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Preface

The	flourishing	field	of	bioinformatics	has	been	the	catalyst	to	transform	biological	
research	paradigms	to	extend	beyond	traditional	scientific	boundaries.	Fueled	by	
technological	advancements	 in	data	collection,	 storage,	and	analysis	 technologies	
in	biological	 sciences,	 researchers	have	begun	to	 increasingly	rely	on	applications	
of	computational	knowledge	discovery	techniques	to	gain	novel	biological	insight	
from	the	data.	As	we	forge	into	the	future	of	next-generation	sequencing	technolo-
gies,	bioinformatics	practitioners	will	continue	to	design,	develop,	and	employ	new	
algorithms	that	are	efficient,	accurate,	scalable,	reliable,	and	robust	to	enable	knowl-
edge	discovery	on	the	projected	exponential	growth	of	raw	data.	To	this	end,	data	
mining	has	been	and	will	continue	to	be	vital	for	analyzing	large	volumes	of	hetero-
geneous,	distributed,	semistructured,	and	interrelated	data	for	knowledge	discovery.

This	book	is	targeted	to	readers	who	are	interested	in	the	embodiments	of	data	
mining	techniques,	technologies,	and	frameworks	employed	for	effective	storing,	
analyzing,	and	extracting	knowledge	from	large	databases	specifically	encountered	
in	a	variety	of	bioinformatics	domains,	including,	but	not	limited	to,	genomics	and	
proteomics.	The	book	is	also	designed	to	give	a	broad,	yet	in-depth	overview	of	the	
application	domains	of	data	mining	for	bioinformatics	challenges.	The	sections	of	
the	book	are	designed	to	enable	readers	from	both	biology	and	computer	science	
backgrounds	to	gain	an	enhanced	understanding	of	the	cross-disciplinary	field.	In	
addition	 to	providing	an	overview	of	 the	area	discussed	 in	Section	1,	 individual	
chapters	of	Sections	2,	3,	and	4	are	dedicated	 to	key	concepts	of	 feature	extrac-
tion,	unsupervised	learning,	and	supervised	learning	techniques	prominently	used	
in	bioinformatics.

Section	1	of	the	book	contains	three	chapters	and	is	designed	such	that	read-
ers	 from	the	biological	 and	computer	 sciences	can	obtain	a	comprehensive	over-
view	of	the	evolution	of	the	field	and	its	intersection	with	computational	learning.	
Chapter	1	provides	an	overview	of	the	breath	of	bioinformatics	and	its	associated	
fields.	 Readers	 with	 a	 computer	 science	 background	 can	 obtain	 an	 overview	 of	
the	various	databases	and	the	challenges	these	databases	pose	through	the	topics	
elucidated	 in	Chapter	2.	Similarly,	 readers	with	a	biological	background	can	get	
acquainted	with	the	concepts	prominently	referred	to	in	computer	science	and	data	
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mining	by	using	the	topics	covered	in	Chapter	3.	For	a	course	taught	at	the	under-
graduate	level,	Section	1	captures	concepts	that	are	vital	in	data	mining	and	pertain	
to	its	applications	on	biological	databases.

Feature	 extraction	 and	 selection	 techniques	 are	 described	 in	 Section	 2.	
Chapter	 4	 contains	 associated	 concepts	 of	 data	 mining,	 and	 Chapter	 5	 pro-
vides	an	overview	of	 the	concepts	discussed	 in	Chapter	4,	pertaining	to	 their	
application	on	biological	data	 specific	 to	gene	expression	analysis	and	protein	
expression	data.	These	two	chapters	can	be	taught	at	both	undergraduate	and	
graduate	levels.

Sections	3	and	4	contain	intertwining	lessons.	Section	3	consists	of	Chapters	6	
and	7,	which	focus	on	concepts	of	unsupervised	learning,	also	known	as	clustering.	
Chapter	6	provides	an	overview	of	unsupervised	learning	with	simpler	and	more	
generic	clustering	techniques	and	its	application	on	bioinformatics	data,	and	caters	
to	 readers	 at	 the	undergraduate	 level.	Chapter	7	provides	 a	more	comprehensive	
view	of	advanced	clustering	 techniques	applied	 to	 large	biological	databases	and	
caters	to	readers	at	the	graduate	level.

Chapter	8	of	Section	4	provides	an	overview	of	supervised	learning,	also	known	
as	classification.	This	chapter	is	tailored	to	suit	advanced	readers	and	covers	a	gamut	
of	classification	techniques	commonly	used	in	bioinformatics.	Chapter	9	is	the	con-
cluding	chapter	of	the	book	and	contains	a	description	of	the	various	validation	and	
benchmarking	techniques	used	for	both	clustering	and	classification.

Possible Course Suggestions
As	represented	in	Figure	0.1,	a	course	focusing	on	clustering	techniques	in	bioin-
formatics	can	use	Chapters	6,	7,	and	9.	Similarly,	a	course	that	focuses	on	classifica-

Figure 0.1
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tion	techniques	in	bioinformatics	can	use	Chapters	8	and	9.	A	set	of	references	for	
additional	reading	is	listed	at	the	end	of	each	chapter.

organization of the Book
Section	1	of	this	book	is	targeted	to	readers	who	would	be	interested	in	learning	the	
evolution	and	role	of	data	mining	in	bioinformatics.	It	introduces	the	evolution	of	bio-
informatics	and	the	challenges	that	can	be	addressed	using	data	mining	techniques.

Simplistically	 titled	“Introduction	 to	Bioinformatics,”	Chapter	1	provides	 an	
introduction	and	overview	of	the	inception	and	evolution	of	bioinformatics,	which	
can	serve	both	as	an	initial	reference	and	a	refresher	for	readers.	It	highlights	key	
technological	advancements	made	in	the	field	of	biology	that	have	fueled	the	need	
for	computational	techniques	to	enable	automated	analysis.

Chapter	 2,	 “Biological	Databases	 and	 Integration,”	provides	 a	 description	of	
the	 various	 biological	 databases	 prominently	 referred	 to	 in	 bioinformatics.	 This	
chapter	emphasizes	the	need	for	data	cleaning	and	cleaning	strategies	in	biological	
databases	that	are	constantly	evolving.

Chapter	 3,	 “Knowledge	 Discovery	 in	 Databases,”	 provides	 and	 introduction	
to	 the	 various	data	mining	 techniques	 that	 can	be	 employed	 in	biological	data-
bases.	It	also	emphasizes	the	various	issues	and	data	integration	schemes	that	can	
be	employed	for	data	integration.

Section	2	of	this	book	introduces	the	role	of	data	mining	in	analyzing	large	
biological	databases.	This	section	is	structured	such	that	the	reader	understands	
the	breath	of	the	various	feature	selection	and	feature	extraction	techniques	that	
data	 mining	 has	 to	 offer.	 It	 also	 contains	 application	 examples	 of	 techniques	
that	are	prominently	used	in	data-rich	fields	of	proteomics	and	gene	expression	
data	analysis.

Titled	“Feature	Selection	and	Extraction	Strategies	in	Data	Mining,”	Chapter	4	
focuses	on	the	data	mining	techniques	used	to	extract	and	select	relevant	features	
from	large	biological	datasets.	In	this	chapter,	we	touch	on	topics	of	normalization,	
feature	selection,	and	feature	extraction	that	are	important	for	the	analysis	of	large	
datasets.

It	is	an	important	challenge	to	determine	how	to	interpret	the	features	extracted	
or	selected	using	the	techniques	described	in	Chapter	4.	Chapter	5,	titled	“Feature	
Interpretation	 for	Biological	Learning,”	 therefore	 focuses	on	how	normalization,	
feature	extraction,	and	feature	selection	techniques	can	be	exploited	through	appli-
cations	 on	 biological	 datasets	 to	 gain	 significant	 insights.	 This	 chapter	 contains	
descriptions	of	 the	application	of	data	mining	 techniques	 to	areas	of	mass	 spec-
trometry	and	gene	expression	analysis	that	are	data	rich	and	introduces	the	concept	
of	ontologies,	abstractions	of	function	for	features	extracted.

The	remaining	two	sections	of	the	book	encapsulate	paradigms	of	both	unsu-
pervised	 and	 supervised	 learning	 in	 bioinformatics.	 More	 specifically,	 Section	 3	
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focuses	on	the	paradigm	of	unsupervised	learning	in	data	mining,	referred	to	as	
clustering,	and	its	application	to	large	biological	data.	The	chapters	of	this	section	
cover	important	concepts	of	clustering	and	provide	a	gamut	of	examples	of	the	use	
of	clustering	techniques	in	bioinformatics.

Chapter	 6	 provides	 an	 in-depth	 description	 of	 prominently	 used	 clustering	
techniques	 and	 their	 applications	 in	 bioinformatics.	 Similarly,	 Chapter	 7	 contains	
a	 comprehensive	 list	of	 the	 applications	of	 advanced	clustering	algorithms	used	 in	
bioinformatics.

Section	4	gives	the	reader	insight	into	the	challenges	of	using	supervised	learn-
ing,	also	known	as	classification,	on	biological	datasets.	This	section	also	addresses	
the	need	for	validation	and	benchmarking	of	inferences	derived	using	either	clus-
tering	or	classification.

“Classification	Techniques	in	Bioinformatics,”	Chapter	8,	contains	an	overview	
of	classification	schemes	that	are	prominently	used	in	bioinformatics.	This	chapter	
provides	a	conceptual	view	of	the	challenges	encountered	during	the	application	of	
classification	on	biological	databases.	The	chapter	covers	systems	of	both	single	and	
ensemble	classifiers.	Chapter	9	provides	the	reader	insights	on	model	selection	and	
the	performance	estimation	strategies	in	data	mining.	The	techniques	described	in	
this	chapter	cater	to	both	the	validation	and	benchmarking	of	clustering	and	clas-
sification	techniques.
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Chapter 1

introduction to 
Bioinformatics

1.1 introduction
To	understand	the	functions	of	the	human	body,	it	is	first	necessary	to	understand	
the	function	of	the	basic	unit	of	the	body—the	cell.	The	human	body	consists	of	
trillions	of	cells	that	perform	independent	functions	and	are	synchronized	to	carry	
out	complex	bodily	functions.	Scientists	have	dug	into	the	functionality	of	cells,	
investigating	how	and	why	cells	perform	the	tasks	that	they	do.	The	study	of	the	
principles	 that	 govern	 these	 functions	 using	 modeling	 and	 computational	 tech-
niques	is	the	foundation	of	computational	biology.

The	human	cell	possesses	hereditary	material	that	is	vital	for	cell	replication	and	
duplication	and	contains	several	parts,	including	a	plasma	membrane	and	various	
organelles,	which	are	each	designed	to	render	both	structure	and	function	for	the	
body	(U.S.	National	Library	of	Medicine	2011)	(Figure	1.1).

Typically,	the	plasma	membrane,	also	called	the	lipid	bilayer	in	animal	cells,	
forms	an	outer	lining	called	the	plasma	membrane	of	a	cell.	This	membrane	sepa-
rates	 the	 cell	 from	 the	 rest	 of	 the	 environment	 and	 selectively	 allows	 materials	
to	enter	and	leave	the	cell.	It	is	also	the	characteristic	difference	between	animal	
and	plant	cells,	as	the	animal	lipid	bilayer	is	characteristically	flexible,	unlike	the	
rigid	plant	plasma	membrane.	The	flexibility	of	the	plasma	membrane	in	an	ani-
mal	 cell	membrane	 is	brought	 about	by	 its	 composition	of	 lipid	molecules	 that	
are	 characteristically	 polar,	 hydrophilic,	 or	 hydrophobic	 in	 nature.	 This	 diver-
sity	in	composition	allows	the	cell	membrane	to	form	various	shapes,	depending	
on	changes	in	environmental	conditions.	The	membrane	of	a	cell	is	coated	with	
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surface	 proteins,	 such	 as	 cell	 surface	 receptors,	 surface	 antigens,	 enzymes,	 and	
transporters,	 that	bring	about	the	 functions	of	 the	membrane	(Schlessinger	and	
Rost	2005;	Tompa	2005).	These	surface	proteins	are	highly	sensitive	to	the	envi-
ronment,	as	they	are	highly	hydrophobic	or	hydrophilic.	Research	in	identifying	
the	structure	and	function	of	these	membrane	proteins	has	generated	interest	in	
recent	times	(Schlessinger	et	al.	2006).

The	 plasma	 membrane	 encases	 the	 cytoplasm	 and	 various	 organelles	 of	 the	
cell.	The	bulk	of	the	cell	is	composed	of	cytoplasm,	which	is	composed	of	cytosol	
(a	jelly-like	fluid),	the	nucleus,	and	other	organelle	structures.	The	largest	organelle	
is	the	cytoskeleton,	which	is	composed	of	long	fibers	that	spread	over	the	entire	cell.	
Thus,	the	cytoskeleton	provides	the	vital	structure	of	the	cell.	Apart	from	providing	
the	structure	and	shape	of	the	cell,	the	cytoskeleton	provides	several	critical	func-
tions,	including	the	cell	division	and	movement	of	the	cell.

The	 endoplasmic	 reticulum	 is	 an	 organelle	 of	 the	 cell	 that	 is	 a	 collection	 of	
vesicles	and	tubules	held	together	by	the	cytoskeleton.	Also	referred	to	as	the	lacey	
membrane,	the	endoplasmic	reticulum	can	be	one	of	three	types:	the	rough	endo-
plasmic	reticulum	(RER),	the	smooth	endoplasmic	reticulum	(SER),	or	the	sarco-
plasmic	reticulum	(SR).	Each	of	these	types	of	endoplasmic	reticulum	has	specific	
functions.	The	RER	manufactures	proteins	through	embedded	structures	known	as	
ribosomes.	Ribosomes	are	organelles	that	help	create	proteins	by	processing	genetic	
instructions	 coded	 in	 the	DNA	of	 the	nucleus.	The	 ribosomes	 characteristically	
attach	 to	 the	endoplasmic	 reticulum	but,	at	 times,	float	 freely	 in	 the	cytoplasm.	
The	SER	enables	the	synthesis	of	lipids	and	the	metabolism	of	steroids.	It	is	also	
responsible	for	regulating	the	calcium	concentration	throughout	the	cell.	The	SR,	
which	is	similar	to	the	SER,	functions	as	a	calcium	pump.	Overall,	the	endoplasmic	
reticulum	facilitates	protein	creation,	folding,	and	the	transport	of	the	molecules	
that	are	in	the	form	of	sacs,	referred	to	as	the	cisternae.

Other	organelles	in	the	cell,	such	as	the	Golgi	apparatus,	aid	in	the	packaging	
of	the	processed	molecules	(proteins)	from	the	endoplasmic	reticulum	for	excretion	

Centrioles

Lysosome

Endoplasmic
Reticulum

Cytoplasm
DNA

Nucleolus

Nuclear Membrane

Golgi Apparatus

Plasma Membrane

Mitochondrion

Cytoskeleton

Figure 1.1 A schematic representation of the anatomy of the cell.



Introduction to Bioinformatics  ◾  5

from	 the	 cell;	 this	 is	better	known	as	 the	 recycling	 center	of	 the	 cell.	 Similarly,	
lysosomes	 are	 organelles	 that	 break	 down	 and	 digest	 toxic	 substances,	 engulfed	
bacteria,	and	viruses	 in	a	cell.	They	also	maintain	the	proper	 functioning	of	 the	
cell	by	recycling	worn-out	organelles.	The	organelle	responsible	for	cell	function	is	
the	mitochondrion,	which	is	responsible	for	converting	food	to	energy	that	can	be	
used	by	the	cell.	The	mitochondrion	is	a	complex	organelle	that	has	its	own	genetic	
material	(deoxyribonucleic	acid	(DNA)),	which	is	different	from	the	genetic	mate-
rial	in	the	nucleus.	This	material	is	known	as	mitochondrial	deoxyribonucleic	acid	
(mtDNA)	and	enables	the	mitochondria	to	self-replicate.

The	 most	 important	 central	 command	 center	 of	 the	 cell	 is	 the	 nucleus	 that	
houses	DNA,	the	heredity	material	of	the	cell.	The	DNA	found	in	the	nucleus	is	
known	as	the	nuclear	DNA.	Nuclear	DNA	stores	genetic	information	in	the	form	
of	a	code	consisting	of	four	chemical	bases,	adenine	(A),	guanine	(G),	cytosine	(C),	
and	thymine	(T).	Human	DNA	consists	of	about	3	billion	bases,	more	than	99%	
of	which	are	the	same	in	all	people.	Moreover,	nearly	every	cell	in	the	human	body	
has	the	same	DNA.	The	nucleus	 is	enveloped	by	a	membrane	called	the	nuclear	
envelope	that	protects	and	separates	the	DNA	from	the	rest	of	the	cell	organelles.

A	closer	 inspection	of	 the	DNA	sequence	shows	 the	existence	of	an	order	of	
the	bases	in	the	DNA	sequence.	This	order	determines	the	coded	instructions	for	
the	cell	 to	grow,	mature,	divide,	or	die.	 In	 the	DNA,	the	bases	A,	C,	T,	and	G	
combine	to	form	base	pairs,	such	as	A	and	T	or	C	and	G.	A	nucleotide	consists	
of	an	ensemble	of	these	base	pairs	attached	to	a	sugar	molecule	and	a	phosphate	
molecule	(refer	to	Figure	1.2	for	examples	of	these	molecules).	The	nucleotides	in	a	
DNA	molecule	are	arranged	in	two	long	strands	to	form	a	spiral	called	the	double	
helix.	The	structure	of	DNA	is	analogous	to	that	of	a	ladder,	where	the	ladder	rungs	
correspond	to	the	base	pairs	while	the	sugar	and	phosphate	molecules	correspond	
to	 the	vertical	 side	pieces	of	 the	 ladder.	This	double	helix	 structure	of	 the	DNA	
molecule	facilitates	replication,	and	each	strand	serves	as	a	pattern	template	for	the	
duplication	of	sequence	bases	during	cell	division,	as	the	resultant	child	cells	should	
possess	the	exact	copy	of	the	DNA	in	the	parent	cell	(Figure	1.2).

Base Pairs Sugar-
Phosphate
Backbone

�ymine Adenine

Cytosin Guanine

Figure 1.2 Schematic representation of the DnA double helix formed by base 
pairs attached to a sugar-phosphate backbone. (From http://ghr.nlm.nih.gov/
handbook/illustrations/dnastructure.jpg.)
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Chromosomes	are	thread-like	structures	that	contain	multiple,	tightly	packed	
DNA	molecules.	These	tightly	packed	units	are	coiled	multiple	times	around	pro-
teins	called	histones.	These	histone	molecules	are	believed	to	provide	the	necessary	
structural	reinforcement	for	the	chromosome	and	help	in	the	analysis	of	the	struc-
ture	of	chromosomes.	Typically,	the	structure	of	a	chromosome	consists	of	a	central	
point	called	the	centromere	(refer	to	Figure	1.3),	which	divides	the	chromosome	
into	sections	called	arms.	The	location	of	the	centromere	over	the	entire	chromo-
some	renders	 the	characteristic	 shape	of	a	chromosome,	and	acts	as	 the	point	of	
reference	in	locating	genes	throughout	the	chromosome.	Typically,	a	chromosome	
consists	of	two	arms	of	different	lengths.	The	shorter	arm	is	referred	to	as	the	p-arm,	
and	the	longer	is	called	the	q-arm.

Genes	are	best	known	as	 the	basic	physical	and	functional	units	of	heredity.	
They	are	found	at	characteristic	locations	over	the	chromosome;	these	locations	are	
called	loci.	The	coded	information	(i.e.,	the	DNA)	found	in	genes	is	translated	and	
transcribed	to	create	protein	molecules.

Most	humans	 share	 the	 same	genes;	however,	 a	 small	number	of	 genes	 vary	
from	individual	to	individual.	These	genes	provide	individuals	their	unique	charac-
teristics,	like	hair,	eye	color,	body	shape,	and	skin	pigmentation.	A	particular	gene	
with	two	or	more	forms	is	called	an	allele.	The	difference	in	the	gene	is	exhibited	
as	 changes	 in	 the	DNA	bases	 that	 contribute	 to	an	 individual’s	unique	physical	
features	(Figure	1.4).

DNA Double Helix

p Arm

q Arm

Histone Proteins

U.S. National Library of Medicine DNA

Chromosome
Centromere

Figure 1.3 DnA and histone proteins are packaged into structures called 
chromosomes. (From http://ghr.nlm.nih.gov/handbook/illustrations/chromo-
somestructure.jpg.)
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Genes	contain	codes	that	are	translated	into	proteins.	During	translation,	the	
gene	 codes	 consisting	of	 trinucleotide	units	 called	 codons	provide	 the	necessary	
coding	for	an	amino	acid.	Table	1.1	shows	the	triplet	combinations	of	nucleotides	
that	 result	 in	 the	creation	of	20	known	amino	acids.	The	translation	 is	 initiated	
by	 a	 START	 codon	 (along	 with	 nearby	 initiation	 factors)	 and	 is	 terminated	 by	
a	STOP	codon.	A	sequence	of	amino	acids	 forms	a	protein,	which	 is	a	complex	
molecule	that	carries	out	critical	functions	in	the	human	body.	The	function	of	the	

Chromosome

Gene
U.S. National Library of Medicine

Figure 1.4 Genes are made up of DnA. each chromosome contains many genes. 
(From http://ghr.nlm.nih.gov/handbook/illustrations/geneinchromosome.jpg.)

table 1.1 All Amino Acids and their Corresponding Codons

Amino Acid Codon Amino Acid Codon

Ala/A GCU, GCC, GCA, GCG Lys/K AAA, AAG

Arg/R CGU, CGC, CGA, CGG, 
AGA, AGG

Met/M AUG

Asn/N AAU, AAC Phe/F UUU, UUC

Asp/D GAU, GAC Pro/P CCU, CCC, CCA, CCG

Cys/C UGU, UGC Ser/S UCU, UCC, UCA, 
UCG, AGU, AGC

Gln/Q CAA, CAG Thr/T ACU, ACC, ACA, ACG

Glu/E GAA, GAG Trp/W UGG

Gly/G GGU, GGC, GGA, GGG Tyr/Y UAU, UAC

His/H CAU, CAC Val/V GUU, GUC, GUA, GUG

Lle/I AUU, AUC, AUA START AUG

Leu/L UUA, UUG, CUU, 
CUC, CUA, CUG

STOP UAA, UGA, UAG
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complex	protein	molecule	is	determined	by	its	sequence	and	its	three-dimensional	
(3D)	structure,	which	has	direct	bearings	on	the	function	of	the	associated	gene.

The	 function	of	genes	 is,	 at	 times,	 affected	by	 random	changes	 to	naturally	
occurring	sequences.	These	changes	are	called	mutations.	Mutations	are	random	
changes	 in	the	structure	or	composition	of	DNA,	which	can	be	caused	by	mis-
takes	in	reproduction	or	external	environmental	events,	like	UV	damage.	While	
evolutionary	 changes	 in	 species	 are	 caused	 by	 beneficial	 mutations	 that	 enable	
organisms	to	adapt	over	time,	not	all	mutations	are	beneficial.	Certain	mutations	
cause	diseases	 such	 as	 cancer	 and	 could	 affect	 the	 survival	 of	 organisms	 and	
species	over	time.

A	significant	amount	of	biomedical	research	has	been	carried	out	to	determine	
the	functions	of	protein	complexes	for	medical	use.	This	research	has	resulted	in	
breakthroughs	in	drug	development.

Section	1.2	 contains	 a	description	of	 transcription	and	 translation,	 closely	 fol-
lowed	by	an	introduction	to	the	Human	Genome	Project	(HGP)	in	Section	1.3,	which	
resulted	in	an	estimate	of	between	20,000	and	25,000	genes	reported	in	humans.

1.2 transcription and translation
The	creation	of	proteins	from	a	gene	is	complex	and	consists	of	two	integral	steps:	
transcription	and	translation.	Though	most	genes	contain	the	information	needed	
to	generate	proteins,	some	genes	help	the	cell	assemble	proteins.	Transcription	and	
translation	are	part	of	the	central	dogma	of	molecular	biology,	which	is	the	funda-
mental	principle	that	governs	the	conversion	of	information	from	DNA	to	RNA	
to	protein	(refer	to	Figure	1.5).	The	following	section	provides	an	overview	of	the	
two-stage	process	of	transcription	and	translation.

The	first	step	of	transcription	occurs	in	the	nucleus	of	the	cell	where	the	infor-
mation	 stored	 in	 the	 DNA	 (of	 a	 gene)	 is	 transferred	 to	 the	 mRNA	 (messenger	
ribonucleic	acid).	Typically,	both	RNA	and	DNA	are	composed	of	nucleotide	base	
chains;	however,	they	differ	in	properties	and	chemical	composition.	The	mRNA	
is	a	 type	of	RNA	that	holds	 the	chemical	blueprint	of	 the	protein	product.	The	
resultant	protein	product	carries	the	encoded	information	from	the	DNA	within	
the	nucleus	to	the	DNA	within	the	cytoplasm	of	the	cell	for	the	production	of	the	
protein	complex.

The	second	step	of	translation	occurs	outside	the	walls	of	the	nucleus,	in	which	
the	ribosomes	present	on	the	rough	endoplasmic	reticulum	read	the	encoded	infor-
mation	from	the	mRNA	to	produce	the	protein.	The	mRNA	sequence	consists	of	a	
string	of	codons,	three	bases	that	represent	independent	amino	acids.	The	assembly	
of	amino	acids	 into	the	corresponding	protein	sequence	 is	brought	about	by	the	
transfer	RNA	(tRNA)	one	amino	acid	at	a	time.	This	process	of	assembly	continues	
until	the	stop	codon	in	the	mRNA	is	encountered.	This	two-step	process	is	called	
the	central	dogma	of	molecular	biology	(refer	to	Figure	1.5).
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1.2.1 The Central Dogma of Molecular Biology
As	described	previously,	each	gene	contains	the	genetic	makeup	of	an	individual	
and	 the	 coded	 information	 required	 to	manufacture	both	noncoding	RNA	and	
proteins.	The	expression	of	a	gene	is	carried	out	by	the	two-stage	process	of	transla-
tion	and	transcription	(refer	to	Figure	1.6).

The	first	step	in	this	process	is	called	transcription,	which	involves	the	replica-
tion	of	gene	content	by	copying	the	content	of	 the	DNA	to	an	equivalent	RNA	
molecule	also	known	as	the	primary	transcript.	The	primary	transcript	is	essentially	
the	same	sequence	as	the	gene,	except	that	it	is	complementary	in	its	base	pair	con-
tent.	This	similarity	enables	the	sequence	to	convert	from	DNA	and	RNA	and	vice	
versa,	in	the	presence	of	certain	enzymes.	The	resultant	RNA	sequence	reflecting	
the	transcribed	DNA	is	called	a	transcription	unit	encoding	one	gene.	The	nucleo-
tide	composition	of	the	resultant	RNA	includes	uracil	(U)	in	place	of	thymine	(T)	
in	the	DNA	complement.	DNA	transcription	is	regulated	and	directed	by	regula-
tory	sequences.	The	DNA	sequence	before	the	coding	sequence	is	called	the	five	
prime	untranslated	region	(5’UTR);	similarly,	the	sequence	following	the	coding	
sequence	is	called	the	three	prime	untranslated	region	(3’UTR).	The	direction	of	
transcription	moves	from	the	5’	to	the	3’.	Each	gene	is	further	divided	into	inter-
mediate	regions	called	exons	and	introns.	The	exons	carry	information	required	for	
protein	synthesis.	As	shown	in	Figure	1.6,	the	messenger	RNA	(mRNA)	contains	
information	from	the	exons.	The	process	of	splicing	filters	out	the	intron	sequence	
from	the	primary	transcripts.

Cytoplasm

DNA Transcription

Translation

DNA

RNA

PROTEIN

RNA

Ribosome

Protein

Nucleus

Figure 1.5 the central dogma of molecular biology. the processes of transcrip-
tion and translation of information from genes are used to make proteins. (From 
http://ghr.nlm.nih.gov/handbook/illustrations/proteinsyn.jpg.)
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The	second	step	is	translation,	also	known	as	protein	synthesis.	In	this	step,	the	
resultant	mRNA	from	transcription	is	translated	to	the	resultant	protein	complex	
with	the	help	of	ribosomes.	Translation	occurs	in	the	cytoplasm	of	the	cell,	outside	
the	nuclear	wall.	The	decoding	of	mRNA	is	initiated	when	the	ribosome	binds	to	
the	mRNA	with	the	help	of	tRNAs,	which	transfer	specific	amino	acids	from	the	
cytoplasm	 to	 the	 ribosome.	 The	 ribosome	 helps	 build	 the	 protein	 complex	 as	 it	
reads	the	information	encoded	in	the	mRNA.

The	process	of	translation	begins	when	the	ribosome	binds	to	the	5’	end	of	the	
mRNA.	The	codons	of	the	mRNA	specify	which	amino	acid	needs	to	be	appended	
to	 create	 the	 polypeptide	 chain.	 This	 process	 is	 terminated	 when	 the	 ribosome	
encounters	the	3’	(stop	codon)	of	the	mRNA.	The	resultant	chain	of	amino	acids	
folds	to	form	the	structure	of	the	protein.	This	process	is	called	translation,	as	there	
is	no	direct	correspondence	between	the	nucleotide	sequence	of	the	DNA	and	the	
resultant	protein	complex.

Transcription	and	translation	is	a	regulated	process	that	enables	the	controlled	
expression	of	genes.	With	evolution	and	differences	in	species,	it	is	known	that	all	
genes	are	not	expressed	in	the	same	way.	With	the	exception	of	the	housekeeping	
genes,	genes	that	are	always	expressed	in	all	cells	(performing	the	basic	functions)	
are	expressed	differently	during	different	phases	of	development.	Proteins	known	as	
transcription	factors	(TFs)	regulate	genes.	These	proteins	bind	to	DNA	sequences,	
preventing	 them	 from	 being	 transcribed	 and	 translated,	 and	 thereby	 switching	

5´

5´ 3´

3´
Exon 1

Primary Transcript (RNA)
Transcription

Splicing

Protein Synthesis

Mature Transcript (mRNA)

Protein

Intron 1 Intron 2 Intron 3

Exon 2 Exon 3 Exon 4

Figure 1.6 An overview of the transcription to translation. the gene is first tran-
scribed to yield a primary transcript, which is processed to remove the introns. 
the mature transcript (mRnA) is then translated into a sequence of amino 
acids, which defines the protein. (From http://genome.wellcome.ac.uk/assets/
Gen10000676.jpg.)
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them	on	or	off	as	desired.	Thus,	 the	gene	expression	can	be	a	controlled	process	
based	on	the	activity	of	transcription	factors.

Transcription	 factors,	 being	 proteins	 themselves,	 require	 genes	 to	 produce	
them.	This	requirement	opens	a	conundrum	in	which	one	gene	expression	affects	
the	expression	of	 the	other	genes.	 In	 this	manner,	genes	and	proteins	are	 linked	
in	a	regulatory	hierarchy.	This	process	of	turning	genes	on	and	off	is	called	gene	
regulation.	 Gene	 regulation	 is	 an	 important	 part	 of	 normal	 development;	 how-
ever,	a	number	of	human	diseases	are	the	result	of	the	absence	or	malfunction	of	
transcription	factors	and	the	resultant	disruption	of	gene	expression.	Considering	
the	importance	of	gene	regulation,	a	significant	amount	of	research	should	be	per-
formed	to	understand	how	genes	regulate	each	other	(Figure	1.6)	(Baumbach	et	al.	
2008;	Cao	and	Zhao	2008).

1.3 the Human Genome Project
The	Human	Genome	Project	(HGP)	was	initiated	as	a	 joint	endeavor	and	spon-
sored	by	the	Office	of	Biological	and	Environmental	Research	at	the	Department	
of	 Energy	 (DOE)	 and	 the	 National	 Human	 Genome	 Research	 Institute	 at	 the	
National	 Institutes	 of	 Health	 (NIH),	 with	 the	 goal	 of	 sequencing	 the	 human	
genome	within	15	years	(Collins	1998).	More	than	2,000	scientists	from	over	20	
institutions	 in	6	countries	collaborated	to	produce	the	first	working	draft	of	 the	
human	 genome,	 a	 landmark	 in	 scientific	 research.	 The	 final	 phase	 of	 the	 HGP	
(1993–2003)	has	fulfilled	its	promise	as	the	single	most	important	project	in	biol-
ogy	and	the	biomedical	sciences.	Although	the	initial	sequence	had	∼150,000	gaps,	
and	the	order	and	orientation	of	many	of	the	smaller	segments	had	yet	to	be	estab-
lished,	the	finished	sequence	contained	2.85	billion	nucleotide	base	pairs	(bp)	and	
just	341	gaps	(Figure	1.7).

1999
Full scale
human

sequencing
begins

2000
Draft version

of human
genome
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completed
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of human
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of mouse
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version of
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genome
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completed

Figure 1.7 Key milestones achieved in the last 5 years of the HGP (1999–2003) 
(Constructed based on information from http://www.genome.gov/images/press_
photos/highres/38-300.jpg.)
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The	comprehensive	human	genome	sequence	made	available	through	this	proj-
ect	has	increased	our	ability	to	analyze	genomes,	and	has	aided	research	in	areas	
such	as	large-scale	biology,	biomedical	research,	biotechnology,	and	health	care.	
Though	researchers	involved	with	the	project	have	proclaimed	it	to	be	complete,	
certain	aspects	of	the	project	have	yet	to	be	fully	implemented.	The	methods	and	
outcomes	of	this	project	are	constantly	evolving	and	can	lead	to	a	better	under-
standing	 of	 gene	 environment	 interactions,	 structures,	 and	 functions,	 thereby	
eventually	 leading	 to	 the	 creation	 of	 accurate	 DNA-based	 medical	 diagnostics	
and	therapeutics	that	would	be	important	to	the	biomedical	research	community	
(Collins	1998).

Genetic	 sequence	 variation	 is	necessary	 for	 the	 study	of	 evolution.	The	HGP	
provides	a	comprehensive	availability	of	the	human	genome	sequence,	thereby	pre-
senting	unique	scientific	and	research	avenues	for	collaborative	research.	Apart	from	
providing	a	means	 to	understand	numerous	medically	 important	and	genetically	
complex	human	diseases,	the	HGP	is	also	focused	on	delivering	(1)	genetic	tests,	
(2)	a	better	understanding	of	inherited	diseases,	and	(3)	patient-specific	therapies.

Bioinformatics	and	computational	biology	are	important	components	of	mak-
ing	these	goals	a	reality.	The	HGP	(along	with	the	other	genome	projects)	has	pro-
vided	us	with	a	description	of	the	complete	sequences	of	all	the	genes	in	more	than	
a	dozen	organisms,	and	continuously	provides	more	complete	genome	sequences	as	
research	continues.	With	technological	innovations,	the	data	generated	have	been	
growing	at	an	exponential	rate	and	are	stored	in	distributed	databases	across	the	
world.	These	databases	provide	challenges	and	opportunities	for	the	analysis	and	
exploitation	of	genes	and	protein	sequences.	In	order	to	reap	the	intellectual	and	
commercial	 benefits	 of	 this	 genetic	 information,	 researchers	 must	 be	 able	 to	
find	the	function	of	individual	gene	products.	In	the	following	section,	we	high-
light	 the	 goals	 laid	 by	 the	HGP	 and	 the	 corresponding	 strides	made	 thereof	 in	
achieving	the	goals.

1.4 Beyond the Human Genome Project
With	 the	 completion	 of	 the	 sequencing	 of	 the	 human	 genome,	 the	 HGP	 focus	
switched	 to	 making	 the	 sequence	 publicly	 available	 to	 its	 mapping.	 The	 extrac-
tion	of	3	billion	base	pairs	was	in	itself	a	humongous	task,	and	the	analysis	of	this	
magnitude	of	data	presented	its	own	set	of	challenges	and	opportunities	requiring	a	
huge	number	of	resources.	Researchers	from	around	the	world	realized	the	impor-
tance	and	the	significant	scientific	contributions	that	could	be	made	in	the	areas	
of	human	health	and	participated	in	the	global	endeavor	to	map	the	entire	human	
genome	(Figure	1.8).

The	following	sections	describe	the	technological	strides	made	thus	far	in	five	
key	areas:	(1)	sequencing	technologies,	(2)	sequence	variation	studies,	(3)	functional	
genomics,	(4)	comparative	genomics,	and	(5)	functional	annotation.
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1.4.1 Sequencing Technology
With	technological	innovations,	DNA	sequencing	technology	continues	to	improve	
dramatically.	Since	the	HGP	began,	the	growth	in	data	generated	from	sequenc-
ing	projects	has	been	exponential.	This	growth	is	caused	by	the	emphasis	given	to	
sequencing	technologies,	due	to:

	 1.	Reduced	costs	and	increased	throughput	of	current	sequencing	technology
	 2.	Support	 for	 novel	 technologies	 that	 can	 significantly	 improve	 sequencing	

technologies
	 3.	Newly	 developed	 effective	 methods	 that	 introduce	 new	 sequencing	

technologies

The	 consequent	 technological	 innovations	 in	 the	 recent	 past	 have	 brought	
about	a	decline	in	the	per-base	cost	of	DNA	sequencing	at	an	exponential	rate.	
These	innovations	are	attributed	to	the	improvement	in	the	read	length	and	accu-
racy	of	sequencing	traces	and	have	resulted	in	the	consequent	exponential	growth	
of	the	genome	databases	(Shendure	et	al.	2008).	The	introduction	of	instruments	
capable	of	producing	millions	of	DNA	sequences	read	 in	a	single	run	provides	
the	ability	to	answer	questions	with	unimaginable	speed.	These	technologies	are	
aimed	at	providing	inexpensive,	genome-wide	sequence	readouts	as	endpoints	to	
applications.

There	are	six	distinct	techniques	for	DNA	sequencing:	(1)	dideoxy	sequencing,	(2)	
cyclic	array	sequencing,	(3)	sequencing	by	hybridization,	(4)	microelectrophoresis,	

HGP

Sequencing
Technology

Sequence
Variation Studies

Functional Genomics

Comparative Genomics

Functional Annotation

Figure 1.8 the five key areas that have been formed since the completion of the 
human genome project (HGP).
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(5)	 mass	 spectrometry,	 and	 (6)	 nanopore	 sequencing.	 The	 primary	 objective	 of	
these	sequencing	technologies	is	to	identify	the	primary	nucleotides,	such	as	ade-
nine	(A),	guanine	(G),	cytosine	(C),	and	thymine	(T),	in	the	content	of	the	DNA	
strands.	The	 following	 sections	provide	 an	overview	of	 these	 various	 sequencing	
strategies	used.

1.4.1.1 Dideoxy Sequencing

Dideoxy	 sequencing	 was	 initially	 proposed	 by	 the	 Sanger	 Institute.	 The	 process	
proceeds	by	primer-initiated,	polymerase-driven	synthesis	of	DNA	strands	comple-
mentary	to	the	template	with	the	determined	sequence.	Numerous	identical	copies	
of	the	sequencing	template	undergo	the	primer	extension	reaction	within	a	single	
microliter-scale	volume.

Generating	sufficient	quantities	of	a	template	for	a	sequencing	reaction	is	typi-
cally	achieved	by	either	(1)	miniprep	of	a	plasmid	vector	into	which	the	fragment	
of	interest	has	been	cloned,	or	(2)	polymerase	chain	reaction	(PCR)	followed	by	a	
cleanup	step.

In	the	sequencing	reaction,	both	the	natural	deoxynucleotides	(dNTPs)	and	the	
chain-terminating	dideoxynucleotides	(ddNTPs)	are	present	at	a	specific	ratio.	The	
ratio	determines	the	relative	probability	of	incorporation	of	dNTPs	and	ddNTPs	
during	the	primer	extension.	Incorporation	of	a	ddNTP	instead	of	a	dNTP	results	
in	the	termination	of	a	given	strand.	Therefore,	for	any	given	template	molecule,	or	
strand,	elongation	will	begin	at	the	3’	end	of	the	primer	and	will	terminate	upon	
the	 incorporation	 of	 a	 ddNTP.	 In	 older	 protocols	 for	 dideoxy	 sequencing,	 four	
separate	primer	 extension	 reactions	 are	 carried	out,	 each	containing	only	one	of	
the	four	possible	ddNTP	species	(ddATP,	ddGTP,	ddCTP,	or	ddTTP),	along	with	
template,	polymerase,	dNTPs,	and	a	radioactively	 labeled	primer.	The	result	 is	a	
collection	of	many	terminated	strands	of	different	lengths	within	each	reaction.	As	
each	reaction	contains	only	one	ddNTP	species,	fragments	with	only	a	subset	of	
possible	lengths	will	be	generated,	corresponding	to	the	positions	of	that	nucleotide	
in	the	template	sequence.	The	four	reactions	are	then	electrophoresed	in	four	lanes	
of	a	denaturing	polyacrylamide	gel	to	yield	size	separation	with	single	nucleotide	
resolution.	The	pattern	of	bands	 (with	 each	band	 consisting	of	 terminated	 frag-
ments	of	a	single	length)	across	the	four	lanes	allows	researchers	to	directly	interpret	
the	primary	sequence	of	the	template	under	analysis.

Current	implementations	of	dideoxy	sequencing	differ	in	several	key	ways	from	
the	protocol	described	above.	Only	a	single	primer	extension	reaction	is	performed.	
This	reaction	includes	all	four	species	of	ddNTP,	which	are	labeled	with	fluorescent	
dyes	that	have	the	same	excitation	wavelength	but	different	emission	spectra,	allow-
ing	for	identification	by	fluorescent	energy	resonance	transfer	(FRET).

To	minimize	the	required	amount	of	template	DNA,	a	cycle	sequencing	reaction	
is	performed,	in	which	multiple	cycles	of	denaturation,	primer	annealing,	and	primer	
extension	are	performed	to	linearly	increase	the	number	of	terminated	strands.
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1.4.1.2 Cyclic Array Sequencing

All	of	the	recently	released	or	soon-to-be-released	non-Sanger	commercial	sequencing	
platforms,	including	systems	from	454/Roche,	Solexa/Illumina,	Agencourt/Applied	
Biosystems,	and	Helicos	BioSystems,	fall	under	the	rubric	of	a	single	paradigm,	called	
cyclic	array	sequencing.	Cyclic	array	platforms	are	cheap	because	they	simultaneously	
decode	a	2D	array	bearing	millions	(potentially	billions)	of	distinct	sequencing	fea-
tures.	The	sequencing	features	are	“clonal,”	in	that	each	resolvable	unit	contains	only	
one	species	of	DNA	(as	a	single	molecule	or	in	multiple	copies)	physically	immobi-
lized	on	the	array.	The	features	may	be	arranged	in	an	ordered	fashion	or	randomly	
dispersed.	Each	DNA	feature	generally	 includes	an	unknown	sequence	of	 interest	
(distinct	from	the	unknown	sequence	of	other	DNA	features	on	the	array)	flanked	by	
universal	adaptor	sequences.	A	key	point	in	this	approach	is	that	the	features	are	not	
necessarily	separated	into	individual	wells.	Rather,	because	they	are	immobilized	on	a	
single	surface,	a	single	reagent	volume	is	applied	to	simultaneously	access	and	manip-
ulate	all	features	in	parallel.	The	sequencing	process	is	cyclic	because	in	each	cycle	an	
enzymatic	process	is	applied	to	interrogate	the	identity	of	a	single	base	position	for	all	
features	in	parallel.	The	enzymatic	process	is	coupled	to	either	the	production	of	light	
or	the	incorporation	of	a	fluorescent	group.	At	the	conclusion	of	each	cycle,	data	are	
acquired	by	charge-coupled	device	(CCD)-based	imaging	of	the	array.	Subsequent	
cycles	are	aimed	at	interrogating	different	base	positions	within	the	template.	After	
multiple	cycles	of	enzymatic	manipulation,	position-specific	interrogation,	and	array	
imaging,	a	contiguous	sequence	for	each	feature	can	be	derived	from	an	analysis	of	
the	full	series	of	imaging	data	covering	its	position.

1.4.1.3 Sequencing by Hybridization

The	principle	of	sequencing	by	hybridization	(SBH)	is	that	the	differential	hybrid-
ization	of	target	DNA	to	an	array	of	oligonucleotide	probes	can	be	used	to	decode	
the	target’s	primary	DNA	sequence.	The	most	successful	implementations	of	this	
approach	rely	on	probe	sequences	based	on	the	reference	of	a	genome	sequence	of	a	
given	species,	such	that	genomic	DNA	derived	from	individuals	of	that	species	can	
be	hybridized	to	reveal	differences	relative	to	the	reference	genome	(i.e.,	resequenc-
ing,	rather	than	de novo	sequencing).	The	difference	between	SBH	and	other	geno-
typing	array	platforms	that	use	similar	methods	is	that	SBH	attempts	to	query	all	
bases,	rather	than	only	bases	at	which	common	polymorphisms	have	been	defined.	
In	resequencing	arrays	developed	by	Affymetrix	and	Perlegen,	each	feature	consists	
of	 a	25	bp	oligonucleotide	of	 a	defined	 sequence.	For	 each	base	pair	 to	be	 rese-
quenced,	there	are	four	features	on	the	chip	that	differ	only	at	their	central	position	
(dA,	dG,	dC,	or	dT),	while	the	flanking	sequence	is	constant	and	is	based	on	the	
reference	genome.	After	hybridization	of	the	labeled	target	DNA	to	the	chip	and	
the	imaging	of	the	array,	the	relative	intensities	at	each	set	of	four	features	targeting	
a	given	position	can	be	used	to	infer	the	target	DNA’s	identity.
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1.4.1.4 Microelectrophoresis

As	 mentioned	 above,	 conventional	 dideoxy	 sequencing	 is	 performed	 with	
microliter-scale	 reagent	 volumes,	 with	 most	 instruments	 running	 96	 or	 384	
reactions	simultaneously	in	separate	reaction	vessels.	The	goal	of	microelectro-
phoretic	methods	is	to	make	use	of	microfabrication	techniques	developed	in	
the	 semiconductor	 industry	 to	 enable	 significant	 miniaturization	 of	 conven-
tional	dideoxy	sequencing.	A	key	advantage	of	 this	approach	 is	 the	retention	
of	the	dideoxy	biochemistry,	which	has	proven	robustness	for	>1,011	bases	of	
sequencing.	Until	alternative	methods	achieve	significantly	longer	read	lengths	
than	 they	 can	 today,	 there	 will	 continue	 to	 be	 an	 important	 role	 for	 Sanger	
sequencing.	 Microelectrophoretic	 methods	 may	 prove	 critical	 to	 continue	 to	
reduce	costs	for	this	well-proven	chemical	process.	There	may	also	be	a	key	role	
for	lab-on-a-chip	integrated	sequencing	devices	that	will	provide	cost-effective,	
clinical	point-of-care	molecular	diagnostics.

1.4.1.5 Mass Spectrometry

Mass	spectrometry	(MS)	has	established	itself	as	the	key	data	acquisition	platform	
for	the	emerging	field	of	proteomics.	There	are	also	applications	for	MS	in	genom-
ics,	including	methods	for	genotyping,	quantitative	DNA	analysis,	gene	expression	
analysis,	analysis	of	indels	and	DNA	methylation,	and	DNA/RNA	sequencing.

Matrix-assisted	 laser	 desorption/ionization	 time-of-flight	 mass	 spectrometry	
(MALDI-TOF-MS)	is	an	MS	sequencing	technique	that	relies	on	the	precise	mea-
surement	 of	 the	 masses	 of	 DNA	 fragments	 present	 within	 a	 mixture	 of	 nucleic	
acids.	 De novo	 sequencing	 using	 MALDI-TOF-MS	 read	 lengths	 are	 limited	 to	
<100	bp.	Applications	of	MS	sequencing	include:

	 1.	Deciphering	 sequences	 that	 appear	 as	 compression	 zones	 by	 gel	
electrophoresis

	 2.	Direct	sequencing	of	RNA	(including	for	identification	of	posttranslational	
modifications	of	ribosomal	RNA)

	 3.	Robust	 discovery	 of	 heterozygous	 frameshift	 and	 substitution	 mutations	
within	PCR	products	in	resequencing	projects

	 4.	DNA	methylation	analysis

1.4.1.6 Nanopore Sequencing

Nanopore	 sequencing	 is	 an	 approach	 for	 single-molecule	 sequencing	 that	
involves	 passing	 single-stranded	 DNA	 through	 a	 nanopore.	 The	 nanopore	 is	
a	biological	membrane	protein	or	a	 synthetic	 solid-state	device.	As	 individual	
nucleotides	 are	 expected	 to	 obstruct	 the	 pore	 to	 varying	 degrees	 in	 a	 base-
specific	 manner,	 the	 resulting	 fluctuations	 in	 electrical	 conductance	 through	
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the	 pore	 can,	 in	 principle,	 be	 measured	 and	 used	 to	 infer	 the	 primary	 DNA	
sequence.	Published	examples	of	the	nanopore-based	characterization	of	single	
nucleic	acid	molecules	include:

	 1.	The	 measurement	 of	 duplex	 stem	 length,	 base	 pair	 mismatches,	 and	 loop	
length	within	DNA	hairpins	(Vercoutere	et	al.	2001)

	 2.	The	classification	of	the	terminal	base	pair	of	a	DNA	hairpin,	with	approxi-
mately	60	to	90%	accuracy	with	a	single	observation,	and	>99%	accuracy	
with	15	observations	of	the	same	species	(Winters-Hilt	et	al.	2003)

	 3.	Reasonably	accurate	(93	to	98%)	discrimination	of	deoxynucleotide	mono-
phosphates	 from	one	 another	with	 an	 engineered	protein	nanopore	 sensor	
(Astier	et	al.	2006)

Significant	 pore	 engineering	 and	 technology	 development	 may	 be	 necessary	
to	accurately	decode	a	complex	mixture	of	DNA	polymers	with	 single-base	pair	
resolution	and	useful	read	lengths.	Provided	these	challenges	can	be	met,	nanopore	
sequencing	has	the	potential	to	enable	rapid	and	cost-effective	sequencing	of	popu-
lations	of	DNA	molecules	with	comparatively	simple	sample	preparation.

1.4.2 Next-Generation Sequencing
With	 the	 advancements	 made	 in	 sequencing	 technologies,	 there	 has	 also	 been	
recent	advancement	 in	the	 form	of	a	new	generation	of	 sequencing	 instruments.	
These	instruments	cost	less	than	the	techniques	described	in	the	previous	section	
and	promise	faster	sequence	readings,	as	they	require	only	a	few	iterations	to	com-
plete	an	experiment.	These	faster	reads	foster	the	potential	to	add	to	the	exponen-
tial	 increase	of	sequence	data.	The	expected	increase	of	data	 is	also	attributed	to	
the	next-generation	 sequence	 technology’s	 ability	 to	process	millions	of	 reads	 in	
parallel,	rather	than	the	traditional	96	reads.	Thus,	with	the	introduction	of	next-
generation	sequencing	technology,	large-scale	production	gene	sequence	data	may	
require	specialized	use	of	robotics	and	high-tech	instruments,	computer	databases	
for	storage	of	the	huge	data,	and	bioinformatics	software	for	analysis.

An	added	advantage	of	the	proposed	next-generation	sequence	reads	is	that	they	
are	generated	from	fragment	libraries	that	have	not	been	subjected	to	conventional	
vector-based	cloning	and	Escherichia coli-based	amplification	stages	used	in	capillary	
sequencing	rendering	the	sequences	of	any	prevalent	biases	caused	by	cloning.

Three	commercially	used	and	commonly	cited	next-generation	sequencing	plat-
forms	include	the	Roche	(454)	GS	FLX	Sequencer,	the	Illumina	Genome	Analyzer,	
and	 the	Applied	Biosystems	SOLiD	Sequencer	 (refer	 to	Table	1.2	 for	 a	detailed	
comparison).	The	generic	work	flow	for	creating	a	next-generation	sequence	library	
is	simple.	Fragments	of	DNA	are	prepared	for	sequencing	by	ligating	specific	adap-
tor	oligos	to	both	ends	of	each	DNA	fragment.	Typically,	only	a	few	micrograms	of	
DNA	are	needed	to	produce	a	library.	Each	of	these	platforms	applies	a	unique	or	
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modified	approach	to	sequence	the	paired	ends	of	a	fragment,	the	scope	of	which	is	
not	covered	in	this	book.	For	details	refer	to	Mardis	(2008).

Since	 next-generation	 sequencing	 technology	 is	 relatively	 new,	 there	 is	 little	
insight	on	the	accuracy	of	the	reads,	and	the	quality	of	the	results	obtained	have	
yet	to	be	understood.	When	compared	to	the	more	traditional	capillary	sequencers,	
next-generation	sequencers	produce	shorter	reads,	ranging	from	35	to	250	base	pairs	
(bp),	than	the	traditional	650	to	800	bp	created	by	other	methods.	The	length	of	the	
reads	could	impact	the	utilization	of	the	generated	data.	Efforts	are	being	pursued	
currently	to	benchmark	the	reads	with	the	traditional	capillary	electrophoresis.

Although	 next-generation	 sequence	 technology	 provides	 many	 advantages	 over	
traditional	methods,	it	also	poses	several	computational	challenges.	Many	storage	and	
data	management	systems	cannot	handle	the	amount	of	data	generated.	The	data	stor-
age	must	be	scalable,	dense,	and	inexpensive	to	handle	the	exponential	growth.	Various	
centers	of	bioinformatics	around	the	globe	are	investing	heavily	in	high-performance	
disk	systems	and	data	pipelines	to	overcome	the	challenge	of	handling	the	large	num-
ber	of	files	that	are	expected	to	be	accessed	when	the	demand	arises.

Software	pipelines	are	also	required	to	provide	the	necessary	analysis	and	visu-
alization	of	the	data	generated.	More	importantly,	software	has	to	be	in	place	to	
provide	annotations	of	the	sequences	generated.

1.4.2.1 Challenges of Handling NGS Data

The	challenges	of	handling	the	deluge	of	NGS	data	stem	from	two	key	concepts	that	
are	used	to	analyze	the	sequence	reads.	These	concepts	focus	on	de novo	assembly	

table 1.2 Comparison of Metrics and Performance of next-Generation 
DnA Sequencers

Platform

Roche (454) Illumina AB SOLiD

Sequencing chemistry Pyrosequencing Polymerase-based 
sequencing by 
synthesis

Ligation-
based 
sequencing

Amplification approach Emulsion PCR Bridge 
amplification

Emulsion 
PCR

Mb/run 100 Mb 1,300 Mb 3,000 Mb

Time/run (paired ends) 7 h 4 days 5 days

Read length 250 bp 32–40 bp 35 bp

Source: Mardis, E.R., Trends Genet 24, no. 3 (2008): 133–141.



Introduction to Bioinformatics  ◾  19

and	alignment.	The	following	sections	describe	the	computational	algorithms	used	
to	handle	the	massive	amounts	of	Illumina	sequencing	data	for	both	de novo	assem-
bly	and	alignment	of	reads	(Paszkiewicz	and	Studholme	2010).

1.4.2.1.1 De Novo Assembly

De novo	sequence	assembly	is	the	process	whereby	we	merge	individual	sequence	
reads	to	form	long	contigs	(continuous	sequences)	that	share	the	same	nucleotide	
sequence	 as	 the	 original	 template	 DNA	 from	 which	 the	 sequence	 reads	 were	
derived.

Two	algorithms	are	prominently	used	to	assemble	sequence	reads:	(1)	algorithms	
based	on	the	overlap-layout-consensus	(OLC)	approach	(Huang	and	Madan	1999)	
and	(2)	algorithms	based	on	a	de	Bruijn	graph	(Simpson	et	al.	2009).	These	have	
been	well-reviewed	 techniques	 and	have	been	 implemented	 in	 effective	genome-
assembly	software	packages.	However,	these	genome	sequence	assembly	programs	
are	not	well	suited	to	short	sequence	reads	generated	by	Illumina	and	AB	SOLiD	
platforms	(Paszkiewicz	and	Studholme	2010).

1.4.2.1.2 Alignment

Once	the	assembly	is	performed,	the	contigs	are	subject	to	alignment	algorithms	
(Li	 and	 Homer	 2010),	 which	 focus	 on	 the	 creation	 of	 auxiliary	 data	 structures	
called	indices	for	the	sequence	reads	and	the	reference	sequence.	We	can	categorize	
these	structures	 into	three	algorithms:	(1)	hash	table-based	algorithms,	(2)	suffix	
tree-based	algorithms	and	(3)	algorithms	based	on	merge	sorting.

1.4.2.1.2.1  Hash Table-Based Algorithms —	These	algorithms	create	a	hash	
table	index	that	can	be	used	to	trace	back	to	specific	basic	local	alignment	search	
tool	 (BLAST)	matches	 as	 they	 rely	 on	 a	 seed-and-extend	paradigm.	 In	 the	first	
phase	of	the	algorithm,	BLAST	maintains	the	position	of	each	k-mer	subsequence	
of	the	query	in	a	hash	table	with	the	k-mer	sequence	being	the	key,	and	scans	the	
database	sequences	for	k-mer	exact	matches	called	seeds.	Once	this	phase	is	com-
plete,	BLAST	extends	and	 joins	 the	seeds	without	gaps.	Further	refinements	are	
carried	out	using	Smith-Waterman	alignment	to	refine	the	seeds,	which	achieves	
statistically	significant	results.	The	tools	that	are	prominently	using	the	hash	table-
based	 algorithms	 are	 MAQ,	 the	 SOAP	 family	 of	 alignment	 tools,	 viz.,	 SOAP,	
SOAP2,	and	SOAP3/GPU,	and	Abyss	(Simpson	et	al.	2009).

1.4.2.1.2.2  Suffix-Based Trees —	With	the	short	sequence	reads	it	is	a	challenge	
to	obtain	 the	 exact	matches	of	 the	 reads	using	BLAST.	Thus	 researchers	 tend	 to	
favor	inexact	matches	of	sequence	for	alignments.	The	suffix-based	approaches	aim	
to	essentially	reduce	the	inexact	matching	problem	to	the	exact	matching	problem	
using	two	steps:	(1)	identifying	exact	matches	and	(2)	building	inexact	alignments	
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supported	by	exact	matches.	To	find	exact	matches,	these	algorithms	use	a	certain	
representation	of	suffix	trees.	The	advantage	of	using	suffix	trees	is	that	alignment	to	
multiple	identical	copies	of	a	substring	in	the	reference	is	only	needed	once	because	
these	identical	copies	collapse	on	a	single	path	in	the	tree,	whereas	with	a	typical	
hash	 table	 index,	 an	 alignment	must	be	performed	 for	 each	 copy.	The	 tools	 that	
prominently	use	the	suffix-based	trees	for	alignment	of	sequences	are	MUMmer	and	
REPuter	(Paszkiewicz	and	Studholme	2010).

1.4.3 Sequence Variation Studies
Nature	 retains	 diversity	 in	 a	 population	of	 organisms	 living	 in	 varied	 environ-
mental	conditions.	This	diversity	is	the	result	of	genetic	variations:	traits	that	vary	
and	are	coded	 in	the	genes	of	 the	population.	Since	 the	 inception	of	 the	HGP,	
several	studies	have	been	conducted	to	understand	the	effect	of	genetic	variations	
between	individuals.

Natural	 sequence	variation	 is	 the	 fundamental	property	of	all	genomes.	 It	 is	
believed	 that	 any	 two	 haploids	 exhibit	 multiple	 kinds	 of	 genetic	 variations	 and	
polymorphisms	(see	Figure	1.9).	There	are	three	basic	forms	of	genetic	variations:	
mutations,	gene	flow,	and	sex.	Not	all	of	these	genetic	variations	have	functional	
implications.	Sequence	polymorphisms	also	 include	duplications,	rearrangement,	
insertions,	and	deletions.	The	most	common	polymorphism	in	the	human	genome	
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Figure 1.9 A schematic representation of a single nucleotide polymorphism 
between two haploids.
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is	 the	 single-base	 pair	 difference,	 better	 known	 as	 a	 single	 nucleotide	 polymor-
phism	 (SNP).	 When	 two	 haploid	 human	 genomes	 are	 compared,	 it	 is	 observed	
that	SNPs	occur	at	every	kilobase	of	the	gene	sequence.	SNPs	are	abundant,	stable,	
and	widely	distributed	across	the	genome.	Because	of	these	properties,	SNPs	can	
be	used	 for	 the	mapping	of	 complex	 traits	 such	 as	 cancer,	diabetes,	 and	mental	
illness.	However,	the	occurrences	of	these	variations	across	the	entire	genome	are	
rare,	making	it	a	challenge	to	challenge	to	identify	and	understand	these	variations	
(Figure	1.9).

Keeping	this	challenge	in	mind,	the	objective	of	sequence	variation	studies	is	
to	provide	dense	maps	of	SNPs	that	will	make	genome-wide	association	studies	
possible.	These	maps	are	powerful	means	for	identifying	genes	that	contribute	
to	 disease	 risk.	 They	 will	 also	 permit	 the	 prediction	 of	 individual	 differences	
in	drug	responses.	When	the	maps	are	made	available	to	the	public,	maps	of	a	
large	number	of	SNPs	distributed	across	the	entire	genome	come	together	with	
technology	 for	 rapid,	 large-scale	 identification.	 The	 scoring	 of	 SNPs	 must	 be	
developed	 to	 facilitate	 this	 research.	The	HGP	envisioned	 the	 following	goals	
concerning	genetic	variation	analysis.	First,	the	goal	is	to	develop	technologies	
for	rapid,	large-scale	identification	or	scoring,	or	both,	of	SNPs	and	other	DNA	
sequence	variants.	In	order	to	achieve	this	goal,	the	following	objectives	had	to	
be	met:

	 1.	The	creation	of	an	SNP	map	of	at	least	100,000	markers
	 2.	The	development	of	concepts	and	methods	to	study	multigene	traits	and	map	

DNA	sequence	variations	to	phenotypic	variations	such	as	complex	disease
	 3.	The	creation	of	public	resources	containing	DNA	samples	and	cell	 lines	to	

enable	SNP	discovery	using	the	public	resources

To	this	end,	large	bodies	of	works	have	been	conducted	through	primary	data	
sources	that	contain	SNP	data,	including	the	dbSNP	(current	build	134)	contain-
ing	 approximately	 6,961,883	 human	 reference	 SNP	 clusters,	 the	 Human	 Gene	
Mutation	 Database	 (HGMD)	 containing	 113,247	 entries	 (professional	 release	
2011.2),	and	the	disease-specific	Online	Mendelian	Inheritance	in	Man	(OMIM)	
(September	 2011)	 that	 contains	 approximately	 2,648	 genes	 with	 disease-causing	
mutations.	Several	tools	are	available	for	the	analysis	of	SNPs,	of	which	SNPper	is	
prominently	used.	Furthermore,	BioPerl	provides	an	API	for	the	analysis	of	SNPs	
and	Genewindow	provides	 visualization	 technology.	Other	 online	 resources	 that	
enable	effective	visualization	of	SNP	data	include	the	UCSC	Genome	Browser	(see	
Figure	1.10)	and	the	Ensembl	Genome	Browser	(Table	1.3).

1.4.3.1 Kinds of Genomic Variations

HGP	focuses	on	 the	creation	of	 a	 repository	of	 all	known	SNPs	derived	 from	a	
diverse	population	across	the	United	States	and	the	creation	of	appropriate	tools	to	
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analyze	SNPs.	The	HGP	suggests	that	approximately	95%	of	the	discovered	SNPs	
belong	to	the	noncoding	regions	of	 the	genome.	Furthermore,	 it	 is	 still	an	open	
challenge	to	determine	the	functional	aspect	of	the	SNPs	found	near	or	in	genes.	
However,	it	is	still	believed	that	based	on	their	location	on	the	genome,	SNPs	can	
potentially	alter	 the	functions	of	DNA,	RNA,	and	proteins	alike.	A	general	cat-
egorization	of	SNPs	based	on	their	location	is	shown	in	Table	1.4	(Mooney	2005;	
Rebbeck	et	al.	2004).

Generally,	 nonsynonymous	 SNPs	 (nsSNPs)	 cause	 a	 change	 in	 the	 amino	
acid	 sequence	 of	 the	 resultant	 protein	 sequence,	 either	 by	 substituting	 amino	
acids	or	introducing	a	nonsense/truncation	mutation	(Ng	and	Henikoff,	2006).	
Table	1.4	shows	variants	that	affect	the	expression	of	a	gene	translation	by	inter-
rupting	a	 regulatory	 region	known	as	a	 regulatory	SNP.	Similarly,	 those	vari-
ants	 that	 interfere	with	normal	 splicing	and	mRNA	functions	are	categorized	
as	intronic	SNPs	or	synonymous	SNPs.	Due	to	increasing	research	efforts,	the	
molecular	effects	of	variations	are	becoming	better	understood,	which	allows	us	
to	shed	more	light	on	genetic	diseases.

1.4.3.2 SNP Characterization

To	understand	the	patterns	of	sequence	variations	in	coding	regions	of	genes,	bio-
informatics	strategies	have	been	focused	on	analyzing	disease-associated	mutations	
that	 focus	 precisely	 on	 where	 diseased	 alleles	 occur	 with	 respect	 to	 their	 corre-
sponding	protein	structures.	 It	 is	 important	to	understand	the	underpinnings	of	
these	mutations	and	what	properties	guide	such	mutations.

Figure 1.10 A screenshot of the UCSC Genome Browser, a tool to visualize 
SnP data.
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table 1.3 SnP Resources Widely Used

Description

Genome Resources

dbSNP The primary repository for SNP data

Ensembl Genome database

GoldenPath Genome database

HapMap Consortium Haplotype block information

JSNP Japanese SNP database

Mutation Repositories

HGVBase Public genotype-phenotype database

HGMD Mutation database with many annotations

Swiss-Prot Protein database with extensive variant annotations

List of Locus-Specific Databases

CGAP-GAI Cancer Gene Anatomy Project at the National 
Cancer Institute

Other databases and tools Tools for SNP analysis and gene characterization

tools

SNPper Novel software for SNP analysis

BioPerl A programming application program interface 
(API) for bioinformatics analysis

Genewindow Interactive tool for visualization of variants

table 1.4 existing SnP Categorization

Coding SNPs cSNP Positions that fall within the coding regions of 
genes

Regulatory SNPs rSNP Positions that fall in regulatory regions of genes

Synonymous SNPs sSNP Positions in exons that do not change the 
codon to substitute an amino acid

Nonsynonymous SNPs nsSNP Positions that incur an amino acid substitution

Intronic SNPs iSNP Positions that fall within introns
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It	is	hypothesized	that	mutations	on	the	gene	sequence	(position	specific)	are	
conserved	 through	 evolution	 and	 are	 reflected	 to	 the	protein	 structure	 (Ng	 and	
Henikoff	2002;	Krishnan	and	Westhead	2003).

One	of	 the	tasks	of	SNP	analysis	 is	 to	gauge	the	 impact	of	each	nsSNP	on	
protein	 function.	Due	 to	 the	 size	 of	 the	 SNP	data,	 this	 task	 is	 experimentally	
infeasible.	Thus,	researchers	have	looked	into	computational	methods	to	predict	
changes	in	protein	function	if	an	amino	acid	changes.	This	technique,	also	known	
as	amino	acid	substitution	(AAS),	focuses	on	disease-causing	mutations	that	are	
likely	 to	 occur	 at	 positions	 that	 are	 conserved	 through	 evolution.	 It	 is	 further	
believed	 that	 disease-causing	 AASs	 affect	 the	 structural	 characteristics	 of	 the	
resulting	protein,	suggesting	that	protein	structural	information	can	be	used	to	
analyze	these	mutations	(Table	1.5).

1.4.4 Functional Genomics
With	 the	 entire	 human	 genome	 sequence	 publicly	 available,	 a	 new	 approach	 to	
address	 biological	 challenges	 has	 taken	 form.	 This	 approach,	 called	 functional	
genomics,	entails	the	functional	understanding	of	the	human	DNA	on	a	genome	
scale.	Functional	genomics	is	viewed	as	an	intermediate	step	that	brings	biologi-
cal	research	to	being	applied	in	medicine	(from	bench-side	to	bedside).	Based	on	
successes	of	previous	studies	of	sequences	within	organisms,	it	is	inferred	that	the	
function	 of	 genes	 and	other	 functional	 elements	 of	 the	 genome	 can	be	 inferred	
more	accurately	only	when	the	genome	is	studied	in	its	entirety.

table 1.5 Strategies that Have Been Used for Analysis of AAS

Method Algorithm

SIFT (Ng and Henikoff 2002) Sequence homology and position-
specific scoring matrices

PolyPhen (Stitziel et al. 2004) Sequence conservation, structural 
information modeling

SNPs3D (Yue and Moult 2005) Structure-based support vector 
machines (SVMs) and sequence 
conservation-based SVMs

PANTHER PSEC (Thomas et al. 2003) Sequence homology and scores obtained 
from PANTHER hidden Markov models of 
protein families

TopoSNP (Stitziel et al. 2004) Characterization of residues based on 
topological information such as buried, 
on-surface, or pocket information
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At	the	end	of	the	HGP,	knowledge	about	a	gene’s	structure	and	other	elements	
was	only	the	tip	of	the	iceberg.	Further	insights	about	the	function	of	a	gene	can	be	
derived	from	its	interaction	with	the	environment.

Existing	methods	for	analyzing	DNA	function	at	a	genomic	scale	include	the	
comparison	and	analysis	of	sequence	patterns,	large-scale	analysis	of	mRNA,	vari-
ous	approaches	of	gene	distribution,	and	the	analysis	of	protein	complexes	(for	gene	
products).	Despite	these	methods,	there	is	still	a	need	for	novel	strategies	to	eluci-
date	the	function	of	genes.	Thus,	functional	genomics	focuses	on	the	development	
of	technology	that	can	be	used	for	the	large-scale	analysis	of	the	human	genome	in	
its	entirety	rather	than	in	parts.	In	functional	genomics,	emphasis	is	given	to	gene	
transcripts	and	their	protein	products,	including	the	identification	and	sequencing	
of	full-length	cDNAs	that	represent	the	entire	human	genome.	Thus,	the	following	
were	the	objectives	of	functional	genomics:

	 1.	Extend	 support	 for	 the	 creation	 of	 global	 approaches,	 improved	 technolo-
gies,	and	the	creation	of	relevant	libraries	for	the	comparative	and	computa-
tional	analysis	of	noncoding	sequences:	It	is	imperative	to	understand	these	
sequences,	 as	 they	 are	 noncoding	 and	 carry	 out	 other	 functions,	 such	 as	
RNA	splicing,	sequences	that	are	responsible	for	the	formation	of	chroma-
tin	domains,	sequences	that	maintain	chromosome	structure,	sequences	that	
are	responsible	for	recombination	and	replication,	and	sequences	that	specify	
numerous	functional	untranslated	RNAs.

	 2.	Enable	and	support	the	creation	of	technology	for	the	comprehensive	analysis	
of	gene	expression	so	that	it	is	possible	to	analyze	spatial	and	temporal	pat-
terns	of	gene	expression	in	both	human	and	model	organisms,	thereby	pro-
viding	a	means	to	understand	the	expression	of	genes:	To	make	this	analysis	
possible,	cost-effective	and	efficient	technology	that	measures	the	parameters	
of	gene	expression	in	a	reliable	manner	and	can	be	easily	reproduced	must	be	
developed.	 In	 addition	 to	 the	 required	 technological	 innovations,	 comple-
mentary	DNA	(cDNA)	sequences	and	validated	sets	of	clones	with	unique	
identifiers	are	also	needed	to	analyze	gene	expression	data.	Other	required	
developments	 include	 novel	 methods	 to	 quantify,	 represent,	 analyze,	 and	
archive	the	resulting	gene	expression	data.

	 3.	Investigate	alternate	means	of	studying	functions,	like	methods	for	genome-wide	
mutagenesis:	This	step	includes	the	creation	of	mutations	that	cause	loss	or	altera-
tion	in	gene	functions.	Associated	technologies	for	large-scale in vivo and in vitro 
are	also	required	to	generate	and	find	mutations	in	each	gene	and	phenotype.

	 4.	Understand	protein	 functions	on	 a	 genome-wide	 scale	 to	develop	 technol-
ogy	 for	 global	 protein	 analysis	 to	 provide	 a	 comprehensive	 understanding	
of	genome	functions:	The	development	of	computational	and	experimental	
models	to	analyze	both	spatial	and	temporal	patterns	of	protein	expression,	
protein-ligand	interactions,	and	protein	modification	is	required.
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1.4.4.1 Splicing and Alternative Splicing

Splicing,	the	first	step	to	understanding	the	functions	of	genes	and	the	roles	they	play	in	
an	organism,	is	the	alteration	of	the	primary	transcript	RNA	after	transcription.	In	this	
process,	introns	are	removed,	and	the	remaining	exons	are	joined	(see	Figure	1.11).	It	is	
necessary	for	the	mature	transcript	(of	the	mRNA)	to	be	subject	to	splicing,	as	it	enables	
the	 production	 of	 the	 correct	 protein	 during	 translation.	 However,	 it	 is	 commonly	
observed	that	a	set	of	unique	proteins	can	be	created	by	varying	the	exon	composition	
of	the	mRNA	through	the	process	of	splicing.	This	process	is	referred	to	as	alternative	
splicing.	Alternative	splicing	can	occur	in	many	ways	using	different	combinations	of	
exon	units.	Moreover,	exons	can	be	skipped,	or	introns	can	be	retained,	creating	a	com-
plex	system	requiring	the	need	for	computational	modeling	and	interpretation.

The	sequencing	of	the	human	genome	has	raised	the	importance	of	alternative	
splicing	as	an	RNA	regulatory	mechanism.	Furthermore,	alternative	splicing	has	
provided	a	means	for	researchers	to	explain	why	there	is	such	a	large	repertoire	of	
proteins.	It	has	also	potentially	helped	identify	and	explain	defects	that	occur	in	the	
splicing	mechanism	and	that	result	in	complex	diseases	such	as	cancer.

Bioinformatics	has	played	a	key	role	in	cataloguing	splice	variations	in	humans	
and	other	eukaryotic	genomes	(Modrek	et	al.	2001).	Tools	and	algorithms	have	also	
been	developed	to	characterize	splice	regulatory	elements	that	control	the	expres-
sions	of	genes	(Florea	2006).	Instead	of	 focusing	on	an	organism’s	 total	number	
of	genes	to	explain	its	functional	and	behavioral	complexity,	researchers	are	now	
interested	in	determining	how	each	gene	can	be	“reused”	to	create	multiple	func-
tions	and	new	modes	of	regulation.	To	this	end,	studies	on	both	human	and	mouse	
sequence	data	have	resulted	 in	algorithms	that	have	clustered	genes	and	samples	
based	on	their	alternative	splicing	patterns,	indicating	the	importance	of	alternative	
splicing	to	differentiate	between	genes	(Lee	and	Wang	2005).

1.4.4.1.1 Types of Alternative Splices

Alternative	splicing	of	pre-mRNA	is	an	important	regulatory	mechanism	to	modu-
late	genes	and	their	corresponding	protein	complexes	within	a	cell.	It	 is	believed	

Primary Transcript (RNA)

Splicing

Mature Transcript (mRNA)

Exon 1

Intron 1 Intron 2 Intron 3

Exon 2 Exon 3 Exon 4

Figure 1.11 the process of splicing, in which the introns are removed from the 
primary transcript (RnA) and the exons are combined to form the mature tran-
script (mRnA).
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that	the	proteins	obtained	from	alternative	splices	can	be	used	to	regulate	a	gene	
expression	within	a	cell.	It	is	therefore	necessary	to	understand	and	catalog	all	pos-
sible	combination	of	exons	obtained	from	a	gene.

With	the	perspective	of	gene	structure,	alternative	splicing	is	categorized	into	
four	 types	 of	 events	 (see	Figure	 1.12).	 It	 should	be	 noted	 that	 due	 to	 the	data’s	
intrinsic	property	of	being	noisy,	the	identification	of	gene	boundaries	is	difficult.	
Therefore,	it	is	an	open	challenge	to	identify	and	characterize	the	5’	and	3’	alterna-
tive	untranslated	regions	(UTRs),	as	shown	in	Figure	1.12e–f.

1.4.4.1.2 Alternative Splicing for Gene Annotation

The	role	of	bioinformatics	in	alternate	splicing	is	prevalent	in	areas	of	gene	annota-
tion	and	splice	regulation	(Lee	and	Wang	2005).	Traditional	gene	discovery,	bet-
ter	known	as	gene	prediction	(Birney	et	al.	2004),	has	been	performed	through	a	
combination	of	ab initio	and	comparative	methods	for	the	identification	of	linear	
exon-intron	models	of	genes.	With	the	completion	of	the	HGP	and	the	resultant	
large-scale	 annotation	 projects	 such	 as	 the	 Ensembl	 (Hubbard	 et	 al.	 2002)	 and	
UCSC	Genome	Browser	database	(Fujita	et	al.	2010)	with	different	data,	depen-
dent	models	came	into	existence.	These	models	are	based	on	different	prediction	

Exon Inclusion/Exclusion(a)

(b)

(c)

(d)

(e)
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Alternative 3´ Exon End

Alternative 5´ Exon End

Intron Retention

5´ Alternative Untranslated Region (UTRs)

3´ Alternative Untranslated Region (UTRs)3´
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Figure 1.12 Schematic representation of the types of alternative splicing events. 
Alternatively, spliced elements (exons or portions of exons) are shown in red, 
and those constitutively spliced are shown in blue. the exons are represented as 
boxes, and the introns by straight lines connecting the exons. (From Florea, L., 
Briefings Bioinformatics 7, no. 1 (2006): 55–69. With permission.) 
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methods	that	create	the	“evidence”	of	the	existence	of	a	gene	and	use	a	combiner	
algorithm	to	associate	the	collected	evidences	into	a	unified	representative	model	of	
a	gene.	With	the	inclusion	of	alternative	spliced	transcripts	or	alternative	splicing	
events	as	part	of	the	annotation	process	through	manual	curation,	these	databases	
improve	the	quality	of	their	datasets.

There	are	four	prominent	approaches	used	in	gene	prediction:

	 1.	Ab initio.programs:	These	programs	do	not	 require	 any	prior	or	 addi-
tional	 information	 to	 predict	 a	 gene	 for	 a	 given	 DNA	 sequence.	 They	
rely	 on	 the	 hidden	 Markov	 model	 (HMM)	 framework	 to	 provide	 the	
parameterization	and	decoding	of	a	probabilistic	model	of	gene	structure	
(Zhang	2002).

	 2.	Evidence-based.techniques:	There	are	two	classes	of	evidence-based	tech-
niques	 for	 gene	 prediction.	 The	 first	 class	 uses	 the	 well-known	 pairwise	
HMM	methods.	The	second	class	uses	external	evidence	to	score	potential	
exons	(Parra	et	al.	2003;	Birney	et	al.	1996;	Alexandersson	et	al.	2003).

	 3.	Informant.approach:	This	 technique	predicts	a	gene	based	on	 informa-
tion	 of	 exons	 derived	 from	 two	 or	 more	 sample	 genomes	 (Pedersen	 and	
Hein	2003).

	 4.	Feature-based.approaches:	These	approaches	do	not	 rely	on	a	probabilis-
tic	model	or	prior	knowledge	 from	the	underpinning	DNA.	However,	 the	
framework	facilitates	the	integration	of	multiple	component	features	derived	
from	the	DNA	sequence	(Howe	et	al.	2002).

1.4.4.1.3 Regulation of Alternative Splicing

To	regulate	splicing,	it	is	important	to	identify	what	causes	or	controls	the	variation	
in	splicing.	The	control	of	alternative	splicing	affects	the	abundance,	structure,	and	
function	of	transcripts	and	encoded	proteins	from	a	gene	through	the	modification	
of	their	properties,	such	as	its	binding	affinity,	intracellular	localization,	stability,	
and	enzymatic	activity	(Stamm	et	al.	2005).	Furthermore,	exon	selection	in	alterna-
tive	splicing	is	tissue	specific,	and	is	determined	based	on	the	developmental	stage,	
or	disease	specific	(Florea	2006).	Thus,	the	regulation	of	alternative	splicing	is	more	
specific	and	case	driven	than	transcriptional	regulation.

Though	little	is	known	about	splicing	regulation	through	regulatory	proteins,	
there	is	an	alternative	form	of	regulation	that	focuses	on	splice	regulation	that	is	not	
part	of	the	basal	spliceosome	function.	The	basal	spliceosome	function	is	regulated	
by	families	of	splicing	regulatory	proteins.	These	proteins	bind	to	the	RNA	in	the	
surrounding	regions	of	exons,	thereby	catalyzing	the	exon’s	inclusion	or	exclusion	
by	activating	or	inhibiting	the	function	of	the	splice	site.	Little	is	known	about	the	
characteristics	 of	 regulatory	proteins	 and	 the	 corresponding	RNA	binding	 sites,	
and	these	issues	are	being	actively	investigated.
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1.4.4.1.4 Splice Variants

Gene	annotation	using	alternative	splicing	and	the	regulation	of	alternative	splic-
ing	form	the	crux	of	research	that	relies	on	computational	methods.	The	resulting	
bioinformatics	techniques	focus	mainly	on	cataloging	the	various	splice	variants.

Despite	the	tendency	of	genomes	to	remain	the	same	for	different	tissues	or	cell	
types	in	an	organism,	their	transcriptomes	(set	of	all	RNAs	of	the	tissues/cell)	can	
be	significantly	different.

The	motivation	for	using	splice	annotation	is	to	identify	and	catalog	all	mRNA	
transcripts	of	a	cell	at	different	stages,	using	both	spatial	and	temporal	expression,	
along	with	functional	information	of	the	splices.	This	objective	is	difficult,	if	not	
impossible	 to	 achieve,	 considering	 the	 incomplete	 and	 fragmented	nature	of	 the	
data	along	with	insufficient	experimental	characterization.

Several	computational	approaches	have	been	suggested	to	overcome	these	limi-
tations	and	identify	splice	variants.	These	techniques	rely	on	characterizing	splicing	
patterns	obtained	from	partial	cDNA	or	protein	sequences,	or	exon-level	alternative	
splicing	events	to	analyze	and	characterize	transcriptomes.	The	varying	splice	pat-
terns	can	be	applied	in	the	design	of	diagnostic	markers	that	can	be	validated	using	
either in vitro microarray	and	proteomic	experiments	or	in silico	via	the	identifica-
tion	and	annotation	of	splice	forms.

Bioinformatics	 techniques	 used	 for	 the	 annotation	 of	 full-length	 alternative	
spliced	transcripts	include:

	 1.	Gene.indices:	Gene	indices	refer	to	gene-	or	transcript-oriented	collections	of	
express	sequence	tags	(ESTs)	and	micro-RNA	(mRNA)	sequences	grouped	by	
sequence	similarity	(Lee	et	al.	2005;	Liang	et	al.	2000).	This	method	employs	
a	pairwise	sequence	similarity	for	comparison	between	two	sequences.	Here,	
all	the	EST	and	mRNA	sequences	are	subject	to	a	one-to-one	comparison	to	
identify	overlaps	between	each	other.	These	sequences	are	then	grouped	and	
assembled	into	disjointed	clusters	(a	consensus	sequence)	based	on	a	threshold	
of	overlaps.

	 	 The	creation	of	a	gene	index	is	complex	and	suffers	from	two	drawbacks:	
(a)	overclustering,	in	which	different	paralogs	(similar	sequences	belonging	to	
different	genes)	are	put	into	the	same	cluster	creating	a	false	overlap,	and	(b)	
underclustering,	in	which	several	clusters	are	produced	for	a	single	gene.

	 2.	Genome-based. methods. for. clustering. spliced. alignments:	 In	 this	
approach,	unlike	gene	 indices,	 the	 spliced	alignments	of	 cDNA	or	protein	
sequences	 are	 clustered	 at	 a	point	of	 reference	 along	 the	 reference	 genome	
sequence	(loci)	(Florea	et	al.	2005).	Splice	graphs	are	one	such	technique	that	
is	 prominently	 used	 in	 alternative	 splicing	 annotation	 for	 capturing	 splice	
variants	in	a	gene	(Kim	2005).	Using	the	concept	of	directed	acyclic	graphs,	
with	 each	 node	 representing	 an	 exon	 and	 edge	 that	 connects	 two	 exons	
representing	 an	 intron,	 a	 splice	 variant	 corresponds	 to	 the	 paths	 obtained	
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through	the	graph	traversal	from	a	predetermined	source	vertex	(vertex	with	
no	 incoming	 edges)	 to	 a	 sink	 vertex	 (vertex	 with	 no	 outgoing	 edges).	 The	
advantage	of	this	technique	is	that	it	results	in	all	possible	combinations	of	
exon-intron	combinations.	However,	not	all	of	the	combinations	are	biologi-
cally	significant.	Several	filtering	strategies	prioritize	 the	combinations	and	
rank	splice	variants	that	are	biologically	significantly	higher.

1.4.4.2 Microarray-Based Functional Genomics

Microarray	technology	has	been	an	important	contribution	to	functional	genomics	
as	it	provides	a	means	to	analyze	the	expressions	of	hundreds	of	thousands	of	genes	
that	belong	to	an	organism	for	a	specific	reaction	at	a	given	instance,	simultane-
ously.	This	technology	has	facilitated	an	understanding	of	the	fundamental	aspects	
of	growth	and	development.	Moreover,	it	has	aided	in	the	exploration	of	the	genetic	
causes	of	complex	genetic	diseases	such	as	cancer.	Typically,	microarray	data	are	
classified	into	three	categories,	based	on	the	types	of	the	samples	used	to	construct	
the	microarrays	(see	Table	1.6,	Figure	1.13).

Gene	regulatory	network	analysis	(Huang	et	al.	2007)	is	an	analytic	technique	
that	is	used	to	extract	gene	regulatory	features	(i.e.,	activation	and	inhibition)	from	
gene	expression	patterns.	Changes	of	gene	expression	levels	across	samples	provide	
information	that	allows	reverse	engineering	techniques	to	construct	the	network	of	
regulatory	relations	among	those	genes	(Lockwood	et	al.,	2006).

For	instance,	the	expression	of	a	gene	is	regulated	by	a	transcriptional	control	
mediated	by	 a	 complex	 cis-regulatory	 system.	 Transcriptional	 factors	 activate	 or	
repress	gene	expression	by	binding	to	their	respective	binding	sites:	comparatively	
short	sequences	(several	hundred	to	several	thousand	base	pairs,	depending	on	the	
species)	 upstream,	 downstream,	 or	 far	 away	 from	 the	 transcriptional	 start	 sites.	
Specific	sites	within	such	regions,	which	are	generally	composed	of	dense	clusters,	
are	recognized	by	the	regulatory	proteins	(transcription	factors	(TFs))	that	control	
the	rate	of	gene	transcription.

table 1.6 the Categorization of Microarrays and their Associated Applications

Microarray Type Application

CGH Tumor classification, risk assessment, and 
prognosis prediction

Expression analysis Drug development, drug response, and 
therapy development

Mutation/polymorphism analysis Drug development, therapy development, 
and tracking disease prognosis

Source: NCBI, NCBI: A Science Primer, July 27, 2007, http://www.ncbi.nlm.nih.
gov/About/primer/microarrays.html#ref1 (accessed September 13, 2011).
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1.4.4.2.1 Types of Regulatory Regions

Regulatory	regions	of	higher	eukaryotes	can	be	subdivided	into	proximal	regula-
tory	units—promoters—which	are	located	close	to	the	5’	end	of	the	gene,	and	distal	
transcription	regulatory	units	called	enhancers	or	cis-regulatory	modules	(CRMs).	
CRMs	 may	 be	 located	 far	 upstream	 or	 downstream	 of	 the	 target	 gene,	 and	 are	
much	more	difficult	to	recognize	because	they	lack	proximal	specific	transcriptional	
signals,	such	as	position	relative	to	coding	sequence,	the	TATA	box,	the	CAAT	box,	
the	transcription	start	site	consensus,	etc.	Therefore,	recognition	of	CRMs	is	even	
more	difficult	than	recognition	of	promoters	(Abnizova	and	Gilks	2006).

1.4.4.2.2  Experimental Determination of 
Regulatory Region Function

Biochemical	 characteristics	 can	 identify	 binding	 sites	 precisely	 and	 are	 the	 only	
way	to	determine	whether	consensus	sequences	differ	among	species.	There	are	sev-
eral	methods	available	for	producing	DNA-protein	interaction	data.	Nitrocellulose	
binding	assays,	electrophoretic	mobility	shift	assay	(EMSA),	enzyme-linked	immu-
nosorbent	assay	(ELISA),	DNase	footprinting	assays,	DNA-protein	cross-linking	
(DPC),	and	reported	conducts	are	examples	of in vitro techniques	that	are	used	to	
determine	DNA	binding	sites	and	analyze	the	difference	in	binding	specificity	for	
different	protein-DNA	complexes.	The	major	disadvantage	of	these	methods	is	that	
they	are	not	suited	to	high-throughput	experiments.

A	microarray-based	assay	called	chromatin	immunoprecipitation	(ChiP)	was	
developed	 for	 genome-wide	 determination	 of	 protein	 binding	 sites	 on	 DNA.	

Patient DNA Control DNA

Microarray

Hybridization

Figure 1.13 Schematic representation of the microarray-based comparative 
genomic hybridization (CGH) process.



32  ◾  Data Mining for Bioinformatics

Other	 types	 of	 experiments	 are	 systemic	 evolution	 of	 ligands	 by	 exponential	
enrichment	(SELEX)	and	phage	display	(PD),	which	offer	a	high-throughput	pos-
sibility	to	select	high-affinity	binders,	DNA	and	protein	targets,	respectively.	Both	
SELEX	and	PD	suffer	the	same	disadvantage:	most	sequences	obtained	from	these	
experiments	are	good	binders,	but	it	is	hard	to	say	anything	about	their	relative	
affinities.	It	is	assumed	that	the	best	binders	occur	more	frequently.

In	 dsDNA	 microarrays	 are	 presented	 for	 exploring	 sequence-specific	 pro-
tein-DNA	binding.	The	major	advantage	over	 the	aforementioned	methods	 is	
that	 it	 is	 a	high-throughput	method	 resulting	 in	data	with	associated	 relative	
binding	affinities.

Finally,	x-ray	crystallographic	and	NMR	spectroscopic	data	provide	a	base	for	
studying	 the	 structural	details	of	protein-DNA	 interactions.	Protein-DNA	com-
plexes	have	successfully	been	co-crystallized,	and	the	data	have	been	deposited	into	
the	protein	data	bank	and	nucleic	 acid	database	 (NDB).	However,	 these	 experi-
ments	are	time-consuming.

Unfortunately,	 for	 technical	 reasons,	 the	 numbers	 experimentally	 verified,	
binding	sites	are	nearly	always	underestimated,	and	the	physical	length	of	regu-
latory	regions	is	rarely	well	defined.

1.4.5 Comparative Genomics
Due	 to	evolution,	 all	organisms	are	believed	 to	be	 related.	Thus,	 the	 study	of	one	
species	could	lead	to	valuable	information	about	another	species.	Molecular	genetics	
enables	researchers	to	understand	the	genes	of	one	species	based	on	the	genetic	makeup	
of	related	genes	in	other	species.	To	this	end,	several	experiments	provide	insights	into	
the	universality	of	biological	mechanisms,	through	comparisons	between	genomes.	
Thus,	valuable	insights	relating	to	the	gene	structure	and	function	of	closely	related	
species	are	brought	to	the	forefront	using	comparative	genomics.

The	 comparative	 analysis	 of	 the	 human	 genome	 with	 a	 variety	 of	 modeled	
organisms	is	advantageous	and	is	an	important	field	of	research.	The	underpin-
ning	rationale	that	governs	cross-species	sequence	comparative	genomics,	as	stated	
above	 and	 in	 Pennacchio	 and	 Rubin	 (2003),	 is	 based	 on	 the	 observation	 that	
sequences	 and	 functions	 are	 conserved	 across	 evolutionary	distant	 species.	This	
conservation	enables	 researchers	 to	 identify	and	distinguish	between	 functional	
and	 nonfunctional	 genetic	 sequences	 in	 both	 gene	 sequence	 data	 and	 protein	
sequence	data.	This	rationale	lays	the	impetus	for	gene	expression,	regulation,	and	
control	experiments.

It	has	also	been	shown	that	the	inverse	also	holds	true	in	orthologous	genomic	
sequences	from	different	vertebrates.	Thus,	the	comparative	analysis	of	evolutionary	
conserved	sequences	is	a	viable	strategy	to	identify	biologically	active	regions	over	
the	human	genome.

Various	genomic	visualization,	annotation	tools,	and	databases	are	available	to	
the	biomedical	 research	 community	 and	 are	publicly	 available.	These	 tools	have	
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been	 successfully	 used	 to	 identify	 biologically	 important	 genes	 and	 sequences	
involved	in	gene	regulation.

1.4.6 Functional Annotation
Supporting	the	above	genomic	research	is	one	of	the	keystones	of	the	HGP.	This	
support	includes	the	effective	recoding,	distribution,	and	analysis	of	all	results	and	
discoveries.	Bioinformatics	and	computational	biology	are	core	components	 that	
are	targeted	toward	satisfying	this	goal.	Thus,	the	services	that	bioinformatics	offers	
can	be	categorized	into	two	areas:	(1)	databases	and	(2)	analytical	tools.

This	section	is	devoted	to	the	effective	collection,	analysis,	annotation,	and	stor-
age	of	 sequence	data	 that	 is	 exponentially	growing.	For	effective	use	of	 the	data	
generated	 in	 the	public	domain,	 it	 is	 important	 to	provide	 effective	mapping	of	
all	gene	sequence	data	to	expression	data	and	protein	sequence	data.	User-friendly	
interfaces	and	user-friendly	databases	are	imperative	to	the	success	of	the	genome	
project.	Additionally,	a	range	of	computational	algorithms	that	allow	researchers	to	
extract,	view,	and	annotate	gene	and	protein	sequences	effectively	will	benefit	the	
research	community.	Such	algorithms	address	the	following	objectives:

	 1.	Improve	the	content	and	utility	of	databases.
	 2.	Develop	better	tools	for	data	generation,	capturing,	and	annotation.
	 3.	Develop	and	improve	tools	and	databases	for	comprehensive	functional	studies.
	 4.	Develop	and	improve	tools	for	representing	and	analyzing	sequence	similar-

ity	and	variation.
	 5.	Create	mechanisms	to	support	effective	approaches	for	explorative	and	robust	

software	that	can	be	widely	used	in	different	applications.

