floating
Point Genetic Algorithm (FPGA) to achieve this goal. The details of this algorithm
are given in Sect. 9.6 (Mohammad and Nishida 2010). This simple design procedure
is made possible because of the separation between the basic behavioral components
(intentions) and the behavior level integration layer (processes).

The following two chapters will report another design procedure that replaces
careful design for the distributed action integration layer (control processes) with a
developmental learning system based on data mining algorithms. Even the low level
intentions can be learned using this approach leaving only the choice of perceptual
processes and available actuation commands to be the only responsibility of robot
designers.

9.6 Learning Using FPGA

The final behavior of the robot depends crucially on the parameters of each action
component as well as those controlling the timing of activation and deactivation of
these components. Manual adjustment can be used to set these parameters but at
great cost (Mohammad and Nishida 2007). In this section we introduce a floating
point genetic algorithm (FPGA) that was first proposed by Mohammad and Nishida
(2010) for learning any set of parameters in the EICA architecture.

The algorithm is first initialized with n individuals. Each individual consists of
m floating point numbers representing the parameters to be selected (Pi

1 : Pi
m for

individual i). The algorithm iterates for Gm generations doing the following:

1. Calculate the fitness of all the individuals fi and if the highest fitness (max ( fi ))
is higher than the current elite individual fitness ( fe) then make the asso-
ciated individual the current elite individual and remember its fitness value
( fe = max ( fe, { fi })).

2. Select top N individuals by calculating the fitness function of every individ-
ual in the pool. Call this set the regenerating pool. Every individual ri in the
regenerating pool is associated with its fitness fi .
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3. Randomly select n/2 pairs from the regenerating pool using normalized fi as
the probability distribution for selection. This will generate the mating set of the
form {mi } where mi is a set of two individuals 〈rk, r j 〉.

4. Apply the fitness guided cross-over operator explained later between the two
members of every mating pair generating two new individuals. Call the resulting
set the un-mutated offspring set. This set will contain exactly n individuals.

5. Apply the generation guided mutation operator explained later to every one of
the un-mutated offspring with probability pmut to generate the new generation.

The fitness guided cross-over operator is defined as a mapping between two input
individuals (I i

1 and I i
2) and two output individuals (I o

1 and I o
2 ) as follows, assuming

that f1 > f2:

1. Find four candidate individuals I 1:4c are defined using:

I c
1 = I i

1, I c
2 = I i

2,

I c
3 = (1 + α1) I i

1 − α1 × (
I i
2

)
,

I c
4 = (1 + α2) I i

1 − α2 × (
I i
2

)
,

(9.1)

where α1 and α2 are selected randomly satisfying the constraints αmin < α1

< 0.5 and 0.5 < α2 < αmax . If I c
3 or I c

4 is not feasible (one or more of the
parameters are outside the feasible range) then randomly select another value
for the corresponding αi mixing factor and repeat this process until all of the
four individuals are feasible or a predetermined number of iterations (cm) have
passed.

2. Calculate the fitness of these candidate individuals ( fi for i = 1 : 4) and nor-
malize it using:

pi =
(

fi
Gm −g
Gm −1

)rc

∑(
fi

Gm −g
Gm −1

)rc
, (9.2)

where g is the generation number, Gm is the number of generations, and rc

determines how much the generation number affects the algorithm.
3. Using pi as a probability distribution select two output individuals.

The operator first generates four hypotheses including different mixing ratios
of its two inputs and then uses the fitness of these four hypotheses to select the
final two offspring. Since the final selection is done probabilistically, lower fitness
individual can make it to the offspring to provide better diversity in the next gener-
ation. This dependence on the fitness is low in the first generations and becomes
higher with advanced generation to explore more space in the beginning while
focusing the search at the end. This operator is similar to other operator suggested
for floating point genetic algorithms in general (Mahanti et al. 2005; Devaraj and
Yegnanarayana 2005).
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The generation guided mutation operator is defined as a mapping between one
input individual (I i ) and one output individual (I o) as follows:

1. Calculate two probability distributions over the integers from 1 tom (the number
of parameters to be optimized) as follows:

P+ (k) = σk
m∑

i=1
σi

, P− (k) = 1 − P+ (k) , (9.3)

where σi = 1
n−1

n∑
k=1

(Ii 〈k〉 − μ 〈k〉)2.
2. Calculate the probability distribution ofmutation over the parameters (Pμ) using:

�

P
μ

(k) = g
Gm

P− (k) +
(
1 − g

Gm

)
P+ (k) ,

Pμ (k) =
�
P

μ

(k)
m∑

i=1

�
P

μ

(i)
.

(9.4)

3. Select an integer (β) from 1 to m using the distribution Pμ.
4. Mutate parameter β of the input individual using:

I o (β) =
⎧
⎨

⎩
I i (β) + η

(
Gm−g

Gm

)rm (
Imax (β) − I i (β)

)
if γ > 0.5,

I i (β) − η
(

Gm−g
Gm

)rm (
I i (β) − Imin (β)

)
if γ ≤ 0.5,

(9.5)

where η and γ are random numbers between 0 and 1. η is used as the mutation
strength and γ is used to select either to increase or decrease the value of the
parameter. I (i) is the value of parameter number i of individual I , Imax (i),
Imin (i) are the maximum and minimum acceptable values of the parameter i ,
and rm determines howmuch the mutation operator is affected by the generation
number.

This mutation operator first selects the mutation site to be (with high probability)
near the point of low variance in the beginning of the evolution in order to generate
more diversity in the next generation by increasing the variance of this parameter,
then the operator gradually shifts to selecting the parameter of maximum variation in
advanced generations to explore more areas of the parameters space in by changing
these dimensions that are not yet settled while not affecting the settled dimensions.

9.7 Application to Explanation Scenario

Event though this chapter introduced only the low-level platform of EICA without
the HRI specific components to be described in Chap.10, this platform can be used
(andwas used) to implement social robotics applications directly due to the flexibility

http://dx.doi.org/10.1007/978-3-319-25232-2_10
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of action integration and attention focusing it provides and the simple design proce-
dure (Sect. 9.5) combined with the learning algorithm outlined in Sect. 9.6. We will
report here two implementations of gaze-control in the explanation scenario outlined
in Sect. 1.4.

9.7.1 Fixed Structure Gaze Controller

The gaze controller implemented in this section uses the design procedure mentioned
in Sect. 9.5 and is inspired by research on human nonverbal behavior in close
encounters.

Four intentionswere designed that encapsulate the possible interaction actions that
the robot can generate, namely, looking around, following the human face, following
the salient object in the environment, and looking at the same place the human is
looking at. These intentions where implemented as simple state machines (for details
of the internal structure of these intentions, see Mohammad and Nishida 2010).

A common mechanism for the control of spatial behavior in human–human
face-to-face interactions was the approach-avoidance mechanism (Argyle 2001).
The mechanism consists of two opposing process. The first process (approach) tries
to minimize the distance between the person and their interaction partners (subject to
limitations based on power distribution structure). The second process (avoidance)
tries to avoid invading the personal space of the partner. The interaction between
these two processes generates the final spatial distribution during interaction.

Mohammad and Nishida (2010) borrowed this idea to implement the behavioral
integration layer of the gaze controller. These two processes were not enough for
our scenario because of the existence of objects in the explanation scenario and the
need of the robot to attend to these objects. A third process (mutual attention) was
specially designed to achieve this goal.

The behavioral level integration layer of this fixed structure controller thus uses
three processes as follows (Mohammad and Nishida 2010; Mohammad et al. 2010):

1. Look-At-Instructor: This process is responsible of generating an attractive virtual
force that pulls the robot’s head direction to the location of the human face.

2. Be-Polite: This process works against the Look-At-Instructor process to provide
the aforementioned Approach-Avoidance mechanism.

3. Mutual-Attention: This process aims to make the robot look at the most salient
object in the environment when the instructor is looking at it.

Five perception processes were needed to implement the aforementioned
behavioral processes and intentions (Mohammad and Nishida 2010; Mohammad
et al. 2010):

1. Instructor-Head: Continuously updates a list containing the position and direc-
tion of the human head during the last 30 s sampled 50 times per second.

http://dx.doi.org/10.1007/978-3-319-25232-2_1
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2. My-Head: Continuously updates a list containing the position and direction of
the robot head during the last 30 s sampled 50 times per second.

3. Instructor-Gaze: Calculates the intersection between the direction of gaze of the
instructor and the plan on which the objects used in the explanation are located.

4. Gaze-Map: Continuously updates a representation of the distribution of the
human gaze both in the spatial and temporal dimensions.

5. Speaking: Uses the power of the sound signal to detect the existence of human
speech.

Mohammad and Nishida (2010) analyzed the performance of this simple gaze
controller and showed that it can achieve human-like gaze behavior in the expla-
nation scenario even without access to the verbal content of instructor’s utterances.
For example, the robot achieved mutual gaze 26.72% of the interaction time com-
pared 28.15% of the time for a human in the same situation. It engaged in mutual
attention (looking at the same object as the instructor) 60.62% of the interaction time
compared with 57.23% for a human subject.

For more detailed evaluation of the performance of the two aforementioned gaze
controllers six new sessions in which an instructor is explaining the operation and
connections of a medical device (Polymate physiological signal acquisition system
from TEAC) to a human listener were conducted. The two gaze controllers described
in this section and the previous section were compared with three simpler controllers
that either moved the head randomly (Random), looked continuously at the most
salient object (Fixed) or at the instructor’s face (Stare).

9.8 Application to Collaborative Navigation

The first robot that was controlled using the EICA architecture is a miniature
e-puck robot designed to study nonverbal communication between subjects and the
robot in a collaborative navigation situation. The goal of this robot was to balance
its internal drive to avoid various kinds of obstacles and objects during navigation
with its other internal drive to follow the instructions of its operator who cannot see
these obstacles and to give understandable feedback to help its operator correct her
navigational commands.

The main feature of the control software in this experiment was the use of Mode
Mediated Mapping which means that the behavioral subsystem controlling the actu-
ators is only connected to the perceptual subsystem representing sensory information
through a set of processes called modes. Each mode continuously uses the sensory
information to update a real value representing its controlled variable. The behavioral
subsystem then uses these modes for decision making rather than the raw sensory
information.Mohammad et al. (2008) showed that this simple implementation allows
the robot to give nonverbal feedback to the user that ismore effective than using verbal
feedback.
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9.9 Summary

This chapter introduced the behavioral platform upon which the Embodied
Interactive Control Architecture (EICA) was built. Computational processes in this
platform are either intentions or processes with the intentions representing the inten-
tion function discussed in Chap.8 and the processes providing distributed behavior
integration. The second stage of action integration is provided by a central action inte-
grator process. This action integration system was designed to allow the full range of
selective and combinative action integration strategies. We discussed the bottom-up
approach for designing social robots using just this platform and discussed the role
of parameter learning with an example implementation of a floating point genetic
algorithm. Experimental evaluations of the architecture in both the explanation and
guided navigation scenarios are also reported.
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Chapter 10
Interacting Naturally

The previous chapter introduced the behavioral platform of EICA upon which we
built our approach to social robotics. This chapter provides the details of this archi-
tecture in light of the theoretical foundations presented in Chap. 8 and shows how
different parts of the architecture fit together to provide human-like interaction capa-
bilities for the robot. The following chapter will discuss the learning algorithms used
to develop this system and learn all of these processes from watching human–human
and other human–robot interactions and how these processes can be adapted through
actual interaction with people to provide better social performance.

10.1 Main Insights

Chapter 8 discussed the theoretical underpinning of our approach to social robot-
ics. Two main principles were proposed based on this analysis: historical social
embodiment and intention through interaction principles. These two principles will
be utilized here to provide design guidelines for the architecture of the social robot.

Based on the intention through interaction principle, social interactions should be
arranged as interaction protocols that computationally define the coupling functions
between the intention functions of interacting partners. An interaction protocol is a
computational structure that encapsulates the dynamics of this coupling in a specific
interaction context. Different partners in the interaction are to be represented by roles
that define their behavior during the interaction. This chapter will detail how these
protocols are represented and activated in our proposed architecture.

Based on the historical social embodiment principle, these interaction protocol
should be learned and adapted throughout the lifetime of the robot instead of being
hard-coded or engineered within it from the start. It should be clear that this does
not mean that the protocols cannot be engineered to some degree. For example, it
is unavoidable for the designed to select the set of percepts available to the control
processes and the set of actuators that the robot can utilize for feedback. Nevertheless,

© Springer International Publishing Switzerland 2015
Y. Mohammad and T. Nishida, Data Mining for Social Robotics,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-3-319-25232-2_10

245

http://dx.doi.org/10.1007/978-3-319-25232-2_8
http://dx.doi.org/10.1007/978-3-319-25232-2_8


246 10 Interacting Naturally

watching interactions of other people (which is a social act) and engaging in such
interactions should leave their marks on the robot’s computational processes in the
form of adaptation or learning. Other than this theoretical motivation, engineering
interaction protocols is a challenging task given the complexity of human social
behavior. Relying on learning techniques then has both theoretical and practical
justifications. Chapter 11 will detail the process that is utilized by our architecture
for learning and adapting these protocols.

How are these protocols to be structured? The simulation theory (Sect. 8.2) sug-
gests thatweunderstand theminds of others by simulating them. Interaction protocols
are structured as a set of roles with dynamic interactions between them. Given these
two premises, we can propose that every role in the interaction protocol should be
represented by a set of control processes in EICA that are then connected together
through effect channels to provide the dynamic interaction required. This has the
effect of representing other partners in the interaction as specific processes within
the computational architecture of the robot as suggested by the simulation theory.
Moreover, these same processes can be used to actually interact using the same
protocol but in different role in the future.

This ability to interact in all roles of the interaction protocol is clearly an advan-
tage from an engineering point of view. For example in the explanation scenario
(Sect. 1.4), the same computational structure will support interacting both as the
explainer (instructor) and as the listener. Moreover, as will be clear in the following
chapter, this arrangement makes it possible to learn both roles simultaneously.

Face-to-face interactions are governed in human–human encounters by a variety
of synchronization protocols at different time-scales. Compare for example the fast
spontaneous gestural dance with turn-taking during verbal dialog. This suggests that
the interaction protocols governing these behaviors are hierarchical in nature with
different horizontal protocols coupling the two interaction partners at different time-
scales.

Processing in the human brain usually combines top-down and bottom-up infor-
mation flows. For example, the adaptive resonance theory (ART) posits such two-
directions flow for the location memorization mechanism implemented by the hip-
pocampus (Carpenter and Grossberg 2010). This suggests that information flow in
the processes representing interaction protocols should employ both top-down and
bottom-up processing.

This discussion highlights four main insights behind the design of EICA are:

1. Interaction protocols are to be implemented as interacting processes representing
all roles of the interaction.

2. Interaction protocols are hierarchical in nature while allowing dynamic exchange
of influence and data between processes of each role at each level of the hierarchy.

3. Influence and data flows within these protocols should combine top-down and
bottom-up directions.

4. Information processing within interaction protocols should not distinguish the
cases when the robot is in any of the roles of the interaction protocol. This indis-
tinctness between different roles is a direct consequence of employing a common
structure for acting and understanding of others’ actions.

http://dx.doi.org/10.1007/978-3-319-25232-2_11
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10.2 EICA Components

Figure10.1 shows the general structure of the proposed architecture. Themain goal of
EICA is to discover and execute an interaction coupling function that converges into
a mutual intention state. Social researchers discovered various levels of synchrony
during natural interactions ranging from role switching during free conversations and
slow turn taking during verbal interaction to the hypothesized gestural dance (Kendon
1970). To achieve natural interaction with humans, the agent needs to synchronize its
behavior with the behavior of the human at different time scale using different kinds
of processes ranging from deliberative role switching to reactive body alignment.

The architecture is a layered control architecture consisting of multiple inter-
action control layers. Within each layer a set of interactive processes provide the
competencies needed to synchronize the behavior of the agent with the behavior of
its partner (s) based on a global role variable that specifies the role of the robot in
the interaction. The proposed system provides a simulation theoretic mechanism for
recognizing interaction acts of the partner in a goal directed manner. EICA com-
bines aspects of the simulation theory (during social interaction with people) and the
theory-theory during learning of the interaction protocols.

As with any EICA based system (See Sect. 9.5), we need to identify three sets
of components to specify the computation structure of the robot: intentions, per-
ceptual processes and control processes. Perceptual processes are limited by the
sensing capabilities of the robot and we will not consider them any further in this
general discussion. The two remaining parts of the system are intentions and control
processes.

Fig. 10.1 Interaction Protocols as implemented in EICA. Basic social behaviors are implemented
as intentions that are controlled using a hierarchy of interaction control processes representing
different roles in the protocol. Both within layer and between layer protocols are shown

http://dx.doi.org/10.1007/978-3-319-25232-2_9
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Each social intention is implemented as a pair of intentions inEICA.Oneof them is
called the forward intention and it drives actuators and the other (inverse intention)
is connected to perceptual processes. The inverse intention detects the actions of
interaction partners and uses them to find the probability that the corresponding
forward intention is activated in the partner assuming that (s)he/it is using the same
protocol as the robot. This arrangement is inspired from mirror neuron research in
neuroscience (Gallese and Goldman 1998). These interaction intentions are shown
in the bottom row of Fig. 10.1. Notice that social intentions are organized in sets
representing the roles of different agents in the interaction protocol. The interactions
between partners in the real world at the fastest level of synchrony are represented in
the architecture by within-layer protocols which are effect channels running between
social intentions of different roles in the protocol.

Social intentions provide the lowest level of interaction capacities represented by
the architecture. The activation of these capacities is controlled through higher level
interaction control processes that are organized, again, in roles but also organized
vertically in a hierarchy to represent the interaction protocol at increasing abstraction
and slower synchrony levels.

Every interaction control process consists of two EICA control processes similar
to social intentions: a forward and an inverse process. This reliance on forward and
inverse processes is similar to the HAMMER block (Sect. 6.3.3). The main differ-
ences are that all the processes in EICA are learned through watching interactions,
that these processes are organized in roles corresponding to the interaction protocol
and that the system does not limit the implementation technology of these processes
to Bayesian Networks. In our implementations, we used both BNs and NNs for these
processes.

Interaction control processes control the activation level, intentionality and atten-
tionality of social intentions through effect channels that pass between control layers.
These are called between-layer protocols. Social intentions can also affect the atten-
tionality and activation level of interaction control processes through between-layer
protocols. These two directions of influence provide the top-down and bottom-up
processing paths in EICA.

Social intentions and interaction control processes provide the basic building
blocks of the proposed architecture. They require a set of supporting processes to
receive their data and support their operations. These are the perspective taking
processes, interaction perception processes, and the mirror trainer.

Interaction perception processes are responsible for generating percepts related
to the interaction like the gaze direction of different partners, object locations related
to the interaction, relative locations and orientations of interaction partners, etc.

Perspective taking processes are responsible for converting all percepts to the point
of view of every role in the interaction protocol. These are fed to the social intentions
of each role to provide the indistinctness between cognitive roles discussed earlier.
They are also responsible of perceiving the actions of other partners and converting
them to appropriate forms for the inverse intentions within social intention pairs to
predict the activation level of different intentions of the partner under the “Like-me”
hypothesis (Meltzoff 2005).

http://dx.doi.org/10.1007/978-3-319-25232-2_6
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The mirror trainer is responsible for keeping forward and inverse intentions and
processes in syncwhen either of them is changed through adaptation or added through
learning (See Chap.11).

10.3 Down–Up–Down Behavior Generation (DUD)

The previous section presented the basic constituents of our proposed EICA architec-
ture for modeling interaction protocols for social robots. This section addresses the
behavior generationmechanism that is used to generate the final behavior of the social
robot. Top-down and Bottom-up behavior generation mechanisms are combined at
every interaction control layer and simulation is used as the primary mechanism for
representing the minds of other agents involved in the interaction.

Algorithm 2 provides an overview of the proposed behavior generation mech-
anism. As it is always the case with EICA, all processes at all interaction control
layers are running in parallel. The algorithm provides only a shorthand serialized
explanation of the interaction between these processes.

Algorithm 2DUDBehaviorGenerationMechanism (Mohammad andNishida 2015)
1. Set role variable to the current role in the interaction.
2. Use perspective taking processes to generate input to all inverse intentions and propagate the

calculation of all inverse interaction control processes of all layers.
3. Asynchronously calculate intentionality of all forward intentions using within-layer, up-going,

and down-going factors.
4. Asynchronously calculate activation-level of all forward interaction processes using within-

layer, up-going, and down-going factors.
5. Asynchronously update inputs and calculate outputs of forward intentions and propagate the

calculations to all forward interaction control processes.
6. Repeat these steps until role changes or all activation levels become zero (end of interaction).

