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SERIES EDITORS' FOREWORD 

The series Advances in Industrial Control aims to report and encourage 
technology transfer in control engineering. The rapid development of control 
technology has an impact in all areas of the control discipline. New theory, new 
controllers, actuators, sensors, new industrial processes, computer methods, 
new applications, new philosophies ... , new challenges. Much of this 
development work resides in industrial reports, feasibility study papers and the 
reports of advanced collaborative projects. The series offers an opportunity for 
researchers to present an extended exposition of such new work in all aspects of 
industrial control for wider and rapid dissemination. 

How is information technology having an impact on the control, 
monitoring and operation of large-scale industrial processes? This monograph 
by Xue Wang of Leeds University supplies an in-depth answer to this question. 
The text has the starting point that, traditionally, control engineers have 
concentrated on system dynamics, measurement selection, control structure 
determination and the choice of the controller algorithm to be used. This 
ignores the large quantity of data generated by modern plant sensing devices as 
a source of information for improved control and enhanced process 
monitoring. The difficulty in many cases is the sheer quantity of data arising 
and the problem of interrogating, analysing and interpreting this data. 
Solutions, some old ... multivariate analysis, and some new ... neural networks 
and fuzzy sets, are presented by the author along with illustrative examples 
usually based on real industrial processes and data. This very instructive 
monograph will be of interest to the practising industrial process engineer for 
its insights and to the academic control community for its industrial 
perspective. 

M.J. Grimble and M.A. Johnson 
Industrial Control Centre 

Glasgow, Scotland, UK 



PREFACE 

Being able to collect and display to operators a large amount of information is 

regarded as one of the most important advances provided in distributed control 

(DCS) over earlier analogue and direct digital control systems. The data are used by 

plant operators and supervisors to develop an understanding of plant operations 

through interpretation and analysis. It is this understanding which can then be used 

to identify problems in current operations and find better operational regions which 

result in improved products or in operating efficiency. 

It has long been recognised that the information collected by DCS systems tends 

to overwhelm operators and so makes it difficult to take quick and correct decisions, 

especially in critical occasions. For example, olefin plants typically have more than 

5000 measurements to be monitored, with up to 600 trend diagrams. Clearly there is 

a need to develop methodologies and tools to automate data interpretation and 

analysis, and not simply rely on providing the operators large volumes of 

multivariate data. The role of the acquisition system should be to provide the 

operators with information, knowledge, assessment of states of the plant and 

guidance in how to make adjustments. Operators are more concerned with the 

current status of the process and possible future behaviour rather than the current 

values of individual variables. 

Process monitoring tends to be conducted at two levels. Apart from immediate 

safe operation of the plant, there is also the need to deal with the long term 

performance which has been the responsibility of supervisors and engineers. The 

databases created by automatic data logging provide potentially useful sources of 

insight for engineers and supervisors to identify causes of poor performance and 

opportunities for improvement. Up to now such data sources have not been 

adequately exploited. 
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The above roles of plant operators and supervisors imply that they are an integral 

part of the overall control system. The current approach to designing control 

systems has not adequately addressed this point. It is done mainly in terms of 

identifying the process dynamics, selecting measurements, defining control 

structures and selecting algorithms. 

This book introduces development in automatic analysis and interpretation of 

process operational data both in real-time and over the operational history, and 

describes new concepts and methodologies for developing intelligent, state space 

based systems for process monitoring, control and diagnosis. It is known that 

processes can have multiple steady and also abnormal states. State space based 

monitoring and diagnosis can project multivariate real-time measurements onto a 

point in the operational state plane and monitor the trajectory of the point which can 

identify previously unknown states and the influence of individual variables. It is 

now possible to exploit data mining and knowledge discovery technologies to the 

analysis, representation, and feature extraction of real-time and historical 

operational data to give deeper insight into the systems behaviour. The emphasis is 

on addressing challenges facing interpretation of process plant operational data, 

including the multivariate dependencies which determine process dynamics, noise 

and uncertainty, diversity of data types, changing conditions, unknown but feasible 

conditions, undetected sensor failures and uncalibrated and misplaced sensors, 

without being overwhelmed by the volume of data. 

To cover the above themes, it is necessary to cover the following topics, 

• new ways of approaching process monitoring, control and diagnosis 

• specification of a framework for developing intelligent, state space based 

monitoring systems 

• introduction to data mining and knowledge discovery 

• data pre-processing for feature extraction, dimension reduction, noise 

removal and concept formation 

• multivariate statistical analysis for process monitoring and control 

• supervised and unsupervised methods for operational state identification 

• variable causal relationship discovery 

• software sensor design 
The methodologies and concepts are illustrated by considering illustrative examples 

and industrial case studies. 

Xue Z. Wang 

Leeds, England, 1999 
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CHAPTER! 

INTRODUCTION 

Over the last twenty years, it has become increasingly obvious that the perfonnance 

of process control systems depends not only on the control algorithms but also on 

how these integrate into the operational policy in terms of safety, environmental 

protection, equipment protection, as well as general monitoring to identify poor 

performance and detect faults. This calls for creating a virtual environment which is 

able to provide a comprehensive assessment of performance and can identify the 

factors which determine it. The important agents which are responsible for bringing 

these together are the plant operators and supervisors. This implies that it is 

important to consider them as part of the overall solutions, and if they are part of the 

system they must be provided with the means of carrying out the role effectively. 

While attention has been given to improving the interface of control systems for 

operators and supervisors through the design of information display and alarm 

systems, most of this is concerned with awareness, with little concern as to 

processing functionality in assessing the large volume of multivariate data more 

effectively. 

This book addresses these issues by seeking to make use of emerging data mining 

and knowledge discovery technology (KDD) to develop approaches for designing 

state space based process monitoring and control systems so as to integrate plant 

operators and supervisors into the operational strategy. Modem computer control 

and automatic data logging systems create large volumes of data, which contain 

valuable information about normal and abnormal operations, significant 

disturbances and changes in operational and control strategies. The data 

unquestionably provides a useful source for supervisors and engineers to monitor 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999



2 Data Mining and Knowledge Discovery for Process Monitoring and Control 

the perfonnance of the plant and identify opportunities for improvement and causes 

of poor perfonnance. The volume of data is generally so large and data structure too 

complex for it to be used for characterisation of behaviour by manual analysis. Data 

mining and KDD offers the capability of extracting knowledge from such data 

which can be used for developing state space based process monitoring systems. 

The first chapter reviews the current approaches to process monitoring with 

particular reference to distributed control systems (DeS) displays, monitoring charts 

for statistical quality control, and the use of a concept of the operating window. 

This leads naturally to the concept of state space based process monitoring and 

control which is well suited for defining operators and supervisors requirements. 

Based on this, it is possible to develop a conceptual architecture for system design. 

1.1 Current Approaches to Process Monitoring, 
Diagnosis and Control 

To meet the goals of process control requires monitoring and control of process 

variables such as temperature, pressure, flow, composition and the levels in vessels. 

In modem distributed control systems, to assist in process monitoring and fault 

diagnosis, the measurements are displayed as groups of variables, dynamic trends 

and alanns. To do this effectively requires careful consideration as to the design of 

the displays. 

A first requirement is to collect and display as much infonnation as possible 

which is relevant. In fact, being able to collect and provide access to a large amount 

of infonnation of measurement of variables is regarded as one of the most important 

advances of DeS when compared with earlier systems [1]. In the case of a typical 

olefin plant, for example, over 5000 measurements need to be monitored [2]. 

Secondly, the display should be arranged in a way that makes it easy for operators 

to assimilate the measured values, obtain associated infonnation about key variables 

provided by independent sensors and diagnose incipient problems, preferably before 

causing major upsets. This requires that the interface display to operators should be 

properly designed. The display to operators in a modem Des system has a 

hierarchical structure as shown in Figure 1.1 [1]. This arrangement allows engineers 

and operators having varied responsibilities to access infonnation at different levels 

in a convenient way. For example, supervisors might be mainly interested in the 

general perfonnance of the plant in tenns of operating capacity, energy efficiency, 

overall mass balances and nonnal and abnonnal status of plant areas or units. On the 
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other hand, operators are more concerned with one section of a plant and monitoring 

the associated variables. 

Other features of DCS displays make it possible for operators to quickly 

assimilate data using colours to indicate different operational states. For example, 

green is used for normal and red for abnormal. Care is also needed in the location of 

displays, grouping of variables and grouping and sequencing of alarms. 

DISPLAY HIERARCHY 

Figure 1.1 Typical DCS display hierarchy. 

TYPES 
OF DISPLAYS 

Plant Status Display 

Process Variable Overview 
Deviation Overview 
Area Graphics 
Alann Summary 

WORKING DISPLAYS 

Station Mimics 
Trend Displays 

Control Graphics 
Batch Sequences 
Operator Guides 

X-Y Plots 
Tuning Display 

This emphasis again draws attention to the fact that supervisors and operators are 

part of the overall control system. In fact, not only are they responsible for many 

feedback control tasks which are not automated, such as switching feedbacks, but 

also they must undertake supervision of the general strategy and seek to develop an 

understanding of the process performance both in the short- and long- term. This 

understanding can be used to identify [3] : 

• problems in the current operation. 

• deteriorating performance of instruments, energy usage, equipment, or catalysts. 

• better operating regions leading to improved product or operating efficiency. 
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Such tasks require operators to be able to not only access the data at the right time 

but more importantly to assimilate and assess the data quickly and correctly, 

especially when abnormal conditions arise. This is a very challenging task because 

the volume of data is generally very large: large scale plants have as many as 20, 

000 variables which are measured continuously [4, 5, 6]. Moreover, the data are 

multivariate and are interrelated so there is a need to make evaluations 

simultaneously. Humans are not able to simultaneously analyse problems involving 

more than three variables very effectively and this becomes more difficult when the 

data are corrupted by noise and uncertainty. The need to provide computer 

assistance in assimilating data has now become a major concern and it is important 

that automatic data analysis systems should be developed and integrated with DCS 

control. 

1.2 Monitoring Charts for Statistical Quality 
Control 

Automatic process control compensates for the effects of disturbances and maintains 

the controlled variable at the desired value. However, it does not eliminate the 

course of poor operation. Since the sources of disturbances have not been 

eliminated, leaving the process susceptible to future disturbances from the same 

source. Statistical process control (SPC) has the goal of detecting and eliminating 

disturbance. SPC works in conjunction with automatic control and monitors the 

performance of a process over time in order to verify that the process meets the 

quality requirements [22]. SPC charts such as Shewhart [7, 8, 9] , cumulative sum 

(CUSUM) [10] or exponentially weighted moving average (EWMA) charts [11, 12] 

are used to monitor the key product variables in order to detect the occurrence of 

any event having a special or assignable cause. In the case of assignable causes, 

long-term improvements can be made in process operations which enhance product 

quality. 

Figure 1.2 is an example of a Shewhart chart. It shows the variation in a single 

variable against the statistical mean and the upper and lower limits defining an 

acceptable quality band. The mean and the upper and lower limits are obtained by 

statistical analysis of historical data. If the measured value falls outside either of the 

limits, a diagnostic analysis is carried out to determine the assignable cause so that 

appropriate corrective action can be taken. 
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Most SPC methods record only a small number of variables, usually the final 

product quality variables which are examined sequentially. Such an approach is now 

not acceptable for modem processes. Modem computer based monitoring collects 

massive amounts of data continuously. Variables such as temperatures, pressures, 

flowrates etc. are typically measured every seconds although only a few of the 

underlying events drive the process at any time: in fact, all measurements are simply 

aspects of the same underlying events. Examining one variable at a time, is of 

limited value. There is clearly the need to develop methods to examine a number of 

variables simultaneously. 

)()( 

)()( )()( 
)()( )()( 

")O(~ ~ 

)()( 
)()( )()( 

)()( 

ommon cause --. 

Upper control limit 

Centre line Mean 

Lower control limit 

)()( )()( 
)()( 

)()( 

L-----------------------or------------- Time 

Special cause 

Figure 1.2 An example of Shewhart chart. 

1.3 The Operating Window 

The use of an operating window enables several variables to be considered together 

and is useful in monitoring an allowable region. It covers a region of possible 

steady-states for a process limited by constraints such as safety, product quality and 

equipment performance [8]. An example of an operating window is shown in Figure 

1.3, where the region bounded by the solid curve represents the allowable steady­

states. The dashed locus (or trajectory) shows that during a disturbance the 
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operating point can move outside of the steady-state region. Operating windows 

have not been adopted in DeS display design as widely as they ought to have and 

there is still the problem of dimension limitation. Systems aiming to replace or help 

operators in process status assessment require capabilities for dealing with much 

higher dimensionality. 

480 

380 

_ ..... . 
'" " . ......... ........ ...... , . 

~ __ .c, ••••• __ ••• 

300~--~----~----~----~----~--~ 
o 0.1 0.2 0.3 0.4 0.5 

Reactantconcenuation 

Figure 1.3 An example of operating window and trajectory. 

1.4 State Space Based Process Monitoring and 
Control 

In practice, operators are usually more concerned with the current operational status 

and evolving patterns of behaviour, rather than the instant values of specific 

variables. The judgement on the operational states requires the simultaneous 

assimilation of the multivariate process variables. In doing this, operators are 

actually projecting the process to a single point of a state space. It is clear that the 

above described monitoring charts and operating windows are still far less powerful 

than what is required. The concept of state space based monitoring is helpful in 

clarifying the ideas behind this book. Figure 1.4 illustrates how a process can be 

operated in various normal and abnormal operational states or modes that have 

different characteristics in terms of operability and controllability, safety and flow 
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operation 
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.. 

Figure 1.4 lllustration of state space based operational plane. 

patterns among other things. The accumulation of know-how derived from previous 

experience and from computer simulation makes it possible to gain better insight 

into the operational behaviour of equipment. A state space based monitoring system 

can therefore be identified to have the following functions. 

It should be able to automatically assimilate the real-time measurements, project 

the process to a specific state and indicate the path of the operating point in the state 

space in real-time. It is now known that a process or a unit operation can operate at 

abnormal and multiple steady states. The best known example is the exothermic 

continuous stirred tank reactor (CSTR) with a cooling water jacket [8, 13]. Multiple 

steady-state behaviour is also possible in distillation columns [14], reactive 

distillation processes [15], and refinery fluid catalytic cracking processes [16]. 

Changes of product specifications and feedstock properties, which are very common 

today [17], as well as large disturbances may also drive a process to a different 

operating state. These operational states are not obvious without careful analysis. 

Abnormal operations can take various forms and are more difficult to predict. 

Nevertheless, with the gradual accumulation of knowledge, more insight is being 

generated about operational behaviour patterns. It is also important to be able to 

identify various unfamiliar operational states, whether normal or abnormal. 
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Moreover it should be possible to identify the most important variables which are 

responsible for changes in operational states and so provide guidance for operators 

in adjusting the process. While the schematic in Figure 1.4 is yet another facet of 

system characteristics, it will not replace the traditional DCS display. It provides a 

different perspective of system behaviour. 

1.5 Characteristics of Process Operational Data 

The major challenge in developing the kind of state space based system described 

above arises from the characteristics of operational data, which are summarised as 

follows: 

• Large volume. A DCS automatic data logging system continuously stores data. 

The large volume makes manual probing almost impossible. Large volumes of 

data also demand large computer memory and high speed. 

• High dimensionality. The behaviour of a process is usually defmed by a large 

number of correlated variables. As a result it is difficult to visualise the 

behaviour without dimension reduction. 

• Process uncertainty and noise. Uncertainty and noise emphases the need for 

good data pre-processing techniques. 

• Dynamics. In operational status identification, it is very important to take 

account of the dynamic trends. In other words, the values of variables are 

dynamic trends. Many data mining and knowledge discovery tools, such as the 

well-known inductive machine learning system C5.0 [17, 18], are mainly 

designed to handle categorical values such as a colour being red or green. They 

are not effective in dealing with continuous-valued variables. These tools are not 

able to handle variables that take values as dynamic trends. 

• Difference in the sampling time of variables. On-line measurements and 

laboratory analyses have variable sampling periods. 

• Incomplete data. Some important data may not be recorded. 

• Small and stale data. Sometimes, data analysis is used to identify abnormal 

operations. The data corresponding to abnormal operations might be buried in a 

huge database. Some tools are not effective in identifying small patterns in a 

large database. 

• Complex interactions between process variables. Many techniques require that 

attributes be independent. However, many process variables are interrelated. 
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• Redundant measurements. Sometimes several sensors are used to measure the 

same variable, which gives rise to redundant measurements. 

Current methods only address some of these issues, certainly not all and the 

following observations can be made: 

(1). Data pre-processing is critical for various reasons including noise removal, 

data reconciliation, dimension reduction and concept formation. 

(2). Effective integration of the tools is needed. It means combining various tools 

for data preparation for other tools or for validation. 

(3). Validation of discoveries from the data and presentation of the result is 

essential. Many times, because of lack of knowledge about the data, interpretation 

becomes a major issue. 

(4). Windowing and sampling from a large database for analysis. This is necessary 

particularly for analysis of historical operational data. 

1.6 System Requirement and Architecture 

To develop the kind of state space based monitoring and control environment 

described above calls for an integrated data mining and KDD system. The system 

should have the following functions: (1) identification of operational states; (2) 

projection of the operation to a single point of the operational plane; and (3) giving 

explanations on the major variables that are responsible for the projection and 

providing guidance on adjustment. A conceptual system architecture and associated 

components are shown in Figure 1.5. It is important for a system to be able to 

provide some basic functions and be flexible enough to be tailored to meet special 

purposes [21]. The basic functions include: 

• Pattern discovery. Grouping data records into clusters and then analysing the 

similarities and dissimilarities of data between clusters is an important starting 

point for analysis. An obvious example is identifying abnormal conditions. 

• Trend and deviation analysis. Various technologies for trend and deviation 

analysis are available including statistics and calculation of mean and standard 

deviation. 

• Link and dependency analysis. The link and dependency between performance 

metrics is important in understanding process behaviour and improving 

performance. Some existing data mining methods such as the inductive learning 
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approach CS.O [18, 19, 20], as well as many graphical tools, are not able to be 

applied because of the real-valued dynamic trends and interactions between 

variables. 

• Summarising. This provides a compact description of a subset of data, such as 

the mean and standard deviation of all fields. More sophisticated techniques use 

summary rules, multivariate visualisation techniques, and functional 

relationships between variables. 

• Sequence analysis. Analysing models of sequential patterns (e.g., in data with 

time dependence, such as time series analysis) aims at generating the sequence 

or extracting report deviations and trends over time. A typical example is in 

batch process operations. 

• Regression. This is required for predictive model development, as in the case of 

software sensor models. 

Historical 
Database 

Data "r<~-pl'oclessiinl!:1 
- Wavelets 
- Statistics methods 
- Episode approac 
-peA 

Experience 

Supervised 
classification tools 
- FFNN 
- Fuzzy set covering 

Dependency modelling 
• Dependency discovef) 
- Bayesian graph 
- Fuzzy SDU 
- C5.0 

Unsupervised 
classification tools 
-ARTI 
- AutoClass 
- PCA 
... 

Others: 
- Visualisation 
- Regression 
- Summarising 
- Rules extraction 
... 

Qualitative 
models 

Integrated Data mining and KDD System 

Figure 1.5 The conceptual system architecture. 
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1.7 Outline of the Book 

The rest of the book is organised as follows. In Chapter 2 the methodologies and 

tools for data mining and KDD are briefly reviewed. Chapter 3 focuses on data pre­

processing for the purpose of feature extraction, dimension reduction, noise removal 

and concept formation. The emphasis is on processing of dynamic trend signals 

which are considered as the most important information in operational state 

identification. Three approaches are introduced, namely principal component 

analysis, wavelet analysis, and episode representation. 

Multivariate statistical analysis methods are introduced in Chapter 4 for analysis 

of process operational data and developing multivariate statistical control charts. 

These include linear and nonlinear principal component analysis (PCA), partial least 

squares (PLS), and multiblock PCA. Examples are used to illustrate the approaches 

and an industrial case study is described which uses PCA to discover knowledge 

from data for operational strategy development and product design. 

Supervised machine learning approaches are discussed in Chapter 5 for 

identification of process operational states. While the focus is put on feedforward 

neural networks (FFNNs), other methods are also introduced and compared with 

FFNNs, including fuzzy FFNNs, single layer percetron, fuzzy set covering method 

and fuzzy signed digraphs. 

Supervised machine learning requires data with known classification as training 

data and therefore learns from known to predict unknown, while unsupervised 

approaches do not require training data therefore are able to learn from unknown. 

Chapter 6 is devoted to unsupervised approaches for identification of operational 

states. An integrated framework (ARTnet) combining unsupervised neural network 

ART2 with wavelet feature extraction is developed, which uses wavelet as the 

substitute of the data pre-processing part of ART2. It is shown that ARTnet is 

superior over ART2 in avoiding the adverse effect of noise and is faster and more 

robust. A Bayesian automatic classification approach (AutoClass) is also described. 

The advantage of the approach is that it does not require the users to give any input: 

the system determines the classification scheme automatically. A refinery fluid 

catalytic cracking process is used to illustrate the approaches. 

Most approaches for operational state identification, whether supervised or 

unsupervised, are based on calculating a distance or similarity measure. They give 

the classification but not causal explanations. Conceptual clustering which is 

introduced in Chapter 7, on the other hand is able to create a conceptual clustering 
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language as well as giving a prediction of operational states. An inductive learning 

approach is introduced in this chapter for conceptually clustering operational states. 

The methods introduced in Chapter 8 are able to identify cause-effect links 

between variables and between variables and operational states, as well as automatic 

discovery of operational rules from process operational data. Fuzzy sets, rough sets, 

neural networks and fuzzy neural networks are introduced for automatic generation 

of rules from data while the emphasis is on fuzzy neural networks. 

Software sensor design for real-time monitoring of hard-to-measure variables and 

inferential control is examined in Chapter 9. The approach is based mainly on the 

use of neural networks. The main concerns are with selection of training and test 

data, selection of input variables as well as validation of data and models. 

Chapter 10 closes the book with a brief summary of important issues and 

suggestions for future work. 



CHAPTER 2 

DATA MINING AND KNOWLEDGE DISCOVERY 
-AN OVERVIEW 

2.1 Definition and Development 

The emerging of data mining and knowledge discovery in databases (KDD) as a 

new technology is due to the fast development and wide application of information 

and database technologies. With the increasing use of databases the need to be able 

to digest large volumes of data being generated is now critical. It is estimated that 

only 5%-10% of commercial databases have ever been analysed [23]. As Massey 

and Newing [24] indicated that database technology has been successful in 

recording and managing data but failed in the sense of moving from data processing 

to making it a key strategic weapon for enhancing business competition. The large 

volume and high dimensionality of databases leads to the breakdown of traditional 

human analysis. Data mining and KDD is aimed at developing methodologies and 

tools to automate the data analysis process and create useful information and 

knowledge from data to help in decision making (Figure 2.1). A widely accepted 

definition is given by Fayyad et al. [25] in which KDD is defined as the non-trivial 

process of identifying valid, novel, potentially useful, and ultimately understandable 

patterns in data. The definition regards KDD as a complicated process comprising a 

number of steps and data mining is one step in the process. 

The goal of data mining and KDD is very broad and can describe a multitude of 

fields of study related to data analysis. It is known that statistics has been 

preoccupied with this goal for over a century. Other fields related to data analysis 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999
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Figure 2.2 An overview of the steps comprising the KDD process. 

include statistics [26, 27], data warehousing [28, 29, 30], pattern recognition, 

artificial intelligence and computer visualisation. Data mining and KDD draws upon 

methods, algorithms and technologies from these diverse fields, and the unifying 

goal is extracting knowledge from data. 
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Over the last ten years data mining and KDD has been developing at a dramatic 

speed. In Information Week's 1996 survey of the 500 leading information 

technology user organisations in the US, data mining came second only to the 

Internet and intranets as having greatest potential for innovation in information 

technology. The rapid progress is reflected not only by the establishment of research 

groups on data mining and KDD in many international companies, but also by the 

investment from banking, telecommunication and marketing sectors. 

Figure 2.2 provides an overview of the activities involved in KDD and Figure 2.3 

shows the typical distribution of effort. 

2.2 The KDD Process 

Data mining and KDD is a very complex process, typically involving the following 

procedures (Figure 2.4) [23, 34]: 

(1). Developing an understanding of the application domain, the relevant prior 

knowledge and the goals of the end-user. 

(2). Creating a target data set: selecting a data set, or focusing on a subset of 

variables or data samples, on which discovery is to be performed. 

(3). Data pre-processing and cleaning: basic operations such as the removal of 

noise or outliners if appropriate, collecting the necessary information to model and 
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account for noise, deciding on strategies for handing missing data fields, and 

accounting for time sequence information and known changes. 

Data organised 
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Transform 
values 

Figure 2.4 The KDD process. 

(4). Data reduction and projection: finding useful features to represent the data 

depending on the goal of the task. Using dimensionality reduction or transformation 

methods to reduce the effective number of variables under consideration or to find 

invariant representations for the data. 

(5). Choosing the data-mining task: deciding whether the goal of the KDD process 

is logical, summarising, classification, regression, prediction, and clustering etc. 

(6). Choosing the data analysis algorithm(s): selecting methodes) to be used for 

searching for patterns in the data. This includes deciding which models and 

parameters may be appropriate (e.g., models for categorical data are different from 

models on vectors over the real domain) and matching a particular data mining 

method with the overall criteria ofKDD process. 
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(7). Data mining: searching for patterns of interest in a particular representational 

form or a set of such representations, including classification rules or trees, 

regression, clustering, sequence modelling, dependency, and so forth. The user can 

significantly aid the data mining method by correctly performing the preceeding 

steps. 

(8). Interpreting mined patterns, and possible return to any of the previous steps. 

(9). Consolidating the discovered knowledge: incorporating this discovery 

knowledge into the performance system, taking actions based on the knowledge, and 

reporting it to interested parties. It also includes checking or testing for potential 

conflicts with previously believed (or extracted) knowledge. 

Data mining and KDD is potentially valuable in virtually any industrial and 

business sectors where database and information technology is used. The following 

are some reported applications: 

• Fraud detection: identify fraudulent transactions 

• Loan approval: establish the credit worthiness of a customer requesting a loan 

• Investment analysis: predict a portfolio's return on investment [32] 

• Portfolio trading: trade a portfolio of fmancial instruments by maximising 

returns and minimising risks. 

• Marketing and sales data analysis: identify potential customers; establish the 

effectiveness ofa sales campaign [32]. 

• Manufacturing process analysis: identify the causes of manufacturing problems. 

• Experiment result analysis: summarise experiment results and predictive models. 

• Scientific data analysis [35]. 

• Intelligent agents and WWW navigation. 

2.3 Data Mining Techniques 

Data mining methods and tools can be categorised in different ways [25, 33, 28, 37]. 

According to functions and application purposes, data mining methods can be 

classified as clustering, classification, summarisation, dependency modelling, link 

analysis and sequence analysis. Some methods are traditional and established and 

some are relatively new. In the following a very brief review of the techniques is 

given. 
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2.3.1 Clustering 

Given a number of data patterns (sometimes called instances, cases, observations, 

samples, objects, or individuals) as shown in Table 2.1, each of which is described 

by a set of attributes, clustering (also called unsupervised machine learning) aims to 

devise a classification scheme for grouping the objects into a number of classes such 

that instances within a class are similar, in some respect, but distinct from those 

from other classes. This involves determining the number as well as the descriptions 

of classes. The grouping often depends on calculating a similarity or distance 

measure. Grouping multivariate data into clusters according to similarity or 

dissimilarity measures is the goal of some applications. It is also a useful step to 

look at the data before further analysis is carried out. The methods can be further 

categorised according to requirement on prior knowledge of the data. Some methods 

require the number of classes to be an input though the descriptions of the classes 

and assignments of individual data cases are allowed to be unknown. For example, 

the Kohonen neural network [36, 38] is designed for this purpose. In some other 

methods, neither the number nor descriptions of classes are required to be known. 

The task is to determine the number and descriptions of classes as well as the 

assignments of data patterns. For example, the Bayesian automatic classification 

system - AutoClass [39, 40, 41, 42] and the adaptive resonance theory (ART2) [43] 

are designed for this purpose. 

T bl 21 A a e . nexamp eo fd ata structure. 

Instances Attributes 

1 2 ... ... j ...... m 

Xl XlI XI2 XIi Xlm 

X2 X21 X22 X2i X2m 

Xi Xu Xi2 Xii Xim 

X. X.I X.2 X." X.m 

As a branch of statistics, clustering analysis has been studied extensively for many 

years, mainly focused on distance-based clustering analysis, such as using the 

Euclidean distance. There are many text books on this topic [44,45,46]. A notable 

progress in clustering has been in unsupervised neural networks, including the self-
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organising Kohonen neural network [36, 38] and the adaptive resonance theory 

(ART) [47,48,43,49,50,51]. There have been many reports on the application in 

operational state identification and fault diagnosis in process industries. 

2.3.2 Classification 

For a given number of data patterns such as those shown in Table 2.1, if the number 

and descriptions of classes as well as the assignments of individual data patterns are 

known, the task is to assign unknown data patterns to the established classes, the 

task belongs to classification. The most widely currently used classification 

approach is based on feedforward neural networks (FFNNs). Classification is also 

called supervised machine learning because it always requires data patterns with 

known class assignments to train a model which is then used for predicting the class 

assignment of new data patterns. 

2.3.3 Conceptual Clustering and Classification 

Most clustering and classification approaches depend on numerically calculating a 

similarity or distance measure and because of this they are often called similarity 

based methods. The knowledge used for classification assignment is often an 

algorithm which is opaque and essentially a black box. Conceptual clustering and 

classification on the other hand develops a qualitative language for describing the 

knowledge used for clustering and is basically in the form of production rules or 

decision trees which are explicit and transparent. The inductive system C5.0 

(previously C4.5) is a typical approach [18, 19, 20], which is able to automatically 

generate decision trees and production rules from databases. Decision trees and 

rules have a simple representation form, making the inferred model relatively easy 

to comprehend by the user. However, the restriction to a particular tree or rule 

representation can significantly restrict the representation power. In addition 

available approaches were developed mainly for problem domains that variables 

only take categorical values, such as colour being green and red. They are not 

effective in dealing with variables that take numerical values. Discritisation of 

numerical variables to categorical descriptions is a useful approach. However more 

powerful discretisition techniques are required. 
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2.3.4 Dependency Modelling 

Dependency modelling describes dependencies among variables. Dependency 

models exist at two levels: structural and quantitative. The structural level of the 

model specifies (often in graphical form, [52, 53]) which variables are locally 

dependent; the quantitative level specifies the strengths of the dependencies using 

some numerical scale. Examples of tools for dependency modelling include 

probabilistic (or Bayesian) graphs [54, 55, 56, 57, 58] and fuzzy digraph graphs [59, 

60]. 

T bl 22 Ad b a e . ata ase examp e. 

Variable values 

case xl x2 x3 

1 1 0 0 

2 1 1 1 

3 0 0 I 

4 1 1 1 

5 0 0 0 

6 0 1 1 

7 1 1 1 

8 0 0 0 

9 1 1 1 

10 0 0 0 

Table 2.3 The probabilistic table associated with the 

P(x\ =1) =0.6 P(x\ = 0) =0.4 

P(X2 =11 x\=I)=0.8 P(X2=0 1 x\=I)=0.2 

P(x2=1 1 x\=0)=0.3 P(X2=0 1 x\=0)=0.7 

P(x3=1 1 x2=I)=0.9 P(X3=0 1 x2=I)=O.l 

Take probabilistic networks as an example. Table 2.2 shows a collection of 10 

data patterns, each is described by three attributes. The task of dependency 

modelling using probabilistic networks is two-fold - learning the network structure 

and compiling a conditional probabilistic table. For the data collection of Table 2.2 
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it is not possible to know the most probable dependencies directly. Figure 2.5 (a) 

and (b) illustrate two such possible dependencies. Theoretically, for a given 

database there is a unique structure which has the highest joint probability and can 

be found by some algorithm such as those developed by Cooper and Herskovits [54] 

and Bouckaert [55, 56]. When a structure is identified, the next step is to find such a 

probabilistic table as shown in Table 2.3. 

(a) 

Figure 2.5 An example of two probabilistic networks. 

Probabilistic graphical models are very powerful representation schemes which 

allow for fairly efficient inference and for probabilistic reasoning. However, few 

methods are available for infering the structure from data, and they are limited to 

very small databases. Therefore normally there is the need to find structure by 

interviewing domain experts. For a given data structure there are some successful 

reports on learning conditional probabilities from data. 

Other dependency modelling approaches include statistical analysis (e.g., 

correlation coefficients, principal component and factor analysis) and sensitivity 

analysis using neural networks. 

2.3.5 Summarisation 

Summarisation provides a compact description for a subset of data. Simple 

examples would be the mean and standard deviations. More sophisticated functions 

involve summary rules, multivariate visualisation techniques, and functional 

relationships between variables. 
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Figure 2.6 Generation of candidate itemsets and large itemsets. 
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A notable technique for summarisation is mining association rules [61, 62]. Given 

a relational database, mining association rules finds all associations of the form. 

IF { set of values } THEN { set of values } 

A rule is valid given two parameters T c and T s, such that, the rule holds with 

certainty > T c and the rule is supported by at least T s cases. Some commercial 

systems have been developed using this approach [61, 62]. 

A very simple example can be used to illustrate the approach. Table 2.4 shows an 

example of the transaction of part of a database. The purpose for mining the 
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database is to summarise the number of occurrences of each candidate set of items 

(itemset), and then determine large sets of items based on a predetermined minimum 

support. Thus for a minimum support of 2 data cases, the mining process is shown 

in Figure 2.6. 

Step-l involves scanning the database D and summarising the supports for each 

item set. In Step-2, the itemset {C I} whose number of supporting cases is less than 2 

is removed, and CI becomes LI . In step-2, binary itemsets are formed and go 

through similar procedures. The above procedure repeats until L3. 

The approach of mining association tules has been quite successful [23]. However 

it also has some limitations. For example, it assumes all data is categorical and there 

are no good algorithms available for the numeric fields. It also assumes that the set 

of associations satisfying thresholds is sparse. 

2.3.6 Regression 

Linear and non-linear regression is one of the commonest approaches for correlating 

data. Statistical regression methods often require the user to specify the function 

over which the data is to be fitted. In order to specify the function, it is necessary to 

know the forms of the equations governing the correlation for the data. The 

advantage of such methods is that from the equation it is possible to gain some 

qualitative knowledge about the input - output relationships. However, if prior 

knowledge is not available, it is necessary to find out the most probable function by 

trial-and-error which may require very time consuming effort. Feedforward neural 

networks (FFNNs) do not need functions to be fixed in order to learn and have 

shown very remarkable results in representing non-linear functions. However the 

resulting function using a FFNN is not easy to understand and is virtually a black 

box without any explanations. 

2.3.7 Case-based Learning 

Case-based learning is based on acquiring knowledge represented by cases and it 

employs reasoning by analogy [63, 64]. Case-based learning focuses on the indexing 

and retrieval of relevant precedents. Typically the solution sequence is a 

parameterised frame or schema where the structure is more or less fixed, rather than 

expressed in terms of an arbitrary sequence of problem solving operators. Case­

based reasoning is particularly useful for making use of data which has complex 
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internal structures. Different from other data mining techniques, it does not require 

to have a large number of historical data patterns. There are only a few reports of 

the application of case-based reasoning in process industries such as case-based 

learning for historical equipment failure databases [65, 66] and equipment design 

[67]. 

2.3.8 Mining Time-series Data 

Many industrial and business areas deal with time-series or dynamic data. It is 

apparent that all statistical and real-time control data in process monitoring and 

control are essentially time-series. Figure 2.7 shows the dynamic trend signals of a 

variable under two different operational conditions. It is very easy for humans to 

visually capture features of each trend and identify their difference. However for 

computers to perform the same task is difficult. Most KDD techniques cannot 

account for the time series of data. The techniques to deal with time series data are 

to carry out pre-processing of the data to use minimum data points to capture the 

features and remove noise. These techniques include filters, e.g., Kalman filters, 

Fourier and wavelet transforms, statistical approaches, neural networks as well as 

various qualitative signal interpretation methods. Chapter 3 will introduce some of 

these techniques for pre-processing dynamic data. 

31 Ii I 91 121 151 181 211 241 

Time 

Figure 2.7 The dynamic trend signals of a variable under two different operational 

conditions. 
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2.3.9 Method Selection 

There is no well-developed techniques for selecting data mining and KDD methods. 

It is still an art [23]. Apart from the general considerations such as cost, and 

support, there are some technical dimensions to the method selection. These include 

[23]: 

(1) univariate vs. multi-variate data. Most approaches assume independence of 

variables or simply consider a single variable at a time. 

(2) numerical vs. categorical or mixed data. Some methods are only suitable for 

numerical data, others only for categorical data. There are only a few cases which 

allow mixed data. 

(3) explanation requirements or comprehensibility. Some tools give results which 

are implicit to users (black box), while others can give causal and explicit 

representations. 

(4) fuzzy or precise patterns. There are methods such as decision trees which only 

work with clear cut definitions. 

(5) sample independence assumptions. Most methods assume independence of data 

patterns. If there are dependency on the data patterns, it is necessary to remove or 

explore. 

(6) availability of prior knowledge. Some tools require prior knowledge which 

might be not available. On the other hand, some others do not allow input of prior 

knowledge, causing a waste of prior knowledge. 

It is important to be aware of the complexity of data which tends to contain noise 

and erroneous components and has missing values. Other challanges come from 

lack of understanding of the domain problem and assumptions associated with 

individual techniques. Therfore, data mining is rarely done in one step. It often 

requires using a number of approaches to use some tools to prepare data for other 

methods, or for validating purposes. As a result, multifunctional and integrated 

systems are required. 

2.4 Feature Selection with Data Mining 

Data pre-processing may be more time consuming and presents more challenges 

than data mining. Process data often contains noise and erroneous components and 

has missing values. There is also the possibility that redundant or irrelevant 
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variables are recorded, while important features are missing. Data pre-processing 

includes provision for correcting inaccuracies, removing anomalies and eliminating 

duplicate records, and filling holes in the data and checking entries for consistency. 

It also requires making the necessary transformation of the original to put it in the 

format suitable for data mining tools. 

The other important requirement with KDD process is feature selection. KDD is a 

complicated task and often depends on the proper selection of features. Feature 

selection is the process of choosing features which are necessary and sufficient to 

represent the data. There are several issues influencing feature selection, such as . 

masking variables, the number of variables employed in the analysis and relevancy 

of the variables [68]. 

Masking variables hide or disguise patterns in data. Numerous studies have shown 

that inclusion of irrelevant variables can hide real clustering of the data so only 

those variables which help discriminate the clustering should be included in the 

analysis [68, 69, 70]. 

The number of variables used in data mining is also an important consideration. 

There is generally a tendency to use more variables. However, increased 

dimensionality has an adverse effect because, for a fixed number of data patterns, 

increased dimensionality makes the multidimensional data space sparse. 

However failing to include relevant variables also causes failure in identifying the 

clusters. A practical difficulty in mining some industrial data is to know if all 

important variables have been included in the data records. 

Prior knowledge should be used if it is available. Otherwise, mathematical 

approaches need to be employed. Feature extraction shares many approaches with 

data mining. For example, principal component analysis (PCA), which is a useful 

tool in data mining, is also very useful for reducing the dimension (PCA and its 

applications are introduced in Chapters 3 and 4). However, PCA is only suitable for 

dealing with real-valued attributes. Mining of association rules mining is also an 

effective approach in identifying the links between variables which take only 

categoric values [68]. Sensitivity studies using feedforward neural networks 

(FFNNs) are also an effective way of identifying important and less important 

variables (sensitivity studies using FFNNs are introduced in Chapter 9). 

Gnanadeskikan et al. [69] reviewed a number of clustering techniques which 

identify discriminating variables in data. 
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2.5 Final Remarks and Additional Resources 

This Chapter has provided an overview of data mining and KDD. Data mining and 

KDD makes use of various technologies including statistics, neural networks, 

machine learning, artificial intelligence, pattern recognition and databases. The 

unifying goal is to extract useful information and knowledge from massive data. It is 

a complex and interative process, starting with data access, continuing with data 

cleaning and pre-processing as well as data mining and knowledge discovery, finally 

culminating with intepretation and validation of results. It is important to be aware 

of the complexity of industrial data and that there are always some assumptions 

related to specific KDD techniques. Integration of various methods is necessary, so 

that some tools can be used in preparing data for other methods and results obtained 

using different methods can be compared. 

Table 2.5 Useful data mining and KDD sites. 

