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Chapter 1
Social Network Data Mining: Research
Questions, Techniques, and Applications

Nasrullah Memon, Jennifer Jie Xu, David L. Hicks, and Hsinchun Chen

1.1 Introduction

Decision-making in many application domains needs to take into consideration
of some sorts of networks. Examples include e-commerce and marketing [6, 10],
strategic planning [21], knowledge management [12], and Web mining [5, 13]. Since
the late 1990s a large number of articles have been published in Nature, Science, and
other leading journals in many disciplines, proposing new network models, tech-
niques, and applications (e.g., [3, 22, 25]). This trend has been accompanied by the
increasing popularity of social networking sites such as FaceBook and MySpace.
As a result, research on social network data mining, or simply network mining, has
attracted much attention from both academics and practitioners.

Unlike conventional data mining topics, such as association rule mining and
classification, which are aimed at extracting patterns based on individual data
objects, network mining is intended to examine relationships between objects,
thereby extracting valid, novel, and useful structural patterns in networks ranging
from the Internet [7], the World Wide Web [2], metabolic pathways [11], to social
networks [25].

However, because this area is still young and evolving, there has not yet emerged
a widely accepted research framework that offers a holistic view about the major
research questions, methodologies, techniques, and applications of network mining
research. The goal of this special issue is to move one step forward in the area of
network mining by reviewing and summarizing research questions from existing
research, providing examples of new techniques and applications, and illuminating
future research directions.

N. Memon (B)
University of Southern Denmark, Maersk Mc-Kinney Moller Institute, Campusvej 55,
5230 Odense M, Denmark
e-mail: memon@mmmi.sdu.dk
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2 N. Memon et al.

1.2 Network Mining: Research Questions

There are two major streams in network mining research: static structure mining
and dynamic structure mining. Static structure mining focuses on the “snapshot”
of a network, that is, nodes and links observed at a single point in time. Dynamic
structure mining, in contrast, analyzes a network based on data observed at multiple
points in time. Static analysis is aimed at discovering the structural regularities in the
specific configuration of the nodes and links of a network at the time of observation.
Dynamic analysis is aimed at finding the patterns of changes in the network over
time. The focus of static analysis is on structure, while the focus of dynamic analysis
is on the processes and the evolutionary mechanisms that lead to the structure [3].

1.2.1 Static Structure Mining

There are three major research questions in the area of static network structure min-
ing: (a) How to locate critical recourses in networks? (b) How to reduce the network
complexity and generate the “big picture” of a network? and (c) How to extract
topological properties from networks?

Locating critical resources. A network can be viewed as a collection of recourses
[17]. The critical recourses in a network are those important nodes, links, or paths
it contains. On the World Wide Web, for example, the contents of Web docu-
ments can be viewed as information resources. Users search for quality Web pages
whose contents match their information needs. The key people, documents, rela-
tions, and communication channels in a network often are critical to the function of
the network. Existing techniques for locating critical resources have been used in a
number of applications, such as finding high-quality pages on the Web [13], locating
cables and wires whose failure reduces the robustness of the Internet [14, 24], and
searching for experts for a specific problem in collaboration networks [12, 18].

Reducing network complexity. A network can be very complex due to the large
number of nodes and links it contains. Understanding the structure of a network
becomes increasingly difficult when its size becomes large. For example, a market-
ing manager may get lost when he/she faces a network consisting of thousands of
existing and potential customers. A researcher may find it difficult to understand the
intellectual structure of an unfamiliar discipline when studying its citation networks
containing hundreds of papers or authors. Therefore, it is desirable to extract the
“big picture” from a complex network by reducing it into a simpler image while
preserving the intrinsic structure. To achieve this goal, a network can be first par-
titioned into subgroups, each of which contains a set of nodes. The between-group
relationships can then be extracted. A number of applications can benefit from this
technology. In particular, network partition methods have been employed to find
communities on the Web [8, 9], major research topics and paradigms in a discipline
in citation networks [23], and criminal groups in criminal networks [26].

Extracting topological properties. Recent years have witnessed an increasing
interest in the topological properties of large-scale networks. A few factors have
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contributed to this trend. First, data collection and analysis of extremely large
networks have become possible due to greatly improved computing power. The
size of the Web studied, for example, has been up to several million nodes [15].
Second, the recently proposed small-world and scale-free network models [3, 25]
have motivated scientists to search for the universal organizing principles that
may be responsible for the commonality observed in a range of networks. Third,
social networking sites such as FaceBook and MySpace have become more popular
motivating academics and practitioners to study the network phenomenon.

Static structure mining provides a means of discovering structural patterns in
networks. However, networks are not static but constantly change. How to reveal
the dynamics of networks and the evolutionary mechanisms leading to a certain
topology is the focus of the dynamic structure mining area.

1.2.2 Dynamic Structure Mining

Networks are subject to all kinds of changes and dynamics. New nodes may be
added to the system and old nodes may be removed. New links may emerge between
originally disconnected nodes and old links may rewire or break. Understanding the
dynamics and the process of evolution in networks is of vital practical importance.
The evolutionary mechanisms that lead to a specific type of network topology have
direct impact on the function of a system. There are two general research questions
in this area: (a) How to describe the dynamics? and (b) How to model and predict the
dynamics? Descriptive approaches are relatively simple and are based on capturing
and observing the changes in a network over time using a set of topological statistics
such as changes in average degree and clustering coefficient.

The modeling and prediction of structural dynamics is much more challenging.
Presently, the research focus is primarily on the evolution process of scale-
free topology because the structures of many empirical networks are scale free
[7, 11, 19]. The core research question is, What are the mechanisms responsible for
the power-law distribution in degree [1]? Several mechanisms, such as growth and
preferential attachment [3], competition [4], and individual preference [16, 20], have
been proposed to explain the emergence of scale-free topology in real networks.

The research on network dynamics is a recent development and fairly new com-
pared with static structure mining research. More innovative approaches and models
are expected to be added to this line of research in the near future.

1.3 Network Mining: Techniques and Applications

The ten chapters published in this special issue collectively represent and demon-
strate the latest development in network mining techniques and applications in a
wide range of domains.
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The chapter “Automatic expansion of a social network using sentiment analysis”
by Tanev et al. presents an approach to learning a signed social network automati-
cally from online news articles. The proposed approach is to first combine a signed
social network with a second, unsigned network of quotations (person A makes
reference to person B in direct reported speech), to train a classifier that distin-
guishes positive and negative quotations. The authors then apply this classifier to
the Quotation network. The authors identify the polarity of sentiments between two
people and automatically label quotations which are likely to express the same sen-
timent between these two properties. In the chapter, “Automatic mapping of social
networks of actors from text corpora: Time series analysis”, Danowski and Cepela
present a time series analysis of social networks obtained from data mining, and
use political communication theory to generate some hypotheses to add further
meaningfulness to the analysis.

In the next chapter, “A social network-based recommender system (SNRS)” Chu
and He present a system which makes recommendations about an item’s general
acceptance by considering a user’s own preference and its influence on the user’s
friends. The authors propose to model the correlations between immediate friends
with the histogram of friend’s rating differences. The influences from distant friends
are considered with an iterative classification strategy. Hua et al. next present a study
of the United States air transportation network, which is one of the most diverse and
dynamic transportation networks in the world. The study reveals that the network
has the features of a scale-free small-world network with the degree distribution
following the power law.

Chen and Kaza next describe how they have modeled knowledge flow within
an organization and identified high-status nodes in the network with the help of
unique characteristics which are not commonly used in determining node status.
The authors propose a new measure based on team identification and random walks
to determine status in knowledge networks. In the next chapter Murata proposes a
new measurement for community extraction from bipartite networks. Experimental
results show that bipartite modularity is appropriate for discovering communi-
ties that correspond to the community of other vertex types and the degree of
correspondence can also be used for characterizing the communities.

Chen et al. propose a general definition of communities in social networks and a
list of requirements for a good similarity metric that can be used to detect those com-
munities. The authors provide an analysis of existing metrics based on those criteria
and then propose a new similarity metric R which satisfies all of those requirements.
A visual data mining approach for overlapping community detection in networks
is then proposed based on the metric R. The authors show by experiments that
the approach can be used effectively in real large networks to identify the overlap
among the communities. In the next chapter, Leon-Suematsu and Yuta describe new
improvements to Clauset, Newman, and Moore (CNM) algorithms which yielded
positive results in terms of modularity and speed. The authors describe the ineffi-
ciencies in CNM along with its mostly used modifications and prove their verdicts
on practical large-scale networks available like Facebook, Orkut.
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Kurucz and Benczúr in their chapter entitled “Geographically organized small
communities and the hardness of clustering social networks” identify the abundance
of small-size communities connected by long tentacles as the major obstacle for
spectral clustering. These sub-graphs hide the higher level structure and result in
a highly degenerate adjacency matrix with several hundreds of eigen values very
close to 1. The results on clustering social networks, telephone call graphs, and
Web graphs are twofold. The authors show that graphs generated by existing social
network models are not as difficult to cluster as they are in the real world. In the next
chapter, Lee et al. demonstrate that fuzzy logic can be applied to deviation value
using genetic algorithms. The authors describe converting deviation value to the
restructuring factor value and define the initial random fuzzy memberships using the
WPR index, the log rank index, and the restructuring factor value. The membership
functions are also optimized using genetic algorithm techniques. The authors derive
fuzzy rules for each page using the best chromosome (optimal fuzzy membership
functions) and select general fuzzy rules from them.

1.4 Conclusions and Future Directions

Future research in network structure mining will include at least three major areas:
theoretical, technical, and empirical. In the theoretical realm, a more comprehensive
research framework is needed as research on network structure mining matures.
New research questions, techniques, and findings should be incorporated into the
framework. For example, research on the diffusion of information, innovation, or
disease in networks is a very interesting and promising area. Research on net-
work evolution is also highly desirable in order to develop new models and reveal
new mechanisms that are responsible for network evolution. Such research will
contribute to theory building regarding networks.

In the technical area, future research may aim at the development of additional
techniques and methods for mining structural patterns in networks. Existing tech-
niques such as the network partition methods still lack efficiency, limiting their
capabilities of extracting group structures in very large-scale networks such as
the Web.

In the empirical category, the significance and impact of this new field of network
structure mining in terms of its roles for supporting knowledge management and
decision making in real-world applications, together with the impacts of network
mining technology on users, organizations, and society, still remain to find. A large
number of empirical studies are needed in order to evaluate the significance and
impact and also demonstrate the value of this new field.
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Chapter 2
Automatic Expansion of a Social Network
Using Sentiment Analysis

Hristo Tanev, Bruno Pouliquen, Vanni Zavarella, and Ralf Steinberger

Abstract In this chapter, we present an approach to learn a signed social network
automatically from online news articles. The vertices in this network represent
people and the edges are labeled with the polarity of the attitudes among them
(positive, negative, and neutral). Our algorithm accepts as its input two social net-
works extracted via unsupervised algorithms: (1) a small signed network labeled
with attitude polarities (see Tanev, Proceedings of the MMIES’2007 Workshop
Held at RANLP’2007, Borovets, Bulgaria. pp. 33–40, 2007) and (2) a quota-
tion network, without attitude polarities, consisting of pairs of people where one
person makes a direct speech statement about another person (see Pouliquen
et al., Proceedings of the RANLP Conference, Borovets, Bulgaria, pp. 487–492,
2007). The algorithm which we present here finds pairs of people who are con-
nected in both networks. For each such pair (P1, P2) it takes the corresponding
attitude polarity from the signed network and uses its polarity to label the quota-
tions of P1 about P2. The obtained set of labeled quotations is used to train a Naïve
Bayes classifier which then labels part of the remaining quotation network and adds
it to the initial signed network. Since the social networks taken as the input are
extracted in an unsupervised way, the whole approach including the acquisition of
input networks is unsupervised.

2.1 Introduction

Social networks provide an intuitive model of the relations between individu-
als in a social group. Social networks may reflect different kinds of relations
among people: friendship, co-operation, contact, conflict, etc. We are interested in
social networks in which edges reflect expressions of positive or negative attitudes
between people, such as support or criticism. Such networks are called signed social

H. Tanev (B)
IPSC, T.P. 267, Joint Research Centre – European Commission, Via E. Fermi 2749, 21027, Ispra,
Italy
e-mail: htanev@gmail.com
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10 H. Tanev et al.

networks [25]. Signed social networks may be used to find groups of people
[27]. Groups can be identified in the signed networks as connected sub-graphs in
which positive attitude edges are predominant. Then, conflicts and co-operation
between the groups can be detected by the edges which span between the indi-
viduals from different sub-graphs. In the context of political analysis, sub-graphs
with predominant positive attitudes will be formed by political parties, govern-
ments of states, countries participating in treaties, etc. Analysts can use signed
social networks to understand better the relations between and inside such political
formations.

Automatic extraction of a signed social network of sentiment-based relations
from text is related to the field of sentiment analysis (also referred to as opinion
mining). The automatic detection of subjectivity vs. objectivity in text and – within
the subjective statements – for polarity detection (positive vs. negative sentiment)
is an active research area. For a recent survey of the field, see Pang and Lee [17].
Within the fields of information retrieval and computational linguistics, sentiment
analysis refers to the automatic detection of sentiment or opinion using software
tools. These are frequently applied to opinion-rich sources such as product reviews
and blogs. Opinion mining on generic news is uncommon, although the results
of such work would be of great interest. Large organizations and political parties
often keep a very close eye on how the public and the media perceive and represent
them.

News articles are an important source for deriving relations between politicians,
businessmen, sportsmen, and other people who are in the focus of the media [25].
State-of-the art information extraction techniques can detect explicit expressions of
attitudes (like “P1 supports P2,” see [23]). However, in some cases, detection of atti-
tude descriptions may require deep analysis and reasoning about human relations,
which is mostly beyond the reach of state-of-the-art natural language processing
technology. In this chapter, we concentrate on the more feasible task of automat-
ically extracting and classifying explicit attitude expressions and of automatically
constructing signed networks from such expressions.

There are two main ways in which the attitude of one person toward another is
reported in the news:

1. The news article may contain an explicit expression about the relation between
the two people, such as “Berlusconi criticized the efforts of Prodi.”

2. The article may contain direct reported speech of one person about another, such
as “Berlusconi said: ‘The efforts of Prodi are useless’.”

The first way of reporting attitudes is more explicit about their polarity: usually
straightforward words and expressions like “criticize,” “accuse,” “disagree with,”
“expressed support for,” “praised,” are used in the news articles to report negative
or positive attitudes. However, it is nevertheless difficult to automatically detect such
phrases due to the many ways in which an attitude can be expressed and due to the
usage of anaphora (e.g. “he” in “He criticized Prodi”) and other linguistic phenom-
ena. As a consequence the coverage of approaches which rely on attitude statements
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of this kind is rather low. For example, Tanev [23] shows that automatically learned
patterns to detect a support relationship (expressing a positive attitude) in the news
recognize only 10% of the cases in which human readers sense such a relationship
when reading the same article.

On the other hand, quotes are easier to find even using superficial patterns like
“PERSON said ‘....’”. Pouliquen et al. [19] describe a multilingual quotation detec-
tion approach from news articles based on such superficial patterns. This method
finds statements of one person about another person. These quotations are then used
as edges of a directed graph where vertices are the persons.

The problem with attitudes expressed through direct reported speech is that the
polarity of such attitudes is more difficult to be derived, since it contains comments
about the qualities of a person, about his/her actions, etc.

Based on the two aforementioned approaches, we have built automatically two
social networks out of the data extracted by the Europe Media Monitor (EMM) news
gathering and analysis system (see section “EMM news data”) [22]:

The first one, so-called signed network of attitudes (signed network for short),
was described by Tanev [23] and Pouliquen et al. [20]. It detects in news articles
interpersonal relations of support (positive attitude) and criticism (negative attitude).
The edges in the signed network are obtained by applying syntactic patterns like
“P1 supports P2,” “P1 accuses P2,” etc. The edges are directed and labeled with
the corresponding attitude polarities. Due to the problems of this approach already
mentioned, this network has relatively low coverage (595 edges and 548 vertices).
See also Tanev [23] for implementation and evaluation details.

The second network is the so-called quotation network in which a pair of people
P1 and P2 is connected with a directed edge (P1, P2), if in the news it is reported
that P1 makes a direct speech statement about P2. The edges are labeled with a
reference to the set of quotations of P1 about P2. This directed graph is much bigger
than the first one (17,400 edges); however, the attitudes of the quotations are not
specified.

The signed social network and the quotation network express attitudes in a mutu-
ally complementary way: the signed social network specifies the attitude polarity,
but captures a relatively small number of person pairs, while the quotation network
captures many expressions of attitude, but does not specify the polarity. It was quite
natural to combine the information from the two networks in order to derive more
relations of specified attitudes between people.

The effort described in this chapter targets information-seeking users who are
looking for sentiment expressed toward persons and organizations in the written
media.

This chapter is organized as follows: the next section describes characteristics of
both input sources, i.e., of the signed social network and the quotation network, and
it summarizes the algorithm used to expand the existing signed social network with
new edges. This is followed by a third section focusing on the experiments carried
out and their evaluation. The fourth section summarizes related work and motivates
some of the decisions taken in our approach. The last section concludes the chapter
and points to possible future work.
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2.2 An Algorithm for Expanding a Signed Social
Network of Attitudes

The whole learning process is outlined in Fig. 2.1. Before we run the expansion algo-
rithm which we present in this chapter, we run two unsupervised algorithms – for
relation and quotation extraction. These algorithms produce the two social networks,
which our algorithm takes as its input: (i) the signed social network of expressed
positive and negative attitudes between people and (ii) the quotation network. Our
expansion algorithm trains a Naïve Bayes classifier, which classifies the quotations
and labels automatically some of the edges in the quotation network with attitude
polarity.

Support/criticism 
patterns 

Quotation patterns 

Relation 
extraction

Quotation 
extraction q2 

q1 

q3 

positive 
quotes  

q3

negative 
quotes  

q2

Naïve 
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learning  
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NB 

-
-

+
+

--+
+

-

polarity for un-
qualified edges 
NB(q1)=negative Structure analysis

Quotation network

signed network

-
Final social network:

Newspaper 
articles

Fig. 2.1 Process overview: from news we extract the two networks. A classifier is learned out
of quotations between signed edges (here q2 and q3). The remaining quotations are automatically
classified (here q1). If necessary, we take advantage of the structure of the network. Finally the tool
generates a signed social network taking advantage of the two techniques

The newly labeled edges can be added to the signed social network and increase
its size. Structure analysis can be used to achieve higher confidence for some of
the learned new edges. In the example in Fig 2.1, one new edge is added to the
signed network after classifying the corresponding set of quotations q1. Since the
two networks are completely automatically learned, and the classifier learns from
these (which may have a certain number of incorrect edges), the learning settings
are completely unsupervised. In the rest of this section we will explain the structure
of the two networks and the expansion algorithm in more detail.

2.2.1 Signed Social Network

The signed social network used in our algorithm is a directed graph of attitudes
between people. The network is represented by a directed graph where vertices
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represent people whose names are detected in the news, and the directed edges
between two people represent expressions of positive or negative attitude of the
first person toward the other one (polarity). We consider the cases when there is
one predominant attitude during a certain period of time. In case the attitude is con-
troversial or significantly changes during that period, there should not be an edge
between the two people. Since the relations among people may change over time, it
makes sense to build a network of predominant attitudes for not very long periods.
In our experiments, we used a period of 3 years and it turned out that in this period
there were not many cases, when both positive and negative attitudes are expressed
between the same people.

More formally, our signed social network of attitudes is a signed directed graph
A±(V, E, F) with a set of vertices V, a set of directed edges E, and a labeling function
F: E → {+,–} attaching a positive or negative valence or polarity to each edge in
E. Each vertex is labeled with the name of the corresponding person. Each directed
edge e between two vertices v1 and v2 shows that there were one or several expres-
sions of attitude of the person represented by v1 toward the person represented by
v2 and this is reported in the news articles, published in a certain time period T. The
edge e is labeled with the predominant polarity of the attitude of v1 toward v2.

We will illustrate this with an example. Let us consider the following set of news
fragments:

1. Hassan Nasrallah said: “The one who must be punished is the one who ordered
the war on Lebanon. Bush wants to punish you because you resisted.”

2. Silvio Berlusconi wrapped up a 2-day meeting yesterday with George Bush at
the President’s ranch near Crawford, Texas, a reward for Italy’s strong support.

3. Berlusconi criticized Prodi.

Ideally, we would like to have in the signed social network all the relations of
attitude between people, reported in these three fragments. So a complete signed
network A±(V, E, F) about these texts will have the following nodes (represented
here by the names of the corresponding people):

V = {Hassan Nasrallah, George Bush, Silvio Berlusconi, Romano Prodi}

Here we suppose that the creator of the network (analyst or a computer program)
may successfully resolve the full names of the people. The directed edges labeled
with attitude polarities will be the following:

E = {(Hassan Nasrallah, George Bush, negative),

(Silvio Berlusconi, George Bush, positive),

(George Bush, Silvio Berlusconi, positive),

(Silvio Berlusconi, Romano Prodi, negative)}
The symmetry of the attitude between Nasrallah and Bush cannot be derived directly
from the text of the chapter. The second sentence implies a mutually positive attitude
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of Berlusconi toward Bush and vice versa. The third sentence reports an expression
of negative attitude by Berlusconi with respect to Prodi.

Automatic extraction of signed social network of attitudes is not an easy task. It
requires co-reference resolution, e.g., Bush = George Bush, and a sentiment detec-
tion algorithm to derive the polarity and the direction of the attitudes. Additionally,
world knowledge and deeper syntactic processing are necessary to infer, in the
second sentence, that the relation between Berlusconi and Bush is positive on the
basis of the fact that the visit of Berlusconi is a reward for Italy’s strong support.
Some of the necessary tools, like co-reference resolution and sentiment detec-
tion algorithms, already exist. However, automatic reasoning systems as the one
required to resolve the attitude in the second sentence go beyond the capabilities of
state-of-the art natural language processing systems. Therefore, we feel that such
indirect expressions of sentiment and attitude go beyond the scope of our current
work.

In Tanev [23], we showed how to acquire automatically, in an unsupervised way,
a signed network of positive and negative attitudes. This approach was based on
syntactic patterns: For example, X criticized Y implies that X has a negative atti-
tude toward Y, where X and Y are person names. From the third sentence in the
example above, this approach may infer that Silvio Berlusconi has a negative atti-
tude toward Romano Prodi. The resolution of the full names of the two leaders is
done with a co-reference resolution tool (see [22]). Building on this method, a work-
ing system for the automatic acquisition of social networks was implemented and a
signed social network of positive and negative attitudes was automatically acquired
from news corpora. The problem with the detection of these syntactic patterns is
that – due to the many ways in which support or criticism can be expressed – a rela-
tively low part of the expressed attitudes are captured in this way (low Recall). This
approach cannot capture important sources of attitude expression like direct reported
speech.

2.2.2 Quotation Network

We use a tool for the automatic acquisition of a quotation network, described in
Pouliquen et al. [19]. This approach uses surface linguistic patterns like PERSON
said “QUOTATION” to extract direct speech in newspaper articles in many lan-
guages. Other methods, like Krestel et al. [13] or Alrahabi and Descles [3], use
more sophisticated patterns, but these are harder to extend to further languages. In
addition, the chosen system also recognizes if a person name is mentioned inside
the quotation. The system has the advantage that it extracts the opinion holder (the
speaker) and the opinion target (the person mentioned inside the quotation) unam-
biguously when the holder and the target are named persons. Our experiments with
online news articles extracted by the EMM system show that the precision of recog-
nition is high enough (99.2% on random selection of multilingual quotes from EMM
data) to build a social network based on persons making comments on each other
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using direct speech. Out of 1,500,000 extracted English quotations, 157,964 contain
a reference to another person.1

We produce a directed graph Q(V,E) in which vertices V represent people, men-
tioned in the news in the same way as it is with the signed network of attitudes.
Each directed edge e = (v1, v2) from E represents the fact that at least one news
article contains a quotation of the person v1 in which this person makes reference
to v2. If we consider again the fragments from news articles shown in the previous
section, then the following edge can be derived from the first sentence: {(Hassan
Nasrallah, George Bush)}. This edge will be labeled with a reference to the quo-
tation of Nasrallah. In general, the edge between two people will be labeled with
a reference to a list of all the quotations of the former about the latter, e.g., all the
statements of Nasrallah about Bush reported in the news.

A daily updated version of the quotation network is published on http://langtech.
jrc.it/entities/socNet/quotes_en.html

We found that quotations about other persons often express an opinion. As stated
in Kim and Hovy [11], a judgment opinion consists of a valence, a holder, and a
topic. In our case, the holder is the author of the quotation, whereas the topic is the
target person of the quote. We apply natural language techniques to try to extract
automatically the valence of the quotation.

2.2.3 Automatic Expansion of the Signed Social Network

We present here the algorithm, which automatically expands the signed social net-
work of attitudes. It automatically labels some of the edges from the quotation
network with attitude polarity and adds them to the signed social network. For
illustration purposes, we will use two small networks presented in Fig. 2.2 and
Table 2.1: the signed social network of attitudes A±(Va, Ea, F) and the quotation
network Q(Vq, Eq). The symbols “+” and “–” on the edges of A show the polarity
of the attitude represented by the corresponding edge. The numbers on the edges of
Q are references to the rows in Table 2.1, each of which contains a set of quotations,
related to the corresponding edge.

The algorithm performs the following basic steps:

1. It takes as its input the two automatically extracted social network graphs:
A±(Va, Ea, F) and Q (Vq, Eq) (see Fig. 2.2).

2. It finds all the pairs of people, who appear in both social networks A and Q
and are connected in the same direction. In such a way, we find pairs of people
for which the polarity of the attitude is defined in A and at the same time the
quotations of the first person about the second can be taken from Q.

1The system is restricted to only one person per quotation. It is assumed that the first person
mentioned in the quotation is the main person to whom the quotation refers.



16 H. Tanev et al.

Tony Blair

Michael
Howard

David 
Blunkett

Lord
Stevens 

Tony Blair

Michael
Howard 

David
Blunkett 

Kate
Green 

+–
-

–

1 2

3

A1 Q1

A(Va, Ea, F) Q(Vq, Eq)

Fig. 2.2 Signed network of attitudes A± (Va, Ea, F) (left) and a quotation network Q(Vq, Eq)
(right)

Table 2.1 Quotation sets for the quotation network Q in Fig. 2.2

Reference label,
author Quotation set

1, Michael Howard Mr. Blair’s authority has been diminished almost to vanishing point
2, David Blunkett 2.1 And it is good, because anybody with any ounce of understanding

about politics knows that when Tony Blair and Gordon Brown work
together we are a winner

2.2 Tony Blair and Gordon Brown can accept that there will be a
transition, that there is a process and whatever the timetable, they
can work together

3, Kate Green David Blunkett was committed to the aim of ending child poverty

3. More formally, we find A1– a subgraph of A and Q1– its isomorphic subgraph in
Q, whose corresponding vertices are labeled with the same person names. Each
directed edge e1 = (va1, va2) from A1 has a corresponding edge e2 = (vq1, vq2)
from Q1, such that the labels va1 and vq1 represent the same person P1, and the
same holds for va2 and vq2, which represent person P2.

The label on e1 shows the polarity of the attitude of P1 toward P2 and the
label on e2 is a reference to a list of statements of P1 about P2. For example, in
Fig. 2.2 A1 and Q1 represent the same triple of British politicians. These people
are connected in the same way in both subgraphs. The only difference between
A1 and Q1 is the labeling of the edges. For example, in A1 the edge corresponding
to the pair (Blunkett, Blair) is labeled with the sign “+,” which stands for positive
attitude, while the edge in Q1 for the same pair is labeled with “2,” which is a
reference to row number 2 in Table 2.1, which contains all the quotations of
David Blunkett about Tony Blair.

4. For each pair of people (P1, P2), represented in Q1 (e.g., Blunkett, Blair), we
find the set of quotations of P1 about P2 from Q1. In this example there are two
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quotations of Blunkett about Blair, which are in row number 2 of Table 2.1. At
the same time (P1, P2) will be represented also in the signed network A1 and,
from it, the algorithm takes the polarity of the attitude of P1 (e.g., Blunkett)
toward P2 (e.g., Blair). The polarity may be positive or negative. The outcome
of this step is a set of pairs (q, a), where q is a set of quotations of one person
about another person (e.g., the two quotations of Blunkett about Blair) and a is
the attitude polarity between these two people (positive in this example). We can
assume that the predominant attitude polarity of the quotations in q is equal to a.

5. The algorithm uses the quotation–polarity pairs obtained from the previous step
as a training set and trains a Naïve Bayes classifier, which finds the predomi-
nant polarity of a quotation set. As features, we use words and word bigrams
from the quotation set. The categories are two: positive and negative attitudes.
For example, one training instance from the example in Fig. 2.2 and Table 2.1
will be a vector of words and bigrams extracted from the comments of Blunkett
about Blair. This training instance will be labeled with the category “positive
attitude.” From the example in Fig. 2.2 and Table 2.1, we can extract two train-
ing instances: one of them we already mentioned and the other one is obtained
from the quotation of Howard about Blair (row 1 in Table 2.1), labeled with
negative polarity, defined from network A.

6. The Naïve Bayes classifier is then applied to the set of quotations of each directed
edge from Q between two people P1 and P2 that was not used during the training
stage. In our example these will be the pair (Green, Blunkett). The classifier
returns two probabilities pp(P1, P2) – the probability that the person P1 has a
positive attitude toward P2 – and pn(P1, P2) – the probability that the attitude is
negative.

7. If pp(P1, P2) > pn(P1, P2) and pp(P1,P2) > minpp,” then the pair is added to
the signed network A and a positive attitude edge is put between the vertices
representing P1 and P2 in A. If pn(P1, P2) > pp(P1, P2) and pn(P1,P2) > minpn,
the new edge between P1 and P2 is labeled with negative attitude. If pp and pn
are not beyond the necessary thresholds (minpp and minpn, set empirically on the
training set), then the pair (P1, P2) is not added to A. In our example, if the pair
(Green, Blunkett) is correctly classified as belonging to the category “positive
attitude,” a new vertex will be added to A which represents Kate Green, and an
edge labeled with “+” will be added between Kate Green and David Blunkett.

2.3 Filtering the Results Using Output Network
Structural Properties

We also wanted to test whether the performance of the Naïve Bayes classifier could
be significantly improved by adding constraints on structural properties of the output
signed network. As an example, if a person A likes person B which in turn likes
person C, but person A dislikes person C, then we will discard the triple ABC as
inconsistent.
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There is rich research literature showing how certain kinds of social networks
can be globally characterized by a number of structural properties and how these
properties can in turn be derived from local constraints like the aforementioned.
Consider a signed graph A±(V, E, F): this represents a simplified model of our
signed social network, where the assumption is made that attitude polarities between
two persons are always reciprocated: that means it cannot be that person A likes
person B while B dislikes A, therefore we can ignore the directions of the edges.

Each of the sub-graphs of A±(V, E, F) consisting of 3 nodes and 3 edges, or
complete triads, can be in one of the 8 states drawn in Fig. 2.3, A.-H.
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Fig. 2.3 Triad configurations and graph clustering. A.-H.: possible configuration of triads in a
signed graph. I.: bipartition of a balanced signed graph into two clusters; edges stand for positive
attitudes, dashed edges for negative attitudes. J.: a partition of a clusterable signed graph into
multiple clusters of nodes

The polarity configurations of the triads in the top row are commonly taken as
“minimizing the tension” between the participant nodes or, in other words, as bal-
anced. As an example, when interpreting graph signs as affective attitudes such as
liking/disliking, network actors v1 and v2, who like each other, would expect to
agree on attitudes toward a third actor v3 and would take as highly inconsistent to
have conflicting attitudes on it. Viewed from the other side: for actor v3 it would
look like inconsistent to find a positive attitude between two persons on which he
has inconsistent attitudes.
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More formally speaking, the triads on the top row can be viewed as positive sign
cycles, where the sign of a cycle in a graph can be calculated as the product of signs
on the single edges. If we generalize this to cycles of length larger than 3 we can
derive a definition of balance for signed graphs [25]2:

D1: A signed graph is balanced iff all its cycles have positive signs.

An intuitive consequence of this property is that vertices of the graph can be
partitioned into two clusters, that is two subsets V1 and V2 of V such that any edge
between V1 and V2 is negative and any edge within V1 or V2 is positive, as in graph
I in Fig. 2.3.

As we found this hypothesis too strong for our application domain, we relaxed
some of the constraints of balance and evaluated a more general property of
clusterability, as defined in Davis [6]:

D2: A signed graph has a clustering iff the graph contains no cycle with exactly
one negative edge.

Referring again to triad types, the only unbalanced configuration to be addition-
ally allowed now is the one with three negative signs (Fig. 2.3.H).

Clearly, the signed graph on quotation pairs output by the Naïve Bayes classifier
does not fully satisfy the clusterability principle as such; rather, we tried to enforce
statistical tendency toward it and evaluate the precision gain with respect to pure
Naïve Bayes. Namely, for each edge e = (vi, vj), we consider all triads in the graph
including e: for each such triad (vi, vj, vk), we check polarities on edges (vi, vk)
and (vj, vk) and apply clusterability conditions3 to derive an expected polarity p for
(vi, vj). For each edge we denote with C(+) the number of triads which imply posi-
tive expected attitude for this edge and with C(–) the number of triads which imply
negative expected attitude.

We then compute a ratio R = C(+)/C(–) of the expected “+” counts over the “–”
counts. Next we take into consideration only the edges for which C(+) and C(–) are
significantly different and R > α or R ≤ β, where α ≥ 1 and β ≤ 1. In this way we
predict p = + if R > α, p = – if R ≤ β, and do not consider the edges for which
α ≥ R > β, since the ratio does not allow for clear prediction.

Finally, we discarded actual values on edge (vi, vj) which were different from p.
Our hypothesis is that, if clusterability is in place in networks of positive or negative
attitudes between people, aligning output to it should result in increased accuracy.

2The original definition was actually formulated for directed graphs and made use of the notion of
“semi-cycle”, that is a closed directed walk of at least three nodes on the graph which is traversed
ignoring the direction of the edges.
3Namely, if (vi, vk) and (vj, vk) are both positive, we enforce “+” on (vi, vj), while if (vi, vk) and
(vj, vk) have conflicting signs, then we enforce “–” on (vi, vj).
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2.4 Data, Experiments, and Evaluation

We carried out several experiments and evaluations in order to prove that our
approach to automatically expand signed social networks is feasible.

2.4.1 The News Data

The source of the data on which relation extraction, quotation recognition, and
sentiment analysis is carried out are the English language news articles gath-
ered by the Europe Media Monitor (EMM) news gathering and analysis system.
EMM currently monitors an average of 90,000 news articles per day from about
2,200 news portals around the world in 43 languages, as well as from commer-
cial news providers including 20 news agencies. About 15,000 of these articles are
written in the English language. To access the various EMM-based online applica-
tions, see http://press.jrc.it/overview.html. These public web sites are accessed by
an average of 40,000 distinct users per day, with approximately 1.4 million hits
per day.

News-based social network data is mostly being produced to serve the informa-
tion needs of political analysts and journalists. Social networks are one of many
ways to look at media information.

2.4.2 The Social Networks Used as Input

We used a signed social network and a quotation network, built automatically from
English language news articles, published in the 2.5-year period January 2005–July
2007. The signed social network contains 548 vertices and 595 edges. In order to
ensure higher reliability for the training of the Naïve Bayes classifier, we consid-
ered only those edges that are supported by at least three articles (see the algorithm
description in the section Signed Network). We also excluded the edges which are
marked both positive and negative, which can be caused by expression of both posi-
tive and negative attitude between the same people. In the period January 2005–July
2007, a daily average of 4.36 pairs involving criticism and 3.52 pairs involving
support was found as part of the daily news analysis.

The quotation network was extracted from the same period. It has 11,353 vertices
and 17,423 edges. During the reporting period, a daily average of 1159 English
quotes was found, of which 51 made reference to other named persons. Due to an
increase in the number of articles processed, the number of relations and quotations
detected every day is approximately double at the time of writing this chapter (early
2009).

Two hundred seventy-five edges were common between the signed network and
the quotation network.
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2.4.3 Evaluation Criteria

The task on which we want to evaluate the system is the automatic expansion of
the signed social network by deriving attitude polarities from a quotation network.
We thus trained the classifier, applied it to new quotes, and then evaluated whether
the automatically assigned sentiment polarity is correct. There are two issues to be
considered:

First, our main task was the expansion of the signed network; the quotation net-
work was used only as an auxiliary resource. For this reason, we did not aim at
high recall in the classification of the edges of the quotation network; we rather
wanted to get better precision. Second, for our purpose, we are only interested in
subjective quotations, i.e., those in which sentiment polarity is expressed, while we
do not consider quotations with neutral sentiment. Subjectivity detection is thus the
first step, which will eliminate those quotations that are neutral. Polarity detection
is then the second step, i.e., the detection of quotations that express either a positive
or a negative attitude.

The neutral quotes can be of three different types: (i) neutral or factual quota-
tions that clearly do not express attitude toward the other person, e.g., Bonaiuti said
“Today Mr. Berlusconi visited Washington”; (ii) quotations which may express an
attitude, but out of the context, it is – even for human judges – not possible to rec-
ognize the attitude, and therefore the quotation itself can be regarded as neutral;
(iii) sets of quotations in which sentiment is being expressed, but either the sen-
timent is neither positive nor negative (e.g., expression of a strong sentiment that
things are normal, or average) or expressions of positive and negative attitudes are
balanced.

The predominant attitude of a person P1 toward P2 can be derived from all the
quotations of P1 about P2. This is not trivial, since sometimes we have changing
attitudes between people (balanced sentiment), so we may have quotations of P1
about P2, which are positive, negative, and neutral. We adopted the following eval-
uation approach: we ignore the neutral quotations of P1 about P2. If no subjective
quotations remain, then we consider that the attitude of P1 toward P2 is not defined.
For the subjective quotations, we first ignore duplicates or near-duplicates and then
count the number of positive and negative quotations. If there are more positive than
negative quotations, then the predominant attitude is considered positive; if nega-
tive quotations prevail, then we consider the predominant attitude to be negative. In
the rare case when the number of positive and negative quotations is the same, we
consider the attitude of P1 toward P2 not defined.

Precision was defined as the number of assigned labels for which the human
judgment coincides with the decision of the system divided by the number of edges
for which the system makes a decision.

2.4.4 Experiments and Evaluation

There were about 17,400 ordered pairs of people in the automatically extracted quo-
tation network. We took a random sample of 176 pairs and evaluated manually their
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distribution into the three classes: positive attitude, negative attitude, and neutral
attitude. We found the following distribution: 32.3% positive, 28.4% negative, and
39.2% neutral. A baseline system which labels all the pairs as positives will thus
have around 32.3% precision.

As we pointed out earlier, 275 of the ordered pairs of people from the quotation
network were common with the signed network. In the signed network, 111 of these
pairs were labeled with positive attitude and 164 with negative attitude. However,
we think that there is no reason for the negative quotations to be considered more
probable in the quotation network. The manual calculation of the distribution men-
tioned in the previous paragraph confirmed our hypothesis. Presumably the tool
simply identified more negative relations because the patterns for this relation are
more comprehensive. Considering this, out of the 275 common pairs we produced
a balanced training set of 111 positive and 111 negative ordered pairs, by randomly
selecting 111 of the negative pairs. Using this set, we trained a Naïve Bayes classifier
(see step 5 of the algorithm).

To find the best values for minpp and minpn we used a development set of about
100 pairs of people from the quotation network. We empirically found two settings
for minpp and minpn which were likely to give reasonable precision combined with
a reasonable number of classified pairs. One of the reasons to test the approach
with two settings was the fact that we used a relatively small development set to
define the parameters, so we were not sure to what extent the optimality of the
found parameters will be generalized across the whole collection.

In parameter settings A, minpp = 0.9199 and minpn = 0.969 In parameter
settings B, minpp = 0.9599 and minpn = 0.9899.

We ran the algorithm with both parameter settings on 10,000 randomly chosen
pairs of people who do not appear in the signed social network and who were not
included in the development set. The system output only those pairs which it suc-
ceeded to label as positive or negative. Next, two judges evaluated the output of the
system in terms of precision, the percentage of correctly labeled pairs. The coverage
was calculated as a percentage of those pairs out of these 10,000 which were given a
(correct or incorrect) label by the system. A pair was considered correct only if both
the system and the evaluator both labeled it with the same positive or negative label.
If a pair was present in the output of the system, but the evaluator considered it neu-
tral, then it was counted as an error, independently of the system-generated label.
The evaluation of the algorithm with settings A was carried out on 96 randomly
selected pairs. When choosing settings B, 57 out of these 96 pairs remained, the
rest were filtered out by the algorithm as being neutral. The results are reported in
Table 2.2. All the reported precision figures are significantly over the baseline preci-
sion of 32.3%, with the exception of the evaluation of judge B of the performance of
settings A. With settings B, the precision goes 15–17% beyond the baseline, which
shows the feasibility of our unsupervised approach. The kappa agreement between
judge A and judge B on the run with settings A is 0.67 and with settings B the kappa
is 0.70 – both values correspond to significant agreement.

If we exclude the 39.2% neutral cases from the quotation network, then we
can evaluate our algorithm on the more classic task of polarity detection (is the
statement positive or negative?). For this task, a baseline approach which classifies
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Table 2.2 Precision and
coverage of the algorithm.
The baseline is 32.3%

Precision
judge A (%)

Precision
judge B (%)

Coverage
(%)

Settings A 44.8 37.5 24.8
Settings B 49.1 47.3 15.9

every pair as positive will have a precision of 53.2%, considering the distribution
of positive and negative quotations. We used the evaluated data and took out the
pairs which the judges labeled as neutral, then we recalculated the precision on the
remaining pairs. The results are shown in Table 2.3.

Table 2.3 Precision of the
algorithm for the task of
polarity detection. The
baseline is 53.2%

Precision judge
A (%)

Precision judge
B (%)

Settings A 55.8 52.17
Settings B 62.2 61.4

It can be seen that, with settings A, the algorithm produces results close to the
baseline, which means that it does not work in practice when selecting between
positive and negative pairs. However, with settings B, the precision is 9–10% above
the baseline.

We evaluated also the recall of both settings on the task of identifying positive
and negative edges from the quotation network. From 100 randomly taken edges,
we found 54 which express positive or negative attitude. Taking into consideration
these 54 edges, the following figures were found for the two parameter settings:

Settings A: 20.4% recall
Settings B: 18.5%. recall
Even if the recall seems to be a bit low, it should be taken into account that,

from a quotation network with more than 17,400 edges, this still means extraction
of over 3,200 additional edges which can be added to the signed network together
with the people, represented by their adjacent vertices. Considering the initial size
of the signed network, the level of recall which our method achieves allows for six
times increasing the size of the initial signed network.

Finally we evaluated the precision of the algorithm when boosted by the net-
work structural constraints introduced above. We first run the Bayes classifier with
settings A on about 17,000 edges from the quotation network, assigning positive
or negative labels to around 4,000 edges. Then we applied the filtering procedure
based on the clusterability hypothesis, eventually extracting 199 labels. Precision
rate counted on a random sample of 100 labels was 59%.

Among the labels filtered out, there were some which were participating in at
least one triple in the network: we tried to include them all in another output eval-
uation: interestingly, while slightly outperforming the pure Bayes classifier, the
precision rate in this case was significantly reduced with respect to the structural
filtering (45.7%), suggesting that participation in some specific types of triads,
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rather than generic degree of connectedness of the pair nodes, has a crucial role
in improving the performance.

2.5 Related Work

Our work touches on various disciplines and areas: sentiment analysis, relation
extraction, text classification, quotation extraction, and social networks. We will
thus discuss related work for each of these one by one.