The	successes	of	these	objectives	have	been	documented	primarily	in	the	cre-
ation	and	maintenance	of	large	databases	such	as	the	PDB,	Ensembl,	and	SwissProt.	
However,	bioinformatics	and	computational	biology	has	been	actively	pursued	as	
an	area	of	research	for	the	creation	of	better	analysis	techniques,	algorithms,	and	
tools	in	fields	like	gene	sequence	analysis,	microarray	analysis,	protein	sequence	and	
structural	analysis,	and	functional	annotation.

1.4.6.1 Function Prediction Aspects

One	of	the	problems	arising	from	the	completion	of	the	HGP	was	the	functional	
annotation	of	generated	sequences.	Biologists	were	then	and	are	now	faced	with	the	
challenge	of	analyzing	the	functional	significance	of	genes	with	traditional	statisti-
cal	techniques.	Not	only	is	the	volume	of	sequence	and	structure	data	growing,	but	
the	diversity	of	the	sources	that	generate	the	data	also	poses	significant	challenges	
that	require	computational	expertise	and	has	led	to	a	disproportionate	growth	in	
the	number	of	uncharacterized	gene	sequences.



34  ◾  Data Mining for Bioinformatics

The	established	and	traditionally	used	method	for	gene	and	protein	annotation	
is	based	on	homology	modeling	 in	which	new	 sequences	 are	 assigned	 functions	
based	on	the	similarity	they	share	with	sequences	of	known	annotations.	However,	
homology	modeling	amplifies	existing	erroneous	annotations.	Because	of	this	prob-
lem,	the	efficacy	of	this	method	is	questionable	considering	the	constant	growth	of	
sequence	information.	Thus,	there	is	a	need	for	standardized,	large-scale	sequence	
annotation	tools	that	use	machine	learning	and	are	free	of	manual	curation.	This	
automated	function	prediction	of	sequences	could	be	incorporated	into	larger	work	
flows.	This	section	explains	some	computational	protein	function	prediction	tech-
niques	(Friedberg	2006).

The	definition	of	biological	function	is	ambiguous,	and	the	exact	meaning	of	
the	term	varies	based	on	the	context	in	which	it	is	used.	Further,	there	is	a	multiper-
spective	view	of	protein	function	that	is	categorized	into	three	classes:

	 1.	The.biochemical.aspect:	In	this	class,	the	protein	function	is	derived	from	
the	specific	substrate	information.	This	definition	requires	only	a	disembod-
ied	protein	performing	alone	in vitro.

	 2.	The.physicological.aspect:	In	this	class,	function	is	defined	in	respect	to	the	
function	of	a	protein	within	an	organism	from	the	subcellular	level	to	the	whole	
organism.	Here,	sequences	could	derive	functional	information	from	the	signal	
pathways	that	the	protein	is	a	part	of	or	from	their	interacting	partners.

	 3.	The.phenotypic.(medical).aspect:	In	this	class,	the	functional	information	
is	derived	from	the	mutations	that	occur	in	the	sequence	of	the	protein.

Keeping	these	aspects	in	mind,	there	are	several	methods	proposed	in	the	auto-
mated	functional	annotation	of	sequences,	and	the	following	section	enumerates	them.

1.4.6.1.1 Computational Functional Annotation

The	basic	challenge	faced	in	the	computational	annotation	of	sequences	is	deter-
mining	what	constitutes	functional	information	and	how	that	function	should	be	
described	 in	 a	 computationally	 interpretable	manner.	Two	 forms	of	 information	
can	be	adopted	to	define	protein	function.	From	a	data	mining	perspective,	these	
forms	of	information	include	protein	sequence	information	and	protein	structure	
information	that	can	be	included	as	features	of	interest	in	the	algorithm.

Protein	sequences	are	represented	as	character	strings	that	are	used	in	an	array	
of	tasks:	pairwise	and	multiple	sequence	alignments	and	motifs,	all	of	which	can	
easily	be	included	as	features	for	analysis	using	computational	algorithms.	Protein	
structural	information,	on	the	other	hand,	is	more	complex.	Here,	the	PDB	files	
(.pdb)	have	vast	amounts	of	information,	in	the	form	of	3D	coordinates,	which	can	
be	exploited	to	find	similarities	between	two	proteins.

Apart	from	features	of	interest,	there	is	also	a	need	for	controlled	vocabulary,	or	
keywords	that	can	be	used	to	annotate	functionally	significant	regions	of	a	protein,	
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and	well-defined	relationships	in	describing	functions.	The	Enzyme	Commission	
Classification	(EC)	(Webb	1992)	is	one	such	annotation	system	that	classifies	reac-
tions	based	on	a	four-level	hierarchy	(represented	using	a	four-position	identifier)	
that	moves	from	a	general	to	a	specific	categorization.

For	example,	the	hierarchy	starts	with	a	generalized	lyase	(4.-.-.-),	in	the	first	
position	and	moves	through	a	more	specific	nitrogen	lyase	(4.3.-.-)	or	to	ammo-
nia	lyases	(4.3.1.-)	to	the	more	specific	histidine-ammonia	lyase	(4.3.1.3)	in	the	
fourth	position.

Several	 other	 such	 annotation	 schemes	 provide	 a	 controlled	 vocabulary	 to	
annotate	sequences;	the	most	prominently	used	annotation	scheme	is	that	of	Gene	
Ontology	 (GO).	The	adopted	controlled	vocabulary	 is	based	on	 three	aspects	of	
gene	product	function:	molecular	function,	biological	process,	and	cellular	location.

The	 primary	 purpose	 of	 the	 GO	 Annotation	 (GOA)	 project	 is	 to	 annotate	
genomes	 and	 their	 by-products	 using	 GO	 terms.	 When	 GO	 terms	 are	 assigned	
to	a	gene	product,	an	evidence	code	stating	how	the	annotation	was	obtained	is	
assigned	as	well,	so	that	the	source	of	the	annotation	is	noted.	Thus,	GO	provides	a	
standard	means	for	programs	to	describe	their	functional	predictions.

1.4.6.1.1.1  Sequence Homology-Based Functional Annotation —	Traditional	
means	of	predicting	the	function	of	sequences	rely	on	homology.	These	techniques	
are	 also	 known	 as	 the	 homology	 transfer	 technique,	 as	 they	 traverse	 databases	 of	
sequences	 to	 find	 matches	 between	 sequences	 and	 the	 query	 sequence.	 From	 the	
reported	matches,	 a	 transfer	 of	 relevant	 functional	 information	 takes	place	 in	 the	
query	sequence.

A	commonly	adopted	tool,	basic	local	alignment	search	tool	(BLAST),	matches	
significant	sequence	similarity	to	other	sequences	in	a	database	of	experimentally	
annotated	sequences.	The	biological	rationale	for	using	homology	transfer	is	that	if	
two	sequences	have	a	high	degree	of	similarity,	then	they	have	evolved	from	a	com-
mon	ancestor	and	hence	have	similar,	if	not	identical,	functions.

However,	this	rational	does	not	seem	to	hold	with	growing	databases	and	fails	
in	three	conditions:
	 1.	High	 sequence	 similarity	does	not	 guarantee	 accurate	 annotation	 transfer:	

When	 two	 sequences	 share	 functional	 similarity,	 it	 is	 observed	 that	 only	
certain	 regions	 of	 the	 sequences	 (subregions)	 contribute	 to	 the	 functional	
characterization	of	sequences.	Thus,	if	two	sequences	share	a	higher	degree	
of	 similarity,	 it	does	not	 imply	 that	 the	 subregions	 contribute	 to	 the	 exact	
matches	or	are	being	conserved.	Moreover,	it	has	been	shown	that	enzymes	
that	 are	 supposedly	 analogous	due	 to	undetectable	 sequence	 similarity	 are	
in	 fact	 similar.	 It	 is	believed	 that	35%	sequence	 identity	and	60%	aligned	
enzymes	share	four	EC	numbers.

	 	 Domain	shuffling	also	contributes	to	the	failure	of	homology	transfer	by	
adding,	deleting,	or	redistributing	domains	of	the	sequence	between	homolo-
gous	sequences.
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	 2.	Growing	databases	exhibit	greater	diversity	in	sequences	that	affect	sequence-
based	 tools	 to	 discover	 similarity	 between	 proteins:	 Here,	 with	 the	 evolu-
tion	of	databases,	categorization	of	sequences	is	constantly	changing.	These	
changes	make	homology	transfer	more	challenging,	as	the	number	of	clus-
tered	similar	proteins	for	which	there	is	no	reference	sequence	is	also	growing	
at	the	same	rate.

	 3.	Chances	of	propagating	erroneous	annotations	throughout	the	database:	As	
more	sequences	enter	the	database,	errors	in	annotation	are	often	propagated	
and	amplified	based	on	a	single	erroneous	annotation.

The	Pfam	database	is	the	most	commonly	used	database	for	protein	sequence	
analysis.	 A	 slew	 of	 other	 databases,	 such	 as	 InterPro,	 SMART,	 CDD,	 and	
PRODOM,	use	the	annotations	at	the	domain	level	derived	from	Pfam	and	provide	
the	user	multiple	alignments	of	protein	domains.	Users	of	these	programs	need	to	
take	into	consideration	that	Pfam	does	not	address	domain	shuffling,	and	thus	the	
results	obtained	could	not	be	as	accurate	as	anticipated.

1.4.6.1.1.2  Structure-Based Functional Annotation —	Protein	structural	infor-
mation	is	represented	by	a	collection	of	3D	coordinates	that	correspond	to	the	amino	
acids	that	make	up	the	protein.	This	representation	is	computationally	expensive;	thus,	
algorithms	have	been	designed	to	find	ways	of	reducing	this	3D	representation	while	
preserving	the	spatial	and	physicochemical	information.

The	functional	annotation	of	proteins	using	the	3D	structural	information	of	
proteins	is	built	on	the	pretext	that	more	information	can	be	extracted	from	the	
structure	than	just	the	sequence	information.	That	is,	knowing	the	structure	can	
yield	 better	 insight	 into	 the	 biochemical	 mechanism	 of	 how	 proteins	 function.	
The	underlying	hypothesis	in	structural	methods	is	that	if	the	3D	structure	is	of	a	
known	fold,	then	that	protein	may	possess	the	function	of	proteins	processing	the	
corresponding	fold.	Moreover,	structure	 is	better	conserved	than	sequence;	thus,	
proteins	with	little	or	no	sequence	similarity	still	have	structural	similarity.

Traditional	structural	methods	are	dependent	on	structural	alignment,	which	
entails	 aligning	 a	 novel	 protein	 with	 other	 proteins	 from	 its	 fold.	 Functional	
transfer	 is	performed	by	verifying	whether	 the	aligned	proteins	 share	 the	 same	
catalytic	sites	that	are	believed	to	be	conserved	by	amino	acid	content	and	side-
chain	orientations.

With	proteins	of	unknown	structural	 folds	and	low	similarity	to	any	known	
fold,	functional	annotation	is	still	possible	by	analyzing	structural	patterns	of	the	
protein.	 Here,	 just	 like	 sequence-based	 patterns,	 the	 program	 looks	 for	 shared	
structural	patterns	between	a	novel	protein	and	a	protein	of	a	known	function.

Structural	patterns	are	best	described	as	3D	shapes	completely	dissociated	from	
the	amino	acids	or	a	string	of	characters	representing	amino	acids	and	their	physi-
cal	environment.	For	example,	one	can	look	for	3D	motifs	to	describe	the	function	
of	 a	 protein.	 Here,	 an	 algorithm	 creates	 a	 library	 of	 3D	 motifs	 with	 associated	
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functions.	A	search	algorithm	scans	the	library,	attempting	to	match	extracted	3D	
motifs	from	the	protein	molecule.	The	result	is	a	map	of	potential	functional	sites	
for	a	given	protein	to	a	library	of	existing	function	sites.

1.5 Conclusion
In	this	chapter	we	highlight	the	accomplishments	made	after	the	completion	of	the	
HGP	that	have	led	to	the	formation	of	key	areas	of	research.	Though	bioinformatics	
and	computational	biology	has	created	a	niche	for	itself,	its	applications	can	be	felt	
in	other	areas,	such	as	comparative	genomics,	functional	genomics,	and	sequence	
variation	analysis.	With	new	technological	innovations	being	made	in	these	areas,	
there	has	been	 a	 volume	of	data	 that	 require	 analysis.	To	 this	 end,	 this	book	 is	
dedicated	to	understanding	the	principles	of	data	mining	and	its	applications	 in	
the	area	of	bioinformatics.
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Chapter 2

Biological Databases 
and integration

Since	 the	 beginning	 of	 the	 Human	 Genome	 Project	 (HGP),	 as	 described	 in	
Chapter	1,	the	numbers	of	published	results	on	bioinformatics	experiments	have	
grown	substantially,	and	datasets	and	refined	computational	models	have	been	
created	 to	 solve	 critical	 biological	 problems.	 However,	 these	 models	 and	 results	
seldom	reach	the	depth	and	breadth	of	the	biomedical	community	and	are	seldom	
interpreted	correctly.	This	challenge	is	even	more	apparent	in	integrative	approaches,	
in	which	data	inflows	from	disparate	sources	and	several	models	are	used	to	analyze	
a	single	problem	(Reich	et	al.	2006).	In	this	chapter	we	wish	to	 familiarize	 the	
readers	with	prominent	databases	and	BioMarts	used	in	bioinformatics.

2.1  introduction: Scientific Work Flows 
and Knowledge Discovery

Scientific	work	flows,	formal	descriptions	of	a	process	or	processes,	aimed	at	address-
ing	this	challenge	have	been	applied	(Deelman	et	al.	2009).	Advances	in	research	
and	technologies	have	resulted	in	an	explosion	of	information	and	knowledge.	The	
ability	to	characterize	and	understand	diseases	is	growing	exponentially	based	on	
information	 obtained	 from	 genetic	 and	 proteomic	 studies,	 clinical	 studies,	 and	
other	research	endeavors.	The	depth	and	breadth	of	information	already	available	in	
the	research	community	at	large	presents	an	enormous	opportunity	for	individual	
care.	 Because	 our	 knowledge	 of	 this	 domain	 is	 still	 rudimentary,	 investigations	
are	 now	 moving	 away	 from	 hypothesis-driven	 research	 and	 are	 moving	 toward	
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data-driven	research,	in	which	an	analysis	is	based	on	a	search	for	biologically	
significant	patterns	(Potamias	et	al.	2007;	Ng	and	Wong	2004).

By	 definition,	 knowledge	 discovery	 is	 “the	 non-trivial	 process	 of	 identifying	
valid,	 novel,	 potentially	 useful,	 and	 ultimately	 understandable	 patterns	 in	 data”	
(Fayyad	1996).	It	is	important	for	the	user	to	know	that	data	mining	is	an	interac-
tive	and	iterative	process.	It	is	due	to	this	interactive	and	iterative	nature	that	data	
mining	finds	its	place	as	an	experimental	approach	and	that	researchers	are	able	to	
try	various	possibilities	before	discovering	a	single	solution.

With	 the	 advent	 of	 high-throughput	 technologies	 such	 as	 microarrays	 and	
next	gene	sequencing,	one	predicted	application	lies	in	the	areas	of	genome-wide	
association	studies	(GWASs).	Bioinformatics	is	seen	to	be	vitally	important	in	the	
storage,	analysis,	and	distribution	of	the	data	generated	from	such	analysis.

Thus,	the	challenges	of	analyzing	biological	data	differ	significantly	from	the	
challenges	of	analyzing	traditional	data.	Therefore,	it	is	common	in	bioinformatics	
that	work	flows	work	on	smaller	datasets.	It	is	equally	challenging	to	validate	tests	
by	domain	experts,	and	make	the	discovered	knowledge	known	to	a	wide	audience.	
Thus,	any	work	flow	associated	with	knowledge	discovery	should	adequately	satisfy	
the	following	constraints.

	 1.	Share.knowledge.about.the.semantics.of.the.data: It	is	well	known	that,	in	
data	mining,	finding	an	optimal	representation	of	data	is	critical	for	obtain-
ing	good	results.	That	is,	care	must	be	taken	during	preprocessing	techniques,	
e.g.,	feature	selection	and	construction.

 2.	The.plausibility.of.results: When	there	is	not	enough	statistical	information	
about	the	validity	of	a	hypothesis,	one	can	look	for	external	evidence	for	or	
against	this	hypothesis	in	scientific	literature,	which	usually	contains	much	
more	knowledge	than	what	is	encoded	in	the	specific	dataset.	To	make	use	of	
this	knowledge,	the	interpretability	of	the	models	must	be	ensured.

Data	integration,	through	work	flows,	can	only	be	adequately	performed	if	the	
user	knows	what	services	exist	and	where	to	find	those	services.	With	the	large	num-
ber	of	existing	services	 in	bioinformatics	and	the	operations	they	perform,	it	 is	a	
challenge	to	integrate	data	using	work	flows.	Moreover,	this	challenge	is	exacerbated	
by	the	arbitrary	nomenclature	followed	and	the	lack	of	documentation	available.

To	effectively	 integrate	data	using	knowledge	discovery	 in	databases	 (KDD),	
the	following	points	of	contrast	are	required:

. 1.	Data.centric:	In	typical	work	flows,	the	functions	associated	with	analysis	
are	treated	as	primary	and	the	data	used	for	analysis	are	treated	as	second-
ary.	That	is,	data	are	treated	as	a	variable,	and	the	functions	associated	with	
the	analysis	of	 the	data	are	 important.	The	KDD	process,	 to	 the	contrary,	
treats	the	data	as	primary	or	central	to	the	analysis,	and	the	methods	associ-
ated	with	analysis	are	considered	to	be	secondary.	This	perspective	renders	
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various	functions	to	be	applied	to	the	data	to	solve	research	questions.	Here,	a	
researcher	would	typically	execute	myriad	functions	on	the	same	dataset	and	
readily	rule	out	any	function	that	fails	to	answer	the	research	question.

. 2.	Iterative.and. interactive:	The	KDD	process	 as	described	previously	 is	 an	
iterative	 and	 interactive	 process.	 As	 such,	 a	 user	 is	 given	 the	 flexibility	 to	
choose	 appropriate	 functions	 on	 a	 trial-and-error	 basis	 based	 on	 how	 the	
data	analysis	is	handled.	The	KDD	process	is	structured	so	that	the	results	
obtained	at	every	step	enable	decision	making	to	proceed	or	restart	at	any	step	
of	the	process.

. 3..Dependencies. between. discovered. knowledge:. Typically,	 bioinformatics	
involves	the	analysis	of	data	from	multiple	datasets	and	their	associated	trans-
formations.	It	is	imperative	that	the	researcher	keep	track	of	the	transforma-
tions	applied	and	results	obtained.	This	procedure	is	a	challenge	at	times	due	
to	the	magnitude	of	data	handled	and	hypothesis-driven	work	style	used	by	
researchers	in	bioinformatics.

. 4.	Handling. of. data. types:	 Several	 challenges	 arise	 in	 the	 handling	 of	 data	
types	from	disparate	sources.	It	is	thus	imperative	that	researchers	map	the	
results	 to	 the	 metadata	 and	 their	 associated	 descriptions,	 especially	 while	
handling	data	from	disparate	sources	(Figure	2.1).

In	this	chapter,	we	describe	the	intricacies	involved	in	handling	prevalent	data-
bases	 used	 in	 bioinformatics.	 Descriptions	 of	 the	 tools	 used	 in	 data	 mining	 for	
bioinformatics	are	detailed	in	the	following	sections.

Data Base

Datasets

Data Selection

Data Preprocessing

Data Transformation

Data Mining

Interpretation

Figure 2.1 the steps involved in the KDD process.
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2.2 Biological Data Storage and Analysis
The	areas	of	data	quality,	cleaning,	and	integration	are	discussed	below.	Data	qual-
ity	refers	to	challenges	pertaining	to	the	characteristics	of	data	stored	in	large	bio-
informatics	databases	and	their	associated	schemas.	Data	quality	usually	addresses	
whether	or	not	the	records	within	the	database	are	accurate,	timely,	complete,	and	
consistent.	Three	methods	for	managing	data	quality	are	data	cleaning,	data	recon-
ciliation,	and	data	integration.

Before	we	understand	the	three	methods	of	data	quality,	we	first	enlist	the	char-
acteristics	of	biological	databases	that	are	frequently	referred	to	in	the	bioinformat-
ics	literature	(Li	2006).

2.2.1 Challenges of Biological Data
Most,	 if	 not	 all,	 biological	 databases	 are	 created	 by	 biologists	 who	 have	 limited	
knowledge	of	how	to	effectively	store	data.	As	a	result,	data	stored	in	these	biological	
databases	are	often	arranged	in	a	hierarchical	fashion.	This	hierarchical	fashion	of	
storing	data	mimics	the	evolutionary	relationships	between	organisms.	Moreover,	
it	is	also	observed	that	the	data	types	are	tightly	coupled	to	the	specific	technologies	
used	for	data	acquisition.	These	factors	attribute	to	the	inconsistencies	that	plague	
many	of	these	databases.	These	 inconsistencies	have	far-reaching	effects,	as	these	
databases	have	a	large	scope	of	applicability.	For	example,	biological	data	pertain-
ing	to	the	human	species	in	the	hierarchy	encompasses	organisms	from	the	highest	
level	to	the	lowest	level	in	the	hierarchy,	for	example,	organs,	tissues,	cells,	organ-
elles,	and	pathways	or	networks.	The	applications	of	these	data	include	genomics,	
proteomics,	phenomics,	localizomics,	ORFeomics,	pharmacogenomics,	and	phar-
macogenetics	clinical	trials (Li	2006).

The	evolutionary	nature	of	the	biological	data	renders	unique	characteristics	that	
are	described	as	highly	heterogeneous,	large	in	data	volume,	dynamic,	hierarchical,	
not	standardized,	lacking	database	management	applications	and	data	access	tools	
for	biological	databases,	and	data	integration	and	annotation	(Table	2.1).

Highly.heterogeneous:	Brought	about	by	the	inherent	complexity	of	biology	
and	 the	 array	 of	 technologies	 associated	 with	 the	 generation	 of	 data.	 The	
resultant	 databases	 are	 diverse	 in	 the	 associated	 data	 types	 and	data	 sche-
mas	that	are	closely	coupled	with	bioinformatics.	Examples	include	genome	
databases,	gene	expression	databases,	protein	databases,	and	protein-protein	
interaction	databases.

Large.data.volume:.With	the	unique	data	 types	and	data	accumulation	wit-
nessed	 over	 the	 past	 decade,	 data	 volume	 is	 expected	 to	 grow	 further.	
Considering	the	number	of	genes	in	the	human	body	(20,000	to	25,000),	the	
completed	gene	expression	profiling	of	all	genes,	for	all	organs	and	tissues,	
along	with	cell	types	across	development	stages	and	timelines,	will	result	in	
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large	amounts	of	data.	Similarly,	while	considering	 the	 sequences	of	DNA	
and	proteins,	the	volume	of	biological	data	has	and	will	continue	to	expand	
in	 the	 number	 of	 sequences	 and	 in	 related	 graphics,	 images,	 and	 two-
dimensional	(2D)	gel	experiments.

The.dynamic.nature.of.sources.of.bioscience:	To	capture	the	complexity	of	
the	DNA	and	proteins,	new	technologies	are	rapidly	increasing	the	number	
of	dimensions	(ways	to	analyze	a	problem)	in	biosciences.	To	keep	up	with	
the	changes,	new	databases	are	created,	and	existing	databases	are	constantly	
being	updated	with	new	data	structures	and	features	at	every	release.

The.hierarchical.structure.of.biological.data:	Though	common,	the	hierar-
chical	characteristics	create	a	bottleneck	for	modeling	and	querying	in	tradi-
tional	data	models,	such	as	relational	or	object-oriented	models.	For	example,	
the	DNA	contained	within	the	nucleus	of	a	cell	contains	coded	fragments	
(an	integral	part	of	the	chromosome)	called	genes.	Each	gene	will	encode	one	
or	more	proteins	through	one	or	more	mRNAs.	Each	protein,	in	turn,	will	
function	in	one	or	more	pathways	of	various	tissues.	Modeling	this	flow	of	
information	is	highly	complex.

Lack. of. standardization. in. data. formats. and. in. controlled. vocabularies.
in. scientific. domains:	 The	 vocabularies	 used	 to	 describe	 many	 biological	
objects	are	ambiguous.	This	ambiguity	has	been	attributed	to	the	fact	that	
these	databases	vary	in	origin	and	history,	resulting	in	widely	used	synonyms	
and	homonyms.	Another	 important	 aspect	 to	 consider	while	handling	 the	
databases	in	bioinformatics	is	the	different	formats	used	to	represent	the	data.	
This	 diversity	 in	 data	 formats	 makes	 it	 difficult	 to	 use	 standard	 querying	
software	in	these	databases.	Moreover,	it	is	observed	that	these	databases	lack	
explicit	database	schema,	in	which	data	are	stored	in	relational	tables	consist-
ing	of	a	well-defined	set	of	attributes	that	describe	the	data	stored.	Thus,	it	is	
also	a	challenge	to	index	stored	data.	For	example,	the	data	formats	and	types	
adhered	 to	 for	 gene	 expression	 profiling	 using	 Affymetrix	 oligonucleotide	
arrays	will	be	different	than	those	of	cDNA	arrays.

Lack.of.database.management.applications.and.data.access.tools.for.bio-
logical. databases:	 The	 lack	 of	 standardization	 in	 both	 data	 formats	 and	
data	types	 inhibits	 the	development	of	application	tools	 in	biological	data-
base	management	systems	that	are	comprehensive	and	usable	to	a	large	com-
munity.	 The	 effects	 of	 the	 lack	 of	 standardization	 are	 also	 felt	 in	 retrieval	
efficiency,	which	is	complicated,	and	heterogeneous	applications	need	to	be	
developed	to	handle	information	extraction	and	analysis.

Data.integration.and.annotation:	The	advances	made	in	web	technology	and	
the	use	of	hypertext	have	enabled	data	integration	of	diverse	domains.	Thus,	
hypertext	 constitutes	 a	 part	 of	 the	 database	 contents	 and	 provides	 added	
annotation	or	meaning	to	biological	entities.	Nonetheless,	hypertext	does	not	
provide	the	required	standardization	among	databases,	as	it	is	vulnerable	to	
the	ambiguity	in	the	identifiers	or	terminology	system.
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2.2.2 Classification of Bioscience Databases
According	to	Li	(2006),	databases	can	be	classified	based	on	two	criteria,	the	goals	
with	which	they	were	designed	and	built,	and	their	content.	This	classification	of	
databases	provides	both	 computer	 scientists	 and	biologists	with	 an	 idea	of	what	
functions	the	database	has	to	offer.	Moreover,	it	also	provides	an	abstraction	of	the	
application	tools	and	database	management	systems	these	databases	provide.

The	major	classifications	of	molecular	databases	are	primary	versus	secondary	
databases,	deep	versus	broad	databases,	and	point	solution	versus	general	solution	
databases,	each	of	which	is	described	below.

2.2.2.1 Primary versus Secondary Databases

This	distinction	between	databases	is	based	on	the	original	goals	that	were	laid	out	
during	the	inception	of	the	database.	As	proposed	by	3rd	Millennium,	Inc.	(2002),	
primary	databases	are	considered	to	be	mainly	data	repositories	and	serve	as	data	
archives.	Their	functionality	is	defined	by	the	two	basic	operations	of	storage	and	
retrieval	with	limited	or	no	complexity.	These	databases,	apart	from	storage	of	pri-
mary	data,	allow	a	limited	degree	of	freedom	in	the	form	of	additional	annotation	
information.	GenBank	is	an	example	of	such	a	database.	The	GenBank	database	
primarily	stores	nucleotide	sequences	and	their	corresponding	functional	informa-
tion	pertaining	to	associated	experimental	labs	and	projects.	The	standardization	
enforced	 by	 GenBank	 on	 its	 input	 information	 and	 taxonomy	 enables	 effective	
internal	 interpretation.	Secondary	databases,	on	the	other	hand,	 store	data	 from	
several	publically	available	sources.	The	Pfam	data	are	an	example	of	such	a	second-
ary	database,	in	which	information	regarding	protein	sequences	is	extracted	from	
related	primary	databases	or	archives.	The	extracted	information	in	the	Pfam	data-
base	is	performed	both	manually	(PfamA)	and	automatically	(PfamB)	and	provides	
for	a	bifurcation	of	the	holistic	database.

2.2.2.2 Deep versus Broad Databases

In	this	classification,	the	databases	are	categorized	into	deep	databases	and	broad	
databases	based	on	the	scope	of	the	data	contained	in	them.	As	proposed	by	Cornell	
et	al.	(2003),	the	scope	of	the	databases	is	defined	by	the	key	features	of	the	data-
bases,	the	source	of	the	databases,	and	the	formats	by	which	the	data	are	defined.	
For	example,	the	SwissProt	database	is	a	protein	sequence	database	that	contains	
protein	sequences	from	all	known	species;	thus	it	is	considered	a	broad	database.	In	
contrast,	the	deep	databases	contain	information	specific	to	species.	For	example,	
the	Saccharomyces	Genome	Database	(SGD)	contains	all	known	information	per-
taining	to	the	Saccharomyces	genome.	The	primary	purpose	of	these	databases	is	to	
provide	browsing	and	visualization	for	discovered	data,	along	with	complex	query	
processing	through	limited	data	integration.
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2.2.2.3 Point Solution versus General Solution Databases

Proposed	by	Wong	 (2002),	 this	 categorization	 aims	 to	differentiate	 biological	
databases	into	two	categories,	systems	point	solution	and	general	solution	data-
bases.	As	the	name	suggests,	 the	goals	of	a	system	point	solution	database	are	
specific	to	a	predefined	biological	problem	or	question.	Hence,	these	databases	
are	small	and	have	limited	scalability.	In	comparison,	a	general	solution	database	
has	neither	predefined	data	sources	nor	questions	that	are	addressed	during	its	
design.	Thus,	a	general	solution	database	can	be	flexibly	extended	by	incorporat-
ing	additional	data	sources	to	answering	general	queries	during	its	design.	The	
applications	of	 such	databases	are	described	 in	Li	 (2006)	and	are	provided	 in	
Table	2.2.

The	following	section	encapsulates	the	aforementioned	characteristics	of	data-
bases	 and	 the	 issues	 entailed	 in	determining	quality	data	 for	mining	 in	 light	of	
commonly	used	databases	for	data	mining.	The	following	databases	are	described	
below:	the	Gene	Expression	Omnibus	(GEO)	(Edgar	et	al.	2002)	database	and	the	
Worldwide	Protein	Data	Bank	(PDB)	(Berman	et	al.	2003).

The	 following	 sections	 highlight	 some	 commonly	 used	 databases	 and	 their	
related	types.

table 2.2 All Databases: Classification of Molecular Databases
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(Continued)
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table 2.2 All Databases: Classification of Molecular Databases (Continued)

name Pri. Sec. D B PS GS Rep. Bro. Vis. Query Ana.
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2.2.3 Gene Expression Omnibus (GEO) Database
In	this	section,	we	cover	the	important	characteristics	that	gene	expression	databases	
possess	(Do	et	al.	2003).	Some	characteristics	of	the	data	may	be	omitted	or	may	be	
only	partially	included	in	the	database.	Importance	is	given	to	specific	characteristics,	
while	other	characteristics	are	derived	(implied)	from	the	specific	characteristics.	Thus,	
due	consideration	needs	to	be	given	to	analyze	and	segregate	the	characteristics	of	data.

In	gene	 expression	data,	 raw	data	 are	obtained	 in	 the	 form	of	microarray	 chip	
images,	a	product	of	the	microarray	experiment.	Typically,	a	record	in	a	gene	expres-
sion	database	consists	of	three	parts,	image	data,	expression	data,	and	annotation	data.	
Image	data	are	a	scanned	image	of	the	microarray	chip.	Expression	data	are	the	nor-
malized	version	of	the	image	scanned.	It	is	a	sequence	of	numbers	that	represents	the	
expression	of	a	gene	for	a	given	sample.	This	information	constitutes	the	core	of	the	
gene	expression	database	and	is	accessed	frequently.	Taking	into	consideration	the	high	
volume	of	data	and	the	frequency	of	references	made	to	it	in	the	database,	it	is	desirable	
to	apply	effective	indexing	and	store	schemas	for	quicker	and	more	effective	access	of	
these	data.	The	third	component	to	a	record	is	the	annotation	data.	Annotation	data	
are	the	metadata	that	are	appended	to	the	microarray	data.	These	data	add	additional	
information	 to	 the	 record	and	consist	of	 textual	descriptors	 that	help	 interpret	 the	
detected	gene	expression	levels	or	keywords	that	describe	the	associated	gene	function.	
The	annotation	information	can	be	further	categorized	as	follows.

Gene.annotation: Annotation	 information	pertaining	 to	 the	gene	 sequence’s	
place	on	the	microarray	is	categorized	in	this	section.	Annotations	pertaining	
to	the	gene	name,	its	known	functions,	and	location	over	the	chromosome	
are	found	here.	These	annotations	are	collected	over	time	and	are	publically	
accessed	from	different	databases.

table 2.2 All Databases: Classification of Molecular Databases (Continued)

name Pri. Sec. D B PS GS Rep. Bro. Vis. Query Ana.
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Note: The classifications are based on design goals and the contents of the 
databases, as well as the applications on the databases.

 Abbreviations: Pri., primary database; sec., secondary database; D, deep 
database; B, broad database; PS, point solution; GS, general solution; 
rep., repository; bro., browser; vis., visualizing; ana., analysis; transc., 
transcripts; expr., expression; nome., nomenclature; PPI, protein-protein 
interaction; and annot., annotation.
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Sample. annotations: Similar	 to	 the	 gene	 annotation,	 annotation	 pertaining	
to	the	sample	studied	is	stored	in	this	section.	Information	pertinent	to	the	
hybridization	used	to	extract	the	targets,	the	corresponding	biological	descrip-
tions	pertaining	 to	 source	 and	 sample	 characteristics,	 like	 information	 that	
describes	 whether	 the	 sample	 is	 normal	 or	 diseased,	 and	 information	 that	
describes	if	there	are	any in vitro or in vivo treatments	that	have	been	applied	
are	found	here.

Experiment.annotations:.Experiment	annotations	contain	the	information	
regarding	 the	 protocols	 followed	 during	 the	 experiment	 and	 parameter	
settings	used	by	the	associated	tools	and	software	during	hybridization.

The	data	stored	in	the	databases	have	associated	descriptors	that	add	value	to	
the	data.	These	annotations	are	manually	entered	or	derived	from	external	data-
bases.	Thus,	it	is	imperative	to	organize	annotation	data	in	a	uniform	manner	to	
improve	its	effectiveness	for	analyzing	gene	expression	data.

The	current	standard	used	to	capture	annotation	data	renders	two	cha	llenges	
that	must	be	addressed.	The	first	challenge	is	that	of	standardization.	As	anno-
tation	information	is	entered	manually	through	free	text,	different	sources	have	
adhered	 to	 different	 vocabularies.	 The	 discrepancies	 that	 arise	 due	 to	 varied	
vocabularies	affect	the	integration	and	matching	of	records.	The	second	cha	llenge	
stems	 from	 the	 lack	of	 standards	 in	 the	use	 of	 vocabularies.	Many	 terms	may	
be	used	to	describe	the	same	things,	making	the	querying	of	these	databases	a	
challenge.

As	a	solution	to	the	above	challenges,	the	use	of	free	text	to	describe	anno-
tations	should	be	avoided.	The	advent	of	ontologies	to	this	end,	and	more	spe-
cifically,	 the	Gene	Ontology,	created	by	the	GeneOntology	(GO)	Consortium,	
is	a	specialized	hierarchy	of	categories	that	provides	the	basis	for	standardizing	
annotation	vocabulary	in	gene	expression	data	storage.

Initiated	by	the	need	of	a	public	repository	for	high-throughput	gene	expres-
sion	data,	the	Gene	Expression	Omnibus	(GEO)	project	(Edgar	et	al.	2002)	was	
designed	 to	provide	a	flexible	and	open	design	 to	 store,	 retrieve,	and	 insert	data	
from	high-throughput	gene	expression	and	genomic	hybridization	experiments.	It	
is	intended	to	act	as	a	central	data	distribution	hub	of	gene	expression	data	derived	
from	coherent	datasets.

As	seen	 in	Figure	2.2,	GEO	segregates	data	 into	three	principal	components,	
platform,	 sample,	 and	 series	 stored	 and	 accessed	 in	 a	 relational	 database	 model.	
Here,	the	data	are	not	fully	granulated	within	the	database.	Instead,	a	tab-delimited	
ASCII	 table	 is	 stored	 for	 each	platform	and	 each	 sample.	The	 resultant	 tables	 of	
the	GEO	database	are	 shown	 in	Figure	2.3.	These	 tables	 consist	of	multiple	 col-
umns	 with	 accompanying	 column	 header	 names.	 The	 data	 within	 this	 table	 are	
partially	 extracted	 for	 indexing,	but	may	be	 further	 extracted	 for	more	 extensive	
search	and	retrieval.
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Similar	to	the	GEO	database,	there	are	several	other	publically	available	data-
bases	that	provide	the	necessary	information	regarding	genes	and	their	expressions.	
Table	2.3	enumerates	a	few	popularly	referenced	software	tools,	packages	and	data-
bases	in	this	area.

2.2.4 The Protein Data Bank (PDB)
The	PDB	is	one	of	the	largest	repositories	of	known	protein	structures	in	the	world.	
It	 contains	 information	 of	 all	 experimentally	 determined	 structures	 of	 proteins,	
nucleic	 acids,	 and	 complex	 assemblies	 and	 their	 corresponding	 3D	 coordinates.	
As	of	March	2010,	the	database	contained	an	estimated	63,956	known	structures,	
publically	accessed	over	the	Internet.	The	growth	of	this	database	has	been	expo-
nential,	and	the	number	of	known	structures	doubled	between	2005	and	2010,	as	
shown	in	Figure	2.4	and	Table	2.4.

Formerly	referred	to	as	the	Brookhaven	Protein	Database,	this	steady	and	sub-
stantial	growth	 in	 the	number	of	protein	 structures	 is	because	data	are	pooled	 to	

User

Platform Sample Series

Figure 2.2 the entity relationship diagram of the Geo database. (From edgar, R., 
et al., Nucl Acids Res 30, no. 1 (2002): 207–210. With permission.)

Title:
Description:
Platform Type:

Platform GPL9 Series

Title:
Experiment Type:
mRNA Source

Sample GSM169

Title:
Experiment Type:
mRNA Source

Accession:
Title:
Samples:

Sample GSM379

Title:
Experiment Type:
mRNA Source

Sample GSM415

Figure 2.3 An example of three samples referencing one platform and contained 
in a single series.
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table 2.3 other Publically Available Software tools, Packages, and High-
throughput Gene expression and Genomic Hybridization Data Resources

Software Tools Description

Agile Protein Interaction 
Data Analyzer (APID)

Provides exploratory analysis of protein-protein 
interactions

Database of Interacting 
Proteins (DIP)

Provides data integration from various sources to 
create single, consistent set of protein-protein 
interactions

GeneXPress Provides a visualization and analysis tool for gene 
expression data, integrating clustering, and gene 
annotation

Gapasi This is a software package for modeling 
biochemical systems

GOstat A tool used to identify statistically overrepresented 
GO terms within a group of genes

Data Resources institution

ExpressDB Harvard-Lipper Center for Computational Genetics

Global Gene Expression 
Group

Science Park-Research Division, University of Texas 
M.D. Anderson Cancer Center

MAExplorer National Cancer Institute, NIH

Microarray Center Public Expression Profiling Resource

Microarray Project National Human Genome Research Institute, NIH

SAGENET Johns Hopkins University School of Medicine

Yeast Microarray Global 
Viewer

Laboratoire de genetique moleculaire, Ecole 
Normale Superieure

RNA Abundance 
Database (RAD)

Computational Biology and Informatics Laboratory, 
University of Pennsylvania

Gene Expression Omnibus National Center for Biotechnology information, NIH

Code environment

MetageneCreator MATLAB• package used to identify overlapping 
clusters of genes in arbitrarily large datasets.

Deal R	package	used	to	create	Bayesian	networks	with	
both	continuous	and/or	discrete	variables
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the	database	from	various	organizations.	These	organizations	act	as	deposition,	data	
processing,	and	distribution	centers	for	PDB	data.	The	organizations	constitute	what	
is	now	known	as	the	Worldwide	Protein	Data	Bank	(wwPDB),	consisting	of	Research	
collaboratory	for	structural	Bioinformatics	(RCSB)	PDB	in	the	United	States,	PDBe	
in	 Europe,	 and	 PDBj	 in	 Japan.	 The	 Biological	 Magnetic	 Resonance	 Data	 Bank	
(BMRB)	group	from	the	United	States	joined	the	wwPDB	in	2006.	The	mission	of	
the	wwPDB	is	to	maintain	a	centralized	Protein	Data	Bank	Archive	of	macromo-
lecular	structural	data	that	are	freely	and	publicly	available	to	the	global	community.

With	the	substantial	growth	in	the	number	of	proteins,	efforts	of	the	PDB	are	
focused	on	data	cleaning	and	data	integration,	and	eliminating	data	inconsisten-
cies.	To	make	this	data	integrating	and	cleaning	possible,	it	is	important	to	under-
stand	the	relation	database	model	of	the	PDB.

A	relational	database	is,	in	essence,	a	set	of	related	tables	(entities),	each	of	which	
is	 uniquely	 identified	by	 a	primary	key.	One	 table	may	 contain	 a	field/attribute	
that	is	a	primary	key	in	another	table.	Records	may	not	be	added	to	a	table	unless	
there	is	a	corresponding	record	in	the	related	table.	This	dependency	between	tables	
is	known	as	referential	 integrity	and	ensures	 that	changes	made	to	one	table	are	
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Figure 2.4 exponential growth of the PDB (as of March 15, 2010).
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reflected	in	the	other	table.	As	all	tables	should	be	related	to	at	least	one	other	table,	
there	should	be	no	stand-alone	tables	in	a	relation	model.

Relational	 databases	 are	 created	 through	 a	 process	 of	 normalization,	 during	
which	redundant	data	are	removed	and	data	consistency	and	integrity	is	enforced.	
Formal	methods	for	staging	normalization	are	called	normal	forms.

The	PDB	has	been	recently	reengineered	to	become	a	rational	database	based	on	
the	macromolecular	Crystallographic	Information	File	(mmCIF)	schema.	The	adhered	
mmCIF	dictionary,	to	this	end,	has	been	viewed	as	an	ontology	that	details	key	con-
cepts	and	relationships	in	functional	genomics	experiments.

By	definition,	an	ontology	is	a	representation	of	a	preexisting	domain	of	real-
ity	that	(1)	reflects	the	properties	of	the	objects	within	its	domain	in	such	a	way	
that	 it	 obtains	 a	 systematic	 correlation	between	 reality	 and	 representation	 and	
(2)	 is	 intelligible	 to	 a	 domain	 expert	 (3)	 if	 formalized	 in	 a	 way	 that	 allows	 it	
to	 support	 automatic	 information	processing.	Generally	 speaking,	 an	ontology	
consists	of	four	components:	classes,	a	hierarchical	structure	(is-a	relations),	rela-
tions	 (other	 than	 is-a	 relations),	 and	 axioms.	 Unfortunately,	 the	 mmCIF	 does	
not	meet	this	definition.	The	failure	to	follow	ontology	standards	has	resulted	in	
many	poor	design	failures	in	mmCIF,	and	this	in	turn	has	resulted	in	a	poor	PDB	
relational	database	design.

table 2.4 the Growth in the number of Sequences in the PDB 
from 2000 to 2010

Year
Yearly Increase in 

Number of Sequences
Cumulative Increase in 
Number of Sequences

2010 (March) 1,612 63,956

2009 7,439 62,344

2008 7,004 54,905

2007 7,232 47,901

2006 6,492 40,669

2005 5,372 34,177

2004 5,192 28,805

2003 4,172 23,613

2002 3,004 19,441

2001 2,832 16,437

2000 2,628 13,605
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The	mmCIF	dictionary	of	the	PDB	is	written	in	the	Self-Defining	Text	Archive	
and	Retrieval	(STAR)	language,	which	consists	of	a	set	of	data	names	with	associ-
ated	data	values.	Multiple	values	 for	one	data	name	are	allowed.	Identifying	the	
data	names	that	may	appear	in	a	loop	construct	is	important	for	the	first	stage	of	
normalization.	These	are	the	fields	that	would	be	a	repeating	group	and	would	then	
be	removed	at	this	stage.	The	International	Union	of	Crystallography	(IUCr)	states	
that	only	items	that	need	to	be	repeated	should	appear	in	a	looped	list	and	gives	
guidelines	to	the	mmCIF	categories	that	are	normally	represented	in	this	format.

One	of	the	most	difficult	aspects	of	basing	a	relational	database	on	mmCIF	is	
the	lack	of	consistency	in	the	recording	of	experiments.	The	majority	of	the	mmCIF	
data	items	for	the	individual	protein	structures	are	omitted.	mmCIF	labels	these	
items	as	optional,	and	as	a	result,	sometimes	only	the	minimum	amount	of	experi-
mental	information	has	been	provided.	Other	problems	include	the	amount	of	data	
repetition	in	mmCIF	and	data	redundancy;	for	example,	protein	entry	ID	assesses	
most	mmCIF	categories	but	is	not	indicative	of	a	dependent	repeating	group.	Thus,	
care	has	to	be	taken	when	normalizing.

The	simplest	way	to	familiarize	oneself	with	the	associate	relational	database	is	
by	studying	its	associated	schema	diagram.	As	the	PDB	is	both	complex	and	large,	
its	associated	schema	is	also	large.	A	centralized	table	containing	a	reference	to	the	
PDB	entry	and	all	the	other	tables	relates	to	it	directly,	rendering	a	donut	shape	to	
the	schema.	It	is	also	observed	that	there	are	no	table-to-table	relationships,	which	
thereby	exhibit	a	hierarchical	model	to	the	data	stored.

The	following	are	characteristics	of	tables	in	the	PDB:

	 1.	The	primary	key	for	every	table	is	the	same,	and	the	key	name	changes	when	
it	is	involved	in	a	relationship.	This	change	in	primary	key	name	adds	confu-
sion	when	tracking	relationships.

	 2.	Several	stand-alone	tables	are	derived	and	are	not	part	of	the	database.
	 3.	Inconsistencies	in	field	size	show	that	the	fields	of	any	record	in	a	table	of	the	

PDB	could	have	varied	lengths.

Every	category	in	the	mmCIF	is	allocated	a	table	in	the	relational	database,	and	
no	normalization	is	applied.	This	allocation	attributes	to	the	unusual	shape	of	the	
PDB	schema.	Though	the	schema	is	equivalent	to	the	database	STAR	schema,	the	
PDB	has	been	intentionally	denormalized,	and	therefore	does	not	meet	the	require-
ments	of	a	data	warehouse.

Data	 repetition	among	 the	mmCIF	categories	 is	not	 resolved,	which	 implies	
that	every	relationship	in	the	database	is	the	same,	and	interdependencies	between	
other	tables	have	been	ignored.	Thus,	the	PDB	does	not	satisfy	the	requirements	of	
a	successful	relational	model.

On	the	other	hand,	the	Pfam	database	(Bateman	et	al.	2002)	follows	all	 the	
requirements	of	a	relational	database.
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2.3 the Curse of Dimensionality
With	 the	advent	of	massive	 storage	and	rapid-throughput	 technologies	 to	gener-
ate	 data,	 recent	 decades	 have	 witnessed	 data	 analysis	 transform	 to	 a	 realm	 that	
is	beyond	the	scope	of	traditional	statistical	approaches.	However,	the	belief	that	
these	developments	in	information	technology	will	solve	any	structural	problems	
for	data	analysis	is	not	true.	Over	the	last	30	years	data	mining	in	particular	has	
been	formalized	in	the	form	of	software	packages,	and	has	been	the	key	in	trans-
forming	the	paradigm	of	hypothesis-driven	research	into	a	data-driven	paradigm.	
This	data-driven	paradigm	has	been	brought	about	by	addressing	the	fundamental	
problems	that	are	omnipresent	and	require	additional	support	of	data	analysis,	to	
convert	raw	data	into	information	for	effective	decision	making	(Donoho	2000).

More	 specifically,	 the	 inherent	 large	number	of	dimensions,	 called	 the	 curse	
of	 dimensionality,	 has	 ubiquitous	 effects	 throughout	 the	 sciences,	 specifically	 in	
bioinformatics.	The	curse	of	dimensionality	refers	to	the	large	number	of	features	
p	 (dimensions)	 that	 describe	 each	 record	 n	 in	 the	 database,	 that	 is,	 large	 n	 and	
small	p.	Hence,	the	curse	of	dimensionality	is	also	referred	to	as	the	small	n big	p	
problem.	Standard	statistical	approaches	do	not	hold	true	in	such	scenarios.	They	
are	based	on	the	assumption	that	p <	N	and	N →	∞.	Many	of	the	methods	used	in	
statistical	data	analysis	are	derived	from	linear	algebra	and	group	theory	to	develop	
close	to	exact	distribution	results.	These	results	all	fail	when	p >	N.	They	are	also	
based	on	the	assumption	that	N →	∞	with	fixed	p,	which	does	not	always	hold	true	
in	reality;	on	the	contrary,	p	could	tend	to	∞	and	N	being	fixed,	as	in	the	case	of	
many	genes	describing	relatively	few	samples	of	genetic	diseases.

The	effect	of	large	dimensions	on	modeling	data	in	high-dimensional	space	is	
best	 captured	when	we	 take	 into	consideration	data	points	 in	a	10-dimensional	
space.	The	distance	between	independent	data	points	increases	with	the	inclusion	
of	 more	 dimensions.	 The	 density	 or	 distribution	 of	 the	 points	 becomes	 sparse,	
making	it	difficult	to	apply	traditional	approaches	to	fit	a	model	to	these	points	
in	10	dimensions.	The	application	of	traditional	approaches	is	especially	difficult	
when	we	consider	p >	N,	where	the	number	of	points	are	smaller	than	the	dimen-
sions	analyzed.

Though	 statistically	 challenging,	 the	 curse	 of	 dimensionality	 has	 opened	 up	
many	avenues	to	help	researchers	understand	the	role	of	features	in	describing	the	
data.	It	was	observed	that	many	identical	dimensions,	dimensions	that	represent	
redundant	 information,	 existed.	 This	 redundant	 information	 laid	 the	 founda-
tion	for	numerous	feature	selection	and	feature	extraction	techniques.	A	detailed	
description	of	these	techniques	is	given	in	Chapter	4.

The	section	below	includes	descriptions	of	dimensions	and	their	roles	 in	data	
integration	and	data	cleaning.	Many	biological	databases	cross-reference	data	that	
are	 derived	 from	 external	 databases.	 This	 cross-referencing	 renders	 challenges	 for	
effectively	representing	data.	Thus,	the	following	section	is	dedicated	to	addressing	
these	issues.
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2.4 Data Cleaning
Biological	data	are	 rich	with	 issues,	 such	as	data	 inconsistencies	 and	data	dupli-
cations	that	can	be	addressed	with	data	cleaning	and	integration	methodologies.	
Data	cleaning	in	biological	data	is	an	important	function	necessary	for	the	analy-
sis	of	biological	data.	This	step	can	standardize	the	data	for	further	computation	
and	improve	the	quality	of	the	data	for	quicker	search	and	retrievals.	The	primary	
purpose	of	most	biological	databases	 is	 to	create	 repositories	 that	 integrate	work	
from	numerous	scientists.	This	use	requires	sophisticated	data	cleaning	strategies.	
Chapter	3	provides	the	various	data	cleaning	strategies	that	encompass	data	from	
single	 sources/databases.	However,	 in	 this	 section,	we	provide	 the	description	of	
data	 cleaning	 strategies	 designed	 to	 overcome	 traditional	 problems	 that	 can	 be	
avoided	using	data	mining	techniques.

As	discussed	 in	previous	 sections,	biological	data	 are	 evolutionary	 in	nature.	
Most	of	the	well-known	databases	mimic	this	inherent	property	by	storing	the	data	
in	a	hierarchical	fashion	(as	a	phylogenetic	tree).	This	hierarchical	fashion	of	data	
storage	possesses	the	following	problems:

	 1.	As	emphasized	in	the	previous	sections,	nomenclature	and	vocabulary	used	
in	data	annotation	do	not	adhere	to	a	set	of	standards.

	 2.	It	 is	 frequently	 observed	 that	 the	 data	 from	 biological	 databases	 lack	 a	
consistent	 format,	 especially	 when	 performing	 operations	 on	 data	 from	
phylogenetic	systems.

	 3.	Data	 from	 legacy	 phylogenetic	 systems	 require	 cleaning	 and	 extensive	
modification.

	 4.	It	 is	 a	 challenge	 to	 find	 duplicates	 within	 the	 structural	 data	 (trees)	 and	
recodes	within	the	dataset.

	 5.	It	is	difficult	to	remove	duplicates	when	required.
	 6.	Finding	clusters	similar	to	structural	data	(trees)	and	records,	merging	similar	

records,	and	finding	anomalous	structural	data	(trees)	and	data	are	also	difficult.

Data	cleaning,	also	called	data	cleansing	or	scrubbing,	is	the	process	of	detect-
ing	and	removing	errors	and	 inconsistencies	 from	data	 in	order	 to	 improve	data	
quality.	The	above-mentioned	data	quality	problems	are	present	in	most	biological	
data	 collections,	 such	 as	 files	 and	 databases,	 e.g.,	 in	 data	 warehouses,	 federated	
database	 systems,	or	global	web-based	 information	 systems	 traditionally	used	 in	
bioinformatics.	Table	2.5	contains	a	 list	of	popular	data	cleaning	methodologies	
applied	on	biological	databases.

2.4.1 Problems of Data Cleaning
The	quality	of	data	is	gauged	by	the	number	of	errors,	discrepancies,	redundancies,	
ambiguities,	and	the	degree	of	incompleteness	therein	that	diminishes	the	quality	
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results	obtained	from	data	analysis	or	data	mining.	Thus,	data	cleaning	is	the	pro-
cess	of	detecting	and	removing	the	above-mentioned	factors	to	improve	the	overall	
quality	of	the	data	for	mining	purposes.	The	problems	associated	with	data	clean-
ing	tend	to	fall	into	two	categories.	The	first	category	is	the	detection	of	erroneous	
data.	Problems	from	erroneous	data	usually	stem	from,	but	are	not	limited	to,	errors	
caused	by	user	inputs	such	as	inconsistency	in	input,	missing	values,	misspelling,	
improper	generation	of	data,	and	differences	between	input	data	and	legacy	data.	
The	 second	category	 is	 the	detection	of	duplicate	 records.	 In	 the	past,	duplicate	
detection	has	been	applied	to	large	databases	where	duplication	control	is	not	very	
strong.	The	associated	algorithms	were	used	to	detect	similarity	between	strings	for	
file-based	systems	and	similarity	between	records	in	rational	databases.	However,	
in	large	databases	with	complex	schemas,	the	feasibility	of	the	same	logic	failed	to	
detect	duplicate	records	and	files.	This	problem	reduces	the	quality	of	data	in	large	
databases	with	complex	schemas.	These	problems	are	magnified	in	databases	that	
evolve	with	time,	as	is	the	case	with	biological	databases.

In	addition,	these	problems	are	more	prevalent	in	biological	databases.	Most	
biological	databases	are	fueled	by	the	data	generated	by	experiments	from	around	
the	world.	The	sources	of	these	data	include	large	submissions	by	high-throughput	
sequence	and	gene	expression	experiments.	Based	on	the	global	scale	of	bioinfor-
matics,	it	has	been	a	challenge	to	ensure	adequate	quality	control	of	the	submission	
process.

Moreover,	according	to	 the	2008	annual	 review	of	databases,	 the	number	of	
molecular	biology	databases	increased	by	95	in	2008	(McLeod	et	al.	2009).	Most	of	
these	databases	have	their	own	data	formats,	nomenclatures,	and	schemas.	This	dis-
parity	in	database	characteristics	requires	standardization.	Some	of	these	databases	
derive	or	replicate	their	content	from	well-known	archives	such	as	GenBank.	This	
replication	has	its	own	negative	implications,	as	it	fosters	propagation	of	resubmis-
sion	of	the	same	sequence	if	not	monitored	or	regulated.

In	addition,	the	sequences	in	the	databases	are	manually	curated.	For	example,	
the	SwissProt	section	of	the	UniProtKB/SwissProt	database	is	manually	curated	by	
experts	from	the	Swiss	Institute	of	Bioinformatics.	It	is	known	that	errors	do	seep	

table 2.5 table of Popular Data Cleaning Methodologies

Methodology  Example System

ETL Talend—an open source data integration tool

Multi-pass sorted 
neighborhood

Merge/Purge (Hernandez and Stolfo 1995)

Disambiguation methods ConQuer (Fuxman et al., 2005)

Knowledge-based technique IntellicleanTM (Low et al., 2001)
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in	despite	stringent	quality	control	mechanisms.	These	errors	are	further	magnified	
when	automated	systems	use	the	erroneous	annotations	caused	unintentionally.

2.4.2 Challenges of Handling Evolving Databases
The	 challenges	 in	 handling	 evolving	 databases	 can	 be	 divided	 into	 two	 catego-
ries,	as	shown	in	Figure	2.5	(Rahm	and	Do	2000).	These	problems	can	be	solved	
using	 data	 cleaning	 and	 data	 transformations	 techniques.. Data	 transformations	
techniques	include	changing	the	data	types	and	various	summarization	schemes,	
and	are	used	to	enforce	changes	in	the	structure	and	representation	of	data	content.	
Data	transformations	help	map	the	data	from	their	given	formats	into	the	format	
expected	by	the	application	(Muller	and	Freytag	2003).	These	transformations	are	
important	for	handling	evolving	databases,	especially	those	that	help	in	the	migra-
tion	of	a	legacy	system	to	a	new	information	system	or	those	that	integrate	multiple	
data	sources.

Data	quality	problems	(Rahm	and	Do	2000)	consist	of	two	categories,	sin-
gle-source	 and	multisource	problems.	These	 two	 categories	 are	 further	divided	
into	 schema	 and	 instance-related	 problems.	 Instance-related	 problems	 refer	 to	
errors	and	inconsistencies	in	the	actual	data	contents	that	are	not	visible	at	the	
schema	level.	They	are	the	primary	focus	of	data	cleaning.	Schema-level	problems	
are	 the	 problems	 found	 at	 the	 schema	 level.	 These	 errors	 are	 also	 reflected	 on	
data	instances.	They	can	be	addressed	by	incorporating	changes	into	the	schema	
design,	i.e.,	evolving	the	schema	by	performing	schema	translation	and	schema	
integration	operations.

Data Quality
Problems

Categorise of problems

Multi-Source
Problems

Schema Level

Database

Database

Database

Database

Instance Level

Single Source
problems

Figure 2.5 Categorization of data quality problems in data sources. 
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2.4.2.1 Problems Associated with Single-Source Techniques

In	single-source	techniques,	problems	of	data	quality	pertain	to	the	integrity	con-
straints	that	are	applied	to	the	data	during	the	schema	design.	The	integrity	con-
straints	 control	 the	fields	 and	 their	 associated	data	 types	 that	 are	 allowed	 to	 be	
entered	into	the	database.	Since	biological	databases	consist	of	databases	that	are	
based	on	file	systems	and	loosely	defined	relational	schemes,	the	sources	without	
schema,	such	as	file	systems,	have	few	restrictions	on	what	data	can	be	entered	and	
stored.	 This	 lack	 of	 restrictions	 gives	 rise	 to	 inherent	 inconsistencies	 and	 results	
in	a	high	probability	of	errors.	Sources	that	are	based	on	relational	models	spec-
ify	 data	 constraints	 during	 schema	 design	 or	 inception.	 The	 constraints	 enforce	
attribute	restrictions	that	prevent	values	that	do	not	confine	to	a	specific	range	or	
format.	Similarly,	uniqueness	constraints	enforce	uniqueness	of	values	entered	in	
a	field	of	the	record,	if	desired.	Most	of	these	constraints	are	application	specific.	
Data	quality	violations	that	are	associated	with	the	data	schema	are	categorized	as	
schema-related	issues.	They	occur	because	of	poor	schema	design	or	lack	of	proper	
constraints	during	schema	inception.	On	the	other	hand,	problems	that	are	associ-
ated	with	errors	and	inconsistencies	that	cannot	be	prevented	at	the	schema	level,	
such	as	typographic	errors,	missing	values,	duplicate	records,	and	misspellings,	are	
defined	as	instance-specific	problems.

2.4.2.2 Problems Associated with Multisource Integration

Typically,	bioinformatics	databases	require	data	from	two	or	more	data	sources.	The	
inherent	problems	of	data	cleaning	databases	of	 single	 sources	are	magnified	when	
data	from	two	or	more	sources	are	integrated.	In	multisource	integration,	the	problems	
faced	are	derivatives	of	the	problems	of	each	independent	source.	These	problems	stem	
from	the	fact	that	data	from	different	sources	can	be	represented	differently,	overlap,	
or	contradict	each	other	because	the	databases	are	tailored	to	suit	specific	applications.	
The	differences	in	the	ways	that	the	databases	are	deployed	and	maintained	results	in	
heterogeneity	in	data	models,	schema	designs,	and	data	management	systems.

The	differences	 at	 the	 schema	 level	 are	 addressed	by	 schema	 translation	 and	
schema	integration.	The	specific	problems	at	the	schema	level	are	the	naming	and	
structural	conflicts	in	the	databases.	When	an	attribute	or	feature	is	assigned	the	
same	name	in	different	databases	to	represent	the	same	object	(synonyms),	or	when	
different	names	are	used	to	represent	different	objects	(homonyms),	the	errors	that	
are	associated	with	this	conflict	are	known	as	naming	conflicts.	Conflicts	that	arise	
due	to	variations	in	representation	of	the	same	object	in	different	sources	are	called	
structural	conflicts.	These	conflicts	can	occur	with	different	component	structures	
and	different	data	types.

Conflicts	 at	 the	 instance	 level	 stem	 from	differences	 in	 the	 representation	of	
data	in	different	sources.	These	conflicts	typically	result	in	duplicate	and	contra-
dicting	records.	Moreover,	the	attributes	or	features	with	the	same	name	and	data	
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types	could	follow	different	standards	and	interpretations.	Time	is	also	an	impor-
tant	factor	when	considering	data	from	different	sources.	In	such	a	case,	care	should	
be	taken,	as	data	could	refer	to	different	points	of	time.

Thus,	 the	 main	 challenge	 of	 cleaning	 data	 from	 different	 sources	 is	 iden-
tifying	 overlapping	data.	These	 overlapping	data	 enable	 effective	matching	 of	
records	 between	 sources.	 The	 problem	 is	 also	 referred	 to	 as	 the	 object	 iden-
tify	problem,	 the	merge/purge	problem,	or	 the	duplicate	 elimination	problem	
(Rahm	and	Do	2000).	In	an	ideal	scenario,	the	data	from	different	sources	may	
complement	each	other	and	add	information	about	the	entity.	To	make	this	hap-
pen,	it	is	important	to	filter	out	duplicate	information	and	retain	complement-
ing	information	by	merging	them	to	existing	information,	thereby	providing	a	
consistent	view	of	 the	real-world	entities.	Figure	2.6	provides	a	categorization	
of	 the	 errors	 that	 are	 typically	 found	 in	 biological	 databases.	 Again,	 the	 cat-
egorization	is	described	for	the	attribute,	record,	single-database,	and	multiple-
database	problems.

2.4.3 Data Argumentation: Cleaning at the Schema Level
By	definition,	data	reconciliation	is	the	process	of	comparing	data	from	multiple	
sources	for	creating	consistency	in	the	data.	As	mentioned	in	the	previous	section,	
the	number	of	databases	 for	molecular	biology	has	grown.	 In	 addition,	 changes	
have	been	made	to	68	previously	existing	databases	(McLeod	et	al.	2009).	These	
data	sources	are	riddled	with	feature	inconsistencies	and	incomplete	information.	
Moreover,	the	data,	at	times,	contain	conflicting	information.	With	the	abundance	
of	 Internet-based	 tools	 to	 analyze	 the	 data,	 newer	 inferences	 are	 being	 derived	
from	 these	databases	 on	 a	 regular	 basis.	Any	 inconsistencies	 in	 the	data	 exacer-
bate	misleading	conclusions,	emphasizing	the	need	for	better	quality	data.	To	this	
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Figure 2.6 the classification of errors in biological databases provided by Judice 
(2007).
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end,	there	is	a	need	for	techniques	that	evaluate	the	datum	before	it	is	used.	Data	
reconciliation	plays	a	vital	role	in	removing	conflicts	between	data	sources.

The	 method	 of	 argumentation for	 data	 reconciliation	 has	 been	 proposed	 by	
McLeod	et	al.	(2009).	An	argument	is	a	reason	to	believe	something	is	true;	it	is	
used	to	support	or	attack	a	conclusion.	Arguments	can	also	attack	and	defeat	each	
other.	Once	defeated,	an	argument	can	be	reinstated	if	the	argument	that	defeats	it	
is	defeated.	When	presented	with	the	arguments	for/against	a	conclusion,	the	user	
can	evaluate	the	evidence	and	make	a	decision	as	to	whether	or	not	to	believe	it.	As	
time	passes,	new	information	becomes	available,	and	new	arguments	can	be	cre-
ated.	These	new	arguments	may	defeat	existing	arguments,	thus	reinstating	other	
arguments.	When	presented	to	users,	these	changes	may	alter	their	perspective	and	
so	alter	their	opinion	of	the	conclusion.

Argumentation	 was	 implemented	 by	 McLeod	 and	 Burger	 (2008)	 over	 two	
gene in situ expression	databases.	An in situ database	 consists	 of	 3D	 images	 of	
organisms	 that	 highlight	 the	 areas	where	 a	 particular	 gene	 is	 expressed.	 In	 the	
analysis	of in situ gene	expression	data,	two	images	of	samples	(mouse	or	zebraf-
ish)	 are	 compared	 to	 obtain	 a	 spatial	 processing	 of	 where	 genes	 are	 expressed.	
Figure	2.7	provides	a	brief	conceptual	view	of	the	process	of	argumentation	fol-
lowed	in	this	study.

Commonly	used	databases	for	the	mouse	genes	are	GXD	(Smith	et	al.	2007)	and	
EMAGE	(Venkataraman	et	al.	2008).	These	databases	are	complementary,	as	they	
publish	 the	 same	 information	and	are	based	on	 the	 same	ontology—	Edinburgh	
Mouse	Atlas	Project	(EMAP).	When	these	databases	are	queried	independently	for	
a	specific	gene,	the	results	vary	in	regard	to	the	displayed	records.	To	resolve	this	
issue	and	obtain	a	more	accurate	result,	biologists	typically	treat	the	results	from	the	
databases	as	mutually	exclusive	and	based	on	laborious	related	research	in	published	
paper	surveys,	and	decide	whether	the	results	obtained	are	conclusive.	This	issue	is	
prevalent	in	most	biological	analyses	and	studies	that	involve	biological	databases.
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Figure 2.7 Conceptual schematic of the process of argumentation.
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A	 closer	 analysis	 of	 the	 databases	 GXD	 and	 EMAGE	 reveals	 that	 some	
of	 the	 experiments	present	 in	GXD	are	not	present	 in	EMAGE	and	 vice	 versa.	
Furthermore,	EMAGE	maps	some	of	its	embryo	2D	images	onto	its	3D	embryo	
model	of	EMAP.	This	mapping	entails	both	textual	annotation	and	spatial	trans-
formation.	GXD	contains	results	that	are	mapped	to	the	EMAP	ontology,	laying	
the	basis	for	applying	argumentation	to	resolve	the	inconsistencies	between	the	two	
biological	databases.

The	 process	 of	 argumentation	 involves	 the	 use	 of	 an	 argumentation	 engine	
(Fox	et	al.	2007).	Using	domain	information	and	expert	knowledge	in	the	form	
of	inference	rules,	the	argumentation	engine	interprets	these	rules	to	create	argu-
ments	by	backward	chaining	through	the	rules	 in	response	to	a	query	from	the	
user.	Expert	knowledge	is	provided	by	a	domain	expert.	All	information	from	the	
domain	expert	is	recorded	using	a	natural	language.	Argument	schemes	are	then	
employed	 to	 act	 as	 an	 interface	 between	 the	 domain	 expert	 and	 the	 argument	
engine	(Verheij	2003).

Another	important	aspect	of	the	arguments	generated	by	the	argument	engine	
is	to	resolve	conflicts	between	arguments.	This	conflict	resolution	is	brought	about	
using	a	ranking	scheme	that	allows	the	domain	expert	to	further	provide	weights	
to	different	schemes	based	on	the	order	of	importance.	These	scores	are	then	propa-
gated	back	to	the	rules	that	generated	them,	and	thus	establish	an	order	of	impor-
tance	to	the	rules.

When	a	query	needs	to	be	processed,	for	example,	the	user	specifies	a	specific	
gene	and	a	corresponding	structure	through	a	specialized	client	interface.	The	cli-
ent	first	pulls	up	all	relevant	data,	and	then	transforms	it	to	a	format	that	can	be	
used	by	the	argumentation	engine.	Simultaneously,	both	domain	data	and	expert	
knowledge	 is	 loaded	 into	 the	 argumentation	 engine	 knowledge	 base.	 Once	 this	
network	is	set	up,	the	query	(Is	the	gene	expressed	in	the	structure?)	is	sent	to	the	
argumentation	engine,	and	the	results	are	displayed	to	the	user.

2.4.4  Knowledge-Based Framework: 
Cleaning at the Instance Level

Data	cleaning	that	uses	domain	knowledge	to	duplicate	record	identification	and	
for	de-duplication	is	a	necessary	component	of	data	preprocessing.	This	method,	
in	 contrast	 to	 the	 previous	 method	 of	 argumentation,	 uses	 data	 from	 a	 single	
source.

As	 the	 title	 of	 this	 section	 suggests,	 data	 cleaning	 at	 the	 instance	 level	 uses	
domain	knowledge	as	the	key	ingredient	for	cleaning.	Thus,	the	proposed	frame-
work	employed	by	the	system	IntelliClean™	(Lee	et	al.	2000;	Low	et	al.	2001)	pro-
vides	a	viable	representation	and	utilization	of	domain	knowledge	for	data	cleaning.	
The	framework,	as	seen	in	Figure	2.8,	also	supports	effective	record	standardiza-
tion,	duplicate	elimination,	anomaly	detection,	and	removal	of	unclean	data.
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The	framework	is	composed	of	three	stages,	preprocessing,	processing,	and	veri-
fication	and	validation.

The.preprocessing.stage: In	this	stage,	data	from	a	single	source	are	subjected	to	
various	standardization	and	format	checks	to	free	the	data	from	inconsisten-
cies	like	variations	in	abbreviations	and	formats.	This	process	is	called	record	
scrubbing.	Record	scrubbing	is	brought	about	through	the	use	of	reference	
functions	and	lookup	tables.	The	lookup	tables	are	used	to	compare	all	the	
abbreviations	used	in	the	applications	with	their	occurrence	in	the	records.	
If	differences	are	observed,	the	equivalent	from	the	lookup	table	is	used	to	
replace	the	incorrect	abbreviation	in	the	record.	The	result	of	this	stage	is	a	set	
of	conditioned	instances	that	is	subjected	to	the	next	stage.

The.processing. stage:	 In	 this	 stage,	 the	 conditioned	 instances	 are	 compared	
to	 a	 set	 of	 rules	 that	 enable	 the	 effective	 identification	 of	 inconsistencies	
between	instances.	Rules	 in	this	system	are	generated	using	the	Rete	algo-
rithm	(Rete	1982)	that	is	 implemented	using	the	Java®	Expert	System	Shell	
(JESS)	(Friedman-Hill	1999).	The	rules	used	for	this	algorithm	are	further	
classified	as	follows:

. 1.	 Rules.for.duplicate.identification:	These	rules	are	specifically	used	to	
identify	duplicate	instances	in	the	conditioned	data.

. 2.. Rule.to.merge/purge:	Once	the	rules	have	been	identified	or	detected,	
these	rules	are	used	to	delete	the	duplicate	records.	For	example,	a	rule	
could	specify	the	deletion	of	one	of	the	records,	depending	on	the	degree	
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Figure 2.8 Schematic representation of the intelliClean framework.
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of	match	or	prevalence	of	 the	 rule.	The	duplicate	 instances	are	deleted	
throughout	the	database.

	 3.. Rules.for.updates:	These	rules	help	modify	or	update	an	instance,	but	
may	not	be	required.

	 4.. Rules.to.generate.alerts:	If	there	are	instances	that	violate	certain	con-
straints	 of	 functional	 dependence	 or	 integrity	 constraints,	 then	 these	
rules	are	useful	to	generate	the	corresponding	alerts.

Generating	and	comparing	the	rules	to	instances	is	a	time-consuming	process.	There	
are	variations	in	the	implementation	of	the	system	to	make	it	time-effective.

The.validation.and.verification.stage: The	validation	and	verification	stage	
requires	human	intervention	to	manipulate	duplicate	 instances	 for	which	
the	merge/purge	rules	do	not	work	or	have	not	been	defined.	The	entire	sys-
tem	is	log	based,	meaning	that	there	is	record	of	all	corrections	or	updates	
to	 the	data	maintained	 in	a	 log	file.	This	file	allows	 the	users	or	domain	
experts	to	verify	whether	the	corrections	carried	out	 in	the	preprocessing	
and	processing	 stages	 are	 accurate	 and	 enable	 these	 experts	 to	undo	 any	
incorrect	actions.	It	also	helps	gauge	the	correctness	of	the	rules.	Rules	that	
perform	incorrect	updates	and	duplicate	detection	could	be	removed	from	
the	system.

2.4.5 Data Integration
Let	us	consider	a	typical	challenge	faced	by	biologists	attempting	to	collect	data	
from	 multiple	 databases.	 Typically,	 when	 searching	 for	 evidence	 linking	 pheno-
types	to	genes,	data	are	gathered	based	on	phenotype	differences	and	allelic	vari-
ants	between	the	 strains,	genotypes,	and	pathways	 in	which	 these	genes	belong.	
This	process	 involves	 the	 gathering	of	 data	 from	multiple	 sources.	With	myriad	
databases	available,	it	becomes	a	challenge	for	anyone	to	identify	the	corresponding	
databases	and	what	services	they	offer.

The	laborious	steps	in	this	process	allow	the	users	to	learn	how	to	utilize	these	
databases	 based	 on	 what	 each	 one	 has	 to	 offer.	 Typically,	 such	 data	 collection	
includes	copying	the	data	from	these	databases	into	Microsoft	Word®	or	Excel®	files	
for	further	analysis.	This	process	is	error-prone	and	leads	to	computational	bottle-
necks,	as	the	method	does	not	scale	up	to	the	magnitude	of	the	data.

These	 bottlenecks	 call	 for	 data	 integration	 approaches.	 Data	 integration	 has	
been	a	constant	endeavor	since	the	early	1990s	and	the	inception	of	the	HGP,	in	
which	data	were	generated	on	a	large	scale	by	sources	being	geographically	distrib-
uted	across	the	globe.	With	the	geographically	distributed	sources,	it	was	important	
then	to	find	a	way	of	integrating	this	data.	To	this	end,	Kleisli	(Wong	2000),	a	pow-
erful	query	system,	was	developed	by	the	University	of	Pennsylvania	to	solve	this	
predicament.	This	system	consists	of	a	nested	relational	data	model,	a	high-level	
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query	 language,	 and	 a	 powerful	 query	 optimizer.	 It	 can	 handle	 multiple	 source	
databases	and	can	withstand	the	issue	of	heterogeneity	among	these	source	data-
bases.	This	heterogeneity	allows	the	user	to	create	structured	query	language	(SQL)-
like	queries	that	are	independent	of	the	location	of	the	data,	its	format	(relational/
flat	file),	and	the	disparate	access	protocols	implemented	at	the	sources.	Moreover,	
it	can	store,	update,	and	manage	complex	nested	data	through	application	program	
interfaces	(APIs)	available	in	Java	and	Perl®.

Several	 other	 approaches	 have	 been	 proposed	 since	 Kleisli.	 These	 include	
Ensembl	(Hubbard	et	al.	2002),	SRS	(Etzold	and	Argos	1996),	and	DiscoveryLink	
(Haas	et	al.	2001).

2.4.5.1 Ensembl

The	Ensembl	software	technology	is	the	outcome	of	a	 joint	venture	between	the	
European	Bioinformatics	Institute	and	the	Sanger	Institute	(http://www.ensembl.
org).	 Ensembl,	 though	 not	 an	 ideal	 example	 of	 data	 integration,	 provides	 a	 feel	
of	 the	 benefits	 of	 integrating	 data	 from	 different	 sources.	 This	 tool	 provides	 for	
query	processing	of	all	eukaryotic	genomic	sequence	data.	 It	gathers	and	assem-
bles	sequences	from	various	data	sources	to	their	corresponding	locations	on	the	
genome.	Based	on	these	derived	sequence	assemblies	and	using	GenScan,	the	tool	
automatically	predicts	genes	in	these	data.	These	predictions	are	then	made	publi-
cally	available.	Moreover,	Ensembl	also	has	tailor-made	functions	that	enable	com-
plex	operations	of	annotation	of	these	sequences.

2.4.5.2 Sequence Retrieval System (SRS)

The	Sequence	Retrieval	System	(SRS)	tool	is	marketed	by	LION	biosciences	and	
is	known	for	its	query	and	navigation	system	(http://srs.ebi.ac.uk).	It	is	one	of	the	
most	widely	used	data	traversal	systems	in	life	science,	as	it	provides	access	to	sev-
eral	biological	databases	that	include	sequence	databases,	metabolic	pathway	data-
bases,	and	literature	abstracts.	SRS	is	built	using	a	programming	language	called	
Interpreter	of	Commands	and	Recursive	Syntax	(Icarus)	(Wong	2002).	SRS	allows	
its	users	 the	 facility	 to	add	their	own	databases	 to	be	 traversed	and	compared	 if	
desired.	The	addition	of	new	databases	into	SRS	requires	the	submission	of	both	
the	new	database	in	the	flat	file	format	and	its	corresponding	schema	or	structure;	
both	must	be	available	as	an	Icarus	script	that	acts	as	a	wrapper	to	the	data	submit-
ted.	These	Icarus	script	wrappers	constitute	a	wrapper	programming	language	of	
SRS,	which	is	responsible	for	creating	indexes	for	each	of	the	parsed	flat	files	that	
are	described	by	the	Icarus	script.	By	doing	so,	a	biologist	can	access	the	data	using	
keywords	and	constraints	in	the	SRS	query	language.

The	 SRS	query	 language	 is	 an	 information	 retrieval	 language,	which	 means	
that	 the	 results	 obtained	 after	 query	 execution	 are	 simple	 data	 aggregates	 that	
match	the	specific	constraints.	SRS	processes	limited	data	joining	and	restructuring	
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capabilities.	The	SRS	frontend	offers	users	accessibility	to	the	multiple	data	sources	
independently	without	the	hassles	of	handling	these	sources	independently.	Thus,	
SRS,	though	popularly	perceived	as	a	data	integration	tool,	is	an	interface	integrat-
ing	tool.

2.4.5.3 IBM’s DiscoveryLink

Proposed	 by	 IBM	 and	 based	 on	 IBM’s	 DB2	 database	 management	 system,	
DiscoveryLink	 (http://www.ibm.com/discoverylink)	 stands	 out	 due	 to	 its	
explicit	 relational	 data	 model	 that	 acts	 as	 an	 intermediary	 between	 the	 data	
sources	and	the	end	user.	This	intermediate	data	model	enables	the	user	to	query	
it	when	required.	This	feature	is	in	line	with	the	SRS	system.	However,	the	data	
model	 supports	 most	 SQL	 queries	 if	 it	 follows	 the	 relational	 model,	 allowing	
the	user	to	process	complex	queries	in	contrast	to	SRS	limited	join	and	retrieval	
operations.	However,	DiscoveryLink	suffers	from	the	complexities	that	biologi-
cal	databases	possess	with	respect	to	complex	nested	data.	For	example,	it	is	not	
straightforward	 to	add	new	databases	 to	DiscoveryLink,	 taking	 into	consider-
ation	 the	 laborious	 task	 of	 making	 legacy	 biological	 databases	 into	 relational	
data	models.	According	to	Wong	(2002),	if	SwissProt	were	subjected	to	the	third	
normal	 form,	each	record	would	be	 split	 into	30	pieces.	This	 large	number	of	
possible	splits	exposes	how	infeasible	it	is	to	use	DiscoveryLink	considering	the	
join	operations	required	to	process	a	query.	However,	considering	the	flexibility	
of	SQL	queries	processes,	it	does	seem	feasible	to	utilize	DiscoveryLink	as	a	data	
integration	solution.

With	the	evolution	of	database	stands	XML	has	become	the	de facto	standard	
for	data	formatting	and	exchange	over	the	Internet.	Though	not	a	solution	to	the	
data	integration	problem,	it	is	appreciated	for	its	flexibility	in	formatting	hierarchi-
cally	nested	documents	and	its	uncanny	data	modeling	using	tag	definitions.	These	
features	make	it	ideal	to	model	the	complex	and	evolving	nature	of	biological	data	
with	the	flexibility	it	offers.	Moreover,	it	has	fueled	the	creation	of	semistructured	
data	processing	languages	such	as	XQL	and	XQuery.	These	languages	help	query	
across	multiple	data	 sources	and	 transform	the	 results	 into	a	 form	that	 supports	
further	processing.	It	is	thus	evident	that	the	biomedical	community	is	adhering	to	
the	standards	of	XML,	as	in	the	case	of	databases	such	as	PIR	and	Entrez.

With	the	advances	in	data	integration,	the	different	data	integration	strategies	
are	categorized	as	wrappers	and	warehouses.	Both	of	these	categories	of	integration	
schemes	are	prevalent	 in	 the	bioinformatics	community.	The	wrapper	strategy	 is	
considered	to	support	both	flexible	and	 loosely	coupled	models.	 In	 this	 strategy,	
different	resources	are	combined	dynamically,	and	generic	features	of	data	are	mod-
eled	and	queried	using	query-based	logic	in	the	form	of	API	abstractions.

The	warehousing	strategy	is	fixated	at	creating	a	centralized	architecture	to	store	
data	from	distributed	sources	in	a	locally	stored	data	warehouse.	Thus,	in	the	ware-
housing	strategy,	data	from	different	sources	are	moved	to	a	centralized	data	model.	
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This	method	requires	considerable	effort,	as	not	all	sources	can	be	altered.	It	is	also	
challenging	to	keep	this	warehouse	up-to-date	considering	that	biological	databases	
constantly	evolve,	and	data	structures	vary	simultaneously	at	the	sources.

We	describe	these	two	categories	with	the	following	two	well-known	approaches	
in	the	biomedical	community.

2.4.5.4 Wrappers: Customizable Database Software

As	an	example	of	the	wrapper	category	of	integration	strategies,	MOLGENIS	(Swertz	
et	al.	2004)	is	an	open-source	package	that	is	dedicated	to	providing	backend	storage	
solutions,	graphical	frontends,	and	a	programmable	environment	for	users	to	tailor	mul-
tiple	data	sources.	Intended	to	design	and	generate	database	software	for	new	research	
projects,	this	process	has	become	increasingly	useful	in	easy	access	to	known	databases.	
It	also	facilitates	the	storage,	navigation,	and	location	of	data	across	multiple	databases,	
and	has	an	API	that	can	integrate	software	services,	processing	tools,	and	web	services	
that	are	written	in	R®,	Java,	or	HTTP.	It	is	controlled	by	a	domain-specific	language	
(DSL)	that	helps	map	data	types	to	their	outputted	form	to	create	user-defined	software.

All	 these	 functions	 are	provided	 through	a	graphical	programming	 interface	
to	help	users	 to	use	this	 tool	with	ease.	Moreover,	 the	DSL	provides	an	abstrac-
tion	to	the	actual	work	that	needs	to	be	carried	out.	For	example,	a	single	change	
in	 the	 source	DSL	helps	 control	 the	multiple	 changes	 across	 the	 software	 code.	
Thus,	making	it	more	user-friendly	only	enhances	its	usability	within	the	biomedi-
cal	community.

2.4.5.5  Data Warehousing: Data Management 
with Query Optimization

Data	warehousing	has	 been	proven	 successful	when	used	with	 commercial	 data-
bases.	However,	due	to	the	descriptive	nature	of	biological	databases,	it	is	a	challenge	
to	apply	data	warehousing	in	biological	databases.	The	integration	of	information	
from	disparate	biological	data	sources	and	reconciling	frequently	conflicting	data	in	
an	efficient,	yet	scalable	manner	have	proven	to	be	major	bottlenecks	for	the	applica-
tion	of	data	warehousing	in	the	biomedical	community	(Aberer	and	Hemm	1996).	
The	majority	of	biological	databases	are	designed	to	facilitate	the	unambiguous	stor-
age	and	update	of	large	amounts	of	data,	and	therefore	have	complex,	normalized	
schemas	that	are	specific	for	a	given	type	of	data.	Consequently,	large-scale	querying	
of	the	stored	data	is	computationally	expensive,	must	be	designed	specifically	for	a	
given	database,	 and	 requires	domain-specific	 software	 solutions.	However,	 efforts	
are	being	pursued	to	make	data	warehousing	a	reality	for	the	entire	biological	com-
munity.	One	such	effort	is	known	as	BioMarts	(Smedley	et	al.).

BioMarts	was	 initially	 called	EnsMart	 (Kasprzyk	 et	 al.	2004).	EnsMart	was	
capable	 of	 organizing	 data	 from	 individual	 databases	 into	 one	 query-optimized	
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system	using	a	data	warehousing	technique	specifically	designed	for	descriptive	bio-
logical	data.	The	impetus	of	creating	a	data	warehousing	technique	was	to	provide	
an	integration	mechanism	to	integrate	data	from	disparate	sources,	along	with	an	
effective	querying	mechanism	that	is	unified	yet	domain	independent.	The	key	fea-
tures	of	the	provided	solution	were	used	to	increase	the	scalability	in	large	datasets	
and	provide	 rapid	and	flexible	data	access	 and	 support	 for	 easy	 integration	with	
third-party	data	and	programs	and	intuitive	user	interfaces.

EnsMart	provides	a	consistent	genome	annotation	across	a	variety	of	meta-
zoan	genomes	using	an	automated	pipeline	system	to	predict	genes	and	to	carry	
out	cross-species	analysis.	EnsMart	uses	the	data	derived	from	the	numerous	data-
bases	 that	 constitute	 the	Ensembl	genome	database	 (relating	predominantly	 to	
genes	and	single	nucleotide	polymorphisms	(SNPs)),	functional	annotation,	and	
expression.	Table	2.6	contains	the	list	of	datasets	that	constitute	the	EnsMart.

A	web-based	tool	known	as	MartView	helps	to	query	EnsMart.	A	query	is	exe-
cuted	in	MartView	in	three	stages:	the	start,	filter,	and	output	stages.

In	the	start	stage,	the	data	are	selected	based	on	the	species	and	focus	of	the	
query.	The	start	stage	is	followed	by	the	filtering	stage,	in	which	the	user	is	provided	
with	the	flexibility	to	narrow	his	search	to	a	subset	with	characteristics	of	interest.	
The	tool	 feature	 for	 region	filtering	allows	a	 search	to	be	carried	out	on	the	 full	
genome,	on	a	single	chromosome	(as	determined	by	markers,	bands,	or	base	pairs).	
The	availability	of	other	filter	options	depends	on	the	data	content	for	a	particular	
species	and	focus.

Finally,	we	have	the	output	stage.	In	this	stage,	the	data	that	satisfy	the	filter	
criteria	are	organized	 into	a	number	of	 topics	 reflecting	 the	kinds	of	data	 that	
are	most	 likely	 to	be	 required	 in	different	 types	 of	 analyses.	Again,	 the	 topics	

table 2.6 Datasets of ensMart

Species Category Dataset Primary Source

Homo sapiens Genomic Ensembl genes Ensembl

EST genes Ensembl

Vega genes VEGA

SNP dbSNP/HGVbase

Markers UCSC

Disease OMIM morbid map OMIM

Expression eVOC SANBI

GNF Novartis

(Continued)
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table 2.6 Datasets of ensMart (Continued)

Species Category Dataset Primary Source

EST dbEST

Protein annotation InterPro Ensembl

Pfam Ensembl

Prosite Ensembl

PRINTS Ensembl

PROFILE Ensembl

FAMILY clusters Ensembl

Mus musculus Genomic Ensembl genes Ensembl

EST genes Ensembl

SNP dbSNP

Markers MGI

Protein annotation As for Homo sapiens Ensembl

Rattus 
norvegicus

Genomic Ensembl genes Ensembl

EST genes Ensembl

SNP MDC

Markers RMR/WTCHG

Disease QTL RGD

Protein annotation As for Homo sapiens Ensembl

Caenorhabditis 
elegans

Genomic WormBase genes AceDB

Protein annotation As for Homo sapiens Ensembl

Caenorhabditis 
briggsae

Genomic Ensembl genes Ensembl

Protein annotation As for Homo sapiens Ensembl

Danio rerio Genomic Ensembl genes Ensembl

Markers EMBL STS

Protein annotation As for Homo sapiens Ensembl



Biological Databases and Integration  ◾  73

available	will	depend	on	the	species	and	focus.	A	variety	of	output	formats	are	
supported.

Built	on	the	success	of	EnsMart,	BioMart	(http://www.ebi.ac.uk/biomart)	is	an	
open-source	data	management	system	that	comes	with	a	range	of	query	interfaces	
that	allow	users	to	group	and	refine	data	based	on	many	criteria.	In	addition,	the	
software	features	a	built-in	query	optimizer	for	fast	data	retrieval.	BioMart	instal-
lation	 can	 provide	 domain-specific	 querying	 of	 a	 single	 data	 source	 or	 function	
as	a	one-stop	shop	(web	portal)	to	a	wide	range	of	BioMarts,	as	the	central	portal	
does.	All	BioMarts	have	the	same	look	and	feel,	which	has	obvious	advantages	to	
users	moving	between	resources.	However,	 the	power	of	 the	 system	comes	 from	
integrated	querying	of	BioMarts.	 If	any	datasets	 share	common	identifiers	 (such	
as	Ensembl	gene	 IDs	or	UniProt	 IDs),	or	 even	mappings	 to	 a	 common	genome	
assembly,	these	can	be	used	to	link	BioMarts	in	integrated	queries.	Additionally,	
these	datasets	do	not	have	 to	be	 located	on	the	 same	server	or	even	at	 the	 same	
geographical	location.	This	distributed	solution	has	many	advantages,	not	least	of	
which	is	the	fact	that	each	site	can	utilize	its	own	domain	expertise	to	deploy	its	
own	BioMart.

	 1.	BioMart	 enables	 scientists	 to	 perform	 advanced	 queries	 on	 biological	 data	
sources	through	a	single	web	interface.

	 2.	It	performs	integrated	querying	of	data	sources	regardless	of	their	geographi-
cal	locations.

	 3.	BioMart	capabilities	are	extended	by	integration	with	several	widely	used	soft-
ware	packages,	such	as	BioConductor	(Gentleman	et	al.	2004),	DAS	(Dowell	
et	al.	2001),	Galaxy	(http://galaxy.psu.edu/),	Cytoscape®,	and	Taverna®.

table 2.6 Datasets of ensMart (Continued)

Species Category Dataset Primary Source

Fugu rubripes Genomic Ensembl genes IMCB

Protein annotation As for Homo sapiens Ensembl

Anopheles 
gambiae

Genomic Ensembl genes Ensembl

SNP Ensembl

Markers Anobase

Protein annotation As for Homo sapiens Ensembl

Drosophila 
melanogaster

Genomic FlyBase genes FlyBase

Protein annotation As for Homo sapiens Ensembl
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	 4.	BioMart	 is	 now	 an	 integral	 part	 of	 large	 data	 resources	 such	 as	 Ensembl	
(Flicek	 et	 al.	 2008),	 UniProt	 (UniProt	 Consortium	 2010),	 and	 HapMap	
(International	HapMap	Consortium	2007),	to	name	a	few.

Biologists	 need	 to	 ask	 complex	 queries	 of	 these	 data	 to	 test	 and	 drive	 their	
research	hypotheses.	Typically,	each	data	source	provides	an	advanced	query	inter-
face	on	its	site.	However,	each	site	has	its	own	solution,	and	subsequently,	the	user	
must	overcome	a	 learning	curve	before	he	or	 she	can	start	 interacting	with	data	
(Table	2.7).

2.4.5.6 Data Integration in the PDB

In	integrating	information	for	the	proteins	in	the	PDB,	information	pertaining	to	
structure,	biological	function,	cellular	location,	and	associated	disease	is	integrated	
and	presented	to	the	user.	This	 information	for	each	protein	molecule	 is	derived	
from	a	wide	 spectrum	of	 sources	 and	presented	 to	 the	user.	Thereby,	 the	RCSB	
PDB	fully	exposes	the	features	of	each	protein.	This	process	is	achieved	through	
weekly	updates	of	integrated	information	from	sources	such	as	the	Gene	Ontology	
(GO),	 Enzyme	 Commission	 (EC),	 KEGG	 pathways,	 and	 National	 Center	 for	
Biotechnology	 Information	 (NCBI)	 resources	 that	 include	 sources	 such	 as	 the	
OMIM,	SNP,	and	BookShelf.

table 2.7 All Publicly Accessible BioMarts to Date

Name of BioMart Description of Contents Location of BioMart

Ensembl genes Automated annotation of over 40 
eukaryotic genomes

EMBL-EBI, UK

Ensembl 
homology

Ensembl Compara orthologs and 
paralogs

EMBL-EBI, UK

Ensembl 
variation

Ensembl variation data from dbSNP 
and other sources

EMBL-EBI, UK

Ensembl genomic 
features

Ensembl markers, clones, and 
contigs data

EMBL-EBI, UK

Vega Manually curated human, mouse, 
and zebrafish genes

EMBL-EBI, UK

HTGT High-throughput gene targeting/
trapping to produce mouse 
knockouts

Sanger, UK

Gramene Comparative grass genomics CSHL, United States
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table 2.7 All Publicly Accessible BioMarts to Date (Continued)

Name of BioMart Description of Contents Location of BioMart

Reactome Curated database of biological 
pathways

CSHL, United States

Wormbase C. elegans and C. briggsae genome 
database

CSHL, United States

Dictybase Dictyostelium discoideum 
genome database

Northwestern 
University, United 
States

RGD Rat model organism database Medical College of 
Wisconsin, 
United States

PRIDE Proteomic data repository EMBL-EBI, UK

EURATMart Rat tissue expression compendium EMBL-EBI, UK

MSD Protein structures EMBL-EBI, UK

UniProt Protein sequence and function 
repository

EMBL-EBI, UK

Pancreatic 
Expression 
Database

Pancreatic cancer expression 
database

Barts and the 
London School of 
Medicine, UK

PepSeeker Peptide mass spectrometer data for 
proteomics

University of 
Manchester, UK

ArrayExpress Microarray data repository EMBL-EBI, UK

GermOnLine Cross-species knowledge base of 
genes relevant for sexual 
reproduction

Biozentrum/SIB, 
Switzerland

DroSpeGe Annotation of 12 Drosophila 
genomes

Indiana University, 
United States

HapMap Catalog of common human 
variations in a range of populations

CSHL, United States

VectorBase Invertebrate vectors of human 
pathogens

University of Notre 
Dame, United States

(Continued)
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PDB	structure	mapping	is	performed	by	enabling	accurate	assignment	of	ref-
erences	(identifiers)	to	external	databases;	these	identifiers	include	those	from	the	
GenBank	(Benton	et	al.	2009),	PubMed,	EC	(Webb	1992),	and	SwissProt,	now	
referred	to	as	UniProt	(UniProt	Consortium	2010)	databases,	along	with	the	tax-
onomy	 of	 the	 source	 organism	 (see	 Figure	 2.9).*	 All	 structural	 information	 for	
the	 sequence	 is	 obtained	 from	 the	 Structural	 Classification	 of	 Proteins	 (SCOP)	
database.	However,	information	relating	to	structure	often	exhibits	a	one-to-many	
relationship,	 as	 structure	 consists	 of	 one	 or	 more	 components,	 such	 as	 multiple	
polypeptide	chains.	This	 representation	of	 structures	 as	a	number	of	constituent	
components,	 each	 with	 external	 data	 assignments,	 is	 an	 ongoing	 process	 at	 the	
RCSB	PDB	(Deshpande	et	al.	2005).