• The KDD Foundation - a starting point for exploring Internet 

resources in knowledge discovery and data mining. 

http://www.kdd.org/ 

• Decision Theory & Adaptive Systems Group, Microsoft Research 

http://www.research.microsoft.coml-fayyad 

• BT's Data Mining Group homepage 

http://www.labs.bt.comlprojects/mining/index.htm 

• Birmingham University Data Mine 

http://www.cs.bham.ac.uk/-anp/TheDataMine.html 

• The University of Ulster Data Mine 

http://iserve l.infj .ulst.ac.uk: 8080/ 

• The Corporate KDD Bookmark 

http://www.cs.su.oz.aul-thierry / ckdd. html 

• The Machine Learning Database Repository at the University of 

California Irvine 

http://www.ics. uci.edu/ AIIML/Machine-Learning.html 

• ML Net Site - Machine learning publications, data and software 

http://www.gmd.de/ 
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Despite the rapid growth, the success achieved and a huge predicted market, KDD 

is still considered to be in its infancy. There are still many challenges to overcome. 

An obvious issue in process monitoring and control is how to deal with dynamics 

associated with the data. Another issue is that most data mining tools assume that 

the variables are independent of each other, but process variables are often 

connected. The challenges posed by operational data have already been summarised 

in Section 1.5. 

Apart from the need to develop more reliable data mining and KDD tools, there is 

also the need to gain more experience in applying them to industrial and business 

problems. 

For introduction and review of data mining and KDD, readers are referred to 

Fayyad et al. [71], Wu [72], Chen et al. [28], Simoudis et al. [73], Wu et al. [74], 

and Pyle [75]. There are also some useful web sites which are summarised in Table 

2.5 and provide gateways to other resources. 



CHAPTER 3 

DATA PRE-PROCESSING FOR FEATURE EXTRACTION, 
DIMENSION REDUCTION AND CONCEPT FORMATION 

This chapter describes data pre-processing for feature extraction, dimension 

reduction, noise removal and concept formation from monitored process 

measurements. The discussion is concerned with capturing the features in dynamic 

trend signals. A dynamic trend representation is the visualisation of the changing 

trajectory of a variable over time and consists of many sample values. However, in 

order to make effective use of trends in a computer based system, it is necessary to 

compress the data to fewer values. One of the earliest examples of dealing with such 

trends is based on a real time expert system G2 [76] which uses qualitative 

expressions such as temperature increase or decrease as descriptors. Later, various 

other approaches were developed including episodes [77, 78, 79], neural networks 

[80] and more recently wavelets [81, 82] and principal component analysis [83]. 

This chapter introduces principal component analysis, wavelet analysis as well as 

episode representations. 

3.1 Data Pre-processing 

Data pre-processing is used to 

(1) filter out the noise components otherwise this may result in wrong conclusions 

being reached from the data. 

(2) extract features, reduce the dimensionality of the original signal and retain as 

much relevant information as possible. The main reasons for feature extraction are, 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999
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first of all to minimise the dependencies between attributes and secondly to reduce 

dimensionality. 

(3) Deal with the problem of variable sampling periods for data, such as on-line 

real time signals and laboratory analytical data. 

(4) Develop concept formation because some data mining and KDD tools have 

been developed only for dealing with discrete-valued attributes and are not effective 

in dealing with continuous-valued variables. It is not possible to use variables 

represented by a trend without preprocessing the data. 

It is worth noting that data pre-processing has many features in common with data 

mining, such as principal component analysis, supervised and unsupervised 

classification using statistical and neural network algorithms. 

3.2 Use of Principal Component Analysis 

The method of principal component analysis (PCA) was originally developed in the 

1900's [84, 85], and has now re-emerged as an important technique in data analysis. 

The central idea is to reduce the dimensionality of a data set consisting of a large 

number of interrelated variables, while retaining as much as possible of the variation 

present in the data set. Multiple regression and discrimination analysis use variable 

selection procedures to reduce the dimension but result in the loss of one or more 

important dimensions. The PCA approach uses all of the original variables to obtain 

a smaller set of new variables (principal components - PCs) that they can be used to 

approximate the original variables. The greater the degree of correlation between 

the original variables, the fewer the number of new variables required. PCs are 

uncorrelated and are ordered so that the first few retain most of the variation present 

in the original set. 

3.2.1 Basic Concepts: Mean, Variance, Covariance 

It is convenient at this point to gave a brief summary of the basic points. In the 

univariate case the mean and variance are used to summarise a data set. The mean or 

mean value of a discrete distribution is denoted by j.l and is defined by 
J.! = LX,f(X,) (3.1) , 



Chapter 3 Data Pre-processing 31 

where j{Xi) is the probability function of the random variable X considered. The 

mean is also known as the mathematical expectation of X and is sometimes denoted 

by E(X). 

The variance of a distribution is denoted by c/ and is defined by 

a2 = I(Xi-IlY!(Xi) = E(Xi-IlY 
I 

(3.2) 

In fact it is an index reflecting the deviation of Xi from the mean Il. In other words, 

the variance a 2 describes the linear dependency of all Xi . The bigger the variance, 

the less dependent; the smaller the variance and hence the greater the linear 

dependency between Xi . 

To summarise multivariate data sets, it is necessary to find the mean and variance 

of each of the p variables, together with a measure of the way each pair of variables 

is related. For the latter, the covariance or correlation of each pair of variables is 

used. 

The population mean vector is given by J.l = [1lJ, 1l2, ... , IIp], where 

Ili = E(x;) (3.3) 

An estimate of J.l based on n, p-dimensional observations IS 

x = [XI, X2, ... , xp], where Xi is the sample mean of variable Xi 

The vector representing the population variance is a· = E(xf) - Il~ 

An estimate of a based on n, p-dimensional observations is s· = [sf, s~, ... s~], 

where s7 is the sample variance of variable Xi. 

The covariance of two variables Xi and Xj is defined by 

Cov (Xi ,Xj) = E(Xi'Xi) - Ili Ili (3.4) 

With P variables, X /, Xl> •.• xP' there are p variances and 1. pep _ 1) covariances. In 
2 

general these quantities are arranged in the p x p symmetric matrix, called 

covariance matrix, I, 
cr II cr 12 

all 0'22 alp 

I= (3.5) 

cr pi cr p2 cr pp 

where aij = aji. The simple version of I , usually denoted, S, is generally estimated 

as 
1 " S = -I(Xi - X)(Xi - x)' 

n -1 i=1 

(3.6) 
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The covariance is often difficult to interpret because it depends on the units in 

which the two variables are measured; consequently it is conveniently standardised 

by dividing by the product of the standard deviations of the two variables to give a 

quantity called the correlation coefficient, Pij , defined by 
_ (Ii) 

Pij- ~ 
VO'ii(Jjj 

(3.7) 

The correlation coefficient lies between -I and I and gives a measure of the linear 

relationship between variables Xi and Xj 

3.2.2 Principal Component Analysis 

Given a data matrix X representing n observations of each of p variables, Xl, X2, 

... xp, the purpose of principal component analysis is to determine a new variable Y], 

that can be used to account for the variation in the p variables, Xl, X2, ••• xp. The first 

principal component is given by a linear combination of the p variables as 

YI = WIIXI + W12X2 + ... + WlpXp (3.8) 

where the sample variance is greatest for all of the coefficients (also called weights), 
WII, W12, ... Wlp' conveniently written as a vector WI. 

The WI I , W12, '" Wlp have to satisfy the constraint that the sum-of-squares of 

the coefficients, i.e., W'I WI , should be unity. 

The second principal component, Y2, is given by the linear combination of the p 

variables in the form: 

or 

Y2 = WZIXI + W22X2 + ... + W2pXp 

y, = w·,x 

which has the greatest variance subject to the two conditions, 

w',w, = 1 

and 

W',WI = 0 (so thatYI andY2 are uncorrelated) 

Similarly the jth principal component is a linear combination 

Yj = w'jX 

which has greatest variance subject to 
W'jWj 1 

W'jWi = 0 (i < j) 

(3.9) 

(3.10) 

(3.11) 
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To find the coefficients defming the first principal component, the elements of 
WI should be chosen so as to maximise the variance of YI subject to the constraint, 

w't WI = 1. The variance of Yl is then given by 

Var(yl) = Var( WI I x) = W'I S WI (3.12) 

where S is the variance-covariance matrix of the original variables (See Section 
3.2.1). The solution of WI = ( WI I , W12, ••• Wlp) to maximise the variance Yl is the 

eigenvector of S corresponding to the largest eigenvalue. The eigenvalues of S are 

roots of the equation, 

IIS-A.II = 0 (3.13) 
If the eigenvalues are A.I, A.2, ••• A. p , then they can be arranged from the largest 

to the smallest. The first few eigenvectors are the principal components that can 

capture most of the variance of the original data while the remaining PCs mainly 

represent noise in the data. 

PCA is scale dependent, and so the data must be scaled in some meaningful way 

before PCA analysis. The most usual way of scaling is to scale each variable to unit 

variance. 

3.2.3 Data Pre-processing Using PCA 

3.2.3.1 Pre-processing Dynamic Transients/or Compression and Noise Removal 

In computer control systems such as DCS, nearly all important process variables are 

recorded as dynamic trends. Dynamic trends can be more important than the actual 

real time values in evaluating the current operational status of the process and in 

anticipating possible future developments. Appendix C describes a data set of one 

hundred cases corresponding to various operational modes such as faults, 

disturbances and normal operation of a refmery reactive distillation process for 

manufacture of methyl tertiary butyl ether (MTBE), a lead-free gasoline additive. 

This can be used to illustrate the dimension compression capability of PCA. For 

each data case, twenty one variables are recorded as dynamic responses after a 

disturbance or fault occurs. Each trend consists of 256 sample points. Figure 3.l 

shows the trends of a variable for two different cases. The eigenvalues of the first 20 

principal components are summarised in Figure 3.2. It is apparent that the 

eigenvalues of the first few principal components can be· used as a concise 

representation of the original dynamic trend, and so are used to replace the original 

responses for use in pattern recognition. 
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Figure 3.1 The dynamic trends of a variable for two data cases. 
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Figure 3.2 The first 20 eigenvalues of a variable. 
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3.2.3.2 Pre-processing of Dynamic Transient Signals for Concept Formation 

Since the first two principal components can capture the main feature of a dynamic 

trend, this can be displayed graphically by plotting the eigenvalues on a two­

dimensional plane. Figure 3.3 shows such a plot of the eigenvalues of the first two 

principal components of a variable F o' A point in the two dimensional plane 

represents the feature of the variable response trend for one data case. Data points in 

region B have response trends which are similar and unlike those in region D. 

The fact that a two-dimensional plot is able to capture the features can be seen 

from Figures 3.4 and 3.5. Figure 3.4 shows the dynamic responses of the variable 

T_MTBE for seven data cases. After being processed using peA (actually the seven 

data cases are processed using peA together with another 93 data cases, but here 

only the seven are shown for illustrative purpose), the results are shown on the two­

dimensional peA plane" in Figure 3.5. It is clear that the dynamic trends of data 

cases 1 and 2 are more alike than with the others in Figure 3.4 and they are grouped 

closer in Figure 3.5. Similar observations can be made for data cases 40 and 80, as 

well as 14 and 15. 

40 

30 

20 

10 

" ~ 0 
~ 
u 

-10 =-

-20 

-30 

-40 
-40 

B 
.... :,.* ...... ,. '" .. 

• ............ 
....... ... . .. 

... : .. ~ .. "" 
[" ... ) 

• 
............. ......... '.~ 

-20 o 

': .••....•• ::~ C 

......... 
........... 

........... . ...... . ..... 
\ . ...... -. . ,,: 

............... ] 
D 

A 

20 40 60 80 100 120 
PC-I-Fo 

Figure 3.3 The peA two dimensional plane of the variable Fo. 
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12r------------------------------------------------------. 
Case 16 

o~~~--__ ~ ____ ----__ --__ ----~----__ ----------______ ~ 
1 13 25 37 49 61 73 85 97 109121 133145 157169181 193205217229241 253 

Time 

Figure 3.4 The dynamic trends of the temperature T_MTBE for the case study 

described in Appendix C. 
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Figure 3.5 The projection of the dynamic trends of Figure 3.4 on the two­

dimensional PCA plane. 
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The plot of the dynamic trends of a variable on a two dimensional plane, as 

depicted in Figure 3.3 is referred to as concept formation. Concept formation 

transforms a complicated trend to a concept, e.g., "the variable Fa is in region D". 

The transformed concept of the trend of a variable can be used to develop 

knowledge based systems. A simple example is the following production rule for a 

case of a continuous stirred tank reactor where the data refer to historical operating 

data: 

IF Fo is in region D of Figure 3.3 

AND TR is in region C of Figure 3.6 

THEN The operation will be in region 

ABN-l of Figure 3.7 

A detailed discussion on using the concept formation method to develop 

conceptual clustering systems will be discussed later in Chapter 7. 
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Figure 3.7 The PCA plane of operational states of a CSTR reactor_ 

3.2.3.3 Dependency Removal and Clearance of Redundancy Variables 

Studies have found that presence of redundancy and irrelevant variables may 

deteriorate pattern recognition or hide the real patterns in the data [68] and so some 

data mining and KDD tools require the inputs to be independent. Sometimes it is not 

possible to directly identify the dependencies between variables. PCA can be used 

to pre-process the data and the first few principal components are then be used by 

other data mining and KDD tools. 

3.3 Wavelet Analysis 

Recently, wavelet analysis has emerged as a promising new approach for signal and 

image analysis and has been extended to process monitoring and control. In this 

section, it is convenient to start with the well-established approach based on Fourier 
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transform for signal processing and how it relates to wavelet transforms. Wavelet 

transforms are then introduced, followed by its application for feature extraction. 

3.3.1 Signal Processing Using Fourier Transform 

Fourier transforms are well known as a useful technique for frequency analysis of a 

signal which breaks down a signal into constituent sinusoids of different 

frequencies. The transform is defined as 

F(oo) = f: f(t) e -iro1dt (3.14) 

and the inverse is 

1 f- . j{t)= 2n -ooF(ro)e1rotdro (3.15) 

Here the Fourier transform can be viewed as the decomposition of a functionj{t) 

into a sum of frequenc~ components. This transform uses sine and cosine as its 

building blocks or basis functions to map a time function into the frequency domain. 

Figure 3.8(a) illustrates the Fourier transform process. However, the Fourier 

transform does not show how the frequencies vary with time inf(t) so that looking at 

the transform of a signal, it is impossible to tell when a particular event took place. 

If a signal does not change with time, i.e., it is stationary, this is not important. 

However, most signals of interest contain numerous non-stationary or transitory 

characteristics: drift trends, abrupt changes related to beginning and ending of 

events. These characteristics are often the most important part of the signal, and 

Fourier analysis is not suited in detecting them. 

The short-time Fourier transform (STFT), or windowed Fourier transform is able 

to overcome the limitation, and is now considered as the standard method for 

studying time-varying signals. The idea of STFT is to use a window which slides 

over the signal in time, and then to compute the Fourier transform within each 

window. The general definition of STFT is as follows 

F(t, (0) = f:fCt)g("C - t)e-jro'Cd"C (3.16) 

where fit) is the original function in time domain and g(t) is the window function. 

The simplest window function is 

g(t) = {~ t'~ t ~ t 

otherwise 
(3.17) 
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(a) Fourier transform 
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(b) Wavelet transform 

Figure 3.8 Comparison of Fourier and wavelet transforms. 

In time-frequency analysis of a non-stationary signal, there are two conflicting 

requirements. The window width must be long enough to give the desired frequency 

resolution but must also be short enough not to lose track of time dependent events. 

While it is possible to design window shapes to optimise, or trade-off time and 

frequency resolution. there is a fundamental limitation on what can be done, for a 

given fIxed window width. Figure 3.9 depicts a windowed SFTF [87]. 
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Figure 3.9 The windowing operation. 

3.3.2 Signal Transformation Using Wavelets 

Wavelet transfonuation is designed to address the problem of non-stationary signals 

[99, 100, 101]. It involves representing a time function in tenus of simple, fIxed 

building blocks, tenued wavelets. These building blocks are actually a family of 

functions which are derived from a single generating function called the mother 

wavelet by translation and dilation operations (Figure 3.8(b)). Dilation, also known 

as scaling, compresses or stretches the mother wavelet, and translation shifts it along 

the time axis. 

The mother wavelet satisfIes 

(3.18) 

and the translation and scaling operations on 'II (t) creates a family of functions, 

1 t - b 
'I' (t) = - '1'(-) a,b r va a 

(3.19) 

The parameter a is a scaling factor and stretches (or compresses) the mother 

wavelet and is easily understood by considering the sinusoid function in Figure 
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3.10. The scaling factor works exactly the same way with wavelets, can be seen in 

Figure 3.11: the smaller the scale factor, the more compressed the wavelet is. 

~ f(t) = sin(t) ; a = 1 

~ : : :J 
f(t) sin(2t) 1 = a = 2 

r\;: : : : :J 
f(t) sin(4t) 1 = a = 4 

Figure 3.10 Scaling ofa sinusoid function. 

~~ ~ I f(t) = ",(1) a = 1 

~:::::l f(l) = ",(21) 
1 

a = 2 

~: : : : : : I f(t) "'( 4t) 
1 = a = 4 

Figure 3.11 Scaling of a wavelet function. 

The parameter b in Equation 3.19 is a translation along the time axis and simply 

shifts a wavelet and so delays or advances the time at which it is activated. 

Mathematically, delaying a functionj(t) by td is represented by j(t-td). The factor 
1 
~ is used to ensure that the energy of the scaled and translated versions is the 

same as the mother wavelet. Figure 3.12 shows an example of a particular mother 
wavelet '" (t) , known as the Mexican hat function [98], 

1 I t 2 
'V(t) = .Jj1t-"4(l- t 2)exp(-Z-) 
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The stretched and compressed wavelets through scaling operation are used to 

capture the different frequency components of the function being analysed. The 

compressed version in Figure 3 . 12(b) is used to fit the high frequency needs, and the 

stretched version in Figure 3.12(c) is for low frequencies. The translation operation, 

on the other hand, involves shifting of the mother wavelet along the time axis to 

capture the time information of the function to be analysed at a different position, as 

shown in Figure 3.12 (d). 

2 ~~~~~~--~~--~~ I I I I I I I 

Mother Wavelet 

a=1.b=O 

0t-------___ 

\JV 
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·20 ·15 ·10 -5 0 5 10 15 20 
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o 1-____________ , 
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(c) (d) 

Figure 3.12 Mexican hat wavelet at different dilation and translation. 
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In this way, a family of scaled and translated wavelets can be created using 

scaling and translation parameters a and b. This allows signals occurring at different 

times which have different frequencies to be analysed. 

In contrast to the short-time Fourier transform, which uses a single analysis 

window function, the wavelet transform can use short windows at high frequencies 

or long windows at low frequencies. Thus the wavelet transform is capable of 

zooming-in on short-lived high frequency phenomena, and zooming-out for 

sustained low frequency phenomena. This is the main advantage of the wavelet over 

the short-time Fourier transform. 

3.3.3 Continuous Wavelet Transform 

Given a mother wavelet function \If (t), the continuous wavelet transform CWTr of a 

function.f{t) is defined by 
t-b c 

CWTfa, b) = <f, \If ah> = \If (--)dt / va, a, b ER, a"* 0 . . a 
(3.20) 

where \If (t - b )dt /.,fa is sometimes called the baby wavelet. Here time t and the 
a 

scaling and translation parameters a and b can be changed continuously. In this 

case, CWTJa, b) is called the wavelet transform coefficient. If a, b, and t change 

continuously, the values of CWTja, b) can be represented by a three dimensional 

diagram. 

The application of a continuous wavelet transform consists of the following steps. 

(1) take a wavelet and compare it to a section at the start of the original signal. 

Signal 

Wavelet 

C=O.OI02 

Figure 3.13 (a) Step (2) in continuous wavelet transform. 
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(2) Calculate the wavelet coefficient CW1f. representing how closely the wavelet 

is related to this section of the signal, as shown in Figure 3. 13(a). The higher CWTf 

is, the greater the similarity. The result obviously depends on the shape of the 

wavelet chosen. 

Signal 

Wavelet ¢ 

Figure 3.13(b) Step (3) in continuous wavelet transform. 

(3) Shift the wavelet to the right and repeat steps 1 and 2 until all of the signal has 

been examined, as shown n Figure 3 .13 (b). 

Signal 

Wavelet 

C=O.2247 

Figure 3.13(c) Step (4) in continuous wavelet transform. 

(4) Scale (stretch) the wavelet and repeat steps 1 through 3 (Figure 3.l3 (c)). 

(5) Repeat steps 1 to 4 for all scales. 
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Plotting the wavelet coefficients against time and scale generates a three 

dimensional diagram, as shown in Figure 3.14. An alternative would be to use the 

two dimensional diagram in Figure 3.15, where brightness reflects the magnitude of 

the wavelet coefficients. 

Figure 3.14 Three dimensional plot of wavelet transform coefficients. 
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Figure 3.15 Two dimensional plot of wavelet transform coefficients. 

Continuous in the context of wavelet transform implies that the scaling and 

translation parameters a and b change continuously. In practice, it is necessary to 

select a number of scales which is determined by the computational effort. A similar 

argument applies to the translation (shifting) parameter. In both cases, however, the 
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data of the signal being processed by the continuous wavelet transform using a 

computer is discrete. 

The wavelet transform coefficients which are generated can be used to reconstruct 

the original function. 

f( ) I J+xJ+x (b) dadb t = C;; -x -x CWTr a, \JI a.h (/)-,-
a" 

where C. is called the admissibility constant defined by 

C N1 (00 )12 doo = C~ < + CX) 

00 

3.3.4 Discrete Wavelet Transform 

(3.21 ) 

(3.22) 

Calculating wavelet coefficients for every possible scale can represent a 

considerable effort and generate a vast amount of data. The discrete parameter 

wavelet transform uses scale and position values based on powers of two (so-called 

dyadic scales and positions) which makes the analysis much more efficient, while 

still being accurate. In practice, a discrete wavelet transform is commonly used. To 

do this, the scale and time parameters are discretised as follows, 
a = ao, b = n bo ao ' m, n are integers 

The family of wavelets {'JI "'." (I)} is given by 

\JI m,n (I) = aonJ/2 \JI (aom t - n bo) 

resulting in a discrete wavelet transform (DWT) having the form 

DWTr(m,n) =< f,\JI m,n >= aom/2 r:f(t}'JI(aom t-nbo)dl 

(3.23) 

(3.24) 

(3.25) 

Mallat [89] developed an approach for implementing this using filters. For many 

signals, the low frequency content is the most important part. The high frequency 

content, on the other hand provides flavour or nuance. In wavelet analysis the low 

frequency content is called the approximation and the high frequency content is 

called the detail. The filtering process uses lowpass and highpass filters to 

decompose an original signal into the approximation and detail parts. It is not 

necessary to preserve all the outputs from the filters. Normally they are 

downsampled, keeping only the even components of the lowpass and highpass filter 

outputs. The decomposition can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken into many lower-resolution 

components, as illustrated in Figure 3.16. Here, S refers to the original signal, A is 

the approximation and D is the detail. 
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In the case of a discrete wavelet transfonn, reconstruction of the original signal is 
not guaranteed. Daubechies [88] developed conditions under which the {\V m," } fonn 

an orthononnal basis. Usually, ao = 2 and bo = 1 are used, though any values are 

possible. In this case, both the transfonn and reconstruction are complete because 

the family of wavelets satisfy the orthogonal condition. 

Figure 3.16 Signal multiresolution analysis using wavelets. 

3.3.5 Singularity Detection Using Wavelet for Feature 
Extraction 

Singularities often carry the most important infonnation in signals [82]. For 

example, Bakshi and Stephanopoulos [90, 91] used inflexion points as the 

connection points of episode segments of a signal, as shown in Figure 3.17 (episode 

segments of a signal is discussed in Section 3.4). Singularities of a signal can be 

used as the compact representation of the original signal and used as inputs to 

pattern recognition systems. 
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Figure 3.17 Singularities as connection points of episode segments. 

Mathematically, the local singularity of a function is measured by Lipschitz 

exponents [92]. Mallat and Hwang [92] proved that the local maxima of the wavelet 

transform modulus detect the locations of irregular structures and provided 

numerical procedures for computing the Lipschitz exponents. Within the framework 
of scale-space filtering, inflexion points of j{t) appear as extrema for af(t) / at and 

zero crossing for 0 2 f(t) / a [2 , so Mallat and Zhong [93] suggested using a wavelet 

which is the first derivative of a scaling function <J>(t) , 

\jI (t) = d~([) 
dt 

with a cubic spine being used for the scaling function. 

The wavelet modulus maxima and zero-crossing representations were developed 

from underlying continuous-time theory. For computer implementation, this has to 

be cast in the discrete - time domain. Berman and Baras [94] proved that wavelet 

transform extrema / zero-crossing provide stable representations of finite length 

discrete-time signals. Cvetkovic and Vetterli [95] have developed a more complete 

discrete-time framework for the representation of the wavelet transform. They 

designed a non-subsampled multi-resolution analysis filter bank to implement the 

wavelet transform for the representation. Using this filter bank, the wavelet function 

can be selected from a wider range than the B-spline in Mallat's method. 

Non-subsampled multi-resolution analysis can then be used to detect singularities 
of a signal. An octave band non-subsampled filter bank with analysis filters H()(z) 

and H,(z) is shown in Figure 3.18. In this method, a wavelet transform is defined in 
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tenns of the bounded linear operators ~: /2 (Z) ~ 12 (Z), j = 1, 2, .. 1+ 1. The 

operators ~ are the convolution operators with the impulse responses of the filters: 

•••••••• 

i 
D x -- detail on the ith decomposition 

i 
A x -- approximation on ith decomposition 

H (), H 1 -- low-pass and high-pass filters 

Figure 3.18 An octave band non-subsampled filter bank. 
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4 
D x 

4 
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The multiresolution procedure depicted in Figure 3.18 can be described less 

rigorously. Figure 3.18 shows four steps, or four scales analysis. In the fIrst step, 
the original signal is split into approximation A~ and detail D~. The detail D~ is 

assumed to be mainly the noise components of the original signal and the 
approximation A: represents mainly the trend of the original signal. A~ is further 
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decomposed into approximation A; and detail D;, A; to A; and D;, and A; to 

A~ and D;. In each step we find the extrema of the detail. In the first few steps, the 

extrema are due to both the noise and the trend of the noise-free signal. As the scale 

increases, the noise extrema are gradually removed while the extrema of the noise­

free signal remain. In this way, using multi-scale analysis and extrema 

determination, the extrema of the noise-free signal can be found, which represent 

the features of the signal. 

To represent the extrema, it is convenient to use a finite impulse response (FIR) 
wavelet filter, which has a sequence {a,: k E Z} with only K non-zero terms. A 

typical example is the Haar wavelet, having only two non-zero coefficients. 

Daubechies's wavelets [88] are also FIR filters and smoother than the Haar wavelet. 

Daubechies' wavelets having more coefficients so are smoother and have higher 

vanishing moments. They also require less computation effort because they are 

constructed by filter convolution. 

The Daubechies' scale and wavelet functions are expressed as 
~(t) = Lh(k)~(2t - k) 

k 

\If (t) = Lg(k)~(2t - k) , 

(3.26) 

(3.27) 

where {h(k)} is the low-pass filter coefficients and {g(k)} the band-pass filter 

coefficients. 

Daubechies wavelets have a maximum number of vanishing moments over the 

support space. The vanishing moments of the wavelets also have a different number 

of coefficients. Using wavelets with more vanishing moments has the advantage of 

being able to measure the Lipschitz regularity up to a higher order, which is helpful 

in filtering noise, but it also increases the number of maxima lines. The number of 

maxima for a given scale often increases linearly with the number of moments of the 

wavelet. In order to minimise computational effort, it is necessary to have the 

minimum number of maxima to detect the significant irregular behaviour of a signal. 

This means choosing a wavelet with as few vanishing moments as possible but with 

enough moments to detect the Lipschitz exponents of the highest order components 

of interest. 

For the cases considered here, an eight coefficient "least-asymmetric" Daubechies 

wavelet is used as a filter. The scale and wavelet function for this filter are 

illustrated in Figure 3.19. 
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Figure 3.19 The "Least-Asymmetric" scale function and wavelet function. 

A signal f(t)=sin(t) and its extrema from the wavelet analysis using a non­

subsampled filter bank with Daubechies eight coefficients least asymmetry wavelet 

is illustrated in Figure 3.20. It shows that extrema of wavelet analysis correspond to 

the singularities of signal. The shape of corresponding extrema of the wavelet 

analysis can be maximum or minimum for the same signal singularity and depends 

on the wavelet used. In Figure 3.20(b), the wavelet is used as a filter, and the first 

singularity of the signal in Figure 3.20(a) corresponds to the minimum in the 

wavelet analysis. In Figure 3.21 it is a maximum because a different wavelet is 

employed. The former is used here. 
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Figure 3.20 Signal (a) and its extrema (b) of the wavelet analysis based on 

Daubechies eight coefficients wavelets. 
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Figure 3.21 Extrema of wavelet analysis with Daubechies ten coefficients wavelet. 

3.3.6 Noise Extrema Removal and Data Compression 

The extrema obtained from wavelet multi-resolution analysis correspond to the 

singularities of the signal, which may also include those produced by noise, 

depending on the analysis scales. Therefore in feature extraction it is necessary to 

further filter out noise extrema from the wavelet transform. The most classical 

technique of removing noise from a signal is to filter it. Part of the noise is removed 

but it may also smooth the signal singularities at the same time. Mallat and Hwang 

[92], Mallat and Zhong [93] developed a technique for evaluating noise extrema in 

wavelet analysis. Some noise maxima increase on average when the scale decreases 

or do not propagate to larger scales. These are the modulus maxima which are 

mostly influenced by noise fluctuations. 

Figures 3.22 and 3.23 illustrate this. In Figure 3.22, three different noise 

frequencies are studied. The wavelet multi-resolution analysis is shown on the left, 

and extrema of wavelet analysis are on the right. Clearly, the extrema will decrease 

and then disappear as the scale increases. 

Figure 3.23 shows a noise signal which is basically the sine in Figure 3.20(a) plus 

white noise and the multi-resolution wavelet analysis elements. Noise components 

are reduced and then disappear as the scale increases. The results for scales 4 and 5 

are similar to that of Figure 3.20(b) which has no noise. This shows that the extrema 

of the real trend are retained while noise extrema are filtered on the higher scales. 
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Figure 3.22 Noise signal, its wavelet transfonn and the extrema of wavelet 
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Figure 3.23 Noise signal and its multi-resolution analysis. 
A: -approximation of multiresolution analysis, D: -detail. 
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3.3.7 Piece-wise Processing 

Two observations can be made from the above discussion. Firstly, extrema analysis 

using wavelet multiresolution analysis remains steady with increase in scale. For 

example, in Figure 3.23 when the scale is increased from 4 to 5, the four extrema 

remain. Secondly, the location of extrema may slightly shift with time as the scale 

increases. In Figure 3.23, the extrema representation in scale 4 is a vector of 

dimension 70, 

Scale-4 = ( .... x5 ................. x23 ............. x37 ............... x53 ................. ) 

where x5 stands for a non-zero datum. 

While in scale 5, it becomes 

Scale-5 = ( ...... x7 .............. x22 ............... x38 ............... x54 ................ ) 

The non-zero datum in the position 5 of scale-4 is shifted to the position 7 of 

scale-5. This inconsistency should be avoided. For instance, we should consider 

(2,0, ... 0,3) and (2,0 ... ,3,0) to be different. This is necessary especially when 

considering the trends of a variable at different operational conditions. 

The extrema representation results in very sparse vectors. This is true for dynamic 

responses at low frequencies. The method used here is termed piece-wise 

processing. The idea is to map a highly sparse vector to a denser vector by 

dimension reduction. For example, for the example of scale-4 and scale-5 discussed 

above, if the piece-wise sub-region is fixed as four data points, then scale-4 and 

scale-5 will be transformed to vectors of dimension 18. 

Scale-4' = (.x2 ... x6 ... xlO .. x13 ..... ) 

Scale-5' = (.x2 ... x6 ... xlO .. x13 ..... ) 

It is clear that after piece-wise processing, the dimension is reduced and sca1e-4' 

and scale-5' are consistent. Therefore using a piece-wise processing technique, it is 

possible to achieve consistent feature extraction and reduction in dimension. 



Chapter 3 Data Pre-processing 57 

3.4 Episode Approach 

This section describes qualitative interpretation of dynamic trends using the episode 

approach. It was developed earlier than PCA and wavelets and is straightforward. 

However it normally suffers from being week in dealing with noise. 

The episode representation approach was originally developed by William [96]. 

Janusz and Venkatasubramanian [77] adapted it and used nine primitives to 

represent any plots of a function, as shown in Figure 3.24. Each primitive consists 

of the signs and the first and second derivatives of the function. This means, each 

primitive possesses information about whether the function is positive or negative, 

increasing, decreasing, or not changing, and the concavity. An episode is an interval 

described by only one primitive and the time interval the episode spans. A trend is a 

series of episodes that when grouped together can completely describe the 

qualitative states of the system. C and D in Figure 3.24 are actually not primitives 

because they can be regarded as the combination of A, F and B, E. Therefore they 

can be reduced to seven primitives as shown in Figure 3.25. 

lc ~ ~ 
A(+,+,-) B (+,-,+) C (+,0,-) 

~ ~ b 
D (+,0,+) E (+,+,+) F(+,-,-) 

~ ~ l=-
G (+,+,0) H (+,-,0) 1(+,0,0) 

Figure 3.24 Nine primitives used in episode approach. 
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A combination of episodes will fonn a trend over an interval and is described by a 

primitive and the associated time. Primitives are different for first and/or second 

order derivatives, so the distinguishing points between episode segments are the 

extrema and inflexions where 
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Figure 3.25 The seven primitives episodes. 
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This is also illustrated in Figure 3.17, where trend 1 consists of primitives c-d-b­

a-c-d-b. The connection points c-d, b-a, are extrema, maximum or minimum points 

respectively, and inflexion points are between d and b, a and c, and d and b. Trend 2 

in Figure 3.17 illustrates another case. 

The task of identifying the episodes from a signal is simply to identify the 

inflexions and/or extrema, i.e., singularities in the signal since they correspond to 

distinct points of the episode segments. This means that the singularities of a signal 

contain the most important infonnation about the trend. Using singularities for 

feature representation therefore completely defines the episodes characteristics of a 

signal. 
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However, the singularities are strongly influenced by noise and this is the major 

weakness of this approach. Noise components must be identified and filtered from 

the features, otherwise the representation will be misleading. Bakshi and 

Stephanopoulos [81, 90] used the wavelet approach developed by Mallat [97], 

Mallat and Zhong [93] and Mallat and Hwang [92] for detecting the inflection 

points, as described in sections 3.3.5 and 3.3.6. 

3.5 Summary 

In process operational state identification, dynamic transient signals are probably 

more important than the instant values of variables, therefore the discussion in this 

chapter has focused on pre-processing of transient signals. The purpose is to remove 

noise components, extract the features in a reduced data dimension and concept 

formation. The extracted features can then be used by various tools including 

multivariate analysis, supervised and unsupervised clustering as well as conceptual 

clustering which will be introduced in Chapters 4 to 7. 

Signal pre-processing using wavelet multi-scale analysis is developed based on 

the fact that irregularities and singularities contain the most important information 

of trend signals. Since the extrema of wavelet transform of signals are able to 

capture all the irregularities and singularities of a signal when a filter bank and 

wavelet function are selected properly, they are regarded as the features of the trend. 

The advantage of being able to capture both the frequency and time features of a 

transient signal makes the wavelet feature extraction approach suitable not only for 

continuous but also batch operations. The approach described in this chapter has a 

number of advantages. Firstly, the extrema of wavelet multi-scale analysis can 

completely capture the distinguished points of a trend signal, because the original 

signals can be reconstructed. Secondly, the method is robust in the sense that the 

features captured do not change with the change of scales of analysis. Thirdly, the 

episode representation of a trend is primitive, there are no a priori measurements of 

compactness for the representation of extrema of wavelet multi-scale 

decomposition. In addition, a wavelet-based noise component removal procedure 

has been included so that noise effects can be filtered out. Wavelet analysis has also 

been used for model identification [98]. 

Principal component analysis offers an attractive alternative for pre-processing 

dynamic trend signals. This approach is particularly useful for concept formation. 
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For a specific variable, its dynamic responses under various disturbances or faults 

can be effectively discriminated by inspecting the location of a single data point on 

a PCA two dimensional plane. Concept formation is an essential step for conceptual 

clustering which, to be introduced in Chapter 7, is an approach that can develop a 

descriptive language for clustering operational states. 

Episode based approaches are able to convert the signal information to qualitative 

descriptions however often suffer from the adverse effect of noise components. 

Available episode approaches have not addressed how they could deal with these 

effects. 



CHAPTER 4 

MULTIVARIATE STATISTICAL ANALYSIS FOR DATA 
ANALYSIS AND STATISTICAL CONTROL 

There has been an increasing interest in applying multivariate statistics to analysis 

of historical databases of process operation and designing multivariate statistical 

control systems. The methods introduced in this chapter include principal 

component analysis (PCA), partial least squares (PLS), and multi-way and nonlinear 

PCA. The emphasis will be put on how these approaches can be applied to solving 

practical problems and addressing the advantages as well as limitations. The 

introduction to relevant mathematical background knowledge is less rigorous 

because there are already a large number of text books available. 

4.1 peA for State Identification and Monitoring 

Principal component analysis (PCA) has been introduced in Chapter 3 as an 

approach for feature extraction and concept formation from dynamic transient 

signals. In this chapter, PCA is used to develop process monitoring systems through 

analysis of historical operational data. 

4.1.1 Operational State Identification and Monitoring 
Using peA 

Process monitoring and diagnosis is conducted at two levels [8]: the immediate 

safety and operations of the plant usually monitored by plant operators, and the 

long-term performance analysis monitored by supervisors and engineers. Long term 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999
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perfonnance deterioration such as product quality degradation is considered as more 

difficult to be diagnosed than a sudden failure of equipment [102]. Trouble-shooting 

long tenn perfonnance deterioration often requires examination of historical data 

which is large in volume and multivariate in nature. In a number of studies, PCA has 

proved to be a useful tool for this purpose. Here we use an example to illustrate the 

approach. 

MacGregor and Kourti [103] reported an industrial case study of a continuous 

recovery process. The process consists of 12 separators to separate a feed of three 

major components A, Band C into three products, with the first product #1 

comprising mainly component A. The main objectives of operating the plant are to 

maintain the concentration of component A in the product # 1 to be at a specified 

level, i.e., no below 99.5 %, while achieving a certain minimum recovery, i.e., 

greater than 92%. However in the last three months from when the data was 

supplied by the company the recovery dropped significantly below 92%, as depicted 

by Figure 4.l. 

The data to be analysed is daily averaged and covers 498 days of operation. Each 

data pattern has 447 process and 5 product variables. The purpose of the analysis is 

to find out why the recovery of product #1 has dropped and what we can do to move 

it back. 

92 0/0 
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Figure 4.1 The recovery history of the product component A. 
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The fIrst step involves PCA analysis of the data matrix of the 442 x 498 (process 

variables x number of data patterns). It was found that the fIrst 7 PCs can explain 

93% in purity variation and 93% in recovery. Projection of the fIrst two PCs to a 

two dimensional plane indicated that for the last three months (data points 401 to 

490), where the recovery was low, the process operation had changed to a new 

operational state. It clearly explains the reason for dropped recovery over the last 

three months, which would have been very difficult to fInd out without this 

multivariate analysis. 
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Figure 4.2 Projection of process operational history on a PC two dimensional 

plane. 

If we regard the area in the circle of Figure 4.2 as normal operation, then this 

diagram can also be used for a multivariate statistical monitoring. If the operating 

point goes outside the region then the operation can be regarded as abnormal. 

Kresta et al. [104] gave other examples using the same approach to design statistical 

monitoring systems for a fluidised bed reactor and a binary distillation column. 
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4.1.2 Multivariate Quality Control Charts Based on PCA 

4.1.2.1 Multivariate Shewhart Charts 

Traditionally, univariate statistical process control charts, e.g., the Sherwhart chart 

shown in Figure 1.2 have been used in industry to separately monitor either a few 

process variables, or key measurements on the final product which in some way 

defme the quality of the product. The difficulty with this approach is that these 

quality variables are not independent of one another nor does any of them 

adequately defme product quality by itself. The difficulties with using independent 

univariate control charts can be illustrated by reference to Figure 4.3. Here only two 

quality variables (y J, Y2) are considered for ease of illustration. Suppose that, when 

the process is in a state of statistical control where only common course variation is 

present, YJ, and Y2 follow a multivariate nonnal distribution and are correlated 
(p = 0.8) as illustrated in the joint plot of YJ vs. Y2 in Figure 4.3. 
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Figure 4.3 Quality control of two variables illustrating the misleading nature of 

univariate charts. 
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The ellipse represents a contour for the in-control process, and the dots represent 

a set of observations from this distribution. The same observations are also plotted 

in Figure 4.3 as univariate Shewhart charts on YI, and Y2 vs. time with their 

corresponding upper and lower limits. Note that by inspection of each of the 

individual Shewhart charts the process appears to be clearly in a state of statistical 

control. The only indication of any difficulty is that a customer has complained 

about the performance of the product corresponding to the EB in Figure 4.3. The 

true situation is only revealed in the multivariate YI vs. Y2 plot where it is seen that 

the product indicated by the EB is clearly outside the joint confidence region, and is 

clearly different from the normal "in-control" population of product. 