Apart from the immediate usefulness of this work for the main target user group,
sentiment analysis on reported speech (quotations) is also needed for generic senti-
ment detection in documents. First, for an overall document sentiment assessment,
it is important to identify passages (such as quotations) with different sentiment
[17, p. 6]. Second, news articles are relatively likely to contain descriptions of opin-
ions that do not belong to the article’s author, e.g., in the case of quotations from a
political figure [17, p. 55f], making opinion holder or opinion source detection in
the document an important task. According to Mullen and Malouf [16] and Agrawal
et al. [1], it is common to quote politicians at the other end of the political spectrum.
Authors can thus be clustered so that those who tend to quote the same entities are
placed in the same cluster [17, p. 49], similarly to using co-citation analysis to group
publications (e.g., [8, 15]). The work in this chapter contributes to opinion holder
identification.

The algorithm described in the previous section detects subjectivity and polar-
ity in a one-step process: only those cases classified with a Naïve Bayes output
above certain thresholds are considered as expressing positive or negative opinion,
while cases below that threshold are considered neutral. Among the neutral cases,
we do not distinguish between objective statements, i.e., those that are more fac-
tual and do not express any sentiment and those that are subjective, but where the
polarity is balanced (a balanced mix of positive and negative statements). These
choices are motivated by our objective, which is the detection of social networks
with support and criticism relations. However, it is not uncommon to split subjec-
tivity and polarity detection explicitly and to separate sentiment from polarity, as
someone may for instance express a strong feeling that something or someone is
mediocre. Mihalcea et al. [14] found that subjectivity recognition is more difficult
than the subsequent step of polarity detection, while Yu and Hatzivassiloglou [28]
report achieving 97% accuracy with a Naïve Bayes classifier to distinguish more
neutral Wall Street Journal reports from the more opinionated editorials. To dis-
tinguish neutral from emotionally balanced reports, Wilson et al. [26] worked on
intensity classification.

In our algorithm, we use automatically extracted information on support and crit-
icism relations to perform lexicon induction, i.e., to identify positive and negative
lexicon entries. Alternatives would be the manual compilation of positive and nega-
tive lexicon entries, or lexicon induction by using positive and negative seed words
such as “good” and “bad,” for which the polarity is known (e.g., [9, 24]). According
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to Allison [2], using only positive and negative words does not consistently improve
the classification results, compared to using all words.

Another choice of ours is to use a Naïve Bayes classifier. We did not invest
in comparing different classifiers, as Allison [2] has compared Naïve Bayes with
SVM and other classifiers and concluded that differences in performance depended
on the amount of training data and on the document representation more than on
the choice of classifier. On the other hand, the advantage of the Bayes classifier is
that it returns the probability distribution of every instance between the two attitude
polarity classes – positive and negative. This distribution can be considered to be a
measure for the reliability of the classifier decision, i.e., the bigger the difference in
the two probabilities is, the more reliable is the decision of the classifier. We used
this fact, in order to leave some unreliably classified instances as unclassified and
increased the precision in such a way.

Regarding the representation of the quotations, we opted for a bag of unigrams
or bigrams, where we used term presence rather than term frequency or term
weight. We base this choice on the insights of Pang et al. [18] and Allison [2], who
both achieved better sentiment analysis results using term presence. Pang and Lee
[17, p. 33] reckon that term presence may work better for sentiment analysis, while
term frequency may work better for topic classification.

We achieved better results using a combination of word unigrams and bigrams
rather than using only unigrams. This is in line with the results by Dave et al.
[5], who came to the conclusion that, in some settings, word bigrams and trigrams
perform better for product review polarity classification.

We did not investigate the usage of more linguistic information or patterns that
would detect phrases, negations, syntactic structures, parts-of-speech, and the like.
The reason for this is that EMM applications always aim at being highly mul-
tilingual. Achieving high multilinguality, while working in a small team, is only
possible by keeping language-specific information to a minimum and by trying to
use language-independent methods and resources to the largest extent possible [22].
At least regarding the non-usage of part-of-speech information and syntax, we have
reasons to believe that this choice does not have a negative impact on the results
achieved: While Hatzivassiloglou and Wiebe [10] found that adjectives are good
indicators to determine sentence subjectivity, Pang et al. [18] found that adjectives
alone perform less well than the most frequent word unigrams, and their usage of
part-of-speech information did not improve results compared to simply using word
forms. Regarding the usage of syntax, Pang and Lee [17, p. 35] found that – for sen-
tence level sentiment classification tasks – using dependency trees did work better
than approaches using bags of unigrams, but the results were comparable to exper-
iments using word n-grams with n >1. Generally speaking, the advantage of using
bag of n-gram representations is that the methods are likely to be easily adaptable to
further languages, although it is intuitively plausible that at least negation should
be considered in sentiment analysis applications. For approaches to considering
negation, see Pang and Lee [17, p. 35ff].

Studies on balance and its effects on global structure of networks of person
mutual attitudes can be traced back to the origins of social network analysis [25].
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In social cognition research, evidence was found that human representation of
social links is biased by the balance hypothesis, resulting in lower error rates in
recalling and learning tasks on actually balanced structures with respect to unbal-
anced ones [4]. On the other hand, while balance theory proved successful in
modeling collaborative relations in political communities and international rela-
tions [12], sociometrical data collected from a range of social networks was not
always found fitting the balance structure, leading researchers to look for weaker
hypotheses, like clusterability, ranked clusterability and transitivity [7].

Given the unsupervised nature of our approach and resulting noise in the out-
put data, extracting structural properties from a statistical analysis of the returned
networks was not an option for us. On the contrary, we exploratively assumed a
minimal constraint on the global structure of the attitude networks (clusterability)
and evaluated how much this helped the classifier to better fit data from human
annotation.

A relative novelty of our approach is the usage and combination of information
from two different networks produced with different means, and the fact that the
directed graphs of the social networks (produced in unsupervised fashion) are used
for unsupervised training of the classifier. However, Riloff & Wiebe [21] also used
some type of bootstrapping: They used the output of two available initial classi-
fiers (one to identify subjective sentences, the other to identify objective sentences)
to create labeled data, which was then used to learn more syntactic patterns to
recognize sentence subjectivity.

2.6 Conclusions and Future Work

We have presented work on automatically expanding existing signed social network
graphs. The proposed method is to first combine the signed social network with
a second, unsigned network of quotations (person A makes reference to person B
in direct reported speech), to train a classifier that distinguishes positive and nega-
tive quotations, and to then apply this classifier to the quotation network. By doing
this, we managed to add over 3,200 additional edges to the initial smaller network
consisting of 548 vertices and 595 edges. Experiments showed that, with the best
parameter settings, the classification precision of the added edges in this unsuper-
vised approach is about 62%, when ignoring the neutral quotations. This result is
very encouraging as it was produced in an unsupervised setting with input data
taken from automated processes for social network generation, but it goes without
saying that it could be improved.

Although other methods use bootstrapping for sentiment detection, we did it in a
way, which to the best of our knowledge was not previously used: We identified the
polarity of the sentiment between two people and then automatically labeled quo-
tations which are likely to express the same sentiment between these two people.
We were able to use our approach to identify attitudes between people, organiza-
tions, and topics, in this way significantly augmenting the size of the signed social
network.
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A major advantage of the proposed method is its independence of language-
specific procedures, as no linguistic information was used. It is thus, in princi-
ple, possible to combine the monolingual signed social network of support and
criticism relations with the highly multilingual data of the quotation network in
EMM: Quotations are currently being identified in 13 languages, and an average
3326 new multilingual quotations are found every day, of which 176 make refer-
ence to other persons. As positive and negative attitudes between persons should
not differ according to the reporting language, it is reasonable to assume that the
monolingual English support and criticism relationships can be combined with mul-
tilingual quotation relationships. The advantage would be a generous expansion of
the existing social networks. Assuming that the two social networks overlap enough
to have enough training data, exploring this multilingual extension is on our agenda
for future work.

Next steps will thus be to test a range of further methods to reduce the error rates
for subjectivity recognition and polarity identification.

One issue to tackle is the fact that changes in attitude of persons over time (like
Hillary Clinton and Barack Obama during the electoral campaign) are currently not
considered because all quotations for a pair of persons are put into one bag, thus
mixing positive, negative, and neutral statements. We thus plan to evaluate whether
increasingly reducing the time span of input source news for both signed social
network and quotation network could result in a significantly improved accuracy of
the trained classifier.

One of the open avenues would also be to evaluate how differently the alternative
structural constraints on the output network can contribute in refining the results.
We also have the intention to make the postulation of structural properties more
grounded on a statistical analysis of the extracted attitude networks.

Users are very interested in a news bias analysis. We would therefore like to
investigate whether the subjectivity of quotations differs from one news source to
another, and also from one news source country to another. The question is thus, Do
the media of one country show more positive or negative quotations for given pairs
of persons.

Finally, feeding social networks from live media is an excellent way of feeling
the pulse of daily politics. It would thus be particularly attractive to engage in group
mining and group dynamics detection focusing on changes that occur over time.
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Chapter 3
Automatic Mapping of Social Networks
of Actors from Text Corpora: Time Series
Analysis

James A. Danowski and Noah Cepela

Abstract To test hypotheses about presidential cabinet network centrality and
presidential job approval over time and to illustrate automatic social network identi-
fication from large volumes of text, this research mined the social networks among
the cabinets of Presidents Reagan, G.H.W. Bush, Clinton, and G.W. Bush based
on the members’ co-occurrence in news stories. Each administration’s data was
sliced into time intervals corresponding to the Gallup presidential approval polls
to synchronize the social networks with presidential job approval ratings. It was
hypothesized that when the centrality of the president is lower than that of other
cabinet members, job approval ratings are higher. This is based on the assumption
that news is generally negative and when the president stands above the other cabi-
net members in network centrality, he or she is more likely to be associated with the
negative press coverage in the minds of members of the public. The hypothesis was
supported for each of the administrations with the Reagan and G.H.W. Bush having
a lag of 1, Clinton a lag of 4, and G.W. Bush a lag of 2. Automatic network analysis
of social actors from textual corpora is feasible and enables testing hypotheses over
time.

3.1 Introduction

Political and communication science has long valued a network analysis approach to
conceptualizing and measuring phenomena. Among the earliest to map the networks
of political actors were the studies of political communication among voters [29].
At the level of community, others have investigated networks of political power
[10, 27, 34]. Organizations have been conceptualized in political economy terms
using social network analysis frameworks [24, 37]. A sweeping explication of
political networks ranging from individual through international levels has placed
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network concepts at the center of political processes [30]. Of particular relevance
to the current study, presidential cabinets have been seen in network terms [22],
although have yet to be measured from this perspective.

Here we introduce a method of automatic identification of the networks among
presidential cabinet actors. Mining large volumes of news and web documents for
evidence of the identities of social actors and their relationships is increasingly fea-
sible. Moreover, because most online information has time stamps, it is possible to
construct time series analyses of how social networks change over time, and how the
network variables are associated with other kinds of variables over time. This can
give two of the three necessary conditions for causality: (1) association and (2) time
order, leaving for the analyst’s further examination: (3) ruling out rival explanations
as potential causes of the response variables of interest.

To illustrate the measurement of association and time order from social network
mining, we use as an example the relationships among members of the US pres-
idential administration cabinets for Presidents Reagan, G.H.W Bush, Clinton, and
G.W. Bush. We identify the networks among the cabinet members based on their
co-occurrence in news stories. The network centrality of each actor and of the entire
network is indexed and examined in association with the job approval ratings of the
president over the course of the administrations.

One of the features of data mining for such networks is that the time slices can
be readily set according to the situational conditions of the processes being stud-
ied. For example, for Clinton, the Gallup job approval ratings were measured on
average 30 days apart, while for the G.W. Bush administration they were 22 days
apart. Network time slices can be set according to the time intervals of the response
variable, as is done in this study, increasing the interval validity of the research
design.

Political scientists and communication scholars have studied predictors of pres-
idential job approval and favorability for several decades. In the most recent wave
of research, media variables are increasingly examined as predictors of presidential
job approval and favorability [25]. The current research is an example of this. Rather
than looking only at the amount of coverage within nominal categories of content,
we take a more refined approach of automatic content analysis of the networks
among cabinet members portrayed in the press within time slices.

Regarding our response variable, presidential job approval, prior research has
found that job approval and favorability, measured separately in the Gallup polls, is
very highly correlated. Few respondents hold inconsistent attitudes, such as report-
ing that a president is doing a bad job yet that they strongly like him [9]. In the
current research, therefore, we use only the job approval variable.

In theorizing and measuring the effects of news coverage on public opinion,
researchers have taken a variety of approaches. A network approach was central
to the two-step flow model 66 years ago when researchers proposed that opinion
leaders in social networks mediated news coverage effects on public opinion of the
electorate [31]. Since that time, research on news coverage and political attitudes
has mainly set aside concern with social networks and conceptualized the agenda-
setting process of news coverage, investigating the extent to which the amount of
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news coverage of an issue is associated with how important the public perceives
the issue to be [32]. Recently, still in an individualistic framework, news has been
studied in terms of narrative framing and its effects [19], although investigators have
returned to conceptualizing network variables in modeling news coverage effects on
sentiment [20]. Nevertheless, the focus of attention is on communication networks
of elites in influencing media framing, rather than on networks contained within
the content itself. We propose that networks among presidential cabinet members
represented in the news mediate framing’s influence on public attitudes toward the
presidency.

The negative information orientation of the press is well documented [20].
Positive events are not nearly as likely to be considered “news” as are negative
events or negative characterizations of processes or personalities. Given a gener-
ally negative valence to news, our theoretical argument derives from the research
on “divided presidencies” [33], where one party holds the White House and another
holds the Congress. Studies have found that this results in higher job approval rat-
ings for the president. Investigators have reasoned that this is because of added
uncertainty resulting from less ability to assign blame to the president for lack of
political progress or failed initiatives. This uncertainty weakens the normal situation
in which there is a negative bias in the media toward political actors and therefore
increases the chances that the population perceives the president more positively,
absent the normal flow of negative information being specifically tied to the chief
executive.

We further reason that when the president is portrayed as a more central figure
in the administration, he is more clearly the “lightning rod” for the generally neg-
ative information orientation of the press. Absent countervailing information, this
negative coverage of the president results in audience members perceiving the pres-
ident to have lower job performance, and thus they give him lower job approval
ratings. On the other hand, when the president is less central in the administration
network, as other cabinet members are more central, this structural dispersion makes
it more difficult for the media to successfully tag the president in a negative manner.
The negative “lightning” of media messages is more diffuse with multiple smaller
bolt strikes. As a result, when the average centrality of cabinet members is higher,
which lowers the centrality of the president, the job approval of the president is
higher. The president is more likely to “fly beneath the radar” from the perspective
of media audiences and with less connection of negative news with the identity of
the president himself, job approval will increase. So, in addition to expecting that
when average network centrality of cabinet members is higher presidential approval
is higher, we also expect to find that when the president has higher network central-
ity, job approval is lower. Stating this more succinctly, the following hypothesis is
offered:

H1: The greater the similarity of the centrality of the president and his cabinet members,
the higher the job approval ratings for the president.

The contemporary speed with which these effects can be expected to occur is
related to the substantial shortening of the news cycle since the growth of online
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news sources. These have affected all media such that the media cycle is no longer
weekly or daily, it is hourly and even minutes/seconds in periodicity. The cycle was
longer during the Reagan, G.H.W. Bush, and Clinton administrations. The “web”
was launched in the middle of Clinton’s two terms and was still in early stages of
development through the late 1990s. For the G.W. Bush presidency, on the other
hand, the online news cycle had shortened [17], political blogs grew rapidly in his
first term [1] and exerted increasing power on media framing through his second
term [21]. We therefore expect that the relationship between administration network
centrality and presidential job approval is longer for the Reagan through Clinton
administrations than it is for the G.W. Bush administration.

H2: The lag between centrality similarity of president and cabinet members and an increase
in job approval ratings for the president is shorter for the G.W. Bush administration than
for the Reagan, G.H.W. Bush, and Clinton administrations.

3.2 Methods

We have network analyzed the cabinets of each of the presidencies since Nixon
aggregated across their respective terms [8]. All Lexis-Nexis news stories in the
New York Times and the Washington Post during the administrations that mention at
least one of the cabinet members were captured in full text form. A separate search
was done for each cabinet member during the time of the presidency. We then aggre-
gated all of these files into one text file for each administration. There were 26 Mb
of text and 30,194 stories for Nixon and his cabinet, 16.7 Mb and 18,432 stories
for the short Ford term, 163 Mb and 46,586 stories for Carter, 653 Mb of text and
135,996 stories for Reagan’s two terms, 93 Mb of text and 17,265 stories for G.H.W
Bush, 674 Mb of text and 114,511 stories for the two Clinton administrations, and
504 Mb and 89,810 stories for the two G.W. Bush administrations. Although
G.H.W Bush’s administration generated relatively little press coverage, con-
sidering that the president is the single most covered news source [20] this
would appear to be the result of a press strategy or of some other systematic
variation.

For the current analysis four separate text files were created in UTF-8 for-
mat. Each file was then analyzed using WORDij 3.0 [15, 16] to measure the
co-occurrence of actors mentioned within 400 words of each other. Each output file
was then put into UCINET [7] to measure average network centralization, individual
centrality scores for each member, and NetDraw [5] to create the static network visu-
alizations. WORDij 3.0 produces time series movies of networks, but these cannot
be shown in such a paper.

WORDij was originally designed to analyze large numbers of co-occurring
words to create semantic networks. Nevertheless, social actors’ names are indeed
words and mining for their co-occurrence is no different. WORDij 3.0 not only has
a stop word list or drop list but also has its opposite, an include list that will map the
network only among words on it. Additionally, some features to aid in multi-node
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type analysis including people, organizations, places, and formal concepts and
objects are enumeration of proper nouns and automatic creation of include lists
from them. For this chapter, using WORDij 3.0’s string replacement and include list
functions, all aliases we created for each cabinet member’s name were converted to
a single string and then proximity-based co-occurrences were computed.

3.2.1 Link Coding with Proximities not “Bag of Words”

The extent to which cabinet members co-occur within large numbers of documents
is the basis for defining the link in the social network with more co-occurrences
indicating higher link strength. This co-occurrence indexing is proximity based so
it avoids the problems of the simplistic “bag of words” approaches common from
Information Science and Information Retrieval. Those treat all words in an entire
document as having a link with one another, regardless of how far apart these terms
might be in the document. While such word bags are useful for document retrieval
they blur social meaning by ignoring or masking the more precise relationships of
social units within the texts, whether these units are words, people, or other entities.
More reflective of social structure are methods using a proximity criterion to define
co-occurrence of links within a relatively short distance as introduced by Danowski
[11, 13, 14].

3.2.2 Optimal Window Size for Actor Social Networks

We performed tests with different window sizes, using as a criterion the overall net-
work structure. Windows of 3, 10, 25, 50, 100, and 200 were used. The window
size of 3 produces the same network results as the other windows sizes, for exam-
ple, having a QAP correlation coefficient of .997 with the network resulting from a
window size of 200. The reason for this is because with the include file approach
(opposite of a stop list or drop file) the WordLink subroutine of WORDij drops all
words from the initial text except for the strings on the include list. So, the window
of 3 when using an include list has face and predictive validity.

3.2.3 Actor Co-occurrence Segmentation Software

We use the software package WORDij 3.0 that has a graphical user interface in java
but runs fast on Windows, Mac, and Linux/Unix operating systems because all of the
network analysis computations are done in C++ not java, unlike some other similar
software such as AutoMap [18]. Among the many options for analysis in WORDij
3.0, relevant here is the option to produce Pajek [2] formatted output files because
we wished to import these to UCINET for centrality computations.
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3.2.4 Network Centrality Measures

The most often used centrality measure in social network analysis is “betweenness
centrality” [26]. Nevertheless, use of this measure developed by Freeman [23] has
been shown to be very often inappropriate in terms of its operational assumptions
in relation to conceptual definitions [6, 35]. The betweenness measure assumes that
messages flow through a network along a single shortest path, moving sequentially
from one node on this path to the next. No weighting is assumed for the strength
of each link in terms of its overall frequency of activation, bandwidth, or channel
capacity. Accordingly it treats only dichotomous links, so even if strength or vertex
valued data is available, the measure removes such information and codes each link
as either present or absent. Sometimes analysts do this dichotomization by bina-
rizing the data with a split at the median into 0 and 1 codes for each link. In the
betweenness centrality model, it is not possible for a node to receive messages from
more than one other node nor can a node send out the same message to multiple
nodes. These assumptions do not fit well with our conception of presidential cabinet
networks. We assume that our representations of networks have an association with
the actual communication among the actors.

Organizational communication is such that some relationships are stronger than
others, with these stronger links more frequently activated. In addition, it is common
for individuals to communicate the same basic message to more than one node,
sometimes simultaneously as would occur in situations such as group meetings, or
email copied to multiple recipients. In such a model, individuals may receive the
same basic content from more than one source. The centrality most appropriate for
these assumptions is “flow betweenness” [6]. It indexes the degree to which each
node is present on all possible paths among the nodes in the network, weighted for
link strength values. Thus flow betweenness centrality was used in the current study.

Alternatively, eigenvector centrality [4] is consistent with a social influence
model similar to that described as guiding this investigation. Nevertheless, with
the relatively small numbers of nodes that are in a cabinet network the eigenvector
solutions can produce anomalous results as indicated by features including negative
eigenvectors, which occur when the triangular inequality principle of node relations
in Euclidean spaces is violated. In such distance models if A is linked with B at a
particular distance based on vertex strength, and A is linked with C at a particular
distance, then the B and C link is determined, yet does not empirically correspond to
the formulation. Flow betweenness is the best measure of centrality for the current
research.

3.2.5 Time Segmentation

TimeSlice is a utility in the WORDij 3.0 software package that allows one to seg-
ment the larger corpus into sections of any width, such as by number of days, weeks,
quarters, or years. The time sliced files are in turn input into the WordLink program
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in WORDij that generates basic information for each time slice in eight output files
for words, for word pairs, and for statistics such as entropy and mutual information,
and in various formats, such as the .net Pajek format.

3.2.6 Creating the String Replacement and Include Lists

The first step in preparing the list of names for the network analysis in WORDij 3.0
is to create a string replacement list, an advanced option. This converts aliases for
each name into a unigram. Table 3.1 shows an example.

Table 3.1 Examples of
string replacement (partial file
for Nixon cabinet)

Richard Nixon->richard_nixon
richard nixon->richard_nixon
nixon-richard_nixon
President->richard_nixon
president->richard_nixon
Vice President->spiro_agnew
vice president->spiro_agnew
Spiro Agnew->spiro_agnew
spiro agnew->spiro_agnew
agnew->spiro_agnew
Gerald Ford->gerald_ford
gerald ford->gerald_ford
ford->gerald_ford
William Rogers->william_rogers
william rogers->william_rogers
rogers->william_rogers
Henry Kissinger->henry_kissinger
henry kissinger->henry_kissinger
kissenger->kissinger
David Kennedy->david_kennedy
david kennedy->david_kennedy
kennedy->david_kennedy
John Connally->john_connally
john connally->john_connally
connallh->john_connally
George Shultz->george_shultz
george shultz->george_shultz
shultz->george_shultz

The new strings created from the string replacement file are input as an include
file in the WordLink identification of co-occurring words, in this case name uni-
grams. The include list is the opposite of a stop or drop list. Rather than removing
certain words from the network analysis, the include list contains all of the words
to be network analyzed and co-occurrences are indexed only for these terms, in this
case name unigrams (Table 3.2).
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Table 3.2 Example include
list for Nixon cabinet caspar_weinberger

claude_brinegar
clifford_hardin
clifford_hardin
david_kennedy
earl_butz
elliot_richardson
frederick_dent
george_romney
george_shultz
gerald_ford
henry_kissinger
james_hodgson
james_schlesinger
john_connally
john_mitchell
maurice_stans
melvin_laird
peter_brennan
peter_peterson
rich._kleindienst
richard_nixon
robert_finch
rogers_morton
spiro_agnew
walter_hickel
william_rogers
william_saxbe
william_simon
winton_blount

3.2.7 Post-Processing of Link Data for Centrality Measures

The WORDij 3.0 program has the option of producing a network file in the .net
Pajek format. This is one of the import file types that UCINET accepts and converts
to its system files. We chose UCINET because it is widely accepted in the social
network analysis community and we wished to use common, validated centrality
indices to profile the structures of the cabinets. Given the status of UCINET and
the ease of output importing we felt no need to incorporate centrality measures into
WORDij. This Pajek format is one of the import file types in UCINET, which is
where we compute the centrality statistics for each time slice.

In the current study, within each time slice we compute the flow betweenness
centrality statistics for each of the cabinet members appearing in the social network
in the time period and also compute the average of such centralities across all admin-
istration members. To index the extent to which the president stood apart from the
cabinet in centrality we divided the president’s centrality by the average centrality
of cabinet members so that higher values indicate the president more likely stands
above the other cabinet members and serves as a media “lightning rod” to which
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negative stories connect to the identity of the president. Lower values indicate it is
more likely that the president is “below the radar” of negative public opinion for-
mation as there is less likelihood of audiences linking the negative stories to the
president per se.

Presidential job approval ratings were obtained from the Roper Public Opinion
Center Archives (http://www.ropercenter.uconn.edu/). For each presidency we com-
puted the average time interval between such measurements and used this as the time
slice criterion to produce time series data.

3.2.8 Time Series Statistical Analysis

For Reagan the interval of job approval rating was 22 days, resulting in 132 time
intervals; for G.H.W. Bush it was 13 days and 121 intervals; for Clinton it was 30
days and 98 time intervals; and for G.W. Bush it was 22 days and 133 time intervals.
To test the hypotheses we created for each administration a data file in SPSS where
we entered columns of data for president centrality, average administration (cabinet)
centrality, and job approval from the polls. We used the statistical function of differ-
encing adjacent time series to remove serial autocorrelation (d = 1) and computed
cross-correlations to examine seven lags before and after each centrality variable
period to see what the relationship between centrality and job approval might be.

3.2.9 Combining Visualization with Statistical Centrality of Actors

A fundamental tenet of data analysis is to first visualize it. WORDij 3.0 has VISij
for creating static or time series movies of changes in network composition and
structure, although NetDraw has more options for rendering static networks such
as having larger circles for more central nodes. We used node centrality to visually
render the nodes’ network size. For link strength we used the maximum available
range of thickness of links, from 0 to 12. Our larger array of strengths was converted
to this scale.

3.3 Results

To give the reader a sense of the differences between the four cabinets in over-
all network structure, Figs. 3.1, 3.2, 3.3, and 3.4 show the aggregate cabinet
social networks for the cabinets of Reagan, G.H.W Bush, Clinton, and G.W. Bush
administrations.

The centrality of the president in the cabinet network was divided by the aver-
age centrality. This ratio represents the extent to which the president stands out in
centrality compared to the others. Figure 3.5 shows this ratio for each president. It
was noteworthy that the G.H.W. Bush administration was unique in having a high
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Fig. 3.1 Aggregate Reagan cabinet

Fig. 3.2 Aggregate G.H.W. Bush cabinet

proportion of zero centrality time periods. Because centrality can be computed only
on a connected network, this indicates that in these periods isolated pairs of cabinet
members or isolated individuals were treated in the news stories within the obser-
vation window. This finding was confirmed by systematic visual examination of the
senior Bush administration’s zero centrality periods. Because the White House itself
is the primary source of cabinet news it would appear that this recurring deviation
from the norm may have been strategic, in that presidential-level political commu-
nication is unlikely left to chance. Across the series, G.H.W Bush is most similar
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Fig. 3.3 Aggregate Clinton cabinet network

Fig. 3.4 Aggregate G.W. Bush cabinet network

to his cabinet members in centrality. Clinton stands out as generally being the most
central compared to his cabinet.

3.3.1 Hypotheses Tests

The cross-correlations with differencing to remove serial autocorrelation based on
+7 through –7 lags found that a lag of 1 produced the highest coefficient at –.13
(p < .05) for the ratio of president to cabinet centrality in relation to job approval.
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Fig. 3.5 Ratio of president centrality to cabinet average

The more the president stood apart in terms of centrality, the lower the job approval
rating three time periods later. The same lag pattern was found for G.H.W. Bush, a
coefficient of –.34 (p < .05) at lag 1. Similarly, Clinton data showed a coefficient
of –.16 (p < .05), but at lag 4. G.W. Bush centrality ratio had a coefficient of –.14
(p < .05) at a lag 2. These results support hypothesis one. Hypothesis two, that the
G.W. Bush administration would have a shorter lag, cannot be statistically tested but
the results are not consistent with the hypothesis. Although the lag for G.W. Bush is
one half that for Clinton, the lags for Reagan and G.H.W. Bush are half that of G.W.
Bush.

3.4 Discussion

The findings support the hypothesis that as the president’s centrality is closer to the
average cabinet centrality, there is a positive association with job approval. For two
presidents, Reagan and G.H.W. Bush, when the president’s centrality drops closer
to the average, by the next polling period job approval is higher. The same pattern
occurs for the other two presidents but their lags are longer. For Clinton the lag is 4
periods and for G.W. Bush the lag is 2 time periods.

It was theorized that when the president stands above the rest of the cabinet in
network centrality, negative press information is more likely to be associated with
the president in the minds of members of the public and they will report lower
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presidential job approval ratings. The president identity is like a lightning rod
absorbing the negative press sentiment. On the other hand, when the president’s cen-
trality is closer to that of the other cabinet members, he is less likely to be associated
with negative press information, “flying below the radar” of public opinion pro-
cesses. It is as if the negative press information fragments and diffuses into smaller
bolts attached to other cabinet members. As the president is not being as directly
connected with negative press content, job approval ratings increase.

The hypothesis about the shortening of the lag cycle associated with the Internet’s
shortening of the news cycle was not clearly supported by the evidence. While G.W.
Bush’s lag was one half that of Clinton’s, both were longer than for the two prior
presidents.

Nevertheless, studying only four administrations introduces problems of external
validity. One would not want to generalize the findings of this study to the popula-
tion of presidencies, certainly those that occurred prior to the establishment of the
New York Times and Washington Post as elite political newspapers. Even if this
were feasible, it would not be desirable given an assumption widely held by polit-
ical observers that the introduction of television changed presidential politics, and
now the observation that the Internet has changed presidential politics in yet other
ways.

It is interesting to note, however, that for the two presidencies that took place
before the Internet, the time lag is the same and is only one period long, while
for the two presidencies during and after Internet development the lag is longer.
While this may be mere coincidence, it suggests a possible hypothesis for future
research that elite newspaper coverage, in the New York Times and Washington Post,
takes longer to have an effect as alternative online news sources have proliferated.
It would be useful to conduct a future study that would comparatively test the basic
hypothesis examined here by mapping networks separately both in the elite press
and in Internet content.

We sought to present an illustration of time series analysis of social networks
obtained from data mining, yet used political communication theory to generate
some hypotheses to add further meaningfulness to the analysis. The study is fruit-
ful on three counts. One is that it reveals substantive variation that future research
can address; second, it demonstrates that the WORDij 3.0-based methods produce
useful variation; and, third, it offers a new model for political communication and
presidential job approval.

When data mining for social networks, the representations one obtains are based
on the nature of the source data and on the assumptions made for the operational-
ization of data extraction and the network representation. These are the networks
as portrayed in the medium from which data is mined. Questions about the extent
to which such networks compare to the “real” or “actual” network are misplaced,
for there is no real or actual network that is independent of data collection and
extraction procedures or the subjective impressions of the participants or observers
of them. The latter may be the basis for an “inter-subjective” network, but this is as
close as one could come to the actual network independent from the instrumentation
extracting network data.
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Rather than the reality of the networks, the key is the validity of the networks.
Face validity is the first level of validity and least measurable, but when linking net-
work representations to other data, such as to job approval and news sentiment in
this study, predictive validity becomes relevant. Although external validity is lim-
ited because of studying only four administrations, the statistical results provide
predictive validity for the investigation.

Some philosophers [3] argue that the media are a simulacrum with a completely
self-contained representation of information that bears no correspondence to that
outside of it. This is an extreme position that is invalidated by the fact that one can
link media representations of such things as social networks among actors to data
from outside the media system, in this study to Gallup job approval poll data. Such
cross-system predictive validity is important to data mining for social networks as
it is in any sort of social research. When extracting a social network from data min-
ing one should move quickly to establish whether and how much predictive validity
such constructions have, otherwise mining for “toy” networks is merely for analyti-
cal playmates. For example, some research has linked networks of message content
from president’s letters to stockholders to stock price performance [12, 36, 38].
In the present study, we illustrate not only a procedure for mining of social net-
work data but we link these data over time to independently obtained side data
of Gallup presidential approval polls through which the results of mining can be
validated.

Work is underway to more fully automate social network mining to move beyond
the use of a priori lists of actors to ontological categories of actors for which
software can automatically add new actors.
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Chapter 4
A Social Network-Based Recommender
System (SNRS)

Jianming He and Wesley W. Chu

Abstract Social influence plays an important role in product marketing. However,
it has rarely been considered in traditional recommender systems. In this chapter,
we present a new paradigm of recommender systems which can utilize information
in social networks, including user preferences, item’s general acceptance, and influ-
ence from social friends. A probabilistic model is developed to make personalized
recommendations from such information. We extract data from a real online social
network, and our analysis of this large data set reveals that friends have a tendency to
select the same items and give similar ratings. Experimental results on this data set
show that our proposed system not only improves the prediction accuracy of recom-
mender systems but also remedies the data sparsity and cold-start issues inherent in
collaborative filtering. Furthermore, we propose to improve the performance of our
system by applying semantic filtering of social networks and validate its improve-
ment via a class project experiment. In this experiment we demonstrate how relevant
friends can be selected for inference based on the semantics of friend relationships
and finer-grained user ratings. Such technologies can be deployed by most content
providers.

4.1 Introduction

In order to overcome information overload, recommender systems have become a
key tool for providing users with personalized recommendations on items such as
movies, music, books, news, and web pages. Intrigued by many practical appli-
cations, researchers have developed algorithms and systems over the last decade.
Some of them have been commercialized by online venders such as Amazon.com,
Netflix.com, and IMDb.com. These systems predict user preferences (often repre-
sented as numeric ratings) for new items based on the user’s past ratings on other
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items. There are typically two types of algorithms for recommender systems –
content-based methods and collaborative filtering. Content-based methods measure
the similarity of the recommended item (target item) to the ones that a target user
(i.e., user who receives recommendations) likes or dislikes [22, 25, 30] based on
item attributes. On the other hand, collaborative filtering finds users with tastes that
are similar to the target user’s based on their past ratings. Collaborative filtering will
then make recommendations to the target user based on the opinions of those similar
users [3, 5, 27].

Despite all of these efforts, recommender systems still face many challenging
problems. First, there are demands for further improvements on the prediction
accuracy of recommender systems. In October 2006, Netflix announced an open
competition with the grand prize of $1,000,000 for the best algorithm that predicts
user ratings for films (http://www.netflixprize.com). The improvement in the predic-
tion accuracy can increase user satisfaction, which in turn leads to higher profits for
those e-commerce web sites. Second, algorithms for recommender systems suffer
from many issues. For example, in order to measure item similarity, content-based
methods rely on explicit item descriptions. However, such descriptions may be dif-
ficult to obtain for items like ideas or opinions. Collaborative filtering has thedata
sparsity problem and the cold-start problem [1]. In contrast to the huge number of
items in recommender systems, each user normally only rates a few. Therefore, the
user/item rating matrix is typically very sparse. It is difficult for recommender sys-
tems to accurately measure user similarities from those limited number of reviews.
A related problem is the cold-start problem. Even for a system that is not particu-
larly sparse, when a user initially joins, the system has none or perhaps only a few
reviews from this user. Therefore, the system cannot accurately interpret this user’s
preference.

To tackle those problems, two approaches have been proposed [3, 21, 23, 29].
The first approach is to condense the user/item rating matrix through dimension-
ality reduction techniques such as singular value decomposition (SVD) [3, 29]. By
clustering users or items according to their latent structure, unrepresentative users
or items can be discarded, and thus the user/item matrix becomes denser. However,
these methods do not significantly improve the performance of recommender
systems, and sometimes make the performance even worse.

The second approach is to “enrich” the user/item rating matrix by (1) introduc-
ing default ratings or implicit user ratings, e.g., the time spent on reading articles
[23]; (2) using half-baked rating predictions from content-based methods [21]; or
(3) exploiting transitive associations among users through their past transactions
and feedback [12]. These methods improve the performance of recommender sys-
tems to some extent. In this chapter we try to solve these problems from a different
perspective. In particular, we propose a new paradigm of recommender systems by
utilizing information in social networks, especially that of social influence.

Traditional recommender systems do not take into consideration explicit social
relations among users, yet the importance of social influence in product marketing
has long been recognized [32, 36]. Intuitively, when we want to buy a product that
is not familiar, we often consult with our friends who have already had experience
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with the product, since they are those that we can reach for immediate advice. When
friends recommend a product to us, we also tend to accept the recommendation
because their inputs are trustworthy. Many marketing strategies that have leveraged
this aspect of human nature have achieved great success. One classic example is
the Hotmail’s free e-mail service. The marketing strategy of Hotmail is to attach
a promotion message at the bottom of every outgoing e-mail: “Get your private,
free e-mail at http://www.hotmail.com.” People who receive the e-mail will sign
up and then further propagate this promotion message. As a result, the number of
Hotmail user accounts grew from 0 to 12 million in 18 months on only a $500,000
advertising budget – thereby out-performing many conventional marketing strate-
gies [14]. Thus, social influences play a key role when people are making decisions
of adopting products.

Additionally, the integration of social networks can theoretically improve the
performance of current recommender systems. First, in terms of the prediction accu-
racy, the additional information about users and their friends obtained from social
networks improves the understanding of user behaviors and ratings. Therefore, we
can model and interpret user preferences more precisely, and thus improve the pre-
diction accuracy. Second, with friend information in social networks, it is no longer
necessary to find similar users by measuring their rating similarity, because the fact
that two people are friends already indicates that they have things in common. Thus,
the data sparsity problem can be alleviated. Finally, for the cold-start issue, even if
a user has no past reviews, recommender system still can make recommendations to
the user based on the preferences of his/her friends if it integrates with social net-
works. All of these intuitions and observations motivate us to design a new paradigm
of recommender systems that can take advantage of information in social networks.

The recent emergence of online social networks (OSNs) gives us an opportunity
to investigate the role of social influence in recommender systems. With the increas-
ing popularity of Web 2.0, many OSNs, such as Myspace.com, Facebook.com, and
Linkedin.com, have emerged. Members in those networks have their own personal-
ized space where they not only publish their biographies, hobbies, interests, blogs,
etc., but also list their friends. Friends or visitors can visit these personal spaces and
leave comments. Note that in this chapter we define friends as any two users who are
connected by an explicit social link. We define immediate friends as those friends
who are just one hop away from each other in a social network graph, and distant
friends as friends who are multiple hops away. OSNs provide platforms where peo-
ple can place themselves on exhibit and maintain connections with friends. As OSNs
continue to gain more popularity, the unprecedented amount of personal informa-
tion and social relations improves social science research where it was once limited
by a lack of data.

In our research, we are interested in the role of explicit social relations in recom-
mender systems, such as how user preferences or ratings are correlated with those
of friends, and how to use such correlations to design a better recommender system.
In particular, we design an algorithm framework which makes recommendations
based on user’s own preferences, the general acceptance of the target item, and the
opinions from social friends. We crawl a real online social network from Yelp.com
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and perform extensive analysis on this data set. Some of the key questions, such
as whether or not friends tend to select the same item, and whether or not friends
tend to give similar ratings, have been studied in this data set. We also use this data
set to evaluate the performance of our proposed system on the prediction accuracy,
data sparsity, and cold-start. The experimental results of our system show signifi-
cant improvement against traditional collaborative filtering in all of those aspects.
For example, the prediction accuracy has improved by 17.8% compared to tradi-
tional collaborative filtering. Furthermore, we propose to use the semantics of friend
relationships and finer-grained user ratings to improve the prediction accuracy.

The remainder of the chapter is organized as follows. First, in Section 5.2 we
give a background of traditional collaborative filtering algorithms. Then we formally
propose a social network-based recommender system in Section 5.3. In Section 5.4
we introduce the data set that we crawled from Yelp and present some analytical
studies on this data set. Following that, we evaluate the performance of the proposed
system on the Yelp data set in Section 5.5. In Section 5.6 we propose to further
improve the prediction accuracy of the system by applying semantic filtering of
social networks and validate its improvement via a class experiment. In Section 5.7
we review related studies and conclude in Section 5.8.

4.2 Background

After the pioneering work in the Grouplens project in 1994 [27], collaborative filter-
ing (CF) soon became one of the most popular algorithms in recommender systems.
Many variations of this algorithm have also been proposed [2, 11, 13, 21, 35]. In this
chapter we will use the traditional CF as one of the comparison methods. Therefore,
the remainder of this section will focus on this algorithm.

The assumption of CF is that people who agree in the past tend to agree again in
the future. Therefore, CF first finds users with taste similar to the target user’s. CF
will then make recommendations to the target user by predicting the target user’s
rating to the target item based on the ratings of his/her top-K similar users. User
ratings are often represented by discrete values within a certain range, e.g., one to
five. A one indicates an extreme dislike to the target item, while a five shows high
praise. Let RUI be the rating of the target user U on the target item I. Thus, RUI is
estimated as the weighted sum of the votes of similar users as follows.

RUI = RU + Z
∑

V∈�

w(U, V) × (RVI − RV ), (4.1)

where RU and RV represent the average ratings of the target user U and every user V
in U’s neighborhood, �, which consists of the top-K similar users of U. w(U, V) is
the weight between users U and V, and Z = 1∑

V w(U,V) is a normalizing constant to
normalize total weight to one. Specifically, w(U, V) can be defined using the Pearson
correlation coefficient [27].
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w(U, V) =
∑

I (RUI − RU)(RVI − RV )√∑
I (RUI − RU)

2∑
I (RVI − RV )

2
(4.2)

where the summations over I are over the common items for which both user U and
V have voted.

Other variations to this algorithm include different weighting techniques. For
example, when two users have less than 50 co-rated items, [11] proposed to insert a
significance weighting factor of n/50 to the original weight, where n is the number
of co-rated items. As we can see, traditional collaborative filtering and its variations
do not utilize the semantic friend relations among users in recommender systems;
however, this is essential to the buying decisions of users. In the following sections,
we are going to present a new paradigm of recommender systems which improves
the performance of traditional recommender systems by using the information in
social networks.

4.3 A Social Network-Based Recommender System

Before we introduce the system, let us first show a typical scenario. Angela wants to
watch a movie on a weekend. Her favorite movies are dramas. From the Internet, she
finds two movies particularly interesting, “Revolutionary Road” and “The Curious
Case of Benjamin Button.” These two movies are all highly rated in the message
board at Yahoo Movies. Because she cannot decide which movie to watch, she
calls her best friend Linda whom she often hangs out with. Linda has not viewed
these two movies either, but she knew that one of her officemates had just watched
“Revolutionary Road” and highly recommended it. So Linda suggests “Why don’t
we go to watch Revolutionary Road together?” Angela is certainly willing to take
Linda’s recommendation, and therefore has a fun night at the movies with her
friend. If we review this scenario, we can see at least three factors that really con-
tribute to the Angela’s final decision. The first factor is Angela’s own preference
for drama movies. If Angela did not like drama movies, she would be less likely
to pick something like “Revolutionary Road” to begin with. The second factor is
the public reviews on these two movies. If these movies received horrible reviews,
Angela would most likely lose interest and stop any further investigation. Finally,
it is the recommendation from Angela’s friend, Linda, that makes Angela finally
choose “Revolutionary Road.” Interestingly, Linda’s opinion is also influenced by
her officemate. If we recall the decisions that we make in our daily life, such as
finding restaurants, buying a house, and looking for jobs, many of them are actually
influenced by these three factors.