We will use the explanation scenario (Sect. 1.4) for illustrating the operation of
this system. In this scenario we have two roles: instructor and listener. We assume
that the robot is interacting in the listener role hereafter but it is easy to extend the
discussion to cases in which the robot takes the instructor’s role or even to cases with
more than two roles in the interaction.

In this case, the intentions represented in the basic interaction acts (Fig. 10.2) can
be processes like look at partner, nod, look at object,face partner, approach partner,
avoid partner, point to object, etc. Section11.1 shows how can these intentions
be learned by imitating human behavior in natural human–human interaction. In
this chapter, we assume that such intentions are given and that the mirror trainer
successfully synchronized the forward and inverse intention in each pair.

An interaction control process (interaction process for short) in the first layer
may be something like mutual attention which will adjust the activation levels of

http://dx.doi.org/10.1007/978-3-319-25232-2_11
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Fig. 10.2 Representation of interaction protocols in theEICAarchitecture. The robot is represented
by the control stack running only in the forward direction (right),while other agents in the interaction
are represented by simulation stacks running in both directions (left). See the text for details

the intentions look at partner and look at object to achieve mutual attention to the
same object attended to by the instructor. A higher yet control process may be listen
which adjusts the activation level of mutual attention, mutual gaze, etc. that exist in
the first control layer to achieve a natural listening behavior.

EICA utilizes a hierarchy of dynamical systems corresponding to different inter-
action control layers that represent the interaction protocol at different speeds and
abstraction levels. There are three influence paths that are activated during behavior
generation called the theory, simulation and control paths (Fig. 10.2). These paths
represent effect-channels in EICA not data channels (See Chap. 9). Data channels
can connect any processes in the same layer or processes in the adjacent control
layers of the same role.

The control path runs top-down and models the internal control of the robot itself
based on the role assigned to it in the interaction. It contains only forward intentions
andwill implement the kind of nonverbal behavior described above for the listen case.
For this path to work effectively, information is needed about the partner’s intentional
behavior and the interaction protocol itself and these are represented by the simulation
and theory paths in order. Notice that the inverse processes for the role taken by the
robot are disabled (grayed in Fig. 10.2) because the robot already knows its own
intentions through the control path. This disabled direction of activation though may
be useful for representing self-reflection or for implementing some form of feedback
control between the layers which we do not pursue further here.

The simulation path represents a simulation of partner’s behavior assuming its cur-
rent perceived situation as encoded through perspective taking processes. The lowest
level of this path are forward and inverse intentions corresponding to a simulation of

http://dx.doi.org/10.1007/978-3-319-25232-2_9
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the partner (e.g. the instructor in our running example). These intentions are copies
of the intentions running in the control path that represent the internal state of the
partner(s) assuming that she is controlling her actions using the same architecture
(the “Like-me” hypothesis). The forward intentions in this path need information
about the situation as seen through the eyes of the partner represented and this infor-
mation is made available by the perspective taking processes. Perspective taking in
the explanation scenario for example can be implemented by changing the frame
of reference of all objects in the scene by projecting them to a frame of reference
attached to the location and direction of attention of the partner. Both forward and
inverse processes and intentions are active in the simulation path to represent both
top-down and bottom-up processing directions in the model of the simulated agent.

The final path is the theory path which is not represented by any active processes
but by the effect channels between processes representing the self and processes rep-
resenting other partners in the interaction. This theory represents the levels of speci-
fication of the interaction protocol and is responsible of synchronizing the behavior
of the robot with its partners in the interactions at all speeds and levels of abstraction.
It is the need for representing interaction protocols that made it necessary to have this
path which departs from the pure simulation theoretic approach of ST as discussed
in Sect. 8.2.

The three paths are interacting to give the final behavior of the robot. It is possible
to have multiple interaction protocols implemented in the robot in the form of differ-
ent stacks of interaction control processes to represent different interaction contexts.
This is similar to the case of situated modules in the Situated Modules architecture
of Sect. 6.3.2.

As shown in Fig. 10.2, the activation level of each forward control process is
controlled through three factors:

1. The activation level of the corresponding inverse process. This is called the up-
going factor.

2. The activation level of other forward corresponding to other roles in the interaction
(from the control or simulation paths). This is called the within-layer factor.

3. The output of higher level interaction processes corresponding to the self for the
control path and to the same role in the simulation path. This is called the inter-
layer protocol factor. This factor represents the top-down activation representing
the relation between the interaction protocols at different time scales and is called
the down-going factor.

The architecture itself does not specify which type of effect channels to be used
for combining these factors. In our implementations though we used either DLT or
AVG effect channel types (See Sect. 9.2 for details).

After understanding how each process and intention is activated we turn our
attention to themeaning of the inputs and outputs of them. The input-output mapping
implemented by intentions and processes is quite different and for this reason we
will treat each of them separately. Moreover inverse and forward versions are also
treated differently.

http://dx.doi.org/10.1007/978-3-319-25232-2_8
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The input for the forward intentions representing the current role (in the control
path) is taken directly from the sensors while its output goes to the actuators. The
inputs for the corresponding forward intentions representing all other roles in the
interaction (the simulation path) are taken from perspective taking processes and the
output is simply discarded. In actual implementation the forward intentions corre-
sponding to other agents are disabled by having their attentionality set to zero to save
their computation time.

The inputs to reverse intentions in the theory path are the last nz values of all the
sensors sensing the behavior of the partner. The output is the probability that the cor-
responding forward intentions are active in the partner control architecture assuming
that the partner has the same control architecture (the central hypothesis of the theory
of simulation). This output is the up-going factor affecting the activation level of the
corresponding forward intention. It is also used for adapting the parameters of this
forward intentions as will be shown in Sect. 11.3.

Reverse processes are doing exactly the same job with relation to forward
processes. The only difference is that because of the within-layer factor reverse
processes in general have a harder job detecting the activation of their corresponding
forward processes in the partner. To reduce this effect, the weight assigned to the
reverse processes is in general less than that assigned to reverse intentions in the
effect channels connected to their respective forward processes.

10.4 Mirror Training (MT)

The mirror trainer is not invoked during behavior generation but is invoked during
learning to make sure that the inverse interaction control processes are in synchrony
with forward interaction control processes. This synchrony means that the inverse
version can detect the activity of the forward version and can estimate its activation
level (activation-level for processes and intentionality for intentions).

The algorithm used to do mirror training is very simple. The mirror trainer instan-
tiates a copy of the forward intention or process that is to be learned, gives it random
inputs, and gets its output. These are then used as positive examples. The trainer
then instantiates other forward processes and reads their output for the same inputs
and these are the negative examples. All inverse processes in current implementation
are implemented as radial basis functions neural networks (RBFNNs). RBFNNs are
proved to be global function modelers and can represent most functions of inter-
est. The mirror trainer then uses well known RBFNN training algorithms with the
collected sets of positive and negative examples to learn the mapping.

Because of the difficulties in learning the reverse processes due to the existence of
within-layer up-going factors, the mirror trainer trains the systemwith various values
of these factors and at run time the reverse process selects the neural network that is
trained with the nearest values of these factors to the actual values. This reduces the
effect of these factors without increasing the computational time much.

http://dx.doi.org/10.1007/978-3-319-25232-2_11
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A second possibility is to use the time-series representing the motion from the
forward intention or processes as training examples for a HMM as explained in
Sect. 2.4.3. We use this approach for learning inverse intentions and use RBFNNs
for inverse processes.

10.5 Summary

This chapter provided an overview of the EICA architecture as being used for social
robotics application. We discussed the motivation behind the general design of the
architecture and how it related to the underlying behavioral architecture discussed
in Chap.9.

Processes of this architecture are organized in different interaction control layers
and each process has two twin computational components namely the forward and
inverse versions of it. The forward version is used to generate the required behavior
while the inverse version is used to detect this behavior in the perceived data streams.
Mirror training is used to keep these two processes in sync. The proposed behavior
generation mechanism (called Down–Up–Down algorithm) was also discussed and
its inspiration from cognitive models presented. In the following chapter we detail
the algorithms used in the three stages presented in Chap.1 to create all intentions and
processes in EICA by mining human–human interaction records and then adapting
them with actual human–robot interactions.
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Chapter 11
Interaction Learning Through Imitation

In Chap.10 we presented an overview of proposed architecture and detailed how
can it generate behavior given that the intentions and processes involved are already
available. This chapter describes a three–stages developmental approach to learn
intentions and processes that can be used to generate interaction protocols to be
run by the EICA architecture. The first two stages require logs of human–human
interactions that are processed by the robot to learn the intentions (first stage) and
interaction control processes (second stage) involved.After these two stages the robot
is able to behave, more or less, in accordance to the interaction protocol it learned
and is ready to engage in real human–robot interactions. The third stage involves
adaptation of th interaction protocol learned in the first two stages while interacting
with people.

11.1 Stage 1: Interaction Babbling

This section focuses on the first developmental stage of the proposed architecture
called Interaction Babbling. Before this stage the only available parts of the agent
are its sensors, actuators, perceptual processes and perspective taking processes (See
Fig. 10.2). This entails that the agent is not a “blank slate” in the beginning as the act
of selecting these components by the designer constrains the possibilities of the agent.
For example, without a camera or a similar sensor; it is impossible for the robot to
learn fromvisual stimuli. Evenwhen a camera is available, if the perceptual processes
donot provide information about color, color perceptionwouldbe impossible because
the intentions and control processes of the robot are connected to the sensors only
through perceptual processes as shown in Fig. 10.2.

The goal of this stage is to learn the basic interactive acts layer which consists of
intentions representing basic actions related to the interaction. Only forward inten-
tions need to be learned as inverse intentions can then be created using the mirror
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trainer (Sect. 10.4). Two steps are involved: firstly, the perceptual/actuation features
of the intention are learned from the output of perceptual processes. Secondly, these
motions are used to learn controllers that can generate the same motions using the
robot’s actuators.

11.1.1 Learning Intentions

Algorithm 3 Interaction Babbling
1. Filter input stream to generate interaction related time series (e.g. convert all motion capture

data to ego-centric coordinates).
2. Apply change point discovery (e.g. RSST from Sect. 3.5) to input stream to discover probable

locations of recurrent patterns (the constraints).
3. Apply amotif discovery algorithm (e.g.MCFull fromSect. 4.6) using the constraints calculated

in the previous step to discover intention representation in the input space as recurring motifs.
4. Find the mean pattern representing each motif and use it to generate a controller able of

moving the robot to generate the same behavior (this is the controller generation process of
Sect. 11.1.2).

The problem of learning interactive intentions can be casted as an unsupervised
discovery of recurrent patterns (the basic actions) from a stream of unmarked input
data (behavior). This is the standard motif discovery algorithm discussed in Chap.4.
In our case the input is a multidimensional time series corresponding to the outputs
of different perceptual processes (See Sect. 10.2). The general algorithm we used for
solving this problem is shown in Algorithm3.

Firstly, robot’s sensors and perspective taking processes are used to capture the
behavior of both the robot and its partner as a multidimensional time series. In
some cases the raw output of the hardware sensors needs to be filtered or processed
at this step. For example, our motion capture system (PhaseSpace) generates the
locations of predefined points in the partner body, but these locations are in a
global coordinate system attached to the cameras of the motion capture system.
During interaction it does not matter whether the partner is at point 〈1, 1, 1〉 or
〈34.343, 64.243,−34545.45〉, but what matter is his/her relative location to the part-
ner. This can easily be found by simple coordinate conversion (affine transformation)
knowing the current location of the robot. This kind of preprocessing is necessary to
maximize the possibility of discovering relevant patterns.

Secondly, a change point discovery algorithm from Chap.3 is used to find inter-
esting locations in the outputs of these perception processes (for example RSST
from in Sect. 3.5). This step is done to convert the problem form unconstrained motif
discovery to a constrained motif discovery problem (Sect. 4.6) that can be solved

http://dx.doi.org/10.1007/978-3-319-25232-2_10
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http://dx.doi.org/10.1007/978-3-319-25232-2_3
http://dx.doi.org/10.1007/978-3-319-25232-2_3
http://dx.doi.org/10.1007/978-3-319-25232-2_4


11.1 Stage 1: Interaction Babbling 257

in linear (or sub-linear) time. This speedup step is necessary as the lengths of time
series we need to process can easily be in millions of points and traditional motif
discovery algorithms that work in superlinear time cannot handle these long time
series with acceptable speed.

Thirdly, A motif discovery algorithm (Chap.4) is applied to discover recurrent
patterns in the processed input streams. Each discovered pattern is then attached to
a forward intention.

Fourthly, themean of the discovered pattern (from its occurrences) is used to build
a controller able of generating the required behavior as will be shown in Sect. 11.1.2.

Finally, the occurrences of each pattern are used to induce aHiddenMarkovModel
that represents the discovered pattern. This HMM is then used to detect the required
behavior during activation of the robot (inverse intention). This is done through the
mirror trainer (Sect. 10.4).

11.1.2 Controller Generation

The final step in Algorithm3 is to generate a controller that can make the robot
behave as dictated by the mean of each discovered motif (pattern). If we have direct
access to the joint angles of the participants used for generating this motion, it is
possible to directly use algorithms from Chap.13. In our experimental situation, we
did not have direct access to this data which means that we need to solve an inverse
kinematics or inverse dynamics problem (depending on the kind of data we have)
before applying any standard learning from demonstration system from Chap. 13.
In this section, we explain a different approach that allows the robot to learn the
inverse problem (kinematic or dynamic depending on the input) while learning the
controller represented by the forward intention associated with the motif discovered
in the previous step in perceptual processes’ outputs. This is achieved in two step.
In the first step (motor babbling), the robot uses random exploration of its actuators
to discover a set of functions that can either increase or decrease a single dimension
from the output of its perceptual processes keeping all other dimensions fixed. The
second step (piece-wise linear controller generation) then uses these functions to
learn a linear approximation of the motif mean learned in the intention learning
phase (Sect. 11.1.1).

During motor babbling, the robot builds a repertoire of motor primitives related to
the action dimensions that will be used in controller generation. Two functions are to
be learned for eachdimensionof the outputs from theperceptual processes (Fig. 10.2).
The first function F+

i receives a constant rate δi and increases that dimension by that
output by applying commands to the actuators of the robot while keeping other
dimensions constant and the second function F−

i decreases that dimensions with the
same rate δi . Effectively these functions convert the problem of multivariable control
to single input single output control problem.

http://dx.doi.org/10.1007/978-3-319-25232-2_4
http://dx.doi.org/10.1007/978-3-319-25232-2_10
http://dx.doi.org/10.1007/978-3-319-25232-2_13
http://dx.doi.org/10.1007/978-3-319-25232-2_13
http://dx.doi.org/10.1007/978-3-319-25232-2_10
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A simulator can be used to reduce he risks to the robot during this stage. The robot
starts in a predefined initial state and tries random motion actions (commands to its
motors C) keeping track to the changes happening to each of its action dimensions.
This training data is then used to learn F+

i , F−
i . Thus F+

i and F−
i both solve the fol-

lowing constrained optimization (minimization) problem with positive and negative
δi s:

Objective:

∑

j = 1 : na,

i �= j,

(
a j (n + 1) − a j (n)

)2
, (11.1)

Constraints:

for1 ≤ i < na,

|ai (n + 1) − ai (n)| ≥ δ−
i ,

|ai (n + 1) − ai (n)| < δ+
i .

(11.2)

Control Variables:

C ≡ [
Δm+ (n) ,Δm− (n)

]
, (11.3)

where ai (n) is the nth sample of the i th action dimension, Δm+ is the sum of the
two commands given to the motors and is proportional to the speed, Δm− is the
difference between these two commands and is proportional to the rotation angle
(differential drive arrangement), δ+

i is the upper limit on the required rate of change,
and δ−

i is the lower limit. The pair Δm+ and Δm− constitute the command sent to
the motors C .

The problem is formulated as a Markov Decision Process (MDP) and is solved
using standard Q-Learning with the aid of a simulator that can produce A (n + 1)
given A (n) and C (n).

The resulting F+
i and F−

i can now represent a straight line in the action dimension
i with an approximate slope of δi = (

δ−
i + δ+

i

)/
2. These two functions thus serve

to linearize the relation between the action dimensions and motor commands and in
the same time decouples different action dimensions.

A particular property of the specific action stream dimensions we selected for our
applications (Sect. 11.4) is that a different slope δ2 = a × δ1 can be achieved simply
by multiplying the final command by the constant a. This means that F+

i and F−
i

need to be learned for a single value for δi and their output can then be scaled to
achieve any required slope in the corresponding action dimension.
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Algorithm 4 Piecewise-Linear Controller Generation Algorithm (Mohammad and
Nishida 2010b, 2015)
1. Calculate mean pattern using:

m (t) =
∑

i

mi (t), (11.4)

where mi is an occurrence of the motif and m is its mean.
2. Generate a piecewise linear approximation (m̂) of the mean using SWAB algorithm (Keogh

et al. 2001).
3. Calculate the slope v of every line l in m̂ and call F+

i or F−
i depending on the sign of the slope

to generate the required linear motion.

Algorithm4 summarizes the steps of our controller generator. Firstly, the mean of
each motif is calculated using all of its discovered occurrences. Secondly, the mean
is approximated as a series of piecewise linear segments. For this approximation, we
use the SWAB algorithm described in (Keogh et al. 2001). Finally, the slop of every
line segment is calculated and passed to the corresponding controller at run time.

The piecewise-linear controller generation algorithmdiscussed in this section pro-
vides only one possible implementation of the controller generation phase. Its main
advantage is the ability to learn control functions based on motor babbling. Nev-
ertheless, this assumes that the perceived channels can be controlled independently
which is not always true. Other algorithms for learning a controller from perceived
channel signals can utilize learning from demonstration technology to be introduced
in Chap.13.

11.2 Stage 2: Interaction Structure Learning

This section introduces the second stage of the developmental process aiming at
learning the interaction control processes of all interaction control layers (one layer
at a time). This stage is called interaction structure learning and during which the
robot (agent) builds a hierarchy of interaction control processes representing the
interaction structure at increasing levels of abstractions using the basic interactive
acts represented by the intentions already learned in the first stage (See Sect. 11.1.1).
This stage is applied offline without actual interaction between the robot and human
partners.

11.2.1 Single-Layer Interaction Structure Learner

Interaction protocols are not created equal. In some cases, the interaction protocol
is simple enough to be represented by a single interaction control layer. This is true
of most explicit interaction protocols. Consider the guided navigation example of

http://dx.doi.org/10.1007/978-3-319-25232-2_13
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Sect. 1.4. In this case, the operator (human) is controlling the actor (robot) using
free hand gesture. The interaction protocol in this case is very simple and can be
encoded in a directed graph that connects gestures of the operator (G) to actions of
the actor (A). In such cases, a single layer interaction structure learner can be used
to learn single interaction control process involved. In our example, each gesture
and each action will be encoded by an intention that was learned in the first stage
of development (Interaction babbling as explained in Sect. 11.1). The main goal of
the interaction structure learner in this case is to use the intentionality assignments
from forward intentions and activation probabilities from reverse intentions to learn
a single interaction control process for each agent that represents the behavior of that
agent in the form of a probabilistic graphical model. The two processes representing
the operator and actor (in our example) constitute the single interaction control layer
in that case. This algorithm is called single-layer interaction structure learner (SISL).

The main idea behind SISL is to model the interaction of different partners as a
single interaction control process implementing a directed acyclic graph encoding the
causal connections between the different intentions. For example, an intention may
represent the gesture of opening the palmwhile raising the hand to face level with the
back of the palm facing the face of the operator. The robot may notice fromwatching
several guided navigation examples, that shortly after this intention is activated,
another intention which represents zero motion of the operator is executed. Leaning
this relation allows the robot to discover that the gesture “stop” activates the intention
“stop” in the actor (without the linguistic baggage of course). This simple example
shows the importance of causality analysis for learning the interaction protocol.

We start by constructing for each intention i of role r (Mr
i ), an associated occur-

rence list Lr
i that specifies the timesteps at which each occurrence of Mr

i starts.
The intuition from the previous example can be formalized as follows: if intention

i for role r1 causes the agent in role r2 to execute the action primitive j then Lr2
j will

most of the time has values that are τi j time-steps after Lr1
i where τi j is a constant

representing the delay of the causation.
In the real world, many factors will affect the actual delay. Using the law of large

numbers, it is admissible to assume the delays between these action onset points can
be approximatedwith aGaussian distributionwith amean of τ̂i j where

∣∣τ̂i j − τi j

∣∣ < ε

for some small value ε. The main idea of our algorithm is to check for the normality
of the delays and to use the normality statistic as a measure of causality between the
two processes. This is simply the change causation algorithm described in Sect. 5.5.

