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Foreword

The importance of having efficient and effective methods for data mining and know-
ledge discovery (DM&KD), to which the present book is devoted, grows every day
and numerous such methods have been developed in recent decades. There exists a
great variety of different settings for the main problem studied by data mining and
knowledge discovery, and it seems that a very popular one is formulated in terms
of binary attributes. In this setting, states of nature of the application area under
consideration are described by Boolean vectors defined on some attributes. That is,
by data points defined in the Boolean space of the attributes. It is postulated that there
exists a partition of this space into two classes, which should be inferred as patterns
on the attributes when only several data points are known, the so-called positive and
negative training examples.

The main problem in DM&KD is defined as finding rules for recognizing (clas-
sifying) new data points of unknown class, i.e., deciding which of them are positive
and which are negative. In other words, to infer the binary value of one more
attribute, called the goal or class attribute. To solve this problem, some methods
have been suggested which construct a Boolean function separating the two given
sets of positive and negative training data points. This function can then be used as a
decision function, or a classifier, for dividing the Boolean space into two classes, and
so uniquely deciding for every data point the class to which it belongs. This func-
tion can be considered as the knowledge extracted from the two sets of training data
points.

It was suggested in some early works to use as classifiers threshold functions
defined on the set of attributes. Unfortunately, only a small part of Boolean func-
tions can be represented in such a form. This is why the normal form, disjunctive or
conjunctive (DNF or CNF), was used in subsequent developments to represent arbi-
trary Boolean decision functions. It was also assumed that the simpler the function
is (that is, the shorter its DNF or CNF representation is), the better classifier it is.
That assumption was often justified when solving different real-life problems. This
book suggests a new development of this approach based on mathematical logic and,
especially, on using Boolean functions for representing knowledge defined on many
binary attributes.
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Next, let us have a brief excursion into the history of this problem, by visit-
ing some old and new contributions. The first known formal methods for expressing
logical reasoning are due to Aristotle (384 BC–322 BC) who lived in ancient Greece,
the native land of the author. It is known as his famous syllogistics, the first deduc-
tive system for producing new affirmations from some known ones. This can be
acknowledged as being the first system of logical recognition. A long time later, in
the 17th century, the notion of binary mathematics based on a two-value system was
proposed by Gottfried Leibniz, as well as a combinatorial approach for solving some
related problems. Later on, in the middle of the 19th century, George Boole wrote his
seminal books The mathematical analysis of logic: being an essay towards a calculus
for deductive reasoning and An Investigation of the Laws of Thought on Which are
Founded the Mathematical Theories of Logic and Probabilities. These contributions
served as the foundations of modern Boolean algebra and spawned many branches,
including the theory of proofs, logical inference and especially the theory of Boolean
functions. They are widely used today in computer science, especially in the area of
the design of logic circuits and artificial intelligence (AI) in general.

The first real-life applications of these theories took place in the first thirty years
of the 20th century. This is when Shannon, Nakashima and Shestakov independently
proposed to apply Boolean algebra to the description, analysis and synthesis of relay
devices which were widely used at that time in communication, transportation and
industrial systems. The progress in this direction was greatly accelerated in the next
fifty years due to the dawn of modern computers. This happened for two reasons.
First, in order to design more sophisticated circuits for the new generation of com-
puters, new efficient methods were needed. Second, the computers themselves could
be used for the implementation of such methods, which would make it possible to
realize very difficult and labor-consuming algorithms for the design and optimization
of multicomponent logic circuits. Later, it became apparent that methods developed
for the previous purposes were also useful for an important problem in artificial
intelligence, namely, data mining and knowledge discovery, as well as for pattern
recognition.

Such methods are discussed in the present book, which also contains a wide
review of numerous computational results obtained by the author and other researches
in this area, together with descriptions of important application areas for their use.
These problems are combinatorially hard to solve, which means that their exact
(optimal) solutions are inevitably connected with the requirement to check many
different intermediate constructions, the number of which depends exponentially on
the size of the input data. This is why good combinatorial methods are needed for
their solution. Fortunately, in many cases efficient algorithms could be developed for
finding some approximate solutions, which are acceptable from the practical point
of view. This makes it possible to sufficiently reduce the number of intermediate
solutions and hence to restrict the running time.

A classical example of the above situation is the problem of minimizing a
Boolean function in disjunctive (or conjunctive) normal form. In this monograph, this
task is pursued in the context of searching for a Boolean function which separates
two given subsets of the Boolean space of attributes (as represented by collections
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of positive and negative examples). At the same time, such a Boolean function is
desired to be as simple as possible. This means that incompletely defined Boolean
functions are considered. The author, Professor Evangelos Triantaphyllou, suggests
a set of efficient algorithms for inferring Boolean functions from training exam-
ples, including a fast heuristic greedy algorithm (called OCAT), its combination with
tree searching techniques (also known as branch-and-bound search), an incremental
learning algorithm, and so on. These methods are efficient and can enable one to find
good solutions in cases with many attributes and data points. Such cases are typi-
cal in many real-life situations where such problems arise. The special problem of
guided learning is also investigated. The question now is which new training exam-
ples (data points) to consider, one at a time, for training such that a small number
of new examples would lead to the inference of the appropriate Boolean function
quickly.

Special attention is also devoted to monotone Boolean functions. This is done
because such functions may provide adequate description in many practical situa-
tions. The author studied existing approaches for the search of monotone functions,
and suggests a new way for inferring such functions from training examples. A key
issue in this particular investigation is to consider the number of such functions for a
given dimension of the input data (i.e., the number of binary attributes).

Methods of DM&KD have numerous important applications in many different
domains in real life. It is enough to mention some of them, as described in this book.
These are the problems of verifying software and hardware of electronic devices,
locating failures in logic circuits, processing of large amounts of data which repre-
sent numerous transactions in supermarkets in order to optimize the arrangement of
goods, and so on. One additional field for the application of DM&KD could also be
mentioned, namely, the design of two-level (AND-OR) logic circuits implementing
Boolean functions, defined on a small number of combinations of values of input
variables.

One of the most important problems today is that of breast cancer diagnosis.
This is a critical problem because diagnosing breast cancer early may save the lives
of many women. In this book it is shown how training data sets can be formed from
descriptions of malignant and benign cases, how input data can be described and
analyzed in an objective and consistent manner and how the diagnostic problem can
be formulated as a nested system of two smaller diagnostic problems. All these are
done in the context of Boolean functions.

The author correctly observes that the problem of DM&KD is far from being
fully investigated and more research within the framework of Boolean functions is
needed. Moreover, he offers some possible extensions for future research in this area.
This is done systematically at the end of each chapter.

The descriptions of the various methods and algorithms are accompanied with
extensive experimental results confirming their efficiency. Computational results are
generated as follows. First a set of test cases is generated regarding the approach to
be tested. Next the proposed methods are applied on these test problems and the test
results are analyzed graphically and statistically. In this way, more insights on the
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problem at hand can be gained and some areas for possible future research can be
identified.

The book is very well written in a way for anyone to understand with a mini-
mum background in mathematics and computer science concepts. However, this is
not done at the expense of the mathematical rigor of the algorithmic developments.
I believe that this book should be recommended both to students who wish to learn
about the foundations of logic-based approaches as they apply to data mining and
knowledge discovery along with their many applications, and also to researchers
who wish to develop new means for solving more problems effectively in this area.

Professor Arkadij Zakrevskij

Minsk, Belarus
Corresponding Member of the National Academy of

Sciences of Belarus

Summer of 2009



Preface

There is already a plethora of books on data mining. So, what is new with this book?
The answer is in its unique perspective in studying a series of interconnected key
data mining and knowledge discovery problems both in depth and also in connec-
tion with other related topics and doing so in a way that stimulates the quest for
more advancements in the future. This book is related to another book titled Data
Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques
(published by Springer in the summer of 2006), which was co-edited by the author.
The chapters of the edited book were written by 40 authors and co-authors from 20
countries and, in general, they are related to rule induction methods.

Although there are many approaches to data mining and knowledge discovery
(DM&KD), the focus of this monograph is on the development and use of some
novel mathematical logic methods as they have been pioneered by the author of this
book and his research associates in the last 20 years. The author started the research
that led to this publication in the early 1980s, when he was a graduate student at the
Pennsylvania State University.

During this experience he has witnessed the amazing explosion in the develop-
ment of effective and efficient computing and mass storage media. At the same
time, a vast number of ubiquitous devices are selecting data on almost any aspect of
modern life. The above developments create an unprecedented challenge to extract
useful information from such vast amounts of data. Just a few years ago people were
talking about megabytes to express the size of a huge database. Today people talk
about gigabytes or even terabytes. It is not a coincidence that the terms mega, giga,
and tera (not to be confused with terra or earth in Latin) mean in Greek “large,”
“giant,” and “monster,” respectively.

The above situation has created many opportunities but many new and tough
challenges too. The emerging field of data mining and knowledge discovery is the
most immediate result of this extraordinary explosion on information and availability
of cost-effective computing power. The ultimate goal of this new field is to offer
methods for analyzing large amounts of data and extracting useful new knowledge
embedded in such data. As K. C. Cole wrote in her seminal book The Universe and
the Teacup: The Mathematics of Truth and Beauty, “. . . nature bestows her blessings
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buried in mountains of garbage.” An anonymous author expressed a closely related
concept by stating poetically that “today we are giants of information but dwarfs of
new knowledge.”

On the other hand, the principles that are behind many data mining methods are
not new to modern science. The danger related with the excess of information and
with its interpretation already alarmed the medieval philosopher William of Occam
(also known as Okham) and motivated him to state his famous “razor”: entia non
sunt multiplicanda praeter necessitatem (entities must not be multiplied (i.e., become
more complex) beyond necessity). Even older is the story in the Bible of the Tower
of Babel in which people were overwhelmed by new and ultraspecialized knowledge
and eventually lost control of the most ambitious project of that time.

People dealt with data mining problems when they first tried to use past experi-
ence in order to predict or interpret new phenomena. Such challenges always existed
when people tried to predict the weather, crop production, market conditions, and the
behavior of key political figures, just to name a few examples. In this sense, the field
of data mining and knowledge discovery is as old as humankind.

Traditional statistical approaches cannot cope successfully with the heterogene-
ity of the data fields and also with the massive amounts of data available today for
analysis. Since there are many different goals in analyzing data and also different
types of data, there are also different data mining and knowledge discovery methods,
specifically designed to deal with data that are crisp, fuzzy, deterministic, stochas-
tic, discrete, continuous, categorical, or any combination of the above. Sometimes
the goal is to just use historic data to predict the behavior of a natural or artificial
system. In other cases the goal is to extract easily understandable knowledge that
can assist us to better understand the behavior of different types of systems, such as
a mechanical apparatus, a complex electronic device, a weather system or an illness.

Thus, there is a need to have methods which can extract new knowledge in a
way that is easily verifiable and also easily understandable by a very wide array of
domain experts who may not have the computational and mathematical expertise
to fully understand how a data mining approach extracts new knowledge. However,
they may easily comprehend newly extracted knowledge, if such knowledge can be
expressed in an intuitive manner.

The methods described in this book offer just this opportunity. This book presents
methods that deal with key data mining and knowledge discovery issues in an intu-
itive manner and in a natural sequence. These methods are based on mathematical
logic. Such methods derive new knowledge in a way that can be easily understood
and interpreted by a wide array of domain experts and end users. Thus, the focus is
on discussing methods which are based on Boolean functions; which can then easily
be transformed into rules when they express new knowledge. The most typical form
of such rules is a decision rule of the form: IF 〈some condition(s) is (are) true〉 THEN
〈another condition should also be true〉.

Thus, this book provides a unique perspective into the essence of some fun-
damental data mining and knowledge discovery issues. It discusses the theoreti-
cal foundations of the capabilities of the methods described in this book. It also
presents a wide collection of illustrative examples, many of which come from
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real-life applications. A truly unique characteristic of this book is that almost all
theoretical developments are accompanied by an extensive empirical analysis which
often involves the solution of a very large number of simulated test problems. The
results of these empirical analyses are tabulated, graphically depicted, and analyzed
in depth. In this way, the theoretical and empirical analyses presented in this book
are complementary to each other, so the reader can gain both a comprehensive and
deep theoretical and practical insight of the covered subjects.

Another unique characteristic of this book is that at the end of each chapter
there is a description of some possible research problems for future research. It also
presents an extensive and updated bibliography and references of all the covered
subjects. These are very valuable characteristics for people who wish to get involved
with new research in this field.

Therefore, the book Data Mining and Knowledge Discovery via Logic-Based
Methods: Theory, Algorithms, and Applications can provide a valuable insight for
people who are interested in obtaining a deep understanding of some of the most
frequently encountered data mining and knowledge discovery challenges. This book
can be used as a textbook for senior undergraduate or graduate courses in data
mining in engineering, computer science, and business schools; it can also provide a
panoramic and systematic exposure of related methods and problems to researchers.
Finally, it can become a valuable guide for practitioners who wish to take a more
effective and critical approach to the solution of real-life data mining and knowledge
discovery problems.

The philosophy followed on the development of the subjects covered in this book
was first to present and define the subject of interest in that chapter and do so in a
way that motivates the reader. Next, the following three key aspects were consi-
dered for each subject: (i) a discussion of the related theory, (ii) a presentation of
the required algorithms, and (iii) a discussion of applications. This was done in a
way such that progress in any one of these three aspects would motivate progress in
the other two aspects. For instance, theoretical advances make it possible to discover
and implement new algorithms. Next, these algorithms can be used to address certain
applications that could not be addressed before. Similarly, the need to handle certain
real-life applications provides the motivation to develop new theories which in turn
may result in new algorithms and so on. That is, these three key aspects are parts of
a continuous closed loop in which any one of these three aspects feeds the other two.

Thus, this book deals with the pertinent theories, algorithms, and applications as
a closed loop. This is reflected on the organization of each chapter but also on the
organization of the entire book, which is comprised of two sections. The sections are
titled “Part I: Algorithmic Issues” and “Part II: Application Issues.” The first section
focuses more on the development of some new and fundamental algorithms along
with the related theory while the second section focuses on some select applications
and case studies along with the associated algorithms and theoretical aspects. This is
also shown in the Contents.

The arrangement of the chapters follows a natural exposition of the main subjects
in rule induction for DM&KD theory and practice. Part I (“Algorithmic Issues”)
starts with the first chapter, which discusses the intuitive appeal of the main data
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mining and knowledge discovery problems discussed throughout this monograph.
It pays extra attention to the reasons that lead to formulate some of these problems
as optimization problems since one always needs to keep control on the size (i.e.,
for size minimization) of the extracted new rules or when one tries to gain a deeper
understanding of the system of interest by issuing a small number of new queries
(i.e., for query minimization).

The second and third chapters present some sophisticated branch-and-bound
algorithms for extracting a pattern (in the form of a compact Boolean function)
from collections of observations grouped into two disjoint classes. The fourth chapter
presents some fast heuristics for the same problem.

The fifth chapter studies the problem of guided learning. That is, now the analyst
has the option to decide the composition of the observation to send to an expert or
“oracle” for the determination of its class membership. Apparently, the goal now is
to gain a good understanding of the system of interest by issuing a small number of
inquiries of the previous type.

A related problem is studied in the sixth chapter. Now it is assumed that the
analyst has two sets of examples (observations) and a Boolean function that is
inferred from these examples. Furthermore, it is assumed that the analyst has a new
example that invalidates this Boolean function. Thus, the problem is how to modify
the Boolean function such that it satisfies all the requirements of the available exam-
ples plus the new example. This is known as the incremental learning problem.

Chapter 7 presents an intriguing duality relationship which exists between
Boolean functions expressed in CNF (conjunctive normal form) and DNF (disjunc-
tive normal form), which are inferred from examples. This dual relationship could
be used in solving large-scale inference problems, in addition to other algorithmic
advantages.

The chapter that follows describes a graph theoretic approach for decomposing
large-scale data mining problems. This approach is based on the construction of a
special graph, called the rejectability graph, from two collections of data. Then cer-
tain characteristics of this graph, such as its minimum clique cover, can lead to some
intuitive and very powerful decomposition strategies.

Part II (“Application Issues”) begins with Chapter 9. This chapter presents an
intriguing problem related to any model (and not only those based on logic methods)
inferred from grouped observations. This is the problem of the reliability of the
model and it is associated with both the number of the training data (sampled obser-
vations grouped into two disjoint classes) and also the nature of these data. It is
argued that many model inference methods today may derive models that cannot
guarantee the reliability of their predictions/classifications. This chapter prepares the
basic arguments for studying a potentially very critical type of Boolean functions
known as monotone Boolean functions.

The problems of inferring a monotone Boolean function from inquiries to an
expert (“oracle”), along with some key mathematical properties and some application
issues are discussed in Chapters 10 and 11. Although this type of Boolean functions
has been known in the literature for some time, it was the author of this book along
with some of his key research associates who made some intriguing contributions



Preface xv

to this part of the literature in recent years. Furthermore, Chapter 11 describes some
key problems in assessing the effectiveness of data mining and knowledge discovery
models (and not only for those which are based on logic). These issues are referred
to as the “three major illusions” in evaluating the accuracy of such models. There it
is shown that many models which are considered as highly successful, in reality may
even be totally useless when one studies their accuracy in depth.

Chapter 12 presents how some of the previous methods for inferring a Boolean
function from observations can be used (after some modifications) to extract what is
known in the literature as association rules. Traditional methods suffer the problem
of extracting an overwhelming number of association rules and they are doing so in
exponential time. The new methods discussed in this chapter are based on some fast
(of polynomial time) heuristics that can derive a compact set of association rules.

Chapter 13 presents some new methods for analyzing and categorizing text docu-
ments. Since the Web has made possible the availability of immense textual (and not
only) information easily accessible to anyone with access to it, such methods are
expected to attract even more interest in the immediate future.

Chapters 14, 15, and 16 discuss some real-life case studies. Chapter 14 discusses
the analysis of some real-life EMG (electromyography) signals for predicting muscle
fatigue. The same chapter also presents a comparative study which indicates that the
proposed logic-based methods are superior to some of the traditional methods used
for this kind of analysis.

Chapter 15 presents some real-life data gathered from the analysis of cases sus-
pected of breast cancer. Next these data are transformed into equivalent binary data
and then some diagnostic rules (in the form of compact Boolean functions) are
extracted by using the methods discussed in earlier chapters. These rules are next
presented in the form of IF-THEN logical expressions (diagnostic rules).

Chapter 16 presents a combination of some of the proposed logic methods with
fuzzy logic. This is done in order to objectively capture fuzzy data that may play a
key role in many data mining and knowledge discovery applications. The proposed
new method is demonstrated in characterizing breast lesions in digital mammogra-
phy as lobular or microlobular. Such information is highly significant in analyzing
medical data for breast cancer diagnosis.

The last chapter presents some concluding remarks. Furthermore, it presents
twelve different areas that are most likely to experience high interest for future
research efforts in the field of data mining and knowledge discovery.

All the above chapters make clear that methods based on mathematical logic
already play an important role in data mining and knowledge discovery. Furthermore,
such methods are almost guaranteed to play an even more important role in the near
future as such problems increase both in complexity and in size.

Evangelos Triantaphyllou
Baton Rouge, LA

April 2010
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Chapter 1

Introduction

1.1 What Is Data Mining and Knowledge Discovery?

Data mining and knowledge discovery is a family of computational methods that
aim at collecting and analyzing data related to the function of a system of interest
for the purpose of gaining a better understanding of it. This system of interest might
be artificial or natural. According to the Merriam-Webster online dictionary the term
system is derived from the Greek terms syn (plus, with, along with, together, at the
same time) and istanai (to cause to stand) and it means a complex entity which is
comprised of other more elementary entities which in turn may be comprised of
other even more elementary entities and so on. All these entities are somehow inter-
connected with each other and form a unified whole (the system). Thus, all these
entities are related to each other and their collective operation is of interest to the
analyst, hence the need to employ data mining and knowledge discovery (DM&KD)
methods. Some illustrative examples of various systems are given in the next section.

The data (or observations) may describe different aspects of the operation of the
system of interest. Usually, the overall state of the system, also known as a state of
nature, corresponds to one of a number of different classes. It is not always clear what
the data should be or how to define the different states of nature of the system or the
classes under consideration. It all depends on the specific application and the goal
of the analysis. This task may require lots of skill and experience to properly define
them. This is part of the art aspect of the “art and science” approach to problem-
solving in general.

It could also be possible to have more than two classes with a continuous transi-
tion between different classes. However, in the following we will assume that there
are only two classes and these classes are mutually exclusive and exhaustive. That is,
the system has to be in only one of these two classes at any given time. Sometimes,
it is possible to have a third class called undecidable or unclassifiable (not to be
confused with unclassified observations) in order to capture undecidable instances
of the system. In general, cases with more than two classes can be modeled as
a sequence of two-class problems. For instance, a case with four classes may be
modeled as a sequence of at most three two-class problems.

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 1,
c© Springer Science+Business Media, LLC 2010
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It should be noted here that a widely used definition for knowledge discovery
is given in the book by [Fayyad, et al., 1996] (on page 6): “Knowledge discovery in
databases is the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data.” More definitions can be found in many
other books. However, most of them seem to agree on the issues discussed in the
previous paragraphs.

The majority of the treatments in this book are centered on classification, that
is, the assignment of new data to one of some predetermined classes. This may be
done by first inferring a model from the data and then using this model and the new
data point for this assignment. DM&KD may also aim at clustering of data which
have not been assigned to predetermined classes. Another group of methods focus on
prediction or forecasting. Prediction (which oftentimes is used the same way as clas-
sification) usually involves the determination of some probability measure related to
belonging to a given class. For instance, we may talk about predicting the outcome
of an election or forecasting the weather. A related term is that of diagnosis. This
term is related to the understanding of the cause of a malfunction or a medical con-
dition. Other goals of DM&KD may be to find explanations of decisions pertinent to
computerized systems, extracting similarity relationships, learning of new concepts
(conceptual learning), learning of new ontologies, and so on.

Traditionally, such problems have been studied via statistical methods. However,
statistical methods are accurate if the data follow certain strict assumptions and if
the data are mostly numerical, well defined and plentiful. With the abundance of
data collection methods and the highly unstructured databases of modern society (for
instance, as in the World Wide Web), there is an urgent need for the development of
new methods. This is what a new cadre of DM&KD methods is called to answer.

What all the above problems have in common is the use of analytical tools on
collections of data to somehow better understand a phenomenon or system and even-
tually benefit from this understanding and the data. The focus of the majority of the
algorithms in this book is on inferring patterns in the form of Boolean functions for
the purpose of classification and also diagnosing of various conditions.

The next section presents some illustrative examples of the above issues from a
diverse spectrum of domains. The third section of this chapter describes the main
steps of the entire data mining and knowledge discovery process. The fourth section
highlights the basics of four critical research problems which concentrate lots of
interest today in this area of data analysis. Finally, this chapter ends with a brief
section describing some concluding remarks.

1.2 Some Potential Application Areas for Data Mining and
Knowledge Discovery

It is impossible to list all possible application areas of data mining and knowledge
discovery. Such applications can be found anywhere there is a system of interest,
which can be in one of a number of states and data can be collected about this system.
In the following sections we highlight some broad potential areas for illustrative



1.2 Some Potential Application Areas for Data Mining and Knowledge Discovery 5

purposes only, as a complete list is impossible to compile. These potential areas are
grouped into different categories in a way that reflects the scientific disciplines that
primarily study them.

1.2.1 Applications in Engineering

An example of a system in a traditional engineering setting might be a mechanical
or electronic device. For instance, the engine of a car is such a system. An engine
could be viewed as being comprised of a number of secondary systems (e.g., the
combustion chamber, the pistons, the ignition device, etc.). Then an analyst may
wish to collect data that describe the fuel composition, the fuel consumption, heat
conditions at different parts, any vibration data, the composition of the exhaust gases,
pollutant composition and built up levels inside different parts of the engine, the
engine’s performance measurements, and so on. As different classes one may wish to
view the operation of this system as successful (i.e., it does not require intervention
for repair) or problematic (if its operation must be interrupted for a repair to take
place).

As another example, a system in this category might be the hardware of a per-
sonal computer (PC). Then data may describe the operational characteristics of its
components (screen, motherboard, hard disk, keyboard, mouse, CPU, etc.). As with
the previous example, the classes may be defined based on the successful and the
problematic operation of the PC system.

A system can also be a software package, say, for a word processor. Then
data may describe its functionality under different printers, when creating figures,
using different fonts, various editing capabilities, operation when other applications
are active at the same time, size of the files under development, etc. Again, the
classes can be defined based on the successful or problematic operation of this word
processor.

1.2.2 Applications in Medical Sciences

Data mining and knowledge discovery have a direct application in the medical diag-
nosis of many medical ailments. A typical example is breast cancer diagnosis. Data
may describe the geometric characteristics present in a mammogram (i.e., an X-ray
image of a breast). Other data may describe the family history, results of blood
tests, personal traits, etc. The classes now might be the benign or malignant nature
of the findings. Similar applications can be found in any other medical ailment or
condition.

A recent interest of such technologies can also be found in the design of new
drugs. Sometimes developing a single drug may cost hundreds of millions or even
billions of dollars. In such a setting the data may describe the different components
of the drug, the characteristics of the patient (presence of other medical conditions
besides the targeted one and physiological characteristics of the patient), the dosage
information, and so on. Then the classes could be the effective impact of the drug
or not.
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Another increasingly popular application area is in the discovery of conditions
and characteristics that may be associated with the development of various medical
ailments later in life such as heart disease, diabetes, Alzheimer’s disease, various
cancer types, etc. Data can be the family history, clinical data of the human sub-
jects, lifestyle characteristics, environmental factors, and so on. The classes might
correspond to the development of a given medical ailment or not.

1.2.3 Applications in the Basic Sciences

Perhaps one of the oldest applications of DM&KD is that of the prediction of weather
phenomena, such as rain, snow, high winds, tornadoes, etc. From the early days
people were observing weather conditions in an effort to predict the weather of the
next few days. Data can be the cloud conditions, wind direction, air pressure, tem-
perature readings, humidity level, and so on. Then the classes could be defined based
on the presence or not of some key weather phenomena such as rain, high or low
temperatures, formation of tornadoes, and high winds.

An application of interest to many coastal areas is the prediction of coastal
erosion so appropriate measures can be taken more effectively. Data can be the rain
levels, effects of rivers and lakes, geological characteristics of the land areas, oceanic
conditions, the local weather, any technical measures taken by people in dealing with
the problem, and so on. The classes could be the high or low level of coastal erosion.

A rather profitable application area is in the discovery of new gas, oil, and
mineral deposits. Drilling and/or mining explorations may be excessively costly;
hence, having effective prediction methods is of paramount practical importance.
As data one may consider the geological characteristics of the candidate area and
seismic data. The classes could be defined by the presence or not of profitable
deposits.

A critical issue during many military operations is the accurate identification of
targets. A related issue is the classification of targets as friendly or enemy. Data can
be derived by analyzing images of the target and surrounding area, signal analysis,
battle planning data, and so on. Then a target is either a friendly or a hostile one and
these can be the two classes in this setting.

A similar application is in the screening of travelers when they board mass trans-
portation media. This issue has gained special interest after the 9/11 events in the U.S.
Data can be the biometric characteristics of the traveler, X-ray images of the luggage,
behavior at the checking points, etc. Then travelers may be classified according to
different risk levels.

1.2.4 Applications in Business

The world of modern business uses many means, and that includes DM&KD tech-
niques, that can better identify marketing opportunities of new products. In this
setting data can be the lifestyle characteristics of different consumer groups and their
level of acceptance of the new product. Other data can be the marketing methods
used to promote the new product, as well as the various characteristics of the product



1.3 The Data Mining and Knowledge Discovery Process 7

itself. As classes one may define the high or low acceptance of a given product by a
particular consumer group.

A related topic is the design of a new product. One may wish to use elements of
past successful designs in order to combine them into a new and successful product.
Thus, data can relate to the design characteristics of previous products, the groups
that accepted the previous products, and so on. As above, the two classes correspond
to the high or low acceptance of the new product.

The huge plethora of investment opportunities and, at the same time, the over-
whelming presence of financial information sources (especially on the Web), make
DM&KD in finance an appealing application area. This was especially the case
during the euphoric period of the late 1990s. Data can be any information on past
performance, company and sector/industry reports, and general market conditions.
The classes could be defined by the high or low level of return of a typical invest-
ment vehicle during a given period of time.

1.2.5 Applications in the Political and Social Sciences

A crucial issue with any political campaign is the study of its effectiveness on vari-
ous groups of potential voters. Data can be the socioeconomic characteristics of a
given group of voters. Other data may come from the issues presented in the political
campaign and the means (TV ads, newspapers, radio, the Web) of presenting these
issues. The classes could be defined by the change in the opinions of the voters
regarding the issues discussed and the candidates who promote them.

Another application of DM&KD may come from efforts to control crime in urban
areas. The pertinent data may describe the socioeconomic composition of a particular
urban area, the existing means to control crime, the type and frequency of crime
incidents, and so on. The classes could be defined by the level (type and frequency)
of crime in an area or the effectiveness of different crime reduction strategies.

1.3 The Data Mining and Knowledge Discovery Process

As mentioned in the previous section, a very critical step in any DM&KD analysis is
the proper definition of the goals of the analysis and the collection of the data. The
entire process can be conceptualized as divided into a sequence of steps as depicted
below in Figure 1.1.

1.3.1 Problem Definition

The first and single most important step of the DM&KD process deals with the prob-
lem definition. What is the system or phenomenon of interest? What are the purpose
and the goals of the analysis? How could we describe the different states of nature
and classes of observations? What data may be relevant to this analysis? How can the
data be collected? These are some key questions that need to be addressed before any
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Figure 1.1. The Key Steps of the Data Mining and Knowledge Discovery Process.

other step is taken. If this step is not dealt with correctly, then the entire process (and
problem-solving approach in general) is doomed to failure. A very common mistake
is to solve correctly the wrong problem. This is what R. L. Ackoff called the type III
error in his famous book [1987] The Art of Problem Solving.

It is always a prudent practice not to think “monolithically.” That is, one always
needs to keep an open mind, be flexible, and be willing to revise any previous beliefs
as more information and experience in dealing with a problem become available.
That is why all the boxes in Figure 1.1 are connected with each other by means of
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a feedback mechanism. For instance, if in a later step the analyst realizes that the
system under consideration needs additional data fields in order to describe classes
more accurately, then such data need to be collected.

1.3.2 Collecting the Data

Regarding the required data for the DM&KD analysis, such data do not need to be
collected only by means of questionnaires. Data may come from past cases each of
which took lots of resources to be analyzed. As mentioned earlier, in an oil well
drilling situation, data may refer to the geotechnical characteristics of the drilling
site. The classes might be defined according to the amount of oil that can be pumped
out of the site. Or simply whether the oil well is profitable or not. Then the acquisition
of data from a single site might involve lots of time, effort, and ultimately financial
resources. In a different situation, data about market preferences may be collected by
issuing a questionnaire and thus be very cost-effective on an individual basis.

The analyst may not know how many data points are sufficient for a given appli-
cation. The general practice is to collect as many data points as possible. Even more
important, the analyst may not even know what data to collect. A data point may be
viewed as a data record comprised of various fields. Thus, which fields are appro-
priate? Again, the general approach is to consider as many fields per data point as
possible provided that they appear to be somewhat relevant. However, this could be
a tricky task.

For instance, consider the case of the data in Figure 1.2. These data are defined
in terms of a single attribute, namely, A1. There are two classes; one is represented
by the solid dots and the other is represented by the gray dots. Certainly, there is a
pattern in this figure of how the solid and gray dots are related to each other and
this pattern could be described in terms of their values in terms of the A1 attribute.
However, that pattern is a rather complicated one.

Next, suppose that a second attribute, say A2, is considered and when this is
done, then the situation appears as in Figure 1.3 for exactly the same points. One
may observe that when the data in Figure 1.3 are projected on the A1 axis, then the
situation depicted in Figure 1.2 emerges. Now exactly the very same points indicate
a different pattern which is much easier to interpret. The new pattern indicates that
if a point has an A2 value higher than a given level (say some threshold value h),
then it is a solid point. It is a gray point if its A2 value is less than that threshold
value h.

Figure 1.2. Data Defined in Terms of a Single Attribute.
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Figure 1.3. Data Defined in Terms of Two Attributes.

By examining Figure 1.3, one may argue that attribute A1 does not offer much
discriminatory value while attribute A2 is the most important one. That is, the data
can still be described effectively in terms of a single attribute (i.e., A2 and not A1)
but that realization requires the examination of the data set in terms of more than one
attribute.

1.3.3 Data Preprocessing

It is often the case for some data to include errors. Such errors could be values in
some fields which are clearly out of range (say an air temperature of 125◦F in the
shade for some geographic location) or the combination of other values makes it clear
that something is wrong. For instance, a location in Canada has an air temperature
of 105◦F during the month of December. Then, at least one of the three field values
(Canada, December, 105◦F) is erroneous. How should one deal with such cases? One
approach is to try to “guess” the correct values, but that could involve introducing
biases into the data. Another approach could be to discard any record which is sus-
pected to contain erroneous data. Such an approach, however, may not be practical if
the size of the data set is small and discarding records may make it too small to have
any information value. A third approach might be to ignore the fields with the errors
and try to analyze the information contained in the rest of the fields of records with
corrupted data.

Of particular interest might be the case of having outliers, that is, data points
which, somehow, are out of range. In other words, they are out of what one may
consider as “normal.” Such cases may be the result of errors (for instance, due to
malfunctioning data collection devices or sensors). Another cause, however, may be
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that these values are indeed valid, but their mere presence indicates that something
out of the ordinary takes place. A classical case is records of financial transactions.
In this case, outliers may indicate fraudulent transactions which could obviously be
of keen interest to the analyst. Now, a goal of the data mining approach might be
how to identify such outliers as they may represent rare, but still very valuable from
the analysis point of view, phenomena.

Once the data have been collected and are preprocessed, they need to be format-
ted in a way that would make them suitable as input to the appropriate data mining
algorithm(s). This depends on the software requirements of the algorithms to be used.

1.3.4 Application of the Main Data Mining and Knowledge Discovery
Algorithms

The main task of the data mining process is to analyze the data by employing the
appropriate algorithm(s) and extract any patterns implied by the data. There are many
algorithms that could be employed at this stage. This is one of the causes of the great
confusion in the practical use of such methods. An increasingly popular approach
is to use methods which can extract patterns in the form of classification/prediction
rules. That is, logical statements of the form

IF (some conditions are met),
THEN (the class of the new observation is “CL”),

where “CL” is the name of a particular class. Next, such rules can be easily validated
and implemented by domain experts who may or may not be computer or mathemati-
cally literate.

In case the patterns are used for prediction or classification of new data points
of unknown class, their effectiveness needs to be checked against some test data.
Of key importance is their accuracy rate. For instance, one may use weather data to
develop a model that could forecast the weather. For simplicity, suppose that only
two classification classes are considered: rain and no rain. Oftentimes accuracy is
defined as the rate at which the proposed model accurately predicts the weather.

However, one may wish to consider two individual accuracy rates as follows;
first how accurately the system predicts rain and second how accurately the system
predicts no rain. The reason for considering this separation is because the impact of
making mistakes under the previous two situations could be significantly different.
This is more apparent if one considers, say, a medical diagnosis system derived from
a data mining analysis of historic data.

Suppose that for such a system the two classes are “presence of a particular
disease” and “no presence of the particular disease.” The impact of making the
mistake that this disease is not present while in reality it is present (i.e., when we
have a false-negative case) could be dramatically higher when it is compared with
the implications of the mistake when the system suggests that the disease is present
while in reality it is not (i.e., when we have a false-positive case). For instance, for
the case of a life-threatening disease (such as an aggressive type of cancer) the above
situation may be detrimental to the survival of the patient.
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Besides the previous two accuracy rates, there is a third rate too. This is the rate
when the system responds with a do not know type of answer. This can happen if
the system decides that a new case (data point) is quite different than any of the
cases used for training when the current model was inferred. Then, conceptually, a
system may have very high accuracy rates in terms of the previous two scenarios
of false-positive and false-negative rates, but also a very high rate in terms of the
third rate with the do not know responses. That is, this system would refuse too often
to classify/diagnose new data points and instead declare them as undecidable cases
(i.e., assign the do not know label). Such a system would be impractical as it too often
makes useless recommendations. Thus, one has to find a way to balance the above
three accuracy rates in a way which is consistent with the purpose of the data mining
analysis and the type of problems to be solved and also the amount and nature of the
training data. This is still an ongoing research area and systems based on Boolean
functions seem to be the most promising ones to offer such control in the way they
make predictions. Some related discussion on this very important subject is provided
in Chapter 9 and also in Section 11.6 of Chapter 11.

1.3.5 Interpretation of the Results of the Data Mining and Knowledge
Discovery Process

This is the step of the “moment of truth.” At this point the data have been collected
and analyzed, a model/models have been inferred and their performance on some
test data seems to be encouraging. When the inferred model(s) can be viewed as
a set of IF-THEN type of rules, then it is easy to interpret any new knowledge in
a way that can be understood by domain experts who may or may not be com-
puter or mathematically literate. Methods that rely on mathematical logic (i.e., on
Boolean functions) offer an intuitive manner getting patterns that can be translated
into IF-THEN rules and thus it is easier to understand their decision-making process.

If possible, the newly inferred knowledge needs to be verified and validated by
the DM&KD analyst and also by the domain experts. It is always possible to detect
errors that were invisible up to this point. Furthermore, the new knowledge may offer
insights into issues that were too complicated before. This could be the beginning
of new investigations that could not be initiated before. This is when the “eureka”
(“I found it” in Greek) moment oftentimes takes place. However, as with any other
step of the data mining process, one always needs to be vigilant and not hesitate
to revise parts of the understanding as more and more facts and insights become
available. This is why each step in Figure 1.1 is connected with each other by means
of the feedback mechanism.

1.4 Four Key Research Challenges in Data Mining and
Knowledge Discovery

All the application areas discussed in Section 1.2 have some key elements in com-
mon. The analyst can acquire lots of data that can be highly heterogeneous in nature
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and then use these data to make sense out of them. Traditional statistical methods can
easily handle mostly homogeneous data. Furthermore, models derived by statistical
methods may be limited in offering any new knowledge which could be easily inter-
preted by domain experts (i.e., people who do not necessarily have computational
or mathematical/statistical backgrounds). Also, statistical models are valid subject
to the satisfactory validation of certain assumptions on the nature of the data (such
as following certain distributions). Such assumptions may not always be possible to
validate. This is especially true when the data set is of small size. On the other hand,
DM&KD methods may not rely on such assumptions.

Deriving readily interpretable models is important for the domain experts when
they use the result of a DM&KD analysis and also for the very validation and
fine-tuning of the derived DM&KD models. The following sections describe, in
simple terms, some key computational challenges that are of key importance to the
research community today and are highly likely to be so in the future. Some of
these challenges led to the development of the DM&KD methods described in this
book.

1.4.1 Collecting Observations about the Behavior of the System

A key problem with any analysis of data is what information to consider when
collecting observations in order to study a system of interest. There is not an
easy way to answer this question. The observations should describe the behavior
of the system under consideration in a way such that when they are analyzed by
DM&KD means, the extracted patterns will be effective in meeting the goals of the
analysis.

Each data point is assumed to be a vector of some dimension n which describes
the behavior of the system in terms of n attributes. It could also be the case that
these attributes (or just some of them) are organized in a tree-like hierarchy. After
the analysis, it is possible that some of the attributes are to be dropped out as being
insignificant or just irrelevant. Furthermore, collecting information about different
attributes may involve entirely different costs. For instance, in a medical setting
the cost of collecting information about a patient’s blood pressure is far less than
the cost of performing a biopsy of a lesion from, say, the liver or the brain of the
patient.

The analyst may wish to first collect information about easily obtainable
attributes. If the inferred model is not accurate enough and/or easily interpretable,
then the analyst may wish to consider more attributes and augment the analysis.
Another key problem is how to identify noise in the data and clean them. The danger
here is that what appears to be noise in reality might be legitimate outliers and thus
an excellent and rare opportunity to find evidence of some rare but very important
aspects of the system under consideration might be ignored. In other words, such
noise might be disguised nuggets of valuable new knowledge. As with outliers in a
traditional statistical study, one has to be very careful in removing or keeping such
data.
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Figure 1.4. A Random Sample of Observations Classified in Two Classes.

1.4.2 Identifying Patterns from Collections of Data

In order to help fix ideas, consider the observations depicted in Figure 1.4. These
observations are defined in terms of the two attributes A1 and A2. Each observation
is represented by either a gray circle or a solid dark circle.

The main question that any DM&KD analysis tries to answer is what can one
learn about these data? Such knowledge may next be used to accurately predict the
class membership (in this case is it a “gray” or “solid dark” observation?) of new and
unclassified observations. Such knowledge may also lead to a better understanding of
the inner workings of the system under consideration, the design of the experiments
to refine the current understanding of the system, and so on.

There are many ways one can define the concept of knowledge given a set of
observations grouped into different classes. It seems that most experts agree that
given observations of data grouped into different categories (classes), knowledge is
any pattern implied by these data which has the potential to answer the previous main
question. This understanding of knowledge makes the quest of acquiring new know-
ledge an ill-defined problem as there might be more than one pattern implied by the
data. Thus, what is the best pattern? The direction adopted in the following develop-
ments is that the best pattern among a set of candidate patterns is the simplest one but
still sufficient to answer the previous main question. This kind of philosophy is not
new. As the medieval philosopher William of Occam (also known as Okham) stated
in his famous “razor”: Entia non sunt multiplicanda prater necessitatem (plurality
should not be assumed without necessity).
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Many DM&KD approaches interpret the above need in a way that tries to mini-
mize the complexity of the derived pattern. Such patterns can be derived in terms of
a decision tree, a set of separating planes, statistical models defined on some param-
eters, classification rules, etc. Then the need is to derive a decision tree with a mini-
mum number of branches and/or nodes; in the case of separating planes, a minimum
number of such planes; in the case of a statistical model, a model with the minimum
number of parameters; or the minimum number of classification rules and so on.

However, obtaining a minimum number of the previous pattern entities may
be computationally a very difficult, if not impossible, task. Thus, a more practical
approach oftentimes is to develop fast heuristics that derive a very small number of
such pattern entities. In the majority of the DM&KD methods to be discussed in the
following chapters the above general objective is interpreted by deriving a minimum
or near-minimum number of classification rules. The above are also consistent with
the well-known set covering problem.

Next, suppose that instead of the rather complex data set depicted in Figure 1.4
now we have the rather simpler data set depicted in Figure 1.5. What pattern in the
form of classification rules can be implied by these data?

The answer to this question may not be unique. Figure 1.6 presents a possi-
ble answer to this question. This answer is represented by the single square block
that encloses all the solid dark points without including any of the gray points. One
may consider a number of blocks that, collectively, achieve the same goal. Simi-
larly, one may consider a number of different single-box solutions that do meet the
same goal.

Figure 1.5. A Simple Sample of Observations Classified in Two Categories.
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Figure 1.6. A Single Classification Rule as Implied by the Data.

Such a box implies a classification rule defined in terms of the two attributes A1
and A2. In general, such boxes are convex polyhedrals defined on the space of the
attributes. For the single box in Figure 1.6 this is indicated by the dotted lines that
define the ranges of values defined as [a1, a2] and [b1, b2] for the attributes A1 and
A2, respectively. If the coordinates of a new observation fall inside these two ranges,
then according to the rule depicted by the solid box in Figure 1.6, this observation
belongs to the “solid dark” class. In the majority of the methods described in this
book we will attempt to derive solutions like the one in Figure 1.6. That is, we will
employ minimization approaches on the complexity of the derived pattern when such
a pattern is expressed in terms of a compact Boolean function or, equivalently, in
terms of a few classification rules.

For instance, for the case of the classification rule depicted as the solid box in
Figure 1.6, this Boolean function has the form (where “∧” indicates the logical “and”
operator)

FFF = (a2 ≥ A1 ≥ a1) ∧ (b2 ≥ A2 ≥ b1).

Thus, the corresponding classification rule is

IF (the value of A1 is between a1 and a2) and
(the value of A2 is between b1 and b2)

THEN the observation belongs to the “solid dark” class.

Similarly with the above simple case, when the data depicted in Figure 1.4 are
treated according to the previous minimization objective, then a possible set of classi-
fication rules is the set of boxes depicted in Figure 1.7. This figure depicts rules both
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Figure 1.7. Some Possible Classification Rules for the Data Depicted in Figure 1.4.

for the gray and also for the solid dark sampled observations (depicted as dotted and
solid-line boxes, respectively).

1.4.3 Which Data to Consider for Evaluation Next?

An interesting problem arises in cases in which the analyst has the capability to
decide the composition of the next observation to consider, before it is sent to the
expert or oracle for the determination of its class. Such a situation may arise, for
instance, when one performs some kind of a test and the outcome of which may
belong to two or more classes.

Let us consider Figure 1.8 which is based on the sampled data and the pro-
posed classification rules discussed in the previous section. This figure differs from
Figure 1.7 in that there are four additional observations for which we do not know
their class membership (i.e., we do not know if they are gray or solid dark observa-
tions). These four observations are represented by the four plain circles near the top
of the data set labeled with the question mark “?” and the numbers 1, 2, 3, and 4 for
easy reference.

Should we consider new observation #1, #2, #3, or #4 for class inquiry? Let us
consider each case separately and analyze these four different scenarios as follows:

Case #1. Suppose that we select new observation #1. This observation is covered
simultaneously by a box (classification rule) from each of the two classes. This is
indicated by the fact that it is covered by a solid-line box and also by a dotted-line
box. This means that the current patterns (state of our knowledge about the nature of
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Figure 1.8. The Problem of Selecting a New Observation to Send for Class Determination.

the system which has classified these observations) would classify that data point as
a gray and also as a solid dark point at the same time. Obviously, at least one of them
is inaccurate.

When point #1 is sent to the oracle for the class inquiry, it will be classified as
either a gray or a solid dark point. In the first scenario we will need to revise the
solid-line box that currently covers it. In the second scenario we will need to revise
the dotted-line box that currently covers it. In either scenario, one of the two sets
of boxes (patterns extracted from the data) needs to be updated, and hopefully that
would improve the current state of knowledge about the system of interest to the
analyst.

Case #2. A similar situation exists with new observation #2. This observation is not
covered by any of the current boxes (classification rules). That means that the solid-
line boxes classify it as a gray point (since they do not cover it) and the dotted-line
boxes classify it as a solid dark point for the analogous reason. Thus, if the oracle
classifies it as a gray point, then we need a new or modify an existing “gray” rule
(box) to cover it.

The opposite is true if the oracle classifies it as a solid dark point. Again, in any of
the two possible scenarios that exist for point #2, one of the two sets of rules needs to
be updated and thus, hopefully, improve the understanding of the system of interest
to the analyst.

Case #3 and #4. The analysis now is different when we consider point #3 (or point
#4). First, let us consider point #3. If that point is classified as gray by the oracle, no
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change to either set of rules is needed as this classification is consistent with the two
sets of rules that represent our current understanding of the system of interest to the
analyst.

However, if the oracle classifies it as a solid dark point, then both of the two sets
of rules (systems) need to be modified. The set of the “gray” rules (dotted boxes)
will have to reject it, while the set of the “solid dark” rules (solid boxes) will have
to accept it. It should be clearly stated here that under case #3, either none or both
of the two sets of rules needs (need) to be modified as a result of the classification
of such a point by the oracle. An analogous reasoning can be developed for point #4
which is covered by a “solid dark” rule (box). All the above issues are part of what
is known as guided learning and are analyzed in detail in Chapter 5.

1.4.4 Do Patterns Always Exist in Data?

Is it always possible to extract patterns from observations grouped into different
classes? Or more accurately, do patterns always exist embedded in such groups
of observations? In order to answer this question one has first to define what is a
pattern.

Generally speaking, a pattern is a property or set of properties that exist in the
data. According to the Merriam-Webster online dictionary, a pattern is a model, con-
figuration, trait, or system. Even if data are completely random, then this by itself is
a pattern. In terms of the data discussed in the previous sections, that means that the
gray and solid dark points are evenly distributed in the space of the two attributes A1
and A2.

Thus, the answer to the above question is always a profound “yes.” However, the
real challenge is to be able to identify the pattern or patterns which are most useful
in understanding the real nature of the system of interest to us. Otherwise, it is like
looking at clouds in the sky and trying to infer any figures or images of geographic
locations, plants, or even shapes of people or animals that could be imagined from
them with some level of creativity. After all, many star constellations in the night
sky are nothing but patterns, which, with some level of imagination, resemble such
figures including those of the famous zodiac group.

Chapter 10 discusses the mathematical and algorithmic implication to DM&KD
of a rather powerful property that seems to exist frequently in nature. This is the
property of monotonicity in the data. Loosely speaking, this means that the class
membership of observations is more likely to belong to a particular class as the values
of certain attributes increase or decrease.

As author K.C. Cole wrote in her seminal book [1999] The Universe and the
Teacup: The Mathematics of Truth and Beauty, “. . . nature bestows her bless-
ings buried in mountains of garbage.” Data mining and knowledge discovery is
the development and application of a new type of computational tools for analyz-
ing “mountains” of data for extracting useful and interesting new knowledge from
them.
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1.5 Concluding Remarks

This chapter described, in simple terms, some of the fundamental issues and
challenges in DM&KD theory and applications. It described some representative
application areas, although such a listing is by no means exhaustive.

It also highlighted the main steps of the entire data mining process with some of
the critical issues involved at each step. Four key methodological challenges were
also briefly mentioned. The same problems are the key subjects of the chapters that
follow. In these chapters these problems, and many more related issues, are discussed
in more detail and with the proper scientific rigor.



Chapter 2

Inferring a Boolean Function from Positive and
Negative Examples

2.1 An Introduction

A central problem in data mining is how to analyze observations grouped into two
categories and infer some key patterns that may be implied by these observations.
As discussed in Chapter 1, these observations describe different states of nature of
the system or phenomenon of interest to the analyst.

The previous chapter had a description of some possible application areas where
data from observations may be used to study a variety of natural or man-made
systems. Although there may be more than two classes when analyzing a system,
we assume here that we have only two. Situations with more than two classes can be
transformed into a set of two-class problems. Furthermore, it is assumed that these
two groups (classes) of observations are exhaustive and exclusive. That is, the system
has to be in only one of these two classes at any given moment.

The goal is to somehow analyze the data in these two groups of observations
and try to infer some key pattern(s) that may be implied by these data. This could
be important for a number of reasons. For instance, one may have the definition
of a new data point (or points) but without information of its (their) class. Then,
it is of interest to use the inferred patterns and assign it (them) to one of the two
classes. If the available information is not adequate, then the new point(s) may not
be assigned to any of the two classes and be deemed as undecidable, or as do not
know case(s).

In the following it is assumed that the data are binary vectors (i.e., their individual
fields take on 0/1 values). This is not a real limitation as nonbinary data can easily
be transferred into binary ones. As the following section illustrates, this binary data
and two-class problem has been studied extensively in the literature.

This chapter is organized as follows. After the following section, which reviews
some key developments from the literature, a simple method is presented as to how
nonbinary data can be transferred into equivalent binary data. The fourth section
introduces the required terminology and notation. Sections five and six provide
some formulations to this pattern inference problem. Sections seven, eight and nine
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c© Springer Science+Business Media, LLC 2010



22 2 Inferring a Boolean Function from Positive and Negative Examples

describe some developments for solving this problem by means of a branch-and-
bound search. They also provide an approach for data preprocessing. Section eleven
describes some computational results. This chapter concludes with section twelve.

2.2 Some Background Information

As mentioned above, suppose that some observations are available and they describe
the behavior of a system of interest. It is also assumed that the behavior of this system
is fully described by a number, say n, of attributes (also known as parameters, vari-
ables, criteria, characteristics, predicates, or just features). Thus, vectors of size n
define these observations. The i-th (for i = 1, 2, 3, . . . , n) element of such a vector
corresponds to the value of the i-th attribute. These attributes may be of any data
type. For instance, they may take on continuous, discrete, or binary (i.e., 0/1) values.
Furthermore, each observation belongs to one and only one of two distinct classes.
It is also assumed that the observations are noise free. That is, the class value asso-
ciated with each observation is the correct one. In general, these two classes are
called the positive and negative classes. These names are assigned arbitrarily. Thus,
the examples in the positive (negative) class will be called the positive (negative)
examples.

One may assume that some observations, say m, are already available. New
observations (along with their class membership) may become available later but
the analyst has no control on their composition. In addition to the previous scenario,
the analyst may be able to define the composition of new observations (i.e., to set
the values of the n attributes) and then perform a test, or ask an expert (known as
an oracle in the literature) to determine the class membership of a new observation.
The main goal is to use the available classified observations to extract the underly-
ing behavior of the target system in terms of a pattern. Next, this pattern is used to,
hopefully, accurately infer the class membership of unclassified observations.

The extraction of new knowledge in the form of some kind of a model from
collections of classified data is a particular type of learning from examples. Learn-
ing from examples has attracted the interest of many researchers in recent years.
In the typical learning problem of this type, both positive and negative examples are
available and the main goal is to determine a Boolean expression (that is, a set of
logical rules or clauses) which accepts all the positive examples, while it rejects all
the negative examples.

This kind of learning has been examined intensively (see, for instance, [Carbonell,
et al., 1983], [Dietterich and Michalski, 1983], [Kamath, et al., 1992], [Kearns, et al.,
1987], [Pitt and Valiant, 1988], [Quinlan, 1986], and [Valiant, 1984]). Typically,
the knowledge base of an intelligent system can be expressed as a Boolean func-
tion either in the conjunctive normal form (CNF) or in the disjunctive normal form
(DNF) (see, for instance, [Blair, Jeroslow, and Lowe, 1985], [Cavalier, Pardalos, and
Soyster, 1990], [Hooker, 1988a; 1988b], [Jeroslow, 1988; 1989], [Kamath, et al.,
1990], [Kamath, et al., 1992], [Valiant, 1984], and [Williams, 1987]).
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A considerable amount of related research is today known as the PAC (for
Probably Approximately Correct) learning theory (see, for instance, [Valiant, 1984],
[Angluin, 1988], and [Haussler and Warmuth, 1993]). The central idea of the PAC
model is that successful learning of an unknown target concept should entail obtain-
ing, with high probability, a hypothesis that is a good approximation of the target
concept (hence the term: probably approximately correct). The error associated with
the approximation of the target concept is defined as the probability that the pro-
posed concept (denoted as h) and the target concept (denoted as c) will disagree on
classifying a new example drawn randomly from unclassified examples. Later in this
chapter this notion of error is used frequently and is related to another concept used
extensively in this chapter called accuracy rate. The hypothesis h is a good approxi-
mation of the target concept if the previous error is small (less than some quantity ε,
where 1 > ε > 0).

In the same framework of thought, a learning algorithm is then a computational
procedure which takes a sample of random positive and negative examples of the
target concept c and returns a hypothesis h. In the literature a learning algorithm A
is a PAC algorithm if for all positive numbers ε and δ (where 1 > ε, δ > 0), when
A runs and accesses unclassified examples, then it eventually halts and outputs a
concept h with probability at least 1−δ and error at most equal to ε [Angluin, 1992].

Conjunctive concepts are properly PAC learnable [Valiant, 1984]. However, the
class of concepts in the form of the disjunction of two conjunctions is not properly
PAC learnable [Pitt and Valiant, 1988]. The same is also true for the class of existen-
tial conjunctive concepts on structural instance spaces with two objects [Haussler,
1989]. The classes of k-DNF, k-CNF, and k-decision lists are properly PAC learn-
able for each fixed k (see, for instance, [Valiant, 1985], [Rivest, 1987], and [Kearns,
et al., 1987]), but it is unknown whether the classes of all DNF, or CNF functions are
PAC learnable [Haussler and Warmuth, 1993] and [Goldman, 1990]. In [Mansour,
1992] an nO(log log n) algorithm is given for learning DNF formulas (however, not of
minimal size) under a uniform distribution by using membership queries.

Another related issue is the sample complexity of a learning algorithm, that is, the
number of examples needed to accurately approximate a target concept. The presence
of bias in the selection of a hypothesis from the hypothesis space can be beneficial
in reducing the sample complexity of a learning algorithm. Usually the amount of
bias in the hypothesis space H is measured in terms of the Vapnik–Chernovenkis
dimension, denoted as VCdim(H) [Haussler, 1988].

There are many reasons why one may be interested in inferring a Boolean func-
tion with the minimum (or near minimum) number of terms. In an electronic circuit
design environment, a minimum size Boolean representation is the prerequisite for a
successful VLSI application. In a learning from examples environment, one may be
interested in deriving a compact set of classification rules which satisfy the require-
ments of the input examples. As mentioned in the previous chapter, this can be
motivated for achieving the maximum possible simplicity (as stated succinctly by
Occam’s razor) which could lead to easy verification and validation of the derived
new knowledge.
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Since the very early days it was recognized that the problem of inferring a
Boolean function with a specified number of clauses is NP-complete (see, for
instance, [Brayton, et al., 1985] and [Gimpel, 1965]). Some related work in this
area is due to [Bongard, 1970]. The classical approach for dealing with this Boolean
function inference problem as a minimization problem (in the sense of minimizing
the number of CNF or DNF clauses) was developed in [Quine, 1952 and 1955] and
[McCluskey, 1956]. However, the exact versions of the Quine–McCluskey algorithm
cannot handle large-scale problems. Thus, some heuristic approaches have been pro-
posed. These heuristics include the systems MINI [Hong, et al., 1974], PRESTO
[Brown, 1981], and ESPRESSO-MV [Brayton, et al., 1985]. Another widely known
approach in dealing with this problem is the use of Karnaugh maps [Karnaugh,
1953]. However, this approach cannot be used to solve large-scale problems [Pappas,
1994]. Another application of Boolean function minimization can be found in the
domain of multicast [Chang, et al., 1999] where one needs a minimum number of
keys.

A related method, denoted as SAT (for satisfiability), has been proposed in
[Kamath, et al., 1992]. In that approach one first pre-assumes an upper limit on the
number of clauses to be considered, say k. Then a clause satisfiability (SAT) model
is formed and solved using an interior point method developed by Karmakar and his
associates [Karmakar, Resende, and Ramakrishnan, 1992]. If this clause satisfiabi-
lity problem is feasible, then the conclusion is that it is possible to correctly classify
all the examples with k or fewer clauses. If the SAT problem (which essentially is
an integer programming model) is infeasible, then one must increase k until feasibi-
lity is reached. In this manner, the SAT approach yields a system with the minimum
number of clauses.

It is important to observe at this point that from the computational point of view
it is much harder to prove that a given SAT problem is infeasible than to prove that
it is feasible. Therefore, trying to determine a minimum size Boolean function by
using the SAT approach may be computationally too difficult. Some computational
results indicate that the B&B approach proposed in [Triantaphyllou, 1994] (and as
described in Chapter 3 of this book) is more efficient than the previous satisfiability-
based approach. Actually, that B&B approach is on the average 5,500 times faster in
those tests.

In [Felici and Truemper, 2002] the authors propose a different use of the SAT
model. They formulate the problem of finding a clause with maximal coverage as
a minimum cost satisfiability (MINSAT) problem and solve such problem itera-
tively by using the logic SAT solver Leibniz, which was developed by Truemper
[1998]. That method is proved to be computationally feasible and effective in
practice. The same authors also propose several variants and extensions to that
system. Further extensions on this learning approach are also discussed in [Truemper,
2004].

A very closely related problem is to study the construction of a partially defined
Boolean function (or pdBf), not necessarily of minimal size, given disjoint sets of
positive and negative examples. That is, now it is required that the attributes of the
function be grouped according to a given scheme (called a decomposition structure)
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[Boros, et al., 1994]. Typically, a pdBf may have exponentially many different
extensions.

It should be stated here that there are a multitude of methods for inferring a
Boolean function from two sets of training examples. A review of some recent
developments of methods that infer rules (which in essence are like classification
Boolean functions) can be found in [Triantaphyllou and Felici, 2006].

In summary, the most representative advances in distinguishing between obser-
vations in two or more classes can be classified into some distinct categories as fol-
lows: Some common logic approaches by [Zakrevskij, 1988; 1994; 1999; 2001; and
2006]. Clause satisfiability approaches to inductive inference such as the methods
by Kamath, et al., [1992, 1994] and [Felici and Truemper, 2002]. Boolean function
(i.e., logic)-based approaches such as the methods in [Triantaphyllou, et al., 1994],
[Triantaphyllou, 1994] (these developments are described in detail later in this and
the next chapter); some polynomial time and NP-complete cases of Boolean func-
tion decomposition by [Boros, et al., 1994]; association rules [Adamo, 2000]; rough
and fuzzy sets [Wang, Liu, Yao, Skowron, 2003]. Decision tree-based approaches
[Quinlan, 1979; 1986], [Freitas, 2002] and [Witten and Eibe, 2005]. Support vector
machines (SVM) by [Woldberg and Mangasarian, 1990], [Mangasarian, et al., 1990],
[Mangasarian, et al., 1995], [Abe, 2005], and [Wang, 2005]. Knowledge-based
learning approaches by combining symbolic and connectionist machine (neural
networks)-based learning as proposed by Shavlik [1994], Fu [1993], Goldman and
Sloan [1994] and Cohn, et al. [1994]. Neural networks [Arbib, 2002] and [Dayan
and Abbot, 2001]. Various rule induction approaches as described in the edited book
by [Triantaphyllou and Felici, 2006]; and finally, some nearest neighbor classifica-
tion approaches [Hattori and Torri, 1993], [Kurita, 1991], [Kamgar-Parsi and Kanal,
1985], [Perner and Rosenfeld, 2003], [Berry, Kamath, and Skillicorn, 2004]. The
above listing is not exhaustive as the field of data mining is still expanding rapidly,
both in terms of theory and applications.

The main challenge in inferring a target set of discriminant classification rules
from positive and negative examples is that the user may never be absolutely certain
about the correctness of the classification rules, unless he/she has used the entire set
of all possible examples which is of size 2n in the binary case with n attributes. In the
general case this number is too high. Apparently, even for a small value of n, this task
may be practically impossible to realize.

Fortunately, many real-life applications are governed by the behavior of a
monotone system or they can be described by a combination of a small number of
monotone systems. In data mining the property of monotonicity offers some unique
computational advantages. By knowing the value of certain examples, one can easily
infer the values of more examples. This, in turn, can significantly expedite the learn-
ing process. This chapter discusses the case of inferring general Boolean functions
from disjoint collections of training examples. The case of inferring a monotone
Boolean function is discussed in Chapter 10 of this book.
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2.3 Data Binarization

The main idea of how to transform any data type into binary ones is best described
via a simple illustrative example. Suppose that the data in Table 2.1 represent some
sampled observations of the function of a system of interest. Each observation is
described by the value of two continuous attributes denoted as A1 and A2. Further-
more, each observation belongs to one of two classes, denoted as Class 1 and Class 2.
A number of problems can be considered at this point. The main problem is how to
derive a pattern, in the form of a set of rules, which is consistent with these obser-
vations. As the set of rules we consider here logical clauses in the CNF (conjunctive
normal form) or DNF (disjunctive normal form). That is, we seek the extraction of a
Boolean function in CNF or DNF form. A more detailed description of the CNF and
DNF forms is given in the next section.

Although, in general, many such Boolean functions can be derived, the focus of
the proposed approach is on the derivation of a function of minimal size. By minimal
size we mean a Boolean function which consists of the minimum number of CNF or
DNF clauses. We leave it up to the analyst to decide whether he/she wishes to derive
CNF or DNF functions. As explained in Chapter 7, Boolean functions in CNF (DNF)
can easily be derived by using algorithms that initially derive Boolean functions in
DNF (CNF).

Next we will demonstrate how the continuous data depicted in Table 2.1 can
be represented by equivalent observations defined on only binary attributes. This is
achieved as follows. We start with the first continuous attribute, i.e., attribute A1 in
this case, and we proceed until we cover all the continuous attributes.

From Table 2.1 it can be observed that the ordered set, denoted as Val(A1), with
all the values of attribute A1 is defined as the following ordered list:

Val(A1) = {Vi (A1), for i = 1, 2, 3, . . . , 9}
= {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.25, 2.75}.

That is, V1(A1) = 0.25, V2(A1) = 0.50, V3(A1) = 0.75, . . . , V9(A1) = 2.75.

Table 2.1. Continuous Observations for Illustrative Example.

Example Class Example Class
No. A1A1A1 A2A2A2 No. No. A1A1A1 A2A2A2 No.

1 0.25 1.50 1 12 1.00 0.75 1
2 0.75 1.50 1 13 1.50 0.75 1
3 1.00 1.50 1 14 1.75 0.75 2
4 0.50 1.25 1 15 0.50 0.50 1
5 1.25 1.25 2 16 1.25 0.50 2
6 0.75 1.00 1 17 2.25 0.50 2
7 1.25 1.00 1 18 2.75 0.50 2
8 1.50 1.00 2 19 1.25 0.25 2
9 1.75 1.00 1 20 1.75 0.25 2

10 2.25 1.00 2 21 2.25 0.25 2
11 0.25 0.75 1
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Obviously, the cardinality of this set (i.e., the number of elements in this set) is at
most equal to the number of all available observations. In this instance, the cardinal-
ity is equal to 9. Next, we introduce 9 binary attributes A′

1,i (for i = 1, 2, 3, . . . , 9)
as follows:

A′
1,i =

{
1, if and only if A1,i ≥ Vi (A1), for i = 1, 2, 3, . . . , 9,

0, otherwise.

In general, the previous formula becomes for any multivalued attribute A j (where K
is the cardinality of the set Vi (A j )):

A′
j,i =

{
1, if and only if A j,i ≥ Vi (A j ), for i = 1, 2, 3, . . . , K ,

0, otherwise.

Using the above-introduced binary attributes, from the second observation (i.e.,
vector (0.75, 1.50) = (A1,2, A2,2)) we get for its first attribute (please note that
A1,2 = 0.75)

{A′
1,1, A′

1,2, A′
1,3, A′

1,4, A′
1,5, A′

1,6, A′
1,7, A′

1,8, A′
1,9} = {1, 1, 1, 0, 0, 0, 0, 0, 0}.

Similarly with the above definitions, for the second continuous attribute A2 the set
Val(A2) is defined as follows:

Val(A2) = {Vi (A2), for i = 1, 2, 3, . . . , 6}
= {0.25, 0.50, 0.75, 1.00, 1.25, 1.50}.

Working as above, for the second observation we have

{A′
2,1, A′

2,2, A′
2,3, A′

2,4, A′
2,5, A′

2,6} = {1, 1, 1, 1, 1, 1}.
The above transformations are repeated for each of the nonbinary attributes.

In this way, the transformed observations are defined on at most m × n binary
attributes (where m is the number of observations and n is the original number of
attributes). The precise number of the transformed attributes can be easily computed
by using the following formula:

n∑
i=1

|Val(Ai )|,

where |s| denotes the cardinality of set s.
The binary attributed observations which correspond to the original data (as given

in Table 2.1) are presented in Table 2.2 (parts (a) and (b)).
From the way the binary attributes have been defined, it follows that the two sets

of observations are equivalent to each other. However, the observations in Table 2.1
are defined on continuous attributes while the observations in Table 2.2 are defined
on binary ones.



28 2 Inferring a Boolean Function from Positive and Negative Examples

Table 2.2a. The Binary Representation of the Observations in the Illustrative Example (first
set of attributes for each example).

First set of attributes: A′
1,iA′
1,iA′
1,i , for i = 1, 2, 3, . . . , 9i = 1, 2, 3, . . . , 9i = 1, 2, 3, . . . , 9

Example
No. A′

1,1A′
1,1A′
1,1 A′

1,2A′
1,2A′
1,2 A′

1,3A′
1,3A′
1,3 A′

1,4A′
1,4A′
1,4 A′

1,5A′
1,5A′
1,5 A′

1,6A′
1,6A′
1,6 A′

1,7A′
1,7A′
1,7 A′

1,8A′
1,8A′
1,8 A′

1,9A′
1,9A′
1,9

1 1 0 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0
3 1 1 1 1 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0
5 1 1 1 1 1 0 0 0 0
6 1 1 1 0 0 0 0 0 0
7 1 1 1 1 1 0 0 0 0
8 1 1 1 1 1 1 0 0 0
9 1 1 1 1 1 1 1 0 0
10 1 1 1 1 1 1 1 1 0
11 1 0 0 0 0 0 0 0 0
12 1 1 1 1 0 0 0 0 0
13 1 1 1 1 1 1 0 0 0
14 1 1 1 1 1 1 1 0 0
15 1 1 0 0 0 0 0 0 0
16 1 1 1 1 1 0 0 0 0
17 1 1 1 1 1 1 1 1 0
18 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 0 0 0 0
20 1 1 1 1 1 1 1 0 0
21 1 1 1 1 1 1 1 1 0

Table 2.2b. The Binary Representation of the Observations in the Illustrative Example (second
set of attributes for each example).

First set of attributes: A′
2,iA′
2,iA′
2,i , for i = 1, 2, 3, . . . , 6i = 1, 2, 3, . . . , 6i = 1, 2, 3, . . . , 6Example Class

No. A′
2,1A′
2,1A′
2,1 A′

2,2A′
2,2A′
2,2 A′

2,3A′
2,3A′
2,3 A′

2,4A′
2,4A′
2,4 A′

2,5A′
2,5A′
2,5 A′

2,6A′
2,6A′
2,6 No.

1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 0 1
5 1 1 1 1 1 0 2
6 1 1 1 1 0 0 1
7 1 1 1 1 0 0 1
8 1 1 1 1 0 0 2
9 1 1 1 1 0 0 1
10 1 1 1 1 0 0 2
11 1 1 1 0 0 0 1
12 1 1 1 0 0 0 1
13 1 1 1 0 0 0 1
14 1 1 1 0 0 0 2
15 1 1 0 0 0 0 1
16 1 1 0 0 0 0 2
17 1 1 0 0 0 0 2
18 1 1 0 0 0 0 2
19 1 0 0 0 0 0 2
20 1 0 0 0 0 0 2
21 1 0 0 0 0 0 2
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Given the above considerations, it follows that the original problem has been
transformed to the binary problem depicted in Table 2.2 (parts (a) and (b)). This
problem has the following two sets of positive and negative examples, denoted as
E+ and E−, respectively.

E+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 1 1 1 1 1 0
1 1 1 0 0 0 0 0 0 1 1 1 1 0 0
1 1 1 1 1 0 0 0 0 1 1 1 1 0 0
1 1 1 1 1 1 1 0 0 1 1 1 1 0 0
1 0 0 0 0 0 0 0 0 1 1 1 0 0 0
1 1 1 1 0 0 0 0 0 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

E− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0 0 1 1 1 1 1 0
1 1 1 1 1 1 0 0 0 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 1 1 1 1 0 0
1 1 1 1 1 1 1 0 0 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, it should be stated here that [Bartnikowski, et al., 2006] present a detailed
study of the general binarization problem.

2.4 Definitions and Terminology

Let {A1, A2, A3, . . . , An} be a set of n Boolean attributes. Each attribute Ai (for
i = 1, 2, 3, . . . , n) can be either true (denoted by 1) or false (denoted by 0). Let
F be a Boolean function defined on these attributes. For instance, the expression
(A1 ∨ A2) ∧ (A3 ∨ Ā4) is such a Boolean function, where “∨” and “∧” stand
for the logical “OR” and “AND” operators, respectively. That is, F is a mapping
from {0, 1}n → {0, 1} which determines for each combination of truth values of the
attributes A1, A2, A3, . . . , An of F , whether F is true or false (denoted as 1 or 0,
respectively).

For each Boolean function F , the positive examples are the vectors v ∈ {0, 1}n

such that F(v) = 1. Similarly, the negative examples are the vectors v ∈ {0, 1}n

such that F(v) = 0. Therefore, given a function F defined on the n attributes
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{A1, A2, A3, . . . , An}, then a vector v ∈ {0, 1}n is either a positive or a negative
example.

Equivalently, we say that a vector v ∈ {0, 1}n is accepted (or rejected) by a
Boolean function F if and only if the vector v is a positive (or a negative) example of
F . For instance, let F be the Boolean function (A1 ∨ A2)∧ (A3 ∨ Ā4). Consider the
two vectors v1 = (1, 0, 0, 0) and v2 = (1, 0, 0, 1). Then, it can be easily verified that
F(v1) = 1. That is, the vector v1 is a positive example of the function F . However,
the vector v2 is a negative example of F (since F(v2) = 0).

The motivation for the following developments is best illustrated via a simple
illustrative example. Consider a system of interest (represented by some Boolean
function) that involves the following four attributes: A1, A2, A3, and A4. We do not
know its structure yet. In any situation each attribute can either be true (denoted
by 1) or false (denoted by 0). For instance, in example (0, 1, 1, 0) the attributes
A2, A3, Ā1, Ā4, are true or, equivalently, A1, A4, Ā2, Ā3, are false. There are 24 =
16 possible examples (also known as states of nature) for this system (Boolean
function). If a Boolean function is specified, then each of these 16 examples could
be categorized either as positive or as negative.

For systems in CNF (to be formally defined below) a state of nature corresponds
to a positive example if and only if it is satisfied by each clause in the system (i.e.,
Boolean function to be inferred). For instance, the state (0, 1, 0, 1) satisfies the clause
(A1∨A2∨ Ā3) and thus it corresponds to a positive example (in terms of that clause).
Similarly, a state is a negative example if it violates at least one of the clauses in the
system (Boolean function). Next consider the following three Boolean clauses:

( Ā1 ∨ Ā2 ∨ A3 ∨ A4), (A1 ∨ A2), and ( Ā1 ∨ A2 ∨ A3).

Then, all the 16 possible states are characterized as (1, 1, 1, 1) positive, (1, 0, 0, 0)
negative, (1, 1, 0, 0) negative, and so on.

The terms Boolean function, Boolean expression, and system would be used
to denote the same concept. Also, in this chapter it is assumed, unless otherwise
stated, that any Boolean expression (and consequently any clause) is expressed in
the conjunctive normal form (CNF). An example of a Boolean expression in CNF
is (A1 ∨ A3 ∨ A4) ∧ (A2 ∨ Ā7) ∧ (A1 ∨ Ā6), which simply is a conjunction of
disjunctions. The above expression evaluates to true value if and only if all three
disjunctions evaluate to true value. It evaluates to false value if and only if at least
one of the disjunctions evaluates to false value. More formally, a Boolean expression
is in the conjunctive normal form (CNF) if it is in the form (where ai is either Ai or
Āi and ρ j is the set of indices)

k∧
j=1

(
∨

i∈ρ j

ai

)
. (2.1)

Similarly, a Boolean expression is in the disjunctive normal form (DNF) if it is in the
form

k∨
j=1

(
∧

i∈ρ j

ai

)
. (2.2)
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An example of a Boolean function in DNF is (A1 ∧ A2) ∨ (A3 ∧ Ā4 ∧ A5), which
is a disjunction of conjunctions. Such an expression evaluates to true value if and
only if at least one of the conjunctions evaluates to true value. It evaluates to false
value if and only if all the conjunctions evaluate to false value. In other words, a CNF
expression is a conjunction of disjunctions, while a DNF expression is a disjunction
of conjunctions. It should be stated here that the “boxes” (rules) discussed in some
of the figures in Chapter 1 correspond to DNF systems. This is true because a single
box can be viewed as a conjunction of a set of conditions (see also Section 1.4.2).

It is known [Peysakh, 1987] that any Boolean function can be transformed into
the CNF or the DNF form. Chapter 7 of this book provides a simple approach of
how any algorithm that derives a Boolean function in CNF (DNF) can also derive a
function in DNF (CNF) by performing some simple transformations.

In summary, a set of positive examples (to be denoted as E+ in this book) and
a set of negative examples (to be denoted as E− in this book) are assumed to be
available. These data will be used as the training data to infer a Boolean function.
Given these two sets of positive and negative examples, the constraints to be satis-
fied by a Boolean function are as follows. In the CNF case, each positive example
should be accepted by all the disjunctions in the CNF expression and each negative
example should be rejected by at least one of the disjunctions. In the case of DNF
systems, any positive example should be accepted by at least one of the conjunctions
in the DNF expression, while each negative example should be rejected by all the
conjunctions.

The general problem we analyze in this chapter is the construction of a set of
Boolean expressions (clauses in CNF form) which correctly classify a set of sam-
pled examples. We assume that each of these examples can be correctly classified
(by an “oracle” or “expert”) either as a positive example or as a negative exam-
ple. The “expert” somehow knows the correct identification of any example. Such
an expert opinion could be the result of a test, or a series of tests, which could be
used to classify examples of the way the system operates. Furthermore, the under-
lying system of interest is not explicitly known. As illustrated in the first chapter,
this can be a common and very important problem in many and diverse application
areas.

The “expert” somehow can identify (probably through experience or special
tests) the nature of any particular example but lacks the ability to characterize the
classification rules to be used for such classifications. Thus, an important challenge
is to develop methods to approximate the hidden system in situations in which the
nature of finite numbers of examples is known.

We will consider this problem in a practical and applied context. Instead of four
attributes, consider the scenario in which we may have, say, 50 attributes. Here the
number of all the possible states (examples) is 250 = 1,125,899,906,842,624. This
is more than one quadrillion. It would be impractical to generate all possible exam-
ples. However, one may be able to generate and categorize a few hundreds or even
thousands of sampled examples. From this partial set of examples, we will determine
a particular set of CNF clauses which correctly classify all the sampled examples and,
hopefully, a large proportion of the remaining ones.
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2.5 Generating Clauses from Negative Examples Only

Consider any example α defined on n binary attributes. For instance, if n = 5, then
consider an example such as (1, 0, 1, 1, 0). Next, observe that the CNF clause ( Ā1 ∨
A2∨ Ā3∨ Ā4∨ A5) is satisfied by all examples (d1, d2, d3, d4, d5), where di ∈ {0, 1},
except (1, 0, 1, 1, 0). The previous observation leads to the realization that a clause
Cα can always be constructed which rejects any single example α while it accepts
all other possible examples in the binary space of dimension n. In order to formalize
this, let ATTRIBUTES (α) be the set of indices of the attributes which are true in
example α. For instance, ATTRIBUTES ((1, 0, 1, 1, 0)) = {1, 3, 4}. If the clause Cα
is defined as

Cα = (β1 ∨ β2 ∨ β3 ∨ · · · ∨ βN ),

where

βi =
{

Āi , if and only if i ∈ ATTRIBUTES(α)

Ai , otherwise

}
,

for each i = 1, 2, 3, . . . , n,

then the clause Cα will reject only example α and it will accept any other example.
For instance, for the vector α = (1, 0, 1, 1, 0) the Cα clause is the previous CNF
clause ( Ā1 ∨ A2 ∨ Ā3 ∨ Ā4 ∨ A5).