Figure 4.1 further illustrates how these three factors impact customers’ final buy-
ing decisions. Intuitively, a customer’s buying decision or rating is decided by both
his/her own preference for similar items and his/her knowledge about the charac-
teristics of the target item. A user’s preference, such as Angela’s interest in drama
movies, is usually reflected from the user’s past ratings to other similar items, e.g.,
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Rating

Newspaper TV

Feedbacks from friendsInformation from the public media

Friends

User preference for 
similar items Knowledge about the 

target item

Internet

Fig. 4.1 The three factors that influence a customer’s buying decision: user preference for similar
items, information regarding the target item from the public media, and feedbacks from friends

the number of drama movies that Angela previously viewed and the average rating
that Angela gave to those movies. Knowledge about the target item can be obtained
from public media such as magazines, television, and the Internet. Meanwhile, the
feedbacks from friends are another source of knowledge regarding the item, and
they are often more trustworthy than advertisements. When a user starts considering
the feedbacks from his/her friends, he/she is then influenced by his/her friends. Note
that this influence is not limited to that from our immediate friends. Distant friends
can also cast their influence indirectly to us; e.g., Angela was influenced by Linda’s
officemate in the previous scenario. Each one of these three factors has an impact
on a user’s final buying decision. If the impact from all of them is positive, it is very
likely that the target user will select the item. On the contrary, if any has a negative
influence, e.g., very low ratings in other user reviews, the chance that the target user
will select the item will decrease. With such an understanding in mind, we are going
to propose a social network-based recommender system (SNRS) in the following
subsections. As we mentioned, social influences can come from not only immediate
friends but also distant friends. The techniques for handling these types of influences
are different. We shall begin with the immediate friend inference, in which we only
consider influences from immediate friends. Then, in the distant friend inference,
we will describe how we incorporate influences from distant friends via leveraging
the immediate friend inference.

4.3.1 Immediate Friend Inference

We introduce the following naming conventions for the variables used in this chap-
ter. We use capitalize letters to represent variables, and use capitalize and bold letters
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to represent the corresponding sets. The value for each variable or variable set is
represented by the corresponding lowercase letter.

Formally, let us consider a social network as a graph G = (U, E) in which U
represents nodes (users) and E represents links (social relations). Each user U in U
has a set of attributes AU as well as immediate neighbors (friends) N(U) such that if
V ∈ N(U), (U, V) ∈ E. The values of attributes AU are represented as aU. Moreover,
a recommender system contains the records of users’ ratings, which can be repre-
sented by a triple relation of T = (U, I, R) in which U is the users in the social
network G; I is the set of items (products or services), and each item I in I has a set
of attributes AI

′. R stands for the ratings such that each RUI in R is user U’s rating
on item I. RUI has a numeric value k (e.g., k∈{1, 2,. . . 5}). Moreover, we define I(U)
as the set of items that user U has reviewed and refer to the set of reviewers of item
I as U(I). The goal of this recommender system is to predict Pr(RUI = k | A′= aI

′,
A = aU, {RVI = rVI: ∀V∈U(I) ∩ N(U)}); i.e., the probability distribution of the target
user U’s rating on the target item I given the attribute values of item I, the attribute
values of user U, and the ratings on item I rated by U’s immediate friends. Once
we obtain this distribution, RUI is calculated as the expectation of the distribution.
Items with high estimated ratings will be recommended to the target user, and users
with high estimated ratings on the target item are the potential buyers.

In order to estimate Pr(RUI = k | A′= aI
′, A = aU, {RVI = rVI: ∀V∈U(I) ∩ N(U)}),

we adopt the naive Bayes assumption which assumes that the influences from item
attribute values, user attribute values, and immediate friends’ ratings are indepen-
dent. Although this assumption simplifies the correlations among these variables,
the naive Bayes model has been shown to be quite effective in many applica-
tions including textual document classification [16]. By making this assumption,
the original conditional probability can be factorized as follows:

Pr(RUI = k|A′ = a′
I , A = aU , {RVI = rVI : ∀V ∈ U(I) ∩ N(U)})

= 1

Z
Pr(RUI = k|A′ = a′

I) × Pr(RUI = k|A = aU)

× Pr(RUI = k|{RVI = rVI : ∀V ∈ U(I) ∩ N(U)})
(4.3)

First, Pr(RU = k | A′= aI
′,) is the conditional probability that the target user U

will give a rating k to an item with the same attribute values as item I. This prob-
ability represents U’s preference for items similar to I. Because this value depends
on the attribute values of items rather than an individual item, we drop the subscript
I in RUI for simplification. Second, Pr(RI = k | A = aU) is the probability that the
target item I will receive a rating value k from a reviewer whose attribute values are
the same as U. This probability reflects the general acceptance of the target item I
by users like U. For the same reason, because this value depends on the attribute
values of users rather than a specific user, we drop the subscript U in RUI. Finally,
Pr(RUI = k | {RVI = rVI: ∀V∈ U(I) ∩ N(U)}) is the probability that the target user U
gives a rating value k to the target item I given the ratings of U’s immediate friends
on item I. This is where we actually take social influences into consideration in our
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system. In addition, Z is a normalizing constant. We shall present the methods to
estimate each of the factors in the following subsections.

4.3.1.1 User Preference

As we pointed out, Pr(RU = k | A′ = aI
′) measures the target user U’s preference

for the items similar to item I. For example, if we want to know how high Angela
will rate “Revolutionary Road,” Pr(RU = k | A′ = aI

′) gives us a hint of how likely
it is that Angela will give a rating k to a drama movie which is also casted by Kate
Winslet. To estimate this probability, we adopt the naive Bayes assumption again.
We assume that the item attributes in A′, e.g., category and cast, are independent of
each other. Therefore, we have

Pr(RU = k|A′ = a′
I) = Pr(RU = k) × Pr(A′

1, A′
2, . . . , A′

n|RU = k)

Pr(A′
1, A′

2, . . . , A′
n)

= Pr(RU = k) ×∏j=n
j=1 Pr(A′

j|RU = k)

Pr(A′
1, A′

2, ..., A′
n)

, A′ = {A′
1, A′

2, . . . , A′
n}

(4.4)

where Pr(A′
1,A′

2,..., A′
n) can be treated as a normalizing constant, Pr(RU = k) is

the prior probability that U gives a rating k, and Pr(Aj
′| RU = k) is the conditional

probability that each item attribute Aj
′ in A′ has a value aj

′ given U rated k; e.g.,
Pr(movie type = drama| RU = 4) is the probability that a movie will be a type
of drama movie, given that U gives a rating 4. The last two probabilities can be
estimated from counting the review ratings of the target user U. Specifically,

Pr(RU = k) = |I(RU = k)| + 1

|I(U)| + n
, and (4.5)

Pr(A′
j = a′

j|RU = k) =
∣∣∣I(A′

j = a′
j, RU = k)

∣∣∣+ 1

|I(RU = k)| + m
, (4.6)

where |I(U)| is the number of reviews of user U′s in the training set, |I(RU = k)| is
the number of reviews that user U gives a rating value k, and |I (Aj

′ = aj
′, RU = k)|

is the number of reviews that U gives a rating value k while attribute Aj
′ of the cor-

responding target item has a value aj
′. Notice that we insert an extra value 1 to the

numerators in both equations, and add n, the range of review ratings to the denomi-
nator in Eq. (4.5), and m, the range of Aj

′’s values, to the denominator in Eq. (4.6).
This method is also known as Laplace estimate, a well-known technique in esti-
mating probabilities [7], especially on a small size of training samples. Because
of Laplace estimate, “strong” probabilities, like 0 or 1, from direct probability
computation can be avoided.

Moreover, in some cases when item attributes are not available, we can approx-
imate Pr(RU = k | A′ = aI

′) by the prior probability Pr(RU = k). Even though
Pr(RU = k) does not contain information specific to certain item attributes, it does
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take into account U’s general rating preference; e.g., if U is a generous person,
he/she gives high ratings regardless of the items.

4.3.1.2 Item Acceptance

Pr(RI = k | A = au) captures the general acceptance of item I from users like user
U. For example, for a reviewer who is similar to Angela (e.g., the same gender and
age), how likely is it that “Revolutionary Road” will receive a rating of 5 from her.
Similar to the estimation in user preference, we use the naive Bayes assumption and
assume user attributes are independent. Thus, we have

Pr(RI = k|A = aU) = Pr(RI = k) × Pr(A1, A2, . . . , Am|RI = k)

Pr(A1, A2, . . . , Am)

= Pr(RI = k) ×∏j=m
j=1 Pr(Aj|RI = k)

Pr(A1, A2, . . . , Am)
, A = {A1, A2, . . . , Am}

(4.7)

in which Pr(RI = k) is the prior probability that the target item I receives a rating
value k, and Pr(Aj| RI = k) is the conditional probability that user attribute Aj of a
reviewer has a value of aj given item I receives a rating k from this reviewer. These
two probabilities can be learned by counting the review ratings on the target item I in
a manner similar to what we did in learning user preferences. When user attributes
are not available, we use Pr(RI = k), i.e., item I’s general acceptance regardless
of users, to approximate Pr(RI = k | A = au). In addition, Pr(A1, A2, ..., Am) in
Eq. (4.7) is a normalizing constant.

4.3.1.3 Influence from Immediate Friends

Finally, Pr(RUI = k | {RVI = rVI: ∀V ∈ U(I) ∩ N(U)}) is where SNRS utilizes the
influences from immediate friends. To estimate this probability, SNRS learns the
correlations between the target user U and each of his/her immediate friends V from
the items that they both have rated previously, and then assume each pair of friends
will behave consistently on reviewing the target item I too. Thus, U’s rating can be
estimated from rVI according to the correlations. A common practice for learning
such correlations is through estimating user similarities or coefficients, either based
on user profiles or based user ratings. However, user correlations are often so deli-
cate that they cannot be fully captured by a single similarity or coefficient value. It
is even worse that most of those measures seem ad hoc. Different measures return
different results and have different conclusions on whether or not a pair of users is
really correlated [15]. To another extreme, user correlations can be also represented
in a joint distribution table of U’s and V’s ratings on the same items that they have
rated; i.e., Pr(RUI, RVI) ∀I ∈ I(U) ∩ I(V). This table fully preserves the correlations
between U’s and V’s ratings. However, in order to build such a distribution with
accurate statistics, it requires a large number of training samples. For example, for
ratings ranging from one to five, the joint distribution has 25 degrees of freedom,
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which is difficult to be estimated robustly with limited training samples. This is
especially a problem for recommender systems, because in most of these systems,
users only review a few items compared to the large amount of items available in
the system, and the co-rated items between users are even less. Therefore, in this
study, we use another approach to remedy the problems in both cases.

Friends are similar and give similar ratings. Our data analysis in Section 5.4 on
a real online social network also shows that immediate friends tend to give more
similar ratings than non-friends. Thus, for each pair of immediate friends U and V,
we consider their ratings on the same item to be close with some error ε. That is,

RUI = RVI + ε, I ∈ I(U) ∩ I(V), V ∈ N(U) ∩ U(I) (4.8)

From Eq. (4.8), we can see that error ε can be simulated from the histogram of
U’s and V’s rating differences H(RUI – RVI) ∀I ∈ I(U) ∩ I(V). Thus, H(RUI – RVI)
serves as the correlation measure between U and V. For rating ranges from one to
five, H(RUI – RVI) is a distribution of nine values, i.e. from –4 to 4. Compared to
similarity measures, it preserves more details in friends’ review ratings. Compared
to a joint distribution approach, it has fewer degrees of freedom.

Assuming U’s and V’s rating difference on the target item I is consistent with
H(RUI – RVI). Therefore, when RVI has a rating rVI on the target item, the probability
that RUI has a value k is proportional to H(k – rVI).

Pr(RUI = k|RVI = rVI)∞H(k − rVI). (4.9)

For example, assume that both U and V rated the items as shown in Table 4.1.
Given their ratings in the table, we want to predict U’s possible ratings on item I6
according to the correlation with V. From the previous ratings of U and V, we find
out that two out of five times U’s rating is the same as V’s, and three out of five times
U’s rating is lower than V’s by one. According to such a correlation, we predict that
there is a 40% chance that RUI6 is 4 and 60% chance that RUI6 is 3.

Table 4.1 An example of
predicting user rating from an
immediate friend

U V

I1 5 5
I2 3 4
I3 4 4
I4 2 3
I5 4 5
I6 ? 4

The previous example illustrates how we utilize the correlation between the tar-
get user and one of his/her immediate friends. When the target user has more than
one immediate friend who co-rates the target item, the influences from all of those
friends can be incorporated in a product of normalized histograms of individual
friend pairs.
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Pr(RUI = k|{RVI = rVI : ∀V ∈ U(I) ∩ N(U)} = 1

Z

∏
V

1

ZV
H(k − rVI) (4.10)

where ZV is the normalizing constant for the histogram of each immediate friend
pair, and Z is the normalizing constant for the overall product.

Once we obtain Pr(RU = k | A′ = aI
′,), Pr(RI = k | A = au), and Pr(RUI = k |

{RVI = rVI: ∀V ∈ U(I) ∩ N(U)}), the ultimate rating distribution of RUI, under
the factors of user preference, item’s general acceptance, and the correlations with
immediate friends, can be estimated from Eq. (3). R′

UI, the estimated value of RUI,
is the expectation of the distribution as shown in Eq. (11).

R′
UI =

∑

k

k × Pr(RUI = k|A′ = a′
I , A = aU , {RVI = rVI : ∀V ∈ U(I) ∩ N(U)}

(4.11)

4.3.2 Distant Friend Inference

In the previous section, we introduced the approach to predict the target user’s rating
on a target item from those of his/her immediate friends on the same item. However,
in reality, most immediate friends of the target user may not have reviewed the target
item, because there are a large number of items in recommender systems but users
may only select a few of them. Therefore, the influences from those friends cannot
be utilized in immediate friend inference, and it is even worse that the ratings of
many users cannot be predicted because they have no immediate friends who co-
rate the target item. To solve this problem, we propose a method to incorporate the
influences from distant friends via extending immediate friend inference.

The idea of distant friend inference is intuitive. Even though V, an immediate
friend of the target user U, has no rating on the target item, if V has his/her own
immediate friends who rated the target item, we should be able to predict V’s rating
on the target item via the immediate friend inference, and then to predict U’s rating
based on the estimated rating of V’s. This process conforms to real scenarios, such as
Linda’s officemate influences Linda who further influences Angela in our previous
example. Followed by this intuition, we decide to apply an iterative classification
method [17, 24, 31] for distant friend inference.

Iterative classification is an approximation technique for classifying relational
entities. This method is based on the fact that relational entities are correlated with
each other. Estimating the classification of an entity often depends on the estima-
tions of classification of its neighbors. The improved classification of one entity
will help to infer the related neighbors and vice versa. Unlike traditional data min-
ing which assumes that data instances are independent and identically distributed
(i.i.d.) samples, and classifies them one by one, iterative classification iteratively
classifies all the entities in the testing set simultaneously because the classifications
of those entities are correlated. Note that iterative classification is an approxima-
tion technique, because exact inference is computationally intractable unless the
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network structures have certain graph topologies such as sequences, trees, or
networks with low tree width. Iterative classification has been used to classify
company profiles [24], hypertext documents [17], and e-mails [6] with reasonable
success in the previous research.

The algorithm for distant friend inference is shown in Table 4.2. This algorithm
predicts the users’ ratings on each target item at a time. The original iterative clas-
sification method classifies the whole network of users. However, since the number
of users in social networks is usually large, we save the computation cost by limit-
ing the inference to a user set N which includes the target users of the target item I
and their corresponding immediate friends. In each iteration, we generate a random
ordering O of the users in N. For each user U in O, if U has no immediate friend
who belongs to U(I), which is the set of users whose rating (either ground truth or
estimated value) is observable, the estimation of RUI will be skipped in this iteration.
Otherwise, Pr(RUI = k | A′ = aI

′, A = aU, {RVI = rVI : ∀V ∈ U(I) ∩ N(U)}) will be
estimated by immediate friend inference, and R′

UI is then obtained from Eq. (4.11).
Because user rating is an integer value, in order to continue the iterative process we
round R′

UI to a close integer value and insert into or update U(I) with R′
UI if dif-

ferent. This entire process iterates M times or until no update occurs in the current
iteration. In our experiment, the process usually converges within 10 iterations.

Table 4.2 Pseudo-code for distant friend inference

1. For each item I in the testing set do
2. Select a set of users N for inference. N includes the target users of item I and

their corresponding immediate friends.
3. For iteration from 1 to M do
4. Generate a random ordering, O, of users in N
5. For each user U in O do
6. If U has no immediate friend who exists in U(I)
7. Continue
8. Else
9. Apply immediate friend inference
10. R′

UI =∑kk ∗Pr(RUI = k | A= aU, A′ = aI
′, {RVI = rVI: ∀V∈U(I)∩N(U)})

11. Insert into or Update U(I) with R′
UI if different

12. End If
13. End For
14. If no updates in the current iteration
15. Break
16. End If
17. End For
18. Output the final predictions for the target users
19. End For

It is worth pointing out that after we compute Pr(RUI = k | A′ = a′
I, A = aU,

{RVI = rVI : ∀V∈U(I) ∩ N(U)}), there are two other options for updating R′
UI

besides rounding the expectation in distant friend inference. The first option is to
select R′

UI with the value k such that it maximizes Pr(RUI = k | A ′ = a′
I, A = aU,
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{RVI = rVI : ∀V∈U(I) ∩ N(U)}). However, by doing so, we are actually throwing
out clues of small probabilities at the same time. After many iterations, the errors
caused by the greedy selection will be exacerbated. The target users are likely to be
classified with the majority class. The other option is to directly use Pr(RUI = k |
A′ = a′

I, A = aU, {RVI = rVI : ∀V∈U(I) ∩ N(U)}) as soft evidence to classify other
users. However, in our experiments, this approach does not return results as good as
those of rounding the expectation.

4.4 Data set

In this section, we introduce the data set that we use for this research and present
some interesting characteristics of this data set. Our data set is obtained from a real
online social network Yelp.com. As one of the most popular web 2.0 web sites,
Yelp provides users local search for restaurants, shopping, spas, nightlife, hotels,
auto services, financial services, etc. Users that come to this site can either look
for information from Yelp or make their own voices by writing reviews for some
local commercial entities that they have experienced. Yelp provides a homepage
for each local commercial entity. An example of a homepage for a restaurant at
Yelp, “Yoshi’s Sushi,” is shown in Fig. 4.2a. On top of this homepage is a profile
of this restaurant, which includes restaurant attributes such as category, location,
hours, price range, parking information. In addition, this homepage contains a list
of reviews of users who have visited this restaurant before. Each review comes with
a numerical rating ranging from one to five stars. Five starts means the highest rating
to this restaurant, and one star is the lowest rating.

Besides maintaining traditional features of recommender systems, Yelp provides
social network features so that it can attract more users. Specifically, Yelp allows
users to invite their friends to join Yelp or make new friends existing at Yelp. The
friendship at Yelp is mutual relationship, which means that when a user adds another
user as a friend, the first user will be automatically added as a friend of the second
user. Yelp also provides a homepage for each of its users. Each user homepage
contains basic personal information, all the reviews written by this user, and links to
the friends that are explicitly identified by this user.

Since restaurant is the most popular category at Yelp, we picked restaurant as
the problem domain. We crawled and parsed the homepages of all the Yelp restau-
rants in the Los Angeles area that registered before November 2007. We ended
up with 4152 restaurants. By following the reviewers’ links in the Yelp restaurant
homepages, we also crawled the homepages of all these reviewers, which resulted
in 9414 users. Based on the friend links in each user’s homepage, we are able to
identify friends from the crawled users, and thus reconstruct a social network. Note
that the friends we collected for each user may only be a subset of the actual friends
listed on his/her homepage. That is because we require every user in our data set to
have a least one review in the crawled restaurants. In other words, the social network
that we crawled focuses on dining.
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(a) 

 
(b) 

Fig. 4.2 (a) The homepage
of a Yelp restaurant “Yoshi’s
Sushi” and (b) the
corresponding abstract
graphical representation of
Yoshi’s Sushi in which each
node represents a reviewer in
the restaurant, and nodes are
connected by explicit friend
relations. The size of each
node is proportional to the
corresponding reviewer’s
rating on this restaurant

To illustrate users’ ratings and their relationships, we built a graphical tool to
represent each restaurant in our data set. Figure 4.2b shows the alternative view of
“Yoshi’s Sushi” in Fig. 4.2a. Each node represents a reviewer of the restaurant, and
the size of the node represents the corresponding reviewer’s rating on this restaurant.
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Two nodes are connected if they claim each other as friends. Since friends in Yelp
are mutual, the social network structure is an undirected graph. From Fig. 4.2b, we
can see that nodes in this graph are highly connected, which means many friends
are involved in writing reviews for “Yoshi’s Sushi.”

A preliminary study on this data set yields the following results. The total number
of reviews in this data set is 55,801. Thus, each Yelp user on average writes 5.93
reviews and each restaurant on average has 13.44 reviews. In terms of friends, the
average number of immediate friends of every user is 8.18. If we take a closer look
at the relations between the number of users and the number of their immediate
friends (as shown in Fig. 4.3a), we can see that it actually follows a power-law
distribution; this means that most users have only a few immediate friends while a
few users have a lot of immediate friends. A similar distribution also applies to the
relations between the number of users and the number of reviews, as shown in Fig.
4.3b. Because most users on Yelp review only a few restaurants, we expect the data
set to be extremely sparse. In fact, the sparsity of this data set, i.e., the percentage
of user/item pairs whose ratings are unknown is 99.86%.
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Fig. 4.3 (a) The number of users versus the number of immediate friends in the Yelp network and
(b) the number of users versus the number of reviews both follow the power-law distribution

Furthermore, we perform the following analysis on this data set, particularly
focusing on immediate friends’ review correlation and rating correlation. Basically,
we want to answer two questions: (1) whether or not friends tend to review the same
restaurant and (2) whether or not friends tend to give ratings that are more similar
than those from non-friends. Clearly, these two questions are essential to SNRS.

4.4.1 Review Correlations of Immediate Friends

Let us first study the correlation of immediate friends in reviewing the same restau-
rants. Specifically, we want to know if a user reviews a restaurant, what is the
chance that at least one of his/her immediate friends has also reviewed the same
restaurant? To answer this question, we count, for each user, the percentage of
restaurants that has also being reviewed by at least one of his/her immediate friends.
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The average percentage over all users in the data set is 18.6%. As a comparison,
we calculate the same probability if assuming immediate friends review restaurants
uniformly at random and independently. In a social network with n users, for a
user with q immediate friends and a restaurant with m reviewers (including the cur-
rent user), the chance that at least one of q immediate friends appears in m re-
viewers is,

1 −

(
n − q − 1

m − 1

)

(
n − 1
m − 1

) .

We calculate this value for every user and every restaurant he/she reviewed. The
average probability over all users is only 3.7%. Compared to 18.6% as observed in
the data set, it is clear that immediate friends do not review restaurants randomly.
There are certain correlations between friends.

We also extend the previous study by considering the probability that at least one
of a reviewer’s friends within two hops review the same restaurant. Note that this
covers the cases where immediate friends have no reviews for the restaurant, but at
least one of the second-hop friends does. Such a probability is 45.2%, which is about
two and a half times as high as the previous result for immediate friends (18.6%).
Since SNRS can make recommendations only when there are friends who have co-
rated the same items, if we limit the friends within one hop (immediate friends), then
we can only predict ratings for a limited number of users. In other words, this com-
parison reveals the importance of considering distant friends in SNRS. Meanwhile,
if we assume friends review restaurants randomly, the probability is 34.2% that at
least one friend, within two hops, co-reviews the same restaurant as the target user.

Finally, we compare the average number of co-reviewed restaurants between any
two immediate friends and any two users on Yelp. The results are 0.85 and 0.03,
respectively, which again illustrates the tendency that immediate friends co-review
the same restaurants.

4.4.2 Rating Correlations of Immediate Friends

To show that whether immediate friends tend to give more similar ratings than non-
friends, we compare the average rating differences (in absolute values) on the same
restaurant between reviewers who are immediate friends and non-friends. We find
that, for every restaurant in our data set, if two reviewers are immediate friends, their
ratings on this restaurant differ by 0.88 on average with a deviation of 0.89. If they
are not, their rating difference is 1.05 and the standard deviation is 0.98. This result
clearly demonstrates that immediate friends, on average, give more similar ratings
than non-friends.

In this section we presented some characteristics of our data set. The results on
review correlations as well as rating correlations between immediate friends are
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critical in validating our assumptions in SNRS. In the next section, we are going
to present a set of experiments to demonstrate the advantages of considering social
network information in a recommender system.

4.5 Experiments

In the experiments we evaluate the performance of SNRS on the Yelp data set, focus-
ing on the issues of the prediction accuracy, data sparsity, and cold-start, which are
the main issues of current recommender systems. Additionally, we will study the
role of distant friends in SNRS.

The following is the setting for our experiments. We used a restaurant’s price
range as the item attribute. Since there is no useful user attribute on Yelp, we substi-
tuted Pr(RI = k | A = au) with Pr(RI = k) when estimating item acceptance. Finally,
we set a threshold to require every pair of immediate friends to have at least three
co-rated restaurants. If they do not, we ignore their friend relationships.

4.5.1 Comparison Methods

As a comparison, we implemented the following methods along with SNRS.
Friend average (FA). To leverage the ratings of friends for inference, the most

straightforward approach is to predict the ratings of the target users on the target
items with the average ratings of their immediate friends on the same item. We
therefore implemented this method as a baseline.

Weighted friends (WVF). Unlike treating immediate friends equally as in FA,
WVF considers that every immediate friend has a different impact (or weight) on
the target user. The more the impact from an immediate friend, the closer the target
user’s rating is to the rating of that friend. Thus, the probability of the target user’s
rating is proportional to the accumulated weight in each rating value.

Pr(RUI = k|{RVI = rVI : ∀V ∈ N(U) ∩ U(I)}) = 1

Z

∑
V

w(U, V)δ(k, rVI) (4.12)

in which z is a normalizing constant. w(U, V) is the weight between U and V. In
this experiment, we use the cosine similarity between U’s and V’s ratings as their
weight. δ(k, rVI) is the delta function which returns one only when rVI = k, and zero
otherwise. WVF is essentially same as a relational-neighbor classifier [18] which
performs really well on classifying relational data sets such as citations and movies.

Naive Bayes (NB). Social networks can be also modeled using Bayesian networks
[10]. In this study, we implemented a special form of Bayesian networks, a naive
Bayes classifier. Specifically, when predicting the rating of a target user U, the NB
classifier assumes U’s rating influences the ratings of U’s immediate friends, and
the ratings of U’s immediate friends are independent of each other. Although with
strong assumptions, NB classifiers have been widely used for probabilistic modeling
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and often result in surprisingly good results [16]. Therefore, we also included this
method for comparison.

Given the ratings of the immediate friends on the target item I, we calculate the
conditional probability Pr(RUI| {RVI: ∀V∈N(U) ∩ U(I)}) as follows:

Pr(RUI = k|{RVI = rVI : ∀V ∈ N(U) ∩ U(I)})
= 1

Z
Pr(RU = k)

∏
V

Pr(RV = rVI |RU = k)
(4.13)

where Pr(RU = k) is the prior rating distribution of the target user U, which can be
estimated by counting the review ratings of U. Pr(RV = rVI| RU = k) is the condi-
tional probability that an immediate friend V’s rating is equal to rVI given U’s rating
is k. Because there are not enough samples to estimate these probabilities for every
individual pair of immediate friends, we estimate these probabilities by counting
the review ratings for all pairs of immediate friends in the data set. Moreover, Z is
a normalizing constant. The estimated rating of the target user U is the rating value
that has the maximum probability.

Collaborative filtering (CF). We implemented the standard collaborative filtering
algorithm as we described in Section 5.2. The K value we used is 20.

4.5.2 Prediction Accuracy And Coverage

We carried out this experiment in a 10-fold cross-validation. The prediction accu-
racy was measured by the mean absolute error (MAE), which is defined as the
average absolute deviation of predictions to the ground truth data over all the
instances, i.e., target user/item pairs, in the testing set.

MAE =
∑

U,I

∣∣rUI − r′
UI

∣∣

L
, (4.14)

where L is the number of testing instances. The smaller the MAE, the better the
inference.

Since SNRS, FA, WVF, and NB rely on friends’ ratings on the target item in
order to make predictions; thus, there is no prediction when the target user has no
friends who have rated the item. Similarly, CF does not make predictions unless
it finds similar users for the target user. Therefore, another metric that we study
for each method is the coverage, which is defined as the percentage of the testing
instances for which the method can make predictions.

The experimental results are listed in Table 4.3. From this table, we note that
SNRS achieves the best performance in terms of MAE (0.718), while CF is the
worst (0.871). SNRS improves the prediction accuracy of CF by 17.8%. The other
methods that use the influences from friends also achieve better results than CF.
Clearly, considering social influence does improve predictions in recommender sys-
tems. In terms of the coverage, the coverage of all these methods is relatively low;
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Table 4.3 Comparison of the MAEs of the proposed social network-based recommender sys-
tem (SNRS), collaborative filtering (CF), friend average (FA), weighted friends (WVF), and naive
Bayes (NB) in a 10-fold cross-validation

MAE Coverage

SNRS 0.716 0.482
FA 0.814 0.228
WVF 0.808 0.228
NB 0.756 0.237
CF 0.871 0.552

e.g., none of these methods have the coverage better than 0.6. This is because the
data set we have is extremely sparse, with a sparsity of 99.86%. However, among
these methods, CF is the best. Because most of the time, CF is able to find similar
users for the target user from all the other users in the training set. On the other
hand, the coverage of the other methods is decided by whether there is a friend who
has rated the item, and we pruned many friend relationships by setting a threshold
of three co-rated items for each pair of friends. Therefore, the coverage of those
methods is lower than CF. The coverage of FA, WVF, and NB is even lower than
that of SNRS, because SNRS can still utilize the influence from distant friends even
if immediate friends have not rated the restaurant, while the other methods cannot.

4.5.3 Data Sparsity

CF suffers from problems with sparse data. In this study, we want to evaluate the
performance of SNRS at various levels of data sparsity. To do so, we randomly
divided the whole user/item pairs in our data set into ten groups, and then randomly
selected n sets as the testing set, and the rest as the training set. The value of n
controls the sparsity of the data set. At each value of n, we repeated the experiment
100 times. The performance was measured by the average MAEs and the coverage.

Figure 4.4a compares the MAEs of SNRS and CF when the percentages of test-
ing sets vary from 10 to 70%. Due to the high sparsity of the underlying Yelp data
set, even when the percentage of testing set is 10%, the actual sparsity is as high as
99.87%. From Fig. 4.4a, we first observe that the MAEs of SNRS are consistently
lower than those of the CF, which again shows that SNRS indeed outperforms CF.
Second, the prediction accuracy of CF is greatly affected by data sparsity. For exam-
ple, the MAEs of CF increase by 14.4% from 0.868 and 0.993 when the testing set
is increased from 10 to 70% of the whole data set. Meanwhile, the MAEs of SNRS
grow at a much slower pace. For instance, the MAEs of SNRS increase by only
2.8% from 0.716 to 0.736 under the same conditions.

Figure 4.4b compares the coverage of both methods. Unfortunately, the coverage
of both methods severely drops as the training set becomes sparser. For example, the
coverage of CF drops from 0.549 to 0.064 when the size of the testing set increases
from 10 to 70%, and the coverage of SNRS decreases from 0.482 to 0.123 at the
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Fig. 4.4 Comparison of the (a) MAEs and the (b) coverage of SNRS and CF at different sizes of
the testing set

same time. This decrease in the coverage is expected, as explained earlier, but the
trend of these two methods also indicates their differences. CF performs better with
a large training set, allowing it to find more similar users. When the training set
becomes sparser, CF finds similar users from fewer candidates for each target user.
The similarity obtained from each pair of users is less accurate because that there are
fewer co-rated items between these users. Thus, both the prediction accuracy and the
coverage of CF are adversely affected by the data sparsity. Meanwhile, the coverage
of SNRS also decreases because there are fewer friends who have ratings on the tar-
get items as the data set becomes sparser. But the coverage of SNRS decreases with
a slower pace compared to that of CF. Initially, CF has a better coverage than SNRS.
However, the coverage of SNRS starts to exceed that of CF after the percentage of
the testing set is above 30%. Such a change in the trend is because that some users
can still be inferred since the influences from distant friends are able to propagate to
them even when the data set is sparse. In Section 5.5.5, we will study the role of dis-
tant friends again. On the other hand, the prediction accuracy of SNRS is consistent
at all levels of data sparsity. This is because friends are provided explicitly by social
networks, and there is no need for SNRS to find similar users from the training set.
Therefore, as long as there are friends who have reviewed the target item, SNRS can
make accurate predictions.

4.5.4 Cold-Start

Cold-start is an extreme case of data sparsity where a new user has no reviews. In
such a case, CF cannot make a recommendation to this new user since CF is not
able to find similar users for him/her. SNRS cannot either if this new user has also
no friends. However, in some cases of cold-start when a new user is invited by some
existing users in the system, the initial friend relationships of this new user can still
make the inference of SNRS possible. Even though there is no prior knowledge of
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the new user’s own preference, SNRS can make recommendations to this new user
based on the preferences of his/her friends. In this study, we simulated the latter
case of cold-start by making the following experimental settings: (1) we did not use
the target user’s prior ratings in the training set; thus, there was no influence from
user preference. We simply set the output from Pr(RU= k | A′ = aI

′,) as a uniform
distribution. (2) Since we cannot learn the rating correlation between this new user
and his/her friends, we directly used friends’ rating distribution on the target item,
Pr({RVI = rVI: ∀V∈U(I) ∩ N(U)}), as the result from friend inference. (3) Except
for the target user, the ratings of all other users were known.

We simulated cold-start for every user in the data set. The resulting MAE is 0.706
and the coverage is 0.691. This result demonstrates that even in cold-start, SNRS can
still perform decently. The coverage of SNRS is high compared to that in the 10-
fold cross-validation (0.422) because the ratings of every target user’s friends are all
observable in the setting of this experiment.

4.5.5 Role of Distant Friends

In this study we investigate the role of distant friends in SNRS. Specifically, we
compared the performance of SNRS with and without distant friend inference in
a 10-fold cross-validation. The experimental results are shown in Table 4.4. From
these results, we can see that by considering the influences from distant friends,
the coverage of SNRS is increased from 0.237 to 0.482, which is equivalent to a
103% improvement. However, the improvement is achieved at the cost of a slight
reduction in the prediction accuracy. In our experiments, the MAE increases from
0.682 to 0.716, which is only a 5% difference. This is consistent with our intuition
that the impact from distant friends is not as direct as from immediate friends, and
certain errors will be inevitably introduced when considering distant friends. On the
other hand, compared to the drastic gain in the coverage, the minor loss in precision
is still acceptable.

Table 4.4 Comparison of the performance of SNRS with and without distant friend inference

MAE Coverage

With distant friend inference 0.716 0.482
Without distant friend inference 0.682 0.237

4.6 Semantic Filtering of Social Networks

In the previous section we showed that SNRS improves the prediction accuracy of
recommender systems by utilizing information such as social influences in social
networks. In this section, we shall discuss how to further improve the performance
of SNRS by applying semantic filtering of social networks.
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Although friends influence each other when selecting items, such influence is
sensitive to the types of items. For example, two friends who have similar taste on
CDs may not necessarily agree with each other in their choice of favorite restau-
rants. Therefore, to recommend restaurants, we should not consider friends who
have common preferences only in music. In other words, to effectively use the social
influence, an appropriate set of friends needs to be selected according to the type of
target items, which is what we called semantic filtering of social networks. In fact,
we considered this issue when we performed experiments on Yelp. Rather than con-
sidering all friends listed in user’s profiles, we pruned a set of friends who had
reviewed only a small number of common restaurants. For example, even though
two real friends may have reviewed many common hotels on Yelp, they are not nec-
essarily friends in SNRS unless they have enough reviews on common restaurants.
However, this is still a poor man’s version of semantic filtering, because even within
the domain of restaurants, friends can be further grouped based on their opinions on
different food categories, price range, restaurant environment, etc.

A better selection of relevant friends requires us to know in what aspects two
friends influence each other. Unfortunately, such information is not available in most
current OSNs. Some OSNs, such as Linkedin, ask how friends know each other,
e.g., whether they were/are classmates or colleagues. Information like this definitely
helps us understand friend relationships. However, it is still too general to bring
a practical usage to recommender systems. Instead, the semantics that we really
want to know from friend relationships should be more specific to the domain of
interest. For example, in terms of dining, it would be better to know whether two
friends are friends because they have a similar taste in food or a similar preference
in the price of meals, etc. To obtain such information, the most direct solution is for
content providers (e.g., Yelp) to explicitly ask users to rate their friends on those
aspects. If that puts too much of a burden on users, an alternative is for content
providers to collect finer-grained user ratings rather than overall ratings alone, and
then implicitly deduce friend relationships from the semantics in those finer-grained
ratings. The problem with overall ratings is that they encapsulate decision reasoning
of users on many factors. For example, when a user gives a rating of 4 to a restaurant,
it is not clear if the user really likes the taste, price, service, or environment of
this restaurant. If content providers could ask users to rate on those factors, such
finer-grained ratings would not only allow us to model user preference and item
acceptance more precisely but also help us to know on which category two friends
are in agreement or whether they influence each other. For instance, two friends
may not give the same overall rating, but they might still agree on the quality of
restaurant service.

In the following text, we describe an experiment that we designed to demonstrate
how relevant friends can be selected for inference by obtaining the semantics in
friend relationships and user ratings, and then validate its improvement on SNRS.

This experiment was to predict students’ ratings for online articles. It was con-
ducted as a class project assignment with 22 students. At the beginning of the
experiment, we selected 20 online articles. These articles focus on three topics: the
recent economic crisis, controversies in technologies such as stem cell research and
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file sharing, and controversies in culture like gay marriage. These articles all contain
strong opinions expressed by the authors. We collected the demographic informa-
tion of students, including gender, age, ethnicity, employment, and interests. We
also asked them a set of questions related to the articles that we selected. For exam-
ple, “Has the rise in unemployment affected you or someone in your family?” and
“Given the current state of the economy, are you concerned about getting a job after
you graduate?” After that we asked the students to review every article by giving
four ratings (from 1 to 5) based on each of the following criteria: (1) Interestingness:
Is the article interesting? (2) Agreement: How much do you agree with the author?
(3) Writing: Is the article well written? and (4) Overall: Overall evaluation. The rea-
son that we included the first three ratings is because they usually play important
roles when we give an overall score to an article. Since most students did not know
each other before the experiment, it would have been difficult to form a social net-
work from their original relationships. We therefore decided to divide the students
into groups and let them get to know each other by discussing the articles within
the groups. Specifically, we divided the students into three groups twice. The first
grouping was based on students’ ethnicities, and the second grouping was based
on students’ responses to the survey questions. The goal of these groupings was to
organize the students in such a way that the students in a group will more likely to be
friends after the group discussions. During the discussions, every student needed to
explain the reasons why he/she liked or disliked each article. Thus, the other group
members were able to know more about the speaker. After the discussions, the stu-
dents evaluated other group members (using ratings from 1 to 3) according to the
following three aspects: (1) Do you have common interests on the articles? (2) Do
you agree with his/her opinions on the articles? and (3) Do you have common judg-
ments about the author’s writing skill? In addition to evaluating group members, the
students were allowed to revise their previous ratings to the articles if they had a
new understanding of the articles due to the discussion.

Compared to the Yelp data set, there are mainly two changes in this data set.
First, instead of having just an overall rating, each article now has three fine-grained
ratings (interestingness, agreement, and writing) which, as mentioned earlier, pro-
vide the semantics of the overall rating. Second, friend relationships have semantics
too. Rather than just knowing that two students are friends, we are now able to know
whether it is because they have similar interests or similar opinions, etc. In the fol-
lowing experiment, we are going to compare the prediction accuracies of SNRS
with and without the consideration of semantic filtering of social networks.

Similar to the experimental setup in Section 5.5.3, we randomly divided the stu-
dent/article pairs into ten groups. We randomly selected n groups as the testing set,
and the rest as the training set. For each value of n, we repeated the experiment
100 times. For each pair in the testing set, we predicted the target student’s ratings
on the target article by applying and not applying semantic filtering of social net-
works. When we applied semantic filtering to predict a particular rating, we only
considered the ratings of the target user’s friends in the corresponding category. For
example, to predict the target article’s interestingness, we selected the set of stu-
dents whom the target student had rated as friends (with a rating of 3) in terms of
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having similar interests, and then used their ratings on interestingness for inference.
Thus, the social networks used for predicting each category are different. On the
other hand, without semantic filtering, we considered the ratings on interestingness
from all the students whom the target user had rated as friends in any of the three
aspects. We measured the average MAEs for predicting each rating of the article,
and the corresponding MAEs in CF.

We show the results of predicting student ratings on the interestingness of the
articles in Fig. 4.5a. From this figure, we observe two trends. First, regardless of
semantic filtering or not, the MAEs of SNRS are persistent for different data spar-
sity, while the MAEs of CF dramatically increase as the data becomes sparser. This
phenomenon is consistent with our findings on the Yelp data set in Section 5.5.3.
Second, we find that, at any level of data sparsity, the MAEs of SNRS with seman-
tic filtering are consistently lower than those of SNRS without semantic filtering
as well as those of CF. This result demonstrates that semantic filtering does indeed
improve the prediction accuracy of SNRS. In Fig. 4.5b–d, we plot the results of
predicting ratings on the agreement and writing of the articles and overall ratings,
respectively. We observe similar trends in these figures. Note that when predicting
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the overall rating, we consider the overall ratings of all friends of a target student,
which means there is no semantic filtering.

In this chapter we assume the reviews that users provide are real. However, in
reality, there are always users who purposely provide false reviews to attack the
adversaries or praise themselves, and traditional recommender systems have no con-
trol on them at all. On the other hand, SNRS is still able to detect and exclude those
malicious users through reputation systems [19].

4.7 Related Work

Domings and Richardson proposed to mine customers’ network values from a social
network [8, 28]. The network value comes from the different potentials of customers
to influence their social contacts to purchase the same products. Thus, the more
people they can influence, the higher network value they have. Merchandisers can
increase the expected lift in profit by sending advertisements only to those users who
have high network values. Reference [8] estimates the conditional probability of
whether a user will purchase a product given the adoption values of his/her friends,
and marketing actions are tailored by using a relaxation labeling approach. Such
a probability is modeled as a weighted sum of each user’s internal probability of
purchasing a product and an external effect from his/her friends [28]. The authors
conduct simulation studies, first on a synthesized social network in [8], and then on
Epinon.com, a review web site in [28].

There is also previous work on exploiting explicit user trust in recommender
systems. Reference [9] presented a FilmTrust system which used explicit trust
values between users as the weights in collaborative filtering. Similarly, [20] pro-
posed a trust-aware recommender system which is also based on explicit trust
values between users. They proposed a method for trust propagation in which the
trust between distant friends is calculated by a linear decay model. Although these
research efforts realized the importance of person-to-person influences in recom-
mender systems, they are limited by the availability of prior knowledge of explicit
trust values. These systems need to know not only who is trusting whom but also
how much they trust each other. Thus, recommender systems that rely on explicit
trust values cannot scale. In contrast, our system makes recommendations by using
the correlations between friends, which can be viewed as implicit trust. We do not
need to acquire trust values since they can be obtained from the rating correlations
between friends. In addition to social influences, our system incorporates user’s own
attributes and the characteristics of items. These two factors are important for mak-
ing target specific recommendations. Otherwise, recommender systems will simply
suggest an item to a user whenever his/her trusted friend likes it.

Interestingly, [4] studied the factors that drive people’s decision making and
advice seeking through empirical studies and found out that the profile similarity and
rating overlap of a recommender have a significant impact on a person’s decision.
In addition, [4] suggested that recommender systems support the social element
of advice seeking through communication and explicit user matching functions.
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Therefore, advice seekers can judge the validity and appropriateness of a recom-
mendation. In Section 5.6 we proposed a recommender system design. In this design
we think it is more important to consider the semantics in friend relationships when
measuring their similarities based on user profiles and rating overlap.