Prior knowledge about the system can be incorporated at this phase. For example
if we know that there can be no self-loops in the causality graph (a change in a process
does no directly cause another change later) we can restrict the pairs of Li , L j by
having i �= j . If we know that processes with higher index can never cause process
with lower index, then we can restrict i to be less than or equal to j . Extension to
more complex constraints is fairly straightforward.

http://dx.doi.org/10.1007/978-3-319-25232-2_1
http://dx.doi.org/10.1007/978-3-319-25232-2_5
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After completing this operation for all Lr1
i and Lr2

j pairs (where r1 �= r2), we have
a directed graph that represents the causal relationships between the series involved
in the form of a Bayesian Network with the edges augmented with information
about explicit delays. We call this graph the Augmented Bayesian Network (ABN)
hereafter. The problem now is that this graph may have some redundancies. This
ambiguity can be resolved by simply removing the causal relation with the longest
time delay. A better approach would be keep multiple possible graphs and then use a
causal hypothesis testing system likeHoover’s technique (Hoover 1990) for selecting
one of them.

11.2.2 Interaction Rule Induction

The method described in Sect. 11.2.1 is effective for learning a single interaction
control layer that has a single interaction control process which amounts to a simple
interaction protocol. In some cases, we prefer to model the interaction by a set of
probabilistic rules that can be used for more complicated interaction protocols like
the implicit protocol of the natural listening scenario in Sect. 1.4. This can be achieved
by the interaction rule induction (IRI) algorithm.

The system architecture assumed by the IRI algorithm is shown in Fig. 11.1. The
main differences between this special form of the architecture and the standard form
presented in Fig. 10.2 are the following: Firstly, only two interaction control layers are
allowed: the interaction rules layer and the session protocol layer. This is in contrast

Fig. 11.1 The interaction protocol representation for the interaction rule induction protocol. The
main differences from Fig. 10.2 is that only two interaction control layers are allowed and the
implicit information passing between rules in the first layer

http://dx.doi.org/10.1007/978-3-319-25232-2_1
http://dx.doi.org/10.1007/978-3-319-25232-2_10
http://dx.doi.org/10.1007/978-3-319-25232-2_10
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with the deep architecture assumed in Fig. 10.2. Secondly information pass in the
first control layer not only from intentions in the same role but from other intentions
as well. Finally, the within-layer protocol in the second layer is implemented in a
single process that controls the activation of rules in the interaction rules layer.

The idea behind Fig. 11.1 is to model the interaction as a set of reactive rules
that relate the behavior of different agents (roles) at one time step with their part-
ners’ behavior at the previous time-step which implements an implicit turn taking
exchange. The session protocol in the second layer then adjusts the activation level
of each rule from the second layer to achieve the overall session control of the inter-
action. This model is more appropriate to implicit protocols like the one implied by
the explanation scenario.

Themain idea behind the algorithm is to first divide each interaction in the training
pool into a disjoint set of episodes that represent different stages of the interaction.
A rule discovery algorithm is used to explain that activation and deactivation of
intentions that happen at each episode as a function of other running intentions.
Once all of these rules (IRs) are discovered, their activation with the episodes is used
to build the Session Protocol (SP) that will be used in realtime to activate/deactivate
the learned IRs.

Let’s define a set of signals A j
i (k) that represent the activation level of intentions

i in session j at time step k. We discretized these signals to get a binary form Â that
represents either active or inactive intentions using:

Â j
i (k) =

{
1 A j

i (k) > τ

0 otherwise
. (11.5)

An activation/deactivation signal for each intention is calculated as:

Ã j
i (k) = Â j

i (k) − Â j
i (k − 1) , (11.6)

where Ã j
i (k) ∈ {−1, 0, 1}.

Now each session is divided into n disjoint segments called the episodes and each
Ã j

i (k) is divided into n s Ã j
i (k) signals that represent the activation/deactivation of

intentions in each episode. This division of the interaction into episodes or phases is
based on research in human–human interactions that usually report different phases
like opening, dialog, and closing phases (Kendon 1970).

This partitioning of the interaction into n episodes of equal length is not optimal
and a better solution is to use some general features of the interaction to do the
partitioning. A good value for n in all our experiments was 3.

The episodes are thenprocessed inorder. For each signal dimension i , thewhole set{
s Ã j

i

}
for the current episode is collected in memory. There are two challenges here:

Firstly, the activation of an intention may depend on the past of other intentions not
only on their current values (e.g. the natural delay between instructor’s and listener’s

http://dx.doi.org/10.1007/978-3-319-25232-2_10
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movements in route guidance reported by Kanda et al. 2007). This prevents us from
using algorithms like DBMiner (Han et al. 1996) that can find rules of the form:

Xi = xi ∧ X j = x j∧
..... ∧ Xk = xk ⇒ Xl = xl .

(11.7)

Secondly, the activation of a single intentionmay depend on the values of multiple
other intentions which prevents us from using simple association rule discovery
algorithms that account for time delays like the algorithm proposed by Das et al.
(1998) which finds rules in the form:

A
T−→ B, (11.8)

which means that when A happens at time step t , B happens at time step t + T .
The rules, we are trying to find, have the general form:

Xi (t − τi ) = xi ∧ Xk (t − τk) = xk,

..... ∧ Xz (t − τz) = xz → Ãi (t) = ±1,
(11.9)

where Xi is a feature extracted from Ãi .
We use three features:

S j
i (t) = max

(
0,

t∑

k=1

(
Â j

i (k) − 0.5
))

, (11.10)

where S j
i
features represent the discrete integration of the binary approximation of

the intentionality of different intentions, while Ã j
i
represent their differentiation. In

case of S j
i
, Â j

i
is first shifted down by 0.5 to make S forget about old activations. S j

i

and Â j
i
are both segmented into the episode sets

{
s S j

i

}
and

{
s Â j

i

}
in the same way

as
{

s Ã j
i

}
.

To find these rules for some activation sequence
{

s Ã j
i

}
, we first find the optimal

delays τk for all other features in this episode and then shift each feature back by its
corresponding delay. After that, the problem becomes a classification problem that
can be easily solved by a CART classifier. The features used to train the classifier
are all the values of s X j

k (t − τk) and the target labels are s Ã j
i (t). We train two trees:

one to detect activation events (s Ã j
i (t) = +1) and the other to detect deactivation

events (s Ã j
i (t) = −1).

The novel step in this approach is the technique used to discover the delays τk .
Again we use an algorithm that depends on causality analysis. Simply we find the
delay that maximizes the Granger causality between the two streams.
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Once each rule is learned, the whole interaction corpus is scanned for all cases
of activation/dectivation that can be explained by it and these cases are removed by
setting the associated Ã j

i to zero. This is done in all episodes not only the current
one. The activation pattern of this rule is then saved in the Session Protocol.

11.2.3 Deep Interaction Structure Learner

The most complex case for learning interaction control layers involves learning deep
architecture represented by the full system in Fig. 10.2. The IRI algorithm presented
in Sect. 11.2.2 cannot be extended to more than two interaction control layers while
the SISL (Sect. 11.2.1) can only learn a single control layer. Recent findings from the
deep learning community shows that several machine learning tasks are best learned
using deep architectures (Hinton et al. 2006).

We employ here the deep interaction structure learner (DISL). Successful algo-
rithms in Deep Learning use an iterative process in which each layer is learned
using mostly unsupervised techniques then a small set of training sets can be used
to learn connections between layers and provide final classification for classification
problems. DISL works in a similar fashion by learning each layer based on the acti-
vation levels (or intentionalities) of the lower layer and the complete system is then
integrated.

The Interaction Structure Learner is invoked by a set of training examples and a
set of verification examples. Every example is a record of the sensory information
(ci s) and body motion information (ci m) of every agent i during a specific interaction
c of the type to be learned.

The outputs of the interaction structure learner are:

1. The number of layers needed to represent a specific interaction protocol (lmax ).
2. The number of interaction control processes in each layer (nl).
3. An estimate of the parameters of every forward interaction control process (r Pl

j )
in every layer l for every role in the interaction r . The corresponding reverse
process can be learned using the mirror trainer (rev

r Pl
j ).

DISL needs to know the expected set of frequencies at which synchrony between
different agents (roles) represented by the interaction protocol exist. This can be
found from known human–human interaction data. If this set is not available the
system must try many frequencies until a good synchronization frequency is found.

The activation level of every intention or process in layer l is connected to the
outputs of the process in layer l + 1 which inputs are in turn connected through a set
of k delay elements to the activation levels of all the processes in layer l. Formally:

a
(

i Pj
l , n

) =
nagents∑

g=1

nl+1∑

m=0

O j
(

g Pl+1
m , n

) × a
(

g Pl+1
m , n

)
, (11.11)

http://dx.doi.org/10.1007/978-3-319-25232-2_10
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O j
(

i Pl+1
m , n

) = f j
m

({
a Pl

b (k)
})

,

k = 1 : K , a ∈ {agents} , b = 0 : nl − 1.
(11.12)

Currently we use Radial Basis Functions Neural Networks (RBFNNs) to learn
the functions f j

m for all processes in all layers:

f j
m (x) = w0 +

p∑

u=1

wue

(
d(µu ,x)2

2σ2u

)

. (11.13)

The steps of DISL can be summarized as:

1. Convert the sensory inputs of all interactions into activation levels of the intentions
using reverse intentions.

2. Learn the interaction control processes starting from layer 1 incrementally one
layer at a time until one layer contains only one process for every agent as follows:

a. Find the best number of clusters for every partner in layer l − 1 and call it i nl .
b. For layer l, use the activation levels of layer l − 1 to train i nl RBFNNs repre-

senting the processes of every role i in this layer using:
Input:<k

∗−i P∗l−1 (n − z ( f ))k
i P∗l−1 (n) >

Output:<k
i P∗l−1 (n + 1) >,

where ki Pj
l is k times down-sampled version of the activation level of process

j in layer l for role i , f is the current synchrony frequency, and z ( f ) is the
delay corresponding to this frequency.

c. Apply this learned process to the validation set and find the difference between
its outputs and the action activation levels at layer l − 1.

d. Accept the process if this error level is acceptable.
e. Repeat the previous steps for different values of k.
f. Invoke the mirror trainer to learn the reverse process.

The performance of this algorithm is greatly affected by two factors:

• The cluster counting method used to find the best number of processes in each
layer. Currently we use a modified version of the algorithm suggested in Sugar
and James (2003).

• The acceptable () function used to reject or accept trained RBFNNs. Currently
a process is accepted if the error level is less than τ for at least nmin continuous
steps for ζ of the interactions (currently fixed at 0.1, 10, and 0.7 respectively).

This algorithm is not guaranteed to converge, but—when converging—there are
two different situations depending on the number of processes for every role in the
highest layer(i nlmax ):
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1. i nlmax = 1: This means that the behavior of this role in this kind of interactions is
passive and can be decided solely depending on the behavior of other roles (e.g.
in the following example the listener gaze behavior in explanation scenarios was
found to be of this kind in the example scenarios used).

2. i nlmax = 0: This means that no single process can represent the high level behavior
of this role of the interaction. This is usually associated with proactive roles (e.g.
the instructor in the explanation scenarios used in the following example).

11.3 Stage 3: Adaptation During Interaction

We now turn to the final stage of development for the robot. Now the robot has a
complete interaction protocol learning in first two stages. Using the DUD algorithm
(Sect. 10.3), the robot can start to engage in socialHRI interactions.These interactions
can be used to improve the protocol learned in the second stage. The algorithm
used for this stage will depend on whether we have a shallow architecture (e.g.
the single-layer architecture of Sect. 11.2.1) or a deep architecture (e.g. the deep
architecture described in Sect. 11.2.3). This section details the algorithms used to
adapt the interaction protocol based on HRI sessions in these two cases.

11.3.1 Single-Layer Interaction Adaptation Algorithm

Section11.2.1 explained how to learn an augmented Bayesian Network (ABN) to
represent the interaction protocol by a single control layer. When the robot interacts
with other people, it can use the logs of these interactions to generate newABNs. The
adaptation algorithm is then reduced to the need to incrementally generate ABNs
that take into account these new ABNs in order to improve the performance of the
robot in future trials.

To combine two different ABNswe need to discover the correspondences between
nodes/intentions in the two ABNs. We can simply compare the perceptual process
representation between the intentions represented by the two nodes but this approach
is local in the sense that it matches nodes without looking into the global structure
of the networks. Consider for example two ABNs learned from two sessions in the
guided navigation scenario. One node of each network represents a “stop” gesture by
the operator and is connected to another node representing the “stopping” action by
the actor. Now the two “stop” nodes may represent very different motions (gestures)
and this will not allow the simple algorithm described above to see their similarity.
Looking at the network as a whole, on the other hand, allows us to see that these
two nodes are leading to the same action (“stopping”) which will have the same
representation in the two networks (zeros sent to both motors). This example shows

http://dx.doi.org/10.1007/978-3-319-25232-2_10
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the need to look not only for similarity in the pattern represented by the intention or
processes under consideration but also to the global connection structure of the two
ABNs. Mohammad and Nishida (2010b) proposed such a global approach that will
be described briefly here.

The algorithm starts by compiling two lists of action nodes for every role from
the two ABNs (namely AN 1 and AN 2). For every member of AN 1 (called an1

i ), the
motif mean (m1

i ) is compared with every other motif mean in the same ABN (m1
j )

using Dynamic Time Wrapping (DTW) and the minimum distance is selected as the
similarity threshold of this node τi (Mohammad and Nishida 2015):

τi = min
(
dDT W

(
m1

i , m1
k

))
, (11.14)

where 1 ≤ k ≤ n1
A, k �= i , and n1

A is the number of action nodes in AN 1.
The second step is to compare the mean of node i with every other node in the

second list AN 2 and a link la2 j
1i is created betweenan1

i andan2
j iff: dDT W

(
m1

i , m2
j

)
<

τi and
(

dDT W

(
m1

i , m2
j

)
− dDT W

(
m1

i , m2
k

))
< ητi for 1 ≤ k ≤ n2

A and k �= j for

some value of η greater than zero. We select η to equal 0.25 for all our experiments.
If two or more nodes in AN 2 satisfy these two conditions, a link is created between
an1

i and each of them. Each link had a value equal to the DTW distance between the
means of the two nodes it links.

The final step is to remove all the conflicts in the two link lists to have at most one
node in the second ABN connected to any node in the first ABN. For every link we
calculate a link competence index (LCI) that evaluates the match between the two
ABNs if this link was kept as follows:
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where Par (n) is the set of all parents to node n. These equations constitute a set of
nla+nga equations in the same number of variables and can be solved using a simple
iterative approach similar to the value iteration for solving MDPs.

A larger LCI means that not only the primitive nodes connected by the link are
similar but also their parent nodes are similar as well. After the LCI is calculated for
every link, the link with highest LCI fanning out from any node is kept and the rest
are discarded (Mohammad and Nishida 2010b, 2015).
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After resolving all conflicts, the nodes in the two ABNs that are still linked are
combined their stored pattern is re-generated from the full set of motif occurrences
used when creating the two ABNs.

Combining nodes from two ABNs does not affect the edges except if it caused
two nodes to be connected by more than one edge in the final ABN. In this case, the
mean and variance of the delay associated with the final edge are calculated from the
mean, variance, and number of occurrences in the two combined edges.

11.3.2 Deep Interaction Adaptation Algorithm

The Deep Interaction Adaptation Algorithm (DIAA) proposed here can be used to
adapt the parameters of processes of interaction protocols of arbitrary depth. The
main idea behind the DIAA is to monitor the difference between the current theory
the agent has about what its partner (who plays the role to be learned) is intending
at different levels of abstraction and the simulation of what it could have done if it
was playing this role. This is simply the difference between the down-going and up-
going factors described in Sect. 10.3. The DIAA then adapts the forward processes
representing the target role to reduce this difference. The discussion hereafter in
this section will assume a two-roles interaction to reduce notational complexity but
extensions to interactions involving more than two roles is straightforward.

The goal of the DIAA is to find for every process a parameter vector f
i p̂l

k that
minimizes the error estimate:
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where at
(

i Pl
k

)
is the estimate of the activation level of process i Pl

k based on the
down-going factor, as

(
i Pl

k

)
is the estimate of the activation level of process i Pl

k
based on the up-going factor of the simulation and d (x, y) is a distance measure.
Currently Euclidean distance is used.

We assume here that each process has a probability distribution that is used to set
the activation level of processes in the immediate lower layer of the same role (or
intentionality of intentions for the processes in the first control layer) (Mohammad
and Nishida 2008).

Reverse processes are used to estimate the current understanding of what the
partner is actually doing during the interaction (at

(
i Pl

k

)
) while forward processes

represent the current predictions of the robot about how should this agent behave
(as

(
i Pl

k

)
). If these two factors are similar, then the protocol is learned adequately

and there is no need to adapt. Thismeans that the error signal generated by comparing
these two signal for all processes should be the driving factor behind the operation
of DIAA.

The interactive adaptation algorithm uses these two signals to adapt the forward
processes of the target roles and then executes the mirror trainer to adapt the corre-
sponding reverse processes. The details of this algorithm are shown in Algorithm5.

http://dx.doi.org/10.1007/978-3-319-25232-2_10
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Algorithm 5Deep InteractiveAdaptationAlgorithm (Mohammad andNishida 2008)
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end if
end function

The DIAA algorithm first calculates the difference between the behavior and
predictions only updates the parameters of the process to be learned if this difference
is above some threshold and the partner is considered robust enough to learn from
him/her/it. If there is a need for adaptation:

1. The system decreases the robustness of the partner (k Rb ) based on the age (Ag).
2. The ID process in the process in the next layer most probably responsible of this

error is calculated (kl+1
max).

3. The probability distribution of this process in the next layer (i Pl
kl+1
max
) is updated to

make this error less likely in the future.
4. The mirror trainer is executed to make r

i Pl
kl+1
max

compatible with f
i Pl

kl+1
max

.

11.4 Applications

Applying the developmental learning algorithms described in this chapter to learn
interaction protocols require the availability of human–human interactions from
which intentions and processes can be learned. It is possible in principle to use
the EICA architecture for social robotics described in the Chaps. 9 and 10 without
learning by just devising the intentions and processes by hand. The gaze controllers in
Sect. 9.7 and guided navigation controller of Sect. 9.8 are examples of such approach.

http://dx.doi.org/10.1007/978-3-319-25232-2_9
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Nevertheless, the full power of the architecture lies in its ability to autonomously
learn these intentions and processes using the techniques introduced in this chapter. In
this sectionwewill report case studies of the applications of these learning algorithms
in the same gaze control and guided navigation tasks. In both cases, we need to a
data collection experiment to collect data for the learning algorithms followed by
another evaluation experiment to measure the effectiveness of the approach. Notice
that the gaze control case represents an implicit protocol that are best learned as a
deep architecture using the algorithms in Sects. 11.2.3 and 11.3.2 while the guided
navigation scenario represents an explicit simple protocol that can be learned using
a shallow architecture using the algorithms described in Sects. 11.2.1 and 11.3.1.

11.4.1 Explanation Scenario

Mohammad and Nishida (2014) reported the use of the developmental system pro-
posed in this chapter for learning gaze and spatial body control in the explanation
scenario. Twenty two sessions of human–human interactions from the H 3R interac-
tion corpus (Mohammad et al. 2008) were used as training sessions.

Head direction and body orientation of both partners was captured using Phas-
eSpace motion capture system and the following interaction dimensions were calcu-
lated from it using perceptual processes (Mohammad et al. 2010; Mohammad and
Nishida 2014):

1. Three absolute angles of agent head (both robot and human) (θy for yaw, θp for
pitch, θr for roll).

2. Head alignment angle (θh) defined as the angle between the line connecting the
forehead and back of the head sensor of the agent and the line connecting back
of the head sensor and the forehead sensor of the partner.

3. Distance between listener and instructor (d).
4. Body alignment angle (θb) defined similar to the head alignment angle.
5. Difference between center of body coordinates in the three spatial dimensions

(X, Y and Z) (dx , dy , dz).
6. Salient-object alignment angle (θs) defined as the angle between the line connect-

ing back of the head sensor and forehead sensor and the line connecting back of
the head sensor and the location of maximum saliency according to the gaze map
maintained using the algorithm described in (Mohammad and Nishida 2010a).