Relevant	 information	 from	 external	 databases	 is	 retrieved	 by	 parsing	 related	
files	 to	 identify	 related	 information	 and	 is	 stored	 in	 the	 database.	 For	 example,	
KEGG	pathways	associated	with	a	given	EC	number	are	retrieved	by	issuing	a	web	
service	call	to	the	KEGG	database	at	query	runtime.	Under	an	agreement	with	the	
U.S.	National	Library	of	Medicine,	PubMed	 identifiers	 for	 the	primary	 citation	
associated	with	a	structure	are	used	to	load	PubMed	abstracts	into	the	RCSB	PDB	
database.	 These	 abstracts	 can	 then	 be	 searched	 by	 keyword(s)	 as	 an	 alternative	
means	to	find	structures	of	interest.

This	structure	results	 in	the	creation	of	a	single	consolidated	report	for	every	
protein	and	is	presented	in	Table	2.8.

2.5 Conclusion
With	the	exponential	growth	of	biological	data,	this	chapter	is	aimed	at	creat-
ing	an	awareness	of	the	challenges	of	handling	biological	data.	It	highlights	the	

*	 For	more	information	on	GenBank,	refer	to	http://www.ncbi.nlm.nih.gov/genbank/.	For	more	
information	on	PubMed,	refer	to	http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed.	For	
more	 information	 on	 EC	 refer	 to	 http://www.chem.qmul.ac.uk/iubmb/enzyme/.	 For	 more	
information	on	UniProt	(SwissProt)	refer	to	http://www.uniprot.org/.

table 2.7 All Publicly Accessible BioMarts to Date (Continued)

Name of BioMart Description of Contents Location of BioMart

Paramecium DB Paramecium tetraurelia model 
organism database

CNRS, France

Eurexpress Mouse in situ expression data MRC Edinburgh, UK

Europhenome Mouse phenotype data from high-
throughput standardized screens

MRC Harwell, UK
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Figure 2.9 the primary and secondary references assigned to structures. the 
primary references are assigned during structure annotation/data curation. 
Secondary references are collected from external databases using the primary ref-
erence identifiers and accession numbers. this process is rerun on a weekly basis 
to find new structures or update information on existing structures to store in the 
database. (From Deshpande, n., et al., Nucl Acids Res 33, no. 1 (2005): D233–
D237. With permission.)

table 2.8 information from the PDB: Sections of a typical PDB File

Summary Reports Features

Primary citations A list of all PubMed citations of specific structure, 
along with brief abstracts

Molecular description Information pertaining to existing classification and 
molecular characteristics

Derived data Searchable features of protein from SCOP, CATH, 
Pfam, GO

Structure explorer Navigation breadcrumbs, Print PDF, Toggle 
asymmetric and biological unit images, Ligand and 
ligand-structure interaction viewer, Ensemble and 
refinement information for NMR structures

Materials and methods Reports customized for x-ray and NMR structures

Biology and chemistry Detailed information including taxonomy, 
genome and locus, SNPs, enzyme pathways, 
disease, and function

Structural features Detailed chemical bond information
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KDD	process	and	 the	computation	 techniques	 that	are	applied	 to	data	clean-
ing	 and	 data	 integration,	 and	 brings	 forth	 the	 concepts	 of	 data	 warehousing.	
It	 explains	 the	 commonly	 used	 databases	 in	 bioinformatics	 and	 the	 inherent	
design	flaws	and	success.	The	chapter	is	also	aimed	at	creating	awareness	of	the	
degree	of	data	integration	that	is	used	to	maintain	these	data	repositories	and	the	
need	for	effective	integration	schemes	required	in	the	future.	Data	warehousing	
is	a	requirement	in	organizations	that	handle	vast	amounts	of	data;	however,	the	
application	of	 data	warehousing	has	 found	 limited	 success.	This	 chapter	 enu-
merates	 the	attempts	 to	 implement	data	warehousing	 for	biological	databases.	
Chapter	 3	 highlights	 the	 need	 for	 data	 transformation	 in	 high-dimensional	
databases	 and	 the	 various	 data	 transformation	 techniques	 as	 dimensionality	
reduction	 techniques	 and	 feature	 selection	 strategies	 commonly	 employed	 in	
data	mining.
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Chapter 3

Knowledge Discovery 
in Databases

In	Chapter	2,	we	provided	a	synopsis	of	the	various	databases	and	BioMarts	promi-
nently	used	in	the	area	of	bioinformatics.	The	chapter	also	sheds	light	on	the	role	
of	knowledge	discovery	in	databases	(KDD)	in	bioinformatics.	In	this	chapter,	our	
objective	is	to	familiarize	the	reader	with	key	data	mining	techniques	that	can	be	
used	to	clean	and	preprocess	the	data	obtained	from	these	databases	for	analysis.

3.1  introduction
In	the	last	20	years,	genomic	and	proteomic	databases	have	grown	exponentially,	
causing	 existing	 computational	 systems	 to	 suffer	 from	 the	 constantly	 evolving	
nature	of	the	data.	In	such	cases,	the	data	changes	can	result	in	legacy	data	not	con-
forming	to	newly	added	information	in	databases.	Further	challenges	arise	when	
data	from	various	sources	are	integrated	into	a	common	schema,	as	witnessed	in	
data	warehousing.

In	 this	 chapter,	 we	 introduce	 the	 process	 known	 as	 knowledge	 discovery	 in	
databases	(KDD).	KDD	is	used	to	develop	methods,	techniques,	and	tools	that	aid	
analysts	in	discovering	useful	information	and	knowledge	in	databases	(Fayyad	et	al.	
1996).	Like	data,	KDD	is	constantly	evolving	as	research	from	pattern	recognition,	
databases,	statistics,	artificial	intelligence,	machine	learning,	data	visualization,	and	
high-performance	computing	is	 incorporated	into	the	schema.	In	nonprofessional	
terms,	the	KDD	process	is	interactive	and	iterative	and	provides	an	abstraction	of	
low-level	 data	 (datasets)	 that	 enable	 better	 understanding	 (knowledge)	 for	 better	
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decision	support.	Thus,	KDD	is	used	to	discover	information	from	data	(Han	and	
Kamber	2006).	This	information	includes	data	storage	and	access	records,	such	as	
how	the	data	are	stored	and	accessed,	and	algorithm	data,	such	as	how	algorithms	
can	be	scaled	for	use	on	massive	datasets	(Fayyad	et	al.	1996).	KDD	is	a	multistep	
process	that	is	best	described	as	shown	in	Figure	3.1.

As	shown	in	Figure	3.1,	KDD	is	a	five-step	process	that	begins	with	data	selec-
tion,	 includes	 data	 processing,	 data	 transformation,	 and	 data	 mining,	 and	 ends	
with	 data	 interpretation.	 Also	 note	 the	 emphasized	 interactive	 nature	 of	 KDD.	
Below,	we	provide	a	general	outline	of	KDD	as	a	systematic	process	captured	using	
the	following	steps:

	 1.	As	 a	prelude	 to	 the	 initial	 steps	of	 the	KDD	process,	 it	 is	 imperative	 that	
the	user/developer	have	a	clear	understanding	of	the	application	domain.	A	
large	amount	of	time	is	invested	in	identifying	and	laying	out	the	goals	and	
objective(s)	of	the	process.

	 	 Apart	 from	outlining	 the	goals	and	objectives	of	 the	KDD	process,	 the	
user/developer	should	create	or	identify	the	data	over	which	discovery	is	to	
be	performed.	The	data	can	be	an	entire	database,	 a	 targeted	dataset,	or	a	
large	subset	of	variables	 that	are	part	of	a	 larger	database.	The	selection	of	
these	data	forms	the	first	step	of	the	KDD	process.

	 2.	Once	the	goals	and	datasets	have	been	identified,	the	second	objective	of	the	
KDD	process	 is	 to	perform	data	 cleaning	 and	data	preprocessing.	 In	data	
cleaning,	the	data	are	subjected	to	operations	that	remove	the	noise	that	is	an	

Data Base

Datasets

Data Selection Data Cleaning and
Data Integration

Normalization and
Standardization

Feature Selection and
Feature Extraction

Supervised and
Unsupervised Learning

Pattern Visualization

Data Preprocessing

Data Transformation

Data Mining
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Figure 3.1 the process of KDD and the steps involved.
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integral	part	of	large	real-world	datasets.	These	cleaning	operations	include	
creating	models	that	account	for	the	overall	noise	in	the	data,	handling	miss-
ing	values	of	data	features	(attributes),	and	predicting	changes	in	the	data.	As	
part	of	the	data	preprocessing,	the	data	after	cleaning	are	subject	to	normal-
ization	and	standardization	strategies	that	are	vital	when	using	from	dispa-
rate	sources.

	 3.	With	the	completion	of	data	preprocessing,	the	resultant	data	are	then	sub-
ject	to	data	transformation	operations.	Typically,	large	databases/datasets	are	
plagued	 with	 data	 (records)	 that	 have	 a	 large	 or	 small	 number	 of	 features	
(attributes).	Traditional	computational	techniques	are	deemed	computation-
ally	expensive	when	handling	any	data	that	possess	a	large	number	of	features.	
Thus,	as	part	of	the	third	step	of	the	KDD	process,	dimensionality	reduction	
and	transformation	techniques	are	applied	to	the	data	to	reduce	the	number	
of	features	in	the	data	without	altering	the	data	quality.	In	situations	where	
there	are	fewer	features,	feature	extraction	techniques	are	applied	to	extract	
features	that	are	inherent	in	the	data.

	 4.	Once	the	data	are	transformed,	the	fourth	step	of	the	KDD	process	is	the	
mining	 of	 data,	 or	 data	 mining.	 Data	 mining	 requires	 a	 model	 for	 min-
ing.	There	are	several	mining	strategies	from	which	the	user/developer	can	
choose.	These	 strategies	 include	unsupervised,	 supervised,	 and	 semisuper-
vised	techniques.	Apart	from	determining	the	data	mining	scheme,	the	user/
developer	is	expected	to	create	a	hypothesis	for	mining.	This	step	is	vital,	as	
it	helps	the	user/developer	decide	which	models	and	features	(of	the	data)	fit	
the	overall	criteria	of	the	KDD	process.	In	this	way,	the	user/developer	can	
understand	the	model	and	its	predictive	capabilities.	Typically,	data	mining	
involves	searching	patterns	 in	an	abstraction	of	the	transformed	data.	For	
example,	 supervised	 classification	 approaches	 can	 find	 similar	 patterns	 in	
rules	or	trees.

	 5.	The	fifth	and	final	step	of	the	KDD	process	is	the	interpretation	of	mined	
patterns.	Here,	statistical	and	visualization	techniques	are	applied	to	validate	
the	knowledge	discovered	from	the	data	mining	models	applied.	Typically,	if	
the	results	are	not	as	good	as	anticipated,	the	KDD	process,	which	is	iterative,	
enables	the	user/developer	to	repeat	steps	1	through	4.

Much	of	the	time,	the	results	obtained	either	support	or	conflict	with	previously	
held	beliefs	and	inferred	notions.	Thus,	the	user/developer	is	expected	to	document	
and	validate	 the	discovered	knowledge	before	 incorporating	 the	knowledge	 into	
another	system	to	avoid	conflicts.

The	 KDD	 process	 can	 involve	 a	 significant	 number	 of	 iterations	 and	 can	
contain	loops	between	any	two	steps.	The	basic	flow	of	steps	(although	not	the	
potential	multitude	of	iterations	and	loops)	is	illustrated	in	Figure	3.1.	Relevant	
literation	 that	 use	 KDD	 in	 bioinformatics	 has	 focused	 on	 step	 4,	 data	 min-
ing.	However,	 the	other	 steps	are	also	 important	 for	 the	 successful	application	
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of	KDD.	Having	defined	 the	basic	notions	 and	 introduced	 the	KDD	process,	
we	will	now	focus	on	the	data	mining	component,	which	has	received	the	most	
attention	in	the	literature.

3.2  Analysis of Data Using Large Databases
Data	quality	is	primarily	used	to	characterize	database	data	and	associated	schemas.	
Data	quality	is	the	mapping	of	the	data	to	its	corresponding	conceptual	model.	It	
determines	whether	the	data	in	a	database	or	databases	are	accurate,	complete,	and	
consistent.	The	three	methods	of	ensuring	data	quality	include	data	cleaning,	data	
quality	monitoring,	and	data	integration.	In	this	chapter,	we	elaborate	on	the	dif-
ferent	data	cleaning	and	data	integration	methods	and	steps.

3.2.1  Distance Metrics
Before	we	address	 the	steps	and	problems	associated	with	data	cleaning	and	data	
integration,	we	will	introduce	commonly	used	distance	measures	in	data	mining.	In	
this	chapter,	we	refer	to	each	data	record	as	a	data	point,	in	which	the	attributes	of	a	
data	record	are	coined	as	features.	Thus,	data	record	x consisting	of	n	attributes	can	
be	viewed	as	data	point	x in	an	n-dimensional	feature	space.	To	measure	the	simi-
larity	between	 two	data	points,	various	distance	metrics	are	employed.	The	com-
monly	used	distance	metrics	are	Euclidian	distance	and	Mahalanobis	distance	and	
are	defined	as	follows:

Euclidian.distance: This	distance	metric	is	also	referred	to	as	vector	distance.	
To	measure	the	distance	between	two	data	points	x	and	y each	having	the	
same	n	features,	Euclidian	distance	is	given	by	the	following	equation:

	
( ) .2

1

x yi i

i

n

∑ −
=

	 (3.1)

Mahalanobis.distance:	Unlike	Euclidean	distance,	Mahalanobis	distance	cal-
culates	the	distance	of	a	data	point	from	a	common	reference	point	 in	the	
n-dimensional	space,	and	is	represented	by	the	following	equation:

	 ( ) ( ).1x C xT− µ − µ− 	 (3.2)

Here,	the	common	reference	point	on	which	the	distance	is	measured	is	the	cen-
troid	(µ).	The	Mahalanobis	metric	utilizes	the	correlation	between	features	using	a	
covariance	matrix	(C).	This	metric	is	thus	more	effective	in	capturing	the	distance	
between	points	based	on	the	distribution	of	data.	However,	Mahalanobis	distance	
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requires	a	complete	pass	of	the	entire	dataset	to	estimate	correlation	between	fea-
tures,	 before	 determining	 the	 distance	 between	 points.	 It	 is	 thus	 computation-
ally	more	expensive	 for	 large	high-dimensional	datasets	 than	Euclidean	distance	
(Figure	3.2).

3.2.2  Data Cleaning and Data Preprocessing
Data	cleaning	 improves	 the	quality	of	data	 to	make	 them	fit	 for	use	 (Chapman	
2005).	The	objective	of	data	cleaning	is	to	reduce	errors	in	data	before	the	data	are	
used	in	processing.	This	cleaning	invariably	helps	to	increase	the	learning	compo-
nent	of	the	KDD	process.	The	cleaning	also	makes	the	data	easier	to	document,	
present,	and	interpret	(see	Chapman	2005).

Data	stored	in	large	databases	are	error-prone;	a	user/developer	can	expect	a	field	
error	rate	of	1–5%,	and	it	is	important	to	decrease	this	error	rate.	The	uncertainties	
of	data,	especially	in	biological	databases,	lay	the	foundation	to	understanding	the	
effects	of	error	propagation	in	data.	Thus,	it	is	imperative	that	the	steps	of	data	clean-
ing	should	actively	manage	and	improve	overall	data	quality. This	improvement	is	
sometimes	difficult	to	achieve	because	correcting	and	eliminating	erroneous	data	is	a	
tedious	and	time-consuming	process	that	cannot	be	overlooked.	The	simple	deletion	
of	erroneous	records	is	not	the	solution.	Rather,	the	correction	and	documentation	of	
corrections	is	suggested;	this	documentation	ensures	the	tracking	of	changes.

Data	cleaning	is	the	outcome	of	a	twofold	process,	in	that	it	is	used	to	identify	
inaccurate,	incomplete,	or	unreasonable	data,	and	it	improves	the	quality	of	data	by	
correcting	identified	errors	and	inconsistencies.	Good	data	cleaning	requires	good	
existing	data.	Apart	from	replacing	faulty	data	records,	the	process	entails	format	
checks,	 completeness	 checks,	 limit	 checks,	 outlier	detection,	 and	 the	 assessment	
of	data	by	domain	experts	or	end	users.	Validation	checks	may	include	applicable	
standards,	rules,	and	conventions.	These	processes	usually	result	in	flagging,	docu-
menting,	and	the	subsequent	checking	and	correction	of	suspect	records.

µ

(b)(a)

µ
A A

B
B

Figure 3.2 (a) the representation of euclidean distance and (b) Mahalanobis 
distance between points A and B that belong to a distribution with mean μ.
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Data	 cleaning,	 in	 the	 field	 of	 data	 warehousing,	 is	 applied	 when	 data	 from	
different	sources	need	to	be	merged.	Here,	records	that	refer	to	the	same	entity	but	
are	represented	differently	in	their	formats	require	cleaning	before	being	stored	in	
the	data	warehouse.	The	merge/purge	problem	refers	to	the	issues	faced	in	the	iden-
tification	and	elimination	of	such	duplicate	records.

Data	cleaning	requires	data	decomposition	and	data	reassembly.	The	process	is	best	
described	 in	 six	 steps:	 tokening	of	data,	 standardizing,	verifying,	matching,	house-
holding,	and	documenting	(Maletic	and	Marcus	2000). The	activities	of	data	cleaning	
are	domain	specific,	and	thus	have	many	forms.	Though	there	are	several	approaches	
for	data	cleaning,	the	generalized	framework	is	as	follows	(Maletic	and	Marcus	2000):

	 1.	Define	and	determine	error	types.
	 2.	Search	and	identify	error	instances.
	 3.	Correct	the	errors.
	 4.	Document	error	instances	and	error	types.
	 5.	Modify	data	entry	procedures	to	reduce	future	errors.

While	the	efforts	of	data	integration	and	data	warehousing	are	heavily	depen-
dent	on	the	success	of	data	cleaning,	 it	 is	difficult	 to	 identify	errors	 that	 involve	
relationships	between	fields.	Thus,	various	methods	identify	errors	in	databases	also	
referred	to	as	outlier	detection	techniques	and	described	briefly	below.

3.3  Challenges in Data Cleaning
The	problem	of	errors	in	data	stems	from	but	is	not	limited	to	user	input	errors.	
Therefore,	the	first	problem	encountered	with	data	cleaning	is	the	detection	of	erro-
neous	data.	User	input	errors	could	be	attributed	to	inconsistency	in	input	values,	
misspellings,	 missing	 values,	 improper	 generation	 of	 data,	 and	 data	 differences	
that	are	transferred	from	legacy	databases.	There	are	also	errors	attributed	to	the	
presence	of	duplicate	records.	Thus,	the	second	problem	with	data	cleaning	is	the	
need	to	detect	duplicate/redundant	records.	Typically,	 the	duplication	of	 records	
in	very	large	relational	databases	is	regulated	using	duplication	control	algorithms	
(Williams	et	al.	2002).	These	duplication	control	algorithms	are	based	on	string	
matching	and	identity	matching	records	in	relational	database	schemas.	However,	
as	the	databases	have	evolved	and	grown	more	complex,	these	duplication	control	
algorithms	have	failed,	as	duplication	becomes	harder	to	identify.	Typically,	large	
databases	are	not	confined	to	relational	database	schemes	and	include	a	mixture	
of	file	 systems	 that	 contain	 legacy	data	 along	with	 relational	models.	The	ques-
tions	 concerning	whether	 two	 similar	documents	 are	duplicates	 is	 also	pressing.	
Similarity	detection,	performed	alone	by	sorting	and	joining	records	within	a	data-
base,	has	facilitated	the	detection	of	more	complex	duplications	in	relational	data-
bases.	Thus,	duplication	errors	can	occur,	but	they	are	not	easy	to	detect.
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To	overcome	this	problem,	outlier	detection	has	been	proposed.	Outliers	are	
defined	as	patterns	(records)	that	do	not	conform	to	an	expected	behavior.	Thus,	
outlier	detection	approaches	must	be	able	to	define	a	region	representing	the	nor-
mal	behavior	and	declare	an	observation	as	an	outlier	(anomaly)	if	it	does	not	con-
form	to	the	normal	behavior (Chandola	et	al.	2009).	These	methods	are	challenging	
to	implement	because	of	the	following	factors:

	 1.	It	is	difficult	to	define	a	normal	region	because	of	the	diversity	of	databases.	
Capturing	 the	boundary	between	a	normal	 region	and	an	outlier	 is	 a	 fur-
ther	challenge	and	is	not	precise.	An	observation	close	to	a	boundary	can	be	
termed	an	outlier	when	it	is	actually	normal	and	vice	versa.

	 2.	In	large	evolutionary	databases,	such	as	biological	databases,	normal	behav-
ior	cannot	be	assumed	to	be	constant	and	keeps	evolving.	Thus,	the	normal	
behavior	might	not	be	sufficient	to	represent	the	future.

	 3.	An	outlier	needs	prior	definition.	Defining	an	outlier	requires	domain	knowl-
edge	that	is	not	always	available	or	straightforward.

	 4.	In	many	cases,	the	quality	of	data	affects	what	areas	are	determined	normal	
and	what	areas	are	determined	outliers.	In	large,	noisy	databases,	the	detec-
tion	of	outliers	is	a	challenge.

	 5.	Keeping	these	challenges	in	mind,	effective	outlier	detection	poses	its	chal-
lenges	in	the	KDD.

However,	there	are	three	fundamental	approaches	of	outlier	detection	(Hodge	and	
Austin	2004):	determining	the	outliers	with	no	prior	knowledge	of	the	data,	model-
ing	both	normal	and	abnormal	data,	and	modeling	only	normal	or	abnormal	data.

To	determine	outliers	with	no	prior	knowledge	of	the	data,	a	learning	approach	
that	is	analogous	to	unsupervised	clustering	is	required.	As	in	all	clustering	algo-
rithms,	 this	kind	of	outlier	detection	algorithm	considers	each	record	as	a	point	
in	an	n-dimensional	space.	It	then	groups	the	points	into	clusters	based	on	their	
proximity	and	flags	the	remote	points	as	outliers.	Those	methods	that	are	depen-
dent	on	the	distance	metric	used	and	the	distance	of	each	point	from	a	reference	
point	(the	mean	or	median)	are	categorized	into	this	approach.	In	these	approaches,	
points	that	are	separated	by	large	distances	from	the	reference	point	are	treated	as	
outliers.	The	algorithms	in	this	category	require	that	all	the	data	are	available	before	
processing.	Thus,	each	data	point	is	treated	as	static	(Hodge	and	Austin	2004)	and	
compared	with	every	other	data	point	in	the	dataset.	This	approach	can	be	further	
divided	 into	 two	 methods,	 diagnosis	 and	 accommodation,	 based	 on	 the	 way	 in	
which	the	researchers	choose	to	treat	outliers.

Once	the	outliers	are	 identified,	the	diagnosis	approach	iteratively	prunes	the	
outliers	 until	 no	 more	 outliers	 are	 identified,	 and	 the	 system	 model	 is	 fitted	 to	
the	remaining	data	that	represent	the	normal	data	distribution.	On	the	other	hand,	
the	accommodation	approach	uses	all	the	data	points,	including	the	outliers.	It	then	
uses	a	robust	classification	approach	that	induces	a	boundary	of	normal	data	around	a	
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majority	of	data	points	that	represents	normal	behavior.	The	goodness	of	the	accom-
modation	method	 thus	depends	on	 the	 robustness	of	 the	 classification	 approach	
used	and	determines	the	flexibility	of	the	boundaries	obtained.	It	is	believed	that	
more	flexible	boundaries	lead	to	less	computationally	expensive	classifiers.

In	contrast	to	the	previous	approach,	modeling	both	normality	and	abnormality	
for	outlier	detection	is	analogous	to	supervised	classification,	and	thus	each	data	point	
for	this	approach	is	required	to	possess	class	labels.	Modeling	normality	and	abnor-
mality	for	outlier	detection	is	best	suited	for	online	classification	in	which	the	classi-
fier	learns	from	a	portion	of	the	data	and	classifies	new	records	as	outliers.	If	the	new	
record	falls	into	the	region	of	normality,	it	is	treated	as	normal;	otherwise,	it	is	flagged	
as	an	outlier.	Since	the	technique	is	a	classification	approach	that	requires	classifier	
training,	the	training	data	should	contain	an	equal	representation	of	both	normal	
data	and	outliers	to	enable	generalization	by	the	classifier.	New	records	may	be	clas-
sified	correctly	if	the	classifier	is	limited	to	a	known	distribution,	and	records	from	
unknown	regions	may	be	classified	incorrectly	unless	the	training	set	is	generalized.

Modeling	only	normal	or	abnormal	data	in	a	few	cases	is	better	known	as	nov-
elty	detection	or	novelty	recognition.	The	methods	in	this	category	are	analogous	
to	semisupervised	detection.	Here,	the	algorithm	is	trained	based	on	samples	that	
are	believed	to	be	normal.	The	algorithm	uses	 the	 information	from	the	normal	
samples	 to	 detect	 outliers.	 These	 approaches	 thus	 require	 training	 data	 that	 are	
preclassified	as	normal.	The	methods	are	suited	for	both	static	and	dynamic	data,	
as	learning	is	based	on	only	one	class	(i.e.,	the	normal	class).	In	these	approaches,	
the	learning	is	considered	incremental.	As	new	data	arrive,	the	model	is	tuned	to	
improve	the	fit	of	the	normal	boundary.	Since	this	approach	is	semisupervised,	it	
requires	all	the	data	for	training	its	normal	class	to	permit	generalization.	However,	
the	need	for	data	belonging	to	the	abnormal	class	is	not	required.

Generally,	all	records	in	the	database	are	treated	as	vectors.	These	vectors	consist	
of	both	numeric	and	symbolic	attributes	that	represent	continuous,	discrete (ordinal),	
categorical	(unordered	numeric),	and	ordered	symbolic	or	unordered	symbolic	data.	
Vectors	can	be	monotypes	(single	data	types)	or	multitypes	(mixed	data	types).	The	
following	list	contains	the	categorizations	of	outlier	detection	techniques.	All	of	these	
techniques	are	governed	by	suitable	distance	matrices	that	are	used	to	measure	the	
closeness	of	vectors.	The	two	fundamental	considerations	when	selecting	an	appro-
priate	methodology	for	an	outlier	detection	system	are	the	accuracy	of	modeling	the	
data	distribution	and	defining	an	appropriate	neighborhood	of	interest	for	an	outlier.

	 1.	Accuracy.of.modeling.the.data.distribution: While	selecting	an	algorithm	
for	outlier	detection,	 it	 is	 imperative	 to	 select	an	algorithm	that	can	accu-
rately	model	 the	distribution	of	 the	data	 studied.	Typically,	 the	 algorithm	
should	be	able	to	scale	up	or	scale	down	depending	on	the	number	of	data	
points	processed.

	 2.	Defining.an.appropriate.neighborhood.of.interest.for.an.outlier:	Selecting	
a	neighborhood	of	interest	is	a	nontrivial	task.	Typically,	algorithms	model	
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data	distributions	with	the	pretext	of	defining	boundaries	around	the	points	
that	form	a	cluster,	by	inducing	a	threshold.	However,	these	approaches	are	
parametric;	i.e.,	they	often	force	a	predefined	distribution	(model)	over	the	
points	 or	 require	 the	 number	 of	 clusters	 to	 be	 defined	 in	 advance.	 Other	
approaches	require	predefined	parameters	of	size	or	density	of	neighborhoods	
for	outlier	 thresholding.	Thus,	choosing	the	exact	values	of	 the	parameters	
that	define	 the	neighborhood	should	be	applicable	 for	all	density	distribu-
tions	 likely	 to	be	 encountered	 and	 can	potentially	 improve	 or	weaken	 the	
effectiveness	of	the	method.

Popular	approaches	 include	statistical,	neural	network,	machine	 learning,	and	
hybrid	system	models.	These	approaches,	described	below,	encompass	distance-based,	
set-based,	density-based,	depth-based,	model-based,	and	graph-based	algorithms.

	 1.	Statistical models	use	derived	statistical	variables	of	mean	and	standard	devia-
tion	to	detect	outliers.	Based	on	Chebyshev’s	theorem	of	inequality	(Amidan	
et	al.	2005),	the	upper	bounds	and	lower	bounds	of	the	confidence	interval	
around	 the	 mean	 are	 calculated.	 If	 a	 data	 point	 falls	 out	 of	 bounds,	 it	 is	
treated	as	an	outlier.

	 2.	Neural network models are	generally	nonparametric	models	that	use	neural	net-
works	(Haykin	1998)	for	training	to	create	boundaries	around	data	points.	
Data	points	 that	do	not	 fall	within	 the	boundaries	 are	flagged	as	outliers.	
Since	they	are	neural	network-based	algorithms,	they	require	both	phases	of	
training	and	testing,	and	thus	are	also	considered	supervised	models.

	 3.	Machine learning models use	 categorical	 data,	 unlike	 statistical	 and	 neural	
network	models,	which	are	heavily	dependent	on	the	data	types	of	the	data-
sets	 (mainly	 continuous	 real-valued	 or	 ordinal	 data).	 The	 methods	 of	 this	
category	are	generally	tree-based	algorithms	used	for	outlier	detection.

	 4.	Hybrid system models are	used	to	overcome	the	limitations	of	the	above	three	
categories.	Hybrid	system	models	are	typically	a	combination	of	any	two	of	the	
above	three	categories	(statistical,	neural	network,	or	machine	learning	based).

3.3.1  Models of Data Cleaning
One	of	the	first	outlier	detection	models	is	the	statistical	models.	The	models	in	this	
category	are	applicable	to	1D	datasets	(univariate	models)	as	well	as	to	datasets	that	
have	multiple	dimensions	(multivariate	models).	The	foundation	for	these	models	
is	based	on	the	Chebyshev	theorem	of	inequality	and	is	suited	for	datasets	of	real-
valued	data	and	ordinal	data.

The	 Chebyshev’s	 inequality	 theorem,	 or	 simply	 Chebyshev’s	 theorem,	 was	
designed	to	determine	the	lower	bound	of	data	with	k	number	of	standard	devia-
tions	from	the	mean	of	the	data.	Typically,	datasets	are	assumed	to	possess	a	normal	
distribution	 (bell	 shaped),	 for	 which	 it	 is	 known	 that	 95%	 of	 the	 data	 will	 fall	
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between	two	standard	deviations	from	its	mean.	In	this	assumption,	5%	of	the	data	
will	fall	outside	of	the	two	standard	deviations.	Information	such	as	the	mean	and	
standard	deviation	are	extracted	from	the	dataset	studied.

The	 simplest	 and	 one	 of	 the	 oldest	 statistical	 outlier	 detection	 techniques	 is	
box	plot	analysis.	Proposed	by	Laurikkala	et	al.	(2000),	box	plot	analysis	provides	
graphical	representation	to	pinpoint	outliers	using	box	plots.	This	technique	can	be	
applied	to	both	univariate	and	multivariate	data.	Using	box	plots,	a	user/designer	
can	 plot	 both	 the	 upper	 and	 lower	 extremes	 of	 the	 data.	 The	 parameter	 of	 the	
lower	quartile,	median,	 and	upper	quartile	 are	derived	 from	analysis	 of	 the	box	
plots.	Points	that	fall	out	of	the	upper	and	lower	extreme	values	of	the	box	plots	are	
flagged	as	outliers.	The	upper	and	lower	bounds	of	the	limits	in	this	method	are	
dependent	on	the	datasets	and	vary	with	the	number	of	records	in	the	dataset.	It	is	
noteworthy	that	this	method	does	not	make	any	assumptions	about	data	distribu-
tion;	however,	it	is	heavily	dependent	on	human	interpretation	of	the	outliers.

Moreover,	outlier	detection	models	are	susceptible	to	the	curse	of	dimensional-
ity,	and	it	is	therefore	imperative	that	the	outlier	detection	models	scale	up	to	the	
large	number	of	dimensions.	The	curse	of	dimensionality	is	based	on	the	observation	
that	the	computational	time	of	algorithms	scales	up	exponentially	as	the	number	
of	dimensions	increases.	It	is	believed	that	as	the	dimensionality	increases,	the	data	
points	are	spread	through	a	larger	volume	and	the	data	distribution	becomes	less	
dense.	 The	 most	 effective	 statistical	 techniques	 focus	 on	 the	 selection	 of	 salient	
dimensions	(or	attributes)	and,	by	doing	so,	process	a	larger	number	of	data	points	
at	a	time.	The	process	of	attribute	selection	is	a	precursor	to	outlier	detection.	It	is	
believed	that	a	subset	of	attributes	contributes	to	the	deviation	of	data,	while	the	
other	attributes	are	believed	to	add	to	the	inherent	noise	in	the	dataset.	An	alternate	
technique	is	to	project	the	data	onto	a	lower-dimensional	subspace,	thereby	con-
taining	the	density	of	the	distribution	of	data	points.

Statistical	techniques	can	be	further	divided	into	the	following	categories.

3.3.1.1  Proximity-Based Techniques

Proximity-based	techniques	are	simple	to	implement	and	make	no	prior	assump-
tions	about	the	data	distribution	model.	They	are	suitable	for	both	unsupervised	
and	supervised	methods	of	outlier	detection.	In	these	techniques,	each	record	
of	 the	 dataset	 is	 treated	 as	 an	 independent	 point	 in	 an	 n-dimensional	 space,	
and	 the	 distance	 between	 each	 point	 and	 every	 other	 point	 in	 the	 dataset	 is	
computed	(see	Figure	3.3).	Points	that	fall	within	a	specified	threshold	of	a	ref-
erence	point	are	considered	neighbors	to	the	point	for	which	the	threshold	was	
calculated.	An	example	of	such	an	algorithm	is	the	k-nearest	neighbor	(kNN)	
algorithm.	Though	reliable,	proximity-based	techniques	suffer	from	exponential	
computational	 growth,	 as	 they	 are	 based	 on	 the	 calculation	 of	 the	 distances	
between	 all	 data	 points.	 The	 computational	 complexity	 of	 the	 algorithms	 in	
this	technique	is	directly	proportional	to	both	the	dimensionality	of	the	data	m	
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and	the	number	of	data	points	n,	and	their	complexity	is	of	the	order	O(n2m).	
This	computational	complexity	 indicates	 that	 they	are	not	 feasible	with	high-
dimensional	data.

3.3.1.2  Parametric Methods

Many	of	the	methods	in	the	proximity-based	techniques	do	not	scale	well	unless	
modifications	and	optimizations	are	made	to	the	standard	algorithm.	In	this	sec-
tion,	we	 introduce	a	new	category	of	 techniques	known	as	parametric	methods.	
These	methods	allow	the	rapid	evaluation	of	models	for	every	new	instance	of	data	
and	are	well	suited	for	large	databases,	as	the	complexity	of	the	model	is	indepen-
dent	of	the	data	size.	However,	the	drawback	of	this	technique	is	that	a	predefined	
model	distribution	is	enforced	to	fit	the	data.	Theoretically,	if	the	data	fit	the	model,	
then	 the	 results	 obtained	 are	 accurate.	However,	 this	 condition	does	not	 always	
hold	true	for	real-life	datasets.	An	example	of	this	technique	is	minimum	volume	
ellipsoid	(MVE)	estimation.	The	objective	of	this	algorithm	is	to	fit	the	smallest	
possible	ellipsoid	around	a	maximum	number	of	data	points	in	an	n-dimensional	
space.	It	is	believed	that	the	points	within	the	ellipsoid	represent	a	densely	popu-
lated	region.

An	alternate	approach	that	is	similar	to	MVE	is	the	convex	peeling	(CP)	algo-
rithm.	In	this	approach,	a	convex	hull	is	placed	around	all	the	data	points	so	that	
the	 hull	 covers	 the	 maximum	 points	 (see	 Figure	 3.4).	 Each	 data	 point	 is	 then	
assigned	a	weight	(known	as	depth)	that	corresponds	to	the	distance	of	the	point	
from	the	mean	of	the	data	distribution.	The	points	closest	to	the	boundary	(defined	
by	 a	 convex	hull)	 are	 considered	 to	have	 the	 lowest	depth	 and	 are	peeled	 away;	
i.e.,	points	further	away	from	the	distribution	are	considered	outliers.	The	process	
of	convex	hull	generation	and	peeling	is	iteratively	carried	out	until	a	predefined	
number	of	data	points	are	retained	within	the	convex	hull.	This	method	is	suitable	
for	both	unsupervised	clustering	outlier	detection	techniques.	Unfortunately,	this	
method	is	susceptible	to	peeling	away	a	large	number	of	points	that	form	a	chunk	
of	normal	data	points.

Y

X

Figure 3.3 A representation of the knn algorithm in 2D space. in this illustra-
tion, k is set at 14, which results in a cluster of 14 closely populated points and 2 
outliers (in blue) that do not satisfy the distance criteria.
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The	robustness	of	both	MVE	and	CP	to	fit	a	convex	hull	around	the	data	points	
is	not	dependent	on	the	sparseness	of	the	outlying	region,	and	thus	does	not	skew	
the	boundary	formed.	However,	the	fit	of	the	convex	hull	around	the	data	points	is	
dependent	on	the	data	point	distribution.	The	fitting	of	the	convex	hull	around	the	
data	points	implies	that	both	MVE	and	CP	suffer	from	the	curse	of	dimensionality	
and	work	best	with	datasets	that	have	only	a	few	dimensions,	as	more	dimensions	
add	to	the	sparseness	of	the	data.

To	overcome	the	curse	of	dimensionality,	principal	component	analysis	(PCA)	
is	used	for	high-dimensional	data.	The	principal	components	extracted	using	PCA	
have	the	highest	variance	as	the	corresponding	eigenvalues,	which	have	magnitudes	
that	correspond	to	the	variance	of	the	points	from	the	principal	components.	The	
extracted	principal	components	ensure	that	the	subspaces	determined	are	compact,	
and	thereby	overcome	the	limitations	of	MVE	and	CP	in	their	applicability,	par-
ticularly	for	sparse	distributions.

Hierarchical	approaches	such	as	decision	tree	and	cluster	trees	are	also	included	
in	this	category.	The	representation	of	data	distributions	in	a	hierarchy	provides	for	
a	multilevel	abstraction	of	data.	This	hierarchy	enables	data	points	to	be	compared	
for	novelty	at	different	levels	of	the	hierarchy—from	a	coarse	grain	(higher	up	in	
the	hierarchy)	to	a	fine	grain	(lower	down	the	hierarchy).	Expectation	maximization	
(EM),	 in	 conjunction	 with	 deterministic	 annealing	 (DA),	 is	 an	 example	 of	 the	
algorithms	that	fall	into	this	category.	Using	the	maximum	likelihood	and	infor-
mation	 theory,	 the	 DA	 constructs	 a	 hierarchy	 using	 divisive	 clustering	 of	 data	
points.	In	this	method,	nodes	are	split	into	subnodes,	until	a	top-down	hierarchy	is	
created.	Outliers	in	this	case	are	detected	by	the	hierarchy,	when	new	data	points	
are	added	that	do	not	conform	to	any	of	the	existing	clusters.	When	EM	is	used	in	
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Figure 3.4 An illustration of convex hull peeling of points distributed in 2D 
space. Convex hulls are placed at varied depths around the data points to facili-
tate removal of outliers in a layered fashion from lowest depth (outermost hull) to 
highest depth (innermost hull).
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conjunction	with	DA,	the	computational	efficiency	of	the	algorithm	is	improved	by	
removing	some	initialization	dependencies.	DA	can	also	avoid	the	local	minima,	
which	plague	the	EM	problem.	However,	avoiding	the	local	minima	can	produce	
suboptimal	results.

3.3.1.3  Nonparametric Methods

Though	effective,	the	methods	in	the	above	two	categories	are	controlled	by	param-
eters	or	are	data	specific.	In	the	case	of	kNN,	the	algorithm	is	dependent	on	the	
parameter	k,	and	in	the	case	of	PCA,	it	is	dependent	on	the	number	of	principal	
components	p.	The	algorithm	 is	 confined	by	assumptions	 in	 the	 initial	 iteration	
of	processing,	which	 is	not	 feasible	 in	 real-world	datasets	 and	could	 turn	out	 to	
be	computationally	infeasible.	To	overcome	these	generic	limitations,	we	can	use	
nonparametric	 approaches.	 These	 approaches	 are	 more	 practically	 applicable	 for	
outlier	detection,	especially	when	data	are	expected	to	grow	in	time	and	when	lim-
ited	computational	resources	are	required,	thereby	providing	more	autonomy	and	
flexibility.	Algorithms	in	this	section	include	multilayer	perceptrons	(MLPs)	and	
adaptive	resonance	theory	(ART)	for	outlier	detection.

3.3.1.4  Semiparametric Methods

Semiparametric	methods	are	used	to	build	on	the	speed	and	complexity	of	paramet-
ric	methods	using	the	model	flexibility	of	nonparametric	methods.	These	methods	
are	brought	about	by	the	application	of	local	kernel	methods	instead	of	a	common	
global	distribution	model.	Kernel-based	methods,	such	as	Gaussian	mixture	mod-
els	(GMMs),	estimate	the	density	distribution	of	the	input	space	to	identify	outliers	
as	data	points	that	lie	in	regions	of	low	density.

3.3.1.5  Neural Networks

Approaches	 in	 the	 second	 group	 are	 known	 as	 neural	 network	 approaches.	
These	approaches	are	nonparametric	(Reif	et	al.	2008)	and	model	based,	as	they	
generalize	 to	unseen	patterns	 and	 can	 learn	 complex	 class	 boundaries.	These	
methods,	though	susceptible	to	the	curse	of	dimensionality,	are	far	less	likely	to	
suffer	from	such	problems	than	statistical	approaches	are.	Since	these	methods	
are	 supervised,	 each	 method	 requires	 a	 training	 dataset	 that	 is	 spread	 across	
both	normal	and	outlier	samples	to	effectively	fine-tune	the	model	and	deter-
mine	necessary	thresholds.	Moreover,	these	approaches	require	the	entire	data-
set	 to	be	 traversed	numerous	 times	 to	allow	 the	network	 to	 settle	 and	model	
the	 data	 correctly.	 Just	 as	 in	 previous	 methods,	 the	 models	 in	 this	 category	
attempt	 to	fit	a	 surface	over	 the	data	points.	For	effective	 surface	generation,	
there	 must,	 however,	 be	 sufficient	 data	 density.	 By	 default,	 neural	 networks	
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reduce	the	feature	space	by	using	only	key	features.	Nonetheless,	it	is	beneficial	
to	 use	 feature	 selection	 or	 dimensionality	 reduction	 techniques	 to	 make	 the	
algorithms	more	effective.

3.3.1.5.1  Supervised Neural Methods

Supervised	neural	networks	use	the	classification	of	the	data	to	drive	the	learning	
process.	The	class	labels	enable	the	neural	network	to	adjust	its	weights	and	thresh-
olds	to	correctly	classify	new	input	data	(Rumelhart	et	al.	1986).	The	input	data	are	
effectively	modeled	by	the	whole	network,	as	they	are	distributed	across	all	nodes,	
and	the	output	represents	the	classifications	as	shown	in	Figure	3.5.	For	example,	
the	multilayer	perceptron	is	a	supervised	neural	network,	which	interpolates	well	
but	performs	poorly	for	extrapolation,	and	thus	is	ineffective	in	classifying	points	
that	fall	outside	of	the	boundary	of	a	class	defined	by	the	training	set.

3.3.1.5.2  Unsupervised Neural Methods

Learning	in	supervised	neural	networks	is	driven	by	a	predefined	training	set	that	
contains	 equal	 representation	 of	 both	 normal	 and	 outlier	 data	 points.	 In	 situa-
tions	where	the	training	set	is	unavailable,	unsupervised	neural	networks	provide	
an	alternative.	In	unsupervised	neural	networks,	nodes	compete	with	each	other	
to	represent	distribution	characteristics	of	the	data	points. Multilayer	perceptron-
based	neural	networks	that	consist	of	three	layers	with	the	same	number	of	output	
and	input	neurons	are	trained	to	create	a	model	(Williams,	Baxter	et	al.	2002),	as	

Hidden Layer

Input Layer

Output Layer

C2 Outlier Class

C1 Normal Class

Figure 3.5 Supervised multilayer perceptron, with three layers: input, hidden, 
and output.
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seen	in	Figure	3.6.	Then,	this	network	autonomously	clusters	the	input	data	points	
based	on	the	data	distribution	modeled,	which	enables	the	differentiation	of	points	
as	normal	or	outlier	based	on	how	close	a	point	resembles	a	modeled	distribution.	
Assuming	that	related	data	points	share	common	features,	these	features	are	used	
to	topologically	model	the	data	distribution.

Self-organizing	maps	(SOMs) (Muruzalbal	and	Munoz	1997) are	effective	for	
the	clustering	and	visualization	of	high-dimensional	data.	SOM	is	equivalent	to	a	
two-dimensional	(2D)	neural	network,	where	each	node	in	the	network	is	assigned	
a	weight	vector	that	points	to	data	in	the	input	space.	Thus,	for	a	given	data	matrix	
consisting	of	n rows	and	p features,	the	pointers	in	the	SOM	capture	the	distribu-
tion	of	the	data	and	are	constrained	by	the	relation	between	the	data	features.	As	
with	the	k-means	algorithm,	self-organizing	maps	rearrange	the	points	within	dis-
tribution	based	on	their	proximity	to	the	input	point,	as	each	data	point	is	fed	into	
the	network.	In	this	manner,	the	SOM	consists	of	pointers	with	a	density	that	is	
equal	to	the	overall	distribution	of	the	data.	Thus,	in	the	case	of	outlier	detection,	
each	data	point	is	gauged	by	its	proximity	to	its	immediate	neighbors.

3.3.1.6  Machine Learning

Much	outlier	detection	has	only	focused	on	continuous	real-valued	data	attributes;	
there	has	been	little	focus	on	categorical	data.	Both	statistical	and	neural	approaches	
require	cardinal	or,	at	the	least,	ordinal	data	types	to	enable	the	calculation	of	dis-
tances	between	data	points.	They	do	not	have	any	mechanism	to	handle	categorical	
data	with	no	implicit	ordering.	To	this	end,	machine	learning	algorithms	can	han-
dle	categorical	data	as	well.	Of	the	machine	learning	approaches	that	are	used	in	

Hidden Layer

Input Layer Output Layer

Figure 3.6 Unsupervised multilayer perceptron consisting of three layers having 
the same number of input and output nodes.
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outlier	detection,	the	decision	tree	algorithm	C4.5 (John	1995;	Reif	et	al.	2008) is	
the	most	reliable.	Initially	proposed	in	1995,	decision	tree-based	outlier	detection	is	
not	governed	by	fitting	a	model	over	the	data	distribution,	and	thus	is	immune	to	
the	curse	of	dimensionality.	Decision	tree	algorithms	define	simpler	class	boundar-
ies	and	work	well	on	noisy	data.	Decision	tree-based	outlier	detection	is	supervised	
and	dependent	on	the	training	set. It	is	scalable	for	handling	larger	datasets	with	
high	dimensionality. However,	decision	trees	are	susceptible	to	overfitting,	as	their	
ability	to	generalize	is	inferior	to	other	neural	network	or	statistical	techniques	that	
can	be	overcome	by	feature	selection	or	pruning.

As	 with	 decision	 tree-based	 outlier	 detection,	 rule-based	 machine	 learning	
techniques	can	be	exploited	for	outlier	detection	(Chandola	et	al.	2007).	These	rule-
based	 techniques	 are	 similar	 to	 decision	 trees,	 as	 they	 test	 a	 series	 of	 conditions	
known	as	antecedents	before	determining	the	conclusion	or	appropriate	class.	The	
flexibility	of	adding	new	rules	without	disturbing	existing	rules	proves	advantageous	
in	this	technique,	especially	for	outlier	detection.	Typically,	the	rule-based	technique	
can	be	treated	as	a	classification	scheme,	with	both	normal	and	abnormal	instances	
used	for	training,	and	the	scheme	distinguishes	between	data	points	located	in	nor-
mal	areas	and	outliers.	The	scheme	could	consist	of	rules	generated	by	the	rule-based	
classifiers	that	capture	the	behavior	of	the	normal	data	points,	and	any	instance	that	
does	not	confine	to	the	rules	of	the	normal	class	are	treated	as	outliers.

Other	machine	learning	outlier	detection	strategies	include	those	based	on	clus-
tering.	Clustering	algorithms	such	as	BIRCH (Zhang	et	al.	1996) and	DBSCAN 
(Ester	et	al.	1996) that	are	robust	in	handling	large	datasets	can	be	exploited	for	
outlier	detection.	The	BIRCH	clustering	algorithm	uses	a	hierarchical	tree	struc-
tured	index	called	a	clustering	feature	tree	(CFt)	to	cluster	data	points	dynamically.	
In	 this	method,	 all	 the	data	points	 are	first	 scanned	 and	 inserted	 into	 the	CFt.	
When	all	the	data	points	are	scanned,	a	global	clustering	scheme	is	employed	to	
condense	the	CFt	to	a	desired	size.	At	this	point,	clusters	are	merged	to	other	clus-
ters	in	a	hierarchical	fashion,	which	can	be	effectively	used	to	remove	the	outliers.	
The	time	complexity	of	BIRCH	is	of	the	order	O(n2)	and	operates	incrementally	but	
is	limited	to	handling	numeric	data.

A	more	elaborate	clustering	scheme,	such	as	the	density-based	DBSCAN clus-
tering	 algorithm,	 can	 also	 be	 employed	 for	 outlier	 detection.	 Here,	 outliers	 are	
estimated	based	on	the	density	of	data	points	within	a	predefined	neighborhood.	
The	extension	of	the	DBSCAN	clustering	algorithm	for	outlier	detection	is	found	
in	the	DB-outlier	algorithm	(Berunig	et	al.	2000).	 Its	 time	complexity	 is	of	 the	
order	O(n log	n)	and	is	based	on	the	R*	tree	structure	to	cluster	and	identify	kNN.

3.3.1.7  Hybrid Systems

The	most	 recent	 development	 in	 outlier	 detection	 technology	 is	 hybrid	 systems.	
These	 systems	 incorporate	 algorithms	 from	 at	 least	 two	 of	 the	 statistical,	 neu-
ral,	and	machine	learning	methods.	Hybridization	is	used	variously	to	overcome	
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deficiencies	with	one	particular	classification	algorithm	to	exploit	the	advantages	of	
multiple	approaches	while	overcoming	their	weaknesses	or	using	a	meta-classifier	
to	reconcile	the	outputs	from	multiple	classifiers.

3.4  Data integration
Now	that	we	have	covered	an	overview	of	the	different	outlier	detection	strategies	
employed	in	data	cleaning,	in	this	section	we	describe	the	process	of	data	integration,	
by	which	data	from	disparate	sources	are	integrated	to	enable	mining	for	information.

Data	integration	is	viewed	as	the	process	that	entails	the	merging	of	data	from	
various	sources	that	correspond	to	an	entity	of	interest.	In	reality,	it	is	difficult	to	
find	information	pertaining	to	an	entity	in	a	single	database;	it	is	therefore	vital	to	
consolidate	information	from	various	databases.	This	need	for	specific	information	
poses	a	challenge	as	different	databases	adopt	diverse	schemas	and	formats	to	store	
their	data.	Methods	for	overcoming	these	challenges	are	described	below.

3.4.1  Data Integration and Data Linkage
The	need	for	joining	data	from	multiple	heterogeneous	databases	into	a	single	coher-
ent	data	warehouse	is	of	growing	importance	in	the	KDD	process	(Figure	3.7).

In	reality,	information	pertaining	to	an	entity	of	interest	is	found	in	multiple	
databases.	Thus,	we	are	forced	to	resort	to	integrating	information	from	an	array	of	
databases	to	create	a	consolidated	representation	of	an	entity.	The	key	to	integrat-
ing	two	heterogeneous	databases	is	to	find	commonalities	between	records	in	the	
database.	Integration,	in	this	step,	is	similar	to	performing	a	simple	join	operation;	
however,	it	is	not	a	trivial	task	due	to	the	complexity	of	heterogeneous	databases.	

Data IntegrationFile Systems

Data Warehouse

Entity Relational
Models

Object Oriented
Models

Figure 3.7 Data integration is considered to be a precursor of data warehousing. 
typically data integration entails the integration of data obtained from disparate 
sources categorized based on the nature by which data are stored, namely: file 
systems, objected-oriented databases, and relational databases.
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With	 the	 differences	 in	 syntax	 and	 nomenclatures	 adopted,	 finding	 methods	 of	
identifying	similarities	is	still	an	open	challenge.

Record	linkage	in	files	is	used	to	identify	duplicate	identifiers	in	situations	where	
the	unique	identifiers	are	unavailable.	This	technique	works	by	matching	the	attri-
bute	fields	and	other	fields	that	are	not	unique	identifiers	of	entities.	Record	linkage	
is	synonymous	with	object	identification,	data	cleaning,	approximate	matching	or	
approximate	joins,	fuzzy	matching,	and	entity	resolution.

There	are	two	types	of	data	heterogeneity,	structural	heterogeneity	and	lexical	
heterogeneity.	Structural	heterogeneity	occurs	when	the	fields	of	the	data	records	
in	the	database	are	structured	differently	in	different	databases.	Lexical	heterogene-
ity	occurs	when	the	data	records	have	identically	structured	fields	across	databases	
but	 the	 data	 use	 different	 representations	 to	 refer	 to	 the	 same	 real-world	 object	
(Elmagarmid	et	al.	2007).

Data	mining	 challenges	have	been	 surveyed	 in	order	 to	help	 identify	 lexical	
heterogeneity.	Record	linkage	is	also	referred	to	as	a	record	matching	problem	in	
statistics.	The	motivation	for	using	record	linkage	is	to	identify	records	in	the	same	
or	different	databases	that	refer	to	the	same	real-world	entity,	even	if	the	records	are	
not	identical.	The	same	problem	may	have	multiple	names	across	research	commu-
nities,	such	as	the	merge/purge	problem,	data	duplication,	or	instance	identification	
in	the	data	database	community.

3.4.2  Schema Integration Issues
The	 difficulties	 in	 integrating	 different	 database	 schemas	 stem	 from	 commonly	
observed	problems.	For	example,	the	same	attribute	may	have	different	names	in	
different	schemas,	or	an	attribute	may	be	derived	from	another	attribute,	different	
attributes	 might	 represent	 the	 same	 information	 causing	 redundancy,	 values	 in	
attributes	might	be	different,	and	records	may	be	duplicated	(under	different	keys).

Various	 data	 integration	 and	 record	 linkage	 schemes	 have	 been	 proposed	 to	
handle	these	issues.

As	an	illustration	of	data	integration,	let	us	consider	data	from	different	rela-
tional	databases.	The	objective	here	is	to	ensure	that	the	data	entries	or	records	are	
stored	 in	a	uniform	manner	 in	a	common	database,	 resolving	 (at	 least	partially)	
the	structural	heterogeneity	problem	by	considering	only	relational	databases.	To	
achieve	uniformity,	 the	data	are	 subject	 to	parsing	and	data	 transformation	and	
standardization.	Extraction	transformation	loading	(ETL)	broadly	describes	these	
processes.	The	steps	in	this	process	ensure	improvement	in	the	quality	of	the	in-flow	
data	and	make	the	data	records	comparable	and	more	usable.

The	first	step	of	the	ETL	process	is	parsing.	Parsing	aids	in	the	identification	and	
isolation	of	individual	data	elements	in	the	source	data	tables	or	files.	It	enables	easier	
correction	and	standardizing	and	matching	of	data,	as	it	allows	for	comparison	of	
individual	components,	rather	than	of	long	complex	strings	of	data.	Multiple	pars-
ing	methods	are	currently	available,	and	parsing	remains	an	active	field	of	research.
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The	second	step	of	the	ETL	process	is	data	transformation,	the	simple	conversion	
applied	 to	 the	data	 to	 conform	 them	 to	 standard	data	 types.	Data	 transformation	
involves	manipulating	one	field	of	the	data	record	at	a	time	and	treating	it	indepen-
dently	without	taking	into	account	the	values	of	the	related	fields.	This	step	is	generally	
applied	to	conform	legacy	data	to	specific	data	types	pertaining	to	specific	applications.	
Renaming	a	field	is	also	a	form	of	data	transformation.	Range	checking	is	yet	another	
kind	of	data	transformation,	which	involves	examining	data	in	a	field	to	ensure	that	
they	fall	within	the	expected	range.	Dependency	checking	is	a	slightly	more	evolved	
form	of	data	transformation,	since	it	requires	comparing	the	value	in	a	particular	field	
to	the	values	in	another	field	to	ensure	a	minimal	level	of	consistency	in	the	data.

Finally,	data	standardization	refers	to	the	standardizing	process	involved	in	con-
verting	the	data	from	one	format	to	an	application-specific	format.	Standardization	is	
applied	to	data	fields	that	are	stored	in	different	formats	across	different	data	sources,	
such	that	they	are	converted	to	a	uniform	representation	before	being	subjected	to	the	
duplicate	detection	process.	Standardization	drastically	 reduces	 errors	by	 reducing	
duplicate	entries	in	the	databases.	Once	the	data	have	been	standardized,	the	next	
step	of	data	preprocessing	is	to	identify	which	fields	should	be	used	for	comparison.	It	
is	desirable	to	identify	fields	that	have	limited	redundancy	in	their	records.

Human	errors	that	result	in	misspellings	and	different	conventions	for	record-
ing	data	result	in	multiple	representations	of	a	unique	object	in	the	database.	Thus,	
significant	 research	 has	 been	 pursued	 for	 identifying	 techniques	 for	 measuring	
the	similarity	of	individual	fields,	and	techniques	for	measuring	the	similarity	of	
entire	records.

3.4.3  Field Matching Techniques
Duplicate	detection	is	an	important	step	in	the	data	integration.	The	objective	for	using	
this	 step	 is	 to	 identify	 redundant	 fields	 or	 whole	 records	 across	 different	 databases.	
Mismatches	 caused	 by	 human	 typographical	 variations	 of	 string	 data	 are	 the	 most	
common	source	of	errors	in	databases.	Accurately	completing	this	step	invariably	affects	
the	outcome	of	duplicate	detection	techniques,	as	they	rely	on	string	comparison.	To	
this	end,	various	string	matching	techniques	have	been	developed	over	the	past	decade.	
These	techniques	include	character-based	similarity	metrics	and	token-based	similarity	
metrics.	Various	methods	within	these	techniques	are	explained	below.

3.4.3.1  Character-Based Similarity Metrics

Character-based	 similarity	 metrics	 have	 been	 designed	 to	 handle	 typographical	
errors.	Typically,	the	following	distance	metrics	are	used	to	measure	the	degree	of	
similarity	or	dissimilarity	between	two	strings	(the	objective	of	this	section).	They	
could	also	be	modified	and	used	to	find	similarity	between	different	complex	data	
structures,	such	as	trees,	graphs,	etc.	The	following	sections	describe	the	different	
metrics	that	are	prominently	used	in	the	field	of	bioinformatics.
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Edit. distance: The	 edit	 distance	 is	 one	 of	 the	 simplest	 algorithms	 for	 deter-
mining	the	similarity	between	two	strings.	Given	strings	σ1	and	σ2,	the	edit	
distance	measure	is	the	similarity	between	them	as	the	least	number	of	single	
character	edit	operations	required	to	transform	the	string	σ1	into	σ2	(Ristad	
and	Yianilos	1998).	The	edit	operations	are	confined	to	the	following:

	 1.	 Insert	a	character	into	a	string.
	 2.	 Delete	a	character	from	a	string.
	 3.	 Replace	one	character	with	a	different	character.

	 	 In	 the	 simplest	 form,	 the	 edit	distance	 is	 also	 referred	 to	 as	Levenshtein	
distance	(Ristad	and	Yianilos	1998),	in	which	each	edit	operation	is	assigned	
a	cost	of	zero.	Typically,	the	computational	complexity	of	measuring	the	edit	
distance	of	two	strings	is	of	the	order	 ( . )1 2O σ σ ,	with	|σ1|	and	|σ2|	represent-
ing	the	length	of	the	two	strings.

Affine.gap.distance:	An	extension	of	the	edit	distance	is	the	affine	gap	distance.	
It	is	believed	that	the	edit	distance	metric	is	not	effective	when	one	of	the	two	
strings	compared	 is	 truncated	or	 shortened.	The	extension	to	edit	distance	
includes	the	addition	of	two	new	operations:

	 1.	 Open	gap	operation
	 2.	 Extend	gap	operation

	 	 A	solution	for	comparing	strings	of	unequal	length	is	to	align	the	two	
strings.	 By	 aligning	 two	 strings,	 gaps	 are	 inserted	 into	 either	 of	 the	 two	
strings	to	ensure	that	the	strings	are	of	the	same	length,	enabling	easy	com-
parison.	The	incorporation	of	gaps	in	strings	for	comparison	is	treated	differ-
ently	in	different	methods.	The	insertion	of	gaps	is	a	weighted	operation,	in	
which	a	weight	is	assigned	for	every	insertion	of	a	gap—known	as	a	penalty.	
It	is	not	desirable	to	have	a	high	gap	score	or	alignment	score.	The	affine	gap	
distance	metric	has	a	variation	in	assigning	weights	to	the	gaps.	The	cost	of	
extending	the	gap	is	usually	smaller	than	the	cost	of	opening	a	gap,	which	
results	in	smaller	cost	penalties	than	the	cost	obtained	using	the	edit	dis-
tance	metric.	The	time	complexity	of	the	affine	gap	algorithm	is	of	the	order	
( . . )1 2O a σ σ when	the	maximum	length	of	a	gap	is	 a min{ , }1 2� σ σ .	In	

general,	the	algorithm	runs	approximately	 ( . . )2
1 2O a σ σ 	steps.

Smith-Waterman.distance:	Smith	and	Waterman	(1981)	described	an	exten-
sion	 of	 edit	 distance	 and	 affine	 gap	 distance,	 in	 which	 mismatches	 at	 the	
beginning	and	the	end	of	 strings	have	 lower	costs	 than	mismatches	 in	 the	
middle.	This	metric	allows	for	better	local	alignment	of	the	strings.	The	algo-
rithm	requires	O( .1 2σ σ )	time	and	space	for	two	strings	of	length	 1σ 	and	

2σ .	Several	 improvements	have	thus	been	proposed,	as	 in	the	case	of	the	
BLAST	algorithm.
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Jaro.distance.metric:	The	Jaro	distance	metric	 is	 the	basic	algorithm	for	the	
comparison	of	two	strings,	σ1	and	σ2,	and	is	based	on	the	following	steps.	
First,	compute	the	string	lengths	 1σ 	and	|σ2|.	Second,	find	the	“common	
characters”	c	 in	the	two	strings.	By	common,	we	refer	to	all	the	characters	

1 j[ ]σ 	 and	 2 j[ ]σ 	 for	 which	 1 2i j[ ][ ]σ = σ 	 and	 min{ , }1
2 1 2i j− ≤ σ σ .	

Third,	find	the	number	of	transpositions	t.	The	number	of	transpositions	is	
computed	as	follows:	we	compare	the	ith	common	character	in	σ1	with	the	
ith common	character	in	σ2.	Each	nonmatching	character	is	a	transposition.	
The	Jaro	comparison	value	is
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	 	 The	 Jaro	 algorithm	 requires	O( .1 2σ σ )	 time	 for	 two	 strings	of	 length	
1σ 	and	 2σ 	due	to	step	2,	which	computes	the	common	characters	in	the	

two	strings.
q-Grams:	The	q-grams	are	short	character	substrings	of	length	q	of	the	database	

strings.	The	purpose	of	using	q-grams	as	a	foundation	for	approximate	string	
matching	is	that	when	two	strings	σ1	and	σ2	are	similar,	they	share	a	large	
number	of	q-grams.	Given	a	string	σ,	its	q-grams	are	obtained	by	“sliding”	
a	window	of	length	q over	the	characters	of	σ.	Since	q-grams	at	the	begin-
ning	and	the	end	of	the	string	can	have	fewer	than	q characters	from	σ,	the	
strings	are	conceptually	extended	by	padding	the	beginning	and	the	end	of	
the	string	with	q	–	1	occurrences	of	a	special	padding	character,	not	found	
in	the	original	alphabet.	With	the	appropriate	use	of	hash-based	indexes,	the	
average	time	required	for	computing	the	q-gram	overlap	between	two	stings	
σ1	and	σ2	is	O(max { , }1 2σ σ ).	Letter	q-grams,	including	trigrams,	bigrams,	
and	unigrams,	have	been	used	in	a	variety	of	applications.

3.4.3.2  Token-Based Similarity Metrics

The	different	character-based	similarity	metrics	defined	above	aid	in	the	detection	
of	typographical	errors.	However,	databases	often	use	varied	conventions	that	lead	
to	the	rearrangement	of	words.	In	such	cases,	we	use	the	token-based	metrics	to	
measure	the	similarity	between	varied	conventions.

Atomic. strings:	 An	 atomic	 string	 is	 a	 sequence	 of	 alphanumeric	 characters	
delimited	by	punctuation	characters.	Two	atomic	strings	match	if	 they	are	
equal,	or	if	one	is	the	prefix	of	the	other.	Otherwise,	they	do	not	match.	The	
similarity	of	two	fields	is	the	number	of	their	matching	atomic	strings	divided	
by	their	average	number	of	atomic	stings.
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WHIRL:	An	alternate	to	the	atomic	strings	similarity	metrics	is	the	WHIRL	
algorithm	(Cohen	1998).	The	WHIRL	algorithm	is	based	on	the	vector	space	
model.	A	vocabulary	T	of	atomic	terms	that	can	include	words,	phrases,	or	
word	stems	(word	prefixes)	is	built.	A	text	document	is	represented	as	a	docu-
ment	vector,	and	each	component	corresponds	to	terms	t ∈	T denoting	the	
component	of	v	that	corresponds	to	t ∈	T	by	vt.

In	this	algorithm,	the	weighting	scheme	used	is	the	term	frequency-inverse	doc-
ument	frequency	(TF-IDF)	weighting	that	is	normalized	between	0	and	1.	Once	
the	document	is	represented	by	vector

	
ˆ log 1 . log( ),( )( )= +v TF IDFt

V t t 	 (3.4)

where	 the	 term	frequency	TFV,t	 is	 the	number	of	 times	 the	 term	 t occurs	 in	 the	

document	represented	by	v,	and	the	inverse	document	frequency	IDFt	is	
C
Ct

,	where	
Ct	is	the	subset	of	documents	in	the	collection	of	documents	C	that	contains	the	
term	t.

The	similarity	between	two	documents	u	and	v	is	computed	using

	
, .sim u v u v
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which	is	interpreted	as	the	cosine	of	the	angle	between	u	and	v,	and	which	ranges	
between	0	and	1,	as	every	document	is	of	unit	length.

The	magnitude	of	the	vector	vt	corresponds	to	the	related	importance	of	the	
term	t in	the	document	represented	by	v.	Two	documents	are	similar	when	they	
share	many	important	terms.	The	TF-IDF	weighting	scheme	assigns	lower	weights	
to	frequently	occurring	terms	in	the	collection	C.	However,	the	drawback	of	this	
method	 is	 that	 the	 vectors	 tend	 to	 be	 sparse,	 i.e.,	 if	 a	 document	 contains	 only	
k-terms,	then	all	but	k	components	of	the	vector	representation	will	have	zero.

3.4.3.3  Data Linkage/Matching Techniques

This	 section	 addresses	 methods	 that	 are	 used	 to	 match	 records	 with	 multiple	
fields.	These	methods,	according	to	Elmagarmid	et	al.	(2007),	are	broadly	divided	
into	two	categories:	learning	approaches	and	distance-based	approaches.

	 1.	Learning approaches.use	training	data	to	learn	how	to	match	records	from	dif-
ferent	sources.	They	include	probabilistic	approaches	and	supervised	machine	
learning	techniques.

 2.	Distance-based approaches	match	records	using	domain	knowledge	or	generic	
distance	metrics.	In	these	approaches,	special	declarative	languages	are	used	
to	detect	duplicate	records.
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Of	the	above	two	categories,	this	section	focuses	on	the	first	category.	For	exam-
ple,	let	us	assume	that	tables	A	and	B,	each	having	n	comparable	fields,	are	expected	
to	be	matched.	To	this	end,	we	define	two	classes	M	and	U,	where	class	M	contains	
record	tuples	〈α,β〉,	(α ∈	A,β ∈	B)	that	represent	the	same	entity	(match),	and	class	
U	contains	the	record	tuples	that	represent	different	entities	(nonmatch).

For	matching,	a	pair	of	tuples,	〈α,β〉, is	represented	as	a	vector	 ˆ [ , , ]1x x xn T= … 	
with	n	components	that	correspond	to	n	comparable	fields	of	A	and	B.	With	each	xi	
showing	the	degree	of	agreement	between	the	ith	field	of	records	α	and β.	Typically,	
the	matches	are	represented	by	binary	values	0	and	1	for	 the	values	of	xi,	where	
xi	=	1	if	field	i agrees	and	xi	=	0 if	field	i disagrees.

3.4.3.3.1  Probabilistic Matching Models

The	 initial	 mathematical	 model	 based	 on	 Bayesian	 inference	 (Newcombe	 and	
Kennedy	1962)	was	proposed	by	Fellegi	 and	Sunter	 (1969).	 In	 this	model,	 two	
tables	A	and	B,	are	matched	using	a	vector	 ˆ [ , , ]1x x xn T= … 	as	input	for	the	cre-
ation	of	a	decision	rule.	This	decision	rule	assigns	 x̂ 	to	either	class	M or	U.	In	the	
probabilistic	approach,	we	assume	that	 x̂ 	 is	a	random	vector	that	has	a	density	
function	that	is	different	for	each	of	the	two	classes	M	and	U.	If	the	density	func-
tion	for	 the	classes	M	and	U is	known,	the	duplicate	detection	problem	can	be	
equated	to	the	Bayesian	inference	problem,	where	observations	are	used	to	update	
or	newly	infer	what	is	known	about	underlying	parameters	or	hypotheses.

From	the	following	equation,
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vector	 x̂ 	 is	classified	to	class	M,	 if	the	probability	of	class	M	 is	greater	than	the	
nonmatch	class	U,	and	vice	versa.	On	applying	Bayes’	theorem,	the	above	equation	
can	be	expressed	as
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where	 ˆl x( ) 	is	the	likelihood	ratio	with	a	threshold	 p(U)
p(M) 	for	the	decision.

However,	this	approach	is	true	only	when	the	posterior	probabilities	p x̂|M( ),
p x̂|U( ) 	and	the	prior	probabilities	p(M)	and	p(U)	are	known,	which	is	rarely	the	
case.

To	overcome	this	problem,	the	naïve	Bayes	approach	to	compute	the	posterior	prob-
abilities	based	on	a	conditional	independence	is	used.	The	conditional	independence	
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assumes	that	 p x |Mi( ) 	and	 p x |Mj( ) 	are	independent	if	i	≠	j.	This	assumption	results	
in	the	following:

	
ˆ | ( | )p x M p x M

i i

n

i∏( ) =
=

	 (3.8)

and

	
ˆ | ( | )p x U p x U
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=
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where	the	values	of	 ( | )p x Mi 	and	 ( | )p x Ui 	can	be	computed	using	a	training	set	
of	known	class	labels.

3.4.3.3.2  Supervised and Semisupervised Learning

In	supervised	and	semisupervised	learning,	probabilistic	models	base	the	classifica-
tion	of	records	using	Bayesian	approaches	on	classes	M	and	U.	Other	commonly	
used	 duplication	 techniques	 are	 based	 on	 traditional	 classification	 techniques,	
where	the	system	relies	on	the	existence	of	training	data	in	the	form	of	record	pairs,	
labeled	as	matching	or	not	matching.

Similar	 to	 the	 probabilistic	 approach	 defined	 in	 the	 previous	 section,	 the	
Classification	 as	 Regression	 Trees	 (CART)	 classification	 algorithm	 could	 be	
extended	to	match	records.	For	this	 function,	the	algorithm	generates	regression	
trees,	based	on	which	a	linear	discriminant	algorithm	generates	all	possible	com-
binations	of	parameters	to	separate	the	data	into	their	respective	classes.	Grouping	
records	is	brought	about	using	the	vector	quantization	approach.	Similarly,	support	
vector	machines	(SVMs)	can	be	extended	to	match	records.

3.5  Data Warehousing
A	data	warehouse	is	a	subject-oriented,	time-varying,	nonvolatile	collection	of	data	
used	primarily	in	organization	decision	making.

As	the	information	stored	in	a	warehouse	is	focused	on	one	subject	related	to	an	
organization,	a	warehouse	is	termed	subject	oriented. When	a	warehouse	is	being	
built,	useful	pieces	of	this	information	from	disparate	data	sources	are	gathered	in	
one	universally	accepted	format	for	storage.	The	data	are	integrated	as	per	require-
ments	 and	 not	 simply	 transferred	 from	 source	 to	 warehouse.	 A	 data	 warehouse	
is	time	varying,	as	every	piece	of	data	has	a	time	stamp	associated	with	it	that	is	
derived	from	the	source.	The	data	from	the	source	vary	with	time,	as	appropriate	
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modifications	and	updates	take	place.	However,	the	data	warehouse	is	nonvolatile,	
and	once	it	is	stored	in	the	warehouse,	it	will	not	change.	This	static	status	means	
that	the	data	in	the	warehouse	do	not	reflect	the	changes	made	to	the	data	at	the	
source.	For	the	changes	to	be	reflected,	the	data	warehouse	must	be	refreshed	at	
regular	 intervals.	 For	 every	 refresh	 cycle,	 the	 updates	 are	 incorporated	 into	 the	
warehouse	and	outdated	information	is	purged.

Though	the	data	in	the	warehouse	do	not	store	updated	information,	their	pri-
mary	function	is	to	enable	high-level	decision	making,	rather	than	store	day-to-day	
information.	Because	of	the	difficulty	of	updating	information,	data	warehousing	is	
not	applicable	to	all	fields	of	applications	where	up-to-date	information	is	required	
(Figure	3.8).

3.5.1  Online Analytical Processing
As	previously	discussed,	data	warehouses	emphasize	integration	and	decision	sup-
port.	Thus,	the	overall	focus	of	these	storage	systems	is	on	consolidating	informa-
tion	so	that	it	is	available	at	a	glance,	rather	than	on	clarifying	the	specific	details	of	
individual	transactions.	Using	data	warehousing	is	like	visualizing	a	forest,	rather	
than	the	individual	trees	in	the	forest.	Thus,	the	performance	metrics	in	data	ware-
housing	are	be	 related	 to	query	 throughput	and	 response	 times.	The	 technology	
well	 suited	 to	 these	metrics	 is	 online	 analytical	 processing	 (OLAP).	 OLAP	 per-
forms	data	consolidation	and	complex	analysis	of	information	and	is	apt	for	use	in	
warehouse	creation.
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Figure 3.8 the representation of a data warehouse in three dimensions.
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3.5.2  Differences between OLAP and OLTP
Online	transaction	processing	(OLTP)	is	a	system	that	is	used	in	clerical	processing	
tasks	that	emphasize	fast	query	processing	times.	These	systems	are	characterized	
by	a	large	volume	of	short	online	transactions,	such	as	data	entry,	deletion,	update,	
and	retrieval	in	typical	databases.	In	contrast,	OLAP	systems	are	characterized	by	
a	low	volume	of	transactions.	In	OLAP,	the	queries	are	complex	and	involve	aggre-
gations	of	data	 from	multiple	data	 sources.	These	queries	are	performed	ad	hoc.	
Differences	between	these	two	systems	are	elaborated	in	Table	3.1.

3.5.3  OLAP Tasks
Since	OLAP	tasks	do	not	require	constant	updates	for	transactions,	it	is	assumed	
that	the	data	required	by	OLAP	systems	are	stored	in	a	data	warehouse,	which	sepa-
rates	the	input	from	both	the	operational	databases	and	the	output.	This	separation	

table 3.1 Comparison between oLtP and oLAP

Characteristic OLTP OLAP

Main purpose To support day-to-day 
operations; control and 
run fundamental business 
tasks

To support managerial, 
strategic planning, and 
problem solving; 
decision support

Queries Short transactions; 
relatively simple structured 
query language (SQL)

Longer transactions; 
complex SQL with analysis

Updates Random updates; few 
rows accessed

Sequential/bulk updates; 
many rows accessed

Processing speed and 
response times

Subsecond response time Seconds to minutes 
response time

Database model ER modeling; minimizes 
redundancy

Dimensional modeling; 
okay to have redundancy

Data normalization Normalized data (5NF); 
minimizes duplicates

De-normalized data (3NF); 
duplicates are okay

Indexes Few indexes; avoids index 
maintenance cost in 
writes

Okay to have more 
indexes; mostly read-
only operations

Workload 
predictability and 
tuning

Precompiled queries; 
repeated execution of 
queries

Ad hoc queries; 
unpredictable load
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renders	a	structured	approach	to	storing	information	in	a	systematic	timely	fashion.	
However,	 to	suit	a	more	realistic	model	of	evolving	data,	 the	OLAP	systems	are	
required	to	be	more	dynamic,	and	their	design	is	continuous.	The	following	are	the	
tasks	that	make	this	possible.

Roll-up.task: The	roll-up	task	is	the	process	of	getting	a	higher	level	of	aggre-
gation	in	the	integration	process,	i.e.,	reducing	detail.	Here	the	aggregation	
function	provides	an	abstraction	of	the	data	by	reducing	the	lower-level	details.

Drill-down.task:	The	drill-down	task	is	the	opposite	of	the	roll-up	task.	In	the	
drill-down	task,	emphasis	is	given	to	highlighting	the	lower-level	details	of	
the	data.	It	can	be	visualized	as	the	process	of	drilling	down	an	aggregation	
of	data,	implying	an	increase	in	detail.

Slice.and.dice.task:	The	slice	and	dice	task	is	analogous	to	the	select	and	project	
operations	in	regular	databases.

Pivot. task:	 The	 pivot	 task	 enables	 the	 transformation	 of	 data	 to	 enable	 easy	
interpretation.	This	task	involves	reorientation	and	visualization	of	data.

Based	on	the	above	operations,	we	can	see	that	OLAP	functions	at	a	higher	level.	In	
order	to	implement	OLAP	technology,	relational	OLAP	(ROLAP)	is	used	as	the	origi-
nal	model.	ROLAP	uses	the	simple	relational	database	management	system	(RDBMS)	
model,	where	data	are	stored	in	tuples,	and	bears	attributes.	However,	in	warehousing,	
there	is	also	a	trend	toward	multidimensional	OLAP	(MOLAP).	MOLAP	adds	more	
dimensions	in	which	to	store	information,	so	we	are	not	restricted	to	2D	tuples.	We	now	
have	more	sophisticated	data	structures,	for	example,	3D	data	cubes,	complex	arrays,	
and	more.	The	emphasis	in	MOLAP	is	on	multiple	facts	and	multiple	dimensions.

3.5.4  Life Cycle of a Data Warehouse
Now	that	we	have	briefly	covered	the	concepts	of	OLAP	and	its	operations,	in	this	
section	we	describe	 the	 life	 cycle	 of	 a	 data	warehouse	 to	 enable	 its	 functioning.	
A	warehouse	 is	an	extensive	 structure	 that	has	 several	phases	of	development.	A	
fully	developed	warehousing	system	typically	has	the	following	parts:	information	
sources,	wrappers,	integrators,	and	warehouses,	each	of	which	is	described	below.

	◾ Information	sources	are	the	building	blocks	of	the	warehouse.	They	are	the	
original	sources	of	the	data,	like	flat	files,	RDBMS,	and	object-oriented	data-
base	management	system	(OODBMS).	The	raw	data	that	exist	here	must	be	
integrated	into	the	final	warehouse.

	◾ Wrappers	are	responsible	for	data	transformations	prior	to	data	integration.	
Each	information	source	has	a	wrapper.	The	functions	of	a	wrapper	during	
warehouse	creation	include	data	gathering	from	the	sources,	data	cleaning,	
and	 format	 conversions.	Once	 the	data	 are	 available	 in	 the	 generic	 format	
required	by	 the	warehouse,	 they	can	be	consolidated.	After	 the	warehouse	
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is	 functional,	 periodic	updates	 are	needed	 to	 refresh	 the	 information.	The	
wrapper	is	also	responsible	for	the	tasks	involved	in	obtaining	these	updates.

	◾ An	integrator	is	a	filter	within	the	warehouse.	Each	warehouse	has	one	inte-
grator	module	that	filters,	summarizes,	and	merges	the	data	from	the	indi-
vidual	wrappers	and	then	dumps	the	desired	information	into	the	warehouse.

	◾ A	warehouse	is	the	actual	storage	of	integrated	information.

The	above	are	the	necessary	components	of	a	warehouse.	The	data	warehousing	life-
cycle	includes	warehouse	creation	and	warehouse	maintenance.	The	modules	required	
for	these	steps	include	requirement	analysis,	architecture,	data	modeling,	layout,	meta-
data,	extraction,	transformation,	and	load,	monitoring,	and	administration,	user	inter-
face,	view	maintenance,	and	purging.	Each	of	these	modules	is	explained	below.

	 1.	Requirement	analysis	is	similar	to	the	initial	step	in	any	software	life	cycle	
model,	where	facts	are	collected,	needs	are	outlined,	and	detailed	specifica-
tions	are	documented,	so	as	to	serve	as	a	guideline	for	development.

	 2.	Architecture	indicates	whether	a	data	warehouse	is	centralized	or	distributed	
and	whether	it	requires	a	dedicated	server,	among	other	issues.	Users/design-
ers	often	select	servers	and	tools	using	architectural	information.

	 3.	Data	modeling	helps	users	to	logically	analyze	raw	data.	These	data	models	
help	 in	 identifying	 the	 entities	 in	 the	 system	 and	 their	 relationships	 with	
each	other,	their	properties,	common	features,	and	the	like.	Data	modeling	
includes	 terminology,	 like	E-R	diagrams,	 star	and	snowflake	schemas,	and	
materialized	views.

	 4.	Layout	is	determined	after	the	logical	analysis	is	performed.	Users/designers	
identify	the	individual	information	sources	and	apply	open	database	connec-
tivity	(ODBC)	connections	in	this	step.

	 5.	Meta-data	are	data	about	data.	An	example	of	meta-data	is	a	library	where	the	
books	form	the	data	and	the	catalog	forms	the	meta-data	giving	information	
about	the	books,	i.e.,	about	the	data.	In	a	data	warehouse,	meta-data	are	cru-
cial,	because	the	focus	is	on	analysis	rather	than	transactions.	Therefore,	we	
need	to	identify	a	meta-data	repository,	find	a	suitable	location	for	it	(central-
ized,	distributed,	etc.,	depending	on	warehouse	architecture),	and	proceed	to	
build	access	mechanisms	for	it.

	 6.	Extraction,	transformation,	and	loading	are	the	three	steps	 involved	in	the	
physical	data	transfer.	In	these	steps,	data	are	extracted	from	the	underlying	
information	sources	in	a	raw	form,	transformed	to	the	desired	format	by	the	
wrapper	module,	and	then	loaded	to	the	warehouse	by	the	integrator	module	
in	a	consolidated	manner.

	 7.	Monitoring	and	administration	are	the	first	steps	in	warehouse	maintenance.	
The	 above	 steps	 all	 dealt	with	warehouse	 creation.	Once	 the	warehouse	 is	
built,	users/designers	set	up	support	to	keep	it	running.	Users/designers	have	
DWAs	(data	warehouse	administrators)	that	are	analogous	to	DBAs	(database	
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administrators).	Users/designers	have	to	develop	mechanisms	for	fault	detec-
tion	and	correction,	recovery	from	breakdown,	and	the	like	to	ensure	func-
tional	reliability.

	 8.	A	user	interface	is	integral	to	a	data	warehousing	system.	A	warehousing	sys-
tem	could	have	a	simple	character	interface,	but	such	an	interface	would	make	
access	cumbersome,	thus	defeating	the	purpose	of	a	warehouse.	Therefore,	a	
considerable	amount	of	time	and	effort	is	spent	on	building	an	interface	to	
cater	to	the	needs	of	the	user.

	 9.	View	maintenance	is	the	way	in	which	updates	are	reflected	in	a	warehouse.	In	
regular	databases,	this	updating	happens	automatically,	but	in	a	warehouse,	
the	updates	need	to	be	physically	 transferred.	We	refresh	the	warehouse	 in	
batches	 at	 certain	 intervals.	During	 such	updates,	 the	warehouse	 ceases	 to	
be	functional.	The	system	is	shut	down,	updates	are	performed,	and	then	the	
system	is	restored.	On	the	other	hand,	the	system	could	reflect	the	changes	as	
they	occur	without	causing	a	system	shutdown.	This	change	has	to	be	done	
one	transaction	at	a	time.	The	former	approach	is	called	batch	updates,	and	
the	latter	is	incremental	updates.	Each	method	has	pros	and	cons.

	 10.	Purging	helps	keep	information	in	the	warehouse	up-to-date.	Once	the	ware-
house	data	get	old,	they	have	to	be	driven	out	to	make	room	for	new	infor-
mation.	In	addition,	users	need	the	latest	up-to-date	information	for	correct	
analysis	and	decision	making.	This	process	of	removing	the	old	data	is	essen-
tial	for	effective	functioning	of	the	warehouse.

3.6  Conclusion
In	this	chapter	we	have	provided	a	description	of	the	challenges	in	handling	bio-
logical	databases	with	 respect	 to	data	cleaning,	data	 integration,	 and	data	ware-
housing	through	the	various	techniques	used.	In	the	following	chapters	we	provide	
an	overview	of	the	different	data	transformation	techniques	and	their	implications	
on	specific	research	endeavors	in	the	area	of	bioinformatics.
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Chapter 4

Feature Selection and 
extraction Strategies 
in Data Mining

In	Chapter	4	we	focus	on	the	different	data	preparation	and	transformation	strate-
gies	in	the	knowledge	discovery	in	databases	(KDD)	process.	The	chapter	contains	
a	list	of	widely	used	data	normalization	strategies	for	processing	raw	data	and	lists	
various	data	transformation	techniques.	We	explain	feature	selection	and	feature	
extraction/construction	strategies	in	lieu	of	their	application	to	biological	data.	We	
contain	our	discussion	to	a	selected	set	of	algorithms	that	encapsulate	the	diver-
sity	of	 the	various	 feature	 selection	 techniques	of	filter-based	and	wrapper-based	
approaches.	 We	 also	 describe	 the	 various	 feature	 construction/extraction	 tech-
niques	that	are	described	in	the	following	sections.

4.1  introduction
The	purpose	of	data	preparation	in	the	KDD	process	is	to	potentially	improve	the	
quality	of	real-world	data	that	are	potentially	incomplete,	noisy,	and	inconsistent	
(Zhang	et	al.	2003).	These	inconsistencies	reduce	the	discovery	of	useful	patterns.	
Missing	values	contribute	 to	a	 large	percentage	of	 issues	 in	databases;	 thus	 it	 is	
imperative	 to	define	methods	 that	 address	 the	missing	 values.	Problems	 associ-
ated	 with	 missing	 values	 are	 amplified	 when	 attributes	 are	 missing	 or	 datasets	
have	attributes	 in	 the	 form	of	aggregates	 (i.e.,	attributes	 that	are	a	combination	
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of	other	attributes).	As	stated	above,	biological	data	are	considered	noisy,	as	they	
are	plagued	by	noise	and	outliers	(Furey	et	al.	2000).	These	errors	and	outliers	are	
attributed	to	data	inconsistencies	in	codes	and	nomenclature	(refer	to	Chapters	2	
and	3	for	data	cleaning	strategies).

Data	 transformation	and	preparation	 result	 in	a	 refined	 form	of	 the	origi-
nal	 data	 that	 is	 smaller	 and	 free	 of	 noise.	 These	 methods	 are	 used	 with	 the	
objective	of	 improving	both	 the	 accuracy	 and	 the	 computational	 efficiency	of	
data	mining.	Data	 transformation	 strategies	 listed	 in	 this	 chapter	 are	used	 to	
ensure	 that	 all	 the	 data	 are	 free	 of	 noise	 and	 inconsistencies.	 These	 strategies	
thus	enhance	the	effective	comparisons	between	data	points.	Data	preparation	
includes	 strategies	of	 feature/attribute	 selection	 in	which	various	filtering	 and	
wrapper	approaches	are	used	to	select	relevant	features/attributes	that	enhance	
the	prediction	 accuracy	of	 the	 learning	 algorithm	applied	 in	 the	data	mining	
step	later	in	the	KDD	process.

To	avoid	learning	biases	and	simultaneously	overcome	computational	bottle-
necks	 with	 respect	 to	 resources	 and	 algorithm	 efficiency,	 data-nested	 validation	
strategies	 play	 an	 important	 role	 in	 preparing	 data	 in	 which	 various	 iterative	
sampling	and	instance	selection	strategies	have	been	applied	to	handle	the	 large	
number	of	data	effectively,	avoid	learning	biases,	and	estimate	the	performance	of	
feature	selection.	Thus,	data	transformation	and	preparation	is	viewed	as	a	guided	
process	focused	on	generating	quality	data,	which	leads	to	the	discovery	of	relevant	
patterns.

4.2  overfitting
In	the	quest	of	fitting	a	statistical	or	learning	model	to	the	data,	we	typically	run	
in	 to	 the	problem	of	overfitting.	Overfitting	occurs	when	 the	 intended	 learning	
model	captures	the	inherent	noise	in	the	data	instead	of	the	underlying	relation-
ship	between	attributes	of	the	data.	Overfitting	can	be	correlated	to	the	learning	
algorithm’s	ability	to	give	more	importance	to	redundant	and	irrelevant	attributes	
than	to	the	amount	of	data	available,	making	it	overly	complex	and	decreasing	its	
predictive	capacity.

Thus,	the	data	must	be	subjected	to	data	preparation	to	overcome	overfitting.	
Data	preparation	can	be	used	to	select	features	that	exhibit	a	causal	relation	to	the	
class	labels	(target	function)	of	the	data	records.	This	process	is	called	dimensional-
ity	reduction.	In	addition	to	increasing	the	predictive	accuracy,	there	are	two	goals	
for	performing	dimensionality	 reduction:	 to	 increase	 the	 speed	of	 the	algorithm	
and	 to	utilize	 space	effectively.	Typically,	dimensionality	 reduction	 falls	 into	 the	
third	step	of	data	transformation	(see	Chapter	2,	Figure	2.1).	Thus,	in	this	chapter,	
we	elaborate	on	the	various	data	transformation	techniques	and	the	various	feature	
selection	and	feature	extraction	schemes.
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4.3  Data transformation
Data	transformation,	a	key	concept	of	data	preparation,	ensures	that	data	are	trans-
formed	 or	 consolidated	 (prepared)	 into	 a	 form	 in	 which	 learning	 can	 be	 applied.	
Typically,	 data	 transformation	 includes	 smoothing,	 a	 process	 in	 which	 noise	 and	
inconsistencies	are	removed	from	data.	This	process	typically	involves	discretization	
of	data	features/attributes.	Data	generalization	is	another	strategy	of	data	transforma-
tion,	which	is	applied	to	data	when	abstraction	of	data	is	required.	In	such	cases,	the	
low-level	raw	data	are	generalized	to	higher-level	concepts	such	that	resultant	knowl-
edge	after	mining	can	provide	a	better	understanding	of	data.	Just	like	data	smoothing	
and	generalization,	data	normalization	is	important	in	data	transformation,	as	it	facili-
tates	an	effective	comparison	of	data	points.	Typically,	real-world	data	are	recorded	at	
different	scales,	and	through	normalization,	those	data	are	converted	to	a	universal	
form	for	comparison.	These	techniques	are	detailed	as	follows.

4.3.1  Data Smoothing by Discretization
Data	smoothing	is	a	data	transformation	strategy	that	is	based	on	data	discretization.	
In	this	method,	data	are	categorized	into	intervals	or	bins	to	capture	characteristics	that	
could	potentially	be	used	to	handle	data	inconsistencies.	This	process	of	dividing	the	
data	into	intervals	is	commonly	referred	to	as	data	discretization.	Data	discretization	
employs	various	binning	strategies	to	remove	inherent	noise	present	in	the	data.	This	
noise	in	data	takes	many	forms,	specifically	the	form	of	missing	and	inconsistent	data	
values.	Simple	alternatives	can	be	employed	for	handling	missing	values	without	going	
through	the	tedious	procedure	of	manual	updates.	These	include	substituting	all	miss-
ing	values	with	a	global	constant.	Though	easy	to	implement,	these	methods	do	affect	
the	 learning	 from	data,	 and	 thus	we	do	not	 recommend	using	 them.	Other	 strate-
gies	include	substituting	the	missing	values	with	the	feature/attribute	mean	for	a	given	
class.	Other	approaches	fill	missing	values	based	on	inference	derived	from	probabilistic	
Bayesian	approaches	or	induction-based	decision	trees	such	as	C4.5	and	CART.