Suppose that m examples are somehow generated. Define E+ as the set of m1
examples which have been classified as positive examples and E− as the set of the
examples which have been classified as negative examples. These are the training
examples to be used to generate a Boolean function.

For each of the m2 (where m2 = m−m1) examples in E−, we generate the unique
clause as defined above. Each of these clauses rejects one and only one example and,
hence, accepts all the examples in E+. This set of m2 clauses precisely satisfies the
first objective of inferring a Boolean function which would accept all positive exam-
ples and reject all the negative ones. However, this approach would be impractical
for large selections of negative examples, since it would result in large numbers of
clauses.

More importantly, the above approach would suffer immensely of the overfit-
ting problem. That is, the pattern (set of Boolean clauses) that would be gene-
rated as described previously, would fit perfectly well the negative data and nothing
else. Its generalization capability would be almost nil. In terms of the solid-line
and dotted-line boxes depicted in Figure 1.7 in Chapter 1, the above situation
would be like generating solid-line boxes that cover each of the solid dark points
in Figure 1.7 (assuming that the solid dark points in that figure are the negative
examples). It should be mentioned here that the other extreme situation is to have
overgeneralization of the data. Having a way to control the overfitting and over-
generalization properties of the inferred system is of high priority in data mining and
the subject of ongoing research activity.

From this discussion it becomes clear that it is important to have an approach that
constructs a rather small (relative to m1 and m2) number of clauses. This would also
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be desirable for the reasons of simplicity as described earlier in Chapter 1 (based
on Occam’s razor, etc.). The methods described in the following sections are such
approaches.

2.6 Clause Inference as a Satisfiability Problem

In [Karmakar, et al., 1991] it is shown that given two collections of positive and nega-
tive examples, then a DNF system can be inferred to satisfy the requirements of these
examples. This is achieved by formulating a satisfiability (SAT) problem, which
essentially is an integer programming (IP) problem, and then solve this IP problem
by using the interior point method of Karmakar and his associates [Karmakar, et al.,
1991] as the solution strategy. This approach requires the specification of the number
of conjunctions in the DNF system. The SAT problem uses the following Boolean
variables [Karmakar, et al., 1991]:

s ji =
{

0, if Ai is in the j-th conjunction

1, if Ai is not in the j-th conjunction

s′j i =
{

0, if Āi is in the j-th conjunction

1, if Āi is not in the j-th conjunction

σαj i =
{

s ji , if Ai = 1 in the positive example α ∈ E+

s ′j i , if Ai = 0 in the positive example α ∈ E+

zαj =
{

1, if the positive example α is accepted by the j-th conjunction

0, otherwise

Then, the clauses of this SAT problem are as follows:

s ji ∨ s ′j i , for i = 1, . . . , n, and j = 1, . . . , k, (2.1a)

(
∨

i∈Pr
s̄′j i

)
∨
(

∨
i∈P̄r

s̄ j i

)
, for i = 1, . . . , k, and r = 1, . . . ,m2, (2.2a)

k∨
j=1

zαj , for α = 1, . . . ,m1, (2.3a)

σαj i ∨ z̄αj , for i = 1, . . . , n, j = 1, . . . , k, and α = 1, . . . ,m1, (2.4a)

where Pr is the set of indices of A for which Ai = 1 in the negative example r ∈ E−.
Similarly, P̄r is the set of indices of A for which Ai = 0 in the negative example
r ∈ E−.

Clauses of type (2.1a) ensure that both Ai and Āi will never appear in any con-
junction. Clauses of type (2.2a) ensure that each negative example is rejected by all
conjunctions. Clauses of type (2.3a) ensure that each positive example is accepted
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by at least one conjunction. Finally, clauses of type (2.4a) ensure that zαi = 1 if and
only if the positive example α is accepted by the j-th disjunction. In general, this SAT
problem has k(n(m1+1)+m2)+m1 clauses, and k(2n(1+m1)+nm2+m1) Boolean
variables. A detailed example of this formulation can be found in [Karmakar, et al.,
1991].

2.7 An SAT Approach for Inferring CNF Clauses

The SAT formulation for deriving CNF systems is based on the original SAT formu-
lation for deriving DNF systems as described in the previous section. The variables
used in the new formulation are similar to the ones used in the DNF case. They are
defined in a similar way as in the previous section as follows:

s ji =
{

0, if Ai is in the j-th disjunction

1, if Ai is not in the j-th disjunction

s ′j i =
{

0, if Āi is in the j-th disjunction

1, if Āi is not in the j-th disjunction

σ
β
j i =

{
s ji , if Ai = 1 in the negative example β ∈ E−

s′j i , if Ai = 0 in the negative example β ∈ E−

zβj =
{

1, if the negative example β is accepted by the j-th disjunction

0, otherwise

The clauses of the SAT formulation for deriving a CNF system which has up to k
disjunctions are as follows (where n is the number of attributes):

s ji ∨ s′j i , for i = 1, . . . , n, and j = 1, . . . , k, (2.1b)

(
∨

i∈Pr
s̄ j i

)
∨
(

∨
i∈P̄r

s̄′j i

)
, for i = 1, . . . , k, and r = 1, . . . ,m1, (2.2b)

k∨
j=1

zβj , for β = 1, . . . ,m2, (2.3b)

σ
β
j i ∨ z̄βj , for i = 1, . . . , n, j = 1, . . . , k, and β = 1, . . . ,m2, (2.4b)

where Pr is the set of indices of A for which Ai = 1 in the positive example r ∈ E+.
Similarly, P̄r is the set of indices of A for which Ai = 0 in the positive example
r ∈ E+.

Clauses of type (2.1b) ensure that both Ai and Āi will never appear in any dis-
junction at the same time. Clauses of type (2.2b) ensure that each positive example
will be accepted by all k disjunctions. Clauses of type (2.3b) ensure that each nega-
tive example will be rejected by at least one of the k disjunctions. Finally, clauses of
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type (2.4b) ensure that zβi = 1 if and only if the negative example is rejected by the
j-th conjunction. In general, this problem has k(n(m2 + 1)+ m1)+ m2 clauses, and
k(2n + m2) binary variables.

Next, suppose that the following are the two sets (it is assumed that n = 4) E+
and E− with the positive and negative examples of cardinality m1 and m2, respec-
tively. These data were used to derive the integer programming (IP) model of the
SAT formulation and its solution, for the CNF case, shown in the Appendix of this
chapter. This IP model is written for the LINDO integer programming solver and can
be easily adapted to fit many other IP solvers.

E+ =

⎡
⎢⎢⎣

0 1 0 0
1 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦ and E− =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

2.8 The One Clause At a Time (OCAT) Concept

The simple approach for creating clauses (disjunctions for a CNF expression) from
negative examples described in Section 2.5, is very inefficient and ineffective. How-
ever, it provides some interesting insights. First of all, it is clear that in inferring
a Boolean function from training data, one could start with a single data point and
then move to another one and so on until all the points are covered. In the method
described in Section 2.5 that strategy took place for the negative examples only. That
is why that method is very inefficient as the derived systems suffer from extreme
overfitting. The above idea provides the foundation for a sequential strategy. This
is also the notion of the sequential covering algorithm discussed in [Tan, Steinbach,
and Kumara, 2005].

Given a single clause, defined as before one could alleviate its problem of over-
fitting by removing items (i.e., attributes or their negations) off the definition of the
clause. In that way, the clause would become less specific and more generalizing.
That is, the modified clause would cover more than just a single negative example.
This is how those clauses could be expanded in a gradual manner. In terms of the
“boxes” (rules) idea discussed in Figure 1.7, this means that now the boxes would
cover more than just a single negative example. One could keep removing such items
off the definition of the clause until positive examples are covered too or some thresh-
old value is reached. This idea can be explored from various implementation points
of view but the end result is usually a rather large number of clauses.

Even after the above modification, the derived system of clauses may not be the
best. There is no attention paid to the number of clauses derived to be small or,
ideally, minimal. The strategy discussed next was first proposed in [Triantaphyllou,
et al., 1994] and [Triantaphyllou, 1994] and provides a greedy algorithm for achiev-
ing this goal. That approach is conceptually very close to Occam’s razor and compu-
tationally superior to the SAT approach discussed in the previous two sections.
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Input: Training data sets E+ and E−
i = 0;C = ∅; {initializations}
DO WHILE (E− = ∅)

Step 1: i ← i + 1;
Step 2: Find a clause ci which accepts all members of E+ while it

rejects as many members of E− as possible;
Step 3: Let E−(ci ) be the set of members of E− which are rejected

by ci ;
Step 4: Let C ← C ∧ ci ;
Step 5: Let E− ← E−—E−(ci );

REPEAT;
Output: A CNF expression C which accepts all examples in set E+ while it

rejects all examples in set E−

Figure 2.1. The One Clause At a Time (OCAT) Approach (for the CNF case).

As mentioned in the previous section, the problem of deriving a Boolean func-
tion from sets of observations has been extensively studied in the literature. In our
setting each example is a binary vector of size n (number of binary attributes). The
proposed One Clause At a Time (or OCAT) approach is based on a greedy algorithm.
It uses as input data the two collections of disjoint positive and negative examples.
It determines a set of CNF clauses that, when taken together, reject all the negative
examples and each of them accepts all the positive examples.

The OCAT approach is sequential. In the first iteration it determines a clause
in CNF form (in the current implementation) that accepts all the positive examples
in the E+ set while it rejects as many negative examples in the current E− set as
possible. In the second iteration it performs the same task using the original E+ set
but the current E− set has only those negative examples that have not been rejected
by any clause so far. The iterations continue until a set of clauses is constructed
which reject all the negative examples. Figure 2.1 summarizes the iterative nature of
the OCAT approach.

The core of the OCAT approach is Step 2 in Figure 2.1. The way this step is
defined in Figure 2.1, implies the solution of an optimization problem. This is how
the number of the inferred clauses could be controlled and not allowed to increase too
much. In the next section a branch-and-bound (B&B)-based algorithm is presented
that solves the problem posed in Step 2. Another faster B&B algorithm is presented
in Chapter 3. However, the first B&B algorithm is presented to motivate the intro-
duction of the second one. A fast heuristic for solving the problem posed in Step 2
of the OCAT approach is described in Chapter 4. The OCAT approach returns the set
of desired clauses as set C .

For the DNF case one needs to modify Step 2 by deriving a clause which rejects
all the negative examples while it accepts as many positive examples in the current
version of the E+ set as possible. Next, one needs to update the set of the positive
examples (in modified Steps 3 and 5) by keeping only those examples which have
not been accepted so far and repeat the loop. Step 4 needs to be modified too so the
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Figure 2.2. Some Possible Classification Rules for the Data Depicted in Figure 1.4.

derived system is a disjunction of conjunctions. The process is terminated when no
positive examples are left in the E+ set.

Next, we will try to get an idea about the difficulty of this Boolean function
inference problem. Suppose that a learning problem involves a total of m training
examples each of which is a binary vector of size n. Then, as Section 5.4 proves,
there are 2L , where L = 2n − m, different Boolean functions which satisfy the
requirements of these training data. This is an astronomically large number of possi-
ble solutions. The illustrative example later in Section 5.5 attempts to give a practical
feeling of how incredibly large this solution space can be even for trivially small size
learning problems. Thus, which Boolean function should one try to determine out
of this huge number of possible solutions? The OCAT approach uses the greedy
algorithm described in Figure 2.1 which is based on what is called the principal of
maximum simplicity. This principle is best expressed by Occam’s razor described in
Section 1.4.2 as OCAT tries to infer a Boolean function of minimal or near-minimal
number of clauses.

If one revisits the ideas behind Figure 1.7 (which is repeated here as Figure 2.2)
about the two sets of boxes (rules) which cover the two groups of observations, then
the OCAT approach solves a type of a set covering problem. Furthermore, it has the
following interpretation.

Suppose that we start with the task of first covering the solid black points in
Figure 2.2. We would like to derive a set of solid boxes. Such boxes correspond
to classification rules which, as was shown in Section 1.4.2, are nothing but DNF
expressions, although not defined on binary data. Then, according to the OCAT
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algorithm, and for the DNF case, the first step is to determine a box (rule) which
covers the largest concentration of solid black points without covering any of the
gray points. Next, determine a second box which covers the second largest concen-
tration of solid black points, also without covering any of the gray points. We repeat
this step successively, until a set of boxes is derived which, when are taken together,
cover all the solid black points without covering any of the gray ones.

This set of boxes is the “solid black” set of classification rules. In an analogous
manner, the “gray” (or “dotted”) set of classification rules can be derived as well.
In the following section a strategy is presented on how to classify new examples as
being in either class or whether they should be deemed as undecidable (i.e., unclas-
sifiable) cases.

Next, suppose that the cardinality (size) of the set of negative examples E− is
equal to m2. Then, the following theorem [Triantaphyllou, Soyster, and Kumara,
1994] states a critical property of the OCAT approach.

Theorem 2.1. The OCAT approach terminates within m2 iterations.

Proof. From Section 2.5 it follows that it is always possible to construct a clause Cα
that rejects only one negative example while it accepts any other possible example.
At worst, Step 2 of the OCAT approach could propose a clause that rejects only one
negative example at a given iteration. Therefore, the maximum number of iterations
of the OCAT approach is m2. �

In Sections 2.6 and 2.7 we discussed a Boolean inference algorithm based on
a satisfiability (SAT) formulation. In the above version of the OCAT approach,
Boolean functions are derived in CNF. The two approaches have a major difference.

The OCAT approach, as defined in Figure 2.1, attempts to minimize the number
of disjunctions in the proposed CNF system. However, the SAT approach pre-
assumes a given number, say k, of conjunctions in the DNF (or disjunctions in the
CNF) system to be inferred and solves an SAT problem. If this SAT problem is
infeasible, then the conclusion is that there is no DNF system which has k or fewer
conjunctions and satisfies the requirements imposed by the examples. It should be
emphasized here that it is not very critical whether an inference algorithm deter-
mines a CNF or DNF system (i.e., CNF or DNF Boolean function). As shown in
[Triantaphyllou and Soyster, 1995b] and also presented in detail in Chapter 7, either
a CNF or DNF system can be derived by using either algorithm.

2.9 A Branch-and-Bound Approach for Inferring a Single Clause

Branch-and-bound (B&B) is a search strategy which can be used to solve a wide
spectrum of problems. It takes different forms depending on the specific problem
under consideration. For Step 2 of the OCAT approach (for the CNF case), a B&B
approach is given in [Triantaphyllou, Soyster, and Kumara, 1994]. It can be best
described via an illustrative example. Suppose that the following are the two sets
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(it is assumed that n = 4, i.e., the system involves 4 attributes) E+ and E− with the
positive and negative examples of cardinality m1 and m2, respectively.

E+ =

⎡
⎢⎢⎣

0 1 0 0
1 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦ and E− =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We number the positive examples as (1, 2, 3, 4) and the negative examples as
(1, 2, 3, 4, 5, 6). For instance, the set of the negative examples {1, 3} means the set
of the first and the third negative examples (i.e., vectors (1, 0, 1, 0) and (1, 1, 1, 1),
respectively). The B&B approach will determine a single clause (in CNF) that
accepts all the positive examples in the E+ set, while rejecting as many negative
examples from the current E− set as possible. Before proceeding with the descrip-
tion of the B&B approach, it is instructive to compare it with a complete enumeration
methodology (or brute force approach).

Consider the first positive example (0, 1, 0, 0). One can observe that in order to
accept this positive example at least one of the four attributes A1, A2, A3, A4 must
be specified as follows: (A1 = false, i.e., Ā1 = true), (A2 = true), (A3 = false, i.e.,
Ā3 = true), and (A4 = false, i.e., Ā4 = true). Hence, any valid CNF clause must
include at least one of the following attributes: Ā1, A2, Ā3, or Ā4. Similarly, the
second positive example (1, 1, 0, 0) implies that any valid CNF clause must include
at least one of the following attributes: A1, A2, Ā3, or Ā4. In this manner, it can be
concluded that any valid CNF clause must include at least one attribute as specified
from each of the following four sets:

{ Ā1, A2, Ā3, Ā4},
{A1, A2, Ā3, Ā4},
{ Ā1, Ā2, A3, A4}, and

{A1, Ā2, Ā3, A4}.
As mentioned in the previous section, this is a special case of the set covering

problem which we denote as the minimum cardinality problem (or MCP). Let |s|
denote the cardinality of a set s. For the clause inference problem, the corresponding
MCP problem takes the following general form:

Problem MCP (the initial formulation):

minimize

∣∣∣∣∣
m1⋃
i=1

βi

∣∣∣∣∣
Subject to:

βi ∈ Bi , for i = 1, 2, 3, . . . ,m1,

where the sets Bi are defined next.
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Table 2.3. The NEG(Ak) Sets for the Illustrative Example.

Set of Negative Set of Negative
Attribute Examples Attribute Examples

A1 NEG(A1) = {1, 3, 5, 6} Ā1 NEG( Ā1) = {2, 4}
A2 NEG(A2) = {3, 6} Ā2 NEG( Ā2) = {1, 2, 4, 5}
A3 NEG(A3) = {1, 3, 6} Ā3 NEG( Ā3) = {2, 4, 5}
A4 NEG(A4) = {2, 3} Ā4 NEG( Ā4) = {1, 4, 5, 6}

The MCP formulation for the current clause inference problem (in CNF) is deve-
loped as follows. Define as NEG(Ak) the set of the negative examples which are
accepted by a clause when the attribute Ak is included in that clause. For the illustra-
tive example in this section the NEG(Ak) sets are presented in Table 2.3.

In the light of the definition of the NEG(Ak) set and the ATTRIBUTES(α) set
(as defined in Section 2.5), the sets Bi in problem MCP are defined as follows:

Bi = {NEG(Ak), for each Ak ∈ ATTRIBUTES(αi )},

where αi is the i-th positive example in E+.
Therefore, the previous minimization problem takes the following more precise

form:
Problem MCP (more detailed formulation):

Minimize

∣∣∣∣∣
m1⋃
i=1

βi

∣∣∣∣∣ (2.3)

Subject to:
βi ∈ Bi , for i = 1, 2, 3, . . . ,m1,

where Bi = {NEG(Ak), for each Ak ∈ ATTRIBUTES(αi )}, and αi is the i-th positive
example in E+.

By using the data presented in Table 2.3, formulation (2.3) takes the following
form for the case of the current illustrative example:

Minimize

∣∣∣∣∣
4⋃

i=1

βi

∣∣∣∣∣
Subject to:

β1 ∈ B1, where B1 = {{2, 4}, {3, 6}, {2, 4, 5}, {1, 4, 5, 6}},
β2 ∈ B2, where B2 = {{1, 3, 5, 6}, {3, 6}, {2, 4, 5}, {1, 4, 5, 6}},
β3 ∈ B3, where B3 = {{2, 4}, {3, 6}, {1, 2, 4, 5}, {1, 3, 6}, {2, 3}},
β4 ∈ B4, where B4 = {{1, 3, 5, 6}, {1, 2, 4, 5}, {2, 4, 5}, {2, 3}}.
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An exhaustive enumeration approach to solve this MCP problem is to construct
a tree that has nodes arranged in 4(= m1) levels. In the description of the search
that follows, we call these levels stages. These levels correspond to the four posi-
tive examples enumerated as {1, 2, 3, 4} in E+. Each interior node (i.e., a node with
descendents), say at level h (where 1 ≤ h < 4), is connected to n nodes in the next
higher level via n arcs. These n arcs represent the attributes that are true at the h-th
positive example (i.e., the members of the set ATTRIBUTES(αh), where αh is the
h-th positive example), as described in Section 2.5. The nodes (or search states) in
this tree represent sets of negative examples. In our illustrative example these are
subsets of the set {1, 2, 3, 4, 5, 6}.

For instance, the state {2, 3, 5} refers to the second, third, and fifth negative exam-
ples in the set E−. The set of negative examples that corresponds to a node (state) is
the set of all the negative examples accepted by the attributes that correspond to the
arcs that connect that node with the root node. That is, if one is at node (search state)
Yk and one follows the arc that corresponds to attribute Ai , then the resulting state,
say YL , is

YL = YK ∪ NEG(Ai ).

If the above strategy is followed, then the current illustrative example would
create 4 × 4 × 4 × 4 = 256 terminal nodes and, in the general case, nm1 terminal
nodes (where m1 = |E+|). Then, a clause which accepts all the positive examples
and rejects as many negative examples as possible can be found by simply selecting
a terminal node that corresponds to a search state with the minimum cardinality. This
is true because such a state accepts the minimum number (or equivalently, rejects the
maximum number) of negative examples.

Apparently, an exhaustive enumeration strategy is impractical. This is true
because an exhaustive enumeration would require one to construct a search tree with
nm1 different terminal nodes (final states). However, this B&B approach, which is
based on the previous tree, is much faster because it is capable of pruning this tree
rather efficiently. As is explained next, each node of the tree is examined in terms of
two tests. If any of these two tests succeeds, then that node is fathomed and it is not
expanded further.

The tree of this search is shown in Figure 2.3. Consider the two nodes which
correspond to the two states {2, 4} and {2, 4, 5} in the second stage of the search
tree (see also Figure 2.3). Clearly, the states that correspond to the leaves (terminal
nodes) that have the state {2, 4, 5} as an ancestor are going to have at least as many
members (i.e., negative examples) as the states of the leaves (terminal nodes) that
have as ancestor the state {2, 4}. This is true because subsequent states are derived
by performing union operations on these two states with the same sets. Therefore, if
at any stage of building the search tree there is a state that has another state (in the
current stage) as a subset, then that state (node) can be fathomed without eliminating
any optimal solutions. This characterization of the states is formalized by the fol-
lowing definitions of dominated and undominated states, which is derived from the
above discussion.
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Figure 2.3. The Branch-and-Bound Search for the Illustrative Example.

Definition 2.1. A state Sk is a dominated state if there is another state S j in the
same stage which is a proper subset of Sk, i.e., if Si ⊂ Sk . Otherwise, the state Sk is
an undominated state.
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The notion of dominated states leads to an important simplification of the MCP
problem. Define as MCP ′ the problem derived from MCP when all dominated states
are eliminated.

Problem MCP ′:

Minimize

∣∣∣∣∣
m1⋃
i=1

βi

∣∣∣∣∣
Subject to:

βi ∈ B ′
i , for i = 1, 2, 3, . . . ,m1,

where B′
i (for i = 1, 2, 3, . . . ,m1) is the set that has as members only the undomi-

nated members of the set Bi .
Then, the previous definitions and discussion about dominated and undominated

states lead to the following theorem [Triantaphyllou, Soyster, and Kumara, 1994]:

Theorem 2.2. An optimal solution to MCP ′ is also optimal to MCP.

The following corollary is a direct implication of Theorem 2.2:

Corollary 2.1. The optimal solutions of the original MCP problem, given as (2.3),
and the previous MCP ′ problem are identical.

The previous corollary can be used for problem preprocessing. That is, when an
MCP problem formulated as (2.3) is given, then it is beneficial to first transform it
to the problem MCP ′. In this way, the number of options (arcs in the B&B search
graph) available at each node (search state) of the search graph will be the same or
smaller than in the original MCP problem. Clearly, this means that the search can be
done faster than in the original MCP problem.

The states in the last stage (i.e., the leaves of the tree) with the minimum number
of negative examples indicate an optimal solution (see also Figure 2.3). In this
example there are two such minimum size states. These are the states {2, 3, 6} and
{2, 4, 5}. The first optimal state (i.e., {2, 3, 6}) is derived from the clause (A2 ∨ A4).
This is true because the attributes A2 and A4 are the only attributes (as indicated
by the B&B search) which are involved in the decisions that generate the state
{2, 3, 6}. Similarly, the second optimal state (i.e., {2, 4, 5}) is derived from the clause
( Ā1 ∨ Ā3).

Next we discuss some other ways for making this B&B search (and possibly
other B&B algorithms which share similar principles) even more efficient. One way
to do so for this B&B formulation is to keep in memory only the nodes (states) of the
current level (stage). Then, when an optimal state S is determined at the last stage,
the optimal clause can be found by simply including in the definition of the current
clause all the attributes along the path of the arcs which connect the optimal node
with the root node.

Note that the optimal solution (A2 ∨ A4) does not reject the second, third, and
sixth of the current negative examples in E−. Hence, the remaining negative exam-
ples are
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E− =
⎡
⎣0 0 0 1

1 1 1 1
1 1 1 0

⎤
⎦ .

Similarly, the second OCAT iteration, when applied to the E+ set and the new
E− set, yields the clause ( Ā2 ∨ Ā3). Now the remaining negative examples are

E− = [ 0 0 0 1 ].

Iterating further, the third OCAT iteration yields the clause (A1 ∨ A3 ∨ Ā4). That is,
the CNF clauses which are generated from the original E+ and E− training examples
are as follows:

Clause 1 : (A2 ∨ A4)

Clause 2 : ( Ā2 ∨ Ā3)

Clause 3 : (A1 ∨ A3 ∨ Ā4).

Thus, the inferred Boolean function is

(A2 ∨ A4) ∧ ( Ā2 ∨ Ā3) ∧ (A1 ∨ A3 ∨ Ā4).

It can be easily verified that the previous three clauses, when taken together, reject
all the negative examples in E−. Moreover, each of the three clauses accepts all the
positive examples in E+. That is, this function satisfies the desired requirements.

This is the Boolean function derived from the original positive and negative train-
ing examples. Thus, we will call it the “positive” Boolean function or just the “posi-
tive” system. Next, one can treat the original negative examples as positive and the
original negative examples as positive and apply the OCAT approach with the pre-
vious B&B algorithm on this reversed set of data. Then, a “negative” system can
be derived in a similar manner. These two systems, that is, the “positive” and the
“negative” system, correspond to the idea of the “solid” and “dotted” rules depicted
in Figure 1.7 (or, equivalently, in Figure 2.2). They together can be used to classify
new examples of unknown class value.

Given these two systems, and a new example of unknown class value, then the
following four scenarios are possible when the new example is classified by these
two systems:

1) It is accepted by the “positive” system and rejected by the “negative” system.
Then, this new example would be characterized as a positive one.

2) It is accepted by the “negative” system and rejected by the “positive” system.
Then, this new example would be characterized as a negative one.

3) It is accepted by both the “positive” and the “negative” system. Then, this new
example would be characterized as a do not know case (i.e., as undecidable/
unclassifiable due to limited information).

4) It is rejected by both the “positive” and the “negative” system. Then, this new
example would be characterized as a do not know case (i.e., as undecidable/
unclassifiable due to limited information).

Please recall that the rules derived this way correspond to CNF expressions.
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Regarding the algorithmic steps of the previous B&B approach, there is another
observation that allows for further reduction on the number of states in the B&B
search. Suppose that it is known (possibly via a heuristic) that one of the terminal
states in the B&B search (not necessarily an optimal one) has k elements. Then, at
any stage of the B&B approach, all states which have more than k elements can be
deleted from further consideration. This is a valid step because any descendent of a
state may only get larger at subsequent stages. This observation is summarized in the
following theorem [Triantaphyllou, Soyster, and Kumara, 1994]:

Theorem 2.3. Suppose some feasible solution to MCP (or MCP ′) has cardinality k.
Then, an optimal solution to a modified B&B search in which all states that have
more than k members are deleted, is also optimal for MCP (or MCP ′).

Corollary 2.2. The optimal solutions of the original MCP problem, given as (2.3),
and the following problem are identical.

Minimize

∣∣∣∣∣
m1⋃
i=1

βi

∣∣∣∣∣
Subject to:

βi ∈ B ′
i , for i = 1, 2, 3, . . . ,m1,

where B′
i (for i = 1, 2, 3, . . . ,m1) is the set that has as members only the mem-

bers of the original set Bi which have less than or equal to k members (defined as
above).

2.10 A Heuristic for Problem Preprocessing

The last corollary can be used for problem preprocessing. That is, when an MCP
problem is formulated as (2.3), then it is a good idea first to run a heuristic (as will
be described next) that very quickly yields a good feasible solution of size k (i.e., k is
small) to the original MCP problem. When a value for k is available, the B&B search
does not need to expand nodes in the search graph that have cardinality greater than
k. This is true even for nodes that correspond to undominated states. In this way, the
number of nodes to be expanded in the B&B search tree will, in general, be smaller
than those in the original MCP problem. This step has the potential to expedite the
B&B search.

Theorem 2.3 can further improve the performance of the proposed B&B search.
When the B&B search is performed, the number of states at each stage (i.e., level
of the search tree) may also increase dramatically. Therefore, the time and memory
requirements of the search may increase dramatically. An efficient way to overcome
this complication is to run the B&B search in two or more phases. In the first phase
the B&B search is applied by allowing up to a small number, say 5, of states (i.e.,
nodes in the search tree) to be considered at any stage (i.e., level of the search tree).
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These 5 states are the ones with the smallest cardinalities. That is, if more than
5 states (nodes) are formed at any stage, then only the 5 states with the smallest
cardinalities will be considered for the next stage. This type of search is used in
the AI literature often and is called beam search (see, for instance, [Dietterich and
Michalski, 1981]).

Since up to 5 states are allowed to be considered at any stage of the B&B search
and the number of stages is equal to the number of positive examples, it follows that
the first phase will terminate quickly. Furthermore, the terminal nodes (final states)
of the search tree will tend to represent states which have a tendency to have small
cardinalities. This is expected to be the case because at each stage only the 5 states
with the smallest cardinalities are considered (any ties are broken arbitrarily).

Suppose that in the first phase of the B&B process more than 5 states were gene-
rated at some stage. Let k be the cardinality of the smallest state that is dropped from
further consideration due to the upper limit of 5 states per stage. Then, if one of
the terminal nodes has cardinality less than k, then one can conclude that this node
(state) represents an optimal solution. This is true because in this case none of the
deleted states could lead to a terminal state with cardinality less than k. If there is no
terminal state with cardinality less than k, then a terminal node (search state) with
the minimal cardinality represents a potentially good feasible solution which may or
may not be optimal. It should be emphasized here that by an optimal solution we
mean the one that represents a single clause in CNF (i.e., a single disjunction) which
accepts all the positive examples in E+ while it rejects as many negative examples
in the current E− set as possible.

If after the first phase optimality is not provable, then the second phase is initia-
ted. In the second phase, the B&B process is repeated with a higher limit, say 20,
states per stage. As in the first phase, these 20 states are the states with the 20 smallest
cardinalities. Suppose that L is the cardinality of the best solution obtained in the first
phase. Then in the second phase, Theorem 2.3 is applied by eliminating any state that
has cardinality greater than L . However, memory limitations may prohibit this B&B
search from reaching an optimal solution. It should be stated here that if a too large
number of states were allowed to be considered at any stage, then the B&B approach
would take excessive time in ranking these states. The previous limit of 20 states was
empirically found to be a reasonable choice.

As was done in the first phase, if more than 20 states are generated at any stage,
then only 20 states are allowed at each stage. Similarly to the first phase, let k be
the cardinality of the smallest state that was dropped from further consideration due
to the upper limit of 20 states per stage. Then, if one of the terminal nodes has
cardinality less than k, one can conclude that this node (state) represents an optimal
solution. Otherwise optimality is not provable. In this case one may want to proceed
with a third phase, or a fourth phase until optimality is eventually reached.

Some computational experiments indicate that Theorems 2.2 and 2.3 provide a
rather efficient way for keeping the states at each stage in a manageable number and
the resulting CPU requirements are dramatically reduced. For instance, a case with
n equal to 10, 50 positive examples, and 170 negative examples required more than
1,100 CPU seconds on an IBM ES/3090-600S machine (Penn State’s mainframe
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of the OCAT approach by using the MPSX software. However, the same problem
took less than 30 CPU seconds with the proposed B&B formulation. Other similar
comparisons also demonstrated significant improvement in time performance for this
B&B approach.

2.11 Some Computational Results

In order to gain some computational experience with the OCAT approach and this
B&B formulation, some random problems were generated and tested. The derived
computational results are depicted in Table 2.4. For these problems, n, the number
of attributes, was set equal to 30. First a set of 40 random clauses (disjunctions) was
generated (the number 40 is arbitrary). Each such clause included, on the average, 5
attributes (as was the case with the experiments reported in [Hooker, 1988b]). The
range of the number of variables per clause was from 1 to 10. Next, a collection Eo

of random examples was generated. In these experiments we generated groups of
100, 200, 300, . . . , 1,000 random examples.

Each such random example was classified, according to the previous 40 clauses,
either as a positive or as a negative example. With 40 clauses, this process resulted in
more negative than positive examples. Because the stages in the B&B algorithm cor-
respond to positive examples, problems with higher percentages of positive examples
would demand more CPU time.

Next, the OCAT approach was applied on the previous positive and negative
examples. The computational results are shown in Table 2.4. In this table the number
of clauses derived by OCAT is denoted as S. The CPU time of the OCAT approach
was recorded as well. This simulation program was written in the PL/I programming
language and run on an IBM ES/3090-600S computer.

Each entry in Table 2.4 represents the performance of a single test problem,
rounded to the nearest integer. Recall that |s| indicates the size (or cardinality) of a
set s. The computational results in Table 2.4 strongly suggest that the B&B approach
is computationally tractable. For instance, no test problem took more than 836 CPU
seconds (with an overage of 96.17 CPU seconds). As was anticipated, the number of
clauses created by this B&B search increases with the number of input examples.

It is also interesting to observe the behavior of the CPU time used by OCAT
under the B&B formulation. Since the number of stages in the B&B search is equal
to the number of positive examples, the CPU time increases with the size of the set
of the positive examples. Furthermore, the total number of examples |Eo| is critical
too.

In these test problems the B&B formulation was applied as follows. During the
first phase up to 5 states were allowed. If after the final stage optimality was not
proved, then the best (i.e., the one with the smallest cardinality) solution available
at this point was kept and the B&B approach was repeated by allowing up to 20
B&B states per stage (20 was an upper limit for memory considerations). These 20
states were selected as follows. If more than 20 B&B states were generated at some
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Table 2.4. Some Computational Results When n = 30 and the OCAT Approach Is Used.

|Eo||Eo||Eo| |E+||E+||E+| |E−||E−||E−| SSS Time |E0||E0||E0| |E+||E+||E+| |E−||E−||E−| SSS Time

100 9 91 4 2 400 10 390 6 10
100 5 95 4 2 400 7 393 6 10
100 15 85 4 7 400 36 364 13 282
100 7 93 4 6 400 47 353 6 97
100 3 97 4 1 400 49 351 12 400
100 8 92 4 2 400 15 385 5 7
100 7 93 4 2 400 5 395 5 3
100 1 99 4 1 400 17 383 6 23
100 7 93 4 3 400 16 384 6 8
100 5 95 4 3 500 35 465 12 194
200 5 195 4 2 500 16 484 5 38
200 2 198 5 1 500 7 493 6 15
200 18 182 5 18 500 34 466 7 73
200 6 194 5 2 500 13 487 6 8
200 1 199 4 1 500 20 480 5 19
200 11 189 7 38 500 6 494 5 13
200 19 181 4 4 600 83 517 6 300
200 51 149 2 212 600 49 551 15 315
200 10 190 4 6 600 44 556 5 41
200 4 196 5 2 600 8 592 6 16
300 22 278 8 70 600 23 577 12 184
300 14 286 6 25 600 11 589 6 15
300 14 286 7 29 700 56 644 16 467
300 2 298 5 1 700 18 682 6 30
300 22 278 1 102 700 19 681 6 15
300 36 264 1 243 700 19 681 9 60
300 24 276 4 12 700 13 687 6 26
300 71 229 4 524 800 64 736 18 739
300 3 297 5 2 900 72 828 17 836
300 17 283 1 107 1,000 47 953 14 80

NOTE: The time is in seconds.

stage, then these states were ranked in descending order according to the number of
elements (negative examples) per state and the top 20 states were selected.

In this second phase of the B&B search, the best solution found at the end of
the first phase was used to reduce the state space at each stage (i.e., Theorem 2.3
was applied to reduce the memory requirements). The process was terminated after
this second phase (in which the 20 states per stage limit was imposed) regardless of
whether the current best solution could be confirmed as optimal or not. It should be
mentioned here that if a higher limit of states was used, then the B&B approach
takes more time because at each stage more states need to be considered. Some
computational tests indicated that the previous limits (i.e., 5 and 20 states) seem to
be reasonable. In 83% of the problems examined, confirmation of optimality could
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Table 2.5. Some Computational Results When n = 16 and the SAT Approach Is Used.

|E0||E0||E0| Problem ID KKK Vars Clauses Time

100 16A1 15 1,650 19,368 2,039
100 16C1 20 1,580 16,467 758
200 16D1 10 1,230 15,901 1,547
200 16E1 15 1,245 14,766 2,156
300 16A2 6 1,602 23,281 608
300 16B1 8 1,728 24,792 78
400 16B2 4 1,076 16,121 236
400 16C2 4 924 13,803 521
400 16D2 4 836 12,461 544
400 16E2 4 532 7,825 376

NOTE: The time is in seconds.

Table 2.6. Some Computational Results When n = 32 and the SAT Approach Is Used.

|E0||E0||E0| Problem ID kkk Vars Clauses Time

50 32B1 3 228 1,374 5
50 32C1 3 225 1,280 24
50 32D1 4 332 2,703 66
50 32E1 3 222 1,186 8

100 32B2 3 261 2,558 57
100 32C2 3 249 2,182 9
100 32D2 4 404 5,153 178
100 32E2 3 267 2,746 10
150 32C3 3 279 3,272 14
200 32E3 3 330 5,680 133
250 32A1 3 459 9,212 177
250 32B3 3 348 5,734 190
300 32B4 3 381 6,918 259
300 32E4 3 387 7,106 277
400 32D3 4 824 19,478 1,227
400 32E5 3 450 9,380 390

1,000 32C4 3 759 20,862 155

NOTE: The time is in seconds.

be made. The low CPU times indicate that this B&B approach is rather efficient both
in terms of CPU time and memory requirements.

Tables 2.5 and 2.6 present some computational results when the SAT approach
is used. These results are the ones originally reported in [Kamath, Karmakar, et al.,
1992]. The CPU times are approximated to the closest integer value (in seconds).
Those experiments were performed on a VAX 8700 running UNIX and that computer
program was written in a combination of FORTRAN and C codes. The strategy of
generating and testing the random problems is similar to the one mentioned in the
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OCAT case. The only difference is that now the “hidden system” is in DNF form and
consists of a few conjunctions (three to four). Please recall that in the OCAT case
the “hidden logic” was a system in CNF form consisting of 40 randomly generated
disjunctions.

The main point with the SAT results is that even for a small number of (posi-
tive and negative) examples the CPU times are rather high. This happens because
the resulting SAT problems (as was indicated in formulas presented in Section 2.6)
require many variables and clauses (as is shown under the “Vars” and “Clauses”
columns in Tables 2.5 and 2.6). In Table 2.6 the test problems considered 32
attributes. The CPU times are smaller than the ones with 16 attributes (in Table 2.5)
because now k was allowed to take much smaller values (3 or 4). In the 16-attribute
case, however, k was allowed to take relatively speaking larger values (4 to 20).

In other words, the CPU requirements increase dramatically with the number
of conjunctions assumed in the SAT formulation (denoted as k). This behavior is in
direct agreement with the formulas mentioned in Section 2.6. However, if the original
k value is too small, then infeasibility will be reached and the SAT problem needs to
run again (with a larger k value) until a feasible solution is reached. This situation
may increase the actual CPU requirements even more dramatically than the numbers
shown in Tables 2.5 and 2.6.

2.12 Concluding Remarks

This chapter examined the problem of inferring a Boolean function from two sets of
disjoint binary data. This is a fundamental problem in data mining and knowledge
discovery and thus has received lots of attention by the scientific community. It may
be hard to determine what is the best way to solve this problem. A computationally
demanding approach is to formulate this problem as a satisfiability (SAT) problem.
In this way a Boolean function of minimal size (in terms of the number of CNF or
DNF clauses that comprise it) can be inferred. However, the computational cost may
make the SAT approach impractical for large size problems.

We have chosen to work with CNF or DNF because any Boolean function can be
transferred into these two forms [Blair, Jeroslow, and Lowe, 1986]. DNF expressions
can be visualized easily as convex polyhedral shapes in the space of the attributes,
while CNF expressions offer more intuitive formulation capabilities.

The approach proposed in this chapter helps to quickly infer a Boolean func-
tion in CNF or DNF. It is termed OCAT (for One Clause At a Time). It is a greedy
approach for inferring a Boolean function by means of one clause at a time. A key
step of the OCAT approach involves the solution of an optimization problem and
thus the OCAT approach may lead to systems comprised of a few clauses. That
would make it consistent with the desire to infer the system of maximum simplicity
as Occam’s razor would dictate.

The previous optimization problem, as part of the OCAT approach, was solved
according to a branch-and-bound (B&B) algorithm. This B&B algorithm can be
expedited by exploiting certain key properties of the problem. These properties could
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be used with other B&B algorithms in the future. Solving this problem is the foun-
dation to inferring a Boolean function from training data.

At this point it should be pointed out that one may consider different approaches
besides the one which tries to minimize the inferred CNF expression. One such rea-
sonable approach would be to derive a Boolean function which would minimize a
weighted average of the false-positive, false-negative, and undecidable rates. More
on this idea is discussed later in Chapter 4, Section 4.5.

As stated earlier, this Boolean function inference problem is open-ended. One
will always have a strong incentive to develop new methods that would be faster and
methods to partition large-scale inference problems. The most important aspect is
to have methods which would indeed capture the real essence of the input data, and
thus the actual nature of the system or phenomenon that generated these data. Thus,
this problem will always be one of keen interest to the research and practitioners
communities in the field of data mining and knowledge discovery from data.
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Appendix

The SAT Formulation and Solution for the Illustrative Example
in Section 2.7 (for the CNF case)

! **************************************************
! This is the integer IP formulation (to run
! on LINDO) for the illustrative example presented
! in this chapter (for the CNF case).
! The variable names are not identical, but they
! closely reflect the notation used in this chapter.
! ***************************************************
! Note:
! We are interested in checking for feasibility.
! Thus, any objective function is applicable here.
! ***************************************************

MIN S11

ST
!...................
S11 + SP11 >= 1
S21 + SP21 >= 1
S12 + SP12 >= 1
S22 + SP22 >= 1
S13 + SP13 >= 1
S23 + SP23 >= 1
!...................
SS11 + SS12 + SSP13 >= 1
SS21 + SS22 + SSP23 >= 1
SSP11 + SSP12 + SSP13 >= 1
SSP21 + SSP22 + SSP23 >= 1
!...................
! NEXT ARE THE NEGATIONS
S11 + SS11 <= 1
S21 + SS21 <= 1
S12 + SS12 <= 1
S22 + SS22 <= 1
S13 + SS13 <= 1
S23 + SS23 <= 1
SP11 + SSP11 <= 1
SP21 + SSP21 <= 1
SP12 + SSP12 <= 1
SP22 + SSP22 <= 1
SP13 + SSP13 <= 1
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SP23 + SSP23 <= 1
!...................
Z11 + Z12 >= 1
Z21 + Z22 >= 1
Z31 + Z32 >= 1
!...................
! NEXT ARE MORE NEGATIONS
Z11 + ZZ11 <= 1
Z12 + ZZ12 <= 1
Z13 + ZZ13 <= 1
Z21 + ZZ21 <= 1
Z22 + ZZ22 <= 1
Z23 + ZZ23 <= 1
Z32 + ZZ32 <= 1
Z31 + ZZ31 <= 1
!...................
SP11 + ZZ11 >= 1
S12 + ZZ11 >= 1
SP13 + ZZ11 >= 1
!.........
SP21 + ZZ12 >= 1
S22 + ZZ12 >= 1
SP23 + ZZ12 >= 1
!.........
SP11 + ZZ21 >= 1
S12 + ZZ21 >= 1
S13 + ZZ21 >= 1
!.........
SP21 + ZZ22 >= 1
S22 + ZZ22 >= 1
S23 + ZZ22 >= 1
!......
S11 + ZZ31 >= 1
SP12 + ZZ31 >= 1
SP13 + ZZ31 >= 1
!.........
S21 + ZZ32 >= 1
SP22 + ZZ32 >= 1
SP23 + ZZ32 >= 1
!......
END
INTEGER 40
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This is the corresponding solution as generated by LINDO

NEW INTEGER SOLUTION OF .000000000 AT BRANCH 0 PIVOT 46
LP OPTIMUM FOUND AT STEP 46
OBJECTIVE VALUE = .000000000
ENUMERATION COMPLETE. BRANCHES= 0 PIVOTS= 46

LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE

1) .000000000

VARIABLE VALUE REDUCED COST
S11 .000000 1.000000
SP11 1.000000 .000000
S21 1.000000 .000000
SP21 .000000 .000000
S12 1.000000 .000000
SP12 .000000 .000000
S22 .000000 .000000
SP22 1.000000 .000000
S13 1.000000 .000000
SP13 1.000000 .000000
S23 .000000 .000000
SP23 1.000000 .000000
SS11 1.000000 .000000
SS12 .000000 .000000
SSP13 .000000 .000000
SS21 .000000 .000000
SS22 1.000000 .000000
SSP23 .000000 .000000
SSP11 .000000 .000000
SSP12 1.000000 .000000
SSP21 1.000000 .000000
SSP22 .000000 .000000
SS13 .000000 .000000
SS23 .000000 .000000
Z11 1.000000 .000000
Z12 .000000 .000000
Z21 1.000000 .000000
Z22 .000000 .000000
Z31 .000000 .000000
Z32 1.000000 .000000
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ZZ11 .000000 .000000
ZZ12 1.000000 .000000
Z13 .000000 .000000
ZZ13 .000000 .000000
ZZ21 .000000 .000000
ZZ22 1.000000 .000000
Z23 .000000 .000000
ZZ23 .000000 .000000
ZZ32 .000000 .000000
ZZ31 1.000000 .000000

ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 .000000
3) .000000 .000000
4) .000000 .000000
5) .000000 .000000
6) 1.000000 .000000
7) .000000 .000000
8) .000000 .000000
9) .000000 .000000
10) .000000 .000000
11) .000000 .000000
12) .000000 .000000
13) .000000 .000000
14) .000000 .000000
15) .000000 .000000
16) .000000 .000000
17) 1.000000 .000000
18) .000000 .000000
19) .000000 .000000
20) .000000 .000000
21) .000000 .000000
22) .000000 .000000
23) .000000 .000000
24) .000000 .000000
25) .000000 .000000
26) .000000 .000000
27) .000000 .000000
28) .000000 .000000
29) 1.000000 .000000
30) .000000 .000000
31) .000000 .000000
32) 1.000000 .000000
33) .000000 .000000
34) .000000 .000000
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35) .000000 .000000
36) .000000 .000000
37) .000000 .000000
38) .000000 .000000
39) .000000 .000000
40) 1.000000 .000000
41) .000000 .000000
42) .000000 .000000
43) .000000 .000000
44) .000000 .000000
45) .000000 .000000
46) .000000 .000000
47) .000000 .000000
48) .000000 .000000
49) 1.000000 .000000
50) .000000 .000000
51) .000000 .000000
52) .000000 .000000

NO. ITERATIONS= 46
BRANCHES= 0 DETERM.= -1.000E 0



Chapter 3

A Revised Branch-and-Bound Approach for Inferring
a Boolean Function from Examples

3.1 Some Background Information

This chapter discusses a revised branch-and-bound (B&B) algorithm for inferring a
single clause (in CNF or DNF) from two disjoint sets of binary training examples.
This algorithm is an extension of the B&B algorithm described in the previous
chapter. Now the states of the search space are described by using more informa-
tion and this seems to be critical in leading to good search results faster. This chapter
is based on the developments first presented in [Triantaphyllou, 1994].

This chapter is organized as follows. The next section describes the revised B&B
algorithm. Besides the CNF version, it also describes a version of it in which the
inferred clauses are in DNF. We present some extensive computational results that
indicate that the revised B&B algorithm has good performance characteristics. The
chapter ends with a brief conclusions section.

3.2 The Revised Branch-and-Bound Algorithm

The revised B&B algorithm will also be demonstrated on the examples presented in
Chapter 2 (Section 2.9). These examples are repeated here as follows:

E+ =

⎡
⎢⎢⎣

0 1 0 0
1 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦ and E− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The above positive and negative examples are numbered as in Section 2.9. First,
it will be shown how the algorithm can derive a single CNF clause (i.e., a single
disjunction). Next, the basic algorithm will be modified to derive a single DNF clause
(i.e., a conjunction). Please recall that according to the OCAT approach (Step 2 in

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 3,
c© Springer Science+Business Media, LLC 2010



58 3 A Revised B&B Approach for Inferring a Boolean Function

Table 3.1. The NEG(Ak) Sets for the Illustrative Example.

Set of Negative Set of Negative
Attribute Examples Attribute Examples

A1 NEG(A1) = {1, 3, 5, 6} Ā1 NEG( Ā1) = {2, 4}
A2 NEG(A2) = {3, 6} Ā2 NEG( Ā2) = {1, 2, 4, 5}
A3 NEG(A3) = {1, 3, 6} Ā3 NEG( Ā3) = {2, 4, 5}
A4 NEG(A4) = {2, 3} Ā4 NEG( Ā4) = {1, 4, 5, 6}

Table 3.2. The POS(Ak ) Sets for the Illustrative Example.

Set of Positive Set of Positive
Attribute Examples Attribute Examples

A1 POS(A1) = {2, 4} Ā1 POS( Ā1) = {1, 3}
A2 POS(A2) = {1, 2} Ā2 POS( Ā2) = {3, 4}
A3 POS(A3) = {3} Ā3 POS( Ā3) = {1, 2, 4}
A4 POS(A4) = {3, 4} Ā4 POS( Ā4) = {1, 2}

Figure 2.1) for the CNF case, the requirement is for the clause to accept all the
positive examples, while rejecting as many negative examples as possible.

3.2.1 Generating a Single CNF Clause

Define as POS(Ak) the set of the positive examples which are accepted by a CNF
clause when the attribute Ak is included in that clause. The new B&B algorithm also
uses the concepts of the NEG(Ak) and ATTRIBUTES(v) sets, as they were defined
in the previous chapter and they are repeated again for the current data as Table 3.1.
The POS(Ak) sets for the current illustrative example are presented in Table 3.2.

Now a typical search state is described in terms of two sets (as opposed to only
one set as was the case with the B&B algorithm presented in the previous chapter).
The first set refers to the positive examples which are accepted by the attributes which
correspond to the arcs which connect that state (node) with the root node. Similarly,
the second set refers to the negative examples which are accepted by the attributes
which correspond to the arcs which connect that state with the root node. Suppose
that we are at state Si = [Pi , Ni ] (where Pi , Ni correspond to the previous two
sets of positive and negative examples, respectively). Now assume that the search
considers the state (node) which is derived by following the arc which corresponds
to the attribute Ak . Then, the new state is S j = [Pj , N j ], where the new sets Pj and
N j are defined as follows:

Pj = Pi ∪ POS(Ak) and N j = Ni ∪ NEG(Ak).

Therefore, the search continues until terminal states are reached. A state Si =
[Pi , Ni ] is a terminal state if and only if the set Pi refers to all positive examples,
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that is, if and only if Pi = {1, 2, 3, . . . ,m1}, or equivalently, if and only if Pi = E+.
Apparently, a terminal state with a minimum cardinality of the set Ni is optimal (in
the OCAT sense). In the light of the previous considerations, the central problem to
be solved by the revised B&B search can be summarized as follows (where ai is
either Ai or Āi ):

Find a set of attributes S such that the following two conditions are true:∣∣∣∣∣∣
⋃
ai∈S

NEG(ai )

∣∣∣∣∣∣ = minimum

and ⋃
ai∈S

POS(ai ) = E+.

In other words, the above problem statement calls for the search (by whatever
means such a search may be implemented) to identify a state which corresponds to a
set of attributes (given as set S). These attributes are used to form a single clause in
CNF. Then this clause would accept all the positive examples (this is indicated by the
second condition which calls for the union of the POS(ai ) sets to be equal to the set
of positive examples E+), while the same clause would also reject as many of the
negative examples as possible. The later requirement is indicated by the need to have
the union of the NEG(ai ) sets of minimum cardinality (i.e., with as few elements as
possible). Then, the general form of such a clause in CNF (i.e., a single disjunction)
would be as follows: (

∨
ai∈S

ai

)
.

Given the above definitions some useful derivations are possible. We say that
a state Si absorbs another state S j if by expanding the state S j we cannot reach
any better terminal state than the ones derived by expanding the state Si . In such a
case we call state Sj an absorbed state. From the previous considerations it becomes
obvious that once a state can be identified to be an absorbed state, then it can be
dropped from further consideration. Then the following two theorems are applicable
only when a CNF clause is to be generated and they provide some conditions for
identifying absorbed states. The proofs of these two theorems [Triantaphyllou, 1994]
follow directly from the previous definitions and discussion.

Theorem 3.1. A state Si = [Pi , Ni ] absorbs a state S j = [Pj , N j ] if and only if the
following two conditions are true: Pj ⊆ Pi and Ni ⊆ N j .

Theorem 3.2. Suppose that state Si = [Pi , Ni ] is a terminal state. Then, any state
S j = [Pj , N j ], such that |N j | ≥ |Ni |, is absorbed by state Si .

The search tree for the current illustrative example is depicted in Figure 3.1.
Observe that the arcs starting from a given node (search state) are not in the order
A1, A2, . . . , An , Ā1, Ā2, . . . , Ān as was the case with the original B&B search but,
instead, now they are ranked. They are ranked in terms of two criteria as follows.
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Figure 3.1. The Search Tree for the Revised Branch-and-Bound Approach.

The first criterion is to rank the attributes in descending order of the size of the
corresponding POS(Ak) set (in Table 3.2). If there is a tie, then they are ranked in
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ascending order in terms of the size of the corresponding NEG(Ak) set (in Table 3.1).
Therefore, the resulting ranking is as follows: Ā3, A2, A4, Ā1, Ā4, A1, Ā2, A3. In
this way, it is more likely to reach terminal states quickly, and thus the fathoming test
of Theorem 3.1 can be utilized more frequently.

This search tree indicates that fathoming of states may occur very often. In this
figure, Rule #2 refers to the application of Theorem 3.2. For instance, the state
[{1, 2}, {1, 4, 5, 6}] (i.e., the fifth state in the second stage) does not need to be
expanded. That is, it is an absorbed state because there is a terminal state whose
size of its Ni set is equal to 3 (this absorbed state has a corresponding value of 4).
As terminal state we consider the fourth state from the top of the third stage. That
is, state [{1, 2, 3, 4}, {2, 4, 5}]. At this point it is not known that this is also an optimal
state (solution). Since this search process was successful in determining a terminal
state very early, new states are generated by considering at first their Ni sets. If the
Ni sets have a size greater or equal to 3, then they are fathomed.

This is the reason why their Pi sets do not even need to be considered. For
this reason they are indicated with the symbol X in Figure 3.1. It is interesting to
observe that any arc Ak for which the size of the NEG(Ak) set is greater or equal to
3 necessarily leads to an absorbed state. Therefore, all states derived by such arcs are
fathomed. Now consider the state [{1, 2}, {3, 6}]. This state was created by following
the arc of attribute A2 from the root state. If we follow the arc which corresponds to
the negation of A2 (i.e., arc Ā2) on any of its descendent states, then the new state
would correspond to both attributes A2 and Ā2 (possibly among other attributes).
That is, the partial clause would include the subexpression (A2∨ Ā2). However, if that
happens, then the new state would accept all the negative (and also all the positive)
examples. Clearly, such a clause would have no discriminatory power and thus would
be totally useless. This is the reason why the seventh child state of [{1, 2}, {3, 6}] is
fathomed in the B&B search. In this illustrative example Theorem 3.1 was never
utilized.

Since the state [{1, 2, 3, 4}, {2, 4, 5}] is the only unfathomed terminal state, this
is also an optimal one. Thus, the derived CNF clause is ( Ā3 ∨ Ā1). This clause
accepts all the positive examples and also accepts the negative examples {2, 4, 5}
(or, equivalently, it rejects the negative examples {1, 3, 6}).

From the previous considerations it follows that there is a great advantage to
reach terminal nodes early in the search process. In this way, the minimum size of
their Ni sets can be used to effectively fathom search states. This situation suggests
the application of the B&B search in two search phases (as was the case with the
original B&B search discussed in Chapter 2). During the first phase only a very small
number (say, 10) of active states is allowed. If there are more than 10 active states,
then they are ranked according to their Pi and Ni sizes (i.e., in a manner similar
to the ranking of the attributes). In this way, the states with the highest potential of
being optimal are kept in memory. Recall that this is the principle of beam search in
artificial intelligence (see, for instance, [Dietterich and Michalski, 1983]). At the end
of phase one, a terminal state of small cardinality becomes available. Next, phase
two is initiated. During the second phase a larger number (say, 50) of active states is
allowed. However, states now can be fathomed more frequently because the size of
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a small Ni set of a terminal state is known. Also note that the new B&B search does
not have to follow a fixed number of stages (as was the case with the original B&B
search as discussed in Chapter 2).

An important issue with the previous two phases is to be able to decide when
a terminal state is optimal (in the OCAT sense). As was mentioned above, memory
limitations may force the search to drop states which are not absorbed by any other
state. Therefore, there is a possibility to drop a state which could have led to an
optimal state (and thus to an optimal clause).

Suppose that L nonabsorbed states had to be dropped because of memory limi-
tations. Let K1, K2, K3, . . . , KL represent the cardinalities of their corresponding
Ni sets. Next, let us define the quantity KMIN as the minimum of the previous
L numbers. Similarly, suppose that the B&B search has identified N terminal states.
Let Y1, Y2, Y3, . . . ,YN represent the cardinalities of their corresponding Ni sets.
Also, define as YMIN the minimum of the previous N cardinalities. Then, the previ-
ous considerations lead to the proof of the following theorem [Triantaphyllou, 1994]
which states a condition for establishing optimality.

Theorem 3.3. A terminal state Si = [Pi , Ni ] is also an optimal state if the following
two conditions are true: |Ni | = YMIN and KMIN ≥ YMIN.

Note that this theorem can be applied after each of the two search phases. Obvi-
ously, if it is applicable after the first phase, then the second phase does not need to
be initiated. The following lemma states a fact when optimality is not provable.

Lemma 3.1. Suppose that the following relation is true: KMIN < YMIN. Then, an
optimal clause accepts no less than KMIN negative examples.

This lemma indicates that if optimality cannot be proven, then it is still possible
to establish a lower limit on the number of negative examples which can be accepted
by an optimal clause (or, equivalently, an upper limit on the number of negative
examples which can be rejected by an optimal clause).

Finally, it should be stated here that the CNF version of the B&B algorithm was
implemented in FORTRAN and used in the computational experiments described in
Section 3.3. The next section briefly describes a modification to this B&B approach
which can derive DNF clauses. An alternative approach to deriving DNF systems,
which is based on some data transformations, is discussed in Chapter 7.

3.2.2 Generating a Single DNF Clause

The previously described B&B search can be easily modified to generate DNF
clauses (i.e., conjunctions). Please recall that the requirements now are as follows.
Every positive example should be accepted by at least one of the conjunctions (DNF
clauses). Also, every negative example should be rejected by all the conjunctions.
Therefore, the DNF clause proposed by the B&B approach during a single OCAT
iteration should reject all the negative examples and accept as many positive exam-
ples as possible.
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The search states are defined in a manner analogous to that of the CNF imple-
mentation. Each state is described in terms of two sets. The first set (denoted by
Pi ) refers to the positive examples which are accepted by the attributes which corre-
spond to the arcs which connect that state (node) with the root node. Similarly, the
second set (denoted by Ni ) refers to the negative examples which are accepted by the
attributes which correspond to the arcs which connect that state with the root node.
Suppose that we are at state Si = [Pi , Ni ]. Now assume that the search considers the
state (node) which is derived by following the arch which corresponds to the attribute
Ak . Then, the new state is: Sj = [Pj , N j ], where the new sets Pj and N j are defined
as follows:

Pj = Pi ∩ POS(Ak), and

N j = Ni ∩ NEG(Ak).

In other words, instead of the union operator now there is the intersection opera-
tor for sets. A state Si = [Pi , Ni ] is a terminal state if and only if the set Ni is equal
to the empty set (i.e., Ni = ∅). That is, a state is terminal if and only if it rejects all
the negative examples. A terminal state with the maximum cardinality of the set Pi
is optimal (in the OCAT sense). The concept of absorbed states is the same as in the
CNF case. However, in the light of the previous definitions Theorem 3.2 takes the
following form:

Theorem 3.4. Suppose that state Si = [Pi , Ni ] is a terminal state. Then, any state
S j = [Pj , N j ], such that |Pj | ≤ |Pi |, is absorbed by state Si .

The attributes in the arcs now are ranked in an analogous manner as in the pre-
vious section. The first criterion is to rank the attributes in ascending (instead of
descending) order of the size of the corresponding NEG(Ak) set. If there is a tie,
then they are ranked in descending (instead of ascending) order in terms of the size
of the corresponding POS(Ak) set.

As was the case with the CNF version of the B&B algorithm, suppose that L
nonabsorbed states had to be dropped because of memory limitations. Let K1, K2,

K3, . . . , KL represent the cardinalities of their corresponding Pi sets (note that
earlier we had considered the Ni sets). Next, define the quantity KMAX as the
maximum of the previous L numbers (before we had considered the minimum
values). Similarly, suppose that the B&B search has identified N terminal states. Let
Y1, Y2, Y3, . . . ,YN represent the cardinalities of their corresponding Pi sets. Define
as YMAX the maximum of the previous N cardinalities. Then, the previous conside-
rations lead to the proof of a new theorem, which is analogous to Theorem 3.4,
regarding optimality.

Theorem 3.5. A terminal state Si = [Pi , Ni ] is also an optimal state if the following
two conditions are true: |Pi | = YMAX and KMAX ≤ YMAX.
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3.2.3 Some Computational Results

Several computational experiments were conducted in order to gain a better under-
standing of the performance of the revised branch-and-bound approach. These experi-
ments were conducted in a manner similar to the experiments reported in [Kamath,
et al., 1992]. At first, a Boolean function was chosen to be the hidden logic/system.
This system is hidden in the sense that we try to infer it from limited sets of posi-
tive and negative examples. The Boolean functions used as hidden logic/system are
exactly the same as the ones also used in [Kamath, et al., 1992]. These are the
15 Boolean expressions depicted in Table 3.3. The solution statistics are shown in
Table 3.4. The notation of the Problem ID column in Table 3.4 is derived from the
notation in Table 3.3 where the second index denotes the difference in the number
of the input training examples. For instance, in Table 3.4 the problem IDs which are
equal to 8A1, 8A2, 8A3, and 8A4 indicate that the hidden system/logic is system 8A
(as defined in Table 3.3) with 10, 25, 50, and 100 training examples, respectively.
A similar interpretation holds for the rest of the problem IDs.

Once a hidden logic/system is selected, a number of random training examples
were generated. Each random example was classified according to the hidden logic
as either positive or negative. The random examples used in these experiments are
identical to the ones used in [Kamath, et al., 1992]. After the sets of the E+ and E−
examples were generated this way, the OCAT approach with the CNF version of the
revised B&B algorithm was applied.

Since the SAT approach had derived Boolean functions in DNF, a simple trans-
formation on the data was first performed in order the previous updated B&B
approach would yield DNF functions (and not CNF). The transformation is to first
derive the complements of the data. That is, every 0 becomes 1 and vice versa. Next,
the complemented positive examples are treated as the negative examples, while the
complemented negative examples are treated as the positive examples. More on this
data transformation and some other related issues can be found in Chapter 7 of this
book.

We also studied some lower bounds related to the number of clauses regarding
the derivation of compact Boolean functions. The details of the approach for deriving
such lower bounds are described in Chapter 8 of this book. That chapter describes
how one can partition a problem of inferring a Boolean function from training data
into smaller problems by first constructing a special graph, called the Rejectability
Graph (or R-Graph) from the two sets of examples. Building such a graph is inde-
pendent of the inference algorithm used and its analysis provides many insights into
the two sets of the training examples. This is how the lower limits on the number of
clauses reported in Table 3.4 were calculated.

When a Boolean function was inferred, it was compared in terms of 10,000
random examples with the hidden logic/system. That is, 10,000 random examples
were generated and then they were classified according to these two Boolean func-
tions. The percentage of the times the two Boolean functions agreed, was reported
as the accuracy of the inferred Boolean function.
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Table 3.3. Description of the Boolean Functions Used as Hidden Logic/System in the Com-
putational Experiments.

System System
ID System Description ID System Description

8A (A4 ∨ Ā7) ∧ ( Ā3 ∨ A4) ∧
(A1 ∨ A2 ∨ Ā6)

16D ( Ā5 ∨ Ā8 ∨ Ā10 ∨ A16)∧
( Ā2 ∨ Ā12 ∨ Ā16)∧
( Ā1 ∨ Ā12)∧ (A3 ∨ Ā5 ∨ A6)

8B ( Ā1 ∨ Ā4 ∨ A6) ∧ (A2) ∧
( Ā2 ∨ A8)

16E (A1 ∨ Ā2 ∨ A3 ∨ Ā4)∧
(A5 ∨ A6 ∨ Ā7 ∨ A8)∧
(A9 ∨ Ā10 ∨ Ā11 ∨ Ā12) ∧
( Ā13 ∨ A14 ∨ Ā15 ∨ A16)

8C (A5) ∧ (A6 ∨ Ā8) ∧ (A7) 32A (A1∨ Ā12)∧(A2∨ Ā5∨A32)∧
(A19 ∨ Ā23 ∨ A26)

8D ( Ā6) ∧ ( Ā2) ∧ ( Ā3 ∨ Ā7) 32B (A1∨ A2∨ Ā9∨ Ā12∨ A31)∧
(A19 ∨ Ā23 ∨ A26)∧
(A2 ∨ Ā5 ∨ Ā20 ∨ A32)

8E (A8)∧(A2∨A5)∧( Ā3∨A5) 32C (A1∨ A2∨ Ā9∨ Ā12∨ A31)∧
(A2 ∨ Ā20 ∨ A32)∧
(A1 ∨ A2 ∨ A19 ∨ Ā23 ∨ A26)

16A (A1∨ Ā12)∧(A2∨ A3∨ Ā5) 32D (A4 ∨ A11 ∨ Ā22)∧
(A2 ∨ A12 ∨ Ā15 ∨ Ā29)∧
( Ā3 ∨ A9 ∨ A20)∧
( Ā10 ∨ A11 ∨ Ā29 ∨ A32)

16B (A3 ∨ A12 ∨ A15)∧
( Ā3 ∨ Ā11)∧
( Ā2∨ Ā10∨ Ā16)∧(A1∨A2)

32E (A9 ∨ A10 ∨ A23)∧
(A2 ∨ A29 ∨ Ā31)∧
(A2 ∨ Ā4 ∨ A6 ∨ Ā7∨
A19 ∨ Ā32)

16C (A4 ∨ Ā7 ∨ A11)∧
(A4 ∨ A10 ∨ A14)∧
( Ā9∨ Ā14∨A15)∧( Ā3∨A8)

For the case of the systems which were defined on 8 attributes (i.e., systems 8A1,
8A2, 8A3, . . ., 8E2), all possible 256 examples were considered. The active list in the
B&B search contained up to 10 search states at any time. However, this restriction
did not prevent the search from reaching optimal solutions in any OCAT iteration.
It should be stated here that only the first search (i.e., only one phase) was enough to
derive an optimal clause.

Table 3.4, with the computational results, also depicts the results derived by
using the SAT approach. The SAT results were derived by using a VAX 8700
computer running 10th Edition UNIX. The code for the SAT tests was written in
the FORTRAN and C programming languages. The SAT results were originally
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reported in [Kamath, et al., 1992]. The OCAT results were derived by using an
IBM 3090-600S computer (the supercomputer at Penn State in the 1980s and 1990s)
and the code was written in FORTRAN. As can be seen from this table the OCAT
approach outperformed the SAT approach in an order of many times. If we exclude
the case of the test with ID 32C3, then for all the other cases OCAT was 101 to
31,362 times faster than the SAT approach. On the average, OCAT was 5,579 times
faster.

One may observe at this point that a direct comparison would have required that
the computer codes for the SAT (which was written in FORTRAN and C) formula-
tion and the OCAT approach (which was written in FORTRAN) had to be written in
the same programming language. However, this was impractical at the time of those
studies. Thus, the current results can convey only a flavor on the relative performance
of the two methods, and by no means should be considered as a direct comparison of
the two approaches.

In terms of the accuracy rate, both the SAT and OCAT approaches performed
considerably well. It should also be stated here that when the lower limit is equal to
the number of clauses derived by OCAT, then we can conclude that OCAT derived a
minimum size (in terms of the number of clauses) function. Note that this situation
occurred in these experiments 51.2% of the time. However, if the lower limit is less
than the number of clauses, then this does not necessarily imply that OCAT failed
to derive a minimum size function. More on this bound on the number of inferred
clauses is discussed in Chapter 8 of this book.

It should be recalled that if optimality (i.e., the minimum number of inferred
clauses) is not proven in the OCAT case, then the SAT approach can be applied with
successively decreasing k values. When an infeasible SAT problem is reached, the
conclusion is that the last feasible SAT solution yielded a Boolean function with an
optimal (i.e., minimum) number of clauses.

Finally, it is interesting to emphasize here that in these computational experi-
ments it was found that most of the time the OCAT approach derived a minimum
size system. Therefore, it is anticipated that under the proposed strategy the SAT
approach (which is very CPU time consuming) does not have to be used very often.
Optimality (i.e., the minimum number of clauses) can be checked by comparing the
number of clauses derived by OCAT with the lower limit established via the graph
theoretic approach given as Theorem 8.3 in Section 8.2.2 of this book. Actually,
Table 8.1 is complementary to Table 3.4.

Table 3.5 presents the results of solving some large problems. In these tests the
number of attributes is equal to 32, the total number of examples is equal to 1,000,
and each hidden logic/system was assumed to have 30 clauses. The strategy followed
in these experiments is the same as in the previous tests. The numbers of positive and
negative examples are shown as well.

Next, Table 3.6 presents the exact structure of the hidden and inferred Boolean
functions of the first of these test problems (i.e., for problem 32H1). In Table 3.6
only the indexes of the attributes are depicted (in order to save space). For instance,
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Table 3.5. Solution Statistics of Some Large Test Problems (the Number of Attributes Is Equal
to 32).

Problem Characteristics OCAT Solution Characteristics
P
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bl

em
ID
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|E
+ |

|E
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|E
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it

A
cc
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ac

y

32H1 30 1,000 943 57 135.71 17 3 84.13%
32H2 30 1,000 820 180 45.18 10 3 93.83%
32H3 30 1,000 918 18 175.50 7 2 95.85%
32H4 30 1,000 944 56 64.16 20 2 82.84%
32H5 30 1,000 988 12 13.41 5 2 97.83%

the first clause of the inferred system is represented by the list [13, 15, 25,−6,
−19,−30,−32] which implies the CNF clause:

(A13 ∨ A15 ∨ A25 ∨ Ā6 ∨ Ā19 ∨ Ā30 ∨ Ā32).

It can be observed that now the CPU times are considerably (with the OCAT stan-
dards) higher. However, relatively speaking these times are still kept in low levels.
The lower limit, however, is not tight enough. Furthermore, determining the maxi-
mum clique of the complemented rejectability graph (as discussed in Chapter 8) took
considerably more time than determining the inferred system.

It should also be stated here that the hidden Boolean functions were not defined
in terms of a minimum representation. That is, it might be possible to represent an
equivalent system with less than 30 clauses. The OCAT approach always returned,
compared to the original hidden system, a very compact system.

Finally, the accuracy of the inferred Boolean function was rather high. The size
of the population of all possible examples is 232 = 4.29496 × 109. Out of these
examples, the tests considered only 1,000 random inputs as the training data. This
represents an extremely small sample of the actual population and, therefore, the
corresponding accuracy values can be considered rather high. The computational
results in Tables 3.2 and 3.5 suggest that the OCAT approach, when it is combined
with the revised B&B algorithm, constitutes an efficient and effective strategy for
inferring a Boolean function from examples.

3.3 Concluding Remarks

The results of the previous computational experiments suggest that the proposed
OCAT approach, when combined with the revised B&B algorithm, provides a fast
way for inferring logical clauses from positive and negative examples. It is interesting
to observe that OCAT also derived systems for which very often it could be proved
(by using the idea of the rejectability graph as discussed in detail in Chapter 8) to be
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of minimum size. Furthermore, the OCAT and the SAT approaches can be combined
into a single strategy in order to efficiently derive a minimum size CNF and DNF
system.

The high CPU time efficiency and effectiveness of the proposed combination of
methods make it a practical approach for inferring clauses from examples. Future
work could focus on inferring Horn clauses (and not just general CNF or DNF
systems as is the case currently). Another interesting expansion of the B&B search is
to apply these concepts on partially defined examples. That is, examples now are not
defined in the domain {0, 1}n , but instead in the domain {0, 1, ∗}n , where “∗” indi-
cates an unknown value. In Chapter 4, a heuristic approach is presented which can
process data with missing entries. However, a B&B approach that pursues the goal of
inferring a minimal size CNF or DNF expression would be of interest here. Related
here is also the discussion presented in Section 4.5 regarding the minimization of a
weighted average of the three error rates which occur when one uses a Boolean func-
tion on new data of unknown class values. Another extension is to develop methods
(such as B&B and/or heuristics) that would work directly on nonbinary data. As bina-
rization usually results in a high number of binary variables, such methods may be
faster if they work directly on nonbinary data.

The problem of learning a Boolean function from past experience (training
examples) is the keystone in building truly intelligent systems and thus constitutes
the keystone of data mining and knowledge discovery from data sets. Thus, more
efficient decomposition and clause inference approaches are required in order to
make learning feasible for large-scale applications. More research in this area has
the potential of making more contributions in this vital area of data mining and
knowledge discovery.



Chapter 4

Some Fast Heuristics for Inferring a Boolean Function
from Examples

4.1 Some Background Information

The previous two chapters discussed the development and key mathematical proper-
ties of some branch-and-bound (B&B) approaches for inferring a Boolean function
in the form of a compact (i.e., with as few clauses as possible) CNF or DNF expres-
sion from two collections of disjoint examples. As was described in Chapters 2 and
3, the B&B approaches may take a long time to run (actually, they are of exponential
time complexity).

This chapter presents a simple heuristic approach which may take much less time
(of polynomial time complexity) than the B&B approaches. This heuristic attempts
to return a small (but not necessarily minimum or near minimum) number of clauses
of the CNF or DNF expressions inferred from two disjoint collections of exam-
ples. Some variants of this heuristic are also discussed. This chapter is based on
the developments first reported in [Deshpande and Triantaphyllou, 1998].

In this chapter we consider two closely related problems. The first one is how to
infer a Boolean function fast from two disjoint collections of positive and negative
examples. All the examples are again assumed to be binary vectors and we also
assume that we know them precisely. The second problem considers cases in which
we have partial knowledge of some of the examples.

In order to help fix ideas, consider the following two disjoint sets of positive and
negative examples (which were also used in the previous two chapters):

E+ =

⎡
⎢⎢⎣

0 1 0 0
1 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦ and E− =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Given these data we want to derive a single Boolean function (in CNF or DNF
form) that satisfies the requirements implied in the previous examples. For the CNF
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Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 4,
c© Springer Science+Business Media, LLC 2010
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case, we would like each clause (i.e., each disjunction of the CNF expression) to
be accepted by each of the positive examples, while each negative example to be
rejected by at least one of the clauses. For instance, the following CNF expression
satisfies these requirements:

(A2 ∨ A4) ∧ ( Ā2 ∨ Ā3) ∧ (A1 ∨ A3 ∨ Ā4).

This, in essence, is Problem 1, that is, how to construct a set (of hopefully small
size) of clauses which would correctly classify all the available positive and negative
examples and hopefully classify new examples with high accuracy.

Next, in order to illustrate Problem 2, we consider the following hypothetical
sample of input data:

E+ =
⎡
⎣0 ∗ 0 0

1 0 ∗ 1
0 1 0 1

⎤
⎦ , E− =

⎡
⎣ 0 0 ∗ 1
∗ 0 1 0
0 1 0 0

⎤
⎦ , and

EU =
[

0 1 1 ∗
1 1 ∗ ∗

]
,

In this chapter the EU set will denote the set with the undecidable (not to be con-
fused with unclassified) examples. The symbol “∗” in the three data sets represents
attributes whose binary values are missing.

In the previous E+ and E− data sets it is assumed that the missing data values
(indicated by “∗”) did not prohibit the “oracle” (i.e., the hidden function) from classi-
fying the corresponding examples as positive or negative. For instance, the first posi-
tive example in E+ (i.e., (0, ∗, 0, 0)) implies that this example should be positive
regardless of the actual nature of the “∗” element. This observation indicates that the
following two examples (note that 2 = 21, where 1 is the number of the missing
elements in that example): (0, 0, 0, 0) and (0, 1, 0, 0) are also positive examples.
That is, for positive and negative examples the missing values can be treated as do
not care cases (i.e., they can be either 1 or 0 without changing the classification of
that example). The notion of the do not care concept was first introduced by Kamath,
et al., in [1993] in order to condense the information representation in this type of
learning problems.