The interaction babbling and interaction structure learning (using DISL) stages
described in Sects. 11.1 and 11.2.3 were applied to these interaction dimensions.

The system learned the following intentions Mohammad and Nishida (2014):

1. Look@Partner which involved continuous reduction of the absolute value of θh .
2. Look@Salient which involved continuous reduction of θs .
3. align2Partner which involved continuous reduction of θb.
4. disalign2Partner which involved continuous increase of θb.
5. nod which involved oscillation up and down of θp.
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The DISL algorithm was able to learn two higher layers of control for the listener
that involved these five intentions and did not use the two noise generated intentions
that were also learned in the first stage. The second layer of control consists of four
processes that corresponded to gaze toward instructor, mutual gaze, mutual attention
and a process that starts nodding when the instructor looks at the listener without
speech for more than 10 s. The final layer of control consisted of a single process
that starts gaze toward instructor and alternates between it and the other processes
based on the focus of attention of the instructor (Mohammad and Nishida 2014).

Mohammad et al. (2010) compared the performance of this autonomously learned
controller and the controller developed using the base platform using the FPGA
algorithm (Sect. 9.7) and showed that both approaches outperformed the expec-
tation of participants in terms of naturalness and human-likeness which suggests
that the proposed autonomous approach was compared with a strong opponent. It
also showed that the autonomously learned controller received higher scores com-
pared with the carefully designed controller in terms of human-likeness (adjusted
p-value=0.028, t=2.97 Hedge’s g=0.613) naturalness (adjusted p-value=0.013,
t=3.286, Hedge’s g=0.605) and comfort of the speaker (p-value=0.003, t=3.872,
Hedge’s g=0.674) (Mohammad et al. 2010).

11.4.2 Guided Navigation Scenario

In a series of experiments, we applied the developmental approach proposed in this
chapter for learning actor’s behavior during guided navigation described in Sect. 1.4
(Mohammad et al. 2009; Mohammad and Nishida 2010b, 2015).

Eighteen subjects were recruited for this experiment (10 males and 8 females) in
6 days. The goal of the experiment was to compare the performance of the learner
robot in performing the actor role in guided navigation under three settings:

• WOZ: Wizard of OZ arrangement in which the robot is remotely controlled by a
hidden human operator. The hidden operator watches the gestures of the subject
and issues motion commands to the robot

• Per-Participant Learner: The robot controller is developed using the first two stages
of our approach from a single interaction using interaction babbling (Sect. 11.1)
followed by single layer interaction structure learning (Sect. 11.2.1) in the form of
ABNs and then used as the actor with the same subject.

• Accumulating Learner: The robot controller is developed using the three stages
where the same algorithms are used for the first two stages and the algorithm of
Sect. 11.3.1 is used for combining the ABNs of all previous interactions except
with the current subject and then tested with a subject it never encountered before.

Mohammad et al. (2009) showed that the Per-participant learner could achieve the
sameperformance as the humanoperator after a single training session.Moreover, the
performance of the accumulating learner could achieve the same level of performance

http://dx.doi.org/10.1007/978-3-319-25232-2_9
http://dx.doi.org/10.1007/978-3-319-25232-2_1


272 11 Interaction Learning Through Imitation

as the per-participant learner (and the WOZ operator) by the fourth day slightly
outperforming both of them by the last day.

These results suggest that the proposed developmental approach was successful
in learning the interaction protocol in this case in as short as 15min for the per-
participant learner and was able to generalize this learning to interactions with other
participants as shown by the incremental improvement of the performance of the
accumulating learner.

11.5 Summary

This chapter introduced the three stages for building a complete EICA system rep-
resenting an interaction protocol by mining human–human interactions that use that
protocol. The first stage involved learning social intentions as functions of percepts
based on a combination of change point discovery and constrained motif discovery
algorithms. The second stage builds the rest of the control architecture by learning
interaction control layers form the lowest to the highest. Three different variations
were proposed: single-layer learner that learns a Bayesian Network representing the
causal relations in an explicit interaction protocol in a single layer. The second alter-
native was interaction rule induction that learns a set of probabilistic control rules
representing the protocol and a session controller for deciding when to activate each
of them. Finally, an algorithm for learning arbitrary deep interaction protocols was
proposed. The final stage of development in the life of the social robot which starts
when a completed interaction protocol is learned using one of the three algorithms
proposed for interaction structure learning. The robot engages—using its learned
protocol—with humans and uses the discrepancy of its expectations driven from the
simulations of their roles and their actual behavior to adapt the learned protocol. We
proposed two alternatives depending on the depth of the interaction protocol learned
in the second stage: a single-layer and a deep interaction adaptation algorithm.

The chapter also briefly described applications of these algorithms for learning the
interaction protocols in our running scenarios: explanation and guided navigation.
Evaluations of these applications showed the applicability of the proposed three-
stages approach for developing social robots.
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Chapter 12
Fluid Imitation

Chapter13 will review several algorithms for learning from demonstration ranging
from inverse optimal control to symbolic modeling. What all of these algorithms
share is the assumption that demonstrations are segmented from the continuous
behavioral stream of the model (i.e. the demonstrator). Chapter 7 discussed how
infants learn and one thing that is clear is that they do not need this pre-segmented
demonstrations to acquire a model of the behaviors they perceive. They seem to be
able to imitate even when there are no clear signs about what should be imitated and
they are able to produce their newly learned skills at appropriate occasions (at least
most of the time). This form of fluid imitation has several advantages over standard
learning fromdemonstration. Firstly, it frees themodel fromhaving to clearly indicate
the beginnings and ends of the behavior to be demonstrated which leads to more
intuitive interaction. Secondly, by allowing themodel to behave normally, the learner
can see the behaviors as they are actually performed in the real world including
how they are eased into and eased out from to other behaviors. This can be useful
in discovering not only the basic behaviors to be learned but their relations and
appropriate execution times. Finally, this mode of fluid imitation allows the learner
to learn from unintended demonstrations. Every interaction (even with unwilling
partners) becomes an opportunity for learning. For all of these advantages, we believe
that fluid imitation will be a key technology in creating the adaptive social robots of
tomorrow.

This chapter introduces our efforts towards realizing a fluid imitation engine to
augment traditional learning from demonstrations engines (of the kind discussed
in Chap.13). The proposed engine casts the problem as a well-defined constrained
motif discovery problem (See Sect. 4.6) subject to constraints that are driven from
object and behavior saliency, as well as behavior relevance to the learner’s goals and
abilities. Relation between perceived behaviors of the demonstrator and changes in
objects in the environment is quantified using a change-causality test (Chap. 5) that
is shown to provide better results compared to traditional g-causality tests. The main
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advantage of the proposed system is that it can naturally combine information fromall
available sources including low-level saliency measures and high-level goal-driven
relevance constraints. The chapter also reports a series of experiments to evaluate the
utility of the proposed engine in learning navigation tasks with increasing complexity
using both simulated and real world robots.

12.1 Introduction

Learning from demonstration is an important research area in robotics (Aleotti and
Caselli 2008; Argall et al. 2009; Abbeel et al. 2010) because it allows the robot
to acquire new skills without explicit programming. There are two main directions
in robotic imitation research. The first direction tries to utilize imitation as an easy
way to program robots without explicit programming (Nagai 2005). This use usually
goes by other names like learning from demonstration (Billing 2010), programming
by demonstration (Aleotti and Caselli 2008) and apprenticeship learning (Abbeel
et al. 2010). Researchers here focus on task learning and some examples of the
results of such work were reported in Chap.13. The second direction tries to use
imitation to bootstrap social learning by providing a basis for mutual attention and
social feedback (Nagai 2005; Iacoboni 2009). Researchers here focus on interaction
learning and some results from this direction of research are reported in Chap.7.

We can say that, roughly, in the first case, imitation is treated as a programming
mode while in the second, it is treated as a social phenomenon. In this chapter, we
focus on the task-learning aspect but we try to extend it to allow robots to learn from
unaware teachers and from continuous streams of data without predefined action
boundaries. As discussed in Chap.7, in some animals, including humans, imitation
is a social phenomenon (Nagai 2005) that was studied intensively by ethologists and
developmental psychologists. Social psychology studies have demonstrated that im-
itation and mimicry are pervasive, automatic, and facilitate empathy. Neuroscience
investigations have demonstrated physiological mechanisms of mirroring at single-
cell and neural-system levels that support the cognitive and social psychology con-
structs (Iacoboni 2009). Neural mirroring and imitation solves the “problem of other
minds” and makes inter-subjectivity possible, thus facilitating social behavior. The
ideomotor framework of human actions assumes a common representational format
for action and perception that facilitates imitation (Iacoboni 2009). Furthermore,
the associative sequence learning model of imitation proposes that experience-based
Hebbian learning forms links between sensory processing of the actions of others
and motor plans (Iacoboni 2009).

For a robot to be able to learn from a demonstration, it must solve many problems.
Most important of these problems are the following seven challenges (Mohammad
and Nishida 2012) discussed in details in Chap.7:

http://dx.doi.org/10.1007/978-3-319-25232-2_13
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http://dx.doi.org/10.1007/978-3-319-25232-2_7
http://dx.doi.org/10.1007/978-3-319-25232-2_7
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• Action Segmentation: Where are the boundaries of different elementary behaviors
in the perceived motion stream of the demonstrator?

• Behavior Significance for Imitation: What are the interesting behaviors and fea-
tures of behavior that should be imitated? This combines the what and who prob-
lems identified by Nehaniv and Dautenhahn (1998).

• Perspective Taking: How is the situation perceived in the eyes (or sensors) of the
demonstrator?

• Demonstrator modeling: What are the primitive actions (or actuation commands)
that the demonstrator is executing to achieve this behavior? What is the relation
between these actions and the sensory input of the demonstrator?

• Correspondence Problem: How can actions and motions of the demonstrator be
mapped to the learner’s body and frame of reference?

• Evaluation Problem: How can the learner know that it succeeded in imitating the
demonstrator and how to measure the quality of the imitation in order to improve
it? This evaluation would usually require feedback from the demonstrator or other
agents and can utilize social cues (Scassellati 1999).

• Quality Improvement Problem: How can the learner improve the quality of its
imitative behavior over time either by adapting to new situations or by modifying
learnedmotions to better represent the underlying goals and intentions of perceived
demonstrations?

Most of the research in imitation learning has focused on the perspective taking,
demonstrator modeling and the correspondence problems above (Argall et al. 2009).
Inmost cases, the action segmentation problemwas ignored and it is assumed that the
demonstrator (teacher) will provide segmented examples of the action or behavior
to be learned. In this chapter, we rely on constrained motif discovery to solve this
problem (See Sect. 4.6).

Behavior significance for imitation is also usually ignored under the assumption
that the demonstrator will only demonstrate significant or important behavior to the
learner. This may be the case in laboratory-controlled experiments used to test LfD
schemes, yet it is far from being true for realistic situations in which robots are
sharing our spaces and looking to learn from our actions. It is certainly not true for
how humans learn.

There is a distinction between two aspects of the behavior significance problem.
The first aspect is deciding the importance of a specific feature of the behavior
perceived (e.g. a specific limbmotion) for the action being learned. This problem can
usually be handled well with some LfD systems like GMM/GMR and SAXImitate
(See Chap.13). The problem that is usually ignored is the second aspect of behavior
significance. Whether or not the whole behavior is worth imitating or learning.

There are many factors that affect the significance of a behavior for the learner.
Someof these are behavior intrinsic features thatmaymake it interesting (e.g. novelty,
and repetition). Others are object intrinsic features related to the objects affected by
the behavior (e.g. color, motion pattern) that can make that behavior interesting.
These two kinds of features determine what we call the saliency of the behavior and
its calculation is clearly bottom-up.

http://dx.doi.org/10.1007/978-3-319-25232-2_4
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Another factor that affects the significance of behavior is its relevance to the
goal(s) of the agent executing it. This factor is called relevance of the behavior and
its calculation is clearly top-down.

The context at which the behavior is executed can also affect its significance for
imitation. This factor is dubbed sensory context of the behavior.

A final factor that affects significance is the capabilities of the learner. It makes
little sense to try to imitate a behavior that is clearly outside the capabilities of the
learner.

A solution to the significance problem needs to smoothly combine all of these
factors taking into account the fact that not all of them will be available all the time.
The ability to solve the action segmentation and significance problems allows the
learner to learn not only from explicit demonstrations but fromwatching the behavior
of other agents around it and their interactions. We call this kind of imitative learning
fluid imitation and believe that it provides an important building block for achieving
real autonomous sociality.

The problem of fluid imitation can be defined as (Mohammad and Nishida 2012):
Given a continuous stream of actions from the demonstrator, find the boundaries of
significant behaviors for imitation.

12.2 Example Scenarios

It is useful to have concrete running examples to introduce our fluid imitation system.
In this chapter, we use two running examples: navigation and cooking. By the end of
the chapter, we will report briefly on an experimental evaluation of the first scenario
drawn from Mohammad and Nishida (2012).

Navigation learning scenario happens in a 2D space filled with different kinds of
objects. One agent (the model) knows how to navigate this environment and react to
different objects in it and another agent (the learner) is a naive agent who just watches
the model and tries to learn how to navigate and react in this environment. Different
objects will elicit different kinds of behaviors from the model. For example, when
it perceives a cylindrical obstacle it rotates around it in a circle while it will rotate
around any robot in the environment in a square. It may also spontaneously generate
some motion primitives like triangles. Moreover, the model may have a goal and
tries to achieve it by navigational motions. For example, it may know that rotating
twice around another robot will disable this robot and its goal can be to disable all
robots in the arena.

This kind of environment provides a simplified toy example for the fluid imitation
problem by allowing us to selectively select the level of complexity of the factors
affecting behavior significance for imitation.

The second scenario is more realistic and involves a humanoid robot watching
people cocking different meals and learning through fluid imitation various actions
related to cooking. This scenario raises some issues regardingwhat to dowith learned
behaviors and how to learn complex plans of them (See the introduction of Chap. 13)
that will be discussed later in this chapter.

http://dx.doi.org/10.1007/978-3-319-25232-2_13
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12.3 The Fluid Imitation Engine (FIE)

Figure12.1 shows the main components of the fluid imitation engine (FIE). There
are four main components: perspective taking, significance estimator, self initiation
engine and the imitation engine.

Perspective taking is needed to convert perceived environmental state and model
behavior into the frame of reference of the model then mapping the whole thing into
the frame of reference of the learner. This gives the learner an idea about how would
the environment appear from its point of view if it were in the shoes of the model
and how are the motions of the model transformed into its own actuation space.
This component is task specific, yet we will consider it in two difference contexts in
Sect. 12.4. This component generates a transformed version of environmental state
and model’s behavior that is passed to the self initiation engine.

The second basic component is the significance estimator which calculates the
significance of perceived motions/behaviors based on their top-down relevance to
the current set of goals of the learner and bottom-up saliency of the behavior or
environmental context and objects involved in it. We will discuss the component in
greater details in Sect. 12.5.

The self initiation engine is the main focus of this chapter and we will elaborate
on it further later. Briefly, it receives the transformed environmental and behavior
signals and discovers in the behavior signals significant segmented actions that are
then passed to the imitation engine. We will discuss it in details in Sect. 12.6.

The final component shown in Fig. 12.1 is the imitation engine which simply re-
ceives segmented action demonstrations and learns the corresponding actionmodels.
This engine can rely on any LfD system from the ones introduced in Chap. 13. In our
implementations we use SAXImitate (Sect. 13.4) in combination with GMM/GMR
(Sect. 13.3.2).

Fig. 12.1 Overview of the proposed fluid imitation engine and its main components

http://dx.doi.org/10.1007/978-3-319-25232-2_13
http://dx.doi.org/10.1007/978-3-319-25232-2_13
http://dx.doi.org/10.1007/978-3-319-25232-2_13
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12.4 Perspective Taking

The perspective taking module has two goals. The first is to transform the environ-
mental state into streams representing the objects in the environment to be useful for
significance estimation and model-relative perceptions. The second is to transform
the behavior of the model to the embodiment of the learner (in effect solving the
correspondence problem).

12.4.1 Transforming Environmental State

To achieve the first goal, an object detection module needs to be implemented to
discover objects in the environment that may be affected by the behavior of themodel
or that can affect that behavior. Object recognition is a traditional research subject
in machine vision and many mature systems exist that can be directly employed for
implementing this component when the input is provided through cameras (Belongie
et al. 2002; Bo et al. 2013; Guo et al. 2014). For the navigation scenario, the learner
and model both have infrared sensors for detecting nearby objects that can be used as
the basis for this component. For the cooking scenario, either environmental mounted
cameras or robot-mounted cameras can be used.

One interesting approach to object discovery that requires no prior knowledge of
the objects involved and utilizes social cues is the use of gaze maps (Mohammad
and Nishida 2010). A gaze map is a representation of the saliency of different points
in space calculated based on the gazing direction of the model superimposed on
an environmental map. The main advantage of a gaze-map in our context is that it
provides built-in saliency calculation by focusing on the objects attended to by the
model which simplifies the job of the significance estimator.

The spatial distributionof saliency (importance) is stored as aGMM(SeeSect. 2.2)
where the mean μi represents the location of an important object and the variance
σi is a measure of the size of that object. The weight of each Gaussian represents the
importance of the place according to the gaze of the model. Two sets of weights are
kept by the system: wi which represents the spatial importance of every Gaussian,
and wri that represent the temporal importance of every Gaussian.

In the beginning the saliency of the whole area around the robot is assumed to be
zero. The input to the gaze-map updater algorithm is the point at which the model
is currently looking. Once a new point (g (i)) is received by the algorithm it checks
that the model was looking at the point steadily recently (for ε ms at least) and if not
the point is assumed to be a noise and is not processed any further. To calculate if
the model is looking steadily to some point we calculate:

∥∥∥∥∥∥
g (i) −

i−1∑

j=0

( j + 1) g ( j)/
i−1∑

j=0

( j + 1)

∥∥∥∥∥∥
.

http://dx.doi.org/10.1007/978-3-319-25232-2_2
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Fig. 12.2 The building blocks for perspective taking showing its internal structure and relation to
other components of the fluid imitation engine

This formula calculates the difference between the instantaneous gaze estimation
and the gaze direction estimated as a weighted average of previous instantaneous
gaze directions.

Now if g (i) is not near to any one of the available Gaussians ({G}) then a new
Gaussian is added at this point otherwise it is combinedwith theGaussian component
nearest to it updating both the mean and variance of this component. For the detailed
algorithm of this process refer to (Mohammad and Nishida 2010). The weights of the
component in the spatial and time domains (wi , wir respectively) are then updated to
increase the weight of the area near the new point.

wi is increased proportional to the distance between the new point and the center
of the winning Gaussian under the assumption that the model will usually tend to
look near the center of the object (s)he is interested in at any point of time. wi is
continuously decreasing at a constant rate to implement forgetting into the system.
wti is calculated as the reciprocal of the summation of the time of last access to
every Gaussian in the mixture and a fixed term εt . By controlling this parameter it is
possible to control how forgetful is saliency calculation.More details and evaluations
of the accuracy of this technique are given by Mohammad and Nishida (2010).

Discovering objects is just the first step in the operation of environmental state
transformation. A set of object perceptionmodules are then implemented that capture
different features of the objects perceived including their states, locations, geomet-
rical relations, etc. These are depicted in Fig. 12.2 as object preceptors and they
are application dependent. For example, consider the navigation scenario. Important
features of objects may be their type (cylinder, cube, another robot, etc.) and distance
from the learner. For the cooking example, these may include different accordances
provided by the objects and whether they were moved compared with the last eval-
uation cycle, etc. The output of object preceptors are combined together to form a
multidimensional stream called the objects stream (O) hereafter.
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The objects stream represents important features of the environment as perceived
by the learner but not the model. They will only be used for saliency calculation (See
Fig. 12.2). To imitate the model, the learner needs to put itself in the its shoes. This is
achieved through a Frame ofReference (FoR) projector that transforms all the outputs
of the object perceptions to the frame of reference of the model. The justification
of this process comes from the like-me hypothesis (See Chap.7) where the learner
assumes that the model has similar perceptual and cognitive repertoires. The results
of this transformation is the perception stream (P) that is used for significance
calculation as well as by the self-initiation engine (Fig. 12.2).

12.4.2 Calculating Correspondence Mapping

The second task of the perspective taking module is to map the behavior of the
model to the learner’s actuation space. This is known as the correspondence problem
in literature (Nehaniv and Dautenhahn 2001).