More directly related work is found in [37]. Here, the authors proposed to com-
bine social networks with recommender systems. They estimated the weights in
collaborative filtering with an exponential function of the minimal distance of two
users in a social network. This is, however, an over-simplified correlation between
users. Distance has no semantic meaning of similarity, and two distant friends may
still share common opinions. As noted by the authors, this approach does not work
well. Reference [37] also proposed another approach to reduce the computational
cost in recommender systems by limiting the candidate similar users within a user’s
social network neighbors. This approach actually will make the data sparsity prob-
lem of a recommender system even worse, because there are far less candidates for
similar users than before.

4.8 Conclusions

Social networks provide an important source of information regarding users and
their interactions. This is especially valuable to recommender systems. In this
chapter we presented a social network-based recommender system (SNRS) which
makes recommendations by considering a user’s own preference, an item’s gen-
eral acceptance and influence from friends. In particular, we proposed to model
the correlations between immediate friends with the histogram of friend’s rating
differences. The influences from distant friends are also considered in an iterative
classification. In addition, we have collected data from a real online social network.
The analysis on this data set reveals that friends have a tendency to review the same
restaurants and give similar ratings. We compared the performance of SNRS with
other methods, such as collaborative filtering (CF), friend average (FA), weighted
friends (WVF), and naive Bayes (NB) with the same data set. In terms of the pre-
diction accuracy, SNRS achieves the best result. It yields a 17.8% improvement
compared to that of CF. In the sparsity test, SNRS returns consistently accurate
predictions at different values of data sparsity. The coverage of SNRS decreases
when the data is sparse but at a slower speed than CF. In the cold-start test, SNRS
still performs well. We also studied the role of distant friends in SNRS and found
that by considering the influences from distant friends, the coverage of SNRS can
be significantly improved with only a minor reduction in the prediction accuracy.
The performance of SNRS can be further improved by selecting relevant friends
for inference, which can be achieved by collecting the semantics of the friend rela-
tionships or fine-grained user ratings. Such an approach can be adopted by current
content providers.
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Chapter 5
Network Analysis of US Air Transportation
Network

Guangying Hua, Yingjie Sun, and Dominique Haughton

Abstract There has been a considerable growth in interest in network analysis. Air
transportation networks are regarded as complex networks which are full of dynam-
ics and complexity. This study focuses on the US air transportation network, which
is one of the most diverse and dynamic transportation networks in the world. All
of the data are drawn from the US Bureau of Transportation Statistics (BTS). The
topology features show that the network is a scale-free small-world network; the
degree distribution follows a truncated power law. The network also confirms the
9/11 impact on the US air travel industry. A discrete dynamic model is constructed to
investigate the evolution of the network. Our analysis offers direct confirmation for
the existence of preferential attachment in the air transportation network. We con-
clude that both an aging effect and preferential attachment are the two mechanisms
driving the network evolution.

5.1 Introduction

Many biological, economic, and social systems are best described by networks
[1]. The range of applications using network research has grown exponentially.
Researchers from different fields try to understand the topological features of these
real networks and their network growth and evolution mechanisms [2, 3]. Many
different networks have some common properties. Watts and Strogatz showed that
many real networks exhibit small-world properties rather than totally random or
fully connected ones [4]. Small-world networks have two main characteristics: a
high clustering coefficient and a low shortest path distance [2]. Most nodes in the
network can be reached by a very small number of steps. In small-world networks,
if the distribution of degree follows a power-law distribution, then the network is
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also a scale-free network. The mechanism behind a small-world network is growth
and preferential attachment [2]. The growth indicates that the network continuously
expands with the increase of new nodes and new links, while the preferential attach-
ment states that highly connected nodes have a higher probability of acquiring new
links.

The range of application of network analysis has expanded to many areas, such
as social networks, transportation systems, communication networks, bioinformat-
ics. Air transportation networks are regarded as complex networks full of dynamics
and complexity. Examining them will not only help us understand the features and
dynamics of these networks but also their importance to society since they play a
very important role in a country’s infrastructure. Research has been conducted on
the topology of air transportation networks in different countries [5–8]. These dif-
ferent air transportation networks not only show small-world properties but also
exhibit some different properties. In the worldwide transportation network, there is
a different relationship among degree and betweenness; the most connected cities
are not necessarily the most central ones [6]. Both the Chinese and Indian airport
networks display a truncated power-law degree distribution [7, 8]. In this study, we
focus on the US air transportation network, which is one of the most diverse and
dynamic transportation networks in the world. We examine the network topological
features and the evolution of the network by considering the change in the num-
ber of passengers and in the nature of connections over time. We show that the US
air transportation network has different topological features compared to the world-
wide air transportation network and that of other countries. To trace the evolution of
the US air transportation network, we also model the growth of links among cities
based on preferential attachment. Our results show that both an aging effect and
preferential attachment influence the network evolution.

This chapter is organized as follows. Section 5.2 provides a brief overview of
network analysis. The US air transportation network data are described in Section
5.3. We also present an exploratory network analysis to show the topological fea-
tures of the network and the dramatic impact of 9/11 on the network in this section.
Section 5.4 presents network dynamics which are modeled on the basis of prefer-
ential attachment and aging effect. This chapter concludes with a discussion of the
network properties and evolution.

5.2 Network Analysis Foundation

5.2.1 Network Foundation

The methodological body of network analysis is frequently applied to differ-
ent fields, ranging from physics, computer science, economics to social science.
Network analysis in a variety of different areas may have some differences in
notation and have some fundamental differences in how to approach network ana-
lysis research questions [3, 9]. Despite these differences, they all share a common
mathematical foundation, graph theory. In graph theory, a network is denoted as
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G = (V, E), where V is the set of nodes, while E is the set of links among those nodes
[9]. If two nodes are joined by a link, they are adjacent and we call them neighbors.
We write E = {(u, v)|u, v ∈ V}. The links between nodes represent relations among
nodes, which can be undirected or directed. In a directed network, each link has an
origin and destination. The meaning of nodes varies in different networks. In social
science, nodes can represent people or organizations, and the links between them
are always referred to as ties. In a transportation network, each node can represent
a city. The relationship among the node varies accordingly. For example, friendship
or kinship is common in social network analysis [10], while the information flow is
the link in an email communication network [11].

In the real world, many different systems such as genetic networks or the
World Wide Web are best described as networks with a complex topology [1].
A common property of many large networks is that the degrees of nodes follow
a scale-free power-law distribution [2]. Besides this topological feature of net-
works, the dynamic of networks is driven by growth and preferential attachment [2].
Preferential attachment has become a paradigm to explain the structure and evolu-
tion of complex network. It states that the probability that a node i will connect to a
new node j is proportional to the current degree of node i, so that P(ki) = ki

�jkj
where

ki is the degree of node j. The degree of node i indicates the number of connections
of node i to its neighbors. Thus, a node with a higher degree has a higher probabil-
ity to connect to new nodes when the network grows. As mechanisms driving the
evolution of many complex networks, growth and preferential attachment have been
identified and modeled in many real networks, such as online social networks [12],
networks of biotechnology firms [13], protein networks [14], financial network [15],
and transportation networks [5, 6, 16].

5.2.2 Network Properties

In this section, we give definitions for a few essential concepts used in the chapter.

5.2.2.1 Average Shortest Path (Distance)

When we consider the paths between a pair of nodes, there are probably many differ-
ing path lengths. A shortest path is referred to as a geodesic. The distance between
two nodes is defined as the length of a geodesic between them. The average short-
est path is the average of the smallest distance between pairs of nodes. The average
shortest path measures the network distance of a distributed network and shows how
well a network is connected.

5.2.2.2 Degree

The degree is a measure of node centrality in the network. It indicates the num-
ber of connections that a given node has. For a given node, its neighbors are
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those nodes which have a direct link with it. The degree for a node k is the num-
ber of its neighbors. The degree defined here includes in and out degrees. The
network degree centralization measures how centralized the degree of the whole
network is. This measure reaches its maximum value of 1 with a star graph and
reaches its minimum value of 0 with a circle graph where all nodes have the same
degree.

5.2.2.3 Betweeness

Betweeness is proposed by Freeman and measures the extent to which a partic-
ular node lies “between” the other nodes in the graph [17]. This centrality index
indicates the number of shortest paths going through a given node. The inter-
action between two nonadjacent nodes might depend on the other nodes that
lie on the paths between the two. A node with relatively low degree may play
the role of an intermediary in the network and so might be central to the net-
work. A higher betweenness implies that the node lies between many of the
nodes via their shortest paths and thus has great influence over what flows in the
network.

5.2.2.4 Clustering Coefficient

The clustering coefficient measures the strength of sub-group formation and the
density of the network. The clusters are defined as a group of nodes within which
the connections are dense but between which they are sparser. Clusters reflect a
tendency for neighbors of a given node to be connected. Clustering coefficients can
be used to uncover clusters in the network. The clustering coefficient was introduced
by Watts and Strogatz [4] and is defined as the probability that a node’s neighbors
are all connected with each other. For an undirected network, it can be written as
follows:

Ci = 2Ei

ki(ki − 1)

where ki is the degree of node i and Ei is the total number of links among node i’s
neighbors. Note that in an undirected network, if the degree of node i is ki, there

are ki(ki−1)
2 links among node i’s neighbors if the graph is complete. The clustering

coefficient reflects to what extent a node’s neighbors are also neighbors, and thus
measures how well connected the neighborhood of the node is. If the neighborhood
is fully connected, Ei = ki(ki−1)

2 , the clustering coefficient is 1 and a value close
to 0 means that there are hardly any connections in the neighborhood. The average

cluster coefficient is defined as C = �n
i=i Ci
n and shows the tendency of the network

to form clusters. Optimal networks are characterized by a high average cluster coef-
ficient and a low average shortest path; such networks are designated as small-world
networks [4].
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5.3 The US Air Transportation Network Analysis

5.3.1 The US Air Transportation Network Data

This study focuses on the US air transportation market; all of the data are drawn
from the US Bureau of Transportation Statistics (BTS). Each airline is required
to submit their transportation schedule to BTS every quarter; this constitutes the
data source for the database T100 of BTS. The data cover 18 years from 1990 to
2007. There are different tables recording the air transportation information from
different perspectives. The table we used is that from the T100 segment data. There
are two types of data in T100: market data and segment data. Market data are data
from a passenger’s perspective and contain the origin and destination airport on a
passenger’s itinerary. Segment data are based on flight information and record every
flight’s origin and destination airport information, passenger totals, seats, and cargo
information. Each segment reported in T100 segment is unique, distinctly defined
by air carriers and type of equipment flown [18]. In the air transportation network,
we are interested in the connection between cities, so we focus on T100 segment
data. Within the T100 segment data, we only look at US carriers which compose the
US airline industry and dominate the US air travel network.

A passenger’s itinerary usually consists of one or more flight segments. Each
flight segment involves a nonstop flight between two airports. In our study, we focus
on cities instead of airports. Each node represents a city, and a link between cities
means that there are nonstop flights between them. The total number of passengers
between any two cities is the weight of this link. We use a graph G to represent the
US air transportation network, G = (V, E), where V is a set of nodes representing
cities and E is a set of links representing the nonstop flight connections between
the nodes. The adjacency matrix for the graph shows it is almost symmetric, which
means there are always back and forth flights between two cities. Therefore, the
network we analyze is undirected.

Once the data were extracted from BTS, some preprocessing was performed.
The database has much redundant information; for example, looking at nonstop
flights from Boston to Chicago, we see that there are several records with different
passenger numbers, so we group them all together based on year and the city pair
(in this example Boston, Chicago). The records in which the origin and destination
city are the same were excluded since they do not represent the migration of people.

5.3.2 Network Topological Properties

We select the 2007 network data (most recent data in our database) as an example
to show the topological properties of the US air transportation network. As we will
see, our analysis shows that the US air transportation network exhibits small-world
network properties. There are 1372 cities in the 2007 network data and 14,181 con-
nections among them. The total density of the network is 0.015, which indicates the
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whole network is far from fully connected. The shortest path length L between any
two nodes is defined as the minimum number of cities that have to be passed through
to get from the given node to the destination. The average shortest path length shows
how well a network is connected. Most airports can be connected within two flights.
The average distance among cities is 3.23, and compared to the network size N, this
number is very small. The most distant nodes are between Ophir Airport (OPH) in
Alaska and Jackson Carroll Airport (KJK) in Kentucky, where the distance is 8.

The average clustering coefficient for the 2007 network is .5341, which means
that the airport network is relatively well connected, considering the large number
N of nodes. The network degree centralization is 0.2559, which means the air trans-
portation network is far from a star graph; instead it is closer to a circle graph. In our
network, the degree of a city measures how many cities are connected with it through
nonstop flights. The average degree of the network is 8 and Atlanta International
Airport has the maximum degree 371. There are large differences in the degrees
among nodes, but the degree distribution shows some pattern, as we now discuss.

A degree power-law distribution is defined as follows: P(K > k) ∝ k−α , where
α is the power-law exponent, k is the degree. Figure 5.1 displays the function P(k)
of the degree k in a log–log plot. We cannot fit the data with a single line, which
means that the degree distribution does not follow a scale-free power-law distribu-
tion. However, the data show a two-regime power-law distribution with two different
exponents, with a turning point at degree k0 around 145.

P(K > k) ∼
{

kα1 , for k ≤ kc

kα2 , for k > kc

α1 = .6931 and α2 = 2.4759. As the exponent increases from α1 to α2, the tail of
the cumulative degree distribution decays faster than a power law would. This is
consistent with the findings related to the worldwide air transportation network [6].
A similar property was found for the Chinese air transportation network [7].
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Fig. 5.1 Graph of P(k) for
the 2007 network
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For the air transportation network, a city with a high betweenness means that the
city is central to the transportation network since there are quite a few connections
between pairs of cities which have to pass through this city to make the connec-
tion. We calculated the betweenness with the software Pajek for each node and then
compared it with the degree [19]. There is a correlation between betweenness and
degree; betweeness tends to increase with the degree. However, the geographical
location can influence the correlation between degree and betweenness. Some cities
have very high betweenness but relatively small degrees. For example, the city of
Anchorage in Alaska has the highest betweenness .2620, but its degree 165 is not
very high. The special geographical position of Anchorage enables it to serve as a
bridge, since many local cities in Alaska connect to the continental United States
through Anchorage.

5.3.3 9/11 Impact on the Aviation Industry

The US aviation industry has evolved since the early twentieth century. The dereg-
ulation in 1978 lowered the entry barrier for new airlines. The competition became
very severe and more and more airline companies strove to survive. A hub and
spoke network was developed, which lowered the cost of transportation and oper-
ations for airlines. At the same time, there was a dramatic increase in the number
of passengers in the 1990s. Even though airlines experienced ups and downs in
their profits, the air transportation network had maintained a steady development
until the tragic events of September 11, 2001 (9/11). Since then, the aviation indus-
try has been transformed dramatically; Delta, United, US Airways, and Northwest
Airlines all declared bankruptcy following the tragedy. The year 2001 was a turning
point for the aviation industry, when a massive restructuring occurred. Bhadra and
Texter discussed the large losses of the airline industry in 2001 [18]. As we will see,
our network data also confirm the impact of this tragedy on the air transportation
network.

Our yearly network analysis shows that from 1990 to 2007, some new patterns
have arisen in the air transportation network. The number of passengers steadily
increased except during 2001 and 2002 as shown in Fig. 5.2. We then scrutinize
the total number of passengers per month as shown in Fig. 5.3. We found that the
total number of passengers for the first 8 months increased by 0.33% from 2000 to
2001, but the total number of passengers for the last 4 months decreased by 22.04%.
The profitability of the aviation industry heavily relies on the number of passengers.
The decrease in the number of passengers, especially business travelers, made air-
line companies face a much greater challenge. The dramatic change in passenger
numbers strongly shows the large impact of 9/11 on the US air travel industry.

Accordingly the number of cities in the network held relatively steady except for
a big jump from 2001 to 2002 as shown in Fig. 5.4, which implies that the network
structure dramatically changed at that time. To interpret the sudden increase in the
total number of nodes in 2002, we analyzed the total number of carriers per month.
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We found that in January 2002, 26 new airlines were added to the T100 segment
record and that 25 of them are from Alaska. In October 2002, another 41 new airlines
were added nationwide. From 2001 to 2002, the number of nodes increased from
691 to 1283. The sudden increase of the number of small airlines in Alaska and of
airlines nationwide explained the big jump in the number of nodes from 2001 to
2002.
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Figure 5.5 displays the number of links per year from 1990 to 2007. Unlike
the big change of the number of nodes and passengers, the number of links in the
network has increased steadily, albeit more sharply after 2001.

5.4 Network Dynamics

We have shown that the US air transportation network is not steady. It changes every
year with new added cities, new flight routes among cities, and with passenger num-
bers going up and down each year. However, the network still falls into the category



84 G. Hua et al.

of a small-world scale-free network. Barabasi and Albert explain two mechanisms
which can drive a power-law distribution: growth and preferential attachment [2].
In this section, we discuss the evolution of the network. In existing research which
attempts to model the topological evolution of networks, a very important assump-
tion is that of the preferential attachment; in which highly connected nodes increase
their connectivity faster than their less connected peers [20]. Preferential attachment
has been shown to arise in airport networks [5, 6]. Our analysis shows that only the
number of connections has displayed a steady increase within the past 18 years.
However, we can observe in Fig. 5.6 a big jump in links between new added nodes
from 2001 to 2002.
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Fig. 5.6 Link number between different types of nodes

5.4.1 Network Modeling

In this section, we propose the model the evolution of the network as explained
below and displayed graphically in Fig. 5.7.

At time Ti there are n nodes in the network V(Ti) = {v1, v2,. . .,vn}. At time Ti+1
m new nodes Vnew(Ti+1) = {vn+1, vn+2, . . . , vn+m} are added to the network. The
set V(Ti) is defined as the set of old nodes at time Ti+1, i.e.,Vold(Ti+1) = V(Ti).
Therefore we have V(Ti+1) = Vold(Ti+1)

⋃
Vnew(Ti+1) = {v1, v2, . . . , vn + m}.

The preferential attachment hypothesis states that the rate with which a node
with ε(Ti) links at time Ti acquires new links at times Ti+1 depends on ε(Ti). . In our
case the evolution dynamics of the air transportation network can be modeled as in
[20]:ε(Ti+1) − ε(Ti) = τ (ε(Ti)) = ε(Ti)α , where r is a function of the degree of the
old node at time Ti.
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Fig. 5.7 Diagram of the
network evolution model

Since we analyze yearly network data, we have 	T = Ti+1 − Ti = 1. Con-
sidering the characteristics of the air transportation network, we determine the
rate r in the above equation numerically. In order to calculate the rate, we
study the new links established between the old nodes and newly added nodes
{Vold(Ti+1), Vnew(Ti+1)} at time and the links established between the old nodes
{Vold(Ti+1), Vold(Ti+1)}. The change in the number of links between old nodes also
shows how the network would self-organize without new nodes. The solid lines in
Fig. 5.7 represent the definition of the above links. As shown in Fig. 5.6, the number
of links between new nodes {Vnew(Ti+1), Vnew(Ti+1)} is much smaller than for the
links of type old–new or old–old, except for the year 2002, and the new links estab-
lished between the old nodes are dominant. When plotting the histogram (graph
omitted here) of the number of new links acquired by nodes with degree ε(Ti), we
see that the histogram displays a long tail, so we use the median to estimate r(ε(Ti))
at each degree. We then fit the median for all different connections to a power func-
tion. The network exhibits significant fluctuations, particularly for nodes with large
degrees.

For each year from 1991 to 2007, we fit a power function as in Figs. 5.8 and 5.9,
yielding α = .46± .07, as shown in Fig. 5.10. For rates with, the degree distribution
follows a stretched exponential [21].

5.4.2 Network Aging Effect

The aging effect of the network implies that even a very highly connected node will
stop acquiring new links after a given time. The node is still part of the network and
contributes to network statistics while it no longer receives new links. Therefore, the
aging of the nodes limits the effect of preferential attachment on the growth of the
network [22].
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For the network aging effect analysis, we focus on the newly added nodes in the
air transportation network and study the growth behavior of new nodes. We find
that most of the new nodes show that the capability for continuously acquiring new
links will decay as the age of the nodes increases. The aging effect of the network is
modeled as: n(t) = n0 e−t/τ where n(t) is the number of new nodes showing a link
increment and is a time constant. Here is the age of the new nodes in the network.
If a node is added in the network at time Ti then the age of the node at time Tj is
defined as t = Tj–Ti. In Fig. 5.11, we plot the histogram of the number of new nodes
showing a link increment at different ages. The total number of new nodes is 1342,
which is n (t = 0). At age t = 1, 1015 new nodes continue to acquire new links;
however, only 103 new nodes show link increment at age 10. We fit the occurrences
of new nodes showing a link increment to the above exponential equation and find
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that τ is about 4 years. As shown in Fig. 5.11, the exponential decay model can fit
the real data very well.

We define the number of links established by the new node i at age j as lij(lij > 0).
Figure 5.12 plots the median of the lij for all new nodes which acquire new links at
different ages j. Most of the nodes show an aging effect after they were added to the
network and their capacity to acquire new links decreases as age increases. When
80% of the new nodes stop acquiring new links after age 5 as shown in Fig. 5.11,
the median of the new link in Fig. 5.12 begins to increase. Therefore the growth of
the network shows two regimes: for most of the new nodes especially those with a
smaller number of links, the aging effect is dominant; while for those with a larger
number of links, the effect of preferential attachment is dominant. The growth mode
of the new nodes depends on the initial condition, which is the number of links
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established when the node was first added in the network. Therefore we conclude
that the growth pattern of the new nodes in the network results from a combination
of a network aging effect and preferential attachment.

5.5 Conclusion and Discussion

On the basis of the topological analysis of the network, we have shown that the
US air transportation network is a scale-free small-world network. Most cities are
connected within six steps, which is consistent with small-world network properties.
However, the distribution of the degree k does not follow a strict scale-free power-
law distribution. The distribution of k decays much faster. Thus, we fit the degree
distribution with a two-regime power-law distribution.

Our analysis not only confirms the existence of scale-free properties but also pro-
vides some insights on understanding the complexity of network dynamics. The air
transportation network is a dynamic environment that has number of variants [18].
The growth of the air transportation network is influenced not only by its dynam-
ics but also by social, economic, and political factors. Air transportation patterns
are strongly correlated with socioeconomic factors such as population density and
economic development [5]. The US air transportation network shows that a geo-
graphical factor plays an important role in deciding the betweenness of cities. In
addition, the attack of 9/11 dramatically destabilized the whole air transportation
network.

A discrete dynamics model is constructed to investigate the evolution pattern
of the network. Our analysis confirms the existence of preferential attachment in
the US air transportation network. The growth rate follows a stretched power law
(α < 1), which indicate the existence of sublinear attachment [21]. Our study also
indicates that the aging effect has an impact on the growth of new nodes in the
network. Based on our data, the time constant is about 4 years. We conclude that
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both an aging effect and preferential attachment are the two mechanisms driving the
evolution of new nodes in the US air transportation network.
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Chapter 6
Identifying High-Status Nodes
in Knowledge Networks

Siddharth Kaza and Hsinchun Chen

Abstract The status of a node in a social network plays an important part in
determining evolution of the network around it. High-status nodes in knowledge
networks are likely to attract more links and influence the use of knowledge by
nodes connected directly or indirectly to them. In this study, we model knowledge
flow within an innovative organization and contend that it exhibits unique charac-
teristics not incorporated in most social network measures designed to determine
node status. Based on the model, we propose the use of a new measure based on
team identification and random walks to determine status in knowledge networks.
Using data obtained on collaborative patent networks, we find that the new measure
performs better than others in identifying high-status inventors.

6.1 Introduction

The status of a node in a social network can determine its evolution and influence
other nodes linked directly or indirectly to it. In knowledge networks – defined here
as social networks with individuals sharing knowledge with each other while being
connected through collaborative links – the status of individuals can influence the
evolution of knowledge and the innovation resulting from it. Innovation has been
described as a problem-solving process where the solutions are discovered via the
search novel recombination of existing knowledge [12, 24]. Organizations have
a choice in selecting knowledge that is recombined to produce new innovations.
The selection of knowledge for recombination is influenced by the status of inven-
tors in an organization’s internal knowledge network [29, 41, 45]. Organizations
(and inventors within) attach more value and recombine knowledge of high-status
inventors.
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Various social network measures have been used to establish the status of inven-
tors in knowledge networks [30, 34, 40, 43]. However, the measures make implicit
assumptions about the flow of knowledge within an organization. For instance, the
widely used betweenness centrality measure [15] assumes that knowledge flows
along shortest paths. Often these assumptions are not valid for modeling knowledge
flow, and establishing the status of inventors based on these measures may lead to
misleading results.

In this chapter, we determine the inventor status in intra-organizational knowl-
edge network and study its effect on the selection of knowledge that is recombined
to produce innovation. We focus on intra-organization networks since recombina-
tion of internal knowledge helps establish competitive advantage for a longer time
[11, 38]. We model the flow of knowledge within a research focused organization
and contend that it exhibits unique characteristics not incorporated in most social
network measures. Using the model, we also propose a new measure based on ran-
dom walks and team identification and use it to examine innovation selection in a
large organization.

In particular, we explore the following research questions: How can we effec-
tively model the flow of knowledge within an intra-organizational knowledge
network? How can we establish the status of an individual in a collaborative knowl-
edge network? How does the status of an inventor in a knowledge network affect
innovation evolution?

The rest of this chapter is organized as follows: Section 6.2 presents the literature
review and background and Section 6.3 describes the research design and testbed.
Section 6.4 presents the experimental results and discussion. Section 6.5 concludes
and proposes future directions.

6.2 Literature Review

6.2.1 Social Network Measures

Various measures to quantify characteristics of social networks have been proposed
in the literature [3, 47]. Small-world measures (clustering coefficient and average
shortest path length) are used to examine the structure of the whole network. The
clustering coefficient shows the tendency of individuals to cluster together to form
cliques. The average shortest path length shows that even though a network may
be large, most individuals are located within a few steps from each other. However,
in this section, we focus on measures that are used to identify high-status nodes in
a network (these measures are usually known as centrality or prestige measures).
As mentioned before, these high-status individuals may influence the evolution of
innovation in an organization.

Several measures of node centrality have been developed including degree
centrality, closeness, betweenness, information centrality, and influence measures
[6, 39]. These measures are not independent of the dynamic processes that unfold
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within a network [17] and make different implicit assumptions about the path
of knowledge flow in a network. For instance, Freeman’s betweenness centrality
assumes that knowledge flows along shortest paths in the network [15]. However,
many studies use these measures without regard to the implicit assumptions made by
them. This might lead to poor results or a wrong interpretation of the network phe-
nomenon under study [6]. Thus, it is necessary to model the assumptions pertinent
to the network under study prior to selecting the centrality measure.

Based on analysis of previous studies [6, 13, 46], we contend that there are
three primary requirements for a measure to correctly identify high-status nodes
in a knowledge network of inventor collaborations. These are as follows:

Account for Diversity of knowledge (D): This implies that a high-status inventor
is likely to receive diverse knowledge from different parts of the network. In SNA
theory, this is best represented by betweenness measures. Betweenness is a mea-
sure of the influence a node has on the spread of information through the network
[31]. The higher the betweenness, the more frequently a node is likely to receive
information from disjoint parts of a network. This is important as the recombination
of diverse knowledge from disjoint parts of the network is likely to lead to more
innovation [13, 46].

Random diffusion (R): This implies that the measure should assume that knowl-
edge does not select a preferred path (like the shortest path) of travel through a
network. This does not necessarily imply that all paths (of all lengths) are equally
important. It has been shown that shorter paths may be important in transferring
certain kinds of knowledge [19].

Parallel duplication (P): This implies that multiple copies of the same knowledge
can exist in a network. Thus, when given a choice in the path of travel, knowledge
can travel on multiple paths at once [6]. For instance, knowledge is transferred to
multiple individuals during team presentations. This assumption is especially impor-
tant in this study since we are studying inventors within organizations where they
are likely to be organized in project teams.

Table 6.1 reviews important centrality measures and classifies them according
to these requirements. As shown in the table, none of the measures satisfy all
the requirements to model information flow. For instance, Freeman’s betweenness
measure [15] does not take into account the duplication of knowledge. Bonacich’s
power [5] accounts for random diffusion and parallel duplication; however, it is
not a betweenness measure and thus does not consider diversity of knowledge.
Newman’s random walk betweenness [31] assumes D and R, however, does not
contain a parallel duplication component. A comprehensive discussion of these
centrality measures and their assumptions is provided by Borgatti [6]. We pro-
pose a measure based on Newman’s random walk betweenness centrality to model
knowledge flow in the collaboration networks studied here. A team identifica-
tion component is added to the measure that assumes parallel duplication of
knowledge within teams in an organization. Details of the proposed measure are
presented in the research design. We believe that the proposed measure satis-
fies all three requirements for knowledge flow and better identifies high-status
inventors.
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Table 6.1 Centrality measures and their knowledge flow assumptions

Measure Intuition/formulation
Knowledge flow
assumption Requirement

Closeness centrality [15] Sum of geodesic
distances from all
other nodes

Shortest path, no
parallel duplication

Betweenness centrality [15] Number of times that a
node is on the
shortest path between
two nodes

Shortest path, no
parallel duplication

D

Degree centrality [15] Node is central if it has
a high degree

One-link paths, parallel
duplication

P

Bonacich power [5] Node is central to the
extent that it is
connected to other
central nodes

Random diffusion,
parallel duplication

R P

Information centrality [44] Harmonic mean of
lengths of paths
ending at a node

Random diffusion, no
parallel duplication

R

Flow betweenness [16] Flow through a node
when a maximum
amount of flow
travels between
source and target

Defined path, parallel
duplication

D P

Structural holes [9] Non-redundancy of a
node’s neighbors and
the links between
them (usually
one-link
neighborhood)

One-link paths, parallel
duplication

D P

Random walk centrality
[33]

Speed at which a
random walk reaches
a target node

Random diffusion, no
parallel duplication

R

Random walk betweenness
centrality [31]

Number of times a
random walk between
a source and target
passes through a node

Random diffusion, no
parallel duplication

D R

6.2.2 Innovation and Knowledge Networks

Innovation has been described in the literature as a problem-solving process wherein
solutions are discovered via the search and recombination of existing knowledge
[12, 21, 24]. During this process, each organization is faced with a decision to
select existing knowledge that is recombined to produce new innovative artifacts.
As the recombination process proceeds, a focal innovation emerges that other inno-
vations build upon [29, 35, 38] . In order to understand innovation evolution, it is
necessary to identify the factors leading to the selection of a focal innovation. It
has been shown that individuals and organizations do not select innovations just by
their technical merits [13, 35], other factors like the expertise of inventors, scope of
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the innovation, and number of other innovations in the same field play an important
role in the selection process. Inventors also select the focal innovation based on the
status of the innovation’s inventors in the knowledge network [29, 41]. One way to
establish the status of an inventor is to use social network measures.

Various studies (Table 6.2) have focused on the status of inventors and innovation
selection. Singh [41] found that the degree centrality of an inventor did not have a
significant effect on the impact of his/her innovation. Podolny & Stuart [35] found
that inventor status did not have a significant positive impact on the selection of their
innovation. They also found that the status of other related innovators in the network
had a positive association on the impact of the focal innovation. However, both these
studies used degree to establish status which may not be an accurate representation
of inventor status in a knowledge network and thus may not give the right results.
Singh [40] found that as shortest path length between inventors increased, they were
less likely to cite each other. The study acknowledged that the presence of multiple
paths between inventors may have different effects. Nerkar & Paruchuri [29] found
that Bonacich power of an inventor had a significant positive impact on the selection
of his/her innovation. We used the same statistical technique as their study; however,
we proposed a new measure better suited to the problem domain.

Table 6.2 Studies using node-level measures

Network extent Measures Aim/result

[7] Inter-org. Shortest path Study the geographic diffusion of innovation
[34] Inter-org. Degree centrality Effect of collaboration on IT innovation. Result:

Close collaborations lead to evolutionary
innovation

[41] Inter-org. Degree centrality
and extensions

Impact of collaboration on innovation selection
and future productivity

[4] Both Degree centrality Impact of managerial network on innovation.
Result: higher degree leads to higher
innovation

[29] Intra-org. Bonacich power,
structural holes

Impact of inventor positions on innovation
selection

[40] Both Shortest paths Effect of shortest path on innovation selection
[2] Inter-org. Node degree,

structural holes
Effect of measures on the organization’s

innovative output. Result: degree – positive,
structural holes – negative

[35] Inter-org. Degree centrality Study the factors that determine innovation
selection

6.3 Research Design and Testbed

Figure 6.1 shows the research design and process used to acquire data, extract
knowledge networks, develop the network measures, and statistically evaluate the
effect of network measures on innovation selection.
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Fig. 6.1 Research design and process

6.3.1 Data Acquisition

This study used nanotechnology-related patents from the United States Patent and
Trademark Office (USPTO). This is because patents are considered to be excel-
lent indicators of innovation in organizations [23, 29]. We selected nanotechnology
as it is an innovative field that promises fundamental changes to a wide variety
of research domains [10]. The patents were limited to the nanotechnology field
by using a keyword search on the full text of the patent (for details see Huang,
Chen, Chen, and Roco [22]). Each patent document was downloaded using a web
spider and parsed to extract information on assignee organization, inventors, issue
and application dates, citation, and other fields. Table 6.3 shows the statistics of the
patents obtained. The testbed in this study included the top organization by the num-
ber of inventors (International Business Machines – IBM). Large organizations are
usually in business for a longer period of time and tend to have more established
knowledge networks and better developed internal knowledge. This is important in
this study as an organization with a quality internal knowledge base is likely to spe-
cialize in a certain area and recombine its own knowledge to produce innovations.

Table 6.3 Key statistics of
nanotechnology patents
extracted from USPTO

Date range 1976–2006

Patents 97,562
Assignee institutions (organizations) 26,304
Inventors (individuals) 189,045

6.3.2 Network Extraction

A knowledge network based on common affiliations was extracted for inventors in
IBM. In the network, each node was represented by an inventor and two inventors
were linked to each other if they were listed on the same patent. Such a net-
work reflects strong associations as inventors listed on the same patent are likely
to have intense collaboration while working on that innovation. Such an observed
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collaboration marks the beginning of a strong tie that lasts beyond the collaboration
date [1, 40].

6.3.3 Spell Construction

A spell divides the life of a patent (from issue date till the end of the dataset) into
time periods. Each time period is used as a data point to determine the effect of
various variables on the citation (or no citation) of the patent in that spell. In line
with prior research [29, 35], spells of up to 1 year were created for each patent. The
first spell began at issue date and ended either at the close of the same year or at the
citation date if the patent is cited within that year. The next spell began at the start
of the year – if the previous spell ended at the previous year or at the citation date –
if the previous spell ended in a citation.

Figure 6.2 shows an example of the spells created for a patent which was granted
on 1/16/01 and cited three times on 6/14/01, 8/24/01, and 6/17/02.

1/16/01 6/14/01 8/24/01 12/31/01 6/17/02 12/31/02 12/31/03 12/31/04 12/31/05 12/31/06

Spell 1
Network

98-00
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Network
98-00

Spell 3
Network

98-00
Spell 4

Network
99-01

Spell 5
Network

99-01
Spell 5

Network
00-02

Spell 6
Network

01-03
Spell 7

Network
02-04

Spell 8
Network

03-05

Patent issue date: :end of dataset

Fig. 6.2 Example spells for a patent in the dataset
Note: The solid line denotes that the spell ended with a citation, the dashed line denotes that
the spell ended with no citation. The next spell begins the day after the previous spell ends. The
network indicates the time span of the knowledge network that was used for computing measures
for that spell

The strategy of dividing time into spells effectively measures the effect of net-
work measures of individuals who coauthored that patent on the citation of a patent
through its entire life. The measures were computed on the basis of the network
3 years prior to the spell. That is, only inventors who had applied for patents in the
3 years prior to the spell were considered to be part of the network for that spell.
This is in line with previous research that shows that inventors are productive for
3–5 years [36]. We found support for this with the median productive life span of an
inventor being 3–5 years in our dataset.

6.3.4 Network Measurement

In this section, we describe the social network measures that were used to deter-
mine the status of inventors in the network. Based on previous studies [29, 35]
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three measures were selected for comparison: betweenness centrality, Bonacich
power, random walk centrality. We also proposed a new measure called random
walk w/teams which is likely to suit this problem domain more than other measures.

6.3.4.1 Betweenness Centrality

This is a well-known and widely used betweenness measure proposed by Freeman
[15]. Intuitively, BC of node k is defined as the fraction of times that a node i needs
the node k in order to reach node j via the shortest path. BC for a node k is calculated
as [6]:

∑

i

∑

j

gikj

gij

i �=j �=k

where gij is the number of geodesic paths from i to j and gikj is the number of these
geodesics that pass through k.

6.3.4.2 Bonacich Power

The BP measure suggests that a node is important to the extent that it is con-
nected to other important nodes. The importance of a node emerges recursively
from the pattern of connections among all the inventors (this concept is similar to
the PageRank [8] algorithm). Details on the implementation of the measure can be
found in Bonacich [5].

6.3.4.3 Random Walk Betweenness (RW)

RW is a relatively new measure that includes contributions from all paths between
nodes to calculate betweenness [31]. RW for node k is equal to the number of times
a random walk from i to j passes through k – averaged over all i and j. Thus, the
measure includes paths that may not be optimal, though shorter paths still con-
tribute more to the score. Details on the method can be found in Newman [31].
The measure also assumes that on each step during the random walk, information
passes from the current node to one adjacent node (i.e., no parallel duplication).
However, this assumption may not hold in knowledge networks of the kind studied
here. Diffusion of information may happen in parallel within teams and follow a
random walk outside them.

Random Walk with Teams (RWT)

Organizations generally have teams of inventors working together on projects. The
communication levels within these project teams are much higher as compared
to between teams [20]. We contend that there is close to parallel duplication of
knowledge within teams, i.e., if one member of a team receives knowledge that is
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pertinent to the project, then all members of the team have access to it. With this
assumption, we propose to add team identification to the RW measure to address
the issue of parallel duplication.

Team identification: Figure 6.3a shows a schematic of the assumed flow of knowl-
edge within an organization with three teams. The circles in the figure indicate teams
of inventors. The dashed arrows indicate parallel information duplication (within
teams). The solid arrows indicate random walks between teams. As can be seen in
the figure, we assume that knowledge diffuses in a parallel fashion within teams
and flows through random walks outside them. In order to use this phenomenon to
establish the status of inventors, we need to identify teams within an organization.
There are several algorithms to identify communities or teams in social networks,
Fortunato [14] gives a comprehensive survey. Selecting an algorithm is a trade-off
between computational times and accuracy; however, there have been few com-
prehensive comparisons of the algorithms on real-world networks. In addition, the
choice of algorithms may also be defined by the network being studied; some algo-
rithms may provide better results with certain kinds of networks. Our choice of an
algorithm for this study was based on three factors: (1) computational time was
not a consideration since the networks were not large, (2) we wanted to select an
algorithm that was known to be accurate enough to show that teams mattered in
these networks, and (3) we needed an algorithm that had been used extensively on
real-world intra-organizational networks. We selected the widely used community
identification algorithm proposed by Girvan and Newman [18] to identify teams in
the collaboration network. The algorithm identifies cohesive communities using an
iterative edge removal strategy based on betweenness measures. It has been shown
to be superior to other community detection techniques [32] specially in scien-
tific collaboration networks. Another recent comparative study [26] showed that the
algorithm had a satisfactorily high accuracy of close to 90%.

Team 1

Team 2

Team 3

(a) (b)

Fig. 6.3 (a) Flow of knowledge within an organization with teams (b) network after teams are
identified and collapsed

Network collapse: Once teams are identified, the network is collapsed with each
team replaced by a single composite node. Essentially, the composite “team” node
is structurally equivalent [27] to the combination of all the individual nodes in that
it preserves the connections between the teams members and individuals outside.
Thus, in Fig. 6.3a each of the large circles containing team members would be
collapsed into a single node, the resulting nodes and connections are shown in
Fig. 6.3b.
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Weak component identification: Once the network is collapsed, all the connected
components in the network are identified and the measure is calculated for each
component separately. This is different from some previous studies that use only
the largest component in the network to calculate measures. This is important since
different divisions of an organization may have self-contained groups of inventors
and calculating measures for the largest component would ignore smaller groups.

RW betweenness calculation: Random walk betweenness (using the Newman
[31] procedure for RW) scores are calculated for each node in each component of
the collapsed network. Thus, the RWT measure calculated the RW betweenness
score for entire teams taken as one node and single inventors who are not part of
any teams. For statistical analysis, every individual in a team received the same
RWT score. We believe that these new RWT scores will explain innovation diffusion
better and identify individuals whose knowledge is valued for recombination within
an organization.

6.3.5 Statistical Analysis

We used patent citation data for statistical analysis since citation leaves a trail of
how a patent builds upon previous innovations. Unlike in academic papers, patent
citations are not likely to be superfluous [40, 42]. An intra-organizational citation
of a patent is a choice made by the organization (and individuals within) to build
on knowledge contained in the patent. In this study, we aim to ascertain if the
network position of an inventor influences this selection process. Thus, the depen-
dent variable is the citation of a patent by inventors other than those involved in its
creation.

Cox proportional hazard models were used to study the effects of network mea-
sures on patent citation (other models including Weibull and Exponential were
tested; however, they were not found to be a good fit). The models used a repeated
event hazard rate analysis to incorporate spells. These models were used since they
incorporate both censored and uncensored cases, i.e., whether or not the patent was
cited. Three kinds of variables were included in the statistical model: dependent
variable: patent citation; explanatory variables: each of the social network measures;
and control variables: factors (other than network measures) that effect patent cita-
tions. Since multiple inventors may be assignees on the same patent, a maximum
of the social network scores among all the inventors for that patent was used as an
independent variable.

Based on various previous studies, the following control variables were included:

• Calendar age: This controls for improvements in technology since the start of the
dataset [35]. As databases and information retrieval techniques improve, patents
are easier to find and cite.

• Patent age: A patent is more likely to be cited if it has been around longer.
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• Patent age squared: As the age of a patent increases, it may be outdated and less
likely to be cited.

• Scope of a patent: The USPTO uses a technology classification system where
a patent is classified into one or more technology classes. Studies have used
the number of classes to represent the breadth of a patent that has an effect
on the patent’s impact [25]. We include this variable as the number of USPTO
technological classes the patent is classified into.

• Number of claims: The number of claims indicates the value of a patent and the
technological spaces it occupies or protects [25].

• Age of prior art: Patents that build on old knowledge have different citation
patterns than new ones [28]. This is calculated as the median of the difference
between grant year of the focal patent and that of the references cited within that
patent.

• Self-citation: A self-citation indicates confidence of an individual on his/her
work. This may encourage other individuals to cite that work [29]. This is oper-
ationalized as a categorical variable which is “1” if patent has been self-cited
before spell and “0” otherwise.

• Number of patent references/number of academic references: Patents that cite
more prior art may have a different influence than others. They may be in tech-
nologically crowded classes and have a different influence as compared to other
patents [12].

• Team size: One patent can have multiple inventors. When determining the effect
of social network measures on the citation of a patent, we used the maximum
of the measures among all the inventors of that patent. Including team size as
a control variable accounts for effects of all inventors on the patent [29] since
a heterogeneity in team members can lead to differences in the influence of a
patent [37].

• International presence of an inventor: Knowledge flows across international
boundaries are different [41] and may affect the citation of a patent. This is oper-
ationalized as a variable that is set to “1” if any inventor on patent is outside the
USA and “0” otherwise.

• Time to grant: A patent that is granted immediately may be uncontroversial and
simple. A complex patent may take time to get approved. This might affect
citation rates [29].

• Technological effects: This controls for the difference in patenting across tech-
nological areas. Certain technological areas may cite a larger number of prior
patents than others. This is operationalized as dummy variables for the top 20
classes (with ties retained) each organization patents in.