An obvious restriction for the data in the two sets to be valid is that every possible
pair of a positive and a negative example should have at least one of their com-
mon fixed attributes with a different value. For instance, when n = 8, the examples
(1, 1, ∗, ∗, 0, 0, ∗, ∗) and (1, 1, ∗, 0, 0, 0, ∗, 1) cannot belong to different classes
(i.e., one to be positive and the other to be negative). This is true because the example
(1, 1, 0, 0, 0, 0, 0, 1) is implied by either of the previous two examples which have
missing (i.e., do not care) elements.

To further illustrate the concept of the undecidable examples consider the follow-
ing Boolean function defined on five attributes (i.e., n = 5):

(A1 ∨ A4) ∧ (A2 ∨ Ā3 ∨ A5).
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The above Boolean function would make an example such as (0, 1, 1, ∗, 1) undecid-
able chiefly because the value of A4 is missing in this example.

A naive way for dealing with data which have missing values would be to ignore
all the undecidable examples and concentrate attention only on the positive and nega-
tive examples, that is, to ignore all undecidable examples, and expand all the positive
and negative examples, and thus transform this truncated version of Problem 2 into
an instance of Problem 1. Recall that if a positive or negative (but not undecidable)
example has k (where k < n) do not care values, then it can be expanded into 2k

positive or negative examples defined in {1, 0}n . However, if this were done, then
one would have ignored the information present in the undecidable examples. That
is, by knowing that the inferred system should neither accept nor reject any of the
undecidable examples, the search for an accurate Boolean function may be better
directed.

4.2 A Fast Heuristic for Inferring a Boolean Function from
Complete Data

The aim of the clause inference strategies in this chapter is to derive a very small
(hopefully minimum) number of disjunctions (for the CNF case). Although the
Boolean functions derived in the proposed approach are in CNF form, DNF func-
tions can also be derived from the same data set and vice versa (see also Chapter 7
of this book).

As was stated earlier, a Boolean function in CNF must satisfy the following
requirements:

(i) Each clause in the derived expression should accept all the examples in the E+
set; and

(ii) All the clauses, when they are taken together, should reject all the examples in
the E− set.

In order to offset the drawback of the exponential time complexity of the B&B
algorithms used to implement Step 2 of the OCAT approach (as described in Fig-
ure 2.1, in Section 2.8), the clauses formed by the heuristics are built as follows.
Each clause accepts all the examples in the E+ set while it rejects many (as opposed
to as many as possible in the B&B approaches) examples in the E− set. Note that
this is the main procedural difference between the B&B algorithms and the proposed
heuristics.

In the first heuristic of this chapter this is achieved by choosing the attributes to
form a clause based on an evaluative function (to be described later in this section).
Only attributes with high values in terms of this evaluative function are included in
the current clause. A single clause is completely derived when all the examples in
the E+ set are accepted. The clause forming procedure is repeated until all the exam-
ples in the E− set are rejected by the proposed set of clauses. This is the essence of
the OCAT approach. As some computational results (presented in a later section)
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indicate, this strategy may often result in Boolean functions with a rather small
number of clauses.

One may observe at this point that if the attribute with the highest value of the
evaluative function is always included in the clause, then there is an inherent danger
of being trapped at a local optimal point. To prevent the Boolean expression from
being degenerated as a result of being trapped at a local optimal point, a randomized
approach is used. In this randomized approach, instead of a single attribute being
included in a clause due to its highest value of the evaluative function, a candidate
list of attributes is formed. The attributes in this candidate list are selected based on
their values in terms of the evaluative function. These values are close to the highest
value derived from the evaluative function. Next, an attribute is randomly chosen out
of the candidate list and is included in the CNF clause being derived.

It is also possible for a CNF clause to reject as many negative examples as possi-
ble (and, of course, to accept all positive examples) but the entire Boolean expression
not to have a small (ideally minimum) number of clauses. Recall that the proposed
heuristics are components based on the OCAT approach (i.e., they are not run as
procedures of the OCAT approach as was the case with the B&B algorithms). That
is, sometimes it may be more beneficial to have a less “effective” clause which does
not reject a large number of negative examples, and still derive a Boolean function
with very few clauses. Such Boolean functions are possible to derive with the use of
randomized algorithms. A randomized algorithm, with a sufficiently large number of
iterations, is difficult to be trapped at a local optimum.

The first heuristic approach, termed RA1 (for Randomized Algorithm 1), is pro-
posed next to solve the first problem considered in this chapter. Before the RA1
heuristic is formally presented, some new definitions and terminology are needed to
be introduced next.

Definitions.
C = The set of attributes in the current clause (disjunction).
Ak = An attribute such that Ak ∈ A, where A is the set of all attributes

A1, . . . , An and their negations.
POS(Ak) = The number of all positive examples in E+ which would be accepted if

attribute Ak is included in the current clause.
NEG(Ak) = The number of all negative examples in E− which would be accepted

if attribute Ak is included in the current clause.
l = The size of the candidate list.
ITRS = The number of times the clause forming procedure is repeated.

As an illustrative example of the above definitions, consider the following sets of
positive and negative examples (which were also given in earlier chapters):

E+ =

⎡
⎢⎢⎣

0 1 0 0
1 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦ and E− =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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The set A of all attributes for the above set of examples is

A = {A1, A2, A3, A4, Ā1, Ā2, Ā3, Ā4}.
Therefore, the POS(Ak) and the NEG(Ak) values are

POS(A1) = 2 NEG(A1) = 4 POS( Ā1) = 2 NEG( Ā1) = 2

POS(A2) = 2 NEG(A2) = 2 POS( Ā2) = 2 NEG( Ā2) = 4

POS(A3) = 1 NEG(A3) = 3 POS( Ā3) = 3 NEG( Ā3) = 3

POS(A4) = 2 NEG(A4) = 2 POS( Ā4) = 2 NEG( Ā4) = 4

The problem now is to derive a small set of clauses (disjunctions) which would
correctly classify all the above examples. Suppose that there exists a hidden system
given by the following Boolean function:

(A2 ∨ A4) ∧ ( Ā2 ∨ Ā3) ∧ (A1 ∨ A3 ∨ Ā4).

It can be easily seen that the above Boolean function correctly classifies all the
previous examples. Therefore, the first problem is to accurately estimate the above
hidden system. This is accomplished by using heuristic RA1, which is described in
Figure 4.1.

Let m1 and m2 be the cardinalities (sizes) of the sets of examples E+ and E−,
respectively. Then, the following theorem [Deshpande and Triantaphyllou, 1998]
states an upper bound on the number of clauses which can be inferred by RA1, and
it is similar to Theorem 2.1 in Chapter 2.

Theorem 4.1. The RA1 approach terminates within at most m2 iterations.

Proof. A clause Ck can always be formed which rejects only the k-th negative exam-
ple while accepting all other examples. For instance, if the k-th negative example
to be rejected is (1, 0, 1, 0), then the clause which rejects the k-th example, while
accepting all other examples, is ( Ā1 ∨ A2 ∨ Ā3 ∨ A4). Therefore, in Step 2 of the
RA1 procedure, a clause which at best rejects only a single example from the E− set
could be formed. As a result, the maximum number of clauses required to reject all
the E− examples is m2. �

Next, let n be the number of attributes in the data set. Then Theorem 4.2 states
the time complexity of the RA1 algorithm [Deshpande and Triantaphyllou, 1998].

Theorem 4.2. The RA1 algorithm has a polynomial time complexity of order
O(n(m1 + m2)m1m2 ITRS).

Proof. Calculating the values of the ratios POS(ai )/NEG(ai ), for i = 1 to n, requires
n(m1 + m2) simple computations. In order to sort out the attributes in descending
order of their POS(ai )/NEG(ai ) value, we can use the “quick sort” procedure (see,
for instance, [Aho, et al., 1974]) which has time complexity of order O(n log n).



78 4 Some Fast Heuristics for Inferring a Boolean Function from Examples

DO for ITRS number of iterations
BEGIN { Reset the E+ and E− sets };

DO WHILE (E− = ∅)

C = ∅; {initialization}
DO WHILE (E+ = ∅)

Step 1: Rank in descending order all attributes ai ∈ A
(where ai is either Ai or Āi ) according to their
POS(ai )/NEG(ai ) value. If NEG(ai ) = 0, then
use as an alternative scoring function the prod-
uct of an arbitrarily large number times POS(ai ).
We call this the ALT(ai ) value;

Step 2: Form a candidate list of the attributes which
have the l top highest POS(ai )/NEG(ai ) ratios or
ALT(ai ) values (when NEG(ai ) = 0);

Step 3: Randomly choose an attribute ak from the candi-
date list;

Step 4: Let the partial current clause be C ← C ∨ ak;
Step 5: Let E+(ak) be the set of members of E+ accepted

when ak is included in the current CNF clause;
Step 6: Let E+ ← E+ — E+(ak);
Step 7: Let A ← A — ak ;
Step 8: Calculate the new POS(ai ) values for all ai ∈ A;

REPEAT
Step 9: Let E−(C) be the set of members of E− which

are rejected by C ;
Step 10: Let E− ← E− — E−(C);
Step 11: Reset E+;

REPEAT;
END;

CHOOSE the final Boolean system among the previous ITRS sys-
tems which has the smallest number of clauses.

Figure 4.1. The RA1 Heuristic.

Each clause is completely formed when all the m1 examples in the positive set are
accepted. Each Boolean function is completely formed when all the m2 negative
examples are rejected. The entire clause forming procedure is repeated ITRS number
of times. Therefore, the time complexity of the RA1 algorithm is O((n(m1 + m2)+
n log n)m1m2ITRS) = O(n(m1 + m2)m1m2ITRS). �

From the way the POS(ak) and NEG(ak) values are defined, some critical obser-
vations can be made. When an attribute with a rather high value of the POS function
is included in the CNF clause being formed, then chances are that some additional
positive examples will be accepted by that clause as a result of the inclusion of that
attribute. Similarly, attributes which correspond to low NEG values are likely not to
cause many new negative examples to be accepted as a result of the inclusion of that
attribute in the current clause. Therefore, it makes sense to include as attributes in
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the CNF clause under formation, the ones which correspond to high POS values and,
at the same time, to low NEG values.

For the current illustrative example, the values of the POS(ak)/NEG(ak) ratios
are

POS(A1)/NEG(A1) = 0.50, POS( Ā1)/NEG( Ā1) = 1.00,

POS(A2)/NEG(A2) = 1.00, POS( Ā2)/NEG( Ā2) = 0.50,

POS(A3)/NEG(A3) = 0.33, POS( Ā3)/NEG( Ā3) = 1.00,

POS(A4)/NEG(A4) = 1.00, POS( Ā4)/NEG( Ā4) = 0.50.

The above discussion illustrates the motivation for considering as possible candi-
dates for the evaluative function, the functions POS/NEG, POS-NEG, or some type
of a weighted version of the previous two expressions. Some exploratory compu-
tational experiments indicated that the evaluative function POS/NEG was the most
effective one. That is, it led to the formation of Boolean functions with less clauses
than when other alternative evaluative functions were considered.

The randomization of the RA1 algorithm is done as follows. In Step 2, the first
l attributes with the highest value of the POS(ak)/NEG(ak) ratio are chosen as the
members of the candidate list and an attribute in the list is randomly chosen out of
the candidate list in Step 3. This is done in order to obtain different solutions at each
iteration and prevent the system from being trapped by a locally optimal point.

In choosing a fixed value for the size l of the candidate list, there is a possibil-
ity that an attribute with a very low value of the ratio POS(ak)/NEG(ak) could be
selected if the value of l is large enough (how large depends on the particular data).
That could occur if there are not l attributes with a sufficiently high value of the ratio
POS(ak)/NEG(ak). If an attribute with a low value of the ratio POS(ak)/NEG(ak)

is chosen to be included in the clause, then the clause would accept less examples
from the E+ set or accept more examples from the E− set, or both. All of these
three situations should be avoided as they would lead to an increase in the number of
attributes in a clause (if it accepts less examples from the E+ set) or to an increase
in the number of clauses (if the attribute accepts more examples from the E− set),
or both. To prevent the above situation from happening, a candidate list is formed
of attributes, each of whose POS(ak)/NEG(ak) value is within a certain percentage,
say α%, of the highest value of the POS(ak)/NEG(ak) value in the current candidate
list. This ensures that the attribute (randomly chosen out of the candidate list) to be
included in the clause has a value close to the highest value of the POS(ak)/NEG(ak)

ratios. The alternative (evaluative) scoring function ALT(ak)was introduced in Step 1
in order to avoid degenerative cases when NEG(ak) = 0 and, at the same time, to
give a high priority to such attributes. In case of multiple maximum values, ties are
broken arbitrarily.

The above idea of using randomization in a search algorithm has been explored
by other researchers as well. For instance, Feo and Resende in [1995] have success-
fully used randomization to solve clause satisfiability (SAT) problems. They called
their approach GRASP (for Greedy Randomized Adaptive Search Procedures) and
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the previous developments are an implementation of the GRASP approach. Also, in
a book Motwani and Raghavan [1995] provide a comprehensive presentation of the
theory on randomized algorithms. Randomization also offers a natural and intuitive
way for implementing parallelism in algorithms.

To obtain a Boolean function with a very small number of clauses, the whole
procedure is subjected to a certain number of iterations (denoted by the value of the
ITRS parameter) and the system which has the least number of disjunctions is chosen
as the final inferred Boolean system.

Referring to the previous illustrative example, if l = 3, then the values of the
three best POS(ak)/NEG(ak) ratios are {1.0, 1.0, 1.0} (note that it is a coincidence
that all three values are identical) which correspond to the attributes Ā1, A2, and A4,
respectively. Let attribute A2 be the randomly selected attribute from the candidate
list. Note that attribute A2 accepts examples number 2 and 3 from the current E+
set. Therefore, at least one more attribute is required to complete the formation of
the current clause. Thus, the entire process of finding a new attribute (other than
attribute A2 which has already been selected) with a very high value of POS/NEG is
repeated. Now, suppose that the attribute with a high POS/NEG value happened to be
A4. It can be observed now that when attributes A2 and A4 are combined together,
they accept all the elements in the E+ set. Therefore, the first clause is (A2 ∨ A4).

This clause fails to reject examples number 2, 3, and 6 in the E− set. Therefore,
examples number 2, 3, and 6 in the original E− set constitute the reduced (and thus
new) E− set. The above process is repeated until a set of clauses are formed which,
when taken together, reject all the examples in the original E− set. Therefore, a
final Boolean function for this problem could be as follows (recall that the algorithm
is a randomized one and thus it may not return the same solution each time it is
run):

(A2 ∨ A4) ∧ ( Ā2 ∨ Ā3) ∧ (A1 ∨ A3 ∨ Ā4).

A very important factor in deriving a Boolean function from positive and negative
examples is the number of examples needed to infer the logic. This is also known as
the sample complexity of a given approach. The problem of inferring a pattern with
a sequence of very few new examples has been examined by Bshouty, et al., [1993],
Goldman and Sloan [1994], and Triantaphyllou and Soyster [1995b]. This is also
known as the guided learning approach. A guided learning approach is described
later in Chapter 5.

4.3 A Fast Heuristic for Inferring a Boolean Function from
Incomplete Data

The second heuristic algorithm deals with the case in which some of the exam-
ples contain missing values. That is, now the examples are defined in the {0, 1, ∗}n

space. Some algorithmic consequences of having missing elements in the positive,
negative, or undecidable examples (denoted as EU ) have already been discussed in
Section 4.1.
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If an example is determined as undecidable by the “hidden” system, then it has
also to remain undecidable by the derived Boolean function. In other words, the
property for inferring Boolean functions when undecidable examples are also con-
sidered (along with positive and negative examples), is that the examples in the EU

set should neither be accepted nor rejected by the derived system.
To help fix ideas, consider the Boolean function which we have also seen in the

previous section:

(A2 ∨ A4) ∧ ( Ā2 ∨ Ā3) ∧ (A1 ∨ A3 ∨ Ā4).

If any example in EU has A2 = A4 = 0, then the first clause would reject that exam-
ple. This, however, should not be permissible and thus the above function cannot be
a candidate solution, regardless of what are the positive and negative examples.

On the other hand, if in a particular undecidable example A2 = 0 and A4 = ∗,
then that example is neither rejected nor accepted. Therefore, in the later scenario, the
previous function is a possible candidate as far as that single undecidable example is
concerned.

The second algorithm, termed RA2 (for Randomized Algorithm 2), is also based
on the OCAT approach (as described in Figure 2.1, in Section 2.8). That is, the RA2
generates a sequence of clauses as shown in Figure 4.2. Each clause accepts all the
positive examples in the E+ set, while it does not reject any of the examples in the
undecidable set EU and it also attempts to reject a large number (but not necessarily
as many as possible) of the negative examples in the E− set.

Subsequent clauses are formed with a reduced E− set (which is comprised by
the negative examples which have not been rejected so far). When all the examples
in the E− set have been rejected, then the RA2 algorithm enters its second phase
(see also Figure 4.2). In the second phase the entire set of clauses is tested against
the EU set to satisfy the necessary Boolean function forming condition for the unde-
cidable examples. That is, all the clauses when grouped together should not accept
any example from the EU set.

Recall that after Phase I the clauses may not reject any of the undecidable exam-
ples. Any undecidable examples which are accepted by the clauses which have been
formed during Phase I, are grouped into the set E A (that is: E A ⊆ EU ). The clauses
which were formed during Phase I are appended with a new set of clauses which are
formed in the second phase. The new clauses, when grouped together with the first
set of clauses, do not accept any example in the set E A (i.e., now E A = ∅). This is
accomplished in a sequential manner as shown in Figure 4.2.

Let the set E A contain examples from the original EU set which the derived
Boolean function has accepted. Therefore, the maximum number of examples in the
set E A is the same as the cardinality of the EU set (i.e., equal to m3). Suppose
that there are still m′

3 (where m ′
3 ≤ m3) undecidable examples in the E A set after

all the examples from the E− set are rejected and all the clauses are tested against
the examples in the EU set for nonacceptance (i.e., now E A = ∅ and E− = ∅).
Then, how does the RA2 heuristic terminate? The upper bound for the terminating
condition is given in the following theorem [Deshpande and Triantaphyllou, 1998]:
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DO for ITRS number of iterations

BEGIN { Reset the E+ and E− sets };
Phase I: DO WHILE (E− = ∅)

C = ∅; {initialization }
DO WHILE (C does not reject any examples in EU )

DO WHILE (E+ = ∅)

Step 1: Rank in descending order all attributes ai ∈ A (where ai is
either Ai or Āi ) according to their POS(ai )/NEG(ai ) value.
If NEG(ai ) = 0, then use as an alternative scoring func-
tion the product of an arbitrarily large number times POS(ai ).
We call this the ALT(ai ) value;

Step 2: Form a candidate list of the attributes which have the l top
highest POS(ai )/NEG(ai ) ratios or ALT(ai ) values (when
NEG(ai ) = 0);

Step 3: Randomly choose an attribute ak from the candidate list;
Step 4: Let E+(ak) be the set of members of E+ accepted when ak

is included in the current CNF clause;
Step 5: Let E+ ← E+ — E+(ak); also, let A ← A — ak ;
Step 6: Let the current partial clause be C ← C ∨ ak ;

REPEAT
Step 7: Let the current clause be C ← C ∨ a j , where a j is any

attribute with a value of “∗” in each of the examples in EU

which were rejected by the clause C ;
Step 8: Let E−(C) be the set of members of E− which are rejected

by C ;
Step 9: Let E− ← E− — E−(C);
Step 10: Reset E+;

REPEAT;
Phase II: Denote as E A the updated set of undecidable examples in EU accepted by the

current set of clauses C1 ∨C2 · · · ∨Cm where m is the total number of clauses
formed so far;
DO WHILE (E A(E A(E A = ∅)

Step 11: m ← m + 1;
Step 12: Form (according to the proof of Theorem 4.3) a clause Cm

which does not accept the first undecidable example from the
current E A set ; Update the E A set;

REPEAT;
END;

CHOOSE the final Boolean system among the previous ITRS systems
which has the smallest number of clauses.

Figure 4.2. The RA2 Heuristic.

Theorem 4.3. The maximum number of additional conjunctions to be formed during
Phase II in heuristic RA2 is equal to m′

3.
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Proof. A clause Ck can always be formed which does not accept the k-th undecidable
example (i.e., it can either reject or make undecidable this example) from the E A

set while accepting all other examples (refer to the proof of Theorem 4.1 for the
validity of the previous statement). Since all the negative examples have already
been rejected, a maximum of m ′

3 new clauses can be formed which do not accept the
m′

3 undecidable examples from the E A set. For instance, if the k-th example in E A

is (1, ∗, 0, ∗), then the clause Ck is ( Ā1 ∨ A2 ∨ A3 ∨ A4) and it would fail to accept
or reject the k-th example. �

If n is the number of attributes and m1,m2, and m3 are the cardinalities of the
E+, E−, and EU sets, respectively, then the complexity of the RA2 algorithm is
stated in the following theorem [Deshpande and Triantaphyllou, 1998]:

Theorem 4.4. The time complexity of the RA2 heuristic is O(n(m1 + m2)m1m2m3
ITRS).

Proof. Calculating the values of the POS(ai )/NEG(ai ) ratios (for i = 1 to n)
requires n(m1 + m2) computations. To sort out the attributes in descending order of
their POS(ai )/NEG(ai ) value we can use the “quick sort” approach which is of time
complexity of order O(n log n) [Aho, et al., 1974]. To form a Boolean expression in
which each clause accepts all the m1 positive examples, rejects none of the m3 unde-
cidable examples and the whole set of clauses rejecting all the m2 negative examples
is of order m1m2m3. The complexity of Phase II is m3n. This is indicated in the
second loop in Figure 4.2. Therefore, the complexity of the RA2 heuristic is of order
O((((n(m1+m2)+n log n)m1m2m3)+m3n)ITRS) = O(n(m1+m2)m1m2m3ITRS).

�

Next, for demonstrative purposes of the above issues consider the following illustra-
tive example. Let the three classes of data be as follows:

E+ =
⎡
⎣0 1 0 0

1 1 0 1
0 0 1 0

⎤
⎦ , E− =

⎡
⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0

⎤
⎥⎥⎦ , and

EU =
⎡
⎣ 1 ∗ 0 ∗

1 0 ∗ 0
∗ 1 ∗ 0

⎤
⎦ .

In the previous positive and negative examples there are no examples with missing
fields. If there were such missing data, then one could first expand them and replace
them with the expanded data. For instance, an example such as (∗, 1, 0, ∗) could be
expanded and then be replaced by the following four (4 = 22) examples with no
missing data:

(0, 1, 0, 0)
(0, 1, 0, 1)
(1, 1, 0, 0)
(1, 1, 0, 1)
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Next, the POS(ak),NEG(ak),POS(ak)/NEG(ak) values are as follows:

POS(A1) = 1, NEG(A1) = 2, POS(A1)/NEG(A1) = 0.50,

POS(A2) = 2, NEG(A2) = 1, POS(A2)/NEG(A2) = 2.00,

POS(A3) = 1, NEG(A3) = 2, POS(A3)/NEG(A3) = 0.25,

POS(A4) = 1, NEG(A4) = 2, POS(A4)/NEG(A4) = 0.50,

POS( Ā1) = 2, NEG( Ā1) = 2, POS( Ā1)/NEG( Ā1) = 1.00,

POS( Ā2) = 1, NEG( Ā2) = 3, POS( Ā2)/NEG( Ā2) = 0.33,

POS( Ā3) = 2, NEG( Ā3) = 2, POS( Ā3)/NEG( Ā3) = 0.50,

POS( Ā4) = 2, NEG( Ā4) = 2, POS( Ā4)/NEG( Ā4) = 1.00.

If l = 3, then the three highest ratios of the POS(ak)/NEG(ak) values are
{2.0, 1.0, 1.0} which correspond to attributes A2, Ā1, and Ā4, respectively. Let
attribute A2 be the randomly selected attribute from the current candidate list.
If attribute A2 is introduced into the current clause, then as a result this clause will
accept the first and the second examples in the E+ set. The whole process of finding
the values of POS(ak)/NEG(ak) (with k = 2) is repeated. For the next iteration sup-
pose that attribute A3 is chosen. When attributes A2 and A3 are introduced into the
clause, then this clause accepts all examples in the E+ set. This set of attributes does
not reject any example in the EU set. Therefore, the first clause is (A2 ∨ A3). This
process is repeated until E− = ∅ and E A = ∅. Therefore, a final Boolean function
for this problem could be as follows (recall that the algorithm is a randomized one
and thus it does not return a deterministic solution):

(A2 ∨ A3) ∧ ( Ā1 ∨ Ā3 ∨ A4) ∧ ( Ā1 ∨ Ā3).

4.4 Some Computational Results

A number of computer experiments were conducted on an IBM 3090-600S main-
frame computer running the VM/XA operating system, in order to investigate the
effectiveness of the RA1 and RA2 heuristics on different types of problems. Some
interesting results were obtained and are discussed in the following paragraphs.

The previous two heuristics RA1 and RA2 were tested on a number of dif-
ferent experiments. The first type of experiments used the well-known Wisconsin
breast cancer database (donated by Professor Mangasarian from the University of
Wisconsin, Madison, and now it can be found in the University of California at Irvine
Repository of Learning Databases and Domain Theories) [Murphy and Aha, 1994]).
This database contained (at the time it was obtained) 421 examples, of which 224
correspond to benign (or positive examples in our setting) and 197 to malignant
cases (or negative examples in our setting). The original data were defined on nine
discrete variables, each variable assuming values from the integer set [1, 10]. These
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data were converted into their equivalent binary data. That is, each variable was con-
verted into four binary variables and thus the transformed database was defined on
36 (= 4 × 9) binary variables.

In addition, the RA1 heuristic was compared with the branch-and-bound method
described in Chapter 3 of this book by first generating a challenging set of large
random test problems. The first large random data set contained 18,120 exam-
ples defined on 15 attributes with a varied ratio of positive to negative examples.
Note that this set was almost 50 times larger than the size of the previous breast
cancer data set. A second large data set contained 3,750 examples defined on 14
attributes.

The measures of performance considered in these tests were of three types: (i) the
accuracy of the derived system (Boolean function), (ii) the number of clauses (CNF
disjunctions) of the derived system, and (iii) the CPU time required to derive a
solution.

The method of determining the accuracy of a proposed system (i.e., Boolean
function) was defined in two different ways. When the Wisconsin breast cancer
database was used, the accuracy of a solution was defined by comparing the way
an inferred system (which was derived when a part of the available data was used
as the training set) and the system derived when the entire data base is used, clas-
sified a random collection of 10,000 examples. Note that this approach is similar to
the testing procedures used in [Kamath, et al., 1992], [Triantaphyllou, et al., 1994],
[Triantaphyllou, 1994], and [Triantaphyllou and Soyster, 1995b] and also in previous
chapters.

For the other cases the testing procedure was different. First a collection of
random examples was formed. Next, a Boolean function was formed randomly and
the previous examples were classified according to that function as being either posi-
tive or negative examples. That function played the role of the oracle or hidden
system. Then, the goal of the inference algorithms was to infer a close approximation
of that hidden function. Therefore, in this case the notion of accuracy was defined as
the percentage of the times the proposed and the hidden system agreed in classifying
a random collection of 10,000 examples.

Moreover, for testing the two heuristics on the breast cancer data, two categories
of Boolean functions were derived. The first category of Boolean functions used
the benign set as the E+ set and the malignant set as the E− set. This category
of Boolean systems was denoted as system S1. The second category of systems
treated the benign set as the E− set and the malignant set as the E+ set. This
category of Boolean systems was denoted as system S2. The purpose of formu-
lating two categories of systems (i.e., S1 and S2) was to study the effect of the
number of examples (recall that the benign and the malignant observations were 224
and 197, respectively) on the accuracies and the number of clauses in the derived
systems.

Since it was required that the number of clauses be kept at a very small level, the
whole clause forming process was repeated a certain number of times (defined as the
value of the parameter ITRS in Figures 4.1 and 4.2). The value of ITRS equal to 150
was determined after a brief pilot study. The results are tabulated below.
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Number of clauses

ITRS value in System S1S1S1 in System S2S2S2

50 14.40 23.52
100 12.20 20.69
150 8.86 19.92
200 8.84 20.12
500 8.83 19.79

1,000 8.82 19.78

These results suggest that higher values of ITRS did not generate much fewer
clauses (although the CPU requirement is higher now). Thus, the value of ITRS equal
to 150 is a reasonable one. Obviously, this empirical value cannot be generalized
since for different data a different ITRS value may be more appropriate. Therefore,
we suggest that a pilot study to be undertaken before an ITRS value is decided.
Finally, please recall that the running time of the heuristic is directly proportional to
the value of ITRS. This is indicated in the complexities of the RA1 and RA2 heuris-
tics as seen in Figures 4.1 and 4.2, respectively, and also stated in Theorems 4.2 and
4.4, respectively.

For the randomization of the heuristics, a candidate list of a few attributes
was formed among which the representative attribute was randomly chosen. The
attributes which were chosen to be in the candidate list were those which had a
POS/NEG value within a certain percentage, say α%, of the maximum POS/NEG
value in the candidate list. This could assure that the attributes which are finally
chosen are in a near neighborhood of the attribute with the maximum value of the
POS/NEG ratio in the candidate list. A good value of α% seemed to be equal to 75%
as it resulted in the highest accuracy in some exploratory computational experiments.
These experiments are described in more detail in the following sections.

4.4.1 Results for the RA1 Algorithm on the Wisconsin Cancer Data

The results for Problem 1 (i.e., inference of a Boolean function with complete data)
are presented in Table 4.1. The number of replications per case was equal to 50. The
numbers in the parentheses indicate the standard deviations of the various obser-
vations. Individual accuracies for the benign and the malignant tumors are also
presented. For instance, B(S1), M(S1), B(S2), and M(S2) represent benign and
malignant accuracies for systems S1 and S2, respectively.

Figure 4.3 shows the relationship of accuracy versus the percentage of the data
used. With approximately 10% of the data used as the training data, accuracy of
approximately 88% was achieved with system S1 while a higher accuracy of 92%
was achieved with system S2. A peak accuracy of approximately 92% was obtained
with system S1 while a peak of 94% was obtained with system S2. Figure 4.4 shows
the number of the derived clauses. The maximum number of clauses is 9 for system
S1 and 20 for system S2.

On the average, the time required to infer the 9 clauses was 300 CPU seconds.
Resende and Feo [1995] had reported that their SAT approach took more than
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Table 4.1. Numerical Results of Using the RA1 Heuristic on the Wisconsin Breast Cancer
Database.

No. of No. of
% of Clauses Clauses Accur. Accur. Accur. Accur. Accur. Accur.
Data (S1) (S2) (S1) B(S1) M(S1) (S2) B(S2) M(S2)

5.0 1.18 2.28 0.825 0.810 0.843 0.906 0.941 0.867
(0.38) (0.49) (0.058) (0.107) (0.106) (0.068) (0.101) (0.108)

10.0 1.60 3.02 0.882 0.879 0.885 0.921 0.962 0.875
(0.57) (0.55) (0.032) (0.057) (0.055) (0.052) (0.073) (0.061)

15.0 2.06 3.70 0.880 0.867 0.896 0.939 0.995 0.876
(0.57) (0.67) (0.027) (0.059) (0.035) (0.031) (0.02) (0.062)

20.0 2.42 4.62 0.893 0.904 0.882 0.944 0.996 0.885
(0.53) (0.75) (0.023) (0.04) (0.034) (0.027) (0.015) (0.048)

25.0 2.72 5.14 0.901 0.916 0.885 0.945 0.995 0.887
(0.60) (0.89) (0.017) (0.030) (0.036) (0.020) (0.016) (0.041)

30.0 3.12 6.00 0.904 0.915 0.893 0.945 0.996 0.887
(0.71) (1.31) (0.014) (0.029) (0.033) (0.018) (0.011) (0.035)

35.0 3.40 6.84 0.903 0.915 0.890 0.944 0.998 0.884
(0.72) (1.10) (0.017) (0.030) (0.036) (0.018) (0.008) (0.033)

40.0 3.74 7.60 0.904 0.921 0.885 0.946 1.000 0.885
(0.66) (1.34) (0.015) (0.023) (0.248) (0.185) (0.002) (0.037)

45.0 4.06 8.60 0.903 0.914 0.892 0.950 1.000 0.893
(0.88) (1.71) (0.018) (0.028) (0.033) (0.016) (0.000) (0.032)

50.0 4.44 9.70 0.906 0.917 0.893 0.949 1.000 0.892
(0.78) (1.57) (0.018) (0.032) (0.037) (0.017) (0.001) (0.034)

55.0 4.90 10.94 0.902 0.915 0.887 0.945 1.000 0.884
(0.88) (1.63) (0.016) (0.034) (0.033) (0.016) (0.002) (0.032)

60.0 5.40 12.06 0.902 0.916 0.887 0.943 1.000 0.879
(0.92) (1.54) (0.023) (0.037) (0.045) (0.018) (0.003) (0.038)

65.0 5.84 13.46 0.910 0.918 0.900 0.945 1.000 0.881
(1.03) (2.02) (0.023) (0.028) (0.040) (0.020) (0.000) (0.040)

70.0 6.24 14.34 0.911 0.923 0.899 0.944 1.000 0.881
(0.93) (2.06) (0.022) (0.038) (0.041) (0.021) (0.002) (0.043)

75.0 6.92 15.26 0.910 0.919 0.900 0.938 1.000 0.868
(1.07) (1.71) (0.026) (0.040) (0.036) (0.024) (0.000) (0.048)

80.0 7.68 16.54 0.913 0.911 0.916 0.946 1.000 0.883
(0.88) (1.56) (0.032) (0.046) (0.05) (0.024) (0.000) (0.049)

85.0 7.88 17.44 0.913 0.920 0.905 0.944 1.000 0.880
(0.99) (1.73) (0.040) (0.052) (0.058) (0.029) (0.000) (0.061)

90.0 8.56 19.22 0.913 0.915 0.909 0.938 1.000 0.862
(0.75) (1.71) (0.046) (0.059) (0.071) (0.033) (0.000) (0.077)

95.0 8.88 19.90 0.917 0.924 0.911 0.930 1.000 0.861
(0.86) (1.81) (0.073) (0.081) (0.103) (0.054) (0.000) (0.097)
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Figure 4.3. Accuracy Rates for Systems S1 and S2 When the Heuristic RA1 Is Used on the
Wisconsin Breast Cancer Data.

Figure 4.4. Number of Clauses in Systems S1 and S2 When the Heuristic RA1 Is Used on the
Wisconsin Breast Cancer Data.

27,000 CPU seconds (on a VAX system which is 4–5 times slower than the IBM
3090-600S computer used in these tests) without being able to infer the 9 clauses
from the breast cancer database. Some typical Boolean functions for systems S1 and
S2 are given in Figure 4.5.

These clauses were derived from the entire set of cancer data. Recall that the can-
cer data had 9 discrete-valued attributes which were converted into 36 binary-valued
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System S1S1S1:
Clause 1: (A1 ∨ A9 ∨ A13 ∨ A17 ∨ A21 ∨ A22 ∨ A25 ∨ A26 ∨ A29 ∨ A33 ∨ A35)

Clause 2: (A1 ∨ A2 ∨ A9 ∨ A13 ∨ A15 ∨ A21 ∨ A25 ∨ A30 ∨ A33)

Clause 3: (A1 ∨ A3 ∨ A8 ∨ A9 ∨ A17 ∨ A21 ∨ A25 ∨ A33 ∨ A35 ∨ Ā16)

Clause 4: (A1 ∨ A9 ∨ A17 ∨ A21 ∨ A23 ∨ A25 ∨ A33 ∨ A35 ∨ Ā16)

Clause 5: (A3 ∨ A9 ∨ A12 ∨ A17 ∨ A21 ∨ A25 ∨ A33 ∨ A35)

Clause 6: (A1 ∨ A11 ∨ A13 ∨ A17 ∨ A22 ∨ A25 ∨ A29 ∨ A34 ∨ A35
∨ Ā12 ∨ Ā16 ∨ Ā20 ∨ Ā36)

Clause 7: (A13 ∨ A15 ∨ A17 ∨ A22 ∨ A24 ∨ A25 ∨ A27 ∨ A29 ∨ A34 ∨ Ā16 ∨ Ā36)

Clause 8: (A4 ∨ A23 ∨ A35 ∨ Ā2 ∨ Ā18 ∨ Ā20 ∨ Ā36)

Clause 9: (A8 ∨ A10 ∨ A15 ∨ A21 ∨ A23 ∨ Ā16 ∨ Ā20 ∨ Ā32)

System S2S2S2:
Clause 1: (A16 ∨ A24 ∨ Ā21)

Clause 2: (A24 ∨ Ā23 ∨ Ā26)

Clause 3: (A5 ∨ Ā21 ∨ Ā26)

Clause 4: (A12 ∨ A26 ∨ Ā1)

Clause 5: (A6 ∨ Ā18 ∨ Ā19)

Clause 6: ( Ā9 ∨ Ā26)

Clause 7: (A10 ∨ Ā13)

Clause 8: (A30 ∨ Ā3 ∨ Ā10 ∨ Ā24)

Clause 9: (A4 ∨ A8 ∨ Ā11 ∨ Ā23)

Clause 10: (A15 ∨ Ā7 ∨ Ā10 ∨ Ā22)

Clause 11: (A21 ∨ Ā7 ∨ Ā14 ∨ Ā16)

Clause 12: (A6 ∨ Ā10 ∨ Ā23)

Clause 13: (A12 ∨ Ā15 ∨ Ā22)

Clause 14: (A8 ∨ A16 ∨ Ā30)

Clause 15: (A5 ∨ A13 ∨ Ā2 ∨ Ā11 ∨ Ā26)

Clause 16: (A3 ∨ A5 ∨ A15 ∨ A27 ∨ Ā6)

Clause 17: (A5 ∨ A13 ∨ A18 ∨ Ā6 ∨ Ā28)

Clause 18: (A3 ∨ A13 ∨ Ā7 ∨ Ā25)

Clause 19: (A3 ∨ A13 ∨ A21 ∨ A32 ∨ Ā11 ∨ Ā20)

Clause 20: (A3 ∨ A15 ∨ A21 ∨ Ā7 ∨ Ā28 ∨ Ā30)

Figure 4.5. Clauses of Systems S1 and S2 When the Entire Wisconsin Breast Cancer Data
Are Used.

attributes, denoted as A1, . . . , A36. System S2 was derived after treating the malig-
nant examples as the E+ data set and the benign examples as the E− data set.
As such, the set of clauses in system S2 approximates the complement of system
S1. This can be seen in Figure 4.5 where system S1 has 9 clauses, each clause con-
taining on the average 10 attributes, whereas system S2 contains 20 clauses, each
clause containing, on the average, four attributes.
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Table 4.2. Numerical Results of Using the RA2 Heuristic on the Wisconsin Breast Cancer
Database.

No. of No. of
% of Clauses Clauses Accur. Accur. Accur. Accur. Accur. Accur.
Data (SA) (SB) (SA) B(SA) M(SA) (SB) B(SB) M(SB)

5.0 1.26 2.08 0.866 0.882 0.848 0.869 0.884 0.921
(0.48) (0.63) (0.051) (0.086) (0.090) (0.042) (0.096) (0.048)

10.0 1.62 2.76 0.899 0.907 0.890 0.895 0.896 0.940
(0.49) (0.62) (0.031) (0.043) (0.065) (0.028) (0.055) (0.023)

15.0 1.88 3.18 0.916 0.931 0.899 0.917 0.897 0.941
(0.38) (0.68) (0.018) (0.036) (0.031) (0.020) (0.046) (0.022)

20.0 2.32 4.08 0.921 0.937 0.902 0.921 0.900 0.945
(0.61) (0.84) (0.019) (0.030) (0.040) (0.022) (0.044) (0.023)

25.0 2.76 4.84 0.925 0.941 0.908 0.934 0.917 0.953
(0.68) (0.86) (0.015) (0.025) (0.036) (0.015) (0.033) (0.014)

30.0 3.14 5.68 0.932 0.942 0.920 0.937 0.914 0.963
(0.75) (0.97) (0.013) (0.026) (0.024) (0.013) (0.028) (0.016)

35.0 3.60 5.98 0.940 0.954 0.924 0.949 0.936 0.964
(0.94) (1.10) (0.011) (0.020) (0.023) (0.009) (0.017) (0.014)

40.0 3.92 6.76 0.947 0.961 0.932 0.954 0.942 0.968
(0.84) (0.93) (0.009) (0.015) (0.210) (0.009) (0.017) (0.014)

45.0 4.46 8.14 0.949 0.958 0.939 0.954 0.935 0.977
(1.08) (1.15) (0.010) (0.017) (0.017) (0.010) (0.013) (0.012)

50.0 5.00 9.00 0.954 0.962 0.944 0.963 0.949 0.978
(0.98) (1.36) (0.009) (0.015) (0.015) (0.010) (0.020) (0.009)

55.0 5.38 9.40 0.959 0.967 0.950 0.967 0.952 0.985
(1.09) (1.11) (0.009) (0.013) (0.017) (0.009) (0.016) (0.009)

60.0 6.28 10.20 0.963 0.967 0.958 0.972 0.959 0.987
(1.10) (1.25) (0.009) (0.014) (0.014) (0.008) (0.015) (0.008)

65.0 6.54 10.78 0.967 0.973 0.961 0.977 0.966 0.990
(1.08) (1.38) (0.008) (0.011) (0.016) (0.007) (0.014) (0.008)

70.0 7.48 11.70 0.973 0.979 0.967 0.982 0.971 0.994
(1.30) (1.00) (0.007) (0.010) (0.013) (0.006) (0.011) (0.005)

75.0 8.24 12.06 0.978 0.979 0.976 0.984 0.973 0.996
(1.05) (1.24) (0.007) (0.012) (0.012) (0.006) (0.011) (0.004)

80.0 8.84 12.84 0.983 0.985 0.985 0.987 0.978 0.997
(1.21) (1.17) (0.008) (0.011) (0.011) (0.006) (0.010) (0.004)

85.0 9.56 12.34 0.986 0.988 0.985 0.992 0.986 0.998
(1.17) (0.97) (0.006) (0.007) (0.009) (0.005) (0.009) (0.004)

90.0 10.36 12.90 0.992 0.993 0.992 0.995 0.991 1.000
(0.97) (0.83) (0.004) (0.006) (0.007) (0.003) (0.006) (0.001)

95.0 10.98 12.90 0.996 0.996 0.996 0.998 0.996 1.000
(0.97) (0.92) (0.003) (0.004) (0.004) (0.002) (0.004) (0.001)
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4.4.2 Results for the RA2 Heuristic on the Wisconsin Cancer Data with Some
Missing Values

The results for Problem 2 (i.e., inference of a Boolean function with incomplete
data) are presented in Table 4.2 and graphically depicted in Figures 4.6 and 4.7.
Heuristic RA2 was used to solve this problem. The undecidable data were generated
by “covering” (i.e., masking out) the actual values of some elements in some random
examples taken from the cancer database. When the covered values were enough not
to allow for the classification of that example, that example was introduced into the
EU set and the covered attributes were assigned missing values.

Two systems of clauses (rules) were inferred. System SA was inferred with only
the positive (i.e., the E+) and the negative (i.e., the E−) data sets. On the other
hand, system SB was inferred from E+, E− as well as the undecidable (i.e., the EU )
data set. The reason for doing this was to compare the relative benefit of including
the undecidable data sets as opposed to inferring a system of clauses without the
inclusion of the undecidable data.

The number of replications for each case was also equal to 50 and the numeri-
cal results are presented in Table 4.2. That number of replications produced rather
acceptable confidence intervals and it was limited due to the excessive CPU time
requirements. The individual benign and malignant accuracies for systems SA and SB
are denoted in Table 4.2 by B(SA), M(SA) and B(SB), M(SB), respectively. The graphs
for the accuracies and the number of clauses derived by the RA2 algorithm with and
without the inclusion of the undecidable data set EU , are shown in Figures 4.6 and
4.7, respectively.

Figure 4.6. Accuracy Rates for Systems SA and SB When Heuristic RA2 Is Used on the
Wisconsin Breast Cancer Data.
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Figure 4.7. Number of Clauses in Systems SA and SB When Heuristic RA2 Is Used on the
Wisconsin Breast Cancer Data.

As was anticipated, the accuracy obtained with the inclusion of the undecidable
data set EU was always higher than the corresponding accuracy obtained without the
inclusion of the EU data set. Therefore, it is indicated in these experiments that the
use of the undecidable data set, along with the positive and negative data sets, indeed
improves the quality of the inferred Boolean system. That is, the inferred system is a
better approximation of the hidden system.

4.4.3 Comparison of the RA1 Algorithm and the B&B Method Using Large
Random Data Sets

In order to compare the RA1 heuristic with the revised B&B method described in
Chapter 3, a large data set was randomly generated and used for inferring Boolean
functions. The difficulty of the problem is determined not only by the number of
examples, but also by the percentage of examples used for training as compared to the
total possible number of examples. For n attributes, the total number of all possible
distinct examples is 2n . The problem will be easy when there are very few examples
(i.e., when n is small) or when the number of the training examples approaches 2n .

The upper limit on the number of examples was limited by the dynamic alloca-
tion of the random access memory (RAM memory) of the IBM 3090-600S main-
frame computer at the Louisiana State University (LSU) which was in use in the
middle 1990s. Thus, a maximum of 18,120 examples were randomly generated for
the purpose of these computational experiments when the number of attributes was
set equal to 15. A maximum of 32,768 (= 215) distinct examples are possible when
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DO WHILE (E− = ∅)

Call Procedure RA1 to infer a single clause.
If no examples from the E− set are rejected by that clause then:

Call the B&B method to infer a single clause.
Update the E− set.

REPEAT;

Figure 4.8. Using the RA1 Heuristic in Conjunction with the B&B Method.

n is equal to 15. Therefore, this data set is a representation of one of the most difficult
problems possible with n equal to 15.

The RA1 algorithm terminates when all the clauses, when taken together, reject
the entire set of negative examples in the E− set. A critical question is what happens
if none of the clauses formed in the local search are able to reject even a single nega-
tive example. In the proof of Theorem 4.1 it was shown that a clause can always
be formed which rejects exactly one negative example while accepting all positive
examples. However, a disadvantage of that approach is that only a single negative
example would be rejected at a time by the inclusion of such a new clause. If the
number of negative examples is large and if this boundary condition is triggered
often, then the system could end up with an exceptionally large number of (degene-
rative) clauses.

A possible alternative solution to this situation is the use of the RA1 heuristic in
conjunction with the B&B method described in Chapter 3 of this book. The B&B
method always guarantees to return a clause, which most of the time, rejects more
than just a single negative example. However, there is also a certain trade-off to this
implementation. The B&B method has an exponential time complexity. Hence, for
large-size data sets, it has the potential to take large amounts of CPU time. Figure 4.8
best describes the idea of using the RA1 algorithm in conjunction with the B&B
method (or for that matter, with any other single clause inference method).

The computational results are presented in Tables 4.3 and 4.4 which compare the
combined RA1 heuristic and the B&B method with the stand-alone B&B method.
Two sizes of random data sets were used in these tests. One set of data contained a
total of 18,120 examples with a varying ratio of positive to negative examples (see
also Table 4.3). The number of attributes in this data set was equal to 15.

In the other data set, the total number of examples was equal to 3,750. The
number of attributes in this case was set equal to 14 (see also Table 4.4). These
numbers of examples were fixed after determining the RAM memory restrictions of
the IBM 3090-600S mainframe computer system at LSU.

Besides the CPU times consumed by the RA1/B&B combination and the stand-
alone B&B search, the number of clauses inferred by each component method was
also recorded. Moreover, the number of times the boundary condition was invoked
(i.e., the number of times the B&B method was used) in the RA1/B&B combination,
was recorded as well.
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Table 4.3. Comparison of the RA1 Algorithm with the B&B Method (the total number of
examples = 18,120; number of attributes = 15).

Clauses by CPU Time CPU Time
B&B in Clauses by Clauses RA1/B&B B&B (in

|E+||E+||E+| |E−||E−||E−| RA1/B&B RA1/B&B by B&B (in seconds) seconds)

264 17,856 11 15 15 267 267
690 17,430 13 20 18 614 1,265
730 17,390 16 23 26 2,243 3,302
856 17,264 20 27 23 5,781 10,983

1,739 16,381 17 23 21 5,266 6,244
1,743 16,377 36 45 46 3,442 6,016
1,773 16,347 39 46 39 5,150 10,020
2,013 16,107 24 26 25 2,058 2,000
2,298 15,822 38 44 41 4,777 4,891
2,396 15,724 23 24 31 2,816 2,583
2,400 15,720 36 45 48 3,719 4,827
2,913 15,207 35 40 45 4,344 4,532
3,090 15,030 34 37 34 4,889 4,945
3,459 14,661 38 40 32 12,187 14,547
3,574 14,546 34 41 67 4,980 9,245
3,917 14,203 46 53 52 10,588 12,232
4,781 13,339 47 48 95 10,243 19,475
5,750 12,370 29 30 29 7,959 7,944
6,503 11,617 48 51 56 5,316 9,688
6,608 11,512 34 37 52 3,887 12,632
6,989 11,131 62 66 60 16,719 17,626
9,981 8,139 42 44 43 12,232 12,146

10,554 7,566 42 42 42 12,681 12,523

As can be seen from the previous computational results, the combination of the
RA1 heuristic with the B&B method performed significantly better than the stand-
alone B&B method when one focuses on the CPU times. Figure 4.9 shows the
percentage of times the B&B method was invoked when it was combined with the
RA1 heuristic. On the average, the B&B method was called approximately 60% of
the time in the combined RA1/B&B approach.

Figure 4.10 depicts the ratio of the number of clauses returned by the combina-
tion of the RA1/B&B method as compared to the stand-alone B&B method. As can
be seen from that figure, the number of clauses returned by the combined methods
is comparable to the number of clauses returned when the more greedy (and by far
more CPU time demanding) B&B is used alone. Figure 4.11 depicts the absolute
values of the previous numbers of clauses.

Figure 4.12 shows the ratio of the time taken by the stand-alone B&B method
to the time taken by the combined RA1/B&B method. These results indicate the
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Table 4.4. Comparison of the RA1 Algorithm with the B&B Method (the total number of
examples = 3,750; number of attributes = 14).

Clauses by CPU Time CPU Time
B&B in Clauses by Clauses RA1/B&B B&B (in

|E+||E+||E+| |E−||E−||E−| RA1/B&B RA1/B&B in B&B (in seconds) seconds)

10 3,740 10 15 12 1 2
14 3,736 8 20 18 44 89
18 3,752 12 23 22 51 172
19 3,731 6 25 19 12 70
23 3,727 11 32 25 75 125
23 3,727 9 20 20 99 206
30 3,720 7 20 24 76 202
33 3,717 9 24 20 112 299
40 3,710 11 24 17 23 28
47 3,703 12 21 17 73 97
52 3,698 10 17 17 38 53
53 3,697 16 29 36 519 1,218
62 3,688 10 22 18 16 146
65 3,685 12 27 23 132 374
67 3,683 15 22 20 586 739
77 3,673 9 17 16 90 354
88 3,662 13 28 24 312 1,303

112 3,638 5 13 11 50 57
140 3,610 22 38 30 1,735 1,867
233 3,517 28 37 31 1,416 2,487
345 3,405 14 22 20 818 863
379 3,371 21 30 29 587 621
419 3,331 28 39 30 596 754
425 3,325 28 25 21 1,149 1,266
552 3,198 25 30 28 534 704
558 3,192 24 38 30 704 1,407
558 3,192 26 33 30 774 1,408
846 2,904 22 28 23 2,812 3,171
864 2,886 35 39 38 968 1,487
899 2,851 37 41 37 1,620 2,197
924 2,826 33 35 39 1,502 2,379

1,112 2,638 35 38 35 1,183 1,020

relative benefits of using the proposed combined approach (i.e., the RA1/B&B
method) as compared to the earlier stand-alone methods (i.e., the stand-alone RA1
or the stand-alone B&B methods). The CPU time performance of the combined
RA1/B&B method, when tested in terms of the previous computational experiments,
was, on the average, two to three times faster when compared to the stand-alone
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Figure 4.9. Percentage of the Time the B&B Was Invoked in the Combined RA1/B&B
Method.

Figure 4.10. Ratio of the Number of Clauses by the RA1/B&B Method and the Number of
Clauses by the Stand-Alone B&B Method.

B&B method. Finally, Figure 4.13 shows the actual CPU times taken by the two
methods.

At present, previously obtained benchmark results which take into consideration
undecidable examples are not available. Hence, computational results obtained with
the RA2 algorithm were not compared with any other set of results. A logical exten-
sion of the work done so far is to develop a B&B method which would take into
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Figure 4.11. Number of Clauses by the Stand-Alone B&B and the RA1/B&B Method.

Figure 4.12. Ratio of the Time Used by the Stand-Alone B&B and the Time Used by the
RA1/B&B Method.

consideration the undecidable examples, and compare the RA2 algorithm with this
modified B&B method.
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Figure 4.13. CPU Times by the Stand-Alone B&B and the RA1/B&B Method.

It is quite possible that the RA2 algorithm in conjunction with a modified B&B
method would perform better than the present method (i.e., the stand-alone RA2
heuristic). Once this is developed, the combination of the RA2 algorithm and a
modified B&B method could be tested on a large set of random examples to indicate
with a high degree of certainty that the inclusion of undecidable examples indeed
enhances the accuracy of the inferred systems. The above is a compelling direction
for pursuing more research in this area of data mining and knowledge discovery in
the future.

4.5 Concluding Remarks

This chapter discussed some developments in two closely related areas. The first
contribution is the development of a randomized search heuristic, called RA1 (for
Randomized Algorithm 1). This heuristic takes as input two disjoint sets of positive
and negative examples (i.e., binary vectors of size n) and infers a Boolean function
which satisfies the requirements of the input examples.

Unlike previous algorithms which were of exponential time complexity, the RA1
heuristic is of polynomial time complexity. However, it does not return small Boolean
functions (in terms of the number of CNF clauses) as other more time demanding
approaches require (e.g., the ones in [Kamath, et al., 1992], [Triantaphyllou, et al.,
1994], and [Triantaphyllou, 1994] as discussed in Chapters 2 and 3).

However, computational results indicate that the RA1 heuristic returns compara-
bly small numbers of logical clauses when it is compared with the other exponential
time approaches. Moreover, as was shown in Figure 4.7 and supported by the com-
putational results, the RA1 heuristic can be effectively combined with other methods
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(such as the B&B method presented in Chapter 3) and solve very large problems.
This chapter also presented some test results of solving problems with more than
18,000 examples defined on 14 and also 15 binary attributes.

The second contribution described in this chapter is the development of the RA2
heuristic (for Randomized Algorithm 2). This algorithm can process examples in
which some of the values may be missing. That is, now besides the ordinary positive
and negative examples, some examples may be undecidable due to missing values in
their descriptions (not to be confused with unclassified examples which simply are
examples which have not been submitted for classification yet). This is the first time
this kind of data been dealt with in the literature. As was anticipated, the inclusion of
the undecidable data can significantly assist the search process. The above algorithms
were tested on some large data sets and on the well-known breast cancer database
which was originally compiled in the University of Wisconsin. As was stated earlier,
an important research problem would be to develop new B&B algorithms for hand-
ling problems with undecidable examples, besides the usual positive and negative
sets of examples as is the case with all the approaches so far.

The problem of extracting a small set of clauses (i.e., a Boolean function in CNF
or DNF form) via logic-based approaches from classes of mutually exclusive obser-
vations is rapidly gaining a wide interest in the data mining and knowledge discov-
ery community. This could be partly attributed to the failure of many other methods,
such as neural networks, to gain the understanding and confidence of the end user
(who usually does not have a computer/mathematical background). It should always
be kept in mind, however, that the proposed logic-based methods should be used in
deterministic environments. Some extensions into probabilistic settings are discussed
later in Chapters 10 and 11. Clearly, more research in this area of high potential is
required.

It should also be noted here that in all previous treatments the goal advocated in
inferring a Boolean function from positive and negative training data is that of having
the simplest possible function. Such a goal is in agreement with the adopted principle
of maximum simplicity or Occam’s razor. However, it also makes sense to pursue a
different goal in inferring a Boolean function. To see the motivation, recall the three
key error rates introduced in Chapter 1, namely, the false-positive, false-negative,
and undecidable (or unclassifiable) error rates. Oftentime, especially in critical areas
of application of data mining technologies, these three error rates may be associated
with profoundly different penalty costs. As was mentioned in Chapter 1, making a
diagnostic mistake of the false-positive type (i.e., for instance, recommending that
a person is healthy while in reality he/she has a serious medical condition) is way
more “costly” than the other way around, i.e., having a false-negative case. There-
fore, one may wish to minimize (or at least significantly reduce) the following total
misclassification cost function:

Total Misclassification Cost = Cost1 × false-positive rate

+ Cost2 × false-negative rate

+ Cost3 × undecidable rate. (4.1)
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The above goal is being pursued in some recent work as described in [Pham
and Triantaphyllou, 2007; 2008; 2009a; 2009b]. This is done by first decompos-
ing the sets of the training examples into smaller sets. This is achieved by using
certain data homogeneity or convexity properties and then solving the smaller infer-
ence as defined by these partitions. The smaller problems attempt to find an optimal
balance between data overfitting and model overgeneralization. These strategies can
be applied in conjunction with various data mining approaches and not only those
that are based on mathematical logic.

One may argue that minimizing the above total misclassification cost is a very
important objective. However, what if the derived models constructed this way are
way too complex? For instance, what if when logic methods are used and the derived
Boolean functions have too long CNF or DNF representations? Then, such know-
ledge might be too complex to be validated by domain experts or be trustworthy by
such experts. On the other hand, shorter expressions are easier to be validated and
implemented in real-life applications when compared to very complex ones.

Therefore, the problem of inferring the “best” new knowledge is not a well-
defined one. That is, the real goal may not be accurately captured by an objective
function given as expression (4.1). Perhaps, the truly best goal is a weighted combi-
nation of the maximum simplicity principle and a significant reduction of the total
misclassification cost given as expression (4.1). Clearly, such an important issue is
right at the core of the data mining and knowledge discovery field and could be
resolved by doing more research in this area. Such research could aim at specific
application domains by multidisciplinary groups, which should also include domain
experts.



Chapter 5

An Approach to Guided Learning of Boolean
Functions

5.1 Some Background Information

In most of the previous treatments it was assumed that somehow we have available
two disjoint sets of training data described by binary vectors, that is, the collec-
tions of the positive and negative examples. Then the problem was how to infer a
Boolean function that “fits these data.” In other words, a Boolean function in CNF
or DNF form that satisfies the requirements of the positive and negative examples
as described in Chapters 2 and 3. It is hoped at this point that the inferred Boolean
function will accurately classify all remaining examples not included in the currently
available positive and negative examples.

Next suppose that the analyst has the capability to recommend which example to
consider as the next input point. Of course, this example must be one of the unclassi-
fied ones. Such an example is not included in the current positive or negative exam-
ples. It is assumed that the analyst can somehow determine the structure of the next
example and that example is submitted to an oracle for its actual classification. Such
an oracle may be a series of tests or the opinion of a highly paid expert. In other
words, this process may involve some type of cost. Thus, one may wish to get only
a few additional examples in such a way that the understanding of the system under
consideration will improve quickly.

For any new example, after its class membership has been determined by the
oracle, there are two possibilities (as before, we assume that the system is determi-
nistic). The classification by the oracle agrees with the classification of the inferred
system (pattern, Boolean function, neural network, etc.) as defined so far, or the two
disagree. The most beneficial case is when one gets as a new example one which
reveals a disagreement between the two, when they indeed are different. In the oppo-
site case, the classification of the new example would be of no value, as it would not
provide an opportunity to improve our understanding of the system under considera-
tion.

The above can be visualized as follows. Suppose that some training data points
are available and some data mining algorithm (and not only ones which infer Boolean
functions) is applied on these data points. The result would be the extraction of

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 5,
c© Springer Science+Business Media, LLC 2010
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a model which in turn can be used to accurately classify the entire population of
examples.

Next suppose that the same data mining algorithm is applied on the same training
data as before, but now the positive examples are treated as negative and the negative
examples are treated as positive. We will call the new model the negative model
and the original model the positive model. These two names are quite arbitrary but
indicate the way the two models are derived. Some approaches for learning from
examples may derive two symmetric systems. That is, each system is the complement
(opposite) of the other. Then the proposed guided learning strategy is not applicable.
The OCAT approach with the B&B algorithms and the fast heuristics discussed in
Chapters 2, 3, and 4 do not derive symmetric systems, thus the proposed guided
learning strategy is applicable.

For such approaches each model (i.e., system inferred from training examples)
splits the entire population of examples into two regions (the positive region and
the negative region) in different ways (i.e., not symmetric). In such cases it is possi-
ble that the two previous models, when they are considered together, may split the
entire population into four regions as follows (see also Figure 5.1 which is conceptual
in nature):

(1) The region which the positive model classifies as positive and the negative
system as positive. That is, examples in this region are accepted by both models.
This is Region A in Figure 5.1.

(2) The region which the positive model classifies as negative and the negative
model as positive. That is, examples in this region are accepted by one (the
negative model) and rejected by the other (the positive model). This is Region B
in Figure 5.1.

(3) The region which the positive model classifies as positive and the negative model
as negative. That is, examples in this region are accepted by one (the positive
model) and rejected by the other (the negative model). This is Region C in
Figure 5.1.

(4) The rest of the area which has the examples rejected by both models. This is
Region D in Figure 5.1.

The key question now is how to select a new example in a guided learning mode
in a way that can lead to fast approximation of the two “hidden” systems. From
the previous discussion it follows that if an example is selected such that it is cur-
rently accepted by both models or currently rejected by both models (that is, from
Region A or Region D, respectively), then when it is classified by the oracle, one of
the two systems will need to be modified. For instance, if an example is selected from
Region A, and the oracle declares it to be a positive one, then the “negative” model
will need to be retrained by inferring a new model which satisfies the requirements
of the previous training data but it should also not accept the new example. If the
new example is classified by the oracle as negative, then the “positive” model needs
to be determined again. An analogous strategy can be followed if a new example is
selected from Region D.
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Figure 5.1. All Possible Classification Scenarios When the Positive and Negative Models Are
Considered.

On the other hand, if an example is selected, say, from Region B, and the oracle
classifies it as negative, then neither of the two models needs to be retrained. How-
ever, if that example from Region B is classified as positive by the oracle, then both
of the models need to be retrained. That is, now the action at each step may be to
retrain neither model or both models. However, when examples are selected from
Region A or Region D (i.e., the areas with the undecidable/unclassifiable examples),
then always one of the two models needs to be retrained. Another related research
question at this point is how to select a new example from a given region. The above
considerations are the foundation of the theory that is developed in later sections of
this chapter.

Besides improving the performance of an existing intelligent system, a learning
mechanism can assist in creating the initial knowledge base of that intelligent system.
That is, it can assist in the knowledge acquisition phase. By asking the oracle a short
sequence of key questions, we hope that the knowledge base of an intelligent system
can be configured accurately and efficiently.

In the context of this chapter these questions refer to the classification of exam-
ples. That is, the oracle is presented with a new example, one at a time. Then, the
oracle is asked to classify this example either as positive or as negative. Although
the logic (also known as rules, system, clauses, Boolean function or expression)
may not be explicitly known to the oracle, it is assumed that the oracle can classify
new examples correctly. The inductive inference problem is to derive the “hidden”
system (also called the hidden logic) from the classifications of sampled
examples.

The problem examined in this chapter is how to determine new examples. It is
assumed that two initial sets of positive and negative examples are given. Since these
initial sets are a small sample of all the possibilities, new examples may be required.
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An effective sequence of new examples should be able to lead to the accurate infer-
ence of the “ hidden logic” by considering relatively few new examples.

This chapter is organized as follows. The following section describes the guided
learning problem. Section 5.3 describes the proposed approach. Section 5.4 analyzes
the problem of how many possible solutions exist (i.e., the number of Boolean
functions which can be inferred) from the training data. The proposed method is
described in terms of an illustrative example in Section 5.5. Some empirical results
are analyzed in Section 5.6. Finally, the last section summarizes the main points and
conclusions of this chapter.

5.2 Problem Description

Suppose that there exists a “hidden logic.” In other words, there is a system that we
would like to infer from collections of positive and negative examples. Although we
cannot explicitly identify the structure of the “hidden system,” it is assumed that it is
possible to correctly classify any new examples according to this “hidden” system.
This can occur, for instance, by interviewing an oracle.

To help fix ideas, suppose that the following represents the “hidden logic”:

( Ā1 ∨ Ā4 ∨ A6)( Ā2 ∨ A8) ∧ (A2).

This system is considered to be unknown to the user. By user we mean here the
person (or another computer system) which wants to infer the “hidden logic” from
collections of positive and negative examples. Next, let the following sets E+ and
E− represent two collections of positive and negative examples, respectively. These
are the examples which an oracle has already classified according to the “hidden
logic” which remains unknown to the analyst.

E+ =
⎡
⎣1 1 1 0 1 0 1 1

0 1 0 0 0 1 0 1
0 1 1 0 0 1 0 1

⎤
⎦ and

E− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 0 0 1 0
0 1 1 1 1 0 0 0
1 1 1 1 0 1 1 0
0 0 1 1 0 0 1 1
0 0 1 0 1 1 0 0
1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Given the above examples, we want to determine a set of clauses (i.e., a Boolean
function) which correctly classify the previous examples.

Next, we apply the OCAT approach (see also Chapters 2 and 3) with the RA1
heuristic as described in Chapter 4. When the OCAT approach is applied on the
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previous E+ and E− sets of examples, the following CNF system is derived (we call
it system SSAMPLE to emphasize that it has been derived from sampled data):

( Ā3 ∨ A8) ∧ (A2). (5.1)

The system proposed above may or may not be a good approximation of the “hidden
logic.” Recall that any sampling process is subject to random variation.

Now suppose that the user can supply the oracle with additional examples for
correct classification. Then, the main problem examined in this chapter is how to
generate the next example. One obvious approach is to generate the next exam-
ple randomly. However, this may result in generating many examples and still not
achieving a good approximation of the unknown system. It is obviously desirable to
consider a sequence of new examples which can lead to a good approximation of the
unknown system as quickly as possible.

When a new example is considered, it is given to the oracle for the correct
classification. Two situations can occur. First, the current Boolean function (which
is attempting to represent the unknown “hidden logic”) classifies the new example
in a manner identical with the oracle (which always correctly classifies each exam-
ple). In the second case, the new example is classified in the opposite way by the
oracle and the current Boolean function. If the current Boolean function is not yet
a good approximation of the “hidden logic,” then the last case is the most desir-
able scenario. This is true, because in this case one can reexecute a learning from
examples algorithm (for instance, the OCAT approach) again and, hopefully, derive
a closer approximation of the unknown system.

If the current version of the Boolean function is not an accurate approximation
of the “hidden logic” and one generates new examples which fail to reveal any con-
tradictions, then additional costs are incurred in classifying new examples, but no
improvement is gained. Clearly, it is desirable to use a strategy for determining the
next example, such that any possible contradiction between the current version of
the Boolean function and the “hidden logic” will surface early in the interviewing
process. The next section presents the development of such a strategy.

5.3 The Proposed Approach

Consider some sets of positive and negative examples, denoted as E+ and E−,
respectively, defined on n attributes. Let SSAMPLE denote a Boolean function which
correctly classifies the sample data, i.e., the examples in E+ are classified as positive
and the examples in E− are classified as negative. When the proposed guided learn-
ing strategy is applied, the derived system will be denoted as SGUIDED. Also, denote
as SHIDDEN the “hidden logic” Boolean function and S̄HIDDEN the complement (i.e.,
the negation) of SHIDDEN. Hence, if SHIDDEN is

( Ā2 ∨ A3) ∧ (A1 ∨ A2),
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then S̄HIDDEN is
( Ā2 ∨ A3) ∧ (A1 ∨ A2).

Our objective is to sequentially modify and improve SGUIDED so that

SGUIDED → SHIDDEN,

when additional examples are generated and included either in E+ or in E−. If the
sequence of distinct examples generated so far is denoted as v1, v2, v3, . . . , vk , then
at least when k = 2n , one must, by definition (since all possible examples have been
generated), obtain

SGUIDED = SHIDDEN.

The objective of our selection strategy is to choose a sequence of examples so
that

SGUIDED ≈ SHIDDEN,

even when k is rather small (maybe only a tiny fraction of 2n). We view the prob-
lem from a local perspective only. In particular, if k examples have already been
generated, then what should be the k + 1st example?

The method by which we propose to select the k + 1st example is based on the
observation that for any example v, either SHIDDEN or S̄HIDDEN must classify the
example as positive, but not both. Denote SHIDDEN(v) = 1 if the Boolean function
SHIDDEN classifies the example v as positive, and SHIDDEN(v) = 0 if it classifies it
as negative. Then, for any example v the following relation is always true:

SHIDDEN(v)+ S̄HIDDEN(v) = 1.

Next, consider a Boolean function, SGUIDED, determined by sampling k examples
and generating a set of clauses which correctly classify the k examples. SGUIDED is
an approximation to SHIDDEN.

The OCAT approach described in earlier chapters is one strategy for determining
SGUIDED. However, any learning algorithm such as OCAT could also be applied to
a type of dual problem, i.e., a problem in which the positive examples are treated as
negative and vice versa. Let SR-GUIDED be a Boolean function generated when the k
examples are assigned reverse truth values. That is, the positive examples are treated
as negative and the negative examples as positive. In this manner, SR-GUIDED would
be an approximation to S̄HIDDEN. If, indeed, k = 2n , then the following is true:

SGUIDED(v)+ SR-GUIDED(v) = 1, (5.2)

for all examples v.
However, in general, for k < 2n one should expect that some examples will exist

for which the sum in (5.2) will be 0 or 2, i.e., some example v will be classified either
as negative (sum is equal to 0) or as positive (sum is equal to 2) by both Boolean
functions. Such an example is the key to our approach. The existence of such an
example means that exactly one of our two example generated Boolean functions
(i.e., SGUIDED and SR-GUIDED) is in error. Either SGUIDED or SR-GUIDED must be
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modified to correctly classify the new example plus all the previous training exam-
ples. These observations are summarized in the following theorem [Triantaphyllou
and Soyster, 1996]:

Theorem 5.1. Suppose that there exists an example v ∈ {0, 1}n such that

SGUIDED(v)+ SR-GUIDED(v) = 0 or : (5.3a)

SGUIDED(v)+ SR-GUIDED(v) = 2. (5.3b)

Furthermore, suppose that the example v is classified by the oracle as either positive
or negative. Then, one and only one of the following situations is true:

1) If (5.3a) holds and v is a positive example, then system SGUIDED is not valid.
2) If (5.3a) holds and v is a negative example, then system SR-GUIDED is not valid.
3) If (5.3b) holds and v is a positive example, then system SR-GUIDED is not valid.
4) If (5.3b) holds and v is a negative example, then system SGUIDED is not valid.

Therefore, the overall strategy, starting with two Boolean functions, is to attempt
to generate a sequence of new examples vk+1, vk+2, vk+3, . . . , vm, where each
example is appropriately classified, as positive or negative, by the oracle. Each
additional example should have the property that it invalidates either SGUIDED or
SR-GUIDED, i.e., one of the two Boolean functions must be modified. In doing so, it is
expected that SGUIDED and SR-GUIDED become more closely aligned with SHIDDEN
and S̄HIDDEN, respectively.

How does one find an example that invalidates either SGUIDED or SR-GUIDED?
Conceptually it is quite simple. One strategy is to formulate and solve at most two
clause satisfiability problems. The satisfiability (or SAT) problem is NP-complete
and can be defined as follows (see, for instance, [Hooker, 1988a]):

Consider the m CNF clauses C1,C2,C3, . . . ,Cm involving the n attributes
A1, A2, A3, . . . , An, and the Boolean expression C1 ∧ C2 ∧ C3 ∧ · · · ∧ Cm. The
expression is satisfiable if there exists an assignment of truth values which makes
the Boolean expression true.

The clause satisfiability problem has been examined with noticeable success
[Hooker, 1988a; 1988b]. A related development reported in [Kamath, et al., 1992]
uses an interior point algorithm developed by Karmakar and his associates in
[Karmakar, et al., 1991] with considerable success. Also, some problem preprocess-
ing techniques can be found in [Cavalier, Pardalos, and Soyster, 1990].

The two satisfiability problems of interest in this chapter are as follows: Deter-
mine an example v which results in truth value for

S̄GUIDED(v) ∧ S̄R-GUIDED(v) or : (5.4)

SGUIDED(v) ∧ SR-GUIDED(v). (5.5)

If relation (5.4) is true (i.e., it is satisfied), then the example v is evaluated as nega-
tive by both systems (Boolean functions). Similarly, if relation (5.5) is true, then v
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is evaluated as positive by both systems. Observe that relations (5.4) and (5.5) are
equivalent to relations (5.3a) and (5.3b), respectively.

If an example is found which satisfies either (5.4) or (5.5), then one of the two
Boolean functions is modified and the same process is repeated. To illustrate this,
suppose that a new example v satisfies (5.5) and the oracle classifies the example v
as positive (i.e., it evaluates it to true value). In this case SR-GUIDED does not classify
v correctly and thus it must be updated. If the oracle classifies v as negative (i.e.,
it evaluates it to false value), then the example invalidates SGUIDED and thus now
SGUIDED must be updated. If the example v satisfies (5.4), a similar analysis is appli-
cable. (Note that if we find an example v which satisfies (5.4), then there is no need
to also search for an example which satisfies (5.5).) If no example can be found to
satisfy (5.4), then we search to find an example which satisfies (5.5).

But, suppose that there are no examples which satisfy (5.4) or (5.5). Does this
mean that

SGUIDED ≡ SHIDDEN?

Unfortunately, the answer is no. As a trivial demonstration of why this is true, con-
sider the case in which SHIDDEN = (A1∨A2). Next, consider the input examples to be
defined as follows: E+ = [10] and E− = [00]. Then, OCAT returns SGUIDED = A1,
and SR-GUIDED = Ā1. Clearly, although neither relation (5.4) nor (5.5) is satisfied in
this case SGUIDED is different than SHIDDEN.

In cases like this we revert to a random search process. Examples are randomly
generated, say vk+1, vk+2, vk+3, . . . , vm . The oracle appropriately classifies vk+1 (as
positive or as negative) and one evaluates

SGUIDED(vk+1) (5.6)

and
SR-GUIDED(vk+1) (5.7)

for consistency. That is, if vk+1 is positive, then (5.6) should be true and (5.7) false,
and if vk+1 is negative, then the converse must be true. This raises the question of a
termination criterion. How long should one generate new examples?

Clearly, there are two factors that one needs to take under consideration. One is
the cost of generating and classifying new examples. The second factor is the desired
accuracy. In general, one expects that the more examples one uses to infer a set of
clauses, the more accurate the inferred system would be.

Therefore, it is recommended that if no inconsistency is determined for some
large value of m (which value depends on the cost of classifying new examples),
the process is terminated and SGUIDED is our approximation to the “hidden logic.”
The proposed strategy is depicted in Figure 5.2, and is demonstrated by means of an
illustrative example in Section 5.5. In Figure 5.2 a very simple termination criterion
is used by introducing an upper limit (i.e., the value of MAX) on the number of the
new examples.

A confidence interval on the probability that the derived system SGUIDED will dis-
agree with the “hidden logic” can be found as follows: Suppose that SGUIDED has just
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Figure 5.2. Flowchart of the Proposed Strategy for Guided Learning.

been redefined when the i-th example was presented (that is, i = |E+| + |E−|). Let
the number of disagreements between SGUIDED and SHIDDEN be r . Apparently, these
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disagreements are among the remaining 2n − i (where n is the number of attributes)
unclassified examples. A reasonable model of total ignorance of the outcomes (i.e.,
the way the remaining 2n − i examples are classified) of the remaining steps is that
all permutations of these outcomes are equally likely.

The probability, denoted as Qr (x), of having x or more additional steps without
a disagreement is then (

2t − i − r

x

)
(

2−i

x

) .

Note that this probability, besides the values of x and r , also depends on i .
Given x , then find the greatest r such that Qr (x) ≥ α (where α might be 0.05

to correspond to a 5% level of significance or a 95% level of confidence). This is
(under the random permutation model) an upper confidence bound on r . One may
observe that the previous model did not consider any pattern of agreements in the i
examples already classified by the “hidden logic.” Therefore, it is possible to derive
tighter bounds, when all issues are considered.

5.4 On the Number of Candidate Solutions

An important issue related to this problem is to determine the number of all possible
distinct systems which satisfy the requirements of two sets of examples E+ and E−.
Two systems, defined on n attributes, are called distinct if they are not equivalent, that
is, if they classify the examples in {0, 1}n differently. Suppose that |E+|+|E−| < 2n .
Then, the number of distinct systems which satisfy the requirements of the current
positive and negative examples is equal to the number of all possible ways that the
remaining examples can be divided into positive and negative examples.

Let L denote the number of the remaining examples. That is, L = 2n − (|E+| +
|E−|). Since each row of the truth table for the L unclassified examples can be inde-
pendently a positive or a negative example, the answer to the previous question is
2L . Therefore, the following Lemma 5.1 [Triantaphyllou and Soyster, 1996] is true:

Lemma 5.1. Suppose that E+ and E− are the sets with the positive and negative
examples, respectively. Then K , the number of distinct systems which satisfy the
requirements of these examples, is given by the following formula:

K = 2L , where L = 2n − (|E+| + |E−|).
The above number K is extremely large even for very small values of n. The

OCAT approach tries to determine a rather compact system among this extraordinarily
large number of possible solutions. The value of K is the size of the hypothesis space
and is used in the next section to quantify the space complexity of a learning algo-
rithm. In the next section these ideas are further demonstrated via an illustrative
example.
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5.5 An Illustrative Example

Consider the two collections of positive and negative examples which were given
in Section 5.2. There are 3 positive and 7 negative examples and the number of
attributes is equal to 8. Recall that it was assumed that the system SHIDDEN (i.e., the
“hidden logic”) is as follows:

( Ā1 ∨ Ā4 ∨ A6) ∧ ( Ā2 ∨ A8) ∧ (A2).