In	this	section,	we	explain	how	binning	methods	are	used	to	handle	noisy	data	
that	are	present	as	 inconsistent	values	for	a	given	feature/attribute.	Binning	meth-
ods	can	be	categorized	as	unsupervised	or	supervised	methods.	Unsupervised	bin-
ning	 includes	 sorting	 data	 for	 a	 specific	 feature/attribute	 and	 dividing	 them	 into	
equal-sized	intervals	called	bins.	Using	these	bins,	one	can	transform	or	smooth	data	
smoothing	by	bin	means,	smoothing	by	bin	median,	or	smoothing	by	bin	boundaries.

Unsupervised	 binning	 methods	 include	 equi-width	 and	 equi-depth	 binning,	
which	 is	 controlled	only	by	a	predetermined	number	of	bins	N.	The	equi-width	
binning	strategy	is	described	in	the	following	steps:

	 1.	Sort	the	values	of	attribute/feature	f	in	ascending	or	descending	order.
	 2.	Determine	the	range	of	values	of	f,	and	divide	the	range	into	N	intervals	of	

equal	size.
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	 3.	Determine	the	width	of	each	bin	by	finding	max(	f )	and	min(	f )	of	f,	using	
the	following	relation:

	

(max( ) min( ))
width

f f
N

= −

	 4.	Allocate	values	to	their	corresponding	bins	based	on	the	range	in	which	they	
fall	into.

	 5.	Smooth	by	means,	median,	or	boundaries.

Though	equi-width	binning	is	most	straightforward,	it	is	sensitive	to	outliers	and	
cannot	handle	 skewed	data.	The	alternative	unsupervised	approach	 is	equi-depth	
binning,	which	is	based	on	frequency	partitioning.	In	this	approach,	the	range	is	
determined	by	the	number	of	data	samples	in	the	dataset	and	a	predefined	number	
of	bins.	For	example,	if	a	dataset	consists	of	30	samples	and	3	bins,	then	each	bin	
is	populated	by	10	samples	per	bin.	This	method	effectively	handles	data	scaling.

4.3.1.1  Discretization of Continuous Attributes

The	discretization	of	continuous	attributes	requires	slicing	a	domain	into	a	finite	
number	of	intervals.	The	minimum	description	length	(MDL)	principle	is	an	origi-
nal	approach	used	to	minimize	the	quantity	of	information	contained	in	both	the	
model	and	the	exceptions	to	the	model.

Unlike	the	equi-depth	and	equi-width	discretization	approaches,	Khiops	discri-
tization	(Boulle	2004)	is	a	supervised	approach	that	discretizes	attributes	using	the	
chi-square	(	χ2)	test.

In	brief,	 the	Khiops	discretization	 is	 a	bottom-up	 approach	 to	discretization	
that	searches	for	the	best	place	to	merge	adjacent	intervals	by	minimizing	the	χ2	cri-
terion	applied	locally	to	two	adjacent	intervals;	i.e.,	they	are	merged	if	they	exhibit	
statistical	similarity.	The	χ2	threshold	is	user	defined,	and	χ2	statistics	are	param-
eterized	by	the	number	of	explanatory	values	(related	to	the	degrees	of	freedom).	To	
compare	two	discretizations	with	different	interval	numbers,	we	use	the	confidence	
level	instead	of	the	χ2	value.

Considering	 the	 contingency	 table	 as	 shown	 in	Figure	4.1,	 let	 . /. .e n n Nij i j= 	
be	the	expected	frequency	for	cell	(i,j),	if	the	explanatory	and	class	attributes	are	
independent.	 In	 this	 case,	 the	χ2	 value	 is	 a	measure	of	 the	 contingency	 table	of	
the	difference	between	observed	frequencies	and	expected	frequencies	and	can	be	
interpreted	as	a	distance	to	the	hypothesis	of	independence	between	attributes.	The	
numerical	representation	is	shown	below:

	

( )2
2n e

e
i j

ij ij

ij
∑∑χ =

−
	 (4.1)
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The	Khiops	algorithm	minimizes	the	confidence	level	between	the	discretized	
explanatory	attributes	by	using	χ2	statistics.	The	χ2	value	is	not	reliable	for	testing	
the	hypothesis	of	independence	if	the	expected	frequency	in	any	cell	of	the	con-
tingency	table	falls	below	a	defined	minimum	value.	The	algorithm	is	described	
by	the	following	steps:

	 1.	Initialization:
	 1.1.	Sort	the	explanatory	attribute	values.
	 1.2.	Create	an	elementary	interval	for	each	value.
	 2.	Optimization	of	the	discretization:
	 2.1.	Repeat	the	following	steps.
	 2.2.	Search	 for	 the	 best	 merge.	 Search	 among	 the	 merges	 with	 at	 least	

one	 interval	 that	does	not	meet	 the	 frequency	 constraint	 if	 one	 exists;	
merge.	Otherwise,	merge	interval	that	maximizes	the	χ2	value.

	 2.3.	Evaluate	 the	 stopping	 criterion.	 Stop	 if	 all	 constraints	 are	 respected	
and	if	no	further	merge	decreases	the	confidence	level.

	 2.4.	Merge	and	continue	if	the	stopping	criterion	is	not	met.

The	Khiops	method	is	based	on	a	greedy	bottom-up	algorithm.	It	starts	with	
initial	single-value	intervals	and	then	searches	for	the	best	merge	between	adjacent	
intervals	that	contain	two	levels	of	merging.	At	the	first	level	of	merging,	the	Khiops	
method	merges	with	at	least	one	interval	that	does	not	meet	the	constraint;	at	the	
second	level	of	merging,	it	merges	with	both	intervals,	fulfilling	the	constraint.	The	
best	merge	candidate	 (with	 the	highest	χ2	value)	 is	chosen	 from	among	the	first	
level	of	merges	(in	which	case	the	merge	is	accepted	unconditionally).	Otherwise,	
if	all	minimum	frequency	constraints	are	respected,	the	merge	candidate	is	selected	
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Figure 4.1 A schematic representation of the contingency table used to compute 
the X2 value.
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from	among	the	second	level	of	merges	(in	which	case	the	merge	is	accepted	under	
the	condition	of	improvement	of	the	confidence	level).	The	algorithm	is	reiterated	
until	all	minimum	frequency	constraints	are	respected	and	no	further	merge	can	
decrease	the	confidence	level.	The	computational	complexity	of	this	algorithm	is	of	
the	order	O(Nlog(N))	with	some	optimization.

4.3.2  Normalization and Standardization
According	to	Guyon	and	Gunn	(2006),	data	transformation	is	an	integral	part	of	
model	 selection.	Thus,	data	preparation	 in	 this	 chapter	 refers	 to	 the	 selection	of	
the	best	normalization	strategies	and	mathematical	transformations	of	the	feature	
space	in	the	perspective	of	the	learning	machine	used	for	processing	the	data.

Normalization	and	standardization	strategies	are	applied	to	data	to	remove	cer-
tain	systematic	biases	that	are	inherent	to	the	data.	These	biases	are	brought	about	
by	the	dependencies	between	attributes	and	do	not	have	to	deal	with	the	normal	
or	 Gaussian	 distribution	 of	 the	 data.	 In	 normalization,	 each	 attribute	 is	 treated	
independently.	 Normalization	 methods	 include	 min-max	 normalization,	 z-score	
normalization,	and	normalization	by	decimal	scaling.

4.3.2.1  Min-Max Normalization

According	to	Han	and	Kamber	(2006),	min-max	normalization	is	a	linear	trans-
formation	of	the	original	data.	Min-max	normalization	maps	the	value	v of	an	
attribute	A	in	a	record	within	a	user-defined	minimum	and	maximum	(new_minA	
and	new_maxA)	for	the	given	attribute	using	the	following	expression:

	
( _ _ ) _v

v min
max min

new max new min new minA

A A
A A A′ = −

−
− + 	 (4.2)

where	minA	and	maxA	represent	the	minimum	and	maximum	values	of	the	attribute	
A	across	the	entire	dataset	and	v′	is	the	normalized	value	of	v.

Since	the	values	of	new_minA	and	new_maxA	are	arbitrarily	set	by	the	user	to	0	
and	1,	respectively,	the	min-max	normalization	is	known	as	zero-one	normalization.

4.3.2.2  z-Score Standardization

Instead	of	the	user	specifying	the	range	through	new_minA	and	new_maxA	in	z-score	
standardization,	the	range	for	an	attribute	is	determined	by	the	mean	and	standard	
deviation	possessed	by	the	attribute	across	the	dataset.	The	z-score	standardization	
is	brought	about	by	the	following	expression:

	
,v

v A

A
′ = − µ

σ
	 (4.3)

where	µA	 and	σA	 represent	 the	mean	 and	 standard	deviation	of	 the	 attribute	A.	
It	is	advantageous	to	use	z-score	standardization	when	it	is	difficult	to	determine	
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the	minimum	and	maximum	values	of	a	given	attribute	and	when	the	dataset	is	
plagued	by	outliers	(Han	and	Kamber	2006).

4.3.2.3  Normalization by Decimal Scaling

Another	prominently	used	normalization	 technique	 is	normalization	by	decimal	
scaling.	In	this	normalization	strategy,	normalization	is	carried	out	by	proportion-
ally	reducing	the	value	of	each	attribute	in	a	record	to	a	value	of	less	than	1	using	
the	following	criteria,	as	presented	in	Equation	4.4:

	 10
v

v
j′ = ,	 (4.4)

where	j is	the	smallest	integer	such	that	max(|v |) 1′ < 	(Han	and	Kamber	2006).
Supervised	 learning	 is	 typically	presented	with	a	 set	of	 training	 instances	 in	

which	each	instance	is	described	by	a	vector	of	features	(or	attributes),	values,	and	
a	class	label.	The	task	of	the	machine	learning	algorithm	is	to	obtain	the	highest	
possible	classification	accuracy	given	a	 set	of	 features.	However,	 this	objective	 is	
rarely	 achieved	 given	 a	 real-world	 scenario	 in	 which	 a	 large	 number	 of	 features	
describe	a	given	instance,	since	the	classification	accuracy	decreases	proportionally	
as	the	number	of	features	rises.	For	example,	the	accuracy	for	detecting	data	points	
in	n-dimensional	space	decreases	if	there	are	a	large	number	of	features.	Feature	
selection	and	feature	extraction	techniques	are	used	to	overcome	such	inherent	big	
N	 small	p problems.	Feature	selection	selects	an	optimal	subset	of	 features	 from	
an	 existing	 set	 of	 features,	 while	 feature	 extraction	 constructs	 features	 from	 an	
existing	set	of	features.	In	this	chapter,	we	elaborate	on	the	problems	faced	in	fea-
ture	selection	and	feature	extraction	and	explain	the	techniques	available	for	both.	
Before	we	delve	into	the	various	feature	selection	and	feature	extraction	strategies,	
let	us	first	describe	the	significance	of	features	and	their	relevance	to	a	dataset.

4.4  Features and Relevance
A	feature	( f ),	also	referred	to	as	an	attribute,	is	a	descriptor	data	point	of	instance.	The	
relevance	of	a	feature	( f )	is	always	measured	by	its	ability	to	distinguish	instances	of	
the	dataset	with	respect	to	the	target	class	to	which	the	instance	belongs.	Features	
can	therefore	be	categorized	into	two	types:	those	that	are	strongly	relevant	to	the	
dataset/distribution	and	those	that	are	weakly	relevant	to	the	dataset/distribution	
(Figure	4.2)	(Kohavi	and	John	1997).

4.4.1  Strongly Relevant Features
A	feature	f	is	strongly	relevant	to	dataset	S	if	two	instances	A	and	B	in	S	belong	to	
different	classes	(or	have	different	distributions	of	labels	if	they	appear	in	S multiple	
times)	and	differ	only	in	their	value	of	f.	Moreover,	f is	strongly	relevant	to	target	c	
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and	distribution	D	if	data	points	A	and	B	have	nonzero	probability	over	D	that	
differs	only	in	their	assignment	to	f and	satisfy	c(A)	≠	c(B),	in	which	case,	A	and	B 
are	now	required	to	be	in	S	(or	have	nonzero	probability).

4.4.2  Weakly Relevant to the Dataset/Distribution
A	feature	f	is	weakly	relevant	to	sample	X	(or	to	target	c and	distribution	D)	if	it	is	
possible	to	remove	a	subset	of	the	features	so	that	f	becomes	strongly	relevant.

4.4.3  Pearson Correlation Coefficient
Now	that	we	know	the	characteristic	difference	between	the	kinds	of	features,	it	is	
a	challenge	to	design	algorithms	to	choose	a	set	of	strong	features	for	a	given	data-
set.	Based	on	the	definition	of	a	strong	feature	above	(Guyon	and	Elisseeff	2003),	
use	Pearson’s	correlation	to	rank	features	with	respect	to	the	target	outcome	y.	The	
Pearson	correlation	coefficient	is	defined	as
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where	the	bar	notation	stands	for	an	average	over	the	index	k.

Totally
Irrelevant
Features

Weakly
Relevant
Features

Strongly
Relevant
Features

Figure 4.2 A view of feature set relevance. (From Kohavi, R., and John, G.H., 
Artif Intell 97, no. 1–2 (1997): 273–324. With permission.)
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As	in	linear	regression,	the	coefficient	of	determination	represents	the	fraction	
of	the	total	variance	around	the	mean	value	 y 	that	is	explained	by	the	linear	rela-
tion	between	xi	and	y.	Therefore,	using	R(i)2	enforces	a	variable	ranking	criterion	
according	to	how	well	the	variable	fits	the	linear	model.

However,	the	correlation	criteria,	such	as	R(i)2,	can	only	detect	linear	dependen-
cies	between	the	variable	and	target	and	fail	to	fit	a	nonlinear	model.

4.4.4  Information Theoretic Ranking Criteria
Many	 algorithms	 for	 variable	 selection	 use	 information	 theoretic	 criteria	 in	 the	
literature.	Mutual	information	between	variables	and	target	classes	is	prominently	
expressed	as

	

( ) ( , ) ( , )
( ) ( )

i p x y log
p x y

p x p y
dxdy

x y

i
i

i
i

T ∫∫= 	 (4.7)

where	p(xi)	and	p(y)	are	the	probability	densities	of	xi	and	y,	and	p(xi, y)	is	the	joint	
density.	 ( )iT 	is	the	criterion	that	measures	the	dependency	between	the	density	of	
variable	xi	and	the	density	of	the	target	y.

However,	the	densities	p(xi),	p(y),	and	p(xi, y)	are	all	unknown	and	are	hard	to	
estimate	from	data.	To	this	end,	it	is	simpler	to	convert	the	integral	to	a	sum	as	below:
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The	above	formulation	of	T 	makes	it	easier	to	implement	in	a	code	as	comput-
ing	probabilities	simplified	to	frequency	counts.	However,	the	estimation	becomes	
harder	with	larger	numbers	of	classes	and	variable	values.

In	the	case	of	continuous	variables	(and	possibly	continuous	targets),	this	esti-
mation	 becomes	 even	 more	 challenging.	 Discretization	 of	 variables	 provides	 an	
immediate	solution.	However,	using	the	normal	distribution	to	estimate	densities	
will	allow	us	to	estimate	the	covariance	between	Xi	and	Y,	thus	creating	a	similar	
criterion	for	the	correlation	coefficient.

Keeping	 these	challenges	 in	mind,	we	 look	 into	 the	various	 feature	 selection	
and	feature	extraction	strategies	available.	We	detail	 the	mathematical	principles	
involved	and	highlight	the	challenges	they	pose.

4.5  overview of Feature Selection
There	are	four	steps	to	feature	extraction	and	feature	selection:	(1)	feature	construc-
tion,	(2)	feature	subset	generation,	(3)	evaluation	criterion	definition,	and	(4)	evalu-
ation	criterion	estimation.
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Feature	extraction	uses	feature	construction,	and	feature	selection	schemes	use	
the	steps	generating	feature	subsets,	defining	evaluation	criterion,	and	estimating	
evaluation	criterion.	Based	on	these	four	steps,	feature	selection	is	further	charac-
terized	into	filter	and	wrapper	techniques	(Das	2001).

In	wrapper	approaches	of	feature	selection,	a	feature	subset	selection	algorithm	
is	wrapped	around	the	learning	algorithm.	The	subset	selection	algorithm	searches	
for	an	optimal	subset	using	the	learning	algorithm	that	is	 independent	from	the	
final	evaluator.	This	subset	selection	algorithm	performs	all	the	necessary	evalua-
tion	of	feature	subsets.	The	wrapper	approach	is	run	on	a	dataset,	which	is	usually	
partitioned	into	internal	training	and	holdout	sets,	with	sets	of	features	removed	
from	the	data.	The	feature	subset	with	the	highest	estimated	value	is	chosen	as	the	
final	set	on	which	to	run	the	classifier	(Saeys	et	al.	2007).	The	resulting	classifier	
is	then	evaluated	on	an	independent	test	set	that	was	not	used	during	the	search.

An	important	component	of	any	feature	selection	technique	is	the	projection	
matrix.	The	projection	matrix	 is	 used	 to	 store	weights	 of	 features	 that	 generally	
reflect	the	importance	of	each	feature	in	the	dataset.	This	matrix	is	multiplied	by	
the	feature	vectors	in	order	to	optimize	the	base	criterion	function.	Typically,	the	
off-diagonal	 elements	of	 a	projection	matrix	are	all	 set	 to	 zero	and	 the	diagonal	
elements	of	 the	projection	matrix	 are	 set	 to	 {0,1}	 in	 feature	 selection.	Given	 the	
criterion	function,	feature	selection	is	equated	to	an	exhaustive	search	problem.	As	
the	complexity	of	the	search	is	directly	proportional	to	the	number	of	features	in	
the	dataset,	feature	selection	is	empirically	based	on	forward	or	backward	selection	
schemes	(Pudil	et	al.	1994).

Alternatively,	 as	 an	 improvement	 to	 the	 feature	 selection	 schemes	 is	 feature	
weighting.	In	feature	weighting,	the	diagonal	elements	of	the	projection	matrix	are	
not	confined	to	just	{0,1},	but	rather	are	allowed	to	take	real	values.	This	modifica-
tion	to	the	projection	matrix	allows	for	the	employment	of	more	well-known	opti-
mization	schemes.	In	this	chapter,	we	elaborate	on	some	of	the	well-known	feature	
selection	and	feature	extraction	schemes.

4.5.1  Filter Approaches
This	 category	 of	 methods	 is	 closely	 associated	 with	 feature-ranking	 techniques	
(see	Figure	4.3).	Filter	approaches	rank	features	based	on	the	correlation	(degree	
of	dependence)	of	individual	features	with	respect	to	the	target	(class)	label	of	the	
dataset.	This	process	is	called	the	relevance	index.

Feature	subset	generation	entails	a	category	of	algorithms	that	include,	but	are	
not	 limited	 to,	a	heuristic	or	 stochastic	 search,	exhaustive	 searches	of	 features,	 a	
nested	 subset	 strategy	 for	 feature	 selection,	 forward	 selection/backward	 elimina-
tion,	 and	 single-feature	 ranking.	 The	 evaluation	 criteria	 for	 these	 filter	 methods	
include	single-feature	relevance,	relevance	in	context,	and	feature	subset	relevance.	
Evaluation	criteria	estimation	typically	entails	statistical	tests.
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4.5.2  Wrapper Approaches
In	wrapper	methods,	the	performance	of	a	learning	algorithm	is	used	to	evaluate	
the	goodness	of	selected	feature	subsets	by	their	information	content	rather	than	
by	optimizing	the	performance	of	a	 learning	algorithm	directly	(see	Figure	4.4).	
Though	filter	methods	are	computationally	more	efficient,	wrapper	methods	yield	
better	results	(Yijun	and	Dageng	2008).

Feature	subset	generation	entails	a	category	of	algorithms	that	include	but	are	
not	limited	to	a	heuristic	or	stochastic	search,	an	exhaustive	search	of	features,	a	
nested	 subset	 strategy	 for	 feature	 selection,	 forward	 selection/backward	 elimina-
tion,	and	single-feature	ranking.

Evaluation	 criteria	 estimation	 involves	 various	 cross-validation	 and	 perfor-
mance	bounds	techniques.

Feature Subset
Selection

Learning
Algorithm

Validation

Training
Set

Training
Set

Feature
Set

Estimated
AccuracyTest Set

Figure 4.3 the filter approach to feature subset selection.

Feature Selection Search

Feature Evaluation

Learning Algorithm

Learning
Algorithm

Validation

Training Set
Training

Set

Feature Set

Estimated
AccuracyTest Set

Figure 4.4 the wrapper approach to feature subset selection. the learning algo-
rithm is used as a black box by the subset selection algorithm. (From Kohavi, R. 
and John, G. H., Artif intell 97, no. 1–2 (1997): 273–324. With permission.)
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4.6  Filter Approaches for Feature Selection
Filter	approaches	 for	 feature	 selection	use	 the	predictive	power	of	many	 features	
collectively	rather	than	independently.	This	process	is	driven	by	features	that	are	
irrelevant	 individually	but	become	relevant	when	used	 in	combination	with	one	
another.	Thus,	feature	selection	is	the	problem	of	choosing	a	small	subset	of	features	
that	is	necessary	and	sufficient	to	describe	a	class	(or	target).

4.6.1  FOCUS Algorithm
As	an	example	of	the	filter	approach	to	feature	selection	we	describe	the	FOCUS	
algorithm.	In	the	FOCUS	algorithm	(Almuallin	and	Dietterich	1992),	the	features	
describing	a	data	point	are	a	set	of	Boolean	features	and	are	conceptualized	to	work	
on	a	binary	class	scenario.	Thus,	let	{x1,	x2,	…	,	xn}	be	a	set	of	n	Boolean	features	and	
{C +,	C −}	represent	the	associate	classes	that	each	data	point	belongs	to.	The	ultimate	
goal	of	the	algorithm	is	to	select	features	based	on	a	sufficiency	test.	The	sufficiency	
test	is	a	procedure	for	checking	whether	the	selected	features	(Q)	are	sufficient	to	
form	a	consistent	hypothesis	or	are	sufficient	to	differentiate	between	the	two	classes.

Let	 ,1X C〈 〉+ 	and	 ,2X C〈 〉− 	represent	two	independent	samples	from	classes	C +	
and	C −,	respectively.	The	sufficiency	test	determines	whether	the	samples	have	the	
same	 values	 for	 all	 selected	 features	 of	 Q.	 If	 the	 pair	 of	 samples	 has	 all	 feature	
matches	in	Q,	then	the	selected	features	Q	cannot	discriminate	all	of	the	positive	
examples	from	all	of	the	negative	examples.	On	the	contrary,	the	feature	set	Q is	
sufficient	if	no	such	matching	pairs	appear	in	the	training	set.

As	a	working	example,	for	the	two	samples	 ,1X C〈 〉+ 	and	 ,2X C〈 〉− ,	we	define	
a	conflict	vector	a	of	length	n, 1 2a a an〈 … 〉 , where	ai	=	1	if	X1	and	X2	have	differ-
ent	values	 for	 the	 feature	xi	 and	ai	=	0	otherwise.	We	say	 that	a	 is	 explained	by	
xi	if	ai	=	1.	Using	this	terminology,	a	set	Q of	features	is	sufficient	to	construct	a	
hypothesis	consistent	with	a	given	training	sample	if	every	conflict	generated	from	
the	sample	is	explained	by	some	feature	in	Q.

For	example,	let	the	training	sample	be

	

010100, 011000,

110010, 101001,

101111, 100101,

C C

C C

C C

〈 〉 〈 〉

〈 〉 〈 〉

〈 〉 〈 〉

+ −

+ −

+ −

Then,	the	set	of	all	conflicts	generated	from	this	sample	is

	

001100 101010 110111

111101 011011 000110

110001 010111 001010

1 4 7

2 5 8

3 6 9

a a a

a a a

a a a

= 〈 〉 = 〈 〉 = 〈 〉

= 〈 〉 = 〈 〉 = 〈 〉

= 〈 〉 = 〈 〉 = 〈 〉
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Double-check	to	ensure	that	subset	{x1.x3,	x4}	is	sufficient	to	form	a	consistent	
hypothesis	(e.g.,	 ( )1 3 3 4x x x x∨ ⊕ ),	and	that	all	subsets	of	cardinality	less	than	3	are	
insufficient.

Despite	the	ease	of	using	this	method,	there	is	one	disadvantage	to	using	the	
FOCUS	 algorithm.	 The	 algorithm	 tries	 all	 subsets	 of	 features	 of	 increasing	 size	
until	 a	 sufficient	 set	 is	 encountered.	As	 seen	 in	 the	 above	 example,	 the	FOCUS

algorithm	tests	 the	
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 = 	 subsets	of	 features	of	 size	0,	1,	2,	and

some	of	the	
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3 20



 = 	subsets	of	size	3	before	returning	the	solution.	FOCUS	thus

does	not	exploit	all	the	information	given	in	the	training	sample.	For	example,	it	
does	not	accurately	exploit	 0011001a = 〈 〉 ,	where	any	associated	sufficient	set	must	
contain	x3	or	x4	to	elucidate	the	conflict.	Thus,	none	of	the	sets	{x1},	{x2},	{x5},	{x6},	
{x1,	x2},	{x1,	x5},	{x1,	x6},	{x2,	x5},	{x2,	x6},	{x5,	x6}	can	be	solutions.	Therefore,	all	of	
these	 sets	 can	 immediately	 be	 ruled	out	 of	 the	 algorithm’s	 consideration.	Many	
other	subsets	can	be	similarly	ruled	out	based	on	the	other	conflicts.

The	FOCUS-2	algorithm	is	presented	in	Figure	4.5	(Almuallin	and	Dietterich	
1992).	 This	 algorithm	 proposes	 the	 use	 of	 a	 first-in/first-out	 data	 structure,	 in	
which	each	node	of	the	data	structure	represents	a	subspace	of	all	feature	subsets.	
Each	node	is	of	the	form	MA,B,	which	denotes	the	space	of	all	feature	subsets	that	
include	all	the	features	in	the	set	A	and	the	node	of	the	feature	in	the	set	B.	Thus,	
MA,B,	is	formally	represented	as

	 | , , { , , , }, 1 2M T T A T B T x x xA B n{ }= ⊇ ∩ = φ ⊆ … 	 (4.9)

M{x3,x5},{x4}

M{x4,x5},{x3}

M{x3,x4,x6},{x1,x2}

M{x2,x3,x4},{x1}

M{x1,x3,x4},φ

{x1, x3, x4} is Sufficient

Figure 4.5 the working of the FoCUS algorithm. (Modified from Almuallin, 
H., and Dietterich, t.G., in Proceedings of the Ninth Canadian Conference on 
Artificial Intelligence. Vancouver, BC: Morgan Kaufmann, 1992, pp. 38–45.)
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The	objective	of	using	FOCUS	is	 to	 retain	only	 the	portions	of	 the	 space	of	
feature	subsets	that	could	contain	a	solution.	Initially,	the	data	structure	contains	
only	 the	element	 ,Mφ φ ,	which	 represents	 the	power	 set.	 In	each	 iteration	of	 the	
algorithm,	the	space	represented	by	the	head	of	the	queue	is	partitioned	into	dis-
joint	subspaces,	and	those	subspaces	that	cannot	contain	solutions	are	pruned	from	
the	search.

In	respect	to	the	conflict	 0011001a = 〈 〉 	and	the	power	set	of	features	 ,Mφ φ ,	we	
know	that	any	sufficient	feature	subset	must	contain	either	x3	or	x4.	This	structured	
approach	helps	further	refine	 ,Mφ φ 	into	the	two	subspaces:	 { },3M x φ ,	those	feature	
subspaces	that	contain	x3,	and	 { },{ }4 3M x x ,	all	feature	subspaces	that	contain	x4	and	
not	x3.	Thus,	conflicts	with	fewer	1s	in	them	provide	more	constraint	for	the	search	
than	conflicts	with	more	1s.	Therefore,	if	the	head	node	of	the	queue	is	MA,B,	then	
the	algorithm	searches	for	a	conflict	a	such	that	(1)	a	is	not	explained	by	any	of	the	
features	in	A,	and	(2)	the	number	of	1s	corresponding	to	features	that	are	not	in	B	
is	minimized.

The	 algorithm	 of	 FOCUS,	 given	 ,Mφ φ ,	 is	 described	 by	 the	 following	 steps:	
Given	the	conflict	 0011001a = 〈 〉 ,	 ,Mφ φ 	is	replaced	by	 { },3M x φ 	and	 ,{ }4 3M x x{ } .	Next,	
for	 { },3M x φ ,	the	conflict	 0001108a = 〈 〉 	is	selected,	and	 , ,3 4M x x{ } φ 	and	 , ,3 5 4M x x x{ } { }	
are	 added	 to	 the	 queue.	 ,4 3M x x{ }{ } 	 is	 then	 processed	 with	 0010109a = 〈 〉 	 and	

, ,4 5 3M x x x{ } { }	is	inserted.

	 1.	If	all	the	examples	in	the	sample	have	the	same	class,	then	return	ϕ.
	 2.	Let	G	be	the	set	of	all	conflicts	generated	from	the	sample.
	 3.	Queue	=	 { },Mφ φ .
	 4.	Repeat.
	 a.	 Pop	the	first	element	in	queue.	Call	it	MA,B.
	 b.	 Let	OUT = A.
	 c.	 Let	a	be	the	conflict	in	G	not	explained	by	any	features	in	A,	such	that	

|Za	−	B|	is	minimized,	where	Za	is	the	set	of	features	explaining	a.
	 d.	 For	each	 x Z Ba∈ − ,
	 i.	 If	sufficient	 ( { })A x∪ ,	return	 ( { })A x∪ .
	 ii.	 Insert	 { },MA x OUT∪ 	at	the	tail	of	queue.
	 iii.	 { }OUT OUT x= ∪ .

Finally,	when	 , ,3 4M x x{ } φ 	 is	processed	with	 1100013a = 〈 〉 ,	 the	 algorithm	 termi-
nates	before	adding	 , , ,1 3 4M x x x{ } φ 	to	the	queue	since	 { , , }1 3 4x x x 	is	a	solution.

4.6.2  RELIEF Method—Weight-Based Approach
Other	feature	selection	methods	assign	weights	to	features	that	have	a	high	degree	
of	relevance.	One	the	most	prominent	such	methods,	the	RELIEF	algorithm,	takes	
into	consideration	inherent	relations	between	features.	In	this	section,	we	describe	
the	RELIEF	algorithm.
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Given	a	training	dataset,	the	RELIEF	algorithm	(Kira	and	Rendell	1992;	Yijun	
and	Dageng	2008)	iteratively	estimates	feature	weights	according	to	the	weight’s	abil-
ity	to	discriminate	between	neighboring	patterns.	The	approach	used	in	RELIEF	is	
based	on	instance-based	learning	(Kira	and	Rendell	1992).	For	the	given	training	set	
T,	consisting	of	samples	of	length	m,	the	algorithm	aims	to	detect	relevant	features	
that	correlate	to	the	target	class	(binary	class).	The	training	set	T is	initially	split	into	
positive	and	negative	samples.	The	iterative	RELIEF	algorithm	then	uses	a	weight	
vector	W	of	length	m	equal	to	the	number	of	features	in	a	sample.	This	weight	vector	
W	is	initialized	to	zero	before	the	first	iteration	of	the	algorithm.	The	following	steps	
are	performed	iteratively	for	each	attribute	m.	At	first,	a	random	instance	X is	chosen.	
For	comparison,	two	of	the	closest	samples	are	chosen,	one	from	the	class	of	positives	
(T +)	and	the	other	from	the	class	of	negatives	(T –).	Using	Euclidean	distance,	the	
RELIEF	algorithm	selects	either	T +	or	T –	as	its	near	hit	(NH)	or	near	miss	(NM).	
Once	the	NH	and	NM	have	been	determined,	the	weight	vector	W	 is	updated	to	
reflect	the	weight	of	each	attribute.	The	weight	vector	is	averaged	and	then	used	to	
identify	the	relevance	of	each	attribute	based	on	the	values	of	W.	The	algorithm	selects	
those	features	that	have	a	weight	above	threshold	τ.	The	following	are	the	steps	of	the	
RELIEF	algorithm,	for	the	given	dataset	T,	with	m	attributes	and	threshold	τ.

	 1.	Separate	T	into	 {positive instances}T =+ 	and	 {negative instances}T =− .
	 2.	Initialize	the	weight	vector	W =	〈0,	0,	…,	0〉.
	 3.	For	i =	1	to	m,
	 a.	 Pick	at	random	an	instance	X ∈ T.
	 b.	 Pick	at	random	one	of	the	positive instances	closest	to	 , .X t T∈+ +

	 c.	 Pick	at	random	one	of	the	positive instances closest	to	 , .X t T∈− −

	 d.	 If	X	is	a	positive	instance,
	 i.	 Then	near hit 	=	T +;	near miss	=	T −,	
	 ii.	 otherwise	near hit		=	T −;	near miss	=	T +.
	 e.	 Call	Update −	Weight(W,	X,	Near hit,	Near miss)
	 4.	Compute	Relevance =	(1/m).W.
	 5.	For	i =	1	to	p,
	 a.	 If	(relevancei	≥	τ)
	 i.	 Then	featurei	is	a	relevant	feature.
	 ii.	 Otherwise	featurei	is	an	irrelevant	feature.
 6.	Update −	Weight(W,	X,	Near hit,	Near miss)
	 a.	 For	i =	1	to	p,
	 i.	 ( , ) ( , )2 2W W diff x Near hit diff x Near missi i i i i i= − +

Based	 on	 the	 above	 algorithm,	 there	 are	 two	 important	 components	 of	 the	
RELIEF	 algorithm,	 the	 relevance	 (averaged	 weight	 vector)	 and	 the	 threshold	 τ 
(Kira	and	Rendell	1992).	Relevance	is	the	averaged	value	of	the	weight	vector	W	
having	the	values	 ( , ) ( , )2 2W diff x Near hit diff x Near missi i i i i− + 	for	each	feature	
featurei	over	m	sample	triplets.	Each	element	of	a	relevance	vector	corresponds	to	a	
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feature	that	shows	its	relevance	with	respect	to	its	corresponding	target	class.	The	
relevance	threshold	τ	is	used	to	determine	whether	the	feature	should	be	selected.	
The	RELIEF	algorithm	is	valid	only	when	(1)	the	degree	of	relevance	is	large	for	rel-
evant	features	and	comparatively	small	for	irrelevant	features,	and	(2)	the	relevance	
threshold	τ retains	relevant	features	and	discards	irrelevant	features.

4.7  Feature Subset Selection Using Forward Selection
Many	high-throughput	bioinformatics	applications	are	required	for	computational	
techniques	in	order	to	handle	high-dimensional	datasets.	In	such	situations,	meth-
ods	 like	FOCUS	and	RELIEF	are	not	computationally	effective.	Nested	 feature	
subset	selection	approaches	have	shown	computational	prowess	in	handling	these	
high-dimensional	 datasets	 that	 give	FOCUS	and	RELIEF.	There	 are	 two	kinds	
of	nested	approaches:	(1)	forward	selection	approaches	and	(2)	backward	elimina-
tion	approaches.	It	is	often	argued	that	forward	selection	is	computationally	more	
efficient	 than	 backward	 elimination	 for	 generating	 nested	 subsets	 of	 variables.	
However,	 the	 defenders	 of	 backward	 elimination	 argue	 that	 weaker	 subsets	 are	
found	by	forward	selection	because	the	importance	of	variables	is	not	assessed	in	
the	context	of	variables	that	have	not	been	included	yet	(Guyon	and	Elisseeff	2003).	
In	this	section,	we	focus	on	the	forward	feature	subset	selection	approach	for	select-
ing	the	most	discriminatory	features.

Forward	selection	refers	to	a	search	that	begins	with	an	empty	set	of	features	
and	thus	has	a	maximum	error.	At	each	step,	the	feature	that	decreases	the	error	
the	most	is	added	one	at	a	time	until	any	feature	addition	does	not	significantly	
decrease	the	error.	On	the	contrary,	backward	elimination	proceeds	initially	with	
all	the	features	and	iteratively	eliminates	features	that	are	least	useful.	Both	tech-
niques	are	robust	toward	overfitting	and	provide	a	nested	subset	of	features.

4.7.1  Gram-Schmidt Forward Feature Selection
This	feature	selection	method	was	intended	to	be	applied	directly	to	models	that	
have	 linear	 parameters	 that	 are	 independent	 of	 the	 learning	 machine	 method	
employed.	It	is	based	on	the	Gram-Schmidt	orthogonalization	(Chen	et	al.	1989;	
Stoppiglia	et	al.	2003)	procedure	for	ranking	variables.

Consider	a	dataset	that	consists	of	N	data	points	and	their	associated	classes,	
represented	as	a	vector	consisting	of	Q	features.	We	represent	a	data	point	in	the	
dataset	X	as	a	vector	 { , , , }1 2x x x xi i i i

Q= … ,	with	the	associated	class	label	yi.	Similarly,	
the	vector	 { , , , }1 2x x x xi i i

N
i T= … 	represents	feature	i across	the	dataset	and	is	con-

sidered	the	input	to	this	algorithm.	Thus,	dataset	X	 is	represented	as	a	matrix	of	
dimensions	(N,	Q).

The	Gram-Schmidt	procedure	is	an	iterative	process;	in	the	first	iteration,	we	
search	for	the	feature	vector	that	best	explains	the	concept,	i.e.,	the	feature	vector	
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that	has	the	smallest	angle	with	the	process	output	vector	in	the	N-dimensional	
space	of	observations.	To	this	end,	the	following	quantities	are	computed	as

	
,

.
, 12

2

2 2cos x y
x y
x y

k to Qk
i

k
i

k
i� � � �

( ) ( )
= = 	 (4.10)

and	the	vector	xk	of	largest	magnitude	is	selected.	Once	the	largest	vector	is	selected,	
the	remaining	vectors	(that	represent	other	features)	are	projected	onto	a	null	sub-
space	of	the	selected	feature.	In	that	subspace,	the	projected	input	vector	that	best	
explains	the	projected	output	is	selected,	and	the	Q	–	2	remaining	feature	vectors	
are	projected	onto	 the	null	 space	of	 the	first	 two	 ranked	vectors.	The	procedure	
terminates	when	all	Q	input	vectors	are	ranked	or	when	a	stopping	criterion	is	met.

To	determine	an	effective	stopping	criterion,	the	algorithm	proceeds	with	the	
computation	 of	 a	 cumulative	 distribution	 function	 of	 the	 squared	 cosine	 of	 the	
angle	between	a	given	vector	and	a	random	vector.	This	cumulative	distribution	
function	is	used	to	determine	the	rank	of	the	feature.

The	first	step	in	this	method	is	to	compute	the	probability	distribution	function	
of	the	squared	cosine	of	the	angle	φ	between	a	fixed	vector	and	a	vector	that	has	
components	that	are	normally	distributed,	in	a	space	of	dimension	v.	The	step	can	
be	expressed	as
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where	 (.)Γ 	is	the	gamma	function,	with	 x cos ,v 2 and 0 x 12= ϕ ≥ ≤ ≤ .	 ( )f xv 	is	a	
beta	function	with	a =	1/2	and	b =	(v − 1)/2.

The	 cumulative	 distribution	 function	 ( )2F cosv ϕ 	 is	 obtained	using	 the	 above	
relation	(Equation	4.11).	From	this	function,	the	probability	that	the	angle	between	
a	random	vector	and	a	fixed	vector	is	smaller	than	a	given	angle	φ	is	easily	derived	as

	 ( ) 1 ( ),2 2P cos F cosv vϕ = − ϕ 	 (4.12)

for	v ≥	2	(Figure	4.6).

u

u

v

Figure 4.6 Gram-Schmidt process.
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Finally,	 the	cumulative	distribution	function	of	 the	rank	of	a	 random	vector	
can	be	derived	as	follows.	At	iteration	n,	n candidate	features	have	been	ranked,	
and	a	new	feature	 is	chosen	among	the	Q	–	n	 remaining	features.	Using	φn,	we	
denote	 the	angle	 (in	a	 space	of	dimension	v =	N −	n)	between	the	 selected	pro-
jected	feature	and	the	projected	output,	and	by	Πn	the	probability	that	the	angle	
between	a	 realization	of	 the	 random	feature	and	 the	projected	output	 is	 smaller	
than	 : ( )2P cosn n N n nϕ Π = ϕ− .	We	denote	by	 1Gn− 	the	probability	that	a	realization	
of	the	random	feature	is	less	relevant	than	one	of	the	n	–	1	previous	features,	which	
is	equal	to	1 1Gn− − .	Therefore,	the	probability	that	the	probe	will	be	more	relevant	
than	the	n	–	1	previous	features	but	less	relevant	than	the	nth 	feature	is	equal	to

	 ( )(1 ).2
1P cos GN n nϕ −− − 	 (4.13)

Hence,	the	probability	that	a	realization	of	the	random	feature	is	more	significant	
than	one	of	the	n	features	selected	after	iteration	n is	given	by

	 ( )(1 ),1
2

1G G P cos Gn n N n n= + ϕ −− − − 	 (4.14)

with	G0	=	0.
Taking	the	cumulative	distribution	function	into	consideration,	at	each	step	of	

the	Gram-Schmidt	orthogonalization,	four	steps	must	be	performed:

	 1.	After	 orthogonalization,	 pick	 the	projected	 candidate	 feature	 (not	 selected	
during	previous	steps)	that	has	the	smallest	angle	with	the	projected	output.

	 2.	Compute	the	value	of	the	cumulative	distribution	function	as	described	previously.
	 3.	If	the	value	is	smaller	than	the	rank,	retain	the	feature	and	perform	the	next	

step	of	the	Gram-Schmidt	orthogonalization.
	 4.	If	that	value	is	larger	than	the	rank,	discard	the	feature	under	consideration	

and	terminate	the	procedure.

The	 choice	 of	 rank	 is	 problem	 dependent;	 i.e.,	 if	 data	 are	 sparse,	 the	 model	
should	be	as	parsimonious	as	possible.	Hence,	a	low	value	of	the	rank	should	be	
chosen	to	make	sure	that	only	relevant	inputs	are	present	(but	some	features	with	
low	relevance	might	be	missed);	conversely,	if	data	are	abundant,	a	higher	rank	may	
be	acceptable	(but	some	irrelevant	features	might	be	kept).

4.8  other nested Subset Selection Methods
In	feature	selection,	the	number	of	subsets	considered	is	usually	very	large,	and	a	dif-
ferent	 method	 must	 be	 used	 not	 to	 overpenalize	 large	 subsets	 (Guyon	 2009).	 The	
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optimum	number	of	 features	N	 is	 assessed	using	a	cross-validation	method,	which	
includes	a	separate	feature	ranking	in	each	fold.	Then,	a	final	ranking	is	performed	
using	the	entire	training	set	and	the	first	set	of	N	features	is	selected.	This	method	is	
less	biased	than	using	the	ranking	produced	with	the	entire	training	set	and	selecting	
the	best	subset	directly	using	cross-validation.	The	eight	steps	of	this	method	are	listed	
below:

	 1.	Choose	an	algorithm	A 	to	create	nested	feature	subsets.
	 2.	Choose	a	learning	machine	M 	to	evaluate	the	feature	subsets.
	 3.	Split	the	m	available	training	samples	into	K	training	and	validation	subset	

pairs	 { , }D Dt
j

V
j 	of	dimension	t	and	v,	t +	v =	m,	j =	1:K.

	 4.	For	j =	1:K,
	 a.	 Using	A 	and	only	the	Dt

j 	examples,	create	nested	subsets	of	the	n avail-
able	features:

	 1 2S S S Sj j
i
j

n
j� �⊂ ⊂ ⊂ 	

	 b.	 For	i =	1:n,	train	M 	on	subset	 Sij 	using	 Dt
j ,	and	test	it	using	 Dv

j .	Call	
[ , ]r i jval 	the	resulting	estimation	of	performance.

	 5.	Compute	the	CV	scores	of	the	nested	feature	subsets:	 [ ] [ , ]1R i r i jCV j
K

val= ∑ =

	 6.	Select	the	best	number	of	features:	 ( [ ])N argmin R ii CV=
	 7.	Using	all	m	training	examples,	create	nested	subsets	of	the	n available	features:

	 1 2S S S Si n� �⊂ ⊂ ⊂ 	
	 8.	Select	Sn.

Now	that	we	have	covered	the	gamut	of	feature	selection	strategies,	the	follow-
ing	sections	focus	on	the	different	feature	extraction	strategies	in	data	mining.

4.9  Feature Construction and extraction
It	is	a	common	practice	to	represent	large	datasets	in	the	form	of	matrices,	in	which	
rows	represent	individual	features/attributes	and	columns	represent	the	data	points	
(Berry	et	al.	1995).	Matrix	factorization	has	played	a	key	role	in	many	dimensional-
ity	reduction	methods	and	is	thus	the	focus	of	this	section.	To	explain	the	relation-
ship	 between	 dimensionality	 reduction	 and	 matrix	 factorization,	 let	 us	 consider	
a	data	matrix	A,	with	d	data	points	represented	by	t	features,	resulting	in	a	t ×	d	
matrix.	Each	column	of	 the	data	matrix	A	 is	 thus	a	vector	of	 t dimensions.	The	
rank	rA	of	matrix	A	in	linear	algebra	is	the	maximal	number	of	linearly	independent	
columns	of	A.	The	rank	rA	of	matrix	A	is	considered	to	be	the	basis	set	if	the	rank	
can	represent	every	vector	in	the	vector	space	of	A.	Thus,	the	rank	rA	of	the	data	
matrix	A,	which	is	equal	to	the	size	of	the	basis	of	the	linear	space	it	spans,	is	equal	
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or	near	to	min(t,d).	The	aim	of	a	dimensionality	reduction	technique	is	to	find	A′,	
which	is	a	good	approximation	of	A	and	has	a	rank	of	k,	where	k	is	significantly	
smaller	 than	 rA.	For	 this	 reason,	 the	A′	matrix	 is	often	 referred	 to	as	 the	k-rank	
approximation	of	A.

4.9.1  Matrix Factorization
Matrix	 factorization	(Oh	2006),	or	decomposition,	of	matrix	A	 is	 the	process	of	
breaking	 A	 into	 a	 product	 of	 two	matrices	U	 and	V	 such	 that	 .≈ ≈ ′A U V AT ,	
with	dimensions	of	the	matrix	U =	t ×	k	and	the	matrix	V =	d ×	k,	respectively.	The	
columns	of	the	U	matrix	are	the	basis	vectors	of	the	extracted	lower-dimensional	
space,	and	the	rows	of	V	correspond	to	the	coefficients	that	allow	the	approximate	
reconstruction	back	to	the	original	data.	In	Equation	4.15,	we	show	the	commonly	
used	LU	decomposition	of	the	data	matrix	A.
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4.9.1.1  LU Decomposition

Data	matrix	A	and	its	associated	class	labels	are	represented	by	vector	b.	The	LU	
decomposition	method	is	employed	to	decompose	the	matrix	without	depending	
on	elaborate	computation	of	the	inverse	of	A.

Thus,	considering	the	data	matrix	and	its	associated	class/target	information,	
we	can	represent	the	data	matrix	as	a	linear	form	A =	b.	Since	A	needs	to	be	fac-
torized,	 we	 assume	 it	 is	 invertible	 and	 thus	 has	 a	 unique	 factorization.	 The	 LU	
decomposition	works	on	the	philosophy	of	splitting	the	data	matrix	A into	upper	
and	lower	triangle	matrices,	as	represented	in	Equation	4.16.

* * * *

* * * *
* * * *

* * * *

1 0 0 0

* 1 0 0
* * 1 0

* * * 1

0 * * *

0 0 * *
0 0 0 *

0 0 0 0

A L U
� ���� ���� � ���� ���� � ���� ����























=













































=

	 (4.16)



Feature Selection and Extraction Strategies in Data Mining  ◾  133

where	 L	 is	 a	 unit	 of	 the	 lower	 triangle	 matrix	 (in	 which	 all	 diagonals	 are	 one)	
and	 U	 is	 the	 upper	 triangular	 matrix.	 LU	 decomposition	 employs	 the	 principle	
of	Gaussian	elimination	to	derive	both	L and	U.	Thus,	we	can	substitute	A	by	its	
equivalent	L and	U	as	LU =	b.	Various	other	methods	that	focus	on	decomposing	a	
matrix	are	out	of	the	scope	of	this	book,	but	the	motivation	of	matrix	decomposi-
tion	is	to	make	computation	with	large	matrices	easier	to	handle.	Once	the	matrices	
are	decomposed,	the	next	objective	is	to	extract	a	set	of	vectors	that	capture	a	basis	
that	is	lower	in	number	than	the	original	set	of	vectors,	and	yet	retains	maximum	
information	equivalent	to	the	original	matrix.

4.9.1.2  QR Factorization to Extract Orthogonal Features

Based	on	LU	decomposition	of	a	matrix,	we	introduce	the	QR	factorization	of	a	
matrix,	which	is	used	to	find	the	orthogonal	basis	vector	set	for	a	given	matrix	(sub-
space)	A	described	by	n	features.	QR	factorization	is	based	on	the	Gram-Schmidt	
process,	which	transforms	a	given	matrix	A	 to	 its	orthogonal	set	of	column	vec-
tors	Q	and	the	set	of	corresponding	coefficient	R.

This	process	is	explained	by	assuming	matrix	A	be	an	n × m (n >	m)	matrix	with	
m	linearly	independent	columns	(which	is	the	basis	set	for	the	subspace	A).	In	this	
process,	A	can	be	expressed	as
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where	Q	represents	the	n	orthonormal	columns	of	dimensions	m ×	n	and	R	is	the	
corresponding	upper	triangular	matrix,	containing	the	coefficients.

Using	the	Gram-Schmidt	process,	the	given	matrix	A,	its	orthogonal	matrix	Q,	
and	 its	 corresponding	n	 columns	of	orthonormal	basis	 are	obtained.	Similarly,	 the	
coefficient	matrix	R	=	QTA	is	obtained.	Other	factorization	techniques	are	based	on	the	
concept	of	eigenvalues	and	vectors.	The	remainder	of	this	section	elaborates	on	them.

4.9.1.3  Eigenvalues and Eigenvectors of a Matrix

Some	properties	of	eigenvalues	and	eigenvectors	are	 important	 in	 feature	extrac-
tion,	as	they	provide	certain	properties	of	a	matrix A	and	determine	whether	a	given	
matrix	can	be	factored	based	on	a	certain	choice	of	properties.
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	 1.	A	matrix	with	zero	eigenvalues	cannot	be	inverted.
	 2.	Invertible	matrices	have	all	λ ≠	0,	whereas	singular	(noninvertible)	matrices	

include	zero	among	their	eigenvalues.
	 3.	Eigenvectors	that	have	distinct	eigenvalues	are	linearly	independent.
	 4.	A	full-rank	matrix	has	a	nonzero	determinant,	and	thus	has	nonzero	eigenvalues.
	 5.	A	triangular	matrix	has	eigenvalues	on	its	main	diagonal.
	 6.	For	any	integer	n,	λn	is	an	eigenvalue	of	An	with	corresponding	eigenvector	x	

(negative	integer	n	works	when	A	is	invertible).

We	consider	the	above	properties	when	we	explore	the	use	of	eigenvalues	and	
eigenvectors	for	the	factorizations	of	a	given	matrix.

4.9.2  Other Properties of a Matrix
While	employing	feature	extraction	on	a	matrix	of	dimension	m ×	n	when	n >>	m,	
it	is	important	to	reduce	the	matrix	to	its	square	form	(i.e.,	map	the	matrix	to	its	
equivalent	n ×	n	matrix).	The	following	section	emphasizes	the	need	for	a	square	
matrix	and	the	properties	that	a	square	matrix	entails.

4.9.3  A Square Matrix and Matrix Diagonalization
The	relationship	between	a	diagonalized	matrix,	eigenvalues,	and	eigenvectors	of	a	
square	matrix	A of	dimension	n ×	n	is	as	follows:

	 1A E DE= − 	 (4.18)

where	D	is	an	n ×	n	matrix	that	denotes	a	diagonal	matrix,	E	represents	a	matrix	of	
eigenvectors	of	matrix	A,	and	 1E − 	represents	the	inverse	of	E.	The	diagonalization	
is	feasible	under	the	following	three	equivalent	conditions:

	 1.	n	distinct	eigenvectors	are	linearly	independent.
	 2.	The	union	of	the	basis	of	the	eigenspace	of	A	contains	n	eigenvectors.
	 3.	The	algebraic	multiplicity	of	each	eigenvalue	equals	its	geometric	multiplicity	

(algebraic	multiplicity	>=	geometric	multiplicity).

Above,	the	diagonal	elements	of	the	diagonal	matrix	D	are	the	eigenvalues	of	A,	
and	the	rows	of	the	matrix	E	represent	the	corresponding	distinct	eigenvectors.	The	
diagonalized	form	of	A	can	be	used	to	speed	up	the	computation	of	 1A E D Ek k= − ,	
respectively.	The	remaining	problem	is	to	obtain	the	(eigenvalue,	eigenvector)	pairs.

Note	that	an	n ×	n	full-rank	matrix	A	does	not	necessarily	have	n	linearly	inde-
pendent	eigenvectors.
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4.9.3.1  Symmetric Real Matrix: Spectral Theorem

One	of	the	great	achievements	of	linear	algebra	is	the	proof	that	a	real	n ×	n	sym-
metric	A	has	n	distinct	orthogonal	eigenvectors	(not	necessarily	distinct	eigenvalues)	
if	it	satisfies:	(1)	a	real	symmetric	matrix	has	real	eigenvalues,	and	(2)	in	the	case	
of	symmetric	matrices,	the	eigenvectors	that	correspond	to	distinct	eigenvalues	are	
orthogonal.

In	 such	 symmetric	 real	 matrices,	 we	 may	 encounter	 eigenvalues	 with	 multi-
ple	associated	eigenvectors.	 In	such	cases,	we	can	transform	the	eigenvalues	 into	
an	 orthogonal	 basis	 of	 the	 corresponding	 eigenspace	 using	 the	 Gram-Schmidt	
process	 (where	 the	 real	matrix	 is	 transformed	 to	 its	 corresponding	eigenvectors).	
Additionally,	 it	has	been	proven	that	a	real	symmetric	matrix	has	a	complete	set	
of	eigenvectors,	which	implies	that	a	real	symmetric	matrix	always	has	a	complete	
orthogonal	basis.

Hence,	 the	 following	 decomposition	 is	 always	 possible	 for	 a	 symmetric	 real	
matrix,	known	as	the	spectral	theorem:

	 .A Q DQT= 	 (4.19)

Above,	the	diagonal	matrix	D	in	Equation	4.19	has	eigenvalues	on	its	diagonal,	
and	matrix	Q	has	eigenvectors	as	its	rows.	The	spectral	decomposition	(Equation	
4.19)	 is	 a	 special	 case	of	 the	diagonalization	 (Equation	4.18)	 in	which	 the	most	
strict	orthogonality	is	enforced	in	symmetric	matrices.	Also,	the	inverse	matrix	in	
Equation	4.18	 is	 replaced	with	a	 transpose	matrix	 in	Equation	4.19	because	 the	
inverse	of	an	orthogonal	matrix	is	its	transpose.	The	spectral	decomposition	form	in	
Equation	4.19	is	often	expressed	as	follows	as	well	(which	is	also	called	the	projec-
tion	form	of	the	spectral	theorem):
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Now	that	we	know	how	a	symmetric	matrix	is	decomposed	to	its	correspond-
ing	eigenvalues	and	eigenvectors,	the	remainder	of	the	sections	describe	key	feature	
extraction	strategies	that	use	the	extracted	eigenvalues	and	eigenvectors.

4.9.3.2  Singular Vector Decomposition (SVD)

Factorization	methods	such	as	QR	and	matrix	diagonalization,	as	discussed	in	pre-
vious	sections,	are	applicable	to	only	limited	classes	of	matrices	with	linearly	depen-
dent	 columns	 and	 real	 symmetric	 squares.	Singular	 value	decomposition	 (SVD)	
(Laudauer	et	al.	1998)	breaks	an	m ×	n	matrix	A	 into	its	components,	as	shown	
below,	and	can	be	applied	to	all	kinds	of	matrices.
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here	the	rows	of	VT	are	the	eigenvectors	of	a	product	(symmetric)	matrix	ATA.	The	
elements	of	diagonal	matrix	D	in	the	middle	are	the	square	roots	of	the	correspond-
ing	eigenvalues	of	ATA.	Finally,	the	columns	of	the	first	factor	matrix	U are	defined	
as	follows:

	

1 .u
d

Avi
i

i� 	 (4.22)

It	is	also	important	to	note	that	the	factor	matrices	U	and	V are	both	orthogonal.

4.9.4  Principal Component Analysis (PCA)
Principal	component	analysis	(PCA)	(Maitra	and	Yan	2008)	is	a	linear	dimension-
ality	reduction	technique.	Linear	techniques	result	in	each	of	the	k ≤	p	components	
of	the	new	variable	being	a	linear	combination	of	the	original	variables:

	 , 1, , ,,1 1 ,s w x w x for i ki i i p p�= + + = …

or

 s =	Wx

where	Wk p× 	is	the	linear	transformation	weight	matrix,	expressing	the	same	rela-
tionship	as

 x =	As.	 (4.23)



Feature Selection and Extraction Strategies in Data Mining  ◾  137

With	 Ap k× ,	we	note	that	the	new	variables	s	are	also	called	hidden,	or	the	latent	
variables.	In	terms	of	an	n ×	p observation	matrix	X,	we	have

	 , 1, , , 1, , ,, ,1 1, , ,S w X w X for i k and j ni j i j i p p j�= + + = … = … 	 (4.24)

where	 j indicates	 the	 jth	 realization,	 or	 equivalently, ,= =× × × ×S W X Xk n k p p n p n

× ×A Sp n p n .	Such	 linear	 techniques	are	 simpler	and	easier	 to	 implement	 than	more	
recent	methods	that	consider	nonlinear	transforms.

A	traditional	multivariate	statistical	method	(Anderson	1984),	PCA	is	com-
monly	used	 to	 reduce	 the	number	of	predictive	variables	and	finds	 linear	com-
binations	 of	 variables,	 thereby	 summarizing	 the	 data	 without	 losing	 too	 much	
information.	This	method	of	dimensionality	reduction	is	also	known	as	parsimo-
nious	summarization	of	the	data.

Considering	a	data	matrix	 Xn p× ,	with	n	observations	as	rows	represented	by	p 
predictive	 variables,	 , ,..1 2X X X p 	 represent	 a	 random	observation	 from	 this	data	
matrix.	The	objective	here	is	to	select	the	subset	of	the	above	variables	(columns)	
that	holds	most	information	for	matrix	X.

Let	σij	 denote	 the	 covariance	between	 two	observations	Xi	 and	Xj	 of	data	
matrix	X.	The	covariance	between	all	observations	of	X	and	the	resultant	cova-
riance	 matrix	 is	 denoted	 as	 Σ.	 The	 σijs	 may	 be	 estimated	 by	 observations	 of	
standard	deviation	sij	calculated	from	the	data.	If	standard	deviations	are	used	
in	the	matrix,	then	the	matrix	is	denoted	by	S.	The	resultant	Σ	or	S is	a	p ×	p	
square	and	symmetric	matrix.

A	linear	combination	of	a	set	of	vectors	 { , ,.. }1 2X X X p 	is	the	sum	of	the	prod-
uct	of	the	vectors	with	scalar	constants	 i∝ 	given	through	the	following	expression:

, 1X i to pi iΣα = .	The	absolute	sum	of	the	scalars	in	a	linear	combination	is	set	to	
be	equal	to	1,	i.e.,	 | | 1iΣ α = ,	which	normalizes	or	standardizes	the	linear	combi-
nation.	In	cases	in	which	 | | 0 0i iΣ α = → α = ,	the	set	of	vectors	 { , ,.. }1 2X X X p 	is	
thus	said	to	be	linearly	independent.	In	such	cases	the	set	of	vectors	can	be	written	
as	a	 linear	combination	of	any	other	vectors	 in	 the	 set.	Statistically,	 correlation	
is	 a	measure	of	 linear	dependence	 among	variables,	 and	 the	presence	of	highly	
correlated	variables	indicates	a	linear	dependence	among	the	variables.	The	rank	
of	 a	 matrix,	 as	 discussed	 previously,	 denotes	 the	 maximum	 number	 of	 linearly	
independent	rows	or	columns	of	a	matrix.	As	our	data	matrix	will	contain	many	
correlated	variables	that	we	seek	to	reduce,	the	rank	of	data	matrix	 Xn p× 	is	less	
than	or	equal	to	p.

4.9.4.1  Jordan Decomposition of a Matrix

Now	that	we	have	the	covariance	matrix	 p pΣ × ,	a	square	symmetric	matrix	repre-
senting	the	covariance	between	n input	vectors,	we	decompose	this	matrix	using	
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Jordan	decomposition,	a	well-known	spectral	decomposition	technique	formalized	
as	follows:

	
( ) ( )

D T

p p

i i i

∑
∑

= Γ Γ

= λ γ′ γ

×

 (4.25)

where	Dp p× 	is	a	diagonal	matrix	and	 p pΓ × 	is	an	orthonormal	matrix,	i.e., IΓ ′Γ = .
The	diagonal	elements	of	D	are	denoted	by	 (i 1 to )piλ = 	and	the	columns	of	Γ	are	
denoted	by	 ( 1 )( ) i to piγ = .	In	matrix	algebra,	 ′λ si 	represents	the	eigenvalues	of	X, 
and	 ( )′γ si 	represents	the	corresponding	eigenvectors.

It	should	be	noted	that	if	X is	not	a	full-rank	matrix,	i.e.,	 ( ) ,rank X r p= < 	then	
there	are	only	r nonzero	eigenvalues	in	the	above	decomposition,	with	the	rest	of	
the	eigenvalues	being	equal	to	zero.

4.9.4.2  Principal Components

The	objective	of	using	principal	component	analysis	(PCA)	is	to	obtain	a	suitable	
linear	combination	of	 the	data	matrix	X.	This	objective	 is	met	using	 the	 Jordan	
decomposition	of	the	covariance	matrix	Σ	of	X	(or	the	correlation	matrix	S	of	X ). 
Thus,	a	random	vector	in	the	data	matrix	X is	represented	as	 ( , , , )1 2x x x xi p p= …× 	
having	mean	 i pµ × 	and	covariance	matrix	Σ.

A	principal	component	in	the	PCA	is	a	transformation	of	the	form

	 ( ) ,x y xi p i p i p p p→ = − µ Γ× × × × 	 (4.26)

where	 Γ	 is	 obtained	 from	 the	 Jordan	 decomposition	 of	 Σ,	 i.e.,	 TΓ ∑Γ =
D ( , , , )1 2diag p= λ λ … λ ,	with	 si′λ 	being	the	eigenvalues	of	the	decomposition.

Each	element	of	 yi p× 	is	a	linear	combination	of	the	elements	of	 xi p× .	Also,	each	
element	of	y	is	independent	of	the	other	elements	of	y.

Thus,	 we	 obtain	 p	 independent	 principal	 components	 corresponding	 to	 the	 p	
eigenvalues	of	the	Jordan	decomposition	of	Σ.	Generally,	we	use	the	first	few	of	these	
principal	components.

4.9.5  Partial Least-Squares-Based Dimension Reduction (PLS)
Now	that	we	have	discussed	PCA	in	detail,	 it	 is	worth	noting	that	PCA	follows	
an	unsupervised	approach	to	determining	the	linear	correspondence	between	vari-
ables.	However,	at	times	it	is	desirable	to	determine	the	dependence	between	vari-
ables	by	taking	 into	consideration	the	target	variable.	Partial	 least	 squares	(PLS)	
is	 one	 such	 dimensionality	 reduction	 technique	 that	 was	 initially	 proposed	 as	 a	
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matrix	decomposition	 technique	 and	 then	was	 adopted	 as	 a	multivariate	 regres-
sion	algorithm.	However,	more	recently	PLS	has	also	been	found	to	be	an	effective	
dimension	reduction	technique.

The	underlying	assumption	of	PLS	is	that	the	observed	data	are	generated	by	a	
system	or	process	that	is	driven	by	a	small	number	of	latent	(not	directly	observed	
or	measured)	features.	Therefore,	PLS	aims	at	finding	uncorrelated	linear	transfor-
mations	 (latent	 components)	of	 the	original	predictor	 features,	which	have	high	
covariance	with	the	response	features.	Based	on	these	latent	components,	PLS	pre-
dicts	response	features	y,	the	task	of	regression,	and	reconstructs	the	original	matrix	
X,	the	task	of	data	modeling,	all	at	the	same	time.

Assume	X	 is	an	n ×	p	matrix	and	 its	corresponding	class	 label	Y	 is	an	n ×	1	
matrix.	The	PLS	technique	successively	extracts	 factors	 from	both	X	and	Y	 such	
that	covariance	between	the	extracted	factors	is	maximized.

According	to	(Maitra	and	Yan	2008),	PLS	attempts	to	find	a	linear	decomposi-
tion	of	X	and	Y such	that	 X TP ET= + 	and	Y UQ FT= + ,	where

	

_ _

_ _

_ _ .

1

1

T X scores U Y scores

P X loadings Q Y loadings

E X residuals F Y residuals

n r n r

p r r

n p n

= =

= =

= =

× ×

× ×

× × 	

The	decomposition	is	terminated	when	the	covariance	between	the	X_scores	
and	 Y_scores	 is	 maximized	 or	 until	 X	 is	 reduced	 to	 a	 null	 matrix.	 Generally,	
the	 PLS	 algorithm	 is	 an	 iterative	 algorithm	 used	 to	 extract	 the	 X_scores	 and	
Y_scores,	where	the	number	of	extracted	factors	(r)	depends	on	the	rank	of	X and	
Y,	respectively.

4.9.6  Factor Analysis (FA)
Like	PCA,	factor	analysis	(FA)	(Fodor	2002)	is	also	a	linear	method.	FA	assumes	
that	the	measured	variables	depend	on	some	unknown,	and	often	unmeasurable,	
set	of	common	factors.	The	motivation	for	using	FA	is	 to	uncover	hidden	rela-
tions,	and	thus	it	can	be	used	to	reduce	the	dimension	of	datasets	following	the	
factor	model.

According	 to	 the	 k-factor	 model,	 a	 p-dimensional	 random	 vector	 1x p× 	 with	
covariance	matrix	Σ	satisfies	the	k-factor	model	if

 x =	Λf +	u (4.27)

where	 p kΛ × 	is	a	matrix	of	constants,	 1fk× 	represents	random	common	factors,	and	
1up× 	 represents	 specific	 factors,	 respectively.	Moreover,	 according	 to	 the	k-factor	

model,	the	factors	are	all	uncorrelated	and	the	common	factors	are	normalized	such	
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that	variance	is	equal	to	1:

	

( ) 0, ( )

( ) 0, ( , ) 0

( , ) 0.

E f Var f I

E u Cov u u for i j

Cov f u

i j

= =

= = ≠

=

	 (4.28)

Given	these	conditions,	the	covariance	matrix	Σ	can	be	decomposed	as

	 ,TΣ = ΛΛ + ψ 	 (4.29)

and	 the	 diagonal	 covariance	 matrix	 of	 u	 can	 be	 written	 as	 ( )Cov u = ψ =
( , , )11diag ppψ … ψ ,	where	xi	can	be	written	as

	

, 1, ,
1

x f u i pi

j

k

ij j i …∑= λ + =
=

	 (4.30)

Furthermore,	the	variance	may	be	decomposed	as

	 1

2
ii

j

k

ij ii∑σ = λ + ψ
=

	 (4.31)

where	the	first	part,	 2
1

2hi j
k

ij= ∑ λ= ,	 is	called	the	communality	and	represents	 the	
variance	of	xi	 common	to	all	variables,	while	 the	 second	part,	 iiψ ,	 is	called	 the	
specific	or	unique	variance,	and	it	is	the	contribution	in	the	variability	of	xi	due	to	
ui,	not	shared	by	the	other	variables.

The	 term	 2
ijλ 	measures	 the	magnitude	of	 the	dependence	of	xi	 on	 the	 com-

mon	factor	fj.	If	several	variables	xi	have	high	loadings	 ijλ 	on	a	given	factor	fj,	the	
implication	is	that	those	variables	measure	the	same	unobservable	quantity,	and	are	
therefore	redundant.

4.9.7  Independent Component Analysis (ICA)
Similar	 to	PCA,	 the	 ICA	 is	 a	 higher-order	method	 that	finds	 linear	 projections	
of	 data.	 The	 components	 found	 by	 ICA	 are	 not	 necessarily	 orthogonal	 to	 each	
other;	i.e.,	they	are	as	nearly	statistically	independent	as	possible.	Statistical	inde-
pendence	has	a	much	stronger	correlation	(Fodor	2002)	that	depends	on	higher-
order	statistics.

To	explain	the	difference	between	correlation	and	independence,	we	define	a	
lack	of	correlation	among	random	variables,	as	x	=	{x1,	…	,xp}	are	uncorrelated.	If	
for	∀I ≠	j,	1	≤	i,	j ≤	p,	we	have

	 ( , ) {( )( )} ( ) ( ) ( ) 0.Cov x x E x x E x x E x E xi j i i j j i j i j= − µ − µ = − = 	 (4.32)
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On	the	contrary,	 independence	requires	that	the	multivariate	probability	density	
function	factorizes,	and	can	be	written	as

	 ( , , ) ( ) ( ).1 1 1f x x f x f xp p p… = … 	 (4.33)

Typically,	independence	among	variables	always	implies	no	correlation,	but	not	
vice	versa;	only	if	the	distribution	 ( , , )1f x x p… 	is	multivariate	normal	are	the	two	
equivalent.	For	Gaussian	distributions,	the	PCs	are	independent	components.

The	objective	of	the	ICA	model	for	the	p-dimensional	random	vector	x is	to	esti-
mate	the	components	of	the	k-dimensional	vector	s	and	the	full-rank	matrix	 Ap k× :

 ( , , ) ( , , )1 1

x As

x x A s sp
T

p k k
T

=

… = …×

	 (4.34)

such	that	the	components	of	s	are	as	independent	as	possible,	based	on	the	defini-
tion	of	independence	above.

Noisy	ICA,	an	extension	to	the	typical	ICA,	contains	an	additive	random	noise	
component	u	as	below,	where	its	estimation	is	still	an	open	research	challenge,	as	
explained	in	the	following	equation:

	 ( , , ) ( , , ) ( , , ) .1 1 1x x A s s u up
T

p k k
T

p
T… = … + …× 	 (4.35)

From	the	above	discussion,	it	is	clear	that	the	objective	of	ICA	is	not	dimension-
ality	reduction.	Thus,	to	reduce	the	number	of	dimensions	using	ICA,	one	has	to	
resort	to	using	PCA	to	find	k <	p,	and	then	use	ICA	to	estimate	the	independence	
of	the	selected	features.	It	should	also	be	noted	that	there	is	no	specific	ordering	of	
independent	components	as	in	the	case	of	PCA.	To	order	the	components	once	they	
are	estimated,	one	can	use	the	norm	of	the	columns	or	some	non-Gaussian	measure.

We	reiterate	that	PCA	is	aimed	at	finding	uncorrelated	variables,	while	ICA	is	
aimed	at	finding	independent	variables.	ICA	finds	its	applications	in	various	fields,	
including,	but	not	 limited	 to,	 exploratory	data	analysis,	blind	 source	 separation,	
natural	 image	 processing,	 and	 feature	 extraction.	 We	 further	 emphasize	 that	 in	
the	context	of	feature	extraction,	the	columns	of	matrix	A	represent	features	in	the	
data,	and	the	components	si	give	the	coefficient	of	the	ith	feature	in	the	data.

4.9.8  Multidimensional Scaling (MDS)
Unlike	PCA	and	ICA	used	to	obtain	the	linear	projections	of	data,	the	main	objec-
tive	of	MDS	is	to	represent	the	dissimilarities	between	pairs	of	objects	as	distances	
between	points	 in	a	 low-dimensional	 space	 (Groenen	and	van	de	Velden	2004).	
Given	 the	data	matrix	 Xn p× ,	 consisting	of	n	 instances,	 each	 instance	 is	defined	
by	p	distinct	features	(dimensions).	We	defined	the	dissimilarity	between	a	pair	of	
instances i	and	j	of	X	as	δij.	The	dissimilarity	between	instances	of	X	is	measured	
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using	the	Euclidean	distance	and	is	defined	as

	

( ) ( )
1

2

1/2

d X x xij

s

p

is js∑= −










=

	 (4.36)

In	Equation	4.36,	dij	is	the	shortest	line	joining	instances	i	and	j.
As	mentioned	above,	the	objective	of	MDS	is	to	find	a	matrix	 X̂ 	of	the	lower	

dimension,	as	compared	to	X,	such	that	 ( ˆ )d Xij 	matches	δij	as	closely	as	possible.	
Various	methods	can	achieve	this	objective.	Users	should,	however,	refrain	from	
using	the	definition	of	raw	stress	 ( )2 Xσ 	(J.	B.	Kruskal	1964a,	1964b),	as	shown	
below:

	

( ) ( ( ˆ )) .2

2 1

1
2X w d X
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= =

−

	 (4.37)

The	 method	 above	 is	 better	 known	 as	 the	 least-squares	 MDS	 model.	 As	
the	 dissimilarities	 between	 instances	 are	 symmetric,	 the	 summation	 only	
involves	the	pairs	i and	j, where	i >	j.	wij	is	a	user-defined	weight	that	must	be	
nonnegative.

The	 objective	 of	 MSD	 is	 to	 minimize	 the	 stress	 function	 ( )2 Xσ ,	 which	
is	 rather	 complex	 to	 solve	using	closed	 systems.	To	 this	 end,	MDS	algorithms	
employ	 various	 iterative	 techniques	 to	 find	 a	 matrix	 X̂ 	 for	 which	 ( )2 Xσ 	 is	
minimum.

As	 Euclidean	 distance	 is	 not	 susceptive	 to	 change	 in	 rotation,	 translation,	
and	reflection,	orations	on	the	matrix	dij	may	be	applied	freely	without	altering	
the	raw	stress	 ( )2 Xσ .	Thus,	many	of	the	MDS	algorithms	exploit	this	property	
so	 that	 the	dimensions	 coordinate	 to	 zero,	 and	 the	 solution	 is	 oriented	on	 the	
principal	axis.	That	is,	the	axes	are	rotated	in	such	a	way	that	the	variance	of	X	is	
maximal	along	the	first	dimension,	the	second	dimension	is	uncorrelated	to	the	
first	and	has	maximal	variance	as	well,	and	so	on.

4.10  Conclusion
In	conclusion,	Chapter	4	provides	the	description	of	various	data	preparation	and	
data	 transformation	 techniques.	 Aptly	 titled	 “Feature	 Selection	 and	 Extraction	
Strategies	 in	 Data	 Mining,”	 the	 chapter	 provides	 the	 application	 of	 these	 tech-
niques	to	bioinformatics	data.	The	reader	should	familiarize	himself	or	herself	with	
the	workings	of	these	techniques,	as	they	lay	the	foundation	for	data	mining	and	
knowledge	discovery	techniques	described	in	future	chapters.
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Chapter 5

Feature interpretation 
for Biological Learning

Feature	selection	techniques	have	become	an	integral	part	of	many	bioinformatics	
applications	 and	have	 thus	 added	 to	 the	 collection	of	 existing	well-known	 tech-
niques	discussed	in	Chapter	4.	This	chapter	provides	an	overview	of	the	application	
of	the	various	feature	selection	and	feature	extraction	techniques	commonly	used	
in	bioinformatics.	The	key	areas	touched	upon	describe	the	issues	and	challenges	
faced	during	the	analysis	of	high-dimensional	data,	whether	gene	expression	data,	
protein	sequence,	or	structural	data.

5.1 introduction
The	 objectives	 of	 using	 feature	 selection	 and	 extraction	 are	 manifold.	 The	 most	
important	of	these	objectives	are:

	 1.	To	avoid	overfitting	and	improve	the	model	performance,	i.e.,	prediction	per-
formance	in	the	case	of	supervised	classification	and	better	cluster	detection	
in	the	case	of	unsupervised	clustering

	 2.	To	provide	faster	and	more	effective	computational	models
	 3.	To	gain	a	deeper	insight	into	the	underlying	process	that	generated	the	data

Apart	from	the	above-mentioned	benefits	of	using	feature	selection	techniques	
in	bioinformatics,	feature	selection	and	extraction	techniques	can	be	used	to	find	
an	optimal	set	of	features	that	performs	best	with	the	chosen	learning	technique.
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As	described	in	Chapter	4,	feature	selection	strategies	are	subdivided	into	filter-
based	 and	 wrapper-based	 approaches.	 The	 focus	 of	 this	 chapter	 is	 to	 enable	 the	
reader	 to	understand	how	different	data	preprocessing	 techniques	 are	 applied	 to	
address	the	challenges	of	bioinformatics	data	(Kuonen	2003).

5.2  normalization techniques for 
Gene expression Analysis

High-throughput	 real-time	 quantitative	 reverse	 transcriptase	 polymerase	 chain	
reaction	(qPCR)	 is	widely	considered	to	be	 the	gold	standard	 for	 the	analysis	of	
micro-RNA	(miRNA)	expression	(Ach	et	al.	2008).	qPCR	is	useful	for	acquiring	
and	profiling	(50	to	a	few	thousand)	expression	patterns	on	a	microarray.	Because	
of	the	large	number	of	genes	available,	qPCR	is	considered	to	be	highly	susceptive	
to	noise.	In	this	section	we	therefore	focus	on	the	use	of	appropriate	normalization	
techniques	for	qPCR	expression	data.

Nearly	 all	normalization	 techniques	 are	based	on	 the	 assumption	 that	one	or	
more	 control	 genes	 are	 constitutively	 expressed	 at	 near-constant	 levels	 under	 all	
experimental	conditions.	The	most	widely	used	control	genes	are	those	selected	from	
among	an	assumed	set	of	housekeeping	genes.	Housekeeping	genes	are	those	that	
are	constantly	expressed	through	different	samples	so	as	to	maintain	basic	cellular	
function.	The	expression	levels	of	remaining	target	genes	in	a	sample	are	adjusted	
with	respect	to	the	selected	control	genes.	In	most	qPCR	experiments,	a	single	house-
keeping	gene	is	chosen	and	added	to	the	collection	of	experimental	target	genes	to	
be	assayed	for	each	sample.	The	control	gene	is	then	compared	between	samples	and	
a	sample-specific	scaling	factor	is	calculated	to	equalize	their	expression	(Robinson	
and	Oshlack	2010).	This	sample-specific	scaling	factor	is	applied	to	all	genes	in	the	
sample.	However,	this	approach	has	numerous	limitations.	The	primary	limitation	
is	that	many	of	the	experimental	conditions	may	alter	the	expression	of	the	control	
genes.	Moreover,	 evidence	postulates	 that	housekeeping	genes	may	not	 always	be	
expressed	constantly	across	all	samples.	Therefore,	more	sophisticated	normalization	
techniques	 are	 needed.	 These	 techniques	 use	 multiple	 housekeeping	 genes	 where	
each	of	 their	expressions	 is	combined	to	represent	a	virtual	housekeeping	gene.	 It	
is	believed	that	this	approach	is	more	robust	than	a	single-control	gene	approach.	
However,	 it	 is	 important	 to	note	 that	 this	 virtual	housekeeping	gene	 is	 also	 con-
founded	by	the	same	assumption	that	its	expression	does	not	vary	across	samples.

5.2.1 Normalization and Standardization Techniques
Microarray	technology	provides	researchers	with	the	ability	to	measure	the	expres-
sions	of	 thousands	of	 genes	 for	 a	 given	 sample.	Biologically	 relevant	 expression	
patterns	between	these	genes	are	identified	by	comparing	the	expression	levels	of	
genes	between	samples	of	different	states	on	a	one-on-one	(gene-by-gene)	basis.
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The	selection	of	a	significant	set	of	differentially	expressed	genes	between	sam-
ples	obtained	from	different	states	is	sensitive	to	errors	brought	about	by	measure-
ment	of	intensity	values	of	genes.	It	is	therefore	important	to	eliminate	questionable	
or	low-quality	measurements	of	intensity	values	of	genes	through	appropriate	trans-
formations	on	the	data.

To	facilitate	this	process,	it	is	imperative	to	understand	how	the	microarray	is	
generated.	 Typically,	 RNA	 is	 first	 isolated	 from	 different	 tissues,	 developmental	
stages,	disease	states,	or	samples	that	have	been	subjected	to	appropriate	treatments.	
The	RNA	is	then	labeled	and	hybridized	to	arrays.	After	hybridization,	the	arrays	
are	measured.	These	measurements	 enable	 the	conversion	 from	raw	data	 to	pro-
cessed	data	through	the	implementation	of	three	steps.

First,	the	arrays	are	scanned	to	create	grayscale	images	(Chen	et	al.	1997).	Once	
the	images	are	generated,	then	image	analysis	 is	performed	to	identify	the	arrayed	
spots	and	to	measure	their	corresponding	relative	fluorescence	intensities.	The	quanti-
fication	of	florescence	intensities	is	brought	about	using	quantification	matrices	based	
on	image	analysis.	Several	commercial	and	freely	available	software	packages	generate	
high-quality,	reproducible	measures	of	hybridization	intensities	(see	Figure	5.1).

Second,	these	images	are	subjected	to	various	image	preprocessing	techniques,	
such	as	mean,	median,	or	 average	difference	operations,	 to	provide	 the	 required	
background	 correction,	 thereby	 reducing	 possible	 equipment	 errors.	 Finally,	 the	
obtained	quantified	data	from	the	images	are	consolidated	into	a	matrix	of	expres-
sion	values	that	are	then	subjected	to	normalization.

Several	normalization	strategies	are	used	to	normalize	microarray	data.	These	
normalization	 strategies	 are	 categorized	 into	 global	 normalization	 strategies	 and	
intensity-dependent	normalization	strategies	(Park	et	al.	2003).

Array Scans

Quanti�cation Datum

Gene
Expression

Level

Quanti�cations Samples

Sp
ot

s

G
en

es

Figure 5.1 Microarray gene expression data processing. (From Brazma, A., et al., 
Nature Genet 29 (2001): 365–371.)
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5.2.1.1 Expression Ratios

Every	gene	within	 a	 sample	 in	 a	microarray	 is	 represented	by	 a	 ratio	 (T )	 of	 the	
intensities	of	the	colors	R	(red)	and	G (green).	Therefore,	the	ratio	Ti	of	the	ith	gene	
in	a	sample	is	represented	as	follows:

	
T R

G
i

i

i
= .	 (5.1)

Though	the	ratio	T	provides	a	measure	of	expression	change	of	a	gene	with	respect	
to	its	R	and	G	intensities,	it	is	ineffective	in	capturing	if	the	gene	is	upregulated	or	
downregulated.	For	instance,	if	a	gene	is	upregulated	(R)	by	a	factor	of	2,	its	resultant	
expression	ratio	will	have	a	value	of	2,	whereas	if	the	gene	is	downregulated	(G)	by	a	
factor	of	2,	the	resultant	expression	ratio	will	have	the	value	of	–0.5.

To	overcome	this	drawback,	the	most	widely	used	alternative	transformation	
of	the	ratio	of	the	logarithm	base	2	is	used.	The	logarithm	base	2	has	the	advantage	
of	producing	a	continuous	 spectrum	of	values	and	treating	up-	and	downregu-
lated	genes.

We	know	that	logarithms	treat	numbers	and	their	reciprocals	symmetrically:	
(1) 0, (2) 1, 12 2 2

1
2log log log ( )= = = − .	 The	 logarithms	 of	 the	 expression	 ratios	 are	

also	treated	symmetrically,	and	those	that	are	expressed	at	a	constant	level	have	a	
( )2log T 	equal	to	zero.

5.2.1.2 Intensity-Based Normalization

Analysis	 involving	gene	expression	data	 is	 sensitive	 to	 the	changes	 in	fluorescent	
dyes	 between	 samples	 of	 the	 analysis.	 Moreover,	 measurements	 from	 different	
hybridizations	may	occupy	different	 scales,	and	to	ensure	meaningful	and	effec-
tive	comparisons	of	thousands	of	genes,	it	is	common	to	adjust	the	expression	val-
ues	of	 the	 genes	between	 samples	using	normalization	 (Kreil	 and	Russel	 2005).	
Normalization	strategies	that	focus	on	normalizing	the	intensity	values	of	the	genes	
on	 a	 single	 slide	 are	 referred	 to	 as	 within-slide	 normalization.	 However,	 before	
explaining	within-slide	normalization	of	gene	expression,	we	denote	the	common	
assumptions	made	about	the	samples	and	genes	of	microarray	data.

	 1.	The.number.of.genes.in.each.sample.is.the.same:	All	the	samples	in	the	
study	have	the	same	number	of	genes.

	 2.	There.are.equal.quantities.of.RNA.for.the.two.samples.being.compared:	
Given	millions	of	individual	genes	in	each	sample,	we	assume	that,	on	aver-
age,	equal	quantities	of	RNA	(the	mass	of	each	molecule)	use	approximately	
the	same	quantities	of	RNA	for	each	gene.



Feature Interpretation for Biological Learning  ◾  149

	 3.	Arrayed.elements.represent.a.uniform.random.sampling.of.genes.across.
samples:	Nearly	all	normalization	strategies	are	based	on	the	assumption	that	
one	or	more	genes	are	expressed	at	near-constant	levels	under	all	experimental	
conditions,	and	the	expression	levels	of	all	genes	in	a	sample	are	adjusted	to	
satisfy	that	assumption.

5.2.1.3 Total Intensity Normalization

Considering	the	above	assumptions,	we	ensure	that	approximately	an	equal	number	
of	genes	from	each	sample	are	hybridized.	Therefore,	the	total	hybridization	inten-
sities	summed	over	all	elements	in	the	array	should	be	the	same	for	each	sample.

For	total	intensity	normalization	(Quackenbush	2002),	we	compute	a	normal-
ization	factor	by	summing	the	measured	intensities	(both	R	and	G)	as	follows:

	

,1

1

N
R

G
total

i

N

i

i

N

i

array

array

∑
∑

= =

= 	 (5.2)

where	Gi	and	Ri	are	the	measured	intensities	for	the	ith	array	element	and	Narray	is	
the	number	of	genes	represented	in	the	microarray.	Once	the	total	intensity	Ntotal	is	
computed,	we	use	this	value	to	normalize	the	expression	ratio	of	a	gene	as	follows:

	

1 .T R
G N

R
G

i
i

i total

i

i
= =

	 (5.3)

This	 total	 intensity	 normalization	 in	 effect	 adjusts	Ti 	 such	 that	 the	 mean	 is	
equal	to	1,	rendering	the	mean	 ( )2log ratio 	equal	to	0.	Thus,	the	various	normaliza-
tion	strategies	in	microarray	data	analysis,	including	scaling	the	individual	intensi-
ties,	are	aimed	at	rendering	the	mean	or	median	intensities	uniform	within	a	single	
array	or	across	all	arrays.	These	strategies	include	linear	regression	analysis,	log	cen-
tering,	ranking	invariant	methods,	and	Chen’s	ratio	statistics	(Quackenbush	2002).

5.2.1.3.1 Global Normalization (LOWESS)

Microarray	data	are	plagued	by	inconsistencies	in	the	way	data	are	recorded.	These	
inconsistencies	are	manifestations	of	noise	in	the	form	of	inconsistencies	in	inten-
sity	values	of	the	spots	on	the	microarray	chip.	Though	there	are	several	methods	
of	 intensity	 normalization,	 these	 methods	 do	 not	 take	 into	 consideration	 sys-
temic	biases	that	are	inherent	in	the	data	(Yang	et	al.	2002).	These	systemic	biases	
include	the	 ( )2log ratio 	values	that	represent	low-intensity	spots	on	the	microarray	
that	appear	as	a	minor	deviation	from	zero.	Researchers	use	the	 log *10 R G( )	by	
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log /2 R G( )	 plot,	 better	 known	 as	 the	 ratio-intensity	 (R-I)	 plot,	 to	 visualize	 the	
intensity-dependent	effects	of	the	genes	in	a	microarray.

As	shown	in	the	Figure	5.2,	the	R-I	plot	is	a	plot	of	the	 ( )2log ratio 	on	the	y-axis	
to	the	 ( )10log intensity 	(i.e.,	the	product	of	intensities	R	and	G)	on	the	x-axis	for	each	
gene	in	the	microarray.	This	R-I	plot	can	reveal	 intensity-specific	artifacts	 in	the	

( )2log ratio 	measurements.
Locally	weighted	linear	regression	(LOWESS)	analysis	has	been	used	as	a	normal-

ization	approach	to	remove	intensity-dependent	effects	in	the	 ( )2log ratio 	values	(Hijum	
et	al.	2008).	Using	the	R-I	plot,	LOWESS	detects	systemic	deviations	for	each	point	
in	the	R-I	plot.	Using	a	local	weighted	linear	regression	function	of	 ( )10log intensity ,	the	
correction	of	intensity	values	is	carried	out	by	subtracting	the	calculated	best-fit	aver-
age	 ( )2log ratio 	from	the	experimentally	observed	ratio	for	each	data	point.

By	performing	this	function,	the	LOWESS	deemphasizes	the	contribution	of	
genes	that	are	far	(on	the	R-I	plot)	from	densely	populated	data	clusters.	We	illus-
trate	the	process	as	follows:

Let	 ( )10x log R Gi i i= × 	and	 ( / )2y log R Gi i i= .	We	then	use	LOWESS	to	create	a	
function	 ( )y xk 	that	estimates	the	dependence	of	the	 ( )2log ratio 	on	the	 ( )10log intensity .	
Using	this	functional	estimate,	each	 ( )2log ratio 	of	every	point	in	the	R-I	plot	is	sub-
ject	to	the	following	correction:

 
( ) ( ) ( ) (2 )2 2 2 2

( )( )′ = − = −log T log T y x log T logi i i i
y xi  (5.4)

or	equivalently,
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Figure 5.2 the distribution of genes using the R-i plot.
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The	application	of	the	LOWESS	correction	normalizes	the	intensity	of	values	
of	each	gene	closer	to	the	new	mean	set	at	 ( / )2log R G 	values	at	zero,	as	reflected	in	
Figure	5.3.

Similar	to	the	R-I	plot,	we	have	the	M-A	plot,	which	is	used	to	identify	spot	arti-
facts	and	detect	intensity-based	patterns.	The	M-A	plot,	first	proposed	by	Dudoit	
et	al.	(2002),	is	a	plot	of	intensity	values	of	independent	spots	with	the	x-axis	repre-
senting	M,	the	log	ratio,	on	the	overall	log	intensity,	and	the	y-axis	representing	A,	
where	 ( / )2M log R G= 	and	 ( )2A log R G= × ,	as	shown	below	in	Figure	5.4.
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Figure 5.3 the normalized representation of the spots, where the new mean is 
normalized to zero.
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Figure 5.4 the distribution of genes using an M-A plot.
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5.2.1.3.2 Local Normalization

The	 above-described	 normalization	 strategy	 can	 be	 applied	 either	 globally	 or	
locally.	 By	 local	 normalization,	 we	 refer	 to	 the	 application	 of	 a	 normalization	
strategy	to	a	subset	of	array	elements	deposited	by	a	single	spotting	pen.	Local	
normalization	proves	advantageous,	as	it	can	aid	in	the	simultaneous	correction	
of	spatial	variations	in	a	microarray	chip,	for	example,	local	differences	in	hybrid-
ization	conditions	across	the	microarray.	As	in	the	case	of	global	normalization,	
the	satisfaction	of	all	assumptions	must	be	satisfied.	For	example,	a	sufficiently	
large	number	of	elements	should	be	included	in	each	pen	group	for	the	approach	
to	be	validated.

Local	 normalization	 strategies	 take	 into	 consideration	 subsets	 of	 array	 ele-
ments;	 normalization	 is	 then	 performed	 on	 independent	 subsets.	 During	 this	
stage,	we	encounter	variations	in	the	 ( )2log ratio 	measurements	across	the	different	
subsets.

As	all	normalization	strategies	are	aimed	at	establishing	a	uniform	global	mean	
across	all	elements	of	the	array,	it	is	imperative	that	local	normalization	strategies	
take	the	variance	between	the	subsets	of	array	elements.	Numerous	computational	
approaches	address	this	challenge	of	regulating	variance	between	subsets	of	array	
elements	(Workman	et	al.	2002;	Papana	and	Ishwaran	2006).

Variance	 regularization	 is	 accomplished	by	adjusting	 the	 ( )2log ratio 	measures	
of	 each	 subset	 such	 that	 the	 global	 variance	 is	 the	 same	 throughout	 the	 array	
(Quackenbush	2002).

Let	us	consider	a	single	microarray	that	is	divided	into	distinct	subgrids	(sub-
sets).	Figure	5.5	provides	a	schematic	representation.	Let	each	subgrid	be	normalized	
independent	of	each	other	(i.e.,	local	normalization	is	performed).	Our	objective	is	
therefore	to	determine	a	factor	that	can	be	used	to	scale	the	measurements	within	
each	subgrid.	A	commonly	used	scaling	factor	is	the	geometric	mean	of	the	inde-
pendent	variances	of	all	subgrids.

Single Microarray Subgrids for Local Normalization

Figure 5.5 the division of a single microarray into subgrids, to carry out local 
normalization. Here, normalization is carried out on each grid independently.
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If	 we	 assume	 that	 each	 subgrid	 has	 M	 elements,	 because	 we	 have	 already	
adjusted	the	mean	of	the	 ( )2log ratio 	values	in	each	subgrid	to	be	zero,	each	subgrid	
variance	in	the	nth	subgrid	is
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where	the	summation	runs	over	all	the	elements	in	that	subgrid.
If	 the	number	of	subgrids	 in	the	array	 is	N grids,	 then	the	appropriate	scaling	

factor	for	the	elements	of	the	kth	subgrid	on	the	array	is
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We	then	scale	all	of	the	elements	within	the	kth	subgrid	by	dividing	by	the	same	
value	ak	computed	for	that	subgrid,
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This	step	is	equivalent	to	taking	the	akth	root	of	the	individual	intensities	in	the	
kth	subgrid,
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i i
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It	 should	 be	 noted	 that	 other	 variance	 regularization	 factors	 have	 been	 sug-
gested,	and	a	similar	process	can	be	used	to	regularize	variances	between	normal-
ized	arrays.