In multivariate data analysis, the ellipse in Figure 4.3 is determined by calculating 

the Mahalanobis distance [106]. In the discussion of bivariate samples the quantity 

(4.1) 

is often used to describe the locus of an ellipse in two-dimensional space with centre 
(YI 'Y2)' This quantity also measures the square of the Mahalanobis distance 

between the point (YI, yJ and the centre CYI 'Y2)' All points on this ellipse have the 

same distance m2 from (iii 'Y2) . 

This can be extended to multivariate situation and used for designing multivariate 

Shewhart charts, called x2 and r charts for statistical process control. This was 

originated by Hotelling [107] and several references discussed the charts in more 

detail [103, 105, 108, 109, 110]. 

Given a (k xl) vector of variables y on k normally distributed variables with a 

covariance matrix L, the Mahalanobis distance from the centre equivalent to 

Equation 4.1 is 
(4.2) 

L is also called in-control covariance matrix. If L is not known, it must be 

estimated from a sample of n past multivariate observations as 

S = (n-1)-1 ±(Yi - Y)(Yi-y)T (4.3) 
i=1 

When new multivariate observations (v) are obtained, then Hotlling's r statistic is 

given by 
(4.4) 
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T can be plotted against time. An upper control limit (VCL) on this chart is given 

by [105], 

2 _ (n -l)(n + l)k (k k 
TUCL- n(n-k) Fa ,n- ) (4.5) 

where Fa (k,n - k) is the upper lOOa% critical point of the F distribution with k 

and n-k degrees offreedom [III]. 
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Figure 4.4 The Hotelling's r chart for the recovery process indicating a deviation 

from normal operation around the 400th day 

4.1.2.2 Multivariate Quality Control Charts Based on PCA 

Since many of the process variables are autocorrelated, only a few underlying events 

are driving a process at any time, and all these measurements are simply different 

reflections of these same underlying events. Principal component analysis therefore 

can be applied to process the data first before the multivariate Shewhart charts are 

used. It means the latent variables, i.e., the first few PCs are used rather than the 

original variables. If the first A PCs are used, then the Hotlling's r can calculated 

by [105], 
A 2 

T~ = L t~ (4.6) 
;=1 Sf, 
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where s~ is the estimated variance of Ii' If A =2, a joint 1/ vs. I] plot can be used. 

Note that the traditional Hottelling T in Equation 4.4 is equivalent to 
A t2 k t2 

T2 = Li+ L i (4.7) 
i=1 s~; i=A+1 s~; 

For the recovery process, the r chart is shown in Figure 4.4. The 95% confidence 

limit was determined based on good operation where the recovery is around 92%. 

Had the chart been on-line the deviation from normal could have been detected 

based on process data only, immediately when it occurred around observation 400. 

2500 
SPEy 

1500 99 % 

o 100 200 300 
Days 

Figure 4.5 The SPEy chart for the recovery process. 

400 500 

However, monitoring product quality via T based on the first A pes is not 

sufficient. This will only detect whether or not the variation in the quality variables 

in the plane of the first A pes is greater than can be explained by common cause. If 

a totally new type of special event occurs which was not present in the reference 

data used to develop the in-control peA model, the new pes will appear and the 

new observation Ynew will move off the plane. Such new events can be detected by 

computing the squared prediction error (SPEy) of the residual of a new observation, 
k A 2 

SPEy= L(Ynew,i-Ynew) (4.8) 
i=1 
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where Y new is computed from the reference PCA model. SPEv is also refereed to as 

Q statistic or distance to the model. It represents the squared perpendicular distance 

of a new multivariate observation from the projection space. Figure 4.5 shows the 

SPEv chart for the recovery process. The 99% confidence limit was determined 

based on good operation when the recovery is around 92%. 

When the process is "in-control", this value of SPEy should be small. Therefore a 

very effective set of multivariate statistical control charts is a r chart on the A 

dominant orthogonal PCs (t/, t2, ... , tA) plus a SPEychart. 

4.2 Partial Least Squares (PLS) 

Given two matrices, an (n x m) process data matrix X, and an (n x k) matrix of 

corresponding product quality data Y, one would like to extract latent variables that 

not only explain the variation in the process data (X), but that variation in X which 

is most predictive of the product quality data (Y). PLS is a method which 

accomplishes this by working on the sample covariance matrix (XTy)(yTX). In the 
most common version of PLS, the first PLS latent variable tl = wi x is that linear 

combination of the x variables that maximises the covariance between it and the Y 

space. The first PLS loading vector WI is the first eigenvector of the sample 

covariance matrix XTyyTX. Once the scores II = XWI for the first component have 

been computed the columns of X are regressed on II to give regression vector PI = 
XII! ti II and the X matrix is deflated to give residuals X2 = X-II pi. The second 

latent variable is then computed as t2 = wJx where W2 is the first eigenvector of 

XIyyTX2 and so on. As in PCA, the new latent vectors or scores (II. 12, •.• ) and the 

loading vector (WI. W2, ... ) are orthogonal. 

4.3 Variable Contribution Plots 

Although the rand SPEy charts are powerful ways for detecting deviations from 

normal operations, they do not indicate reasons for such deviations. This can be 

achieved by plotting variable contribution plots. There are two alternative ways of 

doing this which will be illustrated by reference to a case study described by 

MacGregor et al. [113], a low-density polyethylene tubular and autoclave reactor. A 

database of dimensionality of 55x 14 (number of observations x number of process 

variables) was analysed using PCA and PLS. The PC two dimensional plane of PLS 
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analysis as well as the SPEy plot are shown in Figures 4.6 and 4.7. From Figure 4.6 

it can be seen that from data point 53 the operation deviates from normal operation. 

The deviation point is detected at point 54 on the SPEy plot. This difference is not 

significant and our focus here is on how to find out which variable is the main factor 

contributing to the deviation. 
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Figure 4.6 PLS trt2 plane for the low-density polyethylene reactor indicating 

deviation from data pint 54. 



70 Data Mining and Knowledge Discovery for Process Monitoring and Control 

80 

70 

60 

50 

>.. 
W 40 
a. 
(f) 

30 

20 

10 . . . . " . " 
0 

0 10 

....... -
" . 

20 30 

# of observations 

.' .. .. .. . 
40 

•• 52 . . 
51 

50 60 

Figure 4.7 PLS SPEy chart for the low-density polyethylene reactor indicating 

deviation from data pint 53. 
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Figure 4.8 PLS prediction errors in the individual process variables contributing 

to SPEy at time point 54. 
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One way is to plot the SPE prediction error for the deviation point, say point 54, 

against the process variables, as shown in Figure 4.8. 

To diagnose the event one can examine the contributions of the individual 

variables to this larger than normal value of the SPEy at point 54 that is, 
k 

SPEx ,54 = L(X54,rX54,ji 
)=1 

Here the predictions X54,) are made from the PLS model developed for the "in-

control" operating data as, 
A 

X54,) = Lta,54Pa) 
a=1 

where the new latent variable projections for the 54th observation are given by, 
k 

t a ,54 = LWa,)X54,) 
)=1 

From Figure 4.8 it is clear that the major contributing variable is Z2. 
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Figure 4.9 PLS variable contributions to the change in t1 from point 51 to 54. 



72 Data Mining and Knowledge Discovery for Process Monitoring and Control 

An alternative way of diagnosing the event is note that in the latent variable plane 

Figure 4.6, the deviation of point 54 is mainly due to a large decrease in tl' 

Therefore we can analyse the importance of each process variable to this latent 

variable through examining the loading vector WJ. The contribution of each variable 

(x;) to this large movement in II can be computed as {(WI.~ Xj); j = 1, 2, ... , k} where 

~ Xj = (X54J-X5J,;)' These contributions are shown in Figure 4.9. It confirms that the 

main contributing variable is Z2. 

4.4 Multiblock PCA and PLS 

If the number of variables is not large, generally, the first two or three PCs are 

sufficient to capture most of the variance in the data [105, 114]. However if the 

number of variables is large, it is necessary to consider more PCs. Increased number 

of PCs makes the interpretation of results more difficult. First of all, the two or three 

dimensional PC plane, such as Figure 4.2 can not be used. Secondly the variable 

contribution analysis becomes difficult. A variation of multiway PCA and PLS 

[115] was proposed by MacGregor et al. [113]. The idea is to divide the process 

variables (X) into a number of blocks and then perform PCA or PLS analysis for 

each block as well as for the entire process. The blocks can be arranged based on 

functional and structural analysis of the process to be analysed and the interactions 

between blocks should be minimised. MacGregor et al. [113] discussed the 

procedures by reference to a low-density polyethylene process. 

4.5 Batch Process Monitoring Using Multiway PCA 

The above discussed case studies are two-way arrays: the variables and the 

observations. In some cases the data takes the form of three-way arrays. Data about 

batch process operations is such a case [116]. Batch production consists of batch 

runs, one after another. For a typical batch run,j=l, 2, ... , Jvariables are measured 

at k= 1 ,2, ... ,K time intervals throughout the batch. Suppose the data consists of i = 

1,2, ... , I such batch runs, then the database will be a three-way array X(IxJxK), as 

illustrated in Figure 4.10, where different batch runs are organised along the vertical 

side, the measurement variables along the horizontal side, and their time evolution 

occupies the third dimension. Each horizontal slice through this array is a (JxK) 

data matrix representing the time histories or trajectories for all the variables for 
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Figure 4.10 Arrangement and decomposition of a three-way array by multi-way 

PCA. 

single batch, the ith batch. Each vertical slice is an (lxJ) matrix representing the 

values of all the variables for all the batches at a common time interval (k). 

The multi-way PCA (MPCA) approach proposed by Wold et al. [115] is 

statistically and algorithmically consistent with PCA and has the same goals and 

benefits. The relation between MPCA and PCA is that MPCA is equivalent to 

performing PCA on a large two-dimensional matrix formed by unfolding the three­

way array K in one of the three possible ways. For analysis of batch process 

operational data, Nomikos and MacGregor [116] unfolded the data in such a way as 

to put each of its vertical slices (lxJ) slide by slide to the right, starting with the one 

corresponding to the first time interval. The resulting two-dimensional matrix has 

dimensions (lxJK). This unfolding allows us to analyse the variability among the 

batches in K by summarising the information in the data with respect both to 

variables and their time variation. 
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4.6 Nonlinear peA 

Though peA has been widely studied and applied successfully to many application 

areas including chemistry, biology, meteorology and process engineering etc., there 

is criticism on this approach being a linear operation. Some researchers have 

pointed out that peA can be inadequate in solving some nonlinear problems [117, 

118]. Xu et al. [118] has given an example showing that when peA is applied to a 

nonlinear problem, minor pes do not always consist of noise or unimportant 

variance. If they are discarded, important information is lost; if they are kept, the 

large number of pes make the interpretation of results difficult. As a result 

nonlinear peA has attracted the interest of some researchers as summarised by 

Dong and McAvoy [119]. 

One way of introducing nonlinearity into peA is the "generalised peA" by 

Gnanadesikian [120]. The basic idea of this approach is to extend an m-D variable X 

to include nonlinear functions of its elements. For example, for two dimensions 
X=(xJ. Xl), three variables can be added: X3= xi, X4= x~, and X5 = X/Xl. Then one can 

do the same calculations as linear peA on this 5-D data. Another way of introducing 

nonlinearity into peA is "nonlinear factor analysis" [121]. In this method l-D 

polynomials are used to approximate m-D data with l<m. A linear least squares 

method is used to fmd the coefficients of the polynomials. Dong and McAvoy [119] 

commented on the method that for high-dimensional data, it becomes tedious. 

Kramer [122] presented a nonlinear principal component analysis method based 

on autoassociative neural networks. The architecture of the network is shown in 

Figure 4.11. It has five layers, i.e., the input, mapping, bottleneck, de-mapping and 

output layers, and its input is used as the desired output. The network is therefore 

supervised in nature and can be taught with a backpropagtion learning algorithm. 

As no assumptions are needed about the nature of nonlinearity between the 

variables, the network can be used in situations where common transformations 

(e.g., logarithm, square root) can not be used. The nonlinearity is introduced into the 

network by sigmoidal transfer functions in the mapping and de-mapping layers. 

The bottleneck layer will perform the dimension reduction, because the number of 

neurons in this layer is smaller than that in the input and output layers, so that the 

network is forced to develop a computer representation of the input data. The goal 

of the network is to minimise the error function 

(4.9) 
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where X; is an observation in the data set X and X; , is an output of the network. 

Y2 

Ym 

Input 
Layer 

Mapping 
Layer 

Bottle­
neck 
layer 

De-mapping 
layer 

Output 
layer 

Figure 4.11 An autoassociative nonlinear peA network with five layers. Transfer 

functions! are nonlinear and transfer functions I are linear. 

Questions can be raised on this approach. An important point is that it is unknown 

if the outputs of the bottleneck layer, i.e., the principal components are linearly or 

non-linearly independent. It is very clear in linear peA, the pes are linearly 

independent. Dong and McAvoy raised other questions. Since there are five layers 

training of the network will be difficult. It is also difficult to determine the number 

of nodes in the mapping, bottleneck and de-mapping layers. In addition, the 

theoretical meaning of the outputs of the bottleneck layer, i.e., the principal 

components is not clear. Nevertheless, the approach is still proved to be very 

effective in reducing dimension as demonstrated by Kramer [122] in case studies. 
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4.7 Operational Strategy Development and Product 
Design - an Industrial Case Study 

This section describes an industrial case study of analysing historical data using 

PCA for operational strategy development and product design [135]. 

4.7.1 The FCC Main Fractionator and Product Quality 

The fluid catalytic cracking process (FCC) of the refinery converts a mixture of 

heavy oils into more valuable products. The relevant section of the process is shown 

in Figure 4.12, where the oil gas mixture leaving the reactor goes into the main 

fractionator to be separated into various products. The individual side draw products 

are further processed by down stream units before being sent to blending units. 

FCC Reactor Fractionator 

FI Q22 

Figure 4.12 The main fractionator of the FCC process. 

One of the product is light diesel whose quality is typically characterised by the 

temperature of condensation. Traditionally the temperature of condensation has 

been monitored by off-line laboratory analysis, which caused time delays because 

the interval between two samples is between four to six hours. As a result a software 

sensor has been developed using 303 data patterns spanning over nearly a year for 
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predicting the condensation point using fourteen process variables which are 

measured on-line (a detail discussion of the software development is given in 

Chapter 9). The fourteen variables are listed in Table 4.1. 

An interesting problem with the process is that it is required to produce three 

product grades according to seasons and market demand, namely -10#,0# and 5# 

defined by the ranges of condensation temperature. Because there are more than one 

process variable the operators use their experience through trial-and-error to adjust 

process variables to move the operation from producing one product grade to 

another. There is a clear need to minimise the time of change over because off­

specification product may be produced during transition. 

Table 4.1 
Tl-I1 
Tl-12 
Tl-33 
Tl-42 

Tl-20 
F215 
Tl-09 
Tl-OO 
F205 
F204 
F101 
FR-1 
FIQ22 
F207 

The fourteen variables used as input to the FFNN model. 
- the temperature on tray 22 where the light diesel is withdrawn 
- the temperature on tray 20 where the light diesel is withdrawn 
- the temperature on tray 19 
- the temperature on tray 16, i.e., the initial temperature of the 

pump around 
- the return temperature of the pump around 
- the flowrate of the pump around 
- column top temperature 
- reaction temperature 
- fresh feed flowrate to the reactor 
- flowrate of the recycle oil 
- steam flowrate 
- steam flowrate 
- flowrate of the over-heated steam 
- flowrate of the rich-absorbent oil 

4.7.2 Knowledge Discovery using peA 

The difficulty of the problem comes from the fact that there are fourteen process 

variables to consider. Application of PCA to the database of the size 303xl4 

(number of data patternsxnumber of process variables) found that the first seven 

variables account for about 93% of the variance (Table 4.2). The PCI and PC2 two 

dimensional plot is shown in Figure 4.13. It was found that the 303 data patterns are 

grouped into four clusters. Three clusters correspond to three products -10#, 5# and 

0# and the cluster at the bottom-right comer is found to be a cluster that has a high 

probability of product off-specification. Before we analyse how this can be used to 

develop operational strategies it is necessary to validate the clustering result since 
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the fIrst two PCs only account for 53% of the variance. For this purpose, the fIrst 

three PCs are plotted in a three dimensional diagram (Figure 4.14). It is found that 

the cluster at the centre of Figure 4.13 is further divided into two clusters. Using the 

fIrst seven PCs, AR T2 gives a similar result as indicated by the dotted curve in 

Figure 4.13. This demonstrates that for problems having large dimensions, clusters 

may overlap in a two dimensional PC display. Nevertheless, for the current 

problem, it is found that the two clusters at the centre of Figure 4.14 both 

correspond to product 0#. As a result, in the following discussion, we still use the 

result of Figure 4.13. 

Therefore the strategy for operation and product design should be to operate the 

process in the region of the bottom-left if the desired product is -10#, or the region 

at the top if the desire product is 5#, or the region at the middle if the desired 

product is 0#, and try to avoid the region at the bottom-right comer. Another point 

is that to move from producing -10# to 0#, adjusting PC 1 is more important than 

changing PC2. While to switch from producing 0# to 5#, PC2 is more important 

than PC 1. Both PC 1 and PC2 are important in avoiding the region at the bottom­

right comer which produces off-specifIcation product. 

However, PCl and PC2 are latent variables. To link PCl and PC2 to the original 

variables, contribution plots are used. The contribution plot of PC 1 is shown in 

Figure 4.15, from which it is found that the most important variables are TI12 (the 

temperature on tray 20 where the product is withdrawn) and TI42 (the temperature 

on tray 16 close to the flashing zone). Some other variables are not important such 

as FR -1. The above discovery is confIrmed by looking at the change of TI -12 over 

the 303 data patterns (Figure 4.16). It clearly shows that TI-12 can distinguish 

product -10# from 0# and 5#, but can not distinguish 0# and 5#. 

The contribution plot of PC2 is shown in Figure 4.17 which indicates that FR-l is 

the most important variable. The changing profIle of FR-l for the 303 data patterns 

are shown in Figure 4.18. It clearly shows that FR-l can distinguish product 5# from 

0# and -10#, but not between 0# and -10#. The fIgure also confIrms that FR-I is not 

important to PC 1. 

Therefore the operational strategy for product design should be that if we want to 

change from producing -10# to 5#, we should increase TI-12 and TR-42 and then 

increase FR-1. In order to avoid off-specifIcation product we should carefully 

monitor TI-12, TR-42 and FR-l to avoid the region at the bottom-right comer. Of 

course it is important to be aware that fIne tuning of all the variables is necessary 

but this guidance can help operators to move the process from producing one 
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product quickly to another product. The PC 1 and PC-2 two dimensional plane can 

also be used by operators as a monitoring screen as demonstrated by Figure 4.19. 
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Figure 4.13 The PC 1 and PC2 two dimensional plot. 
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Figure 4.16 The changing profile ofTI-12 over the 303 data patterns. 
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4.8 General Observations 

PCA and PLS have proved to be powerful tools for operational data analysis and 

statistical process control. However they still have limitations. PCA and PLS based 

data analysis for statistical process control has the assumption that the first few PCs 

can capture most of the variations in a multivariate database. This assumption may 

be violated in some cases, e.g., when the dimension of the original variables is very 

large. Multiblock PCA and PLS can tackle this problem for some applications, 

however, dividing variables into blocks may not always be possible. Sammon [123] 

gave an example where data generated to contain five groups in four dimensions are 

projected into the space of two principal eigenvectors. Visual examination of this 

projection shows only four groups, since two of the clusters overlap completely in 

the two dimensional space. In such cases some alternative approaches may have to 

be used such as the unsupervised machine learning approaches to be introduced in 

Chapter 6, including neural network and Bayesian automatic classification methods. 

It has reported that one of the Bayesian automatic classification systems - AutoClass 

has successfully clustered data with 1204 attributes [39]. However, PCA and PLS 

may still be a useful approach for pre-processing the data to eliminate the linear 

dependencies in the data. PCA is also a useful approach for pre-processing the data 

for dimension reduction for neural networks [124]. 

The variable contributing plots such as Figure 4.9 may not be applicable in cases 

where the contributions of the original variables to the PCs are not equally 

distributed. Use of other approaches to compensate this limit of PC A can be a good 

alternative. For example, neural network models can be developed and used as 

sensitivity study tools to identifY the contributions of variables. 

In the above applications, PCA and PLS are used mainly for statistical process 

control for long tenn perfonnance monitoring and the data dealt with are averaged 

over hours or days. PCA and PLS are also potentially useful for on-line real time 

data analysis. In Chapter 3 we have introduced the application of PCA for feature 

extraction and concept fonnation from dynamic trend signals. Bakshi [125] 

combined wavelet multiscale analysis with PCA for developing on-line monitoring 

systems. Tabe et al. [126] combined Fourier and wavelet analysis and PCA and 

developed an approach called dynamic PCA. 

PCA can also be categorised as an unsupervised learning approach. However its 

learning is not recursive or incremental. For on-line real time use, it is useful for 

PCA to be able to learn incrementally, i.e., learn from a single example when it is 
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presented. There has been an report on such on-line learning for principle 

component analysis [127]. 

Only a few case studies were mentioned above mainly for the propose of 

illustration the methods. There are many successful applications in using PCA and 

PLS approaches to analysing databases about continuous and batch operations. 

These include analysis of data of emulsion batch processes [128], product design 

[129], inferential process model development [130], reactor analysis [131], fault 

diagnosis [132], sensor fault identification [133, 134], normal operational region 

identification [136] and monitoring [137]. These applications not only explored the 

potential applications, but also provide valuable experience in overcoming some of 

the limitations ofthe PCA and PLS in solving practical problems. 



CHAPTERS 

SUPERVISED LEARNING FOR OPERATIONAL SUPPORT 

Studies on machine learning have mainly been concerned with automatic learning 

from examples to develop the knowledge describing these examples. This is clearly 

different from the kind of learning as learning to ride a bicycle. In supervised 

learning, each example used is typically described by a number of attributes. The 

attributes are divided into inputs and outputs, and the learning process is to develop 

a model mapping the multiple inputs and outputs. The model is gradually refined 

during learning to minimise the errors between the predictions and real values of 

outputs, i.e., so-called supervised learning. The most widely studied supervised 

learning approach is the feedforward neural network (FFNN). The FFNN model and 

its application to process operational support will be introduced in this Chapter. The 

discussion on FFNN will be focused on many of the practical issues that have to be 

considered in applying FFNN. While the focus will be on FFNN, other supervised 

models will also be described and compared with FFNN. These include fuzzy 

FFNN, fuzzy set covering approach and fuzzy signed digraph. 

5.1 Feedforward Neural Networks 

5.5.1 FFNN Architecture 

There are already a large number of textbooks on FFNNs. Here it is introduced less 

technically. Simply speaking, a FFNN neural network is an algorithm or computer 

software that can learn to identify the complex nonlinear relationship between 

multiple inputs and outputs. The learning process has a number of characteristics. 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999
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Firstly, FFNN does not need fundamental domain problem models and is easy to be 

set up and trained. This is different from conventional statistical methods that 

usually require the user to specify the functions over which the data is to be 

regressed. In order to specify the function, the user has to know the forms of the 

equations governing the correlations between the data. If these functions are 

incorrectly specified, the data will not be satisfactorily regressed. Furthermore, 

considerable mathematics and numerical experience is required to obtain 

convergence if these equations are highly nonlinear. FFNN does not need to specifY 

the forms of the correlations as well as any mathematical and numerical expertise 

requirements. Secondly, data examples used for training are allowed to be imprecise 

or noisy, in some cases even incomplete. Thirdly it mimics the human learning 

process: learning from examples through repeatedly updating the performance. 

A FFNN neural network consists of a number of processing elements called 

neurons. These neurons are divided into layers. Figure 5.1 shows a three layered 

FFNN architecture including an input, a hidden and an output layer. Typically the 

input layer nodes correspond to input variables and the output layer to output 

variables. Hidden neurons do not have physical meanings. Neurons between two 

adjacent layers are fully connected by branches. 

Output layer 

Hidden layer 

Input layer 

Figure 5.1 A three layer feedforward neural network. 

Each neuron in the hidden and output layer is described by a transfer function (or 

activation function). Usually a sigmoidal function is used, 
1 

fez) =-1 -07 
+e 

(5.1) 

f(z) transforms an input z to the neuron to the range of [0.0, 1.0] as shown in 

Figure 5.2(a). The parameter a in Equation 5.1 is used to change the shape of the 
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sigmoidal function. Some other activation functions can also be used as shown in 

Figure 5.2 (b) and (c). However for a specific FFNN structure, the neurons in the 

hidden and output layers are usually fixed on the same transfer function. 

J(z) f(z) J(z) 

1.0 

z z 
z 

0.0 

(a) Sigmoid (b) Ramp (c) Step 

Figure 5.2 Activation functions. 

Each connection branch is described by a weight representing the strength of 

connection between two linked nodes. The so called learning or training process is 

the procedure to adjust the weights. A bias neuron that supplies an invariant output 

is connected to each neuron in the hidden and output layers. The bias provides a 

threshold force activation of the neuron, and is essential in order to classify 

networks input patterns into various subspaces. 

5.1.2 FFNN Training Algorithm 

Given some arbitrary values for all the connection weights, for a specific data 

pattern, the FFNN makes use of the weights and input values to predict the outputs. 

The training is intended to gradually update the connection weights to minimise the 

mean square error E, 

E = f±(tfmLy~m))2 
/)/=\ i",l 

(5.2) 

where M - number of training data patterns 

N - number of neurons in the output layer 
t: m ) - the target value of the ith output neuron for the given mth data 

pattern 
y;ml _ the prediction for the ith output neuron given the mth data pattern 
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The process involves a forward path calculation to predict the outputs and 

backward path calculation to update the weights. For a neuron in the input layer, its 

output is equal to the input so there is in fact no activation function for an input 

neuron. For a neuron in the hidden and output layers, it receives the values of the 

outputs of its front layer nodes and takes the weighted sum as its input. The 

weighted sum is then transformed by the activation function to give an output. The 

outputs of the output layer neurons are compared with the target values using 

Equation 5.2 to calculate an error. The error is used to backwards updating the 

weights. 

Given the mth data pattern, the weight updating in a supervised learning algorithm 

follows the formulation, 

where 
w;:1) - the weight of the connection between the jth neuron of the upper 

layer and the ith neuron of the lower layer, in the mth learning 

iteration. 

(5.3) 

wj:'-ll - the weight of the connection between thejth neuron of the upper 

layer and the ith neuron of the lower layer, in the (m-l)th learning 

iteration. 
~W;:'l - the weight change. 

In backpropagation learning approach, the weight change is calculated by, 

where 
11 - learning rate, providing the step size during gradient descent. 

Generally to assure rapid convergence, larger step sizes which 

do not lead to oscillation are used 

a - coefficient of momentum term, 0< a < 1 

(5.4) 

eim) -the output value of the ith neuron of the previous layer, in the mth 

iteration 
8im) - the error signal ofthejth neuron in the mth learning iteration. 

Ifj belongs to the output layer, 
s::lm) = (t(m) _ yen,)) f' (" (m) (m) + (m)) 
0, I ) J ~ WJ/ 01 W,O (5.5) 

and if j belongs to the hidden layers, 
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s:(m) = f' (" i.m) (m) + (m)" s:(") (m) 
U) ) £- WI' 0, WIo £- Uk Wig 

i k 
(5.6) 

where f is the derivative of the transfer function. 

Therefore, the error backpropagation approach for adjusting weights computes an 

error for each neuron in the output and hidden layers using Equations 5.5 and 5.6, 

and recursively updates the weights of all the layers using Equation 5.4, starting 

from the output layer and working backwards until the input layer. 

Like all first order methods, backpropagation learning is a significantly less 

efficient optimisation method than are second order optimisation methods such as 

the conjugate gradient or quasi-Newton algorithms. Leonard and Kramer [138] 

studied the use of a conjugate gradient approach in order to speed up convergence. 

Alternative algorithms have also been proposed by Brent [139], Chen and Billings 

[140] and Peel et al. [141]. An attractive approach to the backpropagation learning 

algorithm is the quasi-Newton method [142,143]. 

Since its development, multilayer neural network has shown surprisingly good 

performance in solving many complex problems. However there is still a lack of 

theoretical explanation but an interesting theorem sheds some light on the 

capabilities of multi-layer percetrons [144]. This theorem states that any continuous 

function of N variables can be computed using linear summations and nonlinear but 

continuously increasing functions of only one variable. It effectively states that a 

three layer percetron with N(2N+ 1) nodes using continuously increasing nonlearities 

can compute any continuous function of N variables. 

5.1.3 Parameter Selection and Training Techniques 

From the above discussion, it is clear that FFNN training involves the following 

initial decisions to begin: network topology, i.e., number of hidden layers and 

hidden neurons; learning rate; momentum factor; error tolerance or number of 
iteration; initial values of weights. Learning rate 11 and momentum factor a are not 

very difficult to set. We can start with some reasonable values, e.g., 11 = 0.35, a = 

0.7 and then find the most appropriate values in training. The error tolerance 

apparently depends on the problem to be solved. Understanding how these 

parameters affect the learning performance, which is due to discuss next, is useful in 

setting the right values. Initial values of weights can be generated by a random 

number generator. Therefore here our discussion will focus on network topology 

and then some other important issues in learning. 
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5.1.3.1 Network Topology 

It is generally accepted that only one hidden layer is necessary in a network using a 

sigmoid activation function, and that no more than two are necessary if a step 

activation function is used. 

There are no available methods to decide how many hidden neurons are required 

in a three layered network. The number of hidden neurons depends on the 

nonlinearity of the problem and error tolerance. Empirically the number of neurons 

in the hidden layer is of the same order as the number of neurons in the input and 

output layers. The number of hidden neurons must be large enough to form a 

decision region that is as complex as required by a given problem, too few hidden 

neurons hinder the learning process and may not be able to achieve the required 

accuracy. However, the number of hidden neurons must not be so large that many 

weights required can not be reliably estimated from available training data patterns. 

An unnecessary large hidden layer can lead to poor generality. A practical method is 

to start with a small number of neurons and gradually increase the number. 

5.1.3.2 Local Minima 

Chemical process models are multidimensional with peaks and valleys [145], which 

can trap the gradient descent process before it reaches the system minimum. There 

are several methods of combating the problem of local minima [146, 147]. The 

momentum factor a , which tends to keep the weight changes moving in the same 

direction, allowed the algorithm to slip over small minimal. Another approach is to 

start the learning again with different set of initial weights if it is found that the 

network keeps oscillating around a set of weights due to lack of improvement in the 

error. Some times adjusting the shape of the activation function (e.g., through 

adjusting the constant a in Equation 5.1 can have an effect on the network 

susceptibility to local minima. Some new optimising approaches have been applied 

to multilayer neural networks which prove to be able to address the local minima 

significantly, such as the simulated annealing [147]. In contrast to the comments 

made by Crowe and Vassiliadis [145] and Chitra [147], Knight [146] thought that 

FFNN rarely slips into local minima. However, it should be dealt with care. 
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5.1.3.3 Over fitting or over parameterisation 

Overfitting occurs when the network learns the classification of specific training 

points but fail to capture the relative probability densities of the classes [148]. This 

can be caused by two situations: (1) oversized network, e.g., due to inclusion of 

irrelevant inputs in the network structure or too many hidden layers or neurons; and 

(2) insufficient number of training data patterns. 

5.1.3.4 Generality 

Over fitting in training a neural network deteriorates the generality of the network. 

5.2 Variable Selection and Feature Extraction for 
FFNN Inputs 

Inclusion of redundancy or irrelevant variables demands more training data and 

causes over fitting and deteriorates generalisation capability. If prior knowledge is 

available it should be used to remove irrelevant variables and identify correlated 

ones. Otherwise, mathematical techniques are required to solve the problem. In 

Chapter 9 by reference to the development of software sensors using FFNN, several 

approaches are described in detail. These include principal component analysis, 

sensitivity analysis and network weight matrix analysis. Here only a brief 

description is given to each method. For detailed discussion, please refer to Chapter 

9. 

Principal components are the linear combination of all the original variables. They 

are orthogonal and therefore linearly uncorrelated. The first few PCs can capture 

the variance. Therefore we can use the first few PCs rather than the original 

variables as the input variables to develop the FFNN model. Consequently the size 

of the network can be reduced, less training data is required and as a result can 

improve the generality. A smaller size is also favourable for training speed. A 

specific principal component does not represent any specific original input though 

relative contribution to individual PCs by the original variables can be analysed. 

Sensitivity analysis can also be used to refine a network structure. The idea is to 

develop a FFNN model using all original inputs and use this model to carry out 

sensitivity studies to find out relative contributions of inputs to an output. Sensitivity 
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studies can be used to develop a simpler network structure. Since the inputs are 

possibly correlated, sensitivity study should be carried out with care. 

An alternative approach is to analyse the weights of a trained FFNN to find out 

the relative importance of inputs. Several approaches have been proposed which 

were discussed in Chapter 9. Due to the complex internal structure of FFNN, these 

approaches should be used with care. 

The difficulty in analysing the relative importance of inputs to an output is that 

there is hidden layers and neurons and neurons between two layers are fully 

connected. An interesting idea is to develop a model without hidden layer and 

neurons, which is traditionally called single layer percetron (PCT). The order of 

magnitude of input - output linkage weights is clear. A PCT model may not be 

accurate enough but can provide some useful information for analysis. The analysis 

result can be used to further develop a FFNN model with hidden neurons. In fact, 

as will be demonstrated, for a problem whose nonlinearity is not high, a PCT can 

give equally good performance. In this case a PCT clearly should be used rather 

thanaFFNN. 

For on-line applications, feature extraction also means dimension reduction from 

dynamic transients to use minimum data to capture the useful information as well as 

noise removal. This has been discussed in detail in Chapter 3. 

5.3 Model Validation and Confidence Bounds 

The advantage of FFNN not requiring fundamental domain knowledge also brings 

a drawback of being a blackbox with poor extrapolation capability. Therefore, 

FFNN application always involves training and test procedures: using some data for 

training and the rest for testing. However, due to the multivariate nature, when a 

new data pattern is given, the confidence of prediction is still unknown, because the 

data pattern represents a point in the multidimensional space. The mean squared 

error to quantify the accuracy of training does not give this kind of information. 

A detailed procedure is introduced in Chapter 9 to address this issue in the course 

of developing a software sensor, which uses an automatic clustering approach to 

group the multivariate data into clusters, and then training and test data is selected 

from each cluster. When new data patterns are available the clustering approach is 

also used to test if the data patterns are within the region of previously trained data, 

so provides clues of prediction accuracy and information whether the FFNN model 

needs to be retrained. 
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Techniques used in statistics for error or residual analysis can perfectly be used. A 

simple plotting of the error residual can provide useful information. In developing a 

software analyser for predicting a toxicity measure, Microtox, it was found that nine 

of the 180 data cases used for training and test have abnormally large errors [124]. 

It was suspicious that these nine data patterns may contain noise components. The 

plotting of error distribution supports this. As shown in Figure 5.3 that the error 

almost follows a normal distribution and there are irregular structure at the two ends 

which correspond to the nine data patterns. 
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Figure 5.3 Error distribution on predicting a toxicity measure Microtox using 

FFNN. 

Some researchers [149, 150] tried to develop an accurate procedure to calculate 

the confidence bound of FFNN in prediction. The confidence on predicting an 

output for a set of given input data depends on a number of factors, 

(1) the distribution of residuals of the FFNN model, for training data patterns; 

(2) the sensitivity of the output to inputs. For a problem of multiple inputs (xj, Xl> 

••. XN) and multiple outputs (Y/. Y2 .... YM), all the sensitivities form a Jacob matrix, 
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(5.7) 

(3) the density distribution of the data sample in the multidimensional space of 

training data. 

Shao et al. [149] and Zhang et al. [150] developed a complicated procedure for 

calculating the confidence bounds of using a FFNN mode to predict a new data 

pattern. Figure 5.4 shows such an example [180]. 

Model prediction with confidence bounds 
4 

3 
o mod.1 prediction 

+ observation 

confidence interval 

2 - confidence bound 

-2 

~3~------2~------~1------0~----~------~~--~3 
independent varlabl. 

Figure 5.4 An example of confidence bounds. 

5.4 Application of FFNN to Process Fault Diagnosis 

A multilayered neural network can almost solve any multiple input I output 

problems. The number of ways in which FFNN can be used in process industries is 

limited only by the imagination. In this book our discussion only concerns its 

application in designing software sensors which will be dealt with in Chapter 9, and 

in process operational state identification and fault diagnosis, which is described in 

the following sections. The emphasis on operational state identification and fault 

diagnosis will be based on case studies, which are used to reveal the kind of 



Chapter 5 Supervised Learningfor Operational Support 95 

challenges that need to be addressed in order to design effective and practical 

systems. 

Fault identification involves the assimilation of available measurements to 

identify malfunction and misbehaviour of the process [151]. Function of a process 

equipment is the desired objective. For example the function of a distillation column 

is to achieve desired products within specifications, and the function of a heat 

exchanger is to increase the temperature of a cold stream or reduce the temperature 

of the hot stream to a certain value. The behaviour of a process unit is the status of 

the process under operation. Function and behaviour are treated separately because 

there is the potential that misbehaviour can be used to predict the malfunction. Both 

malfunction and misbehaviour can be described by three types of attributes: process 

variables, model equations, and dynamic trends. 

Process variables here refer to those which change rapidly over a short time. For 

example, a flowrate may change very fast like a step or pulse function. They can be 

described simply by high, low, normal, medium high and low. Failure or not failure 

of some simple equipment can also be described in this way. For example, we can 

describe the failure of a pump as 1 and normal as O. 

Model equations. Model equations derived from the material and energy balances, 

equilibrium relations and rate equations impose constraints on process variables. 

These equations can be written in the form so that they are equal to zero. It is worth 

drawing attention to the fact that it is not necessary to list all model equations. 

Associated with each model equation are tolerance limits which are the expected 

positive and negative values of the residuals for which the constraint equation is to 

be satisfied. Violation of model equations may indicate a possible fault [152]. 

Dynamic trends. Graphically represented dynamic trends provide a direct way for 

process operators to make decisions on the operational status of a processes. 

However, in order to make efficient use of trends in a computer based system, pre­

processing of the trends, so called feature extraction for the purpose of dimension 

reduction and noise removal is needed. The extracted features can then be used for 

further analysis by neural networks. Chapter 3 has introduced several approaches. 
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5.4.1 A Case Study - Fault Diagnosis of a CSTR Reactor 

There has been a large number of publications on applying FFNN to process fault 

diagnosis, many have used continuous stirred tank reactors as case studies. Here an 

earlier case study on a CSTR reactor [153] is described in order to analyse the kinds 

of issues that need to be considered. In the CSTR reactor, there is a first-order 

exothermic reaction A ~ B. Heat generated by the reaction is taken away by 

cooling water. A three layered neural network was developed to use symptom 

variables to predict faults, as shown in Figure 5.5. 

C(t) High inlet flowrate 

T(t) Low inlet flowrate 

Vet) High inlet concentration 

F(t) Low inlet concentration 

T/t) High inlet temperature 

F/t) Low inlet temperature 

Figure 5.5 A three layer neural network for fault diagnosis of a CSTR reactor. 

In Figure 5.5, C(t) is the outlet concentration of component A, T(t) outlet 

temperature, Vet), reactor hold up, F(t) outlet flowrate, Tit) outlet temperature of 

coolant, Fit) coolant flowrate. The output nodes of the network are possible faults 

or operations that can cause the symptom variables to change in certain ways. 

Dynamic simulation was used to produce the training data: making a change (5 to 

15%) on one or two variables on the output side of Figure 5.5 and recording the 

values on all the symptom variables. Because the symptom variables experience 

dynamic transients, they were recorded in two ways, either the new steady state 

value or an average of four sampling points during the transients. The data was pre­

processed before being used for training the network: each fault variable was given 

a boundary to define a variable being fault or not. If it is regarded as being a fault, it 

is assigned a value of 1, otherwise, it is assigned O. 