In this illustrative example, we use the OCAT approach in order to derive a
CNF system from the given examples. When the OCAT approach is applied on
the (E+, E−) sets of examples, the following system (Boolean function in CNF),
SGUIDED, is derived:

( Ā3 ∨ A8) ∧ (A2).

From Lemma 5.1 it follows that the total number of systems, denoted as K , which
satisfy the requirements of these examples (and hence, are candidates to be the
“hidden logic”) is 2246. This happens although this is a trivial size Boolean func-
tion inference problem. The value 246 in the previous expression is derived from
28 − (3 + 7) = 246.

To get a feeling of this incredible number consider the following facts. The
value of 210 is just greater than one thousand, the value of 220 is just greater than
one million, the value of 250 is just greater than one quadrillion (i.e., more than one
thousand trillions), and the value of 2200 is higher than the number of all the atoms
in the matter of all the stars and planets which are visible during a clear night sky!
Simply put, the value of the space of all candidate solutions (i.e., the size of the
hypothesis space), which is equal to 2246 for this problem, cannot be expressed in a
way that a human mind can comprehend. This is true despite the fact that the size of
this illustrative example is trivial. For real-life problems the above situation becomes
definitely impossible even to attempt to comprehend in terms of the magnitude of the
hypothesis space.

Next, consider the system which is derived when the positive examples are
treated as negative and the negative examples as positive. When the OCAT approach
is applied on the (E−, E+) data (i.e., the roles of the positive and negative examples
are now reversed), then the following system (Boolean function in CNF), SR-GUIDED,
is derived:

( Ā2 ∨ Ā8).

The next issue to investigate is to see whether there is an example which satisfies
relation (5.3a) or (5.3b). It can be observed that the new example (i.e., which is still
unclassified) (0 1 0 1 1 0 1 0) is classified as positive by both systems. That is, this
example makes (5.3b) true. This example can be determined by finding a feasible
solution of the clause satisfiability problem formed when the two systems SGUIDED
and SR-GUIDED are taken together. That is, the Boolean function of the satisfiability
problem is
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SSAMPLE ∧ SR−SAMPLE, or :

(( Ā3 ∨ A8) ∧ (A2)) ∧ ( Ā2 ∨ Ā8) = ( Ā3 ∨ A8) ∧ (A2) ∧ ( Ā2 ∨ Ā8).

Following Theorem 5.1, either system SGUIDED or system SR-GUIDED will be
revised and updated. Now suppose that the oracle classifies the new example as a
negative one. Hence, it follows that system SGUIDED is invalid.

Next, this new example is added to the current collection of the negative exam-
ples and the OCAT approach is reapplied on the updated input data. The new (i.e.,
updated) version of the system SGUIDED is as follows:

(A8) ∧ (A2).

Since the new example did not reveal any inaccuracies for system SR-GUIDED,
this system needs no modification at this time. One may notice that the new version
of the system SGUIDED and the current version of the system SR-GUIDED classify all
examples in {0, 1}8 in exactly the opposite manner (i.e., they are the complement,
or the negation, of each other). Therefore, no new examples can be determined as
above. As indicated earlier, this does not necessarily imply that the current version
of the system SGUIDED is equivalent to the “ hidden logic” (i.e., system SHIDDEN).
In situations like the above, it is proposed that the next example be generated
randomly. Figure 5.2 summarizes the main steps of the proposed guided learning
strategy.

At this point it is interesting to make some additional observations. In this illus-
trative example the structure of the “hidden logic” is known. Therefore, it is possi-
ble to estimate how closely the proposed system (i.e., system SGUIDED) approximates
the “hidden logic” SHIDDEN. To accomplish this task in this illustrative example,
all the remaining 246 (= 28 − (3+7)) unclassified examples have been evaluated by
SGUIDED and SHIDDEN and compared. The 246 examples, as evaluated by SGUIDED
and SHIDDEN, agree 84% of the time. Hence, if a new example is chosen at random,
there is 84% chance that SGUIDED will correctly classify it. Furthermore, when the
updated version of the system SGUIDED is compared with the “ hidden logic” system
SHIDDEN they agree 97% of the time.

It should also be stated here that when a new example is considered and system
SGUIDED is updated, the new system is not always a closer approximation of the
“hidden logic.” It is sometimes possible that the updated system is a worse approxi-
mation of the “hidden logic.” Hence, convergence in terms of this measure of perfor-
mance is not necessarily monotonically increasing.

The size of the hypothesis space is influential in determining the sample com-
plexity of a learning algorithm, that is, the number of examples needed to accurately
approximate a target concept. The presence of bias in the selection of a hypothesis
from the hypothesis space can be beneficial in reducing the sample complexity of
a learning algorithm [Mitchell, 1980], [Natarajan, 1989]. Usually the amount of
bias in the hypothesis space H is measured in terms of the Vapnik–Chernovenkis
dimension, denoted as V Cdim(H) [Vapnik, 1982], [Haussler, 1988]. A well-known
theoretical result regarding the V Cdim(H) is due to [Vapnik, 1982] and states that
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the sample complexity is at most equal to (note that ε and δ are as defined in
Section 5.1)

1

ε(1 −√
ε)

(
2V Cdim(H)l

6

ε
n + ln

2

δ

)
.

This is better than some other bounds given in [Blumer, et al., 1989]. However, the
previous bound is still an overestimate [Haussler and Warmuth, 1993].

The proposed strategy makes no assumption regarding the hypothesis space.
In the computational experiments reported in this chapter, the OCAT approach was
used to infer a Boolean function from positive and negative examples. The OCAT
approach has a tendency to return CNF (or DNF) functions with very few clauses
(i.e., disjunctions or conjunctions, respectively).

Therefore, when the OCAT approach is combined with the proposed guided
learning strategy, only then the hypothesis space is biased in favor of functions
with small representations. That is, the proposed guided learning strategy makes no
assumption regarding the hypothesis space. However, the behavior of the proposed
strategy can be influenced by the nature of the algorithm used to infer the Boolean
function. Why inferring functions with a few terms is desirable, was best explained
in Section 1.3.2.

The OCAT and SAT approaches are NP-complete (for more details see Chapters 2
and 3). This chapter does not deal with the problem of inferring a Boolean function
from collections of examples (this was the central topic of earlier chapters). Instead,
it examines the problem of what should be the next example to be considered if
one wishes to correctly infer a “hidden logic” by using a short sequence of new
examples.

In this chapter we do not limit the form of the target Boolean function. The
OCAT and SAT approaches used to infer the function of the proposed guided learning
strategy, do not restrict themselves in deriving k-CNF or k-DNF functions. If the
restriction to derive a k-CNF or k-DNF function is imposed, then the developments
are exactly the same as with the unrestricted case.

The present guided learning problem mentions the issue whether one can infer a
Boolean function when a new example is considered. Obviously, a brute force way
is to solve the function inference problem from the beginning. A more efficient way
is to try to devise an incremental learning approach in inferring a function when
only one new example is introduced and the OCAT or the SAT approaches are used.
For instance, this is the case in [Utgoff, 1988] where an incremental approach to the
original ID3 algorithm [Quinlan, 1986] is described. Although this is an interesting
issue, it is beyond the scope of this chapter. Instead, this is the main topic of the next
chapter.

5.6 Some Computational Results

A number of computer experiments were conducted and reported in [Triantaphyllou
and Soyster, 1996] in order to investigate the effectiveness of the proposed strategy
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compared with random input learning (that is, when new examples are generated
randomly). These experiments were approached in a manner similar to the illustra-
tive example of the previous section. At first, a “hidden logic” was generated. The
“hidden logic” systems considered in this chapter are based on the systems described
in [Kamath, et al., 1992], [Triantaphyllou, 1994] and also in Table 3.3 in Chapter 3.
The only difference is that now the logical OR and AND operators are interchanged.
In this way we deal with CNF systems instead of the DNF systems in [Kamath, et al.,
1992].

The systems with IDs (see also Tables 5.1a and 5.1b) 8A, 8B, 8C, 8D, and 8E are
defined on 8 attributes. Similarly, systems 16A, 16B, 16C, 16D, and 16E are defined
on 16 attributes. Finally, systems 32A, 32C, and 32D are defined on 32 attributes.
Systems 32B and 32E (described in [Kamath, et al., 1992]) were not considered due
to excessive CPU requirements in obtaining computational results.

Each system was tested on 20 sequences of examples. For each such sequence
initially ten examples were randomly generated and classified as either positive or
negative by the oracle (i.e., the “hidden logic”). Each example was a vector with n
elements (where n is the number of attributes). Each element was either 0 or 1 with
probability 0.50. After an example was generated this way, it was classified by the
“hidden logic” as either positive or negative.

Next, the OCAT algorithm was implemented to generate an initial version of
SGUIDED. What followed was the iterative generation of additional examples by the
two different methods; GUIDED and RANDOM. Let SRANDOM be the Boolean func-
tion generated from the initial examples and the sequence of additional examples
which were generated randomly (and SGUIDED is the Boolean function generated
from the GUIDED input).

Table 5.1a. Some Computational Results Under the Random Strategy.

Number of Examples Under RANDOMSystem
ID MIN Average MAX St. Dev.
8A 29 59.55 104 18.85
8B 18 89.30 194 53.60
8C 19 62.50 125 31.69
8D 23 48.40 114 23.95
8E 10 12.90 19 3.04

16A 85 167.70 305 48.90
16B 57 90.00 201 32.86
16C 74 132.20 274 49.20
16D 81 134.85 202 35.55
16E 90 165.70 286 46.70
32A 53 105.85 158 30.88
32C 122 339.10 510 130.10
32D 57 122.70 228 43.09
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Table 5.1b. Some Computational Results Under the Guided Strategy.

Number of Examples Under GUIDEDSystem
ID MIN Average MAX St. Dev.
8A 18 34.85 70 11.02
8B 15 50.90 153 37.09
8C 20 35.60 65 12.46
8D 18 42.80 207 40.95
8E 10 12.30 24 3.26

16A 36 67.95 125 22.19
16B 45 68.20 86 11.57
16C 53 83.45 114 17.24
16D 48 88.85 171 32.94
16E 84 118.90 176 26.80
32A 48 77.40 146 25.81
32C 93 115.65 151 17.35
32D 60 95.55 142 25.91

In general, random examples in these experiments were generated as described
above. In this way, after a sufficient number of random examples were classified by
the “hidden logic,” the collection of the negative examples would be a representa-
tive sample of the total population of the negative examples of the “hidden logic.”
The same issue is also true regarding the positive examples. Therefore, the compu-
tational experiments made no assumption regarding the distribution of the examples
and the proposed guided learning strategy applies to any arbitrary distribution of the
examples. After each pair of new examples was generated (one from GUIDED and
one from RANDOM), the updated SGUIDED and SRANDOM systems were tested for
convergence to SHIDDEN.

Convergence of SGUIDED (or SRANDOM) was assumed to have occurred if 10,000
randomly generated examples were classified correctly by SGUIDED (or SRANDOM).
This is admittedly an approximation, but our real interest is comparing the relative
speed of convergence of SGUIDED and SRANDOM with SHIDDEN. The comparison is
simply how many additional examples are needed to correctly classify a random set
of 10,000 observations.

Overall, the GUIDED strategy required on the average about 42% fewer exam-
ples than the RANDOM strategy for the entire set of 13 problems. The results for
the individual problems are provided in Tables 5.1a and 5.1b. Note, for instance,
that for the problem with ID equal to 8A, the GUIDED strategy required on the
average 34.85 examples (see also Table 5.1b) to converge to a system equivalent
to system 8A (used as the “hidden logic”). The same number under the RANDOM
strategy is 59.55 (see also Table 5.1a). Tables 5.1a and 5.1b also present the MIN,
MAX, and standard deviations of the gathered observations. Figures 5.3a to 5.3d
depict analytical results of the performance of the two strategies for four of the pre-
vious systems (selected randomly). These plots are in agreement with the summary
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Figure 5.3a. Results When “Hidden Logic” Is System 8A.

Figure 5.3b. Results When “Hidden Logic” Is System 16A.

results presented in Tables 5.1a and 5.1b. It is also evident that strategy GUIDED
outperformed, in almost all cases, the RANDOM strategy.
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Figure 5.3c. Results When “Hidden Logic” Is System 32C.

Figure 5.3d. Results When “Hidden Logic” Is System 32D.

Figure 5.4 depicts what occurs as a single sequence of examples was generated
for system 8B. This is a rather representative case. Note how SGUIDED uniformly
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Figure 5.4. Comparisons between systems SRANDOM, SGUIDED, and SR-GUIDED when new
examples are considered (system SHIDDEN is ( Ā1 ∨ Ā4 ∨ A6) ∧ ( Ā2 ∨ A8) ∧ (A2)).

dominates SRANDOM. The bottom curve indicates how SGUIDED and SR-GUIDED
become complements of each other. As can be seen from this figure, both strategies
start from the same point (recall that initially there are 10 random examples).
However, with the guided input strategy the inferred system reaches 100% accu-
racy much sooner (i.e., just after 16 new examples, while with random input it takes
61 new examples).

Given a set of data, the derived system SGUIDED and a new example, the new
proposed system may or may not be more accurate than its previous version. This
depends on two factors: (1) on which approach was used to infer the proposed system
and (2) on the particular data. This is best described in the following illustrative
example.

Suppose that the target function is ( Ā1 ∨ Ā4 ∨ A6) ∧ ( Ā2 ∨ A8) ∧ (A2)

(i.e., it is system 8B). Let the two sets of positive and negative examples be as
follows:

E+ =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1 1 0 1
1 1 1 1 0 1 0 1
1 1 1 0 0 0 1 1
0 1 0 0 0 0 1 1
0 1 0 0 1 1 0 1

⎤
⎥⎥⎥⎥⎦ and
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E− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 1 0
0 1 1 1 1 1 1 0
1 0 0 1 1 0 0 1
0 0 1 0 0 0 1 1
1 1 0 0 1 1 0 0
1 0 0 1 1 1 0 1
0 0 1 0 1 0 0 0
1 0 0 0 1 0 1 1
1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 1 0 0 1 0 1
0 1 1 1 0 1 1 0
1 0 1 1 1 1 0 1
1 1 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When the OCAT approach is used on the previous data, then SGUIDED is

(A3 ∨ A6 ∨ A7) ∧ (A8) ∧ (A2)

and SR-GUIDED is (A1 ∨ Ā2 ∨ Ā8) ∧ (A5 ∨ Ā2 ∨ Ā3 ∨ Ā8).
When system SGUIDED is compared with the “hidden logic” system, then the

derived accuracy is 0.95. Let (1 1 0 1 0 0 1 1) be the next example to consider. It can
be observed that this example is classified identically (e.g., as positive) by both of
the previous two systems. Next, this example is also classified by the “hidden logic,”
and a contradiction between the proposed system and the “hidden logic” is revealed.
Therefore, the set of negative examples is augmented by that example, and the OCAT
approach is used again to derive the new version of system SGUIDED. The updated
system is

( Ā4 ∨ Ā7) ∧ (A3 ∨ Ā1) ∧ (A2).

The corresponding accuracy rate is now equal to 0.77, which is smaller than
the accuracy of the previously proposed system (although more examples are now
used as input). A similar situation is also depicted in Figure 5.4. In this figure the
curve which corresponds to the guided strategy illustrates this phenomenon. Note
that when the number of examples is 19, there is a valley in this curve.

It should be stated here that in these experiments no satisfiability formulation
was used in the GUIDED strategy in order to accomplish the task of finding the next
example. Instead, a high number (i.e., 10,000) of randomly generated examples were
used to find an example which would be classified identically by the two systems
SGUIDED and SR-GUIDED. This was done for the sake of simplicity in order to keep
the CPU requirements low.

As can be seen from the results in Tables 5.1a and 5.1b, the guided input strategy
was superior to random input strategy almost all the time. Only for the cases of
systems 8E and 32E this was not the case. As was anticipated, most of the time,



120 5 An Approach to Guided Learning of Boolean Functions

the guided input learning strategy required considerably less examples in order to
correctly infer a “hidden logic.”

Professor Mangasarian from the University of Wisconsin and his associates have
extensively used in their pattern recognition studies (see, for instance, [Mangasarian,
et al., 1991]) a database with observations regarding nine cytological characteristics
of breast tumors. Information for each tumor is derived by analyzing biological mate-
rial extracted by using fine needle aspirates (FNAs). Each tumor was also classified
as benign or malignant. At the time we performed our experiments were 421 cases,
of which 224 were benign while the remaining 197 were malignant. These data were
also available at that time to the general public by anonymous “ftp” or regular Web
downloading from the Machine Learning Database Repository at the University of
California at Irvine, Department of Computer Science.

We transferred the data into the equivalent binary data and performed a series
of computational experiments as follows. At first a 10% random collection of the
original data was considered. Next, we generated the next example by using random
input and also by using guided input (in two independent scenarios as before). That
is, we applied an experimental procedure as with the previous experiments. However,
now there is no “hidden logic” available, and thus we compared the accuracy of the
derived systems in terms of how well they classified the remaining data (which were
used as the testing data).

For each experiment we used 50 random replications of it. The results of these
tests are summarized in Table 5.2 and are also depicted in Figures 5.5a and 5.5b.
In these results both the number of derived rules (i.e., clauses in CNF) and the
accuracy rates were recorded. As can be easily verified from these results, once
again the proposed guided strategy significantly outperformed the random input
strategy. In these experiments as Boolean function inference algorithm we used the
randomized heuristic RA1 described in Chapter 4.

As a final comment it should be stated here that the accuracy rates in Figure 5.5b
did not necessarily reach the 100% value as the percent of the training data increased,
because we were not comparing the inferred systems with a “hidden logic” but with
the way they classified the remaining available data.

An interesting issue is to try to determine a way to conclude whether SGUIDED
is a close approximation to SHIDDEN. Intuitively, one expects that the closer the two
systems SGUIDED and SHIDDEN become, the more apart the two systems SGUIDED
and SR-GUIDED should become. One measure of the “closeness” of the two systems
SGUIDED and SHIDDEN is determined by the percentage of 10,000 randomly generated
examples which are classified identically by both systems.

This situation can be seen in Figure 5.4. One may observe that in Figure 5.4
the systems SGUIDED and SHIDDEN become very close to each other (the top curve
converges to value 1.00) when the bottom curve (which indicates the closeness
of the systems SGUIDED and SR-GUIDED) approaches the value 0. This is a rather
representative case and other experiments demonstrated similar behavior. This
observation suggests the following empirical test for system validation. Suppose that
one has generated a number of examples and has specified the two systems SGUIDED
and SR-GUIDED. Then, by using a sample of 10,000 randomly generated examples,
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Table 5.2. Computational Results When the Wisconsin Breast Cancer Data Are Used.

With Random Input With Guided Input

% of Data Used No. of Accuracy No. of Accuracy
for Training Clauses Rate Clauses Rate

10 1.60 0.88 1.63 0.87
15 2.06 0.88 2.26 0.91
20 2.42 0.89 3.09 0.92
25 2.72 0.90 3.91 0.94
30 3.12 0.90 4.43 0.95
35 3.40 0.90 5.29 0.97
40 3.74 0.90 5.94 0.97
45 4.06 0.90 6.77 0.98
50 4.44 0.90 7.23 0.98
55 4.90 0.90 7.74 0.99
60 5.40 0.90 8.11 0.99
65 5.84 0.91 8.11 0.99
70 6.24 0.91 8.14 0.99
75 6.92 0.91 8.17 0.99
80 7.68 0.91 8.34 0.99
85 7.88 0.91 8.60 0.99
90 8.56 0.91 8.77 0.99
95 8.88 0.92 8.83 0.99

Figure 5.5a. Results When the Breast Cancer Data Are Used. The Focus Is on the Number of
Clauses.

the two systems SGUIDED and SR-GUIDED can be compared on how often they agree
in classifying these examples. If they agree very little (i.e., the approximation rate
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Figure 5.5b. Results When the Breast Cancer Data Are Used. The Focus Is on the Accuracy
Rates.

is very low), then it is very likely that the system SGUIDED is a good approximation
of the corresponding “hidden logic.” However, if the approximation rate is very high,
then it is rather unlikely that the system SGUIDED is an accurate approximation of the
“hidden logic.” Finally, it should be stated here that some additional computational
experiments on this strategy are described in Section 13.7. In that study the training
and testing examples are defined after the analysis of text documents. Similarly with
the results of this chapter, those results also support the potential of this strategy for
guided learning.

5.7 Concluding Remarks

This chapter discussed the development of a strategy for guided learning of Boolean
functions from examples. The proposed method is based on the comparison of two
Boolean functions. The first function is the one derived from the positive and negative
examples. The second function is derived by treating the original positive examples
as negative and the original negative examples as positive. If it is possible to find a
new example which is classified identically by both systems, then this example is
considered next in the learning process. If no such example can be found, then the
next example is generated randomly.

The computational results in this chapter suggest that most of the time it is pos-
sible to find an example which is classified identically by both systems. In this way,
the new example reveals that one of the two systems is inaccurate. Furthermore, the
same computational results demonstrate that, on the average, the proposed strategy
is significantly more effective than random learning. That is, most of the time in
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our computational experiments it was possible to infer a “hidden logic” much faster
when the new examples were generated according to the proposed guided learning
strategy, than when the examples were generated randomly.

An interesting issue for future research would be to expand the proposed metho-
dology to more general situations. The present chapter focused on the case of dealing
with Boolean functions. There is no reason why the proposed methodology cannot
be expanded to cover more general cases. Another direction for future research in
this area is to develop strategies which can select new examples from Region B or
Region C as defined in Figure 5.1. In this way there is a possibility to update both
inferred systems at a given iteration simultaneously.

When a new example is selected from Region A or D (see also Figure 5.1), then
an interesting idea is to select examples which are “deeply” inside these regions.
That is, to select the most representative ones. Of course, it is not obvious how can
one define this concept of “depth.” However, when that happens, it is reasonable to
assume that the system in error with the oracle will be revised in a major manner as
the revealing example is well inside the disputed region. Hopefully, such a strategy
would cause more significant improvements at each iteration than the current strategy
which finds an example that just invalidates one of the two systems.

From the previous discussions it follows that the proposed approach can be
applied when it is possible to derive the two systems SGUIDED and SR-GUIDED. Then,
by determining as the next example an example which is classified identically by the
two systems, the convergence of the proposed hypothesis to the target concept could
be expedited. Clearly, more work is needed in this critical area of data mining and
knowledge discovery from databases.





Chapter 6

An Incremental Learning Algorithm for Inferring
Boolean Functions

6.1 Some Background Information

The previous chapter studied the guided learning problem. In that setting, the analyst
has the option to select which unclassified example to send to the oracle for classifi-
cation and use that information to improve the understanding of the system under
consideration. When the new example would unveil the need for an update, one had
to use all the existing training examples, plus the newly classified example, to infer a
new (and hopefully more accurate) pattern in the form of a Boolean function or other
data mining model.

This chapter studies a very closely related problem to the guided learning prob-
lem examined in the previous chapter. This is the problem of inferring a Boolean
function in an incremental way. The developments presented in this chapter are based
on the results presented in [Nieto Sanchez, Triantaphyllou, et al., 2002]. According
to this approach, instead of running an algorithm for inferring a Boolean function
from the beginning, now the goal is to try to modify the current Boolean function in
a way that satisfies the requirements imposed by the existing training data, plus the
newly classified example.

Thus, Chapter 6 introduces a new incremental learning from examples (ILE)
algorithm for the inference of a Boolean function from examples. The derived func-
tions are in disjunctive or conjunctive normal form (DNF or CNF, respectively) and
emphasis is given on having as few DNF or CNF clauses as possible.

In this chapter the new algorithm is combined with an existing algorithm for
nonincremental learning from examples (NILE) of Boolean functions from two
collections of examples. However, the proposed incremental approach can be com-
bined with any nonincremental (NILE) approach for deriving a Boolean function
from examples. In this study the NILE algorithm used with the proposed ILE
approach is the OCAT approach (see also Chapters 2 and 3). Thus, in this chapter the
new approach will be called IOCAT (for Incremental OCAT).

In order to assess the comparative value of the new approach versus the old
one (i.e., with the nonincremental OCAT approach), we used examples derived by
analyzing almost 3,000 text documents from the TIPSTER collection of documents

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 6,
c© Springer Science+Business Media, LLC 2010
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[Harman, 1995], [Voorhees, 1998]. For this purpose we used the document surrogate
concept as introduced by Salton [1989] in order to represent text documents as binary
vectors. The TIPSTER collection is often used to evaluate information retrieval
systems and machine learning algorithms.

As classes for the training examples, we used documents from four document
categories. These were documents related to the Department of Energy (DOE), the
Wall Street Journal (WSJ), the Associated Press (AP), and technical documents from
the ZIPFF collection. In addition, in order to define two disjoint classes, the follow-
ing three class-pairs were formed: (DOE vs. ZIPFF), (AP vs. DOE), and (WSJ vs.
ZIPFF). The various algorithms were compared in terms of three measures of per-
formance as follows: (i) the CPU time requirements, (ii) the accuracy of the derived
Boolean functions, and (iii) the number of clauses in the derived Boolean functions.

This chapter is organized as follows. Section 6.2 presents a formal description of
the data mining problem studied in this chapter. Section 6.3 briefly reviews the main
parts of the related literature. Section 6.4 describes the proposed IOCAT (i.e., the
incremental OCAT) algorithm. Sections 6.5 and 6.6 present and discuss the results
of a computational study. The chapter ends with a conclusions section.

6.2 Problem Description

As before, suppose that some collections of examples from two disjoint classes are
somehow made available to a computerized classification system. Each example is a
binary vector defined on n attributes. Each example comes with a class membership
designation. Furthermore, this setting is assumed to be deterministic and no errors
are considered. These two collections form the training examples.

As was also stated earlier, the task of a classification system is to analyze the
information embedded in the training examples and infer a model that best captures
the behavior of the hidden system. That is, we assume that there is a system that
can classify these, and also more, examples. Thus, a main challenge is to use the
available training examples to infer a Boolean function that in turn can be used to
accurately classify new (and thus unclassified) examples.

For a given set of examples, the learned (inferred) Boolean function may not be
an accurate representation of the hidden system. This is especially true if the sizes of
the two collections of the training examples are limited or they are not representative
of the entire population of examples. The very next example may negate the current
Boolean function, and thus it can initiate a revision of this function. This is the basis
for the guided learning problem studied in the previous chapter.

A fundamental problem closely associated with guided learning is how to best
modify an existing Boolean function when the classification of a new example reveals
that the current Boolean function is inaccurate. One approach (the brute force app-
roach) is to reconstruct the entire function from the beginning by using the entire sets
of the training examples augmented with the new example. An alternative approach
might be to repair only a few clauses of the existing Boolean function in a way that
the modified function correctly classifies all the available training examples (i.e., the
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E+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, and E− =

⎡
⎢⎢⎣

0 1 0 0
1 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦

F = (A3 ∨ Ā2) ∧ ( Ā4 ∨ A2 ∨ Ā1)(A1 ∨ Ā3)

Figure 6.1. A Sample Training Set of Six Positive Examples and a Set of Four Negative
Examples and a Boolean Function Implied by These Data.

old training examples plus the new one that revealed the need for a change). This is
exactly the main problem of interest in this chapter.

6.3 Some Related Developments

Figure 6.1 shows two mutually exclusive sets of binary examples. The first set,
denoted as E+, represents the first class of training example and it is called the
set with the positive examples. Similarly, the second set, denoted as E−, repre-
sents the set with the negative training examples. All these examples are defined
by the presence (i.e., “1” value) or absence (i.e., “0” value) of four attributes Ai (for
i = 1, 2, 3, 4). A Boolean function, denoted as F , that satisfies the requirements of
these examples is also provided in Figure 6.1.

By definition, the “hidden system” (unknown Boolean function which we try
to infer) accepts each positive example while it rejects each negative one. Conse-
quently, the inferred Boolean function should also evaluate each positive example as
true and each negative example as false. Later, such examples are used to evaluate
the performance of the proposed approach on some large-scale simulated problems.
In the computational studies that follow, these examples were defined by properly
analyzing text documents. A text document can be considered as text defined over
a finite set of keywords. Then, the presence or absence of a keyword can be indi-
cated with the 1/0 value of a binary attribute. The binary vectors formed this way
are called document surrogates or just surrogates in the text analysis literature (see,
for instance, [Salton, 1968], [Salton, 1989], [Cleveland and Cleveland, 1983], and
[Meadow, 1992]). In our tests, we used such examples that were defined on 800
binary attributes and were extracted by analyzing a total of almost 3,000 text docu-
ments (examples).

In general, let {A1, A2, A3, . . . , An} represent a set of n Boolean attributes. Also,
let v be a binary vector that is defined on these n attributes. Furthermore, let F be a
Boolean function that evaluates to either 0 or 1 depending on the combination of the
values of the attributes in vector v. That is, F(v) = 1 or F(v) = 0, depending on
whether the vector is a positive or negative example, respectively.
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The OCAT approach will be used extensively here as a demonstration data
mining approach. However, any other approach which can infer a Boolean func-
tion from two collections of disjoint examples is applicable as well. Recall that the
logic of the OCAT approach is given in Figure 2.1.

As was described there, the main step in the OCAT approach is Step 2 in
Figure 2.1. Some algorithms for dealing with the problem in Step 2 are given in
Chapters 2, 3, and 4. These include two branch-and-bound (B&B) approaches and
some fast heuristics. A heuristic which will also be used extensively in this chapter
is the RA1 one and it was described in Section 4.2 and summarized in Figure 4.1.
The proposed IOCAT approach uses this heuristic.

Recall that the logic of that heuristic is based on the two functions termed
POS(ai ) and NEG(ai ). Function POS(ai ) returns the number of positive examples
accepted by the current clause (in CNF) under construction if the attribute ai (where
ai is either Ai or Āi ) is included in the clause under construction. A similar inter-
pretation applies for the NEG(ai ) function with regard to the negative examples.
If NEG(ai ) = 0 in Step 2 in Figure 4.1, then the attribute a j is given a very high
priority for inclusion in the clause being formed. That heuristic was also combined
with some randomization techniques and with the revised B&B approach presented
in Chapter 3.

The main step of the OCAT approach (i.e., Step 2 in Figure 2.1) involves the
inference of a Boolean function from two collections of examples. In a guided
learning mode, when new examples are presented one at a time, if the Boolean
function is inferred from the beginning each time, this is known as nonincremen-
tal learning from examples (or NILE). This may be computationally expensive when
one already has a Boolean function which satisfies the requirements of all the avail-
able examples but the very last one. Some extensive surveys of NILE learning can be
found, for instance, in [Hunt, et al., 1966], [Michalski and Larson, 1978], [Michalski,
1985], [Reine and Michalski, 1986], [Schlimmer, 1987], [Schlimmer and Fisher,
1986], and [Utgoff, 1989; 1998].

On the other hand, incremental learning from examples (or ILE) may be an
attractive strategy to modify an existing function when it misclassifies a newly intro-
duced training example. Among the first contributions in ILE is the Concept Learn-
ing System (CLS) [Hunt, et al., 1966]. In CLS prior observations were selected at
random and were replaced with new examples in order to reconstruct the new know-
ledge. The CLS approach was soon abandoned because the learning rates were slow.
In [Michalski and Larson, 1978], the AQ system [Michalski, 1973] was adapted to
learn incrementally by limiting the number of examples needed to reconstruct the
faulty knowledge, which was expressed in the DNF form. The AQ system repaired
this knowledge by using a Euclidean distance measure to identify new examples that
were good concept representatives. Its goal was to reconstruct only those portions of
the knowledge (i.e., a set of clauses that describe an individual concept) that caused
the misclassification.

Later, Reine and Michalski [1986] extended the AQ system into the GEM system
which repairs only individual clauses of a DNF expression. In the GEM system only
the faulty conjunctive clauses were submitted to a generalization procedure along
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with the observations it currently covered and those that triggered the classification
inconsistency. The results of this system suggested that: (i) ILE methods may yield
more complex concept descriptions than NILE methods and (ii) knowledge updates
might be less expensive using ILE methods than with the NILE methods.

Next, suppose that two sets of training examples have, somehow, become avail-
able. As before, one set will be the “positive” examples and the other the “negative”
examples (these names are assigned arbitrarily). Then a function inference algorithm
is applied on these training examples and a single Boolean function is inferred. This
Boolean function is derived in an attempt to infer the “hidden” system that classified
these training examples. Since this function accepts all the positive examples while
it rejects all the negative ones, we will call it “the set with the positive rules” or just
the “positive rules” (since the clauses of a Boolean function in CNF or DNF can also
be viewed as a set of rules). For convenience, this function will be denoted as R+.
Next, one can use the same Boolean function inference algorithm to construct the
“negative rules” (to be denoted as R−) by simply switching the roles of the training
examples, that is, by treating the initial negative examples as the positive examples
and vice-versa. Obviously, the negative rules (negative Boolean function) will reject
all the positive examples while they will accept all the negative ones. Some methods
may create symmetric systems (i.e., two systems which are complements of each
other). This is not the case with the OCAT approach.

These two functions (i.e., the positive and the negative rules denoted as R+
and R−, respectively) can play a pivotal role in an incremental learning setting.
This idea was first applied on the guided learning strategy described in Chapter 5.
In that strategy, the OCAT approach was used to infer the previous two Boolean
functions in an incremental learning environment. That is, it was assumed that the
analyst had control on determining the composition of the next example to be sent
for classification to the oracle and then to be included in the training examples.
In the strategy described in Chapter 5 the selected next example was one that was
classified (before sending it to the oracle for the actual class classification) identically
by both functions. In this way, it was secured that after the actual class member-
ship was determined, then one of the two functions will be modified and hope-
fully its classification accuracy would be improved. The empirical results reported
in the previous chapter strongly suggested that this guided learning strategy is
superior to just randomly selecting the next example for inclusion in the two training
sets.

The above issues are best formalized as follows. Suppose that the oracle classifies
the new example. If the oracle classifies this new example as a positive one, then it
will be denoted as e+. Otherwise (i.e., if it is classified as a negative one), it will be
denoted as e−. When the new example is fed to the two Boolean functions R+ and
R−, then one and only one of the following three scenarios is possible.

1. It has been classified correctly if and only if:
(a) R+(e+) = 1 and R−(e+) = 0; or:
(b) R+(e−) = 0 and R−(e−) = 1.
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2. It has been classified incorrectly if and only if:
(c) R+(e+) = 0 and R−(e+) = 1; or:
(d) R+(e−) = 1 and R−(e−) = 0.

3. The new example triggers an undecided situation if and only if:
(c) R+(e+) = 1 and R−(e+) = 1; or:
(d) R+(e−) = 1 and R−(e−) = 1; or:
(e) R+(e+) = 0 and R−(e+) = 0; or:
(f) R+(e−) = 0 and R−(e−) = 0.

The above scenarios correspond to the way the entire state (example) space
was partitioned into the four regions described in Section 5.1. In the proposed ILE
approach, the new examples will be determined such that the previous scenario
#3 occurs as often as possible. Such an example can be determined by solving a
SAT (clause satisfiability) problem or by simply randomly sampling a large enough
sample of new examples until one that is classified identically by both Boolean
functions is found.

6.4 The Proposed Incremental Algorithm

The proposed incremental learning algorithm has some similarity to the GEM system
[Reine and Michalski, 1986]. They are similar in the sense that any disagreement
between the inferred system and the training examples is not allowed and only the
disjunctive clauses triggering the wrong classification are repaired in the proposed
algorithm. Nonetheless, they differ in the way new training examples are selected
and used to reconstruct the current system. For instance, in the GEM system new
information is submitted to a generalization process only when a set of misclassified
examples has been collected. In contrast, in this chapter this knowledge (i.e., the
group of the two Boolean functions) is repaired by considering examples identified as
“undecided.” This guarantees either the positive or the negative Boolean function will
be altered. Furthermore, the approach presented here differs from the GEM system
because we always maintain two Boolean functions as described earlier.

In the GEM system the methodology for repairing only the portion(s) of the
function followed the procedures described in [Michalski and Larson, 1978]. In this
chapter, however, this repair was divided into the following two mutually exclu-
sive subproblems which capture all possibilities: (i) Repair of a Boolean function
that incorrectly rejects a positive example and (ii) repair of a Boolean function that
incorrectly accepts a negative example. For both subproblems we assume that the
inferred Boolean function is in DNF. The CNF case can be developed in a similar
manner. However, it seems that for this kind of problems the DNF case is more intui-
tive to follow.
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6.4.1 Repairing a Boolean Function that Incorrectly Rejects a Positive
Example

From the definition of the DNF form given as (2.1) in Chapter 2, a Boolean function
F accepts an example if and only if at least one of its clauses accepts it. Recall
that now each clause is a conjunction. Alternatively, a Boolean function rejects an
example if and only if all of its clauses reject it. Next, suppose that the current system,
denoted as Boolean function F , incorrectly rejects the positive example e+. Then, the
following relation should be obviously satisfied:

F(e+) = c1 ∨ c2 ∨ c3 ∨ · · · ∨ cn = 0, (6.1)

where ci (for i = 1, 2, 3, . . . , n) is the i-th clause of F .
The previous discussion naturally raises the question of how to decide the clause,

among the n clauses ci (for i = 1, 2, 3, . . . , n) in relationship (6.1), one should
alter such that the new positive example will be accepted by the modified Boolean
function. The algorithm depicted in Figure 6.2 addresses this problem.

This algorithm indicates (in Step 3) that two extreme strategies can be imple-
mented. The first strategy is to select for change (repair) the clause that is the most
generalizing one (denoted as the MGC clause), while the second strategy is to select
for repair the least generalizing clause (denoted as LGC) in Figure 6.2. These two
strategies represent two extreme scenarios. They rank the clauses according to their
generalization capability and then select the two extreme cases. In this way, it is
hoped that one can study all possibilities.

The generalizability of a clause is assessed in terms of two parameters. One is the
number of positive examples accepted by that clause. This is represented as |E+(ci )|
in Figure 6.2. The higher this number is, the higher the generalizability of a clause
is assumed to be. The second parameter is the size of the clause denoted as A(ci ).
As size, we consider its length or the number of the attributes that define it. The fewer
the attributes, the more general the clause is (for the DNF case). For these reasons,
the MGC (Most Generalizing Clause) in Figure 6.2 is defined as the clause with the
maximum |E+(ci )|/A(ci ) value. Similarly, the LGC (Least Generalizing Clause) is
the one that corresponds to the minimum E+(ci )/A(ci ) value.

It should be stated at this point that if one ranks the clauses of a Boolean func-
tion according to their generalizability power, then one may expect that the clause
that ranks the highest (i.e., the MGC clause) has also the most potential to effect the
behavior of the Boolean function when that clause is altered. After all, by definition
an LGC clause plays a smaller role. Therefore, it is reasonable to expect that focus-
ing attention on the MGC would lead to better results. However, this is not possible
to assess quantitatively without some kind of computational experiments. The com-
putational results reported in the next section indicate that the previous hypothesis
seems to be indeed the case.

In the same figure the notation OCAT(E+(ck), E−) denotes a Boolean function
inference problem that has as positive examples the members of the set E+(ck) and
as negative examples the members of the set E−. This notation is used in the remain-
ing of this chapter. The effectiveness of these two selection criteria is further studied
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Input: The training sets E+ and E−. A Boolean function F in DNF
that accepts all the positive examples while it rejects all negative
ones. This function is comprised of n clauses (in DNF) denoted
as ci (for i = 1, 2, 3, . . . , n). A new positive example that is
incorrectly rejected by F .

Output: A modified Boolean function F ′ (in DNF) that accepts all
positive examples in E+ ∪ {e+} and rejects all negative exam-
ples in E−.

begin
Step 1: Let E+(ci ) (for i = 1, 2, 3, . . . , n) be the set of the

members of E+ which are accepted by clause ci ;
Step 2: Let A(ci ) be the number of attributes in ci ;
Step 3: Select a clause ck (for some k; 1 ≤ k ≤ n) accord-

ing to a clause selection criterion (i.e., MGC or LGC,
as described below);

Step 4: Let F ← F − ck ;
Step 5: Let E+(ck)← E+(ck ) ∪ {e+};
Step 6: Let f be the function (in DNF) that solves the sub-

problem OCAT(E+(ck), E−);
Step 7: Set F ′ ← F ∨ f ;

end;

Clause Selection Criteria:
1. Most Generalizing Clause (MGC): A clause ci with

the max |E+(ci )|/A(ci ) value.
2. Least Generalizing Clause (LGC): A clause ci with

the min |E+(ci )|/A(ci ) value.
Note that x indicates the cardinality of set x .

Figure 6.2. Proposed Strategy for Repairing a Boolean Function which Incorrectly Rejects a
Positive Example (for the DNF case).

empirically later in terms of the size and the accuracy of the produced Boolean func-
tions and also the required CPU times.

A key step for achieving an effective and efficient incremental learning solu-
tion is the size of the subproblem OCAT(E+(ck), E−) in Step 6 of the algo-
rithm depicted in Figure 6.2. This is a key concept because if it is assumed that
|E+(ck)| � |E+| (where |x | is the size of the set x), then it is reasonable to
assume that the CPU time for solving the subproblem OCAT(E+(ck), E−) would be
significantly shorter than the time required to solve the complete (and much bigger)
problem OCAT(E+ ∪ {e+}, E−). The branch-and-bound (B&B) approach that is
used to solve such a problem in Chapter 3 is an NP-complete approach. The faster
heuristics described in Chapter 4 are of polynomial time complexity. At this point, it
is also important to notice that by using either of the two clause selection criteria, it
may happen that one or more clauses might be added to the function F , then increas-
ing in this way its size. According to [Michalski and Larson, 1978], this situation
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Input: The negative example e− that is incorrectly accepted by the
function F (in DNF).
The two training sets E+ and E−.

Output: A Boolean function F ′′ that accepts all examples in E+ and
rejects all examples in E− ∪ e−.

begin
Step 1: Let C be the set of clauses ci (for i = 1, 2, 3, . . . ,m)

that incorrectly accept e−;
Step 2: Let F ← F − C ;
Step 3: Let E+(C) be set of the members of E+ which are

accepted by C ;
Step 4: Let f be the Boolean function in DNF form that solves

the subproblem OCAT(E+(C), E− ∪ {e−});
Step 5: Let F ′′ ← F ∨ f ;

end;

Figure 6.3. Repair of a Boolean Function that Erroneously Accepts a Negative Example (for
the DNF case).

can be anticipated because the utilization of an ILE approach often results in more
complex systems.

6.4.2 Repairing of a Boolean Function that Incorrectly Accepts a Negative
Example

The algorithm in Figure 6.3 addresses the second scenario for repairing a Boolean
function F (in DNF). This scenario occurs when the Boolean function incorrectly
accepts as positive a new example that has been classified by the oracle as negative
(recall that this example is now denoted as e−). In this case the current function F
erroneously satisfies the condition

F(e−) = c1 ∨ c2 ∨ c3 ∨ · · · ∨ cn = 1. (6.2)

The function in (6.2) shows that at least one of the n clauses incorrectly accepts the
negative example e−. The main problem in this scenario is how to select the clause(s)
to repair so that the updated function, denoted as F ′′, will reject the negative example
e− while maintaining the correctness for the other examples (positive and negative).

The algorithm in Figure 6.3 solves the problem implied in relation (6.2) by first
identifying the set of clauses C that incorrectly accept the negative example e−,
and then by forming a subset of positive examples (denoted as E+(C)), which is
comprised of the examples in E+ that are accepted by the clauses in C . The set of
negative examples is formed by E− ∪ {e−}. As with the subproblem in the first sce-
nario, the potential of the algorithm in Figure 6.3 is based on solving the smaller
size Boolean function inference problem denoted as OCAT(E+(C), E− ∪ {e−})
in Step 4. This is an important issue because if |E+(C)| � |E+| (where |x | is
the size of the set x), then the CPU time requirement for solving this subproblem
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is most likely significantly shorter than that for solving the entire Boolean function
inference problem OCAT(E+, E− ∪ {e−}).

6.4.3 Computational Complexity of the Algorithms for the ILE Approach

An inspection of the algorithms in Figures 6.2 and 6.3 indicates that in the worst
case, the entire problems OCAT(E+ ∪ {e+}, E−) and OCAT(E+, E− ∪ {e−}) will
have to be executed. It should be emphasized here that the Boolean function infer-
ence problems described so far can be solved with any function construction method
and not only the OCAT approach. In the experiments described in the next section
these problems were solved by using the fast heuristic (i.e., RA1) of polynomial
time described in Chapter 4. Another alternative would be to use the revised B&B
approach described in Chapter 3. Other methods could be used as well. The heuris-
tic described in Chapter 4 is essentially of O(nm3) time complexity (where n is the
number of binary attributes and m is the total number of training examples). On the
other hand, the B&B algorithm is an NP-complete approach. Thus, the proposed
incremental learning approach takes the time complexity of the learning algorithm
used to solve the smaller size Boolean function inference subproblems.

The next section describes an extensive empirical study of the relative effec-
tiveness of the ILE and NILE approaches when they are combined with the RA1
heuristic for inferring a Boolean function. This empirical study examines the relative
performance of the two criteria for clause selection described in Figure 6.2 (i.e., the
MGC and LGC criteria). As measurements of performance we used the CPU time,
the accuracy of the derived systems (i.e., how accurately they classified the remain-
ing available examples), and the size of the derived systems. The various approaches
were analyzed in terms of the sign test [Barnes, 1994] in order to determine any dif-
ference in the performance of pairs of algorithms. The sign test is a nonparametric
test that compares paired observations of two populations. The number of positive
and negative signs of the comparisons is used to make inference on the two popula-
tions of observations.

6.5 Experimental Data

Table 6.1 shows the numbers of documents from the TIPSTER collection that
was used in the experimentation. The TIPSTER collection is comprised of numerous
documents extracted from various sources. As was mentioned in Section 6.1, this
collection of documents is often used to evaluate the performance of information
retrieval (IR) and machine learning systems.

These documents were randomly extracted from the four classes of the collection.
The numbers in each class were determined from the RAM limitations of the PC we
used in the experiments. The computer used was a Pentium II PC with a 400 MHz
CPU running the Windows 95 operating system. The computer programs for this
study were written in Turbo Pascal 1.5 for Windows [Borland, 1991].
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Table 6.1. Number of Documents Randomly Selected from Each Class.

Class: DOE AP WSJ ZIPFF Total

No. of Documents: 1,407 336 624 530 2,897

NOTES: DOE, AP, and WSJ stand for the U.S. Department of Energy,
the Associated Press, and the Wall Street Journal, respectively;
ZIPFF is a collection of technical documents on various topics.

In order to simulate two mutually exclusive classes, the following three
class-pairs (DOE vs. ZIPFF), (AP vs. DOE), and (WSJ vs. ZIPFF) were formed.
These three class-pairs were randomly selected from all possible pair combinations.
Furthermore, to comply with the notation presented in earlier sections, the first class
of each class-pair was denoted as E+, while the second class was denoted as E−
(these class designations were set randomly). The sizes shown in Table 6.1 were
dictated by the limitations of the computing resources available for that study.

The conversion of these documents into binary vectors followed the methodo-
logy discussed in [Salton, 1989], [Cleveland and Cleveland, 1983], [Meadow, 1992],
[Hsiao and Haray, 1970], [Chen, 1996], and [Chen, et al., 1994]. It should be men-
tioned here that similar examples, also derived from large collections of text docu-
ments, were used in some of the studies described in Chapter 13 of this book.

6.6 Analysis of the Computational Results

The computational experiments were conducted as follows. First a collection of
examples was formed under one of the target class-pairs as defined in the previ-
ous section (i.e., in Table 6.1). The test examples were derived by analyzing the
text documents in the previous TIPSTER categories. Next, an example was retrieved
from the class-pair collection and was presented to the learning algorithm, along
with its actual class membership. We used three learning algorithms as follows. The
first one was the OCAT approach combined with the RA1 heuristic as described in
Figure 4.1. The second algorithm is the ILE approach coupled with the Most Gene-
ralizing Clause (MGC) selection criterion and also the RA1 heuristic. The third ILE
algorithm was similar to the second one, but now the Least Generalizing Clause
(LGC) selection criterion is used instead of the MGC one.

The results are depicted in Figures 6.4 to 6.12. In these figures the thickest lines
correspond to results under the plain OCAT approach, the thick lines to results
under the incremental OCAT (i.e., under IOCAT) when it is combined with the
MGC criterion, and the thin lines to results under the IOCAT when it is combined
with the LGC criterion. In the horizontal axes the term “documents” is used along
with the term “examples,” as examples correspond to documents from the TIPSTER
collection.

The results are grouped into three subsections with three figures in each
subsection. We present the plots for each class-pair individually, in order to maintain
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Table 6.2. Number of Training Documents to Construct a Clause that Classified All
510 Documents.

Class-Pair

DOE vs. AP vs. WSJ vs.
ZIPFF DOE ZIPFF Mean

OCAT 335 311 363 336
IOCAT (MGC) 244 311 288 281
IOCAT (LGC) 277 319 303 299

NOTE: MGC and LGC stand for the Most and the Least Generalizing
Clause selection criterion, respectively.

some subtle differences that were observed in these results. The first subsection deals
with the accuracy of the derived system (i.e., the combinations of the “positive”
and “negative” Boolean functions). The second subsection deals with the number of
clauses in the derived Boolean functions, while the third subsection deals with the
CPU time required by each approach.

6.6.1 Results on the Classification Accuracy

In these experiments the different learning processes started with the same initial
random collection of 50 examples and were followed by incrementing the train-
ing examples one at a time according to the corresponding methods. The accuracy
was determined as the number of correct classifications on the remaining unseen
examples from the population of the examples in each class-pair (as shown in
Table 6.1). Table 6.2 summarizes the number of training examples these learning
algorithms needed to extract Boolean functions (sets of rules) that could classify all
the available examples correctly for each of the three class-pairs from the TIPSTER
collection.

The data in this table suggest that the Boolean functions constructed by the two
IOCAT approaches used significantly fewer examples than the plain OCAT approach
before the extracted Boolean functions could correctly classify the entire popula-
tion (i.e., the training plus the unseen) of examples. Furthermore, an inspection of
Figures 6.4, 6.5, and 6.6 indicates that the speed of correct classifications for IOCAT
(thick and thin lines) was faster (steeper) than that for the plain OCAT approach
(thickest line which is below the previous two lines).

Next, in Table 6.3, the 0 (zero) positive signs from the comparison of the dif-
ference OCAT – IOCAT(MGC) for class-pair DOE vs. ZIPF indicates that the
ICAT(MGC) approach was always more accurate than the plain OCAT approach in
all the paired observations. In contrast, the datum for IOCAT(MGC) – IOCAT(LGC)
for class-pair AP vs. DOE indicates that 210 positive signs were obtained. In this
case, the high number of positive signs shows that the MGC was a better performer
than the LGC. As was stated in Section 6.4.1 this was anticipated since the MGC
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Figure 6.4. Accuracy Results for the Class-Pair (DOE vs. ZIPFF).

Figure 6.5. Accuracy Results for the Class-Pair (AP vs. DOE).
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Figure 6.6. Accuracy Results for the Class-Pair (WSJ vs. ZIPFF).

Table 6.3. Statistical Comparison of the Classification Accuracy Between OCAT and IOCAT.

Number of Positive Signs

DOE vs. AP vs. WSJ vs.
ZIPFF DOE ZIPFF

OCAT – IOCAT (MGC) 0¶ 1¶ 5¶

OCAT – IOCAT (LGC) 1¶ 2¶ 0¶

IOCAT (MGC) – IOCAT (LGC) 92¶ 210£ 163£

NOTES: MGC and LGC stand for the Most and the Least Generalizing
Clause selection criterion, respectively.
All p-values were approximated using N(np, np(1 − p)1/2). For all
¶ instances, n = 250, while for all £ instances n was equal to 237, 240, and
242. These different values of n were needed because all the differences
yielding zero were discarded [Barnes, 1994]. The p-value for the sign test was
equal to 0.50.
¶ denotes a p-value close to 0.
£ denotes a p-value close to 1.

clause has, by definition, more potential to make an impact in the way the target
Boolean function classifies examples.

The small p-value of the comparison between the two algorithms indicates that
the two versions of IOCAT were much better performers than the plain OCAT
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approach. Second, the large p-values of the comparison of the two versions of
IOCAT suggest that the two clause selection criteria performed in a similar
manner.

6.6.2 Results on the Number of Clauses

The corresponding results are depicted in Figures 6.7, 6.8, and 6.9. These results
represent the total number of clauses of the “positive” and the “negative” Boolean
functions. As before, some numerical highlights are summarized in Tables 6.4 and
6.5. From these results it is evident that under the plain OCAT approach the two
inferred Boolean functions had much fewer clauses (less than 50%) than the func-
tions under the two ILE approaches. The same results also indicate that the IOCAT
approach with the MGC selection criterion did better than the IOCAT approach when
it was combined with the LGC selection criterion. As with the previous results, this
can be attributed to the higher potential of the MGC clause.

An interesting phenomenon in the previous results is the occasional drop in
the number of clauses under the two ILE approaches. This occurred when the ILE
approach (i.e., either the IOCAT(MGC) or the IOCAT(LGC) approach) had to solve
the entire function inference problem. This problem was denoted as subproblem
OCAT(E+, E− ∪ {e−}) in the methodology section. This occasional reconstruction
step of the entire function alleviated the problem of occasionally generating too many
clauses.

Figure 6.7. Number of Clauses for the Class-Pair (DOE vs. ZIPFF).



140 6 An Incremental Learning Algorithm for Inferring Boolean Functions

Figure 6.8. Number of Clauses for the Class-Pair (AP vs. DOE).

Figure 6.9. Number of Clauses for the Class-Pair (WSJ vs. ZIPFF).
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Table 6.4. Number of Clauses in the Boolean Functions at the End of an Experiment.

Class-Pair

DOE vs. AP vs. WSJ vs.
ZIPFF DOE ZIPFF Mean

OCAT 23 10 25 19
IOCAT (MGC) 47 36 36 40
IOCAT (LGC) 37 60 74 57

NOTE: MGC and LGC stand for the Most and the Least Generalizing
Clause selection criterion, respectively.

Table 6.5. Statistical Comparison of the Number of Clauses Constructed by OCAT and
IOCAT.

Number of Positive Signs

DOE vs. AP vs. WSJ vs.
ZIPFF DOE ZIPFF

OCAT – IOCAT (MGC) 0 1 0

OCAT – IOCAT (LGC) 1 2 0

IOCAT (MGC) – IOCAT (LGC) 44¶ 0 0

NOTES: MGC and LGC stand for the Most and the Least Generalizing
Clause selection criterion, respectively.
All p-values were approximated using N(np, np(1 − p)1/2). For all
¶ instances, n = 243 since all differences yielding zero were discarded
[Barnes, 1994].]. The p-value for the sign test was equal to 0.50.
¶denotes a p-value close to 0.

6.6.3 Results on the CPU Times

The results on the CPU times are depicted in Figures 6.10, 6.11, and 6.12, and are
summarized in Tables 6.6 and 6.7. As was anticipated, the ILE approaches (i.e., the
IOCAT(MGC) and the IOCAT(LGC) approaches) required significantly less CPU
time than the plain OCAT approach. This is in agreement with the discussions
in the methodology section and also with similar references from the literature.
For instance, [Michalski and Larson, 1978] and [Reine and Michalski, 1986] have
indicated that incremental approaches always required shorter CPU times than non-
incremental approaches.
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Figure 6.10. Required CPU Time for the Class-Pair (DOE vs. ZIPFF).

Figure 6.11. Required CPU Time for the Class-Pair (AP vs. DOE).
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Figure 6.12. Required CPU Time for the Class-Pair (WSJ vs. ZIPFF).

Table 6.6. The CPU Times (in Seconds) Required to Complete an Experiment.

Class-Pair

DOE vs. AP vs. WSJ vs.
ZIPFF DOE ZIPFF Mean

OCAT 468.532 514.584 729.430 570.848
IOCAT (MGC) 150.896 156.374 142.966 150.088
IOCAT (LGC) 178.885 168.371 215.932 187.729

NOTE: MGC and LGC stand for the Most and the Least Generalizing
Clause selection criterion, respectively.

When the two versions of the IOCAT approach are compared, the small p-values
shown in Table 6.7 reveal that the MGC selection criterion always required shorter
CPU times than the LGC one. As before, this is most likely caused because the MGC
can impact the behavior of the target Boolean function more significantly than the
LGC.

As with the results regarding the total number of the derived clauses, here too
the plots have some spikes. These spikes correspond to occasions when an inference
problem had to be solved in its entirety. This occurred when the set E+(C) was
identical to the E+ set in Steps 3 and 4 in Figure 6.3. A similar situation also occurred
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Table 6.7. Statistical Comparison of the CPU Time to Reconstruct/Modify the Boolean
Functions.

Number of Positive Signs

DOE vs. AP vs. WSJ vs.
ZIPFF DOE ZIPFF

OCAT – IOCAT (MGC) 269 262 257

OCAT – IOCAT (LGC) 273 272 274

IOCAT (MGC) – IOCAT (LGC) 29¶ 10¶ 26¶

NOTES: MGC and LGC stand for the Most and the Least Generalizing
Clause selection criterion, respectively.
All p-values were approximated using N(np, np(1 − p)1/2). For all
¶ instances, n = 243, 217, and 247 since all differences yielding zero were
discarded [Barnes, 1994]. The p-value for the sign test was equal to 0.50.
¶ denotes a p-value close to 0.

in the experiments reported in [Utgoff, 1997] when a decision tree had to be rebuilt
from the beginning.

6.7 Concluding Remarks

This chapter proposed an approach for inferring a Boolean function in an incre-
mental learning environment. In such an environment, it was assumed that some
training examples are available and are divided into two mutually exclusive classes.
Also a “positive” and a “negative” Boolean function are available and they satisfy
the requirements of the initial training data. As new examples become available,
either of the two Boolean functions may need to be modified (if it misclassifies
new observations) to satisfy the requirements of the existing and also the new train-
ing data. The algorithms proposed in this chapter modify a Boolean function in a
localized/surgical manner, unless it is determined that the function inference prob-
lem needs to be solved in its entirety.

The proposed function modification procedures were combined with an exist-
ing algorithm for inferring a Boolean function from two classes of examples. That
algorithm is the OCAT (One Clause At a Time) approach as described in Chapter 2.
However, any Boolean function inference algorithm can be used with the proposed
incremental learning approaches.

An extensive empirical study was also undertaken to better assess the numerical
properties of the new approaches and how they compare with the nonincremental
OCAT approach. As data for the empirical study, we used binary examples that were
defined by analyzing text documents from the TIPSTER collection.

The results of this investigation suggest that the proposed approaches are both
effective and efficient. In these tests the new approaches returned Boolean functions
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that were more accurate than the corresponding functions returned by the non-
incremental OCAT approach. Furthermore, they did so in a significantly small frac-
tion of the CPU time required by the nonincremental approach. However, as was
anticipated, the Boolean functions returned by the incremental approaches had more
(slightly more than twice) clauses than under the nonincremental approach.

In summary, the results in this chapter strongly suggest that if a learning task
involves frequent incremental processing of large collections of examples (defined
on a large set of binary attributes), then the proposed incremental learning
algorithms are an effective and efficient alternative to more time-consuming non-
incremental approaches. However, the quest for developing even faster incremental
learning algorithms is still a very active endeavor in the field of data mining and
knowledge discovery from data sets.





Chapter 7

A Duality Relationship Between Boolean Functions in
CNF and DNF Derivable from the Same Training
Examples

7.1 Introduction

This chapter discusses a useful relationship between the CNF and DNF forms of
the Boolean functions derivable from the same training data. This relationship can
benefit approaches which attempt to solve large Boolean function inference problems
and use either the CNF or the DNF form in representing a Boolean function.

Suppose that a given learning algorithm depends heavily on the number of the
positive (the negative) examples. If the number of the positive (the negative) exam-
ples is larger than the number of the negative (the positive) examples, then it is more
efficient to solve a slightly different problem. That is, apply the same algorithm as
before, but instead of using the original training examples, now use their comple-
ments (negations). However, now the complements of the original positive (negative)
examples should be treated as the new negative (positive) examples.

If the original algorithm derives a CNF (DNF) expression, then in this way it
will derive a DNF (CNF) expression which will satisfy the constraints of the original
training data. The previous situation is very similar to the strategy of solving the
dual of an LP (linear programming) problem. Recall that if the primal LP problem
has many constraints and few variables, then the Simplex approach is faster for the
dual problem (which will have fewer constraints and many variables).

Let e be an example (either positive or negative). Then, ê is defined as the
complement (negation) of example e. For instance, if e = (1, 0, 0), then ê = (0, 1, 1).
The following definition introduces the concept of the complement of a set of exam-
ples. Let E be a set of examples (either positive or negative). Then, Ê is defined as
the complement of the set E .

7.2 Generating Boolean Functions in CNF and DNF Form

Recall from Chapter 2 (Section 2.3) that the general form of a Boolean function
written in CNF or DNF is defined as (7.1) or (7.2), respectively.

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 7,
c© Springer Science+Business Media, LLC 2010



148 7 A Duality Relationship in Boolean Functions Inferred from Examples

k∧
j=1

(
∨

i∈ρ j
ai

)
(7.1)

and
k∨

j=1

(
∧

i∈ρ j
ai

)
, (7.2)

where ai is either Ai or Āi and ρ j is the set of indices.
In other words, a CNF expression is a conjunction of disjunctions, while a DNF

expression is a disjunction of conjunctions. For instance, the expression (A1 ∨ A2)∧
( Ā1 ∨ Ā2) is a Boolean function in CNF while (A1 ∧ A2) ∨ ( Ā1 ∧ Ā2) is a Boolean
function in DNF.

Then the following theorem [Triantaphyllou and Soyster, 1995a] states an impor-
tant property which exists when Boolean functions in CNF and DNF are inferred
from sets of positive and negative examples. The proof of this theorem is based
on the simple observation that an example e is accepted (rejected) by a conjunc-
tion (∧i∈ρ ai ) if and only if the example ê is rejected (accepted) by the disjunction
(∨i∈ρ ai ).

Theorem 7.1. Let E+ and E− be the disjoint sets of positive and negative examples,
respectively. A Boolean function in CNF given as (7.1) satisfies the constraints of the
E+ and E− sets if and only if the Boolean function in DNF given as (7.2) satisfies
the constraints of Ê− (considered as the positive examples) and Ê+ (considered as
the negative examples).

7.3 An Illustrative Example of Deriving Boolean Functions in
CNF and DNF

Suppose that the following are two sets of positive and negative training examples:

E+ =

⎡
⎢⎣

1 0 1

1 0 0

0 1 1

⎤
⎥⎦ and E− =

[
0 0 1

1 1 1

]
.

When the SAT approach, as described in Section 2.5, is used on the previous data, the
resulting satisfiability problem has 31 clauses and 66 Boolean variables (it is assumed
that k = 2). Since there are more positive examples than negative ones, the comple-
mented problem is smaller. It has 26 clauses and 58 variables. The complemented
sets are as follows:

Ê− =
[

1 1 0

0 0 0

]
and Ê+ =

⎡
⎢⎣

0 1 0

0 1 1

1 0 0

⎤
⎥⎦ .

When the SAT approach is applied on the sets Ê− and Ê+ (treating the first
set as the positive examples and the second set as the negative examples), then the
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following DNF system is derived: (A1 ∧ A2) ∨ ( Ā1 ∧ Ā2). Therefore, according to
Theorem 7.1, the following CNF expression satisfies the requirements of the original
E+ and E− data: (A1 ∨ A2) ∧ ( Ā1 ∨ Ā2).

Similarly, when the OCAT approach is applied on the previous Ê− and Ê+ data,
then the following CNF system is derived: (A1 ∨ Ā2) ∧ ( Ā1 ∨ A2). According to
Theorem 7.1, the following DNF expression satisfies the requirements of the original
E+ and E− data: (A1 ∧ Ā2) ∨ ( Ā1 ∧ A2). The above results can easily be verified
on the previous data.

7.4 Some Computational Results

The previous theorem was next applied to two algorithms which infer a Boolean
function from examples. These are the OCAT approach described in Chapters 2 and
3 and the SAT approach described in Chapter 2.

The SAT approach was first proposed in [Kamath, et al., 1992]. Let m1 and m2
be the numbers of examples in the E+ and E− sets, respectively, and n the number of
attributes. When the SAT approach is used to derive a Boolean function in DNF (as
described in Section 2.5), then it preassumes the value of k; the number of conjunc-
tions in the DNF expression. In Section 2.5 it was shown that the SAT formulation is
based on k(n(m1 + 1) + m2) + m1 clauses (constraints of an integer programming
problem), and k(2n(1 + m1) + nm2 + m1) Boolean variables. If this SAT problem
is infeasible, then the conclusion is that there is no DNF system which has k or less
conjunctions and satisfies the requirements imposed by the examples. Thus, the value
of the parameter k needs to be increased until feasibility is reached.

Table 7.1 presents some computational results when the OCAT approach is used
on random test problems with n = 30 attributes. In this table, |E◦| represents the
total number of training examples and |E+| represents the number of positive exam-
ples. To understand the table, consider the third line of the first column. This repre-
sents a problem with 5 positive examples and 95 negative examples which required
2 CPU seconds on an IBM ES/3090-600S mainframe computer to derive a set of
CNF clauses (which accepts all 5 positive examples and rejects the 95 negative exam-
ples). For a given problem size, e.g., |E◦| = 100, note how the CPU time increases
as the number of positive examples, denoted as |E+|, increases.

The savings in applying Theorem 7.1 for the SAT approach can be easily deter-
mined. Compute the difference in the number of clauses and variables when the
parameters m1 and m2 are interchanged. This difference for the number of clauses is
equal to

(m1 − m2)[k(n − 1)+ 1],

while the difference for the number of variables is equal to

(m1 − m2)k(n + 1).

Hence, when m1 > m2 (i.e., when the positive examples exceed the negative
examples), the number of clauses and the number of variables can be reduced by a
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Table 7.1. Some Computational Results When n = 30 and the OCAT Approach Is Used.

|E◦||E◦||E◦| |E+||E+||E+| Timeaaa |E◦||E◦||E◦| |E+||E+||E+| Time |E◦||E◦||E◦| |E+||E+||E+| Time

100 1 1 300 2 1 500 7 15
100 3 1 300 3 2 500 13 8
100 5 2 300 14 29 500 16 38
100 5 3 300 14 25 500 20 19
100 7 2 300 17 107 500 34 73
100 7 6 300 22 102 500 35 194
100 7 3 300 22 70 600 8 16
100 8 2 300 24 12 600 11 15
100 9 2 300 36 243 600 23 184
100 15 7 300 71 524 600 44 41
200 1 1 400 5 3 600 49 315
200 2 1 400 7 10 600 83 300
200 4 2 400 10 10 700 13 26
200 5 2 400 15 7 700 18 30
200 6 2 400 16 8 700 19 60
200 10 6 400 17 23 700 19 15
200 11 38 400 36 282 700 56 467
200 18 18 400 47 97 800 64 739
200 19 4 400 49 400 900 72 836
200 51 212 500 6 13 1,000 47 80

NOTE: The time is in CPU seconds on an IBM ES/3090-600S machine (such as the
mainframe computer at Penn State University in the 1980s and 1990s).

factor proportional to (m1 − m2) and a term of the order of kn when the positive and
negative examples are interchanged. For instance, if m1 − m2 = 50, k = 10, and
n = 20, then the reduction in the number of clauses and variables needed for the
SAT approach would be equal to 9,550 and 10,500, respectively.

7.5 Concluding Remarks

In this chapter we examined an interesting and rather simple relationship that exists
between Boolean functions in CNF and DNF derivable from disjoint sets of positive
and negative examples. The formulations described in this chapter can benefit any
algorithm which derives CNF or DNF expressions from positive and negative exam-
ples. This relationship was demonstrated on two learning algorithms. Furthermore,
these formulations can lead to increased efficiency for solving large-scale learning
problems of the type described in this chapter.



Chapter 8

The Rejectability Graph of Two Sets of Examples

8.1 Introduction

This chapter is based on the findings presented in [Triantaphyllou and Soyster, 1996]
and presents the motivation and definition of a special graph which can be easily
derived from positive and negative examples. To understand the motivation for intro-
ducing this graph, consider a situation with n = 5 attributes. Suppose that the vector
v1 = (1, 0, 1, 0, 1) is a positive example while the two vectors v2 = (1, 0, 1, 1, 1)
and v3 = (1, 1, 1, 0, 1) are negative examples. For the positive example v1, note that
A1, Ā2, A3, Ā4, and A5 are true (or, equivalently, Ā1, A2, Ā3, A4, and Ā5 are false).
Similar interpretations exist for the remaining two examples v2 and v3.

Denote by ATTRIBUTES(v) the set of the attributes that are true (have value
“1”) for a particular (either positive or negative) example v. With this definition, one
obtains from the above data:

ATTRIBUTES(v1) = ATTRIBUTES((1, 0, 1, 0, 1)) = {A1, Ā2, A3, Ā4, A5}
ATTRIBUTES(v2) = ATTRIBUTES((1, 0, 1, 1, 1)) = {A1, Ā2, A3, A4, A5}
ATTRIBUTES(v3) = ATTRIBUTES((1, 1, 1, 0, 1)) = {A1, A2, A3, Ā4, A5}.
Next consider a single CNF clause (i.e., a disjunction), denoted as C , of the

general form

C = m∨
i=1

ai (where ai is either Ai or Āi ).

The clause C accepts an example v (i.e., v is a positive example of C) if and only if
at least one of the attributes in the set ATTRIBUTES(v) is also one of the attributes
in the expression

m∨
i=1

ai .

Otherwise, the example v is not accepted (i.e., v is a negative example of C). For
instance, if the clause C is defined as C = ( Ā2 ∨ A4), then the examples v1 and v2
are accepted by C , while the example v3 is not accepted.

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 8,
c© Springer Science+Business Media, LLC 2010
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Now observe that there is no single CNF clause which can simultaneously reject
the two negative examples v2 and v3, while at the same time accept the positive
example v1. This is true because any clause which simultaneously rejects the two
examples v2 and v3, should not contain any of the attributes in the union of the two
sets ATTRIBUTES(v2) and ATTRIBUTES(v3). But, if none of the attributes of the set
{A1, A2, Ā2, A3, A4, Ā4, A5} = ATTRIBUTES(v2)∪ATTRIBUTES(v3) is present in
the clause, then it is impossible to accept the positive example v1 = (1, 0, 1, 0, 1).
Therefore, given any clause which accepts the positive example v1, the previous two
negative examples v2 and v3 cannot also be rejected by such clause.

From the above realizations it follows that given any three examples v1, v2, and
v3, the examples v2 and v3 are rejectable by a single clause (disjunction), subject
to the example v1 (i.e., such a clause would accept v1), if and only if the following
condition is true:

ATTRIBUTES(v1) � ATTRIBUTES(v2) ∪ ATTRIBUTES(v3).

In general, given a set of positive examples E+, two negative examples v1 and v2
are rejectable by a single clause if and only if the condition in the following theorem
[Triantaphyllou and Soyster, 1996] is satisfied:

Theorem 8.1. Let E+ be a set of positive examples and v1, v2 be two negative exam-
ples. There exists a CNF clause which accepts all the positive examples and rejects
both negative examples v1 and v2 if and only if

ATTRIBUTES(vi ) � ATTRIBUTES(v1) ∪ ATTRIBUTES(v2),

for each positive example vi ∈ E+.

8.2 The Definition of the Rejectability Graph

The previous theorem follows directly from the previous considerations. Given two
collections of positive and negative examples, denoted as E+ and E−, respectively,
Theorem 8.1 motivates the construction of a graph G = (V, E) as follows:

V = {V1, V2, V3, . . . , V m2},
where m2 is the cardinality of E− (i.e., each vertex of G corresponds to one negative
example in E−), and

e ∈ E, where e = (Vi , Vj ),

if and only if the i-th and the j-th examples in E− are rejectable by a single clause
subject to the examples in E+. That is, such a clause would accept all the positive
examples. In this notation E is the set of the edges of the graph and it should not be
confused with E+ or E−.

We denote this graph as the rejectability graph (or the R-graph) of E+ and E−.
The previous theorem indicates that it is computationally straightforward to construct
this graph. If there are m2 negative examples, then the maximum number of edges is
m2×(m2−1)/2. Therefore, the rejectability graph can be constructed by performing
m2 × (m2 − 1)/2 simple rejectability examinations.
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Figure 8.1. The Rejectability Graph of E+ and E−.

An Illustrative Example

Consider the following E+ and E− sets (also given earlier in other chapters and are
repeated here):

E+ =

⎡
⎢⎢⎣

0 1 0 0
1 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦ and E− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Since there are 6 negative examples, there are 6 × (6 − 1)/2 = 15 possible
pairwise comparisons (i.e., single rejectability tests). For instance, the first (v1) and
third (v3) negative examples correspond to the vertices V1 and V3, respectively. Next
one can observe that because

ATTRIBUTES(v1) ∪ ATTRIBUTES(v3) = {A1, A2, A3, A4, Ā2, Ā4}
and

ATTRIBUTES(vi ) � {A1, A2, A3, A4, Ā2, Ā4}, for each vi ∈ E+,

it follows that there is an edge which connects the vertices V1 and V3 in the rejectabi-
lity graph. The rejectability graph G, which corresponds to the previous two sets of
examples, is presented in Figure 8.1. �

8.2.1 Properties of the Rejectability Graph

The rejectability graph G of two sets of positive and negative examples possesses a
number of interesting properties. Two of these properties refer to its cliques. A clique
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Figure 8.2. The Rejectability Graph for the Second Illustrative Example.

of a graph is a subgraph in which all the nodes are connected with each other. The
minimum clique cover number (denoted as k(G)) is the smallest number of cliques
needed to cover the vertices of G (see, for instance, Golumbic [1980]). The following
theorem [Triantaphyllou and Soyster, 1996] refers to any clique of the rejectability
graph.

Theorem 8.2. Suppose that two sets E+ and E− with positive and negative exam-
ples, respectively, are given and β is a subset of k negative examples from E− (k ≤
size of set E−) with the property that the subset can be rejected by a single CNF
clause which also accepts each of the positive examples in E+. Then, the vertices
corresponding to the k negative examples in the rejectability graph G form a clique
of size k.

Proof. Consider any two examples v1 and v2 in the subset of negative examples β.
Since all the members in β can be rejected by a single clause, obviously the examples
v1 and v2 can be rejected by this single clause. From the definition of the rejectability
graph G, it follows that there is an edge connecting the corresponding two nodes in
G. Clearly this situation is true for any pair of examples in the subset β. Therefore,
the vertices which correspond to the k negative examples in β form a clique in G of
size k. �

The previous theorem states that any set of negative examples which can be
rejected by a single clause corresponds to a clique in the rejectability graph. How-
ever, the converse is not true. That is, not every clique in the rejectability graph
corresponds to a set of negative examples which can be rejected by a single clause.
To see this consider the following illustrative example.

An Illustrative Example

Consider the following sets E+ and E− of positive and negative examples, respec-
tively:
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E+ = [
1 1 1

]
and

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

It can be easily verified that any pair of the three negative examples in E− can
be rejected by a single clause which also accepts the positive example in E+. For
instance, the first and second negative examples are rejected by the clause (A3),
which also accepts the positive example in E+. Similarly, the first and third negative
examples can be rejected by clause (A2), while clause (A1) rejects the second and
third negative examples. In all cases, these clauses accept the single positive example
in E+. Therefore, the corresponding rejectability graph is a triangle (i.e., a clique
with three nodes, see also Figure 8.2). However, a clause which would reject all
the three negative examples should not include any attributes from the following set:

ATTRIBUTES(v1) ∪ ATTRIBUTES(v2) ∪ ATTRIBUTES(v3)

= ATTRIBUTES((1, 0, 0)) ∪ ATTRIBUTES((0, 1, 0)) ∪ ATTRIBUTES((0, 0, 1))

= {A1, A2, A3, Ā1, Ā2, Ā3}.

Obviously, no such clause exists as there are no attributes left to be included
in such clause when n = 3. Therefore, a minimum size set of CNF clauses which
satisfy the requirements of the current examples could be (A3) ∨ (A2), which is of
size 2. �

8.2.2 On the Minimum Clique Cover of the Rejectability Graph

Consider two sets of positive and negative examples E+ and E−, respectively. Let
Ḡ be the complement of the rejectability graph G of the two sets of examples. Recall
that the complement of a graph is constructed as follows: The complement graph
has exactly the same vertices as the original graph. There is an edge between any
two vertices if and only if there is no edge between the corresponding vertices of the
original graph. Next, define ω(Ḡ) as the size of the maximum clique of the graph Ḡ
and k(G) as the minimum clique cover number of the rejectability graph G. Let r
be the minimum number of CNF clauses required to reject all the examples in E−,
while accepting all the examples in E+. Then, the following theorem [Triantaphyllou
and Soyster, 1996] states a lower bound (i.e., the minimum clique cover k(G)) on
the minimum number of clauses required to reject all the negative examples in E−,
while accepting all the positive examples in E+.

Theorem 8.3. Suppose that E+ and E− are the sets of the positive and negative
examples, respectively. Furthermore, let G and Ḡ be the corresponding rejectability
graph and its complement, respectively. Then, the following relation is true: r ≥
k(G) ≥ ω(Ḡ).

This theorem states that a lower bound on the minimum number of CNF clauses
which can be inferred from the sets of positive and negative examples is the minimum
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clique cover of the rejectability graph (i.e., the value of k(G)). Another lower bound
is the size of the maximum clique of the complement of the rejectability graph (i.e.,
the value of ω(Ḡ)). Of these two bounds, the former is tighter since k(G) ≥ ω(Ḡ).

At this point it should be stated that according to Theorem 8.3 the gap between
r and k(G) could be positive. The same is also true with the gap between k(G) and
ω(Ḡ). Therefore, there is a potential for the gap between r and ω(Ḡ) to be large
(since the value of ω(Ḡ) can be arbitrarily large, see for instance, [Bollobás, 1979]).