Based on the results obtained by previous node-level studies and the assumptions
for knowledge flow in a network, four hypotheses were examined in this study with
each in its own independent model. Each hypothesis tested the effect of an inventor’s
status (as established by a network measure) on the likelihood of his/her knowledge
being selected by other inventors. These are summarized in Table 6.4.
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Table 6.4 Hypotheses tested
Measure Effect

H1 Betweenness centrality No effect
H2 Bonacich power No effect
H3 Random walk No effect
H4 Random walk w/teams

(proposed)
Positive effect

6.4 Experimental Results and Discussion

In this section, we show the results of the Cox proportional hazards analysis. Five
models were constructed for IBM – one for control variables only (Model 0) and the
others including one of the four measures (Model 1–4) along with the control vari-
ables. These models were constructed as described in Section 3.5. The correlation
matrix (Table 6.5) shows that all correlations except those between some network
measures are low and do not pose multi-collinearity problems. The high correla-
tions between some network measures do not cause problems since each regression
model contains only one measure.

Table 6.6 shows the results for all four Cox regression models for IBM. The
first column lists all the network measures and control variables. Each model (from
Model 1 to Model 4) contained one network measure. As can be seen in Model 0,
the likelihood of a patent being cited decreased (i.e., the hazard ratio <1.0) with an
increase in patent age and time to grant. This may be because as a patent increases
in age, its contents become less relevant in a fast moving field like nanotechnology.
The likelihood of patent citation increased with an increase in calendar age. The
reason behind this may be the better availability of information retrieval technology
and databases which make it easier to find a patent and cite it. The likelihood also
increased with an increase in the claim count and academic references. As men-
tioned before, the claims are the number of “spaces” occupied by the patent. More
the spaces occupied, more likely the patent will be cited [25]. Self-citation indicates,
among other things, the confidence that an inventor has on his/her own patents. The
model shows that the more an inventor self-cites, the more likely others are to cite
his/her patents. The significance of these control variables generally persisted across
all models.

Model 1 shows that the BC score of inventors was found to have an insignifi-
cant effect on the citation of their patents. Thus, the measure does not adequately
explain the effect of inventor status on the selection of his/her knowledge for inno-
vation. As discussed before, BC is based on the assumption that knowledge flows
along shortest paths that may not suit this problem domain. Random walk [31] was
also found to be insignificant (Model 2). This may be because even though the RW
measure incorporates random diffusion and is a betweenness measure, it does not
incorporate the influence of teams. Individuals between teams draw knowledge from
diverse communities and the RW w/teams measure is likely to perform better in this
problem domain.
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Table 6.6 Cox regression results

Model 0 Model 1 Model 2 Model 3 Model 4

Bet. centrality 1.3995
Random walk 1.1211
Bonacich power 0.9977∗∗
RW w/teams 1.8700∗
Patent age 0.9981∗∗ 0.9998 0.9998∗∗ 0.9998∗ 0.9998∗∗
Calendar age 1.3132∗ 1.5295 1.2942 1.4152 1.5933
Class scope 1 class∗ 1 class∗ 1 class∗ 1 class∗ 1 class∗
Prior age 0.9999 0.9997∗ 0.9999 0.9999 0.9999
Patent refs. 1.0012 1.0113 1.0012 1.0014 1.0015
Acad. refs. 1.0205∗ 1.0172∗∗ 1.0204∗ 1.0204∗ 1.0200∗
Team size 0.9780 1.01567 0.975 0.9798 0.9695
International 1.2651 1.5459∗ 1.2593 1.2863 1.2544
Time to grant 0.9996∗∗ 1.0001 0.9996∗∗ 0.9996∗∗ 0.9996∗∗
Claim count 1.0131∗∗ 1.0088 1.0131∗∗ 1.0129∗∗ 1.0128∗∗
Self-cited 1.5362∗ 1.8402∗ 1.5178∗ 1.5383∗ 1.4987∗
Tech. effects 20 classes∗∗ 26 classes∗∗ 22 classes∗∗ 22 classes∗∗ 22 classes∗∗

Note: ∗p < 0.05, ∗∗p < 0.10

The Bonacich power of an inventor was found to be significant in Model 3. The
measure has also been found to be significant by prior studies [29]. This implies
that an inventor’s knowledge is perceived to be more important (and cited) if he/she
is connected to other important inventors. However, the absolute effect of the BP
measure is very small since the hazard ratio is close to 1.0. A hazard ratio of 1.0
indicates that the variable does not increase or decrease the likelihood of a patent
citation.

As can be seen from the table (Model 4), the random walk w/teams measure had
a significant positive association with the citation of a patent. A unit increase in the
RWT score of an inventor associated with a patent increases the likelihood of the
patent being cited by 87%. This shows that the position of the inventor in a network
positively effects the selection of his/her knowledge for recombination. There are
three components to the RWT measure that may have contributed to its significance.
First, the focus on diversity of knowledge which implies that knowledge of inventors
who have high betweenness scores is perceived to be valuable by an organization.
Inventors with high betweenness are also likely to obtain knowledge from multiple
disparate communities that may increase their innovative potential. Second, random
diffusion is an important part of the RWT measure and this may have contributed
to its positive significance. This is because information may not necessarily flow
through shortest paths in a knowledge network (as shown by the insignificance of
Freeman’s betweenness centrality). A third factor is parallel diffusion; the RWT
measure takes into consideration that knowledge can diffuse within a team from one
individual to multiple individuals. These three assumptions in the RWT measure
make it better suited to explain inventor status in the collaboration networks we
study here.
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6.5 Conclusions

In this study, we examined the role of inventor status in knowledge networks on the
selection of knowledge that is recombined to produce innovation in the nanotechnol-
ogy field. A new network measure based on random walks and team identification
(RWT) was proposed to model knowledge flow within an inventor collaboration
network. Using empirical methods, it was found that inventor status as measured by
RWT had a significant positive relationship with the likelihood that his/her knowl-
edge would be selected for recombination. We believe that the new measure in
addition to modeling knowledge flow in a scientific collaboration network will help
better understand how innovation evolves within organizations.

In future studies, we plan to test other important social network prestige measures
like Burt’s Structural Hole measures and information measures like flow central-
ity to test their effect on innovation selection and compare them to the proposed
measure. In addition, we will examine the effects of collapsing the teams on other
prestige measures. In doing so, we plan to conduct a similar study on multiple large
organizations both individually and combined to a larger dataset to provide more
validity to our results.
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Chapter 7
Modularity for Bipartite Networks

Tsuyoshi Murata

Abstract Several real-world data are represented as bipartite networks composed
of two types of vertices, such as paper–author networks and event–attendee net-
works. Discovering communities from such bipartite networks is important for
finding similar items and for understanding overall network structures. In order to
evaluate the quality of divisions of normal (unipartite) networks, Newman’s mod-
ularity is widely used. Recently, modularities for bipartite networks are proposed
by Guimera and Barber. These bipartite modularities are, however, not sufficient for
evaluating the degree of correspondence between communities of different vertex
types, which is often important for understanding the characteristics of the commu-
nities. For example, close-knit paper communities and author communities indicate
that their research topics are relatively focused rather than loose-knit communi-
ties. This chapter proposes a new bipartite modularity for evaluating community
extraction from bipartite networks. Experimental results show that our new bipar-
tite modularity is appropriate for discovering close-knit communities, and it is also
useful for characterizing the communities.

7.1 Introduction

Various kinds of real-world relations can be represented as networks, such as
citations of papers and friendships of SNS (Social Networking Service) users.
Discovering communities from networks is important for understanding their over-
all structures and for finding similar items. Community discovery attracts many
researchers from physics, computer science, and sociology.

In general, social networks can be divided into the following categories:
(1) direct connection between persons (such as MySpace or Twitter) and (2)
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indirect connection through different types of entities (such as film co-starring or
paper co-authoring). We call the former “homogeneous networks,” and the latter
“heterogeneous networks.” There are bipartite, tripartite, and n-partite networks as
the examples of such heterogeneous networks. As the first step for processing het-
erogeneous networks, we focus on bipartite networks composed of two types of
vertices.

Newman’s modularity [10] is widely used for evaluating the quality of divisions
of normal (unipartite) networks. Modularity is a scalar value that measures the den-
sity of edges inside communities as compared to edges between communities. As
the strategy for finding communities from given networks, modularity optimization
is often employed. Modularity is, however, appropriate only for homogeneous net-
works that are composed of one type of vertices (such as SNS users in the above
example). In real-world situations, there are many bipartite networks that are com-
posed of two types of vertices, such as paper–author networks and movie–actor
networks (Fig. 7.1). Modularity is not appropriate for community extraction from
such bipartite networks since there are no edges that connect the vertices of the same
type.

Fig. 7.1 Discovering communities from bipartite networks

Recently, modularities for bipartite networks are proposed by Guimera [7] and
Barber [1]. Guimera extends the definition of Newman’s modularity to bipartite
networks, but his bipartite modularity takes the connectivities of only one vertex
type into consideration. Barber defines another bipartite modularity by putting con-
straints to the null model of modularity, but his bipartitioning-based method is based
on an assumption that the number of communities has to be specified in advance.

In order to understand the overall structure of bipartite networks, correspondence
of the communities of different vertex types is often more important rather than the
quality of communities of each vertex type. In the case of analyzing communities
of paper–author bipartite networks, for example, close-knit paper communities and
author communities indicate that their research topics are relatively focused. This is
because the number of authors who contribute to the papers is limited rather than
loose-knit communities. Both of the previous bipartite modularities are not suffi-
cient for measuring the degree of correspondence between communities of different
types.

This chapter proposes a new bipartite modularity for community extraction from
bipartite networks. As far as the author knows, this is the first attempt for measuring
the correspondence between communities of different vertex types. Experimental
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results using artificial network data show that our new bipartite modularity is a
straightforward extension of Newman’s modularity. By optimizing our bipartite
modularity, we can find communities that are appropriate also for Guimera’s bipar-
tite modularity. Another experiments using real bipartite network data show that our
new modularity is useful for characterizing discovered communities.

7.2 Modularity and Bipartite Modularities

The definition of Newman’s modularity [10] is reviewed as the basis of the following
discussion. Bipartite modularities proposed by Guimera [7] and Barber [1] are also
described, followed by the explanation of related research on bipartite networks.

7.2.1 Modularity

Modularity is a quantitative measurement for the quality of a particular division of
a network. Let us consider a particular division of a network into k communities.
Let us suppose M is the number of edges in a network, V is a set of all vertices in
the network, and Vl and Vm are the communities. A(i,j) is an adjacency matrix of the
network whose (i,j) element is equal to 1 if there is an edge between vertices i and j,
and is equal to 0 otherwise. Then we can define elm, the fraction of all edges in the
network that connect vertices in community l to vertices in community m:

elm = 1

2M

∑

i∈Vl

∑

j∈Vm

A(i, j)

We further define a k × k symmetric matrix E composed of eij as its (i,j) element,
and its row sums ai:

ai =
∑

j

eij = 1

2M

∑

i∈Vl

∑

j∈V

A(i, j)

In a network in which edges fall between vertices without regard for the communi-
ties they belong to, we would have eij = aiaj. Therefore modularity is defined as
follows:

Q =
∑

i

(
eii − a2

i

)

Modularity measures the fraction of the edges in the network that connect vertices
within the same community minus the expected value of the same quantity in a net-
work with the same community divisions but random connection between vertices.
If the number of edges inside communities is no better than random, we will get
Q = 0. Values approaching the maximum (Q = 1) indicate strong community
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structures. There are many related work regarding modularity. Clauset [3] pro-
poses fast modularity algorithm for efficient search for network divisions of high
modularity. Newman [9] proposes a spectral algorithm for improving the quality
of network division. Blondel [2] attempts community extraction from large-scale
networks. Danon [4] attempts the comparison of several network division meth-
ods. Fortunato [6] clarifies resolution limits of modularity-based network division
methods.

7.2.2 Guimera’s Bipartite Modularity

A community is characterized by larger density of intracommunity edges than that
of intercommunity edges. However, bipartite networks are different from unipar-
tite networks in that vertices of the same type are not directly connected. For this
reason, density of intracommunity edges has to be redefined for bipartite networks.
Guimera’s bipartite modularity [7] is defined as the cumulative deviation from the
random expectation of the number of Y-vertices in which two vertices of type X are
expected to be together:

MB =
NM∑

s=1

{ ∑
i �=j∈s cij∑

a ma(ma − 1)
−
∑

i �=j∈s titj

(
∑

a ma)2

}
(7.1)

where s is a X-vertex community; NM is the number of X-vertex communities; a is
a Y-vertex; ma is the number of edges that are connected to a; cij is the number of
the Y-vertex communities in which vertices i and j are connected; and ti and tj are
the total numbers of Y-vertices to which vertices i and j are connected, respectively.

As you can see, two vertex types are not treated symmetrically in the defini-
tion above. Guimera’s bipartite modularity focuses on the connectivities of only
one vertex type (via the vertices of the other type). It is therefore not sufficient for
representing the connectivities of the other vertex type, which can be defined as
follows:

M′
B =

N′
M∑

a=1

{ ∑
i �=j∈a cij∑

s ms(ms − 1)
−
∑

i �=j∈a titj

(
∑

s ms)2

}
(7.2)

In order to measure the connectivities of both vertex types, both MB and M ′
B have

to be used.

7.2.3 Barber’s Bipartite Modularity

Modularity is a deviation from null model, and bipartite networks have specific con-
straints that should be reflected in the null model. Barber [1] takes the constraints
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into consideration and formalizes bipartite modularity using modularity matrix.
Since there is no edge between the vertices of same type, the adjacency matrix of a
bipartite network is as follows:

A =
[

Op×p Ãp×q

(ÃT)q×p Oq×q

]
,

where Oi×j is the all-zero matrix with i rows and j columns. Probabilities in the null
model that an edge exists between vertices i and j are represented as follows:

P =
[

Op×p P̃p×q

(P̃T)q×p Oq×q

]
,

Then bipartite modularity can be defined as follows:

Q = 1

m

p∑

i=1

q∑

j=1

(Ãij − P̃ij)δ(gi, gj+p).

where gi is the community that vertex i is assigned to, and δij is the Kronecker’s
delta. This definition implicitly indicates that the numbers of communities of both
types are equal. In order to optimize the bipartite modularity, repetitive bipartition-
ing is employed. Since the number of communities has to be specified in advance,
search for appropriate number of communities is required.

The weaknesses of Barber’s bipartite modularity are as follows: (1) the number
of communities has to be searched in advance and (2) the numbers of communities
of both vertex types have to be equal. Both weaknesses come from the bipartitioning
method he employs. The first weakness is fatal for practical community extrac-
tion since the search for the number of communities is computationally expensive.
The second weakness is also fatal for dividing real networks since the numbers of
communities of both vertex types are often imbalanced.

7.2.4 Research on Bipartite Networks

Sun [11] proposes algorithms for computing the neighborhood of the vertices
of bipartite networks using random walk with restarts and network partitioning.
Algorithms for identifying abnormal vertices are also proposed, and their effective-
ness and efficiency are confirmed by the experiments on several real data sets. Zhou
[13] proposes a framework for co-ranking authors and documents in heterogeneous
networks. The framework is based on coupling two random walks that separately
rank authors and documents. As a result of the coupling, both document ranking
and author ranking are improved since both ranking depend on each other in a mutu-
ally reinforcing way. Zhou [14] proposes a method for projecting bipartite networks
to weighted homogeneous networks. Bipartite networks are regarded as resource
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allocation processes between X-vertices and Y-vertices. Initially assigned weights
on X-vertices are propagated to Y-vertices and then back to X-vertices in order
to obtain weighted homogeneous networks. Although the goals of these research
are different from ours, these research put stress on the importance of processing
bipartite networks appropriately.

7.3 Our New Bipartite Modularity

In order to overcome the weaknesses of previous bipartite modularities, the con-
straint of one-to-one correspondence between communities of both types is removed
in our definition of bipartite modularity. One X-vertex community may correspond
to many Y-vertices communities and vice versa.

Suppose a bipartite network is composed of X-vertices {x0, x1, ...} and Y-vertices
{y0, y1, ...}, and yi is connected to both xj and xk. Projection is often used as a naive
approach for transforming bipartite networks into unipartite networks. Projection
is a transformation of such xj − yi − xk connection into xj − xk connection so
that a network composed of only X-vertices is obtained. However, projection loses
information about the correspondence between X-vertex communities and Y-vertex
communities, which is often quite valuable for characterizing the communities.

Let us suppose that communities of papers and communities of authors are
discovered from a paper–author network. If there is one-to-one correspondence
between a paper community and an author community, it shows that the topics of
the papers attract only limited authors (Fig. 7.2). On the other hand, if there is one-
to-many correspondence between a paper community and author communities, it
shows that the topics of the papers attract several communities of authors (Fig. 7.3).

Fig. 7.2 One-to-one
correspondence between
communities

Newman’s modularity is not appropriate for evaluating community extraction
from bipartite networks. Let us suppose that a bipartite network composed of
X-vertices and Y-vertices is given, and both X-vertex communities and Y-vertex
communities are specified. Since a bipartite network does not have any direct
edge between X-vertices (and between Y-vertices), eii = 0 for each X-vertex
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Fig. 7.3 One-to-many
correspondence between
communities

(Y-vertex) community Vi, so its modularity is quite low. For example, modularity
of the division of the bipartite network shown in Fig. 7.4 is −0.14.

Our definition of bipartite modularity is as follows. Let us suppose that M is the
number of edges in a bipartite network, and V is a set of all vertices in the bipar-
tite network. Consider a particular division of the bipartite network into X-vertex
communities and Y-vertex communities, and the numbers of the communities are
L+ and L−, respectively. V+ and V− are the sets of the communities of X-vertices
and Y-vertices, and V+

l and V−
m are the individual communities that belong to the

sets (V+ = {V+
1 , ..., V+

L+}, V− = {V−
1 , ..., V−

L−}). A(i, j) is an adjacency matrix of the
network whose (i, j) element is equal to 1 if vertices i and j are connected and is
equal to 0 otherwise.

Under the condition that the vertices of Vl and Vm are different types (which
means (Vl ∈ V+ ∧ Vm ∈ V−) ∨ (Vl ∈ V− ∧ Vm ∈ V+)), we can define elm (the
fraction of all edges that connect vertices in Vl to vertices in Vm) and ai (its row
sums) just the same as those in Section 7.2.1.

elm = 1

2M

∑
i∈Vl

∑
j∈Vm

A(i, j)

ai =∑
j

eij = 1

2M

∑
i∈Vl

∑
j∈V

A(i, j)

As in the case of homogeneous networks, if edge connections are made at random,
we would have eij = aiaj. Our new bipartite modularity QB is defined as follows:

Fig. 7.4 An example of the
division of a bipartite network
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QB =
∑

i

(eij − aiaj), j = argmax
k

(eik)

As shown in Section 7.2.1, Newman’s modularity measures the fraction of the edges
in the network that connect vertices within the same community minus the expected
value of the same quantity in a network with the same community divisions but
random connection between vertices. Our new bipartite modularity measures the
fraction of the edges in the bipartite network that connect vertices of the correspond-
ing X-vertex communities and Y-vertex communities minus the expected value of
the same quantity with random connections between X-vertices and Y-vertices. If
given network is not bipartite, you can see that QB = Q, which means that our new
bipartite modularity is a straightforward generalization of original modularity.

If the connection between X-vertices and Y-vertices is no better than random, we
will get QB = 0. High QB value indicates strong community structure in a bipartite
network. Our new bipartite modularity of the network shown in Fig. 7.4 is 0.66. If
you take a closer look at the expression of QB, you will find that the value is the sum
of bipartite modularities of different directions (V+ → V− and V− → V+). QB can
be divided as follows:

QB± = ∑
i∈V+

(eij − aiaj), j = argmax
k∈V−

(eik)

QB∓ = ∑
i∈V−

(eij − aiaj), j = argmax
k∈V+

(eik)

QB = QB± + QB∓

QB± is the bipartite modularity for V+ → V− direction, and QB∓ is the bipartite
modularity for V− → V+ direction. In the example shown in Fig. 7.4, QB± = 0.41
and QB∓ = 0.25, which means that downward connections are relatively focused
rather than upward connections.

The matrix E composed of eij as its (i,j) element is represented as follows if rows
and columns are reordered appropriately.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 e1,L++1 . . . e1,L++L−
...

. . .
...

...
. . .

...
0 . . . 0 eL+,L++1 . . . eL+,L++L−

eL++1,1 . . . eL++1,L+ 0 . . . 0
...

. . .
...

...
. . .

...
eL++L−,1 . . . eL++L−,L+ 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

The upper right quarter of the matrix (EUR) corresponds to QB±, and the lower left
quarter of the matrix (ELL) corresponds to QB∓. Since E is a symmetric matrix, it
is clear that ET

UR = ELL. But QB± �= QB∓ in general. This is because a set of (i, j)
under the condition that i ∈ V+, j = argmax

k∈V−
(eik) is different from a set of (i,j) under

the condition that i ∈ V−, j = argmax
k∈V+

(eik).
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When two upper left communities in Fig. 7.4 are merged, QB increases to 0.67.
But if all upper communities are merged into one community, QB decreases to 0.35.
By maximizing our new bipartite modularity, unobvious community structure will
be obtained from bipartite networks.

7.4 Experiments

7.4.1 Artificial Four-Community Networks

In order to clarify the properties of our bipartite modularity, modularity and bipar-
tite modularity are compared in the following experiment. Networks with known
community structure are used to see whether our bipartite modularity has abilities
of detecting their structures.

We have generated many networks with 128 vertices, divided into four communi-
ties of 32 vertices each. Edges are placed independently at random with probability
pin for an edge to fall between vertices in the same community and pout to fall
between vertices in different communities (pin + pout = 1). Such artificial network
data are used by Newman [10] and Danon [4]. Figure 7.5 illustrates an example of
the networks. Figure 7.6 shows the average values of modularity and our bipartite
modularity of 100 artificial networks.

pin pout
Fig. 7.5 A network with four
communities

You can see from the figure that modularity and our bipartite modularity are the
same for networks of high pin. This is obvious from the definition of bipartite modu-
larity. For the networks with high pin, diagonal elements of matrix E are the biggest
among all elements in the same row (∀j eii ≥ eij). Therefore j = argmax

k
(eik) = i

and QB = Q.
For networks of smaller pin(pin < pout), diagonal elements of matrix E are not

the biggest (∃j eii ≤ eij) and their modularities are below zero. On the other hand,
bipartite modularities of the networks are positive because j = argmax

k
(eik) is set to

the community that is densely connected with community i.
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Fig. 7.6 Modularity and
bipartite modularity of
four-community networks

The above networks are not bipartite because four communities are connected
to each other. For the next experiment, we have generated bipartite networks with
128 vertices, divided into four communities of 32 vertices each. Edges are placed
independently at random with probability pin for an edge to fall between vertices in
the same community, psame to fall between vertices in the communities of same
type of vertices, and pdiff1 and pdiff2 to fall between vertices in the communi-
ties of different types of vertices (pin + psame + pdiff1 + pdiff2 = 1). Suppose
there are two communities for each type of vertices. pin and psame are set to zero
because there are no edges between vertices of the same type in bipartite networks.
Figure 7.7 illustrates an example of such networks. Networks with various pdiff1 and
pdiff2(pdiff1 + pdiff2 = 1) are generated and their modularity and bipartite modular-
ity are calculated. Figure 7.8 shows the average values of modularity and bipartite
modularity of 100 artificial bipartite networks.

Figure 7.8 shows that original modularity is not appropriate for bipartite networks
because there is no edge between vertices of the same type. Bipartite modularity is
effective for detecting the existence of community structures for bipartite networks,

pdiff1

pdiff2

Fig. 7.7 Bipartite network
with four communities
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Fig. 7.8 Modularity and bipartite modularity for bipartite networks

and it also shows the degree of correspondence between communities of differ-
ent types of vertices. In the case of networks with pdiff1 = 1 or pdiff2 = 1, there
are complete one-to-one correspondence between communities of different types of
vertices, and the values of bipartite modularity are the highest.

7.4.2 Southern Women Data Set

As an example for comparing different bipartite modularities, the following exper-
iments are performed using southern women data set collected around Mississippi
during the 1930 as part of an extensive study of class and race in the Deep South.
The data set describes the participation of 18 women in 14 social events. The women
and social events constitute a bipartite network whose vertices are women and social
events, and whose edges are the participation in the events.

Experiments of network divisions by the following strategies are performed : (1)
optimization of Guimera’s bipartite modularity (MB), (2) optimization of Guimera’s
bipartite modularity for the other vertex type (M ′

B), and (3) optimization of our new
bipartite modularity (QB). In addition (4) results of Barber’s BRIM algorithm are
also discussed later.

As an initial state of the network division, each woman/event is assigned to its
own community. Then greedy searches for the optimization of bipartite modularities
((1), (2), (3)) are performed by merging a pair of women/event communities. The
results of network divisions by the above strategies are shown in Table 7.1. Each
row of Table 7.1 shows the number of discovered communities, values of MB, M′

B,
and QB, respectively. Each column shows the strategies (1), (2), and (3), respec-
tively. Although communities are surely obtained with strategy (1), its division is
good only for Guimera’s bipartite modularity for one vertex type. Strategy (2) does
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Table 7.1 Communities from southern women network

(1) (2) (3)

Number of communities 13 32 4
MB 0.140 0.000 0.0025
M′

B −0.00797 0.000 0.0109
QB 0.354 0.138 0.575

not work for network division. We performed an additional experiment that com-
bines the strategies (1) and (2), but its result is not better than the result of strategy
(1). The result of strategy (3) shows that the obtained network division is good for
QB, of course, and also for M′

B, although its MB value is slightly worse than the
result of strategy (1). This means that our new bipartite modularity is appropriate
for obtaining good network divisions from the viewpoint of connectivities of both
vertex types, as well as the degree of correspondence between the communities of
different types, which is our main objective.

According to Barber’s paper, strategy (4) (optimization of Barber’s bipartite
modularity) results in the discovery of coarse division composed of only two com-
munities. He claims that his method succeeds in discovering the “best” network
division that matches the research results by sociologists. But the best division
is obtained as the results of 500,000 trials from random community assignment
as its initial state. Another weakness of Barber’s approach is that the number of
communities has to be specified in advance, as we mentioned previously.

7.4.3 Scotland Corporate Interlock Network

The next experiment is performed using a network of corporate interlocks in
Scotland. It is a bipartite network composed of 136 directors and 108 firms. Three
hundred fifty-eight edges represent memberships of the boards of directors for
Scottish firms during 1904–1905.

The results of optimizing the following bipartite modularities are shown in
Table 7.2: (1) Guimera’s bipartite modularity (MB), (2) Guimera’s bipartite mod-
ularity for the other vertex type (M′

B), and (3) our new bipartite modularity (QB).

Table 7.2 Communities of scotland corporate interlock network

(1) (2) (3)

Number of communities 26 29 10
MB 0.612 0.613 0.521
M′

B 0.427 0.433 0.332
QB 0.593 0.628 0.762
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The results show that communities obtained by the optimization of Guimera’s
bipartite modularity is much more than those obtained by the optimization of our
bipartite modularity. This is just the same as the results shown in Table 7.1. The
strategy of optimizing our bipartite modularity favors larger communities.

The experiment of optimizing Barber’s bipartite modularity is also performed.
The number of obtained communities is 34 (17 director communities and 17 firm
communities). Barber’s method is based on an assumption that there is one-to-one
correspondence between communities of both vertex types. Since the assumption is
not satisfied for the detected communities shown in Table 7.2, it is not appropriate
to compare the values of Barber’s bipartite modularity in Table 7.2.

7.4.4 Real Online Social Networks

Our bipartite modularity is also used for real-world networks. We have generated
bipartite social networks composed of users and boards from the data of Yahoo!
Chiebukuro (Japanese Yahoo! Answers, http://chiebukuro.yahoo.co.jp). The site
is one of the most popular question–answering forums in Japan. The network
of Yahoo! Chiebukuro is summarized in Table 7.3. Since the network is huge,
community extraction by the optimization of bipartite modularity is computation-
ally intractable. So we employ the following projection-based network division
for the sake of convenience. From the above bipartite network, user communities
and board communities are discovered by (1) projecting the bipartite network into
unipartite networks (user network and board network) and (2) applying Clauset’s
fast modularity algorithm [3] for finding network divisions of high modularities.
Both user communities and board communities are extracted from the networks.
Newman’s modularity (Q) and our bipartite modularity (QB) of the network division
are −0.1021 and 0.2919, respectively.

Table 7.3 Statistics of the
network of Yahoo!
chiebukuro

Number of vertices 246,849
Number of edges 357,834
Average degree 2.89921
Clustering coefficient 0
Average path length 7.7587

Our bipartite modularity is for evaluating divisions of a bipartite network. In
addition to that, bipartite modularity of each community (QBi ) can be used for mea-
suring the degree of “close knitness” to the communities of the other vertex type.
Figure 7.9 shows a distribution of bipartite modularity QBi (X-axis) and the sizes
(Y-axis) of discovered communities. Communities of upper half of the figure (more
than 15,000 vertices) are board communities. Their bipartite modularities are high
except the one located at middle left position. This community is like the one in
Fig. 7.3: the main topics of the community (such as “entertainment and hobby” and
“health and fashion”) attract many users and thus its bipartite modularity is low. On
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the other hand, other communities of high bipartite modularity are relatively focused
(such as “child care,” “mental health,” and “cars”), like the one in Fig. 7.2.

7.5 Conclusion

A new measurement for community extraction from bipartite networks is proposed
in this chapter. Previous attempts for defining bipartite modularity are not sufficient.
Guimera’s bipartite modularity takes the connectivities of only one vertex type into
account. Barber’s approach is unrealistic because the number of communities has
to be searched for his repetitive bipartitioning. Our new bipartite modularity is a
straightforward generalization of Newman’s modularity. Experimental results show
that our bipartite modularity is appropriate for discovering communities that corre-
spond to the communities of the other vertex type. In addition to that, our bipartite
modularity for each community represents the degree of correspondence to the com-
munities of the other type of vertices, which can be used for characterizing the
communities.

Biclustering algorithms [5, 8, 12] also aim at finding division of incident matri-
ces. These algorithms are mainly for the purpose of bioinformatics and document
clustering. One of the weaknesses of most of these algorithms is that the algorithms
do not scale to large networks. As described in Section 7.4.4, we calculated our
bipartite modularity for each of the communities that are already discovered from
large-scale social networks. But the discovery by the optimization of bipartite mod-
ularity is not an easy task for large-scale networks. Guimera and Barber also use
small bipartite networks for their experiments. Finding the divisions of high bipar-
tite modularity from large-scale networks by modularity optimization is another
challenging research topic, which is left for our future work.

Our bipartite modularity proposed in this chapter is the first step for intelligent
processing of real heterogeneous networks. There are several bipartite, tripartite, and
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n-partite networks in the Web. Social tagging systems can be represented as tripartite
networks composed of three types of vertices (users, URLs, and tags). Discovering
and evaluating communities of such heterogeneous networks is one of the important
and challenging topics of Web mining.
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Chapter 8
ONDOCS: Ordering Nodes to Detect
Overlapping Community Structure

Jiyang Chen, Osmar R. Zaïane, Jörg Sander, and Randy Goebel

Abstract Finding communities is an important task for the discovery of underlying
structures in social networks. While existing approaches give interesting results,
they typically neglect the fact that communities may overlap, with some hub nodes
participating in multiple communities. Similarly, most methods cannot deal with
outliers, which are nodes that belong to no germane communities. The definition of
community is still vague and the criterion to locate hubs or outliers varies. Existing
approaches usually require guidance in this regard, specified as input parameters,
e.g., the number of communities in the network, without much intuition. Here we
present a general community definition and a list of requirements for a community
mining metric. We review advantages and disadvantages of existing metrics and
propose our new metric to quantify the relation between nodes in a social network.
We then use the new metric to build a visual data mining system, which first helps
the user to achieve appropriate parameter selection by observing initial data visual-
izations, then detects overlapping community structure from the network while also
excluding outliers. Experimental results verify the scalability and accuracy of our
approach on real data networks and show its advantages over existing methods that
also consider overlaps. An empirical evaluation of our metric demonstrates superior
performance over previous measures.

8.1 Introduction

Many data sets of scientific interest can be modeled as networks, which consist of
sets of nodes representing entities, connected by edges representing various rela-
tions between these entities. For example, the World Wide Web (WWW) can be
viewed as a very large graph where nodes represent web pages and edges represent
hyperlinks between pages. In social networks, nodes typically represent individuals
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and edges indicate relationships, e.g., in a tele-communication network, each node
is a phone number and edges represent the fact that two nodes communicated. In
such networks, the ability to detect closely related entity groups, i.e., communities,
can be of significant practical importance. For instance, the fact that web pages in
the same community might focus on related topics can be used to help page rank-
ing and recommendation. Social network communities can be used to understand
implicit network structures, e.g., organization structures, academic collaborations,
or usage pattern in tele-communication networks.

In recent years, there has been a surge of research interests on finding communi-
ties in networks. A community (or cluster) can be seen as a subgraph such that the
density of edges within the subgraph is greater than the density of edges between
its nodes and nodes outside it [12]. Existing community detection approaches, such
as spectral clustering [27] and modularity-based [24] and density-based methods
[32], achieve good results for some data sets and have proposed various metrics
to measure the similarity between social entities. However, all of them implicitly
define communities based on metrics which measure only partial aspects of the
social network; thus existing community definitions can only identify specific types
of communities. A new metric is needed to more thoroughly quantify the relation
between two social entities.

Recent studies have also revealed that network models of many real-world phe-
nomena exhibit an overlapping community structure, i.e., a node can belong to more
than one community, which is hard to take into account with classical graph clus-
tering methods where every vertex of the graph belongs to exactly one community
[26]. This is especially true for social networks, where individuals can connect to
several groups in the network as hubs. Furthermore, in real networks we also have
another node category, which belongs to no community, i.e., outliers. Therefore, a
typical social network consists of communities, hubs, and outliers. It is essential for
community discovery methods to identify nodes in these three categories, since the
isolation of hubs, and outliers can be crucial for many applications. Unfortunately,
a precise description of what a community really is has not yet been explicitly artic-
ulated. Moreover, the definition would be different across various domains or even
across different networks of the same domain. Therefore, most proposed approaches
[12, 13, 19, 26, 32] for overlapping community detection require the user to describe
the communities they are looking for by giving parameters, e.g., community size,
density range, the number of communities. However, appropriate parameters are
usually extremely hard to determine without tedious and repeated testing. Moreover,
arbitrary parameters may over-restrain the space in which communities are found
and lead to inaccurate results. Overall, if the real value of community identifica-
tion is to be achieved, we want tools that form the basis for community mining, so
that useful and interesting structure emerges without too much parameter estimation
required.

In this chapter, we first define social network communities with a list of
requirements for a community mining metric, based on observations of social net-
work characteristics. After reviewing the advantages and disadvantages of existing
metrics, we propose the R (Relation) metric to measure the similarity between any
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pair of entities in a social network, then show its advantages by comparison with
existing metrics. We then propose our approach ONDOCS (ordering nodes to detect
overlapping community structure). Our visual data mining approach first generates
preliminary visualizations of the network in question by ordering nodes based on
their reachability scores (RS) to help the user understand the network structure
in order to choose appropriate parameters. Selected parameters are then used to
extract communities, hubs, and outliers from the network. We offer the following
contributions in this chapter:

• A new metric R to quantify the relation between entities.
• A visual data mining approach to assist the user in finding appropriate parameters

to describe the communities they are looking for.
• A scalable and efficient method to discover communities, hubs, and outliers in

social networks.

The rest of the chapter is organized as follows. We discuss related work in Section
8.2. Section 8.3 introduces our community definition and reviews existing metrics.
We present our R metric and the ONDOCS approach in Section 8.4 and report
experimental results in Section 8.5, followed by conclusions in Section 8.6.

8.2 Related Work

8.2.1 Community Mining

The problem of finding communities in social networks has been studied for decades
in many fields, including computer science, sociology, and physics. Originally,
graph partitioning methods [9, 27, 28] were applied, but researchers soon realized
that the condition for graph partitioning methods to be valid is that the number or the
sizes of the communities into which the networks are divided should be fixed, which
is not true for community mining. Various benefit functions have been proposed to
solve the problem, such as normalized cut [28] and min-max cut [9], but they are
still biased in favor of divisions into equal-sized parts and thus still suffer from the
same drawbacks that make graph partitioning inappropriate for community detec-
tion. Recently, many quality metrics for community structure have been proposed
[22, 24, 32]. Among them, modularity Q has been proved to be the most accurate [8]
and has been pursued by many researchers [7, 10, 14, 22, 23, 31]. While all previous
works focus on clique communities (defined in Section 8.3.1) and apply hierarchical
methods, Xu et al. [32] propose the density-based SCAN algorithm to detect tran-
sitive communities (also defined in Section 8.3.1) and locate hubs and outliers in
networks. However, all those metrics focus only on one type of community and do
not consider a general community definition, not the whole picture of community
mining in social networks, thus none of them satisfy all of the requirements listed
in Section 8.3.
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8.2.2 Overlapping Community Structure Detection

In general, there are two ways to detect overlapping community structure in a net-
work. One natural idea is to first globally partition the network and then locally
expand the discovered communities to locate overlapping components. Wei et al.
[30] partition the network using the spectral clustering method and then locally
expand to optimize a variation of the Modularity Q measure [24]. For overlapping
community discovery in a name-entity network, Li et al. [18] generate community
cores by merging triangles (3-clique) so that one vertex can be part of different
communities if it belongs to several cliques. Similarly, Baumes et al. [5] initial-
ize community cores using the Link Aggregate (LA) algorithm and then refine
the peripheries by an Iterative Scan (IS) procedure. Another mainstream research
direction for this problem is based on fuzzy clustering. Zhang et al. [35] combine
modularity and a fuzzy c-means clustering algorithm to identify overlapping com-
munities. Nepusz et al. [19] propose a similarity function based on membership
and solve the fuzzy community detection problem as a constrained optimization
problem. Recently, Palla et al. [26] propose the CFinder system to partition com-
plex networks to k-clique communities, where k is a given parameter as clique size.
Gregory proposes the CONGA algorithm [12] based on the betweenness score [24]
and later extends it to the CONGO algorithm to improve the scalability [13]. He
also shows that CONGO provides the same level of performance as CFinder, on
synthetic networks. While all of the above methods successfully detect overlapping
community structure, some major problems exist. Most methods do not consider
outliers, which belong to no communities, thus many outliers would be classified
as community members, i.e., they force outliers into existing clusters. Additionally,
the fact that they intentionally focus on overlapping community structure makes
them find or force overlap even for data without such structure. More importantly,
not only many approaches require parameters that are difficult to determine but also
their results are very sensitive to parameter settings, e.g., number of communities
[12, 35], community density [18, 26], or size of a local community region [13].

8.2.3 Visual Data Mining

Most community mining approaches apply data mining algorithms, e.g., agglom-
erative hierarchical clustering for a bottom-up merge or partitional clustering for
a top-down split. Having noted that community mining is also a data mining pro-
cess, we believe that the idea of visual data mining could be helpful in the mining
process, both to guide the mining toward goals and to better understand the results,
since visualization and interaction capabilities enable the user to incorporate domain
knowledge to finding communities in social networks. Generally speaking, the
areas of data mining and information visualization offer various techniques which
effectively complement one another supporting the discovery of patterns in data.
Whereas traditional (algorithmic) techniques are analyzing the data automatically,
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information visualization techniques can leverage the data mining process from
an orthogonal direction, by providing a platform for understanding the data and
generating hypotheses about the data based on human capabilities such as domain
knowledge, perception, and creativity [4]. In the past few years, visualization tech-
niques have been specifically designed to support human involvement in the data
mining process. For example, Ankerst et al. [2] propose an interactive decision tree
classifier based on a multidimensional visualization of the training data. They later
extend the work [3] to include categorical attributes to interactively build decision
trees and thus support a much broader range of applications. Similar visual data
mining ideas are also applied in [15, 29] to help users determine parameters for
decision tree construction and classification rule discovery.

8.3 Preliminaries

In this section, we propose a definition for network communities and provide a list of
requirements for a good measure for community detection. We discuss two existing
measures based on those requirements.

8.3.1 Community Definition

Recent research has proposed community detection methods in two different ways
based on various motivations and similarity measures. First, hierarchical meth-
ods [22, 24] tend to find communities globally so that nodes, which are more
densely connected to nodes in the same community than outside nodes, are grouped
together; second, density-based approaches [32] classify nodes into communities
based on their local structure, i.e., nodes are in the same community if they share
many neighbors. In experiments, these two approaches typically yield noticeably
different results on the same data sets. They actually target two different kinds of
communities. On the one hand, hierarchical methods partition networks by greed-
ily maximizing an objective function, which increases for pairs of connected nodes
that are in the same community and decreases for pairs of disconnected nodes also
in the same community. Their methods favor communities where every node con-
nects to everyone else in the same community, which we call Clique Communities
(Fig. 8.1a). On the other hand, density-based approaches expand communities from
nodes that are structurally dense, i.e., have enough neighbors, judged by appropriate
parameters. Therefore, these approaches do not consider global properties but only
the local network structure. They find communities where nodes may not directly
connect to many others in the same community but are indirectly connected to every
other node via some connections, which we call Transitive Communities (Fig. 8.1b).
The difference between these two strategies is analogous to hierarchical-based and
density-based methods in the data clustering field [34].
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...

(A) Clique Community

...

...

(B) Transitive Community

Fig. 8.1 Examples for clique
community and transitive
community

While existing methods implicitly describe specific types of communities based
on their metrics and algorithms without clearly defining them, we give a general def-
inition for social network communities based on the observations highlighted above:
A community is a network partition such that entities within the same community
share some common trait or proximity, judged by some defined entity similarity or
relationship metric.

No matter how communities are defined, there are two major issues for com-
munity mining that remain to be addressed. First, each pair of nodes should be
measured by their similarity or relationship; second, pairs with high similarity or
strong relationship should be put in the same community. Although it is the algo-
rithm (hierarchical or density-based) that decides the community type to be found
(clique or transitive), a good similarity metric is vital for both clique and transitive
community structure detection. We present the requirements of a good metric in the
following section.

8.3.2 Requirements for a Good Community Mining Metric

It is easy to confuse graph partitioning with community mining since these two
lines of research are really addressing the same question, which can be described
as dividing vertices of a network into some number of groups. There are, however,
important differences between network characteristics of the two camps that make
quite distinct approaches and metrics desirable. For instance, in social network com-
munity mining, the relation between two nodes is asymmetric. (Take MySpace.com
as an example: user A might list user B as one of his best friends while he is not even
in the friend list of user B.) Thus, existing measures and approaches that are shown
to be effective for some graph partitioning may not fit for community mining, since
they do not take these differences into consideration. In the following, we propose
a list of requirements, which we believe should be satisfied by a good metric for
community mining.

1. A metric should measure the similarity between every pair of nodes.
A similarity score between two nodes is required for all algorithms to decide
whether to put these two nodes into one community or not. The metric should
be able to measure all pairs, connected or disconnected. Metrics, which do not
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consider disconnected pairs of nodes, may be able to find some community struc-
ture, but they naively assume that disconnected pairs should not be in the same
community.

2. A metric should reflect not only similarity but also dissimilarity.
In other words, the metric not only measures whether two nodes should be in the
same community but also measures whether they should not be in the same com-
munity. For instance, the metric should provide a means to solve a disagreement
while merging a node n in a community when some existing nodes relate to n
and others do not.

3. A metric should consider the asymmetric nature between pairs.
The pair asymmetry in social networks means that Relation(i → j) �= Relation
(j → i), e.g., consider people pair (i,j) where i has many friends and is j’s only
friend, i is much more important to j than j is to i. For undirected graphs, where
the similarity measure is usually required to be symmetric, the asymmetric nature
between the node pairs should still be considered.

4. An overlapping community metric should handle both hubs and outliers.
We think there are three kinds of nodes in a social network: hubs (nodes that
have many connections and can be seen as community overlaps), outliers (nodes
that have very few connections and do not belong to any community), and nor-
mal nodes (nodes that have some connections and belong to a community). The
influences of hubs and outliers to community discovery have to be minimized by
the metric.