The detailed description of the case study can be found in the original publication 

[153]. In the following we just want to use this case study as an example to look at 

some general issues that need to be considered in applying FFNN to fault diagnosis. 
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5.4.2 Observations on the CSTR Reactor 

Based on the above discussion on applying a FFNN to fault diagnosis of a CSTR, 

the following observations can be made: 

(1) The study described in the above section considers open-loop situation 

because the dynamic simulation was made under open-loop conditions. It is known 

that under closed loop control variables will interact even stronger, the symptoms 

will change in different ways. Therefore the dynamic transient behaviour of a 

variable becomes very important. The time delays, peaks and valleys of a dynamic 

trend may contain important information. For example in Figure 5.6, the shapes of 

the three response curves for the same variable may tell important information about 

the distinction of three disturbances. It is not adequate to use only the new steady 

state value or an average of a few sampling points on the dynamic transient signal. 

However, it is obviously not suitable to use all the sampling points comprising a 

transient signals because the size is too large. Therefore, feature extraction from 

dynamic transient signals using appropriate technology for the purpose of dimension 

reduction is required. An input variable to the network of Figure 5.5 may need to be 

described by several features. Various methods for feature extraction already 

described in Chapter 3 can be chosen. 
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Figure 5.6 Dynamic trends of a temperature of a distillation column under closed 

loop control. 
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(2) Noise has to be dealt with carefully. Under large noise to signal ratio, the 

noise may bury the real trend of a dynamic transient. Methods for noise removal has 

also been discussed in Chapter 3. 

(3) This CSTR example has six inputs and six outputs. For a larger process there 

may be hundred variables to be monitored. It may not be suitable to use a single 

neural network. Several neural networks or stacked networks may have to be used as 

described by Zhang et al.[154]. 

(4) Multiple faults also pose a challenge. This has been addressed by many 

researchers. However, some researchers have found that networks trained with 

single fault data can be used to detect multiple faults. It is rare to have more than 

two irrelevant faults occurring at the same time. But it is not unusual that one fault 

may cause other faults to occur. 

(5) Most discussions on fault diagnosis using multilayerd neural networks are 

concerned with failure of equipment, sensors or sudden change of a variable. There 

is another type of fault or abnormal operation which is concerned with gradual 

degradation of product quality or other performance measures. Though there have 

been some discussions on using expert systems to deal with this kind of problems" 

little work has been done on how neural networks can be used to deal with this type 

of problems. 

(6) A necessary step before fault diagnosis is fault recognition or identification. It 

clearly depends on effective assimilation of all the measurements. A neural network 

may be a useful tool for diagnosis: mapping symptoms to faults, but it is not very 

effective in fault recognition. Some researchers used neural networks trained with 

normal operational data to identify faults: if the output was not in the normal region 

then a fault is expected. 

(7) The biggest problem with FFNN is availability of training data. It is 

unthinkable that a real plant will initiate some faults to provide training data. 

Though dynamic training simulators have been used to generate training data [151, 

155], methods for fault diagnosis should not rely on the assumption that a high 

flexible customised simulator of high fidelity is available. 

The last two points make FFNNs which adopt a supervised learning mechanism 

less attractive in fault identification and diagnosis than the multivariate analysis 

approaches introduced in Chapter 4 and unsupervised machine learning methods to 

be introduced in Chapters 6 and 7. 
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5.5 Fuzzy Neural Networks 

Descriptions commonly used by engineers in describing a variable being high or 

low, or a process being nonnal or abnonnal are inherently fuzzy. These fuzzy 

descriptions are a kind of conceptualisation of numerical values, and are more 

qualitative and meaningful to operators. Fuzzy mathematics provides a technique for 

bridging the gap between qualitative descriptions and numerical values. Figure 5.7 

shows how a process variable can be transfonned to fuzzy concepts using fuzzy 

membership functions. It states that the variable takes three fuzzy values, high, 

nonnal and low. When it takes a fuzzy value, it is also attached with a fuzzy 

membership value. For example, (the variable = High, 0.8) is a statement that the 

value is high with a fuzzy membership value 0.8. 

~ 1.0 

t ~ 0.0 

"'" 0.7 
NonnaliztXi value of a process variable 

Figure 5.7 Fuzzification of a process variable. 

Conventional neural networks have real number inputs and weights. There are 

three main types of fuzzy neural networks (FNNs) [156]: FNNs with fuzzy input 

signals but real number weights, FNNs with real number input signals but fuzzy 

weights, and FNNs with both fuzzy input signals and fuzzy weights. It is the first 

type of FNNs, i.e., fuzzy input signals and real number weights that has been studied 

for process fault diagnosis [l5I, 155, 154]. In the work of [154] fuzzy membership 

functions take part in the learning. In our work, fuzzy membership functions do not 

participate in the learning process but are only used for pre-processing the data. The 

procedure can be illustrated using Figure 5.8, which illustrates a fuzzy neural 

network for two input variables, Xl and X2 and one output y. 
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Figure 5.8 A fuzzy neural network architecture. L-Iow, H-high, N-normal. 

Inside the dashed box of Figure 5.8 is a normal feed forward neural network. 

Outside of the dashed box represents fuzzy processing of the data before used for 

training. However, Such a FNN increases the size of the network dramatically. Each 

nput variable needs to be represented with three nodes. If each input variable is to 

Ie expressed by five fuzzy values, i.e., high, medium high, normal, medium low and 

ow, it will require five nodes. The FNN used in [154] has a similar problem. An 

lternative is to use the structure of Figure 5.9. In this structure each input variable 

: always split into a pair of nodes, one is used to describe the fuzzy value being 

ther L, M or H, the other to represent the membership value. Case studies of 

lplying FNNs for fault diagnosis will be given in Section 5.8 
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Ire 5.9 An alternative structure of fuzzy neural network. 
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5.6 Fuzzy Set Covering Method 

If we regard all the symptoms of faults as a symptom fuzzy set M, 

M=(ml,m2, ... ,mN) 

and all faults form a fault fuzzy set D, 

D = (dl,d2, ... dT) 

(5.8) 

(5.9) 

then fault diagnosis is to develop a mapping between the two fuzzy sets. Based on 

this idea, a fuzzy set covering (FSC) method was developed [l51]. It is designated 

this name because it was initially inspired by the crisp set covering approach 

developed by Reggia et al.[ 157] which was also appreciated by Penalva et al. [158]. 

In [151] an approach was discussed to convert three types of symptoms, namely 

process variables, model equations and dynamic trends to fuzzy symptom concepts. 

With the progress in technology for pre-processing measurement signals as 

introduced in Chapter 3, it is possible to use better approaches. Therefore here we 

do not introduce the way to convert symptoms to fuzzy concepts introduced in 

[151], but focus the discussion on the fuzzy set mapping algorithm. 
For a given diagnostic task, the extent to which symptom mi exists is called the 

grade of membership of mi in M , and is represented as ai. All ai form a fuzzy set 

A, 

(5.10) 

The degree to which mi(i= 1, N) is caused by dj(j= 1, T) represents the fuzzy 

relationship between fuzzy sets M and :6. This fuzzy relationship can be 

represented as a fuzzy matrix R, 
R=(ri,j)NxT, O~fj,j~ I, i=I,N, j=I,T (5.11) 

The failure likelihood of fault dj is represented by bj and can be obtained from the 

following fuzzy set operation, 

Ao R = B =(bl,b2, ... ,bT) (5.12) 

bj=(al * fI,i~ (a2 * r2,j)···(aN * fN,j), j=I,T 

where operator 0 is represented as M(*, *) and can have different forms, as shown 

in Table 5.1. Wang et al. [151] only discussed the M(e, +) operator, comparisons of 

different operators were not carried out. A learning approach adapted from 

feedforward neural networks were used to learn the fuzzy matrix. 
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Table 5.1 Fuzzy matrix operators. 

Modell M( 1\, V) 

Model 2 M(e, +) 

Model 3 M(e, V) 

Model 4 M(I\,Ei3) 

Model 5 M(e,Ei3) 

N 

bj= 1':1 (ail\ri,j) j=1,2, ... T 
N 

bj= L ali,j j=I,2, ... T 
;=1 

N 

b·- V a r J- 1=1 i i,j j=1,2, ... T 
N 

bj=Ei3 L ail\ri,j j=1,2, ... T; 
;=1 

a Ei3 b=min {I ,a+b} 
N 

bJ.=Ei3" a'r" J'-I 2 T .t.... 1 1,J - , , ... 
;=1 

7 Fuzzy Signed Digraphs 

recent years a notable development in fault diagnosis has been the signed directed 

lph (SDG). Since it was first proposed for fault diagnosis by Iri et a!. [159] it has 

:acted much attention [160 - 171, 194]. It is attractive because it provides an 

gant and straight forward tool for qualitatively analyse the cause-effect 

ltionships between variables. Neural networks are clearly not capable in this 

ect. However, there are common limitations in all the SDG models. Firstly, the 

ressive capability is very limited since they are crisp graphs - a node or a branch 

only take three values, i.e., -, 0 and +. As a result it will give ambiguous 

tions in complicated fault diagnosis. The application of fuzzy concepts by Han 

'. [172] and Shih and Lee [173] only makes the input nodes to be able to 

ert numerical data to qualitative expression but the graph as a whole is still a 

one. Secondly the reasoning methods in a SDG model are often dependent on 

, over simplified assumptions. As a result large errors can be expected when 

ning in a complex structure. Thirdly, the development of the SDG has been 

:ation driven. For example, the algorithms have been developed specifically 

mIt diagnosis and can't be applied directly to qualitative simulation. 
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Furthennore, the SDG models are not able to deal with uncertainty in data and 

reasoning simultaneously. Finally, they are not able to learn from data. 

A fuzzy-SDG method [59, 60, 174] was developed which has far more features to 

overcome many of the limitations of SDG models, which was later further improved 

by Huang and Wang (1999). 

Fuzzy graph is a natural generalisation of the crisp graph using fuzzy set concepts. 

A crisp graph is defined by the pair G = (X, E) where X is a finite set of nodes and 

E a non fuzzy relation on X x X. A fuzzy graph [179] is a pair (X, E), where X is a 

fuzzy set on X and E is a fuzzy relation on X x X such that IlE s: min ( IlX (x), Il 

X (x'». Here IlE is the membership function of the binary effect of two adjacent 

nodes x and x' over a branch, IlX ' the membership function of the node. However, 

in some situations it may be desirable to relax this inequality [178]. Algorithms 

about fuzzy graphs can be found in [178]. Obviously, if IlE and IlX only take the 

values -1, 0 or 1, then a fuzzy graph becomes crisp. A fuzzy-SDG is defined by 

nodes defining variables, branches representing the effects between two variables 

and reasoning propagation algorithms associated with the graph. 

5.7.1 Nodes 

Each node in the fuzzy-SDG is represented by a variable which can take a number 

of values from the fuzzy value space. An example of value space of a node is shown 

in Figure 5.7, in which the process variable takes three fuzzy values, high, nonnal 

and low. Another example is shown in Figure 5.10, in which L is the liquid level in 

a tank changing from 0 to 2 meters, v is the nonnalised value of L in the range of 

-1.0 to 1.0, and the fuzzy membership value changes from 0 to 1. Each fuzzy value 

in Figure 5.10, such as medium low or low, is a fuzzy set M defined by Equation 

5.13. 

M = {x. Il}. Il = [0,1] (5.13) 
M is therefore represented by its membership function, /J., such that the value of 

/J. illustrates the degree of membership of the element x belonging to M. The 

membership function can have many shapes, such as triangular and trapezoidal. The 

fuzzy value medium low in Figure 5.10 is a half-declined trapezoidal fonn which 

can be represented by Equation 5.14. 
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Figure 5.10 The fuzzy value space of a variable. 

5.7.2 Branches 

(5.14) 

Attached to each branch connecting two nodes is an arrow representing the effect 

direction and an effect strength. The effect strength is measured by a weight. 
Suppose that Xj+ 1 and Xj are two nodes linked by a branch directed from Xj+ 1 to Xj, 

then the effect strength of Xj+ 1 on Xj is determined by Equation 5.15, 

) S Rx j + 1 
e(xj+l~Xj = j,j+l ---

RXj 

(5.15) 

in which Rxj+ 1 and Rxj are the value range (i.e., maximum -minimum) of nodes 

Xj+ 1 and Xj respectively and Sj, j+ 1 is the sensitivity of Xj to Xj+ 1, determined by 

Equation 5.16. 
_ OXj 

Sj,j+l - -- (5.16) 
OXj + 1 

The value range for a node consists of positive and negative ranges, corresponding 

to fuzzy values, v in the range [0, 1] and [-1, 0] respectively. Obviously, the larger 
the value of e(xj+ 1 ~ Xj), the stronger the effect of Xj+ 1 on Xj. If the relationship 

uses a time derivative to account for the dynamics, this can be approximated using a 

backward difference. The sensitivity will be derived from the partial derivative 

estimated using the partial with respect to the rate of change of the quantity as 

shown by Equation 5.17. 
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S. '+1 = a ( dx j / dt ) 
J,j a 

Xj + I 

(5.17) 

There are three basic connections in a fuzzy-SDG, i.e., serial (Figure 5.11(a», 

divergent (Figure 5. 11 (b» and convergent (Figure 5. 11 (c» connections. 

Combination of the three can form any complicated networks such as Figure 

5.11(d). Wang et al. [59] described the reasoning strategies for the basic 

connections. 

(a) Serial connection 

(c) Convergent connection 

(b) Divergent connection 

(d) A causal fuzzy network is a 
combination of figures (a), (b) and (c) 

Figure 5.11 Basic connections in a fuzzy - SDG. 

Fuzzy -SDG proved to be able to overcome many of the limitations of SDG 

mentioned earlier. More importantly, fuzzy-SDG has the learning capability from 

data, therefore can be used as a tool for data mining and knowledge discovery. 

5.7.3 The extended fussy-SDG 

In many situations, using a single weight (defined by Equation 5.15) is not sufficient 

because it implies a linear relationship between two nodes. The extended fuzzy­

SDG developed by Huang and Wang [175] developed a more sophisticated method 

describing the connection relationship. 

Two adjacent layers of a fuzzy-SDG is shown in Figure 5.12(a), which depicts the 

cause - effect relationships between variables [XI. X2, X3] and [ZI. Zz, Z3], 

indicating that ZI is dependent on XI and X3 but independent on X2. Figure 5. 12(b) 

shows the detail for training this substructure. The substructure involving XI. X3 and 
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ZI can be trained independently. The node XI is converted into two types of nodes: 

XI[L, M, H] and Jl. The first type of nodes takes only discrete values such as H 

(high), M (medium) and L (low). The second type of nodes takes continuous values 

Jl between 0 and 1 representing the fuzzy membership values when the first node 

takes the value of H, M or L. The outside of the dashed box of Figure 5.12(b) 

represents fuzzy processing of the original data. The arrangement is different from 

that of the fuzzy neural network previously studied [151], that requires three nodes 

to represent a variable if the variable takes three fuzzy values. However, the present 

method always uses two nodes, therefore, the size of the network does not increase 

with increased values in the fuzzy space. Inside the box of Figure 5 .12(b) is a single 

layer percetron with no hidden layers. But it also allows to have one hidden layer. 

G ~0 

~ (a) 

"-+0 · @ .- - - - - - - - - -
• • ~

Xll;r • 
Xl • • • • I I ZI!LM 

~ m 
• • • • • 

(b) 

Figure 5.12 Learning of a convergent fuzzy-SDG. 

• .... 
Zl 

Figure 5.13 compares a fuzzy - SDG with a fuzzy neural network. Suppose all the 

variables in Figure 5.13, Xl to X3, Zl to Z 11 and Yl to Y3 represent variables in a 

process. The non-linearity between the input variables [Xl, X2, X3] and the output 

variables [Y 1, Y2, Y3] are expected to be high due to their distances. A neural 

network (or a fuzzy neural network) with only one hidden layer as shown in Figure 

5. 13 (b) can usually be able to deal with the high non-linearity between [Xl, X2, X3] 

and [Y1, Y2, Y3]. 
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If we have the knowledge of the cause - effect relationships between [Xl, X2, 

X3] and [Yl, Y2, Y3] via a number of intermediate variables, e.g., Zl-Zll, we can 

make use of the knowledge to develop a cause-effect diagram like Figure 5.13(a). 

The procedure for training the convergent connection in a fuzzy-SDG has been 

discussed above (refer to Figure 5.12) using the first layer of Figure 5.13(a). A 

single layer percetron (Figure 5.l2(b» can normally give good performance for a 

substructure in a fuzzy-SDG. It is because the non-linearity between any directly 

connected layers is normally not high. If we view the fuzzy-SDG network in the 

horizontal direction, it is a different way of linear summation of a number of small 

non-linear (e.g., sigmoid) functions. 

There is no doubt that the relationship between two connected nodes becomes 

more complex compared with the original fuzzy-SDG because the weight is 

replaced by a complicated relationship. However, the relative magnitudes of weights 

are not significant, because they depend on the determination of the maximum and 

minimum boundary values of variables in normalisation. In fact during reasoning we 

are mainly concerned with the values of individual nodes and the propagation of 

reasoning in the whole network, not the weight of a branch. Similar observations 

can be found in the Bayesian networks in which the branches only mean a link 

between two nodes. The reasoning in a Bayesian network is based on the 

conditional probability calculation, which requires a complex conditional 

probability table. 

/Z4 __ 

:~~Zlj{~:;;~: ~~:~ 
X3~Z2~Z9 

Z3 

(a) a fuzzy-SDG diagram 

(b) a neural network 

:SZ:VI 
~Y2 

V3 

Figure 5.13 Comparison of a fuzzy-SDG and a neural network. 
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5.8 Case Studies 

In this section we describe two case studies. The first case study compares fuzzy 

neural network, fuzzy single layer percetron and fuzzy set covering approaches to 

fault diagnosis of a FCC process. It will demonstrate that three layered fuzzy neural 

networks normally give more accurate results than single layer percetron and fuzzy 

set covering approaches. However all three can identify significant disturbances or 

faults and the difference is at identifying small changes. In terms of qualitative 

interpretation of connection weights, FSC and PCT are advantageous compared 

with FFNN. In the second case study, it shows that for a problem whose nonlinearity 

is not high, a fuzzy - sna gives equally good result as FFNN and has much simpler 

structure and clearer causal - effect picture. 

5.S.1 Application to Fault Diagnosis of a FCC Process 

The refmery residual fluid catalytic cracking process (R-FCC) described in the 

appendix B is used as a case study. The data used for this study is summarised in 

Table B2 of Appendix B. To avoid confusion in what follows, we use data patterns 

to refer to the 67 data patterns, and fault types to refer to the 13 types of faults. 

5.8.1.1 Fuzzyjication of1nput- Output Variables 

For a process variable that changes rapidly over a short time, violations of 

prescribed high and low limits are indications of possible faults. They are described 

by two variable pairs: variable_name (high, x) and variable_name (low, x), where x 

is the membership value representing the degree of high and low measures. 

Model equations impose constraints on the process variables which are derived 

from the material and energy balances, equilibrium and rate equations. The 

equations are written so that they are equal to zero when satisfied. Associated with 

each model equation are tolerance limits which are the expected positive and 

negative values of the residual for which the constraint equation is to be satisfied. 

Here the residual is defined as the deviation of the constraint equations from zero. 

They are also described by the two variable pair: constraint _name (positive, x) and 

constraint _name(negative, x). In this case study, no model equations are 

considered. 
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Chapter 3 has introduced a number of approaches for pre-processing dynamic 

trends, such as wavelets, principal component analysis and episode approaches. 

Here we use a fuzzy approach. The fuzzy approach may not be superior over 

methods introduced in Chapter 3 but can be used directly by fuzzy neural networks. 

The approach is an adaptation of the method proposed by Chen and Jong [176], 

with the introduction of fuzzy concepts and can be explained by reference to Figure 

5.14. The dynamic response is divided into three stages (I, II and III in Figure 5.14). 

Each stage corresponds to a particular feature of the system behaviour. Stage I is 

associated with the order of the system, II the maximum rate of change of the system 

when maximum control input is applied and III relates to the settling stage and is an 

indication of the stability of the system. 

F or stage I, a variable pair: trend_section_l (inc, x) and trend_section_l (dec, x) is 

used. The treatment of section II has similar measures: trend_section_2(inc, x) and 

trend_section_2(dec, x). However, five values are used to interpret stage III, 

namely: 

trend_section_3{ divergence, x) 

trend_section_3(oscillation, x) 

trend_section_3{stable, x) 

trend_section_3 (mean_value_high, x) 

trend_section_3(mean_value_low, x). 

In the first three pairs x has a value 0 or 1. While in the last two measures which 

represent the deviation of the mean value of this stage from that for normal 

operation x has values from 0 to 1. This means that a dynamic trend can be 

represented by nine inputs in a network for fault diagnosis, as shown in Figure 5.15 

(the part in the box of dashed line) of a diagnostic network. 

Figure 5.15 is a fuzzy neural network for diagnosing the FCC process. The output 

layer represents faults. The first output node, fresh feed F (high, x), refers to fault of 

high fresh feed flowrate. The x is in the range [0, 1] measuring the degree of high. 

While the x in node 12, compressor (failure, x) only takes 0 or 1, with 1 meaning 

failure and 0 normal. 
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Figure 5.14 Fuzzy qualitative interpretation of a dynamic trend. 

The input layer nodes in Figure 5.15 refer to symptoms. Some are described by 

dynamic trends represented by nine nodes, and some as process variables and are 

described by two nodes, high and low. By independently changing the parameters of 

the outputs and recording the responses of inputs, data corresponding to Table B2 

was obtained. 

Figure 5.15 shows the fuzzy neural network structure which has one hidden layer. 

A fuzzy single layer percetron which has the same input - output structure but no 

hidden layers, and a fuzzy set covering model is also used to the same problem in 

order to make comparisons. It might be difficult to have a completely fair 

comparison, considering the difference in structure and training details. The 

comparison is based on the assumption that all three, are in their optimum structure 

and training parameters. 

5.8.1.2 Discussion of Results 

The broad nature of results is summarised in Table 5.2, which shows that the 

Fuzzy FFNN model is able to identify 65 of the 67 faults in the samples, compared 

with 55 and 53 out of 67 for fuzzy PCT and FSC respectively. The result might be 

anticipated since FFNN is the best technique for dealing with non-linear data 

followed by PCT and FSC. However there are more interesting observations. 
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Close inspection of the fault data patterns in Table 5.2 shows that the faults which 

are not identified by any of the procedures are for smaller disturbances. For 

instance, data pattern 24 represents an increase of 10% in the preheated temperature 

of the mixed feed. This is a relatively small change compared with other data 

patterns, and the system controllers are able to bring the system back to designed 

operating condition fairly quickly. In fact, all the significant disturbances and faults 

can be recognised by three models. It is apparent that faults not identified by FFNN 

remain unidentified by PCT and FSC as well. In the same way, those not identified 

by PCT are missed by FSC. So the order for describing effectiveness in accounting 

for small disturbances is FFNN, PCT and FSC. 

Table 5.2 Comparison 0 fthre h· f1 ul d· e approac es mat la~OSlS. 

Number of patterns Data patterns that are not identified 
identified 

Fuzzy 65 out of67 24,51 
FFNN 
PCT 55 out of67 24,51, 10, 11,23,24,27,28,29,39,44,45 
FSC 51 out of 67 24,51, 10, 11,23,24,27,28,29,39,44,45, 

33,34 

Fe Fe 

TCi TCi 

FHi Ho FHi Ho 

THi TH i 
(a) FSC (b}PCT 

FC 
TCi TC o 

FHi 
THi THo 

(e) B P 

Figure 5.16 The effect weights of three approaches for a heat exchanger and the 

cause-effect explanation. 
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Table 5.3 Comparison of three methods in predicting faultS·,b,e, 

1 2 3 4 5 6 7 8 9 10 11 12 13 
No 7 0.7778 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

BP 0.7258 0.0093 0.0004 0.0006 0.0000 0.0174 0.0120 0.0000 0.0000 0.0000 0.0155 0.0000 0.0003 
PCT 0.5567 0.0409 0.0651 0.0359 0.0322 0.0474 0.0338 0.0196 0.0004 0.0198 0.0069 0.0013 0.0117 
FSC 0.5613 0.0141 -0.0111 -0.0097 -0.02790.0083 0.0146 0.0162 -0.0352 -0.0373 0.0157 -0.0307 0.0197 

No 32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
BP 0.0006 0.0024 0.0000 0.0001 0.0001 0.0000 0.8491 0.0001 0.0000 0.0000 0.0035 0.0000 0.0000 
PCT 0.1224 0.0476 0.0200 0.0295 0.0305 0.0293 0.7479 0.0085 0.0002 0.0264 0.0061 0.0009 0.0067 
FSC 0.21610.0393 -0.0762 -0.0184 0.0309 0.0079 0.6593 -0.0189 -0.0003 0.0171 0.0049 -0.0028 0.0132 

No 38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 
BP 0.0000 0.0022 0.0000 0.0000 0.0000 0.0000 0.00000.0327 0.9871 0.0008 0.0000 0.0000 0.0106 

PCT 0.0322 0.0229 0.0199 0.0167 0.0134 0.0161 0.0017 0.3529 0.9018 0.0648 0.0030 0.0675 0.0156 
FSC -0.04290.0317 -0.0662 0.0316 0.0007 -0.0205 0.0020 0.2796 0.7681 0.0282 -0.0864 -0.1079 0.0460 

No 43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 
BP 0.0000 0.0128 0.0005 0.0000 0.0000 0.0001 0.0000 0.0000 0.0002 0.9557 0.0006 0.0004 0.0035 
PCT 0.00220.14580.02700.00640.00240.0171 0.01120.00300.00780.81700.0041 0.00750.0885 
FSC -0.195 0.0313 0.0427 -0.0124 -0.0432 -0.0211 0.0401 -0.1144 0.0695 0.7781 0.0196 0.0316 0.0190 

No 60 0.7222 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8454 0.0000 0.0000 0.0000 0.0000 0.0000 
BP 0.7347 0.0000 0.0000 0.0002 0.0019 0.0000 0.0013 0.8203 0.0019 0.0000 0.0000 0.0007 0.0000 
PCT 0.6892 0.0050 0.Q305 0.0536 0.1205 0.0292 0.0208 0.7579 0.0669 0.0013 0.0058 0.0246 0.0027 
FSC 0.5345 0.0153 -0.0145 -0.0559 0.0241 -0.1010 0.1218 0.7848 0.1320 -0.2026 0.0058 0.1114 -0.0328 

No 61 0.7778 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 
BP 0.7763 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0075 0.9908 0.0000 0.0000 0.0033 0.0000 
PCT 0.6969 0.0039 0.0082 0.0263 0.0456 0.0181 0.0025 0.1887 0.9362 0.0050 0.0042 0.0586 0.0045 
FSC 0.7340 -0.0615 -0.0813 0.0339 0.1096 -0377 -00388 -0.0442 1.1698 0.0665 0.0399 00896 -00729 

No 65 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 
BP 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0087 0.98\2 0.0015 0.0000 0.9784 0.0037 
PCT 0.0022 0.0104 0.0049 0.0097 0.0119 0.0098 0.0010 0.1603 0.8441 0.0433 0.0018 0.8598 0.0679 
FSC -.0223 0.0473 -0.0160 -0.0128 -0.0527 0.0374 -0.0055 0.2691 0.6280 0.0932 -0.0255 0.7562 0.0926 

No 67 0.0000 0.8333 0.7500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
BP 0.0001 0.8200 0.7447 0.0000 00000 0.0012 0.0000 0.0000 0.0002 0.0020 0.0021 0.0000 0.01 17 

PCT 0.0300 0.7592 0.7144 0.0040 0.0013 0.0077 0.0146 0.0015 0.0100 0.0630 0.0251 0.0003 0.0787 
FSC 0.0390 0.7977 0.7038 0.0143 0.0211 -0.0044 -0.0135 0.0201 -0.01760.1017 -0.030 -0.0273 0.0188 

a_I to 13 are fault types corresponding the 13 output nodes of Figure 5.15 
b _ No 7 is the 7th data pattern 
c _ 1.0 means fault; 0 means no fault. 
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Despite the three having significantly different capabilities when monitoring small 

disturbances, they are almost equal in isolating major disturbances and faults. Table 

5.3 gives the comparison of three methods for a number of fault situations. All three 

can identify the faults, even in double fault situations, though in most cases FFNN 

predictions are slightly closer to 1.0 than the other two (1 means fault). However, 

PCT and FSC are much faster in convergence. A typical example is that FFNN 

requires several hours, PCT one hour and FSC 30 minutes on a personal computer. 

People are also interested in what FFNN, PCT and FSC can help us to develop a 

better understanding of the cause-effect behaviour of the process. It is easier to 

illustrate this in a simple counter current flow heat exchanger shown in Figure 

5.l6(a). Our interest is to study how the cold stream flowrate (FC) and its inlet 

temperature (TC;) and the hot stream flowrate (FH) and its inlet temperature (TH;) 

affect the outlet temperature TCo and THo. The weights obtained for the same set of 

data for FFNN, PCT and FSC are shown in Figure 5.l6(b). For both PCT and FSC, 

it is very clear to see from the weights how an input affects an output. However it is 

not so clear from the weights of a FFNN due to the existence of a hidden layer. 

5.8.2 Application to a Waste Water Treatment Plant 

The extended fuzzy-SDG was applied to a waste water treatment plant and 

compared with feedforward neural networks by Huang and Wang [175]. The plant 

has three treatment units in series. Through sensitivity study, a fuzzy-SDG is 

developed as shown in Figure 5.17. The variables are illustrated in Table 5.4. The 

advantage of this fuzzy-SDG network is that compared with neural networks, it is 

more intuitive to engineers and supervisors. Neural networks are fully connected 

and can give predictions given the inputs. However, it is not straightforward to 

qualitatively know the weighted contribution of inputs to the outputs. In contrast, 

the causal network is no longer a blackbox because it is a partially connected graph. 

Engineers can trace forward and backward the network to analyse problems. For 

example, the output suspended solids, SS-S is observed as (High, 0.10), tracing 

back the causal graph and the nodes, SS-D (High, 0.68), SS-P(High, 0.28), RD­

SSP(Medium, 1.00), SS-E (High, 0.88) and SSV-E(M, 0.87). So the main reason 

causing SS-S(High, 0.10) is due to SS-E(High, 0.88). 
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Table 5.4 The attributes of the databasea. 

I Q-E 

2 ZN-E 

3 PH-E 

(input flow to plant) 

(input Zinc to plant) 

(input pH to plant) 

4 BOD-E (input BOD to plant) 

5 COD-E (input COD to plant) 

6 SS-E (input SS to plant) 

7 SSV-E (input VSS to plant) 

8 SED-E (input sediments to plant) 

9 COND-E (input conductivity to plant) 

10 PH -P (input pH to primary settler) 

20 SSV-D (input VSSto secondary settler) 

21 SED-D (input sediments to secondary settler) 

22 COND-D (input conductivity to secondary settler) 

23 PH-S (output pH) 

24 BOD-S (output BOD) 

25 COD-S (output COD) 

26 SS-S (output suspended solids) 

27 SSV-S (output VSS) 

28 SED-S (output sediments) 

29 COND-S (output conductivity) 

II BOD-P (input BOD to primary settler) 30 RD-BOD-P (perfonnance input BOD in primary settler) 

12 SS-P (input SS to primary settler) 31 RD-SS-P (performance input SS to primary settler) 

13 SSV-P (input VSS to primary settler) 32 RD-SED-P (performance input sediments to primary settler) 

14 SED-P (input sediments to primary settler) 33 RD-BOD-S (performance input BOD to 2nd settler) 

15 COND-P (input conductivity to primary settler) 34 RD-COD-S (performance input COD to 2nd settler) 

16 PH-D (input pH to secondary settler) 35 RD-BOD-G (global performance input BOD) 

17 BOD-D (input BOD to secondary settler) 36 RD-COD-G (global performance input COD) 

18 COD-D (input COD to secondary settler) 37 RD-SS-G (global performance input SS) 

19 SS-D (i~ut SS to secondary settler) 38 RD-SED-G (global performance input sediments) 

a BOD _ biological oxygen demand, COD - chemical oxygen demand, SS - suspended solids, VSS -
volatile suspended solids 

~ 
~ 

Figure 5.17 The fuzzy-SDG for the wastewater treatment plant. 

M - medium; L - low; H - high. 
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Figure 5.18 Comparisons offuzzy-SDG without hidden neurons (Fuzzy-SDG-
0), fuzzy-SDG with two hidden neurons (Fuzzy-SDG-2) and backpropagation 
neural networks (BP). 

In terms of accuracy of the fuzzy - SDG, a comparison is made as shown in Figure 

5.18. It compares the prediction ofPH-P (the second node on the second layer from 

top of the network shown in Figure 5.17) using a fuzzy-SDG with no hidden 

neurons (Fuzzy-SDG-O), with two hidden neurons (Fuzzy-SDG-2) and a fully 

connected neural network with ten hidden neurons (BP Prediction). The fully 

connected neural network has to include all the inputs in the first layer of Figure 

5.17. As far as prediction accuracy is concerned, for all data patterns used for 

training, three models give equivalent predictions as demonstrated in Figure 5.18. 

The average relative errors for the whole data cases using Fuzzy-SDG-O, Fuzzy­

SDG-2 and BP are 11.6%, 12.3% and 11.6% respectively. 

5.9 General Observations 

Several supervised machine learning approaches are introduced using illustrative 

case studies. These include neural and fuzzy neural networks, fuzzy set covering 

and fuzzy-SDG. The focus of discussion has been on issues that need to be 
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addressed in practical applications. These include variable selection and feature 

extraction for FFNN inputs, model validation and confidence bounds, accuracy and 

generality, feature extraction from dynamic transient signals as well as the ability to 

give causal knowledge. There are some other issues which have not or have not 

fully addressed in the context. 

The backpropagation learning is not a recursive approach, which means that when 

new data is to be used to update the knowledge, it has to be mixed with previous 

data and the model to be retrained again. Recursive models are particularly useful 

for on-line systems because they can continuously update their knowledge. 

When applied to fault diagnosis, supervised learning approaches described above 

are suitable for mapping the set of symptoms to the set of so-called essential faults 

[151]. Faults can be divided into two categories: essential faults and root faults. For 

example, the symptom - "the trend of liquid level increases dramatically at the 

bottom of the column" can be explained by the following essential faults: (1) high 

feedflowrate; (2) low bottom withdrawal flowrate; (3) low flash zone temperature; 

( 4) low flash zone pressure; (5) change in feed properties. These essential faults are 

indications of root faults. Looked at in this way, low bottom withdrawal flow is an 

essential fault which can be the result of the root faults of a pump failure or fail to 

open a valve. Therefore fault diagnosis is a two step procedure, mapping from the 

set of symptoms to the set of essential faults, and explanation of the essential faults. 

The unsupervised approaches introduced are suitable for the first step. For the 

second step, it is more appropriate to use expert systems or graphical models such 

as signed digraph. Similar strategies have been developed by Becraft and Lee [177] 

and Wang et al. [151]. 

Since supervised learning approaches require training data which is difficult to get 

for the purpose of fault identification and diagnosis, they are less attractive 

compared with multivariate analysis approaches (Chapter 3), and unsupervised 

approaches (Chapter 6). However, the good performance in correlating non-linear 

inputs-outputs makes them very attractive in developing software sensors or 

software analysers (Chapter 9). 

The extrapolation problem of feedforward neural networks has been addressed 

through input dimension reduction, proper selection of training and test data, model 

validation and confidence bound evaluation as well as using single layer percetron, 

FSC or fuzzy-SDG if feasible. There are also efforts in incorporating partial domain 

knowledge into neural network learning. 



CHAPTER 6 

UNSUPERVISED LEARNING FOR OPERATIONAL STATE 
IDENTIFICATION 

6.1 Supervised vs. Unsupervised Learning 

This chapter describes some representative unsupervised machine learning 

approaches for process operational state identification. Whether a machine learning 

approach is regarded as supervised or unsupervised depends on the way it makes 

use of prior knowledge of the data. Data encountered can be broadly divided into 

the following four categories: 

(1) Part of the database is known, i.e., the number and descriptions of classes as 

well as the assignments of individual data patterns are known. The task is to assign 

unknown data patterns to the established classes. 

(2) Both the number and descriptions of classes are known, but the assignment of 

individual data patterns is not known. The task is then to assign all data patterns to 

the known classes. 

(3) The number of classes are known but the descriptions and the assignment of 

individual data patterns are not known. The problem is to develop a description for 

each class and assign all data patterns to them. 

e 4) Both the number and descriptions of classes are not known and it is necessary 

to determine the number and descriptions of classes as well as the assignments of 

the data patterns. 

The methods introduced in Chapter 5 are powerful tools for dealing with the first 

type of data where the objective is to assign new data patterns to previously 

established classes. Clearly this is not appropriate for the last three types of data, 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999
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since training data is not available. In these cases unsupervised learning approaches 

are needed and the goal is to group data into clusters in a way such that intraclass 

similarity is high and interclass similarity is low. In other words, supervised 

approaches can learn from known to predict unknown while unsupervised 

approaches learn from unknown in order to predict unknown. Supervised learning 

can generally give more accurate predictions, but can not be extrapolated: when new 

data is not in the range of training data, predictions will not generally be reliable. 

For process operational state identification and diagnosis, supervised learning needs 

both symptoms and faults. Therefore the routine data collected by computer control 

systems can not be used directly for training. Faults are unlikely to be deliberately 

introduced to an industrial process in order to generate training data. 

Grouping of data patterns using unsupervised learning is often based on a 

similarity or distance measure, which is then compared with a threshold value. The 

degree of autonomy will depend on whether the threshold value is given by the users 

or determined automatically by the system. In this chapter three approaches are 

studied, the adaptive resonance theory (ART2), a modified version of it named 

ARTnet, and Bayesian automatic classification (AutoClass). ART2 and ARTnet 

though require a pre-defined threshold value are able to deal with both the third and 

fourth types of data. AutoClass is a completely automatic clustering approach 

without the need to pre-define a threshold value and the number and descriptions of 

classes, so is able to deal with the fourth type of data. 

6.2 Adaptive Resonance Theory 

The adaptive resonance theory (ART) was developed by Grossberg [47, 48], as a 

clustering-based, autonomous learning model. ART has been instantiated in a series 

of separate neural network models referred to as ART!, ART2 and ART3 [43,49, 

50,51]. ART! is designed for clustering binary vectors and ART2 for continuous­

valued vectors. 
A general architecture of the ART neural network is shown in Figure 6.1. The 

network consists of three groups of neurons, the input processing layer (F1), the 

cluster layer (F2), and a mechanism which determines the degree of similarity of 

patterns placed in the same cluster (a reset mechanism). The input layer can be 

considered as consisting of two parts: the input and an interface. Some processing 

may occur in the both (especially in ART2). The interface combines signals from 

the input to the weight vector for the cluster unit which has been selected as a 
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candidate for learning. The input and interface are designated as F, (a) and F, (b) in 

Figure 6.1. 

Figure 6.1 The general architecture of ART. 

(Cluster layer) 

Fl (b) Layer 
(Interface) 

An input data pattern is presented to the network, following some specialised 

processing by the network, and is compared to each of the existing cluster 

prototypes in the cluster layer (F2)' The "winner" in the cluster layer is the prototype 

most similar to the input. Whether or not a cluster unit is allowed to learn an input 

data pattern depends on how similar its top-down weight vector is to the input 

vector. The decision is made by the reset unit, based on signals it receives from the 

input (a) and the interface (b) of the F, layer. If the similarity between the "winner" 

and the input exceeds a predetermined value (the vigilance parameter p, in ART 

terms), learning is enabled and the "winner" is modified slightly to more closely 

reflect the input data pattern. If the similarity between the "winner" and the input is 

less than required by the vigilance parameters, a new cluster unit is initialised in the 

top layer and learning is enabled to create a prototype similar to the input. Thus 

both the number and descriptions of classes are continuously updated during 

learning. This is different from the Kohonen network, where the descriptions of 

classes (called neurons in a Kohonen network) are also continuously update during 

learning, but the number of classes needs to be determined before learning starts. 

To control the similarity of patterns placed in the same cluster, there are two sets 

of connections (each with its own weights) between each unit in the interface part of 
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the input layer and the cluster units. The FI (b) layer is connected to the F2 layer by 

bottom-up weights; the bottom-up weight on the connection from the ith FI unit to 

the jth F2 unit is designated b ij . The F2 layer is connected to the FI (b) layer by top­

down weights; the top-down weight on the connection from the jth F2 unit to the ith 

Fl unit is designated tji . 

f(x) 

Wi l--------+-i 

Figure 6.2 Typical ART2 architecture. 