Finding k(G) is NP-complete. The same is true for the determination of ω(Ḡ).
In Carraghan and Pardalos [1990] a survey of algorithms which can find the maxi-
mum clique in any graph is presented. The same authors also present a very efficient
algorithm which uses a partial enumeration approach which had outperformed any
other known algorithm at that time. In that treatment random problems with 3,000
vertices and over one million edges were solved in rather short times (less than one
hour on an IBM ES/3090-600S computer). Some other related developments regard-
ing the maximum clique of a graph can be found in [Pardalos and Xue, 1994], [Babel
and Tinhofer, 1990], [Babel, 1994], [Balas and Xue, 1993], [Balas and Niehaus,
1994], [Zhang, Sun, and Tsang, 2005], and [Solnon and Fenet, 2006].

8.3 Problem Decomposition

The rejectability graph provides some intuitive ways for decomposing the inference
of a Boolean function with few (ideally minimum number of) clauses or some bounds
on the minimum number of clauses a function can have into a set of smaller prob-
lems. Such decompositions can be obtained through partitions of the rejectability
graph. These decomposition approaches can be used with any data mining method
and not only ones that are based on mathematical logic (i.e., they can be used with
neural networks, decision trees, support vector machines, and so on). We consider
two main approaches:

• Decomposition via Connected Components and
• Decomposition via the Construction of a Clique Cover.

8.3.1 Connected Components

In this case, one inspects the rejectability graph for a natural decomposition.
A connected component of a graph is a maximal subgraph in which there is a
path of edges between any pair of vertices. The following corollary is derived from
Theorem 8.2 and illustrates an important relation of the connected components of G
and the clauses which can be inferred from two collections of positive and negative
examples.

Corollary 8.1. Suppose that E+ and E− are the sets of the positive and nega-
tive examples, respectively. Then, any subset of negative examples in E− which is
rejected by a single CNF clause, subject to the examples in E+, corresponds to a
subset of vertices of the rejectability graph G which belong to the same connected
component of the graph G.
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Pardalos and Rentala in [1990] present an excellent survey of algorithms which
determine the connected components of a graph. Furthermore, they also propose a
parallel algorithm which runs on an IBM ES/3090-400E computer (with four pro-
cessors). That algorithm determines the connected components in super linear time.

The importance of Corollary 8.1 emerges when the sets of positive and negative
examples are very large. First, one constructs the rejectability graph G. Next, one
determines all the connected components of the rejectability graph by applying an
algorithm (such as the one described in Pardalos and Rentala [1990]) for finding
the connected components. Then, one solves the smaller clause inference problems
which are formed by considering all the positive examples and the negative examples
which correspond to the vertices of the individual and distinct connected components
in G.

In other words, if a graph has two or more connected components, then one can
decompose the original problem into separate problems and the aggregation of the
optimal solutions (based on the minimum number of CNF clauses) of the separate
problems is an optimal solution to the original problem. One can observe that each
such subproblem (in the CNF case) is comprised of the negative examples for that
component and all the positive examples, i.e., the positive examples are identical for
each subproblem. Obviously, the number of negative examples corresponds to the
number of vertices of the connected component of each subproblem.

8.3.2 Clique Cover

The second approach is also motivated by partitioning the vertices of the rejectabil-
ity graph into mutually disjoint sets. However, in this second approach, vertices are
subdivided via a sequential construction of cliques. First, the maximum clique of
the rejectability graph is determined. The negative examples which correspond to
the vertices of the maximum clique, along with all the positive examples, form the
first subproblem of this decomposition. Next, the maximum clique of the remaining
graph is derived. The second subproblem is formed by the negative examples which
correspond to the vertices of the second clique and all the positive examples. This
process continues until all the negative examples (or, equivalently, all the vertices in
the rejectability graph) are considered.

We note that this sequence of cliques does not necessarily correspond to a mini-
mum clique cover of the rejectability graph. This procedure is simply a greedy
approach which approximates a minimum clique cover. Furthermore, it is possible
that a single subproblem (in which all the vertices in the rejectability graph form a
clique) may yield more than one clause (as was the case with the illustrative example
in Section 8.2.1).

It should be noted at this point that the clique cover derived by using the above
greedy approach may not always yield a minimum clique cover. Therefore, the
number of cliques derived in that way cannot be used as a lower bound on the number
of clauses derivable from positive and negative examples. Obviously, if the number
of cliques is equal to ω(Ḡ) (see also Section 8.2.2), then the previous clique cover is
minimal. However, even if the previous clique cover is not of minimum size, it can
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still be very useful as it can lead to a decomposition of the original problem into a
sequence of smaller problems. Some computational results described in Section 8.5
provide some insight into the effectiveness of such a decomposition approach.

The approaches for problem decomposition described in this section can be com-
bined into a single approach as follows. One first decomposes the original problem
in terms of its connected components. Next, a clique cover, as described above, is
derived for the individual problems which correspond to the connected components
of the rejectability graph. This approach is further demonstrated in the illustrative
example presented in the following section.

8.4 An Example of Using the Rejectability Graph

Next consider the following sets of positive and negative examples:

E+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 0 1 1 1
0 1 1 1 1 1 0 0 0 0
0 0 1 0 1 1 1 0 1 0
0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 0 1 0 1 1
1 1 1 0 0 0 0 0 1 1
1 1 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 1 0 1
0 1 1 0 1 1 0 0 1 0
0 0 1 1 0 1 1 0 0 1
1 1 1 1 0 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0
1 1 1 0 1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

E− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 1 1 0 0
0 0 0 1 1 1 1 1 0 0
1 0 1 1 0 0 1 0 0 1
0 0 0 0 1 1 1 1 1 0
1 1 0 1 1 0 0 1 0 0
1 1 0 0 1 0 0 1 1 0
0 0 0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

One may use any method for inferring clauses from two disjoint classes of exam-
ples. In this illustrative example we use the OCAT approach. An application of the
OCAT approach, combined with the RA1 heuristic, to this illustrative example yields
the following CNF system (Boolean function) of four clauses:

(A2 ∨ A3 ∨ Ā5) ∧ ( Ā1 ∨ A3 ∨ Ā5) ∧ (A1 ∨ A2 ∨ A4 ∨ A5)

∧ ( Ā1 ∨ A2 ∨ Ā3 ∨ Ā4).
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Figure 8.3. The Rejectability Graph for E+ and E−.

Of course the question addressed in this section is whether it is possible to derive
another system with fewer clauses.

To help answer the previous question, we apply Theorem 8.3 to this illustra-
tive example. Since there are 13 positive and 7 negative examples, the construction
of the rejectability graph requires 21 (= 7(7 − 1)/2) simple rejectability examina-
tions. When Theorem 8.1 is applied on these data, the rejectability graph G shown
in Figure 8.3 is derived. For instance, there is an edge between vertices V1 and V6
because the first and sixth negative examples can be rejected by a single disjunction
without violating the constraints imposed by the positive examples in E+ (i.e., this
disjunction accepts all the positive examples). A similar interpretation holds for the
remaining edges in graph G.

The rejectability graph in the current illustrative example has two connected com-
ponents (see also Figure 8.3). One component is comprised by the six vertices V1,
V2, V4, V5, V6, V7 while the second component has only the vertex V3. Therefore,
the original problem can be partitioned into two independent clause inference sub-
problems.

Both subproblems have the same positive examples. The first subproblem has
the same negative examples as in E− except for the third negative example. The
second problem has only the third negative example. The lower bound for the mini-
mum number of CNF clauses required to appropriately classify the 20 examples is
derived from the sum of the lower bounds for the two separate components. Since
the rejectability graph of the second subproblem contains only a single vertex, the
size of the minimum clique cover is one. A minimum clique cover is also obvious
for the first subproblem, namely, the two sets {V1, V5, V6} and {V2, V4, V7}. Hence,
a minimum clique cover is two for the second subproblem. Thus, an overall lower
bound for the minimum number of CNF clauses required is 3 (= 2 + 1). Therefore,



160 8 The Rejectability Graph of Two Sets of Examples

it may well be possible that only three clauses are needed to appropriately classify
all 20 examples.

As was also mentioned in Section 2.5 there is another clause inference approach
which can be used to determine a minimum size set of clauses. This method, denoted
as SAT (for satisfiability), has been proposed in Kamath, et al. [1992]. In that
approach one first specifies an upper limit on the number of clauses to be considered,
say k. That is, the value of k must be preassumed. Next a clause satisfiability (SAT)
model is formed and solved using an interior point method developed by Karmakar
and his associates [1992]. If the clause satisfiability problem is feasible, the conclu-
sion is that it is possible to correctly classify all the examples with at least k clauses.
If this SAT problem is infeasible, then one must increase k until feasibility is reached.
In this manner, the SAT approach can yield a system (Boolean function) with the
minimum number of clauses. It is very important to observe at this point that compu-
tationally it is much harder to prove that a given SAT problem is infeasible than it is
feasible. Therefore, trying to determine a minimum size Boolean function by using
the SAT approach may be computationally too difficult. In this illustrative example,
the SAT approach with k = 3, is feasible and returns the Boolean function with the
following three clauses:

(A2 ∨ A2 ∨ A3 ∧ ( Ā1 ∨ A2 ∨ Ā3 ∨ Ā4) ∧ ( Ā1 ∨ A3 ∨ Ā5).

However, when the value k = 2 is used, the corresponding SAT formulation is
infeasible. Therefore, the above set of clauses is optimal in the sense of this chapter.
The last statement also follows from Theorem 8.3 since there exists a minimum size
clique cover of 3 and a set of clauses has been derived with exactly this number of
members. The previous optimal solution can also be derived much faster by applying
the OCAT approach to the subproblems which correspond to the three cliques that
fully cover the rejectability graph G. Since one of these cliques is of size one, that
subproblem is a trivial one.

8.5 Some Computational Results

In this section we provide some computational insight into two issues. The first is
the role and usefulness of the lower bound of Theorem 8.3. The second issue is
on the potential benefit of using the decomposition approach which is based on a
clique cover. The first issue is important when one is interested in minimizing the
size of the inferred Boolean function. The lower limit described in Theorem 8.3
(i.e., the value of ω(Ḡ)) can also give an idea of how far from optimality a given
solution might be. The second issue is important when one wishes to control the CPU
time requirement (for instance, when solving large problems). Although the clique
decomposition approach results in solving a sequence of smaller Boolean inference
problems, there is a new time burden because one now also needs to determine a
sequence of maximum cliques. Therefore, it is not immediately obvious that the
decomposition approach will be less demanding in terms of the CPU time. A second
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issue is the size of the systems derived via the clique decomposition. The systems
derived via the decomposition approach may be larger in size than otherwise. For
these reasons, three series of test problems were performed.

The first series of test problems is based on the fifteen systems introduced in
Kamath, et al., [1992]. These systems use sets of clauses defined on 8, 16, and 32
attributes and are depicted in Table 3.3. The four systems with 8 attributes are labeled
as 8A1, 8A2, 8A3, and 8A4 in Table 8.1 (the secondary classification is based on the
number of examples used as input). The same convention was also used for the rest
of the systems in Table 8.1. Each of the fifteen sets is used as a “hidden logic” for
classifying randomly generated examples, i.e., for determining the sets E+ and E−.
Then, the OCAT algorithm was used to generate a set of CNF clauses which correctly
classify each of the positive and negative examples.

As described earlier, the rejectability graph and the sequential (greedy) genera-
tion of maximum cliques were determined too. Next, Theorem 8.3 was used to estab-
lish a lower bound on the required number of inferred clauses. Note that the SAT
results were determined by using a VAX 8700 machine running the 10th Edition of
UNIX, written in FORTRAN and C [Kamath, et al., 1992]. The OCAT results were
derived by using an IBM/3090-600S machine (which is approximately 3 to 4 times
faster than a VAX 8700 machine) and the code was written in FORTRAN. This
table is complementary to Table 3.1, which also refers to the same computational
experiments.

The results of these experiments are provided in Table 8.1. These results include
computations for SAT, OCAT, and the lower bound, as determined according to
Theorem 8.3. Note that in these tests we did not decompose the problems by using
the connected component approach described in Section 8.3 (no code was available
to us at that time). The SAT results represent a feasible solution, not necessarily a
solution with the minimum number of clauses. (To obtain the minimum number of
clauses, one must iteratively reduce the value of k until infeasibility occurs, which is
a very time consuming process.)

Consider, for instance, the first case (problem 8A1) depicted in Table 8.1. Ten
random examples were generated for system 8A (as defined in Table 3.3). With k
fixed at 3 the SAT algorithm returned a feasible solution with three clauses. The
lower bound from Theorem 8.3 is equal to 2. Hence, it may be possible to correctly
classify the ten examples with only two clauses. However, in these tests the value of
k was not iteratively reduced to determine its minimum value.

The results of the first set of tests indicate just how well OCAT performs. Of the
24 problems with 16 or fewer attributes, OCAT generated a set of clauses exactly at
the lower bound in 20 cases. In the other 4 cases, OCAT exceeded the lower bound
by only 1 clause. For the 17 problems with 32 attributes, OCAT averaged about 1.23
more clauses than the lower bound.

It is also noteworthy to observe that the performance of SAT, OCAT, and the
lower bound according to Theorem 4.3 are not dramatically affected by the number
of examples. As expected, as the number of examples increases, the number of
required clauses also increases. This is illustrated, for instance, by test problem 32E.
The OCAT approach generated 2 clauses with 50 and 100 examples while 3 clauses
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Table 8.1. Solution Statistics for the First Series of Tests.

SAT OCAT ω(Ḡ):ω(Ḡ):ω(Ḡ):
Problem Characteristics Solution Solution Lower

Bound
Problem No. of Clauses in No. of No. of Via

ID Examples “Hidden Logic” kkk Clauses Clauses Theorem 8.3

8A1 10 3 3 3 3 2
8A2 25 3 6 3 3 2
8A3 50 3 6 3 3 3
8A4 100 3 6 3 3 3

8B1 50 3 3 2 2 2
8B2 100 3 6 3 3 3
8B3 150 3 10 3 3 3
8B4 200 3 6 3 3 3

8C1 50 3 10 2 2 2
8C2 100 3 10 3 3 3

8D1 50 3 10 3 3 3
8D2 100 3 10 3 3 3

8E1 50 3 10 3 3 3
8E2 100 3 10 3 3 3

16A1 100 4 15 4 4 3
16A2 300 4 6 4 4 4

16B1 200 4 8 5 4 4
16B2 400 4 4 4 4 4

16C1 100 4 20 5 4 4
16C2 400 4 4 4 4 4

16D1 200 4 10 4 4 4
16D2 400 4 4 4 4 4

16E1 200 4 15 5 5 4
16E2 400 4 4 4 4 4

32A1 250 3 3 3 3 3

32B1 50 3 3 3 2 1
32B2 100 3 3 3 3 2
32B3 250 3 3 3 3 2
32B4 300 3 3 3 3 2

32C1 50 3 3 3 2 1
32C2 100 3 3 3 2 1
32C3 150 3 3 3 3 1
32C4 1000 3 3 3 3 3
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Table 8.1. Continued.

SAT OCAT ω(Ḡ):ω(Ḡ):ω(Ḡ):
Problem Characteristics Solution Solution Lower

Bound
Problem No. of Clauses in No. of No. of Via

ID Examples “Hidden Logic” kkk Clauses Clauses Theorem 8.3

32D1 50 4 4 4 3 1
32D2 100 4 4 4 3 2
32D3 400 4 4 4 4 2

32E1 50 3 3 2 2 1
32E2 100 3 3 3 2 1
32E3 200 3 3 3 3 2
32E4 300 3 3 3 3 2
32E5 400 3 3 3 3 2

were needed for 200, 300, and 400 examples. As more examples are generated, the
set of inferred clauses becomes a better approximation of the underlying “hidden
logic,” which for test problem 32E is comprised of 3 clauses.

The second and third series of computational experiments were executed as
follows. First, a Boolean function with K0 clauses (in the CNF form) was determined
randomly. In order to have a good balance of positive and negative examples, each
attribute in any clause was present with probability 15% to 25%. Also, if attribute Ai
was selected to be in a clause, then attribute Āi was not allowed to be present and
vice versa. That was done in order to avoid constructing clauses which would accept
all examples (i.e., to avoid tautologies). A system derived in this way was considered
as the “hidden logic” system in these experiments. The number of attributes was set
to be equal to 10 and 30 (i.e., n = 10 or 30). These systems are indexed by ID
numbers, such as 1A10, 2A10, . . ., 1B10, 2B10, etc. In the above coding scheme the
first digit indicates the test number, “A” or “B” indicates whether n, the number of
attributes, was equal to 10 or to 30, respectively, and the last two digits indicate the
number of clauses in the “hidden logic” (see also Tables 8.2 and 8.3).

Next, collections of 400 and 600 examples (400 examples were considered when
n = 10 and 600 examples when n = 30) were randomly generated and classi-
fied according to the previous clauses. The computational results are presented in
Tables 8.2 and 8.3 (for n = 10 and n = 30, respectively). At first, the branch-
and-bound (B&B) algorithm described in Chapter 3 of this book was applied to the
original problem consisting of m1 positive and m2 negative examples. The CPU time
(in seconds on an IBM 3090-600E computer) and the number of clauses derived this
way are presented in the columns labeled “Time1” and “K1”, respectively.

Since in these experiments the “hidden logic” is also known to us, the original
system can be compared with the derived system by asking both systems to classify
10,000 randomly generated examples. The corresponding accuracy rates are pre-
sented in the column labeled “A1.” The next phase in these experiments was to apply
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the clique decomposition approach. The original problem with the m1 and m2 exam-
ples was decomposed into a number of smaller problems according to the clique
cover approach described at the end of Section 8.4. Note that the natural decompo-
sition via the connected component approach was not used in these tests. We only
used the decomposition approach imposed by the sequence of the maximum cliques
(as described in Sections 8.3 and 8.4).

The number of cliques which was generated for this purpose is depicted under the
column labeled “Cliques.” The value of ω(Ḡ) is depicted under the column labeled
“Limit.” The values under “Time2” and “Time3” present the CPU time required by
the revised B&B algorithm (only) described in Chapter 3 and the calculation of the
cliques, respectively. The values under “Time4” (total CPU time when the clique
decomposition is used) are the sum of the values in the columns labeled “Time2”
and “Time3.” The number of clauses of the proposed systems is under the column
labeled “K2.” Finally, the values under “A2” are the accuracy rates when the system
proposed by the decomposition approach and the original system are compared.

The computational experiments shown in Table 8.2 were performed for groups
of random “hidden logics” with 10, 20, 30, 40, and 50 clauses. These results indicate
that the limit provided by Theorem 8.3 (i.e., the values of ω(Ḡ) in column “Limit”)
is rather tight. For instance, when K0 = 40, the average number of clauses derived
by using B&B without decomposition was equal to 21.8 versus 19.4 being the aver-
age lower limit. That is, the B&B approach returned systems of very small or even
probably of minimal size.

A “hidden logic” was generated randomly with a predetermined number of CNF
clauses, say K0. Suppose that two collections of positive and negative examples are
generated such that all positive examples are accepted by the K0 clauses, while each
negative example is rejected by at least one of the previous clauses. If r denotes the
minimum number of CNF clauses which satisfy the requirements of the previous
collections of positive and negative examples, then from the previous consideration
the following relation follows to be true: K0 ≥ r .

When one examines the sizes of the systems returned when the clique decompo-
sition approach was used, it can be observed that most of the time the decomposition
approach returned systems with at most 10% (on the average) more CNF clauses
than without decomposition. However, this was done with a fraction of the CPU
time when compared with no decomposition.

For instance, when K0 = 40, then on the average, the decomposition approach
returned systems with 24.2 clauses (versus systems with 21.8 clauses without decom-
position) by consuming, on the average, 0.13 CPU second versus 192.87 CPU
seconds without the clique decomposition. That is, in the above test problems one
obtains a system with at most 10% more clauses, but in return, realizes a gain of an
almost 1,500 times speedup on CPU time!

The results in Table 8.3 are similar to those in Table 8.2. However, the lower
bound (i.e., the value of ω(Ḡ)) described in Theorem 8.3 is considerably less tight.
This is seen by the size of the gap between the values in column “K1” (or “K2”) and
column “Limit.” Also, now the CPU times are significantly much higher, since we
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are dealing with larger and more difficult problems. At the same time, the CPU times
are more unpredictable.

For instance, observe that when K0 = 10, test problem 2B10 took 17,960.00
CPU seconds for computing the required cliques. This time is obviously excessive
when compared with the times in the rest of the problems in these experiments. The
CPU times became more variable when the “hidden logics” had more clauses (which
naturally resulted in harder problems).

However, even now the results suggest that the proposed clique decomposition
approach may significantly reduce the CPU requirements in solving large problems
with only a moderate increase on the number of the derived clauses. Finally, it is
remarkable to observe that in terms of the accuracy rates the systems derived by
using the decomposition approach are almost equally accurate as the systems derived
without the clique decomposition (which are computed at much higher CPU time
requirements).

From the above analyses and computational results it becomes evident that the
rejectability graph provides at least two benefits:

(i) When the value of ω(Ḡ) is rather high, the value of ω(Ḡ) can serve as a tight
lower bound on the minimum number of clauses derivable from positive and
negative examples. Of course, the clique cover can still be used for decomposing
a large inductive inference/data mining problem;
and

(ii) When the value of ω(Ḡ) is low (and hence might be a large gap between ω(Ḡ)
and r ), the rejectability graph can still be useful in decomposing a large inductive
inference/data mining problem because it may lead to a significant reduction of
the CPU time.

These decompositions are based on constructing a sequence of cliques. This
operation depends on the algorithm used to determine the maximum clique in a
graph. Present algorithms are rather efficient when the graph is sparse (as is the case
with the rejectability graphs in the problems described in Table 8.2). In our com-
putational experiments we used the clique algorithm described in [Carraghan and
Pardalos, 1990]. This algorithm is considered to be very good for sparse graphs and
it is often used as a benchmark in the literature.

However, when the graphs become dense, this clique algorithm becomes too
slow. Very often (around 20%–30% of the time) we had to abort tests running for
the results in Table 8.3, because the clique construction phase of our program would
take too long (more than 5 hours on an IBM 3090-600E mainframe computer).
We believe that other current algorithms may be more efficient for dense graphs.
Such algorithms are the maximum clique algorithm described in [Pardalos and
Rogers, 1992] or the ones developed by Balas and his associates [Balas and Xue,
1993], [Balas and Niehaus, 1994] or even some newer ones [Zhang, Sun, and Tsang,
2005], and [Solnon and Fenet, 2006].

One issue became profoundly apparent in this investigation. Future develop-
ments in determining a maximum clique in a graph, will directly benefit the efficient
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solution of large inference problems by employing the rejectability graph and the
decomposition approaches described in this chapter.

8.6 Concluding Remarks

The paramount importance of data mining and knowledge discovery from data sets
creates an immense demand for being able to process large collections of data. It also
increases the pressure on creating Boolean expressions which have a small number of
clauses. The rejectability graph, which was introduced and discussed in this chapter,
provides the means for establishing a lower bound on the number of CNF or DNF
clauses which can be inferred from positive and negative examples.

This graph also provides an effective and intuitive way for partitioning the origi-
nal data and, thus, solve large-scale learning problems. Furthermore, the rejectability
graph suggests a time efficient approach for decomposing the original problem into
a sequence of smaller problems and still infer a compact Boolean expression from
the partial solutions of the smaller problems.

It should be emphasized here that any other data mining approach (such as neural
networks, decision trees, support vector machines, and so on) could be used in con-
junction with these graph-based decomposition. This approach could benefit such
methods when they solve large-size problems (and not necessarily only when one
needs to infer a small-size system of some kind). Of course, of critical importance
here is to have the time savings due to decompositions be significantly larger than
the CPU time needed to determine these decompositions.

The previous findings were discussed in terms of two learning algorithms. The
first algorithm is a greedy approach (i.e., the OCAT approach) and is based on
the branch-and-bound algorithm described in Chapter 2 of this book. The second
approach is based on formulating a satisfiability problem [Kamath, et al., 1992] and
then solving it by using an interior point method [Karmakar, et al., 1991] (see also
Chapter 2).

Finally, it is possible for the rejectability graph to have even more interesting
properties than the ones described in this chapter. For instance, one possible exten-
sion might be to define a rejectability graph even when the data are not binary or
have missing values. More research in this direction may reveal more connections
between graph theory and the learning from examples problem.
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Chapter 9

The Reliability Issue in Data Mining: The Case of
Computer-Aided Breast Cancer Diagnosis

9.1 Introduction

Almost any use of a data mining and knowledge discovery method on a data set
requires some discussion on the accuracy of the extracted model on some test data.
This accuracy can be a general description of how well the extracted model classi-
fies test data. Some studies split this accuracy rate into two rates: the false-positive
and false-negative rates. This distinction might be more appropriate for most real-
life applications. For instance, it is one thing to wrongly diagnose a benign tumor
as malignant than the other way around. Related are some of the discussions in
Sections 1.3.4, 4.5, and 11.6.

Usually, such studies suggest that higher accuracy rates may be achieved by using
more and more data points as training data. This chapter studies in depth the reliabil-
ity issue of models derived by the use of data mining approaches. It shows that even
billions of observations, may still not be sufficient to accurately capture the behavior
of a system under consideration.

It uses a real-life application which is based on the diagnosis of breast cancer.
Although the results presented in this chapter cannot be directly generalized to all
data mining and knowledge discovery application areas, one may argue that these
results are reflective of what happens in many other areas as well. The discussions
presented in this chapter are based on the research results reported in [Kovalerchuk,
et al., 2000].

9.2 Some Background Information on Computer-Aided Breast
Cancer Diagnosis

Breast cancer is the most common cancer in women in the U.S. For instance, there
were an estimated 182,000 cases in 1995 [Wingo, et al., 1995]. The most effec-
tive tool in the battle against breast cancer is screening mammography. However,
several retrospective analyses have found diagnostic error rates ranging from 20%

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 9,
c© Springer Science+Business Media, LLC 2010
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to 43% [Bird, et al., 1992], [Burhenne, et al., 1994]. Also, of the breast biopsies
performed due to suspicious mammograms, 70%–89% will be found benign [Hall,
1988]. Elmore, et al., in [1994] studied the variability of radiologists’ interpreta-
tion of a set of mammograms. They observed an average intraobserver variability
of approximately 8% in addition to a 19% interobserver variability for the diag-
nosis of cancer, for which the variability in management recommendations was 25%.
They also found that 9 out of 10 radiologists recognized fewer than 3% of the mam-
mograms which they screened 5 months earlier, while 1 out of 10 claimed to have
recognized about 25% of the cases [Elmore, et al., 1994]. These startling statistics
and other discussions on computer-aided diagnosis (CAD) [Kopans, 1994], [Gurney,
1994], [Boone, 1994] clearly demonstrate the need for (and the possible magnitude
of) improvements in the reliability of breast cancer diagnosis.

Today, with the proliferation of powerful computers, a great effort is directed
toward developing computerized methods that can assist radiologists in breast cancer
diagnosis. Currently, such methods include neural networks, nearest neighbor
methods, discriminant analysis, cluster analysis, decision trees, and linear program-
ming-based methods (see, for instance, [Gale, et al., 1987], [Getty, et al., 1988],
[Swets, et al., 1991], [D’Orsi, et al., 1992], [Wu, et al., 1993], [Vyborny, 1994],
[Vyborny and Giger, 1994], [Mangasarian, 1993] and the references mentioned in
Section 2.2). These methods extract general diagnostic models which are based on a
sample of specific cases. Thus, the better the available data represent the underlying
models, the more accurate the predictions based on the inferred models can become.
Therefore, these methods rely on obtaining representative samples.

Often the available training data are insufficient to achieve desirable prediction
accuracy. In other words, the available knowledge is often insufficient to make con-
fident recommendations. According to Johnson [1991], the use of Bayesian models
in medical diagnosis can be controversial, if not unethical, because the fundamental
requirement of strict randomness rarely occurs and it can rarely be tested with the
available training data. This critical issue is further elaborated in Sections 9.3 and
9.4.

Monotonicity of the data is a frequent property (although at different degree)
that has not been adequately utilized by traditional approaches. This property has
the potential to significantly improve the reliability of breast cancer diagnosis (and
in many other areas too). The monotonicity approach described in this chapter does
not assume a particular model and in this sense maintains a general representation
power. However, it should be stated at this point that if the existence of an appropriate
parametric model (as described by Duda and Hart in [1973]) can be established,
then its application might lead to a higher degree of confidence than the use of the
monotonicity approach described in this chapter. Note that in Chapters 10 and 11
of this book the monotonicity property and some related data mining algorithms are
discussed in more detail.

This chapter is organized as follows. Section 9.3 introduces some reliability
criteria of computer-aided breast cancer diagnosis. The same section also uses these
criteria to analyze the reliability of some published diagnostic results which are based
on neural networks. Section 9.4 is devoted to the representation/narrow vicinity
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hypothesis. Section 9.5 presents the results of the validation of this hypothesis on
11 mammographic and related clinical attributes. The last section summarizes the
main results of this study and formulates some directions for future research. Two
appendices to this chapter provide more details, or links to more discussions, on the
techniques used in the previous sections.

9.3 Reliability Criteria

Most experts would agree that the validity and accuracy (reliability) of a computer-
aided diagnostic system should be reasonably high for clinical applications.
To explore the issue of reliability, assume that we have the 11 binary (0 or 1 value)
diagnostic attributes described in Appendix I of this chapter. This example is a rather
simple one since it assumes only 11 attributes which are binary valued and the entire
setting is assumed to be deterministic (i.e., a given case always belongs to the same
class). However, this illustrative setting is still sufficient to provide the main motiva-
tion of the key concepts described in this chapter. By using the previous 11 attributes,
each medical case can be expressed as a combination of binary values defined on
these attributes. For instance, the ordered sequence (01111100011) describes the
case with “0” value for the 1-st, 7-th, 8-th, and 9-th attributes and with “1” value for
the rest of them. Furthermore, by considering the definitions in Appendix I of this
chapter, the above binary vector means that:

(1) The number of calcifications/cm2 is small (value 0);
(2) the volume (in cm3) is small (value 1);
(3) the total number of calcifications is large (value 1);
(4) the irregularity in the shape of individual calcifications is marked (value 1);
(5) the variation in the shape of calcifications is marked (value 1);
(6) the variation in size of the calcifications is marked (value 1);
(7) the variation in density of the calcifications is mild (value 0);
(8) the density of the calcifications is mild (value 0);
(9) no ductal orientation is present (value 0);

(10) the comparison with previous exam is “pro cancer/biopsy” (value 1);
(11) the associated findings are “pro cancer/biopsy” (value 1).

Note that the grade “small” was deliberately coded differently for the number of
calcifications/cm2 and the volume (in cm3). This step enabled us to take advantage
of the monotonicity property (as described later), which is of critical importance to
the effectiveness of the proposed method.

Next, a computer-aided diagnostic (CAD) system which is based on the previous
11 binary attributes should be able to categorize new cases represented by binary
vectors. Each such case is assumed to be either in the “highly suspicious for malig-
nancy” class or in the “not highly suspicious for malignancy” class and in only one of
them. That is, in mathematical terms a CAD system operates as a discriminant func-
tion, say f (x1, x2, . . . , xn), which is defined on the space of n attributes denoted
as x1, x2, . . . , xn . In order to help fix ideas, assume that a discriminant function for
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the current illustrative example was constructed from a sample of 80 training cases
(each of which is either highly suspicious for malignancy or not highly suspicious for
malignancy). It should be noted here that many, if not the majority of, published stud-
ies consider sample sizes of about 80 cases each [Gurney, 1994]. Next, suppose that
the function f discriminates the entire state space (which in this illustrative scenario
is of size 211 = 2,048) by categorizing 78% (i.e., 1,597) of the cases as suggestive
of cancer and the remaining 22% (i.e., 451) as negative for cancer.

Some key definitions follow next. The state space expresses all possible combi-
nations of attributes. Note that the concept of the state space is different from that
of the population. In fact, the population is a subset of the state space, because the
actual population may not exhibit all the attribute combinations. That is, some cases
(examples) may not occur in reality and can be eliminated from further considera-
tion. As a result, the sample set (i.e., the training data) consists of elements (binary
vectors in our illustrative example) drawn, with replacement, from the population
rather than from the state space. Another result is that a sample may not represent
the population and the state space equally. For instance, if a population includes
1,843 unique cases (i.e., 90% of the state space of 2,048 cases), then a sample of 80
vectors covers at most 3.9% of the state space and 4.3% of the population.

Therefore, in this illustrative scenario, it is assumed that 80 different cases were
used to represent 2,048 cases. At this point one may wish to ask the question: “Is the
function, which was inferred using a training sample of no more than 4.3% of the
population, sufficiently reliable to recommend surgery for new patients?” While this
function can be an interesting one, its statistical significance is questionable for a
reliable diagnosis of cancer. If one considers multivalued, instead of binary attributes,
then a sample of 80 (which is a common sample size in such published studies)
becomes a miniscule portion of the entire state or population space. This statistical
weakness becomes even more dramatic if one considers more attributes.

Next we define some key parameters for dealing with the reliability issue. Let
us denote the number of unique cases (examples) in a sample as S, the size of
the state space as N , and the population size as P . Obviously, the following rela-
tionship is always true: N ≥ P ≥ S. It should be observed that the sample size
might not be the same as the number of training cases, since the sample size is the
number of unique cases. For instance, patient #1 and patient #2 may correspond
to the same combination, say (01111100011). Therefore, the size of the sample set
may be smaller than the number of cases in the sample. For example, the 15,000
mammograms of breasts without malignancy (unpublished data provided to us by
the Woman’s Hospital in Baton Rouge, Louisiana, in 1995) can be represented by
fewer than 300 combinations of 11 attributes. Thus, the number of cases here is
about 50 times greater than S.

Next we define the index of potential reliability by the ratio S/N and the index
of actual reliability by the ratio S/P . In practice, it is very difficult to accurately
estimate the size of the population, and consequently the index of actual reliability
S/P . Obviously, if one has a sample which covers the entire population, then the
index of actual reliability is equal to 1. On the other hand, if one has a proper subset
of the population, then the size of the population cannot be determined directly.
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Note that it is possible to have different levels of reliability for different diagnostic
classes within the same training set. In order to demonstrate this, we next compute
the indices of potential reliability for the previous 11 attributes. Suppose that there
are N1 = 1,600 “highly suspicious for malignancy” vectors in a state space (which is
of size 211 = 2,048). Then the remaining N0 = 448(= 2,048 − 1,600) cases corre-
spond to “not highly suspicious for malignancy” vectors. Next, suppose that there are
S1 = 50 unique “highly suspicious for malignancy” cases in a training set. Similarly,
let the class “not highly suspicious for malignancy” have S0 = 400 unique cases in
this training set. Then the indices of potential reliability for the respective groups are
S1/N1 = 0.03125(= 50/1,600) and S0/N0 = 0.89286(= 400/448), respectively.

In the light of the previous reliability indices, we next consider the neural network
(NN) approach described in [Wu, et al., 1993]. These authors constructed two diffe-
rent feedforward neural networks (NNs) which contained two layers of process-
ing elements (PEs). Both NNs contained 43 input units, each corresponding to an
extracted radiographic attribute, and a single PE on the output layer representing the
diagnosis (which was 0 for benign and 1 for malignancy). The two NNs differ merely
by the number of PEs on the hidden layer; the first one used 10 while the second one
used only 5 PEs. For each NN independently, they trained the PEs by back propa-
gating their errors. For the training process, a set of 133 cases was selected from a
mammography atlas. In addition, 60 other cases (of which 26 were malignant and 34
were benign) were randomly selected to evaluate the accuracy of the trained neural
network. An experienced radiologist extracted the 43 attributes from each case and
rated each attribute on a scale from 0 to 10.

One can compute the potential reliability, as expressed by the sample/state space
ratio, for the training data. The state space was defined on 43 attributes, each using
11 grades. This state space corresponds to a total number of 1143 different cases.
Thus, S/N = 133/1143 = 2.21 × 10−43. This means that the available sample is
2.21 × 10−41%, an extraordinarily miniscule fraction, of the total possible number
of different vectors on the state space. Note that for a particular number of training
cases, the reliability index depends on the size of the attribute set. As a result, 133
cases may be an insufficient number of cases for the previous state space, while say
32 cases could be sufficient for a reliable diagnosis in a smaller state space. Suppose
that one has only 5 binary diagnostic attributes. Then, the state space consists of
32(= 25) combinations. If all the 32 training cases represent unique vectors, then the
size of the sample is 32 and the sample/state space ratio is equal to 1.00(= 32/32),
which is much better than the previous value of 2.21 × 10−41%. This example illus-
trates that the relative number of cases (i.e., the indices of reliability) is crucial, while
a large number of cases may not be as valuable. Therefore, the question which is nat-
urally raised here is:

“Can a relatively small number of training cases be considered reliable in
order to assist in accurately diagnosing new (and thus unknown) cases?”

Some neural network studies (e.g., [Baum and Haussler, 1989]) suggest that
the number of cases should be no less than 10 times the number of connections
(i.e., the parameters needed to be estimated), to reliably train a network. This
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measure is similar to our index of potential reliability expressed as S/N . Gurney
in [1994] showed that this relatively weak requirement is not fulfilled in breast
cancer CAD methods. For example, the largest neural network considered in [Wu,
et al., 1993] has 43 input units, 10 hidden layer PEs, and a single output PE.
Thus, this network has 440(= 43 × 10 + 10 × 1) connections which is less than
532(= 4 × 133), where 133 is the number of cases used to estimate the weights for
these connections.

Boone in [1994] disputed the 10:1 requirement on the number of cases versus the
number of connections. He compared the neural network with biological networks
(e.g., radiologists) and argued that for biological networks the ratio is much worse,
over 1010 times less, than the neural network studies criticized by Gurney [1994].
Thus, Boone asked: “Is there any reason that we should hold a computer to higher
standards than a human?” Maybe not, but we should ask for both systems: “Is learn-
ing based on a small training subset sufficiently reliable to distinguish suspicious
from non-suspicious (for malignancy) cases given the vast diversity of mammo-
graphic images?”

Machine learning theory (see, for instance, [Schapire, 1992], [Machine Learning,
1995a; 1995b], and [Computational Learning Theory, 1995a; 1995b]) addresses,
among other issues, the problem of concept learning. It has been shown that there are
relatively simple concepts that no algorithm is capable of learning in a reasonable
amount of time (i.e., in polynomial time). The Probably Approximately Correct
(PAC) learning theory, as introduced by Valiant in [1984] (see also [Angluin, 1988],
and [Haussler and Warmath, 1993]), provides a popular model of learnability (see
also Section 2.2).

The machine learning literature provides a plethora of families of relatively
simple concepts which cannot be learned reliably in this sense (see also the previ-
ous references). Therefore, the question of reliability is among the most fundamen-
tal questions of scientific rigor and practical data mining and knowledge discovery
applicability to mammographic diagnosis. In this chapter we explore the following
two key questions:

(i) “Are accessible and relatively small samples sufficiently representative for
learning?” and

(ii) “how can a broad range of mammographic attributes be evaluated?”

9.4 The Representation/Narrow Vicinity Hypothesis

The problems of the sample/space ratio and the sample/population ratio reliability
criteria are part of a general problem of many data mining methods. Data mining
methods such as neural networks, methods based on mathematical logic, decision
trees, and so on, generalize from prototypes (i.e., training sets). That is, these
approaches propose models that can discriminate new cases which were not among
the prototypes (training cases). A common fundamental hypothesis, supporting small
samples in data mining, is the hypothesis that a small sample is representative of the
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entire population. This representation hypothesis is best stated by Miller, et al. in
[1992] (on page 462) as follows: “The training data must still form a representative
sample of the set of all possible inputs if the network is to perform correctly.” The
same authors also suggested that: “The principal problems which must be addressed
when producing a complete network application are: collecting and classifying suf-
ficient training and testing data, choosing a valid data presentation strategy and an
appropriate network architecture.”

Therefore, without confirming the representation hypothesis as it applies to
mammography, data mining with small samples may be of questionable reliability.
In addressing this issue we study a restrictive version of the representation hypo-
thesis, namely, the hypothesis of narrow vicinity (or the NV hypothesis):

All real possible cases are in a narrow vicinity of an accessible small train-
ing sample.

If the NV hypothesis can be accepted, then we may generalize the training sample
(of S vectors) to the actual population (of P vectors), but not to the remaining
(N − P) vectors, which do not represent feasible cases anyway. More formally, the
NV hypothesis indicates that the P/N ratio is very small, i.e., the size of the actual
population P is significantly less than the size of the state space N . If, for instance,
S = 80, P = 160, and N = 2,048, then the P/N ratio is equal to 0.078. Also,
the index of the actual reliability S/P(= 0.50) is significantly greater than the index
of potential reliability S/N (= 0.039). Therefore, the NV hypothesis provides the
grounds to generalize from a small training subset. In Appendix II of this chapter
we describe some methods which can allow one to estimate the P/N , S/N , and
S/P ratios without having the actual population for some typical mammographic
and clinical attributes.

The problem of narrow vicinity is graphically illustrated in Figure 9.1. This figure
shows the areas (i.e., the narrow vicinities) surrounding the points that were used to
train a hypothetical CAD system. The small ovals and rectangles represent test cases
from the “noncancer” and “cancer” diagnostic classes, respectively. Next, suppose
that the actual borderline is the thick line near the “noncancer” training data and that
linear discriminant analysis provided the dashed line. Then, the dotted rectangles
will be misclassified by the estimated discriminant line. This illustrative example
indicates that the extrapolation of training cases which are far away from their narrow
vicinities may lead to dramatically inaccurate conclusions.

Our concerns about insufficient training data and the violation of the NV hypo-
thesis were confirmed for our actual data set. We used 156 actual cases, of which
77 were malignant, and 79 were benign, provided to us by the Woman’s Hospital
in Baton Rouge, Louisiana, in 1995. The cases were defined on the 11 attributes
of clustered calcifications with the diagnostic classes “malignant” and “benign” as
described in Appendix I. A raw version of this data set can be found at the follow-
ing URL: http://www.csc.lsu.edu/trianta (i.e., the webpage of the author) and is
also briefly reviewed in Chapter 15 of this book. We analyzed these data by using
Fisher’s linear discriminant analysis [Fisher, 1938], [Fisher, 1936], and [Johnson and
Wichern, 1992]).
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Figure 9.1. Comparison of the Actual and Computed Borders Between Diagnostic Classes
(a Conceptual Representation).

By using linear discriminant analysis (LDA) one can estimate the line that mini-
mizes the misclassification probability (given that this linear combination of the
attributes follows a normal distribution and the classes have the same variance–
covariance matrix). For the Woman’s Hospital data, the line provided by LDA was
able to correctly classify only 76% of the 156 cases. That is, a significant portion
of the malignant cases were classified as benign and vice versa. Note that the dis-
criminant analysis framework is not capable of handling much more complex classi-
fication systems. For example, if the variance–covariance matrices are unequal, then
the classification model becomes quadratic and it may lead to some strange results
in dimensions higher than 2. This situation indicates the need for an entirely new
framework of assumptions.

The classification models (patterns) should be derived from the narrow vicinities
of the available points. However, if one focuses only on the narrow vicinities of
the available points, then there is a possibility to have too few data points and thus
the derived results may not be statistically significant on an 11-dimensional space.
These observations are in direct agreement with the sample/population space (S/P)
ratio problem discussed earlier. Furthermore, this brief analysis indicates the need for
developing new inference approaches capable of dealing with the previous methodo-
logical weaknesses, which may wrongly extrapolate away from the observed points.
Related to this topic is also the discussion in Section 11.6.
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9.5 Some Computational Results

A detailed description of the proposed method, and the specific steps, can be found
in [Kovalerchuk, Triantaphyllou, and Vityaev, 1995], [Kovalerchuk, Triantaphyl-
lou, and Ruiz, 1996], [Kovalerchuk, Triantaphyllou, Deshpande, and Vityaev, 1996]
and also in Chapter 10 which describes some recent developments in this area.
This method is also briefly summarized for this particular medical application in
Appendix II of this chapter.

At first, let us note that the previous percentages of 78% and 22% of “cancer”
and “noncancer” cases, respectively, are close to the actual percentages given in
Section 9.3. About 80% of all possibilities in the state space indicate suspicion for
cancer and recommendation for biopsy/short-term follow-up. A more detailed anal-
ysis has also shown that the borders of the biopsy/nonbiopsy regions are near the
bottom of the state space (i.e., close to the vector containing all zeros).

We have found that our state space, as defined on the 11 binary diagnostic
attributes, consists of 7.42% of possible cases (binary vectors) for which “biopsy/
short-term follow-up is not necessary,” and 92.58% of the vectors for which “biopsy/
short-term follow-up is necessary.” Similarly, this state space consists of 86.7% of
“highly suspicious for malignancy” cases and 13.3% of “not highly suspicious for
malignancy” cases (see also Table 9.1).

In order to understand the actual implications of the above issues one needs to
consider the information derived by using actual historic cases. Suppose that one
wishes to determine the above borders and percentages by using some sampled data
S, which include cases of all examined patients at a hospital during a single year.
At the Woman’s Hospital in Baton Rouge, Louisiana (unpublished data, 1995) there
are 15,000 new cases with complete data each year. Approximately 0.2% of these
patients have cancer and 99.8% have no cancer. Approximately 1.1% of these 15,000
women will undergo biopsy/short-term follow-up while the remaining 98.9% will
receive routine follow-up.

The situation in the state space is almost the reverse of the real-life situation
found in the Woman’s Hospital experience, namely, 0.2% and 99.8%. These numbers
indicate that in a population of 15,000 mammograms we will have just 34 cases with
cancer. Let us take this sample to discriminate 1,775 vectors representing suspicious
findings (i.e., 86.7% of the total vectors) and the remaining 13.3% (i.e., 273 vectors)
suggestive of benign lesions. Here the sample/space (S/N ) ratio for cancer is equal
to 34/1,775 = 0.019 (i.e., 1.9%) and for noncancer we have a ratio of 15,000/273 =
54.94 (i.e., 5,495%). Thus, we have a large surplus sample of patterns (i.e., training
examples or data points) which are not representative of cancer and a very small
sample representing highly suspicious findings indicating the presence of cancer (see
also Table 9.1 and Figures 9.2 and 9.3). Moreover, 1.9% is an upper estimate for the
S/N ratio because different cases can be represented by the same combination of
attributes.

The analysis presented in Figures 9.2 and 9.3 shows that, in general, the narrow
vicinity (NV) hypothesis is not valid for mammographic evaluation. Recall that this
is exactly the hypothesis implicitly used by all traditional pattern recognition/data
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Table 9.1. Comparison of Sample and Class Sizes for Biopsy and Cancer (from Woman’s
Hospital in Baton Rouge, Louisiana, Unpublished Data, 1995).

Sample Class Size in Sample/Space
Size State Space Ratio

Total size 15,000 2,048 7.32

Cases with Cancer 34 1,775 0.02
Percent 0.20 86.70

Cases without Cancer 14,966 273 54.82
Percent 99.80 13.30

Number of Biopsies 165 1,896 0.09
Percent 1.10 92.58

Number of Nonbiopsies 14,835 152 97.60
Percent 98.90 7.42

Figure 9.2. Relations Between Biopsy Class Size and Sample.

mining methods in breast cancer diagnosis! The diagnostic parameters which we
used are typical for mammographic diagnosis [Wu, et al., 1993].

The introduction of digital mammography has spawned a great deal of research
in artificial intelligence/data mining techniques applied to breast cancer diagnosis.
These methods range from K -nearest neighbor models (e.g., [Hojjatoleslami, and
Kittler, 1996]) to the application of genetic algorithms (GAs) (e.g., [Sahiner, et al.,
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Figure 9.3. Relations Between Cancer Class Size and Sample.

1996]). However, the majority of these studies are concerned with the application of
neural networks to extract attributes and classify tumors. For some closely related
developments in this particular area the interested reader may want to consult the
work reported in [Chan, et al., 1995], [Floyed Carey, et al., 1994], and [Zhang, et al.,
1994].

9.6 Concluding Remarks

This chapter argued that the development of reliable CAD/data mining methods for
breast cancer diagnosis requires more attention on the problem of the selection of
training and testing data and processing methods. Strictly speaking, all CAD/data
mining methods are still very unreliable in spite of the apparent, and possibly for-
tuitous, high accuracy of cancer diagnosis reported in the literature. Our computa-
tions clearly show that a standard random selection of test cases [Wu, et al., 1993]
does not give a true picture of the accuracy/reliability issue of breast cancer diagno-
sis. The Receiver Operator Characteristic (ROC)-based analysis (see, for instance,
[Kegelmeyer, et al., 1994], [Jiang, et al., 1996], [Huo, et al., 1996], and [D’Orsi,
et al., 1992]) which is used to evaluate the accuracy of diagnosis suffers from this
weakness.

There are several approaches and methods which can be used to improve this
situation (some of them were used in our studies). Nevertheless, the low reliability
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of CAD/data mining should be recognized by the scientific community and their
application should be reconsidered. It should be emphasized here that the problem
is not only in the methods themselves. Not only are they implemented in situations
where they are inappropriate, but they also provide a false sense of security since the
literature tends to inflate their reliability. Reliable diagnosis can be obtained if:

(a) Research on the attribute space has shown that the chosen training data actually
represent the border between diagnostic classes, and

(b) the mathematical method to be used can extract this border.

The main advantage of the methods which we used is that they allow one to
identify and evaluate the reliability of CAD methods. Standard random selection of
test cases (training examples) often does not adequately represent the critical border
points (see also Figure 9.1). An approach based on the concept of monotonicity of
the data allows one to select test cases near the border of diagnostic classes, i.e., criti-
cal points for verifying those cases that are regarded as the borderline between the
benign and the malignant cases. The last and most important point is that the applied
method can improve gains in accuracy and construct reliable diagnostic (discrimi-
nant) functions. In summary, this chapter focused on the following four main issues
related to computerized breast cancer diagnosis and data mining, in general:

(i) The state space of all possible attributes may be astronomically large, and as a
result, the size of the population (which is a subset of the state space) may be
of the same magnitude.

(ii) Most samples represent a tiny fraction of the possible population space. There-
fore, results obtained by traditional approaches, although they might be correct
on some test cases, are not statistically significant, unless the representa-
tion/narrow vicinity (NV) hypothesis can be accepted.

(iii) The representation/narrow vicinity (NV) hypothesis may not always be valid.
(iv) Fortunately, real-life data may exhibit the monotonicity property. Approaches

which explicitly use this critical property may alleviate some of the previous
problems. The approach proposed in Chapters 10 and 11 and which uses the
monotonicity property, may offer an effective and efficient way in overcoming
these reliability problems.

Finally, it should be stated that we used the paradigm of breast cancer diagno-
sis because it is a socially and medically critical subject and because it possesses
important characteristics that require a critical appraisal of the reliability issue in a
real-life situation. It is expected that most of the findings described in this chapter
can be extended to other domains too.
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Appendix I

Definitions of the Key Attributes

The main study described in this chapter was performed for the binary attributes
presented below. We deliberately used nonspecific terms, such as small, large, pro
cancer, and contra cancer in order to allow us to further refine the language.
An approach which uses nonbinary values and which is based on fuzzy logic is
described in [Kovalerchuk, et al., 1997] and also in Chapter 16 of this book. Also,
the terminology used in the following paragraphs is deliberately simplified because
the emphasis is on the technical procedures.

The definitions of indirect diagnostic attributes, along with their meaning, are as
follows:

x1 – Amount and volume of calcifications
(0-contra cancer/biopsy;
1-pro cancer/biopsy).

In addition, x1 was considered to be a function ψ(w1, w2, w3) of the attributes
w1, w2, w3 defined as follows:

w1 – Number of calcifications/cm2

(1-large; 0-small)
w2 – Volume, in cm3 (approximate)

(1-small; 0-large)
w3 – Total number of calcifications

(1-large; 0-small)

x2 – Shape and density of calcifications
(0-contra cancer/biopsy;
1-pro cancer/biopsy).

Note that we considered x2 as a function ψ(y1, y2, y3, y4, y5) of y1, y2, y3, y4, y5,

which are determined as follows:

y1 – Irregularity in the shape of individual calcifications
(1-marked; 0-mild)

y2 – Variation in the shape of calcifications
(1-marked; 0-mild)

y3 – Variation in the size of calcifications
(1-marked; 0-mild)

y4 – Variation in the density of calcifications
(1-marked; 0-mild)

y5 – Density of the calcifications
(1-marked; 0-mild)

x3 – Ductal orientation
(1-marked; 0-mild)
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x4 – Comparison with previous exam
(0-contra cancer/biopsy;
1-pro cancer/biopsy)

x5 – Associated findings
(0-contra cancer/biopsy;
1-pro cancer/biopsy)

Thus, we used a state space consisting of the 11 binary attributes w1, w2, w3, y1, y2,

y3, y4, y5, x3, x4, x5. Attributes x1 and x2 were used to construct a hierarchy of
attributes, as described next in Appendix II.
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Appendix II

Technical Procedures

9.A.1 The Interactive Approach

Next, let us consider how one can validate the narrow vicinity (NV) hypothesis when
a small sample set is available. If one has a large sample set available, then he/she
does not need the NV hypothesis. On the other hand, with a small sample, one does
not have to directly validate this key hypothesis. We developed a new methodology
to overcome these difficulties. The main idea is to extend insufficient clinical cases
with information from an experienced radiologist. Another approach is mentioned
in [Miller, et al., 1992] (on page 462): “One obvious solution to the problem of
restricted training and testing data is to create simulated data using either a com-
puter based or physical model.” We used experienced experts as a “human” model to
generate new examples.

One can ask a radiologist to evaluate a particular case when a number of attributes
take on a set of specific values. A typical query in our experiments had the following
format:

“If attribute 1 has value V1, attribute 2 has value V2, . . . , attribute n has
value Vn , then should biopsy/short term follow-up be recommended or not?
Or, does the above setting of values correspond to a highly suspicious case
or not?”

The above queries can be defined with artificially constructed vectors (as will
be explained below) or with artificially generated new mammograms by modifying
existing ones. In this way one may increase a sample size but not as much as may
be necessary. Roughly speaking, the technical weakness now is the same as before.
That is, it is practically impossible to ask a radiologist to generate many thousands
of artificial (i.e., synthetic) mammographic cases.

One can overcome these difficulties in two ways. First, if the attributes can be
organized in a hierarchical manner, then a proper exploitation of this structure can
lead to a significant reduction of the needed queries. Second, if the property of mono-
tonicity, as explained below, is applicable, then the available data can be generalized
to cover a larger training sample. The specific mathematical steps of how to achieve
the above two goals are best described in Chapters 10 and 11 of this book.

At this point it should be stated that the issue of monotonicity in Boolean
functions has been studied extensively by Hansel [1966]. Hansel proposed what has
become a famous theorem (also known as Hansel’s lemma) on the worst-case com-
plexity of learning monotone Boolean functions. However, his theorem had not been
translated into English until recently. There are numerous references to it in the non-
English literature (Hansel wrote his paper in French). This theorem is one of the
finest results of the long-term efforts in monotone Boolean functions that began with
Dedekind in [1897]. The monotonicity property and related data mining issues are
discussed further in Chapters 10 and 11.
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9.A.2 The Hierarchical Approach

One can construct a hierarchy of medically interpretable attributes from a very
generalized level to a less generalized level. For example, we considered the gene-
ralized binary attribute “Shape and density of calcification” with grades (0-“contra
cancer/biopsy” and 1-“pro cancer/biopsy”) denoted by x2. On the second level
we considered the attribute x2 to be some function ψ of five other attributes:
y1, y2, . . . , y5. That is, x2 = φ(y1, y2, . . . , y5), where

y1 – irregularity in the shape of the individual calcifications,
y2 – variation in the shape of the calcifications,
y3 – variation in the size of the calcifications,
y4 – variation in the density of the calcifications,
y5 – density of the calcifications.

For illustrative purposes we will consider the above attributes as being binary valued
with grades: (1) for “marked” and (0) for “minimal” or, equivalently, (1)-“pro cancer/
biopsy” and (0)-“contra cancer/biopsy.”

9.A.3 The Monotonicity Property

If we can identify regularities in advance, then it is possible to decrease the number
of calls to a radiologist required to classify (diagnose) particular vectors (examples
of clinical cases). Monotonicity is one such regularity and it may greatly reduce the
number of diagnoses while maintaining a general hypothesis because many non-
monotone regularities can also be represented as a combination of several monotone
regularities (see also Chapters 10 and 11 of this book).

In order to clarify how the monotonicity property can be applied to the breast
cancer diagnosis problem, consider the evaluation of calcifications in a mammogram.
For simplicity and illustrative purposes assume that x1 is the number and the volume
occupied by calcifications, in a binary setting, as follows: (0-“contra cancer/biopsy”
(or “not marked (i.e., mild);” 1-“pro cancer/biopsy” (or “marked”)). As was stated in
Appendix I, the following definitions were used:

x2 – {shape and the density of the calcifications}, with values:
0-“contra cancer/biopsy”;
1-“pro cancer/biopsy,”

x3 – {ductal orientation}, with values:
0-“contra cancer”;
1-“pro cancer,”

x4 – {comparison with previous examination}, with values:
0-“contra cancer/biopsy”;
1-“pro cancer/biopsy,”

and x5 – {associated findings}, with values:
0-“contra cancer/biopsy”;
1-“pro cancer/biopsy.”
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Given the above definitions we can represent clinical cases in terms of binary
vectors with these five attributes as (x1, x2, x3, x4, x5). Next consider the two clini-
cal cases which are represented by the two binary vectors (10100) and (10110).
The vector (10100) means that the number and the volume occupied by calcifica-
tions is “pro cancer/biopsy” (e.g., x1 = 1) and ductal orientation is “pro cancer/
biopsy” (e.g., x3 = 1) for the first case. The vector (10110) shows an extra “pro
cancer/biopsy” attribute for the second case, i.e., the comparison with the previous
examination is “pro cancer/biopsy” (i.e., x4 = 1).

If a radiologist correctly diagnosed the first clinical case (10100) as malignant,
then we can also conclude that the second clinical case (10110) should also be malig-
nant. The latter case has all the “pro cancer/biopsy” characteristics (attributes) of the
first case plus an extra one (i.e., x4 = 1). In a similar manner, if we know that (01010)
is not considered suspicious for cancer, then a second case, say (01000), should also
not be considered suspicious for cancer. This is true because the second case has
all the “contra cancer/biopsy” characteristics as the former one and, in addition, a
new “contra cancer/biopsy” characteristic. This is indicated by the replacement of
one “1” with a “0” value in the fourth attribute. These illustrative examples roughly
demonstrate the property of monotonicity in Boolean functions and indicate how our
algorithms can explicitly exploit this important property. One can combine a hier-
archical approach with monotonicity and generalize accordingly. In this way, some
major weaknesses of the traditional pattern recognition/data mining methods can be
alleviated.

9.A.4 Logical Discriminant Functions

In Chapter 10 of this book we show the mathematical procedures which can be
used to derive monotone Boolean discriminant functions. When these procedures
are applied to this problem, it can be shown that monotone Boolean discriminant
functions for the attributes on the uppermost level of the hierarchy are as follows.

For the “biopsy/short term follow-up” subproblem:

f1(x) = x2x4 ∨ x1x2 ∨ x1x4 ∨ x3 ∨ x5. (9.1)

In the above expression note that, for instance, x2x4 means x2 ∧ x4. Similar abbrevi-
ations are used throughout this discussion.

Similarly, for the second subproblem (i.e., “highly suspicious for cancer”) the
extracted function was

f2(x) = x1x2 ∨ x3 ∨ (x2 ∨ x1 ∨ x4)x5. (9.2)

Regarding the second level of the hierarchy (which recall has 11 binary attributes)
we interactively constructed the following functions (an interpretation of the attributes
is presented in Appendix I of this chapter):

x1 = φ(w1, w2, w3) = w2 ∨ w1w3, (9.3)
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and
x2 = ψ(y1, y2, y3, y4, y5) = y1 ∨ y2 ∨ y3 y4 y5. (9.4)

By combining the functions in (9.1) to (9.4) one can obtain the formulas of all the 11
attributes for “biopsy/short term follow-up” as follows:

f1(x) = (y2 ∨ y1 ∨ y3 y4 y5)x4

∨ (w2 ∨ w1w3)(y2 ∨ y1 ∨ y3 y4 y5)

∨ (w2 ∨ w1w3)x4 ∨ x3 ∨ x5,

and for “highly suspicious for cancer” cases:

f2(x) = x1x2 ∨ x3 ∨ (x2 ∨ x1 ∨ x4)x5

= (w2 ∨ w1w3)(y1 ∨ y2 ∨ y3 y4 y5)

∨ x3 ∨ (y1 ∨ y2 ∨ y3 y4 y5)

∨ (w2 ∨ w1w3 ∨ x4)x5.

The benefit of having these functions is twofold. First, they express patterns as
logical expressions (i.e., clauses of Boolean functions) which can allow us to identify
the real border between diagnostic classes. Second, they allowed us to compute the
size of the classes presented in Table 9.1 and depicted in Figures 9.2 and 9.3.



Chapter 10

Data Mining and Knowledge Discovery by Means of
Monotone Boolean Functions

10.1 Introduction

In all previous discussions the problem was how to infer a general Boolean func-
tion based on some training examples. Such a Boolean function can be completely
inferred if all possible binary examples (states) in the space of the attributes are used
for training. Thus, one may never be 100% certain about the validity of the inferred
knowledge when the number of training examples is less than 2n . The situation is
different, however, if one deals with the inference of systems that exhibit mono-
tonic behavior. The developments presented in this chapter are based on the award-
winning doctoral work of Vetle I. Torvik and in particular on the research results first
published in [Torvik and Triantaphyllou, 2002; 2003; 2004; 2006].

Thus, this chapter addresses the problem of learning monotone Boolean functions
with the underlying objective to efficiently acquire simple and intuitive knowledge
that can be validated and has a general representation power. The following key
properties strengthen the argument in favor of this objective:

Key Property 1. Monotone Boolean functions are inherently frequent in applications.

The following three examples illustrate the versatility of the monotonicity pro-
perty and how it applies to practical situations. (1) Suppose a computer tends to crash
when it runs a particular word processor and web browser simultaneously. Then,
the computer will probably crash if it, in addition, runs other software applications.
Further, suppose this computer does not tend to crash when it runs a particular CD
player and web browser simultaneously. Then, it will probably not crash when it
only runs the web browser (or only the CD player). (2) If a keyword search in a
database gives interesting hits, then hits for a proper superset of these keywords are
also probably going to be interesting. On the other hand, if a keyword search in a
database does not give interesting hits, then hits for a proper subset of these keywords
are probably not going to be interesting either. (3) With all other factors constant, a
student with a high Grade Point Average (GPA) is more likely to be accepted into a
particular college than a student with a low GPA.

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 10,
c© Springer Science+Business Media, LLC 2010
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Recent literature contains a plethora of phenomena that can be modeled by
using monotone Boolean functions. Such diverse phenomena include, but are not
limited to, social worker’s decisions, lecturer evaluation, and employee selection
[Ben-David, 1992], chemical carcinogenicity, tax auditing, and real estate valuation
[Boros, et al., 1994], breast cancer diagnosis and engineering reliability
[Kovalerchuk, et al., 1996c; 2000], signal processing [Shmulevich, 1997], rheuma-
tology [Bloch and Silverman, 1997], voting rules in the social sciences [Judson,
1999], financial systems [Kovalerchuk and Vityaev, 2006], record linkage in adminis-
trative databases [Judson, 2001; 2006], and in bibliographic databases [Torvik, et al.,
2004].

Key Property 2. Monotone Boolean functions are simple and intuitive.

This property is perhaps the most important one when human interaction is
involved since people tend to make very good use of knowledge they can easily
interpret, understand, validate, and remember. Due to the increasing computational
efficiency and storage capacity, the recent trend has been to increase the knowledge
representation power in order to capture more complex knowledge. For example, the
popular neural networks are not capable of representing very complex knowledge.
Unfortunately, even small neural networks can be hard to interpret and validate.

Key Property 3. Monotone Boolean functions can represent relatively complex
knowledge and still be validated.

Validating knowledge that is generalized from a set of specific observations
(training examples), which may be noisy and incomplete, is based on philosophi-
cal arguments and mathematical assumptions. Traditional statistical approaches tend
to require specific modeling in small dimensions, to gain a theoretical justification
for the final model. This justification is obtained at the cost of eliminating the com-
putational feasibility of learning higher dimensional models. On the other hand, the
more general the knowledge representation is, the more one tends to lose the handle
on its validation.

In practice, a great deal of effort is put into the knowledge discovery process.
Software applications are tested, diseases are researched, search engines are trained
to be intelligent, and so on. The inference process generally involves gathering and
analyzing data. Gathering the data often involves some sort of labor that far out-
weighs the computations used to analyze the data in terms of cost. Therefore, the
main objective in this chapter is to minimize the cost associated with gathering the
data, as long as it is computationally feasible.

Monotone Boolean functions lay the ground for a simple and efficient question-
asking strategy, where it may be easy to pinpoint questions whose answers make
incomplete knowledge more general or stochastic knowledge more accurate. Due
to the underlying monotonicity property, this learning strategy may significantly
increase the learning rate, as an unguided learner might not receive the relevant
pieces of information early enough in the inference process. Therefore, it is highly
desirable not only to be able to pose questions, but also to pose “smart” ques-
tions. The main problem addressed in this chapter is how to identify these “smart”
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questions in order to efficiently infer monotone Boolean functions. This chapter
focuses on the case where the monotone Boolean functions are defined on the set of
n-dimensional Boolean vectors {0, 1}n . This does not necessarily limit the applica-
tion domain as the methodology developed in this chapter can be applied to any
finite set of vectors V ⊂ Rn , and as it is shown in Chapter 11, any general Boolean
function can be represented by a set of monotone Boolean functions.

This chapter is organized as follows: The background information and the rele-
vant literature is reviewed in Section 10.2. Formal definitions of the problems and
their solution methodology are given in Section 10.3. In Section 10.4 some experi-
mental results are provided, for which a summary and discussion are given in
Section 10.5. Section 10.6 concludes this chapter.

10.2 Background Information

10.2.1 Problem Descriptions

Let V denote a finite set of vectors (i.e., examples) defined on n binary attributes.
A vector v ∈ V is said to precede another vector w ∈ V , denoted by v � w,
if and only if (iff) vi ≤ wi for i = 1, 2, . . . , n. Here, vi and wi denote the i-th
element of vectors v and w, respectively. Similarly, a vector v ∈ V is said to succeed
another vector w ∈ V , denoted by v � w, iff vi ≥ wi for i = 1, 2, . . . , n. When
v precedes (or succeeds) w, and the two vectors are distinct (i.e., v = w), then the
vector v is said to strictly precede (or strictly succeed, respectively) w, denoted by
v ≺ w (or v � w, respectively). If a vector v either precedes or succeeds w, they are
said to be related or comparable. A Boolean function defined on the set of vectors
{0, 1}n is simply a mapping to {0, 1}. A monotone Boolean function f is called non-
decreasing iff f (v) ≤ f (w)∀v, w ∈ {0, 1}n : v � w, and nonincreasing iff f (v) ≥
f (w)∀v, w ∈ {0, 1}n : v � w. This chapter focuses on nondecreasing functions,
which are referred to as just monotone, as analogous results hold for nonincreasing
functions.

Monotone Boolean functions lay the ground for a simple question-asking (i.e.,
guided learning) strategy, which forms the basis of this chapter. More specifically,
the problem of inferring monotone Boolean functions by successive and system-
atic function evaluations (membership queries submitted to an oracle) is addressed.
A monotone Boolean function can be thought of as a phenomenon, such as breast
cancer or a computer crash, together with a set of predictor attributes. An oracle
can be thought of as an entity that knows the underlying monotone Boolean func-
tion and provides a Boolean function value in response to each membership query.
As in previous treatments, an oracle may take the shape of a human expert, or it may
be the outcome of performing tasks such as running experiments or searching large
databases.

This inference problem is broken down by the nature of the oracle: whether it is
deterministic or stochastic, and whether it is two-valued or three-valued. The sim-
plest variant considers the guided inference of a deterministic monotone Boolean
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function defined on at most n Boolean attributes. This case is referred to as Problem 1
which is generalized into two different problems. The first generalization includes a
pair of nested monotone Boolean functions and is referred to as Problem 2. Since this
problem includes two oracles, it is further broken down into three subproblems 2.1,
2.2, and 2.3, differing only in the manner in which these two oracles are accessed.
The second generalization includes stochastic membership queries and is referred to
as Problem 3. A simple monotone Boolean function is shown later in Figure 10.3
while a nested pair of such functions is shown in Figure 10.4, where more details are
provided.

Problem 1 (Inferring a Monotone Boolean Function from a Deterministic
Oracle). Initially, the entire set of 2n Boolean vectors in {0, 1}n is considered to
be unclassified. That is, the values of the underlying monotone Boolean function
f are all unknown and may be 0 or 1. A vector v is then selected from the set of
unclassified vectors U and is submitted to an oracle as a membership query. After
the vector’s function value f (v) is provided by the oracle, the set of unclassified
vectors is reduced according to the following monotonicity constraints: f (w) = 0,
∀w ∈ U : w � v, when f (v) = 0, or the following monotonicity constraints:
f (w) = 1,∀w ∈ U : v � w, when f (v) = 1. Here, the relationship v � w

holds if and only if vi ≤ wi , for i = 1, 2, . . . , n, where vi and wi denote the i-th
Boolean elements (fields or attributes) of the vectors v and w, respectively. Vectors
are then repeatedly selected from the unclassified set until they are all classified (i.e.,
until U = { }). Given the classification of any unclassified vector, other vectors
may be concurrently classified if the underlying Boolean function is assumed to be
monotone. Therefore, only a subset of the 2n vectors need to be evaluated in order
to completely reconstruct the underlying function. Thus, a key problem is to select
a sequence of “promising” vectors so as to reduce (or ideally minimize) the total
number of queries (or query complexity). These queries are needed to completely
infer a hidden logic under the assumption that it is a monotone Boolean function.

Problem 2 (Inferring a Pair of Nested Monotone Boolean Functions from Deter-
ministic Oracle(s)). A pair of monotone Boolean functions f1 and f2 are called
nested when the following relationship holds: f1(v) ≥ f2(v) (or f1(v) ≤ f2(v))∀v ∈
{0, 1}n . The case when f1 ≥ f2 is addressed in this chapter as analogous results hold
for the case when f1 ≤ f2. A single monotone Boolean function does not capture the
idea of a classification intermediate to 0 and 1. However, a pair of nested monotone
Boolean functions can do so. For instance, some vectors might belong to a class with
a high probability (i.e., when f1 = 1 and f2 = 1), and some might belong to the
other class with a high probability (i.e., when f1 = 0 and f2 = 0). Other instances
might not be classifiable with a satisfactorily high probability. A pair of nested mono-
tone Boolean functions allows for this intermediate classification (i.e., when f1 = 1
and f2 = 0) to be incorporated. The case f1 = 0 and f2 = 1 is infeasible as the two
monotone functions are nested (and f1 ≥ f2). This makes the monotone Boolean
function model more powerful.

Since the inference of a pair of nested monotone Boolean functions may include
two oracles, it is further broken down into the three subproblems 2.1, 2.2, and 2.3
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(described next), differing only in the manner in which the oracle(s) is(are) accessed.
These three problems are defined to capture the main inference scenarios that may
arise in real-life applications.

Problem 2.1 (Sequentially Inferring Nested Functions from Two Oracles). For
this problem the two functions are considered to be available via their two respective
oracles where the inference situation dictates that, for example, function f1 should be
completely reconstructed before the inference of function f2 begins. In other words,
the two functions are to be sequentially inferred. This approach may simply be the
only feasible or reasonable one or it may be dictated by the cost of querying the
oracle associated with f2 far surpassing the cost of querying the other oracle.

Problem 2.2 (Inferring Nested Functions from a Single Three-Valued Oracle).
For this problem the two nested monotone Boolean functions are viewed as a single
function f taking on the three values 0, 1, and 2, corresponding to ( f1, f2) =
(0, 0), (1, 0), and (1, 1), respectively. That is, it is a ternary function. Recall that
( f1, f2) cannot take on the values (0, 1) due to the nestedness constraint f1 ≥ f2.
The single three-valued function is used to emphasize that the Boolean function
values arrive in pairs, for each vector, from a single oracle.

Problem 2.3 (Inferring Nested Functions from Two Unrestricted Oracles). This
problem is similar to Problem 2.1, in that two oracles are queried separately. Unlike
Problem 2.1, no restrictions are put on the manner in which the two oracles are
queried. At each inference step, a vector can be submitted to either of the two oracles.
In this sense, this is the least restrictive of the three problems, and it is therefore
expected that its solution approach will be more efficient.

Problem 3 (Inferring a Monotone Boolean Function from a Stochastic Oracle).
This problem is identical to Problem 1, except that the membership values are now
stochastic in nature. As in Problem 1, vectors are selected from {0, 1}n and are sub-
mitted to an oracle as membership queries. Unlike Problem 1, it is assumed that the
oracle misclassifies each vector v with an unknown probability q(v) ∈ w(0, 1/2).
That is, for a given monotone Boolean function f , the oracle returns 1 for vector v
with probability p(v) = q(v)× (1− f (v))+ (1−q(v))× f (v), and it returns 0 with
probability 1− p(v). It is assumed that the oracle is not misleading the inference pro-
cess and is better at classifying the vectors than completely random guessing, hence
the oracle’s misclassification probability is assumed to be less than 1/2.

The stochastic inference problem involves estimating the misclassification param-
eter q(v) for each vector v, as well as reconstructing the underlying function f .
These two tasks are based on a maximum likelihood framework. A monotone
Boolean function that is the most likely to match the underlying function, given the
observed queries, is referred to as the inferred function and is denoted by f ∗. Asso-
ciated with a function f ∗ are the estimated misclassification probabilities which are
denoted by q∗(v) for each vector v.

The inference process consists of two steps that are repeated successively. In the
first step, a vector is submitted to the oracle as a query. After a vector’s function
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(class) value is provided by the oracle, both q∗(v) and f ∗ may have to be updated,
according to the following monotonicity property: p(v) ≤ p(w) if and only if v �
w,∀v,w ∈ w{0, 1}n . These two steps are repeated until the likelihood of the inferred
function f ∗ matching the underlying function f is high relative to the likelihood
of any of the other monotone Boolean functions matching f . In other words, the
underlying function is considered completely inferred when the maximum likelihood
ratio for the inferred function, denoted by λ( f ∗), reaches a value that is close to 1.
Again, the key problem is to select “promising” vectors so as to reduce the total
number of queries required in this process.

10.2.2 Hierarchical Decomposition of Attributes

In some applications, the attributes may be monotone Boolean functions themselves
defined on a set of Boolean attributes at a lower level. Kovalerchuk, et al. [1996c;
2000] decomposed five breast cancer diagnostic attributes in a hierarchical manner
as follows. This is the same illustrative application as the one used in Chapter 9.
Function f1(v) describes their “biopsy subproblem” and is defined as 1 if a biopsy
is recommended for a tumor with the features described by vector v, and 0 other-
wise. Function f2(v) describes their “cancer subproblem” and is defined as 1 if a
tumor with the features described by v is highly suspicious for malignancy, and 0
otherwise. The first attribute v1 is defined as 1 if the amount and volume of calci-
fications is “pro cancer,” and 0 if it is “contra cancer.” In reality, this attribute was
inferred (through queries to a radiologist) as the following monotone Boolean func-
tion: v1(x1, x2, x3) = x2 ∨ x1x3 (see also relation (9.3) in Chapter 9). In the previous
expression recall that x1x3 stands for x1 ∧ x3. Here, the extra attributes are defined
as follows (see also Appendix I, Chapter 9):

x1 = 1 if the number of calcifications/cm2 is “large,” 0 if “small,”
x2 = 1 if the volume of calcifications (cm3) is “small,” 0 if “large,” and
x3 = 1 if the total number of calcifications is “large,” 0 if “small.”

The second attribute v2 is defined as 1 if the shape and density of calcifications
is “pro cancer,” and 0 if it is “contra cancer.” In reality, this attribute was inferred
(through queries to a radiologist) as the following monotone Boolean function:
v2(x4, x5, x6, x7, x8) = x4 ∨ x5 ∨ x6x7x8 (see also relation (9.4) in Chapter 9. Also
notice that the notation is slightly different). Here, the extra attributes are defined as
follows (see also Appendix II, Chapter 9):

x4 = 1 if the irregularity in the shape of individual calcifications is “marked,” 0
if “mild,”

x5 = 1 if the variation in the shape of calcifications is “marked,” 0 if “mild,”
x6 = 1 if the variation in the size of calcifications is “marked,” 0 if “mild,”
x7 = 1 if the variation in the density of calcifications is “marked,” 0 if “mild,”

and
x8 = 1 if the density of calcifications is “marked,” 0 if “mild.”
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Figure 10.1. Hierarchical Decomposition of the Breast Cancer Diagnosis Attributes.

In general, one can construct a hierarchy of the sets of attributes, where each set
of attributes corresponds to an independent inference problem. Figure 10.1 shows
this hierarchy for the breast cancer diagnostic attributes. The upper level consists
of the set {v1, v2, v3, v4, v5} which is linked to the sets of attributes {x1, x2, x3}, and
{x4, x5, x6, x7, x8} at the lower level. Here, the attributes v1 and v2 have to be defined
before the inference process defined on the set of attributes {v1, v2, v3, v4, v5} can
begin. In general, the inference processes at the lower level have to be completed
before the inference processes at the upper levels can begin.

The breast cancer inference problem is defined on the set of Boolean attributes
{x1, x2, x3, x4, x5, x6, x7, x8, v3, v4, v5, fi }. This problem includes a total of 212 =
4,096 vectors (states, examples) to choose from. However, it can be approached hier-
archically, as three independent problems defined on the sets {x1, x2, x3}, {x4, x5, x6,

x7, x8}, and {v1, v2, v3, v4, v5, fi }, respectively. These problems include a total of
23 +25 +26 = 104 possible vectors to choose from. Thus, the hierarchical approach
to this problem reduces the number of possible vectors to choose from by a factor of
4,096/104 ≈ 39.4.