The same name is used in two different senses in robotics and developmental psy-
chology. In robotics, it is usually used to indicate the problem faced by the designer
in matching the actions of the model agent (usually a human) and a specific robot that
may not have the same body form (i.e. a non-humanoid) or may share the general
form of the model (i.e. a humanoid) but with different relative lengths of limbs and
body comparedwith themodel (Nehaniv andDautenhahn 1998). The focus here is on
different embodiments. In developmental psychology, the correspondence problem
refers to the problem faced by the infant in determining the correspondence between
the motions it perceives from other people and its own repertoire of motion. Here
the focus is not in the difference in embodiment but in autonomously learning the
correspondence between body parts and motion of these parts and their counterparts
in the infant’s own body (Meltzoff 2005). Chapter7 discussed briefly the problem
from the viewpoint of developmental psychology and this section will focus on the
problem from the viewpoint of robotics.

The difficulty of the correspondence problem depends on the type of behavior
being learned and the degree of dissimilarity between the embodiments of the model
and learner. For example, learning words from spoken language of people (a possible
application of fluid imitation), requires no correspondence mapping as the robot is
assumed to be able to generate the same vocalizations as the model and there is
no spatial viewpoint to map. For the navigation scenario, the learner and model are
both having the same embodiment and this simplifies the problem to become trivial
copying of behavior. For the cooking scenario, things are more complicated as the
robot—even being a humanoid—will in general have different limb length ratios and
body form from the human model. More complex situations can be envisioned in
which the learner has completely different body form from the model and in this case
it is usually possible to achieve emulation (e.g. copying of goals) instead of imitation
(See Sect. 7.1 for the difference between imitation and emulation).

http://dx.doi.org/10.1007/978-3-319-25232-2_7
http://dx.doi.org/10.1007/978-3-319-25232-2_7
http://dx.doi.org/10.1007/978-3-319-25232-2_7
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Wewill focus on the situationwhen themodel is a human, the learner is a humanoid
robot with rigid body parts and the motion to be copied is arm motion. This problem
is solved enough to give closed form solutions, yet realistic enough to be of practical
value (e.g. in the cooking scenario).

The following terminology will be used (Mohammad and Nishida 2013; Moham-
mad et al. 2013): U is the length of the upper arm and L is the lower arm length, A j

i

stands for the point-vector Ai expressed in frame j . T j
i stands for a homogeneous

transformationmatrix converting vectors in frame i to corresponding vectors in frame
j . R j

i is the corresponding rotational matrix and D j
i is the origin of frame i in frame

j . T , S, E , W , and H (case insensitive) stand for the torso, shoulder, elbow, wrist and
hand of the learner respectively, while T̂ , Ŝ, Ê , Ŵ , and Ĥ (case insensitive) stand for
the torso, shoulder, elbow, wrist and hand of the model. A represents configuration
dependent vectors and Λ represents vectors fixed by design.

Our goal here is to copy the limb configuration of the human body. This can be
achieved by preserving the unit vectors pointing from the shoulder to the elbow and
from the elbow to the wrist. This can be formalized as: Let âi−1

i = Ai−1
i /‖Ai−1

i ‖ be a
unit vector in the direction of joint i as defined in the frame attached to the previous
joint (i − 1) for the three upper-body kinematic chains of a humanoid robot. Given
(Λt̂

s , At̂
e, At̂

w), find the set of all possible vectors of joint angles for the robot that
preserve âi−1

i for all joints.
Pose copying can be achieved in two stages. The first stage (called retargeting)

converts all joint locations of the model from the model’s own torso frame to the
learner’s torso frame. This is a simple homogeneous transformation that can be
achieved using:

At
e = Λt

s + U∥∥At̂
e − At̂

s

∥∥
(

At̂
e − At̂

s

)
, (12.1)

At
h = At

e + L∥∥∥At̂
h − At̂

e

∥∥∥

(
At̂

h − At̂
e

)
. (12.2)

After this transformation is applied, we need to solve a problem similar to the
standard inverse kinematics problem but rather than being given the homogeneous
transformation of the end effector (the wrist in our case), we are given the elbow
and wrist positions. Reliance on positions only has two justifications. Firstly, the
position estimates of most off-body motion capture systems are more accurate than
orientation estimates. Secondly, the standard inverse kinematics solutions may give
multiple solutions if the problem is underspecified and in this case, multiple possible
elbow positions can be generated and only one of them will correspond to the sought
after location corresponding to the demonstration.

The twovectors found from the retargeting step provide 4 degrees of freedom (they
are normalized) and they can be used to calculate 4 joint angles. Most humanoids
available today have one of two general configuration of joints in the hands: either a
3DoF spherical shoulder with a single DoF at the elbow (similar to the human body)
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Fig. 12.3 Kinematicsmodels used for pose copying.Reproducedwith permission fromMohammad
et al. (2013). a Upper arm model. b Lower arm model

or a 2DoF pan-tilt shoulder with another 2DoFs at the elbow. The method developed
by Mohammad et al. (2013) can be used with both of these types of robots.

Under fairly general assumptions the two common configurations of the arm
discussed above will have the same forward kinematics which means that a general
solution can be devised for solving the pose copying problem for both of them.

The main idea behind our is to divide the problem of arm pose copying into three
steps: elbow positioning, wrist positioning and hand inverse orientation.

Hand inverse orientation can be achieved using classical inverse kinematics (Paul
et al. 1981) and is not considered a part of the pose copying problem.

Elbow positions requires a model of the upper arm and wrist positioning requires
a model of the lower arm. An appropriate transformation will also be needed to
convert the output from the elbow positioning step to the same frame of reference
required for the wrist positioning step.

Using standard kinematics reasoning from the upper arm model shown in
Fig. 12.3a, it can be shown that:

θU
1 = tan−1

(
As

e(y)

As
e(x)

)
,

θU
2 = tan−1

⎛

⎝ As
e(z)√

As
e(x)2 + Xs

e(y)2

⎞

⎠ ,

where θU
1 and θU

2 are the first DoFs of the upper arm model that are shared between
the two possible arm configurations considered here (spherical and pan-tilt shoulder
types).

To solve the wrist orientation problem, we need to convert the wrist location to
the frame of reference of the elbow. This is achieved in two steps. Firstly, we use the
same upper model used above for projection using:

U Ae
w = (

T s
e

)−1
As

w. (12.3)
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This transformation is done using the frame of reference associated with the upper
model and needs to be mapped to the lower model. This mapping depends on the
robot and whether it has pan-tilt or spherical shoulder configurations. This mapping
for the spherical should type is:

T U
L =

⎡

⎢⎢⎣

0 0 1 −U
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ .

In the pan-tilt-shoulder case, it becomes

T U
L =

⎡

⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ .

Given this mapping we can find the wrist location in the elbow frame of refer-
ence using:

Ae
w = T U

L ∗ U Ae
w. (12.4)

Using the lower arm model of Fig. 12.3b and assuming that L y and Lz are not
zero, we can show that

Ae
w (x) = Lc2 − L ys2,

Ae
w (y) = L yc1c2 − Lzs1 + Lc1s2,

Ae
w (z) = Lzc1 + L yc2s1 + Ls1s2,

(12.5)

where ci = cos(θ L
i ) and si = sin(θ L

i ).
Few intermediate variables need to be defined:

γ = Ae
w(y)2 + Ae

w(z)2 − L2 − L2
z ,

α = Lc2,
β = L yc2,
a = L yc2 + Ls2,
b = Lz .

After some manipulations, it is possible to prove the following relations.

c2 = Ae
w(x)L ±

√
Ae

w(x)2L2+γ (L2+L2
y)

L2+L2
y

,

s2 = Lc2−Ae
w(x)

L y
,

c1 = a Ae
w(y)+bAe

w(z)
a2+b2 ,

s1 = Ae
w(z)−bc1

a = ac1−Ae
w(y)

b .

(12.6)
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Finally the 2DoFs of the lower model can be found as:

θ L
i = tan−1

(
si

/
ci

)
. (12.7)

The cases when L y or Lz is zero are handled as special cases using the same
approach but result in slightly different equations. Due to lack of space the details of
these cases are not presented here.

The final step in the solution for elbow and wrist positioning problem is to con-
vert the angles θ L

i and θU
i to corresponding angles in the forward full model (θi ).

Mohammad et al. (2013) have shown that this final transformation can be found as:

θ1 = θU
1 , θ2 = θU

2 , θ3 = θ L
1 , θ4 = θ L

2 + π
/
2. (12.8)

The output of the pose copier (See Fig. 12.2) will constitute the action stream (A)
that is then passed to the significance estimator and self-initiation engine (SIE).

12.5 Significance Estimator

The significance estimator receives three continuous streams of data from the per-
spective taking module (A, O , P) and generates estimations of the significance of
behaviors in the A stream without segmenting them.

Figure12.4 shows the building components of the significance estimator. There are
two independent computational stacks. The first is a top-down stack for calculating
the relevance of perceived behavior to the goals of the agent. The second is a bottom-

Fig. 12.4 The building blocks for the significance estimator showing its internal structure and
relation to other components of the fluid imitation engine. All rounded rectangles receive a copy of
A, P, O but the arrows are not shown to reduce clutter
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up stack for calculating the saliency of the behavior or associated objects in the
perceptual stream P . This combination of bottom-up and top-down processing is
one common feature between the fluid imitation engine and LiEICA (See Chap. 10).

Saliency calculation processes {A (t) , O (t) , P (t)} streams by applying a set of
N saliency feature extractors that receive A and P and generate an output saliency
score Sn (t) ranging from zero to one and a confidence scoreCn (t) of the same range.
All saliency feature extractors run in parallel.

Currently, we implemented few saliency feature extractors (SFEs) but the archi-
tecture of FIE allows other saliency feature extractors to be plugged into the saliency
evaluation stack directly.

The simplest SFE is designed to discover beginning and ending of motion in all
inputs that are marked as position data. It simply calculates the difference of each
input channel from its previous value (d). When St−1 = 0 (i.e. when no saliency was
announced), it outputs a linearly increasing value from 0 to 1 in τ steps when this
difference d is greater a global threshold ε and then saturates at the value 1. When
St−1 > 0, then the output linearly decreases to 0 in St−1/τ steps when d ≤ ε.

Another slightly more complicated SFE (CPD SFE in Fig. 12.4) applies a change
point discovery algorithm to every dimension of all its inputs. In our current imple-
mentations we use a variant of SSA based CPD introduced in Sect. 3.5.

The main assumption we make here is that if it is changing, then it is salient. We
assume that this is true both for behavior and environmental state. For the perceptual
stream P , it is clear that objects that do not change their state, are not very interesting
for the learner (at least in themselves). For the action stream A, we base our hypothesis
onto two points. Firstly, from the computational point of view, what we are searching
for are important behaviors thatmay appear recurrently in the stream (otherwise, there
is no need to learn them) and this means that they should be different from whatever
follows and precedes them leading to change points around them. Secondly, it is
well-known that care-givers use very specific types of motion when teaching their
children that they do not use when interacting with adults. These special motion
patterns (called motionese (Nagai and Rohlfing 2007)) where shown to increase the
saliency of objects and behavior bymoving the first and exaggerating the later (Nagai
and Rohlfing 2007).

A third SFE that is always available is the Change Causality SFE (CC SFE in
Fig. 12.4). This SFE calculates the change causality score between dimensions in
A and both O and P using the system proposed in Sect. 5.5. The main idea here is
that behaviors of the model that cause changes in the environmental state should be
considered important and targeted for possible imitation.

Other notions of saliency that may be application and context dependent can be
added easily. For example, if we have a gaze-map (See Sect. 12.4), then an SFE for
extracting changes in gaze direction or points of sustained gaze can easily be added.

The SFEs output 2N values at every time-step {S1, S2, . . . , SN , C1, C2, . . . , CN }.
Each SFE has an associated weight Wn (t) that specifies how important is this SFE
for the discovery of motions to be imitated. The weights are calculates through the
relevance calculation stack as will be explained later. The final saliency score is then
calculated as:

http://dx.doi.org/10.1007/978-3-319-25232-2_10
http://dx.doi.org/10.1007/978-3-319-25232-2_3
http://dx.doi.org/10.1007/978-3-319-25232-2_5
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σ (t) =

N∑
n=1

Wn (t)Cn (t) Sn (t)

N∑
n=1

Wn (t)Cn (t)

. (12.9)

The relevance calculation stack uses the goals provided by higher level cognition
modules of the robot (e.g. a BDI agent) to calculate a relevance level for behaviors
and environmental state changes found in A, O , and P . The stack consists of a set
of M relevance feature extractors (RFEs) that generate relevance Rm and confidence
scores Cm in the same way that SFEs work. These scores are combined linearly
similar to Eq.12.9 to generate the final relevance estimate ρ (t).

A special RFE is the SaliencyWeighing RFE (SW SFE in Fig. 12.4) which calcu-
lates the weights of SFEs. In the current implementation, we add a weight for objects
in O and P that decays exponentially with the distance between the object and the
model under the assumption that only objects accessible to the model are interest-
ing. The weights for model’s behavior (A) is fixed to 1 for upper-body joints and 0
for lower body joints because the current imitation engine cannot learn lower-body
motions and keep the balance of the robot in the same time. This limitation can be
removed in the future and the SW RFE modified accordingly.

The output of the significance estimator is the tuple {σ, ρ} that is then passed to
the self initiation engine.

12.6 Self Initiation Engine

The self initiation engine is the core of FIE. It receives the outputs of the perspective
taking module (the action stream A, the perception stream P , and the objects stream
O) and significance measures (saliency σ and relevance ρ) from the significance
estimator (Sects. 12.4 and 12.5) and uses them to segment the action stream A (or
the perception stream P if object-directed motions are to be learned). Segmented
motions are then combined into sets that are fed to the imitation engine.

The self initiation engine in the current implementation consists of a constrained
motif discovery algorithm that uses the significance and relevance measures to bias
the search for motifs (See Sect. 4.6).

12.7 Application to the Navigation Scenario

In this chapter we report a series of proof-of-concept experiments with increasing
complexity aiming at showing the applicability of the proposed system to the nav-
igation scenario that were first reported by Mohammad and Nishida (2010). The
task used for all of the experiments involves robot navigation (See Sect. 12.2). All

http://dx.doi.org/10.1007/978-3-319-25232-2_4
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simulations were done using the V-REP simulator with realistic physics based on the
Bullet Physics engine. A simulated e-puck robot was used as a model and a learner
in all experiments reported in this section.

In the first experiment, the simulator moved randomly in the arena executing one
of three geometrical shape randomly every while (a triangle, a circle and a square).
In this case, the significance estimator could only report change points in the motion
behavior which rendered the SIE a simple application of constrained motif discovery
as described in Sect. 4.6.

The perspective takingmodule received a 3D time-series representing the location
and orientation of themodel over time (x (t), y (t), θ (t)) and outputs a 1D time series
(l̂ (t)) representing the location of the model in the arena.

The pose copying module simply applied inverse kinematics and there was no
need to solve the correspondence problem as the learner and model had the same
exact embodiment. Applying this inverse kinematics to (x̂ (t), ŷ (t), θ̂ (t)) to generate
the corresponding motor commands (m̂l (t), m̂r (t)).

The imitation engine simply calculated the mean of all demonstrations reported
to belong to the same motion.

Mohammad and Nishida (2010) used the log of a single session (of 120–400
seconds each) sampled at 20Hz as the input to our systemcontaining four occurrences
of each of the three behaviors. The experiment was repeated 100 times and for each
of them artificial Gaussian noises of zero mean and a standard deviation of zero
up to the maximum value of each dimension was added (generating 8 trials for each
experiment). This gives a total of 800 trials.

The average occurrence accuracy of the system over the 800 trials was 93.8%
(93.18% for circles, 94.72% for squares, and 93.51% for triangles) (Mohammad
and Nishida 2010).

The first experiment testedmostly the solution to the action segmentation problem
as significance calculation was trivial. Nevertheless, even in this case, significance
calculation using CPD proved effective in reducing the computational cost by allow-
ing the motif discovery algorithm at the heart of the SIE to focus on important parts
of the input.

To test the applicability of the Fluid Imitation Engine for solving the significance
estimation problem (alongside action segmentation), we need to have different kinds
of objects with different associated behaviors. Mohammad and Nishida (2010) used
two kinds of objects: Cylinders and K-Junior robots. The model rotated in a square
around every cylinder it encountered and in a circle around every K-Junior robot.

In this second experiment, significance calculation was completely determined
from the bottom-up. In other words, relevance was not relevant, only saliency mat-
tered. We used the log of 1000 trials similar to the ones used for the first experiment.
The learner, learned only circle and square primitives as expected and with detec-
tion mean occurrence accuracy of 93.95% (93.18% for circles, 94.72% for squares).
This suggests that the causality estimator was able to remove the unnecessary triangle
pattern from consideration (Mohammad and Nishida 2010).

The last experiment reported by Mohammad and Nishida (2010) in the simulated
environment involved making the K-Junior robots rotate continuously in place until

http://dx.doi.org/10.1007/978-3-319-25232-2_4
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themodel rotates around them and giving the learner the goal of stopping all K-Junior
robots.

This case tested the relevance component of the system and we used the log of
1000 trials similar to the ones used in the previous two experiments. The learner,
learnedonly circle primitive as expected andwith detectionmean accuracyof 93.18%
(Mohammad and Nishida 2010).

12.8 Summary

This chapter introduced our fluid imitation engine. FIE is a first step toward increasing
the fluency of robotic imitation by making it more natural. The main difference
between fluid imitation and traditional learning from demonstration is that the action
streams perceived from the model is not segmented. The model is not even fixed
as the robot can learn from any human (or other robot). The core step added to
standard LfD approaches is a solution to the action segmentation challenge. We used
a combination of change point discovery, motif discovery and causality analysis to
segment interesting motions from the continuous streams of actions perceived by
the robot. Interesting actions in this case are those that are repeated or that happen
around major changes in environmental state related to the robot goals. The chapter
also reported an application of the engine by aminiature robot learning to navigate an
arena and execute appropriate navigation patterns of actions around different kinds
of objects.

References

Abbeel P, Coates A, Ng AY (2010) Autonomous helicopter aerobatics through apprenticeship
learning. The Int J Robot Res 29(13):1608–1639

Aleotti J, Caselli S (2008) Grasp programming by demonstration: a task-based quality measure. In:
RO-MAN’08: IEEE international symposium on robot and human interactive communication,
IEEE, pp 383–388

Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demon-
stration. Robot Auton Syst 57(5):469–483

Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts.
IEEE Trans Pattern Anal Mach Intell 24(4):509–522

Billing E (2010) A formalism for learning from demonstration. Paladyn 1(1):73–102. doi:10.2478/
s13230-010-0001-5

Bo L, Ren X, Fox D (2013) Unsupervised feature learning for RGB-D based object recognition.
In: Experimental robotics. Springer, pp 387–402

Guo Y, Bennamoun M, Sohel F, Lu M, Wan J (2014) 3D object recognition in cluttered scenes with
local surface features: a survey. IEEE Trans Pattern Anal Mach Intell 36(11):2270–2287

Iacoboni M (2009) Imitation, empathy, and mirror neurons. Annu Rev Psychol 60:653–670. doi:10.
1146/annurev.psych.60.110707.163604

Meltzoff AN (2005) Imitation and other minds: the “like me” hypothesis. Perspect Imitation Neu-
rosci Soc Sci 2:55–77

http://dx.doi.org/10.2478/s13230-010-0001-5
http://dx.doi.org/10.2478/s13230-010-0001-5
http://dx.doi.org/10.1146/annurev.psych.60.110707.163604
http://dx.doi.org/10.1146/annurev.psych.60.110707.163604


References 291

MohammadY,Nishida T (2010) Controlling gazewith an embodied interactive control architecture.
Appl Intell 32:148–163

Mohammad Y, Nishida T (2012) Fluid imitation: discovering what to imitate. Int J Soc Robot
4(4):369–382

Mohammad Y, Nishida T (2013) Tackling the correspondence problem: closed-form solution for
gesture imitation by a humanoid’s upper body. In: AMT’13: international conference on active
media technology. Springer, pp 84–95

Mohammad Y, Nishida T, Nakazawa A (2013) Arm pose copying for humanoid robots. In: RO-
BIO’13: IEEE international conference on robotics and biomimetics, IEEE, pp 897–904

Nagai Y (2005) Joint attention development in infant-like robot based on head movement imitation.
In: The 3rd international symposium on imitation in animals and artifacts, April, pp 87–96

Nagai Y, Rohlfing KJ (2007) Can motionese tell infants and robots. What to imitate? In: 4th inter-
national symposium on imitation in animals and artifacts, pp 299–306

NehanivC,DautenhahnK (1998)Mapping between dissimilar bodies: affordances and the algebraic
foundations of imitation. In: Demiris J, Birk A (eds) EWLR’98: the 7th European workshop on
learning robots, pp 64–72

Nehaniv CL, Dautenhahn K (2001) Like me?-measures of correspondence and imitation. Cybern
Syst 32(1–2):11–51

Paul RP, Shimano B, Mayer GE (1981) Kinematic control equations for simple manipulators. IEEE
Trans Syst, Man, Cybern 11:445–449

Scassellati B (1999) Knowing what to imitate and knowing when you succeed. In: The AISB
symposium on imitation in animals and artifacts, pp 105–113



Chapter 13
Learning from Demonstration

Creating robots that can easily learn new skills as effectively as humans (or dogs or
ants) is the holly grail of intelligent robotics. Several approaches to achieve this goal
have appeared over the years. Many of the approaches focused on using standard
machine learning methods in an effort to develop the most intelligent autonomous
robot which handles learning new skills without the need of human intervention.