ART2 is designed to process continuous-valued data patterns. A typical ART2 

architecture [43] is illustrated in Figure 6.2. It has a very sophisticated input data 

processing layer (FI ) consisting of six types of units (the W, X U, v, P and Q 

units). There are n units of each of these types (where n is the dimension of an input 

pattern). Only one unit of each type is shown in Figure 6.2. A supplemental unit 

between the Wand X units receives signals from all of the W units, computes the 

norm of the vector w, and sends this (inhibitory) signal to each of the X units. Each 

of these also receives an excitation signal from the corresponding W unit. Details of 

this part of the net are shown in Figure 6.3. A similar supplemental unit performs 

the same role between the P and Q units, and another does so between the V and U 

units. Each X unit is connected to the corresponding V unit, and each Q unit is 

connected to the corresponding V unit also. 
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Figure 6.3 Details of connections from W to X units, showing the supplemental 

unit N to perform normalisation. 

The symbols on the connection paths between the various units in the FJ layer in 

Figure 6.2 indicate the transformation that occurs to the signals as it passes from one 

type of unit to the next; they do not indicate multiplication by the given quantity. 

However, the connections between units Pi (of the Fi layer) and Y; (of the F2 layer) 

do show the weights that multiply the signal transmitted over those paths. The 

activation of the winning F2 unit is d, where O<d<l. The symbol ---> indicates 

normalisation; i.e., the vector q of activations of Q units is just the vector p of 

activations of the P units, normalised to be approximately unit length. 

The U units perform the role of an input phase of the F J layer. The P units play 

the role of the interface to the FJ layer. Units Xi and Qi apply an activation 

function to their net input; this function suppresses any components of the vectors of 

activations at those levels that fall below the user-selected value 9. The connection 

paths from W to U and from Q to V have fixed weights a and b, respectively. 

The most complete description of the ART2 network can be found in [43]. 

Although written for ARTl, the discussions by Caudil [181] and Wasserman [182] 

provide a useful but less technical description of many of the principles employed in 

ART2. 

ART2 has shown great potential for analysis of process operational data and 

identification of operational state due to a number of properties [183, 184, 195]. 

First, it is considered as an unsupervised machine learning system that does not 

require training data. It is well known that it is difficult to find training data for the 

purpose of process fault identification and diagnosis. Second, the approach is 

recursive, or in the terms used in ART2, it is plastic, that is, it is able to acquire new 

knowledge and retain stable in the sense that existing knowledge is not corrupted. 
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This property is apparently very useful for on-line monitoring where information is 

received continuously. 

6.3 A Framework for Integrating Wavelet Feature 
Extraction and ART2 

Wang et al. [185] and Chen et al. [82] developed an integrated framework named 

ARTnet which combines wavelet for feature extraction from dynamic transient 

signals and adaptive resonance theory. In ARTnet the data pre-processing part uses 

wavelets for preprocessing the data for feature extraction. In order to introduce 

ARTnet it is helpful to first examine the mechanism of ART2 for noise removal. 

ART2 has a data pre-processing unit which is very complicated but the mechanism 

for removing noise uses a simple activation function A(x), 

{
X x > e 

A(x) = 0 
x < e (6.1) 

where e is a threshold value. If an input signal is less than e, it is considered to be 

a noise component and set to zero. This has proved to be inappropriate for removing 

noise components contained in process dynamic transient signals which are often of 

high frequencies and in certain magnitude. 

6.3.1 The Integrated Framework ART net 

A mechanism was proposed by Pao [186] to replace the data pre-processing part of 

ART2 with more efficient noise removal and dimension reduction methods. This 

has been followed in this study by using wavelet to replace the data pre-processing 

unit of ART2. The integral framework is called ARTnet to distinguish it from 

ART2. The conceptual architecture of ART net is shown in Figure 6.4. 

In this new architecture, wavelets are used to pre-process the dynamic trend 

signals. The extracted features are used as inputs to the kernel of ARTnet for 
clustering. A pattern feature vector (XI' x2 ,.·· ,x N ) is fed to the input layer of the 

ARTnet kernel and weighted by bij' bottom-up weights. In Chapter 3, the extrema of 

wavelet multiscale analysis should be regarded as the features of dynamic transient 

signals. 
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The weighted input vector is then compared with existing clusters in the top layer 

by calculating the distance between the input and existing clusters. The existing 

cluster prototype, which has a smaller distance than the input is called the winner. 

By considering this input the description or knowledge of the wining cluster is 

updated. Whether or not a winning cluster prototype is allowed to learn from an 

input data pattern depends on how similar the input is to the cluster. If the similarity 

measure exceeds a predetermined value, called the vigilance parameter, learning is 

enabled. If the similarity measure is less than the required vigilance parameter, a 

new cluster unit is then created which reflects the input. Clearly this is unsupervised 

and recursive learning process. 

Updating the 
C C ITT description f-G ... ~ .. ~ ....... ~ f1'l../ofac1uster prototype 

~ ____ +.-==~ Top layer 

·{~j?<l 
•• • t t t Input to 

ARTnet 

Features Kernel 

~ 
( Wavelet Feature extraction) 

~ 
Dynamic trend signals 

Figure 6.4 The conceptual architecture of ARTnet. 

6.3.2 The Similarity Measure in ART net 

It is apparent that the learning process is concerned with the extent to which how 

similar two vectors are. There are several ways to measure the distance between two 

pairs of observations, such as the Hamming or Euclidean distance. For continuous 

data, the Euclidean distance is the most commonly used [187]. Formally, the 

Euclidean distance between two vectors x and y is defined as the root sum-squared 

error, 
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(6.2) 

Suppose there are K existing cluster prototypes. The kth cluster prototype consists 
of a number of data patterns and is also described by a vector, denoted as Z(k) , 

which has considered all data patterns belonging to it. Clearly, if there is only one 
data pattern in the cluster, Z(k) , it is equal to that data pattern. When a new input 

data pattern x is received, a distance between x and z(k) is calculated according to 

the expression, 

(6.3) 

Since the distance between x and all existing cluster prototypes is calculated, the 

cluster prototype with the smallest distance is the winner. If the distance measure for 

the winner is smaller than a pre-set distance threshold, p, then the input x is assigned 

to the winning cluster and the description of the cluster is then updated, 

1 
Z(k) = Z(k) + --x.b .. 

I I NF I Y 
i= 1 ... N, j = 1 .. .K (6.4) 

where Z,(k) refers to the ith attribute of the vector z for the cluster k. h'l is the weight 

between the ith attribute of the input and the jth existing cluster prototype. NF is the 

number of features. 

6.4 Application of ARTnet to the FCC Process 

The FCC process and the data used is described in appendix B. To demonstrate 

the procedure, 64 data patterns are used. Discussion is limited to 64 data patterns in 

order to keep the discussion manageable and to assist in presentation of the results. 

The data sets include the following faults or disturbances: 

• fresh flow rate is increased or decreased 

• preheat temperature for the mixed feed increases or decreases 

• recycle slurry flow rate increases or decreases 

• opening of the hand valve V20 increases or decreases 

• air flow rate increases or decreases 

• the opening of the fully open valve 40 I-ST decreases 

• cooling water pump fails 



Chapter 6 Unsupervised Learning/or Operational State Identification 127 

• compressor fails 

• double faults occur 

The sixty four data patterns were obtained from a customised dynamic training 

simulator, to which random noise was added using a zero-mean noise generator 

(MATLAB®). In the following discussions, the term "data patterns" refers to these 

sixty four data patterns and "identified patterns" to the patterns estimated by 

ARTnet. 

Figure 6.5(a) shows a reactor temperature transient when the fresh feed flowrate 

increases by 70%. Figure 6.5(b) is the same transient with random noise. The 

corresponding four scales from multiresolution analysis for this transient are shown 

in Figure 6.6, together with the corresponding extrema on the right hand side of 

Figure 6.6. 
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Figure 6.S A signal from the simulator (a) and the signal with random noise (b). 
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Figure 6.6 Multiresolution analysis (left) and extrema (right), 
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As stated in Chapter 3, the extrema that are mostly influenced by noise 

fluctuations are those (1) where the amplitude decreases on average as the 

decomposition scale increases and (2) do not propagate to large scales. Using these 

criteria, noise extrema are removed. 

The extrema representation after the noise extrema are removed is a sparse vector, 

so a piece-wise technique is employed to reduce the dimensionality of the signal. 

The extrema after removing noise and carrying out piece-wise processing are shown 

in Figure 6.7. 

Figure 6.8 shows the result after noise removal and compares it with the 

multiresolution analysis of the original noise-free signal. The extrema are the same 

in positions but are slightly different in value. The noise removal algorithm is 

therefore suitable in this case and the 4th scale extrema are selected as input to the 

ARTnet for pattern identification 

It is important that a suitable threshold for pattern recognition is used when 

applying ARTnet. For a threshold p = 0.8, all 64 data patterns are identified as 

individual patterns. A more suitable threshold is obtained by analysing clustering 

results for increased threshold values as shown in Table 6.1. 

Table 6.1 ARTnet clustering result using different distance thresholda. 

Threshold p Number of 
patterns Identified grouping of data samples 

identified 

0.8 64 

1.0 63 r56571 

2.0 60 r5 71 r25 261 r27 281 r56 571 

3.0 57 r5 71 r19 2023241 r25 261 m 281 r56 571 

4.0 54 r5 6 7 81 r19 20 21 23 241 r25 26] r27 281 r56 571 

4.5 49 [3456789] [192021222324] [25 26] [2728] 

r35 361 r56 57] 

5.0 48 r34 5 6 7 8 91 r 19 20 21 22 23 24 291 

r25 261 r27 281 r35 361 r56 57] 

6.0 47 r34 5 6 7 8 91 r 19 20 21 22 23 24 29 611 

r25 261 r27 281 [35 361 r56 571 
a - [56 57] means that data patterns 56 and 57 are identified in the same cluster. 
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With the threshold p increased to 1.0, data patterns 56 and 57, which represent 

cases where the opening of valve 401-ST is decreased from 100% by 80% and 90% 

are grouped together. When p is 2.0, further groupings are [5, 7], representing the 

fresh feed flowrate increasing by 50% and 70%, [25, 26] recycle oil flowrate 

increasing by 70% and 90%, and [27, 28] recycle oil flowrate decreasing by 70% 

and 90%. It is obvious that these are all reasonable groupings. 

When the threshold value is 4.5, the groupings are [3,4,5,6,7,8,9], [192021 22 

2324], [2526], [27,28], [35,36] and [56 57]. The pairing of identified patterns and 

original data patterns are shown in Table 6.2. The clustering is justified by 

inspecting the results in detail. Figure 6.9 shows the trends of three measurements 

for data pattern 5. It shows that regenerator temperature and concentration of 

oxygen in regenerator flue gas drop sharply while catalyst hold-up in reactor 

increases dramatically. All of which mean abnormal operations. Very similar 

scenarios can be found for data patterns 3, 4, 5, 6, 7, 8, and 9, so the result of 

regarding them as a single pattern is acceptable. The grouping [35, 36] can also be 

justified by inspecting the dynamic responses (Figure 6.10). In both cases, the 

dynamic responses of catalyst recycle rate lead to a steady state with the process 

remaining under control. 

Table 6.2 ATRnet identified clusters when the distance threshold is 4.5 and the 
a corresponding data patterns . 

Identified Corresponding Identified Corresponding Identified Corresponding 
clusters data patterns clusters data natterns clusters data patterns 

1 I 19 32 37 51 
2 2 20 33 38 52 
3 [34 5 6 7 8 91 21 34 39 53 
4 10 22 [35361 40 54 
5 11 23 37 41 55 
6 12 24 38 42 [56571 
7 13 25 39 43 58 
8 14 26 40 44 59 
9 15 27 41 45 60 
10 16 28 42 46 61 
11 17 29 43 47 62 
12 18 30 44 48 63 
13 [ 1 9 20 21 22 23 31 45 49 64 

241 
14 f25261 32 46 
15 [27281 33 47 
16 29 34 48 
17 30 35 49 
18 31 36 50 

a - [3 4 5 6 7 8 9] means data patterns 3 to 9 are identified in the same cluster 
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Figure 6.7 Extrema after removing noise (left) and piece wise analysis (right). 

Di - detail of multiscale wavelet analysis; Ai - approximation. 
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However, any further increase in threshold is not useful because some data 

patterns that are significantly different are grouped in the same cluster. For instance, 

when the threshold value is 5, data pattern 29 (opening ratio of the hand-valve V20 

increasing by 5%) is merged with the clusters representing increase and decrease in 

the preheat temperature of the mixed feed. Therefore, the threshold p = 4.5 is 

considered as the most appropriate value for this case. 

10 

10 

200~ -~--'-:::0 ----:!15:----:::2o----!2·5 

(a) 

·10 

~200L -~--,-:::0-~,5:-----:::20------:!25 

(b) 

Figure 6.8 Comparison of the result after noise removal (b) with the 

multiresolution analysis of the original simulation signal (a). 
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6.4.1 Comparison between ARTnet and ART2 

It is apparent that the data pre-processing part of ARTnet is able to effectively 

reduce the dimension of the dynamic trend signals using wavelet feature extraction 

and piece wise processing. ARTnet has also shown other advantages over ART2 in 

operational data analysis. These include the determination of threshold values, the 

ability to deal with noise and computational speed. In the comparison followed only 

the fIrst fIfty seven data patterns were used. 

6.4.1.1 Threshold Determination 

In this case, only 57 data patterns are used to compare the distance threshold for 

using ARTnet and the vigilance value in ART2 using noise-free data. For noise free 

data, ARTnet and ART2 give the same results if the ARTnet distance threshold and 

the ART2 vigilance are appropriately adjusted, as shown in Table 6.3. To 

understand the table, consider the last row, which shows that when the distance 

threshold of ARTnet is 4.5 it gives the same grouping result as ART2 with a 

vigilance value of 0.9985. From Table 6.3, for the same groupings, the ARTnet 

distance threshold changes from 0.8 to 4.5 while the vigilance of ART2 varies from 

0.9998 down to 0.9985. So the distance threshold for ARTnet is less sensitive than 

the vigilance of ART2. The ART2 clustering is too sensitive to the vigilance value, 

making it difficult to set a value. 

6.4.1.2 Robustness with Respect to Noise 

The following demonstrates that ARTnet gives consistent clustering result 

regardless of the magnitude of noise to signal ratio, providing it is in a reasonable 

range. ART2 gives fewer clusters at a low noise to signal ratio and more clusters at 

a larger ratio. 57 data patterns are considered with white noise added. A constant 

Cnoise is introduced to control the magnitude of noise defIned by 

The magnitude of noise from 

the noise generator 
The magnitude of noise = -----=------

c'lOi.\'e 

(6.5) 
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Table 6.3 Comparison of the value ranges of the distance threshold of ARTnet 
abc and the vigilance value of AR T2, for the same grouping schemes' , . 

ARTnet ART2 
distance vigilance Grouping of data samples 

threshold value 
0.8 0.9998 

1.0 0.9996 [5657] 

2.0 0.9992 [5 7] [2526] [2728] [5657] 

3.0 0.9990 [57] [19202324] [25 26] [2728] [5657] 

4.0 0.9987 [5 67 8] [192021 2324] [2526] [2728] [56 57] 

4.5 0.9985 [3456789] [192021222324] [25 26] [2728] 

[35 36] [5657] 

a [56 57] means that data patterns 56 and 57 are grouped in the same cluster, b Only the 
first 57 data patterns are considered and the data is noise free, cThe ARTnet distance 
threshold changes in a wider range while ART2 vigilance is too sensitive making it 
difficult to set a value. 

Table 6.4 Clusters predicted by ARTnet when the distance threshold is 4.5 and 
'd fi 0 0 100a Cnoise varies over a Wi e range, rom .0 1 to 

Identified Corresponding Identified Corresponding Identified Corresponding 
patterns data patterns patterns data patterns patterns data patterns 

1 I 15 [27,28] 29 43 

2 2 16 29 30 44 

3 [34 5 6 7 8 9] 17 30 31 45 

4 10 18 31 32 46 

5 II 19 32 33 47 

6 12 20 33 34 48 

7 13 21 34 35 49 

8 14 22 [35 36] 36 50 

9 15 23 37 37 51 

10 16 24 38 38 52 

11 17 25 39 39 53 

12 18 26 40 40 54 

13 [19202122 27 41 41 55 
23241 

14 [25 26] 28 42 42 [5657] 

a[3 4 5 6 7 8 9] means that data patterns 3 to 9 are grouped in the same cluster. 
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In Equation 6.5, Cnoise changes ranging from 0.001 to 100 are examined in what 

follows where the smaller the Cnoise, the larger the noise to signal ratio. 

The best clustering results are obtained when the distance threshold of ARTnet is 

4.5. This result is not affected by changing Cnoise from 0.001 to 100, as can be seen 

in Table 6.4. For ART2, the best value of the vigilance is 0.9985 and Cnoise = 100, 

and is the same result as ARTnet (Table 6.4). However, as Cnoise decreases to 10, 

i.e., larger noise to signal ratio, ART2 splits the cluster [3 4 5 6 7 8 9] into two [3 4 

5 6 7] and [8 9]. As Cnoise decreases to 0.001, i.e., a much larger noise to signal 

ratio, there are further new groupings, [20 42] and [29 51]. The new groups are not 

able to be satisfactorily explained. Although the inappropriate groupings [20 42] 

and [29 51] can be avoided by changing the vigilance value, other unreasonable 

groupings are generated. 

6.3.1.3 Computational Speed 

It is found that ARTnet is faster than ART2. After optimum values of the distance 

threshold of ARTnet and the vigilance of ART2 are found, for the same data, 

ARTnet is typically two times faster than ART2. 

6.5 Bayesian Automatic Classification 

6.5.1 The Bayesian Automatic Classification System - AutoClass 

The approach used is based on an unsupervised Bayesian classification scheme 

developed by NASA [39, 40, 41, 42]. For a given number of data patterns (some 

times called cases, observations, samples, instances, objects or individuals), each of 

which is described by a set of attributes, AutoClass can devise an automatic 

procedure for grouping the data patterns into a number of classes such that instances 

within a class are similar, in some respect, but distinct from those in other classes. 

The approach has several advantages over other clustering methods. 

• The number of classes is determined automatically. Deciding when to stop 

forming classes is a fundamental problem in classification [188]. More classes 

can often explain the data better, so it is necessary to limit the number of 

classes. Many systems rely on an ad hoc stopping criterion. For example, 

ART2 (Adaptive Resonance Theory) is strongly influenced by a vigilance or 
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threshold value which is set by users based on trial and error. The Kohonen 

network requires the number of classes to be detennined beforehand. The 

Bayesian solution to the problem is based on the use of prior knowledge. It 

assumes that simpler class hypotheses (e.g., those with fewer classes) are more 

likely than complex ones, in advance of acquiring any data, and the prior 

probability of the hypothesis reflects this preference. The prior probability 

tenn prefers fewer classes, while the likelihood of the data prefers more, so 

both effects balance at the most probable number of classes. Because of this, 

AutoClass fmds only one class in random data. 

• Objects are not assigned to a class absolutely. AutoClass calculates the 

probability of membership of an object in each class, providing a more intuitive 

classification than absolute partitioning techniques. An object described equally 

well by two class descriptions should not be assigned to either class with 

certainty, because the evidence cannot support such an assertion. 

• All attributes are potentially significant. Classification can be based on any or 

all attributes simultaneously, not just the most important one. This represents an 

advantage of the Bayesian method over human classification. In many 

applications, classes are distinguished not by one or even by several attributes, 

but by many small differences. Humans often have difficulty in taking more 

than few attributes into account. The Bayesian approach utilises all attributes 

simultaneously, pennitting unifonn consideration of all the data. At the end of 

learning, AutoClass gives the contributing factors to class fonnation. 

• Data can be real or discrete. Many methods have difficulty in analysing mixed 

data. Some methods insist on real valued data, while others accept only discrete 

data. The Bayesian approach can utilise the data exactly as they are given. 

• It allows missing attribute values. 

6.5.2 Overview of Bayesian Classification 

AutoClass is based on Bayes's theorem, for combining probabilities. Given 

observed data D and a hypothesis H, it states that the probability that the 

hypothesis explains the data p(H I D), (called the posterior probability of the 

hypothesis given the data) is proportional to the probability of observing the data if 

the hypothesis were known to be true p(D I H) (the likelihood of the data) times the 

inherent probability of the hypothesis regardless of the data (P(H), the prior 

probability of the hypothesis). Bayes's theorem is commonly expressed as, 
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(HI D) = p(H)p(D / H) 
p p(D) (6.6) 

For classification, the hypothesis H is the number and descriptions of the classes 

from which the data D is believed to have been drawn. Given D, the goal is to 

determine H so as to maximise the posterior p(HjD). For a particular classification 

hypothesis, calculation of the likelihood of the data p(D/H) involves a 

straightforward application of statistics. The prior probability of the hypothesis p(H) 

is less transparent and is taken up later. Finally, the prior probability of the data, 

p(D) in the denominator above, need not be calculated directly. It can be derived as 

a normalising constant or ignored so long as only the relative probability of 

hypotheses is considered. 

6.5.3 Application to Classification. 

The fundamental model of AutoClass is the classical finite mixture model of Everitt 

and Hand [188] and Titterington et al. [189], made up of two parts. The first is the 

probability of an instance being drawn from a class Cs (s = 1, k), denoted As. Each 

class Cs then is modelled by a class distribution function, P(Xi I Xi E Cs, es), giving 

the probability distribution of attributes conditional on the assumption that instance 

Xi belongs to class C. These class distributions are described by a class parameter 

vector, es, which for single attribute normal distribution consists of the class mean, 
d · 2 J.ls. an vanance crs • 

Thus, the probability of a given datum coming from a set of classes is the sum of 

the probabilities that it came from each class separately, weighted by the class 

probabilities. 
k 

P(Xi I e ,A, k) = L As P(Xi I Xi E Cs, es) (6.7) 

It is assumed that the data is unordered and independent, given the model. Thus 

the likelihood of measuring an entire database is the product of the probabilities of 

measuring each object 
n 

p(x I e ,A, k) = n p( Xi I e ,A, k) (6.8) 
i=! 

For a given value of the class parameters, the probability that instance i belongs 

to a class using Bayes's theorem is calculated using 
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p( Xi E Cs I Xi, a, A., k) = (6.9) 

P(Xi I a ,A., k) 

These classes are "fuzzy" in the sense that even with perfect knowledge of object 

attributes, it will be possible to detennine only the probability that it is a member of 

a given class. 

The problem of identifying a mixture is done in parts: determining the 

classification parameters for a given number of classes and the number of classes. 

Rather than seeking an estimator of the classification parameters (i.e., the class 

parameter vectors, a, and the class probabilities, A.), the full posterior probability 

distribution is sought. The posterior distribution is proportional to the product of the 

prior distribution of the parameters p(a ,1..1 k) and the likelihood function p(x I a ,A., 

k) . 

p(a ,1..1 k) p(x I a ,A., k) 

p (a ,1..1 x, k) = ------ (6.10) 

p (x I k) 

The pseudo-likelihood p(x I k) is simply the nonnalising constant of the posterior 

distribution, obtained by nonnalising (integrating) out the classification parameters -

in effect, treating them as "nuisance" parameters: 

p (x I k) = If p(a ,1..1 k) p(x I a ,A., k) dO dA. • (6.11) 

To solve the second half of the classification problem (i.e., detennining the 

number of classes k) the posterior distribution of the number classes k has to be 

calculated. This is proportional to the product of the prior distribution p(k) and the 

pseudo- likelihood function p(x I k). 

p(k) P (x I k) 

p(k Ix) = (6.12) 

p(x) 

In principle, the most probable number of classes are detennined by evaluating 

p(k I x) over the range of k for which the prior p(k) is significant. In practice, the 

multi-dimensional integrals of Equation 6.6 are computationally intractable, and the 

maximum of the function has to be found so that it can be approximated at about 

that point. 
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6.5.4 The AutoClass Attribute Model 

In AutoClass, it assumed that attributes are independent for each class. This permits 

an extremely simple form for the class distributions used in Equation 6.2. 
m 

p(Xj I xjECs,8s) = I1p(x ij lx i EC s ,8 s) 
j=! 

(6.13) 

where 8sj is the parameter vector describing the j th attribute in the sth class Cs. 

AutoClass models for real valued attributes are Gaussian normal distributions 

parameterised by a mean and a standard deviation, and thus 8sj takes the form 

The class distribution is thus 

!-l s} 
(8sj ) = 

cr s} 

[ ( J2] 1 -1 xij - !-lsi 
p(XijlX i ECs,!-lS}'cr S}) = ~exp -

2ncr s} 2 cr s} 

6.5.5 Search Algorithm 

(6.14) 

As mentioned earlier AutoClass breaks the classification problem into two parts: 

determining the number of classes and determining the parameters defining them. It 

uses a Bayesian variant of Dempster and Laird's EM (expectation and 

maximisation) algorithm [190] to find the best class parameters for a given number 

of classes. To derive the algorithm, the posterior distribution is differentiated with 

respect to the class parameters and equate with zero. This yields a system of non­

linear equations which hold at the maximum of the posterior: 

Ws + w'-1 
AS = s = l...k 

n+kCw' -1) 
( 6.15) 

a n a ~ 
-In p( e s ) + L W is as In p( Xi Ie, ) = 0 
as s i=! s 

(6.16) 

where Wi, is the probability that the datum, Xi' was drawn from class s (given by 

Equation 6.4) and Ws is the total weight for class Cs : 

Wis = P(Xi ECs I Xi,e,~) 
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n 

Ws = LW;s 
;=1 

To find a solution to this system of equations is found to be iterative based on 

Equations 6.10 and 6.11 (treating w as a constant) and Equation 6.4 (treating "­

and e as constants). 

For any given iteration, the membership probabilities are constant, so Equation 

6.11 can be simplified by using Wi s via the derivative, so 
a A n A 

-[pees) II p(x;les,XiECsfis ]=0 ae s i=1 

(6.17) 

Thus far, the discussion of the search algorithm has related to general class model 

with an arbitrary eSj • The Equation 6.12 is now applied to the specific AutoClass -

model of Equation 6.8 through 6.9. 

For real valued attributes, the equations for the updated ~sj and cJSj are a function 

- 2 of the prior information and the empirical mean, X,j and cr sj of the jth attribute in 

class C" weighted by Wis : 

Xsj = 

The update formulas are then: 

A 
w'Xj '+U;:XSj 

J.lsj = w'+U;: 

, 2 2 

n 

L W;sXij 
;=1 

n 

L W;sX2ij 
i=1 -2 

X sj 

s =l...k, j =l...m (6.18) 

""2 W' (cr j) + U;:cr Sj W' u;: , _ 2 cr = + (cr . - x .) S = l...k 
s} W'+W + 1 (W'+W)(W'+W + 1) J SJ s s S 

(6.19) 

Equations 6.10, 6.13 and 6.14 do not, of course, give the estimators explicitly; 

instead they must be solved using an iterative procedure [191]. The simplest way of 

estimating parameters using maximum likelihood estimate method is that suggested 

by Wolfe [192] which is essentially an application of EM algorithm [190]. Whereas, 

by the Bayesian parameter estimation method, AutoClass uses a Bayesian variant of 
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Dempster and Laird EM algorithm. Initial estimates of the A" 11" 0" s~ are obtained 

by one of the variety of methods [188], and these are then used to obtain first 

estimates of the p(sl Xj) i.e., the weights Wj s and hence Ws, - the E-step; these are 

then inserted into Equations 6.10, 6.13 and 6.14 to give revised parameter estimates, 

which is essentially the M-step. The process is continued until some convergence 

criterion is satisfied [188]. 

6.5.6 The EM Algorithm 

The steps of EM algorithm are: 

E- STEP: The starting values of Jl, cr, A are obtained using a variety of cluster 

analysis methods and are then used to obtain first estimates of the weights W (which 

is an estimate of w) using Equation 6.4. 

For instance assuming that the data has 3 classes (k=3), i.e., A= Al ,A2 and A3, two 

attributes j=1,2, then there are 3* 2 = 611 's and 6 cr's. In total there are 6 +6+3=9 
parameters to estimate, yielding 3 weights w i,s= 1 , wi' s=2 and w i,s=3 for observation 

i. 
M-STEP: This step requires the calculation of Jl, cr, A using Equations 6.10, 

6.13 and 6.14. 

The iteration of the two steps is then continued until the parameters are 

maximised. 

6.6 Application of AutoClass to the FCC Process 

Using the same FCC process as the case study, 42 data patterns are studied, which 

are summarised in Table 6.5. For every variable in each of the data patterns, 60 

sampling points are recorded. For example, the dynamic trend represented by 15 

(reaction temperature) in Figure 6.11 is composed of 60 data points when the valve 

opening on the top of the distillation column changes from 100% to 90%. Six 

process parameters are recorded including reaction and regeneration temperatures 

(TRA and TRG), reactor and regenerator pressures (PRA and PRG), oxygen and 

carbon monoxide volumetric contents in the flue gas from the regenerator (PT02 

and PTCO). These are known to be the major variables for the FCC process, 

although more precise characterisation would be expected if more parameters were 

included. 
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Table 6.5 Summary of the forty two data patterns. 

u 

"' a 
J 

Cases Description of cases 
I - II Nonnal operation 
12 Fresh feed pump (PI321) failure 
13 A step increase of 15% in fresh feed flowrate 
14 A step decrease of 50% in fresh feed flowrate 
15 The valve opening on top of the distillation column changes from 100% to 
90% 
16 
17 
18 
19 
20 

100% to 80% 
100% to 60% 
100% to 40% 
100% to 30% 
100% to 20% 

21 Manual valve (V20) controlling catalyst to heat removal system, 75%~80% 
22 ......................................................................... 75% ~ 90% 
23 ......................................................................... 75% ~ 100% 
24 
25 
26 
27 

75%~60% 

75%~50% 

75%~40% 

75%~ 35% 
28 ......................................................................... 75% ~ 30% 
29 Recycle sludge oil flowrate increased to 300% 
30 Fresh feed flowrate decreased to 10% of that ofnonnal operation 
31 Recycle sludge oil pump (P1329) failure 
32 Fresh feed flowrate increased by 15% 
33 - 42 Nonnal operation 
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Figure 6.11 Reaction temperature response 
for cases 15, 17 and 19. 

Figure 6.12 Regeneration temperature 
response for cases 15, 17 and 19. 

60 

Clearly prior knowledge about the data makes it possible to test the automatic 

classification capabilities. Since each data instance involves six variables and each 

variable is represented by 60 data points, the data base is a 360 x 42 matrix. In 
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Chapter 3, various methods have been introduced for reducing the dimensionality of 

a dynamic trend without signal losing its important features. These include wavelets, 

principal components and episode representations. Here the crude data are used 

since the concern is the identification of operational states. 

6.6.1 Result of Classification 

Although the classification using AutoClass is an automatic process, it still has 

many options which allow users to exercise control over the learning and the way in 

which the results are output [193]. For example, choices can be made of the 

attribute probability models including 

(i) the single multinomial model which implements a single multinomial 

likelihood model term for symbolic or integer attributes, which is conditionally 

independent of other attributes given the class. 

(ii) the single normal CN model which uses real valued attributes with a 

conditionally independent Gaussian normal distribution, assuming no missing 

values. 

(iii) the single normal CM Model which also models real valued attributes but 

allows missing values. 

(iv) the multi normal CN covariant model, also for real valued attributes expresses 

mutual dependencies within the class. The probability that the class will produce 

any particular instance is then the product of any independent and covariant 

probability terms. 

In this case the single normal CN model is used. The approach is based on 

generation of alternative classification schemes which are ranked (the first being the 

best). It then remains to analyse the classification schemes to determine which is the 

most acceptable. The best for the current problem is shown in Table 6.6 . 

Table 6.6 f h 42 The AutoClass clustenng resu ts 0 t e cases III a e .. . T bl 65 
Classes Cases 

I 1,2,3,4,5,6, 7, 8,9, 10, 11, 
33,34,35,36,37,38,39,40,41,42 

2 21,22,2331,3213,29 
3 15,16,17,18,19,20 
4 24,25,26,27,28 
5 12, 14,30 
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6.6.3 Analysis of the Classification Results 

The classified results are analysed by comparing Table 6.6 and Table 6.5. Class I 

includes cases 1 - 11 and 33 - 42, which correspond to normal operations as can be 

seen from Table 6.5 so it is reasonable to assign them into a single class. The 

significance of being able to automatically distinguish between normal and 

abnormal operational data, which represent moderate to significant disturbances as 

well as faults is that process upsets can be seen. 

Class III includes cases 15 - 20 which correspond to decreases in the opening of 

the valve 401-ST opening from 100% to 90%, 80%, 60%, 40%, 30% and 20% 

which cause the differential pressure (PRG - PRA) between the regenerator and 

reactor to decrease. Consequently, the regenerated catalyst circulation rate falls and 

the reaction and regeneration temperatures will be influenced. The closed - loop 

dynamic responses of reaction and regeneration temperatures for cases 15, 17 and 

19 are shown in Figures 6.11 and 6.12. It can be seen that although they are not 

identical, they show greater similarity than those in class I, i.e., normal operation. 

Class IV includes cases 24 - 28 which correspond to the changes in the opening 

of the hand-operated valve V20, which first cause the regeneration temperature to 

change due to changes in heat transfer and then affect all other parameters. Cases 24 

- 28 refer to a reduction in the opening of V20 from its normal operation value 

(75%) to 60%, 50%, 40%, 35% and 30%. All these operations cause the 

regeneration temperature to increase, so is quite reasonable that they should be 

grouped into one class. The regeneration temperature TRG and oxygen volumetric 

percentage in flue gas PT02 change are shown in Figures 6.13 and 6.14. It is 

important that cases 21, 22 and 23 are grouped in a different class (class II) 

although they also represent V20 opening changes, because they represent increases 

in opening which have different effects on associated variables. Figure 6.15 shows 

the PT02 changes for cases 21, 22 and 23. It is clear that they are different from 

cases 24,26 and 28 shown in Figure 6.14. 
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Figure 6.13 Regeneration T responses 
for cases 24, 26 and 28. 
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Figure 6.15 Dynamic responses of the 
02 content in flue gas for cases 21, 22 and 23. 
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Figure 6.16 Reaction temperature 
responses for cases 13,29,31 and 32. 
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Class V includes 12, 14 and 30 which are clearly in one class and represent feed 

pump P1329 failure, feed flowrate decreases by 50% and 90%, all mean a sharp 

decrease in feed flowrate. 

Class II includes 21, 22, 23, 31, 32, 13 and 29. As discussed above, it is 

reasonable that 21, 22 and 23 should be grouped together since they represent 

increases in the opening of V20 which cause decrease in regeneration temperature. 

Both 13 and 32 represent slight increases (15% and 9%) in fresh feed flowrate, 

while 29 a three times increase in sludge oil flowrate and case 31 sludge oil pump 

failure. Since sludge oil flow is only very small compared with the fresh feed at 

normal operations (8000 kg/hr sludge oil vs 150,000 kg/hr fresh feed), it is not 

surprising that a factor of three time increase in sludge oil has a similar effect on 

process operation as slight fresh feed increases by 15% and 9%. The major 

difference between the four cases, 12, 32, 29 and 31 is that 12, 29 and 32 represent 

increases in feed while 31 indicates a decrease, as indicated in the early stage of 

reaction temperature responses (Figure 6.16). Because the process is under closed 
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loop control, such a difference is not significant enough to regard 31 as a different 

class. However it is interesting that 21, 22, 23 and 31, 32, 13, 29 are grouped 

together which would not have been expected. The explanation is that they are not 

very significant disturbances and all affect in similar ways the operation of the 

process mainly by influencing the heat balance of the two reactors which is the 

dominant factor in FCC operations. 

6.7 General Comments 

The above discussion has introduced unsupervised machine learning as a powerful 

method for process operational state identification. The data pre-processing 

methods described in Chapter 3 have been used to reduce the dimensionality of the 

data and remove noise before analysis of data using unsupervised machine learning. 

There are several issues that are important but have not been fully addressed. First, 

for on-line process monitoring, it is important for the approach to be recursive. 

AR T2 is an recursive method, but AutoClass is not. Second, although unsupervised 

procedures do not need training data, they are usually not as accurate as supervised 

methods, therefore interpretation and validation of results becomes an important 

issue. Furthermore when adapted to on-line monitoring the speed is obviously 

critical as is the selection of variables used for classification. Process variables tend 

to be interrelated so it is necessary to remove redundant variables without losing the 

important ones. 



CHAPTER 7 

INDUCTIVE LEARNING FOR CONCEPTUAL 
CLUSTERING AND REAL-TIME PROCESS MONITORING 

Multivariate statistics, supervised and unsupervised machine learning approaches 

have been introduced in previous chapters as a basis for developing process 

monitoring systems. The approaches often depend on calculating a similarity or 

distance measure for identifying clusters in data. Apart from giving predictions, 

however they are not able to provide causal explanations on why a specific set of 

data is assigned to a particular cluster. In this chapter, conceptual clustering based 

on an inductive machine learning approach is introduced for use in designing state 

space based process monitoring systems. As distinguished from similarity or 

distance based clustering, such conceptual clustering is able to generate conceptual 

knowledge about the major variables which are responsible for clustering, as well as 

predicting operational states. The resulting knowledge is expressed in the form of 

production rules or decision trees. 

The first stage is to introduce inductive learning. Following this, an example is 

given to demonstrate how inductive learning can be used to analyse process 

operational data which has been averaged over days or weeks so that the embedded 

information can be exploited to improve process performance. After this a section 

on application of inductive learning to conceptual clustering and real-time process 

monitoring is followed, by reference to a relatively simple case study based on a 

continuous stirred tank reactor (CSTR). A more complicated case study based on a 

refinery methyl tertiary butyl ether (MTBE) example is then presented. 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999
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7.1 Inductive Learning 

Inductive learning is probably the most widely studied method based on symbolic 

learning [202-204]. It attempts to acquire a conceptual language for describing an 

object by drawing inductive inference from observations. The focus is on deriving 

rules or decision trees from unordered sets of examples, especially attributes based 

induction, a formalism where examples are described in terms of a fixed collection 

of attributes. The discussion excludes such learning methods as feedforward neural 

networks which learn to develop an implicit rather than explicit and transparent 

rules or decision trees. An obvious motivation for inductive learning is that it 

provides a method for solving the bottleneck arising from knowledge acquisition 

which is necessary to develop expert systems. It is relatively easy for human experts 

to document cases rather than for them to articulate the expertise explicitly and 

clearly. Several approaches to inductive learning have been proposed, such as AQ 11 

[196], VersionSpaces [197] and C5.0 [18, 19, 20]. Here the focus is on C5.0, a 

system that is designed to learn to develop rules and decision trees from examples. 

7.1.1 The Inductive Learning System 

The conceptual clustering approach used in C5.0 was developed by Quinlan [18, 19, 

20]. Given a database of objects (or in other words data sets) which are described in 

terms of a collection of attributes, which measure some important feature of an 

object. Each object belongs to one of a set of mutually exclusive classes, the task is 

to develop a classification rule that can determine the class of any object from its 

values of the attributes. The decision tree generated can be used for conceptual 

clustering. The procedure is iterative and can be summarised as follows [18, 19]: 

(1) Select a random subset of the given training examples (called the window) 

(2) Repeat (a) to (c) 

(a) Develop a decision tree which correctly classifies all objects in the 

window 

(b) Find exceptions to this decision tree in the remaining examples 

(c) Form a new window by adding incorrectly classified objects to the 

window 
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Until there are no exceptions to the decision tree. 

The crux of the problem is how to develop a decision tree for an arbitrary 

collection of objects in the window. To form a decision tree requires selecting the 

root attribute. To do this, assume that there are only two classes representing all the 

data, P and N (extension to any number of classes is not difficult). The method of 

finding the root attribute is adopted from an information based method that depends 

on two assumptions. Suppose the window C contains p objects of class P and n 

objects of class N. The assumptions are: 

(1) Any correct decision tree for the window C will classify objects in the same 

proportion as their representation in C. An arbitrary object will be determined as 

belonging to class P with probability p/(p+n) and to class N with probability 

n/(p+n). 