Notice that a single monotone Boolean function is to be inferred for each of
the two sets {x1, x2, x3}, and {x4, x5, x6, x7, x8}. This corresponds to Problem 1
defined on the sets (binary spaces) {0, 1}3 and {0, 1}5, respectively. In contrast, a
pair of nested monotone Boolean functions defined on the set {v1, v2, v3, v4, v5} are
to be sequentially inferred. This corresponds to Problem 2.1 and includes the query
domain {0, 1}6.

10.2.3 Some Key Properties of Monotone Boolean Functions

An ordered set of related vectors v1 � v2 � . . . � v p is sometimes called a chain,
while an antichain (or layer) consists of a set of mutually unrelated vectors. When a
set of vectors is partitioned into as few layers as possible, a layer partition is formed.
Similarly, when a set of vectors is partitioned into as few chains as possible, a chain
partition is formed. For a particular layer partition, the layers can be ordered as
L1, L2, . . . , Lr so that a vector vi ∈ Li cannot succeed another vector v j ∈ L j , if
i < j . Let {0, 1}n denote the set of vectors defined on n Boolean attributes. The layer
partition for the set {0, 1}n is unique, while its chain partition is not unique. In fact,
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Figure 10.2. The Poset Formed by {0, 1}4 and the Relation �.

the way one partitions {0, 1}n into chains can be used effectively in the inference of
monotone Boolean functions. An example is the symmetric chain partition used by
Hansel [1966] and Sokolov [1982] as described in Section 10.2.4.

A directed graph G is often written in the form (V, E), where V denotes its set
of vertices, and E denotes its set of directed edges. Here, a directed edge from vertex
v to vertex w is written as (v,w). A directed graph (V, E) is called cyclic if it has a
sequence of edges that starts and ends with a vector v : (v, v1), (v1, v2), . . . , (vr , v)

∈ E . Figure 10.2 shows a partially ordered set (or poset for short). In general, posets
can be formed by a set of vectors V together with the precedence relation �, and
are written as (V,�). A poset can be viewed as a directed graph where each vertex
corresponds to a vector and each directed edge (v,w) represents the precedence
relation v � w. When drawing a poset as a directed graph, its edges’ directions are
often omitted without loss of information.

The graph of a poset is acyclic and so all the directions can be forced upwards on
a page by ordering the vertices by layers, as in Figure 10.2. Precedence relations that
are transitively implied by other relations are considered redundant. For example,
in Figure 10.2 the precedence relation (0000) � (1100) is redundant because it is
implied by the two precedence relations (0000) � (1000) and (1000) � (1100). For
the purpose of reducing storage and simplifying the visualization of posets, redun-
dant precedence relations are generally omitted, as in Figure 10.2.

Two posets P1 and P2 are said to be isomorphic if there exists a one-to-one
mapping of the vectors in P1 to the vectors in P2, where the precedence rela-
tions are preserved. That is, if v1 → v2 and w1 → w2, then v1 � w1 if and
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only if v2 � w2, ∀v1, w1 ∈ P1 and v2, w2 ∈ P2. For example, the poset
formed by the vectors {0000, 1001, 0100} is isomorphic to the poset formed by the
vectors {1110, 1100, 1101}. Here, one possible isomorphic mapping is as follows:
(0000)→ (1100), (1001)→ (1110), and (0100)→ (1101).

A vector v∗ is called an upper zero of a Boolean function f if f (v∗) = 0 and
f (v) = 1∀v ∈ {0, 1}n : v � v∗. Similarly, a vector v∗ is called a lower unit if
f (v∗) = 1 and f (v) = 0∀v ∈ {0, 1}n : v ≺ v∗. Lower units, denoted as LU( f ), and
upper zeros, denoted as UZ( f ), are also referred to as border vectors. For any mono-
tone Boolean function f , the set of lower units LU( f ) and the set of upper zeros
UZ( f ) are unique and either of these two sets uniquely identifies f . Boolean func-
tions are often written in disjunctive normal form (DNF) or in conjunctive normal
form (CNF) (see also Section 2.4). A DNF or a CNF representation is minimal if
removing any of its clauses results in a different mapping {0, 1}n → {0, 1}. For any
monotone Boolean function f there is a one-to-one relationship between its lower
units and its minimal DNF representation, as follows:

f (v1, v2, . . . , vn) = ∨
w∈LU( f )

(
∧

i :wi=1
vi

)
.

Similarly, there is a one-to-one relationship between the upper zeros of a mono-
tone Boolean function f and its minimal CNF representation as follows:

f (v1, v2, . . . , vn) = ∧
w∈UZ( f )

(
∨

i :wi=0
vi

)
.

For instance, the monotone Boolean function defined by its lower units {110, 101}
can be written in minimal DNF as v1v2 ∨ v1v3 (i.e., (v1 ∧ v2)∨ (v1 ∧ v3)). The cor-
responding upper zeros of the same Boolean function are {011, 100} and its minimal
CNF representation is (v2 ∨ v3)v1 (i.e., (v2 ∨ v3) ∧ (v1)). Often the operator ∧ is
omitted when writing out Boolean functions, as in the previous two examples. Since
the lower units and upper zeros are unique to a monotone Boolean function, so are
its minimal representations in DNF and CNF. Another nice property of monotone
Boolean functions is that they can be written in minimal CNF or DNF without using
the NOT (i.e., the negation) operation.

The set of all monotone Boolean functions defined on {0, 1}n is denoted by Mn .
For example, the set of all monotone Boolean functions defined on {0, 1}2 is given
by M2 = {F, v1v2, v1, v2, v1 ∨ v2, T }. Here the functions T and F are defined by
f (v) = 1,∀v ∈ {0, 1}n , and f (v) = 0,∀v ∈ {0, 1}n , respectively.

Let m( f ) denote the number of border vectors associated with a Boolean func-
tion f . It is well known (e.g., [Engel, 1997]) that m( f ) achieves its maximum value
for a function that has all its border vectors on two of the most populous layers of
{0, 1}n . That is, the following equation holds:

max
f ∈Mn

m( f ) =
(

n
�n/2�

)
+
(

n
�n/2� + 1

)
.

In this equation the first term stand for “n choose �n/2�” and so on.
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Figure 10.3. Visualization of a Sample Monotone Boolean Function and Its Values in
{0, 1}4 ( f (x) = (x1 ∧ x2) ∨ (x1 ∧ x3)).

Table 10.1. History of Monotone Boolean Function Enumeration.

(1) = 3, (2) = 6, (3) = 20

(4) = 168 by Dedekind [1897]

(5) = 7,581 by Church [1940]

(6) = 7,828,354 by Ward [1946]

(7) = 2,414,682,040,998 by Church [1965]

(8) = 56,130,437,228,687,557,907,788 by Wiedemann [1991]

The borders of any monotone Boolean function f are the only vectors that require
evaluations in order to completely reconstruct the function. Hence, the value of m( f )
works as a lower bound on the number of queries for Problem 1. The inference
problem of a monotone Boolean function reduces to the problem of inferring these
border points (vectors).

Figure 10.3 depicts a sample monotone Boolean function when n = 4. This
function is f (x) = (x1 ∧ x2) ∨ (x1 ∧ x3), where xi (for i = 1, 2, 3, 4) are binary
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attributes. The dark vectors represent the cases where this function evaluates to true
value, while the rest (semi-gray) of the vectors are the cases for which f (x) evaluates
to false. This function is completely determined if one knows the composition, for
instance, of its two lower units (as shown in Figure 10.3).

The number of monotone Boolean functions defined on {0, 1}n is denoted by
(n). That is, (n) is equal to the size (dimension) of the set Mn . All of the known
values for(n) are given in Table 10.1. For larger values of n the best known asymp-
totic is due to Korshunov [1981]:

(n) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

( n
n/2

)
e

(
1

n/2−1

)(
1

2n/2 + n2

2n+5 − n
2n+4

)
, for even n.

2

( n
n/2−1/2

)
+1

e

( n
n/2−3/2

)(
1

2(n+3)/2 − n2

2n+6 − n
2n+3

)
+
( n

n/2−1/2

)(
n

2(n+1)/2 + n2

2n+4

)
,

for odd n.

The number of pairs of nested monotone Boolean functions defined on {0, 1}n is
simply(n+1). This fact can be observed by first constructing the poset connecting
the two posets P1 = ({0, 1}n,�) and P2 = ({0, 1}n,�) associated with functions f1
and f2, respectively, and then by adding the edges corresponding to the precedence
relations f1(v) ≥ f2(v),∀v ∈ {0, 1}n . Figure 10.4 depicts the main idea of having a
pair of nested monotone Boolean functions.

10.2.4 Existing Approaches to Problem 1

Let ϕ(A, f ) denote the number of queries performed by an algorithm A, when recon-
structing (inferring) the monotone Boolean function f . A Teacher can be thought
of as an inference algorithm that knows the function ahead of time. It simply
verifies that the function is correct by querying only the border vectors. Thus,
ϕ(Teacher, f ) = m( f ),∀ f ∈ Mn . Recall that m( f ) denotes the number of border
vectors associated with a function f .

For any monotone Boolean function inference algorithm A, the value m( f )
can be considered as a lower bound on the number of queries. Thus, ϕ(A, f ) ≥
m( f ),∀ f ∈ Mn . It turns out that it is possible to achieve fewer or the same number
of queries as the upper bound on m( f ), for all monotone Boolean functions defined
on {0, 1}n . This can be achieved by partitioning the set of vectors into chains as
described in Hansel [1966]. In general, there are a total of

( n
�n/2�

)
chains in n dimen-

sions.
An inference algorithm that searches these chains in increasing length is referred

to as Hansel’s algorithm (also known as Hansel’s theorem or lemma). A key property
of the Hansel chains is that once the function values are known for all the vectors in
all the chains of length k, the function values are unknown for at most two vectors
in each chain of the next length k + 2. Proof of this property can be found in both
[Hansel, 1966] and [Sokolov, 1982]. As a result, Hansel’s algorithm results in fewer
or the same number of queries as the upper bound on m( f ) as follows. When n is
odd, the shortest chains contain two vectors each, and there are a total of

( n
�n/2�

)
chains. In this case, the maximum number of queries used by Hansel’s algorithm
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Figure 10.4. A Visualization of the Main Idea Behind a Pair of Nested Monotone Boolean
Functions.

is 2
( n
�n/2�

) = ( n
�n/2� + ( n

�n/2�+1
))
. Similarly, when n is even, there are

( n
n/2

) −( n
n/2+1

)
chains of length one, and

( n
n/2+1

)
chains of length greater than one. In this

case, the maximum number of queries is
( n

n/2
) − ( n

n/2+1
) + 2

( n
n/2+1

) = ( n
n/2

) +( n
n/2+1

)
. That is, the following inequality holds:

ϕ(Hansel, f ) ≤ max
f ∈Mn

m( f ) =
(

n
�n/2�

)
+
(

n
�n/2� + 1

)
, ∀ f ∈ Mn.

The algorithm described in [Sokolov, 1982] is also based on Hansel chains.
In contrast to Hansel’s algorithm, it considers the chains in the reverse order (i.e.,
in decreasing length) and performs binary search within each chain. It turns out
that Sokolov’s algorithm is much more efficient for functions that have all their
border vectors in the longer Hansel chains. As an example, consider the monotone
Boolean function T . This function has only one border vector (00 . . . 0), which is
located in the longest chain. For this function, Sokolov’s algorithm performs at most
�log2(n)� + 1 evaluations, while Hansel’s algorithm needs at least

( n
�n/2�

)
evalua-

tions. For instance, when n = 20 this translates into at least 184,756 evaluations
performed by Hansel’s algorithm and at most 5 evaluations performed by Sokolov’s
algorithm.
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Sokolov’s algorithm does not satisfy the upper bound, as the following example
shows. Suppose that n > 4 and even, and the monotone Boolean function to
be inferred is defined by f (v) = 1∀v ∈ {0, 1}n : |v| ≥ n/2, and 0 other-
wise. Then the set of border vectors is {v, |v| = n/2 or n/2 − 1} and m( f ) =( n
�n/2�

)+( n
�n/2�+1

)
. In Sokolov’s algorithm, the first vectorw1 submitted for evalua-

tion is a border vector since |w1| = n/2. The second vector w2 is not a border vector
because |w2| =  3n/4! = n/2 and n/2 − 1. Therefore, the following inequality
holds:

ϕ(Sokolov, f ) >

(
n

�n/2� +
(

n
�n/2� + 1

))
, for at least one f ∈ Mn.

In an attempt to provide a unified efficiency testing platform, Gainanov [1984]
proposed to compare inference algorithms based on the number of evaluations
needed for each border vector. To that end, he presented an algorithm that searches
for border vectors one at a time, and we refer to this algorithm as FIND-BORDER.
At the core of the algorithm is a subroutine that takes as input any unclassified vector
v, and finds a border vector by successively evaluating adjacent vectors. This sub-
routine is also used in the algorithms of Boros, et al. [1997], Makino and Ibaraki
[1995], and Valiant [1984]. As a result, any inference algorithm A that feeds unclas-
sified vectors to this subroutine satisfies the following upper bound:

ϕ(A, f ) ≤ m( f )(n + 1),∀ f ∈ Mn .

For the majority of monotone Boolean functions, the expression m( f )(n + 1) is
greater than or equal to 2n , in which cases the bound is useless.

Earlier work on monotone Boolean function inference (such as [Hansel, 1966],
[Sokolov, 1982], [Gainanov, 1984]) focuses on reducing the query complexity. More
recent work (like [Boros, et al., 1997], [Makino and Ibaraki, 1997], and [Fredman
and Khachiyan, 1996]) considers both the query complexity and the computational
complexity. The problem of inferring a monotone Boolean function via membership
queries is equivalent to many other computational problems in a variety of fields
(see, for instance, [Bioch and Ibaraki, 1995], and [Eiter and Gottlob, 1995]). These
applications use algorithms that are efficient in terms of query and computational
complexity.

In practice, queries often involve some sort of effort, such as consulting with
experts, performing experiments, or running simulations. For such applications,
queries far surpass computations in terms of cost. Therefore, this chapter focuses
on minimizing the query complexity as long as it is computationally feasible.

10.2.5 An Existing Approach to Problem 2

Kovalerchuk, et al. [1996c; 2000] considered the problem of inferring a pair of nested
monotone Boolean functions. Their algorithm, which exhibited a promising effi-
ciency in their cancer diagnosis application, is an extension of Hansel’s inference
algorithm for a single monotone Boolean function. However, the algorithm perfor-
mance analysis is far from conclusive as a single application represents a single pair
of nested monotone Boolean functions.
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10.2.6 Existing Approaches to Problem 3

The problem of guided inference in the presence of stochastic errors is referred to
as sequential design of experiments in the statistics community. The field of optimal
experiment design [Federov, 1972] contains various optimality criteria that are appli-
cable in a sequential setting. The most common vector selection criterion is based
on instantaneous variance reduction. Other selection criteria, such as the maximum
information gain used in MacKay [1992], and Tatsuoka and Ferguson [1999], have
been studied. However, no guided inference studies using a maximum likelihood
framework were found in the literature.

The theory of optimal experiment design is most extensive for simple regression
models [Federov, 1972]. Fortunately, efficient guided inference for more complex
models has been studied, such as the feedforward neural networks in [Cohn, 1996],
even though a sound theory has not been established. In fact, the same article reported
a convergence problem for which a partial remedy was introduced in [Cohn, 1965].

10.2.7 Stochastic Models for Problem 3

Suppose a set of observed vectors V = {v1, v2, . . . , vk} is given. For a given number
of queries m, let mz(v) be the number of times the oracle classified vector v as z
(for z = 0 or 1, and v ∈ V ). Associated with a monotone Boolean function f , the
number of errors it performs on the set of observations is denoted as e( f ) and it is
given by

e( f ) =
k∑

i=1

( f (vi )m0(v
i )+ (1 − f (vi ))m1(v

i )).

It is assumed that the oracle misclassifies each vector v with a probability q(v) ∈
(0, 1/2). That is, for a given monotone Boolean function f , the oracle returns for
vector v

1 with probability p(v) = q(v)× (1 − f (v))+ (1 − q(v))× f (v), and

0 with probability 1 − p(v).

A key assumption is that the misclassification probabilities are all less than 1/2,
otherwise it would not be possible to infer the correct monotone Boolean function.
If the sampled values are considered fixed, their joint probability distribution func-
tion can be thought of as the likelihood of function f matching the underlying func-
tion as follows:

L( f ) = qe( f )(1 − q)m−e( f ).

The likelihood value of a particular monotone Boolean function decreases expo-
nentially as more observations are added and therefore this value is generally very
small. However, the likelihood ratio given by

λ( f ∗) = L( f ∗)∑
f ∈F(V ) L( f )
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measures the likelihood of a particular function f * relative to the likelihood of all
possible monotone Boolean functions F(V ), defined on the set of vectors V . Note
that when the set of vectors V is equal to {0, 1}n , the set of all possible monotone
Boolean functions F(V ) is equal to Mn .

The goal of the maximum likelihood problem is to find a monotone Boolean
function f ∗ ∈ F(V ), so that L( f ∗) ≥ L( f )∀ f ∈ F(V ). Assuming that the mis-
classification probabilities q(v) are all less than 1/2, this problem is equivalent to
identifying a monotone Boolean function f ∗ that minimizes the number of errors
e( f ∗) [Boros, et al., 1995]. Note that if q can take on values greater than 2, then the
maximum likelihood solution may maximize the number of errors, as demonstrated
by Boros, et al. [1995]. In this chapter, error maximization is avoided by restricting
q to be less than 1/2; existence of such a solution is shown in [Torvik and Trianta-
phyllou, 2004].

The error minimization problem can be converted into an integer maximization
problem as follows:

minminmin e( f ) = minminmin
k∑

i=1

( f (vi )m0(v
i )+ (1 − f (vi ))m1(v

i ))

= minminmin

(
−

k∑
i=1

f (vi )(m1(v
i )− m0(v

i ))+
k∑

i=1

m1(v
i )

)
.

Since the
∑k

i=1 m1(v
i ) part is a constant, it thus can be removed from the optimiza-

tion objective. Furthermore, maximizing a particular objective function is equiva-
lent to minimizing the negative of that objective function, resulting in the following
simplified integer optimization problem:

maxmaxmax
k∑

i=1

f (vi )(m1(v
i )− m0(v

i ))

subject to :subject to :subject to : f (vi ) ≤ f (v j )∀vi , v j ∈ V : vi � v j ,

and f (vi ) = 0 or 1.

This problem is known as a maximum closure problem, which can be con-
verted into a maximum flow problem [Picard, 1976]. The most efficient algorithms
developed for the maximum flow problem use the idea of preflows developed by
Karzanov [1974]. For example, the lift-to-front algorithm (e.g., [Cormen, et al.,
1997]) takes O(V 3) time. The fact that this problem can be solved in polynomial
time is a nice property of the single q parameter model. For two-dimensional prob-
lems (i.e., V ⊂ R2), the minimum number of errors can also be guaranteed via a
dynamic programming approach [Bloch and Silverman, 1997].

A more complex error model can potentially maintain as many parameters as the
size of the domain V . That is, each vector v may have an associated unique parameter
p(v). In this case, minimizing the weighted least squares
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minminmin
k∑

i=1

(p′(vi )− p(vi ))(m1(v
i )+ m0(v

i ))

subject to :subject to :subject to : p(vi ) ≤ p(v j )∀vi , v j ∈ V : vi � v j ,

where

p′(vi ) = m1(v
i )

m1(vi )+ m0(vi )
, for i = 1, 2, 3, . . . , k,

yields a maximum likelihood solution [Robertson, et al., 1988]. This is a hard opti-
mization problem, and several algorithms have been developed to solve it optimally
and near optimally. The Pooled Adjacent Violators Algorithm (PAVA) by Ayer, et al.
[1955] only guarantees optimality when (V,�) forms a chain poset (also referred to
as a simple order). The Min-Max algorithm developed by Lee [1983] and the Isotonic
Block Class with Stratification (IBCS) algorithm by Block, et al. [1994] guarantee
optimality for the general poset but both algorithms can potentially consume expo-
nential time. Unfortunately, no polynomial algorithm for the general poset was found
in the literature.

In addition to the full parametric model, there are models of intermediate para-
metric complexity. One example is the logistic regression model with nonnegativity
constraints on its parameters, as used for record linkage in databases by Judson
[2001; 2006]. A monotone decision tree approach can be found in Makino, et al.
[1999], and a sequential monotone rule induction approach can be found in
[Ben-David, 1992; 1995].

It should be noted that the single parameter error model considered in this chap-
ter is somewhat restrictive, in the sense that it does not estimate misclassification
probabilities that vary across the vectors. However, one of the goals of this chapter is
to efficiently uncover the underlying monotone Boolean function and not necessarily
come up with accurate estimates for the individual errors. The fixed misclassification
probability assumption does not affect the capability of the inference methodology
as will be demonstrated in the subsequent sections. The assumption is simply used to
estimate the error rate and the confidence in having inferred the correct function, and
a more accurate estimate of the maximum likelihood ratio may require a substan-
tial increase in computational complexity, as for the full parametric model described
above.

10.3 Inference Objectives and Methodology

10.3.1 The Inference Objective for Problem 1

An inference algorithm that performs fewer queries than another algorithm when
reconstructing a particular deterministic monotone Boolean function is considered
more efficient on that particular function. However, it has not been clear how to
compare algorithms on the entire class of monotone Boolean functions defined on
{0, 1}n .
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The main existing algorithms by Hansel [1966], Sokolov [1982], and Gainanov
[1984] focus on the upper bounds of their query complexities. Unfortunately, the
worst case scenario reflects the algorithm performance on a few specific functions.
It does not reflect what to expect when executing the algorithm on an arbitrary mono-
tone Boolean function. For example, algorithms that implement Gainanov’s subrou-
tine (which we refer to as FIND-BORDER) indirectly suggest minimizing the upper
bound on the number of evaluations per border vector. These algorithms greatly favor
the simplest functions (which may only have a single border vector) over the complex
functions (with up to

( n
�n/2�

)+( n
�n/2�+1

)
border vectors). Kovalerchuk, et al. [1996c;

2000] demonstrated promising results for a Hansel-based inference algorithm on a
real-life application. However, their performance analysis is far from conclusive as a
single application represents a single pair of monotone Boolean functions.

With no prior knowledge (other than monotonicity) about the inference applica-
tion, each function is equally likely to be encountered and should therefore carry the
same weight in the objective. The objective for this problem is to develop an algo-
rithm that minimizes the average number of queries over the entire class of monotone
Boolean functions defined on the set {0, 1}n . This objective can be expressed mathe-
matically as follows:

Q(n) = min
A

∑
f ∈Mn

ϕ(A, f )

(n)
.

The objective Q(n) represents the entire class of monotone Boolean functions Mn .
As such, it provides a better indication of what to expect when executing an algorithm
on an arbitrary monotone Boolean function.

10.3.2 The Inference Objective for Problem 2

The approach taken to this problem is analogous to that of Problem 1. The minimum
average number of queries for Problem 2.k (for k = 1, 2, or 3) can be expressed
mathematically as follows:

Qk(n) = min
Ak

∑
f1, f2∈Mn : f2≤ f1

ϕ(Ak, f1, f2)

(n + 1)
,

where ϕ(Ak, f1, f2) denotes the number of queries performed by algorithm Ak , in
reconstructing the pair of nested monotone Boolean functions f1 and f2 defined on
the set {0, 1}n . Furthermore, A1, A2, and A3 denote algorithms designed for Prob-
lems 2.1, 2.2, and 2.3, respectively. Recall from Section 10.2.3 that the number of
pairs of nested monotone Boolean functions defined on the set {0, 1}n is equal to
(n + 1), that is, the number of monotone Boolean functions defined on the set
(binary space) {0, 1}n+1.

Since these three problems differ in the way the oracles are queried, it should
be clarified that a query unit pertains to the membership value from one of the two
functions f1 and f2. This definition is intuitive for Problems 2.1 and 2.3, where
two oracles are accessed individually. For Problem 2.2, the membership values are
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provided in pairs from a single three-valued oracle (i.e., a ternary oracle). To make
the definition of Q2(n) comparable to Q1(n) and Q3(n), each query to the three-
valued oracle will be counted as two queries.

10.3.3 The Inference Objective for Problem 3

The approach taken to Problem 3 is similar to that of Problems 1 and 2. The goal
is to minimize the average number of queries needed to completely reconstruct the
underlying monotone Boolean function, expressed mathematically as follows:

min
A

∑
f ∈Mn

ϕ(A, f, q)

(n)
.

In this expression ϕ(A, f, q) denotes the expected number of queries performed by
algorithm A in completely reconstructing the underlying monotone Boolean func-
tion f from an oracle with a fixed misclassification probability q. Completely recon-
structing the underlying function translates into making the likelihood ratio λ( f ∗)
for the inferred function f ∗ reach a sufficiently high value (e.g., 0.99).

It should be stressed that the misclassification probability q is unknown and
ranges from 0 up to 1/2. However, it is expected that the average number of queries
will increase significantly with q, since, by definition, it approaches infinity as q
approaches 1/2, and it is finite when q is equal to 0. Therefore, the average over a
large range q may not be an accurate prediction of how many queries to expect for a
particular application. The average query complexity will therefore be evaluated as
a function of n and q, even though q is unknown.

10.3.4 Incremental Updates for the Fixed Misclassification Probability Model

Suppose the error minimizing function f ∗
old and its misclassification parameter q∗

old,
associated with a set of vectors V = {v1, v2, . . . , vk} and their m0(v) and m1(v)

values, are given. When a new vector is classified by the oracle (i.e., mz(v) ←
mz(v) + 1), the function f ∗

old and its misclassification parameter q∗
old may have to

be updated. Since the new error minimizing function is likely to be close to the old
function, it may be inefficient to solve the entire problem over again.

Simply stated, the incremental problem consists of finding f ∗
new and consequently

q∗
new when mz(v) ← mz(v) + 1. If the new classification is consistent with the old

function (i.e., f ∗
old(v) = z), then the old function remains error minimizing (i.e.,

f ∗
old = f ∗

new). Therefore, the number of errors remains the same and the misclas-
sification estimate is reduced to q∗

new = e( f ∗
old)/(mold + 1). Note that this case is

the most likely one since it occurs with an estimated probability of 1 − q∗
old ≥ 1/2.

If, on the other hand, the new classification is inconsistent with the old function (i.e.,
f ∗
old(v) = 1− z), then the old function may or may not remain error minimizing. The

only case in which the old function does not remain error minimizing is when there
is an alternative error minimizing function f ∗

a on the old data for which f ∗a (v) = z.
In this case f ∗a is error minimizing for the new data.
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The number of possible error minimizing functions may be exponential in the
size of the set V , and therefore storing all of them may not be an efficient solution to
this problem. To avoid this computational burden an incremental algorithm, such as
the one described in [Torvik and Triantaphyllou, 2004], can be used.

10.3.5 Selection Criteria for Problem 1

When computing the optimal solutions, many different and complex posets are
encountered. The optimal vectors of these posets seemed to display two general
properties [Torvik and Triantaphyllou, 2002]. First, the optimal vectors tend to be
in the vertical middle. More specifically, all posets observed in the inference process
when n is equal to 4 or less have at least one optimal vector in the most populous
(i.e., in the middle) layer. This observation alone is not sufficient to pinpoint an opti-
mal vector. The second property observed is that the optimal vectors also tend to be
horizontal end points.

Now consider creating a selection criterion based on the ideas of the vertical
middle and the horizontal end points. Suppose a subset of unclassified vectors, V =
{v1, v2, . . . , v p}, is given. Let K1(v

i ) and K0(v
i ) be the numbers of vectors that are

concurrently classified when f (vi ) equals 1 and 0, respectively. Invariably selecting
a vector v with the minimum |K1(v)−K0(v)| value guarantees the minimum average
number of queries for inference problems with n strictly less than 5 [Torvik and
Triantaphyllou, 2002].

Unfortunately, this selection criterion is not optimal for all the posets generated
for n equal to 4. It is only optimal for the subset of posets encountered when using the
criterion min |K1 − K0|. Another drawback is that it is not optimal for the inference
problem when n is equal to 5. However, the criterion is probably close to optimal
since the larger posets eventually decompose into smaller posets.

It is important to note that what may look like intuitive criteria (without the
consultation of optimal solutions) may lead to poor performance and ambigu-
ous choices. For example, it may seem reasonable to attempt to classify as many
vectors as possible for each query (i.e., employ a greedy approach). The two criteria
max(K1(v) + K0(v)) and max(K1(v) × K0(v)) are consistent with this philosophy
(see, for instance, [Judson, 1999; 2006]). However, they are extremely counterpro-
ductive to minimizing the average query complexity and should be avoided. As an
example, consider the set of vectors in {0, 1}4. The criterion max(K1(v) + K0(v))

selects either the (0000) or the (1111) vector, which happens to maximize the aver-
age number of queries. The criterion max(K1(v) × K0(v)) ties the entire set of
vectors, and therefore the choice of a vector is ambiguous.

There is a logical explanation for why these two selection criteria are coun-
terproductive. Vectors that are able to concurrently classify more vectors are also
more likely to be classified by others. Following this line of thought, the selec-
tion criterion min(K1(v) + K0(v)) seems reasonable. This criterion is similar to
min |K1(v) − K0(v)|, but it does not satisfy the same optimality conditions for the
inference problem when n is equal to 4.
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10.3.6 Selection Criteria for Problems 2.1, 2.2, and 2.3

The minimum average number of queries for the unrestricted problem, denoted as
Q3(n), is equal to that of the single function case in one dimension higher, that is,
it is equal Q(n + 1). Thus, Q3(n) = Q(n + 1). To see this connection consider a
pair of nested monotone Boolean functions f1 and f2 defined on {0, 1}n . The query
domain for the nested case can be viewed as the product {0, 1}n × { f2, f1}. Each of
the vertices in the resulting poset ({0, 1}n+1,�) may take on function values of 0
or 1, where the monotonicity property is preserved. In other words, a pair of nested
monotone Boolean functions defined on {0, 1}n are equivalent to a single monotone
Boolean function defined on {0, 1}n+1.

The selection criterion min |K1(v) − K0(v)| was shown to be very efficient in
minimizing the average number of queries in Problem 1. Therefore, it will be used
for the three nested problems with a slight modification. The query domain for the
nested case is made up of the set of vectors {0, 1}n × { f2, f1}. For a vertex labeled
(v fi ), let Kz(v, fi ) be the number of vertices that are concurrently classified when
the value of fi (v) is queried and the answer is fi (v) = z, for z = 0 or 1. When the
access to the oracles is unrestricted (i.e., we have Problem 2.3), vertices are selected
based on the criterion min |K1(v, fi )− K0(v, fi )|. This criterion is equivalent to the
criterion min |K1(v) − K0(v)| for the single function case. The only change is in
the notation since the oracle that is to provide the answer has to be identified for
Problem 2.3.

For sequential oracles (i.e., Problem 2.1), queries of the form f2(v) are infeasible
until all of the queries of the form f1(v) are classified. In this case, the criterion
used during the first phase is min |K1(v, f1) − K0(v, f1)|, after which the criterion
min |K1(v, f2)− K0(v, f2)| is used.

For the three-valued oracle (i.e., Problem 2.2), the queries are of the form
( f1(v), f2(v)) and are selected by using the criterion min |K11(v) − K00(v)|. Here
the value of the function Kzz(v) equals the number of vertices concurrently classi-
fied when vertex v is queried and the result of the query is f1(v) = f2(v) = z,
for z = 0 or 1. Once there are no pairs of vertices of the form ( f1(v), f2(v)) left
unclassified, the criterion min |K1(v, fi ) − K0(v, fi )| is used for the remaining of
the query selections.

10.3.7 Selection Criterion for Problem 3

The status of the inference process will be considered to be in one of three stages.
Stage 1 starts with the first question and lasts until a deterministic monotone Boolean
function is obtained. During Stage 1 only vectors that may take on either 0 or 1
value are queried. As a result, no (identifiable) errors are observed in Stage 1, and
thus the monotone Boolean function inferred during Stage 1 is deterministic. This
function, however, may or may not be the correct one. In fact, the probability that
it is the correct function is equal to the probability that no misclassifications were
made: (1 − q)m , where m is the number of questions used during Stage 1 and q
is the true misclassification probability. This probability decreases rapidly with m,
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Table 10.2. A Sample Data Set for Problem 3.

VVV m1(v)m1(v)m1(v) m0(v)m0(v)m0(v) m1(v)− m0(v)m1(v)− m0(v)m1(v)− m0(v)

111 0 1 −1
110 3 5 −2
101 4 1 3

11 3 1 2
100 4 5 −1

10 2 0 2
1 3 3 0
0 1 0 1

regardless of the value of q. Therefore, the queries performed after Stage 1 will
benefit greatly from a reduction in the number of Stage 1 queries. Please note that
since no inconsistencies have been observed, there is no way to properly estimate q
at this point.

After a deterministic monotone Boolean function is obtained in Stage 1, the infer-
ence process enters Stage 2. At this point it is unclear as to how to select queries for
Stage 2, so a random selection procedure will be used for this stage. After the first
error occurs in Stage 2, the inference process enters Stage 3, in which it will remain
until termination. Stage 3 is the focus of this section, because it is the only stage in
which the likelihood ratio can be properly evaluated and q can be estimated based
on the observed vectors.

Recall that the likelihood function is given by

L( f ) = qe( f )(1 − q)m−e( f ),

and the likelihood ratio is given by

λ( f ∗) = L( f ∗)∑
f ∈F(V ) L( f )

.

As an example of the likelihood ratio computations consider the sample data
given in Table 10.2. The likelihood values for all the possible monotone Boolean
functions are given in Table 10.3. The function f ∗ = v1v3 ∨ v2v3 produces 16
errors. Its associated estimated misclassification probability q∗ is 16/36 = 4/9, since
the total number of observations is m = 36. Therefore, the likelihood value of this
function L( f ∗) is (4/9)16(1 − 4/9)36−16 = 1.818 × 10−11. Notice how small this
value is after only 36 observations. Adding up the likelihood values the monotone
Boolean functions yields (13 × 1.455 + 2 × 1.536 + 5 × 1.818)× 10−11 = 3.107 ×
10−10. Then the maximum likelihood ratio is computed as follows: λ( f ∗) = 1.818×
10−11/3.107 × 10−10 = 0.0585.

Now let us return to the vector selection (or guided inference/learning) problem.
As shown above, the probability that the correct function is inferred during Stage 1
decreases rapidly with the number of queries used during that stage. Therefore, the
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Table 10.3. Example Likelihood Values for All Functions in M3.

FFF e( f )e( f )e( f ) q( f )q( f )q( f ) L( f )L( f )L( f ) λ( f )λ( f )λ( f )

F 20 1/2 1.455 × 10−11 0.0468

v1v2v3 21 1/2 1.455 × 10−11 0.0468

v1v2 23 1/2 1.455 × 10−11 0.0468

v1v3 18 1/2 1.455 × 10−11 0.0468

v1v2 ∨ v1v3 20 1/2 1.455 × 10−11 0.0468

v1 21 1/2 1.455 × 10−11 0.0468

v2v3 19 1/2 1.455 × 10−11 0.0468

v1 ∨ v2v3 19 1/2 1.455 × 10−11 0.0468

v1v3 ∨ v2v3 16 36,989 1.818 × 10−11 0.0585

v1v2 ∨ v1v3 ∨ v2v3 18 1/2 1.455 × 10−11 0.0468

v1v2 ∨ v2v3 21 1/2 1.455 × 10−11 0.0468

v2 19 1/2 1.455 × 10−11 0.0468

v1 ∨ v2 17 17/36 1.536 × 10−11 0.0495

v2 ∨ v1v3 16 36,989 1.818 × 10−11 0.0585

v3 16 36,989 1.818 × 10−11 0.0585

v2 ∨ v3 16 36,989 1.818 × 10−11 0.0585

v1 ∨ v2 ∨ v3 17 17/36 1.536 × 10−11 0.0495

v1 ∨ v3 19 1/2 1.455 × 10−11 0.0468

v3 ∨ v1v2 18 1/2 1.455 × 10−11 0.0468

T 16 36,989 1.818 × 10−11 0.0585

selection criterion min |K0(v)− K1(v)| will be used as a standard for Stage 1, when
comparing different approaches for the following Stage 3. This avoids bias in the
sense that all Stage 3 approaches will benefit from using min |K0(v)− K1(v)| during
Stage 1.

One important property of the selection criterion for Stage 3 is that the maximum
likelihood ratio converges to 1. It is possible to define selection criteria that do not
converge. If, for instance, the same vector is invariably selected, the estimated value
of q will converge to its true value. In this case, the likelihood values may remain
equal for several monotone Boolean functions and hence the maximum likelihood
ratio will never converge to 1.

Intuition may lead to an inefficient selection criterion. For example, let Ez(v) be
defined by the number of errors associated with assigning the function value f (v) to
z, as follows:

E0(v) =
∑
w≤v

m1(w)− m0(w) and E1(v) =
∑
w≤v

m0(w)− m1(w).

Then, consider defining the vector v which “contributes the most errors” by
max(E0(v) + E1(v)). This vector selection criterion may lead to the same vector
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Table 10.4. Updated Likelihood Ratios for mz(001) = mz(001)+ 1.

fff λ( f )λ( f )λ( f ) e1(001, f )e1(001, f )e1(001, f ) λ1(001, f )λ1(001, f )λ1(001, f ) e0(001, f )e0(001, f )e0(001, f ) λ0(001, f )λ0(001, f )λ0(001, f )

F 0.0468 21 0.0462 20 0.0468
v1v2v3 0.0468 22 0.0462 21 0.0468
v1v2 0.0468 24 0.0462 23 0.0468
v1v3 0.0468 19 0.0462 18 0.0474
v1v2 ∨ v1v3 0.0468 21 0.0462 20 0.0468
v1 0.0468 22 0.0462 21 0.0468
v2v3 0.0468 20 0.0462 19 0.0468
v1 ∨ v2v3 0.0468 20 0.0462 19 0.0468
v1v3 ∨ v2v3 0.0585 17 0.0522 16 0.0657
v1v2 ∨ v1v3 ∨ v2v3 0.0468 19 0.0462 18 0.0474
v1v2 ∨ v2v3 0.0468 22 0.0462 21 0.0468
v2 0.0468 20 0.0462 19 0.0468
v1 ∨ v2 0.0495 18 0.0469 17 0.0529
v2 ∨ v1v3 0.0585 17 0.0522 16 0.0657
v3 0.0585 16 0.0649 17 0.0529
v2 ∨ v3 0.0585 16 0.0649 17 0.0529
v1 ∨ v2 ∨ v3 0.0495 17 0.0522 18 0.0474
v1 ∨ v3 0.0468 19 0.0462 20 0.0468
v3 ∨ v1v2 0.0468 18 0.0469 19 0.0468
T 0.0585 16 0.0649 17 0.0529

being invariably queried and hence it might suffer from convergence problems, as
will be demonstrated empirically in Section 10.4.

The likelihood framework seems to form a great basis for defining a Stage 3
vector selection criterion. Since the goal is to make the likelihood ratio converge to
1 as fast as possible, a reasonable approach would be to select the vector that maxi-
mizes the expected maximum likelihood ratio (denoted as �λ(v)) at each inference
step. To do this, the expected maximum likelihood ratio �λ(v) = p(v)λ1(v)+ (1 −
p(v))λ0(v) has to be estimated for each vector v. Here λz(v) denotes the result-
ing maximum likelihood ratio when f (v) = z is observed. Recall that p(v) is
the probability of observing f (v) = 1. That is, it can be estimated by p∗(v) =
q∗(1 − f ∗(v))+ (1 − q∗) f ∗(v).

As an example consider observing the vector (001). Table 10.4 gives the updated
likelihood ratios for each monotone Boolean function when mz(001) = mz(001)+1,
for z = 0 or 1. For a monotone Boolean function f , and a classification z, ez(001, f )
and λz(001, f ) denote here the updated number of errors and the likelihood ratio,
respectively. The updated maximum likelihood ratios are λ1(001) = λ1(001, T ) =
0.0649 and λ0(001) = λ0(001, v1v3 ∨ v2v3) = 0.0657. Since the optimal func-
tion assigns the vector (001) to 0 (i.e., f ∗(001) = 0), the estimated probability of
observing f (001) = 1 is given by p∗(001) = q∗ = 4/9. Therefore, the expected
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maximum likelihood ratio when querying vector 001 is given by �λ(001) =
p∗(001)λ1(001)+ (1− p∗(001))λ0(001) = 4/9×0.0649+5/9×0.0657 = 0.0653.

Similar computations for the other vectors yield�λ(000) = 0.0651,�λ(010) =
0.0654,�λ(011) = 0.0592,�λ(100) = 0.0652,�λ(101) = 0.0592,�λ(110) =
0.0654, and finally �λ(111) = 0.0592. The vectors with the largest expected like-
lihood ratio value are (010) and (110). Since no further improvement of the selection
criterion is obvious, ties are broken arbitrarily.

The simulations in Section 10.4 reveal the efficiency of the selection criterion
max�λ(v) in terms of the query complexity. In terms of computational complexity
it may take an exponential time (in the size of V ) to compute max�λ(v). Since
the computational time for incrementally finding the inferred function is of O(V 2)

complexity, it would be nice to find a selection criterion that does not take more time
than this and still makes the likelihood converge to 1 at a faster rate than randomly
selecting vectors.

One such possibility may be based on the inferred border vectors. For the
sake of argument suppose that the underlying monotone Boolean function f to be
inferred is known. Then randomly selecting vectors from its corresponding border
vectors will make the maximum likelihood ratio converge to 1. As the number of
queries m goes to infinity, the ratios m0(v)/(m0(v) + m1(v))∀v ∈ LU( f ) and
m1(w)/(m0(w) + m1(w))∀w ∈ UZ( f ) all converge to q. Recall that LU( f ) and
UZ( f ) denote the lower units and upper zero vectors of a monotone Boolean func-
tion f , respectively (see also Section 10.2.3). The number of errors performed by
any other monotone Boolean function g is at least x = min{min{m1(v)−m0(v), v ∈
LU( f )},min{m0(w)− m1(w),w ∈ UZ( f )}} greater than the number of errors per-
formed by function f . Furthermore, x ≈ qm − (1 − q)m = m(2q − 1) for large
m. That is, the number of additional errors increases at least linearly with m. Then,
as m goes to infinity, so does the number of additional errors performed by each
of the other monotone Boolean functions. In other words, the relative likelihoods
L( f )/L(g) > (q/(1 − q))x converge to 0 as m goes to infinity. Since the number of
other monotone Boolean functions is a finite number that does not depend on m, the
likelihood ratio λ( f ) = L( f )/(L( f )+�L(g)) converges to 1 as m goes to infinity.

Focusing the queries at the border vectors of the underlying function proba-
bly allows this convergence to occur at a faster rate than randomly selecting from
all the vectors. In situations where the underlying function is unknown, it may
be that focusing the queries on the border vectors of the inferred function (i.e.,
v ∈ LU( f ∗) ∪ UZ( f ∗)) is better than completely random selection. In the long run,
an inferred border vector will not prevail if it is not an underlying border vector. Since
the misclassification rate is less than 2, the rate at which the incorrectly classified
inferred border vectors become correctly classified is greater than the rate at which
correctly classified inferred border vectors become incorrectly classified. Therefore,
in the long run all the classifications become correct when the queries are selected
from the set of border vectors of the inferred function.

Notice that this convergence holds even if the misclassification probability is dif-
ferent for each vector, as long as they are all less than 2. Another added benefit is that
finding the border vectors is easy, since they are readily available from the inferred
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function f ∗. In fact, a simple modification of the incremental maximum flow algo-
rithm can store each of these vectors as they are found. For each monotone Boolean
function there are at most O(V ) border vectors in a set of vectors V . During the
inference process the inferred function may take on any of these monotone Boolean
functions. Therefore, randomly selecting one of the border vectors takes O(V ) time.

10.4 Experimental Results

10.4.1 Experimental Results for Problem 1

The preexisting inference algorithms described in Section 10.2.4 do not specify
which vector to select when there are ties. In particular, the Sokolov and Hansel
algorithms may have to choose between two vectors that make up the middle of
a particular chain. Furthermore, the subroutine FIND-BORDER needs to be fed
unclassified vectors, of which there may be many. Even the selection criterion
min |K1 − K0| may result in ties. For the purpose of comparing the algorithms on
the same ground and without introducing another aspect of randomness, ties were
broken by selecting the first vector in the list of tied vectors.

The results in Figure 10.5 are based on an exhaustive analysis (i.e., all the mono-
tone functions were generated) for n up to and including 5. Random samples of
2,000 functions were generated for n = 6, 7, and 8; for n = 9, 10, and 11 they
were composed of 200 functions. These functions were generated using the algo-
rithm described in [Torvik and Triantaphyllou, 2002].

The Horvitz–Thompson [1952] estimator was used to compute the averages for n
greater than 5. The average number of queries was normalized by the maximum pos-
sible number of queries 2n so that the magnitudes of the averages in Figure 10.5 were
not overshadowed by the large values obtained for n equal to 11. As a consequence,
two algorithms that result in parallel curves in such a plot, have an exponential (in
terms of n) difference in the average number of queries. Also, the gap between the
curves in Figure 10.5 and the horizontal line Average Number of Queries/2n = 1 (not
shown in the figure) can be thought of as the benefit of the monotone assumption.
This is due to the fact that 2n is the number of required queries when the underlying
function is not necessarily monotone.

The curve titled “Teacher” represents the lower bound on the number of queries
for every single function. Therefore, it is expected that a few extra queries are
required on the average. Since the heuristic based on the selection criterion min |K1−
K0| achieves the minimum average number of queries for n up to 4, it can be thought
of as a lower bound on the average, and its gap between “Teacher” quantifies the
benefits of knowing the actual function beforehand.

Figure 10.5 paints a clear picture of how the preexisting inference algorithms
fare against each other. Hansel’s algorithm was the best performer by far, Sokolov’s
came in second, and an algorithm using the subroutine FIND-BORDER (which is
also used by Gainanov [1984]; Valiant [1984]; Makino and Ibaraki [1995]; Boros,
et al., [1997]) was a distant third. In fact, since the curve differences between Hansel
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Figure 10.5. The Average Query Complexities for Problem 1.

and Sokolov, and Sokolov and the subroutine FIND-BORDER implementation, seem
to increase with n, the corresponding difference in the average number of queries
increases at a rate greater than exponentially with n.

The difference between the curves for Hansel and “Teacher” decreases as n
increases. The algorithm based on the criterion min |K1 − K0| has a curve that
is almost parallel to Hansel’s curve, indicating that this selection criterion per-
forms about 2% better than Hansel’s algorithm. This decrease is especially clear
in Figure 10.5 for n up to and including 8. For larger values of n, the high variance of
our estimates makes it hard to distinguish the two curves, but the overall decreasing
trends remain intact. It might seem that a 2% decrease is insignificant, but writing it
as 2n × 0.02 shows its real magnitude.

Another nice characteristic of this selection criterion is that it is the most consis-
tent of all the algorithms. For example, it performs between 10 and 18 queries for
99.6% of the monotone Boolean functions in M5. In contrast, the algorithm based on
the subroutine FIND-BORDER is the least consistent with between 8 and 25 queries
for 99.6% of the same monotone Boolean functions.
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Figure 10.6. The Average Query Complexities for Problem 2.

10.4.2 Experimental Results for Problem 2

The results in Figures 10.6, 10.7, and 10.8 are based on an exhaustive analysis
(i.e., all the monotone functions were generated) for n up to and including 4. For
n = 4, 5, . . . , 12 random samples of functions were generated and the Horvitz–
Thompson [1952] estimator was used to compute the averages for n greater than 4.
The number of pairs of nested monotone Boolean functions generated were 2,000
for n = 5, 6, 7, and 200 for n = 8, 9, 10, and 100 for n = 11 and 12.

Figure 10.6 shows the average number of queries for Problem 2 when using
the selection criteria. The lower curve corresponds to the unrestricted case (Prob-
lem 2.3), which achieves the fewest number of queries on the average. The sequen-
tial case (Problem 2.1), corresponding to the middle curve, is not as efficient as the
unrestricted oracles in general, although they are very close for n = 1, 2, 3, and
4. The least efficient of the three types of oracles is the three-valued (Problem 2.2)
corresponding to the upper curve.

The gap between the curves in Figure 10.6 and the horizontal line Average
Number of Queries/2n+1 = 1 (the uppermost line of the box around the curves)
can be thought of as the benefit of the monotone and nestedness assumptions put
together. This is due to the fact that 2n+1 is the number of required queries when the
underlying pair of functions are neither nested nor monotone. For example, when
n = 12 in the unrestricted problem (k = 3) the average number of queries is reduced
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Figure 10.7. Increase in Query Complexities Due to Restricted Access to the Oracles.

Figure 10.8. Reduction in Query Complexity Due to the Nestedness Assumption.
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to about 20% of the maximum number of queries 213 = 8,192 due to the monotone
and nestedness assumptions.

Figure 10.7 quantifies the increase in the average number of queries due to the
two restrictions on the oracles for n = 1, 2, 3, . . . , 12. As mentioned earlier, the
sequential oracles are practically unrestrictive for n = 1, 2, 3, and 4. For n greater
than 4, the increase in average query complexity oscillates between 12% and 33%
due to odd and even n, being much greater for odd n. In contrast, the three-valued
oracle is much more restrictive across all the observed n, where the increase in the
average number of queries oscillates between 35% and 55%, again due to odd and
even n, being greater for odd n. In summary, the increases in the average number
of queries for the sequential and three-valued cases are dramatic. This is probably
due to the fact that the average number of queries increases exponentially with the
number of attributes.

If the nested property of the two functions defined on {0, 1}n is ignored, the mini-
mum total number of questions is, on the average, equal to 2Q(n). The benefit from
the nestedness assumption for Problem 2 is quantified by the ratio of Q3(n)/2Q(n)
which is given in Figure 10.8 for n = 1, 2, . . . , 12. Therefore, the curves given in
Figure 10.8 show the reduction in the average number of queries due to the nested-
ness assumption. This reduction decreases with the number of attributes. It starts out
at 20% for n = 1, and oscillates between 1% and 10% for n greater than 7.

10.4.3 Experimental Results for Problem 3

For the purpose of comparing the efficiency of the different selection criteria for
Stage 3 on the same basis, ties resulting from the selection criteria (min |K0(v) −
K1(v)| for Stage 1, and max(E0(v) + E1(v)),max�λ(v), and v ∈ LU( f ∗) ∪
UZ( f ∗); the set of border vectors for Stage 3) were broken randomly. The four dif-
ferent inference processes using max�λ(v), v ∈ LU( f ∗) ∪ UZ( f ∗),max(E0(v) +
E1(v)), or random selection for Stage 3 were simulated on the set of vertices {0, 1}n .
For all three Stage 3 selection criteria, the selection criterion min |K0(v) − K1(v)|
was used for Stage 1 and random selection was used for Stage 2. The resulting sim-
ulations were repeated 100, 50, 25, and 10 times for each of 6 representative func-
tions of Mn , with misclassification probabilities equal to 0.1, 0.2, 0.3, and 0.4, for
n = 2, 3, 4, and 5, respectively.

The representative functions are given in Table 10.5. For n = 4 and 5, these
representative functions were randomly generated from a uniform distribution with
individual probabilities of 1/(n) = 1/168 and 1/7581, respectively. For n = 3,
the representative functions consist of nonsimilar functions (one from each similar
subset of M3). These functions represent all the functions in M3, since the average
case behavior is the same for a pair of similar monotone Boolean functions.

To compute the overall average for a given q, the individual curves were weighted
by the number of similar functions the representative function has (including itself)
in M3. The individual curves for the monotone Boolean functions F, v1v2v3, v1v2,

v1v2 ∨ v1v3, v1, and v1v2 ∨ v1v3 ∨ v2v3, were therefore weighted by 2, 2, 6, 6, 3,
and 1, respectively. For n = 2, 4, and 5, the overall averages were computed without
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Table 10.5. The Representative Functions Used in the Simulations of Problem 3.

n = 2n = 2n = 2 n = 3n = 3n = 3 n = 4n = 4n = 4 n = 5n = 5n = 5

F F v1v2 ∨ v2v4 ∨ v1v3v4 v1v4 ∨ v1v5 ∨ v2v4 ∨ v2v5

v1v2 v1v2v3 v1v2 ∨ v1v3 ∨ v2v3∨ v1v3 ∨ v2v3 ∨ v2v4 ∨ v1v2v5
v2v4 ∨ v3v4

v1 v1v2 v2v3 ∨ v2v4 v2 ∨ v1v3v4 ∨ v1v4v5

v2 v1v2 ∨ v1v3 v1v2v3 ∨ v1v3v4 ∨ v2v3v4 v1v3 ∨ v2v4 ∨ v3v5 ∨ v1v4v5

v1 ∨ v2 v1 v1v2 ∨ v2v4 ∨ v3v4 v2v4 ∨ v2v5 ∨ v3v5 ∨ v4v5

T v1v2∨ v3 ∨ v1v2 ∨ v1v4 v2v5 ∨ v1v2v3 ∨ v1v3v4∨
v1v3 ∨ v2v3 v1v4v5 ∨ v3v4v5

weights. The overall averages for n = 2 and 3 benefit from a reduced variance, since
no additional errors are added due to the sampling of functions as done for n = 4
and 5.

Figure 10.9 shows the resulting average maximum likelihood curves for the infer-
ence problem defined on n = 2, 3, 4, and 5, and q = 0.1, 0.2, 0.3, and 0.4. Each
curve is the average of 600, 300, 150, and 60 simulated inference processes observed
for n = 2, 3, 4, and 5, respectively. In each plot, the horizontal axis corresponds to
the number of Stage 3 queries, and the vertical axis corresponds to the maximum
likelihood ratio. The curves are shown for the range of Stage 3 queries where the
curve corresponding to the selection criterion max�λ(v) has a maximum likelihood
ratio that is less than 0.99.

Not only do the curves corresponding to the guided selection criteria max�λ(v)
and v ∈ LU( f ∗)∪UZ( f ∗) converge to 1 but they do so at a much faster rate than the
curves corresponding to unguided random selection. In fact, the random selection
achieves a maximum likelihood ratio of only about 0.7 after the same number of
queries as the criterion max�λ(v) uses to reach 0.99, and the criterion v ∈ LU( f ∗)∪
UZ( f ∗) uses to reach about 0.9, for n = 4.

The difference between the curves for unguided selection and these two guided
selections grows with the misclassification probability q and with the dimension n.
That is, the benefits from actively selecting vectors over passively receiving obser-
vations are greater when the values of q and n are large. In other words, the higher
the misclassification probability and the dimension of the problem are, the greater
become the benefits of guiding the inference process.

The curves associated with the criterion max(E0(v) + E1(v)) seem to converge
to a value significantly less than 1. For example, when n = 3 and q = 0.3, the
maximum likelihood ratio converges to about 0.4, and this value decreases as the
values of q and n increase. Therefore, the larger error rate and the vector domain are,
the more important it becomes to define an appropriate vector selection criterion.

Table 10.6 gives the average number of queries needed by the selection criterion
max�λ(v) to converge to a maximum likelihood ratio of 0.99 for n = 2, 3, 4, and
5, and for q = 0.1, 0.2, 0.3, and 0.4. For a given n, these numbers increase dramati-
cally as q increases. In fact, there seems to be more than a doubling in the numbers
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Figure 10.9. Average Case Behavior of Various Selection Criteria for Problem 3.

for fixed increments of q. For a given q, these numbers do not increase in such a
dramatic fashion when n increases. However, they do increase faster than linearly
with n.

Randomly selecting the inferred border vectors (i.e., v ∈ LU( f ∗) ∪ Z( f ∗))
makes the maximum likelihood ratio converge to 1, as long as the misclassifica-
tion probabilities are all less than 1/2. That is, the misclassification probabilities do
not necessarily have to be fixed. To see whether this holds for the selection criterion
max�λ(v), consider an unrestricted model where the misclassification probability
q(v) is a random variable distributed uniformly on the interval [q(1 − δ), q(1 + δ)],
where δ ∈ [0, 1], for each vector v ∈ {0, 1}n .
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Table 10.6. The Average Number of Stage 3 Queries Used by the Selection Criterion
max�λ(v) to Reach λ > 0.99 in Problem 3 Defined on {0, 1}n with Fixed Misclassifica-
tion Probability q.

q = 0.1q = 0.1q = 0.1 q = 0.2q = 0.2q = 0.2 q = 0.3q = 0.3q = 0.3 q = 0.4q = 0.4q = 0.4

n = 2 22 54 125 560
n = 3 27 65 170 710
n = 4 33 85 241 951
n = 5 45 111 277 1,167

Figure 10.10. The Restricted and Regular Maximum Likelihood Ratios Simulated with
Expected q = 0.2 and n = 3.

The case when δ = 0 corresponds to the fixed misclassification probability
model, that is, when q(v) is equal to q for all vectors v ∈ {0, 1}n . The range of
values for q(v) increases with δ, but the expected value of q(v) is always equal to q.
Therefore, the estimate of the maximum likelihood ratio based on the fixed q model
is worse for larger values of δ. To compare this estimate to an unrestricted estimate,
the inference process was simulated 200 times for each δ = 0, 0.5, and 1, holding
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constant n = 3 and the expected q = 0.2. Figure 10.10 shows the average maximum
likelihood ratio curves for the unrestricted model (dotted curves) and the fixed model
(solid curves) when using the selection criterion max�λ(v).

The regular and the unrestricted maximum likelihood ratios both converge to
1, though at slower rates, as δ increases. In other words, the selection criterion
max�λ(v) is appropriate in situations where the misclassification probability is not
necessarily fixed. In general, the unrestricted maximum likelihood ratio is much
smaller than the regular one. For the case when q(v) is fixed at 0.2 (i.e., δ = 0),
the regular maximum likelihood ratio should be used. When δ > 0, it is an overesti-
mate of the true maximum likelihood ratio. For the case when δ = 1, the unrestricted
maximum likelihood ratio should be used, and when δ < 1, it may be an under-
estimate. The true likelihood ratio lies somewhere in between the two.

10.5 Summary and Discussion

10.5.1 Summary of the Research Findings

The recent focus on the computational complexity has come at the expense of a
dramatic increase in the query complexity for Problem 1. In fact, before the latest
contributions described in this chapter, the more recent the inference algorithm is,
the worse it performs in terms of the average query complexity! The subroutine,
here referred to as FIND-BORDER, is the most commonly used in the recent litera-
ture (e.g., [Gainanov, 1984], [Valiant, 1984], [Makino and Ibaraki, 1995], [Boros,
et al., 1997]), and its performance was by far the worst. Therefore, the framework
for unbiased empirical comparison of inference algorithms described in this chapter
seems to be long overdue.

Even though guaranteeing the minimum average number of queries is currently
only computationally feasible for relatively few attributes (i.e., up to 5 or 6), the
recursive algorithm used for Problem 1 revealed the nonintuitive nature of the
optimal solutions. These solutions paved the way for the new selection criterion
min |K1 − K0|. This criterion would probably not have been developed (due to its
nonintuitive nature) without the consultation of the optimal solutions.

The inference algorithm based on this selection criterion extends the feasible
problem sizes to up to about 20 attributes (which involves about 1 million vectors)
for Problem 1. When the number of attributes exceeds 20, computing the selection
criterion might become intractable, while Hansel’s algorithm will most likely still
perform the best on the average. When creating the chain partition used in [Hansel,
1966] and [Sokolov, 1982] becomes intractable, perhaps finding border vectors one
at a time by using the subroutine FIND-BORDER is still computationally feasible.

Problem 2 focused on the extension of the single monotone Boolean function
inference problem to the inference of a pair of nested monotone Boolean functions.
The benefits of the research results discussed in this chapter are manyfold. First,
this chapter shows how the optimal and selection criterion approach to minimizing
the average query complexity is extended to three different inference applications
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using a pair of nested monotone Boolean functions. The selection criteria seem to be
good choices for the nested inference problem. They result in a slight increase in the
average query complexity for the chain poset. For the poset {0, 1}n , they are optimal
for n = 1, 2, 3 and are probably very close to optimal for n greater than 3.

Second, this chapter demonstrates how the nested monotone Boolean function
model often is sufficient (i.e., a more complex model is not needed) and necessary
(i.e., simpler models are not sufficient) for a wide variety of real-life applications.
Suppose a simpler model, such as a single monotone Boolean function, is used for
these applications. At best, the simpler model will provide a poor approximation of
the phenomenon under study. At worst, it will be unable to model the phenomenon.
Suppose a more complex model, such as a pair of independent monotone Boolean
functions, is used for these applications. Then, at the very least, the query complexity
will increase. In addition, the inferred functions may lead to conflicting knowledge
and are more likely to contain errors.

Third, the developments in this chapter quantify the improvement (i.e., the reduc-
tion) in query complexity due to the nestedness assumption. The improvement due to
the nestedness assumption is between 6% and 8% for larger chain posets (h > 50).
This improvement is greater for smaller chain posets, reaching its maximum of 20%
for h = 2. In general, the average query complexity on the chain poset is O(log(h)),
so this improvement is not very significant. For the poset {0, 1}n , this improvement
is a few percent points for n > 8. This improvement decreases with the number of
attributes, reaching its maximum of 20% for n = 1. The average query complexity
on the poset {0, 1}n is exponential in n. This fact makes this improvement far more
dramatic than for the chain poset.

Fourth, this chapter compares the efficiency of the three major types of oracles.
The three-valued (ternary) oracle provides the most significant restriction on the
oracles. It causes up to 84% and 55% increase in the average number of queries for
the chain poset and the poset {0, 1}n , respectively. It is interesting to observe that the
sequential oracles are just as efficient as the unrestricted oracles on the chain poset
and for the poset {0, 1}n for n up to 4. This implies that the pair of nested mono-
tone Boolean functions defined on these posets can be inferred sequentially without
losing optimality. For the poset {0, 1}n with n > 7, the sequential oracle causes a
significant increase in the average query complexity of 12–33%.

The maximum likelihood ratio approach to modeling the inference process of
Problem 3 yielded a number of benefits. It was demonstrated that an appropriately
defined guided learner, such as maximizing the expected maximum likelihood ratio
(max�λ(v)) or randomly selecting inferred border vectors (v ∈ LU( f ∗)∪UZ( f ∗)),
allowed the maximum likelihood ratio to converge to 1, even when the misclassifi-
cation probability was not fixed. This avoids the bias problems associated with the
variance approach reported in Cohn [1996], and also observed with the selection
criterion max(E0(v)+ E1(v)) which is based on the number of errors.

For complete reconstruction of monotone Boolean functions, the guided approach
showed a dramatic reduction in the average number of queries over a passive learner.
The simulations also indicated that this improvement grows at least exponentially as
the number of attributes n and the error rate q increase. Thus, defining an appropriate
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and efficient selection criterion is even more beneficial for large problems and appli-
cations with a high error rate.

For large problems (i.e., when n > 5), it may not be possible to compute the
selection criterion max�λ(v) since it takes exponential time (in the size of the query
domain V ) to do so. For such problems, queries can be selected randomly from the
border vectors (v ∈ LU( f ∗) ∪ UZ( f ∗)). This only takes O(V ) time, and results in
much fewer queries than completely random selection on the average.

Hierarchical decomposition provides a way to address a large inference prob-
lem as a set of smaller independent inference problems. Even though it was not
mentioned earlier, this decomposition is applicable to all three Problems 1, 2, and 3
where it can dramatically reduce the query complexity. Perhaps the greatest benefit
of this decomposition is its simplified queries. This fact may not only improve the
efficiency but also reduce the number of human errors, and hence increase the like-
lihood of inferring the correct function.

10.5.2 Significance of the Research Findings

The single most important discovery described in this chapter is the near-optimal
selection criteria which take polynomial time to evaluate. This leads to the efficient
inference of monotone Boolean functions. The significance of these criteria is fur-
ther strengthened by the scope of real-life problems that can be modeled by using
monotone Boolean functions. Even though only one (or a pair of nested) monotone
Boolean function(s) defined on the set of Boolean vectors {0, 1}n was (were) studied
here, the selection criterion approach to guiding the learner is appropriate for any
monotone mapping V → F , where the sets V ⊂ Rn and F ⊂ Rr are both finite.
The query domain can be viewed as a finite poset by using the monotonicity con-
straints: fi (v) ≤ fi (w) iff v � w, for i = 1, 2, . . . , r , and whatever the relationships
between the functions are, such as the nestedness constraints: f1(v) ≥ f2(v)∀v ∈ V .
The selection criteria can be evaluated for any such poset in order to pinpoint “smart”
queries.

Once the border vectors have been established for each monotone function, they
can be used to classify new observations. In addition, they can be represented by a
single monotone Boolean function, or a set of monotone Boolean functions, defined
on a set of Boolean attributes. Representing the inferred knowledge in this intuitive
manner is perhaps the most important aspect of this problem when human interac-
tion is involved since people tend to make better use of knowledge they can easily
interpret, understand, validate, and remember.

The use of Boolean functions for analyzing fixed data sets has recently gained a
momentum due to their simple representation of intuitive knowledge. See, for exam-
ple, [Triantaphyllou and Soyster, 1996], [Boros, et al., 1995], [Torvik et al., 1999],
and [Yilmaz, et al., 2003]. Boolean models are also becoming more popular because
methods for solving their related hard logical optimization problems are emerging
(e.g., [Triantaphyllou, 1994], [Chandru and Hooker, 1999], [Hooker, 2000], [Felici
and Truemper, 2002], [Truemper, 2004], [Naidenova, 2006], and [Zakrevskij, 2006]).
Some studies on guided inference of general Boolean functions from fixed data sets
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are provided in [Triantaphyllou and Soyster, 1995] and [Nieto Sanchez, et al., 2002b]
and are also described in Chapter 5 of this book.

The narrow vicinity hypothesis proposed by Kovalerchuk, et al. [2000] (and
described in Chapter 9) suggests that the use of the monotonicity assumption is often
necessary and sufficient. As such, it can greatly improve upon knowledge representa-
tions that are too simple or too complex. This chapter demonstrated that the problem
of guided inference in the presence of monotonicity could be of great benefit in a
wide variety of important real-life applications.

10.5.3 Future Research Directions

As mentioned in a previous section the selection criterion approach to learning mono-
tone Boolean functions defined on {0, 1}n is applicable in the much more general
monotone setting V → F , where the sets V ⊂ Rn and F ⊂ Rr are both finite.
The monotone mapping V → F , where the set V ⊂ Rn is infinite and the set
F ⊂ Rr is finite, forms another intriguing problem. It is well known that binary
search is optimal when the query domain V is a bounded subset of the real line,
and F = {0, 1}. However, when the set V is multidimensional and infinite (e.g.,
V = [a, b]2), pinpointing the optimal queries is a much more complex problem. The
selection criterion min |K1 − K0| can be modified to accommodate this case too. Let
U denote the unclassified set (i.e., a subset of V ) and let the parameters K0(v) and
K1(v) now denote the size of the subsets {w ∈ U : w ≺ v} and {w ∈ U : v ≺ w},
respectively. For example, Kz(v) is measured in terms of distance, area, volume,
etc., when n = 1, 2, 3, etc., respectively. The selection criterion min |K1 − K0| is
then optimal for n = 1. How well this criterion performs when n > 1 is an open
question.

For the problems considered in this chapter, the selection criteria attempt to mini-
mize the average query costs. This objective is based on certain assumptions of the
query costs (fixed cost of querying an oracle in Problems 1, 2, and 3, and highly
disproportionate or equal query costs for the two oracles in Problems 2.1 and 2.3,
respectively). It would be interesting to see how the dialogue with the oracle(s)
changes as these assumptions are modified.

When dealing with two oracles, it may be that the cost of querying the first oracle
may be less than, yet of similar magnitude as, the cost of querying the second oracle.
In this case, the first few queries should be directed at the first oracle. After a few
queries it may be more cost beneficial to begin alternating between the two oracles.
It could also be that the order of the queries has an effect on the total inference
cost. In some applications, additional properties may be known about the underlying
function. Some applications may put a limit on the number of lower units, shifting the
focus of the optimal vertices from the vertical center to the vertical edge of the poset.
It may be that the underlying function belongs to a subclass of monotone Boolean
functions, such as threshold functions, 2-monotonic functions, etc.



10.6 Concluding Remarks 227

10.6 Concluding Remarks

The methodologies presented in this chapter provide a framework for solving diverse
and potentially very important real-life problems that can be modeled as guided infer-
ence problems in the presence of monotonicity. The benefits of these methodologies
were shown to be dramatic for the specific problems studied here. However, these
research findings are just the tip of the iceberg. The interested reader is referred to
Torvik and Triantaphyllou [2002; 2004; 2006] for additional details on the solution
methodologies for Problems 1, 2, and 3, respectively.





Chapter 11

Some Application Issues of Monotone Boolean
Functions

11.1 Some Background Information

The property of monotonicity has many applications. Its attractive mathematical
advantages in inferring a model of the system of interest with high accuracy make
the search for this property in data and its consecutive algorithmic exploitation,
to be of high potential in data mining and knowledge discovery applications. The
following developments are based on the work described in [Kovalerchuk, Vityaev,
and Triantaphyllou, 1996] and [Kovalerchuk, Triantaphyllou, and Vityaev, 1995].

This chapter discusses some general application issues of monotone Boolean
functions to data mining and knowledge discovery problems. It also presents a rather
simple design problem in the car industry and uses the same context to discuss some
key issues on the accuracy of diagnostic systems.

11.2 Expressing Any Boolean Function in Terms of Monotone
Ones

In order to help motivate the main development in this section, consider the arbitrary
function depicted in Figure 11.1. Clearly, this function is not monotone. However,
one may observe that this function is comprised by segments that are monotone.
Actually, it is comprised by alternating increasing and decreasing monotone func-
tions, not necessarily Boolean.

For instance, the segment between the points A and B in Figure 11.1 is an increas-
ing monotone function, while the segment between the points B and C is a decreasing
monotone function. From the same figure it is also suggested that one may decom-
pose a general function in more than one way as a sequence of alternating increasing
and decreasing monotone functions. For instance, between the two points D and E,
one may identify the increasing monotone function defined between points D and D1
and another between the points D1 and E.

It turns out that any general Boolean function can also be viewed as a sequence
of increasing and decreasing monotone Boolean functions. This was established

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 11,
c© Springer Science+Business Media, LLC 2010
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Figure 11.1. A Visualization of a Decomposition of a General Function into General Increas-
ing and Decreasing Functions.

in [Kovalerchuk, Triantaphyllou, and Vityaev, 1995] and it is presented next as
Theorem 11.1.

Theorem 11.1. Any Boolean function can be described in terms of several increasing
and decreasing monotone Boolean functions.

Proof. It is well known (e.g., [Peysakh, 1987]) that any Boolean function can be
presented by its DNF. Also, each conjunction from a DNF representation can be
presented by a pair of monotone Boolean functions. One of them is an increasing
and the other one is a decreasing function.

Let x1 ∧ · · · ∧ xi ∧ x̄i+1 ∧ · · · ∧ x̄k be a conjunction from the DNF representation
of a given Boolean function, where for simplicity the first i components (attributes)
are positive while the next k − i components are negations. Then, we can form the
two Boolean functions

g(x1, . . . , xn) = x1 ∧ · · · ∧ xi

and
h(x1, . . . , xn) = x̄i+1 ∧ · · · ∧ x̄k .

The function g(x) is an increasing monotone Boolean function and the function h(x)
is a decreasing one [Radeanu, 1974]. Hence, the conjunction x1 ∧ · · · ∧ xi ∧ x̄i+1 ∧
· · · ∧ x̄k is equal to the conjunction of the two monotone (increasing and decreasing,
respectively) functions g and h:

g(x1, . . . , xn) ∧ h(x1, . . . , xn).

Therefore, any arbitrary Boolean function q(x) can be presented in the form of the
increasing and decreasing functions g j (x) and h j (x), respectively:

q(x) = m∨
j=1
(g j (x) ∧ h j (x)), (11.1)

where x = (x1, . . . , xn) and m is some integer number. �
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Next, let us consider the special case in which a general Boolean function q(x)
can be written as follows:

q(x) = g(x) ∧ h(x),

where q(x) and h(x) are two monotone Boolean functions. For this case the follow-
ing important property is true:

q+ = g+ ∩ h+,

where q+ = {x : q(x) = 1}, g+ = {x : g(x) = 1}, and h+ = {x : h(x) = 1} (i.e.,
these are the sets of the positive examples of these functions). The above observation
follows easily since the function q(x) is defined as the logical addition of the two
functions q(x) and h(x).

Therefore, one can obtain the set of all positive examples for the nonmonotone
function q as the intersection of the sets of all positive examples for the two monotone
functions g and h.

For a general function q(x), represented as in (11.1), the union of all these inter-
sections gives the full set of positive examples:

q+ = ∪q+
j = ∪(g+

j ∩ h+
j ).

Oftentimes, we do not need so many separate monotone functions. It is noticeable
that the union of all conjunctions, which do not include negations x̄i forms a single
increasing monotone Boolean function (see, for instance, [Yablonskii, 1986] and
[Alekseev, 1988]).

11.3 Formulations of Diagnostic Problems as the Inference of
Nested Monotone Boolean Functions

The idea of a pair of nested monotone Boolean functions discussed in the previous
chapter may lead to some powerful modeling strategies. Recall that the visual inter-
pretation of a pair of nested monotone Boolean functions is provided in Figure 10.4.
The following two sections provide some typical examples of how such nested mono-
tone Boolean functions can be applied. More applications can be found in a diverse
spectrum of domains. The inference algorithms for such problems were discussed in
Chapter 10.

11.3.1 An Application to a Reliability Engineering Problem

For illustrative purposes consider the problem of classifying the states of some
mechanical system by a reliability expert. This expert is assumed to have worked
with this particular system for a long time and thus can serve as an oracle (i.e., an
operator who can correctly classify new states of the system). States of the system
are represented by binary vectors from En (the space defined on n binary attributes
or {0, 1}n). This oracle is assumed so that he/she can answer questions such as:
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“Is the reliability of a given state guaranteed?” (Yes/No) or “Is an accident for a
given state guaranteed?” (Yes/No). In accordance with these questions, two interre-
lated nested classification tasks can be defined. In this way one can view the original
complex system as comprised by two interrelated subsystems. Next, we define the
four possible outcome classes (or patterns of operation) which are possible in this
situation.

Task 1: (first subsystem)
Pattern 1.1: “Guaranteed reliable states of the system” (denoted as

E+
1 ).

Pattern 1.2: “Reliability of the states of the system is not guaranteed”
(denoted as E−

1 ).

Task 2: (second subsystem)
Pattern 2.1: “States of the system with some possibility for normal

operation” (denoted as E+
2 ).

Pattern 2.2: “States of the system which guarantee an accident”
(denoted as E−

2 ).

The goal here is to infer two monotone Boolean functions f1 and f2. The first
function is related to task 1, while the second one is related to task 2. It can also
be observed from the way all possible outcomes have been defined above that the
following relations must be true: E+

2 ⊃ E+
1 and f2(x) ≥ f1(x) for all v ∈ {0, 1}n

(see also Figure 10.4).

11.3.2 An Application to the Breast Cancer Diagnosis Problem

The diagnos problem considered in this application is also a nested one. That is,
it is comprised of two interrelated subproblems. The first subproblem is related
to the clinical question of whether a biopsy or short-term follow-up is necessary
or not. The second subproblem is related to the question whether the radiolo-
gist believes that the current case is highly suspicious for malignancy or not. It is
assumed that if the radiologist believes that the case is malignant, then he/she will
also definitely recommend a biopsy. Formally, these two subproblems are defined as
follows:

The Clinical Management Subproblem: (first subsystem)
One and only one of the following two disjoint outcomes is possible:

1) “Biopsy/short-term follow-up is necessary”;
or: 2) “Biopsy/short-term follow-up is not necessary.”

The Diagnosis Subproblem: (second subsystem)
Similarly as above, one and only one of the following two disjoint outcomes is
possible. That is, a given case is

1) “Highly suspicious for malignancy”;
or: 2) “Not highly suspicious for malignancy.”
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Table 11.1. Ratings of Midsize Cars that Cost Under $25,000 [Consumer Reports, 1994,
page 160].

Attributes

Car Type X1X1X1 X2X2X2 X3X3X3 X4X4X4 X5X5X5 X6X6X6 X7X7X7 X8X8X8

Camry 6 4 5 21 1 0 P 1 P
Camry 4 4 5 24 1 0 P P P
Ford Taurus 4 3 20 1 P P 1 P
Mercury Sable 4 3 20 1 1 P 1 1
Maxima 4 5 21 1 0 P P 1
Chrysler NY 3 3 21 1 0 P 1 1
Buick Regal 2 3 20 0 0 P 1 1
Chevrolet Lumina 1 2 22 0 0 P 1 P

It can be easily seen that the corresponding states satisfy the nesting conditions as in
the previous example.

11.4 Design Problems

In the design domain our interest is focused on developing procedures to assist in
the formulation of design criteria as formal requirements for a product of interest to
some designer. This process can be very complicated and also be a multilevel and
multiattribute task. An efficient solution to this problem may significantly speed up
the design process.

We will present the key ideas in terms of a rather simple illustrative example.
Suppose that one wishes to design a midsize car under $25,000 which will be better
than the average one currently available in the market. Table 11.1 presents the key
features (attributes) of cars on the market, as were taken from Consumer Reports in
1994 (on page 160). In this table we use the following notation:

X1 : the overall score (the higher the better, the values are 1, 2, 3, and 4);
X2 : the predicted reliability;
X3 : its overall mileage per gallon (mpg);
X4 : presence or not of an airbag on the driver’s side (note that today this is a

required feature for all cars);
X5 : presence or not of an airbag on the passenger’s side (note that today this

is a required feature for all cars);
X6 : presence or not of antilock brakes;
X7 : presence of automatic transmission; and
X8 : presence of air-conditioning.