5.2.1.4 Intensity-Based Filtering of Array Elements

Due	to	the	 large	number	of	array	elements	on	a	microarray,	 it	 is	often	required	
that	 array	 elements	 be	 removed	 if	 their	 measured	 intensity	 is	 indistinguishable	
from	background	noise	(Jenssen	et	al.	2002).	This	method	is	commonly	referred	
to	as	filtering.

On	close	examination	of	the	representative	R-I	plots,	it	is	observed	that	as	the	
variability	in	the	measure	 ( )2log ratio 	values	increases,	the	corresponding	intensity	
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values	decrease	 (Chen	 et	 al.	 2005)	 (Figure	5.6).	This	 variability	 in	 the	measured	
( )2log ratio 	 is	 attributed	 to	 the	 relative	 error	 in	 measurement	 increases	 when	 the	

intensities	are	low	(i.e.,	when	the	intensity	of	a	spot	on	the	microarray	matches	the	
intensity	of	the	background).

It	 is	 therefore	a	common	practice	 to	use	only	array	elements	with	 intensities	
that	are	statistically	significantly	different	from	the	background.	Thus,	as	a	simple	
filtering	 strategy,	we	first	 measure	 both	 the	 average	 local	 background	near	 each	
array	element	and	its	corresponding	standard	deviation.	As	a	rule	of	thumb,	it	is	
believed	that	the	elements	with	respectably	good	intensity	values	fall	in	the	95.5%	
confidence	range	and	have	intensities	of	more	than	two	standard	deviations	above	
the	background	(refer	to	Figure	5.7	for	more	information).	By	following	this	rule,	
we	ensure	that	we	increase	the	reliability	of	the	measurements.	This	measurement	
is	represented	using	the	following	relation:

 
2 2 .G G and R Ri

spot
i
background

i
spot

i
background( ) ( )> × σ > × σ  (5.10)

Similar	approaches	to	filter	out	elements	of	low-intensity	values	include	abso-
lute	lower	thresholding	for	acceptable	array	elements	(also	referred	to	as	floors)	and	
percentage-based	cutoffs	in	which	a	fixed	fraction	of	elements	is	discarded.

This	strategy	can	also	be	applied	 to	filter	out	elements	 that	have	a	very	high	
saturation	of	fluorescence	 intensity.	Typically,	when	 elements	have	 reached	 their	
highest	intensity,	the	comparisons	are	no	longer	meaningful.	In	such	situations,	it	is	
viable	to	filter	out	those	elements	using	the	similar	approach	by	setting	a	maximum	
acceptable	value	(also	referred	to	as	a	ceiling).
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Figure 5.6 R-i plot that represents the elements that could be filtered out as 
outliers.
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5.2.2 Identification of Differentially Expressed Genes
One	 of	 the	 primary	 applications	 of	 microarray	 technology	 is	 to	 analyze	 genes	
from	different	samples	and	identify	differentially	expressed	genes	between	samples.	
Considering	 the	 sheer	 amounts	 of	 data,	 data	 mining	 analysis	 has	 played	 a	 piv-
otal	role	in	the	endeavor	of	identifying	differentially	expressed	genes	over	the	past	
decades.	 Several	 clustering	 approaches	 (as	 described	 in	 Chapters	 6	 and	 7)	 have	
achieved	considerable	success	(Qin	et	al.	2008;	Zhu	et	al.	2008).	The	objective	of	
using	these	clustering	techniques	has	been	motivated	by	the	hypothesis	of	reducing	
the	number	of	genes	to	those	that	are	variably	expressed	across	samples.

Based	on	the	above	object	of	identifying	differentially	expressed	genes,	researchers	
traditionally	rely	on	filtering	genes	using	a	statistical	derived	fixed-fold-change	cutoff	
on	expression	values.	In	general	the	default	number	of	folds	is	set	to	two,	as	this	is	
where	genes	that	satisfy	this	fold	change	are	believed	to	be	the	most	significant.

Similarly,	the	global	filtering	approach	computes	the	mean	and	standard	devia-
tion	of	 the	distribution	 ( )2log ratio 	 of	 all	microarray	values.	Using	 the	 computed	
mean	 and	 standard	 deviation,	 the	 global	 fold-change	 difference	 and	 confidence	
are	computed	and	used	to	filter	out	genes	that	are	not	differentially	expressed.	This	
global	filter	is	equivalent	to	using	a	z-score	for	the	dataset.	However,	this	approach	
may	be	inaccurate	in	capturing	the	inherent	spatial	differences	in	microarray	data.	
Specifically,	 in	low	intensities,	where	the	data	vary	more,	the	technique	runs	the	
risk	of	wrongly	identifying	genes	as	differentially	expressed	and	vice	versa.

Localized	approaches	take	into	consideration	the	local	structure	of	the	dataset	
to	 identify	differential	expressed	genes.	They	use	a	sliding	window	and	calculate	
the	 mean	 and	 standard	 deviation	 of	 data	 points	 within	 a	 window	 to	 define	 an	
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Figure 5.7 the variation of intensity and the differentiation brought about using 
z-score normalization.
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intensity-dependent	z-score	threshold	and	identify	differential	expression.	In	this	
step,	z	measures	the	number	of	standard	deviations	a	particular	data	point	is	from	
the	mean.

The	following	relation	is	used	to	calculate	a	localized	standard	deviation	 ( )2log T
local

iσ 	
of	the	 ( )2log ratio 	of	a	region	in	the	R-I	plot.

Thus,	the	normalized	value	of	a	particular	array	element	i	is

	

( ) .2

( )2

Z
log T

i
local i

log T
local

i

=
σ

	 (5.11)

It	is	believed	that	all	differentially	expressed	genes	fall	in	the	95%	confidence	
level	and	would	be	within	a	value	of	 | | 1.96Zi

local > .	This	approach	enables	the	dis-
cretization	of	 the	elements	of	a	microarray	 for	 the	 identification	of	differentially	
expressed	genes	that	are	naturally	more	variable.

For	a	more	refined	discretization	process,	the	quantile	normalization	algorithm	
(Mar	et	al.	2009)	can	be	used.	This	quantile	normalization	approach	makes	 the	
distribution	of	elements	of	each	sample	the	same	across	many	arbitrary	samples.	
Each	quantile	of	intensities	is	projected	to	lie	along	a	unit	diagonal	in	the	M-A	plot.

The	following	procedure	generates	the	quantile	normalization:

	 1.	Let	X(i,k)	be	the	gene	expression	intensity	of	the	ith	gene	and	the	kth	sample.
	 2.	Each	sample	set	of	intensities	X(.,k)	is	first	sorted	by	a	permutation	 kπ 	accord-

ing	 to	 intensity	 values.	 This	 permutation	 is	 then	 sorted,	 and	 the	 resultant	
sorted	sample	is	represented	as	 ’(., ).X k

	 3.	The	intensity	value	 ’( , )X i k 	is	then	substituted	by	the	mean	across	all	sam-
ples	 ( ’( ,.))mean X i .

	 4.	The	inverse	permutation	 ( )inv kπ 	is	then	applied	to	each	sample	set	to	pro-
duce	the	normalized	set	of	gene	expression	intensities.

5.2.3 Selection Bias of Gene Expression Data
In	gene	expression	analysis,	we	face	the	problem	of	constructing	an	accurate	pre-
diction	rule	R	using	a	dataset	consisting	of	a	relatively	small	number	of	microar-
ray	 samples,	with	each	 sample	 containing	 the	expression	data	of	many	 (possibly	
thousands	of)	genes	(Ambroise	and	McLachlan	2002).	For	data	miners,	this	large	
sample	reinstates	the	challenges	that	the	small	n large	P problem	poses	on	classifica-
tion	and	prediction.

Traditional	statistical	approaches	for	prediction,	such	as	standard	discriminant	
analysis,	are	used	to	determine	an	optimal	prediction	rule	R.	However,	these	sta-
tistical	approaches	work	well	when	the	number	of	training	observations	n	is	much	
larger	than	the	number	of	feature	variables	p (i.e.,	large	n	small	p).	In	the	context	
of	microarray	data,	the	number	of	tissue	samples	n	is	far	lower	than	the	number	of	
genes	p.	This	small	n large	p	situation	presents	a	number	of	problems.
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First, it may not be possible to form the prediction rule R by using all p available 
genes.	In	the	case	of	Fisher’s	linear	discriminant	function,	the	pooled	within-class	
sample	covariance	matrix	would	be	singular	when	 .n p<<

Second, the discriminatory power of the rule R would be negligible.	Let	us	consider	
a	situation	in	which	we	use	all	the	genes	to	create	a	prediction	model	using	a	sup-
port	vector	machine	 (SVM).	As	previously	discussed,	not	 all	 the	genes	have	 the	
discriminatory	potential	to	aid	in	classification.	In	fact,	using	all	the	genes	allows	
the	noise	associated	with	genes	of	little	or	no	discriminatory	power	to	inhibit	and	
degrade	the	performance	of	the	rule	R	in	its	application.

This	problem	increases	 the	generalization	error	of	R	when	a	sufficiently	 large	
number	of	genes	are	used.	Therefore,	researchers	rely	on	feature	selection	to	reduce	
the	number	of	genes	to	be	used	in	constructing	the	rule	R.

Several	approaches	have	been	proposed	to	feature	subset	selection	(Díaz-Uriarte	
and	Alvarez	de	Andrés	2006).	These	approaches	use	either	wrapper	or	filter	tech-
niques	of	feature	selection	to	search	for	an	optimal	or	near-optimal	subset	of	fea-
tures	that	can	be	used	to	generate	the	most	discriminatory	rule	R.

As	discussed	in	Chapter	4,	feature	subset	selection	can	be	classified	into	two	
categories	based	on	the	use	of	a	learning	algorithm	used	to	construct	the	prediction	
rule.	 If	a	 subset	of	 features	 is	chosen	 independently	of	a	 learning	algorithm,	 the	
method	is	said	to	follow	a	filter	approach,	and	if	the	feature	subset	selection	depends	
on	a	learning	algorithm,	the	method	is	said	to	follow	a	wrapper	approach.

Regardless	of	how	the	performance	of	 the	rule	 is	assessed	during	the	 feature	
selection	process,	it	is	common	to	assess	the	performance	of	the	rule	R	for	a	selected	
subset	of	genes	by	 its	 leave-one-out	cross-validation	(CV)	error.	However,	 if	R	 is	
calculated	within	the	feature	selection	process,	then	there	will	be	a	selection	bias	in	
it	when	it	is	used	as	an	estimate	of	the	prediction	error.	Cross-validation	should	be	
undertaken	subsequently	to	the	feature	selection	process	to	correct	for	this	selection	
bias.	Alternatively,	the	bootstrap	can	be	used.

5.3 Data Preprocessing of Mass Spectrometry Data
In	this	section	we	focus	on	the	data	transformation	strategies	used	in	the	data-rich	
field	of	mass	spectrometry	(MS).	MS	is	a	prominent	technique	that	biologists	use	
for	studying	the	role	of	various	proteins	in	a	biological	sample	(Veltri	2008).	MS	
consists	of	generating	a	signal	(spectrum)	of	values	that	represent	the	presence	of	a	
protein	measured	by	the	mass-to-charge	ratio	(m/z)	and	abundance	(intensity)	in	
the	sample.

Myriad	tools	exist	to	analyze	a	sample	and	generate	its	corresponding	MS.	The	
analysis	of	samples	using	MS	is,	however,	challenging,	as	each	spectrum	potentially	
occupies	a	gigabyte	of	memory.	Apart	from	the	sheer	volume	of	data	generated	from	
these	experiments,	the	analysis	of	MS	signals	is	affected	by	errors	introduced	during	
sample	curation	that	take	the	form	of	noise	in	the	MS.	The	different	manifestations	
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of	noise	are	attributed	to	peak	broadening,	instrument	distortion	and	saturation,	
miscalibration,	 and	 contaminants	 in	 the	 samples.	 Considering	 these	 two	 chal-
lenges,	 it	 is	not	 surprising	 to	 see	 the	 importance	of	data	preprocessing	and	data	
transformation	techniques	before	the	analysis	of	the	MS	from	different	samples.

In	the	following	sections,	we	would	highlight	the	predominantly	used	data	pre-
processing	schemes	applied	to	MS	data	(datasets).	These	include	various	binning,	
alignment,	and	baseline	subtraction	techniques	that	are	used	to	improve	the	quality	
of	raw	MS	data	prior	to	their	analysis.

5.3.1 Data Transformation Techniques
The	effect	of	data	analysis	on	MS	data	across	multiple	samples	entails	the	use	of	data	
preprocessing.	The	objective	of	using	data	preprocessing	on	MS	data	is	to	(1)	reduce	
the	spectral	noise	that	manifests	itself	in	a	single	sample	and	(2)	reduce	the	number	
of	dimensions	across	multiple	samples.	Therefore	the	data	preprocessing	strategies	
used	in	MS	data	preprocessing	focus	on	correcting	the	intensity	and	m/z values	in	
order	to	reduce	noise,	reduce	the	amount	of	data,	and	enable	effective	comparison	
of	spectra	across	different	samples.	Noise	in	MS	takes	the	form	of	variations	along	
the	m/z	axis	across	different	fractions	of	the	spectra.	This	very	nature	of	the	noise	
requires	specialized	normalization	strategies	that	can	be	applied	on	MS	data.	There	
are	different	noise	reduction	and	normalization	strategies	that	are	used	on	MS	data.	
The	following	sections	describe	the	data	preprocessing	steps	applied	to	MS	data.

5.3.1.1 Baseline Subtraction (Smoothing)

Baseline	subtraction	or	smoothing	is	the	first	step	of	data	preprocessing	applied	to	
MS	data.	The	objective	of	applying	baseline	subtraction	is	to	remove	systematic	arti-
facts	that	are	caused	by	clusters	of	ionized	matrix	molecules	that	hit	the	detector	at	
the	early	portions	of	the	experiment.	Baseline	subtraction	entails	the	use	of	an	itera-
tive	algorithm	to	remove	the	baseline	slope	and	offset	from	a	spectrum	by	iteratively	
calculating	the	best-fit	straight	line	through	a	set	of	estimated	baseline	points.	The	
baseline	points	are	determined	by	fitting	the	line	through	the	spectrum	and	then	
discarding	all	data	points	with	intensities	above	a	threshold	from	the	fitted	line.	The	
number	of	points	above	and	below	the	line	is	then	counted.	If	there	are	fewer	points	
above	the	line	than	below,	they	are	considered	peaks	and	discarded.	Then,	a	new	line	
is	fit	through	the	remaining	data	points.	This	process	is	repeated	until	the	number	of	
points	above	the	line	are	less	than	or	equal	to	those	below	the	line.	This	final	line	is	
subtracted	from	the	spectrum	to	get	the	baseline-corrected	spectrum.

5.3.1.2 Normalization

The	next	step	of	data	preprocessing	of	MS	data	is	normalization.	The	objective	of	
performing	normalization	is	to	correct	systematic	differences	in	the	total	amount	
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of	protein	desorbed	and	ionized	from	the	sample	plate.	Furthermore,	normalization	
is	done	to	make	the	data	independent	of	experimental	variations.	Thus,	normaliza-
tion	facilitates	the	comparison	of	different	samples	since	the	absolute	peak	values	of	
different	fractions	of	the	spectrum	may	be	incomparable.	Spectrum	normalization	
identifies	and	removes	sources	of	systematic	variation	between	spectra	due	to,	for	
instance,	varying	numbers	of	samples	or	variation	within	instrument	detector	sen-
sitivity.	There	exist	different	normalization	techniques	as	suggested	by	Bachmayer	
(2007),	of	which	the	following	intensity-based	normalization	techniques	are	prom-
inently	used.

Direct.normalization:	This	normalization	technique	is	similar	to	the	min-max	
normalization	technique	suggested	in	Chapter	4.	It	is	formulated	as	follows:	
the	direct	normalization	primarily	 rescales	 the	 intensity	values	 (I)	of	every	
expression	value	in	a	sample	based	on	its	corresponding	minimum	(Imin )	and	
maximum	(Imax )	values.

	
I

I I
I I
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−
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Inverse.normalization:	Similar	to	the	direct	normalization,	the	inverse	normal-
ization	considers	the	inverse	of	the	rescaled	intensity	value	by	subtracting	the	
direct	normalization	from	1.	This	is	represented	as	follows:
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Canonical. normalization: This	 normalization	 strategy	 is	 the	 simplest	 form	
of	normalization,	where	the	intensity	values	are	rescaled	by	the	sum	of	the	
intensity	values	in	a	sample.	Therefore	canonical	normalization	ensures	that	
the	rescaled	values	are	relative	to	all	the	intensity	values	in	that	sample.
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Other	normalization	strategies	commonly	used	include	the	logarithmic	normaliza-
tion,	to	transform	the	values	if	the	distribution	of	intensity	values	in	a	sample	is	skewed.

5.3.1.3 Binning

The	next	data	preprocessing	step	of	MS	data	is	binning.	The	objective	of	perform-
ing	binning	on	MS	data	is	to	bring	about	a	reduction	in	the	volume	or	dimensions	
inherent	in	the	data.	Dimensionality	reduction	is	performed	by	grouping	measured	
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data	into	bins.	During	this	process	adjacent	values	are	grouped,	and	a	representative	
member	is	elected	for	each	group.	The	binning	algorithm	takes	a	subset	of	N	peaks	
from	 a	 spectra,	 represented	 by	 the	 couples	[ , / , , / , ,( , / )]1 1 2 2I m z I m z I m zN N( ) ( ) …
,	and	substitutes	all	of	them	with	a	unique	peak	(I,m/z).	The	unique	peak	has	an	
intensity	I,	which	is	an	aggregate	function	of	the	N	original	intensities	(e.g.,	their	
sum),	and	the	mass	m/z is	usually	chosen	among	the	original	mass	values	(e.g.,	the	
median	value	or	the	value	corresponding	to	the	maximum	intensity).	Such	a	basic	
operation	is	conducted	by	scanning	all	spectrums	using	a	sliding	window.

5.3.1.4 Peak Detection

With	the	completion	of	normalization	and	binning,	researchers	rely	on	the	detec-
tion	of	peaks	to	compare	samples.	Peak	detection	is	therefore	one	of	the	most	impor-
tant	steps	in	MS	analysis	(Barla	et	al.	2008).	The	methods	used	for	peak	detection	
focus	on	identifying	those	peaks	that	are	clearly	detectable	in	a	sample	(spectra).	It	
is	believed	that	these	clearly	detectable	peaks	correspond	to	those	peptides/proteins	
in	the	sample	that	have	the	most	discriminatory	potential	to	distinguish	between	
samples.	In	order	to	achieve	the	effective	identification	of	these	peaks,	the	method	
should	account	for	the	variation	in	the	m/z	location	and	heights	of	the	same	peak	
across	different	samples;	i.e.,	it	should	be	able	to	be	stable	enough	to	manage	sys-
temic	variations	brought	about	by	the	instrumentation	used.

However,	the	detection	of	peaks	is	not	trivial,	as	the	result	is	greatly	affected	
by	severe	spectrum	variations	(Zhang	et	al.	2009).	Most	of	the	techniques	of	peak	
detection	rely	on	peak	alignment	to	identify	and	quantify	the	discriminatory	power	
of	all	peaks	across	samples.

5.3.1.5 Peak Alignment

Peak	 alignment	 focuses	 on	 aligning	 corresponding	 peaks	 across	 samples.	
Without	 alignment,	 the	 same	peak	 (e.g.,	 the	 same	peptide)	 can	have	different	
values	of	m/z	across	samples.	To	allow	an	easy	and	effective	comparison	of	dif-
ferent	spectra,	peak	alignment	methods	find	a	common	set	of	peak	locations	in	
a	set	of	spectra,	in	such	a	way	that	all	spectra	have	common	m/z	values	for	the	
same	biological	entities.

Several	methods	have	been	proposed	 for	peak	alignment,	 as	 in	 the	case	by	
Tibshirani	et	al.	(2004),	who	effectively	used	complete	linkage	hierarchical	clus-
tering	 to	 align	peaks	 across	 samples.	They	 effectively	used	 a	distance	 function	
along	 the	 log	 m/z	 axis	 to	 retain	 location	 information	 of	 the	 peaks	 across	 the	
samples.	The	idea	is	that	tight	clusters	should	represent	the	same	biological	peak	
that	has	been	horizontally	shifted	in	different	spectra.	The	centroid	(mean	posi-
tion)	of	each	cluster	will	therefore	represent	the	consensus	position	for	that	peak	
across	all	spectra.
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5.3.2  Application of Dimensionality Reduction 
Techniques for MS Data Analysis

In	the	previous	section	we	provide	an	overview	of	the	various	data	preprocessing	
strategies	used	on	MS	data	for	effective	peak	alignment.	In	this	section	we	provide	
an	overview	of	the	use	of	the	knowledge	discovery	(KD)	process	for	the	analysis	MS	
data,	as	seen	in	Figure	5.8	(Hilario	and	Kalousis	2008).

Dimensionality	reduction	strategies,	both	feature	extraction	and	feature	selec-
tion,	have	played	a	key	role	in	the	analysis	of	MS	data.	Driven	by	the	objective	of	
identifying	the	most	discriminatory	peaks	across	multiple	samples	(spectra),	there	
are	 several	 techniques	presented	 in	 this	area	of	bioinformatics.	For	 instance,	 the	
feature	extraction	technique	principal	component	analysis	(PCA)	is	the	most	com-
monly	used	method	on	MS	data.	PCA	aims	to	find	the	best	linear	transformation	
that	captures	the	variance	in	the	data	(as	described	in	Chapter	4)	(Bair	et	al.	2006).	
Other	popular	feature	extraction	schemes	include	the	Fourier	and	wavelet	transfor-
mations	that	depict	a	signal	as	a	linear	combination	of	prespecified	basis	functions	
like	the	Debauches	wavelet	functions	(Qu	et	al.	2003).

As	shown	in	Figure	5.8,	another	important	component	of	the	KD	process	to	
analyzing	 MS	 data	 is	 the	 supervised	 classification	 techniques.	 The	 preprocessed	
data	are	split	into	train	and	test	sets.	The	train	set	is	then	subject	to	both	dimen-
sionality	 reduction	 and	 learning.	 Typically	 the	 dimensionality	 reduction	 is	 kept	
independent	of	the	class	labels	of	the	train	set.	One	of	the	drawbacks	of	having	the	
dimensionality	reduction	independent	of	class	labels	is	that	they	fail	to	exploit	the	
information	provided	by	class	 labels.	As	a	result,	the	transformations	these	tech-
niques	generate	may	not	 reflect	 the	underlying	class	 structure,	 as	 the	maximum	
variance	directions	do	not	guarantee	maximum	discrimination.

On	the	contrary,	techniques	that	take	into	consideration	the	class	labels	to	reduce	
the	 dimensions	 are	 known	 as	 supervised	 feature	 extraction	 schemes.	 The	 most	
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Figure 5.8 A schematic representation of the knowledge discovery (KD) process 
in analyzing MS data.
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popularly	used	supervised	feature	extraction	scheme	is	Fisher’s	linear	discriminant	
analysis	(LDA)	(Lilien	et	al.	2003).	Though	viewed	as	a	classification	method,	LDA	
projects	the	initial	data	onto	a	k −	1	linear	subspace,	where	k	represents	the	number	
of	 classes.	Like	PCA,	LDA	effects	 a	 linear	 transformation	of	 the	 form	Z =	XW,	
where	 the	 projection	 dimensions,	 i.e.,	 the	 linear	 discriminants,	 simultaneously	
maximize	between-class	distance	and	minimize	within-class	variance.

This	projection	results	in	the	solution	of	a	generalized	eigenvalues	problem:

	 . .S W S WB i i W i= λ 	 (5.15)

where	SB	is	the	between-class	scatter	matrix,	SW	the	within-class	scatter	matrix,	and	
the	 ith	column,	W.i	of	W	 represents	 the	generalized	eigenvector	 that	 corresponds	
to	the	ith	largest	eigenvalue	λi.	Note	that	scatter	matrices	are	essentially	unscaled	
covariance	matrices.

The	resultant	solution	of	LDA	requires	the	inversion	of	the	within-class	scatter	
matrix	SW;	however,	when	p >	n −	k,	as	is	typical	with	mass	spectral	data,	the	scatter	
matrix	is	not	invertible.	One	way	to	solve	this	problem	is	to	reduce	the	feature	set	
size	to	less	than	n −	k	prior	to	LDA,	using	feature	selection	or	other	feature	extrac-
tion	techniques	such	as	PCA.

Similar	 to	 LDA,	 an	 alternate	 supervised	 feature	 extraction	 technique	 is	 the	
partial	 least	 squares	 (PLS)	 (Boulesteix	 and	Strimmer	2006).	PLS	 is	 a	 regression	
method	that	incorporates	feature	extraction,	but	it	is	equally	applicable	to	classifi-
cation	problems.	Contrary	to	LDA,	PLS	is	not	bound	by	any	p <	n	constraint	and	
is	therefore	better	adapted	to	high-dimensional	small	samples.	Furthermore,	it	can	
handle	highly	correlated	features.

Like	PCA,	PLS	finds	linear	combinations	of	the	input	features	that	maximize	
variance.	However,	unlike	PCA,	PLS	finds	the	linear	combinations	of	the	input	
features	while	simultaneously	maximizing	correlations	with	the	class	labels.	Thus,	
PLS	usually	performs	better	than	PCA	for	prediction	problems.	Furthermore,	PLS	
is	considerably	more	efficient	than	PCA	with	 its	computational	cost	O(np),	 i.e.,	
linear	in	the	number	of	cases	n	and	the	number	of	original	predictors	p,	whereas	
that	of	PCA	is	on	the	order	of	 ( , )2 3 2 3min np p pn n+ + ,	i.e.,	cubic	in	n	or	p,	which-
ever	is	smaller.

5.3.3 Feature Selection Techniques
Just	as	feature	extraction	techniques	have	played	a	prominent	role	in	MS	data	anal-
ysis,	there	is	a	gamut	of	feature	selection	techniques	that	have	achieved	considerable	
success.	Typically,	feature	selection	techniques	for	MS	data	analysis	are	categorized	
as	univariate	or	multivariate,	based	on	whether	they	evaluate	 individual	 features	
or	feature	subsets.	Both	univariate	and	multivariate	methods	can	be	used	as	filters	
prior	to	learning	or	can	be	embedded	in	the	learning	algorithm.
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5.3.3.1 Univariate Methods

These	methods	assume	that	all	the	features	are	mutually	independent	of	each	other.	
In	univariate	methods	each	feature	is	scored	or	ranked	based	on	its	individual	rel-
evance,	 i.e.,	 in	 isolation	from	all	other	features.	The	final	 feature	subset	 is	deter-
mined	by	a	user-defined	threshold	(cutoff)	on	the	computed	scores	or	ranks.	In	MS	
data	each	feature	(representing	a	peptide	or	protein)	is	selected	when	it	is	shown	to	
be	differentially	expressed	at	a	statistically	significant	level	in	the	classes	of	interest	
(e.g.,	diseased	versus	controlled).	Standard	statistical	tests	(such	as	the	 2χ 	test)	have	
been	widely	used	to	gauge	the	significance	levels.	These	statistical	tests	rely	on	an	
iterative	procedure	to	evaluate	each	feature	independently	as	follows:	first	partition	
the	sample	according	to	classes	(e.g.,	healthy	versus	diseased),	then	compute	a	test	
statistic	 for	 an	 independent	 feature,	 and	 check	 for	 significant	 differences	 in	 the	
value	of	the	test	statistic.	These	standard	statistical	tests	are	categorized	into	para-
metric	tests	and	nonparametric	tests.	Parametric	tests	assume	a	specific	probability	
distribution	of	the	data,	and	on	the	contrary,	nonparametric	tests	do	not	depend	
on	the	probability	distribution	of	the	data	and	have	been	used	in	a	filter	and	an	
embedded	setup.

Parametric	statistical	tests	have	been	prominently	used	as	filters	in	bioinformat-
ics	applications	due	to	the	flexibility	they	offer.	Examples	of	parametric	tests	that	
have	been	used	in	proteomic	analyses	are	the	t-test,	F-ratio,	 2χ -test,	Kolmogorov-
Smirnov	 test,	 and	 Wilcoxon	 rank	 test.	 Another	 parametric	 statistic	 is	 based	 on	
the	measure	of	mutual	information	that	is	derived	on	the	concepts	of	information	
theory.	This	measure	quantifies	 the	 reduction	 in	class	 entropy	brought	about	by	
the	inclusion	of	a	specific	feature.	Thus,	mutual	information	provides	an	effective	
feature	ranking	criterion	used	in	MS	features	ranking.

Univariate	methods	have	been	used	 in	 conjunction	with	 supervised	 learning	
schemes	 for	 effective	 identification	 of	 discriminatory	 features	 sets.	 These	 simple	
learning	schemes	are	aimed	at	exploiting	known	class	labels	information	along	with	
univariate	methods.	Centroid	shrinkage	is	one	such	feature	selection	method	that	is	
embedded	in	the	nearest	centroid	classification	algorithm	(Tibshirani	et	al.	2004).	
In	this	learning	scheme,	the	training	samples	are	used	to	compute	the	class	cen-
troids;	a	test	sample	is	assigned	to	the	class	with	the	closest	centroid.	Class	centroid	
computation	is	strictly	univariate:	the	ith	component	of	the	centroid	of	a	given	class	
k is	 /1x x nik j

n
ij k

k= Σ = ,	where	xij	is	the	value	of	the	ith	variable	when	j ∈	k	and	nk	is	
the	number	of	cases	in	class	k.	Similarly,	the	ith	component	of	the	overall	centroid	
is	 /1x x ni j

n
ij= Σ = ,	 where	 n	 is	 the	 total	 number	 of	 cases.	 To	 reduce	 the	 number	

of	 features,	 the	distance	between	 the	 class	 centroids	 and	 the	overall	 centroid	 is	
shrunk	by	an	amount	determined	by	Δ,	a	user-tuned	parameter;	the	class	centroids	
move	more	rapidly	to	the	overall	mean	when	the	shrinkage	parameter	is	higher.	
Centroid	shrinkage	can	reduce	the	distance	between	the	class	mean	and	the	over-
all	mean	 to	 zero	 for	noisy	or	nondiscriminatory	 features,	which	 are	 eliminated	
(Tibshirani	et	al.	2002).
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The	main	advantage	of	using	univariate	methods	is	that	they	are	computation-
ally	efficient.	This	computational	efficiency	is	based	on	the	fact	that	they	are	driven	
by	 the	computing	of	p	 scores.	However,	 these	methods	have	a	number	of	draw-
backs,	such	as	they	cannot	detect	correlated	or	redundant	features	or	interacting	
features	(i.e.,	features	that	are	irrelevant	by	themselves	but	highly	discriminatory	
when	combined	with	others).

5.3.3.2 Multivariate Methods

Multivariate	 methods	 assess	 the	 predictive	 power	 of	 feature	 subsets	 rather	 than	
individual	features.	Multivariate	methods	take	feature	dependencies	into	account	
in	the	feature	subset	selection	process.	The	major	difficulty	encountered	when	using	
this	method	is	that	the	number	of	possible	subsets	increases	exponentially	with	the	
growth	in	the	number	of	features.

Multivariate	methods	of	feature	selection	are	based	on	exhaustive	search	strate-
gies	that	test	the	effectiveness	of	different	combinations	of	features	(i.e.,	the	strate-
gies	of	generating	and	evaluating	all	2p	–	1	possible	subsets	of	p	features).	This	is	a	
daunting	task	for	all	but	trivial	datasets	and	is	considered	to	be	the	limitation	of	
multivariate	methods.	Forward	selection	and	backward	elimination	in	conjunction	
is	a	prominent	heuristic	 search	strategy	 that	has	been	proposed	 to	overcome	the	
limitation	of	multivariate	methods.

Forward	selection	starts	with	an	empty	feature	subset	S	and	selects	the	feature	
that	maximizes	a	predefined	scoring	function.	Thereafter,	it	searches	the	remaining	
features	and	selects	that	feature	X	that,	when	added	to	set	S,	maximizes	the	score	of	
the	resulting	subset.	The	process	continues	until	a	predefined	criterion	is	met,	e.g.,	
until	the	score	of	S ceases	to	improve.	Once	this	criterion	is	met,	backward	elimi-
nation	proceeds	in	the	reverse	direction;	it	starts	with	the	full	variable	set	and	at	
each	step	removes	the	variable	with	the	elimination	that	yields	the	highest	score	for	
the	remaining	subset.	Both	forward	selection	and	backward	elimination	are	greedy	
search	strategies	that	are	not	guaranteed	to	achieve	optimal	results.

As	a	partial	 remedy	to	this	challenge	of	greedy	search,	researchers	use	floating	
strategies	that	allow	forward	and	backward	selection	to	eliminate	or	add	previously	
selected	or	eliminated	features.	Alternatively,	stochastic	search	methods	use	random-
ization	to	overcome	a	second	pitfall	of	greedy	methods,	being	trapped	in	local	optima.	
Among	 these	 stochastic	 search	 methods,	 biologically	 inspired	 techniques,	 which	
mimic	mechanisms	underlying	the	behavior	or	evolution	of	living	populations,	have	
proved	to	be	effective	strategies	for	finding	discriminatory	feature	subsets.

A	number	of	variable	subset	selection	strategies	have	been	used	as	filters	prior	to	
supervised	learning.	The	RELIEF	algorithm,	as	described	in	Chapter	4,	computes	
the	relevance	of	each	predictive	variable	using	a	method	based	on	k-nearest	neigh-
bors.	In	a	binary	classification	problem,	this	method	repeatedly	picks	a	case	at	ran-
dom	and	identifies	the	case’s	nearest	neighbor	from	the	positive	class	and	its	nearest	
neighbor	 from	 the	 negative	 class.	 It	 then	 adjusts	 feature	 weights	 by	 rewarding	
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features	that	discriminate	neighbors	from	different	classes	while	penalizing	those	
with	different	values	for	neighbors	of	the	same	class.	Although	feature	weights	are	
updated	separately,	the	RELIEF	algorithm	is	a	multivariate	method	that	computes	
the	distance	of	underlying	nearest-neighbor	identification	and	takes	into	account	
all	features.	The	RELIEF	algorithm	can	be	used	as	a	feature	selection	filter	for	any	
learning	algorithm.

5.3.3.2.1 Multivariate Embeddings

Rather	 than	 having	 a	 feature	 selection	 strategy	 prior	 to	 the	 supervised	 learn-
ing,	several	supervised	learning	algorithms	have	multivariate	filters	embedded	as	
part	of	their	model	building	process.	Decision	trees	(DTs)	like	CART	and	C4.5	
are	 classical	 examples	of	 learning	algorithms	 that	have	 embedded	heuristic	 fea-
ture	 selection	 as	 part	 of	 their	model	 building	process.	A	DT	 is	 constructed	by	
a	sequential	forward	search	of	the	features	in	the	dataset	that	is	used	to	find	the	
most	discriminatory	feature	subset.	At	each	leaf	node	of	the	partially	built	tree,	
the	 algorithm	 selects	 the	 feature	 that	maximally	 reduces	 the	 class	 impurity	 (or	
entropy)	of	the	examples	associated	with	that	node.	Chapter	8	provides	a	descrip-
tion	of	the	construction	of	a	DT.

Information	 gain	 (IG)	 is	 a	 measure	 used	 by	 the	 DT	 C4.5	 that	 is	 defined	
as	I(X;C)	=	H(C)	−	H(C|X ),	where	C	is	the	class	variable,	X	is	a	feature,	and	H(.)	
is	their	corresponding	entropy.	In	other	words,	IG	is	the	decrease	in	class	entropy	
brought	about	by	the	feature	X.

Though	DTs	are	constructed	by	gauging	the	entropy	of	independent	features,	
DTs	are	multivariate	rather	than	univariate.	DTs	measure	the	cumulative	reduction	
in	entropy	brought	about	by	the	feature	subset	consisting	of	all	features	along	the	
path	from	the	root	to	the	current	node.	Though	DTs	are	sufficient	for	the	identifica-
tion	of	feature	subsets,	it	is	common	practice	to	precede	DT	learning	by	a	feature	
selection	method,	such	as	the	t-test	(or	any	of	the	univariate	methods).

Another	 embedded	 multivariate	 technique	 consists	 of	 building	 ensembles	 or	
communities	of	univariate	 classifiers,	which	are	 then	combined	 to	yield	 a	 single	
prediction	(refer	to	Chapter	8	for	details).	A	widely	used	ensemble	learning	method	
is	boosting,	which	builds	a	sequence	of	classifiers	from	adaptively	generated	data.	
This	method	builds	a	classifier	at	each	iteration,	and	the	classifier’s	accuracy	on	the	
training	data	is	estimated.

5.4 Data Preprocessing for Genomic Sequence Data
An	 important	 aspect	 to	bioinformatics	 is	 the	 analysis	of	 sequence	data,	 in	 the	
form	 of	 genomic	 sequence	 data	 or	 proteomic	 sequence	 data.	 The	 objective	 of	
sequence	 data	 is	 the	 identification	 of	 motifs	 (short	 sequence	 signals)	 that	 are	
embedded	 in	 the	 sequence	composition.	 It	 is	believed	 that	 some	or	all	of	a	 set	
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of	promoters	 from	coexpressed	or	orthologous	genes	may	contain	binding	sites	
(signals)	for	the	same	transcription	factor.	Similarly,	a	set	of	proteins	that	interact	
with	a	single	host	protein	may	do	so	via	similar	domains	(the	signal).	Both	types	
of	sequence	signals	can	often	be	represented	as	motifs	that	are	ungapped,	approx-
imate	subsequence	patterns.	This	section	aims	to	describe	the	several	techniques	
that	have	been	proposed	to	identify	statistically	significant	motifs	for	a	given	set	
of	sequences.

Motif	discovery	algorithms	look	for	a	set	of	similar	short	sequences	in	a	set	of	
much	longer	sequences.	This	problem	is	easier	when	the	motif	instances	are	long	
and	very	similar	to	each	other.	It	gets	much	harder	when	the	motif	instances	are	
short	or	when	the	input	sequences	are	very	long	(Bailey	et	al.	2006).

5.4.1 Feature Selection for Sequence Analysis
With	the	exponential	growth	of	genome	sequence	data,	there	 is	a	need	for	com-
putationally	effective	and	accurate	tools	to	automatically	identify	genes	from	the	
sequences.	This	 objective	 poses	 a	 challenging	 problem,	 as	 only	 a	 fraction	of	 the	
genome	 sequence	 (miniscule	 in	 number)	 actually	 contains	 coded	 information.	
This	makes	several	statistical	techniques	unreliable	and	inaccurate	 in	identifying	
informational	parts	in	the	sequence	(Saeys	et	al.	2006).	Therefore,	while	analyzing	
sequences	in	bioinformatics,	feature	selection	has	played	a	key	role	in	recent	times.	
According	to	Saeys	et	al.	(2007),	there	are	two	types	of	sequence	analysis:	content	
analysis	and	signal	analysis.

Content. analysis:	 The	 prediction	 of	 subsequences	 that	 code	 for	 proteins	
(coding	potential	prediction)	has	been	a	focus	of	interest	since	the	early	
days	 of	 bioinformatics.	 Because	 many	 features	 can	 be	 extracted	 from	
a	 sequence	 and	 most	 dependencies	 occur	 between	 adjacent	 positions,	
many	 variations	 of	 Markov	 models	 have	 been	 developed	 (Eddy	 2004).	
Addressing	 the	 high	 number	 of	 possible	 features	 and	 the	 often	 limited	
amount	 of	 samples	 led	 to	 the	 introduction	 of	 the	 interpolated	 Markov	
model	 (IMM)	 through	 the	 implementation	 of	 the	 GLIMMER	 system	
(Salzberg	et	al.	1998).	Using	a	two	step	process,	the	GLIMMER	system	is	
used	to	find	coding	regions	in	microbial	genome	sequences.	First,	it	uses	
the	IMM	to	interpolate	between	different	orders	of	the	Markov	model	to	
deal	with	a	small	number	of	samples.	And	then	a	filter	method	(	χ2	filter)	
is	used	to	select	only	relevant	features.

Signal.analysis: Many	 sequence	analysis	methodologies	 involve	 the	 recognition	
of	 short,	more	or	 less	 conserved	 signals	 in	 the	 sequence,	 representing	mainly	
binding	sites	 for	various	proteins	or	protein	complexes.	A	common	approach	
to	finding	regulatory	motifs	is	to	relate	motifs	to	gene	expression	levels	using	a	
regression	approach	(Guyon	et	al.	2002).	Feature	selection	is	then	used	to	search	
for	the	motifs	that	maximize	the	fit	of	the	regression	model	(Keles	et	al.	2002).



Feature Interpretation for Biological Learning  ◾  167

Sequence.features:	Commonly	used	sequence	features	represent	only	the	nucle-
otide	or	amino	acid	at	each	position	in	a	sequence.	However,	there	are	many	
other	features,	such	as	higher-order	combinations	of	the	nucleotides	or	amino	
acids	(e.g.,	k-mer	patterns),	that	can	be	derived,	and	their	number	is	grow-
ing	exponentially	with	the	pattern	length	k.	Such	higher-order	features	are	
described	as	follows	(Saeys	et	al.	2006):

	 1.	 Frame-dependent.k-mers:	For	each	of	the	three	possible	reading	frames,	
k-mer	frequencies	(1	≤	k ≤	3)	can	be	extracted.	These	frame-dependent	
features	would	result	in	252	[=	3	×	(4	+	16	+	64)]	features.

	 2.	 In-frame.k-mers:.Assuming	the	sequence	is	in	reading	frame	1	(the	start	
of	the	sequence	coincides	with	the	start	codon),	in-frame	k-mer	frequen-
cies	(4	≤	k ≤	6)	can	be	extracted.	These	in-frame	k-mer	features	can	result	
in	a	set	of	5,376	possible	features.

	 3.	 Frameless.k-mers:	For	 each	possible	k-mer	 (1	≤	k ≤	3),	 the	global	 fre-
quencies	of	occurrence	are	calculated	(i.e.,	without	taking	into	account	the	
reading	frame).	These	frameless	k-mers	will	result	in	possible	84	features.

	 4.	 Fourier. transform. features:	 This	 is	 the	 most	 common	 application	 of	
Fourier	 analysis	 on	 DNA	 sequences.	 The	 features,	 derived	 from	 the	
Fourier	 transform,	 include	 (1)	 the	magnitude	of	 the	peak	at	 frequency	
1/3	in	the	Fourier	spectrum,	(2)	the	global	magnitude	at	frequency	1/3,	
which	 is	 the	 sum	 of	 all	 four	 magnitudes	 of	 the	 sequence,	 and	 (3)	 the	
signal-to	noise	ratio	of	the	peak	frequency	1/3.	This	results	in	a	possible	
six	features.

	 5.	 ORF.feature:	Given	a	sequence	and	an	assumed	reading	frame,	this	fea-
ture	denotes	whether	there	is	an	in-frame	stop	codon	present.

	 6.	 Run.features:	For	each	of	the	nontrivial	subsets	of	{A,	T,	G,	C},	a	new	
sequence	is	constructed	by	replacing	each	base	present	in	the	subset	with	
1	and	replacing	each	base	not	in	the	subset	with	0.	Using	this	transform	
of	 the	 sequence,	 the	number	of	 runs	of	1s	of	 length	1,	2,	3,	4,	5,	 and	
greater	than	5	are	then	counted.	This	results	in	a	set	of	84	features.

With	the	numerous	features	listed	above,	it	is	observed	that	many	of	these	are	
irrelevant	or	redundant.	This	therefore	requires	feature	selection	techniques,	which	
will	be	applied	to	focus	on	the	subset	of	relevant	features.

5.5 ontologies in Bioinformatics
In	data	mining,	 it	 is	common	to	use	conceptual	hierarchies	 to	provide	a	certain	
degree	 of	 data	 abstraction,	 to	 describe	 complicated	 concepts	 that	 require	 a	 cer-
tain	degree	of	heterogeneity	in	the	data	types	used	to	describe	them.	To	this	end,	
conceptual	hierarchies	have	been	extensively	used	in	various	applications	of	data	
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mining,	 and	 take	 the	 form	of	ontologies	 in	bioinformatics.	These	ontologies	 are	
then	used	to	integrate	data	from	heterogeneous	sources.

According	 to	 Bodenreider	 and	 Stevens	 (2006),	 ontologies	 are	 techniques	 or	
technologies	 used	 to	 represent	 and	 share	 knowledge	 about	 an	 entity	 by	 model-
ing	the	features	of	the	entity	and	the	relationships	between	those	features.	These	
relationships	describe	the	properties	of	those	features	in	the	entity	being	modeled.	
Thus,	the	ontology	represents	a	conceptualization	of	reality,	or	simply	reality.	The	
labels	used	for	the	features	and	their	properties	in	an	ontological	model	can	pro-
vide	a	common	language	for	a	community	to	talk	about	their	entity.	By	agreeing	
on	a	particular	ontological	representation,	a	common	vocabulary	can	be	used	to	
describe	and	analyze	data.

Newer	 technologies	 such	 as	 microarrays	 and	 the	 ever-changing	 volumes	 of	
data	 have	 necessitated	 the	 ability	 of	 computational	 services	 or	 algorithms	 to	
automate	 gene	 calling,	 the	 identification	 of	 individual	 genes	 across	 a	 genome.	
Gene	calling	entails	using	algorithms	to	identify	biologically	functional	regions	
or	exons	of	sequences	that	explicitly	code	for	proteins	commonly	referred	to	as	
coding	regions.	These	algorithms	are	based	on	machine	learning,	which	predicts	
unique	 signatures	 of	 the	 genetic	 spectrum.	Once	 the	 genes	have	been	 located,	
the	tasks	of	assimilating	the	biological	 functions	of	 the	resulting	proteins	have	
to	be	determined.	The	prediction	of	protein	functions	is	then	determined	by	the	
sequence	alignment	of	 sequences	 from	their	homologs.	This	process	 is	plagued	
by	errors,	as	it	is	time-consuming	and	dependent	on	the	accuracy	of	previously	
discovered	sequences.	New	alternative	approaches	of	functional	genomics	aim	at	
identifying	functionally	significant	gene	sequences	through	the	use	of	knowledge	
gained	from	annotated	functionality,	pathways,	and	protein-protein	interactions.	
These	approaches,	however,	necessitate	the	resolution	of	semantics,	i.e.,	the	dif-
ferences	in	meaning	and	naming	conventions	between	heterogeneous	sources.

Semantic. incompatibility:	 Though	 data	 from	 conflicting	 database	 schemas	
can	be	pooled	together	using	simple	queries,	the	semantics	between	heteroge-
neous	biological	data	is	not	as	transparent.	For	example,	a	gene	is	defined	dif-
ferently	in	different	databases.	According	to	the	Human	Genome	Database	
(HGD)	a	gene	is	defined	as	a	DNA	fragment	that	is	analogous	to	a	protein,	
whereas	in	GenBank	and	the	Genome	Sequence	Database	(GSDB),	a	gene	is	
considered	to	be	a	region	of	biological	interest	that	carries	a	genetic	trait	and	
has	an	associated	name.	Thus,	these	databases	are	built	using	two	theories	of	
what	a	gene	is.	As	a	result,	the	retrieval	of	data	from	semantically	different	
databases	on	the	basis	of	the	keyword	gene	would	typically	propagate	an	error.	
Moreover,	problems	also	arise	when	two	variables	in	disparate	databases	are	
semantically	equivalent;	it	must	be	noted	that	their	relations	to	other	knowl-
edge	objects	in	the	data	repository	may	not	be	equivalent.	These	conflicts	are	
commonly	referred	to	as	schematic	incompatibility.
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Context: To	facilitate	both	semantic	and	schematic	differences	inherent	in	bio-
logical	data,	the	context	from	which	biological	data	originates	is	given	more	
importance	at	the	database	level.	These	differences	are	elucidated	by	the	fact	
that	functional	prediction	hinges	on	the	need	to	find	similar	cellular	compo-
nents	that	participate	in	similar	biological	processes	rather	than	the	sequence	
homologs.	To	connect	sequence	and	cellular	components,	it	is	imperative	to	
depend	on	additional	data	sources	that	support	information	about	the	diverse	
components	entailed	in	a	biological	process.	Thus,	to	explore	the	vast	num-
ber	 of	 databases,	 it	 is	 required	 that	 the	 biological	 context	 of	 sequences	 be	
adequately	encoded	and	machine	readable.

5.5.1 The Role of Ontologies in Bioinformatics
To	resolve	the	issue	of	semantics	in	bioinformatics	databases,	ontologies	have	pro-
vided	better	biological	 interoperability.	By	definition	an	ontology	 is	 a	machine-
readable	model	of	the	objects	(allowed	into	a	formal	universe)	and	the	associations	
(or	 relationships)	between	these	objects,	upon	which	some	automated	reasoning	
(or	task)	can	be	performed	(Schuurman	and	Leszczynski	2008).	Typically	scien-
tific	ontologies	contain	three	levels	of	formalization.	The	first	level	is	conceptual	
description	of	elements,	which	 is	 then	translated	 into	the	second	 level,	a	 formal	
model	of	the	data	elements	in	the	ontology	(e.g.,	proteins)	and	the	possible	rela-
tionships	between	the	data	elements.	The	final	level	is	the	development	of	code	that	
can	be	run	by	computers	that	use	the	outputs	of	the	second	level.	Ontologies	like	
biological	taxonomy	are	a	hierarchy	of	concepts,	with	the	general	concepts	placed	
at	the	top	of	the	hierarchy,	and	the	specificity	of	the	concepts	increases	as	we	tra-
verse	down	the	hierarchy.	Ontologies	are	populated	by	domain	knowledge	in	the	
form	of	semantics	that	allows	all	entities	declared	into	the	ontology	to	be	defined	
and	for	their	interrelationships	to	be	given	strict	parameters,	enabling	realistic	bio-
logical	models	(Baker	et	al.,	1999).

Therefore	semantics	enables	the	distinction	of	concepts	declared	into	the	model.	
To	 satisfy	 the	 strict	 criteria	 of	 formal	 ontology	 building,	 the	 semantics	 used	 to	
instantiate	an	ontology	should	be	based	on	formally	defined	logics.	These	formally	
defined	logics	can	be	based	of	logical	algebra	such	as	description	logics	(DLs).	These	
DLs	should	accommodate	predetermined	rules	for	(1)	when	two	concepts	are	the	
same,	(2)	when	the	two	concepts	are	one	of	a	kind,	and	(3)	how	two	concepts	dif-
fer	from	each	other.	These	rules	must	furthermore	be	expressed	in	some	machine-
readable	syntax,	such	as	a	knowledge	representation	language	like	Web	Ontology	
Language	 (OWL).	 Such	 rules	 govern	 the	 expression	 and	 processing	 of	 relations	
between	concepts	in	the	hierarchy.	It	should	be	noted	that	these	relational	expres-
sions	between	concepts	in	a	hierarchy	form	the	basis	for	all	modeling	tasks	for	using	
any	ontology	(see	Figure	5.9).



170  ◾  Data Mining for Bioinformatics

Re
al

ity

D
ro

so
ph

ila
 M

el
an

og
as

te
r

G
en

e
O

nt
ol

og
y

�
e F

ru
it F

ly 
as 

a

Model 
Orga

nism

Gen
eti

c S
eq

uen
cin

g/

M
ap

ping t
he F

ru
it F

ly

Gen
ome

A Scie
nti�

c M
odel

of th
e G

en
ome

Coding

Annotat
ion U

sin
g

the G
O;M

ap
ping t

o

the G
O

Functi
onal 

Pred
ict

ion

on th
e B

asi
s o

f H
omology

/

Share
d Biology

1

C
on

ce
pt

ua
l

Re
pr

es
en

ta
tio

n
2

D
at

ab
as

e
Re

pr
es

en
ta

tio
n

K
no

w
le

dg
e 

Pr
od

uc
tio

n
fr

om
 D

at
ab

as
e

3 3

2

4

1

G
O

 A
nn

ot
at

io
n:

Fl
yb

as
e4

ge
ne

: C
G

33
29

8

Fl
yb

as
eI

D
Sp

ec
ie

s
Fe

at
ur

e 
Ty

pe
A

nn
ot

at
io

n 
Sy

m
bo

l

FB
gn

00
32

12
0

D
.m

el
an

og
as

te
r

Pr
ot

ei
n 

Co
di

ng
 G

en
e

C
G

33
29

8

C
el

lu
la

r
C

om
po

ne
nt

In
te

gr
al

 to
 M

em
br

an
e

Ev
id

en
ce

:
In

fe
rr

ed
 fr

om
 S

eq
ue

nc
e 

or
 S

tr
uc

tu
ra

l
Si

m
ila

rit
y 

w
ith

 U
ni

Pr
ot

 Q
8K

2X
1

In
fe

rr
ed

 fr
om

 S
eq

ue
nc

e 
or

 S
tr

uc
tu

ra
l

Si
m

ila
rit

y 
w

ith
 U

ni
Pr

ot
 Q

8K
2X

1

In
fe

rr
ed

 fr
om

 S
eq

ue
nc

e 
or

 S
tr

uc
tu

ra
l

Si
m

ila
rit

y 
w

ith
 U

ni
Pr

ot
 Q

8K
2X

1

Ev
id

en
ce

:

Ev
id

en
ce

:
In

fe
rr

ed
 fr

om
 E

le
ct

ro
ni

c 
A

nn
ot

at
io

n

Ev
id

en
ce

:

M
us

 M
us

cu
lu

s

AT
P 

Bi
nd

in
g

Ph
os

ph
ol

oi
d 

Tr
an

sp
or

t

Ph
os

ph
ol

oi
d-

tr
an

slo
ca

tin
g 

AT
Pa

se
 a

ct
iv

ity
M

ol
ec

ul
ar

Fu
nc

tio
n

Bi
ol

og
ic

al
Pr

oc
es

s

Fi
gu

re
 5

.9
 

th
e 

fo
rm

al
iz

at
io

n 
of

 t
he

 p
ro

ce
ss

 o
f 

m
ov

in
g 

fr
om

 a
 c

on
ce

pt
 (

of
 a

 g
en

e)
 t

o 
it

s 
en

co
de

d 
re

ifi
ca

ti
on

 a
nd

 o
nt

ol
og

ic
al

 
re

pr
es

en
ta

ti
on

. n
ot

e 
ho

w
 t

he
 e

nt
it

y 
(f

ru
it

 fl
y)

 b
ec

om
es

 in
cr

ea
si

ng
ly

 r
ep

re
se

nt
ed

 in
 d

ig
it

al
 d

at
ab

as
e 

fo
rm

at
 a

s 
it

 is
 fo

rm
al

iz
ed

, o
r 

ab
st

ra
ct

ed
 f

ro
m

 it
s 

re
al

-w
or

ld
 fo

rm
. (

Fr
om

 S
ch

uu
rm

an
, n

., 
an

d 
Le

sz
cz

yn
sk

i, 
A

., 
B

io
in

fo
rm

at
ic

s 
B

io
l I

ns
ig

ht
s 

2 
(2

00
8)

: 1
87

–2
00

.)



Feature Interpretation for Biological Learning  ◾  171

5.5.1.1 Description Logics

Ontologies	 differ	 from	 data	 integration	 by	 their	 ability	 to	 define	 relationships	
between	concepts.	Typically,	relationships	are	developed	using	a	natural	language	
that	 is	 an	 expression	of	 context.	 In	other	words,	 relationships	between	 concepts	
are	 captured	 so	 that	 they	 convey	 some	 semantics.	 Similarly,	 content	 semantics	
are	expressed	by	identifying	how	concepts	relate	to	each	other	in	the	hierarchical	
knowledge	space.

The	very	hierarchical	nature	of	an	ontology	brings	about	a	parent-child	ordering	
of	semantic	granularity	of	the	relation	between	any	two	concepts.	The	hierarchical	
structure	establishes	a	hyponymic	(is-a)	relationship	between	terms	by	their	rela-
tive	position	to	each	other	in	the	hierarchy	on	the	basis	of	subsumption	(where	a	
concept	is	a	subclass	or	member	of	the	other	concept)	and	specialization	(where	a	
concept	is	the	superclass	of	or	contains	another	concept).	The	semantic	edges	of	the	
tree	are	the	relationships	referred	to	as	properties	that	reflect	the	meaning	of	data	
elements	by	providing	the	context	of	their	usage.

Ontological	expressions	are	stated	in	the	form	of	propositional	triplets.	The	
triplets	 consist	 of	 concepts	 (real-world	 entities	 that	 populate	 the	 model),	 their	
properties	 (or	 relationships	 between	 entities),	 and	 instances	 (particular	 occur-
rences	 of	 a	 concept)	 in	 a	 hierarchical	 model.	 A	 triplet	 is	 considered	 to	 be	 a	
definitive	 statement	about	 the	world.	Thus,	 if	 an	ontology	 is	 represented	using	
a	description	logic	(DL),	the	axioms	of	the	logic	can	be	used	to	impose	restric-
tions	on	the	concepts	in	which	domains	logically	participate	in	relationships	with	
each	 other.	 These	 logics	 thus	 form	 a	 content	 specification.	 Using	 the	 descrip-
tion	 logic	 makes	 implementing	 an	 ontology	 simpler,	 where	 each	 propositional	
triple	describes	a	knowledge	base	(Schuurman	and	Leszczynski	2008).	The	fol-
lowing	sections	contain	descriptions	of	the	most	prominently	used	ontology	in	
bioinformatics:	the	Gene	Ontology	(GO),	a	derivative	of	the	Open	Biomedical	
Ontologies	(OBO).

5.5.1.2 Gene Ontology (GO)

The	Gene	Ontology	has	been	one	of	the	most	successful	ontologies	in	the	area	of	
bioinformatics.	The	success	of	this	ontology	can	be	enumerated	as	follows	(Bada	
et	al.	2004):

	 1.	Community.involvement:.The	development	of	the	GO	is	an	open	process;	
response	is	welcomed	from	the	community	that	it	seeks	to	serve.	The	GO	is	
built	by	and	for	biologists,	and	groups	join	the	GO	because	it	suits	their	needs.	
Such	activity	is	less	likely	than	in	a	dictated,	unresponsive	organization.

	 2.	Clear.goals:	The	GO	promotes	consistent	annotation	for	gene	products	for	
the	 three	major	 functional	 attributes.	While	GO	has	 been	used	 for	many	
other	purposes,	this	narrow,	clear	goal	enables	focus	to	be	maintained.



172  ◾  Data Mining for Bioinformatics

	 3.	Limited. scope:	 An	 ontology	 for	 the	 whole	 of	 biology	 would	 be	 useful.	
However,	it	would	be	impractical	to	develop	such	an	ontology.	A	limited	but	
useful	scope	was	able	to	demonstrate	utility.

	 4.	Simple.structure:	The	GO’s	use	of	a	simple	directed	acyclic	graph	(DAG)	is	
sufficient	to	capture	the	relationships	between	concepts	derived	from	biology.

	 5.	Continuous.evolution:	Our	understanding	of	biology	changes	and	expands.	
Part	 of	 the	 community	 engagement	 is	 to	 respond	 to	 and	put	 in	place	 the	
apparatus	to	cope	with	change.

	 6.	Active.curation:	In	addition	to	community	input,	the	continuous	evolution	
and	necessary	maintenance	require	curators	to	implement	changes.

	 7.	Early.use:	The	evolutionary	nature	of	genomics	enabled	early	use	and	evolu-
tion	of	the	GO.	A	relatively	small	number	of	gene	products	and	consistent	
annotation	enabled	its	use.

The	 GO	 is	 a	 global	 ontology	 that	 is	 a	 central	 knowledge	 proxy	 to	 which	
other	 ontologies	 or	 knowledge	 representations	 may	 be	 aligned.	 The	 alignment	
of	 derived	 knowledge	 representation	 is	 brought	 about	 by	 ontology	 mapping.	
Ontology	 mapping	 is	 the	 process	 of	 defining	 associations	 between	 ontologies.	
This	method	involves	the	formal	declaration	of	relational	links	between	entities,	
much	like	those	involved	in	relating	concepts	in	a	hierarchical	ontological	struc-
ture.	Ontologies	can	be	either	aligned,	whereby	the	formalisms	remain	separate	
entities	but	are	related,	or	merged,	wherein	a	singular	ontology	is	generated	from	
the	cross-products	of	two	input	ontologies.	Mapping	is	thus	unidirectional	and	
always	from	the	constituent	database	to	the	GO.	Figure	5.10	illustrates	the	role	
that	GO	plays	in	the	development	of	global	biological	ontology	and	the	mechan-
ics	involved.

5.5.1.3 Open Biomedical Ontologies (OBO)

The	success	of	the	GO	in	meeting	its	objectives,	its	wide	use	by	other	databases	for	
attributing	gene	product	 functionality,	and	finally	the	use	of	 the	GO	outside	 its	
intended	purpose	have	led	to	many	other	groups	developing	ontologies	for	database	
annotation.	In	order	to	provide	some	coordination	to	these	efforts,	the	OBO	con-
sortium	was	established.

OBO	is	guided	by	a	set	of	principles	that	are	used	to	give	coherence	to	wider	
ontological	efforts	across	the	community.

	 1.	Openness:	All	the	OBO	ontologies	are	freely	available	to	the	community	as	
long	as	the	ontologies	are	properly	attributed.

	 2.	Common. representation:	 Both	 the	 OBO	 format	 and	 the	 Web	 Ontology	
Language	(OWL)	provide	common	access	via	open	tools.	Although	not	men-
tioned	as	part	of	the	criteria,	this	common	access	offers	common	semantics	
for	knowledge	representation.
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	 3.	Independence:	 Lack	 of	 replication	 across	 separate	 ontologies	 encour-
ages	combinatorial	 reuse	of	ontologies	and	the	 interlink	of	ontologies	via	
relationships.

	 4.	Identifiers:	Each	 term	 should	have	 a	 semantic-free	 identifier,	 the	first	 part	
of	which	 identifies	 the	originating	ontology.	These	 identifiers	promote	easy	
management.

	 5.	Natural.language.definitions:	Terms	are	often	ambiguous,	even	in	the	con-
text	of	their	ontology,	and	definitions	help	ensure	appropriate	interpretation.	
Arguments	over	terms	are	often	bitter	and	long,	while	arguments	over	defini-
tions	are	shorter	and	more	useful.

Through	 these	 simple	 criteria,	 the	 ontology	 community	 is	 attempting	 to	 avoid	
repeating	the	errors	their	ontologies	have	been	developed	to	resolve,	primarily	the	massive	
syntactic	and	semantic	heterogeneity	extant	in	bioinformatics	resources.	Many	resources	
fall	under	the	OBO	umbrella,	and	most	of	these	resources	are	shown	in	Figure	5.11,	in	
which	OBO	have	been	arranged	along	a	spectrum	of	genotype	and	phenotype.

The	most	significant	OBO	are	the	GO	(Gene	Ontology	Consortium	2008)	and	
the	Sequence	Ontology	(Eilbeck	et	al.	2005).	The	former	is	used	to	annotate	the	
principal	attributes	of	gene	products.	The	latter	provides	a	vocabulary	to	describe	
the	features	of	biological	sequences.

Moving	 along	 the	 spectrum	 toward	 phenotype	 (refer	 to	 Figure	 5.11),	 we	 see	
increasing	numbers	of	species	ontologies	on	the	same	subject:	development	and	anat-
omy.	While	the	descriptions	of	sequence	features	and	major	attributes	of	gene	products	
might	be	core	to	molecular	biology,	these	descriptions	need	to	be	placed	in	a	context.

Other	 OBO	 ontologies	 include	 some	 that	 describe	 experiments	 that	 gener-
ate	 biological	 data.	 Foremost	 among	 these	 ontologies	 is	 the	 Microarray	 Gene	
Expression	Data	(MGED)	ontology	(Whetzel	et	al.	2006).	This	ontology	provides	a	
vocabulary	for	describing	a	biological	sample	used	in	an	experiment,	the	treatment	
the	sample	receives	in	the	experiment,	and	the	microarray	chip	technology	used	in	
the	experiment.

5.6 Conclusion
In	 this	 chapter	we	have	described	 the	 interpretation	of	 features	obtained	 from	
bioinformatics	data	in	context	to	the	various	data	transformation	and	data	pre-
processing	 strategies.	 We	 have	 emphasized	 the	 role	 of	 various	 normalization	
techniques	 with	 their	 application	 to	 high-throughput	 gene	 expression	 data.	
Furthermore,	this	chapter	describes	the	role	of	data	preprocessing	strategies	and	
data	 transformation	 strategies	with	 respect	 to	mass	 spectrometry	data	 analysis	
and	genomic	sequence	data.	This	chapter	concludes	by	describing	the	importance	
of	ontologies	and	concept	hierarchies	that	are	necessary	in	interpreting	the	role	of	
features	in	a	computational	perspective.
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Chapter 6

Clustering techniques 
in Bioinformatics

We	covered	the	different	data	preprocessing	and	transformation	techniques	in	data	
mining	in	Chapter	4.	We	also	described	the	different	application	areas	and	the	sig-
nificant	role	these	techniques	play	in	the	field	of	bioinformatics.	In	this	chapter	we	
list	and	describe	different	unsupervised	learning	techniques	in	data	mining,	better	
known	as	clustering	techniques.

6.1 introduction
Clustering	 is	 used	 to	 divide	 or	 partition	 objects	 (or	 data)	 into	 groups	 based	 on	
their	similarity	or	dissimilarity	to	one	another,	called	clusters.	It	is	an	unsupervised	
learning	method,	as	class	 labels	or	class	 information	is	not	present	 in	the	begin-
ning.	Therefore	clusters	obtained	in	the	output	can	be	called	classes.	The	quality	of	
clustering	will	depend	on	many	factors:

	 1.	Similarity	measure	used	by	the	method	and	its	implementation
	 2.	Ability	to	discover	some	or	all	of	the	hidden	patterns

Objects	 in	 the	 same	cluster	 should	be	 similar	 to	one	another,	 and	 thus	have	
high	intraclass	similarity.	However,	objects	between	other	clusters	should	be	dis-
similar	 to	 each	other,	 and	 thus	have	 low	 interclass	 similarity.	A	 good	 clustering	
method	will	result	in	a	high	intraclass	similarity,	and	a	low	interclass	similarity	will	
produce	quality	clusters.	A	dataset	may	have	different	kinds	of	data	points,	which	
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may	belong	to	unknown	clusters.	By	using	unsupervised	learning	such	as	a	cluster-
ing	algorithm	one	can	find	potential	clusters	in	the	dataset	(Cooper	and	Newman	
2010).	In	Figure	6.1	data	points	have	been	sorted	into	three	clusters	where	similar	
data	points	are	grouped	together,	and	dissimilar	data	points	are	separated.

Clustering	consists	of	 four	steps:	relevant	feature	selection,	algorithm	design,	
cluster	validation,	and	visualization	and	evaluation	(Wunsch	and	Xu	2005).	These	
steps	are	shown	in	Figure	6.2.

6.2 Clustering in Bioinformatics
Clustering	 and	 cluster	 analysis	 are	 important	 techniques	 for	 bioinformatics	
experimentation	 and	discovery.	Clustering	 is	widely	used	 in	microarray	 analy-
sis	 to	negate	the	 limitations	of	class	discovery.	As	mentioned	above,	classes	are	
often	unknown	when	experiments	begin.	For	example,	 if	a	researcher	 is	trying	
to	determine	whether	 a	 disease	 in	 a	 particular	 tissue	 or	 in	 a	 particular	 condi-
tion	can	affect	a	gene	expression,	he	or	she	may	not	know	whether	gene	expres-
sion	differs	between	two	groups	(Lippert	2010).	In	addition,	he	or	she	may	not	
know	whether	a	class	contains	interesting	subclasses	until	clustering	is	performed	

Dataset Unsupervised
Learning

Figure 6.1 Using unsupervised learning data points, datasets are sorted into 
three clusters based on similarity of shape.

Data Pre- 
processing 

Clustering 
Algorithm – 

Identify 
Clusters 

Cluster 
Validation 

Cluster 
Interpretation 

Dataset 

Figure 6.2 Clustering procedure. (Modified from Wunsch, D., and R. Xu, IEEE 
Trans Neural Networks 16, no. 3 (2005): 645–678.)
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(Lippert	2010).	For	example,	a	subtype	of	a	disease	or	a	hierarchy	of	subclasses	
within	a	disease	may	not	be	known	at	implementation	(Lippert	2010).	For	this	
chapter,	we	will	present	clustering	methods	used	in	gene	expression.	Gene	expres-
sion	is	defined	as	the	synthesizing	of	a	functional	gene	product	found	in	either	the	
RNA	or	a	protein..Gene	sequence	is	important	because	genes	are	the	fundamen-
tals	of	biological	inheritance	in	living	organisms	to	build	and	maintain	organism	
cells;	genes	hold	the	necessary	information.	Time	series	gene	expression	data	is	
used	 to	 analyze	 underlying	 temporal	 response	 patterns	 to	 simplify	 work	 with	
nonuniform	samples.

6.3 Clustering techniques
For	bioinformatics	research,	students	and	researchers	can	choose	from	a	variety	of	
clustering	 techniques,	 including	 distance-based	 clustering,	 hierarchical	 cluster-
ing,	 self-organizing	maps,	 fuzzy	 clustering,	 graph	 clustering,	 kernel	 clustering,	
and	model	clustering.	Because	of	the	importance	of	these	techniques,	we	describe	
each	below.

6.3.1 Distance-Based Clustering and Measures
Distance-based	 clustering	 is	 used	 to	 find	 similarity	 or	 dissimilarity	 in	 terms	 of	
distance	between	data	points	of	the	same	cluster	or	data	points	of	other	clusters.	
Distance	can	be	found	by	using	distance	measures	such	as	Mahalanobis	distance,	
Minkowski	 distance,	 and	 Pearson	 correlation.	 Selection	 of	 these	 measures	 will	
depend	on	the	characteristics	or	properties	of	attributes	such	as	binary,	continuous-
ness,	nominality,	and	ordinality.	For	example,	if	an	attribute	is	numeric,	one	can	
use	Mahalanobis	or	Mikowiski	distance.	Below,	we	outline	the	differences	between	
these	two	methods.

6.3.1.1 Mahalanobis Distance

Mahalanobis	distance	is	based	on	finding	correlation	between	variables	to	measure	
distance,	which	helps	classify	future	data	belonging	to	a	specific	class.	Mahalanobis	
distance	works	in	the	following	ways:

	 1.	Mahalanobis	distance	computes	the	covariance	matrix	of	each	class	from	the	
training	data.

	 2.	It	 sorts	 future	 or	 test	 data	 into	 their	 respective	 classes	 based	 on	 mini-
mal	 Mahalanobis	 distance.	 This	 sorting	 is	 performed	 by	 computing	 the	
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Mahalanobis	 distance	 for	 each	 class.	 Mahalanobis	 distance	 can	 be	
mathematically	expressed	as	 ( , ,...., )1 2=z z z zN T 	from	a	group	of	values	with	
a	mean	of	 ( , , ,..., )1 2 3 4µ = µ µ µ µ T ,	and	covariance	matrix	S	is

	 ( ) ( ) ( ),1= −µ −µ−D z z S zM
T 	 (6.1)

	 where	DM	is	Mahalanobis	distance.

6.3.1.2 Minkowiski Distance

The	 Minkowiski	 distance	 between	 two	 points	 or	 tuples,	 for	 example,	
=X x x x n( , ,.., )1 11 12 1 	and	 =X x x x n( , ,..., )2 21 22 2 ,	is

	
∑= −

=

d X X x x
i

n

i i
t( , ) ( ) ,1 2

1

1 2 	 (6.2)

d X X( , )1 2 	is	the	distance	between	two	points	or	tuples	X1	and	X2.	In	Equation	6.2,	
when	t	=	1,	distance	is	called	a	city	block	distance.	When	t =	2,	distance	is	called	
Euclidean	distance.

The	Euclidean	distance	is	used	to	find	distance	between	two	points	that	is	a	line	
segment	connecting	them.	For	example,	the	distance	between	two	points	A(6,3)	
and	B(3,2)	is	calculated	by	using	the	Euclidean	distance	formula	found	in	Equation	
6.2,	which	is	shown	in	Figure	6.3.

	 = − + − =d A B( , ) (6 3) (3 2) 102 2 	 (6.3)

Y

A (3, 2)

B (6, 3)

X

Figure 6.3 Points A and B lie in a two-dimensional plane.
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6.3.1.3 Pearson Correlation

Pearson	correlation.is	another	method	of	finding	similarity	by	measuring	the	cor-
relation	 that	 ranges	 from	+1	 to	1	between	 two	variables. Thus,	 it	 can	be	 found	
between	two	variables,	for	example,	x	and	y,	in	following	way:

	◾ For	value	1:	Whenever	y	increases,	x	also	increases.
	◾ For	value	–1:	Whenever	y	decreases,	x	increases.
	◾ For	value	0:	No	correlation	or	relationship.

The	Pearson	correlation	coefficient	is	symmetric	and	can	be	represented	as

	 ( , ) ( , ).corr x y corr y x= 	 (6.4)

The	Pearson	correlation	of	genes	x and	y of	n samples,	where	x 	is	the	mean	of	
x	and	 y 	is	the	mean	of	y, is

	
= − = Σ − −

Σ − Σ −
=

= =

d i r r x x y y
x x y y

xy xy xy
i
n

i i

i
n

i i
n

i

( )/2, where ( )( )
( ) ( )

,1

1
2

1
2 	 (6.5)

where	rxy is	 the	correlation	between	two	samples	x and	y,	and	dxy	 is	 the	distance	
between	two	samples	x	and	y.

The	correlation	coefficient	( )( )− −x x y yi i 	is	positive	if	xi	and yi	are	greater	or	
less	 than	 their	 respective	means	or	 if	 they	 are	 located	on	 the	 same	 side	of	 their	
respective	means.	Similarly,	the	correlation	coefficient	is	negative	if	either	xi	or	yi	is	
less	than	its	respected	mean	or	is	located	on	an	opposite	side	of	its	respective	mean.

6.3.1.4 Binary Features

Binary	features	are	those	features	that	have	binary	values	of	either	0	or	1.	Given	
two	attributes,	X	and	Y,	having	binary	values	of	either	0	or	1,	the	total	number	
of	combinations	 for	attributes	X	 and	Y	 is	 specified	as	 shown	 in	Table	6.1.	 In	
the	table:

	◾ a	indicates	that	attributes	X	and	Y	have	a	value	of	1.
	◾ b	indicates	that	attribute	X	is	0	and	attribute	Y	is	1.
	◾ c indicates	that	attribute	X is	1	and	attribute	Y	is	0.
	◾ d	indicates	that	both	attributes	X and	Y	have	a	value	of	0.

A	distance	measure	D	for	symmetric	binary	variables	can	be	determined	using

	
= +

+ + +
D A B b c

a b c d
( , ) . 	 (6.6)



186  ◾  Data Mining for Bioinformatics

Likewise,	a	distance	measure	D	for	asymmetric	binary	variables	can	be	deter-
mined	using	the	Jaccard	coefficients,	which	measure	similarity	between	sample	sets	
and	are	as	follows.

The	Jaccard	similarity	coefficient, D(A, B), is	given	as

	
=

+ +
D A B a

a b c
( , ) , and 	 (6.7)

The	Jaccard	distance,	D(A, B),	is	given	as

	
= +

+ +
D A B b c

a b c
( , ) . 	 (6.8)

6.3.1.5 Nominal Features

Unlike	 binary	 features,	 nominal	 features	 can	 have	 more	 than	 two	 states.	 Thus,	
either	 nominal	 features	 must	 be	 transformed	 into	 binary,	 or	 matching	 criterion	
must	be	utilized	to	minimize	the	number	of	states.	The	features	can	be	classified	
using	the	two	methods	below,	binary	transformation	and	simple	matching.

As	the	name	suggests,	binary	transformation	modifies	nominal	features	so	that	they	
can	be	read	as	binary	code.	For	each	of	the	M nominal	states,	this	method	will	create	
a	new	binary	variable	that	uses	a	1	to	indicate	the	occurrence	of	a	category	and	a	0	to	
indicate	the	absence	of	a	category	or	a	nonoccurrence	(Shyu	2005).	Thus,	for	a	nominal	
feature	with	C	states,	a	set	of	C	indicator	variables	can	be	generated	as	shown	below.
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table 6.1 Sample Binary Matrix

Object X

1 0 Sum

Object Y 1 a b a + b

0 c d c + d

Sum a + c b + d P



Clustering Techniques in Bioinformatics  ◾  187

Simple	matching	distance	methods	can	simplify	nominal	features	by	com-
bining	 feature	 groups.	 These	 methods	 are	 used	 when	 two	 objects,	 for	 exam-
ple,	i	and	j,	carry	equal	information.	For	example,	marital	status	(married	and	
unmarried)	has	a	 symmetry	attribute	because	 the	number	of	married	respon-
dents	 and	 the	 number	 of	 unmarried	 respondents	 provide	 equal	 information.	
Similarly,	 the	 same	 information	 is	 given	 whether	 heads	 or	 tails	 land	 face	 up	
when	tossing	a	coin.

Equation	6.10	represents	simple	matching	as

	
= −d i j p m

p
( , ) ,

	 (6.10)

where	m	is	the	number	of	matches	and	p is	the	number	of	variables.

6.3.1.6 Mixed Variables

A	database	may	contain	different	types	of	features	or	mixed	features.	These	features	
can	be	symmetric	binary,	asymmetric	binary,	nominal,	ordinal,	interval,	and	ratio.	
When	objects	consist	of	mixed	variables,	we	can	combine	the	variables	and	transform	
them	into	an	interval	such	as	(0,	1).	We	can	then	use	measures	such	as	Euclidean	
distance,	or	we	can	transform	the	variables	into	binary	for	similarity	functions.

6.3.2 Distance Measure Properties
In	order	for	a	distance	or	similarity	function	to	be	a	distance	measure,	it	should	
follow	all	four	properties,	as	indicated	below:

	 1.	Symmetry:

	 ( , ) ( , )=D x x D x xi j j i 	 (6.11)

	 2.	Positivity:

	 ( , ) 0≥D x xi j 	for	all	xi	and	xj	 (6.12)

	 3.	Triangle	inequality:

	 ( , ) ( , ) ( , ),≤ +D x x D x x D x xi j j k k i 	 (6.13)

	 4.	Reflexivity:

	 ( , ) 0,= =D x x if x xi j i j 	holds;	it	is	also	called	a	metric	 (6.14)
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where	D x xn m( , )	is	the	distance	between	two	points	xn	and	xm	such	that	n = i, j, 
k,	…,	and	m =i, j,	k,	….

The	 distance	 measures	 explained	 in	 the	 above	 sections	 all	 satisfy	 these	 four	
conditions.	These	distance	measures	will	be	helpful	in	clustering	algorithms	that	
are	described	below.

6.3.3 k-Means Algorithm
k-Means	 clustering	 partitions	 n	 instances	 into	 k	 clusters	 by	 assigning	 each	 data	
point	 to	 the	partition	with	 the	nearest	 centroid.	The	k-means	 algorithm	can	be	
performed	as	follows:

	 1.	Initialize	 the	 value	 of	 k or	 number	 of	 partitions.	 This	 step	 is	 shown	 in	
Figure	6.4,	where	the	value	of	k	initialized	is	3.	These	points	which	are	shown	
in	bold	(◻ ○ ◺)	represent	initial	group	centroids.

. 2.	Assign	 each	 data	 point	 partition	 with	 the	 nearest	 centroid,	 as	 shown	 in	
Figure	6.5.

	 3.	Calculate	the	positions	of	the	k centroids	again	to	measure	the	movement	of	
objects,	as	shown	in	Figure	6.6.

	 4.	Repeat	steps	2	and	3	until	movement	of	the	centroid	does	not	change.	The	
final	clustering	results	are	shown	in	Figure	6.7.

Although	 the	 k-means	 algorithm	 is	 a	 popular	 and	 useful	 method,	 it	 has	
limitations,	which	are	overcome	by	using	the	k-modes	algorithm	explained	 in	
Section	6.3.4.

Figure 6.4 initial group centroids.
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Figure 6.5 objects in partitions.

Figure 6.6 Recalculate centroids.

Figure 6.7 Clusters.
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6.3.4 k-Modes Algorithm
Since	 the	 k-means	 algorithm	 works	 only	 for	 numerical	 data,	 its	 variant,	 the	
k-modes	 algorithm,	 can	 be	 more	 useful	 (Chiang	 et	 al.	 2006).	 This	 method	 can	
be	extended	by	calculating	the	median	instead	of	the	mean	(Chiang	et	al.	2006).	
Using	 the	median,	k-means	 can	produce	 accurate	 results	 for	 categorical	data,	 as	
well	as	numerical	data.	The	k-modes	algorithm	is	described	below.

Assume	 X	 and	 Y	 are	 two	 categorical	 objects	 with	 m	 attributes,	 i.e.,	
=X x x xm( , ,..., )1 2 	and	 =Y y y yn( , ,..., )1 2 .	Define	the	distance	between	X and	Y	as

	

( , ) ( , ),
1

∑=
=

d X Y dt x yj j

j

m

	 (6.15)

where	dt	is	a	function	that	depends	on	xj	and	yj,	and	can	be	represented	as
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=
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j j

j j
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In	the	above	examples,	d(X, Y )	is	the	distance	between	two	objects	X	and	Y.
This	algorithm	is	performed	as	follows:

Step	1:	Randomly	select	k-modes	for k	clusters.
Step	 2:	 Allocate	 an	 object	 to	 a	 cluster	 with	 the	 nearest	 mode	 according	 to	

Equation	6.16	so	that

	

( , ) ( , ).
1

∑=
=

d X Y dt x yj j

j

m

	 (6.17)

Step	3:	Update	the	modes	of	the	cluster.
Step	4:	Repeat	steps	2	and	3	until	all	points	in	the	clusters	are	stable.

For	binary	attributes,	the	k-modes	algorithm,	which	uses	the	binary	form	for	dis-
tance	computation,	can	represent	the	same	or	different	conditions	corresponding	to	the	
distance	values	of	0	or	1.	However,	it	is	difficult	to	change	categorical	attributes	into	
numeric	form.	Therefore,	genetic	distance	measure,	which	can	measure	the	distance	or	
similarity	between	categorical	attributes	using	similarity	measures	and	is	described	in	
next	section,	is	a	preferable	measure	for	making	calculations.	In	Table	6.2,	A,	B,	and	C	
are	three	objects	that	have	binary	attributes,	and	their	values	are	either	0	or	1.

6.3.5 Genetic Distance Measure (GDM)
The	k-medoids	algorithm	can	be	used	in	the	place	of	binary	distance	 in	a	tradi-
tional	k-modes	algorithm	to	measure	continuous	distance	in	the	genetic	algorithm	
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(Chiang	et	al.	2006).	Given	two	categorical	datasets	with	m attributes	X and	Y,	
such	as	 =X x x xn( , ,..., )1 2 	and	 =Y y y yn( , ,..., )1 2 ,	we	define	the	continuous	distance	
between	X	and	Y as

	
∑=

=

d X Y T x yj j j

j

m

( , ) ( , ),
1

	 (6.18)

where	T x yj j j( , )	is	the	continuous	distance	table	for	the	jth	attribute	under	the	train-
ing	of	genetic	algorithm.

Given	T objects,	 =X i Ti , 1,2,... ,	which	belong	 to	 the	partitioned	 set	Si,	 and	
k-modes	 Q1,	 Q2,	…,	Qk, which	 represent	 the	 corresponding	 clusters,	 the	 fitness	
function	Ft is
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Maximizing	fitness	function	Ft	is	similar	to	minimizing	the	distance	between	
the	object	and	its	corresponding	mode	in	its	cluster	and	maximizing	the	distance	
between	the	object	and	the	modes	in	the	other	clusters	(Chiang	et	al.	2006).

6.4  Applications of Distance-Based 
Clustering in Bioinformatics

	◾ A	new	distance	metric	in	gene	expressions	for	coexpressed	genes
	◾ Gene	expression	clustering	using	the	mutual	information	distance	measure
	◾ Gene	expression	data	clustering	using	a	local	shape-based	clustering

Each	of	these	applications	is	described	below.

table 6.2 Distance for 
Conventional k-Modes Algorithm

A B C

A 0 1 1

B 1 0 1

C 1 1 0
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6.4.1  New Distance Metric in Gene Expressions 
for Coexpressed Genes

Cluster	analysis	has	been	used	to	determine	gene	functions,	but	many	clustering	
algorithms	 ignore	 the	 functionality	 of	 genes	 that	 are	 already	 known.	 Thus,	 the	
objective	for	using	a	distance	metric	in	gene	expression	for	coexpressed	genes	is	to	
incorporate	known	gene	 functions	and	 to	find	whether	common	gene	 functions	
can	be	shared	between	genes	or	not	(Huang	and	Pan	2006).	If	common	gene	func-
tion	can	be	shared,	 then	they	shrink	a	gene	expression-based	distance	toward	0.	
The	new	distance	metric	 ∗dij 	is	based	on	the	expression-based	distance	metric	dij and	
gene	functional	annotations,	as	shown	in	Equation	6.20:

	

1 and ,
,=

≤ ≤ ∈




∗d

rd if there is an f such that f F I J G

else d
ij

ij f

ij

	 (6.20)

where	 ≤ ≤r0 1	is	a	shrinkage	parameter,	and	the	function r =	1	causes	cluster-
ing	 techniques	 to	 ignore	 gene	 functions	 (Huang	 and	Pan	2006).	A	 two-step	
method	is	used	to	perform	this	equation.	First,	genes	with	known	functions	are	
clustered	 using	 a	 distance-based	 clustering	 method,	 e.g.,	 k-medoids.	 Second,	
genes	with	unknown	functions	are	clustered	using	an	expression-based	distance	
metric	and	can	be	assigned	to	clusters	that	are	either	obtained	in	the	first	step	
or	assigned	to	the	new	cluster.	An	algorithm	is	described	below	to	implement	
these	two	steps:

Step	1:	Apply	the	k-medoid	algorithm,	using	the	shrinkage	distance	matrix	D*	to	
the	genes	{ 1,..., }0 +n n ,	with	known	functions	 G GF{ ,..., }1 ,	having	k0 clusters.

Step	 2:	 Apply	 the	 k-medoid	 algorithm,	 which	 uses	 expression-based	 distance	
matrix	D,	to	genes	 n{1,..., }0 	with	unknown	function	in	G0	to	create	k1	new	
clusters	while	retaining	information	about	the	k0	clusters	obtained	in	step	1.

Step	2	can	be	further	divided	into	substeps,	as	outlined	below:

Step	2.1:	Select	k1	genes	from	{1,…,	n0}	as	medoids	at	random.
Step	2.2:	Update	centroids	and	calculate	cluster	membership	for	each	gene	in	

the	k1	new	clusters.
Step	2.3:	Update	the	k1	medoids.
Step	2.4:	Repeat	the	above	two	mentioned	steps	until	convergence.

G0 genes	are	assigned	to	k0	+	k1	clusters	in	step	2.1,	whereas	in	the	k0	clustered	
genes	in	G1	… GF,	remains	are	obtained	using	the	shrinkage	distance	matrix.
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For	 this	 algorithm,	 the	 original	 expression-based	 distance	 matrix	 D	 is	 used	
instead	of	a	shrinkage	distance	matrix	D*	for	step	2	due	to	incomplete	biological	
knowledge.

The	above	method	allows	multiple	known	functions	for	genes	because	it	uses	only	
shrinkage	distance	matrix	D*, and	shrinkage	distance	 ∗dij 	 is	well	defined	when	one	
gene	belongs	to	two	or	more	functional	groups.	For	example,	if	genes	i	and	j	belong	to	
two	or	more	groups,	then	 ∗dij 	does	not	change.

In	conclusion,	a	result	of	k1	>	0	indicates	that	the	expressed	gene	has	an	unknown	
functionality	 and	may	not	 be	 assigned	 to	 clusters	 because	 of	 undiscovered	 gene	
functions	or	lack	of	evidence	from	expression	profiles.

6.4.2  Gene Expression Clustering Using Mutual 
Information Distance Measure

A	mutual	information	(MI)	measure	can	be	taken	from	different	dataset	sizes	to	
provide	important	information	for	finding	positive,	negative,	and	nonlinear	corre-
lations	between	data	(Priness	et	al.	2007).	To	accurately	classify	these	correlations,	
the	expression	patterns	should	be	in	the	form	of	discrete	random	variables.	Given	
two	random	variables	X,	Y,	such	that	X	has	a	range	 ∈x Ai x 	and	probability	distri-
butions	functions	 ( )= ≡P X x Pi i ,	whereas	Y has	a	range	 ∈y Aj j 	and	probability	
distributions	 functions	 = ≡P Y y Pj j( ) ,	 the	MI	between	 two	 random	variables	X	
and	Y is	given	by

	
∑∑=I X Y p

p
p p

ij
ij

i jji
( ; ) log . 	 (6.21)

If	the	MI	is	zero,	then	X	and	Y	are	not	dependent	on	each	other.	In	such	a	case,	
there	is	no	relationship	between	X	and	Y,	but	it	is	difficult	to	achieve	such	a	condi-
tion	using	the	Pearson	correlation	or	the	Euclidean	distance	(Herzel	1995).

Let	us	assume	that	there	are	N samples	in	a	dataset	that	have	been	correctly	
clustered	 into	 two	groups,	 and	 l	 samples	 are	misclassified.	 In	order	 to	find	 the	
error	in	clusters,	samples	will	move	from	their	respective	clusters	or	true	clusters.	
When	the	error	increases,	different	solutions	also	increase.	Hence,	different	pos-
sible	 solutions	 are	 randomly	 selected	 that	have	more	 than	a	 single	 error.	Then,	
different	clustering	solutions	are	gathered	based	on	the	number	of	errors	in	the	
cluster.	 The	 average	 homogeneity	 and	 separation	 scores	 are	 computed	 for	 each	
cluster	 to	define	the	robustness	of	 similarity	measures	and	validate	 these	 infor-
mation	nodes	based	on	the	assumptions	that	homogeneity	and	separation	scores	
are	dependent	on	the	number	of	errors	in	a	solution,	and	that	statistical	methods	
differentiate	between	high-quality	and	low-quality	clustering	solutions	based	on	
statistical	error.	These	criteria	are	important	because	homogeneity	and	separation	
scores	are	dependent	on	the	number	of	errors	in	a	solution.	For	example,	if	the	
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number	of	errors	in	a	solution	is	fewer	than	a	threshold,	then	homogeneity	and	
separation	scores	in	the	solution	are	good.	Likewise,	if	the	number	of	errors	in	a	
solution	is	above	a	threshold,	then	the	homogeneity	and	separation	scores	are	bad.	
Homogeneity,	 then,	 helps	 differentiate	 high-quality	 and	 low-quality	 clustering	
solutions	based	on	 their	 scores.	Statistical	methods,	 such	as	 standard	deviation	
and	mean	values,	are	more	rigorous,	and	differentiate	high-quality	and	low-quality	
clustering	solutions	based	on	statistical	error.	This	smaller	probability	helps	separate	
high-quality	clustering	solutions	from	low-quality	clustering	solutions	based	on	
statistical	scores.

6.4.3  Gene Expression Data Clustering Using 
a Local Shape-Based Clustering

Clustering	 with	 local	 shape-based	 similarity	 (CLARITY)	 is	 used	 to	 analyze	
microarray	 time	 course	 experiments.	 Balasubramaniyan	 et	 al.	 (2005)	 devel-
oped	 CLARITY,	 based	 on	 Spearman	 rank	 correlation,	 which	 uses	 a	 local	
shape-based	similarity	measure	and	is	robust	toward	noise.	It	finds	similarities	
between	gene	expression	profiles	and	includes	the	probability	of	time	shifts	into	
these	relationships.	CLARITY	was	developed	using	the	following	method.	Let	
two	gene	expression	profiles,	X and	Y,	be	represented	by	sequences	 (x1,…, xn ) 
and	 (y1,…,	yn ), respectively.	 X and Y	 are	 similar	 if	 their	 respective	 subse-
quences,	X [i,	j]	and	Y [k,	l ],	are	also	similar,	where	X[i,	j]	=	def	(xi,	xi + 1,…, xj ) 
for	1	≤	i ≤	j ≤	n.

6.4.3.1 Exact Similarity Computation

Exact	similarity	is	defined	as	when	all	possible	alignments	are	used	to	compute	local,	
time-shifted	relationships	between	two	profiles.	Thus,	the	similarity	SIM(	X,Y )	
X	and	Y	of	length	is	computed	as

	
=

≤ ≤
SIM X Y def SIM X Y

k k n
k( , ) max ( , ),

min
	 (6.22)

where	SIMk(	X,Y )	measures	the	similarity	of	the	best	alignment	of	length	k	given	by

	
+ − + −

≤ ≤ − +
S X i i k y j j k

i j n k
max ( [ , 1], [ , 1])

1 , 1
	 (6.23)

6.4.3.2 Approximate Similarity Computation

The	exact	computation	of	SIM(X,Y )	is	expensive	for	longer	gene	expression	profiles.	
Therefore,	approximate	similarity	computation,	which	is	based	on	the	basic	local	
alignment	search	tool	(BLAST)	method,	is	used.	The	BLAST	method	is	used	to	
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find	optimal	sequence	alignments.	Then,	these	optimal	alignments	are	extended	in	
both	directions.	These	steps	are	outlined	below.

Hit: Compute	SIMk (X,	Y ) for	k =	kmin.	This	similarity	degree	is	obtained	for	the	
best	match	X a b Y a bx x y y[ , ], [ , ],	i.e.,

	 ( , ) ( [ , ], [ , ]).SIM X Y S X a b Y a bk x x y y= 	 (6.24)

	 Next,	determine	whether	the	best	match	is	unique.	If	it	is	not	unique,	then	go	
to	the	next	step,	“extend.”

Extend: Derive	the	similarity	degrees S(X[ax −	u,	bx +	v],	Y [ay −	u,	by +	v])	for	
all	0	≤	u ≤	min{d,	ax −	1,	ay −	1},	0	≤	v ≤	min{d,	n −	bx,	n −	by},	and	find	the	
best	match.	 If	more	 than	one	match	meets	 these	 criteria,	 then	 choose	 the	
randomly	optimal	longer	match.

Iterate: Update	 the	 optimal	 local	 alignment	 by	 replacing	 *← −a a ux x ,	
*← +b b vx x ,	 *← −a a uy y ,	 *← +b b vy y ,	 and	 and	 repeat	 the	 second	 step.	