(2) When a decision tree is used to classify an object, it returns a class. A decision 

tree can then be regarded as the source of a message 'P' or 'N'. with the expected 

information needed to generate this message given by 

I(p,n)= __ P-log _P ___ n_ log _n_ 
p+n 2 p+n p+n 2 p+n 

(7.1) 

If attribute, A, having values {A I, A2, ..• Av}, is used for the root of the decision 

tree, it will partition the window C into { C I, C2, ... Cv} where Ci contains those 

objects in C that have values Ai of A. Suppose Ci contains Pi objects of class P and 

ni of class N. The expected information required for the subtree for Ci is I(pi, ni) and 

for the tree with A as root is then obtained as the weighted average given by 

E(A) = ±Pi+niI(p,n) 
i=l p+n I 

(7.2) 

where the weight for the ith branch is the proportion of the objects in C that belong 

to Ci. The information gained by branching on A is therefore 

gain(A) = I(p, n) - E(A) (7.3) 

The approach calculates the gain for all attributes and chooses the attribute having 

the biggest gain as the root node. The root node will have as many branches as its 

values. The branches divide the database into a number of subsets. For each subset, 

the root node is obtained following the same procedure. 
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The approach has been used in the commercial software C5.0 [20], which has 

evolved from the earlier versions C4.5 [18] and ID3 [19]. A major limitation of ID3 

was that it assumed that the values of all attributes are discrete, for instance a colour 

being red or green. C4.5 claimed to be able to deal with continuous-valued 

attributes, is still weak compared with the way it deals with discrete-valued 

attributes, as noted by Quinlan [198]. Though Quinlan [198] made a further effort to 

improve the method so that it could deal with continuous-valued attributes, the 

outcome is still not very satisfactory. Nevertheless, C5.0 has become one of the 

most well known tools for use in data mining and knowledge discovery, especially 

in domains involving only discrete values. 

7.1.2 Dealing with Continuous-valued Attributes in 
Inductive Learning 

Like most of the available inductive learning methods, C5.0 was developed for 

problem domains where attributes only take discrete values. The methods have 

proved to perform remarkably well with discrete valued attributes. However, when 

the problem domains contain real numbers, the performance usually decreases in 

terms of accuracy. Using inductive learning based on continuous-valued attributes 

requires discretisation of the values into a number of intervals. To deal with this, a 

number of approaches have been proposed. 

The class-separating method [199] is based on the assumption that if the 

assignments of individual examples are known, then such knowledge can be used to 

discretise the attributes. An example of this is to use the range of boiling points of 

petroleum fractions into product grades. This approach however sometimes 

produces too many intervals which are not very informative. Moreover, if the 

assignment of individual cases is not known, the approach can't be used. 

It is possible to use an equal distance approach to divide the values of the 

continuous variable between the minimum and maximum values into a fixed number 

of intervals. Alternatively equal n1lmhers can be used to make each interval contain 

equal number of examples. 

Another approach is the k-nearest neighbours approach which tries to estimate to 

which class the value of a specified attribute most likely belongs. It places a border 

between two values Xi and Xi+ I if the estimates for them are different. The estimates 
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are based on the assumption that the most probable class is the most common class 

among the k nearest examples, where k is normally a user specified parameter. 

Wu [199] developed a Bayesian discretizer. The approach is shown to be more 

accurate than some other approaches but can only be used for integer values and 

requires the assignments for the examples to be known. The method used by C4.5 

[18] is based on information gain. But this approach only provides binary 

discretisation. 

7.1.3 Attributes That Take Values Related to Dynamic Trends 

In process monitoring and control, dynamic trends of variables might be more 

important than the instantaneous values. The differences for the seven dynamic 

trends for a variable shown in Figure 3.4 can have important implications. The issue 

of dealing with this kind of problem has not previously been considered. An 

approach using principal component analysis to extract qualitative concepts from 

dynamic trend signals was given in Section 3.2.3.2, so will not be repeated here. In 

this chapter it will be shown how the concept formation can be used in inductive 

learning to develop conceptual clustering systems for process monitoring and 

diagnosis. 

7.2 IL for Knowledge Discovery from Averaged Data 

Saraiva [5] and Saraiva and Stephanopoulos [4] divided process plant data and 

monitoring and control strategies into layers as shown in Figure 7.1 and investigated 

the application of inductive learning to the highlighted layer in the figure based on 

analysis of daily/weekly averaged data as a basis to continuous process 

improvement. The goal is to develop a conceptual language describing the 

contributions of various operational parameters to one or a number of performance 

metrics which are product quality related. 
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Level of decision making Scope of Application 

Strategic Decisions 
Overall Plant 

Plant Departments 

Plant Area 

SecondslMinutes 

SecondslMinutes 

Time Scales for Decision-Making 

Figure 7.1 Levels, time scales, and application scopes of decision making 

activities. 

Saraiva [5] presented four industrial case studies using this approach. A simple 

example is used here to illustrate the methodology. The case study is concerned with 

records of operating data from a refinery unit [200] shown in Table 7.1 which has 

five variables, Xl, X2, X3, X4 and y. The latter is the octane number of the gasoline 

product and is discretised as very low if the value is less or equal to 91, low if it is 

between 91 and 92, and good if greater than 92. Xl, X2 and X3 are different measures 

of the feed composition and X4 is the log of a combination of process conditions. 

Figure 7.2 shows the induced tree as well as the partition of the (Xl, X4) plane 

defined by the leaves, together with a projection of all the available (x, y) pairs on 

the same plane. These two decision variables clearly influence the current 

performance of the refinery unit, and the decision tree leaves give a reasonable 

partition of the plane. To achieve better performance, operating zones that will 

result in obtaining mostly y = 3 values need to be found. Terminal nodes 2 and 7 

identify two such zones. The corresponding solutions are 

If Xl E[44.6, 55.4], then conditional probability ofy = 3 is 0.9 

Ifx4 E[1.8, 2.3], then the conditional probability ofy =3 is 1.0 
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T able 7.1 Data 0 b tained III a refinery unit. 
x1 x2 x3 x4 Obsv. x1 x2 x3 x4 Obsv. 

55.33 1.72 54 1.66219 92.19 71.31 3.44 55 1.60325 90.51 

59.13 1.2 53 1.58399 92.74 72.3 4.02 55 1.66783 90.24 
57.39 1.42 55 1.61731 91.88 68.81 6.88 55 1.69836 91.01 

56.43 1.78 55 1.66228 92.8 66.61 2.31 52 1.77967 91.9 

55.98 1.58 54 1.63195 92.56 63.66 2.99 52 1.81271 91.92 

56.16 2.12 56 1.68034 92.61 63.85 0.24 50 1.81485 92.16 

54.85 1.17 54 1.58206 92.33 67.25 0 53 1.72526 91.36 

52.83 1.5 58 1.54998 92.22 67.19 0 52 1.86782 92.16 

54.52 0.87 57 1.5523 91.96 62.34 0 48 2.00677 92.68 

54.12 0.88 57 1.57818 92.17 62.98 0 47 1.95366 92.88 

51.72 0 56 1.60401 92.75 69.89 0 55 1.89387 92.59 

51.29 0 58 1.59594 92.89 73.13 0 57 1.81651 91.35 

53.22 1.31 58 1.54814 92.79 65.09 1.01 57 1.45939 90.29 

54.76 1.67 58 1.63134 92.55 64.71 0.61 55 1.38934 90.71 

53.34 1.81 59 1.60228 92.42 64.05 1.64 57 1.33945 90.41 

54.84 2.87 60 1.54949 92.43 63.97 2.8 60 1.42094 90.43 

54.03 1.19 60 1.57841 92.77 70.48 4.64 60 1.5768 89.87 

51.44 0.42 59 1.61183 92.6 71.11 3.56 60 1.41229 89.98 

53.54 1.39 59 1.51081 92.3 69.05 2.51 60 1.54605 90 

57.88 1.28 62 1.56443 92.3 71.99 1.28 55 1.55182 89.66 

60.93 1.22 62 1.53995 92.48 72.03 1.28 56 1.6039 90.08 

59.59 1.13 61 1.56949 91.61 69.9 2.19 56 1.67265 90.67 

61.42 1.49 62 1.4133 91.3 72.16 0.51 56 1.55242 90.59 

56.6 2.1 62 1.54777 91.37 70.97 0.09 55 1.45728 91.06 

59.94 2.29 61 1.65523 91.25 70.55 0.05 52 1.26174 90.69 

58.3 3.11 62 1.29994 90.76 69.73 0.05 54 1.28802 91.11 

58.25 3.1 63 1.19975 90.9 69.93 0.05 55 1.36399 90.32 

55.53 2.88 64 1.20817 90.43 70.6 0 55 1.4221 90.36 

59.79 1.48 62 1.30621 90.83 75.54 0 55 1.67219 90.57 

57.51 0.87 60 1.29842 92.18 49.14 0 40 2.1714 94.17 

62.82 0.88 59 1.40483 91.73 49.1 0 42 2.31909 94.39 

62.57 0.42 60 1.45056 91.1 44.66 4.99 42 2.14314 93.42 

60.23 0.12 59 1.54357 91.74 44.64 3.73 44 2.08081 94.65 

65.08 0.1 60 1.6894 91.46 4.23 10.76 41 2.1707 97.61 

65.58 0.05 59 1.74695 91.44 5.53 7.99 40 1.99418 97.08 

65.64 0.05 60 1.74915 91.56 17.11 5.06 47 1.61437 95.12 

65.28 0.42 60 1.78053 91.9 67.6 1.84 55 1.64758 91.86 

65.03 0.65 59 1.78104 91.61 64.81 2.24 54 1.69592 91.61 

67.84 0.49 54 1.72387 92.09 63.13 1.6 52 1.65118 92.17 

73.74 0 54 1.73496 90.64 63.48 3.46 52 1.48216 91.56 

72.66 0 55 1.71966 91.09 62.25 3.56 50 1.49734 92.16 

It effectively says that one should expect to get almost only "good" y values while 

operating inside these zones of the decision space, as opposed to the current 

operating conditions, which lead to just 40% "good" y values. 

Saraiva [5] presented more complex case studies and methods for defining 

performance metrics. He used the binary discretisation mechanism for continuous­

valued variables embedded in C4.5. In addition, the approach is only suitable for 
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analysing data of daily/weekly averaged data, not on-line data from computer 

control systems, based on seconds. 
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Figure 7.2 (a) Induced decision tree; (b) partition of the plane defmed by its leaves. 

7.3 Inductive Learning for Conceptual Clustering 
and Real-time Monitoring 

In this section, we present our work on application of inductive learning to the 

analysis of data collected by computer based control systems which is on second 

basis. A conceptual clustering approach is thus developed for designing state space 

based on-line process monitoring systems. The approach is illustrated by reference 

to a simple case study based on a CSTR reactor (see Appendix A). It is concerned 

with analysis of an operational database consisting of eighty five data patterns 

obtained in operating the CSTR. For each data pattern seven variables are recorded 

including, reaction temperature TR, reaction mixture flow out of the reactor F 0' 

cooling water flowrate Fw, feed flowrate F j , feed inlet temperature T j , feed 

concentration Cj, and cooling water temperature T w. Each variable is recorded as a 

dynamic trend comprising 150 sample points. The goal is to identify operational 
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states using a conceptual clustering approach. This will then be extended to a more 

complicated case study of a refinery MTBE process in Section 7.4. 

The approach basically comprises the following procedures: (1) concept 

extraction from dynamic trend signals using PCA. (2) identification of operational 

states using an unsupervised machine learning approach, and (3) application of the 

inductive machine learning system to develop decision trees and rules for process 

monitoring. 

7.3.1 Concept Extraction from Dynamic Trend Signals 

This has been discussed in detail in Chapter 3, so only a brief review is presented 

here. For a specific set of data, the value of a variable represents a dynamic trend, 

consisting of tens to hundreds of sampled points. In inductive learning, it is the 

shape of the trend that matters so for a specific variable, when the trends of all the 

data sets are considered and processed using PCA, the first two principal 

components (PCs) can be plotted in a two dimensional plane, as shown in Figure 

7.3. Figure 7.3 showing PC-I-TR and PC-2-TR corresponds to the first two PCs of 

the reaction temperature TR. The data sets are grouped into clusters in this two 

dimensional plane. This pennits a dynamic trend to be abstracted as a concept as 

typically by PC-l-TR in region A. The following sections will show how this 

process can be used for conceptual clustering using inductive learning. 

7.3.2 Identification of Operational States 

The next step is identification of operational states. In this case, this can be done 

using PCA because there are only eight variables. For more complex processes, 

more sophisticated approaches need to be used, which will be described later in the 

case study of MTBE. The first two PCs of the eight variables (TR, Fo, Fw, Fi, Ti, 

Ci, Twi, L) are plotted in Figure 7.7. The five groups which are identified represent 

the 85 data cases as five clusters corresponding to five distinct operational modes. 

Detailed examination of the clusters shows that these groups are reasonable. 
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7.3.3 Conceptual Clustering 

Having characterised the dynamic trend signals and identified the operational states, 

it is necessary to find out how to generate knowledge which correlates the variables 

and operational states. To do this requires generating a file as shown in Table 7.2. In 

fact, each data set in Table 7.2 can be interpreted as a production rule. Thus, the 

first case is equivalent to the following rule, 
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IF PC-L = C in Figure 7.6(e) 

AND PC-TR = D in Figure 7.3 

AND PC-Fo = A in Figure 7.4 

AND PC-Fw = D in Figure 7.5 

AND PC-Twi = B in Figure 7.6(d) 

AND PC-Ci = A in Figure 7.6(c) 

AND PC-Ti = D in Figure 7.6(b) 

AND PC-Fi = B in Figure 7.6(a) 

THEN States = NORI in Figure 7.7 

Table 7.2 The data structure used by C5.0 for conceptual clustering. 

PCL PCTR PC]o PC_Fw PC_Tw PCCi PCTi PC]i 

i 

C D A D B A D B 

C D A D B A E B 

... ... ... ... ... ... ... ... 

A C D A B A C B 

A C D A B A C B 

... ... ... ... ... ... ... ... 

Variable name, Value space, Ref. figure Variable name, Value space, Ref. figure 

PCL, [A, B,C, D], Figure 7.6(e) PCCi, [A, B, C], Figure 7.6(c) 

PC]o, [A, B,C, D], Figure 7.4 PCTi, [A, B, C, D, E], Figure 7.6(b) 

PC]w, [A, B, C, D], Figure 7.5 PCFi, [A,B,C,D], Figure 7.6(a) 

States 

NORI 

NORI 

.. . 

ABNI 

ABNI 

.. . 

PCTwi, [A, B, C, D], Figure 7.6(d) States, [NORI, NOR2, NOR3, ABNI, ABN2] 

PC TR, [A, B, C, D], Figure 7.3 Figure 7.7 

Obviously this is simply an explanation of the database and the decision tree 

developed will be very complex. C5.0 makes it possible to develop a simpler tree. 

Simple tree is preferable because it can usually perform better than a complex tree 

for data cases outside the training data set. 
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The decision tree developed for the CSTR case study is shown in Figure 7.8 and 

can be converted to production rules, as shown in Table 7.3. CS.O identifies the 

reactor temperature as the root node and states that if TR is in the region of A, B or 

D of Figure 7.3, then the operation will be in regions ABN2 (abnormal mode 2), 

NOR2 (Normal operation mode 2), or NORl (Normal operation mode 1) of Figure 

7.7. If TR is in the region C in Figure 7.3, then there are three possible situations 

depending on Fo. If Fo is in the region D of Figure 7.4, then the operation will 

correspond to ABNl (Abnormal operation 1): ifFo is in A or B of Figure 7.4, then 

the operation will be NOR3 (Normal operation 3). The result effectively states that 

it is possible to focus on monitoring TR in Figure 7.3. IfTR is in the region C, then 

Fo in Figure 7.4 should be examined. It also shows the variables responsible for the 

location placing the operation in a specific region of Figure 7.7. 
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Figure 7.8 The decision tree developed for the CSTR after conceptualization of the 

variable trends. 
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Table 7.3 The production rules converted from the decision 

tree in Figure 7.8. 

Rule 1: IF TR = A in Figure 7.3 

THEN Operational state = ABN 2 in Figure 7.7 

Rule 2: IF TR = B in Figure 7.3 

THEN Operational state = NOR 2 in Figure 7.7 

Rule 3: IF TR = C in Figure 7.3 

AND Fo = A or B in Figure 7.4 

THEN Operational state = NOR 3 in Figure 7.7 

Rule 4: IF TR = C in Figure 7.3 

AND Fo = D in Figure 7.4 

THEN Operational state = ABN I in Figure 7.7 

Rule 5: IF TR = D in Figure 7.3 

THEN Operational state = NOR I in Figure 7.7 

yes 

: ••••••••••• 1 

Figure 7.9. The decision tree developed for the CSTR using the eigenvalues of the 

first two principal components of each variable. 
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Table 7.4 The numerical values of the first two principal components of each 

. bl d b C5 0 d I th . F 7 9 vana e are use )y to eve op e tree III 19ure 

pC·t 

·107 

-0.92 

Fi Ti C, Twi Fw Fo TR 

PC·2 pC·t PC-2 PC·1 PC-2 PC·1 PC·2 PC·1 PC·2 PC-t PC-2 PC·1 PC·2 

0.47 5.66 -0.45 -4.47 0.19 -0.10 ·0.08 -41.9 -5.57 -11.5 ·0.92 47.83 ·2.48 

0.47 ·0.29 0.01 -4.72 0.28 ·0.11 -0.06 86.7 0.64 -11.7 -0.98 -88.9 -6.19 

Table 7.S The production rules converted from the decision 

tree of Figure 7.9. 

Rule 1: IF PC-l-TR =< -33.8 

AND PC-I-TR =< -85.9 

THEN Operational state = ABN 2 

Rule 2: IF PC-I-TR =< -33.8 

AND PC-I-TR > -85.9 

THEN Operational state = NOR 2 

Rule 3: IF PC-I-TR > 4.2 

THEN Operational state = NOR 1 

Rule 4: IF PC-I-TR =< 4.2 

AND PC-I-Fo =< 28.7 

THEN Operational state = NOR 3 

Rule 5: IFPC-I-TR> 4.2 

AND PC-I-Fo> 28.7 

THEN Operational state = ABN 1 

L State 

PC·1 PC-2 

119 0.04 NOR1 

11.96 0.30 ABN2 

The decision tree shown in Figure 7.8 and the rules in Table 7.3 provide guidance 

for operation clustering which is transparent. 

In the above discussion, the dynamic trends in the two-dimensional PCA planes 

have been abstracted. An alternative way is to use the numerical values of the first 

two PCs directly. The data structure to be processed by C5.0 is then put in the 

format of Table 7.4. A decision tree thus developed is shown in Figure 7.9 and the 

rules shown in Table 7.5. Inspection of Figure 7.9 reveals that it is very similar to 
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the tree in Figure 7.8. For example, the conditions leading to ABN2 in Figure 7.9 
are 

IF PC-I-TR < -33.8 

AND PC-I-TR < -85.9 

THEN ABN2 

From Figure 7.3 it can be seen that the two preconditions of the rule are 

equivalent to IF TR = region A and so gives the same result as Figure 7.8. The only 

difference is the last branch leading to NOR3 (the dashed line box of Figure 7.9). In 

Figure 7.9 the rule is, 

IF PC-I-TR>-33.8 

AND PC-I-TR < 4.2 

AND PC-I-Fo < 28.7 

THEN NOR3 

By making reference to Figures 7.3 and 7.4, the rule condition is equivalent to IF 

TR = C in Figure 7.3 and Fo = A or B or C in Figure 7.4. But in Figure 7.8, the 

corresponding rule condition is TR = C in Figure 7.3 and Fo = A or B. This slight 

difference does not say which approach is better. However, in the next section 

involving a larger case study, conceptualisation of dynamic trends first gives better 

results. 

7.4 Application to the Refinery MTBE Process 

The above description of conceptual clustering is based on a CSTR. Here we apply 

the approach to a more complicated case study, the refinery methyl tertiary butyl 

ether (MTBE), which is described in more detail in Appendix C. A database of 100 

sets is obtained using a process simulator and the output is summarised in Table C 1 

of Appendix C. Thirty six data sets correspond to various operations which are 

regarded as abnormal or subject to significant disturbances. The rest are considered 
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as operating normally. The study is restricted to 100 data sets since increasing the 

size of the data set by including more normal operational data does not make 

difference to the result and it makes it easy to understand the analysis and 

presentation of the result. Each data set consists of twenty one variables, which are 

listed in appendix C. For each variable, a dynamic trend consisting of 256 points is 

used to record the response to changes. Therefore the size of the data to be analysed 

is 100x21x256. 

T bi 76Th a e . f e c usters 0 operatlOna states usmg ART2 

Clusters Cluster Cases Clusters Cluster Cases 

Name Name 

I ABNI 1,2,3 7 ABN7 14,15 

2 ABN2 4,5,7,8, II 8 ABN8 16 

3 ABN3 6 9 ABN9 19,20,21,22 

4 ABN4 9 10 ABNIO 23,24,25,26,27 

5 ABN5 10,35,36 II ABNII 29,30,31,32 

6 Normal 12,13,17,18 12 Normal 28,33,34,37-100 

7.4.1 Concept Formation from Dynamic Trends Using PCA 

The projections of the dynamic trends of some variables onto the PCA plane are 

shown in Figures 7.10 (a) to (I). Only those variables that appear later in the 

decision trees are shown in Figure 7.10. In Figure 7.1O(a), the regions A, C and D 

are clearly distinguished. However, region B is fuzzy. This simply means that the 

cases in region B (4-13, 17, 18 and 23-100) can not be distinguished in Figure 

7.10(a). Their differences can only be identified by reference to other variables. A 

similar explanation applies to Figure 7.1O(j) which classifies the responses of the 

variable F _D202_in I into two classes for all data sets. This requires other variables 

to discriminate the data sets. When all the variables are considered together, some 

variables might be more important than others to the classification. For most of the 

twenty one variables, the grouping based on visual examination of the two 

dimensional PCA plane is straightforward. Even for a few variables, the groupings 

may not be very clear, it does not affect the final result significantly. When grouping 

for one variable is not clear, other variables will play more important roles in the 

operational state clustering. 
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7.4.2 Identification of Operational States 

The CSTR case study showed that PCA can classify the operational states 

satisfactorily. Here, both PCA and the adaptive resonance theory (ART2, introduced 

in Chapter 6) are used. The PCA analysis shown in Figure 7.11 results in five 

clusters and the ART2 result is shown in Table 7.6 which predicts twelve clusters. 

Both results are reasonable, but ART2 gives a more detailed picture and appears to 

be more accurate. Sammon [123] indicated that since PCA is a linear method, it may 

not give an adequate representation in two or three dimensions when the original 

number of attributes is large, visual examination may not be possible. He also gave 

an example where data generated giving five groups in four dimensions are 

projected into the space of the two principal eigenvectors. Visual examination of 

this projection shows only four groups, since two of the clusters overlap completely 

in the two dimensional space. In analysis of process operational data, similar 

observations have been made by other researchers [122, 119, 201]. In the following 

discussion, only the ART2 clustering result will be used. 

It is apparent that clusters with only one data set are correct. These are clusters 

three, four and eight. Data sets 1, 2 and 3 in cluster one all cause the flowrate of the 

C4 hydrocarbons feed to fall to zero and so should be in the same class. Data sets in 

cluster two comprising 4, 5, 7, 8 and 11 cause the methanol flow to the mixer M201 

to be either completely cut off or greatly reduced to cause them to be in the same 

class. Data sets in class five, which include cases lO, 35 and 36 corresponding to 

changes of the output of the controller FC202D from 33% to 59%, 33% to 50% and 

33% to 55% respectively. Cluster six has cases 12, 13, 17 and 18 representing 

reduction or cut in methanol flow to the tank D211 and column C20l. The two 

cases in class seven, 14 and 15 represent the changes in the opening of the valve 

HC211D from 18% to 40% and 60% respectively. Cases 19 to 22 in cluster nine 

refer to changes of the output of the controller TC201R from 39% to 30%, 20%, 

lO% and 0%. 23 to 27 are cases corresponding to changes in the output of the 

controller FC203E from 37% to 33%, 29%, 16%, 6% and 0%, and are classified as 

cluster ten. Cluster eleven has four cases, 29-32 corresponding to changes of the 

output of the controller FC201D from 40% to 30%, 20%, lO% and 0%. The last 

cluster, cluster twelve, has the normal operational data sets 37 to lOO. The 

assignment of cases 28, 33 and 34 to this cluster is not apparent but is nevertheless 

not unreasonable given that they represent insignificant changes. 
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7.4.3 Decision Tree Development 

Conceptual clustering not only predicts the operational states but also interprets the 

prediction using causal knowledge in tenns of decision trees or production rules. 

Here, a variable takes discrete values from a region of the two dimensional PCA 

plane of the variable. For example, the liquid level at the bottom of column C20l, 

L_C201, takes values from its PCA plane in Figure 7.10(b) including A, B, C, D, 

and E. For the data case number 24, L_C201 takes the value ofD. For each data set, 

the operational state takes values from Table 7.6. For example, data set 24 has the 

value of ABNlO. 

The decision tree developed is shown in Figure 7.12. The decision tree can be 

easily translated into rules. For example, the rules that lead to ABN4 and ABNll 

are, 

Rule7: IF T_MTBE = B in Figure 7.1O(a) 

AND LD202_outl = C in Figure 7.1O(e) 

THEN Operational state = ABN4 

Rule II: IF T_MTBE=BinFigure7.10(a) 

AND F _D202_outl = A in Figure 7.1 O( e) 

AND T_C20 I_top = A or B in Figure 7.1 O(k) 

THEN Operational state = ABNII 

The root node is T_MTBE, the bottom temperature of the reactive distillation 

column C201. It indicates that it is the most important variable that distinguishes 

operational modes representing the one hundred data sets. Detailed examination of 

the decision tree and all the dynamic responses in conjunction with the MTBE 

process flowsheet revealed that the tree is reasonably good. An example illustrating 

this is the rules leading to ABNII. From Table 7.6, it is known that ABNll covers 

data cases 29, 30, 31 and 32, corresponding to changes of the output of the 

controller FC20lC (reflux flowrate control) in manual mode from 40% to 30%, 

40% to 20%, 40% to 10% and 40% to 0%. Clearly the most important variable 

which discriminates between these data sets from others is the column top 

temperature T_C20 I_top. This is continned by Figure 7.12, in which the nearest 

node to ABNII is T_C20Ltop. 
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EJ ABN7 ABN 5 ABN2 ABNII ABNIO NORMAL 
4,12,13,17, /8 

16 14,15 10,35,36 4,5,7,8.11 29-32 25-27 28,33.34.37-100 

Figure 7.12 Decision tree developed for the MTBE process. 

In Figure 7.12, the numbers at the bottom of the nodes indicates the data sets, For 

instance, the node ABN8 has only one data set, namely 16, Comparing Figure 7,12 

and Table 7.6, it is found that the decision tree in Figure 7.12 gives correct 

predictions except for the nodes ABNlO and NORMAL in Figure 7.12. 

Data sets 23 and 24 (underlined in Figure 7.12) are assigned to ABNlO by ART2, 

as shown in Table 7.6, but to the node NORMAL in Figure 7.12 by CS.O. Data sets 

23 and 24 represent the cases where the output of the steam flowrate controller 

FC203E at the bottom of the reactive distillation column C201 is changed from 37% 

to 33% and 37% to 29%. In fact these are insignificant changes so assigning them to 

the NORMAL operational state is acceptable. This inconsistency with ART2 can be 

attributed to two factors. Firstly ART2 is based on numerical values which is more 

precise than the conceptual clustering using CS.O. Secondly, the conceptualisation 

of variables by visual examination of the PCA two dimensional plane may give rise 

to some inaccuracies. 

Data sets 12, 13, 17 and 18 (in italics in Figure 7.12) are clustered in a separate 

class by ART2, as shown in Table 7.6. They are mixed with other cases in the node 

labelled NORMAL in Figure 7.12. Referring to Table Cl and Figure Cl, all the four 



Chapter 7 Inductive Learning and Conceptual Clustering 171 

cases cause flowrate changes on the methanol stream to tank D211 and then to the 

column C201. In reality, this flowrate is very small compared to the total methanol 

and C4 hydrocarbons flows to the mixer M201, (about 1112 or 11100 respectively). 

As a result, the changes of the methanol flow to D211 are insignificant. 

Consequently it is reasonable to regard cases 12, 13, 17 and 18 as being in the 

NORMAL operation class. 

ye~ 

Figure 7.13 Decision tree developed if variables are not conceptualised. 

In the above discussion, the dynamic trend signals of a variable are converted to 

qualitative concepts in a PCA two dimensional plane and then the inductive learning 

approach is used. An alternative way is using the eigenvalues of the first two PCs of 

a variable directly. The resulting decision tree derived in this way is shown in Figure 

7.13. The tree is found to be completely unreasonable because most clusters are 

overlapped therefore it cannot be used for predictions. Figure 7.14 shows the 

discretisation of two variables T_MTBE and F _D220_out2. The dashed lines are 

the boundary values for the discretisatiom. Since for each variable the discretisation 

is always binary, this is obviously not satisfactory. For example, Figure 7.1O(i) 

shows that the variables L_D201 can clearly take three values. A two-valued 

discretisation is not able to capture all the features which causes the inaccuracy of 

the tree. 
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Figure 7.14 Binary discretisation of variables in C5.0. 

7.5 General Review 

Inductive learning has been introduced as a method for analysis of data records 

averaged over days or weeks and a conceptual clustering tool for developing on-line 

operational monitoring systems. It can learn from a large number of examples to 

develop explicit and transparent knowledge in the form of decision trees and 

production rules. It is also able to identify the most important variables that 

contribute to clustering, which is clearly valuable for analysing process operational 

data and process monitoring. There are several issues that need to be addressed. 

Like most inductive learning systems, C5.0 is not recursive, it means it can only 

deals with data as a batch, not be able to learn as an example is presented. In 

addition though PCA has proved to be an effective way of concept extraction from 

dynamic trend signals, it is expected that the combination of PCA and Wavelet will 

deliver more effective pre-processing methods. Compared with similarity or 

distance based methods which have been widely studied, conceptual clustering 

clearly needs more research attention. 



CHAPTERS 

AUTOMATIC EXTRACTION OF KNOWLEDGE RULES 
FROM PROCESS OPERATIONAL DATA 

An alternative technique for developing intelligent process monitoring and control 

systems is expert systems (ESs). ESs use logic rules to carry out heuristic reasoning. 

Knowledge used to reach a conclusion is transparent because ESs have explanation 

capabilities. In this respect, ESs are superior to neural networks because the 

knowledge embedded in neural networks is opaque. It has long been recognised that 

a critical issue in developing knowledge based ESs is the bottleneck of knowledge 

acquisition. Traditionally knowledge acquisition has been dependent on consulting 

domain experts. A disadvantage of this approach is that experts are usually better in 

collecting and archiving cases than in expressing the experience and cases explicitly 

into production rules. There are more difficulties in compiling knowledge about 

process operations due to the large number of interacting variables. 

A promising approach for acquiring heuristic knowledge rules is to extract 

knowledge automatically from data. In this chapter we describe methods for this 

purpose which include fuzzy sets, neural networks, rough sets and fuzzy neural 

networks. 

8.1 Rules Generation Using Fuzzy Set Operation 

Generating fuzzy rules based on fuzzy set method developed by Wang and Mendel 

[205-208] is concerned with the following context. Suppose we are given a set of 

input-output data pairs, 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999
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(XII), X~I), ... , XWl) (y\ll, y~l), ... , yyl) 

(xF), X~2), ... , X~» (yF), yi2), .•• , y~l) 

(8.1) 

where XI. , X2 , ",XN are inputs and yJ, Y2, ... Yr are outputs. M is the total number of 

given data patterns. The procedure for generating fuzzy rules is divided into five 

steps which are explained based on a problem of two inputs and one output which is 

a special case of Expression 8.1. 
(XII), X~l») (y(l») 

(xI2), x~2») (y(2») 

(8.2) 

Step I: Divide the input and output variables into fuzzy regions of fuzzy concepts. 

Each region of a fuzzy concept is represented by a membership function. Figure 

8.I(a) shows that the input variable Xl is divided into five regions of fuzzy concepts, 

i.e., CE (Centre), BI (Big I), B2 (Big 2), Sl (Small 1) and S2 (Small 2). The shape 

of the membership function, m(xl) is triangular. X2 is divided into seven regions and 

Y into five regions. 
Step 2: Generate fuzzy rules from given data pairs. For given xli), x~i)and y(i) find 

corresponding membership values. For example, in Figure 8.1(a), since m(xj!) in B1 

= 0.8, m(x\,l) in B2 = 0.2 and 0.8 > 0.2, we take m(x\I) = 0.8 and consider xP) 

belonging to Bl. Following the same consideration, from Figure 8.I(b), we have 
x~ll = 0.7 in Sl. Then we can obtain one rule from one pair of desired input-output 

data, e.g., 
.: (xPl, x~ll) (y(l») 

=> [xPl(0.8 in BI), xill(0.7 in SI)] [y(l) (0.9 in CE)] 

:. we generate rule 1 as 

IF XI is B1 andx2 is Sl, THEN Y is CEo 

Similarly, 
.: (X\2l, xS2») (y(2)) 

=> [X\2l(0.6 in B1), xS2l(1 in CE] [y(2) (0.7 in B1)] 

:. we generate rule 2 as 

IFxl isBl andx2is CE, THENyisBI. 
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The rules generated in this way are only "and" rules. However, if two rules 

generated have the same THEN part then they represent "or" relation. 

m(x l ) 

10 t S2 SI CE 81 82 

l)<)()(N 
0.0 ~ Xl 

X l~ x:21 X:ll + 

1"1') 
Xl 

(a) 
S3 S2 SI CE 81 82 83 

JXXXl>XxJ ~ X2 0.0 
X2 

X(ll X~2) X; 2 (b) 
m(y) 

10 t S2 SI CE 81 82 

~ ~ y 0.0 
y ill yl21 y+ 

(c) 

Figure 8.1 Divisions of the input and output spaces into fuzzy regions 

and the corresponding membership functions. (a) m(xI), (b) m(x;), (c) m(y). 

Step 3: Assign a degree to each rule. Since there are normally lots of data pairs 

and each data pair generates one rule, it is highly probable that there are conflicting 

rules, i.e., rules have the same IF part but a different THEN part. This conflict is 

solved by assigning a degree to each rule and accept only the rule from a conflict 

group that has the maximum. The equation to calculate the degree for a rule is, for 

example rule 1, 
Degree of Rule 1 = mBI(xI)msl(x2)mcE(Y)m(1) 

= 0.8*0.7*0.9* mOl 

=0.504* mOl (8.3) 

Where mO) is a degree given by human expert about the importance and trustiness 

of the data pair. 

Step 4: Create the combined fuzzy rule base. The combined fuzzy rule base is 

created by filling the box of Figure 8.2 with the rule produced in the above steps. If 

there is more than one in one box, use the rule with maximum degree. 
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B3 

B2 

Bl 

Sl 

S2 

S3 

S2 Sl CE Bl B2 

X, 

Figure 8.2 The form of a fuzzy rule base. 

The approach uses algorithms of fuzzy set and is simple and straightforward. The 

rules generated by this method may be repeating and the set of rules may be large 

[209]. Srinivasan et a1. [210] improved this method in this aspect using an inductive 

learning to determine the fuzzy rules. 

Other methods of generating fuzzy rules from numerical data using fuzzy sets 

have slightly different procedures and are not discussed here [211-216]. 

8.2 Rules Generation from Neural Networks 

The rules generation procedure from neural networks by Fu [217] can be illustrated 

by reference to Figure 8.3. 

A rule generated has the form of 

IF the premise, THEN the action (conclusion). 

Specifically for the case in Figure 8.3, 
lFAi, ... Ai, ... -,Aj, ... -,Aj, ... , THENC(or-,C) 

where Ai is a positive antecedent (an attribute in the positive form), -,Aj is a 

negative antecedent (an attribute in the negative form), C the concept (conclusion), 

and -, reads "not". Each node in the hidden or output layer is designated by a 

symbol which represents a concept to be confirmed or disconfirmed, such as node C 

in Figure 8.3. Confirmation (or disconfrrmation) of a node concept is measured by 

the activation of the node which is calculated by 

OJ = F(I;wjiXi -9 j ) (8.4) 
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where, 

OJ - the activation of node j (a hidden or output node); 

Wji - the weight on the connection from unit i to unit j; 

OJ - the threshold on unit j, which is adjustable; 

F - the activation function which represents the 

output nodes and is defined as the sigmoid form. 

nonlinearity on the hidden or 

F(a) = 1 (8.5) 

where A determines the steepness of the function. 

In the case of a hard-limiting activation function, the output of a node is given by 

o. = {I if t Wji Xi > e j (activation> threshold) (8.6) 
J 0 else 

The method needs to train the neural network first and then based on the above 

concepts a detailed procedure is developed to extract rules. Although it shows 

advantages compared with some other methods of extracting rules (e.g., Gallant 

[218]) from a trained neural network, the method still has its weakness: it produces 

rules with concepts that have no physical meaning since it uses hidden neurones. 

A-
I 

[ 
I 

A -
j 

Figure 8.3 The post-attrs and neg-atts relative to a concept. An attribute can be 

either a post-att or a neg-att, depending on the concept. 
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8.3 Rules Generation Using Rough Set Method 

Learning production rules by rough set approach has been studied by Chan [219], 

Srinivasan and Chan [210], Chmielewski et al. [220], Quafafou and Chan [209] and 

Ziarko [226]. The approach makes use of the rough set theory introduced by Pawlak 

[221, 222, 223]. Let U be a nonempty set called universe, and R be an equivalence 

relation on U called indiscernibility relation. An ordered pair A = (U, R) is called an 

approximation space. For each subset in U, X is characterised by a pair of sets, the 

lower and upper approximation of X in A. The lower approximation of X in A is 

defined as 
BX = {x E V![xlR<;:;X} and 

the upper approximation of X in A is defined as 
RX= {XE UI[xlRnX;t0} 

in which [xJR denotes the equivalence class of R containing x. A subset X of U is 
said definable in A iff (if and only if) Jix= Fix. 

The rules generating procedure based on the above concepts is better to be 

illustrated by reference to an example as shown in Table 8.1. 

The universe U is the set of example objects, 

U= {el, e2, ... e8} 

and each object is characterised by the attributes 

Density, Colour, Boiling range and Class. 

The attributes are classified as condition attributes and decision attributes. (The 

production rule for a single example object is IF condition attributes THEN decision 

attributes. For el as an example, IF Density = Low, Colour = Light and Boiling 

range = Narrow, THEN Class = I). The automatic rules generating method is 

dependent on the calculation of the lower and upper approximations of the class 1 

and 2 (denoted asXl andX2) as well as the definability. 

The concept "class = I" is the subset Xl = {el, e2, e4, e5, e7} and the concept 

"class = 2" is the subsetX2 = {e3, e6, e8}. 

These define the relations on U. 

The relations on U can also be defined on the basis of single attributes, then we 

have the following attributes on U induced by those equivalence relations on U. 

{Density} * = {{el, e5, e8}, {e2, e3, e4, e6, e7}}, 

{Colour} * = {{el, e3, e7, e8}, {e2, e4, e5}, {e6}}, 

{Boiling range}*={ {el, e2, e7}, {e3, e4, e5, e6, e8}}, and 

{Class}*= {{el, e2, e4, e5, e7}, {e3, e6, e8}} 
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The above partitions will also be called classification of U generated by single 

attribute sets. 

Table 8.1 A training set for the rough set approach represented 

b d·· bl )ya eClSlOn ta e. 

Attributes 

Examples Density Colour Boiling range Class 

el Low Light Narrow I 

e2 High Very light Narrow I 

e3 High Light Wide 2 

e4 High Very light Wide I 

e5 Low Very light Wide 1 

e6 High Dark Wide 2 

e7 High Light Narrow 1 

e8 Low Light Wide 2 

The lower approximations of the class Xl by each condition attribute are: 

{Density }XI = 0 
{Colour}XI = {e2, e4, e5}, and 

{Boiling range }XI = {el, e2, e7} = U 

The upper approximation of the class X 1 by each condition attribute are 
{Density)XI = {el, e2, e3, e4, e5, e6, e7, eS} = U, 

{COlOUr)XI = {el, e2, e3, e4, e5, e7, eS}, and 
{Boiling range)XI = {el, e2, e3, e4, e5, e6, e7, eS} = U. 

Given a decision table S, the concepts to be learned are subsets of the universe U 

in S. One question is how do we know that a concept X can be described by 

condition attributes in S. This is solved by the introduction of definability of sets. 

Let P be a nonempty subset of the set of condition attributes in S, then a subset X of 

U is said to be P-definable in S iff f..X = P X , and X is P-undefinable in S if 

PX*PX. 

Still consider the decision table in Table S.l. Let P be the set {Density, Colour} 

of attributes, then the classification of U generated by P is 

p* = {Density, Colour} * = {Density}*.{Colour}* 

= {{el, eS}, {e3, e7}, {e5}, {e2, e4}, {e6}}. 