This is asking too much from the robot. To see that, consider how humans learn
new skills. Even though autonomous exploration is an important feature of human
learning, we learn most of what we know by capitalizing of the knowledge of other
humans. We learn swimming not by just jumping into water and trying, nor by
studying swimming books but by watching others swimming and then being taught
explicitly how to improve our style. After having enough tutelage to achieve minimal
skill, we can continue to improve our skill on our own by exploring local variations
of the learned motions or even by trying completely new motions but only after we
have enough confidence based on the initial mimicking and tutelage phase.

This suggests that intelligent robots may be advised to take a similar route and
capitalize on human knowledge to learn new skills. This is the idea behind learning
from demonstrations. This chapter explores the history and current state of the art in
learning from demonstration as alternative techniques for implementing the imitation
engine part of the fluid imitation engine (FIE) discussed in Chap. 12. The same
techniques can be used for controller generation in the first stage of development of
EICA agents discussed in Sect. 11.1.2.

Learning fromdemonstration (LfD) is a crucial component in imitation learning as
it answers the how to imitate and—to some extent—thewhat to imitate questions.We
can divide current methods for LfD into two main categories. Primitive learning LfD
methods focuses on learning basic motions from a single or multiple demonstrations.
This is the lowest level LfD possible and can be used to learn motion primitives to
be employed by the second category. The second category is plan learning LfD
methods. These focus on learning a plan (in most cases a serialization of motion
primitives) to achieve somegoal or execute some task.Both categories can be grouped
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together under a general formulation of policy learning in which the robot learns a
policy from the demonstrations. A policy is a mapping from state to actions. For
primitive learning, the state may be time or current configuration and the action is
a specific configuration. For plan learning the state is perceived situation including
both environmental conditions and robot’s internal state and the actions are primitives
to be executed. The treatment of this chapter is biased toward primitive learning as
this is the main component we need for our social developmental approach and fluid
imitation.

13.1 Early Approaches

Learning from Demonstrations has a long history in robotics. Earliest systems that
utilize some form of LfD appeared in 1980s (Dufay and Latombe 1984). Motion
replay is one of the earliest methods for teaching robots by demonstrating tasks.
In its simplest form, the robot is teleoperated and instructed to perform some task
while saving the complete commands sent to its actuators. This exact sequence of
motor commands can then be played back whenever the task is to be executed. This
approach is not expected to work well in practice because any small variation in the
environment or any noise or measurement inaccuracies during recording may cause
a failure in reproducing the task. This is specially correct when the task involves
manipulation of external objects.

Early approaches to LfD tried to avoid this problem by encoding the demon-
strated task as a logical program and using inductive reasoning to produce a logical
representation that can then be used for reproducing the task even within a variable
environment. Teleoperation was again used to guide the robot into completing the
task while recording both its state (e.g. the position and orientation of the end effec-
tor) in the environment in relation to other important objects (e.g. the motion goal)
as well as the motor commands sent to the robot. The recording was then segmented
into episodes that achieve subgoals. These subgoals were encoded appropriately for
industrial robots. For example a subgoal may be to achieve a certain orientation in
relation to the object being manipulated. The information of the recording was then
converted with the help of these subgoals into a graph of states connected by actions
or a set of if-then rules encoded using symbolic relationships like “In contact with”,
“over”, “near”. The rules needed to convert numeric readings of the state into these
symbolic relationships were set by hand prior to the learning session. Once this graph
of state–action associations or set of rules is learned, inductive inference can then be
used to execute the task even when small variations in the environment or sensory
noise is present (Dufay and Latombe 1984).

This symbolic approach suffers from the standard problems of deliberative
processing in robotics: it is difficult to scale to complex situations, and requires
adhoc decisions regarding the conversion from numeric values to logical constructs.
Soon, the generalization problem to other robotic platforms and situations led to
utilization of machine learning techniques.
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13.2 Optimal Demonstration Methods

Given the shortcomings of classical deliberative approaches to learning from demon-
stration in cases of trajectory or primitive learning; a host of other approaches
were proposed over the years. This section explores optimization and dynamical
approaches to the problem. Given an input trajectory, these algorithms assume that
this trajectory carries information about the optimal policy utilized by the demon-
strator to achieve the required task or goal. The goal of the LfD system is then to
learn a generalized form of this motion that does not only allow the robot to achieve
the same goal but provides a basis for the robot to achieve other goals and adapt to
environmental change.

13.2.1 Inverse Optimal Control

One of the early approaches to LfD that appeared in 1990s was inverse optimal
control (IOC). In this case, the robot learns within an optimal control framework.
To understand the system, we first introduce the main structure of optimal control
Problems.

The optimal control framework casts the control problem (how to act on a dynam-
ical system) into an optimization problem of some optimization criterion J (x, u, t).
A full specification of an optimal control problem consists of the following:

• A specification of the state variables x (t) and controls u (t).
• A specification of the systemmodel usually in the form ẋ (t) = f (x (t) , u (t) , t).
• A specification of the performance index to be optimized J (x (t) , u (t) , t) which
can depend on both states and controls or directly on time. For example, in the
minimum time problem, the performance index to be optimized (minimized) is
time itself.

• A specification of constraints on states and controls including boundary condi-
tions. For example, starting and final states can be considered as state constraints
and maximum allowable torque can be considered as a control constraint. Mixed
constraints that depend on states and controls can also be specified.

Given the above mentioned ingredients, a fairly general optimal control problem
can be specified as:

argmin
u

J (x (t) , u (t) , t) ,

s.t.

ẋ (t) = f (x (t) , u (t) , t) ,

and

hk (x (t) , u (t)) < 0 1 � k � Kh,

gl (x (t) , u (t)) = 0 1 � l � Kg.
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In normal optimal control problems, J is chosen by the engineer to achieve some
predefined goal. In inverse optimal control problems, J itself is learned which is
where demonstrations fit.

The simplest approach to utilize LfD in inverse optimal control is to define J as
the distance between some function of the state g (x (t)) and some function of the
human demonstration ζ (d (t)) where d (t) is the demonstration. Standard optimal
control methods like dynamic programming or Pontryagen’s Maximum Principle
can then be used to recover the optimal control input u (t).

This method was one of the earliest LfD approaches and was employed as early as
1997 by Atkeson and Schaal (1997b) where a single demonstration was used to teach
amanipulator (SARCOSarm) to swing up a pendulum (initially hanging downwards)
and balance it as an inverted pendulum. To simplify the task, only horizontal motion
was allowed both in the demonstration and learned motion. Human demonstrations
were captured by a stereo vision system with markers attached to the pendulum to
capture its orientation over time.

It is important to understand the details of this early system. Firstly, the learning
problem can be divided into two parts: learning to swing the pendulumup to approach
the desired state (at the top) and learning to balance the pendulum once it is near the
top. The output of the solution to the first problem is an open-loop controller while
the output of the second is a closed-loop controller. Learning from demonstration
appears only in the solution to the first problem. Nevertheless, we will consider
a simplified version of the balancing problem for completeness. Through out this
discussion the state of the system will be called s = [

θ, x, θ̇ , ẋ
]T

where θ is the
angle of the pendulum measured couterclockwise from the top position and x is the
horizontal position of the hand (or the end effector of the robot arm).

Balancing at the top can be achieved using a linear quadratic regulator (LQR)
working on a linearized model of system dynamics at the top. Atkeson and Schaal
(1997b) showed that system dynamics can be modeled as:

θ̇k+1 = (1 − α1) θ̇k + α2 (sin (θk) + ẍkcos (θk) /g) , (13.1)

whereα1 is the drag coefficient, α2 = g
f l , f = 60 is the sampling frequency, l = 0.35

is the pendulum length, and g = 9.81 is the gravitational acceleration. Notice that
this is an idealized model assuming that the mass of the pendulum is concentrated
completely on its tip.

To design the balancing controller, this model is linearized near the top (θ = 0).
This can be achieved by putting the system into states near the top and running a single
step of system dynamics using Eq.13.1 to obtain training data for a linear regressor.
UsingMATLAB’s standardmvnregress function, we can obtain a linearmodel to be
used with LQR. Applying this technique we get to the following linearized system:

sk+1 = Ask + Buk, (13.2)



13.2 Optimal Demonstration Methods 297

where the input uk is the acceleration ẍ and

A =

⎡

⎢⎢⎣

1.000 0.000 1/f 0.000
0.456 −0.000 0.991 −0.000
0.000 1.000 0.000 1/f
0.000 0.000 0.000 1.000

⎤

⎥⎥⎦ ,

and

B =

⎡

⎢⎢⎣

0.000
0.046
0.000
1/f

⎤

⎥⎥⎦ .

Using standard LQR (e.g. throughMATLAB’s dlqr function), we can then obtain
a linear controller u = K s that can be used for balancing. For our case, this controller
will be:

ẍ = u = [−48.963,−3.057,−10.795, 2.632] s.

Now implementing this controller can be shown to balance the pendulum near
the top as shown in Fig. 13.1. As the figure shows, the balancing controller can
successfully balance the pendulum at the top. No information from the demonstration
was used to solve this problem. One reason for that is that it is solvable using standard

Fig. 13.1 The results of applying the balancing controller learned using LQR on the linearized
model for 50 different initial conditions showing the first half second. The top panel shows the
angle of the pendulum according to the linearized model. Middle panel shows the angle according
to the nonlinear idealized model. Bottom panel shows the input acceleration applied to the end
effector position
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optimal control once we have an appropriate linear model. Another reason is that the
hand motion used for balancing is usually much smaller than that used for swinging
up. This means that accurate sensing of this motion is much harder. Now, we turn our
attention to the second problem of swinging up the pendulum to a state that allows
this balancing controller to take over.

The demonstration (called d hereafter) is used to teach the robot how to do the
swing up of the pendulum. This formulated as another optimal control problem with
a quadratic cost function that penalizes deviation from the demonstrated motion.
More formally, the swing up problem can be formulated as the following optimal
control problem:

argmin
ẍ

J (s (t) , ẍ (t)) ,

s.t. s (t + 1) = f (s (t) , ẍ (t)) ,

where the dynamics f () is given by Eq.13.1.

J (s (t) , ẍ (t)) =
T∑

t=1

(s (t) − d (t))T Ql f d (s (t) − d (t)) + Rl f d ẍ(t)2,

and the quadratic costs are defined as Rl f d = 1 and

Ql f d =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1

⎤

⎥⎥⎦ .

This specific penalization scheme is designed to penalize mostly the deviation
from demonstrated hand positions (x) but also penalizes deviations in angle and
speeds (Atkeson and Schaal 1997b).

Solving this problem directly using standard nonlinear optimal control techniques
leads to a trajectory for the robot arm movement that mimics the hand motion of the
human demonstrator. Nevertheless, this direct mimicking does not lead to successful
imitation inmost cases. For example Atkeson and Schaal (1997a, b) show only exam-
ples of failures of this direct method. The reasons for this failure can be traced to three
main causes. Firstly, the learned controller is an open-loop desired trajectory that is
then implemented in the robot. Deviations during real-time are not compensated for
or—if a feedback controller is employed on top of the LfD system—are compensated
for assuming that the error resides in deviations from the learned hand trajectory not
from the desired trajectory of the pendulum itself. Secondly, the controller is not
perfect which means that even if implementing the exact trajectory would have suc-
ceeded, the controller will not follow the exact learned trajectory. Finally, the task is
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not exactly the same because the grip of the human and the response to the pendulum
to motion may be different than the case with the robot arm.

To resolve this problem, we need to improve the quality of the learned policy. One
possible approach is to use data from the failed attempt by the robot to improve the
model (as specified by Eq.13.1). This is done by learning the coefficients α1 and α2

using the data from the failed attempt. A second trial is then conductedwith the newly
learned model which usually fails but comes closer to a full swing up. This process is
repeated until there is more possible improvement of the model (remember that it is
an idealized model anyway and cannot capture the full dynamics of the pendulum).
At this point, Atkeson and Schaal (1997b) suggest increasing α1 gradually because
doing so takes energy from the system which is then compensated by the controller
leading to a higher swing. This approach succeeded from the third trial (Atkeson and
Schaal 1997b).

This example gives the flavor of IOC approaches to LfD but is only one possible
approach. Extensions and novel adaptations of IOC for learning from demonstrations
tasks are abound (see for example Park and Levine 2013; Byravan et al. 2014; Doerr
et al. 2015; Chen and Ziebart 2015; Huang et al. 2015; Byravan et al. 2015).

The IOC approach presented in this section combines modeling of the plant (for
the balancing problem), learning from demonstration (for getting the initial policy
or trajectory) and iterative improvement of the model and motion. It also requires
some understanding of system dynamics to achieve the final iterative process (e.g.
the effect of the dragging coefficient α1 on system dynamics) and is not completely
autonomous. As presented, noise andmeasurement inaccuracies were not considered
but they can be taken into account—at a great computational cost—by defining
rewards in the form of expectations over the stochastic parameters of the system.
The following section presents a related approach that takes the stochastic nature of
the system into consideration from the beginning.

13.2.2 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) is related to IOC. LfD is sometimes called
apprenticeship learning in this context (Abbeel et al. 2010). Rather than casting the
problem as a control problem of a dynamical system, IRL casts the problem as a
Marcov Decision Process (MDP) where we are interested in learning a policy that
maximize the expected accumulated reward. Again, the problem is inverted in the
sense that the reward function is not given but is learned from the demonstrations.

This method was applied successfully to learning helicopter acrobat maneuvers
from expert demonstrations (Abbeel and Ng 2004; Abbeel et al. 2010).

As an example of this approach,wepresent themethodproposedbyAbbeel andNg
(2004). Here, the system is modeled as aMarkov Decision Process (MDP). AnMDP
is a tupleM = (S, A, T, S0, γ, R), where, S is the set of states, A is the set of possible
actions, T : S × A → S is the transition probability from current state and action to
next state, γ ∈ [0, 1) is a discount factor used to calculate infinite horizon rewards and
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R : S × A → (0, 1) is the reward function.We also defineM\R = (S, A, T, γ, S0).
In IRL, we assume that we are givenM\R and some demonstrations sampled from
a policy π D : S → A that is usually (but not necessarily) assumed to be optimal.
IRL can then be used to recover an approximation of the underlying reward function
R̄ completing the model M̄ = (

S, A, T, S0, γ, R̄
)
. The completed model M̄ can

then be used with a standard RL solver to recover an optimal policy for the learner
p̄i that can achieve performance similar to π D on the original MDPM. One major
advantage of this approach is that it provides the clearest definition of the intention of
the demonstrator in the form of the reward function learned. In fact, RL can be used
as a unifying framework for modeling learning from demonstrations (Argall et al.
2009) and imitation-like behaviors (Melo et al. 2007). It can also support interleaved
stages of learning from demonstration and autonomous explorations (Oudeyer et al.
2014).

To simplify the problem, the underlying reward function to be learned R is
assumed to be a linear combination of features. These features are defined as map-
pings to the unit hypercube (φ : S → [0, 1]k).

R (s, a) = wφ (s) , (13.3)

where w ∈ R
k and ‖w‖1 ≤ 1. We assumed following Abbeel and Ng (2004) that

features depend only on the state leading to a reward function that depends only on
the state. Extension to the more general case of dependence on both state and action
is straightforward.

This limitation of the reward function form makes sense in practice. In realistic
RL applications, we usually have a set of goals to achieve and these can be encoded
as sub-rewards (features) that are then combined using appropriate weights. For
example, the reward function of driving is usually defined as a linear combination
of rewards for keeping safe distance, taking the appropriate lane, not exceeding the
speed limit, having minimal jerk and reducing accelerations, etc.

The value of any policy π : S → A is given by:

Es0∼S0

[
V π (s0)

] = E

[ ∞∑

t=0

γ t R (st ) |π
]

. (13.4)

Given Eqs. 13.3 and 13.4 we get:

Es0∼S0

[
V π (s0)

] = wE

[ ∞∑

t=0

γ tφ (st ) |π
]

. (13.5)

We can then define a shorthand version of feature expectations as:

μ (π) ≡ Es0 S0

[
V π (s0)

]
,

which leads to the simplified expression:
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Es0∼S0

[
V π (s0)

] = wμ (π) . (13.6)

Equation13.6 shows that, under our assumption, the value of any policy is a linear
combination of the values of this policy using features as rewards and the weights are
the same as these used to combine the features in reward definition (See Eq.13.3).

Given a set of policies π1, pi2, . . . , pin , we can define a probability distribution
over them

(
p1, p2, . . . , pn

)
that sums to one. We can define the policy π p defined

by selecting one policy π i with probability pi then executing it. It can be shown that:

Es0∼S0

[
V π p

(s0)
] =

n∑

i=1

pi Es0∼S0

[
V π i

(s0)
]
.

With these preliminaries, we are ready to explain how to use IRL in LfD under the
aforementioned assumption. Notice that the final goal for LfD is not the discovery
of R but the discovery of some policy π̄ that approximates and generalizes the
performance of the demonstrator. The approach presented here (due to Abbeel and
Ng 2004) uses the linearity assumptions stated earlier to find an appropriate policy
π̄ directly without the need to estimate R.

We assume that we have N demonstrations {Dn} each is a sequence of states of
lengths T n (Dn = {

sn
0 , sn

1 , . . . , sn
Tn−1

}
). We firstly estimate the value of this policy

using:

μ̂D = 1

N

N∑

n=1

Tn∑

t=0

γ tφ
(
sn

t

)
. (13.7)

A random policy π0 is then selected and its value evaluated as μ0 ≡ μ
(
π0
)
.

The weights of the features are then estimated as:

w1 = μ̄D − μ0,

and we set the first estimate of the approximate policy to μ̄0 = μ0.
We then enter a loop until convergence with values of i = 1, 2, . . . iterating the

following steps:

1. μ̄i−1 ← μ̄i−2 + (μi−1−μ̄i−2)
T
(μ̄D−μ̄i−2)

(μi−1−μ̄i−2)
T
(μi−1−μ̄i−2)

(
μi−1 − μ̄i−2

)
.

2. wi ← μ̄D − ¯μi−1.
3. t i ← ‖μ̄D − μ̄i−1‖2.
4. Terminate iff t i ≤ ε, where ε is a small allowable error in μ̄.
5. M̄ ← (

S, A, T, S0, γ, R̄i
)
, where R̄i = wiφ.

6. Solve theMDPM using any standard RL approach (e.g. value or policy iteration)
to get an optimal policy. Call this optimal policy π i and its value μi .

Abbeel and Ng (2004) showed that this algorithm always terminates in at most

O
(

k
(1−γ )2ε2

log k
(1−γ ε)

)
iterations. When it terminates, we return all the policies π i
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and a final policy μ̄ can be found by solving a quadratic programming problem to
minimize the difference between it and μ̄D by solving:

min
μ

‖μ̄D − μ‖2
s.t.μ =

∑
i
λiμ

i ,
∑

i
λi = 1.

Consider a small problem with 10 features, γ = 0.9, and ε = 0.1, The worst case
number of iterations is 2 × 105 iterations each involves the solution of an MDP.
Despite this high computational cost, the approach proved appropriate in teaching
robots to navigate in a simulated environment (Abbeel and Ng 2004) and a related
approach was used to advance the state of the art in autonomous helicopter flight
aerobatics (Abbeel et al. 2010). A related approach could even provide performance
better than all demonstrations (Coates et al. 2008).