Repeat	this	process	until	the	optimal	alignment	does	not	change.

6.5 implementation of k-Means in WeKA
Numerous	datasets	are	available	for	applying	k-means	using	the	GenePattern	tool	
(Reich	et	al.	2006).	Of	these	datasets,	we	have	selected	the	acute	lymphoblastic	leu-
kemia	(ALL)/acute	myeloid	leukemia	(AML)	dataset	to	run	our	experiments.	The	
ALL/AML	data	are	available	through	the	GenePattern	tool	(Reich	et	al.	2006).	The	
dataset	consists	of	71,29	gene	expression	profiles	of	two	acute	cases	of	leukemia:	(1)	
acute	lymphoblastic	leukemia	(ALL,	47	samples,	ALL-B,	38	samples,	and	ALL-T,	
9	samples)	and	(2)	acute	myeloblastic	leukemia	(AML,	25	samples,	AML-BM,	21	
samples,	and	AML-PB,	4	samples).	To	implement	k-means	using	the	opensource	
data	mining	 software	WEKA	 (Hall	 et	 al.	 2009),	we	use	 four	 input	parameters:	
distance	measure,	number	of	clusters,	seed	points,	and	terminating	point.

In	WEKA,	we	have	chosen	Euclidean	distance	to	compute	distances	between	
instances	and	clusters.	Two	clusters	are	selected	by	default,	but	we	can	change	the	
number	based	on	individual	requirements.

k-Means	 is	 limited	 in	 its	 sensitivity	to	how	clusters	are	 initially	assigned	and	
in	its	inability	to	determine	a	termination	point.	The	seed	value	is	used	to	assign	
instances	to	clusters.	The	terminating	point	may	occur	if	there	is	no	change	in	the	
position	of	the	centroid.	Figure	6.8	shows	the	clustering	instances	obtained	for	six	
clusters,	clusters	0	to	5,	with	the	following	parameters.

There	are	10	seed	points	and	44	iterations.	In	addition,	the	missing	values	were	
globally	replaced	with	a	mean/mode.	Figure	6.8	shows	six	clusters.	The	number	of	
samples	are	divided	into	these	six	clusters.	Cluster	0	has	206	samples,	cluster	1	has	
77	samples,	cluster	2	has	72	samples,	and	so	on.
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6.6 Hierarchical Clustering
In	hierarchical	clustering,	a	series	of	steps	are	performed	to	partition	the	data	into	
a	cluster.	Based	on	the	similarity/dissimilarity	of	the	objects,	this	technique	may	
begin	with	one	cluster	that	contains	n	objects,	or	with	n	clusters	that	each	contain	
one	object.

Hierarchical	clustering	consists	of	two	methods:	agglomerative	or	bottom-up	hierar-
chical	clustering	techniques	and	divisive	or	top-down	hierarchical	clustering	techniques.

6.6.1 Agglomerative Hierarchical Clustering
For	 agglomerative	 or	 bottom-up	 hierarchical	 clustering	 techniques,	 as	 shown	 in	
Figure	 6.9,	 each	 object	 begins	 as	 a	 cluster.	 At	 each	 successive	 step,	 objects	 are	

Clustered instances

0 206 (3%)

1 77 (1%)

2 72 (1%)

3 8 (0%)

4 1193 (17%)

5 5573 (78%)

Figure 6.8 Six clusters (0 to 5) with number of samples in each cluster.

Divisive

Agglomerative

a, b, c, d, e

a, d, e

a, e

a e d b c

b, c

Figure 6.9 Hierarchical clustering.
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combined	into	larger	clusters	based	on	their	similarity,	until	a	terminating	point	
is	reached	or	all	the	objects	have	been	reassigned	into	one	cluster.	Divisive	or	top-
down	hierarchical	clustering,	as	shown	in	Figure	6.9,	is	used	as	a	reverse	approach	
of	the	agglomerative	technique.	In	this	method,	all	objects	are	first	assigned	to	one	
cluster,	and	then	are	divided	into	subclusters	at	each	successive	step	until	each	point	
becomes	a	cluster,	or	a	terminating	point	is	reached	(e.g.,	the	required	number	of	
clusters	is	attained).

6.6.2 Cluster Splitting and Merging
Cluster	 splitting	 and	 cluster	 merging	 in	 hierarchical	 clustering,	 as	 discussed	 in	
Section	6.6.1,	consist	of	two	steps,	a	min-max	cut	algorithm	and	cluster	merging	
using	a	Gaussian	mixture,	 respectively	 (Ding	and	He	2001).	These	 steps,	which	
include	merging	nodes	in	agglomerative	hierarchical	clustering	and	splitting	nodes	
in	divisive	hierarchical	clustering,	are	described	below.

The	min-max	cut	algorithm	is	based	on	the	min-max	clustering	principle	that	
data	 should	be	 assigned	 to	 clusters	 in	 such	 a	way	 that	 intercluster	 similarity	 is	
minimized	while	intracluster	similarity	is	maximized.	For	example,	assume	there	
are	n	data	objects	and	the	pairwise	similarity	matrix	is	 =W wij ,	where	wij	is	the	
similarity	between	i and	j.

By	using	the	min-max	clustering	principle,	we	divide	the	n	data	objects	into	two	clus-
ters	C1	and	C2.	The	similarity	between	C1	and	C2	is	defined	as	 ( , )1 2 1 2≡ ∑ ∑∈ ∈s C C wi C j C ij ,	
which	is	also	called	the	overlap	between	C1	and	C2.	The	similarity	within	a	clus-
ter	C1	 is	 the	 sum	of	pairwise	 similarities	within	 : ( , )1 1 1C s C C .	Using	 the	 cluster-
ing	principle,	s(C1,	C2)	is	minimized	while	 s C C( , )1 1 	and	 s C C( , )2 2 	are	maximized.

Some	data	points	are	located	near	the	boundaries	of	multiple	clusters.	These	
points	are	assigned	to	different	clusters	using	probabilistic	models.	Based	on	the	
membership	values,	points	 are	 assigned	 to	 their	natural	 cluster	using	Gaussian	
mixtures.

Splitting	 nodes	 in	 divisive	 hierarchical	 clustering	 is	 a	 three-step	 process	 in	
which	cluster	labeling,	size	priority	cluster	splitting,	and	average	similarity	must	
be	performed.	Cluster	labeling	is	performed	so	that	users	can	collect	information	
about	the	clusters.	Feature	selection	methods,	such	as	mutual	information	(MI),	
information	gain,	and	the	chi-square	method,	can	be	used	to	identify	cluster	labels	
that	characterize	one	cluster	in	contrast	to	other	clusters.	Size	priority	cluster	split	
is	the	process	in	which	the	cluster	with	the	largest	split	is	selected.	However,	this	
approach	is	not	optimal,	as	clusters	are	not	of	similar	sizes.	Average	similarity	is	
based	on	the	min-max	clustering	principle,	which	requires	that	s(C1,	C1)	be	maxi-
mized.	Therefore,	clusters	with	high	average	similarity	imply	that	data	points	in	
a	cluster	are	similar.	If	we	assume	similarity	is	inversely	proportional	to	distance,	
then	data	points	in	a	cluster	are	similar	to	each	other	in	Euclidean	space.	Therefore,	
the	goal	is	to	split	clusters	to	increase	the	average	similarity	for	all	clusters.
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6.6.3 Calculate Distance between Clusters
Four	measures,	single	link	distance,	complete	link	distance,	centroid	distance,	and	
medoid	distance,	are	commonly	used	to	compute	the	distance	between	clusters.

The first measure is single link distance.	It	is	the	smallest	or	minimum	distance	
between	an	object	in	one	cluster	and	an	object	in	the	other	cluster,	i.e.,

	 =dis k k t ti j ip jq( , ) min( , ), 	 (6.25)

where	 t tip jqmin( , )	is	the	minimum	distance	between	two	objects	or	points	p in	cluster	
i and	q	in	cluster	j.	Single	link	distance	is	shown	in	Figure	6.10.	In	this	figure,	the	
minimum	distance	between	elements	of	clusters	1	and	2	is	shown.	In	Figure	6.10,	dots	
are	the	data	points	within	the	clusters	and	the	arrow	indicates	the	distance	between	
two	data	points.	On	left	side	of	the	arrow,	the	set	of	data	points	is	called	cluster	1,	and	
similarly,	on	the	right	side	of	the	arrow,	the	set	of	data	points	is	called	cluster	2.

The second measure is complete link distance.	It	is	the	largest	distance	between	an	
object	in	one	cluster	and	an	object	in	the	other	cluster,	i.e.,

	 ( , ) max( , ),=dis k k t ti j ip jq 	 (6.26)

where	 t tip jqmin( , )	is	the	distance	between	two	objects	or	points,	p in	cluster	i and	
q in	cluster	j.	Figure	6.11	shows	the	complete	link	distance	between	cluster	1	and	
cluster	2.	The	figure	also	shows	the	maximum	distance	between	elements	of	these	
clusters.

The third measure is centroid distance..It	is	the	distance	between	the	centroids	of	
two	clusters,	i.e.,

	 =dis k k dis c ci j i j( , ) ( , ) 	 (6.27)

where	ci	is	the	centroid	for	cluster	ki,	and	cj	is	the	centroid	for	cluster	kj.	Figure	6.12	
shows	a	centroid	distance.

Cluster 1 Cluster 2
Minimum
Distance

Figure 6.10 Single Link distance.
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The fourth measure is medoid distance..It	is	the	distance	between	the	medoids	of	
two	clusters,	i.e.,

	 =dis k k dis m mi j i j( , ) ( , ) 	 (6.28)

where	mi is	the	medoid	for	cluster	ki	and	mj	is	the	medoid	for	cluster	ki.

6.6.4  Applications of Hierarchical Clustering 
Techniques in Bioinformatics

Researchers	 use	 hierarchical	 clustering	 techniques	 in	 bioinformatics	 to	 find	
the	 appropriate	 number	 of	 clusters	 or	 cluster	 stability	 estimation	 for	microar-
ray	data.	Three	applications	of	distance-based	clustering	 in	bioinformatics	 are	
described	below:

	 1.	Hierarchical	clustering	based	on	partially	overlapping	and	irregular	data
	 2.	Cluster	stability	estimation	for	microarray	data
	 3.	Comparison	of	gene	expression	sequences	using	pairwise	average	linking

Cluster 1
Cluster 2

Maximum
Distance

Figure 6.11 Complete link distance.

Figure 6.12 Centroid distance.
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6.6.4.1  Hierarchical Clustering Based on Partially 
Overlapping and Irregular Data

Hierarchical	clustering	based	on	partially	overlapping	and	irregular	data	is	used	to	
overcome	the	 limitations	of	a	clustering	algorithm.	The	most	 important	of	 these	
limitations	are	listed	below:

	 1.	It	is	difficult	to	select	the	appropriate	number	of	clusters.
	 2.	It	is	essential	to	distinguish	partially	overlapping	and	irregular	data	(Qu	

et	al.	2007).

Similarity	measures	between	subclusters	can	perform	two	roles:

	 1.	They	can	control	the	merger	process	of	hierarchical	clustering.
	 2.	Based	on	overlap	similarity	measure,	these	types	of	algorithms	stop	clustering	

automatically	and	cluster	the	overlapping	data.

Hierarchical	clustering	algorithms	perform	well	with	data	that	are	irregular	or	
have	overlapping	partitions.	However,	these	algorithms	are	usually	unable	to	inter-
pret	the	structures	of	partially	overlapping	data,	for,	e.g.,	those	found	in	the	IRIS	
dataset.	Generally,	for	overlap,	a	similarity	threshold	value	is	set	to	control	the	num-
ber	of	clusters.	However,	it	is	not	easy	to	select	a	global	threshold	for	a	dataset.

Qu	et	al.	proposed	the	HCOSM	clustering	algorithm	to	merge	overlapped	sub-
clusters.	There	are	two	phases	to	this	algorithm:	initialization	into	subclusters	and	
merging	pairs	of	subclusters.	Each	of	the	phases	contains	steps.	These	phases	and	
their	corresponding	steps	are	described	below.

In	the	first	phase,	data	are	partitioned	into	subclusters,	following	steps	1	and	2	
below.	In	the	second	phase,	these	subclusters	are	merged,	following	steps	3–6.

Phase	I:	Initialization	into	subclusters
Step	1:	Use	the	k-means	algorithm	to	partition	the	data	into	clusters.
Step	2:	Find	pairs	of	subclusters	that	satisfy	the	conditions,	so	they	can	be	

merged	in	phase	II.
Phase	II:	Merging	pairs	of	subclusters

Step	3:	Use	the	COSM	algorithm	to	determine	overlap	similarity	between	
each	pair	of	clusters	and	find	the	maximum	overlap	similarity	measure.

Step	4:	Select	and	merge	all	possible	candidate	cluster	pairs,	and	select	a	can-
didate	that	satisfies	a	certain	threshold	for	merging.	Then,	combine	sub-
clusters	into	one	subset	and	calculate	their	mean.

Step	5:	Update	the	number	of	clusters,	and	if	the	number	of	clusters	is	less	than	
the	maximum	number	of	clusters,	repeat	steps	3–5;	otherwise,	go	to	step	6.

Step	6:	Output	the	number	of	clusters.
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6.6.4.2 Cluster Stability Estimation for Microarray Data

Clustering	output	will	depend	on	a	number	of	 factors,	 such	as	 the	number	 and	
stability	of	clusters	in	a	dataset.	However,	most	of	the	clustering	is	performed	by	
analyzing	or	finding	the	number	of	clusters..This	problem	can	be	addressed	with	
cluster	stability	scores	using	the.subsampling	technique,.which	can	work	for	both	
known	and	unknown	clusters	(Smolkin	and	Ghosh	2003).

Clustering	is	performed	by	calculating	the	number	of	clusters	using	the	Ben-
Hur	method	and	computing	the	random	subspace	measures	(Smolkin	and	Ghosh	
2003;	Ben-Hur	et	al.	2002).	The	number	of	clusters	can	be	determined	using	four	
steps,	as	described	below:

Step	1:	Estimate	the	number	of	clusters.
1a:	Partition	samples	into	k	clusters.
1b:	At	each	iteration,	select	samples	and	group	subsamples	into	k	clusters.
1c:	For	each	subset,	calculate	pair	correlation	between	the	clusters	using	the	

Jaccard	coefficient.
1d:	If	n	correlations	are	computed	for	each	cluster,	and	if	the	distributions	of	

correlation	coefficients	are	mapped,	then	distributions	obtained	from	the	
correlation	 coefficients	 help	 determine	 the	 number	 of	 clusters	 (Fowlks	
and	Mallows	1983).

The	 random	 subspace-based	 sensitivity	 measures	 can	 be	 computed	 as	
described	below.

Step	2:	Compute	random	subspace-based	sensitivity	measures.
2.1:	 Perform	 the	 random	 subspace	 method	 if	 the	 number	 of	 clusters	 is	

known.
2.1a:	Partition	the	samples	into	k	sets.
2.1b:	Randomly	choose	a	subset	(for	example,	65%	samples).
2.1c:	Create	a	dissimilarity	matrix	and	follow	the	hierarchical	cluster-

ing	procedure.
2.1d:	Get	k	clusters.
2.1e:	Determine	whether	Ai	⊂	Aj,	then	randomly	select	a	subspace	and	

repeat	B	times.
2.1f:	Determine	the	sensitivity	measure	by	calculating	the	proportion	of	

B	samples	in	which	a	set	appears	for	each	of	the	original	sets	A1,	A2,	
…,	Ak.

2.1g:	If	the	value	of	the	sensitivity	measure	is	close	to	1,	then	the	cluster	is	
more	stable	than	sensitivity	measure	that	is	not	close	to	1.

2.2:	Randomly	subspace	for	an	unknown	number	of	clusters.
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2.2a:	Estimate	the	number	of	clusters	using	the	Ben-Hur	method	(Ben-
Hur	et	al.	2002).

2.2b:	Once	the	number	of	clusters	in	the	above	step	is	estimated,	use	the	
above-mentioned	 random	 subspace	 method	 to	 calculate	 sensitivity	
measures	of	the	clusters.	Follow	the	above	steps.

Finally,	to	estimate	the	reliability	of	individual	clusters:	the	R-index	and	the	cluster	
scoring	method	can	be	used	(Ray	and	Bandyopadhyay	2007;	Tsai	et	al.	2004).

6.6.4.3  Comparing Gene Expression Sequences 
Using Pairwise Average Linking

Sokal	and	Michener	(1958)	applied	a	pairwise	average	linking	cluster	analysis	to	
gene	expression	to	compare	the	sequences.	The	gene	similarity	measure	is	based	on	
a	correlation	coefficient	that	is	found	by	computing	a	similarity	score.	A	similarity	
score	can	be	calculated	for	any	two	genes	X and	Y	observed	over	a	series	of	n	condi-
tions.	For	example,	let	Gi equal	the	(log-transformed)	primary	data	for	gene	G in	
condition	i.	For	any	two	genes	X	and	Y, a	similarity	score	can	be calculated	over	a	
series	of	N conditions	(Eisen	et	al.	1998),	as
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Step	1:	Follow	the	agglomerative	approach.
Step	2:	Compute	the	similarity	matrix	using	the	metric	above.
Step	3:	Identify	similar	pairs	of	genes	based	on	their	highest	value.
Step	4:	Create	a	node	by	joining	the	two	most	similar	genes;	compute	the	gene	

expression	profile	for	the	node,	and	update	the	similarity	matrix	by	replacing	
these	two	elements.

Step	5:	Repeat	the	process	n	–	1	times.

6.7 implementation of Hierarchical Clustering
We	have	implemented	hierarchical	clustering,	using	the	GenePattern	tool,	on	the	
all/aml	 dataset	 to	 run	 our	 experiments	 (as	 explained	 in	 Section	 6.5).	 The	 algo-
rithm	 is	 based	 on	 agglomerative	 hierarchical	 clustering	 and	 groups	 all	 elements	
into	a	cluster	according	to	their	pairwise	distance,	with	the	closest	item	pairs	being	
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merged	first	(Eisen	et	al.	1998).	The	comparison	of	gene	expression	sequences	using	
pairwise	average	linking	is	discussed	in	Section	6.6.3.3.

We	have	selected	the	following	parameters	to	implement	hierarchical	clustering	
in	the	GenePattern	tool:

. 1..Input.file.name:	Already	explained	in	Section	6.5.

. 2..Measure.column.distance:	Pearson	correlation	is	used	to	measure	column	
distance.

	 3.	Measure.row.distance:.No.row.clustering

Normalize	 row,	 center	 column,	 and	 column	 normalize	 are	 selected	 default	
values.	Figure	6.13	shows	hierarchical	clustering	results.

6.8 Self-organizing Maps Clustering
Self-organizing	maps	(SOMs)	are	used	to	make	the	visualization	of	data	easier	by	
mapping	or	transforming	the	n-dimensional	data	into	one-dimensional	(1D)	or	2D	
data	(Germano	1999).	For	example,	in	Figure	6.14,	if	we	need	to	map	40	dimen-
sions	each	having	100	data	points	into	two	dimensions,	then	we	will	divide	the	100	
data	points	into	a	10	×	10	matrix,	and	each	block	of	the	matrix	will	represent	the	
data	found	in	40	dimensions.

There	are	two	components	of	SOM:	data	and	weights	(Germano	1999).	Data	
can	be	any	number	of	data	points	in	n-dimensional	space,	e.g.,	100	data	points	in	
40	dimensions.	Weights	are	further	divided	into	two	parts:	data	and	natural	loca-
tion.	This	data	are	different	from	the	data	mentioned	above	and	should	have	the	
same	dimensions	 in	the	above	example.	A	natural	 location	is	 the	 location	of	the	
data	points	in	the	matrix,	such	as	(1,	1),	(2,	2).

6.8.1 SOM Algorithm
The	SOM	algorithm	is	initiated	by	randomly	selecting	a	data	point	(Ultsch	and	
Siemon	 1990).	 Once	 the	 data	 point	 is	 selected,	 use	 the	 best	 matching	 unit	 to	
search	the	data	points	that	are	similar	or	best	represent	the	selected	data	point.	In	
this	step,	distance	is	calculated	between	the	selected	data	point	and	every	other	
data	point.	The	data	point	that	has	the	shortest	distance	will	be	selected	as	the	one	
most	similar	to	the	selected	data	point.	The	most	common	way	of	calculating	dis-
tance	(e.g.,	to	find	the	distance	between	two	data	points	p	and	q)	is	the	Euclidean	
distance,	which	is	given	as
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Let	us	assume	a	randomly	selected	data	point	is	p (0,6,2)	and	two	other	data	
points	are	q (0,3,4)	and	r (2,3,5).	By	using	Euclidean	distance,	we	will	find	which	
of	 the	 two	data	points	 is	 closer	 to	 the	 selected	data	point.	This	equation	can	be	
visualized	as

	

( , ) (0 0) (6 3) (2 4) 13 3.6

( , ) (0 2) (6 3) (5 2) 18 4.24.

2 2 2

2 2 2

d p q

d p r

= − + − + − = =

= − + − + − = =
	 (6.31)

Thus,	data	point	q (0,	3,	4)	is	the	best	matching	unit	because	it	has	a	shorter	dis-
tance	than	data	points	p	(0,	6,	2)	and	r	(2,	3,5).

Once	the	most	similar	data	point	is	selected,	we	check	to	see	if	 its	neighbors	
are	similar.	The	neighbors	can	be	found	using	methods	such	as	concentric	squares,	
hexagons,	 or	Gaussian	 functions.	 If	 a	neighbor	 is	 similar,	 it	 is	 selected,	 and	 the	
above	steps	are	repeated	iteratively.	In	this	way,	scaling	of	neighbors	occurs,	so	that	
similar	data	points	are	grouped	together	(Fukunaga	1990).

1, 1 40, 1

1, 1 1, 10

10, 1

10, 1 10, 40

10, 10

Figure 6.14 Self-organizing map.
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6.8.2 Application of SOM in Bioinformatics
Researchers	use	SOM	techniques	for	bioinformatics	applications	(Wang	et	al.	2001).	
To	illustrate	the	usefulness	of	SOM	techniques	in	bioinformatics,	two	such	applica-
tions	of	SOM	are	described	below:

	 1.	Identifying	distinct	gene	expression	patterns	using	SOM
	 2.	SOTA:	Combining	SOM	and	hierarchical	clustering	 for	convenient	 repre-

sentation	of	genes

6.8.2.1  Identifying Distinct Gene Expression 
Patterns Using SOM

Due	to.the.high	complexity	and	dimensionality	of	microarray	gene	expression	pro-
files,	dimensional	 reduction	 and	 the	 feature	 selection	of	 raw	expression	data	 are	
necessary.(Wang	et	al.	2002).	To	solve	this	problem,	Wang	et	al.	have	proposed	a	
two-step	analysis.

The	first	step	of	this	analysis	is	to	use	a.self-organizing	map	(SOM)	to	reduce	the	
dimensionality	of	the	original	data	and	help	visualize	the	data	more	effectively	and	
efficiently	in	a	SOM	component	plane.	The	second	step	is	hierarchical	and	k-means	
clustering	is	used	to	identify	gene	expression	patterns	to	classify	samples.

From	the	 training	 set,	 sample	data	are	chosen	at	each	 training	 step,	and	 the	
distances	between	sample	data	and	all	prototype	vectors	are	calculated	(Kohonen	
1997).	 During	 training,	 data	 points	 are	 moved	 toward	 the	 dense	 area	 based	 on	
similarity	 using	 neighborhood	 data	 points,	 which	 leads	 to	 prototype	 vectors	 of	
neighboring	 units	 resembling	 each	 other	 (Vesanto	 1999).	 The	 SOM	 component	
plane	inspects	the	cluster	structure,	by	comparing	the	spread	of	values	in	a	compo-
nent	plane.	Correlations	can	then	be	revealed	between	similar	patterns	in	identical	
positions.	To	find	an	interesting	group	or	cluster	of	map	units,	k-means	clustering	
is	used	to	further	cluster	trained	prototype	vectors	mi	of	SOM,	which	are	combined	
to	form	clusters	(Vesanto	and	Alhoniemi	2000).

Vesanto	used	validity	indexes	such	as	Davies-Bouldin	to	validate	the	best	clusters	
by	minimizing	intercluster	similarity	and	maximizing	intracluster	similarity.	This	
validation	 scheme	provided	good	clustering	 results	 for	 spherical	 clusters	 (Vesanto	
1999).	The	algorithm	has	some	limitations;	clusters	with	nonspherical	shapes	are	not	
recognized	as	one	cluster.	Moreover,	as	the	cluster	increases,	the	algorithm	becomes	
sensitive	to	outliers	and	the	number	of	samples	in	clusters	decreases.

6.8.2.2  SOTA: Combining SOM and Hierarchical 
Clustering for Representation of Genes

SOTA	combines	the	advantages	of	hierarchical	clustering	and	SOM	for	convenient	
representation	 of	 genes.	 The	 biggest	 advantage	 of	 hierarchical	 clustering	 meth-
ods	is	that	they	help	researchers	visualize	and	represent	genes	more	conveniently.	
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However,	these	methods	are	neither	robust	nor	efficient,	whereas	SOM	is	insensi-
tive	to	noise,	but	require	that	the	number	of	clusters	be	known	before	implementa-
tion	(Longde	et	al.	2006).

SOM	is	a	neural	network	with	a	number	of	nodes	that	have	the	same	length	of	
the	input	data	and	are	assigned	random	values	when	the	process	begins	(Kohonen	
1998;	Tamayo	et	al.	1999).	The	reference	vectors	are	grouped	 together	based	on	
their	 closeness	 or	 the	 similarity	 of	 genes	 with	 respect	 to	 reference	 vectors.	 The	
advantage	of	SOM	is	that	the	input	of	other	genes	can	counterbalance	and	correct	
the	effects	of	outliers.

The	self-organizing	tree	algorithm	is	a	divisive	(top-down)	clustering	method,	
which	starts	with	a	node	called	a	root,	and	there	are	two	leaves,	each	representing	
one	cluster	(Dopazo	and	Carazo	1997;	Herrero	and	Dopazo	2002;	Tamames	et	al.	
2002).	The	tree	grows	when	the	mean	value	between	the	cluster	and	the	genes	associ-
ated	with	it	merge	into	a	node.	The	growth	of	a	tree	can	be	stopped	by	customizing	a	
specific	number	of	loops.	The	SOTA	algorithm	is	nondeterministic	and	is	not	sensi-
tive	to	noise	or	outliers.	It	is	more	flexible	than	the	HC	method	and	SOM.

6.9 Fuzzy Clustering
In	hard	clustering	each	object	is	assigned	to	only	one	cluster	when	cluster	bound-
aries	are	well	defined.	However,	in	many	cases	cluster	boundaries	are	ambiguous;	
hence	 fuzzy	 clustering	 can	 help	 in	 overcoming	 this	 limitation.	 In	 fuzzy	 cluster-
ing,	the	object	can	be	assigned	to	more	than	one	cluster	based	on	degree	of	mem-
bership	 associated	 with	 each	 object	 when	 the	 cluster	 boundaries	 are	 ambiguous	
(Dave	1992;	Eschrich	et	al.	2003).	The	degree	of	membership	indicates	the	strength	
of	association	between	an	object	and	a	particular	cluster	(Wunsch	and	Xu	2005;	
Zadeh	1965).	For	example,	when	a	coin	is	tossed,	as	explained	in	Section	6.3.1.5,	
there	is	an	uncertainty	as	to	whether	the	output	will	be	heads	or	tails.	This	type	of	
uncertainty	is	called	fuzziness.

Figure	6.15	shows	two	clusters.	In	the	first	cluster,	samples	are	denoted	by	○.	
In	the	second	cluster	samples	are	denoted	by	◻.	In	hard	clustering,	each	object	is	

Figure 6.15 Hard clustering.
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assigned	to	only	one	cluster,	whereas	in	Figure	6.16,	an	object	can	be	assigned	to	
more	than	one	cluster.	For	example,	object	⚫	is	assigned	to	more	than	one	cluster	
based	on	degree	of	membership.

The	objective	function.measures	the	overall	dissimilarity	within	clusters.	This	
dissimilarity	needs	to	be	minimized	to	obtain	optimal	partitioning	where	mem-
bership	values	determine	how	much	fuzziness	a	fuzzy	set	contains.	Memberships	
can	 determine	 important	 relations	 between	 a	 given	 object	 and	 the	 disclosed	
clusters.

The	mountain	function	for	a	vertex	is	defined	as

	
∑= −
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where	D x vj i( , ) is	the	distance	between	the	jth	data	object	and	the	ith	node,	and	is	
a	positive	constant.	Therefore,	if	the	data	object	is	closer	to	a	vertex,	it	contributes	
more	to	the	mountain	function.	First,	the	center	is	selected	based	on	the	vertex	vml,	
which	has	the	maximum	value	of	mountain	function	Mvml	and	removal	of	selected	
center	mountain	destruction	is	performed.	Mountain	destruction	can	be	performed	
by	subtracting	the	value	of	the	mountain	function	for	each	of	the	remaining	vertices,	
which	depends	on	two	factors:

	 1.	Current	maximum	mountain	function	value
	 2.	Distance	between	the	vertex	and	the	center

The	 algorithm	 stops	 when	 a	 terminating	 point	 is	 reached.	 The	 terminating	
point	is	the	ratio	between	the	current	maximum	and	Mvml,	which should	be	below	
a	threshold	value	(Dave	and	Krishnapuram	1997).

Figure 6.16 Fuzzy clustering.
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6.9.1 Fuzzy c-Means (FCM)
Fuzzy	 c-means	 (FCM)	attempts	 to	find	a	partition	 (c fuzzy	 clusters)	 for	 a	 set	of	
data	points	 ∈ ℜ =x j Nj

d , 1,..., ,	while	minimizing	the	cost	function,	as	denoted	
in	(Hoppner	et	al.	1999)

	
∑∑=

==

J U M u j Di

j

N
m

ij

i

c

( , ) ( , )
11

	 (6.33)

where	U = [ui,	j]cxN is	the	fuzzy	partition	matrix	and	 ∈ui j [0,1], 	is	the	membership	
coefficient	of	the	jth	object	in	the	ith	cluster.	 =M m mi c[ ,..., ],	then,	is	the	cluster	
prototype	 (mean	or	 center)	matrix,	 ∈ ∞m [1, )	 is	 the	 fuzzification	parameter	 and	
is	usually	set	to	2,	and	 ( , )=D D x mij j i 	is	the	distance	measure	between	xj	and	mj	
(Hathaway	and	Bezdek	2001).

Wunsch	and	Xu	(2005)	have	summarized	the	standard	FCM	in	the	four-step	
algorithm	that	follows:

	 1.	Select	appropriate	values	for	m,	c,	and	a	small	positive	number	∈.	Initialize	
the	prototype	matrix	M	randomly.	Set	step	variable	t =	0.

	 2.	Calculate	(at	t =	0)	or	update	(at	t	>	0)	the	membership	matrix	U by
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	 for	i	=	1,	…,	c	and	j	=	1,	…,	N.
	 3.	Update	the	prototype	matrix	by
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	 for	i = 1,	…,	c.
	 4.	Repeat	steps	2	and	3	until	 − <∈+M Mt t|| ||( 1) ( ) ,	in	which	the	Euclidean	or	L2	

norm	distance	function	is	used.

The	fuzzy	c-means	(FCM)	method	measures	the	cluster	centroid	as	the	mean	
of	all	points,	which	are	weighted	by	 their	 location	 in	 the	cluster.	The	weighting	
is	 inversely	related	to	 the	distance	 from	the	centroid	to	 the	cluster.	Since	cluster	
centers	and	membership	grades	are	updated	in	each	iteration,	the	accuracy	of	FCM	
depends	on	selection	of	initial	centroids.
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FCM	suffers	from	four	potential	problems:	the	presence	of	noise	and	outliers,	
identifying	initial	partitions,	unknown	locations	of	clusters	(centers)	a priori,	and	the	
number	of	points	to	be	handled	due	to	a	large	variability	in	cluster	shape	or	density.

6.9.2 Application of Fuzzy Clustering in Bioinformatics
Researchers	 use	 fuzzy	 clustering	 techniques	 for	 bioinformatics	 applications	
(Dembele	and	Kastner	2003;	Horimoto	and	Toh	2001).	To	illustrate	the	usefulness	
of	fuzzy	clustering	techniques	in	bioinformatics,	three	such	applications	of	fuzzy	
clustering	are	described	below:

	 1.	Clustering	genes	using	fuzzy	J-means	and	VNS	methods
	 2.	Fuzzy	k-means	clustering	on	gene	expression
	 3.	Comparison	of	fuzzy	clustering	algorithms

6.9.2.1  Clustering Genes Using Fuzzy 
J-Means and VNS Methods

The	aim	of	fuzzy	clustering	is	to	assign	a	membership	value	ranging	from	0	to	1	to	
a	gene	that	can	be	in	more	than	one	cluster.	In	this	algorithm,	a	value	of	0	indicates	
a	weak	association	with	the	cluster,	and	a	value	of	1	indicates	a	strong	association	
with	the	cluster	(Belacel	et	al.	2004).

The	 fuzzy	 c-means	 (FCM)	 method	 is	 an	 extension	 of	 the	 k-means	 method	
(Bezdek	1981;	Dunn	1974;	Ruspini	1969).

For	a	chosen	number	of	clusters,	c,	and	for	an	n	×	c matrix,	W	=	[wik ],	where	wik	
is	the	membership	degree	for	gene	 =i i n, 1,2,..., ,	to	cluster	 =k k n, 1,2,..., ,	the	FCM	
clustering	problem	can	be	represented	as	(Belacel	et	al.	2004)
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where	 Jm(W,	V ) is	 the	 objectivity	 function	 that	 defines	 the	 quality	 of	 the	 result	
obtained	 for	 centroids	 V and	 memberships, Wm is	 the	 fuzzy	 parameter,	 and	 for	
m	=	1	the	partition	is	crisp,	leading	to	the	problem	of	minimum	sum	of	squares	
clustering	(Belacel	et	al.	2004).	
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gives	a	set	of	c centroids	or	prototypes,	i.e.,	positions	of	cluster	centers.	In	this	instance,
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is	the	Euclidean	norm	determining	distances	between	expression-level	vectors	and	
centroids,	whereas	membership	degrees	wij	 are	 defined	 such	 that	 ≤ ≤wik0 1	 and	
Σ = ∀ == w i nk
c

ik 1, 1,2,...,1 .
The	FCM	algorithm	is	as	follows	(Belacel	et	al.	2004):

Step	1:	Find	the	initial	centroid.
Step	2:	Calculate	the	membership	and	initial	centroid.
Step	3:	Calculate	the	new	centroid.
Step	4:	If	the	centroid	is	improved,	go	to	step	5.	Otherwise,	go	to	step	2.
Step	5:	Calculate	the	membership	and	the	objectivity	function.

The	value	of	fuzzy	parameter	m	has	to	be	greater	than	1,	as	m	=	1	represents	
crisp	clustering	(Belacel	et	al.	2004).

Equation	6.38	can	therefore	be	reformulated	to	(Hathaway	and	Bezdek	2001)
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where Rm(V )	is	the	new	objectivity	function	that	depends	on	the	centroid	positions,	
which	can	be	found	by	minimizing	Equation	6.38,	and	therefore	it	will	be	used	to	
compute	membership	values.

The	FJM	method,	which	was	introduced	by	Belacel	et	al.	(2002),	is	described	
below.	To	form	defined	neighborhoods,	FJM	uses	all	possible	centroids-to-pattern	
relocations	where	membership	values	and	centroids	are	calculated	in	the	same	way	
as	in	FCM	(Belacel	et	al.	2002).

Step	1:	Find	the	initial	centroid.
Step	2:	Calculate	the	objective	function.
Step	3:	Drop	the	least	useful	centroids.
Step	4:	Once	the	centroid	has	been	deleted,	add	the	most	useful	pattern.
Step	5:	Find	membership	values	 that	help	 in	changing	the	crisp	solution	to	a	

fuzzy	one	and	find	the	new	centroid	set	using	given	memberships.
Step	6:	Calculate	the	objective	function	R.
Step	7:	If	R	improves,	return	to	step	3.	Otherwise,	go	to	step	8.
Step	8:	Calculate	the	memberships	and	the	objectivity	function.
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Both	FCM	and	FJM	depend	on	starting	centroid	values	(Belacel	et	al.	2004).	
Therefore,	these	values	cannot	guarantee	an	optimal	clustering	solution.	The	steps	
to	the	algorithm	are	as	follows:

Step	1:	Set	the	centroids	and	objective	function	to	be	optimal:	set	stopping	con-
ditions	and	kmax.

Step	2:	 If	 stopping	 conditions	 are	 satisfied,	 go	 to	 step	3;	 otherwise,	 go	 to	
step	8.

Step	3:	Decrease	the	value	of	k	by	1.
Step	4:	If	k > kmax,	go	to	step	2.	Otherwise,	go	to	step	5.
Step	5:	Generate	at	random	new	centroids,	V,	as	the	initial	set	of	centroids.
Step	6:	If	R	has	improved,	go	to	step	2.	Otherwise,	go	to	step	7.
Step	7:	Increase	the	value	of	k	by	1.
Step	8:	Calculate	memberships	and	objective	functions.

6.9.2.2 Fuzzy k-Means Clustering on Gene Expression

Gasch	 and	 Eisen	 (2002)	 modified	 the	 fuzzy	 k-means	 clustering	 in	 two	 ways	 to	
determine	overlapping	clusters:

	 1.	They	ran	fuzzy	k-means	clustering	three	times,	and	for	the	second	and	third	
runs,	subsets	of	the	data	were	used	for	clustering.

	 2.	They	used	random	initialization.

Genes	representing	rows	and	conditions	representing	columns	in	an	expression	
value	 table	were	 input	 for	 the	 algorithm.	The	 steps	 for	 this	process	 are	outlined	
below.

Step	1:	Clustering	was	begun	by	defining	k/3	prototype	centroids,	where	k and	
3	are	clusters	and	clustering	cycles,	respectively.	Gasch	and	Eisen	(2002)	used	
PCA	to	identify	these	k/3	Eigen	vectors.

Step	2:	Find	the	correlation	between	the	gene	expression	pattern	and	the	cen-
troid	 using	 the	 Pearson	 correlation	 method,	 which	 assigns	 a	 membership	
score	to	each	gene	for	each	prototype	centroid.

Step	3:	Calculate	each	centroid	pattern	again.
Step	 4:	 Iterate	 the	 calculation	 of	 gene-centroid	 memberships	 and	 update	 the	

centroids	until	the	required	condition	is	met,	for	example,	if	centroid	patterns	
become	fixed	or	the	termination	criterion	is	met.

This	method	not	only	gives	 the	unique	centroid	but	also	gives	a	matrix	 that	
provides	membership	scores	for	each	gene	for	each	centroid.	Therefore,	genes	that	
belong	to	multiple	clusters	can	be	identified	through	their	membership	value.
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6.9.2.3 Comparison of Fuzzy Clustering Algorithms

The	comparison	of	 fuzzy	clustering	algorithms	method	 is	a	clustering	algorithm	
that	is	used	to	classify	fuzzy	models	(Almeida	and	Sousa	2001).	This	action	is	per-
formed	by	comparing	the	computational	efficiency	and	accuracy	of	the	algorithm.

Selecting	fuzzy	models	for	classification	is	a	complex	task,	and	this	task	becomes	
more	complex	due	to	the	large	number	of	features	in	a	large	dataset;	therefore	it	
becomes	necessary	to	select	only	the	relevant	features.	The	fuzzy	clustering	algo-
rithm	can	be	used	to	clustered	data	using	different	fuzzy	clustering	algorithms,	such	
as	possibilistic	c-means,	fuzzy	possibilistic	c-means,	or	possibilistic	fuzzy	c-means.	
These	methods	are	all	 limited	by	the	difficulty	of	determining	which	fuzzy	clus-
tering	algorithm	should	be	used	for	classification.	In	this	section,	different	fuzzy	
clustering	algorithms	are	compared	for	computational	efficiency	and	accuracy.

Classification	 of	 systems	 using	 fuzzy	 clustering	 includes	 the	 following	 steps	
(Sousa	and	Kaymak	2002):

Step	1:	Gather	data	by	computing	or	constructing	system-relevant	features.
Step	2:	Preprocess	data	to	remove	incomplete,	noisy,	and	inconsistent	data.
Step	3:	Select	and	identify	relevant	features.
Step	4:	Select	a	clustering	algorithm	and	its	parameters.
Step	5:	Select	the	number	of	required	clusters.
Step	6:	Cluster	data	using	the	selected	clustering	algorithm.
Step	7:	Determine	the	membership	functions	from	clusters	by	projection.
Step	8:	Determine	the	fuzzy	rule	from	each	cluster	by	using	membership	func-

tions	that	are	obtained	in	the	previous	step.
Step	9:	Validate	the	model.

The	possibilistic	c-means	is	based	on	the	FCM	algorithm,	which	uses	a	condition	
that	the	sum	of	membership	degrees	must	equal	1.	Due	to	the	presence	of	outliers,	
this	condition	is	difficult	to	achieve.	A	possibilistic	objective	function	is	proposed	to	
overcome	this	limitation	(Krishnapuram	and	Keller	1993)	and	is	given	by
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where	γi	are	positive	constants	and	D	are	 ikA
2 ,	which	is	the	squared	inner-product	

norm	defined	in	Equation	6.39.
The	first	term	in	the	above	equation	is	similar	to	the	FCM	objective	function,	

shown	in	Equation	6.39.	The	distances	between	the	feature	vectors	and	the	pro-
totypes	should	be	as	small	as	possible,	whereas	the	second	term	forces	µij	to	be	as	
large	as	possible,	whereby	assigning	all	memberships	to	zero	and	minimizing	the	
criterion	function.
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The	difference	between	fuzzy-possibilistic	c-means	(FPCM)	and	other	fuzzy	
clustering	 algorithms,	 such	 as	 FCM	 and	 PCM,	 is	 that	 FPCM	 produces	 both	
memberships	 and	 possibilities,	 along	 with	 the	 centers	 for	 each	 cluster.	 Both	
memberships	 and	possibilities	help	 visualize	 the	 correct	 interpretation	of	data.	
Membership	helps	classify	a	data	object	that	has	the	representative	vector	clos-
est	 to	 the	data	point.	Possibility	helps	find	 the	 centroids	 to	 avoid	 the	 effect	of	
outliers	or	noise.	Moreover,	FPCM	overcomes	the	 limitations	of	noise	sensitiv-
ity	defects	and	the	coincident	clusters	problem	of	FCM	and	PCM,	respectively	
(Pal	et	al.	1997).	For	example,	in	Equation	6.40,

	
∑∑= µ +

= =

J U T V Z t D
i

c

k

N

ik
m

ik ikA( , , ; ) ( ) ( )
1 1

2 ,	 (6.41)

where	 DikA
2 	 is	 the	 squared	 inner-product	 norm	 defined	 in	 Equation	 6.40	 and	

> > ≤ µ ≤m n tik ik1, 1,0 , 1.
FPCM	is	 limited	 in	that	 it	constrains	 the	typicality	values.	By	removing	the	

constraint	 on	 the	 typicality	 values	 and	 retaining	 the	 column	 constraint	 on	 the	
membership	values,	the	objective	function	can	be	determined	as	(Hathaway	and	
Bezdek	2001)
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where	DikA
2 	is	the	squared	inner-product	norm	defined	in	Equation	6.40	and	m >	1,	

1,0 , 1η > ≤ µ ≤tik ik 	and	Σ == ui
c

i 11 .
Outliers	can	be	reduced	by	using	a	bigger	value	for	b	than	for	a.	Thus,	similar	

effects	can	also	be	achieved	by	controlling	the	value	of	m.	For	example,	to	reduce	
the	effect	of	outliers	on	the	centroid,	the	large	value	of	m	and	the	small	value	of	
a can	be	used.	However,	in	order	to	reduce	the	membership	effects	on	the	proto-
types,	a	large	value	of	m	should	be	used,	so	that	the	model	will	behave	more	like	
the	PCM	model.

The	 fast	 fuzzy	clustering	algorithm	(FFCA)	 is	based	on	 the	 self-organizing	
Kohonen	network,	in	which	the	number	of	clusters	is	not	known	before	applica-
tion	(Herrero	et	al.	2001;	Qin	et	al.	2003).	FFCA	was	introduced	to	select	the	
input	for	nonlinear	regression	models.	First,	all	datasets	must	be	normalized	so	
that	all	the	data	points	lie	in	one	particular	range.	Gaussian	membership	func-
tions	 represent	 the	 clusters,	 and	 this	 algorithm	uses	 the	 input	patterns	one	by	
one.	Initially,	the	first	cluster	center	is	defined	by	the	input	sample,	and	the	initial	
cluster	width	is	set	to	a	default	value,	 σ init .	For	each	pattern,	it	checks	whether	
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the	sample	belongs	to	a	cluster	c or	not.	If	the	sample	does	belong	to	cluster	c,	the	
pattern	and	cluster	center	vi are	added	to	that	cluster.	Otherwise,	a	new	cluster	
is	created.

6.10  implementation of expectation 
Maximization Algorithm

We	have	implemented	the	expectation	maximization	(EM)	algorithm	using	the	
IRIS	dataset,	which	is	available	in	WEKA.	In	this	dataset,	there	are	150	samples	
and	 4	 attributes.	 The	 four	 attributes	 are	 sepallength,	 sepalwidth,	 petallength,	
and	petalwidth.

The	EM	algorithm	works	on	the	concept	of	probability	distribution,	where	it	
indicates	the	probability	of	the	instance	belonging	to	each	cluster.	EM	uses	cross-
validation,	which	helps	in	finding	the	number	of	clusters.	However,	users	can	also	
specify	the	number	of	clusters	in	the	beginning	that	need	to	be	generated.

Working	of	cross-validation	is	done	to	determine	the	number	of	clusters:

	 1.	For	10-fold	cross-validation,	training	data	are	split	randomly	into	10-fold	and	
the	number	of	clusters	is	set	to	1.

	 2.	EM	is	performed	10	times	using	10-fold	cross-validation,	and	the	loglikeli-
hood	is	averaged	over	all	10	results.

	 3.	If	loglikelihood	has	increased	the	number	of	clusters	by	1,	then	go	to	step	2.

Figure	6.17	shows	four	clusters	(0,	1,	2,	3)	obtained	from	the	expectation	maxi-
mization	(EM)	algorithm	by	using	a	10-fold	cross-validation	method.	The	mean,	
standard	deviation,	and	distribution	of	points	are	given	for	each	cluster	of	an	attri-
bute.	There	are	four	attributes	in	the	dataset:	sepallength,	sepalwidth,	petallength,	
and	petalwidth.	Moreover,	it	has	three	classes:	Iris-setosa,	Iris-versicolor,	and	Iris-
virginica.	 As	 shown,	 cluster	 0	 contains	 48	 points,	 cluster	 1	 contains	 50	 points,	
cluster	2	contains	29	points,	and	cluster	3	contains	23	points.

6.11 Conclusion
Cluster	analysis	finds	potential	classes	in	the	dataset,	by	either	using	a	hierarchical	
structure	or	partitioning	the	data	according	to	a	prespecified	number	that	includes	
steps	ranging	from	preprocessing	to	cluster	discovery	and	also	provides	great	chal-
lenges	 to	 scientists.	 Although	 these	 algorithms	 solve	 several	 problems,	 each	 has	
limitations.	Clustering	algorithms	usually	follow	certain	assumptions	and	biases;	
therefore	none	of	the	clustering	algorithms	can	solve	all	problems.	Thus,	selection	
of	clustering	algorithm	depends	on	the	application	and	needs	of	a	researcher.
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Chapter 7

Advanced Clustering 
techniques

This	chapter	is	an	extension	to	the	clustering	techniques	in	bioinformatics.	The	cluster-
ing	algorithms	in	this	chapter	are	aptly	titled	advanced	clustering	techniques	because	
they	are	based	on	the	clustering	techniques	described	in	Chapter	6,	but	with	natural	
extensions.	In	this	chapter	we	provide	descriptions	of	how	these	advanced	clustering	
techniques	are	applied	to	different	areas	of	bioinformatics	(Bader	and	Hogue	2003).

7.1 Graph-Based Clustering
Graph-based	clustering	is	used	to	group	similar	vertices	into	one	cluster	such	that	
the	 maximum	 number	 of	 edges	 connect	 within	 the	 cluster,	 and	 the	 minimum	
number	of	edges	connect	between	the	clusters	(Bader	and	Hogue	2003).

For	clustering,	a	graph	is	represented	by	G(V,	E),	where	V	represents	vertices	of	
a	graph,	and	E indicates	edges	that	connect	two	vertices	(Figure	7.1).

7.1.1 Graph-Based Cluster Properties
Graph-based	 cluster	 properties	 can	 be	 determined	 using	 the	 two-step	 process	
explained	below	(Schaeffer	2007).

	 1.	If	one	vertex	cannot	be	connected	to	another	vertex	through	an	edge,	then	
these	vertices	will	not	be	in	the	same	cluster.

	 2.	The	edge	connecting	two	vertices	should	be	located	within	the	cluster,	not	
between	clusters.
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Edges	are	classified	into	two	groups:	internal	edges	and	external	edges.
Internal	 edges	 connect	 one	 vertex	 to	 another	 vertex	 within	 the	 cluster.	

Therefore,	 if	 the	vertex	has	 an	 internal	degree	of	0,	 then	 this	 vertex	 is	not	 con-
nected	to	any	other	vertex	within	a	cluster.	Hence,	it	should	not	be	a	part	of	the	
cluster	(Figure	7.2).

External	edges	connect	vertices	between	clusters.	Therefore,	if	the	vertex	has	an	
external	degree	of	0,	then	this	vertex	should	be	a	part	of	a	cluster,	as	it	has	no	con-
nections	outside	a	cluster	(Figure	7.3).

Figure 7.2 edges in black are part of one cluster, as their internal edges are 
connected to one other. Hence, they have more internal edges than other edges, 
which are not part of this cluster.

Figure 7.1 A partitioned graph. the graph (top) has been partitioned into four 
clusters based on data point similarity.
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7.1.2 Cut in a Graph
Cut	S	is	defined	as	the	division	of	the	vertices	V	into	two	nonempty	sets	( , / )S V S 	of	a	
graph	G =	(V,	E),	and	cut	size	is	defined	as	the	number	of	edges	that	connect	vertices	
in	one	set	S	to	vertices	in	another	set	' / 'V S .	The	cut	size	is	shown	in	Equation	7.1.

	
( , / ) { , } | , .c S V S v u E u S v V

S{ }= ∈ ∈ ∈ 	 (7.1)

Cut	size	helps	identify	the	sparseness	of	connections	in	the	cluster,	rather	than	
with	the	rest	of	the	graph	(Goldberg	and	Tarjan	1986;	Gomory	and	Hu	1961).	This	
measurement	can	be	taken	by	computing	graph	density	where	smaller	cut	sizes	iso-
late	the	cluster	better.	Graph	density	is	defined	as	the	ratio	of	the	number	of	edges	
present	to	the	maximum	possible	edges.

A	minimum cut	(mincut)	separates	a	graph	so	that	the	end	product	has	a	small	
number	of	edges	(Figure	7.4).

7.1.3 Intracluster and Intercluster Density
Internal	or	intracluster	density	is	defined	as	the	density	of	the	subgraph	induced	by	
the	cluster	(Davies	and	Bouldin	1979).	For	good	clustering,	internal	density	should	
be	higher	than	the	density	of	the	graph	δ(G),

	
( ) |{{ , }| , }|

| | (| | 1)int e
v u v e u e

e e
δ = ∈ ∈

−
,	 (7.2)

Figure 7.3 three clusters (shown in black): the cluster on the left is of good 
quality due to the high connectivity of internal edges. the cluster in the middle 
is not as well defined, as its edges are more connected to external edges than to 
internal edges. the cluster on the right has fewer connections both outside and 
inside. Hence, it is not a good cluster.
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where	e	is	a	cluster,	v	and	u	are	vertices	of	an	edge,	and	 ( )int eδ 	is	the	intracluster	
density	of	a	cluster	(e).

The	 external	 or	 intercluster	 density	 is	 defined	 as	 the	 ratio	 of	 intercluster	
edges	to	the	maximum	number	of	intercluster	edges	possible.	For	good	cluster-
ing,	the	intercluster	density	of	the	clustering	should	be	lower	than	the	density	
of	the	graph,

	
( | )

{{ , } , , }
( 1) (| | (| | 1))1,....., 2

1
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∈ ∈ ≠
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l l
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where	 ,....,1e ek 	are	clusters,	v	and	u	are	vertices	of	an	edge.

7.2 Measures for identifying Clusters
Clusters	can	be	determined	using	one	of	two	methods.	They	can	be	determined	by	
computing	values	for	the	vertices,	and	assigning	them	to	clusters	based	on	these	val-
ues.	Clusters	can	also	be	determined	by	calculating	a	fitness	measure	for	the	set	of	
possible	clusters	(Schaeffer	2007)	(Figure	7.5)	(Maulik	and	Bandopadhyay	2002).

7.2.1  Identifying Clusters by Computing Values 
for the Vertices or Vertex Similarity

Some	of	 the	clustering	algorithms	compute	 similarity	between	 the	vertices	by	
setting	a	threshold	similarity.	If	 similarity	between	vertices	 is	higher	than	the	
threshold	is,	then	the	vertices	are	clustered	together.	This	method	is	computa-
tionally	more	expensive	than	clustering	a	graph	once	the	similarities	are	known.	
The	cluster	should	contain	only	those	vertices	that	are	similar	and	remove	other	
vertices.

Figure 7.4 A cut in the graph is shown by a dotted line that cuts the graph into 
two partitions.
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A	distance	measure	can	be	computed	instead	of	similarity	if	the	cluster	bound-
ary	is	located	in	a	way	that	includes	most	of	the	outside	vertices	and	significantly	
increases	 the	 intracluster	 distances	 by	 using	 distance	 and	 similarity	 measure,	
adjacency-based	 measures,	 and	 connectivity	 measures.	 We	 will	 explain	 each	 of	
these	measures	below.

7.2.1.1 Distance and Similarity Measure

Distance	measures,	such	as	Euclidean	distance,	can	be	used	to	calculate	the	dis-
tance	between	two	vertices.	That	distance	is	compared	with	the	threshold	distance.	
If	a	calculated	distance	 is	 less	 than	 the	 threshold	distance,	 then	an	edge	will	be	
assigned	between	the	two	vertices,	and	the	vertices	are	considered	to	be	similar	and	
sorted	into	one	cluster.

7.2.1.2 Adjacency-Based Measures

Adjacency-based	measures	can	be	performed	by	measuring	the	similarity	between	
vertices	using	 an	 adjacency	matrix,	which	determines	whether	 two	vertices	 are	
similar	or	not	by	analyzing	 the	overlap	of	 their	neighbors.	 If	a	value	 is	0,	 then	
there	 is	no	common	neighbor	between	 the	 two	vertices.	 If	 the	value	 is	1,	 then	
the	neighbors	are	identical.	In	Figure	7.6(a)	there	are	six	vertices	in	a	graph	that	
are	 labeled	and	their	relationship	is	explained	by	using	the	adjacency	matrix	 in	
Figure	7.6(b).	If	one	vertex	is	connected	to	another	vertex	by	an	edge,	then	1	is	
assigned	in	the	adjacency	matrix;	otherwise,	0	is	assigned.	For	example,	vertex	1	
is	connected	to	vertex	2,	and	hence	1	is	assigned	in	the	adjacency	matrix,	whereas	
vertex	4	is	not	connected	to	vertex	2	by	an	edge,	and	hence	0	is	assigned	in	the	
adjacency	matrix.

Identifying Clusters

Compute Values for the Vertices Compute Fitness Measure

Density MeasureAdjacency-
Based Measures

Distance and
Similarity
Measure

Connectivity Measures

Cut-Based Measure

Figure 7.5 Measures to identify clusters.
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7.2.1.3 Connectivity Measures

Connectivity	 measures	 can	 be	 used	 to	 find	 the	 similarity	 between	 the	 vertices	
whether	the	vertices	are	in	the	same	cluster	or	in	different	clusters.	Vertices	will	be	
in	the	same	cluster.	If	many	paths	exist	between	a	pair	of	vertices,	the	number	of	
paths	can	be	compared	by	a	default	or	a	threshold	value;	i.e.,	they	should	be	highly	
connected	with	each	other.

7.2.2 Computing the Fitness Measure
The	cluster	fitness	measure	is	used	to	measure	the	quality	of	a	given	cluster	(Rand,	
1971;	 Rousseeuw	 1987).	 Using	 vertex	 similarity,	 cluster	 fitness	 functions	 help	
classify	 vertices	 into	 the	 clusters.	 Cluster	 fitness	 can	 be	 determined	 using	 two	
approaches:	density	measure	and	cut-based	measure	(Figure	7.7).

7.2.2.1 Density Measure

Several	 algorithms	 that	 have	 a	 density	 higher	 than	 a	 threshold	 value	 have	 been	
proposed	to	search	for	subgraphs.	These	algorithms	work	because	a	cluster	is	a	sub-
graph	that	is	dense	with	respect	to	a	given	threshold	density.

6

43

2

1
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1 2 3 4 5 6

0 11 0 0 1 0

1 02 1 0 0 0

0 13 0 1 0 0

0 04 1 0 1 1

1 05 0 1 0 0

0 06 0 1 0 0

	 (a)	 (b)

Figure 7.6 (a) Labeled graph. (b) Adjacency matrix.

Fitness Measure

Density Measure Cut-Based Measure

Figure 7.7 identifying clusters by a fitness measure.
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7.2.2.2 Cut-Based Measures

Cut-based	measures	find	the	subgraph	that	is	not	dependent	or	has	no	relation-
ship	with	the	remaining	part	of	the	graph	by	computing	connectivity	between	
the	 subgraph	 and	 the	 rest	 of	 the	 graph.	 Hence,	 high-quality	 clusters	 can	 be	
found.

7.3 Determining a Split in the Graph
Factors	 such	 as	 cuts,	 spectral	 methods,	 and	 betweenness	 determine	 graph	 splits	
(Figure	7.8).

7.3.1 Cuts
A	cut	 in	a	graph	is	quite	 important,	as	a	well-selected	cut	can	divide	a	graph	
or	 separate	 two	 or	 more	 dense	 clusters.	 There	 are	 two	 limitations	 with	 such	
a	division:

	 1.	Simply	removing	single	vertices	will	not	help	compute	a	cluster.
	 2.	It	is	difficult	to	determine	the	terminating	point	of	splitting	the	graph.

7.3.2 Spectral Methods
The	second	factor	that	helps	determine	a	graph	split	is	the	use	of	spectral	methods	
that	 are	based	on	 spectral	 clustering	 and	computing	 eigenvectors.	 In	 a	 spectral	
method,	eigenvectors	are	computed	to	correspond	to	the	second smallest	eigenvalue	
of	 the	normalized	Laplacian	operator.	Hence,	 the	 resulting	eigenvector	compo-
nents	 are	 used	 to	 measure	 the	 similarity	 between	 the	 vertices	 for	 determining	
clusters.	Although	the	spectral	method	is	computationally	expensive,	this	limita-
tion	can	be	overcome	using	a	distributed	algorithm	to	reduce	the	computational	
load	(Kempe	2004)	(Prodromidis	et	al.	2000).

Graph Splits

Cuts Spectral Methods Edge Betweenness

Figure 7.8 Graph can be split by using techniques such as cuts, spectral meth-
ods, and edge-betweenness.
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7.3.3 Edge-Betweenness
Edge-betweenness	is	another	way	to	determine	graph	split.	Newman	and	Girvan	
(2003)	 assign	numerical	weights	on	 the	 edges	 in	 an	unweighted	graph	 to	deter-
mine	clustering.	These	weights	are	called	edge-betweenness,	which	is	the	number	
of	shortest	paths	between	two	vertices	that	pass	through	an	edge.

The	algorithm	can	be	performed	in	four	steps:

	 1.	Compute	the	edge-betweenness	of	all	edges	in	the	graph.
	 2.	Eliminate	those	edges	that	have	the	highest	edge-betweenness.
	 3.	Calculate	 the	 edge-betweenness	 again	 for	 all	 the	 edges,	 as	 removal	 of	 the	

edges	may	change	the	edge-betweenness	of	other	existing	edges	in	the	graph.
	 4.	Repeat	steps	2	and	3	until	no	edges	remain.

Finally,	we	obtain	a	clustering	algorithm.

7.4 Graph-Based Algorithms
Graph	 theory	 helps	 describe	 clustering	 problems	 that	 arise	 in	 graphs	 where	 the	
nodes	 of	 a	 graph	 represent	 data	 points	 and	 edges	 represent	 proximity	 between	
nodes	or	data	points.	A	dissimilarity	matrix	is	defined	as

	

1 ( , )
0

0=
<




D
if D x x d

elseij
i j ,	 (7.4)

where	 0d 	is	the	threshold	distance	and	 ( , )D x xi j 	is	the	distance	between	two	points	
( , )x xi j .

Applications	of	graph	theory	include	the	Chameleon	and	CLICK	algorithms.

7.4.1 Chameleon Algorithm
The	Chameleon	algorithm	is	an	agglomerative,	hierarchical	clustering	algorithm,	
based	on	a	nearest-neighbor	graph,	where	an	edge	will	be	eliminated	if	the	distance	
between	 the	 vertices	 is	 less	 than	 a	 defined	 threshold	 distance	 (Xu	 and	 Wunsch	
2005).	Chameleon	is	performed	as	follows	(Figure	7.9):

	 1.	Use	minimal	edge	cut	to	divide	the	connectivity	graph	into	a	set	of	subclusters.
	 2.	Ensure	there	are	enough	nodes	in	each	subgraph	so	that	there	is	an	effective	

similarity	computation.
	 3.	Combine	both	relative	interconnectivity	and	closeness	to	help	find	potential	

clusters,	and	merge	these	small	subsets	to	obtain	ultimate	clustering	solutions.
	 4.	Normalize	the	average	weight	of	the	edges	that	are	connected	based	on	the	

closeness	of	the	clusters.
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7.4.2 CLICK Algorithm
The	CLICK	algorithm	is	based	on	computing	the	minimum	weight	cut	to	form	
clusters	(Xu	and	Wunsch	2005).	Probability	and	graph	theory	help	assign	weight	
to	the	edges,	which	are	defined	as	shown	in	Equation	7.5:

	
log Pr ( , | )

Pr ( , | )
.e

ob i jbelongtothesamecluster S
ob i jdoesnotbelongtothesamecluster S
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Equation	7.5	can	be	replaced	using	the	Bayes’	theorem	as	shown	in	Equation	
7.6,	because	CLICK	further	assumes	that	the	similarity	values	within	clusters	and	
between	clusters	follow	Gaussian	distributions	with	different	means	and	variances.	
For	example,
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where	p0	 is	 the	prior	probability	that	two	objects	belong	to	the	same	cluster,	µB	 is	
the	mean	between	cluster	similarities,	 2

Bσ 	 is	 the	variance	between	cluster	similari-
ties,	µw	is	the	mean	within	cluster	similarities,	and	 2

wσ 	is	the	variance	within	cluster	
similarities.

Figure 7.9 Steps of the Chameleon algorithm are explained in Section 7.4.1. 
(From Karypis, G., and e.H. Han, IEEE Comput Soc (1999): 68–75.)
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7.5  Application of Graph-Based 
Clustering in Bioinformatics

To	illustrate	the	usefulness	of	graph-based	clustering	in	bioinformatics,	three	such	
applications	are	described	below:

	 1.	Analysis	of	gene	expression	data	using	the	shortest	path	(SP)
	 2.	Construction	of	genetic	linkage	maps	using	the	minimum	spanning	tree	of	

a	graph
	 3.	Finding	isolated	groups	in	a	random	graph	process

Each	of	these	applications	is	described	below.

7.5.1  Analysis of Gene Expression Data 
Using Shortest Path (SP)

Some	gene	pairs	exist	in	the	same	biological	pathway	but	do	not	show	high	expres-
sion	similarity	(Zhou	et	al.	2002).	Therefore,	transitive	expression	similarity	is	an	
important	measure	 for	finding	 transitive	genes..These	genes	 can	be	 found	using	
shortest	path	 (SP)	 analysis.	By	using	 this	method,	genes	 are	 identified	based	on	
whether	 they	 are	 functionally	 related.	 Moreover,	 by	 using	 the	 functionality	 of	
known	genes,	the	function	for	unknown	genes	that	are	on	the	same	shortest	path	
as	the	known	genes	can	be	predicted	(Zhou	et	al.	2002).

To	 find	 the	 number	 of	 connected	 gene	 pairs	 in	 the	 graph,	 a	 threshold	 will	 be	
selected	to	help	construct	a	graph	and	compute	the	shortest	path	by	assigning	an	edge	
when	the	absolute	expression	correlation	Ca,b	is	higher	than	the	predefined	threshold.	
The	edge	length	between	vertices	a	and	b	is	 ( ) (1 ), , ,d f C Ca b a b a b

k= = − ,	where	increas-
ing	the	value	of	k	in	the	gene	provides	more	power	to	reveal	transitive	coexpression.	To	
stabilize	the	number	of	genes,	Zhou	et	al.	set	a	value	of	k	equal	to	or	greater	than	6.	
Moreover,	to	include	only	significant	SPs,	the	authors	set	a	threshold	for	a	path	length	
equal	to	0.008.	Using	this	threshold,	only	SPs	that	are	less	than	0.008	will	be	included.

Zhou	et	al.	(2002)	find	the	shortest	path	for	all	pairs	of	known	genes	and	con-
nect	them.	By	using	the	functionality	of	known	genes,	Zhou	et	al.	have	predicted	the	
functionality	of	unknown	genes	by	finding	a	gene-specific	function.	They	scanned	
the	tree	from	the	root	to	the	lowest	level	of	the	tree.	If	the	difference	between	the	root	
and	lowest	level	is	less	than	four	levels,	then	that	function	is	a	specific	gene	function,	
and	hence	this	functionality	can	be	assigned	to	an	unknown	gene	on	the	SP.

7.5.2  Construction of Genetic Linkage Maps Using 
Minimum Spanning Tree of a Graph

This	method	is	useful	when	the	data	are	noisy	and	incomplete.	Therefore	by	com-
puting	 the	 minimum	 spanning	 tree,	 the	 correct	 order	 of	 markers	 can	 be	 deter-
mined	(Wu	et	al.	2008;	Matsuda	et	al.	1999).
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Building	 a	 genetic	map	 is	 a	 three-step	process	 (Wu	et	 al.	 2008),	 as	 shown	
below.

Step	1:	Divide	the	markers	into	linkage	groups,	known	as	a	group	of	loci	that	
are	connected.	These	markers	act	as	a	single	group,	and	clustering	is	needed	
to	assign	markers	into	linkage	groups.

Step	2:	Determine	the	correct	order	given	to	a	set	of	markers	in	the	same	link-
age	group.

Step	3:	Calculate	the	distance	between	the	adjacent	markers.

Let	di,j	 be	 the	Hamming	distance	between	 two	markers,	 li	 and	 lj,	 belonging	
to	two	linkage	groups	(Wu	et	al.	2008).	The	graph	G(M,	E)	is	drawn	so	that	the	
weight	is	given	to	an	edge	(li,	lj)	∈	E of	a	pairwise	distance	di,j	between	li	and	lj to	
cluster	the	markers	into	linkage	groups	between	all	sets	of	markers.	Markers	will	
be	assigned	to	the	linkage	groups	when	the	distance	between	them	is	larger	than	
or	equal	to	δ.	Then,	that	edge	is	removed	from	G(M,	E),	and	the	resulting	graph	
divides	into	connected	components.

7.5.3 Finding Isolated Groups in a Random Graph Process
Brumm	et	al.	used	two	approaches	to	find	different	representations	of	the	relation-
ships.	First,	they	used	a	graph-based	approach,	in	which	a	global	threshold	was	set	to	
classify	all	pairs	that	were	above	a	predefined	threshold,	and	the	threshold	graph	was	
obtained.	Second,	they	generated	a	dendrogram	(or	tree)	using	a	clustering	algorithm,	
whereby	tree	pruning	was	performed	to	obtain	gene	groups	(Brumm	et	al.	2008).

Both	of	these	methods	are	limited	by	the	necessity	to	set	a	global	threshold	that	
is	extremely	 sensitive.	Therefore,	 it	 is	difficult	 to	discover	whether	 two	genes	are	
related	within	a	module	(internal	cohesion)	or	how	two	genes	are	unrelated	to	each	
other	within	a	module	(external	cohesion)	(Handl	et	al.	2005;	Hubert	and	Arabie	
1985).	Moreover,	in	a	heterogeneous	biological	system,	it	is	difficult	to	reveal	all	the	
modules	by	using	either	one	threshold	graph	or	tree	pruning.

To	overcome	the	above	limitations,	a	new	method	has	been	developed	to	detect	
modules	in	relational	genomic	data	by	giving	ranks	to	the	relationships	between	
genes	and	threshold	graphs	by	moving	the	global	threshold	from	stringent	to	per-
missive	(Brumm	et	al.	2008).	Sequences	of	graphs	having	modules	persist	as	cohe-
sive	subgraphs,	which	are	 identified	as	groups,	which	allows	modules	to	 identify	
with	internal	cohesion	and	find	the	statistical	significance	of	each	candidate	mod-
ule	(Brumm	et	al.	2008).

The	graph	approach	can	find	relationships	across	a	range	of	thresholds	(Brumm	
et	al.	2008).	The	first	step	of	the	graph	approach	is	to	find	the	graph	that	has	all	
genes	 and	no	 edges.	The	 second	 step	 is	 to	place	 the	 edge	 that	has	 the	 strongest	
relationship	score,	i.e.,	rank	1,	between	the	pair	of	genes	and	obtain	the	next	graph.	
Therefore,	subsequent	edges	are	added	based	on	ranks.
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In	this	way,	a	graph	sequence	is	obtained.	This	graph	sequence	begins	with	an	
empty	graph	and	ends	with	a	complete	graph.	Hence,	the	entire	analysis	is	based	
on	a	single	graph.

7.5.4 Implementation in Cytoscape
We	have	implemented	graph	clustering	by	using	a	tool	called	Cytoscape.	The	input	
or	dataset	for	Cytoscape	is	galFiltered.cys,	which	indicates	a	Cytoscape	session	file	
that	contains	interaction	network	and	expression	data.	The	files	contain	an	interac-
tion	network	of	331	genes	that	were	significantly	differentially	expressed	in	at	least	
1	of	the	20	experimental	conditions	(KeiichiroOno	2010).

To	implement	graph	clustering	we	used	a	plug-in	called	ClusterONE	in	Cytoscape	
(Nepusz	et	al.	n.d.).	ClusterONE	is	based	on	a	graph	approach.	This	method	is	per-
formed	by	“growing”	dense	regions	using	one	or	two	vertices	called	seeds	based	on	
their	cohesiveness	(Nepusz	et	al.	2012).	Cohesiveness	is	a	quality	measure	in	which	
a	well-defined	group	should	have	more	 internal	edges	and	 fewer	boundary	edges.	
Weights,	which	define	how	reliable	that	edge	is,	are	assigned	to	the	edges.	Whenever	
reliable	edges	are	found,	they	are	selected	in	a	numeric	edge	attribute	in	Cytoscape	
that	helps	drive	the	cluster	growth	process.

The	ClusterONE	algorithm	searches	for	high	cohesiveness	of	clusters,	which	
begins	from	a	small	set	of	vertices	that are strongly bound together.	This	group	
can	be	 increased	by	 adding	new	vertices	 as	 long	 as	 cohesiveness	 increases.	A	
vertex	can	be	removed	if	it	increases	the	cohesiveness	of	a	group	(Nepusz	et	al.	
2012).

The	termination	condition,	or	the	stopping	condition,	occurs	when	the	cohe-
siveness	of	a	group	fails	to	increase.	Subgroups	that	are	less	than	a	given	threshold	
are	discarded.	Finally,	 subgroups	 that	 are	 cohesive	 and	overlap	 are	 combined	 to	
form	larger	subgroups	so	that	results	can	be	interpreted	more	easily.

Once	 the	 clustering	 process	 is	 performed	 successfully,	 nodes	 will	 be	 colored	
based	on	the	number	of	clusters.	If	a	node	is	only	in	a	single	cluster,	it	will	turn	red.	
Similarly,	if	a	node	is	in	more	than	one	cluster,	it	will	turn	yellow.	Finally,	if	a	node	
is	an	outlier,	then	it	will	turn	gray	(Figure	7.10).

We	have	selected	the	following	default	parameters	to	implement	the	ClusterONE	
algorithm	 in	Cytoscape:	minimum.size,	minimum.density,	edge.weights	 and	
merging.method,	 and	overlap.threshold..Two	clusters	are	merged	 if	overlap	 is	
larger	than	a	given	threshold.

7.5.4.1 Seeding Method

ClusterONE	will	start	producing	clusters	from	a	single	node	or	a	single	edge	called	
initial	seeds.	There	are	three	ways	in	which	ClusterONE	can	select	seeds:

	 1.	Every node	will	be	used	as	a	seed.
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	 2.	From unused nodes,	 in	which	the	node	that	does	not	participate	and	also	
has	 the	 largest	 weight	 of	 the	 discovered	 clusters	 will	 be	 selected	 as	 the	
next	seed.

	 3.	From every edge,	a	measure	will	be	taken	once,	each	having	a	seed	consisting	
of	the	two	endpoints	of	the	edge.

7.6 Kernel-Based Clustering
Most	 clustering	 algorithms	 are	 limited	 in	 that	 they	 can	 detect	 and	 cluster	 data	
only	into	spherical	or	elliptical	shapes.	This	inability	to	recognize	clusters	in	other	
shapes,	such	as	nonspherical	or	arbitrary	shapes,	limits	the	applicability	of	the	algo-
rithm	(Vapnik	1999).

A	kernel	 is	 a	nonnegative	 real-valued	 integral	 function	K,	which satisfies	 the	
following	two	requirements:

	
( ) 1K u du∫ =

−∞

+∞
	and	 ( ) ( )K u K u− = for	all	values	of	u.	 (7.7)

If	K	is	a	kernel,	then	the	function	 *K 	is	defined	by	 ( ) ( ), 0* 1 1= λ λ λ >− −K u K u where .
Kernel-based	 learning	 algorithms	 are	 based	 on	 Cover’s	 theorem	 (Xu	 and	

Wunsch	2005).	Complex	and	nonlinear,	separable	patterns	can	be	transformed	
nonlinearly	 into	a	higher-dimensional	 feature	space.	 In	this	way,	 it	 is	possible	
to	 separate	 these	 patterns	 linearly	 (Xu	 and	 Wunsch	 2005).	 An	 inner-product	
kernel	can	be	calculated	to	help	compute	the	corresponding	points	in	the	trans-
formed	space.

Figure 7.10 implementation of Clusterone in Cytoscape.
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For	example,	suppose	we	have	a	set	of	patterns	 x j
d∈ ℜ 	and	a	nonlinear	map	

: FdΦ ℜ → 	(Xu	and	Wunsch	2005).	Here,	F	represents	a	feature	space	with	arbi-
trarily	high	dimensionality.	The	objective	is	to	find	K	centers	so	that	we	can	mini-
mize	the	distance	between	the	mapped	patterns	and	their	closest	center	as
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where	mi	is	the	center	for	the	lth	cluster	and	lies	in	a	span	of	 ( ),...., ( )1x xNΦ Φ ,	and	
( , ) ( ). ( )k x x x xj j= Φ Φ 	is	the	inner	product	kernel.

They	define	the	cluster	assignment	variable	as
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7.6.1 Kernel Functions
Kernel	function	transforms	the	data	from	the	original	space	into	a	high-dimensional	
space	nonlinearly,	which	may	result	in	a	better	performance,	as	data	would	be	more	
linearly	separable	(Scholkopf	et	al.	2001).

Most	common	kernel	functions	are	uniform,	triangle,	Epanechnikov,	quartic	
(biweight),	 tricube	 (triweight),	Gaussian,	 and	 cosine.	The	most	popular	 of	 these	
choices	is	the	Gaussian	function.

7.6.2 Gaussian Function
The	Gaussian	function	can	be	read	as

	 ( ) .
( )2

2 2f x ae
x b
c=

− −

	 (7.10)

Equation	7.10	shows	a	classic	Gaussian	function,	in	which	a	is	the	height	of	the	
curve	peaks,	b	is	the	position	of	the	center	of	the	peak,	and	c controls	the	width	of	
the	curve.	In	signal	processing,	Gaussian	functions	are	used	as	Gaussian	filters,	and	
in	image	processing,	they	are	used	as	Gaussian	blurs	(Figure	7.11).
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7.7 Application of Kernel Clustering in Bioinformatics
7.7.1 Kernel Clustering
Kernel	clustering	can	find	the	number	of	clusters.	In	this	method,	the	kernel	matrix	
eigenvectors	define	the	mapping	based	on	the	underlying	nature	of	the	data.	The	
features	of	the	data	are	presented	for	partitioning,	and	the	sum-of-squares	cost	is	
used	to	evaluate	the	clustering	method.

The	 sum-of-squares	 method	 will	 not	 work	 if	 the	 boundaries	 separating	 the	
clusters	are	nonlinear.	This	limitation	can	be	overcome	by	transforming	the	data	
into	a	high-dimensional	feature	space	nonlinearly	and	clustering	within	this	fea-
ture	space.	However,	this	approach	will	only	work	if	the	feature	space	is	not	high.	
Hence,	 the	kernel	principal	 component	 analysis	 (KPCA)	method	 should	not	be	
applied	on	the	transformed	variables.	Kernel	function	can	be	used	in	the	original	
data	space	to	compute	inner	products	between	points.	This	ability	may	aid	the	users	
working	on	infinite	feature	spaces.

Next,	the	kernel,	k-means	algorithm,	can	be	formulated	as	the	following:

	 1.	Initialize	the	centers	ml	with	the	first	i,	(i ≥	K )observation	patterns.
	 2.	Take	a	new	pattern	xi + l,	and	calculate	C(i + l )h,	as	shown	in	Equation	7.11.
	 3.	Update	the	mean	vector	mh,	which	has	a	corresponding	C(i + l )h	of	1,	as

	 ( ( 1) ), where / .( 1) 1
1m m x m C Ch
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h
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Figure 7.11 Gaussian function. (From http://upload.wikimedia.org/wikipe-
dia/commons/thumb/7/74/normal_Distribution_PDF.svg/720px-normal_
Distribution_PDF.svg.png.)
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	 4.	Adapt	the	coefficients	T hj	for	each	 ( )x jϕ 	as
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= − ξ ≠ +
ξ = +

T T j i
j i

hj
new
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old

	 (7.12)

	 5.	Repeat	steps	2–4	until	convergence	is	achieved.

Kernel-based	 clustering	 algorithms	 have	 many	 advantages.	 For	 example,	 in	
high-dimensional	or	infinite	feature	space,	it	is	possible	to	obtain	a	linearly	sepa-
rable	hyperplane	using	kernel-based	clustering	algorithms.	These	algorithms	can	
form	 arbitrary	 clustering	 shapes,	 except	 for	 hyperellipsoids	 and	 hyperspheres.	
Support	vector	clustering	(SVC)	is	a	form	of	kernel-based	clustering	algorithm	and	
can	address	noise	and	outliers,	and	no	prior	knowledge	is	needed	to	determine	the	
same	topological	structure.

7.7.2 Kernel-Based Support Vector Clustering
Support	vector	clustering	is	based	on	the	kernel	method	that	uses	the	kernel	func-
tion	for	data	clustering	(Ben-Hur	et	al.	2001).	This	method	is	unable	to	detect	non-
convex-shaped	clusters.	To	overcome	this	limitation,	Yeh	and	Lee	have	proposed	a	
two-step	ν-SVC	method	to	aid	in	clustering	the	data	into	different	groups.	In	the	
first	 step,	a	sphere	centroid	 is	calculated	for	each	cluster.	 In	the	second	step,	 the	
cluster	results	are	improved	iteratively	using	the	k-means	algorithm.

To	make	 the	method	robust,	excessive	distances	 should	be	removed	 in	order	
to	avoid	the	excessive	distance	slack	variables	 , 0,i iξ ξ ≥ ∀ξ 	have	used.	Moreover,	
distances	should	not	be	smaller	than	R..Therefore,
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where	ν	 is	a	trade-off	between	sphere	radius	and	the	excessive	distance	of	outliers,	
which	helps	determine	the	number	of	outliers	and	support	vectors.	Thus,	slack	vari-
ables	are	also	called	ν-SVC.	In	addition,	ϕ:	X ↦	F	can	be	used	as	a	nonlinear	mapping	
function	that	connects	an	input	space	to	a	feature	space	F.	In	this	equation,	a	and	R	
are	the	center	and	radius	of	a	sphere	in	the	feature	space,	respectively..If	the	value	of	
v	is	small,	then	only	a	few	outliers	will	be	found	in	a	large	sphere	due	to	substantial	
penalty	on	the	excessive	distance.	Similarly,	if	the	value	of	v	is	large,	then	the	radius	
will	be	small	and	there	will	be	many	outliers	with	large	excessive	distances.

SVC	 is	 time-consuming,	 as	 it	 can	 produce	 a	 large	 number	 of	 clusters,	 each	
containing	a	single	sample.	In	addition,	sometimes	it	can	produce	only	one	cluster	
having	all	the	samples	(Ben-Hur	et	al.	2001).
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To	overcome	these	limitations,	Satish	and	Sekhar	cluster	the	data	by	using	a	two-
step	ν-SVC	method	and	then	use	k-means	to	improve	the	cluster	results	(Ben-Hur	
et	al.	2001).	To	remove	the	effect	of	noise	or	outliers	they	changed	the	parameters	
by	setting	the	value	of	v	to	be	large	and	provide	a	trade-off	between	the	radius	of	the	
sphere	and	the	excessive	distance,	and	then	improved	the	cluster	results	iteratively	by	
using	k-means	algorithm.

7.7.3  Analyzing Gene Expression Data Using 
SOM and Kernel-Based Clustering

Kotani	 and	 Sugiyama	 (2002)	 examined	 and	 classified	 the	 gene	 expression	 data	
using	self-organizing	maps	(SOMs)	and	a	kernel-based	clustering	obtained	from	the	
DN.4	microarray.	Thus,	gene	expression	data	are	input	to	the	SOM,	and	prototype	
vectors	will	be	generated	as	input	for	kernel-based	clustering.	Hence,	kernel-based	
clustering	 will	 be	 applied	 on	 the	 data	 (Kotani	 and	 Sugiyama	 2002).	 Therefore,	
kernel-based	clustering	categorizes	the	units	of	the	SOM.

The	application	of	SOM	is	limited	because	the	results	are	difficult	to	visualize	or	
understand.	Hence,	it	is	hard	to	cluster	boundaries,	whereas	data	can	be	partitioned	
nonlinearly	by	using	kernel-based	clustering.	Thus,	Kotani	and	Sugiyama	find	clus-
ter	boundaries	by	using	kernel-based	clustering,	making	the	results	of	SOM	easy	to	
visualize	and	understand.

Self-organizing	 maps	 (SOMs)	 mapped	 or	 transformed	 the	 n-dimensional	 data	
into	 one-dimensional	 (1D)	 or	 2D	 data	 where	 mapping	 is	 defined	 by	 associated	
D-dimensional	prototype	vectors,	pi,	for	the	ith	unit.	The	unit	chosen	as	the	closest	
prototype	vector	to	the	nth	input	vector,	xn,	is	defined	as.(Kohonen	1995)

	 min( ) ( ).− −x p x pn i
T

n ii

	 (7.14)

The	chosen	unit	updates	its	prototype	vector	according	to

	 p t p t h t p t xi i ci i n[ ]+ = + −( 1) ( ) ( ) ( ) . 	 (7.15)

where	 t is	 the	 learning	 iteration	 and	 hci	 is	 the	 neighborhood	 function	 that	 is	 a	
decreasing	function.	The	authors	have	used	a	radial	symmetric	Gaussian	function	
as	the	neighborhood	(Kotani	and	Sugiyama	2002).

To	 increase	 the	 linear	 dispersion	 in	 feature	 space,	 kernel-based	 clustering	
(Girolami	 2002)	 transforms	 the	 nonlinear	 data	 into	 higher-dimensional	 feature	
space.	Φ	is	a	smooth	and	continuous	mapping	from	the	data	space	to	the	feature	
space,	F,	and	is	defined	as

	 : .R FDΦ → 	 (7.16)
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The	trace	of	the	within-group	scatter	matrix	in	F,	 SW
Φ

,	is	given	by

	

S
N

z x m x mW kn n k
T

n k

n

N

k

N

∑∑( ) ( ) ( )= Φ − Φ −Φ Φ Φ

==

tr 1 ( ) ( ) ,
11

0

	 (7.17)

where	 Nc 	is	the	number	of	clusters	and	N is	the	number	of	input	vectors.	The	
mean	of	each	cluster,	mk

Φ ,	is	defined	as
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where	 N z zk n
N

kn kn= Σ = ,1 	 is	 an	 indicator	 of	 whether	 the	 nth	 input	 vector	 belongs	
to	the	kth	cluster,	namely,	if	 xn 	belongs	to	the	kth	cluster,	 1zkn = ,	and	otherwise	

0zkn = .
N ×	N	kernel	matrix,	K,	is	defined	as

	 K K x x x xij i j i j= = Φ Φ( , ) ( ). ( ). 	 (7.19)

Kotani	and	Sugiyama	obtain	the	following	equation:
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and
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Girolami	(2002)	has	used	a	radial	basis	function	as	the	kernel	function,

	
( , ) exp || || .2k x x x xi j i j= − −  	 (7.23)
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Finally,	the	optimal	clustering	of	input	vectors	is	obtained	as
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7.8 Model-Based Clustering for Gene expression Data
Model-based	clustering	is	based	on	the	assumption	that	each	component	or	group	
of	data	is	generated	by	underlying	probability	distribution,	which	helps	determine	
a	relevant	or	good	clustering	method	(Azuaje	and	Bolshakova	2002;	Yeung	et	al.	
2001).	Yeung	et	al.	have	considered	six	such	models:	the	Gaussian	mixture	model	
(GMM),	the	equal	volume	spherical	model,	the	unequal	volume	spherical	model,	
the	unconstrained	model,	the	elliptical	model,	and	the	diagonal	model.	The	most	
common	such	models	are	Gaussian	mixture	and	the	diagonal	model.

7.8.1 Gaussian Mixtures
Gaussian	mixtures	are	the	most	statistically	mature	models	for	clustering	areas	in	
which	 each	 component	 is	 spherically	 symmetric.	 In	 these	models,	 there	 are	 few	
parameters,	and	the	spherical	model	is	of	equal	volume	(Ouyang	and	Welsh	2004).	
In	GMM,	each	component	is	modeled	by	multivariate	normal	distribution	param-
eters,	 kµ 	(mean	vector)	and	 kΣ 	(covariance	matrix),	which	helps	determine	geo-
metric	 features	 such	as	 shape,	volume,	and	orientation	 for	 each	component	of	k	
(Banfield	1993).	For	example,
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7.8.2 Diagonal Model
The	diagonal	model	can	find	the	number	of	clusters	and	model	parameters	using	
the	EM	algorithm	in	both	the	MCLUST	and	diagonal	model	implementation.	In	
the	EM	algorithm,	the	expectation	(E)	steps	determine	the	probability	whether	a	
sample	belongs	to	a	particular	cluster	or	not,	and	in	the	maximization	(M)	step,	the	
model	parameters	are	determined	based	on	the	current	given	group	of	membership	
probabilities.	When	the	EM	algorithms	are	combined,	observations	are	assigned	to	
their	group	based	on	maximum	conditional	probability
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7.8.3 Model Selection
Model-based	clustering	is	a	probabilistic	approach	that	helps	users	to	select	the	best	
clustering	algorithm	and	the	correct	number	of	clusters	(Yeung	et	al.	2001).	There	
is	a	trade-off	between	the	probability	model	and	the	number	of	clusters.	For	exam-
ple,	 a	complex	model	 requires	a	 small	number	of	clusters,	while	a	 simple	model	
requires	a	large	number	of	clusters.	Let	us	assume	D	is	an	observed	data,	and	M1	
and	M2	are	two	models	with	parameters	of	a1	and	a2,	respectively.	The	integrated	
likelihood	represents	the	probability	that	D	is	observed,	given	that	the	underlying	
model	is	Mk	(Yeung	et	al.	2001).

To	 choose	 between	 models	 M1	 and	 M2,	 (Kass and Raftery, 1995)	 suggested	
the	use	of	Bayes	 factor.	The	Bayes	 factor	 is	defined	as	 the	 ratio	of	 the	 integrated	
likelihoods	of	the	two	models	B12	=	p(D/M1)/p(D/M2).	If	B12	>	1,	model	M1	is	
preferred	over	model	M2.	The	limitation	of	using	the	Bayes	factor	is	the	estimation	
of	integrated	likelihood.

Schwarz	 et	 al.	 have	 used	 a	 Bayesian	 information	 criterion	 (BIC)	 to	 compare	
models	and	find	the	BIC	score	of	differences	greater	than	a	threshold.	Models	that	
contain	this	difference	can	be	a	strong	reason	for	preferring	one	model	over	the	other.

7.9 Relevant number of Genes
The	clustering	process	partitions	data	into	a	number	of	clusters	or	groups	that	are	
denoted	by	K	(Yuan	and	Li	2008;	Tseng	and	Wong	2005).	Their	quality	depends	
on	the	number	of	clusters.	Some	clustering	algorithms	need	the	value	of	K as	an	
input.	Sometimes	K	can	be	difficult	to	understand	and	evaluate	if	there	are	many	
clusters.	Similarly,	if	there	are	fewer,	clusters	K cause	loss	of	information	(Youness	
and	Saporta,	2010).	Research	in	this	area	is	ongoing,	and	it	is	difficult	to	find	the	
appropriate	value	of	K	(Tseng	and	Wong	2005).	Tseng	and	Wong	have	proposed	a	
method	that	does	not	need	to	assign	all	the	points	into	the	clusters	and	produces	
tight	 and	 stable	 clusters	 (Yuan	 and	 Li	 2008).	 Some	 representative	 examples	 are	
illustrated	in	the	following.

7.9.1  A Resampling-Based Approach for 
Identifying Stable and Tight Patterns

To	identify	stable	and	tight	patterns	(Tseng	and	Wong	2005),	cluster	the	samples	
based	on	similar	expression	patterns.	In	microarray	experiments,	 there	are	many	
genes	that	are	not	related	to	any	biological	process.	Therefore,	there	are	no	correla-
tion	variations	within	clusters	of	genes.	Hence,	these	genes	should	not	be	clustered,	
and	are	thus	called	scattered	genes.	Due	to	scattered	genes,	estimating	the	appro-
priate	number	of	clusters	is	not	easy.	As	a	result,	we	get	distorted	clusters	that	are	
difficult	to	visualize	and	analyze	because	these	scattered	genes	divide	the	algorithm	
into	clusters	at	all	points.
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For	simplicity,	Tseng	and	Wong	(2005)	used	k-means	and	Euclidean	distance	as	
a	dissimilarity	measure	by	assuming	data	are	in	Euclidean	space.

7.9.2  Overcoming the Local Minimum 
Problem in k-Means Clustering

k-Means	clustering	will	be	used	in	the	tight	clustering	algorithm.	However,	because	
the	k-means	method	is	the	local	minimum,	its	applications	are	limited,	although	
it	 can	 be	 overcome	 by	 minimizing	 within-cluster	 dispersion	 (sum	 of	 squares)	
(Tseng	and	Wong	2005).	However,	it	is	computationally	expensive	to	search	for	the	
global	minimum.	Therefore,	 to	 stabilize	within-cluster	dispersion,	 the	algorithm	
performs	iterative	reallocation.	Poor	selection	of	input	values	can	give	inaccurate	
results,	 as	minimization	 falls	 in	a	 local	minimum	quickly,	and	 it	becomes	more	
prominent	when	scattered	points	exist.

7.9.3 Tight Clustering
The	subsampling	procedure	 is	used	 to	 create	 variability	 so	 that	 it	 is	 easy	 to	dis-
tinguish	between	points	 that	are	stably	clustered	and	those	that	are	clustered	by	
chance.	From	the	original	data,	X	takes	a	random	subsample	X ’, for	example, 60%	
of	the	original	sample	size,	and	applies	k-means	with	the	prior	knowledge	of	k on	
X ’ to	obtain	the	cluster	centers	C(X ’,	k)	=	(C1,	C2,	…, Ck),	which	can	be	used	to	
cluster	the	original	data	X based	on	the	distances	from	each	point	to	the	cluster	
centers.	Following	the	convention	of	Tibshirani	et	al.	(2001),	the	resulting	cluster-
ing	is	represented	by	a	comembership	matrix	D[C(X ’,	k),	X ],	where	D[C(X ’,	k),	X ]ij.

Repeat	independent	random	subsampling	B times	to	obtain	subsamples	X (1),		
X (2),	…,	X (B).	The	average	comembership	matrix	is	defined	as	D 	=	mean(D[C(X (1),	
k),	 X ],	…,	D[C(X (B),	 k),	 X ]).	 Search	 for	 a	 set	 of	 points	 V =	 {v1,	 v2,	…,	vm} ⊂ 
{1,	…,	n} such	that	D i jv vi j ≥ − α ∀1 , , ,	where	α is	a	constant	close to	0.	Order	sets	
with	this	property	by	size	to	obtain	Vk1,	Vk2,	etc.	These	V sets	are	candidates	of	
tight	clusters.

7.9.4 Tight Clustering of Gene Expression Time Courses
Tight	clusters	are	the	most	informative	clusters	and	are	obtained	as	small	clusters.	
Such	clusters	usually	 include	20	 to	60	genes	 in	genomic	 signal	processing	 (Yuan	
and	Li	2008;	Roddick	and	Spiliopoulou	2002).	Moreover,	tight	clusters	are	more	
interpretable	than	existing	partitions	because	they	find	core	patterns.	The	k-means	
method	 is	 used	 to	 find	 the	 initial	 partition,	 and	 helps	 reveal	 more	 information.	
For	example,	a	new	function	can	be	discovered	when	genes	belonging	to	the	same	
functional	category	are	assigned	into	different	tight	clusters.	Tight	clusters	can	be	
obtained,	by	classifying	some	genes	as	scattered	genes,	but	such	classification	can	
disturb	biologically	relevant	patterns.	Hence,	Yuan	and	Li	have	proved	that	some	
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scattered	genes	can	be	of	biological	importance	and	should	not	be	removed	as	outli-
ers	(Yuan	and	Li	2008).