For the above attributes in Table 11.1 “P” stands for “optional,” while “1” and “0”
stand for available and unavailable, respectively.

Next, the designer needs to identify a combination of car attributes which should
be the design requirements for the new car. Such a task requires one to analyze a
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large amount of data (combinations of attribute values) with different overall scores
(value of X1 in Table 11.1).

In particular, we note that from the above data there are 5 different values for
attribute X2, 5 different values for attribute X3, 2 for X4, and 3 for each of X5,
X6, X7, and X8. That is, there is a total of 5 × 5 × 2 × 3 × 3 × 3 × 3 = 4,050
combinations. A designer should choose some of them. This number defines the size
of the problem. Table 11.1 brings information of 5 unique cases (note that another
3 cases are identical to some of these 5 cases) from this population of 4,050 cases.
Thus, the research problem is how to assist the designer to analyze these 4,050 cases
and discriminate between acceptable and unacceptable ones.

Some of the cases can be excluded from further consideration rather easily. For
instance, if all existing cars have antilock brakes, automatic transmission, and air-
conditioning options, then probably it will not be wise to design a new car without
these options. The same is true for the airbag on the driver’s side. We can also restrict
an acceptable range of reliability with values 3, 4, and 5. By using these observations,
the actual number of all possible cases becomes 3 × 5 × 2 × 2 × 2 × 2 × 2 = 480.

Each of these 480 cases needs to be classified into one of the following two cate-
gories (classes): (1) acceptable for design and (2) unacceptable for design. At this
point, one may observe that this design problem is governed by the monotonic-
ity property. If some car (i.e., a combination of values of the previous seven key
attributes X2, X3, X4, . . . , X8) is acceptable for design, then a better car (i.e., a
combination of stronger values but still under the $25,000 price level) should also
be acceptable for design. The key property of monotonicity, along with the previous
design attributes, may allow one to study the solution space effectively as is demon-
strated in Section 11.7.

11.5 Process Diagnosis Problems

Many computer-aided process diagnosis systems are based on neural networks, deci-
sion trees, linear discriminant analysis, similarity-based classification, and various
statistical models. Such systems are used in many application areas such as machinery
monitoring, military target recognition, detection of radioactive contamination, non-
destructive detection of damage in composite materials, drug design, and medical
diagnosis just to name a few. Usually, for such systems an accuracy of 90%, 95%, or
99% is considered as satisfactory. However, as the following section illustrates, the
above numbers may be grossly misleading.

11.6 Three Major Illusions in the Evaluation of the Accuracy of
Data Mining Models

In this section we discuss the role of various measures of performance of diag-
nostic systems and data mining systems in general. In [Kovalerchuk, Vityaev, and
Triantaphyllou, 1996] we defined three types of misleadings (we will call them here
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illusions) when one considers the accuracy rate of a system. Related to this subject
is also the discussion at the end of Section 1.3.4, and most of Chapter 9.

11.6.1 First Illusion: The Single Index Accuracy Rate

Consider the following actual data: About 0.2% of 15,000 screened women have
breast cancer. This information comes from unpublished data in 1995 from Woman’s
Hospital in Baton Rouge, Louisiana. Suppose that we have an “ultraoptimistic” diag-
nostic system which indiscriminately diagnoses any case as “noncancer.” Such a
system would have an accuracy rate of 99.8%, as it would miss only the 0.2% of the
cases which in reality are the only ones with breast cancer.

At a first glance, a system with an accuracy of 99.8% may appear to be highly
effective. However, in reality the above “ultraoptimistic” system is just useless if
not terribly dangerous. That is, one needs to examine its accuracy in terms of the
false-positive and false-negative error rates separately. In these terms the “ultra-
optimistic” system makes no errors in diagnosing the noncancer cases (100% of
them are diagnosed accurately), while it makes 100% errors in misdiagnosing all
cancer cases. In light of these two indices, one may immediately reject such a
system as profoundly inaccurate. A similar situation occurs with many other diag-
nostic/forecasting systems in a wide spectrum of applications.

Next, we will consider how to evaluate the performance of a diagnostic system in
terms of these two indices. If both of these indices are equal to 99%, then the overall
accuracy rate will also be equal to 99%. In such case, the overall performance of the
system might be considered as satisfactory. However, if the system has 30% false-
positive and 80% false-negative rates, then how can one evaluate it? Most likely, one
needs to undertake a detailed study that considers the relative impact of each of these
two types of errors.

In the previous discussion we highlighted the need to consider both rates, that
is, the false-positive and the false-negative accuracy rates. This task requires one to
determine the real border between the two diagnostic classes and compare it with the
formal border which is determined by a particular model. The real border can be of
any size, ranging from very narrow to very wide (see also Chapter 9 and Chapter 10
on monotonicity).

Another critical issue is the rate of cases that the system characterizes new obser-
vations as “do not know” or undecidable cases (not to be confused with the unclas-
sified ones). This was discussed in more detail in Section 1.3.4. Such situations take
place when the inferred knowledge from the training data is limited. That is, a system
may have very low false-positive and false-negative rates but still be of dubious qual-
ity if it results in too many “undecidable” cases when it is called to classify new
observations.

11.6.2 Second Illusion: Accurate Diagnosis without Hard Cases

Suppose that the border area of the previous example on breast cancer consists of
only 10% of all possible cases and a system diagnoses incorrectly all of them. That is,
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it is wrong about 100% of the cases that belong to this border area. Furthermore,
suppose that the same system is 100% accurate on the rest of the cases (i.e., on the
nonborder cases which take 90% of all possible cases). Overall, this system is 90%
accurate with a number of false-positive and false-negative errors. How effective
is such a system? Clearly, this situation is different than the one described in the
previous section.

Such a hypothetical system is highly (actually, perfectly) accurate on simple
cases (as they are nonborder ones) and highly inaccurate (actually, perfectly inac-
curate) on the challenging (i.e., “hard”) cases as they are the ones which belong to
the border area.

Should such a system be considered as effective? That is doubtful. Intuition calls
that an effective diagnostic system (and, in general, any predictive system) should
be highly accurate, and in particular, on the most challenging of the cases. This is
exactly when one needs the aid of such a system! Many systems and human experts
may diagnose cases that are well beyond the border area. The real value of a system
is in assisting in accurately diagnosing border or marginal cases. These are the “hard”
cases. In a situation like the previous one, the system appears to be highly effective
(the overall accuracy is 90%), it is not of the extreme “ultraoptimistic” category,
but its practical effectiveness is under serious doubt. The above issues are the basis
of what we call the second illusion, or highly accurate on the nonborder (i.e., the
“easy”) cases only.

11.6.3 Third Illusion: High Accuracy on Random Test Data Only

The third illusion is related to a random choice of the testing data. The standard
approach in evaluating a diagnostic system is to test it against a set of randomly
chosen data for which the actual classification is known but it is kept unknown to the
system.

In terms of the previous hypothetical example of having 10% of the cases in the
border area and the other 90% in the nonborder area, such a testing would generate
the previous performance measures and the system would be 90% accurate. This
situation, however, would have disguised the severe deficiency and bias as described
in the previous section. In other words, we would be subject to the second illusion
but the real cause would be the random choice of the testing data. Thus, we call this
type of weakness the random choice illusion.

11.7 Identification of the Monotonicity Property

How can the previous three accuracy illusions be prevented and the effectiveness
of such systems be improved? The answer seems to be by developing methods
that better define the border area between the diagnostic classes. In the past, dif-
ferent methods provided approximations of the real border by employing various
a priori assumptions regarding these borders. Such assumptions are related to the
metrics of the attribute space, type of distribution, class of discriminant functions,
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Figure 11.2. The Data Points in Terms of Attributes X2 and X3 Only.

type of rules to extract, etc. This a priori assumptions approach may often lead
to confusing diagnostic solutions and/or to some of the illusions discussed in the
previous sections.

Thus, it is important to have an approach that determines such borders directly
from the data. Such a method is illustrated next on the car evaluation data presented
in Section 11.4 of this chapter. This approach is based on the monotonicity property
studied in Chapter 10 of this book.

In the small data set depicted in Table 11.1 observations (descriptions of cars)
can be classified in either of two classes: acceptable and unacceptable car designs.
In order to help fix ideas we consider two attributes only (although the proposed
method can be generalized to include any number of attributes). These attributes are
the predicted reliability (attribute X2) and the miles per gallon or mpg (attribute X3).

The data described in these two attributes are next plotted as in Figure 11.2. For
each data point we also plot its overall rating score (attribute X1). For instance, the
data point with attribute values (X2, X3) = (2, 22) corresponds to Chevrolet Lumina
which has an overall rating value equal to 1 (hence the square with coordinates (2, 22)
has a “1”). Similarly, the point (X2, X3) = (3, 20) corresponds to the three cars
Ford Taurus, Mercury Sable, and Buick Regal with overall scores of 4, 4, and 2,
respectively. Thus, the square with coordinates (3, 20) has the “4,4,2” label. A similar
interpretation follows for the rest of the data points in Figure 11.2.

Next, we use attribute X1 (i.e., the overall rating score) to split this data set into
two disjoint subsets. If X1 = 4, then the design requirements lead to an accept-
able solution (car), while values of X1 < 4 lead to unacceptable solutions. That is,
the acceptable and unacceptable characterization corresponds to the two diagnostic
classes (positive and negative, respectively) for this data set. Note that the assignment
of the acceptable (unacceptable) class to the positive (negative) class is arbitrary.
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If one considers all possible values (i.e., the 5 different values) for attribute X2
and all possible values for attribute X3 (i.e., the 8 different values in Figure 11.2), one
gets a total of 40 different design combinations. From Table 11.1 one can see that we
have complete information for only 8 cars (design combinations). Thus, we do not
have adequate information to construct a precise border between the two diagnostic
classes as defined above. Moreover, the classes are overlapping as indicated in data
point (3, 20) in Figure 11.2 by three cars; two from the positive class and one car
from the negative class.

An examination of Figure 11.2 reveals that one may determine a practically infi-
nite number of borders between the two diagnostic classes. For instance, a simple
border is to have X2 > 4 for the positive class and X2 < 4 for the negative class.
Another one is to have X2 ≥ 3 for the positive class and X2 < 3 for the negative
class and so on. Both of the previous borders (discrimination rules) generalize all
available 8 cases (data points) and classify the remaining cases accordingly. Next one
may observe that both of them classify point (5, 19) as “acceptable.” However, what
is the basic argument for doing so? Traditional methods such as neural networks and
linear discriminant functions do not provide a good justification of such decisions
other than to claim that such a decision is based on the generalization implied by the
available training data points.

The above dilemma may be addressed by resorting to the monotone property
embedded in the attribute definitions. A closer look at the semantics of the two
attributes X2 and X3 reveals some interesting properties. To see this consider two
hypothetical cars a and b with the following two hypothetical relationships:

(R1) The forecasted reliability X2 of car b is more than the forecasted reliability X2
of car a. That is, we assume to have X2(b) > X2(a).

(R2) Car a covers less miles per gallon than car b. That is, we assume to have
X3(b) > X3(a).

Now we are ready to design car a with properties X2 and X3 defined as above.
That is, we have decided that car a belongs to the acceptable (positive) class. From
relations (R1) and (R2) one can determine that car b is better than car a (again, we
assume that we have the two attributes X2 and X3 only). Then, in order to be logically
consistent we should also accept that car b belongs to the acceptable (positive) class
as well. Let us denote that car a (or car b) belongs to the acceptable class by saying
that the predicate D(a) (or D(b)) has true value. Then the above analysis can be
formalized as follows:

IF X2(b) > X2(a), and X3(b) > X3(a), and (D(a) = true),

THEN (D(b) = true).

This is exactly the meaning of the property of monotonicity. For the two
attributes X2 and X3 the property of monotonicity is a direct consequence of the
analysis of the semantics of these attributes. For other attributes, the property of
monotonicity may not be as apparent.
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Figure 11.3. Monotone Discrimination of the Positive (Acceptable) and Negative (Unaccept-
able) Design Classes.

The main advantage of this semantic or empirical approach to discovering the
property of monotonicity is that one can obtain interpretable properties of the diag-
nostic classes, instead of interpolating the data and defining the borders by using
some a priori assumptions.

Next, we use the discovered property of monotonicity to define the borders for the
current illustrative data set. Figure 11.3 shows the border between the positive class
(dark region in the upper right area of Figure 11.3) and the negative class (the light
region in the lower left area in Figure 11.3). The same figure also shows the “undecid-
able” region (designated by the “?” labels) for this simplified hypothetical example.

11.8 Concluding Remarks

The procedures discussed in this chapter are applicable to any situation in which we
wish to infer the structure of a system of interest from observations of its behavior
that can be grouped into two disjoint sets (i.e., the positive and negative groups) of
training examples.

This chapter discussed some application issues of how to analyze any Boolean
function (i.e., not necessarily monotone ones) in terms of a series of monotone
Boolean functions. It also discussed some modeling techniques that rely on nested
monotone Boolean functions.

Furthermore, this chapter provides a procedure for identifying the presence of
monotonicity and then it combines it with a semantic analysis of the attributes to
better identify the border between the two sets of training examples. It also discussed,
in a comprehensive manner, three critical types of performance illusions which may
occur when one evaluates the accuracy of a diagnostic system.





Chapter 12

Mining of Association Rules

12.1 Some Background Information

Mining of association rules from databases has attracted great interest because of
its potentially very useful applications. Association rules are derived from a type of
analysis that extracts information from coincidence [Blaxton and Westphal, 1998].
Sometimes called market basket analysis, this methodology allows a data analyst to
discover correlations, or co-occurrences of transactional events. In the classic exam-
ple, consider the items contained in a customer’s shopping cart on any one trip to
a grocery store. Chances are that the customer’s own shopping patterns tend to be
internally consistent, and that he/she tends to buy certain items on certain days. There
might be many examples of pairs of items that are likely to be purchased together.
This is the kind of information the store manager could use to make decisions about
where to place items in the store so as to increase sales. This information can be
expressed in the form of association rules. Such information may have tremendous
potential on the marketing of new or existing products. This is the kind of approach
used by many enterprises (such as Amazon.com for instance) to recommend new
or existing products to their customers. Mining of association rules is applicable to
many more domains [Bayardo, et al., 1999]. This chapter is based on the results
discussed in [Yilmaz, et al., 2003].

Purchase records can be captured by using the bar codes on products. The tech-
nology to read them has enabled businesses to efficiently collect vast amounts of data,
commonly known as market basket data [Agrawal and Srikant, 1994]. Typically, a
purchase record contains the items bought in a single transaction, and a database may
contain many such transactions. Analyzing such databases by extracting association
rules may offer some unique opportunities for businesses to increase their sales, since
association rules can be used in designing effective marketing strategies. The sizes
of the databases involved can be very large. Thus, fast and effective algorithms are
needed to mine association rules out of them.

For a more formal definition of association rules, some notation and definitions
are introduced as follows. Let I = {A1, A2, A3, . . . , An} be the set with the names
of the items (also called attributes, hence the notation Ai ) among which association
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rules will be searched. This set is often called the item domain [Agrawal and Srikant,
1994], [Bayardo, et al., 1999]. Then, a transaction is a set of one or more items
obtained from the set I . This means that for each transaction T , the relation T ⊆ I
holds. Let D be the set of all transactions. Also, let X be defined as a set of some of
the items in I . The set X is contained in a transaction T if the relation X ⊆ T holds.

Using these definitions, an association rule is a relationship of the form X ⇒ Y ,
where X ⊂ I , Y ⊂ I , and X ∩ Y = ∅. The set X is the antecedent part, while the
set Y is the consequent part of the rule. An association rule holds true with some
confidence level denoted as C L . The confidence level is the conditional probability
(as it can be inferred from the available transactions in the target database) of having
the consequent part Y given that we already have the antecedent part X . Moreover,
an association rule has support S, where S is the number of transactions in D that
contain X and Y simultaneously. A frequent item set is a set of items that occur
frequently in the database. That is, their support is above a predetermined mini-
mum support level. A candidate item set is a set of items, possibly frequent, but
not yet checked whether they meet the minimum support criterion. The association
rule analysis in our approach will be restricted to those association rules which have
only one item in the consequent part of the rule. However, a generalization can be
made easily.

Example 1. Consider the following illustrative database:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 0
0 0 1 1 0
1 1 0 0 0
0 1 1 0 0
0 1 0 1 1
1 1 1 0 1
0 0 0 0 1
1 1 1 1 1
0 1 1 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This database is defined on five items, so I = {A1, A2, A3, A4, A5}. Each row
represents a transaction. For instance, the second row represents a transaction in
which only items A3 and A4 were bought. The support of the rule A2 A4 → A5 is
equal to 3. This is true because the items A2, A4, and A5 occur simultaneously in
3 transactions (i.e., the fifth, eighth, and ninth transactions). The confidence level of
the rule A2 A4 → A5 is 100% because the number of transactions in which A2 and
A4 appear together is equal to the number of transactions that A2, A4, and A5 appear
(both are equal to three), giving a confidence level of 100%. �

Given the previous definitions, the problem of interest is how to mine associ-
ation rules out of a database D, that meet some preestablished minimum support
and confidence level requirements. Mining of association rules was first introduced
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by Agrawal, Imielinski and Swami in [1993]. Their algorithm is called AIS (for
Agrawal, Imielinski, and Swami). Another study used a different approach to solve
the problem of mining association rules [Houtsma and Swami, 1993]. That study pre-
sented a new algorithm called SETM (for Set-Oriented Mining). The new algorithm
was proposed to mine association rules by using relational operations in a relational
database environment. This was motivated by the desire to use the SQL system to
compute frequent item sets.

The next study [Agrawal and Srikant, 1994] received a lot more recognition than
the previous ones. Three new algorithms were presented; the Apriori, the AprioriTid,
and the AprioriHybrid. The Apriori and AprioriTid algorithms are fundamentally
different from the AIS and SETM ones. As the name AprioriHybrid suggests, this
approach is a hybrid between the Apriori and the AprioriTid algorithms.

Another major study in the field of mining of association rules is described
in [Savasere, et al., 1995]. These authors presented an algorithm called Partition.
Their approach reduces the search by first computing all frequent item sets in two
passes over the database. Another major study on association rules takes a sam-
pling approach [Toivonen, 1996]. These algorithms make only one full pass over the
database. The main idea is to select a random sample, and use it to determine rep-
resentative association rules that are very likely to also occur in the whole database.
These association rules are in turn validated in the entire database.

This chapter is organized as follows. The next section presents a formal descrip-
tion of the research problem under consideration. The third section describes the new
approach which is based on the OCAT approach and the RA1 heuristic (as described
in Chapters 2, 3, and 4). The fourth section presents an extensive computational study
that compared the proposed approach for the mining of association rules with some
existing ones. Finally, the chapter ends with a conclusions section.

12.2 Problem Description

Previous work on mining of association rules focused on extracting all conjunctive
rules, provided that these rules meet the criteria set by the analyst. Such criteria can
be the minimum support and confidence levels. Although previous algorithms mainly
considered databases from the domain of market basket analysis, they have been
applied to the fields of telecommunication data analysis, census data analysis, and to
classification and predictive modeling tasks in general [Bayardo, et al., 1999]. These
applications differ from market basket analysis in the sense that they contain dense
data. That is, such data sets may possess all or some of the following properties:

(i) Have many frequently occurring items;
(ii) Have strong correlations between several items;

(iii) Have many items in each record.

When standard association rule mining techniques are used (such as the Apriori
approach [Agrawal and Srikant, 1994] and its variants), they may cause exponen-
tial resource consumption in the worst case. Thus, it may take too much CPU time
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for these algorithms to mine the association rules. The combinatorial explosion is a
natural result of these algorithms, because they mine exhaustively all the rules that
satisfy the minimum support constraint as specified by the analyst. Furthermore, this
characteristic may lead to the generation of an excessive number of rules. Then, the
end user will have to determine which rules are worthwhile. Therefore, the higher
the number of the derived association rules is, the more difficult it is to review them.
In addition, if the target database contains dense data, then the previous situation
may become even worse.

The size of the database also plays a vital role in data mining algorithms
[Toivonen, 1996]. Large databases are desired for obtaining accurate results, but
unfortunately, the efficiency of the algorithms depends heavily on the size of the
database. The core of today’s algorithms is the Apriori algorithm [Agrawal and
Srikant, 1994] and this algorithm will be the one to be compared with in this chapter.
Therefore, it is highly desirable to develop an algorithm that has polynomial com-
plexity and still being able to find a few rules of good quality.

12.3 Methodology

12.3.1 Some Related Algorithmic Developments

The proposed approach for mining of association rules is based on the OCAT
approach and the RA1 heuristic. Recall that this heuristic infers a set of clauses
(i.e., a Boolean function in CNF or DNF) from two mutually exclusive collections
of binary examples.

Below are some definitions that are used in these approaches and are going to be
used in the new approach as well.

C is the set of attributes in the current clause (a disjunction for the
CNF case);

ak an attribute such that ak ∈ A, where A is the set of the attributes
A1, A2, . . . , An and their negations;

POS(ak) the number of all positive examples in E+ which would be
accepted if attribute ak were included in the current CNF clause;

NEG(ak) the number of all negative examples in E− which would be
accepted if attribute ak were included in the current clause;

� the size of the candidate list;

ITRS the number of times the clause forming procedure is repeated.

The RA1 algorithm is described again in Figure 12.1. It is of polynomial time
complexity as shown in Chapter 4. By examining the previous definitions, some key
observations can be made at this point. When an attribute of high POS function value
is chosen to be included in the CNF clause currently being formed, it is very likely
that this will cause it to accept some additional positive examples.
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DO for ITRS number of iterations
BEGIN {Reset the E+ and E− sets};

DO WHILE (E− = ∅)
C = ∅; {initialization}

DO WHILE (E+ = ∅)
Step 1: Rank in descending order all attributes ai ∈ A

(where ai is either Ai or Āi ) according to their
POS(ai )/NEG(ai ) value. If NEG(ai ) = 0, then
use as an alternative scoring function the product
of an arbitrarily large number times POS(ai ).
We call this the ALT(ai ) value;

Step 2: Form a candidate list of the attributes which have
the l highest POS(ai )/NEG(ai ) ratios or ALT(ai )

values (when NEG(ai ) = 0);
Step 3: Randomly choose an attribute ak from the candi-

date list;
Step 4: Let the partial current clause be:

C ← C ∨ ak ;
Step 5: Let E+(ak) be the set of members of E+

accepted when ak is included in the current CNF
clause;

Step 6: Let E+ ← E+ − E+(ak);
Step 7: Let A ← A − ak ;
Step 8: Calculate the new POS(ai ) values for all ai ∈ a;

REPEAT
Step 9: Let E−(C) be the set of members of E− which

are rejected by C ;
Step 10: Let E− ← E− − E−(C);
Step 11: Reset E+;

REPEAT
END;

CHOOSE the final Boolean system among the previous ITRS systems which has the
smallest number of clauses.

Figure 12.1. The RA1 Heuristic for the CNF Case (see also Chapter 4).

The reverse is true for attributes with a small NEG function value in terms of the
negative examples. Therefore, attributes that have high POS function values and low
NEG function values are a good choice for inclusion in the current CNF clause.
In [Deshpande and Triantaphyllou, 1998] it was shown, through some empirical
experiments, that the POS/NEG ratio is an effective evaluative criterion, since it is
very likely to lead to Boolean functions with few clauses.

12.3.2 Alterations to the RA1 Algorithm

For a Boolean expression to reveal actionable information about associations in a
database, it is more convenient to be expressed in DNF. The first step is to select
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an attribute about which associations will be sought. This attribute will form the
consequent part of the desired association rules. By selecting such an attribute,
the database can be partitioned into two mutual sets of records (binary vectors).
Vectors that have value equal to “1” in terms of the selected attribute can be seen
as the positive examples. A similar interpretation holds true for records that have
value of “0” for that attribute. The latter vectors will be the set of the negative
examples.

Given the above way for partitioning (dichotomizing) a database of transactions,
it follows that each conjunction (clause in a DNF expression) of the target Boolean
function will reject all the negative examples, while on the other hand, it will accept
some of the positive examples. Of course, when all the conjunctions are considered
together, they will accept all the positive examples.

In terms of association rules, each clause in the Boolean expression (which now
is expressed in DNF) can be thought of as a set of frequent item sets. That is, such a
clause forms a frequent item set. Thus, this clause can be checked further whether it
meets the preset minimum support and confidence level criteria.

The requirement of having Boolean expressions in DNF does not mean that the
RA1 algorithm has to be altered (although it can easily be done) to produce Boolean
expressions in DNF. As was shown in Chapter 7, if one forms the complements
of the positive and negative sets and then swaps their roles, then a CNF produc-
ing algorithm will produce a DNF expression (and vice versa). The last alteration
is to swap the logical operators (∧) “AND” and (∨) “OR” in the CNF (or DNF)
expression.

Another interesting issue is to observe that the confidence level of the association
rules produced by processing frequent item sets (i.e., clauses of a Boolean expression
in DNF when the RA1 approach is used) will always be equal to 100%. This happens
because each DNF clause rejects all the negative examples while it accepts some of
the positive examples when a database with transactions is partitioned as described
earlier.

A critical change in the RA1 heuristic is that for deriving association rules,
it should only consider the attributes themselves and not their negations. This is
not always the case, since some authors have also proposed to use association
rules with negations [Savasere, et al., 1998]. However, association rules are usu-
ally defined on the attributes themselves and not on their negations. If one considers
only the attributes themselves and excludes their negations, this requirement may
cause certain problems due to certain degenerative situations that could occur. These
situations may occur as follows:

Degenerative Case # 1. If only one item is bought in a transaction, and if that
particular item is selected to be the consequent part of the association rules sought,
then the E+ set will have an example (i.e., the one that corresponds to that trans-
action) with only zero elements. Thus, the RA1 heuristic (or any variant of it) will
never terminate. Hence, for simplicity it will be assumed that such degenerative
transactions do not occur in our databases.
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Degenerative Case # 2. After forming a clause, and after the E− set is updated
(Step 10 in Figure 12.1), the new POS/NEG values may be such that the new clause
may be one of those that have been already produced earlier (i.e., it is possible to
have “cycling”).

Degenerative Case # 3. A newly generated clause may not be able to reject any of
the negative examples.

The previous is an exhaustive list of all possible degenerative situations when the
original RA1 algorithm is used on this particular type of problem (i.e., in the mining
of association rules). Thus, the original RA1 algorithm needs to be altered in order
to avoid them. Degenerative case #1 can be easily avoided by simply discarding all
one-item transactions (which are very rare to occur in reality any way). Degenerative
cases #2 and #3 can be avoided by establishing some upper limits on the number
of iterations a single clause is generated (recall the randomized characteristic of the
RA1 heuristic). Such cases are more likely to occur with clauses generated towards
the end of the clause generation process. If such a limit is reached, then the entire
Boolean function is generated again in a randomized fashion.

In order to mine association rules that have different consequents, the altered
RA1 should be run for each of the attributes A1, A2, A3, . . . , An . After determin-
ing the frequent item sets for each of these attributes, one needs to calculate the
support level for each frequent item set, and check whether the (preset) minimum
support criterion is met. If it is, then the current association rule is reported. The pro-
posed altered RA1 (to be denoted as ARA1) heuristic is summarized in Figure 12.2.
It captures the greedy aspect of the OCAT approach (which is embedded into the
algorithm). Please note that this version does not implement randomization for sim-
plicity of the illustration of the main ideas. Randomization of the ARA1 heuristic can
be done easily in a way analogous to the RA1 case (as shown in Figure 4.1). Finally,
it should be stated here that the new heuristic is also of polynomial time complexity
as was the case with the original RA1 algorithm. This follows easily from a com-
plexity analysis similar to the one described in Chapter 4 for the case of the RA1
algorithm.

12.4 Computational Experiments

In order to compare the altered RA1 (i.e., the ARA1) heuristic with some of the
existing mining of association rule methods, we applied them on several synthetic
databases that were generated by using the data generation programs described in
[Agrawal and Srikant, 1994]. The URL for these codes was: http://www.almaden.
ibm.com/cs/quest/syndata.html (note: when this URL was tested recently it was not
active but the user was directed to a general site in this domain). These databases
contain transactions that would reflect the real world, where people tend to buy sets
of certain items together. Several databases were used in these comparisons. The
sizes of these databases are as follows:
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DO for each consequent A1, A2, A3, . . . , An
BEGIN
Form the E+ and E− sets according to the presence or absence of the current
Ai attribute.
Calculate the initial POS and NEG values.
Let A = {A1, A2, A3, . . . , An}.

DO WHILE (E− = ∅)

C = ∅; {initializations}
START1: DO WHILE (E+ = ∅)

Step 1: Rank in descending order all attributes ai ∈ A (where ai
is the attribute currently under consideration) according to
their POS(ai )/NEG(ai ) value;
If NEG(ai ) = 0, then the ALT(ai ) value is used
instead (see also Figure 12.1);

Step 2: Evaluate the POS/NEG ratios or the ALT values;
Step 3: Choose an attribute ak accordingly;
Step 4: Let the set of attributes in the current clause be C ← C ∪

{ak};
Step 5: Let E+(ak) be the set of members of E+ accepted when ak

is included in the current CNF clause;
Step 6: Let E+ ← E+ − E+(ak);
Step 7: Let A ← A − {ak};
Step 8: Calculate the new POS(ak ) values for all ak ∈ A;
Step 9: If A = ∅ (i.e., checking for degenerative case #1), then

goto START1;
REPEAT

Step 10: Let E−(C) be the set of members of E− which are rejected
by C ;

Step 11: If E−(C) = ∅, then determine the appropriate degenera-
tive case (i.e., case #2, or #3).
Check whether the corresponding counter has hit the preset
limit.
If yes, then go to START1;

Step 12: Let E− ← E−(C);
Step 13: Calculate the new NEG values;
Step 14: Let C be the antecedent and Ai the consequent of the rule.

Check the candidate rule C → Ai for minimum support.
If it meets the minimum support level criterion, then output
the rule;

Step 15: Reset the E+ set (i.e., select the examples which have Ai
equal to “1” and store them in set E+);

REPEAT
END

Figure 12.2. The Proposed Altered Randomized Algorithm 1 (ARA1) for the Mining of
Association Rules (for the CNF Case).
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Database #1: 1,000 items with 100,000 transactions
(the min support was set to 250).

Database #2: 1,000 items with 10,000 transactions
(the min support was set to 25).

Database #3: 500 items with 5,000 transactions
(the min support was set to 12).

Database #4: 500 items with 4,500 transactions
(the min support was set to 11).

Database #5: 500 items with 4,000 transactions
(the min support was set to 10).

The first results are from the densest databases used in [Agrawal and Srikant,
1994], that is, database #1. The Apriori algorithm was still in the process of
generating the frequent item sets of length 2 after 80 hours 22 minutes and 8 sec-
onds when database #1 was used. Therefore, the experiment with the Apriori algo-
rithm was aborted. However, the ARA1 algorithm completed mining the very same
database in only 44 hours 22 minutes and 1 second. The ARA1 algorithm mined a
single rule with each of the following support levels: 259, 263, 308, 441, 535, 623,
624, 756, 784, 984, and 1,093. All the experiments were run on an IBM 9672/R53
mainframe computer. This processor is a 10-engine box with each engine being rated
at 26 MIPS (millions of instructions per second).

For the experiments with Database #2, however, some parallel computing tech-
niques were utilized for the Apriori algorithm. The frequent item sets were gathered
into smaller groups, making it possible to build the next frequent item sets in shorter
time. As a result, each group was analyzed separately, and the CPU times for each of
these jobs were added together at the end. The Apriori algorithm completed mining
this database in 59 hours 15 minutes and 3 seconds. Figure 12.3 illustrates the num-
ber of rules for this case. By “rules” we mean clauses in DNF (i.e., conjunctions).
On the other hand, the ARA1 algorithm mined Database #2 in only 2 hours 54 min-
utes and 57 seconds. These results are depicted in Figure 12.4.

It should be noted here that the CPU times recorded for the Apriori experi-
ments for this research were higher than the similar results reported in [Agrawal
and Srikant, 1994]. For instance, it was reported in [Agrawal and Srikant, 1994] that
the Apriori algorithm took approximately 500 seconds to mine Database #1. That
result was obtained on an IBM RS/6000 530H workstation with a main memory of
64 MB and running AIX 3.2. On the other hand, for Database #1, the Apriori pro-
gram written for this research was in the process of generating item sets of length 2
after 80 hours 22 minutes and 8 seconds. The only difference between the approach
taken in [Agrawal and Srikant, 1994] and the one in [Yilmaz, et al., 2003] is that the
candidate item sets in [Agrawal and Srikant, 1994] were stored in a hash tree. Hash-
ing is a data storage technique that provides fast direct access to a specific stored
record on the basis of a given value for some field [Savasere, et al., 1998].
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Figure 12.3. Histogram of the Results When the Apriori Approach Was Used on Database #2.

Figure 12.4. Histogram of the Results When the ARA1 Approach Was Used on Database #2.

In the work described in [Yilmaz, et al., 2003], hash trees were not used in stor-
ing candidate item sets; instead they were kept in the main memory of the computer.
This made it faster to access candidate item sets because direct access is generally
very expensive CPU-wise. It is believed that the programming techniques and the
type of the computers used in [Agrawal and Srikant, 1994] are causing the CPU time
difference. In addition, the Apriori code in this research was run under a time-sharing
option, which again could make a difference. As was mentioned earlier, the computer
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codes for the Apriori and the ARA1 algorithms were run on an IBM 9672/R53 com-
puter. The results obtained by using Database #2 suggest that ARA1 produced a
reasonable number of rules quickly. Also, these rules were of high quality, since by
construction, all had 100% confidence level.

After obtaining these results, it was decided to mine the remaining databases by
also using a commercial software package, namely, MineSet by Silicon Graphics.
MineSet is one of the most commonly used data mining computer packages. Unfor-
tunately, MineSet used in those tests worked with transactions of a fixed length.
Therefore, the transactions were coded as zeros and ones, zeros representing that the
corresponding item was not bought, and ones representing that the corresponding
item was bought. However, this causes MineSet to also mine negative association
rules. Negative association rules are rules based on the absence of items in the trans-
actions too, rather having only their presence. Now negations of attributes may also
appear in a rule’s structure. Another drawback of MineSet is that only a single item
is supported in both the left- and the right-hand sides of the rules to be mined. Also,
the version of MineSet used in [Yilmaz, et al., 2003] allowed for a maximum of 512
items in each transaction. The MineSet software used for this study was installed on
a Silicon Graphics workstation, which had a CPU clock rate of 500 MHz and a RAM
of 512 MB.

As stated above, MineSet supports only a single item in both the left and the
right hand sides of the association rules. This suggests that MineSet uses a search
procedure of also polynomial time complexity. Such an approach would have first
to count the support of each item when it is compared with every other item, and
store these supports in a triangular matrix of dimension n (i.e., equal to the number
of attributes).

During the pass over the database, the supports of the individual items could
be counted, and the rest will only be a matter of checking whether the result is above
the preset minimum confidence level. For instance, when checking the candidate
association rule A2 → A6, the confidence level would be the support of A2 divided
by the support of A2 A6. On the other hand, when doing the same for rule A6 → A2,
then the confidence level would be the support of A6 divided by the support of A2 A6.
Therefore, such an approach requires n(n − 1)/2 operations (where n is the number
of attributes or items). If |D| is the number of transactions (records) in the database,
then the time complexity is O(|D|n2).

This is almost of the same time complexity that the ARA1 approach has. How-
ever, for the ARA1 case, this complexity is for the worst-case scenario. The ARA1
algorithm will stop as soon as it has produced a Boolean function (i.e., a set of clauses
or rules) that accepts all the positive and rejects all the negative examples. In addition,
the ARA1 approach is able to mine rules with multiple items in the antecedent part of
an association rule. The ARA1 approach can also be easily adapted to mine associa-
tion rules with multiple items in the consequent part. The only change that has to be
made is in the partitioning (dichotomization) of the original database into the sets of
the positive and the negative examples. On the other hand, the Apriori approach has
an exponential time complexity because it follows a combinatorial search approach.
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Figure 12.5. Histogram of the Results When the MineSet Software Was Used on Database #3.

Figure 12.6. Histogram of the Results When the ARA1 Approach Was Used on Database #3.

When Database #3 was used, it took MineSet 31 minutes and 40 seconds to mine
the association rules. On the other hand, it took ARA1 just 6 minutes and 5 seconds
to mine the same database. Figures 12.5 and 12.6 provide the number of the mined
rules from database #3. When Database #4 was used, it took MineSet 28 minutes
and 30 seconds to mine the association rules. For the ARA1 approach, the required
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Figure 12.7. Histogram of the Results When the MineSet Software Was Used on Database #4.

Figure 12.8. Histogram of the Results When the ARA1 Approach Was Used on Database #4.

time was 5 minutes and 26 seconds only. These results are depicted in Figures 12.7
and 12.8. For Database #5, it took MineSet 25 minutes and 20 seconds to mine the
association rules. On the other hand, it took only 4 minutes and 23 seconds when
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Figure 12.9. Histogram of the Results When the MineSet Software Was Used on Database #5.

Figure 12.10. Histogram of the Results When the ARA1 Approach Was Used on Database #5.

the ARA1 approach was used on the same database. The corresponding results are
depicted in Figures 12.9 and 12.10. Table 12.1 presents a summary of all the above
CPU times. From these results it becomes evident that the ARA1 approach derives
association rules faster and also these rules have much higher support levels.
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Table 12.1. Summary of the Required CPU Times Under Each Method.

Apriori Method ARA1 Method MineSet Method
(hh:mm:ss) (hh:mm:ss) (hh:mm:ss)

Database #1 Not completed 44:22:01 N/A
Database #2 59:15:03 02:54:57 N/A
Database #3 N/A 00:06:05 00:31:40
Database #4 N/A 00:05:26 00:28:30
Database #5 N/A 00:04:23 00:25:20

12.5 Concluding Remarks

This chapter presented the developments of a new approach for deriving association
rules from databases. The new approach is called ARA1 and it is based on a previous
logic-based algorithm (i.e., the RA1 approach as was explained in Chapter 4). This
algorithm has the OCAT approach embedded into it. The ARA1 heuristic can easily
be randomized.

The proposed ARA1 approach produces a small set of association rules in poly-
nomial time. Furthermore, these rules are of high quality with 100% support levels.
The 100% support level of the derived rules is a characteristic of the way the ARA1
approach constructs (i.e., mines) association rules. The ARA1 approach can be
further extended to handle cases with less than 100% support levels. This can be done
by introducing stopping criteria that terminate the appropriate loops in Figure 12.2,
that is, to have a predetermined lower limit (i.e., a percentage less than 100%) of
the positive examples to be accepted by each clause (in the CNF case) and also a
predetermined percentage of the negative examples which are rejected. The current
version of the ARA1 algorithm builds clauses which accept all the positive exam-
ples while the final Boolean function it builds rejects all the negative examples (and
accepts all the positive ones).

An extensive empirical study was also undertaken. The Apriori approach and the
MineSet software (a year 2003 version of it) by Silicon Graphics were compared
with the proposed ARA1 algorithm. The computational results demonstrated that
the RA1 approach could be both highly efficient and effective. The above obser-
vations strongly suggest that the proposed ARA1 approach is very promising for
mining association rules in today’s world with the always-increasing-in-size and
diverse-in-nature databases.





Chapter 13

Data Mining of Text Documents

13.1 Some Background Information

This chapter investigates the problem of classifying text documents into two disjoint
classes. It does so by employing a data mining approach based on the OCAT algo-
rithm. This chapter is based on the work discussed in [Nieto Sanchez, Triantaphyllou,
and Kraft, 2002]. In the present setting two sample sets of training examples (text
documents) are assumed to be available. An approach is developed that uses index-
ing terms to form patterns of logical expressions (Boolean functions) that next are
used to classify new text documents (which are of unknown class). This is a typical
case of supervised “crisp” classification.

A typical application of this type of classification problem with text documents
occurs in the declassification process of vast amounts of documents originally pro-
duced by the U.S. Federal Government. For reasons of national security, today there
are huge numbers of documents that remain classified as secret. These documents
are being kept in secured places because they were considered to be important to
national security. However, high maintenance costs and new laws dictate that these
documents should be reevaluated, and the ones that are not critical any more should
become public.

Thus, such documents need to be (roughly speaking) classified into the two
disjoint categories of “secret” and “nonsecret.” In this context, when a document
becomes “nonsecret” after being “secret,” it is termed declassified. In reality, docu-
ments have been classified into multiple levels of criticality to the national security,
but in this chapter we will consider only two classes as described above. It should
also be stated here that once a document becomes public (i.e., it has been declassi-
fied), there is no way to make it secret again (especially now with the proliferation
of the Internet). Other similar applications can be found in analyzing vast amounts
of text data for the detection of potentially illegal activities or for identifying trends
when using the Web (i.e., for Web mining).

In order to highlight the complexity of this kind of classification problem, con-
sider the evaluation of the following three illustrative sentences: “An atomic test is
to be conducted at Site X ,” “An atomic test is to be conducted at 1:00 p.m.,” and
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“An atomic test is to be conducted at Site X at 1:00 p.m.” which come from three
hypothetical documents, A, B, and C , respectively. According to [DynMeridian,
1996] and [DOE, 1995], only document C is both specific and sensitive and should
not be declassified and instead should continue to be kept secret. The reason for
this DOE (U.S. Department of Energy) classification rule is because document C
includes a sentence with specific reference to the “place and time” of an “atomic
test.” On the other hand, documents A and B can be declassified (assuming that the
rest of their contents is not critical) and become available to the general public. In this
illustrative example some key text features that can be used to characterize the two
classes are references to “place,” “time,” and “atomic test.”

Traditionally, this declassification process is carried out by employing vast num-
bers of human experts. However, the sheer amount of documents under consideration
can make this process extremely ineffective and inefficient. Although there are guide-
lines on how to declassify secret documents, directly computerizing the human effort
would require developing sophisticated parsers. Such parsers would have to analyze
syntactically a document and then determine which, if any, guideline is applicable.
The poor quality of the documents (many of which are decades old) and the com-
plexity of the declassification guidelines could make such an approach too risky to
national security. Thus, a reasonable alternative is to seek the employment of data
mining techniques. More specifically, techniques that use logic-based approaches
might be appropriate. Thus, this chapter is centered on the following three inter-
related data mining problems:

1) Employ data mining techniques for extracting (mining) from two sets of examples
some text features which could be used to correctly group documents into two
disjoint classes.

2) Use such features to form Boolean functions (patterns) which could explain how
the training examples are grouped together, and accurately classify new docu-
ments.

3) When considering a guided learning strategy for extracting the Boolean func-
tions, determine the next training document to include in the sets with the training
examples so that accurate Boolean functions are inferred as quickly as possible.

Since being able to justify this kind of classification decisions is important (given
the severity of erroneously releasing a sensitive document to the public), methods
that do not clearly allow for an explanation of their decision-making process are
not appealing here. Therefore, an impetus for this application domain is to seek the
development of an approach that is based on mathematical logic, versus approaches
that do not provide satisfactory explanation capabilities.

Traditional text classification and information retrieval (IR) techniques may have
some limitations in solving this problem because they group documents that share
a similar content. The prime example of such techniques is the vector space model
(VSM) [Salton, 1989], which according to the literature ([Buckley and Salton, 1995]
and [Shaw, 1995]) is the most effective methodology for this type of classification.
The limitation of this technique is that it is based on similarity measures. Thus, it
may not be able to distinguish between the three illustrative sentences given earlier in
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terms of the critical classification issues despite all of them having similar contents.
Other techniques, such as fuzzy set approaches (FSA), neural networks (NN), nearest
neighbor methods, and computational semantic analysis (SA), have limitations in
addressing these data mining problems. This happens because either their time com-
plexity or the resulting sizes of their outputs are still unacceptable and do not pos-
sess satisfactory explanatory capabilities (see, for instance, [Scholtes, 1993] and
[Chen, 1996]).

An alternative approach to address the present problems is the “One Clause At
a Time” (OCAT) algorithm (see also Chapters 2 and 3). As was stated earlier, the
OCAT approach extracts (mines) key features from the training examples and next
uses them to infer Boolean functions which can be used in classifying the train-
ing examples into the two original disjoint classes. These Boolean functions can
also easily be transformed into IF-THEN type of classification rules. The OCAT
approach applies to examples that can be represented by binary vectors (although
attributes with continuous values can be transformed into ones with binary values as
was described in Section 2.2). However, this is not a limitation because it is the mere
presence or absence of certain key words that can cause a document to be grouped
in one class or another. On the other hand, the typical document classification done
by traditional IR systems uses term frequencies (which are continuous numbers usu-
ally normalized in the interval [0, 1]) of keywords to group together documents of
seemingly similar context.

This chapter is organized as follows. Section 13.2 presents an overview of the
document clustering process. Section 13.3 briefly describes the OCAT approach in
the context of the classification of text documents. Section 13.4 presents an overview
of the VSM algorithm. Section 13.5 presents a quick overview of the guided learning
approach. Sections 13.6 to 13.9 describe the experimental data, testing methodology,
and analyses of the derived computational results. Finally the chapter ends with some
concluding remarks.

13.2 A Brief Description of the Document Clustering Process

The traditional process for automatic clustering of text documents results in a
grouping of documents with similar content into meaningful groups in order to
facilitate their storage and retrieval [Salton, 1989]. This is a four-step process as
follows. In the first step a computerized system compiles a list of the unique words
that co-occur in a sample of the documents from various classes (see, for exam-
ple, [Salton, 1989] and [Cleveland and Cleveland, 1983]). In the second step, the
co-occurring frequency of these words is analyzed and the best set of indexing terms
is extracted. Usually, indexing terms (also known as keywords or content descrip-
tors) are selected among the words with moderate frequency. The most common and
the most rare words (i.e., the most frequent and infrequent words, respectively) are
discarded as keywords because they convey little lexical meaning (see, for example,
[Zipff, 1949], [Luhn, 1957; 1958], [Salton, 1968], [Cleveland and Cleveland, 1983],
[Fox, 1990], and [Meadow, 1992]). Some examples of common words are “a,” “an,”
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“and,” and “the” [Fox, 1990]. Rare words depend on a document’s subject domain
[Meadow, 1992].

In the third step, a document is indexed by affixing it with the set of keywords that
only occur in its text. According to Cleveland and Cleveland [1983], “this assign-
ment is correct because authors usually repeat words that conform with the docu-
ment’s subject.” A list (vector) of keywords represents the content of a document
and usually it is referred to as a document representation or surrogate. An example
of such a surrogate is the list of the seven words or phrases: {“Document classi-
fication,” “document indexing,” “vector space model,” “data mining,” and “OCAT
algorithm”}. This surrogate could be used to represent the content of this chapter,
which is composed of thousands of words, symbols, and numbers. Hence, the goal
of the third step is to construct a surrogate for representing the content of each
document.

An advantage of using such surrogates is that they can be further simplified by
expressing them as numerical vectors [Salton, 1989]. One way to construct such
vectors is by expressing their elements as binary values to indicate the presence
(denoted by 1) or absence (denoted by 0) of certain keywords in a document. For
instance, the vector’s element wi j = 1 (or 0) expresses the presence (or absence) of
keyword Ti (i = 1, 2, 3, . . . , t) in document D j ( j = 1, 2, 3, . . . , N ). Thus, the sur-
rogate D j = [0 1 1 1 1 0] of six binary elements indicates the presence of keywords
(terms) T2, T3, T4, and T5 and the absence of keywords (terms) T1 and T6 in D j .

Another way to construct these numerical vectors is by expressing (i.e., weight-
ing) their elements using real values from the range [0, 1]. In this case, the value
of an element wi j indicates the relative occurrence frequency of a keyword within
a document. For instance, a hypothetical surrogate such as D j = [0.00 1.00 0.10
0.75 0.90 1.00] may indicate that term T3 occurs a few times, terms T4 and T5
occur moderately frequently, and terms T2 and T6 occur with high frequency in D j .
In the remainder of this chapter, however, only binary surrogates will be considered.
As stated earlier the reason for considering binary vectors as surrogates is because
the mere presence or absence of a keyword (or some pattern of keywords) may be
detrimental in assigning a document to one of the two disjoint classes considered in
this chapter.

In the last step of the (traditional) classification process, documents sharing
similar keywords (i.e., similar content) are grouped together. This classification
follows from the pairwise comparison of all the surrogates [Salton, 1989].

13.3 Using the OACT Approach to Classify Text Documents

In order to help illustrate the main issues of this process consider the two sets of
training examples depicted in Figure 13.1. These are the same data used in previous
chapters. The set with the positive examples is comprised of four examples, while the
set of the negative examples is comprised of six examples. These examples (docu-
ment surrogates in our context) are defined on four binary features (i.e., index terms
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E+ =

⎡
⎢⎢⎣

0 1 0 0
1 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦ E− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Figure 13.1. A Sample of Four Positive and Six Negative Examples.

E+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

E− =

⎡
⎢⎢⎣

0 1 0 0
1 1 0 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦

Figure 13.2. The Training Example Sets in Reverse Roles.

or attributes) or their negations. A value of 1 indicates the presence of the corre-
sponding index term, while a value of 0 indicates the absence of the index term.

When the OACT approach, combined with the RA1 heuristic, is applied on the
previous data, the following Boolean function is derived:

(A2 ∨ A4) ∧ ( Ā2 ∨ Ā3) ∧ (A1 ∨ A3 ∨ Ā4). (13.1)

Recall that a fundamental property of Boolean function (13.1) is that it accepts
(i.e., evaluates to 1) all the examples in E+, while it rejects (i.e., evaluates to 0) all
the examples in E−. However, since such Boolean function is usually constructed
from a relatively small collection of training examples, it is possible for the Boolean
function to be inaccurate when it classifies new examples. The error may occur either
if the new example is positive, and the Boolean function rejects it, or if the new
example is negative and the Boolean function accepts it.

Let us consider generating a second Boolean function for classifying new exam-
ples. The second Boolean function is derived by treating the second set of training
examples as positive and the first as the negative training examples. For instance,
Figure 13.2 depicts the same training examples as the ones in Figure 13.1, but now
they have reverse roles.

When the OCAT approach, combined with the RA1 heuristic, is applied on the
new inference problem, the following Boolean function (13.2) is derived:

(A3 ∨ Ā2) ∧ ( Ā4 ∨ A2 ∨ Ā1) ∧ (A1 ∨ Ā3). (13.2)

As with Boolean function (13.1), a property of the corresponding Boolean func-
tion (A3 ∨ Ā2)∧ ( Ā4 ∨ A2 ∨ Ā1) ∧ (A1 ∨ Ā3) is to accept (i.e., to evaluate to 1)
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the former negative examples and to reject (i.e., to evaluate to 0) the former positive
examples. For convenience, following the setting of the examples in Figures 13.1
and 13.2, Boolean function (13.1) will be called the positive rule (denoted as R+)
and Boolean function (13.2) the negative rule (denoted as R−).

The disadvantage of using only one rule (Boolean function) can be overcome by
considering the combined decisions of R+ and R− when classifying a new exam-
ple e. If e is a positive example, it will be denoted as e+, while if it is a negative
example, it will be denoted as e−. Under this setting, the classification of e can be:

1. Correct if and only if:
(a) R+(e+) = 1 and R−(e+) = 0;
(b) R+(e−) = 0 and R−(e−) = 1;

2. Incorrect if and only if:
(c) R+(e+) = 0 and R−(e+) = 1;
(d) R+(e−) = 1 and R−(e−) = 0;

3. Undecidable if and only if:
(e) R+(e+) = 1 and R−(e+) = 1;
(f) R+(e−) = 1 and R−(e−) = 1;
(g) R+(e+) = 0 and R−(e+) = 0;
(h) R+(e−) = 0 and R− (e−) = 0.

Cases (a) and (b) correspond to “correct” classifications because both rules
perform according to the desired properties described above. However, as indicated
above it is possible that the rules could incorrectly classify an example (cases (c) and
(d)). Or the rules could simultaneously accept (cases (e) and (f)) or simultaneously
reject (cases (g) and (h)) the example. Cases (e) through (h) are called undecidable
(or unclassifiable) because one of the rules does not possess enough classification
knowledge, and thus such a rule must be reconstructed. Therefore, “undecidable” sit-
uations open the path to improve the accuracy of a classification system. This chapter
exploits the presence of “undecidable” situations in order to guide the reconstruction
of the rule (Boolean function) that triggered an erroneous classification decision.
Recall that the above were also described in a nontechnical manner in Figure 5.1.

13.4 An Overview of the Vector Space Model

The vector space model (VSM) is a mathematical model of an information retrieval
(IR) system that can also be used for the classification of text documents (see, for
instance, [Salton and Wong, 1975] and [Salton, 1989]). It is often used as a bench-
marking method when dealing with document retrieval and classification related
problems. Figure 13.3 illustrates a typical three-step strategy of the VSM approach
to clustering.

To address Step 1 Salton [1989] suggested that a suitable measure for comparing
in pairwise manner any two surrogates X and Y is the cosine coefficient (CC) as
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Input: A sample of surrogates.
Output: Clusters of documents and clusters’ centroids.

Step 1: Compute the pairwise similarity coefficients among all surro-
gates in the sample.

Step 2: Cluster documents with sufficiently large pairwise similarities.
Step 3: Compute the centroids of the clusters.

Figure 13.3. The Vector Space Model (VSM) Approach.

defined in Equation (13.3) (other similarity measures are listed in [Salton, 1989],
Chapter 10):

CC = |X ∩ Y |
|X |1/2 · |Y |1/2 . (13.3)

In this formula, X = (x1, x2, x3, . . . , xn) and Y = (y1, y2, y3, . . . , yn), where xi

indicates the presence (value 1) or absence (value 0) of the i-th indexing term in X
and similarly for yi with respect to Y . Moreover, |X | = |Y | = n is the number of
indexing terms, and |X ∩ Y | is the number of indexing terms appearing simultane-
ously in X and Y . To be consistent with the utilization of binary surrogates, formula
(13.3) provides the CC expression for the case of Boolean vectors. This coefficient
measures the angle between two surrogates (Boolean vectors) on a Cartesian plane.
Salton [1989] indicates that “the magnitude of this angle can be used to measure the
similarity between any two documents.” This statement is based on the observation
that two surrogates are identical, if and only if the angle between them is equal to 0◦.

In Step 2 the VSM clusters together documents that share a similar content based
on their surrogates. According to Salton [1989], any clustering technique can be
used to group documents with similar surrogates. A collection of clustering tech-
niques is given in [Anderberg, 1973], [Van Rijsbergen, 1979], [Aldenderfer, 1984],
and [Späth, 1985]. However, it is important to mention here that with any of these
techniques, the number of generated classes is always a function of some predefined
parameters. This is in contrast to the requirements of our problem here in which the
number of classes is exactly equal to two. When the VSM works under a predefined
number of classes, it is said to perform a pseudo-classification. In this chapter the
training examples are already grouped into two (disjoint) classes. Thus, the VSM is
applied on the examples (documents) in each class and the corresponding centroids
are derived. Hence, we will continue to use this kind of pseudo-classification.

To address Step 3 [Salton, 1989], [Salton and Wong, 1975], and [Van Rijsbergen,
1979] suggest the computation of a class centroid to be done as follows. Letwr j ( j =
1, 2, 3, . . . , n) be the j-th element of the centroid for class Cr which contains q
documents. Also, the surrogate for document Di is defined as {Di j }. Then, wr j is
computed as follows:

wr j = (1/q)
q∑

i=1

Di j , for j = 1, 2, 3, . . . , n. (13.4)
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That is, the centroid for class Cr is also a surrogate (also known as the “average”
document) defined on t keywords.

Finally, the VSM classifies a new document by comparing (i.e., computing the
CC value) its surrogate against the centroids that were created in Step 3. A new
document will be placed in the class for which the CC value is maximum.

In the tests to be described later in this chapter, the VSM is applied on the
documents (training examples) available for each class. In this way, the centroid
of each of the two classes is derived. For instance, consider the training examples
depicted in Figures 13.1 and 13.2. The VSM is now applied on these data. The
centroids in expression (13.5) have been computed from the data in Figure 13.1
and the centroids in expression (13.6) from the data in Figure 13.2. Obviously,
the centroids for the second set are in reverse order of those for the first set of
data.

C+ = [1/2, 1/2, 1/4, 1/2] (13.5)

C− = [2/3, 1/3, 1/2, 1/3]

C ′
+ = [2/3, 1/3, 1/2, 1/3] (13.6)

C ′
− = [1/2, 1/2, 1/4, 1/2]

The variables C+ and C− stand for the centroids for the data in Figure 13.1,
and the variables C ′+ and C ′− stand for the centroids for the data in Figure 13.2.
In order to match the names of the positive and negative rules described for the
OCAT algorithm, the two centroids for the data in Figure 13.1 will be called the
positive centroids while the two centroids for the data in Figure 13.2 will be called
the negative centroids. As with the OCAT algorithm, the utilization of two sets of
centroids has been investigated in order to tackle the new classification problem by
using the VSM as new examples become available.

13.5 A Guided Learning Approach for the Classification of Text
Documents

The central idea of the guided learning approach (GLA) in the context of this chapter
can be illustrated as follows. Suppose that the collection to be classified contains
millions of documents. Also, suppose that an oracle (i.e., an expert classifier) is
queried in order to classify a small sample of examples (documents) into the two
groups E+ and E−. Next, suppose that the OCAT algorithm is used to construct
the positive and negative rules, such as was the case with the illustrative samples
in Figures 13.1 and 13.2. As indicated earlier, these rules may be inaccurate when
classifying examples not included in the training set, and therefore they will result
in one of the classification outputs provided in cases (a) through (h), as described
in Section 13.3. One way to improve the classification accuracy of these rules is to
add more documents, one at a time, to the training set (either in E+ or E−) and



13.6 Experimental Data 265

have them reconstructed. Therefore, the question GLA attempts to answer is: Which
next document should be inspected by the expert classifier so that the classification
performance of the derived rules could improve as fast as possible?

One way to provide the expert with a new document is to randomly select one
from the remaining unclassified documents. We call this the random input learning
strategy (to be denoted as RANDOM). A drawback of this strategy may occur if the
oracle and incumbent rules frequently classify a new document in the same class.
If this occurs frequently, then the utilization of the oracle and the addition of the new
example to the training set is of no benefit. An alternative and more efficient way
is to provide the expert with a document selected from the “undecidable” (i.e., the
undecidable/unclassifiable) group. This strategy (in a general form) was first intro-
duced in [Triantaphyllou and Soyster, 1995] and was explained in Chapter 5. This
approach appears to be a more efficient way for selecting the next document because
an “undecidable” situation implies that one of the two rules misclassified the docu-
ment. Therefore, the expert’s verdict will not only guide the reconstruction of the rule
that triggered the misclassification, but it may also improve the accuracy of the two
rules. We call this the guided learning strategy (to be denoted as GUIDED). It should
also be stated here that an incremental learning version of the OCAT approach was
given in Chapter 6.

13.6 Experimental Data

In order to better understand the classification performance of the OCAT approach
in addressing this new problem, OCAT’s classification accuracy was compared with
that of the VSM. Both approaches were tested under three experimental settings:
(i) a leave-one-out cross validation (or CV) (also known as the Round-Robin test);
(ii) a 30/30 cross validation (or 30CV), where 30 stands for the number of training
documents in each class; and (iii) in an experimental setting in which the OCAT
algorithm was studied under a random and a guided learning strategy. These will be
defined below. This multiple testing strategy was selected in order to gain a more
comprehensive assessment of the effectiveness of the various methods.

For these tests, a sample of 2,897 documents was randomly selected from
four document classes of the TIPSTER collection ([Harman, 1995] and [Voorhees,
1998]). The previous number of documents and those below for each class were
determined based on memory limitations of the computing platform used (an IBM
Pentium II PC running Windows 95). The TIPSTER collection is a standard data set
for experimentations with information retrieval systems. The four document classes
were as follows:

1) U.S. Department of Energy (DOE) documents,
2) Wall Street Journal (WSJ) documents,
3) Associated Press (AP) documents, and
4) ZIPFF class documents.
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Table 13.1. Number of Documents Randomly Selected from Each Class.

Class DOE AP WSJ ZIPFF Total

Number of Documents 1,407 336 624 530 2,897

NOTES: DOE, AP, WSJ, and ZIPFF stand for the U.S. Department of Energy,
the Associated Press, and the Wall Street Journal, respectively; ZIPFF is a
collection of technical documents on various topics.

Table 13.2. Average Number of Indexing Words Used in Each Experiment.

Type of DOE DOE vs. DOE vs. AP vs. WSJ vs.
Experiment vs. AP WSJ ZIPFF WSJ ZIPFF

CV 511 605 479 448 501
30CV 803 911 890 814 811

NOTES: In order to keep the size reasonable for our computing environment,
only the first hundred words from each document were considered. Stop words
were always removed.

We chose documents from the TIPSTER collection because for security reasons
we did not have access to actual secret DOE documents. Table 13.1 shows the
number of documents that were used in the computational experiments. These docu-
ments were randomly extracted from the four classes of the TIPSTER
collection.

Two mutually exclusive classes were simulated by forming the following five
class-pairs: (DOE vs. AP), (DOE vs. WSJ), (DOE vs. ZIPFF), (AP vs. WSJ), and
(WSJ vs. ZIPFF). These five class-pairs were randomly selected from all possible
combinations of class-pairs. To comply with the notation presented in the previous
sections, the first class of each class-pair was denoted as E+, while the second class
was denoted as E−. Thus, the problem now is to find a Boolean function which
accurately classifies a document surrogate according to the appropriate TIPSTER
class.

Table 13.2 shows the average number of keywords that were extracted from the
five class-pairs mentioned above. The data in this table can be interpreted as follows.
For the class-pair (DOE vs. AP), the average number of keywords used in all the
experiments was 511 under the CV validation and 803 under the 30CV validation.
A similar interpretation applies to the data in the other columns.

It should be stated at this point that a number of alternative indexing terms
were used. Besides single words, sequences of two words at a time, sequences
of three words at a time, and sequences of four words at a time were also used.
However, some pilot studies indicated that the best results would be derivable by
using as indexing terms single words only. Thus, the attributes (binary variables) in
the derived Boolean functions are single keywords and not sequences of them.



13.7 Testing Methodology 267

13.7 Testing Methodology

This section first summarizes the methodology for the Leave-One-Out Cross Valida-
tion and the 30/30 Cross Validation. These two alternative testing methods have been
employed in order to gain a better appreciation of the effectiveness of the various
procedures proposed here to classify text documents. The same section also presents
the statistical tests employed to determine the relative performance of the VSM and
the OCAT/RA1 algorithm. This section ends with the methodology for the guided
learning approach.

13.7.1 The Leave-One-Out Cross Validation

The cross validation (CV) testing was implemented on samples of 60 documents as
follows. First, 30 documents from each class were randomly selected. Note that the
size 60 was used due to storage limitations in our computing environment. Then, one
document was removed from these sets of documents with its class noted.

After that, the positive and negative rules under the OCAT/RA1 approach and the
positive and negative centroids under the VSM were constructed using the remaining
59 documents. In the third step, the class of the document left out was inferred by
both algorithms. Then, the correctness of the classification was determined according
to the cases (a) through (h), as defined in Section 13.3.

The previous second and third steps were repeated with different sets of training
examples until all 60 documents had their class inferred one at a time. This experi-
mental setting was replicated ten times with different subsets of the training data, at
which point the results of the two algorithms were tested for statistical difference.

13.7.2 The 30/30 Cross Validation

The 30/30 cross validation (30CV) was implemented on samples of 254 documents
as follows. The number of 254 documents was used to avoid excessive computational
time. Initially, the positive and negative rules under the OCAT/RA1 approach and the
positive and negative centroids under the VSM were constructed by using only 30
documents (randomly selected) from each class (i.e., a total of 60 documents were
used in each run).

Next, the classification of the remaining 194 documents was inferred. As before,
the correctness of this classification was determined according to the cases (a) through
(h), as defined in Section 13.3. As with the first experimental setting, the 30CV vali-
dation was replicated ten times, at which point the results of the two algorithms were
tested for statistical difference.

13.7.3 Statistical Performance of Both Algorithms

To determine the statistical performance of both algorithms, the following hypo-
theses were tested. The first test was needed to determine the relative dominance of
the algorithms. The second test was implemented based on a sign test in order to
determine the consistency of the dominance of the algorithms as follows:
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1. Ho : POCAT/RA1 ≤ PVSM

H1 : POCAT/RA1 > PVSM

2. Ho : p = 0.50

H1 : p = 0.50

where POCAT/RA1 and PVSM are the numbers of documents with “correct” classifi-
cation under each algorithm, divided by the total number of documents in the experi-
ment. In addition, p is the probability of finding an equal number of positive and
negative differences in a set of outcomes. More on how these tests were performed
is provided in Section 13.8, which presents the computational results.

13.7.4 Experimental Setting for the Guided Learning Approach

Let us consider the following question: What is the best next document to be given
to the oracle in order to improve the performance of the two classification rules?
Three samples of 510 documents (255 from each class) from the three class-pairs
(DOE vs. ZIPFF), (AP vs. DOE), and (WSJ vs. ZIPFF) were used in an inves-
tigation of this question. The number of 510 documents was determined by the
available RAM memory on the Windows PC we used. The previous three class-
pairs were processed by the OCAT/RA1 algorithm (only) under the RANDOM
and the GUIDED learning approaches. Note that the VSM produces symmetric
systems and thus it cannot be used with this guided learning strategy (see also
Chapter 5).

These two learning approaches were implemented as follows. At first, 30 docu-
ments from each class in the experiment were randomly selected, and the positive
and negative rules (Boolean functions) were constructed. Next, the class member-
ship of all 510 documents in the experiment was inferred based on the two sets of
classification rules. The criteria expressed as cases (a) through (h) in Section 13.3
were used to determine the number of “correct,” “incorrect,” and “undecidable” clas-
sifications. Next, a document was added to the initial training sample as follows.
For the case of the RANDOM approach, this document was selected randomly from
among the documents not included in the training sets yet (i.e., neither in E+ nor
in E−).

In contrast, under the GUIDED approach this document was selected from the set
of documents which the positive and negative rules had already termed as “undeci-
dable.” However, if the two rules did not detect an “undecidable” case, then the
GUIDED approach was replaced by the RANDOM approach until a new “unde-
cidable” case was identified (see also Chapter 5). This process for the RANDOM
and GUIDED approaches was repeated until all 510 documents were included in
the two training sets E+ and E−. The results of all these experiments are presented
next.
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13.8 Results for the Leave-One-Out and the 30/30 Cross
Validations

Table 13.3 (parts (a) and (b)) summarizes the experimental results for the CV
validation, while Table 13.4 (parts (a) and (b)) summarizes the results for the 30CV
validation. The abbreviations “C,” “I,” and “U” in the first column of both tables
correspond to the “correct,” “incorrect,” and “undecidable” classification outcomes,
respectively. These outcomes can be obtained by using the positive and the negative
rules (for the OCAT/RA1 case) or the positive and the negative centroids (for the
VSM case). For instance, the data in Table 13.3 (part (a)), column 2 (i.e., class-pair
(DOE vs. AP)) indicate that the VSM identified 334 “correct,” 261 “incorrect,” and
5 “undecidable” cases.

Similarly, the data in Table 13.3 (part (a)), column 3 (i.e., class-pair (DOE vs.
AP)) indicate that the OCAT algorithm identified 410 “correct,” 5 “incorrect,” and
185 “undecidable” classifications. The data in the other columns can be interpreted
in a similar manner. The last two columns of Table 13.3 (part (b)) and Table 13.4
(part (b)) summarize the results across all five class-pairs. Figure 13.4 compares the
proportions of these results for both algorithms.

Two key observations can be derived from the size of the dark areas (or areas
of “undecidable” classifications) in Figure 13.4 which was derived from the data in
Tables 13.3 and 13.4. First, it can be observed that the proportion of “undecidable”
cases detected by the VSM algorithm is almost 0% (but not equal to zero). These have
occurred when the two positive and the two negative centroids accepted the same
document and, therefore, the classes predicted by both sets of centroids have to be

Table 13.3a. Summary of the First Experimental Setting: Leave-One-Out Cross Validation
(part a).

DOE vs. AP DOE vs. WSJ DOE vs. ZIPFF

VSM OCAT/RA1 VSM OCAT/RA1 VSM OCAT/RA1

C 334 410 286 296 280 358
I 261 5 314 66 320 25
U 5 185 0 238 0 217

Table 13.3b. Summary of the First Experimental Setting: Leave-One-Out Cross Validation
(part b).

AP vs. WSJ WSJ vs. ZIPFF TOTAL

OCAT/ OCAT/ OCAT/
VSM RA1 VSM RA1 VSM RA1

C 316 365 286 303 1,502 (or 50.1%) 1,732 (or 57.7%)
I 284 47 314 76 1,493 (or 49.8%) 219 (or 7.3%)
U 0 188 0 221 5 (or 0.1%) 1,049 (or 35.0%)



270 13 Data Mining of Text Documents

Table 13.4a. Summary of the Second Experimental Setting: 30/30 Cross Validation (part a).

DOE vs. AP DOE vs. WSJ DOE vs. ZIPFF

VSM OCAT VSM OCAT VSM OCAT/RA1

C 975 1,406 975 1,266 1,035 1,320
I 975 70 975 134 915 124
U 0 474 0 550 0 506

Table 13.4b. Summary of the Second Experimental Setting: 30/30 Cross Validation (part b).

AP vs. WSJ WSJ vs. ZIPFF TOTAL

OCAT/ OCAT/ OCAT/
VSM RA1 VSM RA1 VSM R1

C 1,088 1,283 1,088 1,145 5,161 (or 52.9%) 6,420 (or 65.9%)
I 846 140 837 176 4,548 (or 46.7%) 644 (or 6.6%)
U 16 527 25 41 41 (or 0.4) 2,686 (or 27.5%)

Figure 13.4. Comparison of the Classification Decisions Under the VSM and the OCAT/RA1
Approaches.
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selected randomly. More specifically, these “undecidable” instances occurred even
when these randomly predicted classes were identical. The VSM was implemented
based on the CC value, following the suggestions in [Salton, 1989].

In contrast, as the second observation, one has large proportions of “undecidable”
classifications with the OCAT/RA1 algorithm. Recall that this type of classification
decision is preferred to making a wrong classification because such cases demon-
strate that the positive, or the negative, or both rules are unable to correctly classify
new documents. Therefore, in these results the large dark areas in the above figure
show that both rules were unable to correctly classify a large proportion of the doc-
uments in the experiments. More importantly, the size of these areas indicates that
positive or negative rules may be improved if they are modified when an “undecid-
able” situation is detected.

Consider the proportion of the “incorrect” classifications (i.e., the least gray areas
in Figure 13.4). One can derive two conclusions. First, the number of “incorrect”
classifications the VSM made amounts to 49.8% with the leave-one-out cross vali-
dation and to 46.7% with the 30/30 cross validation. These large proportions of
“incorrect” classifications can be attributed to the inability of the positive and nega-
tive centroids to distinguish between “incorrect” and “undecidable” classifications.
Second, the results show that the OCAT/RA1 algorithm made 7.3% and 6.6% of
“incorrect” classifications with the two test settings. In this case, these rather small
error rates can be attributed to the utilization of the positive and the negative rules
(Boolean functions) of small size which enabled the OCAT/RA1 algorithm to distin-
guish between the “incorrect” and “undecidable” classifications.

Despite the disparate proportions of the “inaccurate” and “undecidable” classifi-
cations for both of these algorithms, their performances were statistically compared
using only the proportions with the “correct” classifications. That is, the undecidable
cases were not considered here. In this way the VSM approach was not placed in
an unfair setting when it was compared with the OCAT/RA1 approach. This com-
parison was needed in order to determine which algorithm better addressed the clas-
sification problem studied in this chapter. For this comparison, it was assumed that
no additional improvement of the two algorithms was possible under the CV and
30CV cross validations. Furthermore, the “incorrect” and “undecidable” outcomes
were considered as incorrect classifications.

The results of these tests (as shown in Table 13.5) indicate that the OCAT/RA1
approach is more accurate than the VSM in both types of computational experi-
ments. Furthermore, the very low p-values in Table 13.6 indicate that it is extremely
unlikely to find a similar number of positive and negative differences in the propor-
tions of the “correct” classifications under the two approaches [Barnes, 1994]. There-
fore, the results of these two statistical tests profoundly indicate that the OCAT/RA1
approach is better suited to address the document classification problem studied
here.
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Table 13.5. Statistical Difference in the Classification Accuracy of the VSM and OCAT/RA1
Approaches.

Binomial Test

P §
OCATP §
OCATP §
OCAT P £

VSMP £
VSMP £
VSM PVSM − POCATPVSM − POCATPVSM − POCAT Half-length¶¶¶ Interval

CV 0.577 0.501 −0.0760 0.025 (−0.035, −0.085)
30CV 0.658 0.529 −0.1287 0.014 (−11.47, −14.27)

NOTES:
§1,732/n and 6,420/n; where n is 3,000 for CV and 9,750 for 30CV.
£1,502/n and 5,161/n; where n is 3,000 for CV and 9,750 for 30CV.
¶Denotes that both approaches performed statistically differently.

Table 13.6. Data for the Sign Test to Determine the Consistency in the Ranking of the VSM
and OCAT/RA1 Approaches.

Type of Experiment

CV 30CV

Number of “+” signs 4 7

Number of “−” signs 46 43

p-value = ∑m
i=0

(
50
i

)
· pi ·

(1 − p)50−i , where m = 4 for CV
and 7 for 30CV and p = 0.50

p-value =
2.23 × 10−10

p-value =
1.04 × 10−7

13.9 Results for the Guided Learning Approach

Figures 13.5 through 13.7 show the results of the OCAT/RA1 algorithm under
the RANDOM and GUIDED learning approaches. The horizontal axis indicates the
percentage of training documents used during the experiment. For instance, at the
beginning of the experiment there were 60 training documents or 11.76% of the 510
documents in the experiment. Next, when one more document was added to the train-
ing set, following the recommendation of the GUIDED and RANDOM approaches,
there were 12.16% of the documents in the experiment.

The vertical axis shows the proportions of “correct,” “incorrect,” and “undecid-
able” classifications for the various percentages of training documents used in the
experiment. The abbreviations Rc, Ri, Ru, Gc, Gi, and Gu stand for the propor-
tions of “correct,” “incorrect,” and “undecidable” outcomes for the RANDOM and
GUIDED approaches, respectively. For instance, Rc is the proportion of “correct”
classifications under the RANDOM approach, and Gu is the proportion of “undecid-
able” classification under the GUIDED approach.

Table 13.7 shows the percentages of training documents the OCAT/RA1 algo-
rithm needed before it classified all 510 documents in each class-pair correctly (i.e.,
until it became 100% accurate). The position of the vertical dotted line in the previous
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Figure 13.5. Results When the GUIDED and RANDOM Approaches Were Used on the (DOE
vs. ZIPFF) Class-Pair.

three figures corresponds to the percentages shown in this table. For instance, in
Figure 13.5 it is shown that for the class-pair (DOE vs. ZIPFF) this line is at the
65.69% mark on the horizontal axis.

Some important observations can be made regarding the proportions of “correct,”
“incorrect,” and “undecidable” classifications in Figures 13.5 to 13.7. First, the
rate of “correct” classifications under the GUIDED approach, denoted as Gc, was
higher than the rate Rc under the RANDOM approach. Actually, the last row in
Table 13.7 indicates that the OCAT/RA1 algorithm needed on the average about 34%
less training documents to classify correctly all 510 documents under the GUIDED
approach than under the RANDOM approach.

These results are very interesting for a number of reasons. They confirm the
key assumption stated in Section 13.5 which indicated that inquiring about the class
membership of new documents from the “undecidable” group could increase the
accuracy of the OCAT/RA1 algorithm. This is the key aspect of the guided learning
strategy presented in Chapter 5. These results are also encouraging because they
help to answer the second question stated in the introduction of this section. That is,
queries to the oracle could stop when about 66% of the 510 documents from the three
class-pairs of the TIPSTER collection had been inspected and were included in the
training sets. More importantly, these results are significant because they suggest that
the OCAT/RA1 algorithm can be employed for the classification of large collections
of text documents.
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Figure 13.6. Results When the GUIDED and RANDOM Approaches Were Used on the (AP
vs. DOE) Class-Pair.

Figure 13.7. Results When the GUIDED and RANDOM Approaches Were Used on the (WSJ
vs. ZIPFF) Class-Pair.
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Table 13.7. Percentage of Documents from the Population that Were Inspected by the Oracle
Before an Accuracy of 100% Was Reached.

% Under % Under
Class-pairs GUIDED RANDOM

(DOE vs. ZIPFF) 65.69 100.00
(AP vs. DOE) 60.98 99.80
(WSJ vs. ZIPFF) 71.18 99.80
Average 65.95 99.87

NOTE: 100% accuracy was achieved when the number of
“incorrect” and “undecidable” classifications were 0%.

Other observations are related to the rates at which “incorrect” and “undecided”
classifications were eliminated. From the previous figures it can be seen that these
rates were a direct consequence of improving the classification rules. The figures
show that the rates Gi and Gu reach 0% when, on the average, about 66% (or 336
documents) of the 510 documents in the experiment were included in the E+ and E−
sets of training examples. On the other hand, it can be seen that under the RANDOM
learning approach, the rates Ri and Ru reached 0% when 99.8% (or 509) of the 510
documents were processed.

13.10 Concluding Remarks

This chapter examined a classification problem in which a document must be classi-
fied into one of two disjoint classes. As an example of the importance of this type of
classification, one can consider the possible release to the public of documents that
may affect national security. The method proposed in this chapter (being an auto-
matic method) is not infallible. This is also true because its performance depends on
how representative the training examples (documents) are. The application of such an
approach to a problem of critical importance can be seen as an important and useful
automatic tool for a preliminary identification of the documents to be classified.