13.2.3 Dynamic Movement Primitives

A third approach that is gaining increased support in the research community is mod-
eling the task to be learned by a regulated dynamical system (Ijspeert et al. 2013;
Schaal 2006). In this approach, we start by a dynamical system with guaranteed con-
vergence to the goal state of the motion. We then regulate the resulting motion based
on the demonstrations to achieve demonstration-like trajectories. This approach has
several advantages: firstly, it is adequate to describe both linear and cyclic motions
(e.g. drumming motions). Secondly, the resulting model is parameterized by the goal
state which can be changed to generalize the motion. Thirdly, the speed at which the
motion is generated is controllable using a single parameter.

Themost unique feature ofDMP is how it represents control policies. Traditionally
control policies could be represented as functions of the state space or as a desired
trajectory with an implicit linear PD controller. DMP, on the other hand, represents
the controller by a dynamical system.

Consider the following dynamical system:

ẍ = ζα (xd − x) − αα ẋ . (13.8)

This equation describes a dynamical system in which the acceleration is directly
proportional to the difference between the current state x and some desired state xd

plus another factor proportional to the velocity ẋ and tending to reduce it (assuming
that α is positive). This system has a single attractor at x = xd and will converge to
it. This is simply a PD control signal. If we assume that the controlled degrees of
freedom of the robot are encoded by x , this simple system gives us a way to guarantee
the convergence to any desired goal given that it is accessible from the starting state
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but without any further control on the path used by the system to achieve that goal.
For now we assume that the demonstration is a single-dimensional time-series.

To make the robot follow a specified demonstration (encoded as a time-series X ),
Eq. 13.8 needs to bemodified in order to allow us to control the path used to approach
the goal xd = x (T )where T is the length of the time-series X . One possible approach
is to add another term (called the forcing term) to the Equation that controls how the
acceleration is to change as shown in Eq.13.9.

ẍ = ζα (xd − x) − αα ẋ + Γ. (13.9)

This additionalΓ term is a nonlinear function of the state x and is calculated based
on another dynamical system called the canonical system which has the following
simple form:

ż = −αz z. (13.10)

Given that αz is positive, this dynamical system converges to zero from any start-
ing point. By having Γ being linear in z, we make sure that its effect is reduced
over time leading the system of Eq.13.9 to behave approximately the same as the
system described by Eq.13.8 near the end of the motion which keeps the guarantee
to converge to the goal. Nevertheless, in the beginning and middle of the motion, z
can have appreciable value leading to a different path than the simple approach taken
by Eq.13.8. This aforementioned discussion suggests that Γ ∝ z.

Moreover, we can further ensure that the nonlinear dynamical system of Eq.13.9
approaches the goal xd by having Γ ∝ (xd − x0) where xd is the desired state (goal)
and x0 is the initial state.

The aforementioned discussion suggests the following form of Γ :

Γ = Ξ z (xd − x0) ,

whereΞ is the nonlinear term that will be used to control the path taken from x0 to xd .
This nonlinear component (Ξ ) is what will be learned based on the demonstration.
One possible choice is to build this term as a weighted combination of Gaussian
kernels. By controlling the weights of this mixture of Gaussians, it is possible to
achieve the desired smooth path known from the demonstration. This entails the
following definition of the Γ term:

Γ =
∑K

k=1 wkψk∑K
k=1 wk

z (xd − x0) ,

ψk = exp

(
− (z − μk)

2

σk
2

)
. (13.11)

Equations13.9 and 13.11 provide a model of the motion (e.g. acceleration) as a
dynamical system that is still guaranteed to converge to the goal xd from the starting
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point x0. A main advantage of this technique of modeling is that we can change
the desired goal on the fly and the system will adapt its motion without the need to
modify every point in the acceleration time-series. This allows us to handle changing
environmental conditions effectively. It is possible to extend this spatial flexibility to
the temporal domain by allowing arbitrary scaling of the trajectorywith a controllable
parameter τ as shown in Eq.13.12.

ẍ = τ 2 (ζα (xd − x) − αα ẋ + Γ ) ,

ż = −ταz z. (13.12)

These simple modifications of the main and canonical dynamical systems (com-
pare Eq.13.12 with Eqs. 13.9 and 13.10) enables us to control the speed of execution
of the motion by setting τ to a value between 0 and 1 to slow it down or to a value
larger than 1 to speed it up.

In the most general case, we can learn the sets μk , σk and wk that comprise the
nonlinear factor. We may even try to learn the number of kernels to use (K ). In most
cases though, it is possible to get good performance by fixing μk , σk and K and
learning only the set of weights wk .

When setting = muk , we should try to make them equally spaced along the exe-
cution time of the motion. The problem is that these centers are defined in terms of
the variable z which is monotonically decreasing in time but not linearly. According
to Eq.13.10, the canonical dynamical system will converge to zero exponentially
fast not linearly. For this reason, μk are usually selected to be equally spaced in the
logarithmic space log (z).

Given this logarithmic approach to settingμk , we also need to adapt σk to provide
larger variance for the kernels that are activated for longer times. This means that
later kernel Gaussians should have smaller variances. A rule of thumb that usually
works is to set the variances as

σk =
√

μk

K
.

Now the problem of learning a dynamical system to represent a given demonstra-
tion (x [t]) is translated to the problem of estimating the set of weights (wk) given
an appropriate number of kernels and their positions μk and variances σ 2

k . Several
standard methods can be used to solve this problem.

As a simple example, consider that we are given a demonstration as a T -points
time-series Xd = xd (1 : T ). We first start by differentiating it twice to get a time-
series representing the acceleration according to:

ẍd = ∂2xd

∂t2
. (13.13)
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Given some value for dt , this can be approximated by double differencing. Sub-
stituting from Eq.13.13 into Eq.13.9, we can find the desired value of Γ as

Γ (t) = ..
x
d

(t) − (
ζα (xd (T ) − xd (t)) − αα

.
xd (t)

)
. (13.14)

Nowwe try tofind thevalues ofwk that fitsΓ (t) as defined inEq.13.14 for 1 ≤ t ≤
T . This is a standard machine learning problem. An effective approach for solving
this problem is Locally Weighted Regression (LWR) (Schaal et al. 2002). LWR
assumes that Γ is of the form given in 13.11 and tries to minimize the summation
of squared errors weighted by the value of the kernel function at every point. This
leads to K optimization problems of the form:

argmin
wk

T∑

t=1

ψk (t) (Γk (t) − wk (z (t) (xd (T ) − xd (0))))2. (13.15)

A solution for this problem can be found in (Schaal et al. 2002) and it takes the
form:

wk = υT �kΓ

υT �kυ
, (13.16)

where,

υ = (
z(1) (xd (T ) − xd (0)) . . . . . . z(T ) (xd (T ) − xd (0))

)
,

�k =
⎛

⎜⎝
ψi (1) . . . 0

0
. . . 0

0 . . . ψi (T )

⎞

⎟⎠ . (13.17)

The values of wk learned from Eq.13.16 are then used to drive the DMP during
motion execution.

Several other approaches, for solving this or related optimization problems, have
been proposed over the years. For example, LocallyWeighted Projection Regression
(LWPR) sets the locations of the kernels μk and their standard deviation σk based on
the complexity of the motion so that approximately linear parts of the time-series are
modeled by few large kernels while complicated parts are modeled by many smaller
ones (Vijayakumar and Schaal 2000). Recently, Gaussian Mixture Modeling was
proposed to solve this optimization problem in multidimensional LfD (Calinon et al.
2012).

All of the aforementioned discussion assumes that the input is single dimensional.
To model multidimensional motions, that are ubiquitous in robotics, we can assign a
DMP to every degree of freedom. Notice that the output of the DMP is an open-loop
controller that gives the desired trajectory to be followed by the learned degrees of
freedom.
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If the input to the DMP are joint angles of the robot during the demonstration, the
output of the DMP can directly be used to set the desired acceleration of the robot. It
is a simple matter to run the DMP for a short time and then correct the current state
based on sensors attached to the robot leading to a closed loop controller that can
adjust immediately to environmental conditions.

It is also possible to train the DMP on the task-space and then use an underlying
inverse kinematic model (e.g. operational space controller) to derive the robot in real
time. Again extension to closed loop control is easy to achieve.

The DMP framework was extended in several ways since its appearance in early
2000s. For example, Pastor et al. (2009) proposed a method to integrate collision
avoidance in the DMP framework using another dynamical system that moves the
robot away from obstacles. DMPs can be coupled with measured and predicted
sensor traces to learn goal-directed behaviors. Recently, the applications of DMPs
have been extended beyond modeling robot-object interactions to modeling Human
Robot Interaction.

The DMP framework is very flexible and allows for real-time modification of the
goal state and motion speed. This also translates to easy modulation of the motion
based on error in case of closed loop control. For example, if the output of the DMP
was too fast for the controller to follow or if a disturbance changed the current state
of the robot, we can easily temporarily slow down DMP output by modifying the dt
value used for driving the canonical system as follows:

τ ż = −αz z
1

1 + αee2
,

where e is the difference between the desired state as generated from theDMP and the
actual state of the robot and αe is a modulation parameter that controls howmuch the
DMP slows down. Other kinds of modulation of the time evolution of the canonical
system are also possible like coupling joints to achieve synchronization (Nakanishi
et al. 2004) or resetting it on certain events like heel strike during walking.

All of the aforementioned discussions assume that the main dynamical system is
linear.DMPs can easily be usedwith cyclicmotion (which is one of itsmain strengths)
by appropriately modifying the equations for the main and canonical dynamical
systems. In this case the main dynamical system will not be designed to have a
simple attractor but to have a limit cycle for which it converges.

Two of the most challenging problems of DMPs are smooth serialization of multi-
ple DMPs which is usually not easy to achieve (Nemec and Ude 2012) and selection
of the number of kernel functions to be used for modeling Γ . Statistical approaches
based on Gaussian Mixture Modeling and Regression do not suffer from the first
problem and symbolization can be used to alleviate the second one as will be dis-
cussed later in this chapter.
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13.3 Statistical Methods

Statistical methods have seen wide spreed in all kinds of machine learning tasks in
the recent decades. Learning from Demonstration is not an exception and several
LfD systems utilize statistical methods for learning as well as motion generation.
This section describes some of the main techniques used for this purpose focusing
on Gaussian Mixture Modeling.

13.3.1 Hidden Markov Models

Hidden Markov Models (HMM) are probabilistic graphical models that can encode
time-variant signals and were discussed in Sect. 2.2.8. Given a demonstration (or a
set of demonstrations) a HMM can be learned using the Baum–Welch algorithm as
discussed in Sect. 2.4.3 and can then be used for generating similar behavior.

Using the Baum–Welch algorithm for learning a HMM representation of the
motion, generates a model that can adapt to timing variations and the covariance
matrices of the observation distribution encode the internal correlations between
degrees for freedom in a scalable way which was not possible with DMPs. The
problem though is that the encoding provides only a single trajectory output which
cannot be parameterized by for example a goal as in DMPs.

There are severalways to alleviate this trajectory specificness of theHMMand one
of the most promising is Parametric Hidden Markov Models (PHMM) proposed by
Herzog et al. (2008). PHMM assumes that D demonstrations are available (x1

d : x D
d )

with someparameter (to be generalized over) given for each demonstration (p1 : pD).
This parameter can be for example the goal of themotion in a 2D surface or 3D space.
The main idea of PHMM is to learn a HMM for each demonstration associated with
a parameter value and then to generate a new HMM on the fly by interpolating these
learned HMMs whenever a new parameter value (e.g. goal) is given.

For this to be successful, the states of different HMMs learned from the demon-
strations must be representing the same portion of the motion. If this condition is not
satisfied, interpolating theHMMswill bemeaningless. A global HMM that is learned
from the complete set of demonstrations is used to achieve this state-equivalence
between the specific HMMs learned from individual demonstrations.

13.3.2 GMM/GMR

Gaussian Mixture Modeling combined with Gaussian Mixture Regression is one of
he most widely used approach to robot learning from demonstration (Calinon et al.
2010). The approach has spawned several new directions including Quantum GMM
(Chatzis et al. 2012), and variational methods (See Sect. 13.3.2.1).

http://dx.doi.org/10.1007/978-3-319-25232-2_2
http://dx.doi.org/10.1007/978-3-319-25232-2_2
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The input in this case can be joint angles of the robot or end effector configuration.
This input is a set of time-series

{
Xd
}
for 1 ≤ d ≤ D and D is the total number of

demonstrations which will have lengths Td and N dimensions. The basic approach is
straightforward. The input time-series are first aligned using Dynamic Time Wrap-
ping (DTW) to be of the same length. This is necessary to make the values at the
same time-step directly comparable for different demonstrations. Now we have a set
of times-series all of the same length (T ). We will continue to use Xd to indicate
member time-series of this list.

The second step is to augment each Xd in one of two ways to generate an aug-
mented time-series X̃ d of the same length but with one extra dimension. The first
approach is to simply add one dimension representing time which is proportional
to the sequence 0 : T − 1. The second approach is to use the derivative of the input
d Xd (dxd

i = xd
i+1 − xd

i ) if a dynamical system is thought. In the first case, the result-
ing time-series will have the dimensionality Ñ = N + 1, and in the second case
Ñ = 2 × N . We will focus on the first approach in this first treatment of the subject.

All of the augmented time-series are then concatenated to give a Ñ dimensional
time series X of length D × T . We will call the original demonstration time-series
dimensions (e.g. joint angles or end effector configuration when augmented with
time) α, and the dimensions augmenting it (e.g. time) β. A GMM is then fitted to this
time-series using—for example—theExpectationMaximization algorithmdiscussed
in Sect. 2.4.4. To complete this step, we need to specify a number of Gaussians to use
K . This is a standard model selection problem and we will propose some solutions
to it later in this chapter.

This gives us a mixture model that represents the joint probability p (α, β). This
joint distribution carries information about not only the expected values for joint
angles or end effect configuration at every time-step but also the correlations of these
values.

Generating desired motions from this learned demonstration can simply be
achieved using Gaussian Mixture Regression as discussed in Sect. 2.2.9. This proce-
dure is repeated here for concreteness. Motion generation amounts to a conditioning
operation of the form shown in Eq.13.18.

p (α|β) = p (α, β)∑
α p (α, β)

. (13.18)

Our model is a GMM model which leads to the following form of the joint
distribution:

p (α, β) =
K∑

k=1

p (k) pk (α, β),

pk (α, β) ≡ N (μk,Σk) . (13.19)

http://dx.doi.org/10.1007/978-3-319-25232-2_2
http://dx.doi.org/10.1007/978-3-319-25232-2_2
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Given this joint distribution, it is possible to generate time-series points by con-
ditioning on the augmenting variable β (time). The use of a GMM to model the joint
distribution ensures that the conditional distribution is also a GMM.

Equation13.18 simplifies to the following in this case:

p (α|β) =
K∑

k=1

π c
k pc

k (α|β),

pc
k (α|β) ≡ N (

(α, β)T ;μc
k,Σ

c
k
)
. (13.20)

Now assume that we make the following definitions:

μk ≡
(
μα

k , μ
β

k

)T
, (13.21)

Σk ≡
(

Σα
k Σ

αβ

k(
Σ

αβ

k

)T
Σ

β

k

)
. (13.22)

Notice that μβ

k ∈ R and Σ
β

k ∈ R while μα
k ∈ R

N and Σα
k ∈ R

N × R
N .

Given these definitions, the new parameters of the conditional GMM are given
by the following set of equations:

π c
k =

p (k)N
(
β;μ

β

k ,Σ
β

k

)

∑
π c

k

, (13.23)

μc
k = μα

k + Σ
αβ

k

(
Σ

β

k

)−1 (
β − μ

β

k

)
, (13.24)

Σc
k = Σα

k − Σ
αβ

k

(
Σ

β

k

)−1(
Σ

αβ

k

)T
. (13.25)

Furthermore, using properties of Gaussians, Eq.13.20 can be further simplified
by approximating the GMM with a single Gaussian:

p (α|β) ∼= N (
α; μ̄α, Σ̄α

)
, (13.26)

where μ̄α = ∑K
k=1 π c

k μc
k and Σ̄α = ∑K

k=1

(
π c

k

)2
Σc

k .
Equation13.26 defines a Gaussian at every time-step. The mean μ̄alpha can be

used as desired output (e.g. joint angle or end effector configuration) at time β

for 0 ≤ βT − 1 and a feedback controller (e.g. a PD controller or a LQR) can be
used to stabilize this path. Moreover, the variance Σ̄α can be used to inform the
controller about how accurate it needs to follow the desired path at every time-
step. The availability of this extra information about how accurate should the path
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be followed is a major advantage of statistical modeling in general compared with
dynamical approaches.

The GMM/GMR approach provide several advantages for real-world LfD prob-
lems. Firstly, it is very easy to utilize multiple demonstrations by simply appending
them together with the appropriate time augmentation (that is in contrast with DMP).
Wehave already pointed out to the availability of information about the required accu-
racy in following every point in the learned path. Moreover, the same GMR approach
can be used not only to condition on time but on any other dimension (or group of
dimensions) of the input time-series. For example, we can estimate what the left hand
of the robot should be doing given what the right hand is doing if both were avail-
able in the demonstrated data. Moreover, it is very simple to combine learned basic
motions together to generate more complex behaviors by simply adding together the
GMMmodels (contrast this with DMP for which serialization is a research subject).

This flexibility of the GMM/GMR resulted in several extensions and improve-
ments that we will consider later but there are some limitations to the approach.
Firstly, we need to solve the model selection problem (i.e. the value of K ). Sec-
ondly, even though we have correlation information at every time-step, we have no
such information about variables at different time-steps. More importantly, in its
basic form, GMM/GMR learns a single path from the demonstrations (encoded in
the mean of the conditioned distribution), and this makes it challenging to deal with
variable goals (a major advantage of DMP), or to handle changing environmental
conditions. Partial solutions to some of these limitations will be discussed later in
this section.

This basic algorithm has been extended in several ways since it was proposed by
Calinon et al. (2006).The supportingwebsite of this bookprovides an implementation
of this approach in the functiondoG M M()basedon the toolboxprovidedbyCalinon.

Explicit dependence on time may appear as a restricting factor in our formulation
but it can be handled in several way. The simplest approach is to use the sequence
0 : T − 1 as the augmenting dimension and for β but then to scale it when generating
themotion usingGMRwhich leads to variable speed generation of the same behavior.
A more interesting approach is to use a dynamical systems approach in the form:

ẋ = f (x) .

In this case, α will correspond to ẋ and β will correspond to x . Notice that in this
case, the state β may not be just joint angles but may include as well their derivatives
and the variable α will correspond to desired acceleration at the state α. This gives a
time-independent dynamical system that can be used for motion generation without
any major modification to the GMM/GMR framework.

13.3.2.1 Variational Inference

The standard GMM/GMR approach presented in Sect. 13.3.2 requires the specifica-
tion of a number of Gaussian (K ) to be used by the EM algorithm to learn the GMM



13.3 Statistical Methods 311

model (See Sect. 2.4). BIC can be used to select an appropriate number of Gaussian
but it requires training multiple times using all k ∈ 1, 2, . . . , K and estimating the
likelihood for each case.

This section introduces amethod that allows us to learn theGMMmodel in a single
EM-like application with the maximum number of Gaussians Kmax only needing to
be specified. The approach is based on variational inference and was first utilized by
Corduneanu and Bishop (2001) and used for LfD by Hussein et al. (2015).

Equation13.19 defines model. We assume that the data is generating by selecting
a Gaussian component based on the probability p (k) and then using it to sample a
point from the corresponding Gaussian. For convenience we define πk ≡ p (k) and
π = {pk}. At every time-step t , a hidden variable zt can be introduced to represent
this Gaussian selection process (we will drop the superscript when not necessary
for understanding). Following (Bishop 2006) we will define it as K binary random
variables where only one of them equals 1 (representing the selected model) and the
rest of them equaling zero.

The value of zk then satisfies zk ∈ {0, 1} and
∑

k zk = 1 so we can write the
conditional distribution of z, given the mixing coefficient π , in the form

p(Z |π) =
N∏

n=1

Kmax∏

k=1

π
zt

k
k , (13.27)

and the conditional distribution of the observed data, given Z , will be:

p(X |Z , μ,Σ−1) =
T∏

t=1

Kmax∏

k=1

N (xt |μk,Σk)
zt

k . (13.28)

To evaluate p(x |π) we have to marginalize Eq.13.28 with respect to z, μ,Σ

which is analytically intractable and variational inference is used to approximate the
solution to this problem.

Themain difference between this approach and standard EM is that it is a Bayesian
approach and suffers from no overfitting problems. Thismeans that only computation
time limits the maximum number of Gaussians we can use (Kmax ) and usually many
of them will have mixing coefficients πk indistinguishable from zero. This built-in
model selection is what makes this approach attractive compared with standard BIC.