The lower approximation of Xl by Pis 



180 Data Mining and Knowledge Discovery for Process Monitoring and Control 

EXl = {el, e4, e5}, and 

the upper approximation of Xl by P is 

P Xl = {el, e2, e3, e4, e5, e7, e8}. 

Therefore, the concept Xl is P-undefinable in S because E.Xl "" PXl 

Let R = {Density, Colour, Boiling range}, then, 

R*= {{el}, {e2}, {e3}, {e4}, {e5}, {e6}, {e7}, {e8}}, and 

EXl = {el, e2, e4, e5, e7} =Xl = RX1. 

Thus, the concept Xl is R-definable in S. 

Using the concepts of lower and upper approximations and definability of sets, 

programs LEM2 [219] and LERS [220] have been developed for extracting 

production rules from data which are able to deal with noise. 

8.4 A Fuzzy Neural Network Method for Rules Extraction 

We have developed a fuzzy neural network method for generating production rules 

from data [174]. A conventional NN has real number inputs and weights. There are 

three main types of fuzzy neural networks (fuzzy NNs) [156]: fuzzy NNs with fuzzy 

input signals but real number weights, fuzzy NNs with real number input signals but 

fuzzy weights and fuzzy NNs with both fuzzy input signals and fuzzy weights. The 

first type is used here. The method involves the following steps: 

(1) The input and output variables are divided into fuzzy regions. Figure 8.4 

shows examples of such regions, such as (Normal, High and Low) or extended to 

five values (Normal, Medium High, High, Medium Low and Low). 

(2) All input and output data patterns are processed using the membership 

functions in step (1). For example, value of 600°C for a temperature may be 

regarded as High ( I-lH = 0.7) when expressed as a fuzzy variable. 

(3) A fuzzy NN is constructed. To illustrate the fuzzy NN structure, consider a 

fuzzy NN with two input variables (T Cl and FCI ) and a single output variable (T Hll), 

as shown in Figure 8.5. The box contains a normal NN which has one input and one 

output layer together with a simple hidden layer. The activation functions of the 

neurons for both the hidden and output layers are sigmoidal functions. Thus, if the 

normalised value for T Cl is 0.7 and it has the fuzzy membership function of the type 

shown in Figure 8.4( c), then the outputs of the three )l neurons corresponding to T Cl 

would be 
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Il =0 Il =0 II =1 
L, Tel N, Tn rH, Tel 

If the nonnalised value for Tel is 0,7 and it has the fuzzy membership function of 

Figure 8.4(d), then the outputs of the three I-l neurons corresponding to Tel would 

be 

Il = ° Il = 0 11 = 0,8 
L, Tel N, TCi H, TCi 
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Figure 8.4 Divisions of input and output variables into fuzzy regions and the 

corresponding membership functions. 

(4) Use the data produced in Steps 2 and 3 to train the fuzzy neural network 

shown in Figure 8.5, The parts outside the dashed-line box are the fuzzy 

representation of input and output data. The part inside the dashed-line box is a 

nonnal three layer back propagation neural network. The training procedure uses 

error backpropagation which adjusts the weights between the input and output 

layers, 

The fuzzy rules obtained by training the network are of two types. One is of the 

following fonn: 

IF Tel is High AND FCI is Low 

THEN T HlI is high (8.7) 
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This means that if the value of a variable belongs to a fuzzy class it belongs to it 

unambiguously. Another type of rule which is obtained from training the network is 

of the following form: 
IF TCl is High ( !..l H, T CJ ) AND FCl is Low (J.l L. F CJ ) 

THEN THll is high (!..l H, T HI!) (8.8) 

The next section examines each of these rules. 

8.4.1 Generating Rules Without Fuzzy Membership Values 

If the membership functions of the variables of a fuzzy NN have the form of Figure 

8.4(a) or (c), then the rules generated take the form of Expression 8.7, i.e., rules 

without fuzzy membership values. The maximum number of rules is determined by 

the network topology. If there are NOY input variables and each variable takes NFY 

fuzzy values (i.e., each input variable has NFY corresponding nodes, assuming all 

input variables take the same number of fuzzy values), then the maximum number of 

rules will be equal to NOyNFV. This represents the maximum number of rules 

although it is likely that in practise it will be less since it depends on the range of 

data used to generate rules. 

--
--
--

Figure 8.5 The architecture of the fuzzy neural network. 
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For the fuzzy NN structure shown in Figure 8.5 having two input variables and 

one output variable with each variable taking three fuzzy values, the maximum 

number of rules will be 32=9. If each variable takes five values (High, Medium 

High, Normal, Medium Low, and Low), then the maximum number of rules is 

52=25; 

In the case of a shell-and-tube heat exchanger of the type illustrated in Figure 

8.6(a) [224]. The steady state values are shown in Figure 8.6(a). Assuming no leaks, 

then the cause-effect diagram for variables is shown in Figure 8.6(b). For simplicity, 

attention is restricted to fixed values of T HI and FHI so only Fel and T CI change. 

Then if each input variable takes three fuzzy values, i.e., Normal, High and Low, the 

situation is as depicted by Figure 8.4(c). A fuzzy NN structure for the heat 

exchanger is shown in Figure 8.5 and there will be a maximum number of 32=9 

rules. 

The boundary values of the variables for low, normal and high are indicated in 

Table 8.2. 87 input-output patterns are obtained by changing FCI and/or Tel based 

on Table 8.3. Details of simulation results are not given to save space but the 

resulting data patterns (as shown in Table 8.4) are given which are obtained after 

fuzzification of simulation results using the fuzzy membership function of Figure 

8.4(c) and the boundary values of Table 8.2. Each pattern in Table 8.4 is a different 

form of a production rule, for example, data pattern I represents the following rule: 

IF Fel is Normal and Tel is Normal 

THEN T HII is Normal 

If there are no conflicts in any of the data patterns , such as in the case of data 

patterns I, 2, and 3 which give the same rule then Table 8.4 is the final result. 

However, more often than not, there are conflicts in data patterns, i.e., rules have the 

same IF part but different THEN part. Thus data pattern 7 and 7* are examples 

which take the following form: 

7: IF Fel is High and TCI is Normal 

THEN T HII is Low 

7*: IF Fel is High and Tel is Normal 

THEN T HII is Normal 
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Here, 7 and 7* have the same IF part but different THEN part, the conflict has to 

be resolved. The approach being proposed here is to use the neural networks to train 

the data patterns in Table 8.4. Since neural networks are capable of dealing with 

noise, the noise data patterns can be identified and neglected. To demonstrate this, 

Table 8.4 contains 10 data patterns having noise which illustrate the conflicts. The 

10 data patterns are shown with a "*,, e.g., 7*. The result is an increase in the 

number of data patterns from 87 to 97. 

The 97 data patterns are fed to a back propagation neural network (Figure 8.5) 

having 6 inputs (FCl Low, Fel Normal, Fel High; Tel Low, Tel Normal and TCl 

High) and 3 outputs (THII Low, THII Normal and TH11 High) with 6 hidden neurons. 

The activation functions of output and hidden layers are sigmoidal. The trained 

results after 5000 iterations are shown in Table 8.5. 

Table 8.5 gives the targets and predictions of T HII for all the 97 data patterns of 

Table 8.4. For example, for data pattern I, the target values for T HII are L = 0, N = 
I and H = 0 and the predictions for T HII are L = 0.1, N = 0.85 and H = 0.06. 

It was found that for all 87 data patterns obtained from simulation, very good 

predictions are obtained, but for all 10 of the noisy data the errors are very large. 

The conflict can be resolved by comparing errors between the target values and 

predictions, keeping the rules with small errors and abandoning those with large 

errors. 

The conflicting data patterns 7 and 7* can be used as an example. By comparing 

the results in Table 8.5, it can be seen that the error for 7* is very large and for 7 is 

small. The square root of the sum of error squares for data patterns 7 and 7* are 

0.26 and 1.15 respectively. So 7* should be rejected. The same conclusion can be 

reached by looking at the other 9 noise data patterns. The rules generated have been 

summarised in Table 8.6. 

Table 8.2 The boundary values of low, normal and high for THI ], Fel and Tel. 

L(Low) N (Normal) H(High) 

THII OF < 285 [285,320] >320 

FCI lh/sec <0.627*Fcl. "eady [0.627*Fcl 'teadv , 1.42* FCI steadY 1 >1.42* FCI steady 

TCI OF <0.55*Tcl "eadv rO.55*Tcl '!ead ,1.6* TCI steadyl > 1.6* T CI. steadv 
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Stream Hot-I 

TH 1= 400 of 

FH 1=20000 Ibisec 

• 

1 Stream cold - I 

TCflOooF 

FC f 20000 Ibisec 

Stream Hot - II 

! Stream cold -I I 

TClf 200 of 

(a) 

(b) 

Figure 8.6 The shell-and-tube heat exchanger and its cause-effect diagram_ 

T bl 83 87 d a e . ata patterns are 0 tame 'yc angmg b . db h F CI an d/ T or CI-

Data patterns Coefficient (Fcl = FC\* Coefficient (T CI = T CI * 

Coefficient) Coefficient) 
(1) - (5) LO, U, 12, 1.3, 1.4 LO 

(6) - (9) 1.45, 150, L60, L65 LO 

(10) - (13) 0.9,0.8,0.7,0.65 LO 

(14) - (16) 0.6, 0.5, 0.45 LO 

(17) - (20) LO L2, 1.3, 1.4, L5 

(21) - (24) LO L65,L7, L8,L9 

(25) - (27) LO 0.8,0.7,0.6 

(28) - (31) LO 0.5, 0.4, 0.35, 0.3 

(32) - (47) 1.45, 1.5, 1.6, 1.65 1.65, 1.7, 1.8, 1.9 

(48) - (59) 0.6,0.5, 0.45 1.65, 1.7, 1.8, 1.9 

(60) - (75) 1.45, 1.5, 1.6, 1.65 0.5, 0.4, 0.35, 0.3 

(76) - (87) 0.6, 0.5, 0.45 0.5, 0.4, 0.35, 0.3 
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Table 8.4 Fuzzification results of data 
patterns obtained through simulation using 
the membership function of Figure 8.4( c). 

FCI TCI THII 

No. L NH L NH L NH 

I 0 I 0 0 I 0 0 I 0 

2 0 I 0 0 I 0 0 I 0 

3 0 I 0 0 I 0 0 I 0 

3" 0 I 0 0 I 0 I 0 0 

7 0 0 I 0 I 0 I 0 0 

7" 0 0 I 0 I 0 0 I 0 

II 0 I 0 0 I 0 0 I 0 

11* 0 I 0 0 I 0 0 0 I 

18 0 I 0 0 I 0 0 I 0 

18" 0 I 0 0 I 0 I 0 0 

22 0 I 0 0 0 I 0 0 I 

22* 0 I 0 0 0 I I 0 0 

29 0 I 0 I 0 0 I 0 0 

29* 0 I 0 I 0 0 0 0 I 

40 0 0 I 0 0 I 0 I 0 

40* 0 0 I 0 0 I I 0 0 

50 I 0 0 0 0 I 0 0 I 

50* I 0 0 0 0 I I 0 0 

70 0 0 I I 0 0 I 0 0 

70* 0 0 I I 0 0 0 I 0 

80 I 0 0 I 0 0 0 I 0 

80* I 0 0 I 0 0 0 0 I 

81 I 0 0 I 0 0 0 I 0 

Table 8.6 Rules generated. 
IF FCI and 

Nonnal 
High 
Low 
Nonnal 
Nonnal 
High 
Low 
High 
Low 

Table 8.5 Target and predicted fuzzy 
membership values for THII. 

FCI TCI THII 

No. (T, P) (T, P) (T, P) 

I 0 .10 I .85 0 .06 

2 0 .10 I .85 0 .06 

3 0 .10 I .85 0 .06 

3* I .10 0 .85 0 .06 

7 I .82 0 .19 0 .01 

7* 0 .82 I .19 0 .01 

II 0 .10 I .85 0 .06 

11* 0 .10 0 .85 I .06 

18 0 .10 I .85 0 .06 

18" I .10 0 .85 0 .06 

22 0 .20 0 .02 I .81 

22* I .20 0 .02 0 .81 

29 I .80 0 .03 0 .06 

29" 0 .81 0 .03 I .06 

40 0 .06 I .95 0 .03 

40" I .06 0 .95 0 .03 

50 0 .07 0 .01 I .94 

50" I .07 0 .01 0 .94 

70 I .94 0 .05 0 .01 

70* 0 .94 I .05 0 .01 

80 .0 .01 I .78 0 .24 

80" .0 .01 0 .78 I .24 

81 .0 .01 I .77 0 .24 

TCI THEN THll 
Nonnal Nonnal 
Nonnal Low 
Nonnal High 
High High 
Low Low 
High Nonnal 
High High 
Low Low 
Low Nonnal 
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8.4.2 Generating Rules With Fuzzy Membership Values 

If fuzzy membership functions take the fonn shown in Figure 8.4(b) or (d), then 

rules of the fonn of Expression 8.8 are obtained. Translating all the data into rules 

of the fonn of Expression 8.8, there are as many rules as the number of data 

patterns. Therefore an important step is to deal with number of rules. Two 

approaches are proposed and described next. 

8.4.2.1 A -Cut approach 

One way to reduce the number of rules is to reject the rules that are less reliable. 

There are two situations which make rules less reliable. One is that in Expression 
8.8, IlH. Tel, ~L, F cl , and ~H,THll are small because small membership values 

mean it is ambiguous in identifying which fuzzy values should be used. The other 

situation is that the error, ER, for the data pattern is large when training is 

completed. It is therefore necessary to define a confidence factor, CF, representing 

reliability: 

CF = IlH. TCl Ill. Fel IlH. TCHll / ER (8.9) 

A A. -Cut value can then be defined as the threshold for the rule to be worth 

keeping. If the confidence factor of the rule is smaller than the A -Cut value then the 

rule should be abandoned. Adjusting the A -Cut value can change the number of 

rules generated. 

Referring to the heat exchanger the simulation results of the heat exchanger shown 

in Table 8.3 are first converted to fuzzy patterns using corresponding fuzzy 

membership functions. The function used in this case is represented in Figure 8.4(b) 

and (d) and described by the following expression: 

y = e-1xl' (8.10) 

Here, x changes in the range [-2, 2] and I changes from 0.51 to 5.0. In this example, 

1= 1.0. The boundary values for Low, Nonnal and High for the three variables (Fel' 

Tel and T HII) are shown in Table 8.7. There is a little difference from Table 8.2 but 

it does not affect the principle to be demonstrated. 

By applying the fuzzy membership functions in Equation 8.10 to the 87 

simulation data patterns corresponding to Table 8.3, data patterns can be converted 

to fuzzy rules of the following fonn, 

IF Fel is Nonnal (0.61) and Tel is Nonnal (1.0) 

THEN T HII is Nonnal (0.67). 
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All the 87 data patterns after fuzzification are input to the neural network having 6 

hidden neurons, as shown in Figure 8.5. The network has six input neurons (FCI 

Low, Normal and High as well as T CI Low, Normal and High) and three outputs 

(T HII Low, Normal and High). 

After training, the confidence factors CF are shown in Table 8.8. A large value of 

CF means that it is more reliable. So a A -cut value is used to select the desired 

number of rules. By changing the A -cut values it is possible to change the number 

of rules, as is demonstrated in Table 8.9. For example, with a A -cut value xlO is 

6.0, there are 17 rules and for 5.0 are 21 rules. The rules for the former case are 

shown in Table 8.10. 

The A -cut approach can effectively select the desired number of rules which then 

can be used by a fuzzy expert system shell to develop an expert system. In 

applications, when the input data does not exactly match the IF parts, interpolation 

and extrapolation are required. 

Table 8.7 Boundary values the three variables or Low, Norma an dH" h 19 . 

L N H 

THII <280 r280, 320] >320 

FCI 12000 [12000,28000] >28000 

TCI <40 r40, 1601 >160 

fid Table 8.8 Con 1 ence actors 1 d or some example ata patterns. 

Data patterns 1 2 3 4 5 ... 48 49 50 

Confidence 24.01 32.23 3.07 .89 .41 ... .21 .35 .79 

Factor x 10 

51 52 53 54 55 56 57 58 59 ... 

3.28 .59 1.54 7.99 9.82 .34 4.20 5.03 ... 

Table 8 9 Number of rules generated can change with changing A - cut values 

A -Cut value x 10 1.0 1.5 2.0 3.0 5.0 6.0 8.0 9.0 10. 

Number of rules 48 42 32 25 21 17 11 8 6 
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Table 8.10 Fuzzy rules generated (A -cut value x 10 = 6 ) .. 
No. IF FCI and TCI THEN THII 
(1) (N, 1.00) (N, 1.00) (N,0.99) 
(2) (10) (N,0.61) (N, 1.00) (N,0.67) 
(17)(25) (N, 1.00) (N,0.51) (N,0.51) 
(18)(26) (N,1.00) (N,0.37) (N,0.37) 
(40) (H,0.67) (H,0.19) (N,0.55) 
(47) (H, 1.00) (H, 1.00) (N,0.22) 
(54) (L, 0.51) (H,0.51) (H,0.82) 
(55) (L, 0.51) (H, 1.00) (H,0.96) 
(57) (L, 1.00) (H,0.26) (H,0.87) 
(70) (H, 0.67) (L, 0.37) (L, 0.79) 
(71) (H, 0.67) (L, 1.00) (L, 0.90) 
(74) (H, 1.00) (L, 0.37) (L, 0.87) 
(75) (H, 1.00) (L, 1.00) (L, 1.00) 
(83) (L, 0.51) (L, 1.00) (N,0.28) 

8.4.2.2 Neuro-expert approach 

Although the A -cut can effectively select the desired number of rules, the rules 

obtained do not keep all the infonnation inherent in the original data. Some 

infonnation is lost. The neuro-expert system approach is different in that it can 

make use of all the infonnation in the data. It requires writing the basic number of 

rules (i.e., NOVNFv). For two inputs, where each variable takes three values, the 

basic number of rules are 32=9. These rules are of the fonn of expression (8.11) in 

which IlH ' ilL and IlMH yare variables that can be any values in the range 
, Xl I X2 ' 

of [0, 1]. 

IF Xl is High ( Il H• Xl) AND X2 is Low ( ilL. X2) 

THEN y is medium high ( Il MH. y ) (8.11) 

When an expert system is used, it receives fuzzy values of Xl and X2 and the 
corresponding Il values. The expert system gives the fuzzy values for y and uses a 

trained neural network algorithm (based on the weights) to calculate the Il for y. 

In conclusion, it is essentially the same as the neural network but it has the 

following important features. Firstly, it is able to give explanations about how 

conclusions are reached. In the case of the heat exchanger, it can also give the 

following explanations: 
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Conclusion: THII is (Normal, 0.24), CF xlO is 2.95. 

HOW (user input asking how conclusion was reached.) 

IF FCI is (Low, 0.51) and TCI is (Low, 0.37) 

THEN T Hil is (Normal, 0.24) 

Confidence factor xlO = 2.95 

Secondly, the basic rules are represented as cause-effect knowledge in contrast to 

the black box feature of a neural network. 

8.S Discussion 

Both neural networks and expert systems are now starting to realise their potential in 

developing intelligent operational decision support systems. Knowledge used by an 

expert system to reach conclusions is transparent and can be displayed through the 

HOW and WHY explanation facilities. However, a critical problem with expert 

systems is knowledge acquisition. The methods introduced in this Chapter are able 

to extract production rules automatically from data therefore are potentially very 

useful. 

The fuzzy neural network method is similar to the method of rule generation by 
fuzzy set operation [205, 207] in the first two steps. The major difference is in 

dealing with conflicts. The fuzzy set operation method calculates the extent to which 

a rule depends on a factor derived from human experts. This is not practical in many 

applications and so efficiency can be a serious problem when large amounts of data 

are involved. The fuzzy NN described in this chapter is not an incremental 

approach. Frayman and Wang [225] developed a recurrent fuzzy NN which is able 

to learn incrementally. 

The rough set method [219] initially was not able to generate fuzzy rules. 

Quafafou and Chan [209] have improved the method so as to be able to generate 

fuzzy rules but there are still limitations, as indicated by Quafafou and Chan [209]. 

The neural network method by Fu [217] depends on the explanation of a properly 

trained structured neural network. The nodes represent concepts and the branches 

describe cause-effect relations. However, since hidden neurons are used, the 

knowledge obtained includes concepts which do not have physical significance. 

Another problem is that the number of rules increases dramatically with increase in 

the size of the problem. 



Chapter 8 Automatic Extraction of Knowledge Rules 191 

Chan [219] has classified the various methods into two categories: incremental 

and non-incremental learning. The former works on one example at one time and 

the latter on a mass of training examples. The methods of the fuzzy set operation 

and the rough set belong to the incremental method group. The neural network 

method by Fu [217] is non-incremental for generating the trained neural network but 

becomes incremental when the weights are explained. The method proposed in this 

paper belongs to incremental. A disadvantage is that some information contained in 

the numerical data may be lost during conflict filtering, which is an essential step in 

incremental methods. This is unlike the NN which takes account of all data used for 

training to obtain the weight. However, incremental learning has its advantage that it 

is a recursive method, so that as new data becomes available, it updates the system 

and changes the existing knowledge base. This is particularly helpful in on-line 

application, as new data may be continuously made available for updating. 

Another very effective technique for automatic generation of rules from data is 

inductive learning which has been introduced in Chapter 7 therefore is not repeated 

here. 



CHAPTER 9 

INFERENTIAL MODELS AND SOFTW ARE SENSORS 

9.1 Feedforward Neural Networks as Software Sensors 

Process control contributes to process operational perfonnance in safety, 

environmental protection and product quality through proper monitoring and control 

of process variables. Some of the variables including flowrate, temperatures, 

pressures and levels can be easily monitored on-line with cost effective and reliable 

measuring devices. Some variables, however, are often analysed off-line in 

laboratories because they are either too expensive or technically unreliable to install 

on-line instrument. These variables often relate to product quality and 

environmentally significant parameters such as composition and physical properties. 

A significant delay is nonnally incurred in laboratory testing, which is in the range 

of half an hour to a few hours. Such a delay makes it too late to make timely 

adjustments. An inferential or software sensor can predict the primary output 

variable from process inputs and other measured variables without incurring the 

measurement delay. Such prediction is necessary for implementation of inferential 

control. 

Software sensors assume that there is a relationship between some easily 

measured and continuously available variables and the variable to be inferred. 

Traditionally mathematical models have been used which are obtained from 

fundamental domain knowledge. However, for many chemical and biochemical 

processes such fundamental models are not available due to lack of knowledge 

about these processes. A promising approach is to develop systems that can learn to 

develop inferential models from operational data. A major advantage of machine 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999
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learning based approaches is that the model is able to be continuously improved as 

more and more data become available. Among the various approaches studied, 

feedforward neural networks (FFNN) have attracted wide attention and shown great 

potential as a basis for reliable software sensor design. 

This chapter describes inferential models and software sensor design using 

FFNNs, with emphasis being put on addressing a number of critical issues. Firstly, 

FFNN is recognised to have the danger of extrapolation beyond the parameter space 

used for the training data. It is therefore important to select the data for model 

development and test with some care. This also means that there is a need to know 

when the FFNN model needs to be retrained with new data during use. In Section 

9.2, a method for addressing the extrapolation issue is introduced. An industrial case 

study describing the development of a software sensor using the approach is 

presented in Section 9.3. Secondly, how to select input variables is also an 

important issue. Because of inadequate knowledge of domain problem, people tend 

to use more variables than necessary while some may be redundant. Redundant 

variables deteriorate the performance. Methods are introduced in Section 9.4 to 

select input variables. Finally, Section 9.5 gives a brief introduction to dynamic 

neural networks for software sensor development. 

9.2 A Method for Selection of Training / Test Data and 
Model Retraining 

A limitation of FFNN models is that they are data intensive because they are trained 

and not programmed [145]. Therefore when such a model is being developed, it is 

important to divide the data into training and test sets so that the model developed 

can be validated. In addition, the trained model needs to be periodically updated to 

maintain the accuracy of the model. The traditional way of dividing a database into 

training and test sets is through random sampling. Random sampling of test data has 

major shortcomings. If more sampled patterns belong to the sparse region of the 

high dimensional parameter space, the results will not be reliable, because the 

training patterns from that region are not adequate. On the other hand if more 

sampled patterns for testing come from the dense space, the model will give over 

optimistic estimation. Another problem is to decide when the model needs to be 

retrained. It is generally assumed that if the values of all input variables are within 

the boundaries of the training data, the model is reliable, but this assumption is 

questionable. Given a new data pattern, with input attributes within the boundaries 
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of the training data, it is still difficult to tell if it is covered by the training data since 

the new data represents a point in a very high dimensional non-linear parameter 

space. 

To address this issue, we have proposed a method which combines unsupervised 

clustering approach and FFNN, using unsupervised clustering to automatically 

cluster the data into classes so that data patterns within a class can be distinguished 

from those in other classes and so form a basis for sampling test data patterns [227]. 

Application of the method to the development of a software sensor for the main 

fractionator of a refinery fluid catalytic cracking process is described to illustrate the 

approach. 

Figure 9.1 schematically depicts the method. It is divided into two stages, model 

development and model maintenance. In model development, data are first grouped 

into classes using the unsupervised clustering system AutoClass, a Bayesian 

clustering approach that has been introduced in Chapter 6 and can automatically 

group multivariate data patterns into clusters. Test patterns for FFNN are sampled 

from each class according to the size of the class. During model maintenance, it is 

necessary to decide when the model requires to be retrained. Because of the high 

dimensionality and large volume of data, it is difficult to carry out the analysis 

manually. The approach used here mixes new data with older data and then analyses 

it using AutoClass. If any of the following three situations arises, the model needs to 

be retrained. 

• New classes are formed that cover mainly new data. This means that the new 

data are located in new parameter spaces. 

• Some new data are assigned to small sized existing classes. This implies that the 

parameter spaces covered by small sized classes are insufficiently trained. When 

new data are available, the model should be retrained to improve its performance. 

• New data are assigned to large classes and the degree of confidence estimated 

using the old model for the new patterns is low. 

Other unsupervised machine learning approaches introduced in Chapter 6 could 

also be used. AutoClass is used here because its degree of autonomy is high. For 

example, users are not required to give a threshold for the similarity measure. The 

algorithm was discussed in detail in Chapter 6 so will not be repeated here. 
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Model development 

Model maintenance 

Figure 9.1 A combined framework for software sensor design 
using automatic classification and FFNN. 

9.3 An Industrial Case Study 

This section describes the application of the above method to an industrial process 

for developing a software sensor predicting product quality. 

9.3.1 The Main Fractionator and Product Quality Prediction 

The fluid catalytic cracking process of the refinery has been described in Chapter 

4 (Figure 4.12). One of the products is light diesel which is typically characterised 

by temperature of condensation. Previously the temperature of condensation was 

monitored by off-line laboratory analysis. The sampling interval is between four to 

six hours and it is not practical to sample it more frequently since the procedure is 

time consuming. This deficiency of off-line analysis is obvious and the time delay is 

a cause of concern because control action is delayed. Moreover, laboratory analysis 

requires sophisticated equipment facilities and analytical technicians. Clearly there 

is great scope for a software sensor to carry out such on-line monitoring. 

Fourteen variables are used as inputs to the FFNN model as shown in Figure 9.2. 

These variables are also summarised in Table 4.1. 
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Initially 146 data patterns (Dataset-I) from the refinery have been used to develop 

the model (Model-I). Later, three different sets of data became available having 

data patterns of 84 (Dataset-2), 48 (Dataset-3) and 25 (Dataset-4) respectively. 

Model-I has therefore been modified three times with the versions being denoted by 

Model-2, Model-3 and Model-4. There are interesting and different results for every 

model improvement, as described below. In all cases, the accuracy of the model is 

required to be within ±2°C. 

Input layer 

Tl-Il 
T1-l2 
T1-33 
TI-42 
T1-20 
F2l5 
T1-09 
TO-OO 
F205 
F204 
FlOI 
FR-I 
FIQ22 
F207 

~ 
Output layer 

Condensation 
---=::::::~K:::>+ point of light 

diesel 

Figure 9.2 The feedforward neural network structure. 

9.3.2 Model Development (Model-I) Using Dataset-l 

The data set (Dataset-I) used for model development comprises 146 patterns. As 

illustrated in Figure 9.1, the first step is to process the data using AutoClass. It 

requires selecting a density distribution model for all attributes (i.e., all the inputs to 

the FFNN, Figure 9.2). All variables have real values and no data are missing so a 

Gaussian model is used. 

AutoClass predicts seven classes (numbered 0, 1, ... , 6) as shown in Table 9.1. 

For example, class ° has 32 members (i.e., 32 data patterns). Test data are sampled 

from each class and they are indicated in bold and underlined in Table 9.1. More 

data patterns are sampled from larger classes and fewer from smaller classes. 
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Altogether there are 30 data patterns used for testing and 116 for training. The 

procedure is summarised in Table 9.2. 

The assignment of a data pattern to a class is fuzzy in the sense that there is a 

membership probability. Examples of membership probabilities are shown in Table 

9.3. For instance, data pattern 17 (the third row in Table 9.3) has a membership 

probability of 0.914 to class 0,0.055 to class 1 and 0.030 to class 4. It therefore is 

assigned to class O. 

The FFNN software sensor model (Model -1) is obtained when the training error 

reaches 0.424. With normalized [0, 1] training data, the error is calculated using 

1~,--. \2 ' 
- L.i \Vi - Yi J ' where Y; is the prediction by the model for the ith training 
2 ;=1 

pattern and Yi the target value. There are three training patterns and two test 

patterns with absolute errors exceeding the required ±2oC. Therefore the degree of 

confidence for training data is 100% - (3/116)% = 97.4%, and that for test data is 

100% - (2/30)% = 93.3%. A degree of confidence of 90% is considered acceptable 

by the refmery. 

Table 9.1 Classification of Dataset-l and test data selection for FFNNa• 

Class 0 Weir:.ht 32 Class 1 Weir:.ht 31 Class 2 Weir:.ht 29 
5 ~ 16 1731 32 3435 36 1 10 25 26 27 44 45 46 2 J 4 15 18 19 64 65 69 
37-39 40 41-43 81 103 104 47-50 51 52 76 79 80 70 72 73 74 75 83 84 
105 108 109 110 112 114 82 120 121 122-24 125 85 86-88 89 90 91 93 94 
115 116 118 136 137 138 139 126 128 129 132 133 95 96 97 146 

134 135 
Class 3 Weir:.ht 26 'lass 4 Weir:.ht II Class 5 Weir:.ht 9 Class 6 Weir:.ht 8 
11 12 13 14 53 54 55 7 9 28 29 33 20 21 30 101 102 8 22 23 24 107 
56-59 60 61-63 66 67 68 III 117 127 130 106 140 141 142 113 119 144 
71 77 78 92 98 99 100 131 145 
143 

a data in bold and underlined are test data; weight - number of members 

Table 9.2 Test and training data from the 146 patterns in Dataset-I. 

Classes 0 1 2 3 4 5 6 
Class weight 32 31 29 26 11 9 8 

Number of patterns for training 25 24 23 21 9 7 7 
Number of patterns for test 7 7 6 5 2 2 1 
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Table 9.3 Examples of class membership probability. 

Data Pattern (Class, Membership (Class, Membership (Class, Membership 
probability ) probability) probability ) 

16 (0,0.803) (1,0.197) 
17 (0,0.914) (1,0.055) (4,0.030) 
31 (0,0.984) (1,0.014) (6,0.002) 
32 (0, 1.000) 
34 (0,0.995) (6,0.005) 
35 (0, 1.000) 
36 (0,0.967) (1,0.003) (6,0.001) 
37 (0,0.996) (1,0.002) 

9.3.3 Model-l Improvement Using Dataset-2 

The production strategy changes according to season. The accuracy of Model-l 

originally developed was later found to be inadequate and 84 more data patterns 

(Dataset-2) were provioded in order to improve model performance. Initial 

application of Model-l to the 84 data patterns indicated that the degree of 

confidence is only 100% - (63/84)% = 25.0%. 

Table 9.4 Classification result of dataset-l plus dataset-2a. 

Class 0 Class 1 Class 1 Class 3 Class 4 
Weif:.ht 38 Weight 31 Weight 16 Weight 19 Weight 17 
2 J 4 14 15 18 5 6 17 29 32 160 161 175 I 10 16 44 II 12 13 25 
19 21 64 65 66- 35 36-39 40 41- 177-179 182 186 45-48 49 56 57 58-60 
69 70 71-75 82- 43 81 103 104 187 191 193-195 50-52 53 54 61 62 63 77 
84 86 87 88-90 105 108 109 196 197 209 55 79 80 78 85 92 
91 93 94 95 96- ill III 112 210 111 212 121 122 143 
98 99 100 146 114 115 116 215 116 217-2/9 

117 136 137 110 221 
138 139 

Class 5 Class 6 Class 7 Class 8 Class 9 
Weight 15 Weight 14 Weight 12 Weight 11 Weight 10 
157 176 180 181 7 8 22 23 24 31 162 163 164 158 159 198 147 148 149 
183 184 185 188 33 34 76 107 113 222 223124 199 200-202 150-152 153 
189 190 191 205 118 119 144 225-227 118 103 204 213 154-156 
106 207 208 229 230 214 
Class 10 Class 11 Class 11 Class 13 Class 14 
Weight 10 Weight 9 Weight 8 Weight 7 Weight 3 
9 26 28 120 123 27 125 126 128 20 30 101 166 167 165 173 174 
124 127 130 ill 129 132 133 134 102 106 168-170 171 
145 135 140 141 142 172 

a In ItalIc refers to data patters from dataset-2; In bold and underlmed are used for test. 
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The 84 new data patterns were combined with dataset-l and processed by 

AutoClass. It was found that the 230 data patterns (84 + 146) were classified into 15 

classes. Interestingly, all the 84 new data patterns in dataset-2 were classified into 

seven new classes (classes 2,5, 7, 8, 9, 13, 14), while all the 146 patterns in dataset-

1 are in eight classes (classes 0, 1,3,4, 6, 10, 11, 12). This is consistent with the 

poor predictions for the dataset-2 using Model-I. A summary of the classification is 

given in Table 9.4 where the data in italic are from dataset-2. The data patterns in 

bold and underlined are chosen for testing and the rest for retraining to generate 

model-2. All together 49 data patterns are chosen for test, of which 19 are from 

Dataset-2 and 30 from Dataset-I. The degree of confidence for the training data is 

100% - (111181)% = 92.8% and for test data 100%-(3/49)% = 93.9%. 

9.3.4 Improvement Using Dataset-3 

Later further 48 data patterns (Dataset-3) were provided. Model-2 was applied to 

dataset-3 and the degree of confidence was found to be 100% - (27/48)% = 43.8%. 

This is low but better than the prediction to dataset-2 using Model-l (25.0%). The 

48 new data patterns are then mixed with dataset-l and dataset-2 and processed by 

AutoClass to give sixteen classes (a detailed classification is given in Table 9.5). It 

is found that twenty-five of the forty-eight data patterns form a new class (class 1 in 

Table 9.5, data patterns 251 - 275) but the rest are assigned to the classes combined 

with data from dataset-l and dataset-2. The degree of confidence using model-2 to 

predict the classes 1, 2, 3, 8 and 11 are summarised in Table 9.6. It can be seen that 

class I contains only new data patterns and has the lowest degree of confidence for 

prediction using model-2. Nineteen of the twenty-five patterns in dataset-l have 

deviations bigger than ±2oC. Classes with fewer new data patterns have a higher 

degree of confidence in the predictions. This result further demonstrates the 

advantage of using AutoClass for clustering data before training a FFNN model. It 

is also found that a confidence in a model for predicting new data is lower if more 

data are grouped into new classes. For example, all patterns in dataset-2 are grouped 

into new classes and the confidence of predicting dataset-2 using Model-l is 25.0%; 

while some patterns in dataset-3 are classified into old classes, with a confidence in 

predicting dataset-3 using Model-2 of 43.8%. 
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Table 9.5 Classification result of dataset-I, 2 and 3°. 

Class 0 Weight 50 Class 1 Class 2 Class 3 Class 4 
I 6 7.2 10 16 17 Weight 25 Weight 22 Weight 22 Weight 9 
22 ll... 26 28 29 31 251 252 253- 160 161 175 162 176 182 157 158 180 
33 34 36-39 40 41 255 256 257- 177 178 179 183 184 185 181 188 189 
47 48 49 50 51 52 59 260 261- 186 187 192 222 223 190 191 198 
76 81 82 111 113 264 265 266- 193 209 212 224-227 228 199 200 
117118 120 21 122 268 269 270- 216 217 218 229-231 232 201-203 204 
123 124 126 127 128 273 274 275 219 220 221 233 238 239 205 206 207 
129 130 131 133 134 234 235 236 240 241 208 
135 138 145 237 
Class 5 Weight 18 Class 6 Class 7 Weight Class 8 Class 9 
5 32 35 42 43 Weight 18 1!L8 20 24 27 Weight 13147 Weight 12 
103 104 105 108 11 12 13 53 30 44 45-46 80 148 149-151 21 25 73 83 
109110112114 54 55 56-69 101 102 119 152 153 154 87 92 93 94 
115 116 136 137 60 61-63 77 125 132 140 155 156 276 100 106 107 
139 78 79 85 141 142 144 277 278 143 
Class 10 Class 11 Class 12 Class 13 Class 14 Class 15 
Weight 12 Weight 11 Weight 10 Weight 10 Weight 10 Weight 8 

2 14 15 163 164 242 3181972 165 166 167 159 194 195 4 69 74 
64 65 66 243-245 246 84 86 88 89 168-171 172 196 197 210 75 95 96 
67 68 70 247-249 250 90 91 173 174 211 213 214 97146 
71 98 99 215 

a Italic - data from dataset-3; in bold and underlined - test data 

The 48 new data patterns in dataset-3 have been combined with datasets-1 and -2 

to develop model-3. The sampling of test data patterns follows the same procedure 

as before. A total of 68 data patterns has been used for testing with the remaining 

2lO patterns for training. Model-3 has a degree of confidence of 92.6% (=lOO% -

(5/68)%) for testing data and 93.8% (=100%-{l3/2lO)%) for the training data. 

Table 96 Degree 0 f nfid d l2 co I ence to usmg mo e- topre d' d lct ataset-3 
Number of data Number of Total data Number of Degree of confidence 
patterns from data patterns patterns predictions with an using model-2 to 

Class dataset-3 from in the class absolute error greater predict the class 
es datasets-l than ±2°C 

and 2 

I 25 0 25 19 24.0%(-100%-(19/25)%) 

2 4 18 22 0 100.0% 

3 7 15 22 4 57.1% 

8 3 10 13 0 100.0% 

II 9 2 11 4 44.4% 
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9.3.5 Improvement Using Dataset-4 

Dataset-4 was subsequently obtained from the refinery and has 25 new data patterns. 

The confidence of applying model-3 to dataset-4 is 100%-(8/25)% = 68.0. Dataset-4 

was then combined with previous data sets to give a database of 303 patterns. These 

are classified by AutoClass into fifteen classes. 77 data patterns have been selected 

as test data and the rest for training to develop the FFNN model-4. The model has a 

confidence of 92.5% (=100%-(17/226)%) for training data and 90.9% (=100%­

(7177)%) for test data. In order to make a comparison with the conventional 

sampling approach, 77 data patterns have selected using random sampling as test 

patterns. The training is terminated using the same criterion, i.e., a training error of 

5.75e- l . On this basis, 11 test data patterns have errors exceeding ±2°C. So the 

confidence for the test data is 100%-(11177)% = 85.7%. This is lower than that of 

the test data used in this study, which is 90.9% (100%-(7177)%). The confidence of 

the training data for both approaches is the same, 92.5%. 

Table 9.7 The changing ranges of input /output variables ofmodel-4. 

Attribute Unit Input Output Max. Min. Range 
Tl-ll °c -J 205.40 181.50 23.90 
Tl-12 °c -J 262.30 215.10 47.20 
Tl-33 °c -J 228.00 186.10 41.90 
Tl-42 °c -J 285.00 246.80 38.20 
Tl-20 °c -J 187.30 129.20 58.10 
F215 Ton/hr -J 170.00 106.00 64.00 
Tl-09 °c -J 113.00 102.30 10.70 
Tl-OO °c -J 511.00 493.00 18.00 
F205 Ton/hr -J 118.40 80.00 38.40 
F204 Ton/hr -J 39.50 10.00 29.50 
F101 Ton/hr -J 3.46 2.39 1.07 
FR-l Ton/hr -J 10.00 6.40 3.60 
FIQ22 Ton/hr -J 7.63 3.30 4.33 
F207 Ton/hr -J 14.00 6.80 7.20 
TS3 °c -J 7.00 -13.00 20.00 
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Figure 9.3 Comparison between predictions using Model-4 and the target values for 
the first 151 data patterns. 
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Figure 9.4 Comparison between predictions using Model-4 and the target values for 
the last 152 data patterns. 