7.10 Higher-order Mining
The	knowledge,	information,	or	patterns	obtained	from	large	raw	data	are	widely	
acknowledged,	but	many	a	 times	 these	 raw	data	are	not	available	due	 to	 several	
reasons.	First,	agencies	do	not	want	to	share	their	data.	Second,	streaming	data	is	
only	available	temporarily,	which	will	be	in	some	other	form.	Finally,	it	is	difficult	
to	achieve	the	required	computational	speed,	which	is	dependent	on	hardware	tech-
nologies	(Wijsen	and	Meersman	1998).	Therefore,	there	is	a	strong	need	to	define	
methods	that	can	extract	knowledge	or	information	even	if	there	is	no	accessibility	
of	primary	or	raw	data.	Hence,	to	overcome	the	above	limitation,	higher-order	min-
ing	is	defined.	Higher-order	mining	is	a	data	mining	form	in	which	derived	data,	
statistical	information,	or	patterns	are	the	input.instead	of	raw	data	(Roddick	et	al.	
2008).	More	formally,	let	Ξ	=	 | 1.... , 1i n ni{ }ε = ≥ 	be	a	set	of	models	or	patterns,	
such	that	 iε 	has	been	extracted	from	a	dataset	Di.	Higher-order	mining	discovers	
new	pattern	or	model	 ε̂	from	the	set	Ξ	through	the	use	of	data	mining	methods	
(Roddick	et	al.	2008).

7.10.1 Clustering for Association Rule Discovery
Due	to	the	lack	of	discreteness	in	the	nonprimary	data,	it	is	difficult	to	apply	associa-
tion	rule	mining	on	it	(Tuzhilin	and	Adomavicius	2002).	This	limitation	can	be	over-
come	by	using	clustering	as	a	preprocessing	step	that	helps	formulate	discrete	intervals	
to	obtain	association	rules	of	adequate	 frequency.	Yang	and	Miller	find	numerical	
ranges	 for	ordinal	values	by	creating	distance-based	association	rules	by	using	 the	
BIRCH	algorithm	(Zhang	et	al.	1996),	which	can	be	obtained	from	the	generated	
clusters	(Yang	and	Miller	1997).	Moreover,	Yang	and	Miller	used	the	distance	mea-
sure	to	find	the	distance	between	two	clusters	instead	of	finding	support	and	confi-
dence.	This	distance	helps	in	determine	how	strong	a	rule	is;	i.e.,	if	a	distance	between	
two	clusters	C Cx y, ,	is	large,	then	the	rule	is	weak,	C Cx y→ 	(Yang	and	Miller	1997).

7.10.2 Clustering of Association Rules
There	can	be	some	cases	when	there	are	large	numbers	of	rules	and	these	large	num-
bers	can	make	their	interpretation	difficult	to	understand	(Toivonen	et	al.	1995).	
A	set	of	rules	of	the	form

ID[1]	→	Insurance[yes]
ID[2]	→	Insurance[yes]
ID[3]	→	Insurance[yes]
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might	be	better	described	as

ID[1–3]	→	Insurance[yes]

Lent	 et	 al.	 (1997)	 cluster	 the	 association	 rules	 by	using	 a	 concept	 similar	 to	
the	binning	method	used	by	Agrawal	and	Srikant	(Lent	et	al.	1997;	Agarwal	and	
Srikant	1995),	where	each	bin	represents	an	association	rule.	Gupta	et	al.	(1999)	
used	the	concept	of	finding	distances	to	cluster	the	association	rules,	and	Denton	
and	Perrizo	(2003)	combined	various	forms	of	data	mining	algorithms	and	made	a	
framework	based	on	partitions.

7.10.3 Clustering Clusters
Partition-based	 clustering	 algorithms	 are	 iterative,	 as	 the	 center	 continues	 to	
move	until	 it	 reaches	a	 stopping	or	 threshold	condition	based	on	some	criterion.	
Therefore,	initial	points	are	computed	to	find	the	mean	and	allow	the	iterative	pro-
cess	to	begin.	According	to	Bradley	and	Fayyad,	if	the	starting	point	is	suboptimal,	
then	 clustering	 algorithms	 will	 reach	 suboptimal	 solutions	 (Bradley	 and	 Fayyad	
1998).	Because	of	this	problem,	Fayyad	suggested	that	clustering	subsamples	can	
aid	in	the	discovery	of	an	improved	local	minimum,	and	that	the	combination	of	
solutions	through	clustering	can	reach	an	improved	starting	point.	However,	due	
to	a	suboptimal	starting	point,	this	method	will	be	computationally	expensive.	A	
smoothing	process	can	improve	the	chance	that	a	researcher	will	reach	a	good	solu-
tion	(Bradley	and	Fayyad	1998).

7.11 Conclusion
In	conclusion,	Chapters	6	and	7	contain	a	detailed	list	of	clustering	(unsupervised)	
techniques	of	data	mining.	In	these	two	chapters	we	have	also	provided	insights	
into	their	application	in	bioinformatics	and	the	challenges	they	pose.
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Chapter 8

Classification techniques 
in Bioinformatics

Supervised	learning,	like	unsupervised	learning,	is	one	of	the	data	mining	tasks	
introduced	in	the	knowledge	discovery	in	databases	(KDD)	process	and	consists	
of	two	phases,	training	and	testing.	In	the	training	phase,	we	build	a	model	using	
samples	that	is	representative	of	the	hypothesis	(or	real-world	use	of	the	function)	
and	connects	(learns	from)	the	input	parameters	to	achieve	a	learning	objective,	
such	that	the	samples	can	accurately	and	efficiently	predict	the	learning	outcome.	
We	then	extract	features	of	interest	from	the	samples.	In	this	step,	we	ensure	that	
the	features	are	not	too	large	in	order	to	avoid	the	curse	of	dimensionality.	Once	we	
have	completed	the	training	phase,	we	begin	the	test	phase.	We	test	the	trained	
model	using	 random	 samples	of	data.	Typically,	 the	 test	phase	 includes	 evalu-
ation	 routines	 such	 as	 holdout	 and	 k-fold	 cross-validation	 techniques.	 In	 this	
chapter	we	provide	 an	overview	of	 the	various	 supervised	 learning	 techniques,	
better	 known	 as	 classification	 techniques,	 and	 their	 application	 in	 the	 field	 of	
bioinformatics.

8.1 introduction
There	is	a	wide	variety	of	classification	techniques	that	one	can	choose	from,	and	
they	perform	differently	under	different	data	and	learning	domains.	It	is	important	
to	understand	how	these	algorithms	work	in	order	to	understand	how	the	perfor-
mances	 and	 results	 will	 differ.	 Before	 we	 explain	 the	 working	 principle	 of	 each	
algorithm,	we	will	highlight	the	intricacies	of	supervised	learning.
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8.1.1 Bias-Variance Trade-Off in Supervised Learning
When	trying	to	understand	how	a	supervised	learning	algorithm	works,	it	is	imper-
ative	to	understand	two	key	terms,	bias	and	variance.	To	elucidate	the	effects	of	bias	
and	variance	and	help	define	their	prominence	in	supervised	learning,	let	us	first	
consider	a	situation	in	which	we	have	two	train	sets.	Let	us	assume	that	these	two	
train	sets	do	not	share	any	samples	but	have	the	same	number	of	classes	and	the	
same	number	of	samples	in	each	class.	Let	us	consider	a	random	test	sample	x	that	
is	used	to	test	models	built	by	a	supervised	learning	algorithm	using	both	training	
sets	independently.	If	the	sample	x	is	incorrectly	classified	across	both	train	sets,	the	
model	has	a	high	degree	of	bias.	If	however,	sample	x	is	assigned	a	different	class	for	
different	train	sets,	then	the	model	has	a	high	degree	of	variance.	These	two	vari-
ables	have	direct	implications	on	the	prediction	error	of	the	model,	as	it	is	directly	
proportional	to	the	sum	of	the	bias	and	variance.

When	we	create	a	train	set	with	low	bias,	the	result	is	often	a	“flexible	classifier.”	
However,	 such	a	classifier	may	be	too	flexible	and	will	fit	differently	 in	different	
datasets.	Thus,	there	is	a	natural	trade-off	between	bias	and	variance.

8.1.2 Linear and Nonlinear Classifiers
In	 this	 section	we	draw	 the	distinction	between	 linear	 and	nonlinear	 classifiers.	
The	distinction	is	drawn	by	how	the	input	object’s	characteristics	are	modeled	for	
decision	making.

A	linear	classifier	decides	class	membership	of	a	sample	by	comparing	a	linear	
combination	of	the	features	to	a	fixed	threshold.	For	example,	let	us	consider	a	set	
of	points	that	belong	to	two	classes	represented	in	a	two-dimensional	(2D)	space	as	
shown	in	Figure	8.1.	A	linear	classifier	attempts	to	fit	a	line	 + =c f c f H1 1 2 2 	so	that	

Hyper-planes
H4

H5

(a) (b)

Figure 8.1 the triangles and dots can be separated by multiple linear classifiers 
in (a). in some cases, the separation of data by a linear function can lead to false 
alarms (and dismissals) in discrimination, but a nonlinear function can achieve 
better separation, as shown in (b).
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the	 line	separates	or	divides	the	points	 into	two	corresponding	classes.	This	step	
is	best	described	in	Figure	8.1(a).	Since	we	consider	only	two	features	f1	and	f2	for	
analysis,	the	resultant	rules	for	classification	are	a	linear	combination	of	these	two	
features,	in	which	a	sample	is	assigned	to	the	first	class	if	it	satisfies	 + >c f c f H .1 1 2 2

Otherwise,	the	feature	is	assigned	to	the	second	class.
In	our	example,	 f f T( , )1 2 	is	the	2D	vector	representation	of	a	data	point.	Both	

the	parameter	vector	 c c T( , )1 2 	and	the	constant	H	play	a	vital	role	in	defining	the	
decision	boundary.	The	resultant	2D	representation	of	the	decision	boundary	is	a	
straight	line	that	is	a	plane	when	viewed	in	three	dimensions.	When	the	number	of	
dimensions	is	greater	than	3,	the	resultant	decision	boundary	is	generalized	to	what	
is	referred	to	as	a	hyperplane.	If	a	hyperplane	perfectly	separates	two	classes,	then	
the	two	classes	are	linearly	separable.	It	should	be	noted	that	if	the	property	of	linear	
separability	 is	maintained,	 then	there	are	an	 infinite	number	of	 linear	separators.	
Figure	8.1(a)	is	pictorial	representation	of	a	scenario	in	which	the	number	of	possible	
hyperplanes	can	be	infinite.	In	reality,	data	are	plagued	by	noise.	While	dealing	with	
a	linearly	separable	problem	using	noisy	data	for	training,	the	challenge	of	choosing	
the	best	hyperplane	is	questioned,	requiring	a	stringent	criterion	for	selecting	among	
all	decision	hyperplanes	that	perfectly	separate	the	training	data.	In	general,	some	
hyperplane	will	perform	well	on	new	data	and	some	will	not.	Thus,	linear	classifiers	
may	not	be	as	simple	to	use	as	they	are	to	conceive	due	to	a	difficulty	in	determining	
the	optimal	set	of	parameters	of	 �c 	and	H	from	a	given	train	set.

The	nonlinearity	of	a	nonlinear	classifier	is	intuitively	clear	when	the	decision	
boundaries	of	the	classifier	are	locally	linear	segments.	However,	we	generally	have	
a	complex	shape	that	is	not	equivalent	to	a	line	in	two	dimensions	or	a	hyperplane	
in	higher	dimensions.

Figure	8.1(b)	shows	one	such	example	of	a	nonlinear	problem.	In	this	figure,	
there	is	no	one	good	linear	separator	between	the	two	classes,	as	an	isolated	cluster	
of	points	that	belong	to	a	different	class	is	surrounded	by	points	of	another	class.	
This	lack	of	clear	boundaries	would	make	accurate	classification	using	linear	meth-
ods	almost	impossible.

Since	nonlinear	classifiers	can	capture	complex	decision	boundaries,	they	pro-
duce	better	classification	accuracies.	Since	we	know	that	they	perform	better	 for	
complex	 classification	 problems,	 we	 must	 determine	 whether	 they	 perform	 well	
enough	in	other	areas	to	justify	using	nonlinear	classifiers	for	all	classification	prob-
lems.	To	answer	this	question,	we	look	into	bias	and	variance	and	their	roles	in	both	
linear	and	nonlinear	classification.	It	is	imperative	to	describe	a	means	to	estimate	
the	error	associated	with	the	classifier.	A	commonly	used	error	estimate	is	the	mean	
squared	 error	 (MSE),	which	 is	 the	difference	between	 the	predicted	output	of	 a	
classifier	ϒ	given	a	 test	 sample	x	 and	the	probability	of	x	belonging	 to	a	class	C 
(represented	as	P C x( | )),	represented	by	the	following	notation:

	 ( ) [ ( ) ( | )]ϒ = ϒ −MSE E x P C xx 	 (8.1)
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where	is	Ex	the	expectation	with	respect	to	P(d).	Our	objective	is	thus	to	minimize	
the	MSE	that	is	averaged	over	train	sets.	To	achieve	this	objective,	we	reexamine	
the	concept	of	bias	and	variance	with	respect	to	linear	and	nonlinear	classifiers.	
We	then	define	bias	as	the	squared	difference	between	P(C|x)	(the	actual	probabil-
ity	of	 a	 sample	 x	 belonging	 to	 a	 class	 C)	 and	 the	 predicted	 outcome	 ( )Γ xD 	 of	
the	learned	classifier	averaged	across	train	sets.	The	bias	is	large	if	the	classifier	is	
consistently	inaccurate	across	different	train	sets.	On	the	contrary,	the	bias	may	be	
small	for	several	reasons:	(1)	if	the	classifier	performs	consistently	well	across	differ-
ent	datasets,	(2)	if	different	train	sets	cause	errors	on	different	test	samples,	or	(3)	if	
different	train	sets	result	in	positive	and	negative	outcomes	on	the	same	test	sample,	
but	average	out	to	near	zero.

Linear	models	are	considered	to	have	a	high	bias	for	nonlinear	problems,	as	
they	can	only	be	employed	to	model	a	linear	hyperplane.	If	one	of	the	input	train	
sets	has	a	class	that	is	a	nonlinear	class	boundary,	then	the	resultant	bias	is	high.	
This	high	bias	 is	 a	 result	of	 a	 large	number	of	data	points	 in	 the	 train	 set	 that	
would	be	consistently	misclassified	by	the	linear	classifier.	They	therefore	require	
intuitive	 knowledge	of	 the	problem	 for	fitting	 a	 linear	 classifier	with	data	 that	
are	believed	 to	 exhibit	 linear	 characteristics,	 yielding	 lower	 error	 estimates	 and	
more	correctly	classified	instances.	On	the	contrary,	if	true	class	boundaries	are	
not	linear	and	we	incorrectly	“force”	the	classifier	to	be	linear,	then	the	classification	
accuracy	will	drop.

Nonlinear	models	are	considered	to	have	a	low	bias.	As	discussed,	the	decision	
boundaries	generated	by	these	classifiers	vary	greatly	and	are	dependent	on	the	dis-
tribution	of	the	data	points	of	a	class	in	the	train	set.	The	variability	offered	by	the	
nonlinear	classifiers	provides	flexibility	in	classifying	different	classes	with	different	
degrees	of	accuracies	as	per	the	application	needs.

We	define	variance	as	the	variation	of	the	prediction	of	a	learned	classifier	across	
different	datasets.	It	is	the	average	squared	difference	between	the	predicted	out-
come	and	its	averaged	prediction	across	different	train	sets.

The	variance	is	large	if	different	train	sets	D	give	rise	to	very	different	predic-
tions	for	a	given	test	sample	x.	It	is	small	if	the	train	sets	have	a	minor	effect	on	
classifier	prediction,	be	it	correct	or	incorrect.	Thus,	variance	is	a	measure	of	incon-
sistency	with	the	decisions	and	does	not	take	into	consideration	whether	they	are	
correct	or	incorrect.

Linear	models	are	considered	to	have	low	variance,	as	most	train	sets	that	are	
randomly	generated	produce	similar	decision	hyperplanes.	The	decision	lines	pro-
duced	by	linear	learning	methods	will	deviate	slightly	from	the	main	class	bound-
aries,	depending	on	 the	 train	 set,	but	 the	 class	 assignment	 for	 the	 vast	majority	
of	samples	(with	the	exception	of	those	close	to	the	main	boundary)	will	not	be	
affected.	The	circular	enclave	will	be	consistently	misclassified.

Nonlinear	models	have	high	variance.	It	is	apparent	that	these	models	create	
complex	boundaries	between	classes	and	are	thus	sensitive	to	noise.	As	a	result,	
the	variance	is	high.	For	instance,	if	the	test	sample	is	close	to	noisy	samples	in	the	
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train	set,	it	can	get	misclassified	by	default.	This	noise	results	in	a	high	variation	
across	train	sets.

High	 variances	 in	 learning	 methods	 are	 prone	 to	 overfitting	 training	 data,	
which	may	prevent	us	from	capturing	true	properties	of	the	underlying	distribu-
tion	(as	shown	in	Figure	8.2).	In	overfitting	the	learning	model	learns	from	noise	as	
well	as	from	features.	Overfitting	increases	the	MSE	and	frequently	is	attributed	to	
high	variance	learning	methods.

8.1.3 Model Complexity and Size of Training Data
With	the	large	increase	in	bioinformatics	data,	a	large	volume	of	research	has	been	
published,	creating	a	growing	importance	of	using	data	mining	to	utilize,	under-
stand,	and	discover	patterns	of	interest.	In	this	section	we	try	to	explain	the	method	
for	 selecting	a	 subset	of	data	and	 the	method’s	effects	on	variance	and	bias	of	a	
classifier	used.

The	work	performed	by	Brian	and	Webb	(1999)	illustrates	the	effects	of	increas-
ing	the	size	of	the	dataset	on	the	variance	and	bias	of	different	learning	methods.	
They	attempted	to	explore	the	possibility	of	designing	algorithms	specifically	for	
large	datasets.	Their	analysis	was	aimed	at	proving	that	if	the	number	of	samples	in	
the	dataset	was	increased,	they	could	decrease	the	variance	to	develop	algorithms	
that	obtain	more	interesting	results.

As	discussed	in	Section	8.1.2,	variance	measures	the	degree	to	which	the	pre-
dictions	of	 the	 classifiers	developed	by	a	 learning	algorithm	differ	 among	data-
sets.	 If	 the	 train	 sets	 are	 small,	we	assume	 that	 the	 relative	 impact	of	 the	 train	
sets	 cannot	be	 a	 sufficient	 representation	of	 the	population,	 and	 thereby	expect	
a	large	variance	for	the	learning	algorithm.	We	can	solve	this	problem	using	the	

(a) (b)

Figure 8.2 A schematic representation of noise in data and its effects on the per-
formance of a nonlinear classifier. (a) A nonlinear classifier that does not overfit 
the data and (b) a nonlinear model that overfits to suit the distribution of noise 
in the data.
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method	described	by	Brian	and	Webb	(1999).	First,	we	assume	that	50%	of	the	
samples	in	a	population	(large	database)	have	a	common	characteristic.	If	a	ran-
domly	selected	train	set	 is	of	size	10,	there	 is	a	probability	of	0.38	that	40%	or	
less	of	the	samples	in	the	train	set	will	retain	the	common	characteristic	from	the	
population.	Furthermore,	there	is	a	negligible	0.17%	probability	that	30%	or	less	
of	the	samples	in	the	train	set	will	retain	the	characteristic.	Thereby,	if	a	smaller	
train	set	is	taken	from	a	large	population,	it	has	a	slimmer	chance	of	being	a	good	
representation	of	the	population.	To	negate	the	effect	of	this,	we	use	a	train	set	of	
size	1,000,000	 if	50%	of	 the	population	exhibits	a	common	characteristic.	The	
probability	that	40%	or	less	of	the	samples	in	the	train	set	exhibits	this	character-
istic	is	less	than	10–22,	and	the	probability	that	30%	or	less	of	the	samples	in	the	
train	set	exhibits	it	is	less	than	10–26.

Furthermore,	if	1%	of	the	population	exhibits	a	common	characteristic	and	we	
randomly	choose	a	train	set	of	size	100,	there	is	a	probability	of	0.37%	that	this	
characteristic	will	not	be	found	in	the	samples	of	the	train	set	and	a	probability	of	
10–17	that	this	characteristic	will	not	be	captured	in	a	larger	train	set	of	1,000,000.	
In	contrast,	in	a	random	sample	of	size	1,000,000,	if	50%	of	the	population	exhib-
its	the	characteristic,	then	the	probability	that	40%	or	less	of	the	sample	will	exhibit	
the	characteristic	is	less	than	10–22.	The	probability	that	30%	or	less	of	the	sample	
will	exhibit	the	characteristic	is	less	than	10–26.

From	this	description,	it	can	be	expected	that	classifiers	learned	from	many	
small	train	sets	will	differ	more	significantly	than	classifiers	learned	from	larger	
train	sets.	This	hypothesis	was	tested	and	verified	using	both	linear	and	nonlin-
ear	models.	It	was	observed	that	in	both	linear	and	nonlinear	models,	the	mean	
square	error	dropped	as	the	size	of	the	train	set	increased.	However,	when	both	
independent	variances	and	biases	were	compared,	it	was	observed	that	nonlinear	
models	exhibited	a	reduction	in	variance	and	a	similar	reduction	in	bias.	While	
we	expect	a	 similar	 trend	 in	 linear	models,	 it	was	observed	 that	 though	 there	
is	a	consistent	decrease	in	variance	with	the	increase	in	train	set	sizes,	the	bias	
fluctuated.

The	 statistical	 conclusions	 drawn	 from	 these	 experiments	 reinforced	 the	
hypothesis	that	both	linear	and	nonlinear	classifiers	perform	better	as	train	data	are	
increased.	This	result	is	evident	with	the	decrease	in	variance	values	obtained	with	
increased	train	set	sizes.	The	various	trends	 in	bias	show	that	the	computational	
complexity	of	learning	affects	the	performance	of	the	models	generated	as	the	size	
of	 train	 sets	 increases.	Thus,	 if	 the	presented	 results	 are	extrapolated	 to	millions	
of	train	samples,	then	the	complexity	of	the	learned	models	can	be	expected	to	be	
orders	of	magnitude	higher	than	that	for	the	small	train	sizes	from	which	models	
are	normally	developed.	This	change	in	learning	complexity	may	also	be	attributed	
to	the	decrease	in	variance,	leading	to	the	next	important	feature	of	reducing	the	
complexity	of	these	algorithms	to	strike	a	balance	between	both	bias	and	variance.	
Various	forms	of	classification	schemes	are	available	based	on	the	number	of	phe-
notypes	or	classes	available	in	the	train	sets.
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Binary. classification:	 In	 this	 kind	 of	 classification	 scheme,	 there	 are	 two	
phenotypes	 considered	 in	 the	 train	 set.	 The	 objective	 of	 the	 learning	
scheme	is	to	discriminate	between	samples	that	belong	to	either	of	the	two	
classes.	Better	known	as	binary	class	classification,	this	scenario	is	derived	
from	a	single	hypothesis	H,	leading	to	a	single	conclusion,	either	positive	
or	negative.

Multiclass.classification:	On	the	other	hand,	we	call	learning	multiclass	clas-
sification	 if	 there	are	more	 than	 two	phenotypes	or	classes	associated	with	
the	instances	in	the	training	and	testing	sets.	In	this	form	of	classification,	
the	objective	is	to	classify	a	single	sample	into	one	of	the	many	classes.	It	is	
more	complicated	than	the	binary	class	classification,	as	comparing	multiple	
hypotheses	makes	the	decision.

Multiclass	classification	can	thus	be	viewed	as	a	collection	of	binary	class	classi-
fication	strategies.	Several	commonly	used	strategies	can	make	this	possible,	namely,	
the	one	versus	 all	 (OvA)	 and	 the	all	 versus	 all	 (AvA).	The	OvA	 strategy	works	on	
the	pretext	that	a	single	hypothesis	separates	one	class	from	the	rest	of	the	classes.	
This	strategy	equates	a	multiclass	classification	approach	into	a	standard	binary	class	
problem,	whereas	the	AvA strategy	employs	multiple	hypotheses,	where	independent	
hypotheses	exist	between	each	pair	of	classes.	Thus,	decisions	are	performed	based	on	
the	cumulative	results	of	various	underlying	hypotheses	being	satisfied.

8.1.4 Dimensionality of Input Space
It	is	apparent	that	the	complexity	of	the	learning	method	is	connected	to	the	size	of	
the	train	set.	For	simplicity,	let	us	assume	a	train	set	X	is	a	collection	of	data	samples	

…x x xn{ , , , }1 2 .	Each	data	sample	xi	is	described	by	a	set	of	features	 …f f fm{ , , , },1 2 	
also	referred	to	as	dimensions.	In	our	discussion	on	linear	and	nonlinear	models,	
the	complexity	of	a	classifier	is	closely	tied	to	the	number	of	features	or	dimensions	
used	to	describe	each	xi.

The	complexity	of	the	learning	algorithm	grows	exponentially	larger	when	the	
number	of	features	(m)	exceeds	the	number	of	samples	(n)	in	the	train	set	(i.e.,	when	
m >>	n).	This	growth	in	complexity	is	owed	to	the	curse	of	dimensionality	as	dis-
cussed	in	Chapter	2.	Furthermore,	the	distance	(Euclidean	distance)	between	the	
points	in	an	m-dimensional	space	increases	as	the	number	of	dimensions	increases,	
thereby	 introducing	 sparseness	 in	 the	 distribution	 of	 data.	 With	 the	 increase	 in	
sparseness	of	data,	it	becomes	a	computational	challenge	to	determine	the	boundar-
ies	of	the	data,	and	it	is	therefore	difficult	to	determine	a	single	hypothesis.

This	problem	is	increasingly	prevalent	in	bioinformatics,	as	many	datasets	are	
considered	 to	be	high-dimensional	 (Ma	and	Huang	2008).	For	 instance,	 cancer	
classification	using	gene	expression	analysis	(Golub	et	al.	1999;	West	et	al.	2001),	
epigenetics	(Zukiel	et	al.	2004;	Piyathilake	and	Johannig	2002),	and	proteomics	
using	mass	spectrometry	(Leslie	et	al.	2004)	all	contain	a	large	number	of	features	
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that	far	exceed	the	number	of	samples	in	the	train	set.	It	 is	believed	that	not	all	
features	are	useful	in	describing	the	samples	and	as	a	solution	require	a	data	pre-
processing	step	of	feature	selection	to	reduce	the	number	of	features	by	filtering	out	
relevant	or	redundant	features.

8.2 Supervised Learning in Bioinformatics
Supervised	learning	finds	its	application	in	many	facets	of	bioinformatics,	especially	
in	genomics	and	proteomics.	With	the	prevalence	of	high-throughput	techniques	in	
biology,	it	has	become	increasingly	difficult	to	analyze	data	of	large	magnitudes.	For	
example,	microarray	 technology	makes	 it	possible	 to	view	 the	 expression	of	 thou-
sands	of	genes	under	a	variety	of	experimental	conditions.	Microarray	gene	expression	
experiments	have	been	conducted	to	identify	biomarkers	in	the	different	manifesta-
tions	of	cancer	(Ramaswamy	et	al.	2001),	including	breast	cancer	(Lukes	et	al.	2009),	
head	cancer,	neck	cancer,	lung	cancer	(Vachani	et	al.	2007),	and	lymphoma	(Golub	
et	al.	1999).	Researchers	analyze	the	regulation	(up-	or	downregulation)	of	subsets	of	
genes	to	draw	associations	between	genes	that	will	elucidate	their	role	in	cancer.	As	
with	any	biological	data,	the	data	obtained	from	microarray	studies	have	categori-
cal	phenotypes	of	 interest	 that	 are	hierarchical,	 such	as	 cancer	occurrence,	 stages,	
or	 subtypes.	Moreover,	 the	number	of	genes	 in	 these	 studies	 typically	exceeds	 the	
number	of	samples	available,	making	statistical	inference	about	the	genes	difficult.	
This	mismatched	ratio	of	genes	to	samples	mandates	the	use	of	supervised	learning.	
Supervised	learning	can	be	used	to	reduce	the	number	of	genes.

Furthermore,	in	proteomics,	supervised	learning	techniques	have	been	utilized	
to	 analyze	 an	 array	 of	 problems	 of	 biological	 significance.	 For	 instance,	 one	 of	
the	 central	 problems	 of	 bioinformatics	 is	 the	 classification	 of	 protein	 sequences	
into	functional	and	structural	families	based	on	sequence	homology.	It	is	easy	to	
sequence	proteins	but	difficult	to	obtain	protein	structures.	Analytic	solutions	are	
required	based	on	statistical	techniques	to	classify	protein	sequences	into	families	
and	 superfamilies.	These	 classification	 strategies	usually	 rely	upon	extracted	 fea-
tures	that	exploit	structure	and	functional	relationships	between	proteins	and	their	
constituents.	 Furthermore,	 supervised	 learning	 has	 been	 exploited	 to	 determine	
the	subcellular	location	of	proteins	in	a	cell.	The	subcellular	location	of	a	protein	is	
necessary	in	determining	its	functional	characteristics,	as	the	protein’s	location	in	
the	cell	aids	in	inferring	its	biological	functions.

The	automatic	prediction,	using	supervised	learning	techniques,	of	protein	sub-
cellular	localization	is	an	important	component	of	bioinformatics.	Thus	the	predic-
tion	of	protein	function	is	now	an	integral	part	of	bioinformatics	and	can	aid	in	
identification	of	drug	targets.

As	 discussed	 in	 Chapter	 5,	 mass	 spectrometry	 is	 an	 analytic	 technique	 that	
measures	 the	 mass-to-change	 ratio	 of	 ions.	 It	 is	 generally	 used	 to	 find	 the	 pro-
teomic/peptide	composition	of	a	physical	sample.	Some	types	of	cancer	affect	the	
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concentration	of	certain	molecules	in	the	blood,	which	allows	early	diagnosis	by	
analyzing	 the	blood	mass	 spectrum.	This	 is	 a	data-rich	 facet	of	proteomics	 that	
can	benefit	from	supervised	learning.	Each	feature	is	measured	with	mass	spectra,	
and	often	 summary	 statistics	 of	 the	peaks	 can	be	used	 to	discriminate	between	
individuals	with	different	cancer	phenotypes.	Researchers	have	used	mass	spectra	
to	commonly	detect	prostate,	ovarian,	breast,	bladder,	pancreatic,	kidney,	liver,	and	
colon	cancers.

Thus,	the	aim	of	supervised	learning	in	bioinformatics	is	to	broadly	address	two	
objectives:	to	build	accurate	classifiers	or	predictive	tools	and	to	derive	inferences	
from	the	results	obtained.

	 1.	To build accurate classifiers or predictive tools,	users	can	apply	one	of	several	
learning	 methods	 that	 could	 be	 linear	 or	 nonlinear.	 Such	 linear	 models	
used	include	support	vector	machines	(SVMs)	and	the	naïve	Bayes	(NB).	
Nonlinear	 models	 include	 the	 k-nearest-neighbor	 (kNN)	 classifier	 and	
tree-based	classifiers	such	as	C4.5.	The	classifier	used	is	determined	by	the	
nature	of	the	dataset	used	for	training	and	testing.	Moreover,	the	classifier	
should	enable	reliable	discrimination	between	different	phenotypes	under	
analysis.

	 2.	To derive inferences from the results obtained,	 biologists	 survey	 the	 data	 for	
relevant	 information.	Though	building	of	 accurate	 classifiers	 is	 important,	
biologists	 are	 not	 merely	 interested	 in	 accurate	 predictive	 tools.	 They	 also	
look	 for	 additional	 information	 that	 could	be	 extracted	 from	 the	data	but	
that	 could	 not	 be	 derived	 from	 simple	 statistical	 analysis.	 For	 example,	 it	
is	of	growing	 importance	 for	researchers	 to	 identify	biomarkers	of	diseases	
from	a	 set	of	microarray	 samples	obtained	 from	different	biological	 states.	
These	biomarkers	refer	to	a	small	set	of	relevant	genes	that	lead	to	the	correct	
discrimination	between	different	biological	 states,	which	 are	derivatives	 of	
patterns	obtained	from	classification	rules.

To	provide	a	conceptual	view	of	the	data,	we	use	microarray	data	as	an	exam-
ple	 to	 introduce	concepts	and	challenges	 in	 this	data	process.	Microarray	 tech-
nology	 enables	 the	 measurement	 of	 the	 expression	 level	 of	 thousands	 of	 genes	
simultaneously	in	a	cell	mixture	(Wang	et	al.	2005).	A	phenotype	is	the	outward,	
physical	 manifestation	 of	 an	 organism,	 and	 phenotype	 classification	 is	 used	 to	
classify	tissue	samples	into	different	classes	of	phenotypes,	including	cancer	versus	
normal,	 using	 gene	 expression	 data	 (refer	 to	 Figure	 8.3).	 These	 phenotypes	 are	
determined	 using	 the	 measured	 expression	 levels	 of	 thousands	 of	 genes	 in	 the	
samples	as	features.

Thus,	to	conceptualize	these	data,	let	us	assume	that	from	given	N	tissue	sam-
ples	and	expression	levels	of	M	genes,	we	can	store	the	data	in	a	 × +N M( 1)matrix	
as	shown	below,	where	each	vector	(column)	represents	a	sample	and	each	element	
in	 the	 vector	 represents	 the	 expression	 value	 of	 the	 M genes.	 We	 introduce	 an	
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additional	(Ci )	element	into	the	vector	that	represents	the	phenotype	from	which	
the	sample	is	drawn.

One	of	the	challenges	in	using	supervised	learning	in	bioinformatics	lies	in	the	
embedded	challenges	that	the	raw	data	possess.	As	mentioned,	the	success	of	using	
a	 supervised	 classification	 scheme	 can	 only	 be	 exemplified	 if	 the	 following	 data	
issues	are	addressed	in	the	preprocessing	stage	of	the	KDD	process:	the	removal	of	
data	inconsistency	and	missing	values,	the	removal	of	noise,	normalization,	and	the	
reduction	of	dimensionality.

	 1.	Removal of data inconsistency and missing values	must	be	performed	to	deter-
mine	which	method	is	best.	Biological	data	typically	consist	of	data	gener-
ated	 by	 biological	 experiments.	 Legacy	 systems	 are	 typically	 plagued	 with	
manually	curated	data	that	have	varied	nomenclature	and	missing	values.	It	
is	thus	imperative	that	these	issues	be	addressed	before	subjecting	the	data	to	
any	learning	approach.

	 2.	Removal of noise	is	performed	to	filter	out	samples	that	do	not	meet	the	stan-
dards	for	data.	The	inconstant	recording	of	results	from	biological	experiments	
plagues	 these	 systems.	Not	all	biological	 experiments	 fail	 to	 systematically	
follow	a	set	of	standards;	then	these	experiments,	rather	than	increasing	the	
volume	of	data,	contribute	to	the	noise	of	the	system.	It	is	thus	imperative	to	
filter	out	samples	that	do	not	confirm	the	standards	by	applying	appropriate	
filtering	approaches.

Figure 8.3 A schematic representation of gene expression data obtained from 
high-throughput microarrays. 
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	 3.	Normalization	is	a	process	that	ensures	that	all	the	samples	are	treated	equally.	
Typically	data	in	bioinformatics	are	obtained	from	disparate	sources,	making	
normalization	essential	for	effective	comparison	and	learning.

	 4.	Dimensionality reduction	 reduces	 the	expense	of	computational	 systems	 in	
evaluating	high-dimensional	data.	It	is	known	that	not	all	features/dimen-
sions	 are	 important	 or	 at	 times	 redundant	 and	 can	 be	 removed,	 thereby	
reducing	the	computational	load	and	decreasing	the	scarcity	of	the	data.	It	
is	preferred	to	understand	the	nature	of	 the	data	and	use	effective	 feature	
selection	techniques.

In	general,	the	analysis	of	biological	data	entails	several	hundred	to	thousands	
of	features	(as	in	the	case	of	microarray	data),	with	only	a	few	dozen	to	hundreds	of	
samples	available.	In	such	cases,	the	number	of	dimensions	exceeds	the	number	of	
samples	(M >>	N).	Most	learning	algorithms	exploit	chance	patterns	and	elabo-
rate	models	 that	perform	well	on	 training	data	but	poorly	on	new	data,	 leading	
to	overfitting.	The	risk	of	overfitting	must	be	reduced	by	selecting	a	set	of	features	
proportionate	with	the	number	of	 samples.	Moreover,	 the	selection	of	a	 reduced	
set	of	features	requires	fewer	computational	efforts	for	model	learning	and	enables	
a	better	understanding	of	the	process	that	underlies	the	data.	Depending	on	how	
the	selection	process	is	combined	with	the	classification	process,	attribute	selection	
methods	belong	to	one	of	the	following	three	categories:	filter	methods,	wrapper	
methods,	or	embedded	methods.	These	methods	are	explained	 in	Chapter	4.	 In	
the	remainder	of	this	chapter,	we	highlight	key	supervised	learning	approaches	and	
their	applications	in	the	field	of	bioinformatics.	There	are	several	supervised	learn-
ing	strategies	in	existence,	and	we	have	logically	separated	them	into	the	following	
categories:	 linear	 models,	 which	 include	 SVMs;	 naïve	 Bayes,	 nonlinear	 models,	
which	include	tree-based	models	and	Bayesian	networks;	and	ensemble	approaches,	
which	include	bagging	and	boosting.

8.3 Support Vector Machines (SVMs)
Support	 vector	 machines	 (SVMs)	 are	 powerful	 classification	 algorithms.	 They	 are	
prominently	used	in	computational	biology	and	have	been	successfully	applied	to	a	
gamut	of	problems,	like	protein	homology	detection	(Melvin	et	al.	2007),	functional	
classification	of	promoter	regions	(Holloway	et	al.	2005),	and	the	prediction	of	pro-
tein-protein	interactions	(Chatterjee	et	al.	2011).	SVMs	are	based	on	two	key	concepts,	
the	margin	of	separation	and	kernel	functions	(Ben-Hur	et	al.	2008).	The	philosophy	
behind	the	use	of	the	SVM	is	to	fit	a	linear	separating	line	or	plane	between	the	distri-
butions	of	points.	This	philosophy	is	based	on	the	performance	methods	of	any	linear	
model	as	described	in	previous	sections.	We	refer	to	this	separating	line	or	plane	as	the	
hyperplane.	In	a	2D	view,	this	hyperplane	is	as	simple	as	drawing	a	line	that	separates	
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the	points	into	two	groups.	Points	that	lie	on	one	side	of	the	hyperplane	are	considered	
to	be	positive,	and	the	remaining	points	are	considered	to	be	negative.

Let	us	consider	a	situation	with	a	set	of	points	that	belong	to	two	classes	that	
are	well	separated.	We	assume	that	the	separation	between	these	points	is	such	that	
we	could	intuitively	draw	a	separating	hyperplane	that	is	as	far	as	possible	from	the	
points	in	both	classes.	Such	a	hyperplane	is	believed	to	possess	a	large	margin	of	
separation.	This	hyperplane	is	pictorially	represented	in	Figure	8.4.

The	 decision	 boundary	 (or	 hyperplane)	 is	 represented	 using	 dashes	 and	 the	
function	f (x).	The	maximum	margin	boundary	is	computed	by	a	linear	SVM.	The	
region	between	the	two	lines	defines	the	margin	area.	The	data	points	highlighted	
with	black	centers	are	support	vectors.	Thus,	the	first	objective	of	the	algorithm	is	
to	maximize	this	margin	of	separation.	Since	the	fitting	of	the	hyperplane	is	closely	
connected	 to	 the	distribution	of	 the	data	points,	 it	 becomes	 a	 challenge	 to	fit	 a	
maximum	margin	of	 separation,	when	 the	data	points	overlap	 in	 their	distribu-
tions.	When	the	data	point	distributions	overlap,	the	data	are	inherently	believed	to	
be	nonlinear.	We	can	extend	the	linear	SVM	to	suit	the	nonlinearity	of	data	using	
kernel	functions.	Thus,	as	the	name	suggests,	kernel	functions	are	transformation	
functions	that	transform	the	linear	classifier	into	a	nonlinear	classifier.	Such	func-
tions	consist	of	mapping	the	nonlinear	data	to	an	abstract	feature	space	where	the	
maximum	margin	of	separation	exists.	We	discuss	these	concepts	in	depth	in	the	
following	sections.

8.3.1 Hyperplanes
To	introduce	the	first	objective	of	the	SVM	algorithm	of	fitting	a	maximum	separat-
ing	hyperplane	between	data	points	that	belong	to	different	classes,	let	us	represent	

Margin of Separation

W

–1.0

+1.0
0.0

f (x)

Figure 8.4 A 2D representation of a linear classifier separating two classes.
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each	data	point	x by	a	vector	of	 length	N,	 i.e.,	xj ,	where	 = …j N1, , ,	 and	 j	 repre-
sents	the	features	that	describe	the	data	point	in	an	N-dimensional	space.	Using	this	
nomenclature,	a	data	matrix	of	M	data	points	is	represented	as	a	matrix	of	the	form	

=x yi i i
M{( , )} 1,	where	y1	is	the	class	label	associated	with	the	data	point	xi.

SVMs	use	a	linear	discriminant	function	to	fit	a	linear	plane	for	the	given	data	
matrix	that	is	represented	as	follows:

	 ( ) , .f x w x b= 〈 〉 + 	 (8.2)

Here, ⟨w,	x⟩	represents	the	dot	product	between	two	vectors	w	and	x.	This	dot	prod-
uct	is	also	referred	to	as	the	scalar	product	between	two	vectors	and	is	represented	as	
follows

	

, .
1

∑〈 〉 =
=

w x w xj j

j

n

	 (8.3)

The	purpose	of	the	discriminant	function	 f (x)	is	to	assign	a	score	for	a	given	
data	point	x.	This	score	is	then	used	to	decide	how	to	classify	x	using	the	weight	
vector	w	and	the	bias	b,	a	scalar	value.

In	 a	 scenario	 where	 there	 are	 just	 two	 dimensions,	 the	 points	 satisfying	 the	
equation	⟨w,	x⟩ =	0	correspond	to	a	straight	line	that	passes	through	the	origin.	In	
the	scenario	where	there	are	three	dimensions,	a	plane	and	more	generally	a	hyper-
plane	pass	through	the	origin.	The	bias	b	translates	the	hyperplane	with	respect	to	
the	origin.

The	 hyperplane	 divides	 the	 space	 into	 two	 half	 spaces	 according	 to	 the	
sign	of	 f (x),	which	 indicates	 the	 side	of	 the	hyperplane	 a	point	 is	 located	on.	
If	 >f x( ) 0,	then	the	point	is	located	in	the	positive	class;	if	 <f x( ) 0,	then	the	
point	is	located	in	the	negative	class.	The	boundary	between	regions	is	classified	
as	positive,	and	the	decision	boundary	of	the	classifier	is	called	negative.	A	clas-
sifier	with	a	linear	decision	boundary,	defined	by	a	hyperplane,	is	called	a	linear	
classifier.

8.3.2 Large Margin of Separation
In	a	linearly	separable	dataset,	a	hyperplane	correctly	classifies	all	data	points,	and	
there	may	be	many	separating	hyperplanes.	We	are	thus	faced	with	the	question	of	
which	hyperplane	 to	close,	ensuring	 that	not	only	 the	 training	data,	but	also	 fea-
ture	examples,	unseen	by	the	classifier	at	training	time,	are	classified	correctly.	Our	
intuition	as	well	as	statistical	learning	theory	suggests	that	hyperplane	classifiers	are	
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defined	as	the	distance	of	the	closest	example	to	the	decision	boundary.	Let	us	adjust	
b	such	that	the	hyperplane	is	halfway	between	the	closest	positive	and	negative	sam-
ples.	If	we	scale	the	discriminant	function	to	take	the	values	+/–1	for	these	samples,	
we	find	that	the	margin	is	1/||w||,	where	||w||	is	the	length	of	w,	also	known	as	its
norm	calculated	using	 ,〈 〉w w .

The	hard	margin	SVM,	applicable	 to	 linearly	 separable	data,	 is	 the	 classifier	
with	maximum	margin	 among	 all	 classifiers	 that	 correctly	 classify	 all	 the	 input	
examples.	 To	 compute	 w	 and	 b	 corresponding	 to	 the	 maximum	 margin	 hyper-
plane,	one	has	to	solve	the	following	optimization	problem:

	

min 1
2
|| ||

to: ( , ) 1, 1,..., .
,

2

〈 〉+ ≥ =

w

subject y w x b for i n
w b

i i

	 (8.4)

where	the	constraints	ensure	that	each	example	is	correctly	classified,	and	mini-
mizing	 w|| ||2	is	equivalent	to	maximizing	the	margin.	The	set	of	formulas	above	
describes	a	quadratic	optimization	problem,	in	which	the	optimal	solution	(w,	b)	
is	described	to	satisfy	the	constraints	 ( , ) 1〈 〉+ ≥y w x bi i , while	the	length	of	w	is	
as	small	as	possible.	Such	optimization	problems	can	be	solved	using	standard	
tools	from	convex	optimization.

8.3.3 Soft Margin of Separation
Data	are	often	not	linearly	separable;	and	even	if	they	are,	a	greater	margin	can	be	
achieved	by	allowing	the	classifier	to	misclassify	some	points.	Theory	and	experi-
mental	results	show	that	the	resulting	larger	margin	will	generally	provide	better	
performance	than	the	hard	margin	SVM.	To	allow	errors	we	replace	the	inequal-
ity	constraints	in	Equation	8.4	with	 ( , ) 1 , 1, , ,〈 〉+ ≥ − ξ = …y w x b for i ni i i 	where	
ξ ≥i 0	are	slack	variables	that	allow	an	example	to	be	in	the	margin	or	misclassified.	
To	discourage	excess	use	of	the	slack	variables,	a	term	 Σ ξC i i 	is	added	to	the	func-
tion	to	be	optimized:

	

min 1
2
|| ||

: ( , ) 1 , 0.

,

2 ∑+ ξ

〈 〉+ ≥ − ξ ξ ≥

w C

subject to y w x b

w b
i

i

i i i i

	 (8.5)

The	constant	C >	0	sets	the	relative	importance	of	maximizing	the	margin	
and	minimizing	the	amount	of	slack.	This	formulation	is	called	the	soft	margin	
SVM.
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8.3.4 Kernel Functions
Instead	of	the	abstract	idea	of	data	points	in	space,	one	can	think	of	data	points	as	
representing	objects	using	a	set	of	features	derived	from	measurements	performed	
on	each	object.	For	large	margin	separation,	the	relative	position	or	similarity	of	
the	points	to	each	other	is	important,	and	the	exact	location	is	unimportant.	In	
the	simplest	case	of	linear	classification,	the	similarity	of	two	objects	is	computed	
by	the	dot	product	(or	scalar	or	inner	product)	between	the	corresponding	feature	
vectors.	 To	 define	 different	 similarity	 measures	 leading	 to	 nonlinear	 classifica-
tion	boundaries,	one	 can	extend	 the	 idea	of	dot	products	between	points	with	
the	help	of	kernel	 functions.	Kernels	compute	the	similarity	of	 two	points	and	
are	the	second	important	concept	of	SVMs.	The	domain	knowledge	inherent	in	
any	classification	 task	 is	 captured	by	defining	a	 suitable	kernel	 (i.e.,	 similarity)	
between	objects.

A	more	straightforward	way	of	turning	a	linear	classifier	nonlinear	or	making	
it	applicable	to	nonvectorial	data	is	mapping	data	to	vector	space,	referred	to	as	the	
feature	 space,	using	a	mapping	 function	ϕ.	The	use	of	 this	mapping	 function	 is	
represented	as	follows:

	 ( ) , ( ) .= 〈 φ 〉+f x w x b 	 (8.6)

For	example,	if	f	(x)	is	a	nonlinear	function	in	the	original	input	space	the	map-
ping	function	ϕ	maps	each	point	to	linearly	separable	feature	space,	as	shown	in	
Figure	8.5.

There	are	different	forms	of	mapping	functions,	the	simplest	of	which	is	one	
that	considers	all	products	of	pairs	of	features	in	the	input	space.	For	example,	let	us	

Non-linear
to Linear
Mapping

Figure 8.5 A schematic representation of the mapping of a nonlinear input 
space to a linear feature space where a simple hyperplane can separate between 
data points of different classes.
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assume	that	we	have	three	features,	x1,	x2,	and	x3,	in	the	input	space.	The	resultant	
features	in	the	feature	space	would	be	as	follows:	 x x.1 2,	 x x.1 3,	 x x.2 3 ,	 x12	 x2

2,	and	
x32.	This	feature	space	is	therefore	quadratic	in	nature.	Though	simple	to	conceive,	
this	approach	of	explicitly	computing	nonlinear	features	(i.e.,	product	of	features)	
does	not	scale	well	with	a	large	number	of	features.	Furthermore,	if	we	use	mono-
mials	 of	 degree	 d	 rather	 than	degree	 2,	 as	 above,	 the	dimensionality	would	be	
exponential	in	d,	resulting	in	a	substantial	increase	in	memory	usage	and	the	time	
required	to	compute	the	discriminant	function.	If	our	data	are	high-dimensional	
to	begin	with,	as	in	the	case	of	gene	expression	data,	this	method	will	not	provide	
acceptable	results.

Kernel	methods	avoid	this	complexity	by	avoiding	the	set	of	explicitly	mapping	
the	data	to	a	high-dimensional	feature	space.

It	is	known	that	(as	discussed	previously)	the	weight	vector	of	a	large	margin	
separating	a	hyperplane	can	be	expressed	as	a	linear	combination	of	training	points,
i.e.,	 = Σ α

=
w y x

i

n

i i i
1

.	This	expression	can	also	be	used	for	a	large	class	of	linear	algo-
rithms.	Our	discriminant	function	(Equation	8.6)	then	becomes

	
( ) ( ), ( ) .

1

f x y x x b
i

n

i i i∑= α 〈φ φ 〉 +
=

	 (8.7)

The	 representation	 in	 terms	 of	 the	 variable	 αi 	 is	 known	 as	 the	 dual	 repre-
sentation.	We	observe	that	the	dual	representation	of	the	discriminant	function	
depends	on	the	data	only	through	dot	products	in	feature	space.	Dual	representa-
tion	is	also	present	for	the	dual	optimization	problem	when	we	replace	 xi 	with	
φ xi( ).	If	the	kernel	function	 ′k x x( , )	is	defined	as

	 ( , ) ( ), ( )′ = 〈φ φ ′ 〉k x x x x 	 (8.8)

it	can	be	computed	efficiently.	Once	this	function	is	defined,	the	dual	formulation	
can	solve	the	problem	without	carrying	out	the	mapping	ϕ	into	a	potentially	very	
high-dimensional	space.

The	two	most	commonly	referred	to	kernel	functions	are	the	polynomial	and	
Gaussian	kernels.	The	polynomial	kernel	of	degree	d	is	defined	as

	 ( , ) ( , ), ′ = 〈 ′〉+k x x x x Kd K
polynomial d 	 (8.9)

where	K	is	often	chosen	to	be	0	(homogeneous)	or	1	(heterogeneous).	The	feature	
space	for	the	heterogeneous	kernel	consists	of	all	monomials	with	a	degree	up	
to	d.	And	yet,	its	computation	time	is	linear	in	the	dimensionality	of	the	input	
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space.	The	kernel	with	d =	1	and	K =	0,	denoted	by	klinear ,	is	linear,	leading	to	a	
linear	discriminant	function.

The	 degree	 of	 the	 polynomial	 kernel	 controls	 the	 flexibility	 of	 the	 resulting	
classifier.	The	lowest-degree	polynomial	is	the	linear	kernel,	which	is	not	sufficient	
when	a	nonlinear	relationship	between	features	exists.	The	second	widely	used	ker-
nel	is	the	Gaussian	kernel,	defined	as

	
( , ) exp 1 || ||2′ = −

σ
− ′






σk x x x xGaussian 	 (8.10)

where	σ >	0	is	a	parameter	that	controls	the	width	of	the	Gaussian	method.	The	
Gaussian	kernel	plays	a	similar	role,	as	the	degree	of	the	polynomial	kernel	controls	
the	flexibility	of	the	resulting	classifier.	The	Gaussian	kernel	 is	essentially	zero	 if	
the	squared	distance	 − ′x x|| ||2	is	larger	than	σ;	i.e.,	for	a	fixed	x′	there	is	a	region	
around	 x′	 with	 high	 kernel	 values.	 The	 discriminant	 function	 is	 thus	 a	 sum	 of	
Gaussian	bumps	centered	around	each	 support	vector.	When	σ	 is	 large,	a	given	
data	point	x	has	a	nonzero	kernel	value	relative	to	any	sample	in	the	set	of	samples.	
Therefore,	 the	whole	 set	of	 support	 vectors	 affects	 the	 value	of	 the	discriminant	
function	at	x,	leading	to	a	smooth	decision	boundary.	As	we	decrease	σ,	the	kernel	
becomes	more	local,	leading	to	greater	curvature	of	the	decision	surface.	When	σ	
is	small,	the	value	of	the	discriminant	function	is	nonzero	only	in	the	close	vicinity	
of	each	support	vector,	leading	to	a	discriminant	that	is	essentially	constant	outside	
the	close	proximity	of	the	region	where	the	data	are	concentrated.

8.3.5 Applications of SVM in Bioinformatics
SVMs	are	used	for	a	variety	of	applications,	such	as	splice	site	detection	or	recogni-
tion	(Sonnenburg	et	al.	2007;	Eichner	et	al.	2011;	Degroeve	et	al.	2002),	remote	
protein	 homology	 detection	 (Liao	 and	 Noble	 2003),	 and	 gene	 expression	 data	
analysis	(Brown	et	al.	2000).	In	this	section,	we	describe	the	experimental	design	
required	to	apply	SVM	in	these	areas	of	analysis	and	the	nature	of	data	and	the	
modifications	that	are	brought	about	to	the	algorithm.

8.3.5.1 Gene Expression Analysis

Here,	we	briefly	describe	the	work	performed	by	Brown	et	al.	(2000),	in	which	the	
SVM	was	used	to	analyze	gene	expression	data.

8.3.5.1.1 Raw Data

Brown	et	al.	(2000)	used	the	gene	expression	data	obtained	from	experiments	con-
ducted	using	budding	yeast	Saccharomyces cerevisiae	(Eisen	et	al.	1998).	The	data	
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consist	of	79	samples,	each	consisting	of	2,467	genes.	As	described	in	previous	sec-
tions,	we	represent	gene	expression	microarray	data	in	the	form	of	a	gene	expres-
sion	 matrix.	 Each	 element	 of	 the	 gene	 expression	 matrix	 contains	 values	 of	 an	
expression	ratio,	 i.e.,	 the	expression	 levels	of	a	 specific	gene	with	respect	 to	 two	
experimental	conditions.	Typically,	the	numerator	of	this	expression	ratio	repre-
sents	the	expression	level	of	the	gene	in	the	condition	of	interest.	The	denomina-
tor	of	 the	 expression	 ratio	 represents	 the	 expression	 level	 of	 the	 same	gene	 in	 a	
specific	reference	condition.	Therefore,	in	a	scenario	where	data	are	from	a	series	
of	m	experiments,	each	of	the	n	genes	is	represented	as	an	m-dimensional	vector	
resulting	in	an	n	×	m	gene	expression	matrix.	In	this	case	we	have	n =	2,467	genes	
and	m =	79	samples.	The	functional	annotation	information	for	these	genes	was	
obtained	 from	 the	 Munich	 Information	 Center	 for	 Protein	 Sequences	 (MIPS)	
(Mewes	et	al.	2000).

8.3.5.1.2 Data Preprocessing

The	raw	data	are	then	subjected	to	the	logarithm	normalization	scheme.	The	nor-
malized	 logarithm	of	 the	gene	 expression	value	 is	 the	 logarithm	of	 the	 ratio	of	
expression	 level	Ei for	 gene	X in	 experiment	 i,	 to	 the	 expression	 level	Ri	 of	 the	
same	gene	X	in	the	reference	state.	The	logarithm	of	the	ratio	is	further	divided	
by	 the	 square	 root	 of	 the	 sum	 of	 logarithms	 such	 that	 the	 expression	 vector	�

= …X X X( , , )1 79 	has	the	Euclidean	length	1.	This	length	is	represented	using	the	
following	relation:
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∑ =
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79 2
	 (8.11)

Therefore,	the	expression	value	of	gene	X	in	experiment	i	is	positive	if	the	gene	is	
upregulated	with	respect	to	the	reference	state	and	negative	if	it	is	downregulated.

8.3.5.1.3 Problem Illustration

The	aim	of	this	study	is	to	use	SVMs	to	create	a	model	from	a	set	of	genes	that	have	
common	 functions	 and	 to	discriminate	 between	members	 and	nonmembers	 of	 a	
given	functional	class	based	on	expression	data.	Thus,	with	the	expression	features	of	
the	class	learned,	the	SVM	can	recognize	new	genes	as	members	or	as	nonmembers	
of	the	class	based	on	its	expression	data.	Second,	the	inferences	drawn	by	the	SVM	
can	provide	potential	insight	about	the	gene	expression	patterns	that	are	character-
istic	for	a	functional	group	and	whether	a	specific	gene	is	likely	to	be	a	member	of	a	
functional	group.
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8.3.5.1.4 Methodology

The	methodology	employs	the	following	steps:

	 1.	Each	 vector	 X	 in	 the	 gene	 expression	 matrix	 is	 viewed	 as	 a	 point	 in	 an	
m-dimensional	space.

	 2.	Construct	a	hyperplane	that	separates	samples	from	two	phenotypes.
	 a.	 The	data	are	nonlinear;	therefore,	the	authors	used	kernel	functions.	They	

use	multiple	kernels	to	obtain	optimal	results:	(i)	a	simple	kernel,	(ii)	a	
quadratic	kernel,	and	(iii)	the	Gaussian	kernel.

	 i.	 Using	a	simple	kernel	K(X,Y )	that	can	measure	the	similarity	between	
genes	X	and	Y	by	using	the	dot	product	in	the	input	space

	
( , ) ( . 1) .

1

79

X Y X Y X Y
i

i i

� � ∑= + =
= 	

	 ii.	 Squaring	 the	 kernel	
� �

= +K X Y X Y( , ) ( . 1)2.	 This	 step	 yields	 a	 qua-
dratic	hyperplane.	The	corresponding	 separating	hyperplane	 in	 the	
feature	space	includes	features	for	all	pairwise	expression	interactions	
X Xi j ,	where	 ≤ ≤i j1 , 79.	Raising	the	kernel	to	higher	powers	yields	
polynomial	separating	surfaces	of	higher	degrees	in	the	input	space.

	 	 In	general,	the	kernel	of	degree	d	is	defined	by	
� �

= +K X Y X Y d( , ) ( . 1) .	
In	the	feature	space	of	this	kernel	any	gene	X features	for	all	d-fold	
interactions	 between	 expression	 measurements	 are	 represented	 in	
terms	of	the	form	 …X X Xi i id, , , ,1 2 	where	 ≤ ≤X Xi j1 , 79.

	 iii.	 Use	the	Gaussian	kernel	of	the	form	K(X,Y) exp( || X Y|| /2 )2 2
� �

= − − α ,	
where	α	is	the	width	of	the	Gaussian.

	 	 As	 the	data	have	been	preprocessed	such	that	 the	vectors	 follow	
the	Euclidean	distance,	the	value	of	α	is	set	to	be	equal	to	the	median	
of	the	Euclidean	distances	from	each	positive	example	to	the	nearest	
negative	example.

The	objective	of	this	study	was	to	test	the	ability	of	different	kernels	to	distin-
guish	between	genes	that	belonged	to	two	independent	classes.	Furthermore,	the	
authors	wanted	to	test	the	ability	of	the	kernel	functions	to	overfit	the	data	being	
analyzed.	They	were	successful	in	demonstrating	that	kernels	of	higher	order	were	
more	successful	in	differentiating	genes	that	belonged	to	different	classes.

8.3.5.2 Remote Protein Homology Detection

We	describe	the	work	performed	by	Liao	and	Noble	(2003).	This	work	focuses	on	the	use	
and	modification	of	SVMs	for	the	detection	of	remote	homology	in	protein	sequences.
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8.3.5.2.1 Raw Data

The	data	used	in	this	study	consist	of	protein	domains	that	belong	to	the	differ-
ent	superfamilies	defined	by	the	Structural	Classification	of	Proteins	(SCOP)	ver-
sion	1.53	(Murzin	et	al.	1995).	Sequences	were	selected	using	the	Astral	database	
(Brenner	et	al.,	2000)	by	filtering	similar	sequences	based	on	a	threshold	E	value.	
In	this	example,	the	threshold	was	set	at	10–25,	and	the	resulting	4,352	distinct	pro-
tein	sequences	with	known	family	and	superfamilies	were	considered	for	analysis.	
For	each	family,	the	protein	domains	with	the	family	were	considered	positive	test	
samples,	and	the	protein	domains	outside	the	family	but	within	the	superfamily	
were	considered	positive	training	samples.	This	designation	resulted	in	sequences	
that	were	categorized	into	54	families	containing	at	least	10	samples	(positive	test)	
and	5	superfamily	members	outside	of	the	family	(positive	train).	Negative	samples	
are	taken	from	outside	of	the	positive	sequences’	fold	and	are	randomly	split	into	
training	and	testing	sets	in	the	same	ratio	as	the	positive	samples.

With	the	exponentially	growing	number	of	protein	sequences,	finding	protein	
sequence	similarity	is	a	major	challenge	of	computational	biology.	It	is	a	constant	
endeavor	among	bioinformatics	researchers	and	practitioners	to	develop	algorithms	
that	can	effectively	detect	the	remotest	sequence	similarity	between	sequences	of	
known	 families	 (classes)	 of	 proteins	 to	 recently	 generated	 sequences.	 Evolution	
controls	 the	 relation	 between	 families	 of	 proteins	 that	 is	 dictated	 by	 sequence,	
structure,	and	function.	It	is	hypothesized	that	proteins	that	belong	to	a	common	
family	of	proteins	share	a	certain	degree	of	similarity	among	each	other.	Traditional	
sequence	 similarity	 algorithms,	 such	 as	 the	Smith-Waterman	dynamic	program-
ming	 algorithm,	 basic	 local	 alignment	 search	 tool	 (BLAST),	 and	 FASTA,	 have	
been	 consistently	 performed	 and	 are	 used	 as	 benchmark	 techniques	 in	 the	 field	
of	sequence	similarity.	However,	they	fail	when	the	degree	of	similarity	between	
proteins	is	less	than	30%.

Data	mining	has	played	a	vital	role	in	this	process,	and	several	algorithms	have	
been	 implemented.	 The	 SVM-Fisher	 (Jaakkola	 et	 al.	 1999)	 and	 SVM-pairwise	
algorithms	have	been	successfully	employed.	Both	algorithms	have	been	successful	
in	integrating	traditional	sequence	similarity	techniques	with	supervised	learning.	
The	SVM-Fisher	algorithm	was	successful	in	integrating	the	hidden	Markov	model	
(HMM)	sequence	profiling	technique	with	the	SVM	algorithm.	In	this	section,	we	
describe	how	a	pairwise	sequence	similarity	technique	can	be	integrated	with	the	
SVM	using	the	SVM-pairwise	algorithm	(Liao	and	Noble	2003).

8.3.5.2.2 SVM-Pairwise Implementation

The	 SVM-pairwise	 implementation	 consists	 of	 two	 steps:	 (1)	 feature	 extrac-
tion,	 i.e.,	 converting	 a	protein	 sequence	 into	fixed-length	 feature	 vectors,	 and	
(2)	training	an	SVM	using	a	train	set	that	consists	of	protein	sequences	in	the	
vectorized	form.
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Feature.extraction: Converting	a	give	protein	sequence	into	fixed-length	fea-
ture	vectors	is	a	feature	extraction	phase	of	the	KDD	process.	Here	we	create	
a	feature	vector	(for	each	protein	sequence)	using	a	list	of	pairwise	sequence	
similarity	scores,	computed	with	respect	to	all	of	the	sequences	in	the	train	
set.	Since	the	number	of	sequences	in	the	train	set	is	finite,	the	length	of	the	
feature	vector	for	each	sequence	is	fixed.

	 	 The	pairwise	sequence	similarity	score	used	for	feature	extraction	has	the	
following	advantages:	(a)	The	pairwise	score	representation	is	simpler.	(b)	It	
does	not	require	multiple	alignment	of	the	train	set.	It	allows	for	detection	
of	motif	or	domain-sized	similarities.	(c)	Pairwise	score	representation	makes	
room	for	negative	 training	samples,	 thereby	allowing	the	SVM	to	 leverage	
from	the	diversity	of	the	training	samples.

	 	 The	vectorization	step	of	SVM-pairwise	uses	the	Smith-Waterman	algo-
rithm.	The	feature	vector	corresponding	to	a	protein	X	is = …Fx fx fx fxn, , , ,1 2 	
where	n is	the	number	of	proteins	in	the	train	set	f xi	and	is	the	E	value	of	the	
Smith-Waterman	score	between	sequence	X	and	the	ith	train	set	sequence.	
Default	parameters,	a	gap	opening	penalty,	and	extension	penalties	of	11	and	
1	are	used,	along	with	the	BLOSUM	62	matrix.

Training.of.SVM:	From	the	vectorized	proteins	this	is	performed	to	determine	a	
similarity	score	between	pairs	of	input	vectors.	At	the	heart	of	the	SVM	is	a	ker-
nel	that	acts	as	a	similarity	score	between	pairs	of	input	vectors.	The	base	SVM	
kernel	is	normalized	such	that	each	vector	has	a	length	1	in	the	feature	space.

	
=K X Y X Y

X X Y Y
( , ) .

( . )( . )
. 	 (8.12)

	 	 This	kernel	K(X,Y )	is	then	transformed	into	a	radial	basis	kernel	K X Yˆ ( , ),	
as	follows:
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	 where	the	width	σ	is	the	median	Euclidean	distance	(in	feature	space)	from	
any	positive	training	example	to	the	nearest	negative	example.	The	constant	1	
is	added	to	the	kernel	to	draw	the	data	away	from	the	origin.	This	translation	
is	necessary	because	 the	SVM	optimization	 algorithm	we	 employ	 requires	
that	the	separating	hyperplane	pass	through	the	origin.

	 	 An	 asymmetric	 soft	 margin	 is	 implemented	 by	 adding	 a	 value	 0.02	 ×	 ρ,	
where	ρ	is	the	fraction	of	train	set	sequences	that	have	the	same	label	as	the	cur-
rent	sequence	to	the	diagonal	of	the	kernel	matrix.	The	output	of	the	SVM	is	
a	discriminant	score	that	is	used	to	rank	the	members	of	the	test	set.	The	same	
SVM	parameters	are	used	for	the	SVM-Fisher	and	SVM-pairwise	tests.	It	was	
observed	that	the	SVM-pairwise	test	performed	well	under	these	conditions.
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8.4 Bayesian Approaches
The	many	forms	of	Bayesian	approaches	are	derived	from	the	Bayes’	theorem.	This	
section	provides	an	overview	of	Bayesian	approaches,	which	are	discussed	along	with	
their	applications	in	bioinformatics	(Kelemen	et	al.	2003;	Wilkinson	2007).	In	this	
chapter,	we	investigate	two	approaches:	the	naïve	Bayes	algorithm	and	the	Bayesian	
network	algorithm.

8.4.1 Bayes’ Theorem
If	we	attempt	to	determine	the	probability	density	model	P(C|X ),	then	we	can	deter-
mine	the	probability	that	a	sample	X,	described	by	a	set	of	features	 …x x xn{ , , , },1 2 	
belongs	 to	 the	class	C.	 In	 this	 example,	 let	 sample	X	be	 the	evidence,	 and	 let	X	
belonging	 to	 class	C	 be	 the	underlying	hypothesis	H.	This	 example	 reduces	 the	
problem	to	the	determination	of	the	posterior	probability	of	a	hypothesis	H	pro-
vided	that	evidence	X	is	true.	The	determination	of	the	posterior	probability	is	best	
defined	using	the	Bayes’	theorem.	In	its	simplest	form,	the	Bayes’	theorem	estab-
lishes	this	posterior	probability	using	the	following	relation:

	
=P H X P H P X H

P H
( | ) ( ) ( | )

( )
. 	 (8.14)

Thus,	to	determine	the	posterior	probability	the	Bayes’	theorem	entails	the	
computation	of	two	prior	probabilities,	P(X )	and	P(H )	and	the	posterior	proba-
bility	P(X |H ).	To	determine	these	probabilities,	let	us	consider	a	train	set	T	that	
has	a	set	of	m	samples	described	by	the	same	set	of	n features	used	to	describe	
the	sample	X.	P(X )	is	the	probability	of	the	event	occurring	in	train	set	T,	and	
similarly	 P(H )	 refers	 to	 the	 probability	 that	 the	 hypothesis	 H	 holds	 in	 train	
set	T.	The	posterior	probability	P(X |H )	refers	to	the	probability	that	the	event	X	
is	conditioned	on	H.	This	posterior	probability	indicates	that	event	X occurs	if	
hypothesis	H	is	true.

The	Bayes’	theorem	is	employed	in	classification	in	the	forms	of	the	naïve	Bayes	
classifier	and	the	Bayesian	network	classifier,	which	have	been	named	under	 the	
category	of	Bayesian	approaches.	Extensions	to	these	algorithms	are	prominently	
used	in	all	fields	of	bioinformatics.

8.4.2 Naïve Bayes Classification
When	the	Bayes’	 theorem	is	extended	into	a	classification	algorithm,	 it	becomes	
the	naïve	Bayes	 classifier.	For	 example,	 if	we	 retain	 the	 annotations	used	 in	 the	
previous	section,	then	train	set	T	consists	of	m,	n-dimensional	vectors	representing	
m	samples.	Let	these	samples	belong	to	a	fixed	set	of	l	classes	 = …C C C Cl{ , , , }.1 2 	
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Based	on	the	computation	of	the	posterior	probability	using	the	Bayes’	theorem,	
the	naïve	Bayes	classifier	computes	the	posterior	probability	for	given	evidence.	In	
this	example,	the	test	sample	that	does	not	have	a	class	label	for	each	hypothesis	but	
refers	to	the	different	classes	in	the	set	C.

The	 objective	 of	 the	 naïve	 Bayes	 classifier	 is	 to	 assign	 a	 class	 label	 to	 the	
test	sample.	This	label	should	exhibit	the	highest	posterior	probability.	In	other	
words,	the	evidence	(test	sample	X )	is	assigned	to	class	Ci	if	the	following	holds	
true	for	all	values	of	j:

	 > ≤ ≤ ≠P C X P C X for j l j ii j( | ) ( | ) 1 , . 	 (8.15)

This	condition	is	called	the	maximum	posteriori	hypothesis	and	in	general	is	
represented	as	follows:
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The	implementation	of	the	Bayes’	theorem	in	the	naïve	Bayes	classifier	requires	
the	following	modifications:	handling	of	prior	probability	and	handling	of	poste-
rior	probability.	These	modifications	are	carried	out	to	facilitate	reduction	in	com-
putational	cost	for	determining	the	posterior	probability	P C Xi( | ).

8.4.2.1 Handling of Prior Probabilities

Since	the	prior	probability	P(X )	is	marginal	it	can	be	deducted	from	the	posterior	
probability	 P C Xi( | )	 in	computation;	i.e.,	P(X )	is	constant	across	all	classes.	This	
modification	therefore	reduces	the	Bayes’	theorem	to	the	form

	 ( | ) ( ) ( | ).P C X P C P X Ci i i∝ 	 (8.17)

The	prior	probability	P Ci( )	is	simple	to	compute.	It	is	estimated	as	the	ratio	of	
the	number	of	samples	that	belong	to	class	Ci	to	the	total	number	of	samples	in	
the	train	set	T,	i.e.,	 =P C C Ti i T( ) | |/| |, .	In	situations	where	all	classes	in	T	have	equal	
numbers	of	samples,	the	P Ci( )	can	be	treated	as	a	constant.	The	Bayes’	theorem	is	
therefore	reduced	to	the	form

	 ( | ) ( | ).P C X P X Ci i∝ 	 (8.18)

Thus,	maximizing	the	posterior	probability	P C Xi( | )	relies	heavily	on	the	maximi-
zation	of	P X Ci( | ).
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8.4.2.2 Handling of Posterior Probability

Since	 most	 of	 the	 datasets	 in	 data	 mining	 are	 high-dimensional	 and	 since	 the	
computational	complexity	of	estimating	the	posterior	probability	is	P X Ci( | ),	the	
naïve	Bayes	algorithm	assumes	that	all	features	of	the	evidence	and	train	set	T	are	
independent	of	each	other.	This	assumption,	also	known	as	the	class	conditional	
independence	criterion	(Keller	et	al.	2000),	drastically	reduces	the	computational	
complexity	of	the	naïve	Bayes	algorithm	by	taking	the	product	of	probabilities	of	
its	attributes	for	a	given	class	in	the	train	set	T.

 �

∏=

= × × ×
=

P X C P x C

P x C P x C P x C

i

k

n

k i

i i k i

( | ) ( | )
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1

1 2  (8.19)

8.4.3 Bayesian Networks
Bayesian	networks	 are	useful	 for	describing	processes	 composed	of	 locally	 inter-
acting	components;	the	value	of	each	component	depends	on	the	values	of	a	rela-
tively	small	number	of	components.	In	addition,	statistical	foundations	for	learning	
Bayesian	networks	from	observations,	and	the	computational	algorithms	to	do	so,	
have	been	successfully	tested	in	many	applications.	Below,	we	concentrate	on	the	
contributions	of	Friedman	et	al.	(2000),	which	examine	the	dependence	and	con-
ditional	independence	in	data.

8.4.3.1 Methodology

Bayesian	networks,	though	defined	by	probabilities	and	conditional	independence	
statements,	can	derive	connections	using	the	direct	causal	 influence	of	variables.	
The	concept	of	Bayesian	networks	is	best	illustrated	as	follows.	Let	P(X,Y )	be	a	joint	
distribution	over	two	variables	X	and	Y.	Further,	let	variables	X and	Y	be	indepen-
dent	if	and	only	if	P(X,Y )	=	P(X )P(Y )	for	all	values	of	X	and	Y,	i.e.,	P(X |Y )	=	P(X );	
otherwise,	 let	 the	 variables	be	 considered	dependent.	 If	X	 and	Y	 are	dependent,	
then	 learning	 the	 value	 Y	 gives	 us	 information	 about	 X.	 Note	 that	 the	 correla-
tion	between	variables	implies	dependence.	However,	dependent	variables	might	be	
uncorrelated.	For	example,	assume	gene	X	is	a	transcriptional	factor	of	gene	Y.	In	
such	a	case,	we	expect	their	levels	of	expression	to	be	dependent.	For	example,	when	
the	expression	level	of	X	increases,	we	should	see	a	similar	increase	in	the	expression	
level	of	Y.	However,	if	gene	X	 inhibits	gene	Y,	then	we	see	the	reverse;	when	the	
expression	level	of	X increases,	the	expression	level	of	Y	decreases.

These	dependencies	can	be	captured	using	graphs,	with	each	gene	represented	
as	a	node	and	the	relation	between	nodes	being	represented	using	a	directed	edge.	
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The	direction	of	the	edge	between	nodes	represents	the	dependence	between	nodes.	
Since	gene	Y	is	dependent	on	gene	X,	we	represent	dependence	with	an	edge	that	is	
directed	from	X	to	Y	(X	is	the	parent	of	Y ).	See	Figure	8.6	for	representation.

We	now	consider	a	slightly	more	complex	scenario	involving	a	system	of	three	
genes:	X,	Y,	and	Z.	In	this	system,	let	us	consider	that	gene	X	transcribes	gene	Y,	and	
gene	Y	in	turn	transcribes	gene	Z.	In	such	a	situation,	the	expression	levels	of	pairs	
of	genes	are	dependent.	However,	gene	X and	gene	Z	do	not	share	a	direct	relation,	
as	they	share	only	a	common	factor,	gene	Y.	If	gene	Y	is	removed,	then	gene	X and	
gene	Z	are	independent	of	each	other.	In	such	a	situation,	gene	Y	is	considered	to	be	
the	mediator	between	gene	X	and	gene	Z	and	is	represented	as	follows:

	 =P X Y Z P X Y( | , ) ( | ), 	 (8.20)

and	we	emphasize	that	genes	X	and	Z	are	conditionally	 independent,	given	Y.	
This	relation	of	conditional	independence	is	represented	as	I(X;Z |Y ).	The	con-
ditional	 independence	 between	 genes	 has	 no	 representation	 in	 the	 graph	 (see	
Figure	8.6).

In	a	more	complex	scenario	of	interaction	between	genes,	let	us	assume	a	ran-
dom	gene	M	is	regulated	by	gene	X.	As	described	above,	the	genes	related	to	gene	X	
are	genes	M	and	Y,	whereas	genes	M	and	Y	are	conditionally	independent	of	each	
other.	This	conditional	 independence	 is	represented	using	the	relation	I(M;Y |X ),	
and	 gene	X dictates	 the	dependence	between	genes	M	 and	Y.	We	 formalize	 the	
relation	between	genes	M,	Y,	and	X,	as	gene	X is	the	common	cause	of	genes	Y	and	
M.	If	gene	X	was	nonexistent	or	not	measured,	then	there	would	be	dependence	
between	genes	M and	Y,	and	in	such	an	instance,	we	would	refer	to	gene	X	as	a	hid-
den	common	cause	(Friedman	et	al.	2000).

If,	in	another	example,	gene	H	transcribes	gene	Y,	then	gene	Y	is	regulated	by	
two	genes	X	and	H.	We	refer	to	genes	X	and	H	as	the	parent	genes	of	gene	Y,	i.e.,	
pa(Y ).	Modeling	the	influence	of	two	parent	genes	on	a	gene	leads	to	an	important	
parameter	of	Bayesian	network	models,	where	each	node	or	variable	is	described	as	
a	conditional	probabilistic	function	of	its	parents.	Through	this	conditional	prob-
ability	function	of	Y,	we	specify	the	probability	of	gene	Y	to	have	the	expression	
value	y	given	the	values	of	its	parents	pa(Y )	as	P(y|pa(Y )).

M

X

Y

H

Z

Figure 8.6 the representation of the parent relation between genes using graphs.
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8.4.3.2 Capturing Data Distributions Using Bayesian Networks

The	next	challenge	in	Bayesian	network	modeling	is	capturing	the	data	distribution	
using	a	Bayesian	network.	To	obtain	such	representations,	we	formalize	the	defini-
tion	of	Bayesian	networks	as	follows.

Let	us	use	a	variable	 = …X X Xn{ , }1 ,	such	that	Xi 	represents	a	random	vari-
able	whose	value	is	xi 	of	finite	domain.	Similarly,	we	represent	other	variables	Y	
and	Z as	vectors	of	random	variables.

A	Bayesian	network	is	a	representation	of	a	joint	probability	distribution	(JPD).	
This	 representation	 consists	 of	 two	 components.	 The	 first	 component,	 G,	 is	 a	
directed	 acyclic	 graph	 that	has	 vertices	 that	 correspond	 to	 the	 random	variables	

…X Xn,1 .	The	second	component	describes	a	conditional	distribution	for	each	vari-
able,	given	its	parents	in	G.	Together	these	two	components	specify	a	unique	dis-
tribution	on	 …X Xn,1 .

Therefore,	 the	graph	G	 encodes	 the	Markov	assumption	where	 each	variable	
Xi	is	independent	of	its	nondescendants	given	its	parents	in	G.	We	formalize	this	
Markov	assumption	as

	 , ( ; ( )| ( )),i I X NonDescendants X Pa Xi i i∀ 	 (8.21)

where	Pa Xi( )	is	the	set	of	parents	of	Xi	in	G,	and	 ( )NonDescendants Xi 	are	the	non-
descendants	of	Xi 	in	G.

By	applying	the	chain	rule	of	probabilities	and	properties	of	conditional	inde-
pendencies,	any	joint	distribution	that	satisfies	the	above	constraint	can	be	decom-
posed	in	the	product	form

	
∏… =

=

P X X P X Pa Xn

i

n

i i( , ) ( | ( )).1

1

	 (8.22)

To	specify	a	 joint	distribution,	we	also	need	to	specify	the	conditional	prob-
abilities	that	appear	in	the	product	form.	This	component	of	the	network	describes	
distributions	 P x pa Xi i( | ( ))	 for	 each	possible	value	xi	of	Xi and	of	 pa Xi( ).	 In	 the	
case	of	finite	valued	variables,	we	represent	these	conditional	distributions	as	tables.	
Generally,	Bayesian	networks	 are	flexible	 and	 can	 accommodate	many	 forms	of	
conditional	distribution,	 including	various	continuous	models.	Given	a	Bayesian	
network,	we	might	want	to	answer	many	types	of	questions	that	involve	joint	prob-
ability	(for	example,	what	is	the	probability	of	X =	x	given	the	observation	of	some	
of	the	other	variables?)	or	independencies	in	the	domain	(for	example,	are	X	and	Y	
independent	once	we	observe	Z?).
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8.4.3.3 Equivalence Classes of Bayesian Networks

A	Bayesian	network	structure	G implies	a	set	of	independence	assumptions	in	addi-
tion	to	the	independence	statement.	Let	Ind(G)	be	the	set	of	independence	state-
ments	(of	the	form	Z	 is	 independent	of	Y	given	Z)	 that	hold	in	all	distributions	
satisfying	 these	 Markov	 assumptions.	 These	 can	 be	 derived	 as	 consequences,	 as	
shown	in	Equation	8.21.

More	 than	one	graph	can	 imply	exactly	 the	 same	 set	of	 independencies.	For	
example,	consider	graphs	over	two	variables	X	and	Y.	The	graphs	X →	Y	and	X ←	Y 
both	 imply	 the	 same	 set	 of	 independencies	 (i.e.,	 Ind(G)	 =	 ∅).	 We	 say	 that	 two	
graphs	G and	G ′	are	equivalent	if	Ind(G)	=	Ind(G ′).	This	notation	is	crucial,	since	
when	we	examine	observations	 from	a	distribution,	we	often	cannot	distinguish	
between	equivalent	graphs.

8.4.3.4 Learning Bayesian Networks

With	the	modeling	of	data	using	Bayesian	networks,	the	next	challenge	is	learn-
ing	from	the	modeled	data.	In	simplistic	terms,	learning	is	achieved	by	identifying	
an	optimal	network	that	 represents	 the	complexities	between	variables,	 i.e.,	how	
they	relate	to	each	other	in	the	training	data.	Moreover,	it	is	important	to	quantify	
which	is	a	challenge.	Several	methods	have	been	proposed,	of	which	the	statistical	
scoring	means	determining	the	best	network	topology	that	captures	inherent	rela-
tionships	between	variables.	These	scoring	functions	have	been	motivated	to	select	
the	optimal	network	based	on	the	score	obtained.

8.4.3.5 Bayesian Scoring Metric

Before	we	look	into	the	Bayesian	scoring	metrics,	we	will	formulate	the	definition	
of	a	Bayesian	network	as	a	graph	to	simplify	the	definition	of	the	metrics.

Building	on	the	concepts	of	a	directed	acyclic	graph	(DAG)	and	the	definition	
of	the	joint	probability	distribution	(JPD),	 …P X Xn( , ),1 	in	the	previous	sections,	
for	a	set	of	variables	 …X Xn,1 ,	a	Bayesian	network	decomposes	the	JPD	as

	

… = … …

= π … π

−P X X P X P X X P X X X X

P X P X P X

n i i i in i i in

i i i in in

( , ) ( ) ( | ) ( | , , )

( ) ( | ) ( | )

1 1 2 1 1 2 1

1 2 1 	 (8.23)

where	 ( , , , )1 2i i in… 	 is	 a	 permutation	 of	 the	 variables	 index	 (1,2, , )n… 	 and	 ikπ 	
denotes	 the	 parent	 set	 of	 the	 variable	 xk .	 It	 should	 be	 noted	 that	 there	 is	 no	
perfect	representation	of	a	Bayesian	network,	and	the	JPD	can	be	represented	in	
different	forms	depending	on	the	order	of	each	node.
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8.4.3.5.1 Node Order and Acyclicity Constraint

Because	 the	 nodes’	 order	 can	 affect	 the	 JPD,	 it	 is	 important	 to	 define	 the	 order	
of	nodes	in	the	Bayesian	network	as	it	imposes	parent-child	relationships	between	
nodes.	If	gene	X	precedes	gene	Y in	the	ordering,	then	gene	Y	cannot	be	a	direct	or	
indirect	parent	of	gene	X.	This	constraint	of	order	ensures	that	the	test	of	acyclic	
graphs	need	not	be	carried	out	whenever	a	new	node	or	edge	is	added	to	the	graph	
that	violates	the	Bayesian	network	creation.	Several	methods	are	used	to	estimate	the	
order	of	nodes	in	a	Bayesian	network.	These	methods	include	maximum	a	posteriori	
(MAP)	and	expectation	maximization	(EM)	that	can	be	used	to	estimate	the	con-
ditional	probabilities	after	the	structure	of	a	Bayesian	network	is	determined.

8.4.3.5.2 Likelihood Equivalence

The	likelihood	equivalence	assumption	is	as	follows:	if	two	structures	are	equiva-
lent,	their	parameter	joint	probability	density	functions	(PJPDFs)	are	identical,	and	
thus	coined	the	BDe	score	metric.	The	likelihood	equivalence	assumption	measure	
implies	 that	 the	 Dirichlet	 distribution	 of	 the	 parameters	 and	 the	 resulting	 BDe	
score	metric	have	a	property	of	 score	equivalence,	 i.e.,	 two	equivalent	 structures	
have	the	same	score.	This	score	equivalence	is	advantageous	in	cases	in	which	we	
do	not	want	the	data	to	distinguish	the	equivalent	structures.	However,	it	is	disad-
vantageous	in	estimating	the	causal	relationship	between	variables,	as	equivalent	
structures	represent	different	causal	relationships.

For	example,	if	gene	Y	transcribes	genes	X and	Z,	then	X ←	Y →	Z.	If	we	want	
to	know	the	causal	relationship,	we	require	a	scoring	metric	to	differentiate	between	
true	structure	and	the	equivalent	X →	Y →	Z.	On	the	other	hand,	if	we	simply	
want	to	learn	a	network	to	infer	one	gene	Y	given	another	gene	X,	or	the	probabil-
ity	P(Y =	k|X =	j ),	either	gene	could	fulfill	this	task.	Thus,	theoretically	speaking,	it	is	
advantageous	to	have	score	equivalence.	However,	in	network	learning	it	is	not	clear	
that	the	score	equivalence	property	is	of	any	use,	as	when	node	order	is	specified	there	
is	only	one	resultant	outcome	and	node	order	removes	the	need	for	score	equivalence.

8.4.3.5.3 Score Metrics

There	are	various	other	score	metrics	in	the	literature	and	they	have	been	described	
in	brief	as	follows	(Yang	and	Chang	2002):

Uniform.prior.score.metric.(UPSM): If	the	network	parameters	are	assumed	
to	 have	 a	 uniform	 distribution	 (uniform	 priors),	 the	 score	 metric	 can	 be	
expressed	as
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	 where	Nijk 	denotes	the	number	of	cases	in	the	given	database	D	in	which	the	
variable	xi 	took	its	kth	value	 = …k ri( 1,2, , ),	and	its	parent	πi 	was	instantiated	
as	its	jth	value	 = …j qi( 1,2, , ),	and	 = ∑ =N Nij k

r
ijk

i
1 .

Conditional.uniform.prior. score.metric. (CUPSM): If	 the	conditional	uni-
form	distribution	is	assumed,	the	score	metric	can	be	written	as
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General.Dirichlet.prior.score.metric.(DPSM): If	the	Dirichlet	distribution	is	
assumed,	then	the	score	metric	can	be	written	as
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	 where	 ′Nijk 	is	the	corresponding	Dirichlet	distribution	orders	for	a	set	of	param-
eters,	which	need	to	be	assigned	some	values	by	users,	and	 ′ = Σ ′=N Nij k

r
ijk

i
1 .	The	

uniform	distribution	can	be	considered	a	special	case	of	 ′ =Nijk 1.
BDe. score. metric. (BDe): If	 the	 likelihood	 equivalence	 assumption	 is	 used	

instead	of	 the	Dirichlet	distribution	assumption,	 and	 the	 same	 formula	 as	
DPSM	is	derived.	However,	 the	user	does	not	assign	the	orders	arbitrarily.	
They	are	determined	by	the	equivalent	sample	size	N ’	and	the	assumed	local	
joint	probability.	Specifically,

	
, | , .( )′ = ′ = Π = ξN N p x k j Bijk i ii SC

h 	 (8.27)

8.4.4 Application of Bayesian Classifiers in Bioinformatics
Using	the	BDe	score	metric	of	likelihood	equivalence,	various	class	models	for	the	
data,	an	example	model	Mi	for	class	I,	and	a	test	sample	vector	 = …x x x x xn{ , , , , }1 2 3 	
drawn	from	some	probability	distribution,	one	can	classify	x	according	to	the	model	
with	maximum	posterior	probability	(for	a	posterior	probability),	given	the	sample:

	 ( ) (log ( | )),=class x argmax p M xi i
	 (8.28)

where	 p M xi( | )	is	the	Bayesian	a	posteriori	probability	that	Mi	is	true	given	the	test	
sample	x.	By	the	Bayes’	theorem,

	 =p M x p x p x M p Mi i i( | ) ( ) ( | ) ( ). 	 (8.29)
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Assuming	equal	prior	probabilities,	 p Mi( ), 	for	each	model,	we	obtain:

	 ( ) (log ( | ))=class x argmax p x Mi i
	 (8.30)

i.e.,	the	computed	class	of	the	sample	is	the	model	for	which	the	sample	has	the	
greatest	likelihood.	Finally,	the	naïve	Bayes	method	makes	the	additional	assump-
tion	that,	given	the	class	model,	values	for	each	component	of	x	are	independent	of	
one	another,	so	that	the	above	becomes

	

( ) log | .class x argmax p x Mi

g

g i∑ ( )=












	 (8.31)

This	assumption	of	class	attribute	independence	greatly	facilitates	the	com-
putation	of	the	likelihoods	for	the	data	given	each	model,	since	it	is	much	easier	
to	infer	individual	class	attribute	value	probabilities	from	the	training	data	than	
it	is	to	infer	joint	class	attribute	value	probabilities.	This	simplification	has	been	
used	 successfully	 in	 a	 number	 of	 domains,	 including	 some	 with	 known	 class	
attribute	dependencies.

In	the	case	of	microarray	data,	we	model	each	class	as	a	set	of	Gaussian	distribu-
tions,	one	for	each	gene	computed	from	the	training	samples	of	that	class:

	 = …M M M Mi i i i
n{ , , , }1 2 	 (8.32)

where	Mi
g 	is	the	class	I	Gaussian	distribution	for	gene	g.	The	class	of	a	test	sample	

x	is	given	by

	

( ) log |∑ ( )=












class x argmax p x Mi

gene g

g i
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which,	when	substituting	 Mi
g 	for	a	Gaussian	distribution	with	sample	mean	 µi

g 	and	
standard	deviation	 σ i

g,	becomes
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Since	 ( )p x Mg i
g| 	is	proportional	to	 ( )( )( ) ( )σ − −µ σxi

g
g i

g
i
g1/ exp 0.5 /

2
,	it	can	be

interpreted	as	the	probability	that	the	gene	g	component	of	x	is	within	some	small
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nonzero	 interval	 centered	 at	 xg.	 Furthermore,	 if	 one	 again	 assumes	 equal	 prior	
probabilities	for	all	models,	the	relative	log	probabilities	between	any	two	models	
Ma 	and	Mb 	with	respect	to	x	can	be	expressed	simply	as	the	difference	between	
their	log	likelihoods:

	
∑

( ) ( ) ( ) ( )− = − =

− σ − −µ σ + σ − −µ σ 

logp M x logp M x logp x M logp x M

x x

a b a b

a
g

g a
g

a
g

b
g

g b
g

a
g

gens g

| | | |
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	 (8.35)

Such	a	difference	can	be	used	as	a	confidence	measure	for	choosing	class	a	over	
class	b.

8.4.4.1 Binary Classification

In	this	section,	we	cover	the	role	of	the	NB	classifier	for	the	use	of	likelihood	selec-
tion	of	genes.	In	binary	classes,	genes	in	the	NB	classifier	each	vote	for	the	likeli-
hood	of	alternative	models,	M g

1 	and	 M g
2 ,	given	the	test	sample	vector	component	

xg .	Intuitively,	we	want	genes	that	can	distinguish	between	samples	of	each	class,	
finding	M g

1 	is	more	likely	than	M g
2 	given	a	sample	of	class	1,	and	M g

2 	is	more	likely	
than	M g

1 	given	a	sample	of	class	2.	We	define	two	relative	log	likelihood	scores,	
→LIK1 2	and	 →LIK 2 1,	for	gene	g:

( ) ( )= −→LIK logp M X logp M Xg g| |1 2 1 1 2 1 	where	X1 	are	training	samples	of	class	1,	and	

( ) ( )= −→LIK logp M X logp M Xg g| |2 1 2 2 1 2 	where X 2 are	training	samples	of	class	2.
The	ideal	gene	for	the	NB	classifier	should	have	both	LIK	scores	much	greater	

than	zero,	indicating	that	the	gene,	on	average,	votes	for	class	1	on	training	sam-
ples	of	class	1,	and	for	class	2	on	training	samples	of	class	2.	 If	a	 test	 sample	 is	
selected	from	the	same	probability	distribution	as	the	training	data,	then	one	can	
expect	this	gene	to	vote	for	class	1	for	test	samples	of	class	1,	and	for	class	2	for	test	
samples	of	class	2.	The	greater	the	values	of	the	LIK	scores	above	zero,	the	greater	
the	contribution	one	expects	the	gene	to	make	toward	the	correct	classification	of	
a	test	sample.