The VB algorithm has two steps similar to the Expectation and Maximization
steps of the EM algorithm (and with only slightly higher computational overhead)
(Corduneanu and Bishop 2001). In the Expectation (E) step, the current distribution
is used to calculate E[zt

k] = r t
k using:

Eμk ,Σ−1
k [(Xt − μk)

T Σ−1
k(Xt − μk)] = Dβ−1

k + υk(Xt − mk)
T W (Xt − mk),

(13.29)

ln ˜Σ−1
k = E[ln|Σ−1

k |] =
D∑

i=1

φ(
υk + 1 − i

2
) + Dln2 + ln|Wk |, (13.30)

http://dx.doi.org/10.1007/978-3-319-25232-2_2
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lnπ̃k = E[lnπk] = φ(αk) − φ(̂α), (13.31)

lnρnk = E[lnπk ] + 1

2
E[ln|Σ−1

k |] − D

2
ln(2π) − 1

2
Eμk ,Σ−1

k
[(Xt − μk)

T Σ−1
k(Xt − μk)],

(13.32)

r t
k = ρ t

k
Kmax∑
j=1

ρ t
j

, (13.33)

where β0 and W0 are the parameters of a Gaussian-Wishart distribution which rep-
resents the mean and precision of the Gaussian component and α0 is the parameter
of Dirichlet process which represent π .

The second step (Maximization) recalculates the distribution parameters form the
new r t

k as follows:

Nk =
T∑

t=1

r t
k, (13.34)

αk = α0 + Nk, (13.35)

βk = β0 + Nk, (13.36)

X̄k = 1

Nk

T∑

t=1

r t
k Xt , (13.37)

mk = 1

βk
(β0m0 + Nk X̄k), (13.38)

νk = ν0 + Nk, (13.39)

Sk = 1

Nk

T∑

t=1

r t
k(Xt − X̄k)(Xt − X̄k)

T , (13.40)

W −1
k = W −1

0 + Nk Sk + β0Nk

β0 + Nk
(X̄k − m0)(X̄k − m0)

T . (13.41)

Iterating these two steps until the likelihood no longer improves gives an estimate
for the mixture parameters (π , μ and Σ−1) that represent the Gaussian components.
These can be further refined using standard EM.
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13.4 Symbolization Approaches

Another approach to learning from demonstration consists of converting real-valued
demonstration trajectories into strings of symbols from a predefined vocabulary and
generating as an output a string representing the learned behavior which can then
converted back to real-valued desired trajectories (after smoothing). Mohammad
and Nishida (2014) used this approach in a system called SAXImitate. As the name
implies, the symbolization is done using the SAX algorithm (See Sect. 2.3.2) after
appropriately extending it to multi-dimensional time-series.

The input time-series representing the demonstrations Xn are equalized in length
using Dynamic Time Wrapping (a common step with GMM/GMR systems). The
resulting time-series are then transformedusing theMSAXalgorithm (SeeSect. 2.3.2)
to a set of K strings called Si hereafter.

Given The set of strings Si , we need to generate a model of the demonstration
that is usable in reproducing it. This is achieved on two steps. Firstly, we combine
these strings to generate a single model string S which is then used to create a D × T
model time-series that is used for re-generating the motion and a T -points vector
corresponding to the variability at every timestep.

The main data-structure used in the first step is a K × N matrix called the Z -
Matri x where rows (r ) correspond to different strings (Sr ) and columns (c) cor-
respond to different symbols within these strings Si (c). The matrix is used to find
the relative importance/confidence to be assigned to every input demonstration (now
encoded as a string) for every T/N steps (now represented as individual symbols)
of the original task.

The main insight here is that the importance of a symbol depends on the relative
similarity between it and symbols in other strings at the same location but with the
constraint that the dominant string(s) is not changed frequently (to avoid creating
discontinuities in the real-valued model to be generated). This rule takes care of
both confusions (existence of demonstrations that are outright wrong and do not
correspond to the task) and distortions (segments of demonstrations that are extra-
noisy). This means that we can initialize the Z -Msatri x using:

Z (r, c) =
∑M−1

d=0
e−τd |{i |d = |Si (c) − Sr (c)| }|. (13.42)

This equation multiplies exponentially decreasing weight to the number of strings
that are d characters different from the current character (character c in string r )
and adds all of these factors together. In Eq.13.42, τ determines how fast is the
exponential decay and in all our experiments we just set it to 1.

The resulting Z -Matri x gives an initial evaluation of the relative confidence we
can assign to each symbol in each string. This confidence value is not enough though
to select a good representation of the motion because in many cases it may have ties.
For example, if we have five demonstrations that have very similar behavior in the
beginning of the motion, the resulting strings will likely all have the same symbol
in the first location and Eq.13.42 will have exactly the same value in all members

http://dx.doi.org/10.1007/978-3-319-25232-2_2
http://dx.doi.org/10.1007/978-3-319-25232-2_2
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of the first few (say four) columns. Now how would we create a good model of the
motion in this case: one option is to use the mean of all motions and another is to
use the mean of any subset of them (even a single demonstration). The information
in the four columns cannot help us make a decision here. If we just use the mean of
all the signals and the fifth column had only two strings with high score compared
with the rest, it would have been beneficial to use these two strings only for the first
four columns to avoid having an unnecessary discontinuity in the final model.

To break these kinds of ties while preserving the continuity of the final model as
much as possible, we update the Z -Matri x by having the score at every cell be added
to its two (or one) adjacent cells using Eq.13.43 except at the boundaries where we
have a single neighbor in the string.

Z (r, c) ← Z (r, c) + λ (Z (r, c − 1) + Z (r, c + 1)) . (13.43)

This operation is continued until ties at all columns are resolved, no changes in the
increment beyond a simple scale is happening or a predefined number of iterations
is executed.

The maximum of every column in the Z -Matri x is then found forming a N -
dimensions vector (called Zm). Aweight matrix W of the same size as the Z -Matri x
is then calculated as:

W (r, c) =
{

eZ(r,c)/Zm (c)−1∑
i W (i,c) eZ(r,c)/Zm (c)−1 > β

0 otherwise
. (13.44)

The weight matrix W is then used to calculate an initial model of the motion by
concatenating T/N points from different demonstrations now weighted by the cor-
responding W entries. The final model of the motion is then generated by smoothing
this initial model by applying local regression using weighted least squares. A string
representation of the model can also be found by concatenating the symbols with the
maximum weight in W at every position.

The initial value of the Z -Matri x (called Z0) before applying Eq.13.43 and its
column-wise max (Z0

m) can be used to calculate a variability score (V ) to each T/N
segment in the final model (corresponding to a single symbol in the K corresponding
strings):

V

(
(c − 1)

T

n
+ 1 : cT

n

)

=
K∑

k=1

({
1 − eZ0(k,c)/Z0

m (c)−1 eZ0(k,c)/Z0
m (c)−1 > β

1 otherwise

)
. (13.45)

This variability score can be used during motion execution to control how faithful
should the controller follow the learned model at various parts of the task. This
variability representation can be enough for some situations but in other cases it
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would be beneficial to have a full-fledged covariance matrix for various parts of the
motion similar to the GMM/GMR system.

Itwas shownbyMohammadandNishida (2014) that SAXImitate canbe combined
with GMM/GMR to produce full GMMmodels with full covariance matrices instead
of the variability score generated by SAXImitate.Moreover, the SAXImitate step can
be utilized to get an appropriate number of Gaussians for the GMM step removing
the need for complex algorithms like variational inference or repeated calculations
when BIC is used. The resulting number of Gaussians though can be shown to be
suboptimal (Hussein et al. 2015).

Themain advantage of SAXImitate over other LfD systems is its high resistance to
two types of problems with demonstrations: confusing and distorted demonstrations.
Distorted demonstrations are ones with short bursts of distortions due to sensor
problem. These distorted demonstrations are commonwhen external devices are used
to capture themotion of the demonstrator. Confusing demonstrations are ones that do
not even belong to the motion being learned. Both of these kinds of demonstrations
can easily be avoided when demonstrations are collected in controlled environments
by a careful designer. Nevertheless, when robots rely on unsupervised techniques
for discovering demonstrations (as in the fluid imitation case presented in Chap.12),
both confusing and distorted demonstrations become unavoidable.

Even though SAXImitate can be used to estimate the number of Gaussians for a
GMM model or the number of kernels for a DMP model (Mohammad and Nishida
2014), a better approach would be to use piecewise linear approximation. The set of
Equiprobable points of a 2D Gaussian is always an ellipse in which the transverse
diameter is a line that rotates with changes in the covariance matrix and the conjugate
diameter is another line that is affected by the determinant of thismatrix. The location
of the ellipse depends on the mean vector. From this, it is clear that a single Gaussian
cannot faithfully represent more than a single line in the original distribution.We can
utilize this fact to base the number of Gaussians used on the number of straight lines
in the input trajectory. This allows us to specify an acceptable model complexity
without the need to use more complex model selection approaches. Moreover, using
this technique, we can add Gaussians to the mixture whenever a new line is found in
the trajectory.

This focused on 2D Gaussians but the idea presented can be extended to arbitrary
dimensionality by noticing that aMultidimensionalGaussian can always be projected
into a2DGaussianbetween any twoof its dimensions. In the case ofmotion trajectory,
we can always use time as one of these two dimensions which means that we can use
piecewise linear fitting at every other dimension (with time as the dependent variable)
exactly as discussed for the 2D case. An algorithm for estimating the number of
Gaussians for a GMM based on this idea was proposed by Mohammad and Nishida
(2015) to effectively estimate the number of Gaussians in a motion copying task.

http://dx.doi.org/10.1007/978-3-319-25232-2_12
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13.5 Summary

This chapter discussed learning from demonstration (LfD) in robotics. LfD systems
were divided into low level trajectory learning and high level plan learning systems.
The chapter then focused on the trajectory learning literature as this is the approach
used intensively in our systems. We covered the four major approaches in mod-
ern LfD: inverse optimal control, inverse reinforcement learning, dynamical motor
primitives, statistical methods including HMM and GMM/GMR, and symboliza-
tion approaches based on multidimensional extensions of the SAX transform and
piecewise linear approximations.
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Chapter 14
Conclusion

This book provided a systematic introduction to the engineering of autonomous
sociality in robots using techniques from time-series analysis and data mining. This
is the first book sized treatment of this young field of inquiry. Rather than providing
a comprehensive list of contributions and results related to autonomous sociality, the
book started by detailing the foundations of the subject in time-series analysis, and
data mining in the first part of the book and built upon this foundation in the second
part providing two computational architectures for achieving autonomous sociality
and fluid imitation and several case studies in the second part of the book. To learn
and model human’s social behavior, it is modeled as the result of executing several
context dependent interaction protocols. Learning and executing these interaction
protocols, thus, was the focus of this book.

Most of the algorithms discussed in the book are implemented in two open-source
MATLABtoolboxeswhich enables the reader to experimentwith the ideas introduced
in the book and can provide a basis for her own research in autonomous sociality
and related robotics and agent applications.

The introductory chapter defined the central problem of autonomous sociality as
learning interaction protocols (either implicit or explicit) using unsupervised learn-
ing techniques and detailed the relation between this goal and research in several
fields including interaction studies, robotics, neuroscience, experimental psychol-
ogy, machine learning and data mining. The chapter also introduced two interaction
scenarios that will serve as running examples throughout the book: natural listening
to an explanation and guided navigation. Given the focus on nonverbal interaction
protocols in this book, the introduction also presented an overview of nonverbal com-
munication modalities in human–human and human–robot interactions. Since the
proposed approach to autonomous sociality will be implemented as an HRI specific
architecture, we also discussed briefly the history of behavioral robotic architectures
introducing both reactive and hybrid architectures.

Autonomous sociality in our approach is achieved through unsupervised process-
ing of human–human interaction records to discover patterns using which the inter-
action protocols are modeled. In many cases, these interaction records take the form
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of multidimensional real-valued time-series. The foundational technology for our
approach to autonomous sociality is, thus, time-series analysis. The first part of the
book introduces this area of research for social scientists and roboticists. We did not
assume any prior knowledge in time-series analysis or signal processing and intro-
duced all of the basic building blocks upon which later chapters of the book will
heavily rely. Several generation models of time-series were introduced including
linear additive time-series model, random walks, moving average processes, auto-
regressive processes, ARMA and ARIMA processes, state-space models, Markov
Chains, HMMs, GMMs, and Gaussian Processes.

After covering the generation processes commonly used in time-series analy-
sis (specially for our purposes of learning interaction protocols) we discussed sev-
eral alternative representation and transformation techniques that can be used to
modify the form of the time-series to make it more amenable to analysis. The tech-
niques covered in the bookwere piecewise aggregate approximation, symbolic aggre-
gate approximation, discrete Fourier and wavelet transforms and singular spectrum
analysis. The book also discussed simple preprocessing techniques that are usually
employed to clean-up and condition time-series before applying mining algorithms
to them including smoothing, thinning, normalization, de-trending, and dimension-
ality reduction. After that, we discussed learning techniques that can be employed
to recover the parameters of the underlying generation process given example time-
series and the related model selection problem. These kinds of inverse problems
are encountered repeatedly in the second part of the book when learning interaction
protocols.

Given this basic knowledge in time-series analysis, the book moved on to dis-
cuss the three building blocks of time-series mining that will be used to build our
computational methods in the second part of the book. These are change point dis-
covery, motif discovery and causality analysis. Several approaches for each of these
three basic problems were discussed in the first part of the book. Other than pre-
senting the main algorithms and results in each of these three areas, the book tried
to provide objective approaches to comparing different algorithms and applications
from the world of social robotics that can be implemented using each of these three
technologies.

The second part of the book presented in details our approach to social robotics
based on data mining techniques specially the three main technologies: change point
discovery, motif discovery and causality analysis. The book started by introduc-
ing social robotics focusing on human’s response to social robots emphasizing the
importance of expectation in this context. Three specific HRI architectures are then
discussed: C4, situated modules and HAMMER. These architectures were shown to
be based on complimentary principles with C4 emphasizing the cognitive aspect of
the theory of mind embodied by the robot, situated modules emphasizing the ability
of the designer to combine and match different context specific behaviors to generate
appropriate social actions from the robot, and HAMMER emphasizing on learning
through a mirroring mechanism. These three concepts informed the design of the
Embodied Interactive Robotic Architecture (EICA) proposed in this book.
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The architecture advocated in this book is based on two main theoretical founda-
tions: intention modeling through a dynamical view that avoids the problems with
traditional intention as a plan approach and a theory of mind approach that combines
aspects of the simulation theory and theory of theory. A description of each of these
principles with discussion of their relation to autonomy, sociality and embodiment
is presented and lessons from them are then used to motivate the design of EICA.

While simulation is the core of EICA’s behavior generation mechanism, imitation
is the core of its learning system which is our way to achieve autonomous sociality
in a robot. To motivate this learning methodology, we discuss different definitions of
imitation and its importance in animal and human behavior then present two studies
of the social aspects of imitation in robotics. The first used imitation to bootstrap
social understanding on an animal-like robot and the second analyzed the effect of
back-imitation on the perception of imitative skill, human-likeness and naturalness
of robot behavior.

After presenting these theoretical foundations, the book presents the details of
EICA progressively. Firstly, the basic behavioral architecture is discussed which
implements a hybrid action integrationmechanismcombining combinative and selec-
tive approaches under the control of higher dynamical processes. The intention func-
tion discussed theoretically earlier is implemented in this architecture through a set
of interacting intentions each with its own level of activation, attentionality and
intentionality. This intention functions evolves under the control of higher processes
that can range from purely reactive to purely deliberative components and interact
with each other using a variety of data and control channels. This basic behavioral
architecture is not specific to social robots or HRI applications and can be used to
implement any kind of behavior. This generality comes with the price of having too
many knobs to adjust and parameters to select. A floating point genetic algorithm
(FPGA) for selecting appropriate values of these parameters is then presented and the
whole system is utilized to develop applications for our running example scenarios:
gaze control and collaborative navigation.

These applications provide a proof of concept that human-like behavior in simple
social situations is achievable through careful engineering of different intentions and
processes of a behavioral system. This is not though the approach advocated in this
book because of its reliance on careful analysis of human–human interaction records
leading to high development costs. Moreover, this approach means that the resulting
robot is not independent from its designer toward learning interaction protocols. The
book then discusses the proposed approach to behavior generation using the down-
up-down mechanism and mirror training. This approach to behavior generation is
inspired by our earlier discussions of the simulation theory of mind.

The book then presents themain learningmechanism proposed to achieve the goal
of autonomous sociality in the form of a three stages developmental system. The first
stage, interaction babbling, takes as input the records of human–human interactions
exemplifying the interaction protocol to be learned and uses change point discov-
ery and motif discovery to learn the forward intentions corresponding to the basic
interaction acts found in these records. A controller is then generated for each of
these intentions using a suitable controller generation mechanism. The second stage,
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interaction structure learning, builds progressively more complex interaction proto-
cols based on the basic acts (intentions) learned in the first stage. Three alternative
approaches are discussed: single-layer interaction structure learning, induction of
rules and deep interaction protocol learning. Depending on the complexity of the
interaction protocol to be learned, one or the other of these approaches will be most
appropriate. The final stage of the proposed developmental system adapts the learned
protocol through analysis of the differences between forward and inverse directions
of behavior generation during interactions with humans. This stage capitalizes on the
simulations carried out as a part of theDUDbehavior generationmechanismofEICA.
Again both single layer protocols and deep interaction protocols are discussed. The
book then presents two applications of the complete EICA system to the explanation
and guided navigation scenarios showing the superiority of this autonomous learn-
ing technique over the engineering approach presented earlier using the underlying
behavioral platform of EICA combined with the FPGA algorithm.

EICA provides a technique that allows the robot to learn interaction protocols
by watching human–human interactions. Yet, robots are usually not designed just
for interaction. They have tasks to do and interacting with people provides useful
data for them to acquire the skill required to complete these tasks and enhance their
performance of them. The second architecture discussed in the book was the fluid
imitation enginewhich is designed to achieve this skill transfer fromhumans to robots
without relying on pre-segmented out-of-context demonstrations that are usually
employed in learning from demonstration research. The basic building blocks of the
fluid imitation engine are the same as those of EICA: change point discovery, motif
discovery and causality analysis. The book discusses the perspective taking process
necessary for all forms of imitation learning presenting algorithms for transforming
environmental state to the frame-of-reference of the learner as well as solutions to the
correspondence problemmapping actions of the imitatee to the imitator.Changepoint
discovery and causality analysis are then used for significance estimation of perceived
behaviors of humans or other expert robots and drive the self-initiation engine at the
heart of our fluid imitation system. The book then discussed the application of fluid
imitation to a navigation problem.

Both EICA and the fluid imitation engine rely on the robot’s ability to generate
accurate controllers that can execute a task given a set of examples (learning from
motif discovery). This is the standard learning from demonstration in robotics. The
final chapter of the book briefly discusses this problem in historical context. Early
approaches that relied on encoding the behavior to be learned as a logical program are
discussed and their limitations are used to motivate modern approaches to learning
from demonstration. The book then introduces and compares modern learning from
demonstration approaches including inverse optimal control, inverse reinforcement
learning, dynamic movement primitives and statistical modeling methods includ-
ing HMMs and GMM/GMRs. Recent algorithms based on symbolization are then
introduced to complete the coverage of learning from demonstration.

The approach advocated in this book for autonomous sociality in robots is but one
possible route for this ambitious goal and a first step in that road. Future directions
of research suggested by the work presented in this book are diverse and are being



14 Conclusion 323

pursued by our research groups. One such direction is integrating the interaction pro-
tocol mechanism of EICA into fluid imitation to enable learning of the appropriate
time for producing newly learned behaviors by watching how infants and children
succeed in that task. Another possible direction of future research is developing an
incremental interaction structure learning mechanism for the second stage of devel-
opment in EICA that combines interaction structure learning and adaptation. This
will allow the robot to learn interaction protocols without the need of offline process-
ing of large interaction corpora brining it even closer to how human children learn to
socialize. We are sure that the reader can envision more directions for extending the
work presented in this book and hope that the provided theoretical tools and practical
toolboxes can be of help in this task.

The introduction of this book started with the following question: How to create a
social robot that people do not only operate but relate to? This book is a detailed long
answer based on fundamental ideas from neuroscience, experimental psychology,
machine learning and data mining. Other answers are certainly possible and the
approach proposed here is but one small step toward this ambitious goal.
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