8.3.3 Existing Metrics for Community Detection

Newman et al. proposed the modularity Q as a quality measure of a particular divi-
sion of a network [24]. For a social network with k communities, the modularity is
defined as Q =∑k

c=1

[ ec
m − ( dc

2m

)2] where m is the number of edges in the network,
ec is the number of edges between nodes within community c, and dc is the sum of
the degrees of the nodes in community c. The modularity Q measures the fraction of
the edges in the network that connect vertices of the same community, i.e., within-
community edges, minus the expected value of the same quantity in a network with
the same community division but with random connections between the vertices. Q
can be transformed as a sum of similarity scores for all node pairs [7, 23]:

Q =
∑

Qij =
∑

i,j

(
Aij

2m
− di

2m
∗ dj

2m

)
(8.1)

where Aij = 1 if nodes i and j are connected, 0 otherwise, di, dj are the degree

of nodes i and j, m is the edge number. Note that Qij = 2 ∗
(

Aij
2m − di

2m ∗ dj
2m

)

since each pair (i, j) is calculated twice in the sum as (i, j) and (j, i). Also, note that
Qij represents the difference between the probability of the event i ↔ j (nodes i
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and j are connected) in the given graph structure
(
P(i ↔ j) = Aij

m

)
and that in a

random model with the same number of vertices, edges, and degrees
(
P(i ↔ j) =

2 ∗ di
2m ∗ dj

2m

)
. (See [23, 24] for details.)

The modularity Q provides a similarity score for all pairs of nodes. Whether the
score is positive or negative depends on whether two nodes are connected or not,
which reflects both similarity and dissimilarity. By taking the global information
(the total edge number m) into consideration in the score calculation such that the
higher degree the nodes have the lower score the pair gets, modularity handles the
influence from hub nodes. However, the measure neglects the asymmetric nature
between pairs in social networks by assuming P(i → j) = P(j → i). Moreover, the
method fails to handle outliers. Since outliers have small degrees and can achieve
high scores given the formula, they are usually inaccurately merged first into a
community by hierarchical algorithms.

Recently, Xu et al. [32] proposed another similarity measure S:

Sij = |Ni ∩ Nj|√|Ni| ∗ |Nj| (8.2)

where Ni is the neighborhood of node i, including i itself and all nodes connecting to
i. This metric normalizes the number of common neighbors by the geometric mean
of the two neighborhoods’ sizes in order to compare the neighborhood structure of
the two vertices in question.

The S metric considers the local structure of compared nodes (the common neigh-
bor number) as well as their local attributes (the sizes of both neighborhoods), thus
it minimizes the score for both hubs and outliers. However, this metric does not
measure dissimilarity, e.g., the score will be zero if two nodes share no neighbors,
disregarding the network structure, and it fails to include pair asymmetry as well.
Although this metric is easy to be extended for all pairs of nodes, it was originally
proposed for connected pairs only. Additionally, even though the S metric considers
the neighborhood size of the two nodes in question, it neglects the degrees of other
nodes in the neighborhood, i.e., every node in the neighborhood is weighted equally
as 1 disregarding whether it is a hub, an outlier, or a normal node.

We have summarized two state-of-the-art similarity metrics for community min-
ing and analyze their advantages and disadvantages (see Table 8.1). While they

Table 8.1 Comparing community mining metrics

Metric requirements

Metric All pairs

Similarity
and
dissimilarity Asymmetry

Hub and
outlier

Q All Yes No Only hub
S Connected No No Both
R All Yes Yes Both
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successfully find communities for some data sets, they do not satisfy all given
requirements and thus need to be improved.

8.4 Our ONDOCS Approach

In this section, we first present our characterization of the relation between nodes,
then introduce the algorithm to generate network visualizations, and then show how
to detect overlapping community structure based on observed parameters.

8.4.1 Relationship Definition

Originally, ONDOCS is inspired by the OPTICS algorithm proposed by Ankerst
et al. [1], where points are ordered for data clustering. However, unlike their clus-
tering approach, we do not have a distance measure between nodes, so we need to
define a new node relationship. The existing community metrics reviewed in Section
8.3 are designed to find optimal communities of a specific type, i.e., Q for clique
communities and S for transitive communities, which means they focus only on par-
tial aspects of network structure. We think that comparing the community structure
to a random model, in which nodes are randomly connected in a network, is a prac-
ticable way to quantify node relations. The intuition is that community structure can
be identified as that which is non-random; so developing a measure with a notion of
random connections should help identify non-random structure. The neighborhood
around any two nodes in question is also important in assessing their relationship.
Therefore we proposed a new measure R to combine these two aspects, defined as
follows:

R(i, j) = R(i → j) + R(j → i)

2
=
∑

x∈Nj
r(i, x) +∑x∈Ni

r(x, j)

2
(8.3)

where Ni is the neighborhood of node i, including i itself and all nodes that connect
to i. The similarity between nodes i and j is defined as the average of R(i → j),
representing the relationship from i to j’s neighborhood, and R(j → i), representing
relationship from j to i’s neighborhood. R(i → j) is defined as the sum of rela-
tion scores r between i and all nodes in j’s neighborhood, similarly for R(j → i)
with respect to j and i’s neighborhood. Next, in order to quantify the relation r(i, j)
between nodes i and j, we compare the probability of the event that i and j are con-
nected in the original graph G to a random model, where we only keep the same
node number n and node degrees k1, . . . , kn and leave the rest random. In such a
random model, it is obvious that the probability of a node i having a connection to
any other node is P(i) = ki

n−1 . Here we assume G is undirected so that the events of
i connecting to j and j connecting to i are equivalent, thus the probability of i and j
being connected is the maximum of P(i) and P(j):
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P(i ↔ j) = max(P(i → j), P(j → i)) = max(P(i), P(j)) = max(ki, kj)

n − 1
(8.4)

Now we define the relation score r(i, j) between nodes i and j:

r(i, j) = Aij − max(ki, kj)

n − 1
(8.5)

where Aij = 1 if nodes i and j are connected in G, 0 otherwise. Here we omit directed
graphs since that is a straightforward extension. The proposed metric R, r, and the
random model are justified in the next section.

8.4.1.1 Analyzing the R Measure

We evaluate our R metric using the requirements listed in Section 8.3. First, R
assesses similarity for both connected and disconnected pairs of nodes. Two nodes
are measured by the relation between them and their neighborhoods. Second, while
the relation score r between each pair will be positive for connected pairs and
negative for disconnected ones, R in Eq. 8.3 considers all pairs within the local
neighborhood so that the R score represents an overall similarity, therefore R(i, j)
can be positive even if r(i, j) is not. Similarly, R(i, j) can be negative even if r(i, j)
is not. Third, the R metric is divided into two parts: R(i → j) and R(j → i), each
of which represents the similarity between one node and the other’s neighborhood.
The asymmetric characteristic of social networks is thus considered. Finally, the
influence from hubs or outliers to other nodes is minimized. Hubs have big degrees
which lead to large max(ki,kj)

n−1 and small r scores. Outliers have small neighborhoods
so R is small since there are few pairs to contribute in the sum. Therefore, as shown
in Table 8.1, the R metric satisfies all requirements for a good community mining
measure.

We now justify the formula for the relation score r and the random model pre-
sented in Section 8.4.1. Recall that the intuition behind the r score is to compare
the probability of the event E, that two nodes i and j are connected, in the original
graph structure with the probability of the same event in a random model, which
has the same node number and degrees. Only if the probability of having these two
nodes connected in the random model is low does the fact that they are indeed con-
nected show us strong relationship. Since the probability of E in the original graph
is simply 1 or 0 given the network structure, we only need to answer the follow-
ing question: In an undirected graph G with n nodes, degrees k1, . . . , kn, and the
rest random, what is the probability of event E? In this model, it is obvious that the
probability of the event A, i connecting to j, equals ki

n−1 and the probability of the

event B, j connecting to i, equals kj
n−1 . However, either A or B confirms E, therefore

we set P(E) = max(P(A), P(B)). In other words, with respect to i, the probability of
selecting j as one of i’s neighbors is ki

n−1 . We cannot achieve a higher score unless
kj > ki, thus the probability of the fact that two nodes are connected is decided by
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the node with the higher degree. Note that P(E) �= P(A) ∗ P(B) since the two events
A and B are dependent on each other.

8.4.2 Ordering Nodes to Visualize Networks

Now we can generate network visualizations by ordering nodes based on their rela-
tion scores. Given the relationship function we defined above, for a node ni, we
create a list of nodes li ordered by their relation to ni from high to low. (Note that
we can limit candidate nodes to those which have R > 0, i.e., they are connected
to or share at least one neighbor with ni.) We define the kth value in this list to be
lik. Here, our approach takes one input parameter s. However, as we will show in
Section 8.5, s does not strongly affect the output. In practice, we usually generate
several visualizations with s ranging from 2 to 8 and let the user make a choice
based on their observations. For a node ni, we define its community score Cs to be
the sth value in its node list li, i.e., Cs(ni) = lis, and Cs(ni) = 0 if there are less than
s nodes in the list. Then we define the reachability of node j with respect to i as

reachs(i, j) =
{

R(i, j) if Cs(ni) > R(i, j)

Cs(ni) otherwise

Intuitively, the parameter s represents the expected number of nodes that one node
is similar with in order to be a member of any community. Cs is the lowest relation
score between node i and its similar neighbors in one community. Then the reach-
ability score from node i to j (reachs(i, j)) is the relation score between nodes i and
j if j is not among the top s nodes of li and is the community score of i otherwise.
Thus, reachs(i, j) measures the community relationship between i and j. It is their
direct distance score if i and j are far away from each other and equals the commu-
nity radius of i if j is close enough. Therefore, a decreasing order of the reachability
scores (RS) indicates a node list for i, starting from i’s most related neighbors to the
least ones.

We present our algorithm to generate node lists ordered by their reachability
scores in Algorithm 1. More specifically, our algorithm creates an ordering of net-
work nodes, additionally storing a reachability score RS(i) for each node i. It starts
at a given node nstart and inserts nstart into a max-heap structure h, which is main-
tained to store the reachability of candidate nodes. At each step, the node j, which
has the highest reachability score in h, is chosen to be the next node in order and
the popped score is stored as RS(j). All nodes that are in j’s neighborhood are then
inserted into h with their reachability according to j if they are not yet in h. The
value in h is updated if the node is already in h and its new score is higher. Then
h is updated to maintain its max-heap property. Therefore, the top node of heap h
has the highest RS value to one of the nodes that has already been included in the
list L, i.e., the RS score for each node in the list represents its highest reachability
from any of the prior nodes in the sequence. The algorithm stops after all nodes in
the network are visited.
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The computational complexity of ONDOCS is O(n log n) for dense graphs and
O(n) for sparse ones. The list generation and sort step takes O(c log cn) where con-
stant c is the average number of similar nodes for each node. Note that based on
our relationship function, one node can only be similar to another if they are con-
nected or share one or more neighbors. In step 2, there are n insertions to the heap
h and updating h for each insertion takes O(log n) time for dense graphs and O(1)
for sparse networks. Thus, the actual running time of our algorithm on experimental
networks is O(n) as shown in Section 8.5.

In summary, given a network with a list of s values, Algorithm 1 produces a
sequence of nodes with their reachability scores for each s value, which can be
visualized as a 2D graph by tools such as GNUPlot [11]. The visualizations show
interesting community information such that nodes in the same communities are
consecutive in the list with high RS scores, while the RS score apparently drops
between two groups of community nodes (see Fig. 8.3). The goal of visual data
mining is to help user acquire accurate parameters by observing this phenomenon,
which is presented in the next section. (A detailed example of how to choose the
parameters is given in Section 8.5.2 and Fig. 8.3 after explaining the experiments.)

8.4.3 Detecting Overlapping Community Structure:
Communities, Hubs, and Outliers

We have generated lists of nodes given specific s values, where we found that the
ordering of the corresponding RS values has interesting community properties. For
example, if we start from one node i, we will first visit other nodes in i’s commu-
nity in sequence. This is because the reachability score from i to these nodes is
higher than nodes outside i’s community. Therefore, each community can be seen
as a group of consecutive nodes with high RS scores. In a 2D visualization, these
groups are represented as curves in a “mountain” shape or peak. A noticeable drop
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of subsequent RS scores after a “mountain” indicates that this community has ended,
which is represented as a curve in a “valley” shape or trough. The “valley” between
two “mountains” represents a set of hubs, which belong to several communities. For
instance, if we start from nodes in community α, the fact that hubs have neighbors
from different communities makes RS scores of hubs lower than that of those single-
community nodes in α but still higher than nodes in communities other than α.
Therefore, after all single-community nodes in α are visited, hubs are next to follow
before nodes in other communities, which form the “valley” between “mountains.”

As we have discussed in Section 8.1, there is no global community definition,
thus communities in specific networks need to be defined by parameters given by
the user. For this purpose, our visual data mining approach generates visualizations
with different s values first. After the user selects the suitable one based on their
observation, they need to further provide two parameters to define the communities
in this network, Community Threshold (CT) and Outlier Threshold (OT). While such
parameters are usually hard to obtain for previous methods, parameter selection
for our approach becomes easy since we provide a visualization of the network
structure with “mountains” representing strongly related communities and “valleys”
representing hub nodes that connect to both communities. Outliers are usually found
at the end of the list, since their RS scores to any other nodes in the network are
low. Examples of choosing parameters for real networks are presented in Section
8.5. Note that we do not require k, the number of communities to discover, as a
parameter. The number of communities is a by-product of the mining process given
the parameters OT and CT which are determined by the user after exploiting our
visualization output. The visualization of the network helps the user understand
the structure first and then decide about reasonable thresholds for communities and
outliers, i.e., not the numbers per se but has a similar effect.

Given the two parameters CT and OT, our algorithm works as the following:
from the first node in the sequence as the starting community, we scan all nodes
along the list. One node ni is merged into the current community if RS(ni) < CT. If
CT ≥ RS(ni) > OT, ni is classified as a hub. If OT ≥ RS(ni), it is an outlier. Since the
first node of a community in the list has a low RS score, e.g., the starting node has
RS = 0, we refine the outlier and hub nodes by moving any node ni into correspond-
ing communities if we have RS(ni+1) ≤ CT (also see Algorithm 2). The complexity
of Algorithm 2 is θ (n).

To represent that hubs can belong to k communities, for each hub node i, we
use a vector of “belonging factors” v = (f(i,1), f(i,2),. . ., f(i,k)) where each coefficient
f(i,k) measures the strength of the relationship between node i and community k. For
every community Ck, we can quantify the overall relationship between i and Ck as

OR(i,k) =
{∑

x∈Ck
R(i, x) if

∑
x∈Ck

R(i, x) > 0

0 otherwise

We then normalize the vector to get the coefficients so that we have
∑k

x=1 f(i,x) =
1. Therefore, one node can belong to many communities at the same time,
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weighted by the relationship value in the range [0,1] and the sum of belong-
ing coefficients to communities is the same for all nodes in the network, except
outliers.

In summary, the community mining process is aided by visual data mining
in our approach. Instead of asking the user to arbitrarily provide vital param-
eters, we generate visualizations of the network in question so that the user
is able to observe the structure and relations between communities before they
give parameters. After appropriate parameters are determined, hubs and out-
liers are extracted together with communities. Note that another advantage of
our approach is that while parameters are easy to be altered, the impact on the
change of discovered communities can be clearly perceived by observing the
visualization.

8.5 Experiment Results

Here we evaluate the ONDOCS approach using both synthetic and real-world data
sets. The performance of ONDOCS is compared with CFinder [26] and CONGO
[13], which are shown to be two of the most efficient algorithms for finding
overlapping community structure [13]. The comparison is measured by the well-
known F-measure score and adjusted rand index (ARI) [33]. All experiments were
conducted on a PC with a 3.0 GHz Xeon processor and 4 GB of RAM.
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8.5.1 ONDOCS Scalability

To evaluate the scalability of our algorithm, we generated ten random graphs of
vertices ranging from 10,000 to 500,000 and the number of edges ranging from
20,000 to 1,000,000. The edges are randomly distributed in the network. Figure 8.2
shows the performance of our algorithm on those networks. It clearly shows that,
although the running time of ONDOCS is O(n log n) in the worst case, our approach
actually runs very close to linear time with respect to the number of vertices and
edges.
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Fig. 8.2 ONDOCS algorithm running time

To further evaluate the efficiency of the algorithm, we apply three algorithms
on several real-world networks. Table 8.2 shows the source of each network, its
statistics, and the execution times for CONGO to compute the entire dendrogram,
CFinder (v1.21) to generate solutions for 3 ≤ k ≤ 8 and ONDOCS to create data
set visualizations for 2 ≤ s ≤ 8. From the table, we can see that ONDOCS works
well overall, while CONGO’s running time increases dramatically with respect
to h and CF’s clique detection becomes slow on some particular networks. (Note

Table 8.2 Comparing running time of CONGO, CF, and ONDOCS on real-world networks

Runtime / s

CONGO [13]

Data sets Vertices Edges h = 3 h = 2 CF [26] ONDOCS

Football [32] 180 787 8 2 1 <1
Protein_protein [26] 2640 6600 114 11 3 11
Blogs [13] 3982 6803 41 8 4 12
PGP [6] 10680 24316 772 104 >20000 62
Word_association [26] 7207 31784 15922 230 102 161
Blogs2 [13] 30557 82301 15148 380 319 269
Cond-mat [21] 27519 116181 >20000 1486 490 544
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that it may seem to be unfair to compare since ONDOCS merely generates visu-
alizations but not communities yet. However, the intent of runtime comparison
is to demonstrate that our approach is no more time consuming than previous
methods but on the contrary in most cases faster. Additionally, the complexity of
extracting communities after parameter setting, i.e., selecting CT and OT, is neg-
ligible compared to the visualization generation.) Unfortunately, we do not have
ground truth to validate the accuracy of our results for these data sets, thus we turn
to several real-world data sets with ground truth to evaluate the accuracy of our
approach.

8.5.2 ONDOCS Accuracy

The first data set we examine is the schedule for 787 games of 2006 National
Collegiate Athletic Association (NCAA) Football Bowl Subdivision (also known
as Division 1-A) [32]. In the NCAA network, there are 115 universities divided into
11 conferences. In addition, there are 4 independent schools at this level, namely
Navy, Army, Notre Dame, and Temple, as well as 61 schools from lower divisions.
Each school in the division plays more often with schools in the same conference
than schools outside. Independent schools do not belong to any conference and play
with teams in different conferences, while lower division teams play only very few
games. In our network vocabulary, this network contains 180 vertices (115 nodes as
11 communities, 4 hubs, and 61 outliers), connected by 787 edges.

First, the ONDOCS approach generates several visualizations with different s
values for the user to choose. We show all visualizations for 2 ≤ s ≤ 8 in Fig. 8.3.
As we can see, most images are very similar to each other. The only one that shows
a different structure is the visualization for s = 8. Recall that the parameter s rep-
resents the expected number of nodes that one node is similar with in order to
be considered as a community member. When s is raised to a large value, some
communities might disappear if their size is smaller than s. In this case, ONDOCS
visualizations only show the structure of communities whose size is greater or equal
to s. The larger the s value is, the smoother the curves are and the fewer “spikes”
we have. Nevertheless, we have 7 visualizations that clearly represent the network
structure, where there are 11 communities, a few hubs, and a set of outliers.

The parameter selection is solely based on users’ visual interpretation of the
visualized network. First we choose the visualization with s = 2, where the com-
munity structure is shown in most detail since pair relations are mostly measured
as direct distance. In Fig. 8.4, we note that nodes in sequence from 120 to 180 are
barely related to the rest and can be considered as outliers, therefore we set OT = 2.
Note that OT can also be set as 2.5, or any other close number. Different OT values
will not give completely different results and the impact can be perceived directly
from the visualization. Furthermore, we see a community usually ends with a RS
score between 3 and 5, thus we set CT = 4.5 so that all communities are separated.
The range of possible thresholds is shown in the figure. Table 8.3 shows results of
varying CT and OT in the range. As can be noticed, it is quite easy for one to select
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Fig. 8.3 Community visualizations of the football network with different S values
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Table 8.3 Comparing ONDOCS accuracy with different CT and OT (H-FM means F-measure for
Hubs and O-FM means F-measure for Outliers.x)

OT = 2 CT = 4.5

CT Cluster Hub H-FM Outlier O-FM OT Cluster Hub H-FM Outlier O-FM

4.0 9 3 0.857 61 1.0 1.0 11 16 0.30 48 0.880
4.5 11 3 0.857 61 1.0 1.5 11 4 0.75 60 0.991
5.0 11 3 0.857 61 1.0 2.0 11 3 0.857 61 1.0
5.5 11 6 0.8 61 1.0 2.5 11 3 0.857 61 1.0
6.0 12 7 0.77 61 1.0 3.0 11 3 0.857 61 1.0

parameters given the network visualization, and the results are stable enough for a
large range of parameters.

To evaluate how algorithms detect overlapping community structure, we pro-
vide the data to our algorithms in three different ways. At first, we give only 115
community nodes and connections between them, then we measure the accuracy
of discovered communities by the ARI score based on the ground truth, which is
the conference assignment. Then we add the four hubs and their connections into
the network. Although these hubs clearly belong to multiple communities, we do
not have exact ground truth for overlapping community structure, i.e., which com-
munities these hubs should go. However, we do have ground truth for which nodes
are hubs (outliers) and which are not. Therefore, we measure the accuracy of the
output hubs and outliers by the F-measure score, which is defined as the harmonic
mean of precision and recall. Finally we give the complete network with commu-
nities, hubs, and outliers. Table 8.4 shows the experimental results for the three
algorithms. As we can see, the CONGO algorithm always detects overlaps, even for
the first network where there are only community nodes. Additionally, it requires the
cluster number as the input parameter, which is usually unavailable for real-world



8 ONDOCS: Ordering Nodes to Detect Overlapping Community Structure 143

Table 8.4 Comparing algorithm accuracy of CONGO, CF, and ONDOCS on the football data set

Algorithms

Data Setting
CONGO
(h = 2) CF (k = 4)

ONDOCS (s = 2)
(CT = 4.5, OT = 2)

115 nodes in
11 clusters

Cluster 11a 11 11
Hub 92 6 0
ARI 0.047 0.945 1.00

Plus 4 hubs Cluster 11a 12 11
Hub 100 8 3
Hub

F-measure
0.038 0.167 0.857

Plus 4 hubs
and 61
outliers

Cluster 11a 12 11
Hub 96 8 3
Hub

F-measure
0.04 0.167 0.857

Outlier 0 61 61
Outlier

F-measure
0 1.00 1.00

aThe right cluster number is provided as a parameter for the CONGO algorithm

networks, and it still fails to find any outliers. The CF algorithm gives its best result
when k = 4, where it detects all outliers and finds 12 clusters, which is very close
to the truth. However, CF also finds hubs when there is no overlap and the accuracy
of its overlap detection is low with only a 0.167 F-measure score. Our ONDOCS
algorithm works the best overall. It finds all outliers and only detects hubs when
there is indeed some overlap between communities. The hub detection accuracy is
not perfect; however, when we look into the data, we find out that the only missing
hub team (Temple) plays half of its games (6 out of 12) with teams from the mid-
American conference, which explains why it is classified into that community. Note
that the result of our algorithm depends on two parameters (CT and OT); however,
we believe that appropriate values are easy to find based on direct observation on
network visualizations.

In ONDOCS, the node sequence might change if we choose different node nstart
to start with. For previous experiments, we choose a community node to start the
process. In Fig. 8.5, visualizations that start from hub nodes and outlier nodes are
shown. However, as we can see, a community, represented by a “mountain” curve,
is found first. It is because our algorithm intends to visit the closest nodes in the
sequence, which have higher RS scores, before nodes that are far away. Thus, no
matter where the start node is, the closest community is found first, followed by
other communities ordered by their RS values. Hubs are found as “valley” between
communities.

We also apply our algorithm on other real-world networks, including the Political
Book network [17], the Mexican Politician network [25], the Dolphin network
[24], and the Les Miserables network [16]. Although we do not have exact
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Fig. 8.5 ONDOCS visualizations with different starting nodes

overlapping truth for these networks, approximate community structure information
is provided by previous research. In the Political Books data set, nodes represent
political books sold by Amazon.com and edges represent frequent co-purchasing of
books by the same buyers, as indicated by the “customers who bought this book also
bought these items” feature on Amazon. Nodes are manually labeled as “Liberal,”
“Neutral,” or “Conservative” by Mark Newman [20]. In the Mexican Politicians
data set, edges indicate social relations between people and nodes represent politi-
cians, who are classified based on their background as “Citizen” or “Military.” The
Dolphin Network gives the community structure of a group of bottlenose dolphins.
The network can be approximately divided into four main groups [24]. Finally, the
Les Miserables network represents the coappearance network of characters in the
novel Les Miserables. Note that for these data sets, we only have indefinite com-
munity information instead of perfect ground truth, which is the common case for
overlapping community detection and evaluation. We show visualizations for these
data sets generated by ONDOCS in Fig. 8.6. One can see that the images cor-
rectly depict the approximate community information we have. Accurate CT and
OT values should be easy to determine based on these figures. Also note that if
the reachability plots are not clear for some data sets, the users may have problems
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Fig. 8.6 Community visualizations for various networks by ONDOCS

selecting parameters. This could be the case when a large number of real commu-
nities exist, where the plot would present a jagged graph with many close peaks for
a vague community structure. This is a limitation of the visualization and may be
addressed by increasing the screen real-estate or a progressive hierarchical method,
which selects parameters for each level of the community hierarchy. However, it is
nevertheless reasonable to believe that other approaches with no visual data mining
support, when faced with a large number of existing communities, would provide
less information and do even worse in the mining process.

8.5.3 Comparing Metrics Within ONDOCS

We have reviewed previous community mining metrics (Q and S) and proposed our
relational metric R. We then evaluated them from a theoretical perspective. Here
we apply these three metrics to measure the similarity between two nodes in our
ONDOCS system and compare the images generated for several real-world data
sets, respectively, in order to further evaluate the effectiveness of the metrics.

The visualizations for four different data sets based on metrics Q, S, and R are
shown in Fig. 8.7a–l, respectively (s is set to 2 for all metrics). We see that the plots
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Fig. 8.7 Comparing metrics Q, S, and R with ONDOCS visualizations

using the R metric accurately depict the network structure since they match the
vague community information that we have for those data sets. On the other hand,
visualizations using the S metric are ambiguous and the community structure is hard
to read. Also note that the R visualizations provide a much wider range for the user
to observe accurate CT and OT values to detect the right number of communities
than the S visualizations. Finally, visualizations based on the Q metric do not show
any community structure. The reason is that Q does not consider local structure thus
similarity scores of all node pairs are smaller than and close to 1 after node ordering,
which makes the plots into a nearly horizontal line.
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8.6 Conclusions

In this chapter, we first propose a general definition of communities in social
networks and a list of requirements for a good similarity metric to detect those
communities. We analyze existing metrics based on those criteria and then propose
a new similarity metric R which satisfies all of those requirements. A visual data
mining approach for overlapping community detection in networks is then proposed
based on metric R. The method first generates lists of nodes, ordered by their reach-
ability scores. Network visualizations are then provided to help the user determine
important parameters. Finally, overlapping community structure, i.e., communities,
hubs, and outliers, are extracted based on these parameters. Experiment results show
that our approach not only scales well for large networks but also achieves a high
accuracy for real-world networks. Unlike previous approaches, our method only
detects overlap when it exists. Moreover, appropriate parameters are easy to obtain
by means of visual data mining. The effectiveness of R over previous metrics is also
confirmed by comparing ONDOCS visualizations.
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Chapter 9
Framework for Fast Identification
of Community Structures in Large-Scale Social
Networks

Yutaka I. Leon-Suematsu and Kikuo Yuta

Abstract One of the most important features of real networks is the presence of
community structures or the subset of nodes that are densely connected to each other
when compared to the rest of the networks, which encode the information about the
organization and functionality of the nodes. Social networking sites (SNS), which
allow the interaction of millions of users, have important scientific and practical
implications; however, they require the development of fast algorithms. We focus
on the algorithm developed by Clauset, Newman, and Moore (CNM) and its widely
used modifications to analyze the behavior and effectiveness in terms of speed. This
chapter describes the inefficiencies of CNM and shows that the determinant fac-
tor that impacts the speed is the number of interconnected communities (NIC) that
represent the number of operations performed when merging two communities. We
propose a new improvement of CNM that considers the NIC and a new implemen-
tation framework to accelerate CNM. Our improvements were compared with the
former CNM and its variations when applied to large-scale networks from seven
real data sets (Mixi, Facebook, Flickr, LiveJournal, Orkut, YouTube, and Delicious)
and five synthetic networks with different structural properties. The experimental
results demonstrate that the performance of all algorithms is impacted by the struc-
tural properties of the network and our proposed improvements outperform former
algorithms in terms of speed and modularity in most network structures, thereby
showing its applicability to real large-scale networks.
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9.1 Introduction

The last decade witnessed the advent of online societies where millions and even
trillions of human communications took place. Social networking sites such as
Facebook, MySpace, Orkut, and hi5, social bookmarking services such as Delicious
and Digg, and sharing services such as Flickr and MySpace are online services
that are becoming popular. These services have experienced an explosive growth;
Facebook has 400 million active users, Delicious has 5 millions users and 180 mil-
lion unique URLs, and MySpace has over 130 million users. Several social networks
with connections represented by friendship relations or similar interest are available
in these services that provide targets to social networks for scientific and practical
purposes.

One of the most important features of real networks is the presence of community
structures or the cohesive subset of nodes with a higher density of inner connections
and a lower density of outer connections. These communities reveal the internal
organization of the nodes, where nodes with similar properties are located in the
same community. For instance, studies in the field of network science have shown
that each community exhibits different structural properties [24], and studies in bio-
logical networks found a correspondence between communities of behavioral or
functional units [13].

The identification of community structures in large-scale SNSs is a prominent
approach to identify the communities of users with similar profiles or similar
interest; another use is the identification of similar topics. The identification of com-
munities can be employed to analyze the dynamics of the organization of users,
to identify targets for marketing, or to even help improve user experience through
recommendation services. Despite the size of these networks, fast algorithms are
indispensable.

Recently, there have been a large number of algorithms for community extrac-
tion, which can be classified into two groups: local and global search techniques.
Local search techniques require initial seeds in order to start the community
extraction around these seeds; techniques such as max-flow/min-cut are commonly
employed [15]. On the other hand, global search techniques use the entire network,
which includes diverse methods based on clique analysis [9], betweenness centrality
[12], modularity measure [6, 22, 25], and others.

We are interested in community extraction over the entire network containing
millions of nodes; however, many algorithms are impractical for these scales due to
their high computational cost. One of the faster and scalable algorithms is the one
proposed by Clauset, Newman, and Moore (CNM) with O(n log2 n) [6], which is
an improvement of the original algorithm proposed by Newman that has O(n2) [22]
applied to networks with n nodes and m edges in good conditions of sparse networks.
Their algorithm is based on the concept of modularity proposed by Newman and
Girvan [25] as a measure of evaluating how well the network is partitioned. Danon,
Diaz, and Arenas (DDA) [7] proposed a modification to improve the modularity
while retaining its speed. Furthermore, Wakita and Tsurumi(WT) proposed some
modifications to accelerate CNM, but encountered a decrease in modularity [29] in
their fastest algorithm.
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We identify the limitations of CNM and propose a new algorithm that produces
faster results with adequate modularity. The main contributions of this study are
summarized as follows:

• We identify several factors that impact the speed of CNM. CNM becomes slow
during the first part of the process due to a large number of operations it performs,
which can be reduced, if not avoided. The number of operations is determined by
the number of interconnected communities (NIC) of all tentative communities
that are aggregated during the process. It was observed that large communities
are created in an unbalanced manner where they absorb small ones such as a
snowball involving more operations than when combining the same nodes in a
different order.

• We present a new improvement of CNM that considers the NIC to prioritize
the combination of communities that produce an increment in modularity while
limiting the number of operations.

• Limitations in the available implementations of CNM were evaluated and a new
framework was proposed that was seven times faster than CNM in its original
implementation when applied to the same network.

• Our improvements were compared with CNM and its variations when used in
seven large-scale networks from real SNSs (Mixi, Facebook, Flickr, LiveJournal,
Orkut, YouTube, and Delicious) and five synthetic networks with different struc-
tural properties. Several benchmarks were proposed but none of them considered
a full set of large-scale networks with different structural properties. The results
showed that the structure of the network strongly impacts the performance of all
algorithms, where our algorithm outperforms former algorithms in terms of speed
and modularity in most network structures.

The remaining part of this chapter is organized as follows. Section 9.2 describes
the concept of modularity and its research trends. The details of CNM and its two
main modifications are presented in Section 9.3. In Section 9.4, we analyze the
behavior of CNM and its implementation inefficiencies. In Section 9.5, we present
our proposed improved algorithm followed by our implementation framework. In
Section 9.6, we evaluate the effectiveness of our improvements while comparing to
the former CNM and its variations when used in real and synthetic data sets. Finally,
the conclusions are presented in Section 9.7.

9.2 Modularity

9.2.1 Definition

One of the most important issues in the extraction of communities is the evalua-
tion of how well a particular network is partitioned into communities. Newman and
Girvan [25] introduced the concept of modularity Q as an attempt to measure that
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quality for unweighted networks. Subsequently, Newman extended the concept to
weighted networks [21]. It is to be noted that by assigning a weight of 1 to all edges,
we can represent unweighted networks. In this chapter, we employ the weighted
version.

Let A be the adjacent matrix of a network with N nodes and M edges whose
elements are as follows:

A(u, v) =
{

wuv if u and v are connected
0 otherwise

(9.1)

where wuv represents the weight of the edge that connects nodes u and v. The overall
weight is m = ∑

u
∑

v Auv/2; the sum of the weights of edges attached to u is
ku =∑v Auv. For unweighted networks, the measures represent the total number of
links and the degree of node u.

Assuming that the network is divided into communities, such as node v belongs
to community cv, it is possible to define eij, which represents the fraction of the
overall weight of edges that connect nodes in community i to nodes in community j:

eij = 1

2m

∑

u

∑

v

Auv δ(cu, i) δ(cv, j) (9.2)

Here, δ(i, j) is 1, if i = j, and 0 otherwise. The fraction of the sum of weights of
edges attached to i is calculated by

ai =
∑

j

eij (9.3)

Similarly, the fraction of the overall weight of the edges within a community, the
edges that connect nodes in the same community i, is calculated by

eii = 1

2m

∑

u

∑

v

Auv δ(cu, i) δ(cv, i) (9.4)

Intuitively, good partitions of a network should have higher values of
∑

i eii.
However, this is not sufficient because in cases when all nodes are located in indi-
vidual communities, the value becomes 0, whereas when all nodes are located in
one unique community, the value becomes 1. To avoid this issue, and by assum-
ing that random connections do not produce community structures, the modularity
Q is defined as the fraction of the overall weight of edges that fall within commu-
nities contrasted to the expected fraction when the connections between nodes are
random:

Q =
∑

i

(
eii − a2

i

)
(9.5)
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9.2.2 Research Trends

Since its conception, several researches have been focused on measurement.
There are three categories: (1) modularity optimization algorithms, (2) analysis of
modularity and its extensions, and (3) fast algorithms.

9.2.2.1 Modularity Optimization Algorithms

The first category consists of the creation of algorithms to optimize the partition that
produces higher modularity. For example, Massen and Doye presented an algorithm
based on simulated annealing with O((n + m) n) [19], Duch and Arenas proposed a
technique that used external optimization with O(n2 log n) [10], and Cappocci et al.
and Newman et al. proposed techniques based on spectral analysis with O(n2) [5]
and O((n + m) n) ∼ O(n2) [23], respectively. However, Brandes et al. demonstrated
that the community extraction is a NP-complete problem [4], and as a consequence,
any efficient algorithm yields suboptimal partitions in many instances.

9.2.2.2 Analysis of Modularity

This category consists of extensions of the concept, such as extensions to weighted
and directed networks [17, 21, 26], and the analysis of the properties and limitations
of modularity. It has been realized that this modularity measurement has some lim-
itations. For instance, Guimera et al. showed that the partitions of ordinary random
networks may have high modularity [14], and Fortunato et al. demonstrated that
modularity optimization has a resolution limit failing to identify modules smaller
than a scale that depends on the total size of the network and on the degree of
interconnectedness of communities [11]. As a consequence, the results of mod-
ularity optimization may produce communities that contain smaller communities
connected even by only one edge.

9.2.2.3 Fast Algorithms

This category consists of the development of algorithms that provide fast results
with relatively adequate modularity, which differs from the first category where
higher modularity is the main concern. The first fast algorithm was proposed by
Newman [22] with O((m + n) n) or O(n2) in the case of sparse networks. This
was improved by Clauset, Newman, and Moore(CNM) [6], thereby reducing the
complexity of the algorithm to O(n log2 n) and making it possible to apply it to
larger networks (hundred thousand nodes). Danon, Diaz, and Arenas (DDA) [7]
made a modification to CNM by improving its modularity while retaining its speed.
Wakita and Tsurumi(WT) [29], on the other hand, proposed some heuristics to
improve the speed of CNM, but with compromises in modularity in their fastest
algorithm. Recently, Blondel et al. [3] proposed an algorithm (BGLL), which differs
from CNM, that consisted of repeating two phases: the combination of communities
and the development of networks with the resulting communities, until no further



154 Y.I. Leon-Suematsu and K. Yuta

increment in modularity is possible. We will use this algorithm for comparison
purposes.

Since our concern is with the identification of communities in large-scale net-
works from SNSs, such as 10 million friendship networks, then the possibility of
using costly algorithms is out of scope. Thus, we focus on fast algorithms. As
described in Section 9.2.2.2, for large-scale networks, there is a resolution limit
described by Fortunato et al. where there is a tendency of producing larger commu-
nities that may contain small communities with high density but lower connectivity
between them. These small communities are kept intact, and therefore, they can
be extracted by recursively executing the algorithm to the resulting communities,
thereby obtaining a hierarchical structure of communities. Therefore, this resolution
limit does not affect our purpose of identifying communities in large-scale SNSs.

9.3 Details of CNM and its Variations

We describe the details of CNM and its variations that are required to analyze the
limitations of these algorithms; we explain our contributions. For explanatory pur-
pose, we use the word in-process community to refer a set of nodes combined during
the extraction process, which will be part of a community in the final partition.

9.3.1 CNM Algorithm

Initially, Newman proposed a greedy algorithm for fast community extraction [22]
with O((n + m) n) ∼ O(n2). The algorithm first assigns each node of the network to
its own in-process community. Then, the change in Q, 	Q, which may occur if any
pair of in-process communities i and j is combined, is calculated by

	Q = 2(eij − ai aj) (9.6)

The algorithm proceeds by selecting a pair of in-process communities i and j with
the largest contribution to Q, max 	Qij, and combines them. Then, all values of 	Q
are recalculated by Eq. (9.6). The process is repeated (counted as one iteration) until
the maximum Q is reached, which happens when max 	Qij < 0.

This algorithm uses an additional matrix to record the values of eij, which are
required to recalculate the values of 	Qij.

Then, Clauset, Newman, and Moore (CNM) [6] demonstrated that the 	Q val-
ues can be updated by using the values of 	Q from the previous iteration, thereby
avoiding recalculations and maintenance of eij required in the original algorithm.

There are three possible outcomes when combining two in-process communities
i in j, as depicted in Fig. 9.1, where the values of 	Q are updated by
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Fig. 9.1 	Q update
operations when combining
two in-process communities i
and j, triangle update when k
is connected to both i and j,
and chain update when k is
connected to i or j

	Q′
jk =

⎧
⎪⎨

⎪⎩

	Qik + 	Qjk if k is connected to both i and j, jik-triangle

	Qik − 2ajak if k is connected to i but not to j, jik-chain

	Qjk − 2aiak if k is connected to j but not to i, ijk-chain

(9.7)

The resulting algorithm, which is used as a reference for explanations of CNM
variations, is listed as follows:

step 1. Place each node in its own in-process community
step 2. Calculate initial 	Qij for every edge (i, j) by Eq. (9.6)
step 3. Get a pair (i, j) that has maxij 	Qij

step 4. If 	Qij < 0, the max Q is reached and the algorithm terminates
step 5. Join community i and j
step 6. Update 	Q of the resulting in-process community by Eq. (9.7)
step 7. Repeat step 3

Regarding the data structure, CNM uses three different data structures.

1. A matrix to store 	Q, where each row i consists of a balanced binary tree to
carry out insertion and search in O(log n); i represents the community id.

2. A max heap structure per row to locate and access the maxj 	Qij of row i in
constant time, O(1), while any update takes O(log n). It maintains another max
heap H to store the maxj 	Qij element of every row i in order to access the overall
maximum 	Q in O(1) and any update takes O(log n).

3. An ordinary vector array to store the values of ai required chain-update
operations of 	Q.

The algorithm has an order of O(md log n) ∼ O(n log2 n), where d is the depth
of the dendrogram. Recently, Clauset1 expressed that his implementation behaves

1http://cs.unm.edu/ aaron/blog/archives/2007/02/fastmodularity.htm
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like O(n2) and not like the O(n log2 n) reported in [6]. It should be noted that CNM
differs from the original one, from Newman, only in how 	Q is updated, but in
essence they are the same.

9.3.2 DDA Modification

Danon, Diaz, and Arenas (DDA) [7] remarked that CNM combines in-process
communities in a way that the heterogeneity in community sizes can affect the
modularity of the algorithm. They proposed the normalization of 	Q so as to treat
communities of different sizes as equal by dividing 	Q by ki that represents the
overall weight of all the edges of nodes in community i, or the degree for unweighted
networks:

Q∗
ij = 	Qij

ki
(9.8)

It should be noted that this measure is asymmetric, that is, 	Q∗
ij �= 	Q∗

ji. DDA
modifies step 3 of CNM by selecting a pair (i, j) with the maxij 	Q∗

ij; however, the
update of 	Q is kept the same as the former CNM. The new step 3 is as follows:

step 3. Get a pair (i, j) that has maxij 	Q∗
ij

Danon et al. presented the experimental results showing that this modification
produces an improvement in the modularity of 5.51% in average (S.D. = 5.35%
in seven data sets.) It should be noted that the main purpose of this modification
was to improve the modularity, not for the purpose of speed as they point out, “We
propose a simple modification of the algorithm proposed by Newman which treats
communities of different sizes on an equal footing, and show that it outperforms the
original algorithm while retaining its speed” [7].

9.3.3 WT Modification

Wakita and Tsurumi (WT) [29] explained that CNM is slow because it combines in-
process communities in an unbalanced way. They proposed some heuristics to speed
up CNM by including a consolidation ratio based on the in-process community size.
This ratio is defined as follows:

ratio(ci, cj) = min

( |ci|
|cj| ,

|cj|
|ci|
)

(9.9)

where the size of the in-process community, |ci|, can be represented by the com-
posed number of nodes, or the degree of the in-process community. They modified



9 Framework for Fast Identification of Community Structures 157

step 3 of the CNM algorithm by selecting a pair (i, j) with the maximum value
	Qij × ratio(ci, cj) instead of the pair with the maximum 	Qij. The new step 3 is as
follows:

step 3. Get a pair (i, j) that has maxij 	Qij × ratio (ci, cj)

WT becomes faster when compared to CNM by increasing the join priority
between the communities of similar sizes. However, this modification compromises
the modularity of the final result in their fastest algorithm.

Regarding the data structure, WT uses a matrix for 	Q with rows consisting of
double-linked list sorted by the node id.

9.4 CNM Speed Inefficiencies

As described previously, there are two main modifications of CNN–DDA that
improves the modularity while retaining the speed, and WT that improves the speed
but compromises the modularity. We analyze the behavior of CNM, WT, and DDA,
discovering factors that make CNM inefficient in terms of speed.