This chapter considered an approach to this problem based on the vector space
model (VSM) algorithm and compared it with the OCAT approach, as it is embed-
ded in the RA1 heuristic, for inferring the individual clauses. These two approaches
were tested on almost 3,000 documents from the four document classes of the TIP-
STER collection: the U.S. Department of Energy (DOE), the Wall Street Journal
(WSJ), Associated Press (AP), and the ZIPFF class of documents. Furthermore, these
documents were analyzed under two types of experimental settings: (i) a leave-one-
out cross validation and (ii) a 30/30 cross validation (where 30 indicates the initial
number of training documents from each document class). The experimental results
suggest that the OCAT/RA1 algorithm performed significantly better in classifying
documents into two disjoint classes than the VSM.

Moreover, the results of a third experiment suggested that the classification
efficiency of the OCAT/RA1 algorithm can be improved substantially if the guided



276 13 Data Mining of Text Documents

learning approach presented in Chapter 5 is implemented. Actually, experiments on
samples of 510 documents from the previous four classes of the TIPSTER collec-
tion indicated that the OCAT/RA1 algorithm needed, on the average, only about 336
(i.e., 66% of the) training documents before it correctly classified all of the docu-
ments. The results presented here, although limited to a relatively small collection
of almost 3,000 documents, are encouraging because they suggest that the OCAT
approach can be used in the classification of large collections of documents.

The importance of text mining becomes even more profound when one considers
the endless potential of the World Wide Web. Most of the information in the Web is
available in the form of text (along with the usual hyperlinks, audio, video, and photo
items). Another potential avenue for more applications is when analyzing (mining)
communications data for intelligence purposes. This has already attracted the interest
of many governments and agencies, especially after the 9/11 events in New York
City. As more information becomes available in digital form, the significance of
mining of text documents will only increase.



Chapter 14

First Case Study: Predicting Muscle Fatigue from
EMG Signals

14.1 Introduction

Most of the previous chapters discussed some application issues on a number of
areas. This chapter discusses a case study in detail. The emphasis is on some
comparative issues with other data mining techniques that do not use logic-based
approaches. This chapter also provides a link to the data used in this study.

This case study is based on the problem of predicting muscle fatigue from
electromyographic (EMG) signals. The main results were published in [Torvik,
et al., 1999]. The data used in this study are easily downloadable from URL:
http://www.csc.lsu.edu/trianta (the link is in the “Research on Data Mining” part
of that webpage). The original data are continuous. Also, part of this data set is
depicted in Table 14.1. These data were first described in [Garcia, et al., 1997] and
[Waly, et al., 1997].

14.2 General Problem Description

This chapter presents the development, testing, and comparison of a number of
models for the prediction of muscle fatigue associated with sustained muscle con-
traction. This study aimed at two goals. The first goal was to compare a number
of predictive methods, especially a number of statistical techniques, with some data
mining methods. The second goal was to develop an accurate model for the predic-
tion of muscle fatigue via electromyography.

An experimental study was conducted in order to evaluate the effects of heavy
isometric loading (maximum and at 80% of the maximum) on recorded electromyo-
graphy (EMG) signals. Furthermore, this study investigated any possible effects
of electrode orientation on the detection of muscle fatigue during heavy isometric
loading.

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 14,
c© Springer Science+Business Media, LLC 2010
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Table 14.1. A Part of the EMG Data Used in This Study.

66.02 13.21 25.53 32.07 41.1 61.37 70.16 96.33 114.68 207.43 0

60.02 5.33 25.59 36.21 51.52 65.13 84.82 118.49 137.15 216.01 0

58.02 9.03 18.56 23.75 35.27 57.91 73.09 96.83 116.73 192.19 0

36.01 0.00 2.21 5.11 30.68 49.84 71.24 97.59 114.1 164.80 0

68.02 3.15 23.10 30.23 42.71 63.67 70.31 88.67 96.99 180.73 0

68.02 3.99 25.59 35.47 54.51 69.18 97.22 128.02 157.79 204.10 0

50.02 2.94 17.01 32.37 48.41 56.56 77.71 106.13 128.73 215.56 0

0.00 0.00 0.00 0.00 0.00 48.59 66.56 76.85 78.94 89.73 0

36.01 0.00 12.57 17.80 36.09 55.22 67.16 81.78 94.10 142.01 0

0.00 0.00 0.00 0.00 0.00 37.26 49.24 67.41 73.88 79.64 0

52.02 12.31 20.53 31.20 41.96 52.07 58.74 69.61 86.83 179.73 0

0.00 0.00 0.00 0.00 35.01 45.14 54.14 64.84 69.74 84.64 0

72.02 12.50 17.02 27.69 42.63 59.35 78.89 92.56 101.10 171.97 0

0.00 0.00 0.00 0.00 30.43 56.83 76.82 88.58 94.46 98.90 0

70.02 11.24 17.45 26.07 41.12 61.50 78.80 99.25 112.34 165.26 0

0.00 0.00 0.00 0.00 21.20 42.73 69.70 83.66 91.30 106.18 0

42.01 14.38 25.99 36.54 50.59 67.99 90.05 107.34 124.49 195.60 0

34.01 0.00 8.53 29.75 54.78 92.96 116.91 139.69 169.89 191.70 0

96.03 17.68 31.33 40.41 61.41 83.80 122.28 151.86 169.50 209.69 0

0.00 0.00 0.00 2.58 44.48 67.07 93.96 113.64 126.87 149.93 0

14.00 12.98 14.86 18.22 45.09 61.55 92.91 112.47 127.46 189.91 0

56.02 0.00 0.00 25.37 50.46 73.28 97.66 150.58 178.15 207.24 0

64.02 12.77 25.41 30.87 52.20 65.88 95.25 114.49 129.43 211.07 0

64.02 0.00 0.00 12.22 39.89 64.99 93.46 105.06 121.97 148.81 0

62.02 16.40 30.80 34.83 42.49 61.87 78.84 88.66 99.58 156.85 0

34.01 22.04 34.13 35.53 48.59 68.55 85.48 113.44 136.44 195.92 0

36.01 9.17 21.82 28.85 37.18 51.90 68.09 83.86 101.27 182.72 0

58.02 0.00 23.75 30.20 38.5 56.59 75.53 109.93 129.01 147.16 0

60.02 13.89 22.34 24.61 36.35 61.11 78.34 101.32 123.83 180.96 0

68.02 0.00 0.00 22.61 41.61 68.98 90.79 107.28 125.61 151.00 0

26.01 7.79 13.75 24.30 31.12 46.78 67.19 91.28 96.08 163.42 0

26.01 0.00 0.00 20.50 32.32 49.61 76.35 95.98 111.42 125.44 0

52.02 17.81 27.16 36.91 51.53 70.55 89.59 105.71 119.33 201.05 0

74.02 12.05 27.10 32.80 46.91 67.18 84.79 106.85 166.76 226.97 0
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14.3 Experimental Data

The EMG data for this study were derived from 18 healthy male subjects with no
history of musculoskeletal injuries (see also Table 14.1). All subjects were selected
on a voluntary basis from a student population. They represented a wide spectrum
of body weights, heights, age, and muscle strengths. They ranged in age between
22 and 40 years old with a mean value of 27.2 years. Their weights ranged from
53.2 kg to 105.9 kg (117 lb to 233 lb) with a mean value of 75.86 kg (166.89 lb).
Their heights ranged from 160 cm to 187.5 cm (5′4′′ to 6′3′′) with a mean value of
172.5 cm (5′9′′).

The subjects were required to perform a static muscle effort corresponding to a
predetermined load level. The load was applied to permit static contraction of the
biceps brachii muscle. The load was placed in the dominant hand of each subject
with the upper arm hanging freely in a neutral adducted position to the side of the
body. The forearm was flexed at 90◦ at the elbow joint. The wrist was maintained
in a straight neutral position with the hand supinated to support the load. The load
consisted of a bar and two balanced weights attached to both sides of the bar. Two
levels of loading were studied. These loads were set to the maximum amount of
weight the individual could hold for a few (e.g., 3–5) seconds and at 80% of the
maximum weight. The maximum weight was determined on a separate day prior
to the experimental sessions. The subjects were instructed to hold the weight, as
described earlier, as long as possible.

The EMG data were recorded from the biceps brachii muscle using two sets
of electrodes simultaneously. One set was placed along the muscle fibers and the
other across the muscle fibers. The electrodes used in this experiment were of the
Beckman type, 11-mm silver/silver chloride surface electrodes. The EMG signals
were recorded using an R611 Multichannel Sensormedics Dynograph via a type
9853A voltage/pulse/pressure coupler. The amplifier gain was adjusted to allow full
utilization of the dynamic range of the A/D converter (+10 volts). A sampling rate
of 512 Hz was used to digitize the EMG signals using a 12-bit A/D converter model
DT 2801-A.

The EMG signals were recorded from the onset of the load under investiga-
tion until the subject could not hold the load anymore. A preprocessing of the
EMG signals was conducted as described earlier. The window size used in this pre-
processing was selected to be 512,000 per second based on the results of the first
experiment. The EMG parameters were estimated for the first and last window in the
recorded signal. Furthermore, the EMG parameters were calculated at fixed periods
of time as a percentage of the total time an individual was able to maintain the task
of holding the load. The center of the EMG window used in the analysis was set at
the selected fixed periods of time. These periods were selected at 5% through 95%
of the total time with an increment of 5%.
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14.4 Analysis of the EMG Data

Several traditional statistical and data mining analyses were conducted to achieve
the objectives of this study. The recorded EMG signals were analyzed using the
MATLAB numeric computation software and its signal processing toolbox developed
by the MathWorks, Inc. Both time and frequency domain analyses were conducted.

14.4.1 The Effects of Load and Electrode Orientation

The results obtained indicated that the time domain parameters did not change signi-
ficantly for all the interactions and main effects of the three independent variables
(load, electrode orientation, and muscle condition at rest or fatigue). The frequency
domain parameters were significantly affected by the main effects of electrode
orientation and muscle condition. The load had no significant effect on these para-
meters. The effect of electrode orientation on the characteristic frequencies used in
this investigation was more pronounced for the lower frequencies of the spectrum.
Electrodes placed across the muscle fibers showed lower fractile frequencies com-
pared to electrodes along the muscle fibers. The effect of electrode orientation was
only significant for the lower fractiles with the exception of the 99-th fractile (peak
frequency, 1, 5, 10, 25, and 99 fractile).

In this study, the full wave rectified integral (FWRI) and the root mean square
(RMS) values were estimated. For a discrete signal which consists of N equally
spaced samples x(n), for n = 1, 2, 3, . . . , N these measures are given algebraically
as follows:

FWRI =
∑N−1

n=1
|x(n)|+|x(n+1)|

2

N − 1

and

RMS =
√∑N

n=1 x(n)

N
.

14.4.2 The Effects of Muscle Condition, Load, and Electrode Orientation

The first and last window of the recorded EMG signals were used to represent the
muscle at a resting condition and the fatigue state, respectively. The EMG indices
were the dependent variables. The independent variables were the muscle condi-
tion (rest or fatigue), load, and electrode orientation. The effect of muscle fatigue
was significant for all the characteristic frequencies used. A significant shift toward
lower frequencies was observed. However, the amount of shift in these frequen-
cies was higher for the submaximum load. Also, it is worth noting that the shift in
these frequencies was not linear across the spectrum. Therefore, monitoring a single
characteristic frequency may not be adequate for the quantification of the spectrum
shift.

In the frequency domain analysis, the estimated power spectrum and its char-
acteristic fractile frequencies were calculated. The estimated power spectrum, also
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known as the periodogram, was calculated as the modulus squared Fourier transform
[Garcia, et al., 1997], [Waly, et al., 1997].

The characteristic frequencies used in this study are the 1, 5, 10, 25, 50, 75,
90, 95, 99 fractile frequency, and the peak frequency. The p-th fractile frequency fp,
analogous to the statistical definition of fractile, is defined as the frequency for which
the relation ∫ f p

f =0 Gs( f )d f

S
= p

holds; where Gs( f ) is the one-sided power spectrum of s(t) and S is defined as

S =
∫ ∞

f =0
Gs( f )d f.

14.5 A Comparative Analysis of the EMG Data

Since there are numerous prediction methods in statistics and AI (including the newer
ones which are based on data mining techniques) an important goal of this study
was to use the derived EMG data to compare the prediction accuracy of some of
these methods. Of particular interest was to compare the OCAT approach (as it is
embedded in the RA1 heuristic, see also Chapter 4) with other methods from the
statistics and data mining fields. Besides the OCAT approach, other methods were
Fisher’s linear discriminant analysis, logistic regression, a neural network approach,
fuzzy c-means, and fuzzy k-nearest neighbor approaches.

As was explained in Chapters 2 and 3, the OCAT (One Clause At a Time)
approach considers two sets of rules: the positive and the negative sets of rules
(inferred Boolean functions). As a result of this, classifying a new (i.e., unclassified)
observation will result in one of the following three outcomes: the classification will
be either correct, or incorrect, or will be an undecidable case. To provide a common
ground to compare our results to those obtained using the other methods, we decided
to fix the number of undecidable cases (in the testing data) to that obtained by the
OCAT approach. As a result, we could find the accuracy, on the same number of
actual classifications, for each method.

To determine which cases should be deemed undecidable for each of the vari-
ous other methods, we expanded an interval symmetric about the respective cutoff
value. This led to a unique set of undecidable cases and hence a unique classifica-
tion accuracy on the remaining cases. A symmetric interval is reasonable when the
underlying classification function is monotone and symmetric. Note that a classifi-
cation function is monotone in the sense that once the function has been determined,
each variable has a monotone effect on the classification. That is, each variable will
either have a nonnegative effect or a nonpositive effect (but not both) on the
outcome.

In all of the methods except the neural network, symmetry and monotonicity are
reasonable assumptions. This is probably the most apparent in the logistic regression
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model and the fuzzy models with their respective intuitive probability and member-
ship value interpretations. The hyperplane that separates the two groups in linear
discriminant analysis is obviously monotone. The sigmoid function (used in logistic
regression as well as the transfer function in the following neural network) is also
monotone in each variable.

In addition, Fisher’s linear classification rule assumes equal variance–covariance
matrices, which results in symmetric probabilities of misclassification. Even though
the sigmoid transfer function, used in individual neurons, is monotone, the overall
network of neurons is not monotone when it has hidden layers. Despite this fact, our
neural network had a single hidden layer, and the symmetric interval was computed
on the single output neuron.

We split the dataset into a training and a testing set, and the classification func-
tions were derived for each method on the training set. Due to the unsupervised
nature of the fuzzy c-means algorithm, it was trained and tested on the testing data.
The OCAT/RA1 approach achieved 100% accuracy on the training data (due to the
way it builds a Boolean function) and, for this particular data split, labeled 20 of the
test cases as undecidable.

Since logistic regression, linear discriminant analysis, and neural networks use
monotone classification functions, a fixed number of undecidable cases corresponds
to a single one-dimensional interval. Note that this interval may be of many different
sizes as long as it captures the given number of cases. Also, recall that each function
is monotone. In the logistic regression, neural network, and Fisher’s linear discrimi-
nant cases, these intervals are also symmetric, which further simplifies this process.
As was stated earlier, the sigmoid function is symmetric in itself, while Fisher’s
linear classification rule assumes equal variance–covariance matrices, which results
in symmetric probabilities of misclassification. As a result of this symmetry, for a
fixed number of undecidable observations (20 in this case), there corresponds an
interval lying between the two groups of points. Therefore, the sum of the numbers
of correctly and incorrectly classified points is also fixed.

In order to find the interval corresponding to a fixed number of undecidable cases,
it is only necessary to find one of its borders (because of symmetry and the middle
point is given). To find an appropriate upper border point we performed a binary
search. Note that one may also start with 0 captured cases (i.e., at the cutoff point)
and expand the interval, using its symmetry property, until one finds an interval
that captures 20 points (so they can be compared meaningfully with the OCAT/RA1
approach which had 20 undecidable cases).

14.5.1 Results by the OCAT/RA1 Approach

The OCAT/RA1 sets of rules (i.e., the inferred positive and negative Boolean
functions by this method) classified all of the 192 training points correctly (by con-
struction), while for the 66 testing observations the results were

Number of correct classifications = 41

Number of incorrect classifications = 5

Number of undecidable cases = 20.
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Therefore, the accuracy rate is 89.1% (41 correct out of 41+5 cases) on the cases
that were actually classified. The number of undecidable cases of 20 was fixed for
the remaining approaches to provide the same number of actual classifications.

14.5.2 Results by Fisher’s Linear Discriminant Analysis

A Quick Description of the Method

Fisher’s approach finds the linear projection (multivariate to single values) that maxi-
mizes the standardized (by the sample variance) squared distances between the two
group means. A new observation is classified based on where it is projected onto
this line. If we want to place all possible observations into one of the two groups,
then we can use the average of the two projected group means as the cutoff value.
However, we may also wish to describe a class of uncertain points (as with the unde-
cidable cases above) by an interval where the misclassification probability is high.
If the variance–covariance matrices of the two groups are equal, this interval is sym-
metric about the previous cutoff point. Note that Fisher’s linear function estimates
the common variance–covariance matrix, and therefore it implicitly assumes that
the matrices are equal. The interested reader may wish to consult with the work in
[Fisher, 1936], [Fauset, 1994], [Johnson and Wichern, 1992], [Kleinbaum, Klein,
and Pryor, 2005], and [Hosmer and Lemeshow, 2000].

Results

The linear discriminant function we obtained from the training data is

Y = −0.0297X1 − 0.0121X2 + 0.0459X3 − 0.0775X4

+ 0.0020X5 + 0.0459X6 + 0.0783X7 + 0.0124X8

− 0.0251X9 + 0.0228X10,

and it provided 86.0% accuracy on the training data by using a cutoff value of 7.1959.
For the testing data, we found that the interval [6.6264, 7.7654] determined that

20 cases were undecidable. That is, when fixing the number of undecidable cases
to 20, the linear discriminant rule will result in the following classifications on the
remaining 46 testing observations:

Number of correct classifications = 39

Number of incorrect classifications = 7.

Notice that even if we change this interval (while maintaining 20 points within
it), the number of correctly and incorrectly classified points will not change due
to the monotonicity and symmetry properties discussed in the introduction. Also,
observe that the interval edges are symmetrically displaced by 0.5695 about the
original cutoff value.
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14.5.3 Results by Logistic Regression

A Quick Description of the Method

Logistic regression models the logit of the probability of an observation belonging
to class 0 (or 1) as a linear function of the variables. To obtain the maximum likeli-
hood estimates of its parameters, a nonlinear continuous optimization method has to
be utilized. Once these estimates are obtained, we can easily find the classification
probabilities corresponding to each observed point. If we want to place all possible
observations into one of the two groups, then using 0.5 as the cutoff value on the
probabilities, will minimize the misclassification probability.

We may also determine the interval of uncertainty (where the misclassification
probability is high) directly by choosing a maximum misclassification probability
(less than 0.5). That is, to fix the number of undecidable cases in the testing test, we
need to find a corresponding misclassification probability cutoff point. The interested
reader should consult the procedures presented in [Kleinbaum, Klein, and Pryor,
2005] and [Hosmer and Lemeshow, 2000] for further insight.

Results

The parameter estimates we obtained from the training data are

Theta SE
−9.2761 1.4505

Beta SE
0.0375 0.0165

0.0244 0.0429

−0.0447 0.0492

0.0720 0.0501

−0.0101 0.0401

−0.0435 0.0499

−0.1318 0.0531

0.0023 0.0475

0.0266 0.0305

−0.0223 0.0128

which provided 87.5% accuracy on the training data by using a cutoff value of 0.5
on the probability.

For the testing data, we found that the interval [0.3125, 0.6875] corresponds to
20 undecidable cases. That is, when fixing the number of undecidable cases to 20, the
logistic regression rule will result in the following classifications on the remaining
46 testing observations:

Number of correct classifications = 39

Number of incorrect classifications = 7.
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Even though the above accuracy rate is equivalent to that of Fisher’s linear discrimi-
nant, the actual classifications are not equivalent. In fact, their classifications differed
at four individual data points.

Notice that even if we change this interval (while maintaining 20 points within
it), the number of correctly and incorrectly classified points will not change due to
the monotonicity and symmetry properties discussed earlier. Also, observe that the
interval edges are symmetrically displaced by about 0.5.

14.5.4 A Neural Network Approach

A Quick Description of the Method

A neural network (NN) consists of processing elements (PEs) and weighted connec-
tion between them (see, for instance, [Myers, 1990]). We used a feedforward network
which consisted of an input layer, a hidden layer, and an output layer. The input layer
corresponds to the 10 independent variables and a bias term. The PE in the output
layer corresponds to the binary classification. The hidden layer is created to make
the network capable of using more complex classification rules. The more process-
ing elements in the hidden layer, the more complex the rules become. Note that if
the hidden layer were eliminated, the resulting rule would be a single hyperplane as
with Fisher’s rule above. We experimented with between 2 and 10 hidden layer PEs
and did not find much difference in performance, so we decided to go with 2 hidden
PEs.

The connections between the three layers are represented by two matrices. These
matrices are first randomly initialized with some small values before they are trained
to accommodate the observed classifications. We did this using the well-known Back
Propagation Algorithm. It feeds the inputs forward in the network, and the errors
are fed backward. This enables one to update the weight matrices according to the
errors of the gradient descent based on the transfer function. We used the bipolar
sigmoid transfer function which not only provides a natural association (−infinity
and +infinity map to −1 and +1, respectively) but it is also easily differentiable.
Using bipolar variables seems more reasonable than binary since the 0 value has a
different effect than 1 in multiplication and we do not want the classes to be treated
differently.

As with any gradient-based optimization procedure, the Back Propagation Algo-
rithm needs to determine the magnitude of the updates (training rate). The training
rate is commonly set to some small value (less than 1). We experimented with dif-
ferent values and found that 0.1 worked well. Often, a momentum term is included
to improve the convergence rate. It did not seem to have much of an effect in this
case, so we excluded it. When running the training algorithm, we observed that the
accuracy on the training data reached a plateau around 82–85%, so we decided to
terminate the algorithm when an accuracy of 85% or better was achieved (accuracy
when using 0 as the cutoff value in output PE).

Once the trained weight matrices are obtained, we can classify the observations
in the testing set. If we want to place all possible observations into one of the two
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groups, then we use 0 as the cutoff value for the bipolar sigmoid transfer function.
As with the logistic regression and the discriminant analyses performed above, we
wanted to fix the number of undecidable cases in the testing data. That is, we needed
to find a corresponding cutoff point. More details on neural networks can be found
in [Arbib, 2002] and [Dayan and Abbot, 2001].

Results

After running the training algorithm several times (different initial matrices give
differing results), the most accurate classifications on the testing data were found
with the following weight matrices:

w1 w2

−0.7761 0.6067 0.4334

−0.6696 0.5701 −2.4373

−0.0742 0.0608 2.0423

−0.0105 0.0230

−0.3816 0.3126

0.4831 −0.3956

1.4933 −1.2890

1.4208 −1.1971

0.9058 −0.7587

0.5988 −0.5306

0.4624 −0.4206

After seven epochs the accuracy on the training data (denoted as “acc−trn”) improved
as follows:

acc−trn = 0.4688 0.5938 0.7708 0.8073 0.8281 0.8438

and reached 85.4% accuracy on the training data as it was terminated.
For the testing data, we found the interval corresponded to 20 undecidable cases.

That is, when fixing the number of undecidable cases to 20, we got the following
classifications on the remaining 46 testing observations:

Number of correct classifications = 41

Number of incorrect classifications = 5.

Note that this is the best observed classification accuracy and that we observed
as poor as 37 correct classification (and 9 incorrect), with the same accuracy on the
training data. In a situation where the new observations are not given, we could have
obtained a classification accuracy anywhere in between 37/46 and 41/46.
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Table 14.2. Summary of the Prediction Results.

Accuracy on Data Set (in %)

Method Used Training Data Testing Data

Linear Discriminant Analysis 86.0 84.8

Logistic Regression 87.5 84.8

Neural Network 85.4 80.4 to 89.1

Fuzzy c-Means N/A 69.6

Fuzzy k-Nearest Neighbors

(when k = 5) 100.0 82.6

(when k = 10) 100.0 82.6

The OCAT/RA1 Approach 100.0 89.1

14.6 Concluding Remarks

The analyses reported in this chapter, including those under the c-means and k-nearest
neighbors methods, are summarized in Table 14.2. The results indicate that the model
derived by using the OCAT/RA1 approach is the most accurate one. Furthermore,
analyzing EMG data on muscle fatigue is important in its own right (e.g., [Garcia,
et al., 1997] and [Waly, et al., 1997]).

This comparative study indicates that the OCAT/RA1 approach has an appeal-
ing potential when it is compared with some of the existing prediction approaches.
More similar studies are required before one can fully assess the merits and the full
potential of the OCAT/RA1 approach.





Chapter 15

Second Case Study: Inference of Diagnostic Rules for
Breast Cancer

15.1 Introduction

For this case study we used a data set that described a number of clinical cases
of breast cancer diagnoses. The data were divided into two disjoint sets of malig-
nant and benign cases. We applied the OCAT approach, as it is embedded in the
RA1 heuristic (see also Chapter 4), after the data were transformed into binary ones
according to the method described in Section 2.2. The following sections describe
the data and inferred diagnostic rules in more detail.

15.2 Description of the Data Set

The data were collected with the help of Dr. James F. Ruiz, a Radiologist at the
Woman’s Hospital in Baton Rouge, Louisiana. The data represent the character-
istics of various cases of breast tumors, as taken from historic records from this
hospital. It is to be noted that at the time of this study (in 1995) the Woman’s Hospital
possessed the second largest such collection in the United States (the largest collec-
tion is at the Pittsburgh Hospital in Pennsylvania). Annually, more than 30,000 new
cases are added to this collection. Each case has been independently verified by at
least two radiologists.

The set we used represents a miniscule sample of this collection. This data set
was used in this study to demonstrate the flexibility and robustness of the OCAT/RA1
method as described in Chapters 2, 3, and 4. The data are defined on at most 24
attributes as shown in Tables 15.1 and 15.2.

Table 15.3 presents a sample of the training data. The entire data set used in
this study can be easily downloaded from the personal webpage of the author (i.e.,
from http://www.csc.lsu.edu/trianta). For the interpretation of the data in Table 15.3
consider any row, say the third one (which has been boldfaced for easy refer-
ence). Then, the coding conventions presented in Tables 15.1 and 15.2 are used as
follows.

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 15,
c© Springer Science+Business Media, LLC 2010



290 15 Second Case Study: Inference of Diagnostic Rules for Breast Cancer

Table 15.1a. Attributes for the Breast Cancer Data Set from Woman’s Hospital in Baton
Rouge, LA (Part (a); Attributes 1 to 16).

Attribute
Number Interpretation Domain of Values

1 Case ID An integer number

2 Number of calcifications per A, if less than 10;
cm2 B, if between 10 and 20;

C, if more than 20

3 Approximate volume of lesion
(in cm3)

A continuous number

4 Total number of calcifications An integer number

5 Irregularity of the shape of the A, if mild;
calcifications B, if moderate;

C, if marked

6 Variation in the shape of the A, if mild;
calcifications B, if moderate;

C, if marked

7 Irregularity in the size of the A, if mild;
calcifications B, if moderate;

C, if marked

8 Variation in the density of the A, if mild;
calcifications B, if moderate;

C, if marked

9–13 Le Gal type (1, 2, 3, 4, 5).
Note that a given lesion may include
more than one Le Gal type

14 Ductal orientation A, if yes;
B, if no

15 Density of the calcifications A, if low;
B, if moderate;
C, if high

16 Density of the parenchyma A, if low;
B, if moderate;
C, if high

The first field denotes the case ID (= 3). The second field denotes that the number
of calcifications per cm2 is less than 10. The next field indicates that the approximate
volume of the lesion is equal to 1.040 cm3. The field which follows (and which is
equal to B) indicates that the total number of calcifications is between 10 and 30.
The fifth field (equal to B) indicates that the shape of the calcifications is moderate.
A similar interpretation follows for the rest of the fields and their values. The last
two fields indicate that there is only one (value of field #19 is equal to 1) diagnostic
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Table 15.1b. Attributes for the Breast Cancer Data Set from Woman’s Hospital in Baton
Rouge, LA (Part (b); Attributes 17 to 26).

Attribute
Number Interpretation Domain of Values

17 Comparison with previous
exam

A, if change in the number or char-
acter of the calcifications;
B, if not defined;
C, if newly developed;
D, if no previous exam

18 Associated findings A, if multifocality;
B, if architectural distortion;
C, if a mass;
D, if nothing

19 Number of applicable diagnos-
tic classes

An integer from 1 to 8

20–27 Diagnostic classes See Table 15.2 (parts (a) and (b)) for
the details

Table 15.2a. Interpretation of the Breast Cancer Diagnostic Classes (Part (a); Malignant
Classes Only).

Symbol Used for Interpretation
the Class Coding (Malignant Classes Only)

A intraductal carcinoma
B infiltrating ductal carcinoma
C intraductal comedo type
D tubular carcinoma

Table 15.2b. Interpretation of the Breast Cancer Diagnostic Classes (Part (b); Benign Classes
Only).

Symbol Used for Interpretation
the Class Coding (Benign Classes Only)

E fibrosis
G cysts
I mild hyperplasia
K apocrine metaplasia
M fibroadenoma
O LCIS
F adenosis
H sclerosing adenosis
J moderate hyperplasia
L atypical hyperplasia
N fibrocystic change – not specified
P papillomatosis
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Table 15.3. A Part of the Data Set Used in the Breast Cancer Study.

1 A 1.000 B A C C C 0 2 3 4 0 B C A C D 1 A
2 A 211.000 C A B B B 0 2 3 0 0 B A C A A 1 A
333 AAA 1.0401.0401.040 BBB BBB CCC CCC AAA 000 222 000 444 000 BBB CCC AAA AAA DDD 111 AAA
4 A 0.180 A A B A A 0 0 3 4 0 B A B C D 2 A B
5 A 0.600 A B A A A 0 0 0 4 0 B B C C D 1 A
6 C 2.400 C C C C C 0 0 0 4 5 B C A A D 1 C
7 C 0.972 C A C A A 0 0 3 0 0 B B C C D 1 A
8 B 0.216 B B C C C 0 0 0 4 0 B B A C C 2 A D
10 A 0.336 A A C B B 0 0 0 0 5 B A B D C 1 B
13 C 15.000 C C C C C 0 0 0 4 5 A B B D D 1 C
14 A 0.072 A A B B A 0 0 0 4 0 B B B D B 2 B C
15 B 70.750 C A C C C 0 2 0 4 0 B C B C C 2 A C
17 A 0.018 A B B A A 0 2 0 0 0 B B B D D 3 E H I
18 B 0.024 B A A A A 0 2 0 0 0 B C A D D 2 E H
20 B 0.648 B C B B A 0 0 0 4 5 A A B A D 3 E F K
21 B 0.120 B A C B B 0 2 0 4 0 B A B D D 3 E G H
23 A 0.060 A B A B A 0 2 0 0 0 B A C A D 3 F G K
24 B 0.150 B A C C B 0 0 0 4 0 B C C A D 3 E H L
25 A 0.027 A B A A A 0 0 0 4 0 B C B D D 3 E G K
26 A 6.910 B B C B A 0 0 0 0 5 A C A A D 3 E K L
27 A 0.054 A B B A A 0 0 0 4 5 B A C A D 1 E
29 B 0.150 A A A A A 0 2 3 0 0 B A B C D 1 I
30 A 0.144 C C C B A 0 0 0 4 0 B C A A D 1 N

class which is “intraductal carcinoma” (the value is equal to A). This is a malignant
class.

15.3 Description of the Inferred Rules

In this study we focused on diagnostic class A (i.e., “intraductal carcinoma”). Thus,
the inferred rules are the ones related to the “intraductal carcinoma” class. That is,
the training data set was split (dichotomized) into two disjoint groups. The first group
had records related to the above particular malignant case, and the second group had
the rest (which were benign and malignant as defined in the last attribute of the data).

We first transformed the previous data into their equivalent binary represen-
tation (by applying the procedure described in Section 2.2) and then we applied
the RA1 heuristic (as described in Chapter 4), with value of IRS = 1 (i.e., no
randomized runs of the algorithm were executed). After that we transferred the
extracted Boolean function into IF-THEN type of classification rules defined on
binary attributes. Next we used the inverse of the previous transformation to express
the binary attributes back into the original ones (i.e., on attributes with the values
mentioned in Tables 15.1 and 15.2). These are only the “positive” rules.

The antecedent parts of these rules are presented in Table 15.4 (parts (a) to (c))
in the order they were generated. Each antecedent part (rule) is represented by a set
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Table 15.4a. Sets of Conditions for the Inferred Rules for the “Intraductal Carcinoma” Diag-
nostic Class (Part (a); Rules #1 to #5).

Rule Condition
Number Numbers Interpretation

#1 Cond. 1.1 The volume of the calcifications is more than 0.03 cm3.
Cond. 1.2 The total number of calcifications is greater than 10.
Cond. 1.3 The variation in shape is moderate or marked.
Cond. 1.4 The irregularity in size of the calcifications is marked.
Cond. 1.5 The variation of the density of calcifications is moderate or

marked.
Cond. 1.6 There is no ductal orientation.
Cond. 1.7 The number of the calcifications per cm3 is less than 20.
Cond. 1.8 A comparison with previous exams shows a change in the

number or character of calcifications or it is newly developed.

#2 Cond. 2.1 The volume of the calcifications is more than 6.00 cm3.
Cond. 2.2 The density of the calcifications is moderate.
Cond. 2.3 The variation in shape of individual calcifications is from mild

to moderate.
Cond. 2.4 The variation in size of the calcifications is from mild to mode-

rate.
Cond. 2.5 The Le Gal type is neither #1 nor #2.

#3 Cond. 3.1 The volume of the calcifications is between 0.03 cm3 and
0.18 cm3.

Cond. 3.2 The number of calcifications per cm3 is between 10 and 20.
Cond. 3.3 The Le Gal type is #4.
Cond. 3.4 The density of the calcifications is from low to moderate.

#4 Cond. 4.1 The volume of the calcifications is between 2.4 cm3 and
6.84 cm3.

Cond. 4.2 There is no ductal orientation.
Cond. 4.3 The density of the parenchyma is from moderate to high.
Cond. 4.4 The Le Gal type is neither #1 nor #5.

#5 Cond. 5.1 The volume of the calcifications is between 0.072 cm3 and
0.288 cm3.

Cond. 5.2 The variation in the size of the calcifications is from moderate
to marked.

Cond. 5.3 The Le Gal type is #2.
Cond. 5.4 There is no ductal orientation.
Cond. 5.5 The total number of the calcifications is less than 30.
Cond. 5.6 The variation in the shape of individual calcifications is from

mild to moderate.
Cond. 5.7 The density of the calcifications is from low to moderate.
Cond. 5.8 The comparison with previous exam(s) is: change in the

number, or character, or there are newly developed calcifica-
tions.
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Table 15.4b. Sets of Conditions for the Inferred Rules for the “Intraductal Carcinoma” Diag-
nostic Class (Part (b); Rules #6 to #9).

Rule Condition
Number Numbers Interpretation

#6 Cond. 6.1 The volume of the calcifications is greater than 0.180 cm3.
Cond. 6.2 The variation in the shape of individual calcifications is from

moderate to marked.
Cond. 6.3 The Le Gal type is #3 or #4.
Cond. 6.4 The variation in the density of the calcifications is from mild to

moderate.
Cond. 6.5 The density of the calcifications is low.
Cond. 6.6 The density of the parenchyma is from low to moderate.

#7 Cond. 7.1 The volume of the calcifications is greater than 0.030 cm3.
Cond. 7.2 The density of the parenchyma is from moderate to high.
Cond. 7.3 The comparison with previous exam(s) is: newly developed

calcifications or no previous exam is available.
Cond. 7.4 The associated finding is mass or none.
Cond. 7.5 The number of the calcifications per cm3 is less than 10.
Cond. 7.6 The variation in the shape of individual calcifications is from

mild to moderate.
Cond. 7.7 The variation in the size of the calcifications is mild.
Cond. 7.8 The variation in the density of the calcifications is mild.
Cond. 7.9 The Le Gal type is neither #1 nor #5.

#8 Cond. 8.1 The volume of the calcifications is greater than 0.960 cm3.
Cond. 8.2 The variation in the shape of individual calcifications is from

moderate to marked.
Cond. 8.3 The variation in the density of the calcifications is from moder-

ate to high.
Cond. 8.4 The Le Gal type is neither #1 nor #5.
Cond. 8.5 The comparison with previous exam(s) is: change in the number

or character or newly developed calcifications.

#9 Cond. 9.1 The volume of the calcifications is greater than 0.168 cm3.
Cond. 9.2 The total number of the calcifications is greater than 10.
Cond. 9.3 The variation in the shape of individual calcifications is from

moderate to marked.
Cond. 9.4 The variation in the size of the calcifications is from moderate

to marked.
Cond. 9.5 The variation in the density of the calcifications is moderate.
Cond. 9.6 The Le Gal type is #3.
Cond. 9.7 The comparison with previous exam(s) reveals change in the

number, or character, or there are newly developed calcifica-
tions.
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Table 15.4c. Sets of Conditions for the Inferred Rules for the “Intraductal Carcinoma” Diag-
nostic Class (Part (c); Rules #10 to #12).

Rule Condition
Number Numbers Interpretation

#10 Cond. 10.1 The volume of the calcifications is between 0.054 cm3 and
0.072 cm3.

Cond. 10.2 There are no associated findings.
Cond. 10.3 The number of the calcifications per cm3 is less than 20.
Cond. 10.4 The Le Gal type is not #1.
Cond. 10.5 The density of the parenchyma is from low to moderate.
Cond. 10.6 The comparison with previous exam(s) is: no previous exam.

#11 Cond. 11.1 The volume of the calcifications is between 0.448 cm3 and
0.540 cm3.

Cond. 11.2 The number of the calcifications per cm3 is less than 20.
Cond. 11.3 The density of the parenchyma is from low to moderate.
Cond. 11.4 There are no associated findings.
Cond. 11.5 The Le Gal type is not #1.
Cond. 11.6 The comparison with previous exam(s) reveals change in the

number and character.

#12 Cond. 12.1 The volume of the calcifications is between 0.030 cm3 and
0.032 cm3.

RULE #2:

IF all of the following conditions hold true at the same time:

(the volume of the calcifications is more than 6.00 cm3);
and (the density of the calcifications is moderate);
and (the variation in shape of individual calcifications is from

mild to moderate);
and (the variation in size of the calcifications is from mild

to moderate);
and (the Le Gal type is neither #1 nor #2),

THEN the case is: “intraductal carcinoma.”

Figure 15.1. A Diagnostic Rule (Rule #2) Inferred from the Breast Cancer Data.

of conditions to be satisfied for that rule to be applicable. For instance, the second
set of conditions (comprised of 5 individual conditions) in Table 15.4 indicates the
rule which is depicted in Figure 15.1.

A similar interpretation holds for the rest of the sets of conditions shown in
Table 15.4. One may recall that OCAT first generates well generalizing classification
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rules and as it iterates, it generates less generalizing ones. That is, later rules may
suffer from overfitting of very few data points. This phenomenon takes place due to
the algorithm’s greedy strategy at each iteration.

An expert radiologist (Dr. James F. Ruiz from Woman’s Hospital in Baton Rouge,
Louisiana) indicated that rules #10, #12, and possibly #11 (in this order) may not
work. These rules were generated during the last iterations of the OCAT approach.
However, it is interesting that the first nine rules generated at the first iterations (i.e.,
at iterations 1 to 9) are in agreement with the domain knowledge of the same expert.

15.4 Concluding Remarks

The above rules were extracted and are exhibited here for illustrative purposes only.
They illustrate how a real-life data set can be transformed with the binarization pro-
cess (as described in Section 2.2) into an equivalent binary data set and then be ana-
lyzed. We used the OCAT approach as part of the RA1 heuristic (Chapter 4) on the
binary data set. The results were converted back into the original attributes described
earlier and the inferred rules were extracted.

This experiment indicates the potential of the described logic-based data mining
approaches for knowledge discovery. Finally, it should be stated here that this study
complements the other studies described in various chapters of this book on the same
medical problem (including the one in the next chapter).



Chapter 16

A Fuzzy Logic Approach to Attribute Formalization:
Analysis of Lobulation for Breast Cancer Diagnosis

16.1 Introduction

In many data mining and knowledge discovery applications a critical task is how to
define the values of the various attributes that the analyst believes may be of signifi-
cance. For easily quantifiable attributes (such as, age, weight, cost, etc.) this task is
a rather straightforward one as it involves simple measurements and expressing the
results in terms of some units. For other attributes, however, this task may not be a
simple one. This is the case when some of the data are fuzzy. For instance, although
in common language one often uses terms such as “small,” “large,” “round,” “tall,”
and so on, these terms may mean different concepts to different people or to the same
person at different times.

This is particularly the case in the medical domain, where lots of data are defined
in such fuzzy terms. Thus, an important question is how to, in an objective and con-
sistent manner, quantify such fuzzy terms. This challenge is application specific.
A reasonable avenue in dealing with this kind of challenges is provided by fuzzy
logic.

This chapter describes an approach for quantifying some of the attributes involved
in diagnosing breast cancer. This medical problem has attracted the interest of many
researchers due to its societal importance, and the complexities of the problems it is
associated with. Thus, the following sections describe some fundamental issues asso-
ciated with the diagnosis of breast cancer and how one may proceed in formalizing
some of the key attributes involved with the diagnostic process. This type of analysis
can be extended into other application domains too. This chapter is based on results
first published in [Kovalerchuk, Triantaphyllou, et al., 1997] and [Kovalerchuk,
Triantaphyllou, and Ruiz, 1996].

16.2 Some Background Information on Digital Mammography

Many of the current diagnostic methods in digital mammography [Doi, et al., 1993],
[Wu, et al., 1993] are based primarily on neural networks without incorporating
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fuzzy logic. Nevertheless, it should be mentioned that these methods use degrees
of irregularity and circularity which are similar to key concepts in fuzzy logic. These
degrees are used as inputs to neural networks [Wu, et al., 1994]. In this chapter we
apply a fuzzy logic approach for classifying masses (lesions) found in mammograms
as lobulated or microlobulated. The lobulated and microlobulated features of a mass
are profoundly important in breast cancer diagnosis [Tabar and Dean, 1986].

The proposed analysis is based on the medical definitions of the previous two
terms, as given by the American College of Radiology (ACR) Breast Imaging
Lexicon. According to this Lexicon, a mass has “lobular” shape if “it has contours
with undulations.” Note that the Lexicon defines the notion “lobular” without any
indication of the size or number of undulations and without defining the concept
of “undulation.” The descriptive words in each category describe a continuum from
benign to malignant.

A lobular mass is most often benign, although a few malignancies will be lobular.
Lobular malignancies are usually well differentiated pathologically. Furthermore,
a mass with microlobulated margins has a lower chance for malignancy than one
with indistinct or spiculated margins. A microlobulated mass would fit into the low-
intermediate suspicion category #4 of the BI-RADS (for Breast Imaging, Reporting,
And Data System of the American College of Radiology), and would have a 10–20%
chance of malignancy.

In this chapter the concept of undulation is defined as the contour between
the minima of adjacent concavities. The depth of such concavities may vary from
small to very large (as explained in detail in Section 16.3). Therefore, for a formal
computer algorithmic analysis, the above means that if a mass has any one of
“small/medium/large undulation,” then the algorithm should classify it as lobular.
But this is not necessarily what occurs in a real-life situation because a radiologist
may take into account the size, the number of undulations, and how deep they are.

However, the ACR Lexicon does not mention these attributes in the formal defini-
tion of lobulation. Therefore, it is likely that different radiologists may have different
perceptions about the size and number of undulations sufficient to classify the shape
of a mass as lobular.

The term microlobulated margins means (according to the ACR Lexicon) that
“the margins undulate with short cycles producing small undulations.” Again,
different radiologists may have different perceptions of what “short cycles” and
“small undulations” mean. The ACR Lexicon does not provide a unified framework
for defining these terms in a consistent and objective manner and again radiologists
are left making subjective and individual decisions regarding these characteristics.
The following two hypothetical examples highlight the need for a unified framework
for defining terms related to the shape of masses in mammograms.

Example 1. Suppose that a radiologist has found one “big” and two “small” undula-
tions in a given mass. Does this mean that the mass is lobular or microlobular or do
both features coexist? Also suppose that for the same mass a second radiologist has
decided that there are two “big” and one “small” undulations. Again, we have the
same question: “Is this mass lobular or microlobular or do both features coexist?”
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Example 2. Suppose that in some study, five out of ten radiologists concluded that
a particular mass is lobular, but the other five came to the opposite conclusion.
How should we train a computerized system to detect a lobular mass by utilizing
this contradictory experience? Should we exclude these cases from the training set?
However, similar cases may appear again in a real-life situation. If we exclude these
cases, any trained detection system will diagnose them arbitrarily, although most
properly it should not identify lobular features.

The last example illustrates a typical source of intra- and extra-observer variabil-
ity in mammography and some of its consequences. How can one minimize these
problems? This chapter proposes a lobular/microlobular mass identification approach
which addresses this methodological and practical problem. This approach can also
become the basis for analyzing and formalizing other ACR Lexicon terms or any
subjective attributes in a wide spectrum of data mining applications.

The proposed approach is designed in a manner which follows the way human
experts make decisions regarding this particular medical problem. Therefore, this
chapter will concentrate only on the development of an approach for formalizing
lobularity and microlobularity in masses found in mammograms.

This chapter is organized as follows. The next section presents some basic infor-
mation on fuzzy sets and related issues. Section 16.4 discusses the development
of some concepts which can be used to characterize lobularity and microlobular-
ity of breast masses and the formalization of these features in terms of a fuzzy
logic approach. Section 16.5 develops the notions of degrees of lobularity and
microlobularity based on the formalized features. Finally, the chapter ends with some
concluding remarks.

16.3 Some Background Information on Fuzzy Sets

For a long time it has been recognized that an exact linguistic description of many
real-life physical situations may be practically impossible. This is due to the high
degree of imprecision involved in real-world situations. Zadeh, in his seminal papers
[Zadeh, 1965; 1968], proposed fuzzy set theory as the means for quantifying the
inherent fuzziness that is present in ill-posed problems (which by many accounts are
the majority of the real-life problems in decision making and data mining). Fuzziness
is a type of imprecision which may be associated with sets in which there is no sharp
transition from membership to nonmembership [Bellman and Zadeh, 1970]. Exam-
ples of fuzzy sets are classes of objects (entities) characterized by such adjectives as
“large,” “small,” “serious,” “simple,” “approximate,” and so on [Bellman and Zadeh,
1970].

As an indication of the importance of fuzzy set theory in engineering and scien-
tific problems one could consider the more than 2,000 references given in [Chang,
1971], [Dubois and Prade, 1980], [Gupta, Ragade and Yager, 1979], [Xie and
Berdosian, 1983], [Zadeh, Fu, Tanaka, and Shimura, 1975], [Zadeh, 1976; 1978;
1979], [Sanchez, 2006], [Ross, 2004], and [Cox, 2001]. This number is just a sample
and the actual figure is much higher and it grows all the time.
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Currently, an increasingly large number of researchers have been faced with the
problem that either their data or their background knowledge is fuzzy. This is parti-
cularly critical to people who build intelligent systems and advanced decision support
systems, for the knowledge they are dealing with is almost always riddled with vague
concepts and judgmental rules (e.g., [Lee, 1971], [Lee, Grize, and Dehnad, 1987],
[Prade and Negoita, 1986], [Ramsay, 1988], [Zadeh, 1983], [Zimmermann, 1985;
1996], [Klir and Yuan, 1995], [Nguyen and Walker, 2005], and [Szczepaniak, Lisboa,
and Kacprzyk, 2000]. An overview of some applications of fuzzy sets in multicriteria
decision making can be found in [Triantaphyllou, 2000].

The most critical step in any application of fuzzy set theory is to effectively esti-
mate the pertinent data (i.e., the membership values). Although this is a fundamental
problem, there is not a unique way of determining membership values in a fuzzy set.
This is mainly due to the way different researchers perceive this problem.

For fuzzy numbers many people use triangular fuzzy numbers (that is, fuzzy
numbers with lower, modal, and upper values, see also the next definition) because
they are simpler when they are compared to the more flexible trapezoid fuzzy num-
bers. A triangular fuzzy number is formally defined as follows:

Definition 16.1 (Dubois and Prade, 1980). A fuzzy number M on R ∈ (−∞,+∞)

is defined to be a triangular fuzzy number if its membership function μM : R →
[0, 1] is equal to

μM (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
m−l x − l

m−l , if x ∈ [l,m]

1
m−u x − l

m−u , if x ∈ [m, u]

0, otherwise.

In the previous formula the following holds true: l ≤ m ≤ u, where l and u stand
for the lower and upper value of the support of fuzzy number M , respectively, and m
for the modal (“middle”) value. A triangular fuzzy number, as expressed above, will
be denoted as (l,m, u). The graphical representation of the above concept is given in
Figure 16.1.

However, in this chapter we will use trapezoid fuzzy numbers. Such a rep-
resentation is a straightforward extension of the simpler triangular fuzzy num-
bers. Figure 16.2 illustrates a typical trapezoid fuzzy number. Observe that now
we have the two modal (“middle”) points m1 and m2. The definition of trapezoid
fuzzy numbers is analogous to the previous one (i.e., now there are four cases to
consider).

16.4 Formalization with Fuzzy Logic

In this section we slightly change the previous two definitions of a lobular mass and a
microlobulated mass. We define a mass to be lobular if it has a contour with some big
and deep undulations. The margins of a mass are microlobulated if they have several
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Figure 16.1. A Typical Triangular Fuzzy Number.

Figure 16.2. A Typical Trapezoid Fuzzy Number.

small concavities (cycles) producing several small and shallow undulations. At a
first glance it may appear that we did not improve the precision of the definitions.
However, these reformulations are of critical importance. They allow one to apply
fuzzy logic and express the original two principal ACR definitions as functions of
secondary and easily fuzzifiable terms.

The above considerations involve two important fuzzy terms, namely the terms
some and several. These terms have a rather clear meaning when they are used
in context with other terms of natural language [Kovalerchuk and Klir, 1995],
[Kovalerchuk, 1996]. One can then define a fuzzy set with the fuzzy terms {few,
some, several, many} for the number of undulations. Note that the number of undu-
lations can be equal to 0, 1, 2, 3, . . . , etc.

For instance, for the fuzzy term few the number of undulations can be set equal
to 0. That is, the corresponding family of the four (trapezoid) fuzzy membership
functions are μfew(x), μsome(x), μseveral(x), and μmany(x) (see also Figure 16.3).
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Figure 16.3. Membership Functions Related to the Number of Undulations.

Some possible sampled values of these membership functions could be μfew(2) =
1/3, μsome(2) = 2/3, μsome(3) = 1, μmany(2) = 0, etc. Some interviewed radiolo-
gists felt comfortable with this formalization.

Although one may argue with the specific numerical values of the above member-
ship functions, the main issue here is that it is possible to effectively quantify fuzzy
concepts which are critical for a consistent and objective classification of masses as
lobular or microlobular.

Next we define the meaning of the terms of the fuzzy set {small, big}. This set is
crucial in defining the size of undulations. First we need an adequate scale to measure
the length of a given undulation. We consider the length of an undulation in relative
terms since different masses may have different sizes. For instance, an undulation
of 3 mm in length could be considered “microlobular” in a large mass while a small
mass with the same undulation could be considered “lobular.”

Therefore, we first need to compute L; the maximum length of a mass. This
approach can allow one to estimate the undulation length as a fraction of L .
In Figure 16.4a we present a mass with some undulations. Specifically, the curve
between the points A and B is an undulation. We can formalize the fuzzy terms
small and big by characterizing undulations on a scale determined by the relative
undulation length (see also Figure 16.4b).

According to the membership functions in Figure 16.4b, a relative length of more
than L/4 can be defined as a big undulation, while an undulation of relative length
of less than L/12 could be considered as a small undulation. Undulations of inter-
mediate length can be assigned intermediate membership values.

Since masses may have varying degree of depth of lobularity one can also define
the fuzzy membership functions regarding the “shallow” or “deep” aspect of the
undulations. Thus, we next introduce a relative measure of the depth of lobularity,
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Figure 16.4a. A Diagrammatic Representation of a Mass with Undulations.

Figure 16.4b. Membership Functions Related to the Length of Undulations.

which is defined as a fraction of the maximum length (denoted as L) of the mass.
This step is similar to those described in the previous fuzzy sets.

The concept of a lobular mass can now be formulated as follows: A mass is lobu-
lar if it has at least three undulations with length and depth of not less than L/4.
We can also formulate the concept of microlobulated mass margins. The mass mar-
gins are microlobulated if there are at least six undulations with length and depth
of not more than L/12. These definitions are based on the interdependence of the
concepts of size, depth, and number of undulations and can be used to quantify
the concepts of lobular and microlobular masses objectively and consistently. The
fuzzy logic structures for the lobular and microlobular concepts are presented in
Figures 16.5 and 16.6, respectively.
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→ undulation 1 length = big μbig (undulation 1) = 1.00
depth = deep μdeep (undulation 1) = 1.00

MASS → undulation 2 length = big μbig (undulation 2) = 1.00
depth = deep μdeep (undulation 2) = 1.00

→ undulation 3 length = big μbig (undulation 3) = 1.00
depth = deep μdeep (undulation 3) = 1.00

Figure 16.5. Fuzzy Logic Structures for a Lobular Mass.

→ undulation 1 length = small μsmall (undulation 1) = 1.00
depth = shallow μshallow (undulation 1) = 1.00

→ undulation 2 length = small μsmall (undulation 2) = 1.00
depth = shallow μshallow (undulation 2) = 1.00

MASS → undulation 3 length = small μsmall (undulation 3) = 1.00
depth = shallow μshallow (undulation 3) = 1.00

→ undulation 4 length = small μsmall (undulation 4) = 1.00
depth = shallow μshallow (undulation 4) = 1.00

→ undulation 5 length = small μsmall (undulation 5) = 1.00
depth = shallow μshallow (undulation 5) = 1.00

→ undulation 6 length = small μsmall (undulation 6) = 1.00
depth = shallow μshallow (undulation 6) = 1.00

Figure 16.6. Fuzzy Logic Structures for a Microlobulated Mass.

Figure 16.5 shows the fuzzy logic structures of a hypothetical mass with three
undulations. Each undulation is presented with its length and depth. All these undu-
lations are big and deep. Hence, all membership functions are equal to 1.00 and
according to our formalization such a mass is lobular. Similarly, Figure 16.6 shows a
hypothetical microlobulated mass with six undulations and all of them are small and
shallow.

The previous definitions allow some masses to be classified as both lobular and
microlobulated without any contradiction if the mass has at least nine undulations
(of which three are lobular and six are microlobular). That is, one just needs to join
the structures given in Figures 16.5 and 16.6. Cases of an intermediate nature can
also be formalized. An example of such a case is depicted in Figure 16.7.

We take the three biggest and deepest undulations and compute the minimum of
their membership function values for the terms big and deep. We define this value as
the degree of lobularity (or DL). For instance, for the mass described in Figure 16.7
the minimum for the first three undulations is 0.70, that is, for this case DL = 0.70.
Similarly, it can be easily verified that the degree of microlobularity (or DM) com-
puted with the remaining 6 undulations is 0.60. Such estimates can be used as inputs
for a breast cancer computer-aided diagnostic (CAD) system.



16.4 Formalization with Fuzzy Logic 305

→ undulation 1 length = big μbig (undulation 1) = 0.80
depth = deep μdeep (undulation 1) = 0.70

→ undulation 2 length = big μbig (undulation 2) = 0.73
depth = deep μdeep (undulation 2) = 0.71

→ undulation 3 length = big μbig (undulation 3) = 0.90
depth = deep μdeep (undulation 3) = 0.80

MASS → undulation 4 length = small μsmall (undulation 4) = 0.90
depth = shallow μshallow (undulation 4) = 0.80

→ undulation 5 length = small μsmall (undulation 5) = 0.90
depth = shallow μshallow (undulation 5) = 0.70

→ undulation 6 length = small μsmall (undulation 6) = 0.60
depth = shallow μshallow (undulation 6) = 0.70

→ undulation 7 length = small μsmall (undulation 7) = 0.67
depth = shallow μshallow (undulation 7) = 0.97

→ undulation 8 length = small μsmall (undulation 8) = 0.80
depth = shallow μshallow (undulation 8) = 1.00

→ undulation 9 length = small μsmall (undulation 9) = 0.84
depth = shallow μshallow (undulation 9) = 0.79

Figure 16.7. Structural Descriptions for a Fuzzy Lobular and Microlobulated Mass.

→ undulation 1 length = big μbig (undulation 1) = 0.80
depth = deep μdeep (undulation 1) = 0.70

MASS → undulation 2 length = big μbig (undulation 2) = 0.60
depth = deep μdeep (undulation 2) = 0.60

Figure 16.8. Fuzzy Logic Structures for a Mass with Less Than Three Undulations.

If the number of undulations is less than three, one can combine the member-
ship functions for the length and depth with a membership function for the number
of undulations (as defined in Figure 16.3). In this combination, we compute the
minimum of these three values in accordance with standard fuzzy logic practice.
We analyze the arguments for the use of the min (minimum) operator in the next
section. Now let us consider, for instance, the mass with the two undulations
described in Figure 16.8.

Figure 16.6 provides the means to compute 0.60 as the corresponding degree
of lobularity (DL), while Figure 16.3 shows that μsome(2) = 0.66 for a case with
two undulations. Thus, their minimum of 0.60 characterizes the lobularity of this
mass. It is important to state here that the proposed fuzzy membership functions are
only indicative. Their exact numerical forms can be determined from a consensus
approach among radiologists and/or by using historic data. In the next section we
present the DL and DM ideas formally.
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Figure 16.9. Diagrammatic Representation of Masses with (a) Deep and (b) Shallow Undula-
tions.

16.5 Degrees of Lobularity and Microlobularity

Radiologists use an informal approach in determining the lobularity and microlobu-
larity of a mass. To maintain consistency in these evaluations and increase objectivity,
we need to formalize these concepts. Let us first consider the two masses depicted in
Figure 16.9.

Intuitively, the first mass has deep undulations, while the second mass has
shallow undulations. Different measures can be created to formalize this distinction.
Figure 16.9(a) shows two distances d1 and d2, defined between the points A and C
and between the points B and E , respectively, for undulation 1 (i.e., U1). If each
of them is no less than L/4, then this undulation is deep (see also Figure 16.9(b)).
If these distances are no more than L/12, then undulation 1 is shallow (see also
Figure 16.9(a)).

This situation indicates that formally the depth D of the undulation closely
depends on the pair of values for d1 and d2 (this concept is not to be confused with
the one of depth of lobularity which was defined in Section 16.2). The method used
to compute these values was considered in [Kovalerchuk, Triantaphyllou, and Ruiz,
1996].

The values of μdeep(d1) and μdeep(d2) are computed by using the corresponding
membership functions in Figure 16.4. In this way the previous two measures can be
transformed into a single degree of lobularity for a given undulation. Recall that we
use the same membership functions for the length and depth of undulations. This is
done by substituting the terms big for deep and small for shallow. Next, we compute
min{μdeep(d1), μdeep(d2)}, which could be considered as the degree of depth of the
undulation. That is:

μdeep(undulation) = min{μdeep(d1), μdeep(d2)}.
Similarly, we define the degree of shallowness of an undulation as

μshallow(undulation) = min{μshallow(d1), μshallow(d2)}.
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Observe that the length of undulation 1 (denoted as U1) is measured as the length of
the mass margin between points A and B (see also Figure 16.9(a)).

Now one can define the Degree of Lobularity (DL) of a mass as follows:

DL(mass) = min{μsome(k), min
k≥i≥1

{μbig(Ui ), μdeep(Ui )}}, (16.1)

where U1,U2, . . . ,Uk are undulations such that

min
k≥i≥1

{μbig(Ui ), μdeep(Ui )} ≥ 0.50.

Similarly, one can define the Degree of Microlobularity (DM) of a mass with k undu-
lations:

DM(mass) = min{μseveral(k), min
k≥i≥1

{μsmall(Ui ), μshallow(Ui )}}, (16.2)

where U1,U2, . . . ,Uk are undulations such that

min
k≥i≥1

{μsmall(Ui ), μshallow(Ui )} ≥ 0.5.

For the extreme case of k = 0, we have μsome(k) = 0 and μseveral(k) = 0 (see also
Figure 16.3). Thus, both degrees of lobularity and microlobularity are equal to 0, i.e.,
the outcome corresponds to what is expected with common sense.

There are some theoretical and experimental arguments for the general case (e.g.,
[Kovalerchuk and Klir, 1995], [Kovalerchuk and Dalabaev, 1993], and [Kovalerchuk
and Taliansky, 1992]) justifying formulas (16.1) and (16.2). However, we can also
use some additional arguments derived from this mammographic problem. A con-
sistent computer-based breast cancer diagnostic system should refuse to diagnose a
mammogram with a significant number of doubtful features. We can express how
doubtful a given feature is by some degree between 0 and 1, with the highest degree
of doubt given at 0.50. The values of DL and DM are examples of such degrees.
For these uncertain (doubtful) features, a CAD system can suggest the presence of a
particular feature, but only with some degree of confidence. This confidence can be
very low. Also, this degree of confidence depends on the particular values of the DL
and DM quantities. Therefore, the formulas used to define DL and DM become even
more critical.

This situation can be explained with a modified example from Figure 16.6.
Assume that the first five membership functions for undulations are equal to 1.00 and
the sixth function is equal to 0.60 (i.e., μdeep(undulation 3) = 0.60). Then formula
(16.1) gives us a “pessimistic” assessment, i.e., a low degree of certainty for the
presence of lobularity. This is expressed as DL = 0.60. Substituting in (16.1) the
minimum (min) operation with the maximum will give us an “optimistic” assess-
ment, i.e.., high degree of lobularity, DL = 1.00 for this case. In the last “opti-
mistic” assessment we ignore and lose the warning information (i.e., the fact that
μdeep(undulation 3) = 0.60). The value 0.60 suggests that one should be cautious
and study the case in great detail. However, no warning information is lost if we use
the “pessimistic” minimum (min) operation in formulas (16.1) and (16.2).
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Therefore, for critical questions regarding a very critical situation such as cancer
diagnosis, we see that the “pessimistic” strategy is the safest as it is the most con-
servative one. We also consider statements with a low degree of confidence as a
preliminary suggestion indicating that we need to switch the set of features to a
higher level of detail in order to fully evaluate the complexity of a given case. Some
experiments in [Doi, et al., 1993] and [Wu, et al., 1993] have shown that relatively
simple cases can be diagnosed within a small feature space. However, for more com-
plicated cases we need a pathologically confirmed training sample with more features
and a specifically designed diagnostic method. A CAD system designed as above can
have switching capabilities based on the described approach.

16.6 Concluding Remarks

Radiologists often make relatively subjective determinations for many features
related to breast cancer diagnosis. We have formalized some important features from
the ACR Breast Imaging Lexicon, i.e., lobulation and microlobulation of masses
(nodules, lesions). This formalization is the basis of the following three steps:
(i) extensive radiological validation; (ii) automatic detection of lobulation/microlobu-
lation in a mammographic image; and (iii) similar formalizations of other terms from
the ACR Breast Imaging Lexicon. This study suggests that fuzzy logic can be an
effective tool in dealing with this kind of medical problems.

It should also be stated here that the ACR Breast Imaging Lexicon involves many
concepts which could be defined in a fuzzy logic approach similar to the proposed
lobulation and microlobulation analysis. However, as has been shown in our previous
work with breast calcifications [Kovalerchuk, Triantaphyllou, and Ruiz, 1996], the
various features presented in the Lexicon pose a broad range of problems requiring
tailored solutions. Analyzing all the concepts covered in the ACR Breast Imaging
Lexicon (which are approximately thirty) is outside the scope of this chapter and
would require a sequence of similar developments.

However, such a goal would be of great importance in breast cancer diagno-
sis, as it has been demonstrated that traditional artificial intelligence and statisti-
cal methods of pattern recognition and diagnosis may be dramatically unreliable.
Related to this subject is also Chapter 9 which elaborates on the reliability issue of
inferred data mining and knowledge discovery models.

The proposed fuzzy logic approach is both feasible and effective because this
type of approach (but not on this geometric/medical context) has been applied suc-
cessfully in other areas. Its complete application in breast cancer diagnosis is only a
matter of time. The proposed fuzzy logic approach has the potential to open a new
and very exciting direction for effective and early breast cancer diagnosis and, in
general, in data mining and knowledge discovery research and applications.



Chapter 17

Conclusions

17.1 General Concluding Remarks

Each of the previous chapters ends with a section with some concluding remarks
tailored to the contents of the particular chapter. This section provides some compre-
hensive concluding remarks. As was mentioned earlier, there are many approaches to
data mining and knowledge discovery from data sets. Such approaches include neu-
ral networks, closest neighbor methods, and various statistical methods. However,
such approaches may have some severe limitations for a number of reasons.

First of all, for discovering new knowledge from data sets, methods based on
logic offer a direct and often intuitive approach for extracting easily interpretable
patterns (i.e., the new knowledge). For instance, translating a complex statistical
model into a set of rules, which can easily be interpreted by domain experts, may be a
challenge in many applications. The same is true when dealing with neural networks.
It is not a coincidence that now there is a new trend in developing hybrid meth-
ods that combine such traditional data mining and knowledge discovery approaches
with logic-based methods. Furthermore, most statistical methods rely on rather strict
assumptions which may or may not hold. For the same reason, the available data sets
should be sufficiently large to verify the justification for these assumptions.

Regarding the data mining aspect of such methods, one may be simply interested
in extracting some type of model which could predict the class membership of new
observations with high accuracy. The interest may not be in interpreting the structure
of these extracted patterns, but only on having a model which is highly accurate.
Even so, mathematical logic-based methods may be the way to proceed, as they can
be very accurate.

As was shown in Chapters 10 and 11, which discussed the monotonicity property,
logic-based methods may offer more accurate approaches in defining the borders
between the different classes of observations. By focusing on the border determina-
tion issue, one may be able to develop a model that is more accurate in general, but
perhaps more importantly, more accurate when the new cases are complicated and
ambiguous ones and not of an obvious class. After all, one needs a good computer-
aided system to deal with the more complicated cases which require specialized

E. Triantaphyllou, Data Mining and Knowledge Discovery via Logic-Based Methods,
Springer Optimization and Its Applications 43, DOI 10.1007/978-1-4419-1630-3 17,
c© Springer Science+Business Media, LLC 2010
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expertise to analyze. Finally, it should be noted here that relevant to this fundamen-
tal issue is the discussion on the “three major illusions on accuracy” as described in
Chapter 11.

Another reason that supports the argument that logic-based methods have a bright
future comes from the huge literature currently available on such methods for other
applications. The immense advance in digital technology, with circuit design and
minimization, is actually based on advances on logic methods (digital methods).
When one aims at circuit minimization, the objective is to replace a digital system by
another one of smaller size but with the same or even more advanced functionality.
This objective is very similar to the objective of extracting a Boolean function (i.e.,
a pattern) of small size but still capable of satisfying the requirements of the two
classes of observations and also accurately predicting the class membership of new
observations.

17.2 Twelve Key Areas of Potential Future Research on Data
Mining and Knowledge Discovery from Databases

The areas of research and application discussed in the previous chapters highlight
some of the areas which are most likely to witness new and significant developments
in the future. In this section we will summarize some of the areas most likely to lead
to future developments. The following paragraphs describe some of these potential
areas by focusing on twelve key research problems.

17.2.1 Overfitting and Overgeneralization

Many data mining and knowledge discovery methods which are based on neural
network models have done a good job in finding a balance between overfitting and
overgeneralization. Overfitting becomes a limitation when the inferred model can
accurately deal with cases that are very close to the available training data, but does
poorly with cases that are very different from such data. The opposite problem occurs
when the problem is overgeneralization. In an overgeneralization situation the model
claims to be accurate in cases which are very different than the data used for training,
but in reality the model is not accurate.

Such problems may occur with any system inferred from training data, including
systems derived by logic-based methods. An approach to deal with these problems is
to first gain a deep understanding of them in the context of neural networks and then
transfer this understanding into the domain of logic-based methods. An alternative
way is to approach them from a geometric point of view, as is the case in the studies
described in [Pham and Triantaphyllou, 2007; 2008; 2009a; 2009b].
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17.2.2 Guided Learning

The approach proposed in Chapter 5 for guided learning is based on a technique that
guarantees the modification of one and only one of a pair of systems (the so-called
“positive” and “negative” Boolean functions). An interesting idea might be to try to
locate as new examples ones that are very deeply inside the “gray” regions (i.e., the
undecidable region left out by the two systems or the area in which the two systems
conflict with each other). A key issue here is how to define “depth” in the context
of the space of the examples (observations). This may not be a trivial task as some
attributes may not have an easy geometric/Euclidian interpretation.

Another alternative approach is to seek new observations from nonconflicting
regions in which case a contradiction with one of the two systems now leads to
the modification of both systems. For instance, if a data point that is classified as
positive by both systems turns out to be negative in reality, then both systems need
to be modified. If such strategy is coupled with the previous geometric direction of
seeking observations that are deeply inside a region, then the potential benefits might
be very significant. Another approach might be to combine concepts from monotone
Boolean functions and attempt to define the borders of the classes more accurately
and by seeking as few new queries as possible.

17.2.3 Stochasticity

The proposed logic-based methods are mostly deterministic ones and do not handle
stochastic data in a direct manner. An alternative approach might be to define obser-
vations that are, say, 10% positive and 90% negative, as a different class. Such classes
are nested and not overlapping. Thus, the nested monotone Boolean functions dis-
cussed in Chapter 10 might be one of the ways to deal with stochastic data.

17.2.4 More on Monotonicity

Some of the previous chapters strongly suggest that monotonicity in the data may
lead to attractive algorithms in the field of data mining and knowledge discovery.
An intriguing idea comes from the observation that any Boolean function can be
decomposed into a number of increasing and decreasing monotone Boolean func-
tions. Furthermore, any Boolean function may be “sandwiched” by a pair of mono-
tone Boolean functions. These observations may lead to new ways of extending the
mathematically attractive algorithms on monotone Boolean functions to the realm of
general Boolean functions. This, in turn, may lead to a better interpretation of the
derived results and also to more accurate and efficient algorithms.

17.2.5 Visualization

A new trend in data mining and knowledge discovery methods is to use visualiza-
tion approaches to better understand the nature of the inferred models. Monotonicity
may offer some intriguing possibilities in developing new ways for visualizing such
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models. The poset idea discussed in Chapter 10 may offer a new way for visuali-
zation. Most visualization systems suffer from degradation when the number of
attributes increases. This is not the case with posets. One has to organize the obser-
vations along the various layers of posets. Recall that there are n + 1 such layers and
up to 2n possible observations when the number of (binary) attributes is equal to n.

17.2.6 Systems for Distributed Computing Environments

Many databases are today distributed. The same is true with computing resources.
The advent of the Internet and the Web along with the spread of Globalization
make the idea of developing new data mining and knowledge discovery methods
that analyze distributed databases and also use distributed computing resources very
appealing. The use of mobile agents may be a way to go in this direction. Logic-based
methods offer easy ways for checking for consistency among different results derived
locally. Another related idea is to use the so-called “Grid computing” methods for
the same goal.

17.2.7 Developing Better Exact Algorithms and Heuristics

A never-ending goal with any computational area is the development of more effec-
tive and efficient exact algorithms and heuristics. The claim that faster computers will
be just sufficient to handle the needs of future applications is naı̈ve. More gains can
be achieved by making algorithmic developments that tackle the issues squarely. The
only certain issue is that the sizes of future databases will increase more and more as
data become readily available and storing media become more cost effective. Ways
for partitioning large databases and achieving scalability are critical. Perhaps, the
rejectability graph discussed in Chapter 8 and other graph-theoretic methods may
offer some plausible opportunities in this direction.

17.2.8 Hybridization and Other Algorithmic Issues

The mere presence of many and diverse data mining and knowledge discovery algo-
rithms signifies that different approaches may be more effective under different con-
ditions and domains. An existing trend here is to combine different approaches in
a way that the new, or hybrid, system will have the advantages of the individual
approaches and none of their disadvantages. When such hybrid methods are built
around a logic-based framework, the hybrid system may be able to better explain its
decision-making process.

Another key problem is the identification of errors and outliers (which may not
be the result of errors) in the data; also, to be able to handle problems with miss-
ing data and not just to ignore the observations which happen to have some of their
fields missing. Surprisingly enough, an issue that has received relatively little atten-
tion despite its apparent importance is that of dealing with problems which involve
multiple classes and not just two (i.e., the “positive” and “negative” class). If methods
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are developed that can solve such multiclass problems in a different way, then it is
possible that the accuracy of multiclass models can be improved dramatically.

Finally, another critical issue is to develop inference methods that try to deter-
mine the border of the various classes of observations more accurately. In this way,
the methodological problems described as the “three major illusions on accuracy” in
Chapter 11, may be tackled more effectively.

17.2.9 Systems with Self-Explanatory Capabilities

In the past such systems were primarily built for advanced expert systems. Being able
to better explain its behavior, a system becomes easier to validate. It also becomes
easier to be trusted by the domain experts. Logic-based systems provide an intuitive
framework for embedding self-explanatory capabilities in intelligent systems built
by data mining and knowledge discovery methods.

17.2.10 New Systems for Image Analysis

The use of digital cameras for video and still images has become ubiquitous in recent
years. Now it is almost a common occurrence for amateurs to possess high-definition
(HD) video cameras, something that most professionals could not even dream of just
a few years ago. Web pages which organize, promote, and share public and private
photos and videos are everywhere. Services like those offered by Flickr, Picasa, and
YouTube are the current main examples of such capabilities.

The above situation has led to a proliferation of digital images and videos on the
Web. At the same time, methods for interpreting the context of digital images and
videos are still in their infancy. Some approaches resort to attaching some textual
descriptions (as generated by human operators) to images and videos, so they can
be easier catalogued and become easier retrievable. Logic-based methods, combined
with data mining and knowledge discovery methods, may offer ways for breaking
this stumbling block and opening a totally new horizon of possibilities.

17.2.11 Systems for Web Applications

Since the Web has literarily invaded every corner of the planet and modern society,
a new breed of data mining and knowledge discovery methods may provide new
opportunities for harvesting the contextual and computational richness of the Web
plus better communications. Some prime examples of this trend are the new genera-
tion of iPhone and Blackberry devices and other related Web/communication gad-
gets. Furthermore, the combination of the GPS (Global Positioning System) enables
such applications to reach new highs. Again, logic-based methods may offer some
unique opportunities in achieving these and also future goals.
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17.2.12 Developing More Applications

New applications, not only on numbers but in new domains as well, may offer the
background for defining new computational challenges and lead to the development
of new algorithms. At the same time, new algorithms may make data mining and
knowledge discovery methods appealing to new types of applications. This is a
two-way relationship in a closed loop which can lead to new developments in new
theories and applications alike. Logic-based methods can be the driving force in this
bidirectional model of development.

The previous twelve areas of possible future developments are only indicative of
the great potential that logic-based methods have in the data mining and knowledge
discovery field. It should also be noted here that this field, in the way we know it
now, is rather new and still developing. As is the case with many new ideas, there is
a great deal of hype at the beginning. Next, there is a stage of excessive skepticism
about the potential of the new field. After that there is the stage of maturity. It is
hard to tell at which stage we are now. Perhaps there are signs of being in any one of
these three stages! However, one issue is rather certain; the future will reveal many
more opportunities and challenges for logic-based approaches to data mining and
knowledge discovery from databases/data sets.

17.3 Epilogue

It seems like there is a very powerful relationship developing in modern society
when one considers the areas of technology, science, and modern life. First of all,
the generation, collection, and storage of data keep increasing at a torrid pace. At the
same time, computing power becomes more effective and efficient. Although some
scholars raise doubts on how much longer Moore’s law may still be applicable, there
is no end in sight on the growth of computing power. When these two driving factors
are examined together, the only certain conclusion is that needs and methods for ana-
lyzing large and complex data sets will be even more important in the future. This is
represented diagrammatically in Figure 17.1. For apparent reasons, we will call this
the “Data Mining and Knowledge Discovery Equation for the Future.”

The advent of the Web, the seemingly pervasive use of cameras and scanning
systems which generate endless numbers of still images and videos all the time
everywhere, are just some of the many new ways for collecting and storing data
about nearly everything on a nearly continuous basis. Mobile phones and personal
gadgets, such as music players, digital cameras, just to name a few, are means for

Figure 17.1. The “Data Mining and Knowledge Discovery Equation for the Future.”
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collecting and storing more and more data. Today, besides the traditional keys in the
key chain that people carry everywhere with them, there are attached small cards with
bar codes and a memory stick with storage capacity unbelievable just a few years ago
even for desktop computers. There are even “wearable computers” for continuously
monitoring or enhancing somebody’s physical activities. Predicting the future in this
area, even for the relatively short run, has already proven to be an elusive task. It is
only natural to expect that the future is impossible to predict in terms of ways for
collecting and storing data.

At the same time, computing power becomes more powerful and more afford-
able. It has reached the point that now many regular appliances do have complex
CPUs embedded in them with advanced computing capabilities and their owners are
not even aware of that. As the “Data Mining Equation for the Future” in Figure 17.1
illustrates, the synergy of these two factors will only force more interest and need for
new data mining and knowledge discovery methods.

It should be clearly stated at this point that the subject of data mining and know-
ledge discovery methods is not a purely computer science/operations research issue.
It is way too important to be confined to a single or a very closely related family of
disciplines. It is also a social issue, as the analysis of data may have lots of social
and/or ethical implications. For that, it is also a political issue and some governments
have already been involved in heated debates regarding the use of such methods on
some types of data sets. Such trends will naturally intensify even more in the future.
All these developments, both algorithmic (as the ones discussed in this book) and
also social, ethical, and legal, are crucial for the effective development and appropri-
ate use of this very fast emerging and potentially ultrapowerful technology. What we
have seen so far is just the beginning.
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