It	is	difficult	to	find	genes	for	which	both	LIK	scores	are	far	greater	than	zero.	
Instead,	one	can	select	two	sets	of	genes,	 →GENES1 2 	and	 →GENES2 1,	each	maxi-
mizing	one	of	the	two	LIK	scores,	while	merely	requiring	the	other	to	be	greater	
than	zero:

	 : 0 0.2 1 1 2 2 1GENES LIK and LIK �>→ → → 	 (8.36)

Genes	in	each	set	are	ranked	according	to	their	values	of	the	LIK	score	maxi-
mized	by	that	set.	Combining	the	n/2	top-ranking	genes	from	each	set	then	pro-
duces	an	NB	classifier	with	n	genes.
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8.4.4.2 Multiclass Classification

This	method	for	using	LIK scores	to	select	genes	for	a	naïve	Bayes	classifier	extends	
beyond	 the	 case	 of	 two	 classes.	 In	 cases	 where	 the	 number	 of	 classes	 is	 c,	 we	
define	c(c −	1)	different	LIK	scores:

( ) ( )= −→LIK logp M X logp M Xj k j
g

j k
g

j| | 	 where	 X j 	 are	 training	 samples	 of	 class	 j	
and	1	≤	j,	k ≤	c,	j ≠	k.

Similarly,	we	 select	 c(c −	1)	distinct	 sets	of	genes,	 each	maximizing	one	LIK	
score,	while	merely	requiring	all	others	to	be	greater	than	zero:

	

�

> ′ ≠ ′ ≤ ′ ′ ≤

→ →

→

GENES LIK

LIK j k j k c

j k j k

j k

: 0

0 ,1 , .
	 (8.37)

Genes	in	each	 →GENES j k 	set	should	therefore	distinguish	test	samples	of	class	
j with	better	accuracy	than	the	alternative	model	Mk

g .
When	 equal	 numbers	 of	 genes	 from	 all	 − →c c GENES j k( 1) 	 sets	 are	 com-

bined,	 the	 resulting	 NB	 classifier	 should	 again	 have	 the	 desired	 properties.	
Consider	a	test	sample	x of	class	j.	Genes	in	the	(c –	1)	different	 →GENES j k 	sets,	

≤ ′ ′ ≤ ′ ≠ ′ ′ ≠j k c j k j j1 , , , ,	will	on	average	make	a	contribution	to	the	log	likeli-
hood	term	of	M j

g 	at	least	as	large	as	that	of	terms	of	the	alternatives.	As	a	result,	the	
summed	log	likelihood	term	of	M j

g 	will	on	average	be	larger	than	that	of	all	other	
models,	so	 =argmax p x M ji i(log ( | )) 	and	the	classifier	votes	for	class	j.

8.4.4.3  Computational Challenges for 
Gene Expression Analysis

Based	on	the	above	description	of	Bayesian	networks,	one	can	treat	each	gene	
in	 a	microarray	 as	 a	 variable.	 In	 addition,	 other	 attributes	 that	 affect	 the	 sys-
tem	 can	 be	 modeled	 as	 additional	 random	 variables.	 These	 attributes	 include	
temporal	 indicators,	 experimental	 conditions,	 and	 background	 variables	 such	
as	 exogenous	 cellular	 conditions.	 By	 using	 learning	 based	 on	 a	 Bayesian	 net-
work	based	on	statistical	dependencies,	one	can	answer	a	wide	range	of	queries,	
such	as	whether	there	is	dependence	between	expression	levels	of	a	gene	and	the	
experimental	conditions	under	study.	However,	 these	 inferences	are	connected	
to	 the	 statistical	 constraints	 and	 interpretation	 of	 results	 obtained.	 Moreover,	
the	modeling	of	a	complex	system	of	genes	entails	a	degree	of	algorithmic	and	
processing	complexity.

Most	 difficulties	 in	 this	 modeling	 process	 revolve	 around	 the	 curse	 of	
dimensionality,	 which	 exists	 due	 to	 the	 thousands	 of	 genes	 and	 few	 samples	
for	 analysis.	On	 the	positive	 side,	 it	 is	 believed	 that	 only	 a	handful	 of	 genes	
affect	the	transcription	of	a	gene.	This	sparcity	of	genes	aids	Bayesian	network	
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performance,	 as	Bayesian	networks	perform	best	on	 these	 types	of	data.	The	
implementation	 of	 Bayesian	 networks	 for	 gene	 sets	 was	 described	 by	 Bauer	
et	al.	(2010).

8.5 Decision trees
In	this	section	of	the	chapter	we	provide	a	brief	description	of	the	different	supervised	
learning	strategies	inspired	by	decision	trees.	We	start	a	discussion	with	the	C4.5	algo-
rithm,	a	natural	extension	of	its	predecessor,	the	ID3	algorithm,	that	can	be	used	to	
construct	a	univariate	decision	tree.	In	the	simplest	terms,	decision	tree	model	genera-
tion	can	be	viewed	as	a	recursive	splitting	of	the	train	set.	Therefore,	the	train	set	in	
its	entirety	is	found	at	the	root	of	the	tree.	This	train	set	is	split	into	smaller	chunks	of	
data	based	on	the	values	that	each	attribute	possesses	in	the	train	set.	This	recursive	
data	splitting	is	performed	until	the	leaves	of	the	tree	result	in	individual	records	or	a	
group	of	records	that	have	the	same	phenotype.	The	decision	tree	algorithm	for	model	
generation	has	two	major	components,	attributes	selection	and	termination	criteria.

The	 following	 are	 the	 guidelines	 for	 model	 generation	 using	 any	 form	 of	
decision	tree:

	 1.	The	leaf	of	a	tree	could	be	a	single	sample	or	a	group	of	samples	that	has	a	
common	phenotype.

	 2.	Estimate	the	potential	information	content	of	each	feature	or	attribute.
	 3.	Based	on	a	selection	criterion	find	the	best	attribute	to	branch	on.

Based	on	the	above	guidelines,	the	biggest	challenge	in	constructing	the	tree	
model	is	estimating	the	potential	information	content	of	each	feature	or	attribute	
that	describes	a	sample	(Figure	8.7).

y1
y1 y2 yj Phenotype

Features

. . .
xa xl xf P1. . .
xa xk xf P1. . .
xb xm xh P2. . .
xb xm xf P1. . .
xb xl xh P2. . .

y2

yjP2

P2 P1

xh

xl xm

xa xb

xf

P1

Figure 8.7 A schematic representation of the construction of a decision tree, 
where each node of the tree represents a feature and the values of the features 
determine the link between the nodes. the leaves of the decision tree are the 
associated phenotypes.
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The	C4.5	algorithm	to	construct	the	tree	model	uses	the	measure	of	entropy	to	
measure	the	disorder	of	data	using	the	following	relation:

	 1

∑( )ϒ = −
ϒ ϒ











=

Entropy
y
log

y

i

m
i i 	 (8.38)

where	ϒ represents	the	train	set	and	 ( )ϒEntropy 	represents	the	information	con-
tent	of	the	train	set,	iterating	over	all	possible	phenotypes	that	belong	to	ϒ,	and	yj	
represents	a	subset	of	samples	that	belong	to	a	specific	phenotype.

In	order	to	estimate	the	conditional	entropy	of	ϒ	for	a	given	attribute	j,	we	use	
the	following	relation:
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The	conditional	entropy	for	a	given	attribute	j	allows	us	to	estimate	its	relevance	
in	the	train	set,	where	represents	the	partition	of	the	train	set	ϒ,	where	each	parti-
tion	is	determined	based	on	the	n possible	values	possessed	by	attribute	or	feature	
j.	We	define	the	entropy	gain	of	attribute	j relative	to	the	entropy	possessed	by	the	
entire	train	set	as	follows:

	 ( , ) ( ) ( | ).Gain j Entropy Entropy jϒ = ϒ − ϒ 	 (8.40)

The	aim	of	using	this	definition	is	to	maximize	the	gain,	dividing	by	overall	
entropy	due	to	split	argument	 �y 	by	value	j.

8.5.1 Tree Pruning
The	problems	associated	with	decision	tree	models	stem	from	two	issues:	(1)	The	
class	that	has	the	most	number	of	samples	(majority	phenotype/class)	would	result	
in	rules	that	overpower	rules	generated	from	minority	phenotypes/classes.	(2)	It	is	
difficult	to	determine	a	test	set	that	could	traverse	all	the	nodes	in	a	tree.	This	makes	
it	difficult	to	actually	determine	an	ideal	test	set.

However,	apart	from	these	two	issues	it	should	be	noted	that	decision	tree	mod-
els	are	sensitive	to	outliers	that	are	present	in	the	train	set.	It	is	therefore	common	
to	 see	 decision	 tree	 models	 that	 overfit	 the	 train	 set.	 Tree	 pruning	 is	 hence	 an	
important	step	that	helps	remove	rules	that	are	influenced	by	these	outliers.	From	
a	bioinformatics	perspective,	it	is	importation	to	subject	any	decision	tree	model	to	
pruning,	as	bioinformatics	data	are	prone	to	noise	and	outliers.
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The	 objective	 of	 tree	 pruning	 is	 twofold:	 (1)	 to	 reduce	 classification	 errors,	
caused	by	outlier	instances	embedded	in	the	train	set,	and	(2)	make	the	decision	
tree	more	generalized	to	avoid	overfitting	(Esposito	et	al.	1997).

Considering	 the	 need	 for	 decision	 tree	 pruning	 there	 are	 several	 pruning	
approaches	in	the	literature;	for	instance,	some	approaches	proceed	from	the	root	
of	 the	 decision	 tree	 and	 proceed	 down	 toward	 the	 leaves	 while	 examining	 the	
branches	to	prune.	These	are	referred	to	as	the	top-down	approaches.	On	the	con-
trary,	there	exist	approaches	that	traverse	the	decision	tree	in	the	opposite	direc-
tion,	known	as	the	bottom-up	approaches.	Other	approaches	to	tree	pruning	use	
the	train	set	to	evaluate	the	accuracy	of	a	pruned	decision	tree,	while	others	use	an	
addition	dataset	called	the	pruning	set	to	establish	the	performance	of	the	pruned	
decision	tree.

With	the	gamut	of	pruning	approaches,	 they	are	commonly	categorized	 into	
prepruning	and	postpruning.	In	the	prepruning	approach,	the	pruning	step	is	inte-
grated	into	the	model	building	step.	As	part	of	the	prepruning	step,	the	data	split-
ting	that	occurs	at	every	node	of	the	decision	tree	is	terminated	abruptly	based	on	
a	predetermined	threshold	of	the	attribute	evaluated.	This	abrupt	termination	of	
data	splitting	ensures	that	further	splitting	of	data	at	a	node	does	not	take	place	at	
the	next	iteration.	Here	the	node	is	treated	as	a	leaf	and	assigned	a	phenotype	label	
of	the	majority	phenotype/class.

Unlike	prepruning,	there	are	several	approaches	to	postpruning,	such	as	reduced	
error	 pruning	 (REP),	 pessimistic	 error	 pruning	 (PEP),	 minimum	 error	 pruning	
(MEP),	cost-complexity	pruning	(CCP),	critical	value	pruning	(CVP),	and	error-
based	pruning	(EBP)	(Esposito	et	al.	1997).	For	the	purpose	of	brevity,	we	discuss	
the	simplest	form	of	postpruning,	reduced	error	pruning	(REP).

In	the	REP,	postpruning	is	carried	out	using	an	independent	pruning	set.	The	
iterative	pruning	process	 starts	with	 the	completed	decision	 tree	 (Tall ).	For	each	
node	 i	 of	Tall 	 the	 postpruning	 approach	 compares	 the	 number	 of	 classification	
errors	made	on	the	pruning	set	when	the	subtree Ti	is	kept	with	the	number	of	clas-
sification	errors	made	when	i is	turned	into	a	leaf	and	associated	with	the	best	class.	
Sometimes,	the	simplified	tree	has	a	better	performance	than	the	original	decision	
tree	Tall .	In	such	cases,	Ti	is	pruned	from	Tall .	This	pruning	operation	is	repeated	on	
the	simplified	tree	until	further	pruning	increases	the	misclassification	rate.

8.6 ensemble Approaches
In	 this	 section	 we	 describe	 prominently	 used	 ensemble	 learning	 approaches.	
Ensemble	learning	is	an	effective	technique	that	has	increasingly	been	adopted	to	
combine	multiple	 learning	approaches	 to	 improve	overall	 classification	accuracy.	
High	dimension	and	relatively	small	number	of	samples	typically	characterizes	bio-
logical	data—frequently	characterized	as	a	small	sample	size	problem.	Moreover,	
these	samples	are	typically	plagued	by	noise	and	missing	values.	These	ensemble	



282  ◾  Data Mining for Bioinformatics

techniques	alleviate	the	small	sample	size	problem	by	averaging	classification	results	
over	multiple	 classifiers.	 It	 is	believed	 that	 this	philosophy	of	 averaging	 the	per-
formance	of	multiple	classifiers	reduces	the	potential	for	overfitting	the	final	clas-
sification	results.	Furthermore,	 through	the	use	of	an	ensemble	of	classifiers,	 the	
train	set	may	be	used	in	a	more	efficient	way,	which	is	critical	to	many	biological	
applications	with	 small	 sample	 size	 (Yang	 et	 al.	 2010;	 Webb	 and	Zheng	2004).	
Thus,	 an	 ensemble	 of	 classifiers	 is	 designed	 to	 boost	 classification	 accuracy	 and	
enhance	generalization.	By	the	 term	boosting	we	refer	 to	enhancing	 the	classifier	
performance	specifically	in	scenarios	of	high-dimensional	data	where	the	number	
of	 samples	m are	 far	 lower	 than	 the	number	of	 features	n	 (m << n)	 in	 the	 train	
set.	The	term	generalization	refers	to	the	ability	of	the	ensemble	classifiers	to	clas-
sify	samples	of	unknown	classes	after	the	training	is	performed.	Both	boosting	of	
accuracy	and	generalization	of	classification	are	closely	tied	to	the	bias	and	variance	
of	the	ensemble	of	classifiers.	It	is	shown	that	the	ensemble	of	classifiers	can	control	
the	variance	and	bias	using	boosting,	bagging,	and	averaging	strategies.	However,	
the	time	and	space	complexity	of	these	techniques	are	believed	to	be	high.	Thus,	
ensemble	classifiers	are	applied	in	scenarios	where	accuracy	is	important.

Several	ensemble	approaches	are	prevalent	in	bioinformatics.	In	this	section,	
we	introduce	three	such	techniques	and	describe	their	workings.	These	techniques	
include	bagging,	boosting,	and	random	forests	ensemble	methods.	But	before	we	
describe	the	characteristic	differences	between	each	of	these	techniques,	we	will	
illustrate	 the	 workings	 of	 an	 ensemble	 classifier.	 Throughout	 this	 chapter	 thus	
far,	 we	 focus	 on	 learning	 techniques.	 The	 significance	 of	 these	 techniques	 lies	
in	choosing	a	single	hypothesis	from	a	set	of	hypotheses	that	best	discriminates	
between	samples	of	the	training	data.	Typically,	we	envision	a	scenario	in	which	
the	train	set	is	free	of	noise	and	missing	values.	We	believe	that	a	resultant	hypoth-
esis	generated	from	such	a	train	set	best	discriminates	between	the	classes	of	the	
train	set	and	refer	to	it	as	the	best	hypothesis	(hbest ).	For	a	visual	explanation,	see	
Figure	8.8(a).

In	small	sample	size	problem	scenarios,	determining	the	best	hypothesis	(hbest )	
is	a	challenge	considering	the	fact	that	there	could	be	several	optimal	hypotheses,	
and	choosing	the	best	hypothesis	that	covers	all	of	the	several	hypotheses	presents	a	
challenge	of	its	own.	Figure	8.8(b)	best	describes	this	scenario.	In	this	case,	a	tradi-
tional	learning	approach	would	choose	a	single	hypothesis	that	would	not	general-
ize	well	considering	the	disparities	in	the	hypothesis	space.

The	philosophy	for	using	an	ensemble	of	classifiers	is	the	intelligent	manipula-
tion	of	the	train	set	to	obtain	different	hypothesis	spaces	with	different	classifiers,	
i.e.,	 …H H H HL( , , . )1 2 3 ,	 where	 L is	 the	 number	 of	 classifiers.	 By	 manipulating	
the	train	set,	we	can	effectively	narrow	down	a	consensus	of	hypotheses	space	Ho,	
represented	by	the	overlap	of	the	hypotheses	spaces	(Figure	8.8(b)).

Theoretically,	this	Ho	is	obtained	by	combining	the	classification	rules	of	mul-
tiple	classifiers	using	an	integration	method	that	takes	advantage	of	the	overlapped	
region.	 The	 best	 classification	 rule	 is	 obtained	 by	 approximating	 multiple	 rules.	
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This	approximation	yields	to	classifiers	that	are	more	accurate	and	provides	effective	
generalization.	As	previously	mentioned,	there	are	several	ensemble	techniques	that	
are	prevalent	in	bioinformatics.	The	following	section	provides	an	overview	of	three	
such	prominent	techniques.

8.6.1 Bagging
Bagging,	also	known	as	bootstrap	aggregation,	is	one	of	the	first	and	simplest	forms	
of	ensemble-based	techniques.	This	method	was	proposed	by	Breiman	(1996).	The	
working	principle	of	the	bagging	technique	is	analogous	to	the	following.	Let	us	
consider	a	panel	of	evaluators	who	have	been	chosen	to	help	come	up	with	the	best	
possible	decision	given	a	compiling	set	of	evidence.	In	the	bagging	technique,	each	
evaluator	in	the	panel	is	given	equal	importance,	by	dividing	all	the	evidence	into	
equal	subsets	of	evidence	across	all	the	evaluators.	It	should	be	noted	that	the	subset	
of	evidence	given	to	each	evaluator	is	chosen	at	random	to	avoid	biases.	The	deci-
sions	(votes)	made	by	each	of	these	evaluators	are	then	tabulated	and	subjected	to	
a	voting	scheme	where	decisions	that	are	consistent	across	all	evaluators	are	chosen	
as	the	best.

In	a	classification	scenario	using	bagging,	the	train	data	(D)	are	first	subjected	
to	a	bootstrap	sampling	strategy,	where	subsets	of	samples	are	chosen	at	random	
from	D.	Note	that	bootstrap	sampling	employs	sampling	with	replacement,	result-
ing	 in	unbiased	 subsets	 that	are	 subjected	 to	 independent	classifiers	 (evaluators).	
Figure	8.9	provides	an	illustration	of	the	bagging	strategy	in	creation	of	an	ensem-
ble	of	classifiers.	Each	independent	classifier	that	is	part	of	the	ensemble	(referred	
to	as	a	weak	learner)	generates	rules	from	the	independent	subset	of	training	data	
allocated	to	it	through	bootstrap	sampling.	These	rules	are	subject	to	various	voting	

Figure 8.8 A schematic illustration of hypothesis space partitioning with the 
ensemble of classifiers as proposed by Yang et al. (2010).
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strategies	to	choose	the	most	consistent	rules	that	would	ultimately	be	used	for	clas-
sification	by	the	ensemble.

Various	 voting	 strategies	 are	 applied	 in	 bagging	 (Erp	 et	 al.	 2002)	 and	 have	
been	effectively	classified	 into	 three	categories,	each	derived	 from	human	voting	
strategies:	 unweighted	 voting	 methods,	 confidence	 voting	 methods,	 and	 ranked	
voting	methods.	Though	these	methods	may	seem	complex,	the	voting	strategies	
are	simple	to	implement,	as	they	are	independent	of	the	classifiers	in	the	ensemble	
(Ho	et	al.	1994).

8.6.1.1 Unweighed Voting Methods

The	 unweighted	 voting	 methods	 consist	 of	 methods	 in	 which	 each	 vote	 carries	
equal	weight.	The	only	differentiation	between	the	classes	is	the	number	of	votes	
they	have	received.	As	a	consequence,	classifiers	cannot	express	the	degree	of	prefer-
ence	of	one	class	over	the	other.	Although	this	method	removes	relevant	informa-
tion,	it	also	results	in	less	complex	methods	to	implement.	Moreover,	these	methods	
do	not	perform	well	in	the	cases	of	ties.

Plurality:	The	benefit	of	this	voting	strategy	lies	in	the	simplicity	and	ease	of	use.	In	
this	method,	every	classifier	votes	one	class	label	for	a	given	sample.	Ultimately,	
the	sample	is	assigned	to	that	class	that	receives	the	highest	number	of	votes.	
However,	plurality	voting	may	assign	a	sample	to	a	wrong	class	due	to	erroneous	
assignments	by	the	classifiers	in	the	ensemble.	There	is	a	real	possibility	of	the	
sample	being	assigned	to	a	wrong	class	by	a	small	number	of	wrong	votes.
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Figure 8.9 the bagging strategy in an ensemble of classifiers.
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Majority. voting:	 Majority	 voting	 builds	 on	 the	 problems	 of	 plurality	 vot-
ing	and	at	times	is	confused	with	plurality	voting.	As	in	plurality	voting,	
majority	voting	allows	each	classifier	 to	vote	one	class	 label	 for	a	 sample.	
The	sample	 is	ultimately	assigned	the	class	 label	 that	 receives	 the	highest	
vote	with	the	constraint	that	receives	a	majority	of	more	than	half	of	the	
number	 of	 classifiers	 in	 the	 ensemble	 that	 have	 the	 same	 vote.	 Majority	
voting	 assigns	 a	 class	 label	 to	 a	 sample	 if	 and	 only	 if	 the	 majority	 con-
straint	is	satisfied.	This	majority	constraint	makes	the	voting	strategy	less	
error-prone	if	the	ensemble	has	a	large	number	of	classifiers	and	is	therefore	
a	widely	accepted	 technique.	However,	when	a	 sample	 fails	 to	 satisfy	 the	
same	majority	constraint,	the	sample	is	rejected	by	the	voting	strategy	and	
no	class	label	is	assigned.

Multiclass	 scenarios	 and	 variations	 in	 voting	 schemes	 require	 a	 hierarchy	
of	 steps;	 thus,	 the	 following	 methods	 are	 commonly	 referred	 to	 as	 multistep	
methods.	These	multistep	methods	of	unweighted	voting	are	difficult	to	imple-
ment	as	 they	rely	on	the	preference	of	classifiers	by	taking	pairs	of	classes	 into	
consideration.

8.6.1.2 Confidence Voting Methods

Unlike	the	unweighted	voting	methods,	confidence	voting	methods	rely	on	the	clas-
sifiers	in	the	ensemble	to	express	their	preference	toward	a	class.	The	preference	is	
therefore	 a	 scalar	 value	 called	 the	 confidence	 score	 of	 a	 classifier	 for	 a	 class.	The	
higher	the	confidence	score,	the	more	the	class	is	preferred	by	the	classifier.	The	con-
fidence	scores	of	each	classifier	toward	the	classes	are	generated	prior	to	the	actual	
classification	process.

Pandemonium:	Every	classifier	is	given	one	vote,	which	it	can	cast	for	any	class.	
The	classifier	casts	the	vote	by	stating	its	confidence	in	the	class.	The	class	that	
receives	the	vote	with	the	highest	confidence	of	all	votes	wins.	This	method,	
known	as	Selfridge’s	pandemonium	(Selfridge	1958),	is	one	of	the	first	exam-
ples	of	using	separate	experts/agents	 in	computer	science.	It	 is	very	simple,	
but	misses	the	possibility	for	a	classifier	to	express	differences	of	preference	
between	classes.	Only	the	classifier’s	top	choice	and	its	confidence	are	known.	
Furthermore,	 there	 is	no	 limit	 to	 the	amount	of	confidence	 that	classifiers	
may	adhere	to.	While	limits	are	easily	added	to	the	method,	a	correct	scale	
is	difficult	to	implement.	However,	with	well-scaled	classifiers,	this	method	
could	be	sufficient.

Sum.rule:	When	the	sum	rule	is	used	each	classifier	has	to	give	a	confidence	
value	for	each	class.	Next	all	confidence	values	are	added	for	each	class,	and	
the	class	with	the	highest	sum	wins	the	election.
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Product.rule:	As	with	the	sum	rule,	each	classifier	gives	a	confidence	value	for	
each	class.	Then,	all	confidence	values	are	multiplied	per	class.	The	class	with	
the	highest	confidence	product	wins.	The	product	rule	is	highly	subjective	to	
low	confidence	values.	A	very	low	value	can	ruin	a	class’s	chance	of	winning	
the	election	no	matter	what	its	other	confidence	values	are.

8.6.1.3 Ranked Voting Methods

In	ranked	voting	methods	the	classifiers	are	asked	for	a	prior	preference	ranking	
of	the	classes.	In	this	way,	more	information	on	the	classifier’s	preference	is	used	
than	 in	the	unweighted	voting	methods.	However,	unlike	the	confidence	voting	
methods,	the	ranked	voting	methods	reflect	the	degree	of	preference	between	two	
classes	in	the	form	of	ranks.	These	ranks	do	not	correspond	to	the	confidence	of	the	
classifiers	used	in	the	ensemble	classifier.

Borda.count:	This	method	only	runs	 if	a	complete	 list	of	preference	ranks	 is	
available	from	all	classifiers	over	all	classes.	It	then	computes	the	mean	rank	
of	each	class	over	all	classifiers.	The	classes	are	reranked	by	their	mean	rank,	
and	the	top-ranked	classes	win	the	election.	Note	that	the	Borda	count	is	the	
ranked	variant	of	the	sum	rule.

Single.transferable.vote.(STV):	Also	known	as	alternative	voting	(in	case	of	
one-winner	solutions),	each	classifier	gives	a	preference	ranking	of	the	classes.	
Incomplete	ranks	are	possible,	 though	such	ranks	may	result	 in	a	classifier	
losing	its	vote.	A	majority	vote	is	held	based	on	the	highest-ranked	class	of	
each	classifier’s	ranking.	If	some	class	gains	the	majority,	it	wins	the	election.	
Otherwise,	the	class	with	the	least	number	of	votes	in	the	majority	voting	is	
eliminated	from	further	participation.	This	class	is	removed	from	all	prefer-
ence	rankings.	Now,	the	process	repeats	itself,	starting	with	the	majority	vote,	
until	one	class	gains	the	majority.

One	 low	 rank	 in	 an	STV	election	has	 less	 effect	on	 class	 selection	 than	 a	
low	rank	in	the	Borda	count	does.	However,	due	to	the	elimination	procedure,	
complex	and	 illogical	 side	effects	may	occur	 (for	example,	voting	 for	a	candi-
date	may	result	 in	 the	candidate’s	 loss	of	 the	election).	Thus,	 in	any	ensemble	
based	on	bagging,	there	are	three	comprehensive	components:	the	bootstrapping	
sampling,	 the	 classifiers,	 and	 the	 voting	 strategy.	 Bootstrap	 sampling	 divides	
the	train	set	into	unbiased	subsets,	which	are	provided	to	each	classifier	in	the	
ensemble.	The	set	of	classifiers	that	composes	the	ensemble	typically	consists	of	
a	diverse	set	of	classifiers.	The	most	vital	component	of	the	bagging	technique	
is	 the	 voting	 strategy	 used	 to	 combine	 the	 decisions	 derived	 from	 the	 classi-
fiers.	 The	 variations	 of	 known	 bagging	 techniques	 are	 driven	 by	 the	 different	
voting	strategies.
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8.6.2 Boosting
As	 with	 bagging,	 the	 boosting	 technique	 is	 characterized	 by	 three	 components:	
sampling	of	the	train	set,	a	set	of	classifiers	that	form	the	ensemble,	and	a	voting	
strategy.	Boosting	 relies	on	 strategic	 resampling	 that	 is	 geared	 toward	providing	
the	most	informative	training	subset	to	each	of	the	classifiers	in	the	ensemble.	The	
boosting	strategy	can	be	viewed	as	a	cascade	of	classifiers—in	which	each	classifier	
generates	decisions	based	on	a	 refined	subset	of	 the	 training	 subset	as	we	 iterate	
through	the	cascade.	The	refining	of	the	training	subset	is	the	responsibility	of	each	
of	the	classifiers	in	the	ensemble.	A	schematic	representation	of	boosting	is	provided	
in	Figure	8.10.	It	should	be	noted	that	the	voting	techniques	used	in	bagging	can	
be	employed	in	boosting.

To	formalize	the	procedure	behind	the	boosting	ensemble	of	classifiers	strategy,	let	
us	consider	an	ensemble	ξ	that	consists	of	a	set	of	N	classifiers,	i.e.,	ξ = …C C CN{ , , , }.1 2 	
Let	us	assume	that	each	of	the	classifiers	in	ξ	is	binary,	where	Ci	classifies	a	sample	xi	
to	only	two	classes,	i.e.,	 ∈ −C xi i( ) { 1,1}.	The	final	decision	of	ξ in	classifying	sample	
xi	is	the	weighted	sum	of	the	outputs	of	the	classifiers	in	the	ensemble	represented	by	
the	following	relation:

	 ( ) ( ) ( ) ( ).1 1 2 2 �ξ = α + α + + αx C x C x C xi i i N N i 	 (8.41)

In	Equation	8.41,	 α α … αN{ , , , }1 2  corresponds	 to	 the	weight	 assigned	 to	 the	
decisions	by	each	of	the	classifiers.

Training Data

D1
F1 F2

. . .

C1

D2

C2

Voting

DN

CN

Figure 8.10 the schematic representation of the boosting strategy in an ensemble 
of classifiers.
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The	AdaBoost	algorithm	is	targeted	toward	choosing	the	best	set	of	classifiers	
from	a	pool	of	a	diverse	set	of	potential	classifiers	(Freund	and	Shapire	1995).	The	
objective	of	the	AdaBoost	algorithm	is	to	choose	a	set	of	classifiers	that	complement	
each	other	in	an	optimal	manner.	This	objective	is	brought	about	by	the	following	
framework	and	reflected	 in	Equation	8.41.	It	 thus	consists	of	(1)	a	set	of	diverse	
classifiers	 …C C CN{ , , , }1 2 ,	(2)	a	weight	 αi( )	associated	with	each	classifier,	which	
acts	an	indicator	(or	flag)	of	the	classifier’s	ability	to	yield	a	decision	given	the	train	
set,	and	(3)	a	 function	that	sums	the	outputs	of	each	of	 the	classifiers	 to	yield	a	
common	result.

AdaBoost	follows	an	iterative	framework.	At	each	iteration,	a	classifier	is	chosen	
from	a	pool	(or	a	pertinent	set)	of	potential	classifiers	depending	on	their	ability	to	
classify	samples	that	were	previously	misclassified	by	classifiers	higher	up	the	cas-
cade.	This	process	ensures	that	classifiers	in	the	ensemble	complement	each	other	
and	at	the	same	time	boost	the	overall	performance	in	the	ensemble.	The	heart	of	
the	algorithm	is	realized	through	the	choice	of	classifiers,	and	is	composed	of	the	
following	three	steps:	seeking	prospective	classifiers	for	the	ensemble,	choosing	an	
optimal	set	of	classifiers,	and	assigning	weight	to	a	chosen	classifier.

8.6.2.1  Seeking Prospective Classifiers to 
Be Part of the Ensemble

The	objective	of	this	step	is	to	select	new	classifiers	from	a	pool	of	classifiers	that	
can	help	with	 the	classification	of	 samples	 that	are	 still	misclassified	by	a	classi-
fier	higher	in	the	cascade.	Let	us	assume	that	we	start	with	our	initial	train	set	T,	
which	consists	of	N-dimensional	samples	 = …x x x xi i i i

N{ , , , }1 2 	of	data	having	class	
labels	 ∈ −yi { 1,1}.	Let	us	further	assume	that	we	have	a	finite	set	of	k	classifiers	to	
choose	from	and	the	AdaBoost	algorithm	is	subject	to	M	iterations.	First,	we	set	up	
an	error	criterion	that	is	iteratively	carried	out.	AdaBoost	uses	the	exponential	loss	
error	criterion	(Wyner	2002),	where	each	classifier	is	assigned	a	cost	 −βe 	for	every	
hit	(correctly	classified	instance)	and	a	weight	 βe 	for	a	miss	(misclassified	instance).	
It	should	be	noted	that	 β > 0	such	that	misses	are	penalized	more	than	hits.

The	main	idea	in	AdaBoost	is	to	proceed	systematically	by	extracting	one	clas-
sifier	 from	the	pool	 in	each	of	 the	M	 iterations.	The	elements	 in	 the	dataset	are	
weighted	according	to	their	current	relevance	(or	urgency)	at	each	iteration.	At	the	
beginning,	all	elements	are	assigned	the	same	weight.	During	each	iteration,	those	
samples	that	are	misclassified	are	assigned	higher	weights.	Thus,	when	a	new	clas-
sifier	is	selected,	importance	is	given	to	the	classifier	that	performs	well	with	those	
samples	that	are	weighed	higher.

8.6.2.2 Choosing an Optimal Set of Classifiers

In	 each	 iteration	 of	 the	 AdaBoost	 algorithm	 the	 k	 classifiers	 in	 the	 pool	 are	
reranked,	taking	 into	consideration	the	new	weights	assigned	to	the	samples	of	
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T	(as	discussed	above).	In	this	step,	we	focus	on	determining	the	next	Cm	and	its	
corresponding	weight,	αm.	Based	on	Equation	8.41,	we	obtain

	 ( ) ( ) ( ) ( ),( 1) 1 1 2 2 1 1�ξ = α + α + + α− − −x C x C x C xm i i i m m i 	 (8.42)

and	we	want	to	extend	it	to

	 ( ) ( ) ( ).( 1)x x C xm i m i m m iξ = ξ + α− 	 (8.43)

At	the	first	iteration	(m =	1),	ξ(m –	1)	is	the	zero	function.	We	define	the	total	
cost,	or	total	error,	of	the	extended	classifier	as	the	exponential	loss.
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where	αm	and	Cm	are	to	be	determined	in	an	optimal	manner.	We	rewrite	the	above	
Equation	8.44	as	follows:
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where

	 = ( )− ξ( )−w ei
m y xi m i .( ) ( )1 	 (8.46)

In	the	first	iteration,	we	get	 =( )wi 11 ,	for	i =	1,	…,	N.	During	later	iterations,	
the	vector	w(m)	represents	the	weight	assigned	to	each	data	point	in	the	train	set	at	
iteration	m.	We	then	divide	the	sum	into	two	numbers	that	reflect	the	weighted	
cost	of	all	hits	plus	the	weighted	cost	of	all	the	misses.
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For	selecting	Cm	the	exact	value	of	 α >m 0 	is	irrelevant	since	minimizing	E	is	
equivalent	to	minimizing	 αe Em 	 for	a	fixed	αm 	and	 = +α αe E W W ec e

m m2 .	Further,	
since	 >αe m 1,2 	we	can	rewrite	the	above	expression	as

	 = + + −α αe E W W W ec e e
m m( ) ( 1).2 	 (8.48)

+W Wc e( )	is	a	constant;	thus	 αe Em 	is	minimized	for	the	mth 	iteration	if	a	classifier	
is	picked	that	has	the	lowest	weight	We 	Thus,	the	next	choice	of	Cm 	should	be	the	
one	with	the	lowest	penalty	given	the	current	set	of	weights.

8.6.2.3 Assigning Weight to the Chosen Classifier

With	the	classifier	chosen,	Cm 	the	immediate	step	is	to	determine	its	corresponding	
weight	 αm .

Considering	the	error	E	represented	as

	 = +−α αE W e W ec e
m m 	 (8.49)

we	differentiate	both	sides	by	the	weight	 αm :

	
.E

W e W e
m

c e
m mδ

δα
= − +−α α 	 (8.50)

On	multiplying	both	sides	by	 αe m	and	equating	it	to	zero,	we	obtain

	 − + =αW W ec e
m 0 .2 	 (8.51)

On	simplification	the	optimal	 αm 	is	provided	by	the	following	relations:
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where	 =e W Wm e / ,	 the	 percentage	 rate	 of	 error	 given	 the	 weights	 of	 the	 data	
points.

The	above	steps	are	iteratively	captured	as	follows:
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For	m =	1	to	M,

	 1.	Select	and	extract	from	the	pool	of	classifiers	the	classifier	Cm,	which	minimizes
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	 2.	Set	the	weight	 αm 	of	the	classifier	to
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	 3.	Update	the	weights	of	the	data	points	for	the	next	iteration.	If	Cm(xi)	is	a	miss,	set

	
= = −+ αw w e w e

e
i
m

i
m

i
m m

m

m 1 .( 1) ( ) ( )

	

	 Otherwise,	 = =+ −α
−w w e wi

m
i
m

i
m e

e
m m

m
.( 1) ( ) ( )

1

8.6.3 Random Forest
Random	 forest	 is	 an	 ensemble	 approach	 that	 is	 suited	 to	handle	high-dimen-
sional	data,	as	different	models	work	on	independent	feature	sets	(subsets	of	the	
high-dimensional	space).	The	results	are	assimilated	to	a	single	result.	A	random	
forest	 is	a	collection	of	 individual	decision	tree	classifiers,	where	each	tree	is	a	
forest	that	has	been	trained	using	a	bootstrap	sample	of	instances	from	the	data,	
and	each	 split	 attribute	 in	 the	 tree	 is	 chosen	 from	among	a	 random	subset	of	
attributes.	Classification	of	instances	is	based	on	aggregate	voting	over	all	trees	
in	the	forest.

Individual	trees	are	constructed	as	follows	from	data	having	N	samples	and	M	
explanatory	attributes:

	 1.	Choose	a	train	set	by	selecting	N	samples,	with	replacement	from	the	data.
	 2.	At	each	noted	in	the	tree,	randomly	select	m	attributes	from	the	entire	set	of	

M	attributes	in	the	data	(the	magnitude	of	m	is	constant	throughout	the	for-
est	building).

	 3.	Choose	the	best	split	at	that	node	from	among	the	m	attributes.
	 4.	Iterate	the	second	and	third	steps	until	the	tree	is	fully	grown	(no	pruning).
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During	the	first	step	of	the	process	a	subset	of	N	samples	is	chosen	from	the	
initial	train	set	using	the	bootstrap	sampling	with	replacement,	resulting	in	a	split	
of	the	train	set.	The	set	of	N samples	is	used	for	analysis	and	generation	of	a	tree	t.	
The	remaining	sets	that	are	not	part	of	set	Di	are	called	out-of-bag	sets.	The	samples	
of	this	set	Di	are	used	for	error	prediction	estimation.

The	samples	in	set	Di	are	used	to	construct	the	tree	without	pruning.	It	should	be	
noted	that	this	is	an	iterative	process,	and	each	iteration	results	in	the	creation	of	a	tree	
for	analysis.	Moreover,	each	tree	is	constructed	differently	as	the	number	of	randomly	
selected	attributes	would	vary	from	each	tree	in	the	forest,	as	dictated	in	step	2.

To	predict	the	class	of	an	observation	using	a	tree,	the	observation	is	assigned	
to	a	terminal	node	(i.e.,	a	leaf)	based	on	its	predictor	values.	The	class	containing	
the	majority	of	train	set	observations	in	the	leaf	is	selected	as	the	class	prediction	
for	the	observation.	With	a	forest	of	classification	trees,	each	tree	gets	one	vote	for	
each	out-of-bag	observation,	and	for	a	given	observation,	the	class	receiving	the	
most	votes	is	the	forest	prediction.	Again,	ties	are	resolved	by	selecting	the	class	
with	the	lowest	label.	The	probability	of	ties	is	very	small	if	the	number	of	trees	
is	large.	The	random	forest	prediction	for	an	observation	is	computed	by	averag-
ing	the	tree	predictions	over	trees	for	which	the	given	observation	is	out	of	bag	
(Figure	8.11).

Repetition	of	these	steps	yields	a	forest	of	trees,	each	of	which	has	been	trained	
on	bootstrap	samples	of	instances.	Thus,	for	a	given	tree,	certain	instances	will	have	
been	left	out	during	training.	Prediction	error	is	estimated	from	these	out-of-bag	
instances.	The	out-of-bag	instances	are	also	used	to	estimate	the	importance	of	par-
ticular	attributes	via	permutation	testing.	If	randomly	permuting	values	of	a	par-
ticular	attribute	do	not	affect	the	predictive	ability	of	trees	on	out-of-bag	samples,	
that	attribute	is	assigned	a	low	importance	score.

8.6.4 Application of Ensemble Approaches in Bioinformatics
Association	studies	have	become	an	integral	part	of	bioinformatics	over	the	past	
decade.	Association	studies	can	help	determine	individual	susceptibility	to	vari-
ous	diseases	as	well	as	their	responses	to	drugs	based	on	their	genetic	variations.	
A	widely	used	design	for	association	study	is	to	screen	common	single	nucleotide	
polymorphisms	(SNPs)	and	compare	their	variation	between	case	and	control	sam-
ples	for	disease-associated	gene	identification	at	the	genome-wide	scale	(termed	as	
genome-wide	association	(GWA)	studies).	It	is	commonly	accepted	that	complex	
diseases	such	as	diabetes	and	cancer	arise	from	a	combination	of	multiple	genes	
that	often	regulate	and	interact	with	each	other	to	produce	the	traits.	Therefore,	
the	goal	of	these	studies	is	to	identify	the	complex	interactions	among	multiple	
genes	 that,	 together	with	 environmental	 factors,	may	 substantially	 increase	 the	
risk	of	the	development	of	diseases.	Using	SNPs	as	genetic	markers,	this	problem	
is	commonly	formulated	as	the	task	of	SNP-SNP	and	SNP-environment	interac-
tion	identification.
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Among	many	pattern	recognition	algorithms,	 the	decision	tree	algorithm	has	
long	been	recognized	as	a	promising	tool	for	SNP-SNP	interaction	identification.	
Initial	attempts	 to	 identify	gene-gene	 interaction	using	decision	tree-based	meth-
ods	were	investigated	on	relatively	small	datasets.	For	instance,	Yang	et	al.	(2010)	
explained	 the	 application	 of	 the	 CART	 algorithm	 with	 a	 multivariate	 adaptive	
regression	spline	model	to	explore	the	presence	of	genetic	interactions	from	92	SNPs.

With	 the	 increasing	popularity	of	 tree-based	 ensemble	methods,	 such	meth-
ods	have	become	the	focus	of	many	recent	studies	under	the	context	of	SNP-SNP	
interaction	identification	for	complex	disease	analysis.	Although	different	ensemble	
methods	have	been	proposed	for	identifying	SNP-SNP	interactions,	random	for-
ests	are	the	most	popular.	This	popularity	is	largely	due	to	the	method’s	intrinsic	
ability	to	take	multiple	SNPs	jointly	into	consideration	in	a	nonlinear	fashion.	In	
addition,	 random	 forests	 can	 be	 used	 easily	 as	 an	 embedded	 feature	 evaluation	
algorithm,	which	is	applicable	for	disease	association	studies.
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Figure 8.11 the schematic illustration of the random forest classifier.
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The	primary	goal	of	a	random	forest	analysis	in	the	context	of	genetic	associa-
tion	 studies	 is	 to	 identify	SNPs	 that	may	 increase	or	decrease	 susceptibility	 to	a	
disease	 (Bureau	 et	 al.	 2005;	Lunetta	 et	 al.	 2004).	This	 goal	 can	be	 achieved	by	
quantifying	how	much	each	SNP	contributes	to	the	predictive	accuracy	of	a	ran-
dom	 forest	 by	 measuring	 its	 predictive	 importance.	 Finding	 that	 an	 SNP	 helps	
differentiate	between	cases	and	controls	is	an	indication	that	the	SNP	either	con-
tributes	to	the	phenotype	or	is	linked	to	disequilibrium	with	SNPs,	contributing	
to	the	phenotype.

We	describe	measures	of	predictive	importance	as	a	categorical	response,	such	
as	the	case	or	control	status	of	individuals	in	a	genetic	study.	For	individual	i,	let	
Xi	represent	the	vector	of	predictor	variable	values,	yi	represent	its	true	class,	Vj (Xi )
represent	the	vote	of	tree	j,	and	tij	represent	an	indicator	taking	value	1	when	indi-
vidual	i	is	out	of	bag	for	tree	j and	0	otherwise.	Let	 = Σ =T ti j

T
ij1  be	the	number	of	

trees	for	which	individual	i	is	out	of	bag.	The	margin	of	votes	mg X yi i( , )	is	the	dif-
ference	between	the	proportion	of	votes	for	the	true	class	and	the	largest	proportion	
of	votes	among	the	other	classes	for	a	given	individual.	With	only	two	classes,	such	
as	diseases	and	control,	the	margin	becomes	the	difference	between	the	proportion	
of	votes	for	the	true	class	and	the	proportion	of	votes	for	the	wrong	class.	Letting	

=I V X yj i i( ( ) )	denote	the	indicator	function	taking	value	1	when	 =V X yj i i( ) 	and	
0	otherwise,	the	margin	can	be	written:
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With	only	two	classes,	0	and	1,	the	margin	simplifies	to:
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The	margin	represents	the	level	of	confidence	of	the	forest	prediction.	When	most	
trees	vote	for	the	true	class	of	an	individual	and	the	margin	is	close	to	1,	the	pattern	of	
predictor	values	for	that	individual	unambiguously	matches	that	of	other	individu-
als	in	the	true	class.	When	a	large	proportion	of	trees	votes	for	another	class	and	the	
margin	is	just	above	0	or	is	negative,	the	pattern	of	predictor	values	has	only	weak	
similarity	with	other	individuals	in	the	same	class	and	may	point	to	another	class.
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Now,	consider	 random	permuting	of	 the	values	of	 a	predictor	variable	 such	
as	an	SNP	genotype	among	the	individuals	excluded	from	the	bootstrap	sample,	
such	that	the	variable	becomes	independent	of	the	response.	If	the	variable	is	pre-
dictive	of	the	response,	it	will	be	present	in	a	large	proportion	of	trees	and	near	the	
roots	of	those	trees.	A	large	proportion	of	out-of-bag	individuals	have	genotypes	
that	will	be	directed	to	the	wrong	side	of	the	tree.	The	margin	is	then	expected	to	
decrease	from	the	original	variable	values.	Conversely,	if	the	variable	is	not	related	
to	the	response,	it	will	be	present	in	few	trees,	and	when	it	is	present,	it	will	be	
near	the	leaves.

8.7 Computational Challenges of Supervised Learning
The	computational	 challenges	of	 applying	 supervised	 learning	on	bioinformatics	
datasets	are	attributed	to	two	aspects.	The	first	 is	 the	very	unbalanced	nature	of	
the	datasets	 encountered	 in	bioinformatics	 (Provost	2000).	A	dataset	 is	believed	
to	be	unbalanced	when	one	class	contains	more	samples	(majority	class)	than	the	
other(s).	For	instance,	in	the	case	of	splice	site	detection	there	are	100	times	fewer	
positive	 samples	 than	negative	 samples.	Unbalanced	datasets	can	present	a	chal-
lenge	when	training	supervised	learners.	The	standard	approach	to	addressing	this	
issue	is	to	assign	a	different	misclassification	cost	to	each	class.	For	SVMs,	this	cost	
is	calculated	by	associating	a	different	soft	margin	constant	to	each	class	according	
to	the	number	of	samples	in	the	class.	Often	when	data	are	unbalanced,	the	cost	
of	misclassification	is	also	unbalanced,	where	having	a	false	negative	proves	more	
costly	than	having	a	false	positive.

Another	challenge	in	supervised	learning	is	the	problem	of	overfitting.	A	super-
vised	model	is	considered	to	be	overfit	if	the	model	is	closely	tied	down	to	its	train	
set.	The	results	obtained	from	such	models	tend	to	be	biased	where	the	model	fails	to	
perform	on	random	test	samples.	Overfitting	stems	from	the	fact	when	the	model	is	
overly	trained	to	fit	closely	to	the	noise	in	the	data.	There	are	different	model	evalua-
tion	strategies	that	are	discussed	in	Chapter	9,	to	gauge	the	effectiveness	of	the	models.

8.8 Conclusion
In	this	chapter	we	described	prominent	classification	or	supervised	learning	strate-
gies	used	in	the	field	of	bioinformatics.	The	chapter	covered	important	concepts	of	
supervised	learning	such	as	bias	and	variance	and	model	complexity.	The	chapter	
also	shed	light	on	specific	challenges	that	bioinformatics	datasets	pose	to	supervised	
learning.	Apart	 form	 listing	 the	different	 approaches	 to	 supervised	 learning,	 the	
chapter	provided	a	description	of	the	application	of	these	approaches	to	different	
high-throughput	data-rich	areas	of	bioinformatics,	such	as	gene	expression	data	and	
protein	structure	prediction.
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Chapter 9

Validation and 
Benchmarking

In	 Chapter	 8,	 we	 introduce	 bias	 and	 variance,	 overfitting,	 and	 key	 classifiers	
as	 bioinformatics	 applications.	 These	 techniques	 have	 been	 used	 successfully	
with	both	clustering	and	classification	methods.	In	this	chapter,	we	describe	the	
evaluation	strategies	used	to	test	a	hypothesis	and	evaluate	the	performances	of	
the	clustering	and	classification	techniques	described	in	Chapters	6	to	8.	For	the	
readers’	convenience,	we	have	divided	this	chapter	into	two	parts.	The	first	part	
contains	an	explanation	of	model	selection	and	evaluation	techniques	used	on	
classification	models.	The	second	part	contains	an	explanation	of	cluster	evalu-
ation	techniques.

9.1 introduction: Performance evaluation techniques
With	 the	exponential	growth	of	data	and	 the	growing	 importance	of	data	min-
ing,	the	roles	of	clustering	and	classification	techniques	have	become	of	an	integral	
part	of	research	in	bioinformatics.	Despite	this	importance,	the	significance	of	the	
results	and	knowledge	mined	from	biological	data	is	formalized	using	evaluation	
techniques.	A	wide	range	of	performance	evaluation	techniques	are	available	 in	
data	 mining.	 These	 techniques	 have	 been	 derived	 using	 well-known	 statistical	
principles.	This	 section	of	 the	 chapter	 is	dedicated	 toward	explaining	how	 these	
principles	can	be	used	for	better	inference	evaluation.

Before	 we	 delve	 into	 the	 techniques	 of	 model	 evaluation,	 we	 would	 like	 to	
remind	 the	 readers	 that	 classification	 techniques	 are	 used	 to	 generate	 learning	
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models	that	are	used	to	classify	samples	into	the	most	unbiased	forms	possible	using	
the	least	possible	variance.	As	discussed	in	Chapter	8,	a	trade-off	exists	between	the	
bias	and	variance	of	the	learning	model,	i.e.,	models	with	low	bias	have	high	vari-
ance	and	vice	versa.	It	is	known	that	classification	model	bias	remains	constant	as	
the	size	of	training	set	D	increases,	whereas	the	variance	decreases	(i.e.,	as	D →	∞,	
the	model’s	variance →	0)	in	such	cases.	Variance	is	therefore	an	indicator	of	the	
performance	of	a	model	(Guyon	2009).

However,	while	models	with	low	variance	seem	to	be	the	best	logical	choice,	
it	 is	 observed	 that	models	with	 the	 least	 possible	 variance	 tend	 to	 be	 overfitted	
models.	Therefore,	though	variance	is	an	effective	estimate	of	model	performance,	
it	 fails	 to	gauge	a	model’s	 ability	 to	generalize	across	 training	 sets	 and	compare	
model	performances.	To	avoid	these	errors,	it	is	a	common	practice	in	data	min-
ing	to	use	the	generalization	error	as	an	alternate	means	to	evaluate	and	compare	
learning	models.

The	 generalization	 error	 G( )	 of	 a	 model	 is	 defined	 as	 follows	 (Nadeau	 and	
Bengio	 2003).	 For	 example,	 if	 a	 large	 dataset	 X X Xn

n= …{ , , }1 1 	 consists	 of	 n	
samples	of	the	form	 RX x yi i i

p q= ∈ +( , ) ,	where	p and	q denote	the	dimensions	of	
xi 	and	the	class	label	 yi ,	then	let	D	represent	the	training	set	of	n n≤1 	samples	
drawn	at	random	from	the	dataset	X n

1 .	Furthermore,	let	 f A	represent	the	super-
vised	 learning	 algorithm	 trained	 using	 the	 training	 set	 D.	 The	 generalization	
error	 GA( )	is	defined	as	the	inaccuracy	of	a	decision	 f xA( )	when	y	is	the	associ-
ated	class	label.	The	difference	between	the	corresponding	generalization	errors	
G G( , )A B 	of	two	models,	 f A 	and	 fB ,	 is	used	to	compare	the	two	learning	algo-

rithms,	provided	they	use	the	same	learning	data	(Vapnik	1999).	The	following	
sections	describe	the	data	mining	strategies	used	to	estimate	the	generalization	
errors	of	models.

9.2 Classifier Validation
To	 generate	 accurate	 generalization	 error	 estimates,	 various	 validation	 strategies	
can	be	used	 in	tandem	with	data	mining.	These	validation	techniques	are	moti-
vated	by	two	factors:	model	selection	and	performance	estimation.

	 1.	Model. selection:. Almost	 invariably,	 classification	 techniques	 have	 one	
or	 more	 parameters	 that	 dictate	 the	 performance	 of	 the	 model	 generated.	
For	example,	in	the	case	of	the	SVM	and	its	respective	kernel	function,	the	
parameters	of	the	kernel	function	dictate	the	performance	of	the	classifier,	or	
in	the	case	of	the	random	forest	classifier,	the	determination	of	the	number	
of	trees	is	necessary	to	obtain	optimal	model	performance.	Therefore,	model	
selection	enables	the	users	to	choose	and	optimize	the	set	of	parameters	of	a	
classifier	for	optimal	model	performance.
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	 2.	Performance.estimation: Once	a	model	is	selected	with	an	optimal	param-
eter	set,	performance	estimation	is	used	to	estimate	the	performance	of	the	
selected	 model.	 Performance	 is	 typically	 measured	 by	 a	 model’s	 ability	 to	
classify	samples	to	their	corresponding	classes	for	a	given	dataset.

9.2.1 Model Selection
With	the	various	classification	models	available	in	data	mining,	it	is	a	challenge	to	
choose	those	models	that	best	suit	the	data	in	the	application	domain.	Model	selec-
tion	is	used	to	choose	that	model	that	best	fits	the	data	set	being	analyzed.	Typically,	
bioinformatics	datasets	consist	of	a	large	number	of	samples	(n),	and	each	sample	is	
described	by	a	fixed	number	of	features	(p)	(i.e.,	n >> p).	In	such	situations	where	
n >> p,	any	learning	strategy	can	be	applied.	However,	many	high-dimensional	data-
sets	used	in	bioinformatics	consist	of	a	small	number	of	samples,	and	the	features	
that	describe	these	samples	are	 larger	 in	number	(n << p).	 In	such	situations,	 the	
choice	of	model	affects	the	results	and	inferences	that	can	be	derived.

Determining	which	model	to	use	is	driven	by	a	heuristic of model choice	(Guyon	
2009)	 that	 encapsulates	 the	 conditions	described	below.	The	benefits	 of	 using	 a	
heuristic	of	a	model	is	that	this	model	reduces	the	chances	of	model	overfitting,	
prioritizes	learners	to	be	used,	and	reduces	the	computational	complexity	that	can	
be	avoided.	The	following	heuristics	highlight	the	importance	of	choosing	appro-
priate	classification	models	by	taking	into	consideration	overfitting,	linear	models,	
and	nonlinear	models.

Overfitting:	 The	 naïve	 Bayes	 classifier	 is	 least	 prone	 to	 overfitting	 and	 least	
computationally	expensive	of	known	classification	techniques.	As	described	
in	Chapter	8,	the	naïve	Bayes	classifier	simplifies	the	assumption	of	feature	
independence	(i.e.,	there	is	no	relation	between	features),	and	thus	renders	the	
easy	implementation	of	a	model	that	is	computationally	effective.	Moreover,	
this	assumption	of	feature	independence	may	create	models	that	underfit	the	
data	 when	 (1)	 there	 are	 a	 larger	 number	 of	 features	 than	 samples	 and	 (2)	
the	number	of	samples	is	not	sufficient	to	estimate	the	classifier	performance	
using	cross-validation.	Due	to	these	limitations,	it	is	advisable	to	use	the	naïve	
Bayes	classifier	as	a	baseline	model.

Linear.models:	Linear	models	are	derived	from	classifiers,	such	as	the	support	
vector	 machine	 (SVM)	 with	 a	 linear	 kernel,	 and	 have	 low	 computational	
complexity.	 These	 models	 are	 most	 effective	 on	 datasets	 that	 have	 a	 large	
number	of	samples	(n)	with	a	lower	number	of	features	(p).	However,	these	
models	are	preferred	as	they	can	provide	a	better	fit	of	the	data.

Nonlinear.models:	Nonlinear	classifiers	such	as	the	J48	or	C4.5	decision	trees	
should	be	considered	only	if	sufficient	amounts	of	training	data	are	available	
to	perform	cross-validation.	Nonlinear	SVM	models	work	well	with	datasets	
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that	 have	 a	 large	number	 of	 features.	 However,	 computational	 complexity	
increases	 with	 the	 number	 of	 features,	 and	 these	 nonlinear	 models	 could	
require	feature	selection	in	such	cases.

9.2.1.1 Challenges Model Selection

Before	discussing	the	various	validation	strategies	used	to	estimate	the	performance	
of	a	model,	we	provide	an	overview	of	 the	procedure	used	 to	validate	a	 selected	
model	in	this	section.	Performance	estimation	of	a	model	is	dependent	on	the	num-
ber	of	 samples	 in	 the	dataset.	Let	us	consider	a	dataset	consisting	of	n available	
samples	in	a	study,	of	which	m	number	of	samples	is	used	for	model	training.	In	
model	training,	the	different	parameters	of	the	selected	models	are	tweaked,	and	
the	best	model	is	selected	for	performance	estimation.	Performance	estimation	is	
then	performed	on	a	test	set	T.	It	is	imperative	that	the	test	set	T =	n −	m	be	reserved	
solely	 for	 testing	 throughout	 the	 study.	Therefore,	performance	estimation	poses	
the	following	challenges.

9.2.1.1.1 Sufficient number of Samples in train and test Sets

This	challenge	is	based	on	the	characteristics	of	the	dataset.	If	the	dataset	consists	of	
a	relatively	large	number	of	samples	(n),	as	compared	to	the	number	of	features	(p)	
(i.e.,	n >> p),	then	it	is	believed	that	a	model	trained	on	a	training	set	that	consists	of	
randomly	chosen	samples	and	tested	using	a	testing	set	would	provide	relevant	error	
estimates	that	reflect	the	characteristics	of	the	entire	dataset.	However,	if	the	data-
set	has	a	lower	number	of	samples	(n)	than	the	number	of	features	(p)	(i.e.,	n << p),	
we	could	face	a	situation	where	it	is	not	always	possible	to	reserve	a	sufficiently	large	
test	set	without	compromising	the	number	of	samples	used	for	training	the	model.	
This	 problem	 could	 invariably	 generate	 inaccurate	 error	 estimates	 that	 could	 be	
misleading.	As	discussed	previously,	the	performance	of	the	model	is	closely	related	
to	the	size	of	the	train	set.	Therefore,	appropriate	train	and	test	sets	(with	a	mini-
mum	number	of	samples)	should	be	determined	based	on	a	predetermined	model	
performance	confidence	interval	prior	to	model	creation.

9.2.1.1.2 Handling imbalanced Datasets

Models	 are	 affected	 by	 an	 imbalance	 in	 the	 number	 of	 samples	 in	 each	 class.	
Bioinformatics	is	plagued	by	imbalanced	datasets	(Chawla	et	al.	2004).	Classifiers	
trained	on	imbalanced	datasets	create	models	that	classify	the	test	instances	to	the	
majority	class	(i.e.,	the	class	that	has	the	most	samples)	that	is	least	important.	These	
misclassifications	of	samples	that	belong	to	the	minority	class	deteriorate	the	overall	
performance	of	the	model.	The	relationship	between	the	training	set	and	the	equal	
representation	of	all	classes	is	made	worse	when	there	is	large	overlap	between	classes	
or	when	majority	classes	can	be	further	divided	into	smaller	subclasses.
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Two	approaches	can	be	adopted	to	handle	 imbalanced	datasets:	unsupervised	
(data	 specific)	 and	 supervised	 (algorithmic)	 approaches.	Unsupervised	 approaches	
rely	on	various	resampling	strategies,	such	as	the	random	oversampling	of	the	minor-
ity	class	with	replacement	of	samples	(Liu	et	al.	2009),	random	undersampling	of	the	
majority	class,	directed	oversampling	(in	which	no	new	samples	are	created,	but	the	
choice	of	which	samples	to	replace	is	informed	rather	than	random),	and	directed	
undersampling	(where	the	choice	of	samples	to	eliminate	is	informed).

Supervised	 (algorithmic)	 (Fu	 et	 al.	 2002)	 approaches	 rely	 on	weighing	 and	
thresholding	strategies	that	prioritize	minority	classes	to	counter	the	class	imbal-
ance	caused	by	the	majority	classes	(Mease	et	al.	2007).	These	strategies	include	
adjusting	 the	 decision	 threshold	 or	 one-class	 learning	 rather	 than	 multiclass	
learning.	Other	approaches,	such	as	the	ensemble	of	undersampled	SVMs	(EUS	
SVMs),	 include	 a	mixture	of	data	 and	 algorithmic	 approaches.	These	methods	
use	 ensembles	 (Kang	 and	 Cho	 2006)	 in	 which	 the	 results	 of	 many	 classifiers	
are	combined	after	oversampling	or	undersampling	the	data	using	different	over/
undersampling	approaches.

9.2.2 Performance Estimation Strategies
Bioinformatics	 applications	 have	 access	 to	 a	 finite	 set	 of	 samples	 that	 are	 often	
insufficient	for	testing	a	hypothesis	using	classification	models.	Because	of	the	small	
sample	sets,	overfitting	is	prominent	 in	several	bioinformatics	applications,	espe-
cially	those	that	have	a	large	number	of	features	(p).

Performance	estimation	strategies	are	used	to	avoid	overfitting	the	error	esti-
mates	of	a	model	to	overly	optimistic	(i.e.,	lower	than	the	true	error	rate)	results.

This	section	describes	the	performance	estimation	strategies	used	to	effectively	
test	a	hypothesis	despite	the	shortage	of	samples	in	bioinformatics	datasets.

9.2.2.1 Holdout

The	holdout	method	is	considered	to	be	the	simplest	form	of	performance	estima-
tion	that	partitions	the	data	into	two	disjoint	sets:	a	train	set	and	a	test	set.	The	train	
set	is	used	to	train	the	chosen	classifier	for	model	generation	during	the	training	
phase.	During	this	phase,	 the	optimal	values	of	the	model	parameters	are	deter-
mined,	and	an	appropriate	performance	measure	is	evaluated.	Once	the	model	is	
generated,	the	testing	set	is	used	to	obtain	an	unbiased	estimate	of	the	generalized	
performance	of	the	models.

Though	it	is	the	simplest	form	of	performance	estimation	with	a	single	training	
and	testing	experiment,	the	holdout	estimates	of	error	could	be	misleading	when	
the	testing	set	is	not	sufficient	to	provide	good	error	estimates.	These	data	insuf-
ficiencies	are	brought	about	by	sparse	datasets	that	are	common	in	bioinformatics.	
Such	limitations	can	be	overcome	using	bootstrapping	and	cross-validation	tech-
niques	described	in	the	following	sections	(Figure	9.1).
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9.2.2.2 Three-Way Split

One	alternate	approach	to	the	holdout	technique	is	the	three-way	split.	In	the	three-
way	split,	model	selection	and	performance	(true	error)	estimates	are	computed	at	
the	same	time.	As	the	name	suggests,	this	technique	splits	the	data	into	three	inde-
pendent	sets:	the	training	set,	the	validation	set,	and	the	testing	set.

As	with	the	holdout	technique,	the	three-way	split	train	set	is	used	for	model	
selection	and	parameter	estimation.	The	difference	between	the	methods	is	that	the	
three-way	split	creates	an	additional	split	referred	to	as	the	validation	set,	as	noted	
above.	 The	 validation	 set	 consists	 of	 a	 set	 of	 samples	 that	 are	 used	 to	 fine-tune	
the	estimated	parameters	of	the	model	selected	using	the	train	set.	This	additional	
fine-tuning	enables	the	removal	of	biases	from	the	true	error	estimates	created	dur-
ing	the	model	training	using	the	train	set.	Furthermore,	all	parameter	estimations	
should	terminate	with	the	validation	set.

Finally,	the	testing	set	is	used	to	assess	the	final	performance	of	the	fine-tuned	
model.	It	should	be	noted	that	just	as	in	the	holdout	method,	the	testing	set	is	an	
independent	set	of	samples	that	are	used	to	generate	the	true	error	estimates	of	the	
final	model.

The	following	steps	encapsulate	the	process	of	performance	evaluation	using	the	
three-way	split	method	(Figure	9.2):

	 1.	Dataset	D	is	divided	into	three	disjoint	(independent)	sets:	train	(t),	valida-
tion	(v),	and	testing	sets	(T ).

	 2.	Choose	 an	 appropriate	 classifier	 (F )	 and	 determine	 the	 parameters	 that	
need	tuning.

	 3.	Use	the	training	set	(t)	and	the	classifier	(F)	to	generate	the	model	( f ).
	 4.	Determine	optimal	parameters	of	model	( f )	using	the	validation	set	(v).
	 5.	Repeat	 steps	 2	 through	 4	 if	 there	 are	 multiple	 classifiers	 or	 if	 multiple	

parameters	need	to	be	optimized.

Test
Set

Classi�er

Model

Train
Set

Figure 9.1 A schematic representation of the holdout technique for perfor-
mance estimation of a model.
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	 6.	Select	 the	 best	 model	 ( f ),	 and	 train	 it	 using	 the	 combined	 training	 and	
validation	sets.

	 7.	Perform	parameter	estimation	using	the	final	model	( f )	and	the	independent	
test	set	(T ).

9.2.2.3 k-Fold Cross-Validation

The k-fold	cross-validation	is	the	most	prominently	used	performance	estimation	
technique	in	data	mining	and	bioinformatics	applications.	k-Fold	cross-validation	
divides	the	data	set	into	k	disjointed	(independent)	subsets	consisting	of	equal	(or	
nearly	equal)	samples	in	each	subset.	Each	of	the	k	disjointed	data	subsets	is	referred	
to	as	a	fold,	thus	the	name	k-fold.	The	k-fold	cross-validation	process	is	an	iterative	
procedure	in	which	one	of	the	k	subsets	(chosen	at	random)	is	used	as	a	test	set	for	
performance	estimation	at	each	iteration,	while	the	remaining	k	–	1	disjointed	sub-
sets	are	combined	to	form	the	training	set	that	is	used	to	train	the	model.

It	should	be	noted	that	the	number	of	iterations	in	the	k-fold	cross-validation	is	
set	to	k;	i.e.,	the	number	of	iterations	is	equal	to	the	number	of	disjointed	subsets	
used	for	performance	evaluation.	Having	the	number	of	iterations	fixed	to	k	is	done	
such	that	there	is	an	equal	probability	of	each	fold	being	used	as	the	testing	set	for	
performance	evaluation.	Once	all	 the	 iterations	of	the	k-fold	cross-validation	are	
carried	out,	the	average	of	the	error	estimates	is	computed	to	provide	a	generalized	
performance	 estimate	 performed	 over	 all	 k-folds.	 This	 generalized	 performance	
estimate,	though	slightly	pessimistic,	is	considered	justified	as	it	is	carried	out	over	
the	entire	sample	space.

Another	form	of	the	k-fold	validation	technique	is	the	leave-one-out	cross-
validation	(LOOCV)	(Efron	and	Tibshirani	1997),	in	which	each	subset	contains	
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Figure 9.2 A schematic representation of the application of the three-way split 
approach to performance estimation.
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one	 sample,	 i.e.,	 k =	 N,	 where	 N =	 the	 number	 of	 samples	 in	 the	 dataset	 D	
(Figure	9.3).

9.2.2.4 Random Subsampling

Random	subsampling	performs	k	 data	 splits	of	 the	dataset.	Unlike	k-fold	 cross-
validation,	the	number	of	splits	is	not	equal	to	the	number	of	iterations	by	which	
the	procedure	is	repeated.	Random	subsampling	is	also	referred	to	as	Monte	Carlo	
cross-validation	(MCCV).

In	this	approach,	each	split	consists	of	a	fixed	number	of	samples	(determined	
by	the	user)	that	are	randomly	chosen	without	a	replacement	from	the	dataset.

The	error	estimates	(Ei )	are	carried	out	on	multiple	iterations	for	a	given	dataset.	
In	every	iteration	of	the	algorithm,	a	new	set	of	samples	is	chosen	from	the	dataset	
independently	for	training	and	testing.	The	true error	estimate	is	obtained	by	taking	
the	average	of	the	separate	estimate	Ei,	as	shown	in	Equation	9.1.

	

1 .
1

E
K

E
i

K

i∑=
=

	 (9.1)

The	error	estimates	generated	using	random	subsampling	are	believed	to	be	pes-
simistic	(i.e.,	worst-case	estimates),	whereas	those	generated	using	the	holdout	test	
are	overly	optimistic.

9.3 Performance Measures
In	this	section,	we	discuss	the	measures	proposed	in	data	mining	to	test	the	perfor-
mance	of	a	model.	The	most	fundamental	of	these	measures	is	the	ROC	analysis	
and	 its	 application	 to	 the	 binary	 (or	 two-class)	 classification	 problem.	 A	 binary	
classification	 algorithm	 maps	 a	 sample	 (for	 example,	 an	 unannotated	 sequence)	

Iteration
1

Iteration
2

Iteration
3

Dataset is Split
into k Folds

k-1 folds used 
for training

kth fold used 
for testing

Figure 9.3 the process of splitting the dataset into folds followed in k-fold 
cross-validation.
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into	one	of	 two	classes,	denoted	as	C+	 and	C–.	Building	on	our	discussions	 in	
Section	9.3.2,	the	parameters	of	any	classification	algorithm	are	derived	using	the	
train	set	that	consists	of	samples	obtained	from	the	known	C+	and	C–	classes,	and	
then	the	classifier	is	tested	on	the	C+	and	C–	samples	that	are	disjoint	from	the	
train	set.

Such	a	binary	classifier	predicts	only	the	classes	to	which	test	samples	belong.	
There	are	four	possible	outcomes	for	this	classifier:	true	positive	(TP),	true	negative	
(TN),	false	positive	(FP),	and	false	negative	(FN).	These	outcomes	are	schemati-
cally	known	as	a	confusion	matrix	(see	Figure	9.4).

If	a	sample	that	belongs	to	the	true	positive	class	C+	 is	correctly	classified	as	
positive,	then	the	result	is	counted	as	a	true	positive	(TP);	however,	if	the	sample	is	
misclassified	as	negative,	it	is	counted	as	a	false	negative	(FN).	Similarly,	if	a	sample	
that	belongs	 to	 the	 true	negative	class	C–	 is	correctly	classified	as	negative,	 it	 is	
counted	as	a	true	negative	(TN);	if	it	is	misclassified	as	positive,	it	is	counted	as	a	
false	positive	(FP).

9.3.1 Sensitivity and Specificity
The	TP,	FN,	TN,	and	FP	counts	can	then	be	used	to	derive	other	measures	of	
classifier	performance.	The	true	positive	rate	(also	known	as	the	hit	rate	or	recall)	
of	a	classifier	is	derived	from	the	following	relation:

	
.TP Rate

Positives correctly classified
Total number of positives

= 	 (9.2)

As	shown	in	the	confusion	matrix	(see	Figure	9.4),	the	positives	correctly	clas-
sified	refer	to	the	true	positive	(TP)	count,	and	the	total	number	of	positives	refers	
to	the	sum	of	both	the	true	positive	and	false	positive	counts	(i.e.,	TP	+	FN).
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Figure 9.4 A schematic representation of a confusion matrix in the case of a 
binary classifier. the different performance measures that are derived from the 
confusion matrix are true positive (tP), false positive (FP), true negative (tn), and 
false negative (Fn).
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Similarly,	the	false	positive	rate	(also	known	as	the	false	alarm	rate)	of	the	clas-
sifier	is	computed	using	the	following	relation:

	
FP Rate Negatives incorrectly classified

Total number of negatives
= , 	 (9.3)

where	negatives	incorrectly	classified	refer	to	the	false	positive	(FP)	count	and	the	
total	number	of	negatives	refers	to	the	FP	+	TN.

The	TP	and	FP	rates	are	 two	of	 the	most	 import	measures	of	model	perfor-
mance.	 It	 is	 important	 to	know	that	a	model	 that	 is	effective	 for	discriminating	
between	samples	of	the	C+	and	C–	classes	will	have	both	a	high	TP	rate	and	a	low	
FP	rate.	The	interplay	between	the	TP	rate	and	FP	rate	is	best	captured	using	the	
ROC	plot	described	in	Section	9.3.3.

The	 true	positive	 rate	 (TP	 rate)	 is	 also	 referred	 to	 as	 the	 sensitivity.	Another	
important	measure	of	model	performance	is	known	as	specificity or TN rate	and	is	
calculated	using	the	following	relation.

 Sensitivity		=	1	–	Specificity (9.4)

Typically,	sensitivity	represents	a	model’s	ability	to	identify	samples	that	belong	
to	 the	positive	 class	 (C+),	 and	 specificity	 represents	 a	model’s	 ability	 to	 identify	
samples	of	the	negative	class	(C–).

9.3.2 Precision, Recall, and f-Measure
Similar	to	the	measures	of	sensitivity	and	specificity,	the	measures	of	precision	and	
recall	 are	used	 to	 estimate	 the	performance	of	 a	model.	Precision	and	 recall	 are	
measures	used	to	evaluate	the	retrieval	performance	of	a	classifier	and	are	suited	
to	biological	applications	that	deal	with	information	retrieval	(Huang	and	Bader	
2009;	Abeel	et	al.	2009).	In	this	section,	we	provide	the	formal	definition	of	preci-
sion	and	recall,	and	their	derivative	f-measure	used	as	a	comprehensive	measure	to	
gauge	the	performance	of	a	classifier.

Precision	(p)	is	the	ratio	of	the	number	of	true	positives	(TP)	to	the	total	number	
of	positives	(TP	+	FP)	used	and	is	represented	by	Equation	9.5:

	
.p

TP
TP FP

=
+

	 (9.5)

Precision,	therefore,	represents	the	positive predictive value	of	a	model.	Similarly,	
we	have	the	measure	of	recall	(r).	Sometimes	referred	to	as	the	TP	rate,	sensitivity	
is	to	the	ratio	between	the	number	of	true	positives	(TP)	and	the	total	outcomes	
(TP	+	FN)	generated	by	the	model.	Recall	(r)	is	represented	as	follows:

	
.r

TP
TP FN

=
+ 	 (9.6)
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To	determine	model	accuracy	using	both	p	and	r,	we	use	the	 f-measure.	The	
f-measure	is	the	harmonic	mean	between	p	and	r	and	is	represented	as	follows:

	
2 .F measure

p r
p r

− = × ×
+

	 (9.7)

In	Equation	9.7,	the	f-measure	is	believed	to	be	high	when	both	the	p and	r 
values	are	high.	The	f-measure	is	effective	in	capturing	the	compromise	between	p	
and	r.	Therefore,	a	model	that	has	a	higher	f-measure	is	unbiased	and	is	an	effec-
tive	classifier.

9.3.3 ROC Curve
The	receiver	operating	characteristics	(ROC)	curve	is	a	classification	evaluation	tech-
nique	that	is	used	to	visually	compare	the	performance	of	classifier.	In	order	to	ana-
lyze	the	performance	of	a	model,	it	is	important	to	compare	the	interplay	between	
the	true	positives	and	the	false	positives	of	 independent	classifiers.	The	ROC	is	a	
graphical	plot	of	the	true	positive	rate	and	the	false	positive	rate	of	a	classifier	in	the	
ROC	space.	The	ROC	space	is	represented	by	the	specificity	(FP	rate)	on	the	x-axis	
versus	sensitivity	(TP	rate)	on	the	y-axis.	A	point	in	the	ROC	space	is	the	represen-
tation	of	a	classifier	in	terms	of	its	FP	rate	and	TP	rate	as	coordinates	in	the	ROC	
space	using	a	test	set.	This	representation	of	the	ROC	space	enables	the	capture	of	
the	trade-off	between	the	true	positives	and	the	false	positives	of	a	classifier	so	that	
the	result	is	beneficial	for	comparing	the	classifier	performance.

An	ROC	curve	is	a	step	function	that	tracks	the	performance	of	a	classifier	as	
the	number	of	samples	in	the	test	set	increases	(i.e.,	as	it	tends	to	∞).	Figure	9.5	pro-
vides	a	schematic	representation	of	the	performance	of	a	classifier	using	the	ROC	
curve.	If	the	ROC	curve	of	a	classifier	is	skewed	toward	the	northwest	corner	of	
the	ROC	space,	the	classifier	exhibits	a	higher	TP	rate	and	a	lower	FP	rate as	the	
number	of	samples	in	the	test	set	increases.	Classifiers	that	follow	this	skewed	trend	
are	believed	 to	be	 liberal	when	the	 skew	 identifies	positive	 samples	 that	are	 true	
positives	with	weak	evidence.

If,	on	the	contrary,	the	curve	is	skewed	toward	the	southeast	corner	of	the	ROC	
space,	the	classifier	exhibits	a	higher	FP	rate	and	a	lower	TP	rate.	In	such	a	scenario,	
the	classifier	is	believed	to	conservative	when	it	is	biased	toward	false	positive	clas-
sifications	along	with	a	lower	TP	rates.	Similarly,	if	the	ROC	curve	of	a	classifier	
falls	along	the	diagonal	of	the	ROC	space,	it	is	believed	that	the	classifier	has	no	
bias	toward	the	TP	rate	or	the	FP	rate,	and	performs	like	a	random	guess,	as	in	the	
case	of	making	a	decision	by	flipping	a	coin	(head	or	tail).	Typically,	it	is	desirable	
to	have	a	classifier	that	has	a	higher	TP	rate	and	a	lower	FP	rate.

In	order	to	quantify	the	performance	of	a	classifier	using	the	ROC	curve,	we	
use	 the	measure	of	 area	under	 the	 curve	 (AUC).	A	 relative	measure	 that	 ranges	
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from	0	to	1,	the	AUC	refers	to	the	area	under	the	ROC	curve	in	the	ROC	space	
(see	Figure	9.5).	A	classifier	is	believed	to	perform	well	if	the	AUC	is	higher	and	
approaches	closer	to	1,	and	vice	versa.

9.4 Cluster Validation techniques
With	the	large	volume	of	unlabeled	data	being	generated	in	the	field	of	bioinformat-
ics,	it	is	vital	to	understand	the	underlying	distribution	of	the	data.	Unsupervised	
clustering	 techniques	 of	 data	 mining	 aid	 in	 the	 understanding	 of	 the	 inherent	
properties	of	data.	However,	with	the	gamut	of	clustering	techniques	available,	it	
becomes	increasingly	difficult	for	users	to	choose	and	validate	these	findings.	Refer	
to	Chapters	6	and	7	for	a	description	of	clustering	techniques	and	their	applications	
in	bioinformatics.	In	this	section,	we	describe	the	validation	techniques	that	can	
be	used	to	quantify	the	quality	of	a	cluster.	The	evaluation	of	the	results	obtained	
from	a	clustering	algorithm	uses	three	cluster	characteristics	to	quantify	the	quality	
of	a	cluster.	These	cluster	characteristics	include	compactness,	connectedness,	and	
spatial	separation	(see	Figure	9.6)	(Handl	et	al.	2005;	Halkidi	et	al.	2001).

Compactness:	Compactness,	the	formation	of	compact	clusters,	is	achieved	if	
the	clustering	algorithm	is	effective	in	keeping	the	intracluster	differences	
small.	Compactness	can	be	achieved	with	algorithms	that	enable	the	forma-
tion	of	spherical	and	well-separated	clusters	such	as	the	k-means	algorithm.	

0.5
Better

Random Guess
Tr

ue
 P

os
iti

ve
 R

at
e

1
ROC Space

0
0.5

False Positive Rate
1

Worse
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With permission.)
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While	 compactness	 is	useful	 for	 characterizing	 clusters	with	well-formed	
boundaries,	 this	 property	 is	 ineffective	 in	 characterizing	 complicated	
clusters.

Connectedness:.As	the	name	suggests,	connectedness	can	be	used	to	character-
ize	arbitrary	shaped	clusters	based	on	the	connectivity	between	points	of	a	
cluster.	Compactness	is	based	on	the	assumption	that	neighboring	data	items	
belong	to	the	same	cluster.

Spatial.separation:.Spatial	separation	is	a	criterion	that	enables	the	character-
ization	of	clusters	that	are	sparse	(i.e.,	data	points	between	two	clusters	are	
widely	separated).	Therefore,	spatial	separation	usually	combines	with	other	
characteristics,	like	compactness	along	with	a	distance	measure.	Spatial	sepa-
ration	between	clusters	is	measured	using	three	approaches:	(1)	single	linkage,	
(2)	complete	linkage,	and	(3)	average	linkage.

9.4.1 The Need for Cluster Validation
All	clustering	methods	are	driven	by	the	choice	of	distance	measure,	and	the	
objective	 to	 form	 clusters	 with	 high	 intracluster	 similarity	 and	 low	 interclu-
ster	 similarity.	 Those	 bioinformatics	 applications	 that	 use	 clustering	 strate-
gies	for	hypothesis	testing	are	plagued	with	datasets	that	are	noisy	and	sparse.	
These	inherent	properties	of	the	dataset	make	it	difficult	to	interpret	the	results	
obtained	 using	 clustering	 algorithms.	 Typically,	 researchers	 rely	 on	 visual	
inspections	 of	 clusters	 and	 use	 prior	 biological	 information	 to	 estimate	 the	
quality	of	a	cluster,	making	cluster	validation	subjective.	Moreover,	these	coun-
terproductive	practices	of	users	undermine	 the	clustering	algorithms’	abilities	
to	 discover	 useful	 information	 possessed	 by	 the	 data	 necessitating	 the	 use	 of	
stringent	validation	techniques.

Clustering	 techniques	 are	primarily	used	 to	discover	 significant	groups	pres-
ent	in	high-dimensional	datasets.	However,	different	clustering	techniques	generate	

(a) Compactness (b) Connectedness (c) Spatial Separation

Figure 9.6 Dataset exhibiting the different properties. (From Handl, J., et al., 
Bioinformatics 21, no. 15 (2005): 3201–3212. With permission.)
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varied	results.	These	discrepancies	 in	results	are	attributed	to	 factors	 that	govern	
clustering	techniques.

Clustering. techniques. are. biased. toward. cluster. parameters:	 Clustering	
algorithms	are	biased	toward	the	formation	of	clusters	as	the	creation	of	clus-
ters	is	governed	by	the	parameters	used	by	the	technique.	For	example,	the	
k-means	algorithm	is	governed	by	the	predetermined	value	of	k	that	corre-
sponds	to	the	number	of	clusters	in	the	data.	This	is	the	fundamental	prob-
lem	that	leads	to	observable	discrepancies	between	the	solutions	produced	by	
different	algorithms.

The.sensitivity.of.the.clustering.technique.to.the.number.of.features.in.the.
dataset:	 Clustering	 relies	 on	 the	 existence	 of	 distinct	 naturally	 occurring	
clusters	of	data	points	within	the	feature	space.	As	most	clustering	techniques	
are	governed	by	the	use	of	a	distance	measure,	 it	 is	a	challenge	to	 identify	
naturally	occurring	clusters	in	sparse	high-dimensional	spaces.	This	inherent	
problem	results	in	the	clustering	of	data	points	in	the	absence	of	any	observed	
distribution	in	points,	leaving	it	to	the	user	to	detect	the	significance	of	the	
resultant	clusters	returned.

It	is	therefore	necessary	to	validate	a	clustering	algorithm	to	determine	that	
the	 clustering	 algorithm	 is	not	biased	 toward	particular	 cluster	properties	 and	
that	the	clusters	 formed	are	significant.	In	this	section,	we	describe	the	cluster	
validation	techniques	that	are	categorized	into	external	and	internal	measures	of	
cluster	quality.

9.4.1.1 External Measures

External	 validation	measures	 consist	of	 those	 techniques	 that	use	 existing	 infor-
mation	(correct	class	 labels)	 to	evaluate	 the	quality	of	a	cluster.	These	validation	
measures	are	therefore	used	to	evaluate	a	predefined	objective	or	hypothesis.	The	
measures	are	also	used	to	validate	a	cluster	with	a	known	set	of	benchmark	data.	In	
situations	where	no	known	benchmark	is	available	to	evaluate	a	cluster,	we	rely	on	
an	internal	measure	of	cluster	goodness.	Internal	measures	therefore	do	not	rely	on	
class	labels,	but	rather	use	information	intrinsic	to	the	structure	of	the	data	(Handl	
et	al.	2005).

External	measures	are	divided	into	unary	measures	and	binary	measures,	which	
are	described	as	follows.

Unary.measures:.Unary	measures	are	used	to	validate	whether	a	cluster	parti-
tion	complies	with	the	ground	truth.	The	ground	truth	typically	consists	of	
a	dataset	with	each	sample	assigned	a	unique	class	label.	Unary	measures	are	
evaluated	based	on	purity	and	the	completeness	of	the	cluster	evaluated	with	
respect	to	the	ground	truth	dataset.	Purity	denotes	the	fraction	of	the	cluster	
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taken	up	by	 its	predominantly	occurring	class	 label,	whereas	 completeness	
denotes	the	ratio	of	the	number	of	samples	in	the	predominant	class	that	are	
classified	to	the	cluster	being	evaluated	to	the	total	number	of	samples	in	the	
class.	To	obtain	an	assessment	of	a	cluster,	it	is	important	to	consider	purity	
and	 completeness	 together.	 For	 a	 comprehensive	 assessment	 of	 purity	 and	
completeness,	we	use	the	f-measure	as	described	in	Section	9.3.2	(Handl	et	
al.	2005).

Binary.measures:.Binary	measures	are	used	to	assess	the	consensus	between	a	
cluster	and	the	ground	truth	based	on	the	contingency	table	of	the	pairwise	
assignment	of	data	items.	Most	of	these	indices	are	symmetric	and	are	there-
fore	equally	well	suited	for	use	as	binary	measures,	that	is,	for	assessing	the	
similarity	of	two	clustering	results.

The	Rand	 index	 is	a	binary	measure	 that	 is	used	to	determine	the	similarity	
between	two	clusters	as	a	function	of	positive	and	negative	agreements	in	pairwise	
cluster	assignments.	Other	binary	measures	include	the	Jaccard	coefficient,	which,	
unlike	the	Rand	index,	takes	into	consideration	only	the	positive	matches	between	
clusters	for	evaluation.

9.4.1.2 Internal Measures

Internal	measures,	unlike	external	measures,	do	not	rely	on	a	ground	truth	dataset.	
All	internal	measures	of	a	cluster	are	relative	to	the	dataset	from	which	the	cluster	
is	 derived	 and	 use	 intrinsic	 information	 of	 the	 cluster	 and	 dataset	 to	 assess	 the	
quality	of	the	clustering.	As	discussed	in	the	previous	section,	measures	of	com-
pactness,	connectedness,	and	separation	are	effective	internal	measures	of	cluster	
goodness.	Apart	 from	these	 three	 internal	measures,	we	describe	other	measures	
that	are	derived	from	these	measures.

Combinations:	As	the	name	suggests,	combination	measures	are	combinations	
of	 the	 internal	measures	of	 compactness	 and	 separation.	 In	clustering,	 it	 is	
believed	that	as	intracluster	homogeneity	increases	with	the	number	of	clus-
ters,	the	distance	between	the	clusters	decreases.	Therefore,	the	measures	that	
fall	into	this	category	measure	both	intracluster	homogeneity	and	intercluster	
separation.	A	final	 score	 is	 computed	 as	 a	 linear	or	nonlinear	 combination	
of	the	two	measures.	An	example	of	a	linear	combination	is	the	SD	validity	
index,	and	an	example	of	a	nonlinear	combination	is	the	Dunn	index.

Predictive.power/stability:	Another	form	of	cluster	validation	techniques	that	
assess	the	predictive	power	or	stability	of	a	cluster	forms	a	special	category	of	
internal	validation	measures.	These	techniques	rely	on	repeated	resampling	or	
perturbation	of	the	original	dataset	and	reclustering	the	resulting	data.	The	
consistency	of	the	corresponding	results	provides	an	estimate	of	the	signifi-
cance	of	the	clusters	formed.
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Compliance.between.partitioning.and.distance.information:	An	alternative	
measure	of	cluster	quality	is	an	estimation	of	the	degree	of	distance	informa-
tion	preserved	from	the	original	datasets	in	clusters.	This	measure	uses	the	
cophenetic	matrix	C	that	is	symmetric	of	size	N ×	N,	and	N	is	the	number	of	
samples	in	the	dataset.	Each	element	C(i,j)	of	the	matrix	C	acts	as	an	indica-
tor	if	a	pair	of	samples	is	assigned	to	a	common	cluster.	For	the	evaluation	
of	 a	hierarchical	 clustering,	 the	cophenetic	matrix	can	also	be	constructed	
to	reflect	the	level	within	the	dendrogram.	Here,	an	entry	C(i,j)	represents	
the	level	within	the	dendrogram	at	which	the	two	samples	 i	and	 j	are	first	
assigned	to	the	same	cluster.

Several	methods	have	been	proposed	that	capture	the	correlation	between	the	
cophenetic	matrix	and	the	original	dissimilarity	matrix	to	assess	the	preservation	of	
distances	under	different	distance	functions	and	within	different	feature	spaces	or	
to	compute	the	dendrograms	obtained	for	different	algorithms.

9.4.2 Performance Evaluation Using Validity Indices
A	great	deal	of	 research	 is	 focused	on	finding	the	correct	or	optimal	number	of	
partitions.	 Cluster	 validity	 indices	 help	 address	 this	 problem	 by	 estimating	 the	
correct	number	of	clusters	and	finding	the	quality	clusters	(Halkidi	et	al.	2001).	
The	most	commonly	used	validity	indices	have	been	described	below	(Azuaje	and	
Bolshakova	2002).

9.4.2.1 Silhouette Index (SI)

The	computation	of	the	silhouette	index	is	described	by	the	following	steps:

	 1.	For	a	given	cluster,	 =X j cj ( 1,..., ),	the	silhouette	technique	assigns	a	silhou-
ette	width,	 =s i i m( )( 1,..., ),	to	the	ith	sample	of	Xj.	This	value	is	defined	as

	 ( ) ( ( ) ( ))/max{ ( ), ( )},= −s i b i a i a i b i 	

	 where	a(i) is	 the	average	distance	between	the	 ith	sample	and	all	of	 the	
samples	included	in	Xj ,	and	b(i)	is	the	minimum	average	distance	between	
the	ith	sample	and	all	of	the	samples	clustered	in	 = ≠X k c k j s ik ( 1,..., ; ). ( )	
lies	between	–1	and	1.

	 2.	When	the	value	of	s (i)	is	near	1,	it	can	be	assumed	that	the	ith	sample	has	
been	assigned	to	an	appropriate	cluster.

	 3.	When	s(i)	is	near	zero,	it	can	be	assumed	that	the	ith	sample	can	be	assigned	
to	the	nearest	neighboring	cluster.

	 4.	When	s(i)	is	near	–1,	it	can	be	assumed	that	the	ith	sample	has	been	misclas-
sified	(Rousseeuw	1987).
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A	global	 silhouette	 value	 or	 silhouette	 index,	 GSu,	 can	be	 used	 as	 a	 validity	
index	for	a	partition	U.	This	measure	can	be	determined	using	Equation	9.8,	as	
shown	below,	which	helps	estimate	the	“correct”	number	of	clusters	for	partition	U 
(Rousseeuw	1987).	Thus,	a	high	value	of	silhouette	index	indicates	that	partition	U 
is	a	better	or	optimal	cluster.	This	method	can	be	represented	as

	
∑=

=
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c

Su j

j

c
1

1

	 (9.8)

9.4.2.2 Davies-Bouldin and Dunn’s Index

Unlike	the	SI,	the	Davies-Bouldin	(DB)	index	is	defined	as	the	ratio	of	the	sum	of	
the	within-cluster	scatter	to	the	between-cluster	scatter	(Davies	and	Bouldin	1979).	
A	small	DB value	indicates	a	compact	cluster.	Mathematically,	such	a	reading	can	
be	defined	as
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where	n	is	number	of	clusters,	σi	is	the	average	distance	of	all	patterns	in	cluster	i 
to	their	cluster	center	ci,	σj	is	the	average	distance	of	all	patterns	in	cluster	j to	their	
cluster	center	cj,	and	d(ci,	cj )	is	the	distance	of	cluster	centers	ci	and	cj.

Similarly,	the	Dunn	index	(D)	is	defined	as	the	ratio	of	the	minimum	intraclus-
ter	distance	to	the	maximum	intercluster	distance.	The	Dunn	index	lies	within	the	
range	of	0	to	1,	and	values	approaching	1	correspond	to	good	clusters.	The	index	
is	given	by

	 =D d d/ ,min max 	 (9.10)

where	dmin	is	the	minimum	distance	between	two	objects	from	different	clusters,	
and	dmax	is	the	maximum	distance	of	two	objects	from	the	same	cluster.

9.4.2.3 Calinski Harabasz (CH) Index

The	 Calinski	 Harabasz	 (CH)	 index,	 proposed	 by	 Maulik	 and	 Bandopadhyay	
(2002),	is	computed	as

	 − −race b k trace w n k( ( )/( 1)/( ( )/( )), 	 (9.11)
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where	b	and	w	represent	the	between-	and	within-cluster	scatter	matrices,	respec-
tively,	and	k	and	n represent	the	cluster	and	data	points,	respectively.

The	trace	for	the	between-cluster	scatter	matrix	B can	be	written	as

	
∑= −

=

Trace b nk zk z
k

k

( ) || || ,2

1

	 (9.12)

where	nk	 is	 the	number	of	points	 in	cluster	k	and	z	 is	 the	centroid	of	 the	entire	
dataset.	The	trace	of	the	within-cluster	scatter	matrix	W	can	be	written	as	trace(W ),
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9.4.2.4 Rand Index

A	 Rand	 index	determines	 the	 similarity	 between	 two	 partitions	with	 respect	 to	
positive	and	negative	agreements	and	can	be	used	to	assess	the	degree	of	agreement	
between	 two	 clusters	 (Rand	 1971;	 Youness	 and	 Saporta	 2010).	 The	 Rand	 index	
ranges	in	value	from	0	to	1;	a	higher	Rand	index	value	indicates	a	higher	similarity	
between	two	partitions.	This	index	is	defined	as	the	ratio	of	the	number	of	agree-
ments	between	two	partitions	divided	by	the	total	number	of	objects	(Hubert	and	
Arabie	1985).

9.5 Conclusion
This	chapter	provides	an	explanation	of	computation	techniques	used	to	validate	
and	benchmark	results	obtained	using	either	clustering	or	classification	techniques	
on	datasets.	Moreover,	it	should	be	noted	that	these	techniques	are	used	for	hypoth-
esis	testing	in	bioinformatics.
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