9.4.1 Attractor of Large Communities

Wakita and Tsurumi [29] remarked that CNM combines unbalanced in-process
communities by presenting a plot of the ratio between the degrees of combined
in-process communities over the execution of the algorithm. Some intermittent
fluctuations were found, showing that a combination of in-process communities is
carried out in an unbalanced way by combining low-degree in-process communities
with high-degree in-process communities. This inspired them to modify CNM by
introducing a consolidation ratio explained in the previous section, giving more pri-
ority to the combination of in-process communities with similar sizes. Though their
consolidation ratio provides good speed, there is no theoretical support to ensure
its effectiveness. On the other hand, there is no explanation of what causes the
fluctuations.

We assumed that the fluctuations might be caused by the creation of large in-
process communities. We start analyzing the behavior of the CNM by observing
how communities are combined during the process. The behavior of CNM during
execution is depicted in Fig. 9.2a, when used in a friendship network of a SNS
with 360,802 users and 1,904,641 friendship connections. The x-axis represents the
iteration or the number of combination in the execution ofthe algorithm, while the
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Fig. 9.2 Behavior of CNM. (a) The ratio of the number of nodes of the two in-process com-
munities (cu, cv) that are selected for the combination in each iteration of the algorithm. (b) The
accumulated elapsed time consumed in every 500 iterations

y-axis represents the ratio between the number of nodes of the combined pair of
in-process communities. The small circles represent the ratio when combining in-
process communities that will compose the resulting largest community, while the
small dots represent the other cases.

It is observed that in the early phase of execution, nodes that compose the largest
community are combined. The three curves marked with arrows reveal the creation
of three large in-process communities that will be combined into one in further
combinations. These curves clearly show that at a certain period of time large in-
process communities attract smaller ones, such as a snowball, until they arrive to
the point where further contributions to modularity are lower compared to other
combinations. It should be noted that the first half of the graph displays the same
phenomena for other large communities.

We analyze the attractor effect in terms of time consumption. Figure 9.2b
presents the accumulated time required in every 500 iterations. By superposing
Fig. 9.2(a, b), we observe that CNM becomes slow by the attractors of large commu-
nities. For instance, the attractor of the largest community is the one that produces
the largest time consumption. The reason for this effect is explained in the next
subsection.
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9.4.2 Chain Effect

Wakita and Tsurumi improved the speed by including their ratio based on the com-
munity size or the community degree. Unfortunately, there is no proof that these
variables directly influence the speed.

We assumed that the effect of attractors of large communities, in the execution
time, is caused by the excessive number of update operations required when combin-
ing two in-process communities that have many connections with other in-process
communities, regardless of their sizes and degrees. Figure 9.3a depicted the average
number of update operations over every 500 iterations. As in Fig. 9.2a, the x-axis
represents the iteration of the algorithm, while the small circles and small dots rep-
resent the number of chain updates and triangle updates generated when updating
the values of 	Q by Eq. (9.7).
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Fig. 9.3 Chain effect. (a) The average number of chain-update operations and triangle-update
operations generated in every 500 iterations. (b) The accumulated elapsed time consumed in every
500 iterations

This figure clearly reveals that the number of chain updates is excessively higher
in the first part of the execution that corresponds to the operations required by the
attractors of large communities. When the attractor of the larger in-process commu-
nities absorbs smaller communities, it may increase the number of connections with
other in-process communities; thus, the number of operations in further combina-
tions of this in-process community may increase. For visual analysis, Fig. 9.2b was
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repeated as in Fig. 9.3b that presents the accumulated time required in every 500
iterations.

By superposing Fig. 9.3(a, b), we observe that the average number of generated
chain updates and the execution time required for every 500 iterations have the
same tendency; therefore, it proofs the direct influence the chain-update operation
has over the execution time of the algorithm.

As a consequence, the determinant of speed is the number of chain opera-
tions required in every combination of in-process communities, which can be
approximated by the number of interconnected communities (NIC) of in-process
communities. The higher the NIC of an in-process community, the slower is
the algorithm. We conclude that in order to accelerate CNM, it is necessary to
manipulate the NIC of in-process communities.

9.4.3 Modularity Preservation

Now that the behavior of CNM is understood, we focus on the effect in the
modularity of the variations of CNM.

WT accelerated CNM by the inclusion of a consolidation ratio so as to increase
the priority to combine in-process communities with similar sizes, which is applied
to all 	Q. This ratio appears a bit radical since it compromises the final modularity
in its faster algorithm. The decrement in modularity may be due to the fact that a
very low improvement in modularity by the combination of two in-process com-
munities with similar sizes may be preferred when compared to the combination of
another pair of in-process communities that have higher improvements in modular-
ity but different sizes. As a consequence, it may avoid the combination of in-process
communities that should be combined for the sake of speed.

On the other hand, DDA provides better results when treating the in-process com-
munities of different sizes as similar by normalizing the contribution in modularity
by the degree of the in-process community. Danon et al. presented the experi-
mental results to show that the modularity was improved. Unfortunately, they did
not explain why their modifications improve the modularity. Their normalization
process appeared to work and we consider this aspect in our proposed algorithm
presented in Section 9.5.

9.4.4 Implementation Inefficiencies

Another important aspect for considering the analysis of inefficiencies of the algo-
rithm is the implementation phase. There are two implementation frameworks – one
for CNM and another for WT. We observed that they perform unnecessary calcu-
lations that can be reduced, if not avoided, which are considered in our proposed
implementation framework presented in Section 9.5.

For undirected networks, the adjacency matrix is symmetric, and therefore, the
information can be stored in a triangular sparse matrix. However, CNM and WT



9 Framework for Fast Identification of Community Structures 161

basically maintains the full adjacency matrix, storing both symmetric values 	Qij

and 	Qji, which produces unnecessary operations because they must be perma-
nently kept consistent. Therefore, when inserting any value 	Qij, the insertion of its
symmetric 	Qji is also required, where each operation takes O(log n) for inserting
column j in row i, with an additional cost of O(log n) for updating the max heap of
the row in the case of CNM. A similar situation occurs when deleting an element.

During, or after, the combination of two in-process communities i and j, the
updates in every pair (j, k) take O(1) but updates in its symmetric pair (k, j) take
O(log n) because it requires searching column j in row k. Additionally, these updates
may search maxl 	Qkl. In the case of CNM, the max heap of every row is updated in
every modification of 	Q that takes O(log n), while WT takes O(1) or O(n) because
it maintains a reference to the max value of the row.

9.5 Proposed Improvements

9.5.1 Acceleration of CNM

In Section 9.4.2, we concluded that the NIC of in-process communities is the deter-
minant in the speed of the algorithm. Our analysis showed that CNM exhibits the
attractor effect in large communities, which may increase the NIC after absorbing
small ones, and therefore, slow down CNM.

We propose other improvement to CNM that reduces the number of operations
while trying to maintain the modularity levels by using the following factor:

factor(i, j) = 1

max(nici, nicj)
(9.10)

where nici is the number of interconnected communities of the in-process com-
munity i, which is simply the number of elements in row i. The dividend uses the
maximum of both NICs because it approximates the number of operations required
in the combination. The bigger the nic, the lower is the faction. Instead of nici, it
is preferable to use the number of update operations that will be generated when
combining i and j; however, recalculations of these values will be required for
every possible combination of in-process communities, which is impractical for our
purpose.

This factor is not applied to all the values of 	Q because it may prioritize the
combinations of in-process communities with reduced nic and low contributions of
Q instead of combinations of in-process communities with high contribution and
relative high nic.

In order to avoid the reduction of modularity Q, we first identify maxk 	Qik

for an in-process community i and then apply the described factor only to the
maxk 	Qik, in contrast to WT in which the ratio is applied to all elements in the row
(we applied to all elements and observed that modularity decreases as we expected).
The resulting value is the one inserted to the max heap H in order to give priority
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to in-process communities with lower NIC, thereby reducing the number of chain
operations. It must be noted that the factor is applied only for the updates of the
max heap H, but the recalculation of 	Q is the same as the former algorithms. The
resulting algorithm is as follows:

step 1. Place each node in its own in-process community
step 2. Calculate initial 	Qij for every edge (i,j) by Eq. (9.6)
step 3. Get a pair (i, j) that has

max
i

[(max
j

	Qij) × factor(ci, cki )] ; ki = arg max
j

	Qij

step 4. If 	Qij < 0, the max Q is reached and the algorithm terminates
step 5. Join community i and j
step 6. Update 	Q of the resulting in-process community by Eq. (9.7)
step 7. Repeat step 3

In this Chapter, this algorithm will be referred as LY.
The reduction of update operations obtained when used in the same data set

employed to explain the inefficiencies of CNM is presented in Fig. 9.4. Similar to
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Figs. 9.3, 9.4(a, b) represent the average number of operations required in every 500
iterations and the time consumed for every 500 iterations, respectively. As expected,
we observe a strong reduction in the number of chain-update operations compared
to the results of CNM shown in Fig. 9.3 (Section 9.4.2). The algorithm starts com-
bining in-process communities with lower NIC, and at the final part, it combines
the remaining in-process communities with higher NIC, thereby obtaining a strong
reduction in the overall execution time.

9.5.2 Implementation Improvements

9.5.2.1 Data Structure

Regarding implementation improvements, we employ two triangular matrices so as
to avoid the previously described issues presented in Section 9.4.4. A lower trian-
gular matrix stores 	Q values in the form (i, j) where i > j; if i < j, the 	Q values
are stored in (j, i). A second triangular matrix (upper triangular matrix) stores the
references of the symmetric values in the lower triangular matrix in order to access
the data over the columns of the lower triangular matrix at a constant time O(1), as
depicted in Fig. 9.5a.

DATA

REFERENCE

(b)(a)

3,2

4,3

7,1 7,2 7,3 7,5

4

4

7

7

5

5

2

21

1

3

3 3,1

Fig. 9.5 A new framework. (a) Two triangular matrices–a lower triangular matrix (data) for values
of 	Q and an upper triangular matrix for references of their symmetric values located in the data
matrix. (b) Data structure and how to iterate the elements of community 3

We use a balanced binary tree for rows in both triangular matrices – data and
reference. The advantage of this structure is that deletions and updates of 	Q are
done in O(1).

In order to iterate all the neighbors of community i, or the row in the symmet-
ric matrix, it is necessary to iterate the elements in the lower triangular matrix
and then switch to elements of the upper triangular reference matrix, thereby
obtaining the position and access of the symmetric cell in the lower triangular
matrix. The iteration is shown by the filled area in Fig. 9.5b, where the horizontal
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arrows represent the sequence over the lower triangular matrix and the vertical
arrow represents the iteration of references stored in the upper triangular matrix
to access its symmetric cell in the lower triangular matrix. This process can be
carried out easily by the creation of a special iterator to switch the matrix when
required.

We track the maxj 	Qij of row i for only the lower triangular matrix, thereby
reducing the search space for the recalculation of the maximum 	Q in the row
when required.

9.5.2.2 Reduction of Unnecessary Operations

When all the values of 	Qij in the lower triangular matrix are negative, for a certain
in-process community i, its maximum value is assigned to a constant negative value
in order to avoid unnecessary updates in the max heap H.

Similarly, when combining two in-process communities i and j, we keep track
of the maxk 	Qjk for the community j. In the case that this value is negative,
this in-process community will produce no positive value under any circumstances
(Eq. (9.7)); therefore, this row can be eliminated. In our framework, we eliminate
these rows, thereby reducing unnecessary operations.

9.5.3 Additional Improvements to DDA

It was explained that the normalization of DDA makes the matrix asymmetric, and
therefore, it requires storing the full adjacency matrix. We realized that it is possi-
ble to make the matrix symmetric, and therefore, applicable to our framework. We
present two variations of DDA to assure good modularity [18].

9.5.3.1 DDA Modification 1 (DDA-M1)

Here, the values of 	Q∗ are calculated by

	Q∗
ij = 	Qij

min(ki, kj)
(9.11)

This modification does not compromise the result since under any circum-
stances, for any pair i and j, the maximum value between 	Q∗

ij and 	Q∗
ji is

produced by the minimum value of ki and kj. Therefore, only the maximum of
both values is necessary to store in the triangular matrix. The new step 3 is as
follows:

step 3. Get a pair (i,j) that has maxij 	Q∗
ij
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9.5.3.2 DDA Modification 2 (DDA-M2)

Since DDA applies the normalization to all values of 	Q, we assume that the mod-
ified 	Q∗ must be applied only to the maximum of 	Qij per row rather than to all
the elements of the matrix. The new step 3 is as follows:

step 3. Get a pair (i,j) that has

max
i

[
maxj	Qij

min(ki, kli)

]
; li = arg max

j
	Qij

9.6 Large-Scale Network

Here, we evaluate the effectiveness of our framework when compared to the original
implementation of CNM. Then, we compare the performance of our algorithm with
CNM, its variations, and a recently proposed method. These comparisons have been
performed in large-scale networks from seven SNSs and five theoretical models.
All programs were implemented in standard C++ and executed in a PC with the
following configuration: CPU Xeon 2.8 GHz, 64 GB Ram, and Red Hat Linux. We
should note that all the programs are single processes. For WT, we implemented the
faster version and the one with better modularity, i.e., WT1 and WT2, respectively.

9.6.1 Data Set

9.6.1.1 Real-World Networks

1. Mixi: We use a data set of Mixi, the largest Japanese SNS, when it was at its
earlier phase of uniform growth. The network consists of 360,802 users and
1,904,641 friendship connections. Ahn et al. expressed that SNSs presented
multi-scaling behaviors [1]; however, our data set presented a uniform degree
distribution that made it a special case.

2. Delicious: We crawled the user relationship from delicious during the period
March 9-11, 2007. Our data set consists of 165,344 users and 417,179 friendship
connections.

3. Flickr: We use a data set from Flickr, the largest photo-sharing site based
on social networks, crawled by the Max-Planck Institute [20]. The undirected
network consists of 1,715,255 users and 22,613,981 friendship connections.

4. YouTube: We use a data set from YouTube, the largest video-sharing site with
social networks, crawled by the Max-Planck Institute [20]. The undirected
network consists of 1,138,499 users and 4,945,382 friendship connections.
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5. LiveJournal: We use a data set from LiveJournal, a popular blogging site
whose users form a social network, crawled by the Max-Planck Institute [20].
The undirected network consists of 5,204,176 users and 77,402,652 friendship
connections.

6. Orkut: We use a data set from Orkut, a popular SNS run by Google, crawled
by the Max-Planck Institute [20]. The undirected network consists of 3,072,441
users and 223,534,301 friendship connections.

7. Facebook: We use a data set from Facebook, the largest worldwide SNS, crawled
by the Max-Planck Institute [28] that focused on the New Orleans regional net-
work. The undirected network consists of 63,731 users and 1,545,686 friendship
connections.

9.6.1.2 Theoretical Models

For an appropriate analysis of the influence of the structural properties of networks,
we use the following theoretical models that exhibit different structural properties.

1. Beta model: The beta model [30] proposed by Watts-Strogatz (WS) had the
rewiring probability of 25%.

2. Preferential attachment model: The preferential attachment model [30] proposed
by Barabási-Albert (BA) had each new vertex with degree m = 5,6.

3. Connecting nearest neighbor model: The connecting nearest neighbor (CNN)
model proposed by Vázquez [27] had the single parameter μ = 0.81.

4. Connecting nearest neighbor with random linkage: The connecting nearest
neighbor with random linkage (CNNR) model proposed by Yuta, Fujiwara, and
Ono [31] had random rewiring of 16%. This model extends CNN by introduc-
ing random linkage between nodes. Its authors expressed that the CNNR model
produces SNS-like networks.

5. Fully randomized CNN model: Fully randomized CNN (CNN-FR), which con-
sists of creating a network with the CNN model with the single parameter
μ = 0.81 and randomizing the entire network but maintaining the same degree
distribution, thereby keeping it as a single connected component without parallel
edge and self-loops.

9.6.2 Framework Effectiveness

First, we evaluate the effectiveness of our framework by comparing the original
CNM, implemented and distributed by Clauset2, with the CNM implemented under
our framework. The effectiveness is evaluated using the same networks. Due to the

2http://www.cs.unm.edu/ aaron/research/fastmodularity.htm
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scalability limitations of the original CNM for applying it to networks with over
million nodes, we evaluate them in networks from 10 nodes to 3 million nodes
(k = 5) generated by the CNNR model (rccnr =4%) that produces SNS-like networks
rather than the real large data sets.

Comparative results are displayed in Fig. 9.6. Figure 9.6a presents the execution
time of each implementation in different network sizes. We fit the execution time
vs. the network size per implementation; the curves are displayed for reference.
These results indicate that the CNM under our framework is seven times faster than
the original implementation of CNM. Further, it is observed that the order of CNM
for this experiment is O(n2). The original CNM was executed for up to 1 million
nodes, which took around 45 h. In the case of a network with 10 million nodes, the
original CNM will require about 183 days, while the CNM under our framework
will take about 25 days. This confirms that CNM is impractical to apply to large-
scale networks.

Figure 9.6b presents a snapshot when applied to a network with 1 million nodes
and 5 million edges. Both implementations produce similar results in modularity
and number of communities; thus, our implementation is correct. The number of
communities is slightly different due to the fact that for large networks, CNM pro-
duces slightly different results when a different order of combinations of pairs of
in-process communities with the same high 	Q is taken. This is reproduced by sim-
ply shuffling the node id labels in the network. This variation in the selection order
also brings a difference in the number of nodes in the largest community in the
experiment. It may be caused by composed small communities that are weakly con-
nected to others (explained by the resolution limit) that may be grouped with other
weakly connected communities since the selection order was changed. In our imple-
mentation, since we employ a triangular matrix for the data, the real maximum 	Q
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of a row, in the symmetric matrix, may be located in its symmetric position; there-
fore, the position in the max heap H can be different among equal 	Q, and so is the
selection order of the pairs.

We evaluate how similar the resulting partitions of the network are by the nor-
malized mutual information (NMI) measurement used in the information theory and
arranged for community structures in [8], which uses a confusion matrix M where
rows correspond to the communities of the baseline partition and columns corre-
spond to the target partition. Mij corresponds to the number of nodes in the baseline
community i that appears in the target community j. The NMI is calculated by

NMI(A, B) =
−2
∑cA

i=1

∑cB
j=1 Mij log

(
MijN

Mi.M.j

)

∑cA
i=1 log

(
Mi.
N

)
+∑cB

j=1 log
(

M.j
N

) (9.12)

where cA and cB are the number of communities in partitions A and B, respec-
tively, N is the number of nodes in the network, Mi. is denoted as the sum over row i
of Matrix Mij, and M.j is denoted as the sum over column j. This NMI measure is 0,
if a partition consists of a unique community, and the NMI measure is 1, in a perfect
match of the partitions.

We obtain NMI = 0.91 for the network with 1 million nodes, which indicates
that both partitions obtained from the two implementations are quite similar. Similar
result was obtained when comparing the results of the original CNM in a node id
shuffled version of the network. Further analysis about the details of the communi-
ties were performed in small networks from 20 nodes to 1000 nodes to see if both
implementations produce the same communities, which are presented in Table 9.1.
We compare all communities and evaluate a recall measure that represents the per-
centage of correct nodes assigned to the community by using the results of the
original CNM as baseline. It is observed that both algorithms produce near-equal
partitions for small networks. Therefore, both implementations are the same and
we use the CNM implemented under our framework for the subsequent evaluations
of CNM.

Table 9.1 Similarity evaluation of communities obtained from the original CNM and the CNM
under our framework for small networks

# nodes 20 40 60 80 100 200 400 600 800 1000

NMI 1 0.94 1 1 1 0.675 1 1 0.996 0.944
recall(%) 100 97 100 100 100 73 100 100 99 80

9.6.3 Algorithm Comparison and Network Structure Influence

We compare our algorithm with CNM and its variations in seven real data sets from
SNSs and five theoretical models that exhibit different structural properties. There
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are benchmarks such as [8, 16] to compare the algorithms when used in small net-
works or a synthetic model with a predefined structural property. However, none of
them considers a set of networks with different structural properties, which impact
the algorithm performance, as shown in the results. For an appropriate analysis of
the influence of the network structure, we use the previously mentioned models
(Section 9.6.1.2) to create networks with the same size as the real data from Mixi
(360,802 nodes and 1,904,641 edges). The structural characteristics of all data sets
are presented in Table 9.2.

Table 9.2 Comparison of degree correlation rcor, average local clustering coefficient C, and the
characteristics of SF (scale-free), HT (high-transitivity), Gap (in the distribution of community-
sizes), and Rnd (randomness) for the real data sets and synthetic networks

Nodes Edges rcor C SF HT Gap Rnd

Mixi 360,802 1,904,641 0.121 0.330 + + + +
Delicious 165,344 417,179 −0.022 0.165 + + + +
Flickr 1,715,255 22,613,981 0.024 0.184 + + + +
YouTube 1,138,499 4,945,382 −0.034 0.081 + + + +
LiveJournal 5,204,176 77,402,652 0.094 0.275 + + + +
Orkut 3,072,441 223,534,301 0.017 0.167 + + + +
Facebook 63,731 1,545,686 0.172 0.221 + + + +

WS 360,802 1,904,641 0.222 0.373 − + − ++
BA 360,802 1,904,641 −0.009 0.000 + − − +++
CNN 360,802 1,904,641 0.100 0.398 + + − −
CNNR 360,802 1,904,641 0.124 0.346 + + + +
CNN-FR 360,802 1,904,641 −0.010 0.007 + + − +++

The experimental results are presented in Tables 9.3, 9.4, and 9.5, which
shows the number of updates conducted, execution time, and the modularity of all
algorithms in each data set, respectively.

In Table 9.3, we observe that the CNM produced the largest number of update
operations due to its attractor of large communities, while our algorithm produced
the lowest number of update operations except in YouTube and the CNN model
where DDA-M2 and DDA-M1 had the largest reduction, respectively. This table
demonstrates that the reduction of chain updates of our LY is larger than WT in its
fast version (WT1) for all data sets.

For instance, our algorithm reduced the number of operations by factors of 81,
21, 12, and 24 times when compared to the number of operations required by CNM
in Mixi, Delicious, YouTube, and Facebook, respectively, while WT1 reduced the
number of operations by a factor of 17, 3, 4, and 21 times when compared to the
number of operations required by CNM in Mixi, Delicious, YouTube, and Facebook,
respectively. The same is observed in the synthetic networks where our algorithm
reduces the number of operations by a factor of 576, 506, and 69 times for BA,
CNN, and CNNR, respectively. In the case of YouTube, DDA-M2 produces the
largest reduction, which requires further analysis.
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Table 9.4 Execution time in seconds required for each algorithm in different network structures,
including the level of randomness of the network structure as reference

Data set CNM DDA-M1 DDA-M2 WT1 WT2 LY Rnd

Mixi 4,747 417 509 639 884 288 +
Delicious 139 24 17 26 54 17 +
Flickr 36,191 17,090 12,236 11,422 31,688 7,986 +
YouTube 11,892 2,091 959 3,852 8,062 2,631 +
LiveJournal 810,302 114,898 339,544 56,767 195,982 43,059 +
Orkut – 275,154 561,527 41,961 562,761 26,960 +
Facebook 72 15 58 11 41 11 +

WS 2,788 459 154 75 60 59 ++
BA 3,312 607 2,178 122 359 94 +++
CNN 573 91 324 383 1,075 186 –
CNNR 4,039 163 274 494 630 265 +
CNN-FR 6,301 1,044 1,043 383 601 160 ++

Table 9.5 Modularity obtained from each algorithm in different network structures, including the
degree correlation of the network as reference

Data set CNM DDA-M1 DDA-M2 WT1 WT2 LY rcor

Mixi 0.601 0.666 0.662 0.466 0.602 0.615 0.121
Delicious 0.771 0.796 0.790 0.714 0.760 0.775 –0.022
Flickr 0.626 0.623 0.603 0.463 0.529 0.542 0.024
YouTube 0.705 0.703 0.694 0.552 0.644 0.646 –0.034
LiveJournal 0.686 0.737 0.731 0.433 0.631 0.648 0.094
Orkut – 0.663 0.648 0.380 0.606 0.540 0.017
Facebook 0.606 0.592 0.596 0.385 0.510 0.500 0.172

WS 0.654 0.763 0.763 0.642 0.701 0.757 0.222
BA 0.257 0.233 0.234 0.200 0.220 0.205 –0.009
CNN 0.685 0.685 0.699 0.512 0.650 0.678 0.100
CNNR 0.596 0.632 0.626 0.400 0.598 0.600 0.124
CNN-FR 0242 0.225 0.219 0.194 0.217 0.204 –0.010

The strong difference in the reduction can be observed in the execution time
presented in Table 9.4, where our algorithm performs faster in almost all cases with
the exception of YouTube, where DDA-M2 is faster, and CNN and CNNR, where
DDA-M1 performs better. For instance, our algorithm took only 1 min to extract
communities in the WS network while DDA-M1 required 7 min, the same happens
in the real data, where the community extraction of Mixi was done in less than 5 min
in LY, 1.5 times faster than DDA-M1 that took 7 min. Similarly for the largest data
set from Orkut, LY required 7 h while WT1 and DDA-M1 required 11.6 h and 3
days, respectively. It is to be noted that all modifications of CNM outperform the
former CNM.
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From the results, for synthetic networks that have the same sizes but different
structural properties, it is observed that the speed of LY and DDA-M1 are influ-
enced in opposite ways by the level of the randomness of the network structure.
The larger the level of randomness, the slower is DDA-M1, because DDA-M1 pri-
oritizes the pair of communities that have one in-process community with lower
degree regardless of the degree of the pair, which may be larger in randomized net-
works and therefore impact the speed of DDA-M1. It should be noted that our LY
algorithm, while slower in CNN compared to DDA-M1, is still faster and applicable
to large-scale networks generated by CNN and CNNR.

Table 9.5 shows that lower modularity is obtained when the network has lower
degree of correlation. DDA-M1 and DDA-M2 provide even better modularity, but
its speed is strongly influenced by the network structure. We should remember that
DDA was proposed to improve the modularity and not speed [7]. These results
demonstrate that WT1 produces the lowest modularity and its time improvement
was outperformed by our LY algorithm.

Our algorithm, developed for speed, produces modularities comparable to the
former CNM. These results demonstrate that our LY algorithm in combination with
our framework produced large reductions in the number of operations in almost any
network structure, thereby making it practical for community extraction in large-
scale networks. If modularity is the main concern, DDA-M1 and DD1-M2 can be
employed; however, the execution time is increased and not practical for mega-sized
networks. Another possibility is merging LY and DDA-M2 by means of combin-
ing both factors, experimental results showed improvements in modularity, close to
DDA-M2, with slight impact in speed, compared to LY.

The code is freely available at http://sites.google.com/site/communityextraction/

9.6.4 Competing Algorithm

Finally, we compare our improvements with the recently proposed BGLL [3] that
differs from CNM. For BGLL, we employed the program distributed by its authors,3

which is divided in to two main modules–a conversion that pre-processes the adja-
cency network to perform some preliminary calculations required for the algorithm
and the main module that performs the community extraction. It differs with the cur-
rent implementation of our algorithms, where all calculations are performed in the
same process (no pre-processing) and we record several logs for the performance
analysis while BGLL does not record any log at all. Some results are presented in
Table 9.6. It is observed that BGLL produces modularity comparable to DDA-M1
and DDA-M2, and the algorithm is fast, except in the case of BA where took it
longer.

The aim of this chapter is to understand the behavior of the widely used CNM
and its variations and to propose a solution to overcome the inefficiencies of CNM.

3http://findcommunities.googlepages.com/
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Table 9.6 Some results of BGLL

Data set Delicious WS BA CNN CNNR CNN-FR

Pre-processing time (s) 0.72 3.11 3.73 3.43 3.98 4.05
Extraction time (s) 2.71 2.81 331.26 5.50 9.74 36.84

BGLL appears to be a promising approach and further research on the analysis of the
behavior of this algorithm is recommendable, including a fair comparison, by using
a similar framework for similar conditions and with the same level of optimization.
Future studies for BGLL should consider and explain the key issues such as its speed
and modularity, similar to what we analyze in this chapter for CNM.

9.7 Conclusions

We have analyzed the behavior of CNM and found that the number of interconnected
communities (NIC) of an in-process community is the determinant factor that affects
the speed in CNM. We found the existence of attractors of large communities in the
early part of the process, where CNM tends to absorb small communities, such as
snowballs, which may produce a surge in its NIC. A new improvement to CNM was
proposed based on the manipulations of the NIC, which prioritizes the combinations
of in-process communities with less NIC, thereby reducing the number of update
operations. We presented a new implementation framework that is seven times faster
than the original CNM implemented by Clauset. All variations of CNM under our
framework were evaluated with real data sets from seven SNSs and five theoretical
models with different structural properties. Experimental results show the strengths
and weaknesses of the algorithms against different network structures. Our proposed
LY algorithm was the fastest among the several network structures, and the most
comprehensive in terms of modularity and speed, which is practical for application
to large-scale networks.
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Chapter 10
Geographically Organized Small Communities
and the Hardness of Clustering Social Networks

Miklós Kurucz and András A. Benczúr

Abstract Spectral clustering, while perhaps the most efficient heuristics for graph
partitioning, has recently gathered bad reputation for failure over large-scale power
law graphs. In this chapter we identify the abundance of small-size communities
connected by long tentacles as the major obstacle for spectral clustering. These sub-
graphs hide the higher level structure and result in a highly degenerate adjacency
matrix with several hundreds of eigenvalues very close to 1. Our results on clus-
tering social networks, telephone call graphs, and Web graphs are twofold. (1) We
show that graphs generated by existing social network models are not as difficult to
cluster as they are in the real world. For this end we give a new combined model
that yields degenerate adjacency matrices and hard-to-partition graphs. (2) We give
heuristics for spectral clustering for large-scale real-world social networks that han-
dle tentacles and small dense communities. Our algorithm outperforms all previous
methods for power law graph partitioning both in speed and in cluster quality. In
a combination of heuristics for the contraction of tentacles as well as the removal
of community cores that involve the recent SCAN (Structural Clustering Algorithm
for Networks) algorithm, we are able to efficiently find balanced partitioning of
over 10 million edge power law graphs. In particular, our heuristics promise similar
or better performance than semidefinite relaxation with orders of magnitude lower
running time.

10.1 Introduction

Clustering covers a wide class of methods to partition a set of data in order to locate
relevant information by grouping and organizing similar elements in an intelligi-
ble way. The purpose of clustering members of a social network may include user
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segmentation, selection of communities with desired or undesired properties as, e.g.,
high ADSL penetration, viral marketing planning [36], or high recent churn rate. In
a survey, Newman [31] observes that in social network research “particular recent
focus has been the analysis of communities.”

Spectral graph partitioning, a method based on the singular value decomposition
(SVD) of the adjacency matrix, is a widely used heuristics for finding good balanced
cuts in real-world graphs [1]. It is natural to apply the spectral method for large
social networks as well. In addition to partitioning, the singular vectors themselves
serve the purpose of understanding the organizing principles of the contacts between
the members of the network [30].

Spectral graph partitioning has recently gathered bad reputation for failure over
large-scale social networks. Lang [28] observes that for

many power law graphs, the spectral method produces cuts that are highly unbalanced,
thus decreasing the usefulness of the method for visualization or as a basis for divide-and-
conquer algorithms.

He recommends semidefinite programming (SDP) to yield stricter balance con-
straints and a flow-based rounding cleanup step to find the best cuts.

In our experiments the existing models are insufficient to explain the failure of
spectral partitioning. While Lang [28] in part suggests this may be due to the expan-
sion and the power law degree distribution in these networks, in our experiments
graphs generated by known models for social-like networks, the preferential attach-
ment model of Barabási et al. [4], the evolving copy model of Kumar et al. [23], and
the small-world model of Kleinberg [22] are all easily partitioned in a balanced way
by the spectral method.

We identify dense communities interconnected by long tentacles as the main rea-
son for the hardness of clustering. We call a subgraph a tentacle if it can be built
by recursively adding low-degree nodes. A tree is an obvious example of a tentacle;
we may, however, have cycles or even somewhat wider objects built by degree 3 or
higher nodes in a tentacle. Notice that our notion of a tentacle is reminiscent to the
octopus structure described by Lang [28], although key is that the tentacles connect
a large number of dense regions.

Another blocker of the partitioning method is the abundance of relative small,
local dense communities that attract most of the first principal vectors. These dense
regions are seemingly similar to the dense bipartite communities described by the
evolving copy model [23]; surprisingly, however, this model does not generate
sufficiently dense communities needed for the observed bad behavior of spectral
partitioning.

Our key result is a new combined model of social networks. Graphs generated
by our model are hard to partition with the spectral method and in addition the
size distribution of dense communities and tentacles fits those of the hardest real-
life graphs. As the first step we generate a large number of small dense regions
modeling densely settled geographic regions. We generate a graph over the 2D grid
by Kleinberg’s geographic small-world model [22] and replace some of its ran-
domly selected nodes by small cliques. In the second step we achieve power law
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degree distribution over this graph by generating a degree sequence. The required
number of edges is generated as in Kleinberg’s model independent with probability
proportional to the Euclidean distance in the underlying grid.

The clustering hardness measurements rely on our recent results [24] that extend
the applicability of spectral clustering to very large social networks. In this chap-
ter we summarize heuristics that prevent low-level communities from overtaking
the first principal vectors. Our method is based on the combination of the removal
of Tightly Knit Communities (TKC) [29] and the contraction of long tentacles. We
build on the dense community finder algorithm of Xu et al. [40] who identify bridges
across TKCs as the main reason for the failure of graph partitioning methods. Even
though in our observations community finder algorithms are insufficient in them-
selves for partitioning very large networks, these methods, however, can be used
prior to spectral partitioning to remove a large number of cores that act as TKCs by
attracting a large number of principal vectors.

Our experiments are performed on the LiveJournal Friends network of more than
three million users as in [24] and extended by two additional data sets: the call graph
of more than two million Hungarian Telecom users with close 50 million directed
edges [27] and the host graph of the UK2007-WEBSPAM graph of Boldi et al. [6]
that contains more than 100,000 hosts and near two million directed weighted edges.
Our networks form the largest power law graph attacked by graph partitioning. In
earlier experimentation on social networks [17, 32, and many more], networks are
smaller by orders of magnitude so that hierarchical community structures or even the
graphs themselves could easily be visualized. The largest graph partitioning bench-
mark has only 448 K nodes and 3.3 M edges and Kevin Lang [28] considered the
Yahoo IM graph with less than 10 M edges.

The rest of this chapter is organized as follows. After discussing related results,
in Section 10.2 we describe the components of our spectral partitioning algorithm.
Then in Section 10.3 we describe the real networks used in our experiments. A cen-
tral result of the chapter in Section 10.4 describes existing and new social network
models and their properties related to dense communities and tentacles. Finally, the
key running time and cluster quality measurements are in Section 10.5.

10.1.1 Related Results

The applicability of spectral methods to graph partitioning is observed in the early
1970s [14]. The methods are then rediscovered for netlist partitioning, an area
related to circuit design, in the early 1990s [1, 2, 10] and a large number of results
appeared in the “Spectral Clustering Golden Age” [42, etc] 2001.

Prior to our work, spectral clustering was known to fail for large power law
graphs with several partly successful attempts [26, 28]. When clustering large social
networks, spectral methods tend to chop off tentacles attached loosely to a densely
connected larger subset, resulting in a disconnected part and keeping the dense
component in one [28]. While even the optimum cluster ratio cut might have this
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structure, the disconnected cluster consists of small graph pieces that each belong
strongly to certain different areas within the dense component. Since the only prac-
tically meaningful interpretation of a disconnected cluster is to treat each connected
component separately, we obtain an undesired very uneven distribution of cluster
sizes.

The first ingredient of our algorithm relies on our recent result [26] where we
obtain good quality clusters by heuristics for rejecting uneven splits and small clus-
ters. The algorithm is based on k-way hierarchical clustering as described among
others by Alpert et al. [2].

One solution proposed to solve the problem of accidental unbalanced low-quality
splits with possibly disconnected parts is the Divide-and-Merge algorithm [11] that
simply produces more clusters than requested and merges them in a second phase.
The applicability of this algorithm for some of the easier-to-partition social networks
with certain modifications is demonstrated in [26].

While spectral methods are key in top-down clustering, as a different possibility
agglomerating strategies are used for bottom-up clustering [1]. However, these latter
methods are known to be unstable [33], in particular for the blogger network where
small communities are in abundance while the interpretation of a next layer of super-
communities over communities is missing. We show that the top-down approach is
probably the right choice to analyze very large-scale social networks.

As a related area, the HITS [21] ranking algorithm is a direct application of the
SVD since the hub and authority ranks correspond to the first left and right singular
vectors. It has been known for long that HITS is unstable [33] and it should be
applied for subgraphs only. We believe that the reason is the same as for the failure
of spectral partitioning. In particular, by using our preprocessing method, we avoid
the Tightly Knit Community (TKC) phenomenon caused by communities that are
small on a global level but still grab the first (or, as we show, even the first many)
principal vectors. Lempel et al. [29] are probably the first who identify the TKC
problem in the HITS algorithm, their algorithmic solution (SALSA), however, turns
out to merely compute in- and out-degrees [7]. In contrast we keep SVD as the
underlying matrix method and filter the relevant high-level structural information
by removing TKCs and concentrating the network by contracting long tentacles.

10.2 Components of the Algorithm

First we describe the graph bisection relaxation methods, the singular value decom-
position (SVD) and semidefinite programming (SDP) following the discussion of
Lang [28], and then our combination of heuristics to filter out the globally rel-
evant network structure prior to spectral clustering. The pre-filtering heuristics
(Sections 10.2.1 and 10.2.2) are applicable in general to obtain globally meaningful
principal vectors.

Spectral clustering refers to a set of a heuristic algorithms, all based on the overall
idea of computing the first few singular vectors and then clustering in a low (in
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certain cases simply one [14]) dimensional subspace. As input, partitioning takes L,
the graph Laplacian defined as

L = D − A

where A is the graph adjacency matrix and D is a diagonal matrix such that Dii is
the sum of the edge weights at node i. The Laplacian L is positive semidefinite and
its first eigenvector is the all-one vector with eigenvalue 0.

The standard Quadratic Integer Program for graph bisection is

1/4xT Lx

where x is the ± 1 cut indicator vector. In order to avoid the trivial cut with all nodes
on one side, we have xTe = 1 where e is a vector of all ones. When relaxing x to
arbitrary real values between −1 and +1, the optimum is known to be the second
eigenvector (the Fiedler vector) of L [14]. We may also relax indicator values to
be arbitrary norm 1 n-dimensional vectors. In this case, the resulting optimization
problem can be solved by semidefinite programming [28].

In our experiments, we use hierarchical spectral clustering algorithms that project
the graph into a d-dimensional vector space [10] and divide it into more than two
parts by the k-means clustering algorithm in one step, as suggested first by [42].
In order to obtain the projection, we test both the SDP relaxation in d dimensions
and the first d singular vectors. As suggested by [12, 38], instead of the Laplacian
L = A−D we use the weighted Laplacian L = D−1/2AD−1/2. By using the weighted
Laplacian, we may produce better quality partitioning [26].

The two main ingredients of our algorithm consist of the removal of small dense
regions and the contraction of long interconnecting tentacles. In Fig. 10.1 we see
typical subgraphs of the entire network of several small community cores, two of
which is seen, with low degree nodes loosely connected to some of them or inter-
connecting pairs of them. Since SVD is unable to select from the abundance of small
cores, it falls into the trap of the Tightly Knit Community effect [29] by selecting
the most dominant such structure that is still very small on the scale of the entire
network. We will demonstrate that after the proposed preprocessing these traps are
avoided and meaningful principal vectors are found.

10.2.1 Tentacles and Small Component Heuristics

We use two heuristics for handling tentacles, one for pre- and another for
postprocessing. The postprocessing is identical to the one discussed in [26]: we test
the resulting partition for small clusters and try to redistribute nodes to make each
component connected. Preprocessing consists of eliminating tentacles so that related
communities are moved in the proximity of each other.

In a recursive definition we say that a node belongs to a tentacle if its degree
is not more than a prescribed value dmax; we use dmax = 3. As long as there are
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Fig. 10.1 Top: A 82-node subgraph of the LiveJournal Friends network, with two cores and several
short tentacles. Bottom: A similar 317-node subgraph of the UK2007-WEBSPAM host graph

tentacle nodes in the graph, we contract them into (one of) their neighbors with
smallest degree. In this way, we may create new small degree nodes and the
procedure may recursively continue. By recording the contractions we may also
reconstruct all nodes that get contracted into a final node. Such a set of nodes is
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called a tentacle. The procedure is described in Algorithm 1. We note that the defi-
nition of a tentacle depends on the order of contractions and we use this notion only
for the preprocessing heuristic and not for characterizing a particular node.

In addition to preprocessing by tentacle removal, in Algorithm 2 we also give
a postprocessing subroutine to reject very uneven splits identical to that of [26].
Given a split of a cluster (that may be the entire graph) into at least two clus-
ters C1 ∪ . . . ∪ Ck, we first form the connected components of each Ci and
select the largest C′

i. We consider vertices in Ci − C′
i as outliers. In addition, we

impose a relative threshold limit and consider the entire Ci outlier if C′
i is below

limit.

Next we redistribute outliers and check if the resulting clustering is balanced.
In one step we schedule a single vertex v to component Cj with d(v, Cj) maximum
where d (A, B) denotes the number of edges with one end in A and another in B.
Scheduled vertices are moved into their clusters at the end so that the output inde-
pendent of the order vertices v is processed. By this procedure, we may be left with
less than k components; we will have to reject clustering if we are left with the entire
input as a single cluster. In this case, we either try splitting it again with modified
SVD parameters or completely give up forming subclusters.

10.2.2 Tightly Knit Communities and the SCAN Algorithm

The second main ingredient of our algorithm consists of the removal of community
cores seen in Fig. 10.1 or, in another terminology, Tightly Knit Communities (TKC)
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before singular value decomposition. Several authors observe difficulties caused by
the TKCs: Lempel and Moran [29] investigate hyperlink-based ranking on the Web
and recently [40] identifies hubs that bridge between several TKCs as the main
difficulty in network partitioning.

Several algorithms are proposed to identify community cores. Flake et al. use
network flows [15] or min-cut trees [16] and Xu et al. [40] uses an agglomerating
method that prefers core nodes and avoids bridges that connect more than one TKC.
All these methods suffer from the abundance of very small communities with no
superimposed larger scale structure that network flow-based heuristics could exploit.
Some experiments on the failure of community core-based approaches are found
in [27].

Our heuristic solution is based on the Structural Clustering Algorithm for
Networks (SCAN) algorithm [40]; however, instead of using moderate param-
eters to build large clusters directly as community cores, we use SCAN with
restrictive values and remove 1–5% of the nodes that belong to TKC prior
to SVD.

The assumption of Xu et al. [40] is that hub vertices bridge many clusters.
Therefore they define the SCAN algorithm that selects pairs of vertices with a
concentration of common neighbors as candidate intra-cluster nodes limited by
parameter ε. Hubs, as opposed to intra-cluster nodes, are then characterized by the
distraction of neighbors. Finally, cores are formed by nodes that have at least μ

neighbors within the core.
The key step in the SCAN algorithm is the selection of edges between pairs of

nodes whose neighborhood similarity is above a threshold ε. In the original algo-
rithm of Xu et al. [40], with �(u) denoting the neighbors of u, the similarity is
measured as

σ (u, v) = |�(u) ∩ �(v)|/√|�(u)||�(v)|.