Model-4 (i.e., all data sets) covers all the operational seasons and is being used 

very satisfactorily. It has proved to be robust and reliable over a wide range of 

operational conditions. Figures 9.3 and 9.4 show the differences between 

predictions using Mode-4 and the target values of the 303 patterns. Variations in the 

input and output variables are summarised in Table 9.7. The plant has reduced the 

sampling frequency to twice a day compared with four to six times used previously 

and the intention is to reduce it to once a day in the future. 



204 Data Mining and Knowledge Discovery for Process Monitoring and Control 

9.4 Dimension Reduction of Input Variables 

In applying neural networks for software sensor design, researchers tend to include 

as many variables as possible to ensure that no relevant variables are omitted. This 

may sometimes result in a very large dimension of input. An unnecessary large 

dimension of input variables may have adverse effects. For a fIxed number of 

training data patterns, with the increase of input variables it becomes more sparse in 

the multi-dimensional space, and therefore degrades the learning performance. The 

generality of the learned model may also be reduced due to inclusion of irrelevant or 

not important input variables. Increased number of inputs also means more 

connection weights to be determined and therefore leads to longer training time. 

Apart from irrelevant and not important variables that cause large dimension of 

input variables, there may be correlations between input variables. Correlated inputs 

make the model more sensitive to the statistical peculiarities of the particular 

sample; they accentuate the ovemtting problem and limit generalisation - a common 

occurrence in linear regression. 

Use of prior knowledge, if available to identify irrelevant or correlated variables 

is clearly useful. Otherwise mathematical techniques are required to solve the 

problem. In the following, we will be looking at several techniques. 

9.4.1 Use of peA for Input Dimension Reduction 

Since the fIrst few PCs are able to capture most of the variance of the original 

explanatory variables, it is possible to use only the fIrst few PCs to replace the 

explanatory variables as the inputs to a FFNN model. Since normally not all PCs are 

required, the dimension of inputs is reduced. In addition, these PCs are linearly 

uncorrelated and orthogonal. 

McAvoy et al. [228] studied the use of FFNNs to fluorescent spectral analysis 

data for predicting composition of a binary mixture. Thirty data points were 

sampled from each fluorescent spectrum which were used as inputs of a FFNN 

mode whose output is the composition of one of the components. Baughman and 

Liu [229] used the same data and developed a 30-20-1 FFNN for this purpose. 

Because there are only 46 data patterns available, the size of the network is 

relatively large. 
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Table 9.S Principal components for the fluorescent spectral analysis data. 

Original variables PC I PCz PC3 PC30 
XI 8.74E-03 0.975 0.223 -2.42E-05 
X2 6.20E-02 0.995 7.37E-02 1.13E-04 
X3 9.50E-02 0.995 -7.16E-03 -1.42E-04 
X4 0.123 0.991 -4.39E-02 -8.74E-05 
X5 0.172 0.984 -4.90E-02 1.06E-04 
X6 0.28 0.958 -5.70E-02 -9.44E-05 
X7 0.472 0.88 -5.77E-02 2.92E-04 
X8 0.715 0.697 -5.06E-02 -5.28E-05 
X9 0.898 0.437 -3.94E-02 -2.27E-04 
Xo 0.975 0.219 -2.8 I E-02 -1.30E-OS 
XII 0.996 7.98E-02 -1.98E-02 1.26E-04 
X/2 1.000 -6.04E-03 -1.32E-02 -3.17E-04 
Xi3 0.998 -S.80E-02 -7.49E-03 7.07E-04 
X/4 0.996 -8.84E-02 -5.41 E-03 -2.87E-04 
XI5 0.994 -0.109 -9.89E-04 7.49E-OS 
XI6 0.993 -0.122 1.34E-04 -1.82E-04 
XI7 0.991 -0.131 2.36E-03 1.0IE-OS 
XJ8 0.991 -0.137 3.7SE-03 1.6SE-OS 
XJ9 . 0.99 -0.141 6.07E-03 S.93E-OS 
X20 0.989 -0.144 7.51 E-03 -1.72E-OS 
X21 0.989 -0.145 8.06E-03 S.70E-05 
X22 0.989 -0.146 1.0IE-02 -8.84E-OS 
X23 0.989 -0.145 l.38E-02 7.60E-OS 
X24 0.989 -0.145 1.62E-02 S.66E-06 
X25 0.989 -0.145 1.87E-02 -9.03E-05 
X26 0.99 -0.142 1.81 E-02 9.29E-06 
X27 0.99 -0.139 1.69E-02 2.64E-OS 
X28 0.99 -0.137 2.2 I E-02 -6.22E-OS 
X29 0.99 -0.135 2.72E-02 -1.62E-OS 

X30 0.991 -0.13 2.79E-02 3.38E-OS 

% of variance 74.331% 25.398% 0.252% 3.241E-06% 
% ofcummulative 

74.331% 99.729% 99.980% 100% variance 

We have carried out PCA analysis of the data and the result is shown in Table 9.8. 

Two observations are made. Firstly, it was found that the fIrst two PCs can capture 

99.729% of the variance. Secondly, Xl - X7 are mainly associated with PC2 and X9-

X30 with PCI.XS is nearly equally associated both PCs' 

Because the first two PCs can capture 99.729% of all the variance, it is possible to 

use the two PCs rather than the 30 x, as the inputs to develop a FFNN model. As a 

result we have developed a 2-4-1 model. Comparison was made between the 30-20-

1 model developed by Baughman and Liu [229] and the 2-4-1 model. For both 

models, 32 data patterns were used for training and 9 for test. The training and test 

errors for the 30-20-1 model are 3.02% and 3.87%, while for the 2-4-1 model are 
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2.29% and 3.55%. Because the difference in configuration of the two networks it is 

not appropriate to give a definite conclusion on which model is more accurate, only 

based on the above errors. Nevertheless it is obvious that the 2-4-1 model can give 

more accurate or equivalent result. 

An alternative way to use PCA to reduce the input variable dimension is to 

analyse the contribution of individual explanatory variables to the first few PCs. 

Those which are not important can be excluded from the FFNN model. 

9.4.2 Sensitivity Analysis 

Sensitivity analysis is a simple method of fmding the effect of an input on the output 

of the network. A FFNN can be developed first using all possible input variables 

and then be used to carry out sensitivity studies. Irrelevant variables can be 

excluded as a new FFNN is developed. Suppose there are a number of inputs Xi and 

only one output z, then the relationship of an input variable Xi and the output z is 

found by determining the impact of a small change in Xi on z. If large change occurs 

on z, then Xi is considered to be one of the key factors in producing the current 

activation value of z. The sensitivity can be deduced given a FFNN structure with 

multiple inputs [231], a number of hidden neurons and only single output. The input 

to a hidden neuron is 
(9.1) 

where aoj is the bias weight and Xi denotes an input with associated weight aij. The 

output of a hidden neuron is 
Y.= 1 

J ---
(9.2) 

1+ e -u, 

Then the output of the output node is 
v=bo+ ~ bjY j (9.3) 

where bo is the bias weight and bj are the respective weights for the hidden nodes. 
Clearly the output z = _1_ . 

1 + e- v 

The sensitivity of the output z to the input variable Xi is dzldxi . Using the chain 

rule, the sensitivity may be related to the output z, the output from each of the 

hidden nodes and the different set of weights aij and bj as follows, 

dzldxi = (dz/dv)( dvldYj)( dyjduj)( dujdx;) 
= z(1-z) I bjYj(I - Yj)aij 
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For a FFNN with multiple outputs, the same procedure can be applied to study the 

impact of each input on each output. Table 9.9 is an example of sensitivity study for 

a waste water treatment process [230]. It shows sensitivity of the standard deviation 

of suspended solid to a number of operational variables. It indicates that the 

classifier interface level is the most important variable and inlet oil concentration 

and inlet cyanide act have positive impact, while an increase in ammonia flow has a 

positive effect in reducing the standard deviation of suspended solids. 

Table 9.9 The sensitivity of the standard deviation of suspended 
solids to various operational variables. 

Variable 
Interface levOel 
Sludge age 
Inlet oil concentration 
Inlet cyanide concentration 
Aerated tank temperature 
Inlet ammonia flow 
Treated effiuent pH 

Average sensitivity 
0.52 
0.48 
0.46 
0.44 
-0.42 
-0.33 
-0.33 

Sensitivity can also be carried out by plotting the output variable against an input 

variable as shown in Figure 9.5 [175]. Figure 9.5 shows the relationships of 

variables of a waste water processing unit. PH-P is the measured PH value of the 

effiuent from the unit and PH-E, SS-E and Q-E are the PH value, suspended solid 

and flowrate of the influent to the unit. 

8.4 

8.3 

8.2 
PH-E 

8.1 

8.0 
"-
:i: 7.9 
"-

7.8 

7.7 

7.6 

7.5 

7.4 

7.3 

0 0.2 0.4 0.6 0.8 1.0 

Normalised values of PH-E, SS-E and Q-E 

Figure 9.5 The sensitivity of the effect ofPH-P to influent SS-E, Q-E and PH-E. 
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However the above sensitivity studies should be conducted with great care. If the 

inputs are strongly correlated then the sensitivity of the output to an input variable 

may be dependent on what values the other input variables are fixed at. If PCs rather 

than the explanatory variables are used, this problem can be resolved since all PCs 

are linearly uncorrelated. Although it may be able to estimate the impact of each PC 

on the output, to relate to the explanatory variables is not always possible. For 

example, Table 9.10 shows the coefficients of the first four PCs and the six 

explanatory variables Xl - X6. Since PCl is nearly equally weighted on four (i.e., XJ, 

Xl> X4, xs) of the six variables and the PCl only accounts about half of the total 

variance, even we can find the impact of PC I on the output, it is difficult to 

determine the impact on the output by Xl - X6 [231]. A satisfactory situation would 

be that the first PC accounts for most of the total variance and/or is heavily 

weighted on a few explanatory variables. 

Table 9.10 The coefficients of the first four PCs and 
the explanatory variables. 

Variable PCl PC2 PC3 PC4 

Xl 0.449 0.249 0.349 -0.447 

X2 0.530 -0.058 0.041 0.197 

X3 0.280 -0.537 -0.575 -0.542 

X4 0.457 -0.253 -0.149 0.669 

Xs 0.467 0.223 0.267 -0.134 

X6 0.110 0.729 -0.673 0.042 

9.4.3 Weight Matrix Analysis 

Another approach to analyse the input impact on an output is to analyse the weight 

matrix. Since the nodes between two adjacent layers are fully connected, such an 

analysis is not straightforward. Garson [232] proposed the following measure for the 

proportional contribution of an input to a particular output, 
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(9.5) 

In the above equation, p and q refer to the input layer, p = 1, nj, j refers to hidden 

layer, j = 1, nh, i, j, k are the ith, jth and kth input, hidden and output node. A 

disadvantage of the approach is that during the summation process, positive and 

negative weights can cancel their contribution, which leads to inconsistent results. 

Milne [233] commented that the sign of the contribution is lost, and proposed the 

following measure, 

(9.6) 

Wong et al. [234] and Gedeon [235] defmed measures for the contribution of an 

input to a neuron in the hidden layer, and a hidden layer neuron to an output layer 

neuron, 

Iw},1 
P}k =-nh--

Llwrkl 
r""l 

Then the contribution of an input neuron to an output neuron is, 

nh 
Q., = L(Pir X Prk) 

r=! 

(9.7) 

(9.8) 

(9.9) 

The approaches using weight matrix to examine the impact of input nodes on output 

nodes are interesting but they have not been widely tested. 
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9.5 Dynamic Neural Networks as Inferential Models 

The data used in the industrial case study described in Section 9.3 was collected on 

steady state basis. Consequently the model developed will only be accurate if the 

operation is around steady states. A feedforward neural network is static in nature 

and is not designed to deal with dynamics, e.g., time delays. Recently several 

approaches have been proposed to introduce dynamics to FFNNs, in order to 

capture the dynamic nonlinear feature of processes. Such neural networks can 

essentially be classified according to implementation of the dynamic character as: 

(1) NNs with lumped dynamics; (2) recurrent NNs; and (3) dynamic multilayer 

percetron [236]. 

NNs with lumped dynamics are static networks with delayed measurements of the 

process inputs and outputs. Accordingly, the network approximate the current 

process outputy(k) as a function of the delayed measurements: 

y(k) = j(u/(k1), u/((k-l)1), ... u/((k-m)1), 

u2(k1), ui(k-l)1), ... u2((k-m)1), 

up(k1), uP((k-l)1), ... up((k-m)1) 

y((k-l)1), ... y((k-n)1) 

where y - output variable 

u/, UJ, ... up - in total there are p input variables 

T - period or time step for sampling training data 

k - the current sampling point 

m - the (k-m)th sampling point for inputs 

n - the (k-n)th sampling point for the output 

(9.10) 

It is clear that NNs with lumped dynamics do not change the internal structure of 

a static NN. Dynamics is captured by sampling data from input-output dynamic 

trends. Consequently, the dimension of the NN input space increases according to 

the number of delayed measurements used. 

Bhat and McAvoy [237] described such a case study using a stirred tank reactor 

as shown in Figure 9.6. The dynamics of the system can be described by two linear 

differential equations and three nonlinear algebraic equations. Training data were 
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generated using dynamic simulation by forcing the F2 stream with a 2% PRBS 

signal super imposed upon its steady state value. The F2 and pH responses used for 

training are shown in Figure 9.7. A FFNN neural network was developed to use the 

past five pH and F2 values as well as five future F2 values to predict the future pH 

values. The time step T is 0.4 min. Since the data is actually historical data 

generated through simulation, the future F2 values are available. The size of the 

network is therefore fifteen inputs and five outputs. The number of hidden neurons 

was five. 

Figure 9.6 pH CSTR. 
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Figure 9.7 Data used for training the CSTR neural network. 
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A moving window approach is used. At the beginning of the training process the 

window is placed at the beginning of the database. The fIrst fIve pH and ten F2 are 

used as inputs and the next fIve pH are used as the outputs. After the fIrst 

presentation of the data, the window moves T down the database. Again the fIrst 

fIve pH and ten F2 in the window are inputs to the net and the next fIve pH in the 

window are outputs. This process is continued until the end of the database is 

reached and, the process is repeated by starting at the beginning of the database, 

until the training is terminated through either reaching the required error or the 

maximum number of iteration. 

Recurrent neural networks (RNN) (e.g., Shaw et al. [238]) dispense with the 

explicit use of lagged measurements at the network input. Instead, RNN posses a 

long-term memory through recurrent connections within the network. However, 

according to Ayoubi [236], the application of RNN was minimised to sequence 

processing, yet there are no signifIcant applications to model identifIcation of real­

world systems. 

An alternative method is the multilayer dynamic percetron [236, 239] which 

modifIes the neuron processing and interconnections in order to incorporate 

dynamics inherently within the network. 

9.6 Summary 

It is important to have an appropriate mechanism to test the reliability of software 

sensor models developed using FFNN in both model development and maintenance 

stages. This is complicated by the high dimensionality and large volume of data. 

The integral framework described in Sections 9.2 and 9.3 uses Bayesian automatic 

classifIcation to cluster the multivariate data into classes having similar features. 

Test data for FFNN model development are then selected from each of the classes. 

When new data become available, it is possible to tell if they represent new 

information which makes it possible to determine when the neural network needs to 

be retrained. Through the progressive improvement of the model, it is found that the 

confIdence of the model for predicting new data is lower if more data are grouped 

into new classes. For example, all patterns in dataset-2 have been grouped into new 

classes, so the confidence in predicting dataset-2 using Model-l is 25.0%; while 

some patterns in dataset-3 are classifIed into old classes, where the confIdence of 

predicting dataset-3 using Model-2 is 43.8%. 
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Due to inadequate knowledge of the domain problem, people tend to use many 

input variables. Inclusion of irrelevant and redundant variables may deteriorate the 

model performance because it increases the size of the net, leading to longer 

training time, and requires more training data, and reduces model generalisation 

capability. The several approaches introduced in this chapter, including PCA, 

sensitivity analysis and weight matrix analysis can be used to combat the problem. 

However there is still the need to carry out further investigation in these approaches, 

especially in solving practical problems. 

Only a very brief introduction has been given to dynamic FFNNs for software 

sensor design. Due to its great application potential, there has been a growing 

interest in dynamic neural networks. Apart from the need to develop the most 

appropriate network structure and learning approaches, there is clearly a practical 

difficulty in applying dynamic neural networks, that is, how to get the large number 

of data patterns needed. Experimenting on industrial processes is time consuming 

and expensive because it may cause the process to deviate from desired conditions. 

There is another problem associated with doing experiment on industrial processes, 

which is that the processes are often under closed loop control using linear models. 

Kim et al. [240] addressed the need to consider the reality that most processes are 

under linearized control scheme. 

There are many other issues associated with determination of FFNN network 

topology and training. A detailed discussion on these has been given in Chapter 5 

therefore they are not repeated in this chapter. 



CHAPTER 10 

CONCLUDING REMARKS 

In this monograph we have sought to provide an introduction to automatic analysis 

and interpretation of process operational data both in real time and over the 

operating history. Methods are developed for designing intelligent, state space based 

systems for process monitoring, control and diagnosis. Such a system is able to 

identify known and new operational states, either normal or abnormal and project 

the operation of the process to a single point of the operational state space by 

simultaneously considering all measurements and giving causal explanations to 

operators and plant managers. The techniques have also proved useful in 

discovering operational states for product design. In developing the methods, we 

have attempted to address the point that plant operators and supervisors are part of 

the overall control system responsible for data interpretation and critical decision 

making, and therefore should be integrated into control systems in a way to provide 

them with necessary computer based, automatic processing tools. 

It is believed that the problems addressed in this book which have not been fully 

studied before are important in process monitoring and control, and we hope readers 

frod the methods of approaching the problems both interesting and practical. Many 

of the methods introduced in this book are new, such as feature extraction using 

wavelets and conceptual clustering using inductive learning. Some techniques are 

applications of traditional methods, such as principal component analysis. Even for 

well developed methods such as feedforward neural networks we have tried not to 

repeat the algorithms. Instead we present the methods in a novel way that 

summarises experience and addresses the various necessary considerations, such as 

training and test data selection and sensitivity study in using neural networks. 

X. Z. Wang, Data Mining and Knowledge Discovery for Process Monitoring and Control
© Springer-Verlag London Limited 1999
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Examples and industrial case studies in varying degrees of complexity have been 

used to illustrate these methods. They include a continuous stirred tank reactor, the 

reaction regeneration system of a fluid catalytic cracking process, a methyl tertiary 

butyl ether unit, the reaction fractionation system of fluid catalytic cracking and a 

waste water treatment plant. Many more examples could have been added, but we 

feel these should be sufficient to demonstrate the effectiveness of the methods and 

aid in clarifYing the ideas and concepts. 

We have intended to provide a new way of thinking in the approach to designing 

and operating process control systems and introduce practical methodologies for 

implementation. We also hope that the book will provide a stimulus to researchers 

since the field is still in its infancy. Many more challenges than those addressed in 

this book need to be considered in order to develop effective, robust and practical 

systems for knowledge discovery and for designing intelligent and state space based 

monitoring and control environment. 

Suggestions for future work have been summarised at the end of each chapter and 

will therefore not be repeated here. Most of the case studies in the book are with 

respect to continuos processes save a case study described in Chapter 4. Batch 

processes are expected to provide more challenges due to the distinctive features of 

batch operation mode. Batch processes do not have steady state operations and are 

more flexible. They also provide great opportunities for application of the 

techniques discussed in this book. For example, wavelets are potentially a powerful 

technique for dealing with signals of batch operations because they often change at 

higher frequencies than in continuous processes. In addition, feedstock disturbances 

occur frequently and on-line measurements of product quality variables are not 

available. As a result, most batch processes have not been able to achieve tight 

quality control. Knowledge discovery approaches are attractive for dealing with 

these kind of problems because of difficulties associated with developing accurate 

process models from first principles [241]. At present, industrialised countries are 

shifting the focus from large-scale commodity production to smaller scale fine 

chemicals, pharmaceutical and food production, therefore, there is a clear need for 

advances in this field. 



APPENDIX A 
THE CONTINUOUS STIRRED TANK REACTOR (CSTR) 

A single, non-isothennal continuous stirred-tank chemical reactor (CSTR) is shown 

in Figure AI. 

..... (0; ..... · . · . · . · . 
Feed · . · . · . · . 

.. ........... Q 
......... -_ ..... . 

o 
Cooling ! 
Wdter~ 

Figure Al The CSTR reactor. 

A single reaction A ~ B takes place in the reactor. It is assumed that the tank is 

very well mixed therefore the concentration of Co of component A and the 

temperature of the product stream leaving the tank are equal to that in the tank. The 

reaction is exothermic and reaction temperature T R is automatically controlled by a 

PID controller through manipulating the cooling water flowrate. There are also feed 
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flowrate and liquid level controllers as shown in Figure AI. Apart from the three 

controllers, the dynamic behaviour of the process is described by the following 

equations: 

Component mass balance 

V d Co V -EIRT ----;;t=FiC;-FoCo- Koe RCa 

Energy balance 

dTR 
VPCp----;;t = PCpFi Ti - PCpFo TR 

Total mass balance 

dV 
-=F-F dt I a 

V - holdup of the reaction mixture, m3. The volume of the tank is 1 m3. 

L - Liquid level in the tank, 0 - 100. 

Co - Concentration of component A in the product stream leaving the tank, 

kmol/m3, which is equal to that in the tank. 

Ci - Concentration of component A in the inlet feed stream, kmol/m3• 

Fi - Feed flowrate, m3/min. 

Fa - Product stream flowrate, m3/min. 

Fe - Cooling water flowrate, m3/min. 

Ko - Reaction coefficient, Ko = 1.0 x 1010 min· l . 

EIR - 8330.1 K"I. 

. f .. 106 I 3 P - DenSIty 0 reactIOn mIxture, P = g m . 

Pc - Density of cooling water, Pc = 106 glm3• 

Cp - Specific heat capacity of the reaction mixture, Cp = 1 cal/m3. 

Cpc - Specific heat capacity of cooling water, Cp = 1 cal/m3. 

-!J.Hrxn = 130 x 106 (cal/kmol) 

(AI) 

(A2) 

(A3) 
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a - Constant, a = 1.678 x 106 (cal/min)/K. 

b - Constant, b = 0.5 

1';- Temperature of the inlet feed, K. 

TR - Temperature of the reaction mixture, K. 

Tcin - Inlet temperature of cooling water, K. 

More detailed description of the process can be found in [8]. A dynamic simulator 

was developed for the CSTR which has included three controllers as shown in 

Figure AI. The simulator has a MS Windows based graphical interface which 

allows users to make any changes and faults and disturbances can be easily 

introduced. To generate a data set or data case, run the simulator at steady state and 

introduce a disturbance or fault and at the same time start to record the dynamic 

responses. Eighty five data sets were generated which are summarised in Table AI. 

For each data set, eight variables were recorded, including F;, T;, C;, Tw;, Fw, TR, Co 

and L. In each data set, each variable was recorded as a dynamic trend consisting of 

150 sampling points. Therefore for each variable the data size is a matrix 85 (the 

number of data sets) x 150 (the number data points representing a dynamic trend). 

Table At Data cases generated. 
Data sets Data detail 
1-11 All control loops are at AUTO mode and S.P. ofT R = 350K. Change Ti (K) 

from 343 ~ 333, 343 ~ 323, 323 ~ 343, 343 ~ 353, 353 ~ 343, 343 ~ 
363, 363 ~ 343, 310 ~ 303, 303 ~ 313, 310 ~ 293, 293 ~ 313 

12-15 AIl control loops are at AUTO mode and S.P. ofTR = 350K. Change Ci 
(kmolfm3 ) from 2.0 ~ 1.6, 1.6 ~ 2.0, 2.0 ~ 1.2, 1.2 ~ 2.0 

16-20 AIl control loops are at AUTO mode and S.P. ofT R = 350K. Change Fi (m3 

fmin) from 1.00 ~ 1.06, 1.06 ~ 1.02, 1.02 ~ 0.94, 1.00 ~ 0.62, 0.62 ~ 
1.00 

21-24 All control loops are at AUTO mode and S.P. ofT R = 350K. Change L ( % ) 
from 50.0 ~ 60.0, 60.0 ~ 50.0, 50.0 ~ 40.0, 40.0 ~ 50.0 

25-31 AIl control loops are at AUTO mode and S.P. ofT R = 405 K. Change Ti (K) 
from 343 ~ 333, 333 ~ 323, 323 ~ 333, 343 ~ 353, 353 ~ 343, 343 ~ 
363, 363 ~ 343 

32-36 All control loops are at AUTO mode and S.P. ofT R = 405 K. Change Twi (K) 
from 310 ~ 303, 310 ~ 293, 293 ~ 313, 3 13 ~ 323, 323 ~ 313 
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Table Al Data cases generated (continued). 
Data sets Data detail 

37-39 All control loops are at AUTO mode and S.P. ofT R = 40S K. Change Ci 
(lanol/m3) from 2.0 ~ 1.6, 1.6 ~ 2.0, 2.0 ~ 1.2 

40-43 All control loops are at AUTO mode and S.P. of T R = 40S K. Change Fi (m3 

/min) from I.OO~ 1.06, 1.06~ 0.98, 0.98~ 0.86, 0.86~ 1.02 
44-46 All control loops are at AUTO mode and S.P. ofT R = 40S K. Change L (%) 

from SO.O~ 60.0, 60.0~ SO.O, SO.O~ 40.0 
46-52 All control loops are at AUTO mode and S.P. ofT R = 380 K. Change Ti (K) 

from 343~333, 333 ~ 323, 323 ~ 333, 333 ~ 343, 343 ~ 3S3, 3S3 ~ 343 
53-56 All control loops are at AUTO mode and S.P. of T R = 380 K. Change Twi (K) 

from 310 ~ 303, 303 ~ 313, 310 ~ 323, 323 ~ 313 
57-60 All control loops are at AUTO mode and S.P. ofT R = 380 K. Change Ci 

(kmollm3) from 2.0 ~ 1.6, 1.6 ~ 2.0, 2.0 ~ 1.2, 1.2 ~ 2.0 
61-66 All control loops are at AUTO mode and S.P. of T R = 380 K. Change Fi (m3 

/min) from 1.00~ 1.06, 1.06~ 1.00, 1.00~ 1.10, 1.I0~ 1.00, 1.00~ 0.90, 
0.90~ 1.00 

67-70 All control loops are at AUTO mode and S.P. of T R = 380 K. Change the S.P. 
of L ( % ) from SO.O~ 40.0, 40.0~ SO.O, SO.O~ 60.0, 60.0~ SO.O 

71-80 All control loops are at AUTO mode and S.P. ofT R = 380 K. Change the 
output of the CSTR level controller from (S) SO.O~ 1 0.0, SO.O~ 8.0, 
SO.O~ 6.0, SO.O~ 12.0, SO.O~ 14.0, SO.O~IS.O, SO.O~ S.O, SO.O~ 2.0, 
SO.O~ 3.0, SO.O~ 0.0 

81-85 All control loops are at AUTO mode. Change the output of the controller T R 

from (%) 71.4~ 20.0, 71.4~ 21.0, 71.4~ 22.0, 71.4~ 19.0, 71.4~18.0 



APPENDIXB 
THE RESDIUE FLUID CATALYTIC CRACKING (R-FCC) 
PROCESS 

Fluid catalytic cracking process (FCC) is a dominant feature of most refmery 

operations, representing the order of thirty percent in product value. FCC is also a 

very complicated process featured by highly non-linear dynamics due to the strong 

interactions between the riser tube reactor and fluidised bed regenerator through 

heat, mass and pressure balances. 

The residual fluid catalytic cracking (R-FCC), as shown in Figure B 1 is used as 

case studies in Chapters 5 and 6. It converts heavy bottoms of the crude and vacuum 

distillation columns into more valuable gasoline and lighter products. Preheated 

feed is mixed with high temperature slurry recycle, which comes from the bottom of 

the main fractionator, and injected into the riser tube reactor, where it is mixed with 

high temperature regenerated catalyst and totally vaporises. The high temperature 

regenerated catalyst provides the sensible heat, heat of vaporisation and heat of 

reaction necessary for the endothermic cracking reactions which complete in a few 

seconds. As a result of the cracking reactions, a carbonaceous material - coke is 

deposited on the surface of the catalyst. As a result continuous regeneration is 

required. 

Separation of catalyst and gas occurs in the disengaging zone of the reactor. 

Entrained catalyst is stopped by the cyclones. Catalyst is returned to the stripping 

section of the reactor where steam is injected to remove entrained hydrocarbons. 

Reactor product gas is channelled to the main fractionator for heat recovery and 

separation into various product streams. Wet gas from the overheads of the main 
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fractionator (C6 and lighter) is compressed for further separation in downstream 
fractionators. 

Spent catalyst is transported from the reactor to the regenerator through the spent 

catalyst pipe. Air is injected into the bottom of the regenerator lift pipe to assist the 

circulation of catalyst. 

Catalyst in the regenerator is fluidised with air which is provided by the lift and 

combustion air blowers. Carbon and hydrogen on the catalyst react with oxygen to 

produce carbon monoxide, carbon dioxide and water. While most of the reactions 

occur in the fluidised bed, some reaction does occur in the disengaging section 

above the bed, where some catalyst is still present. Gas travels up the regenerator 

into the cyclones where entrained catalyst is removed and returned to the bed. 

The regenerator is run at a high temperature and an excess of oxygen to ensure 

that virtually all carbon monoxide produced in the bed is converted to carbon 

dioxide before entering the cyclones. Because this is a residual FCC process 

processing heavy feed, the amount of heat generated through burning coke in the 

regenerator is more than that required by the endorthemic cracking reactions. 

Therefore it has internal and external heat exchangers to remove the excess heat. 

Regenerated catalyst flows over a weir into the regenerator standpipe. The head 

produced by catalyst in the standpipe provides the driving force for catalyst through 

the regenerated catalyst pipe to the riser tube reactor. 

The major control loops for the process are summarised in Table Bl. They 

include reaction temperature, pressures of the two reactor vessels as well as 

flowrates of feed, air and steam as well as catalyst hold-up. A very important feature 

of the process is the very complicated and dynamic interactions between the heat, 

mass and pressure balances between the two reactor vessels, and fluidisation 

conditions. On top of the control loops, safety guard systems playa critical role in 

preventing disastrous situations. There are four major safety guard systems as shown 

in Table Bl. They all need the authorisation of operators by pressing one or two 

buttons to prevent system over reactions. When a safety guard system is activated, 

in total fourteen valves will act to close, open or maintain at the original position 

according to predefined logic. 

A dynamic simulator for training operators was developed in 1992 by one of the 

author, Wang for the refinery. The simulator has a number of features compared 

with some other FCC simulators. First, it is able to simulate continuously and 

smoothly the start-up and shutdown procedures and normal operation. In addition, it 

has a very good operability. All the operating variables and equipment units are 
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operable within a wide range, including conditions regarded as abnonnal. 

Furthennore apart from. faults that can be initiated randomly, there are also extra 

twenty faults that are common to FCC processes. More importantly, it has high 

fidelity: the simulator has been tested in the refinery for operator training for several 

years and during the process the simulator has been continuously improved. There 

are other features including intelligent on-line support, scoring and snapshot. 

In this study, sixty four data patterns generated from the simulator was used which 

are summarised in Table B2. We limit our discussion to 64 data patterns in order to 

simplify the discussion and result presentation. The data sets include faults or 

disturbances: 

• fresh flow rate increased and decreased 

• preheat temperature of mixed feed increased and decreased 

• recycle slurry flow rate increased and decreased 

• opening rate of hand valve V20 increased and decreased 

• air flow rate increased and decreased 

• valve 401-ST opening from 100% decreased 

• cooling water pump failure 

• compressor failure 

• double faults 

The sixty four data patterns were first generated by the customised dynamic 

training simulator, then random noises were added to the data using a noise 

generator ofMATLAB®, before it is fed to the system. 
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Table Bl The major control loops and safety guard systems of the R-FCC 

rocess. 
Major control loops 
Reaction TC302 
temperature 

Regenerator PC30 I 
Pressure 

Inlet pressure PC551 
of the 
compressor 

Other controllers 

Safeguards 
Low feed flowrate 

Low flow of 
main air supply 

Low pressure difference 

between the regenerator 
and the reactor 

External heat 
exchanging system 

Temperature control at the exit of the riser tube 
reactor. Set pint, 5 \30c. Manipulated variable is 
regenerated catalyst flow to the riser tube reactor 

Pressure control of the regenerator at 1.6 kg/cm2• 

Manipulated variable is the flue gas flowrate 

Pressure control. This is to maintain a pressure 
difference of> 0.3 kg/ cm2 between the regenerator 
and the reactor. The manipulated variable is 
normally the compressor speed, but can also be 
switched to value on top ofthe fractionator, 
especially during start-up 

Feed flowrates FC309 and FC305, Steam flowrate 
F302, water level LC302, catalyst holdup 
controller LC301 

At low feed flowrate, reactions will deteriorate with 
increased reaction depth and secondary reactions. 

Low flow of main air supply causes increase of 
regenerator temperature, poor fluidisation and 
even cause reverse flow of catalyst or catalyst 
flowing to the air compressor 

A pressure difference of 0.3 kg/ cm2 between the 

regenerator and the reactor is normally required 
to prevent gas oil flowing into the regenerator 
because this may cause possible very high 
temperature in the regenerator and damage. This 
safety guard will induce the low feed safety guard 

When the low main air supply safety guard is 
activated the external heat exchanging system is also 
needed to be cut off 
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Table B2 Summary of the data patterns studied. 

Data Fault when time t < 0 operation is 
patterns mode at steady state, at t = 0 make 

the following step change 

1-9 1 Fresh feed increased by 10 20 30 
40 50 60 70 80 90% 

10-18 2 Fresh feed decreased by 10 20 30 
40 50 60 70 80 90% 

19-22 3 Preheat Temperature T of mixed 
feed increased by 5 10 15 20 Q C 

23-24 4 Preheat Temperature of mixed feed 
decreased by 15 10 Q C 

25-26 5 Recycle oil Flow rate F increased 70 90% 
27-28 6 Recycle oil Flow rate F decreased 70 90% 
29-32 7 Opening ratio of hand-valve V20 

increased by 5 10 15 24% 
33-37 8 Opening ratio of hand-valve V20 

decreased by 15253555 10% 
38 9 Cooling water pump P-02 failure 
39-43 10 Air flow rate increased by 6.5 11.5 15 

31.540.5% 
44-49 11 Air flow rate decreased by 3.5 8.5 28.5 

38.5 48.5 53.5% 
50 12 Compressor failure 
51-57 13 Valve 401-ST opening from 100% 

decreased by 10 20 40 45 60 80 90% 
58 1 Fresh feed Flow rate F increased by 65% 
59 2 Fresh feed Flow rate F decreased by 85% 
60 1&8 Fresh feed Flow rate F increased 65% 

and V20 opening rate decreased 55% 
61 1&9 Air flow rate increased 9.5% and 

compressor failure 
62 2&9 Air flow rate increased 9.5% and valve 

401-ST opening decreased 35% 
63 10&12 Pump P-02 failure and compressor failure 
64 10&13 Fresh feed decreased 70% and valve 

40 I-ST opening decreased 20% 



APPENDIXC 
THE METHYL TERTIARY BUTYL ETHER (MTBE) 
PROCESS 

The refinery methyl tertiary butyl ether (MTBE) process, shown in Figure Cl is 

used in Chapter 7 as a case study of applying conceptual clustering to developing 

process monitoring systems. MTBE is an important industrial chemical because 

large quantities of MTBE are now required as an octane booster in gasoline to 

replace tetra ethyl lead. MTBE is produced from the reaction between isobutene and 

methanol in a reactor and a catalytic distillation column packed with catalysts. The 

reaction takes place at a temperature of 35-750C and a pressure of 0.7-0.9 MPa. 

The main chemical reaction is: 

methanol + isobutene === methy tertiary butyl ether 

CH30H + (CH3hC=CH2 === (CH3)3COCH3 

The reaction occurs in the liquid phase and is reversible and exothermic. Proper 

selection of the reaction pressure allows part of the reaction product to be 

vaporised, absorbing part of the heat of reaction. Thus the temperature in the reactor 

could be controlled. 

An unavoidable side reaction is: 

isobutene + isobutene === diisobutene 

(CH3hC=CH2 + (CH3hC=CH2 === {(CH3hC=CH2h 
However, the selectivity of the primary reaction is about 98-99%. Since the product 

of the side of reaction is very limited it can be ignored. 

MTBE is mostly produced in the reactor, and a small amount is produced in the 

catalytic distillation column which combines reaction and distillation. The rest of 

the isobutene and methanol from the reactor passes to the catalytic distillation 
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column and is reacted. The MTBE produced is then separated simultaneously, 

which ensures a high conversion level of isobutene in the catalytic distillation 

column. 

The rest of methanol after the reaction is recovered from the distillate of the top of 

the column by water extraction and a conventional column. The solvability of 

methanol in C4 hydrocarbon and in water is quite different so C4 hydrocarbon can be 

easily separated from methanol water solution. The recovered methanol and C4 

hydrocarbon are then recycled. 

The process used in this study comprises a catalytic reactor R201, catalytic 

distillation column C20 1, water extraction column C202, methanol distillation 

column C203 and several other vessels together with pumps. The overview of the 

flowsheet of the process is shown in Figure C 1. Methanol from D202 and C4 from 

D201 are mixed in M201 and then pass to the reactor R201. An on-line analyser 

measures the ratio of isobutene and methanol and the inlet temperature of the 

reactor is controlled by means of the heat exchanger E20 1. Maintaining the pressure 

in the reactor is important so as to control the amount of product vaporised to 

absorb the heat of reaction. To achieve a high conversion level of isobutene an 

additional methanol feed stream is introduced into the catalytic distillation column 

at the top of the column. The vessel D211 is filled with catalysts and is used to filter 

methanol before it enters the column. The MTBE is taken from the bottom of the 

column and the distillate is the mixture of methanol and the C4 hydrocarbon. The 

pressure controller at the top of the column is also used to control the pressure of 

the upstream reactor. Part of the methanol and C4 hydrocarbon is returned to he 

catalytic distillation column as reflux. The rest of the mixture passes to the water 

extraction column C202 to be separated into unreacted C4 hydrocarbon which is 

taken off from the top and the methanol water solution from the bottom. 

The case study is based on data generated from a customised dynamic simulator 

used for training operators in start-up and shutdown procedures, emergency 

management as well as normal operation monitoring and control of a commercial 

MTBE process. This simulator has also been used to study the start-up procedures 

and has been validated over several years of usage for various normal and abnormal 

conditions. Disturbances as well as faults concerned with various equipment items 

can be easily introduced to the simulator and corresponding responses of variables 

displayed in trend groups. This study comprises 100 tests, 64 of which are normal or 

with small disturbances and 36 have significant upsets or faults, as summarised in 

Table Cl. For each test, 21 variables were recorded as indicated in Table C2. For 
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each variable, 256 data points are recorded following a disturbance or fault. So the 

data has a dimension of 21 x 256. Random noise was added to the data. Figure C2 

shows such an example. 

Only the sections of feed, reactor and reactive distillation column of the process 

have been considered, which means that columns C202 and C203 have not been 

included in the study apart from the fact that there is a small recycle stream of the 

recovered methanol which affects the feed tank D202. This recycle stream was fixed 

at the design flowrate. 

Table C2 The variables recorded as dynamic responses. 

No. Variable Description 
1 F_D201_in Inlet Flow ofD201 
2 F_D20Lout Outlet Flow ofD201 
3 L_D201 Liquid Level of D20 1 
4 LD202_in1 Adding methanol Flow of D202 
5 F_D202_out1 Methanol flow from D202 to R201 
6 F _D202_out2 Methanol flow from D202 to D211 
7 L_D202 Liquid Level of D202 
8 T_E201_out Outlet Temperature ofE201 
9 F _E20 I_steam Steam flow through E201 
10 T_R201_top Top Temperature of reactor R201 
11 T_R201_mid Middle Temperature of reactor R201 
12 T_R201_bot Bottom Temperature of reactor R201 
13 F_C20Lref Reflex flow ofC201 
14 F_C201_out Product Flow ofMTBE 
15 T_C20Ltop Top Temperature ofC201 
16 T_C20Lmid Middle Temperature ofC201 
17 T_C201_bot Bottom Temperature ofC201 
18 T_MTBE MTBE Temperature 
19 L_C201 Liquid Level ofC201 
20 LD203_out Liquid Flow from D203 to C202 
21 L D203 Liquid Level ofD203 
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