For power law graphs, in particular for the Web graph in our experiments, however,
the running time for computing σ (u, v) is very large due to the huge neighborhood
sets �(u) involved. Hence we use the Jaccard similarity

Jac(u, v) = |�(u) ∩ �(v)|/|�(u) ∪ �(v)|

that we approximate by 100 min-hash fingerprints [8].
The modified SCAN Algorithm 3 proceeds as follows. First it discards edges

that connect pairs of dissimilar nodes below threshold ε: these edges may bridge
different dense regions [40]. Then nodes with more than μ remaining edges are con-
sidered as community cores. We use μ = 4 in our experiments. Finally, connected
components of cores along remaining edges augmented by neighboring non-core
nodes. The resulting components C may overlap at these augmented vertices that
are considered hubs in [40].
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Our main algorithm (Algorithm 4) combines the previous three heuristics. First,
community cores Q1, . . . , Qs are identified by the SCAN algorithm and discarded
from the graph. Then tentacles are contracted prior to the actual SVD proce-
dure. SVD is performed on the normalized Laplacian. The singular vectors are
normalized before the actual partitioning by k-means. The SVD and normaliza-
tion steps can also be replaced by solving the semidefinite relaxation. Finally,
as the last heuristic, we feed all k-means clusters and SCAN cores to the small
component redistribution procedure that merges the SCAN cores into the final
components.

For SVD we use the Lanczos code of svdpack [5] and for SDP we use Burer
and Monteiro’s solver [9].
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10.3 Data Sets

10.3.1 LiveJournal Friends Network

Our first data set consists of the LiveJournal friends network downloaded in a
2-week period of November 2007.1 The total number of users is 3,583,332 with
44,913,072 directed edges, out of which 14,286,827 M is reciprocal. In contrast, the
data set of Backstrom et al. [3] has 4.2 M users with no major reason for difference
between the two collections. By manual analysis we observed certain users miss-
ing due to timeouts, some users renamed, also some friends changed. The union of
the two collections has 4,720,668 users, less than 28% of the 14 million listed by
LiveJournal as of November 2007.

In our analysis below we rely solely on our crawl since no user data is collected
in [3]. We keep only bidirectional edges; this procedure leaves us with a giant
component with 2,379,267 nodes and 14,286,827 reciprocal edges. Since graph
partitioning requires a connected graph, we discard all other nodes.

In this chapter we only summarize the most important results related to the
hardness of clustering. More detailed analysis of LiveJournal clusters is described
in [24].

The available metadata provided via a LiveJournal XML interface and the per-
centage of users who provide the information is summarized in Table 10.1 with a
list of characteristic country locations in Table 10.2.

Table 10.1 Availability of
metadata over the LiveJournal
friends network

Country Age Interest School

76.03 39.79 62.82 47.31

Table 10.2 Top list of
country location Country Number % known % all

US 1 463 654 76.9 40.9
CA 87 609 4.6 2.4
RU 82 801 4.3 2.3
UK 73 789 3.8 2.1
AU 32 508 1.7 0.9
SG 14 986 0.7 0.4
DE 11 329 0.6 0.3
PH 10 380 0.5 0.3
UA 10 260 0.5 0.3
JP 7 778 0.4 0.2
FI 7 104 0.4 0.2
NL 5 970 0.3 0.2
NZ 4 958 0.3 0.1
FR 3 747 0.2 0.1

1Available for research purposes upon request from the second author, benczur@sztaki.hu
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To illustrate our data set, we have performed six-way partitioning on the
LiveJournal graph and illustrated the clusters by the country, age, and religious
interest (Jesus, atheist, pagan) in the clusters in Fig. 10.2. We find the characteristic
Russian cluster [18, 41] as well as two international clusters, one with European con-
nection, the other with mostly English-speaking countries. The English-speaking
cluster consists of the UK, CA, and AU; in addition they are clustered together
with SG and PH. The US-only clusters predominantly consisted of high school or
college-aged people. We find three US clusters, two with predominant interest in
Jesus, while the third with Jesus in minority compared to Paganism and Atheism
(this last cluster is also more international). We also noticed an apparent correlation
with younger age and interest in Jesus. We note that certain clusters such as the
Russian one are underrepresented for this type of interest.

Clockwise:
16–18
19–21
22–24
25–27
28–30

Clockwise:
Jesus
Paganism
Atheism

No Size characteristics
1 60 681 International/Europe
2 699 199 US college
3 447 694 International/English speaking + SG, PN
4 170 257 US high school
5 729 604 US Atheist/Pagan
6 216 832 Russian

Fig. 10.2 Partition of LiveJournal users into six, with the distribution of location (top), age
(middle), and religious interest (bottom). Characteristics of the parts 1–6 (left to right) are shown
in the table
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10.3.2 Telephone Call Graph

Our second data set consists of the telephone call graph of the Hungarian Telecom
used in [26]. For a time range of 8 months, after aggregating calls between the
same pairs of callers we obtained a graph with n = 2, 100, 000 nodes and m =
48, 400, 000 directed edges that include 10,800,000 bidirectional pairs.

Settlement sizes (Fig. 10.3) follow a distribution very close to log normal with the
exception of a very heavy tail of Hungary’s capital Budapest of near 600,000 users.
In a rare number of cases the data consists of subpart names of settlements resulting
in a relatively large number of settlements with one or two telephone numbers; since
the total number of such nodes is negligible in the graph, we omit cleaning the data
in this respect.
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Fig. 10.3 Distribution of the
number of telephone lines by
settlements in the telephone
data

We discard approximately 30,000 users (1.5%) that become isolated from the
giant component; except for those 130 users initially in small components all nodes
can be added to the cluster with most edges in common but we ignore them for
simplicity.

The graph has strong top-down regional structure with large cities appearing as
single clusters. These small-world power law graphs are centered around very large
degree nodes and are very hard to split. In most parameter settings of the original
spectral method we are left with a large cluster of size near that of the Budapest
telephone users.

10.3.3 UK2007-WEBSPAM Host Graph

The third data set is the host graph of the UK2007-WEBSPAM crawl of Boldi et al.
[6] that contains 111,149 hosts and 1,836,441 directed weighted edges. The hosts
are labeled with the top-level Open Directory [34] categories as in [19]. The list of
the largest categories is seen in Fig. 10.4, right.
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hosts labeled

23595 2622
13111 8754
38279 14964

111149 35814

AR arts
BU business
CO computers
HE health
RC recreation
RE reference
SC science
SH shopping
SO society
SP sports

Fig. 10.4 The size of the three largest remaining clusters and the number of labeled hosts within
the cluster and in the entire crawl (bottom) as well as the distribution of categories within these
clusters in the same order, left to right, with the list of abbreviations (left)

Over this host graph plain spectral clustering into 100 clusters leaves three giant
clusters unsplit as seen in Fig. 10.4. The distribution of the 14 categories is shown
in the pie charts. The first cluster has a very low fraction of known labels, most of
which belongs to business (BU), computers (CO), and sports (SP), likely a highly
spammed cluster. The second cluster has high ODP reference rate in business (BU),
shopping (SH), computers (CO), arts (AR), and recreation (RC). Finally, the largest
cluster has an opposite topical orientation with high fraction of health (HE), ref-
erence (RE), science (SC), and society (SO). Among the less frequent four more
categories, this latter cluster has a high fraction of kids and home while the second
cluster contains games; news is negligible in the three clusters.

10.4 Social Network Models

Network models such as the preferential attachment [4], evolving copy [23], or
Kleinberg’s small world [22] describe certain properties of social networks and Web
graphs such as the degree distribution, low diameter, geographic concentration of the
contacts, and even certain dense communities.

We show that the above models do not explain the hardness of clustering. In what
follows, we describe our procedures to generate graphs according to these models
and also give our new model based on Kleinberg’s small world [22] combined with
power law degree and community distributions. Throughout the discussion, we will
refer to the following measurements. In Fig. 10.5 we show the distribution of the
sizes of community cores and tentacles in the models as well as the real graphs in
Section 10.3. In addition, in Table 10.3 we show the 15th largest singular value under
different heuristics as an indicator of the hardness for partitioning. We also mark
instances where no balanced bipartitioning is possible by a heuristics-free spectral
method.

Barabási et al. [4] define the preferential attachment model that generates graphs
with power law degree distribution. In their model, new vertices arrive and they
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Fig. 10.5 Top: the
distribution of the size of the
tentacles identified by
Algorithm 1. Bottom: the
distribution of the size of the
communities identified by the
modified SCAN Algorithm 3.
Both charts are on the log–log
scale and the horizontal axis
shows the size of the
component while the vertical
the number of components
with that size

Table 10.3 The 15th largest singular value for different inputs and the choice of the heuristics for
tentacle contraction (tent) and core removal (SCAN)

σ15 Plain
Tentacle
removal

Core
removal Both

Kumar 0.956 0.783 0.956 0.783
Kleinberg 0.980 0.811 0.980 0.811
New Model 0.997 0.994 0.988 0.810
LiveJournal 0.999 0.989 0.993 0.987
Telephone 0.897 0.886 0.897 0.881
UK2007-WEBSPAM 0.894 0.856 0.867 0.698

Figures in boldface denote cases when no balanced partitioning is possible at
the first split by Algorithm 2

choose edges among old vertices proportional to their degree. This model generates
power law degree distribution with the exponent −3; if random noise is added to
the edge selection procedure, we may obtain different exponents as well [35]. By
generating graphs according to these models, we obtain neither cores nor tentacles
and all such graphs can be partitioned by the basic spectral method.
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In the evolving copy model of Kumar et al. [23], whenever new vertices arrive,
they select an old vertex uniform at random and copy their edges with noise. In addi-
tion to achieving power law degree distribution, the graphs in this model have a large
number of dense bipartite cliques. Dense bipartite cliques are characteristic to Web
graphs and as our particular interest they may yield dense regions with imbalanced
spectral clusters. This model already generates hard instances for spectral parti-
tioning; to however, they can be resolved by tentacle removal itself (Table 10.3).
We observe no cores; tentacle size distributions are similar to the hard instances
(Fig. 10.5).

The small-world graph model of Kleinberg [22] captures a different property of
social networks, the fact that short paths not just exist but can efficiently be found
by using only local information. In his model there is an underlying 2D grid, and
nodes select a constant number of neighbors inversely proportional to their squared
Euclidean distance in the grid. The model has a density parameter; if an inter-
mediately large number of edges are generated from each node, then, similar to
the evolving copy model, tentacles appear and partitioning is possible only after
contracting them (Table 10.3). This model generates no cores.

Our new model is a power-law-degree-and-clique small world, defined as fol-
lows. The starting point is the small-world graph model of Kleinberg [22] with
nodes placed over a 2D grid.2 Next we generate geographically dense regions over
the grid by assigning density to each node according to a power law distribution with
exponent −3. Finally, as in Kleinberg’s model, we connect nodes with probability
inversely proportional to their squared Euclidean distance. However, in Kleinberg’s
model the degree is constant; in our model for each vertex we generate a number
t by a power law distribution with exponent −3 and add t edges independent with
probability as in Kleinberg’s model.

Graphs generated in this new model are hard to partition, as seen in Table 10.3.
In order for spectral partitioning to produce balanced enough partitions to pass the
small component redistribution heuristics (Algorithm 2), both dense community
removal and tentacle contraction are required for preprocessing. The distribution
of community and tentacle sizes follows close power law very similar to those of
the real graphs and in particular to LiveJournal, the hardest instance.

We remark that a simpler version itself suffices as a hard example for spectral par-
titioning. Instead of a power law density generation, we may simply select roughly
1% of the grid points and add 10 element clusters to these points. The tentacle size
distribution remains the same and spectral partitioning remains hard. We also remark
that power law and log-normal distributions are similar in their heavy tail; a power
law community size distribution may hence follow from the log-normal settlement
size distribution as seen in Fig. 10.3.

2To simplify generation we in fact used a 2D torus.
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10.5 Experiments on Cluster Quality and Running Time

In this section we compare the solution of an SVD and an SDP-based relaxation
of the graph partitioning problem with and without the heuristics for removing
tentacles (Section 10.2.1) and dense communities (Section 10.2.2).

As an initial observation, we show how different projection methods on the
Russian cluster of the LiveJournal friends network may or may not distinguish
between Russians and other nations within the Russian cluster (Ukraine, Belarus,
Estonia etc.). In [26] it is observed that direct spectral partitioning of this cluster
is impossible, since in the singular value sequence even the 100th largest one is
above 0.99. In accordance, the weighted Laplacian of the unmodified graph has
non-characteristic principal vectors as seen in Fig. 10.6. However, the distinction
between Russian and non-Russian nationalities becomes strongly visible by using
our preprocessing algorithm prior to SVD (Fig. 10.6, middle). Finally, in the bottom
of Fig. 10.6 we also see why the semidefinite relaxation outperforms SVD: since
it projects nodes on a unit ball, most of the time a balanced partitioning may be
constructed, although it does not necessarily corresponds to a good quality one. In
our example, locations other than Russia tend to shift to the upper left part of the
projection, although they strongly mix near the central dense diagonal hyperplane.

In our main experiments we measure clustering quality in a hierarchical partition-
ing of the three real-world graphs into 500 clusters. The branching factor in k-means
is set to k = 8; note that the actual number of sub-clusters may be smaller. The ini-
tial number of dimensions is set to d = 15. The SVD-based algorithms include
the option to give up clustering if the number of dimensions becomes so high that
they run out of memory. As seen in Table 10.3, this happens for the heuristics-free
SVD at a second-level split both for LiveJournal and for the Web graph. As another
distinction, SDP always produces balanced partitioning while SVD stays, with the
above exceptions, within the limit parameter of Algorithm 2. The size distribution
hence varies for the algorithms used that introduce certain noise in the output.

We use four commonly used cluster quality measures, some based on the ground
truth and others purely on graph-based properties. Although all four measures
include correction factors for cluster sizes, we stress again that due to the varying
cluster size distribution, small differences in the quality measures are inconclusive.

First we define entropy and purity, both measuring goodness with respect to the
available ground truth information. For LiveJournal, ground truth is the country, for
the telephone call graph, it is the settlement, and for the Web graph, it is the DMOZ
top-level category. To define, let Ni,
 denote the cluster confusion matrix, the number
of elements in cluster 
 ≤ m with ground truth attribute i and let pi,
 = Ni,
/N


denote the ratio within the cluster. Then the entropy E and purity P are defined as

E = (−1/ log m)
∑



(N
/N)
∑

i
pi,
 log pi,
 and

P = 1

N

∑




max
i

Ni,
,

where the former is the average entropy of the distribution of the property (e.g.,
country or DMOZ category) within the cluster while the latter measures the ratio of
the “best fit” within each cluster.



10 Geographically Organized Small Communities 193

Fig. 10.6 Principal
directions 4 and 5 within the
Russian cluster before (left)
and after (middle) the removal
of cores and tentacles as well
as two dimensions of the SDP
relaxation solution (right)

We use two more quality measures that rely solely on the graph, both based on
the number of edges inside and across clusters. First we considered modularity, a
measure known to suit social networks well [40] defined as follows:

Q =
∑

clusters s

⎡

⎣ |E(Cs, Cs)|
|E| −

(
|E(Cs, Cs)|

2|E|

)2
⎤

⎦ , (10.1)
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where E is the set of all edges and E (X,Y) is the set of edges with tail in X and head
in Y.

Unfortunately, this measure does not take different cluster sizes into account, so
we use normalized network modularity [39]:

Qnorm =
∑

clusters s

Ns

N

⎡

⎣
(

|E(Cs, Cs)|
|E| − |E(Cs, Cs)|

2|E|

)2
⎤

⎦ . (10.2)

The larger the normalized modularity, the more edges remain within the same cluster
and the less connect different clusters.

We also measure the cluster ratio defined as follows. Let there be N nodes with
N
 of them in cluster l for 
 = 1, . . . , m. The cluster ratio is the number of edges
between different clusters divided by

∑
i �=j Ni · Nj. Smaller values correspond to

better clustering.
As for the reliability of the measures, we tested the behavior of our four measures

by varying the dimension d and branching k of hierarchical SVD-based partitioning
over the telephone call graph. As in the general settings of this section, we produced
500 clusters. We used SVD with small component redistribution only, an experi-
ment similar to [27] where 3000 clusters were used. As seen in Fig. 10.7, purity and
entropy show the expected behavior of improving quality with increasing dimen-
sionality d [2]. In contrast, cluster ratio is very noisy and, to less extent, the same

Fig. 10.7 Relation between dimensions d (vertical), branching k (horizontal) and quality (dark-
ness) for purity (top left), entropy (top right), cluster ratio (bottom left, multiplied by 103), and
normalized modularity (bottom right) of the telephone call graph. The darker the region, the better
the clustering quality except for purity where larger values denote better output quality
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holds for normalized modularity. Cluster ratio in our experiment seems inappro-
priate to measure clustering quality. Also notice that purity is expected to vary by
roughly 10%, entropy by 50%, and normalized modularity by 10% with the internal
parameters of the algorithms. This amount of variance hence needs to be taken into
account when comparing the quality of various clustering procedures.

The running times and cluster quality measures are summarized in Table 10.4.
The most important observation is the huge running time difference between SDP
and SVD with only minor differences in cluster quality. The only large SVD running
time appears for LiveJournal with no heuristics; here partitioning is possible only in
very large dimensions.

Table 10.4 The running time, entropy, purity, normalized modularity, and cluster ratio over the
three real data sets. We test four algorithms: SVD with small component redistribution heuristic
only, with all heuristics, semidefinite relaxation (SDP), and SDP with core and tentacle removal,
all with parameters k = 8 and d = 15. Best and near-best results are shown with boldface

LiveJournal Runtime Entropy Purity n.mod.
Cluster
ratio

SVD small component
redistribution only

1980m 0.105 0.812 2339 2 · 10−6

SVD small comp + tentacle + core 150m 0.073 0.853 2561 8 · 10−6

SDP no heuristics 1755m 0.111 0.857 272 6 · 10−6

SDP tentacle + core 675m 0.072 0.854 2537 4 · 10−6

Cluster
Telephone Runtime Entropy Purity n.mod. ratio

SVD small component
redistribution only

80m 0.263 0.653 257 1.5 · 10−5

SVD small comp + tentacle + core 87m 0.239 0.648 206 1.2 · 10−5

SDP no heuristics 2520m 0.237 0.634 237 1.4 · 10−5

SDP tentacle + core 2865m 0.252 0.628 251 1.3 · 10−5

Cluster
UK2007-WEBSPAM Runtime Entropy Purity n.mod. ratio

SVD small component
redistribution only

3m 0.362 0.199 35.69 1.16 · 10−4

SVD small comp + tentacle + core 5m 0.277 0.416 101.14 2.38 · 10−4

SDP no heuristics 45m 0.266 0.426 51.77 8.64 · 10−4

SDP tentacle + core 47m 0.277 0.410 82.38 2.08 · 10−4

When comparing the quality of the partitions given by different algorithms in
Table 10.4, we observe that the three meaningful measures entropy, purity, and nor-
malized modularity, although noisy in certain cases, do not show major differences
in judgment.

First we compare SVD to SDP. SVD with the heuristics works always nearly as
good as SDP. For LiveJournal, the hardest instance, it outperforms SDP in entropy
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and normalized modularity and for the other two data sets it is better in terms of
purity and normalized modularity.

Next we compare tentacle and core removal to the heuristics-free versions. The
telephone call graph is the only “easy” instance where small component redistribu-
tion itself achieves a solution that is beaten only in terms of entropy. For the other
two graphs, as noted in Table 10.3, SVD fails for certain large components without
tentacle and core removal. For LiveJournal, the hardest instance, even SDP appears
to require heuristics. The very low normalized modularity of SDP here may indicate
an unfortunate split. Note that the purity values are very close to 0.8, the fraction of
US location that corresponds to a random split. Here our heuristics greatly improve
SDP as well but for the other data sets SDP performs in general better without
them.

In summary, SVD with heuristics achieves cluster qualities comparable or bet-
ter than SDP at an order of magnitude lower running time. LiveJournal definitely
requires the tentacle and core removal heuristics while our telephone call graph is
an easy instance best solved perhaps by small component redistribution SVD. For
the Web graph SDP and full-heuristics SVD both perform good quality clusters,
the former at a price of a very high running time. The exact quality differences are
inconclusive in favor of one method or another in part because of their strong depen-
dence on the internal parameters of the algorithms and in part because of the noise
introduced by varying cluster sizes in all quality measures.

10.6 Conclusion

We demonstrated that spectral graph partitioning can be performed on very large
power law networks after appropriate preprocessing heuristics. Our preprocessing
steps include the removal of densely connected communities that are of small size
on the global scale as well as the contraction of long “tentacles,” loosely connected
users that form large chains out of the center of the network.

Our central findings are related to the comparison of the SVD vs. semidefinite
programming relaxation of the graph partitioning problem [28]. We show the SVD-
based partitioning quality can be improved to at least as good as the semidefinite
one with large gains in speed. In particular. the Lanczos algorithm-based SVD can
be parallelized since it consists of the multiplication of a vector with the input
Laplacian [25]. In addition, SVD has good approximate solutions [13, 37]. In future
work we plan to test distributed approximate SVD for very large graphs such as the
UK2007-WEBSPAM page level graph with over three billion edges.

Of independent interest is our top-level analysis of the LiveJournal blogger
Friends network, a data set of over three million users, in near 80% from US, 6%
from Western Europe, and 5% from Russia and East Europe. Here the components
reveal global aspects of the network such as location, age, or religious belief. In
future work, more types of interest can be analyzed and the techniques presented
here can be applied to blog posts or other large social networks.
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Chapter 11
Integrating Genetic Algorithms and Fuzzy Logic
for Web Structure Optimization

Iltae Lee, Negar Koochakzadeh, Keivan Kianmehr, Reda Alhajj,
and Jon Rokne

Abstract This chapter addresses the restructuring of Websites by an approach that
integrates fuzziness weighted page rank (WPR) index and log rank index for pages
of the considered Website. Fuzzy logic gives a degree of a membership to a prob-
lem and, hence, more adequately describes reasoning to a problem than a numeric
deviation value does (the difference between the WPR index and log rank index),
which does not give accurate human reasoning. Using fuzzy logic, the computa-
tional program translates a deviation value to a fuzzy representation by producing
statements like “page A has a low restructuring factor by degree 0.8.” However,
without well-defined membership functions, a fuzzy value can be as meaningless
as or even worse than a deviation value. Accordingly, we have shown how genetic
algorithms (GA) can be applied to optimize the fuzzy membership functions. This
chapter demonstrates how fuzzy logic can be applied to a deviation value to better
represent the degree of restructuring.

11.1 Introduction

Usability is one of the keys to the success of a Website. If the link structure is not
well organized for Websites that have many pages linked together internally, it may
be difficult for users to find the information they want. As the complexity of the link
structure grows, it becomes more important to optimize the internal link structure
so that users can navigate the site easily.

Search engines such as Google have used Web mining to retrieve relevant infor-
mation from the Web. Among several Web-mining techniques, our work described
in [14] uses Web log mining and Web structure mining technique to get the insight
on how a site’s internal link structure can be improved.
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In [14], we used the weighted page rank (WPR) algorithm [25] for Web structure
mining to analyze the hyperlink structure of a Website. The WPR algorithm consid-
ers the fact that the page rank of popular page should have a higher weight than the
one of an unpopular page. In addition, we demonstrated how to use Web log mining
to obtain data on the site users’ specific navigational behavior. We then presented a
scheme describing how to interpret and compare these intermediate results to mea-
sure the Website’s efficiency in terms of usability. Eventually, based on the results,
we outlined how to make recommendations to Website owners’ in order to assist
them in improving their sites’ usability. In order to achieve our goal of recommend-
ing changes to the link structure of a Website, we identified two main subproblems
which we had to solve before moving forward with the overarching problem: first to
determine which pages were important, as implied by the structure of the Website
and, second to conclude which pages the users of the Website consider to be impor-
tant, based on the information amassed from the Web log. Once we solved these
two subproblems, we had methods in place to rank the same Web pages. The rank-
ing method introduced in [14] can be summarized as follows. Assume that vi is the
number of visitors for a page i and ti is the total time spent by all visitors on this
page; the log rank value di is defined as

di = 0.4vi + 0.6ti;

di represents the importance of a page relative to the others. Pages that are frequently
visited and accessed for long periods of time will have a larger log rank than pages
with an insignificant number of visits and think time. Rather than giving time and
visits equal importance as discussed above, the difference is quantified through a
constant, in this case being a 60/40 split, respectively. The numeric deviation value
di is calculated for each page and is presented to the site owner. Website owners can
then use these deviations in order to find out problematic Website structures. Three
sample result data from [14] are shown in Table 11.1.

Table 11.1 Sample result data from [14]

Url Log rank index Page rank index di

/manufacturers/index.html 2 0 2
/dr-660/index.html 21 476 −455
/images/index.html 1515 7 1508

Although the results obtained from our previous study are promising, analyz-
ing numerical values of di may make the process of the conceptual decisions very
unattractive and sometimes even confusing when non-technical users are concerned.
The value of di from Table 11.1 does not represent human reasoning accurately.
What does it mean to the end user whether di is −455 or 1508? This research paper
addresses this problem and represents di as the restructuring factor using fuzzy
logic so that site owners can have better understanding of di, when presented in
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fuzzy linguistic terms, which will consequently result in a better conceptual decision
making.

Fuzzy logic gives a degree of membership to a problem and, hence, more ade-
quately describes reasoning to a problem than a numeric value does. We will apply
fuzzy logic to di to give better human reasoning to it. However, a fuzzy value can
be meaningless without well-defined membership functions. GA is a process used
to optimize membership functions. We will apply GA to our fuzzy logic to better
represent the restructuring factor. Using optimized membership functions, we can
obtain the fuzzified restructuring factor shown in Table 11.2 The degree of mem-
bership ranges from 0 to 1. A high restructuring factor indicates that it is likely that
the page should be restructured. It is harder to indicate whether the restructure will
make the page harder or easier to reach.

Table 11.2 Fuzzified restructuring factor

Url Log rank index Page rank index Harder Fuzzy value

/manufacturers/index.html 2 0 True Low by degree 0.03
/dr-660/index.html 21 476 False High by degree 0.7
/images/index.html 1515 7 True High by degree 0.9

Here the term “harder to reach” for a page means that it is not necessary that there
exists a hyperlink to this particular page from the homepage, or this page should not
be placed in a location where it plays the role of a bridge that allows user to only
pass trough this page to reach some other pages. Actual test result will be further
discussed in Section 11.3.1.

The rest of this chapter is structured as follows. Section 11.2 contains the pre-
vious work related to the Web structure optimization. The proposed solution is
described in Section 11.3. The result derived from using our proposed solution is
demonstrated in Section 11.3.1. Finally, we conclude this chapter with a summary
of the proposed method in Section 11.3.2.

11.2 Previous Work

As described in the literature, numerous approaches have been taken to analyze a
Website’s structure and correlate these results with usability, e.g., [3, 4, 6, 7, 8, 9,
15, 19, 22, 23]. For instance, the work described in [18] devised a spatial frequent
itemset data mining algorithm to efficiently extract navigational structure from the
hyperlink structure of a Website. The navigational structure [5] was defined as a set
of links commonly shared by most of the pages in a Website. The approach was
based on a general purpose frequent itemset data mining algorithm, namely ECLAT
[2]. ECLAT was used to mine only the hyperlinks inside a window with adaptive
size that slides along the diagonal of the Website’s adjacency matrix. The authors
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compared the results of their algorithm with results from a user-based usability eval-
uation. The evaluation method gave certain tasks to a user (like finding a specific
piece of information on a Website) and recorded the time needed to accomplish
a task and failure ratios. The researchers found a correlation between the size of
the navigational structure set and the overall usability of a Website, specifically the
more navigational structure a Website has, the more usable it is.

In [21], the authors proposed to analyze the Web log using data mining tech-
niques to extract rules and predict which pages users will be going to visit based
on their prior behavior, and then showed how to use this information to improve
the Website structure. By its use of data mining techniques, this approach is related
to our approach, although the details of the method vary greatly, due to their use of
frequent itemset data mining algorithms. The main difference between our approach
and the method described in [21] is that the authors did not consider the time spent
on a page by a visitor in order to measure the importance of that particular page.
Their approach applies frequent itemset mining that discovers navigation prefer-
ences of the visitors based on the most frequently visited pages and the frequent
navigational visiting patterns. However, we believe that in a particular frequent nav-
igational pattern there might exist some pages which form an intermediate step on
the way to the desirable page that a user is actually interested in. Therefore, the
time spent on a page by a visitor is considered an important measure to quantify the
significance of a page in a Website structure.

The work described in [12] proposed two hyperlink analysis-based algorithms
to find relevant pages for a given Web page. The work is different in nature from
our work; however, it applies Web mining techniques. The first algorithm extends
the citation analysis to Web page hyperlink analysis. The citation analysis was first
developed to classify core sets of articles, authors, or journals to different fields
of study. In the context of the Web mining, the hyperlinks are considered citations
among the pages. The second algorithm makes use of linear algebra theories to
extract more precise relationships among the Web pages in order to discover relevant
pages. By using linear algebra, they integrate the topologic relationships among
the pages into the process to identify deeper relations among pages for finding the
relevant pages. The work in [10] describes an expanded neighborhood of pages with
the target to include more potentially relevant pages.

In the approach described in [18], the standard page rank algorithm was modified
by distributing rank among related pages with respect to their weighted importance,
rather than treating all pages equally. This change results in a more accurate rep-
resentation of the importance of all pages within a Website. We used the weighted
page rank formula outlined in [18] to complement the Web structure mining portion
of our approach, with the hope of returning more accurate results than the standard
page rank algorithm. The result obtained from the weighted page rank is validated
by applying HITS [17] to check the consistency of the results.

In [26], the authors outline a method of preparing Web logs for mining specific
data on a per session basis. This way, an individual’s browsing behavior can be
recorded using the time and page data gathered. Preparations to the log file such as
stripping entries left by robots are also discussed.
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There are Websites that have complex internal link structure. As the complexity
of a site’s link structure grows, it becomes more important to structure the site in
such a way that users can navigate the site easily. The following list shows three
reasons that Website structure optimization is important [20]:

1. Increase Website spidering index range
2. Increase page rank of internal pages
3. Increase user experience and overall Website navigation and usability

Web-mining is the application of data mining techniques to discover patterns from
the Web. Web-mining techniques are categorized as Web usage mining, Web content
mining, and Web structure mining. Major search engines such as Google, Yahoo,
and MSN have successfully used Web-mining techniques. To optimize the site struc-
ture, [14] uses two types of Web-mining technique, Web structure mining and Web
usage mining (i.e., Web log mining.)

In order to perform Web structure mining in [14], at first, hyperlinks contained
within a set or root page are extracted using regular expressions. Then the crawler
recursively continues crawling the pages. Once the entire site or the user defined
part of the site is completely crawled, the WPR is calculated for each page and each
page is assigned a page rank value, pi.

The weighted page rank algorithm is an extension to the standard page rank algo-
rithm implemented by the two founders of Google. The page rank algorithm uses
the dampening factor, the page rank of the sets of the pages that point to the page
and the number of outgoing links from each set of pages that point to the page in
order to calculate the rank of a page. However, the standard page rank algorithm
evenly divides the rank among its outgoing links [25]. To improve the standard
page rank algorithm, the larger rank value is given to more important pages instead
of dividing the rank value of a page evenly among its outlinked pages [25]. In
addition, the weighted page rank computes the weight of inbound links using the
same algorithm used to calculate the outbound link weight. The weight of inbound
links and the weight of outbound links are weighted equally when calculating the
WPR [25].

Frequency (number of visits) and time (total time spent by users) are the two
parameters that we have already used in [14] for Web log mining. Each page is
given a log rank value (li), and di is calculated by subtracting the index of the log
rank value, index (li) from the index of the WPR value, index (pi). If the deviation
value of a particular page is low, our work described in [14] suggests that the page
needs to be harder to reach. On the other hand, if the deviation value for a page is
high, our work described in [14] recommends the site owner to restructure the page
so it is more easily reachable. However, di is likely to be meaningless to most site
owners. Fuzzy logic can give a degree of a membership to the nominal output, hence,
aid a site owner to identify which pages need how much degree of restructuring.

Optimizing fuzzy logic membership functions is important because non-
optimized membership functions may return inaccurate degree of a membership.
GA is a process to find the optimal solution to a given problem by processes such
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as parent selection, genetic operations, and evolvement. The work described in [1]
illustrates the process of optimizing fuzzy logic membership functions by using GA.
The authors of [1] discuss various GA operations in developing a single input and
output fuzzy system. We will develop a GA application for a two inputs and a single
output fuzzy system.

11.3 The Proposed Solution

To apply fuzzy logic to di, we need to determine the membership functions for two
inputs (index (pi) (WPR index), index (li) (Log rank index)), and a single output
(restructuring factor.) The two inputs are provided from [14]. Let us call the mem-
bership function for the WPR value, μ(x), and the membership function for the log
rank value, μ(y).

Our work in [14] defines di as follows:

di = index(li) − index(pi) (11.1)

An output of a fuzzy membership function is usually positive. However, di can be
negative. In order for us to produce only positive di, the absolute di value is cal-
culated as follows. We would like to call the absolute di value as the restructuring
factor, rfi. Greater rfi indicates that it is likely that the page needs to be restructured
by using the following (but not limited to) methods described in [14]:

– Removing links to that page, especially on those pages with high page rank.
– Linking to the page from places with low page rank value instead.

However, by changing di to rfi, information as to whether the page needs to be
restructured so the page is harder or easier to reach is lost. As our previous work
described in [14] mentions, if di for a page is low (if the page rank index is higher
than the log rank index), the page needs to be restructured so it is easier to reach. On
the other hand, if di for a page is high (if page rank index is lower than the log rank
index), the page needs to be restructured so it is harder to reach. Therefore, when
taking the absolute value of di, it is necessary to preserve the information as a bit.
If the log rank index is higher than the WPR index, the bit is false or else, it is true.
Let us name the bit, harder. This boolean bit will be output to the result file.

11.3.1 Define Input and Output

Each input and output membership function can have any number of memberships
greater than one. However, as the number of membership grows, GA performance
decreases because the number of base increases. We will define four memberships,
namely low, medium left, medium right, and high for both the input functions (μ(x),
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Fig. 11.1 Initial membership functions

μ(y)) and the output function (μ(z)). Figure 11.1 demonstrates the initial, non-
optimized membership functions. There are two rules to use when determining the
output value.

Rule 1: When x or y intersects two points, the output is determined as follows [13].
Fig. 11.2 shows how output x can be determined using this rule.

Fig. 11.2 Rule #1

μ(x) = min(μ1(x), μ2(x)), μ(y) = min(μ1(y), μ2(y)) (11.2)

Rule 2: μ(x) and μ(y) will possibly intersect four points when applied to μ(z) as
shown in Fig. 11.3. In such a case, the originating membership of μ(xory)
determines which intersection point is to be chosen. For example, if μ(x)
was originated from membership low, point 1 from Fig. 11.3 is selected.

Rule 3: Output z is determined using the following rule. Figure 11.4 demonstrates
this rule.

Outputz = min(z1, z2) (11.3)
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Fig. 11.3 Rule #2

Fig. 11.4 Rule #3

11.3.2 Train Data

For experiments, we used a medium size Website (≈ 631 pages) obtained from [24],
which provides reference for HiFi devices. Its structure is wider than deep, as for
example when it lists the manufacturers of documented devices. Since this Website
has been provided for experiments with data mining techniques, it already came
with a log file that had been parsed into sessions. Let us define training data as the
sample data used to optimize membership functions. The optimum solution gets
better as the number of training data increases [1]. The following five data show the
training data we will use for this chapter to demonstrate how they are used.

Input1 : xi = {11, 132, 182, 369, 476}
Input2 : yi = {11, 56, 375, 7, 2003}
Output : zi = {0, 76, 193, 362, 1527}i = 1, 2, 3, 4, 5
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11.3.3 Encoding

Chromosome is the representation of the input and output membership functions and
consists of unassigned integers (uint). Each membership function needs five points
to represent them; one point for the center of medium membership and four points
for four bases. Therefore, in total, 15 uints are required to form a single chromo-
some. Each chromosome’s points are generated such that μ(x), μ(y), or μ(z) does
not yield zero for any input x, y, or z [1]. This is a requirement of a chromosome.

11.3.4 Population

It is necessary to choose the population size (number of chromosomes) for a gen-
eration. Increasing population size results in longer computation time. However, a
small population size decreases the accuracy of the solution because of reduced
variation of chromosomes. Therefore, there should be a balance [1]. An experiment
can be conducted with different population sizes to find the optimal size. Finding the
optimal size of chromosome is out of the scope of this research page and we will use
population size ten. Table 11.3 shows a sample chromosome that has membership
function information.

Table 11.3 Sample chromosome

μ(x) μ(y) μ(z)

base1 base2 A1 base3 base4 base5 base6 A2 base7 base8 base9 base10 A3 base11 base12

142 87 320 354 235 34 1082 1208 803 923 12 23 69 70 15

11.3.5 Error Score Calculation

The error score for each chromosome can be calculated using the following formula
[1]. The chromosome that has the least error score becomes the best chromosome:

n∑

j=1

(rfi − zj)
2, i = ith chromosome, n = total number of data (11.4)

11.3.6 Parent Selection

Different parent selection methods are discussed below [11]. We chose to use sorted
roulette method, but it is possible that other methods can optimize the output better.
Investigating other opportunities and finding the best parent selection method is a
future work.
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1. Fitness Roulette: The probability of an individual being selected in the popula-
tion is equal to the fitness value normalized with respect to the total fitness of the
population.

2. Sorted Roulette: Sort the population by fitness, and then select for reproduction
with some bias toward the front of the list.

3. Fitness Generational: Individuals should be mated with individuals that are close
to them

4. Sorted Generational: This selection method is the same as fitness generational,
but it uses a sorted roulette method to select the first individual.

5. Elitist Random Search: It moves the best individual to the next population and
generates random values for the remainder.

11.3.7 Crossover

Crossover is an information exchange from two parents. Crossover rate can range
from zero (no crossover) to one.

After two parents (=chromosomes) are selected, the program randomly decides
whether crossover should occur. When crossover occurs, a random position (pos1)
is chosen and every unit after the position will be switched between the two parents.
The children are checked to see if they fulfill the requirement of a chromosome
mentioned earlier. A new random uint is generated if any position in any of the
children does not fulfill the requirement.

11.3.8 Mutation

A random change without a reason is mutation. If the information from parents is
exchanged only without any mutation, children can only inherit genes from their
parents. A mutation gives a variation to a chromosome in order for children to find
information that their parents do not have. A mutation rate can be set from zero (no
mutation) to one (all values on each position are re-generated).

Every position of the children chromosomes is tested to see whether mutation
should occur. If a value is selected for mutation, a random value is generated
and replaces the value. If the new value violates the requirement of chromosome
mentioned in Section 11.3.3, it is re-generated until it meets the requirement of
chromosome.

11.3.9 Evolvement

The previous four steps (from Section 11.3.5 to Section 11.3.8) combine to create a
complete reproduction process. The application continues the reproduction process
until the pre-defined numbers of generations are reached.
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The generation that has the chromosome with the least error score among ten
chromosomes is stored and becomes the best chromosome when the application
terminates.

11.3.10 Optimal Fuzzy Membership Functions

If the best chromosome of the best generation meets the requirement of a chro-
mosome, the chromosome becomes the optimal solution and the optimal fuzzy
membership functions. However, if it does not meet the requirement, the second
best chromosome is checked to see if it meets the requirement, and so on until
the one that meets the requirement is found. If none of the chromosomes in the best
generation meets the requirement, the application exits without outputting the result.

11.3.11 Calculating Error Ratio

Total possible error score (TPE) is calculated as follows [1]:

n∑

j=1

(maxz − zj)
2, i = ithchromosome, n = total number of data (11.5)

By using the equation described in Section 11.3.5, total error score (TE) can be
computed. The error ratio is computed using the following equation:

(
TE

TPE
) × 100 (11.6)

Experiments can be conducted to obtain a better solution (a chromosome that has
smaller error score) by choosing different population size, generation size, parent
selection method, crossover rate, and mutation rate.

11.3.12 General Rules

After the optimal chromosome is found, the fuzzy rule for each data can be deter-
mined. If there are n number of data(=pages) available, we will have n number of
rules. Table 11.4 shows several sample rules.

To determine the general fuzzy rules, we need to calculate the strength score for
each data using the following equation:

n∑

i=1

(outputμ(x) × outputμ(y)), n = total number of data. (11.7)
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Table 11.4 Example of fuzzy rules for two input-single output fuzzy System

Page# Rule Strength score

1st Page If x is low and y is high, then the restructuring factor z is low. 300
2nd Page If x is medium and y is low, then the restructuring factor z is high. 540
3rd Page If x is high and y is low, then the restructuring factor z is high. 150
4th Page If x is medium and y is high, then the restructuring factor z is

medium left.
720

5th Page If x is medium and y is high, then the restructuring factor z is
medium right.

320

6th Page If x is low and y is high, then the restructuring factor z is low. 1150

We can only define maximum of four general fuzzy rules (low, medium left,
medium right, and high) from these rules because our fuzzy system has four mem-
berships namely low, medium left, medium right, and high. The following rules
from [16] determine the general fuzzy rules among n rules.

– Rule #1: If the output membership of the fuzzy rule does not match any of the
output membership of any of the existing general fuzzy rules, the rule becomes a
general fuzzy rule.

– Rule #2: If the output membership of the fuzzy rule matches an output member-
ship of any of the existing general fuzzy rules, the rule with the greater strength
score becomes the general fuzzy rule.

Suppose we apply the above conditions to Table 11.4. The first page is a general
rule because there is no general fuzzy rule with a low restructuring factor is defined
by rule #1. The second page is also a general rule by rule #1. For the third page, rule
#2 is applied because the second page’s restructuring factor was high as well. The
second page’s strength score is higher so second page remains to be a general fuzzy
rule. The fourth page and the fifth page become general rules by rule #1. The sixth
page page’s strength score is greater than the first page’s strength score. Therefore,
the sixth page overrides the first page and becomes a new general fuzzy rule.

11.4 Evaluation

The proposed solution described in this chapter is implemented using C#. Six
hundred thirty-one page data with their WPR index and log rank index were input
to the application, which used population size of ten, 15 maximum generations, an
85 crossover rate, a 0.09 mutation rate, and a sorted roulette method. Figure 11.5
was obtained from the above data and configuration. The best chromosome for this
result had 2.73% error ratio. The general fuzzy rules for this result were found to be
the followings:
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Fig. 11.5 Best chromosome

1. If x is LOW and y is LOW, then the restructuring factor is LOW;
2. If x is LOW and y is MED LEFT, then the restructuring factor is HIGH;
3. If x is MED LEFT and y is LOW, then the restructuring factor is MED LEFT;
4. If x is HIGH and y is LOW, then the restructuring factor is MED RIGHT.

The effectiveness of incorporating fuzzification into the process reveals where
the information obtained during the analysis of the Website in terms of link structure
and logs is summarized in the form of simple if–then fuzzy rules. It can be easily
seen that the above if–then rules are easily understandable by non-technical users
since the antecedents of the rules are simply conjunctions of the two ranking factors
shown by their values in form of fuzzy linguistic terms that are precisely chosen
during the fuzzification process of the proposed method and the consequents are
the deviation (restructuring) factors. Table 11.5 shows fuzzy representation of four
random data obtained from the above result. As an example, the restructuring factor
of the page /images/index.html is High with the degree of membership computed as
0.95 reveals that this particular page is essentially problematic in terms of its link
structuring in the Website and suggests to the Website owner to reconsider the link
structure of this particular page within the Website.

Table 11.5 Sample fuzzy representation

Page URL Harder Membership Degree

/manufacturers/linn/index.html false MED LEFT 0.36
/manufacturers/yamaha/cs-30/index.html false MED RIGHT 0.95
/manufacturers/arp/explorer/index.html false LOW 0.82
/images/index.html false HIGH 0.95

11.5 Conclusions

In this chapter, we demonstrated that fuzzy logic can be applied to the deviation
value using genetic algorithms. First, we converted deviation value to the restruc-
turing factor value. Second, we defined the initial random fuzzy memberships using
the WPR index, the log rank index, and the restructuring factor value. Third, the
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membership functions were optimized using genetic algorithm techniques. Last,
using the best chromosome (optimal fuzzy membership functions), we derived fuzzy
rules for each page and selected general fuzzy rules from among them. As a result,
it was possible to assign the fuzzified restructuring factor for each page. The fuzzy
representation of each page can help site owners to better understand how much
restructuring is necessary.
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